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Preface

VECPAR is an international conference series dedicated to the promotion and
advancement of all aspects of high-performance computing for computational
science, as an industrial technique and academic discipline, extending the fron-
tier of both the state of the art and the state of practice. The audience and
participants of VECPAR are researchers in academic departments, government
laboratories and industrial organizations. There is now a permanent website
for the conference series in http://vecpar.fe.up.pt where the history of the
conference is described.

The 8th edition of VECPAR was organized in Toulouse (France), June 24–27,
2008. It was the third time the conference was celebrated outside Porto after
Valencia (Spain) in 2004 and Rio de Janeiro (Brazil) in 2006.

The conference programme consisted of 6 invited talks and 53 accepted papers
out of 73 contributions that were initially submitted.

The major themes are divided into:

– Large-Scale Simulations and Numerical Algorithms in Computer Science and
Engineering (aerospace, earth, environment, finance, geoscience)

– Computing in Healthcare and Biosciences
– Multiscale and Multiphysics Problems
– Cluster Computing and Grid Computing
– Data-Centric and High-Productivity Computing
– Cooperative Engineering
– Problem-Solving Environments
– Imaging and Graphics

Two workshops, in addition to tutorials, were organized before the conference:

HPDGrid 2008 — International Workshop on High-Performance Data Manage-
ment in Grid Environments on June 24 and Sparse Days at CERFACS on
June 23 and 24.

The most significant contributions are made available in the present book,
edited after the conference and after a second review of all orally presented
papers at VECPAR 2008 and at the workshops.

Note also that the conference gave the opportunity of highlighting French–
Japanese cooperations in grid computing and computational science with a ses-
sion devoted to the REDIMPS Project within the VECPAR conference track
and two workshops organized on June 23 and 24: PAAP1 and NEGST2.

Melissa Paes received the Best Student Presentation award for her talk on
“High-Performance Query Processing” (see corresponding paper in Session Data-
Centric and High-Productivity Computing).
1 http://www2.lifl.fr/MAP/paap/
2 http://www2.lifl.fr/MAP/negst/



VI Preface

The eighth edition of VECPAR took place in Toulouse at INPT/ENSEEIHT:
a school of engineers located in the center of Toulouse.

The organizational aspects were dealt with by colleagues from the “Institut
de Recherche en Informatique de Toulouse” (IRIT) with the participation of
colleagues from CERFACS and the support of the Institut National Polytech-
nique de Toulouse / ENSEEIHT, Université Paul Sabatier, Pôle de Compétivité
“Aerospace Valle” and Région Midi-Pyrénées.

Paper submission and selection were managed via the conference manage-
ment system, held and operated by the Faculty of Engineering of the University
of Porto (FEUP). Websites were maintained both by FEUP and IRIT. Regis-
trations were managed by IRIT.

The success of the VECPAR conferences and its long life are a result of the
collaboration of many people. As before, given the widespread organization, a
large number of collaborators were involved.

We mention only some, and through them we thank many others who of-
fered most of their time and commitment to the success of the conference and
workshops:

– Véronique Debats (IRIT)
– Sabyne Lartigues (IRIT)
– Sylvie Soler (INPT/ENSEEIHT)

For their contribution to the present book, we must thank all the authors for
meeting the deadlines and all members of the Scientific Committee who helped us
so much in selecting the papers. We also thanks the members of the committees
involved in the organization of the workshops held before the conference.

October 2008 José M.L.M. Palma
Patrick Amestoy

Michel Daydé
Marta Mattoso

João Correia Lopes

VECPAR is a series of conferences organized by the Faculty of Engineering of
Porto (FEUP) since 1993.
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HPDgrid 2008
International Workshop on High-Performance

Data Management in Grid Environments

Initially developed for the scientific community as a generalization of cluster
computing using the Web, grid computing is gaining much interest in other
important areas such as enterprise information systems. This makes data man-
agement more critical than ever. Compared with cluster computing which deals
with homogeneous parallel systems, grids are characterized by high heterogene-
ity, high autonomy and large-scale distribution of computing and data resources.
Managing and transparently accessing large numbers of autonomous, heteroge-
neous data resources efficiently is an open problem. Furthermore, different grids
may have different requirements with respect to autonomy, query expressiveness,
efficiency, quality of service, fault-tolerance, security, etc. Thus, different solu-
tions need be investigated, ranging from extensions of distributed and parallel
computing techniques to more decentralized, self-adaptive techniques such as
peer-to-peer (P2P).

The objective of the second edition of this one-day workshop was to bring
together researchers and practitioners from the high-performance computing,
scientific computing, distributed systems and database communities to discuss
the challenges and propose novel solutions in the design and implementation of
high-performance data management in Grid environments.

The following program was the result of the paper selection, with seven papers
presented in two sessions: (1) data-intensive grid applications, and (2) replica-
tion in grids, grid services and grid data mining. In addition, we had two keynote
sessions: the first one on “Grid Data Management: Open Problems and New Is-
sues” by Esther Pacitti, and the second one on “Data Management in Pervasive
Grids” by Jean-Marc Pierson. All selected papers were reviewed by three mem-
bers of the Program Committee. We would like to thank them for the excellent
work on coming up with a program that covers many different topics related to
grid data management.

October 2008 Marta Mattoso
Alexandre Lima

Esther Pacitti
Patrick Valduriez
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An Overview of High Performance Computing
and Challenges for the Future

Jack Dongarra

University of Tennessee, USA

Abstract. In this talk we examine how high performance computing
has changed over the last 10-year and look toward the future in terms of
trends.

These changes have had and will continue to have a major impact
on our software. A new generation of software libraries and algorithms
are needed for the effective and reliable use of (wide area) dynamic,
distributed and parallel environments.

Some of the software and algorithm challenges have already been en-
countered, such as management of communication and memory hierar-
chies through a combination of compile-time and run-time techniques,
but the increased scale of computation, depth of memory hierarchies,
range of latencies, and increased run-time environment variability will
make these problems much harder.

We will focus on the redesign of software to fit multicore architectures.
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Abstract. Sphere-Decoding (SD) methods are branch-and-bound-like
techniques used for optimal detection of digital communications signals
over in wireless MIMO (Multiple input Multiple Output) channels. These
methods look for the optimal solution in a tree of partial solutions; the
size of the tree depends on the parameters of the problem (dimension of
the channel matrix, cardinality of the alphabet), and such search can be
much more expensive depending on these parameters. This search often
has to be carried out in real time. This paper presents parallel versions
of the Sphere-Decoding method for different parallel architectures with
the goal of reducing the computation time.

1 Introduction

Let us consider the following minimum squares problem:

min
s∈Dm

‖x−Hs‖2 (1)

where D is a set of discrete values that can be finite or infinite. Since D is
discrete, this can be considered as an Integer Programming problem.

The simplest method to solve this problem would be to solve the unconstrained
minimum square problem

min
s
‖x−Hs‖2 (2)

and then “truncate” the solution to its closest value in Dm. However, for many
problems (specially when H is bad conditioned) this gives wrong results. There-
fore, special methods have to be applied.

J.M.L.M. Palma et al. (Eds.): VECPAR 2008, LNCS 5336, pp. 2–12, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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(a) (b)

Fig. 1. (a)Rectangular Lattice; (b)Skewed Lattice

Usually, this problem is described in terms of Lattices. Given v1, · · · , vm a set
of linearly independent vectors, a lattice is the set of vectors

λ1v1 + · · ·+ λmvm λ1, · · · , λm ∈ Z (3)

If the elements of D are equally spaced (as is the case in communication
problems) the set Dm forms a rectangular lattice like the displayed in Figure
1(a). When the elements of Dm are multiplied by the channel matrix H , they
will form a skewed lattice (see Figure 1(b)).

The problem (1) is equivalent to the problem of finding the closest point (to a
given point x) in a lattice with generating matrix H . This problem is known to
be NP-Complete. It appears in the wireless communications field, where digital
communications signals sent through systems with multiple send and receive
antennas (multiple input - multiple output or MIMO systems) must be correctly
“decoded” [4], [11].

The systems we are interested in, are composed of M transmit antennas and
N receive antennas, through which a signal s̄ = [s1, s2, . . . , sM ]T ∈ CM is trans-
mitted. Real and imaginary parts of each component of the transmitted signal
belong to a discrete set D, finite (|D| = L) and named constellation or symbol
alphabet. The received signal x̄ ∈ CN is a linear combination of the transmitted
signal s plus a white gaussian noise term v̄ ∈ CN , with variance σ2

x̄ = H̄s̄ + v̄. (4)

Here, the channel matrix H̄ is a general complex-valued matrix with N rows
and M columns that models the MIMO channel response.

To simplify the programming details, usually the complex model (4) is trans-
formed in a real model, where the vector s of dimension m = 2M , and the
vectors x and v of dimensions n = 2N are defined as:

s =
[
R (s̄)T I (s̄)T

]T

, x =
[
R (x̄)T I (x̄)T

]T

, v =
[
R (v̄)T I (v̄)T

]T

,

and the matrix H of dimensions n×m as:

H =
[
R
(
H̄
)
I
(
H̄
)

−I
(
H̄
)
R
(
H̄
)]
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Thus, the real model equivalent to (4) is given by:

x = Hs + v. (5)

The search within the whole lattice looking for the optimal solution of (1)
where |D| = L would require an exponential time. However, there are better
methods that take into account the special characteristic of problem (1). Exam-
ples of such methods are Kannan’s algorithm [8], (where the search is limited to
a rectangular parallelepiped), and the algorithms proposed by Fincke and Pohst
[3] and improved by Schnorr and Euchner [9],[1] known as sphere-decoding, where
the search is limited to an hyper-sphere of a given radius and with center in the
point x.

In any case, Sphere-Decoding methods can be quite costly in time and memory
when the problems grow in complexity; either by an increase in the number of
transmitting-receiving antennas, by using larger alphabets, or by an increase in
the variance of the noise.

In this paper several variants of the sphere-decoding algoritm are presented,
for use in different parallel architectures. Other algorithms were developed, but,
only those that gave better results are discussed.

A description of the Sphere-Decoding method is given in the next section,
along with a formal description of the method following a branch-and-bound
scheme. In the second section the parallelization of Sphere-Decoding for shared
memory, distributed memory, and hybrid environments, is discussed. Finally, the
experimental results and the conclusions will be presented.

2 Sphere-Decoding

The main idea in the Sphere-Decoding algorithm is to limit the search to the
points in the lattice located into the sphere with center at the given vector x
and radius r (see Fig. 2). Clearly, the closest point to x into the sphere shall be
the closest point to x in the whole lattice. Since the search space is reduced, so
is the computational complexity.

Mathematically speaking, SD algorithms find all the vectors s ∈ Dm such
that

r2 ≥ ‖x−Hs‖2 (6)

and then select the one minimizing the goal function. Using the QR decompo-
sition of the matrix H and the orthogonality of the matrix Q, the condition (6)
can be written as:

r2 ≥
∥∥∥∥x− [

Q1 Q2
] [R

0

]
s

∥∥∥∥2

=
∥∥QT

1 x−Rs
∥∥2 +

∥∥QT
2 x

∥∥2

or, equivalently:

r2 −
∥∥QT

2 x
∥∥2 ≥

∥∥QT
1 x−Rs

∥∥2
(7)
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Fig. 2. Idea behind the sphere-decoding

Defining y = QT
1 x and r′2 = r2 −

∥∥QT
2 x

∥∥2 (7) can be rewritten as

r′2 ≥ ‖y −Rs‖2 (8)

Since R is upper triangular, equation (8) can be written as

r′2 ≥ (ym −Rm,msm)2 + ‖y1:m−1 −R1:m−1,1:ms1:m‖2 (9)

From this last condition, it can be deduced that a necessary condition for Hs
to be located inside the sphere is that r′2 ≥ (ym −Rm,msm)2, or, equivalently,
that the component sm belongs to the interval⌈

−r′ + ym

Rm,m

⌉
≤ sm ≤

⌊
r′ + ym

Rm,m

⌋
(10)

where �ξ� is the smallest element of the constellation greater or equal than
ξ, and �ξ� is the greatest element of the constellation smaller or equal than ξ.
Therefore, for each value of sm inside the interval (10), it is possible to determine
the interval where the values of sm−1 will lie⌈−r′m−1 + ym−1|m

Rm−1,m−1

⌉
≤ sm−1 ≤

⌊
r′m−1 + ym−1|m

Rm−1,m−1

⌋
(11)

where r′2m−1 = r′2 − (ym −Rm,msm)2 and ym−1|m = ym−1 −Rm−1,msm.
The algorithm continues following the same procedure to determine

sm−2, sm−1, · · · , s1.
If no solution is found, the radius r must be increased and the algortihm

must be executed again. A more detailed description of the Sphere-Decoding
method, as well as an analysis of its computational complexity, can be found
in [7].

The search in Sphere-Decoding belongs to the Branch–and–Bound general
class; next, an algorithm implementing a general Branch-and-Bound search is
displayed:
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Algorithm 1. General Branch-and-Bound Algorithm to find the best solution
Variables:
S: LinearDataStructure;
N, solution : Node;
childs : ARRAY [1..MAXCHILDS] OF Node;
nChilds : INTEGER;
solutionValue : REAL;

1: solution ← NoSolution(); solutionValue ← MAX
2: Generate a initial node N0

3: Add(S, N0) {Add N0 to the Linear Data Structure S}
4: while S is not empty do
5: N ← Extract(S) {A node of S is extracted and assigned to N }
6: [childs, nChilds] ← Branch(N);
7: for i = 1 to nChilds do
8: if IsAcceptable(childs[i]) then
9: if IsSolution(childs[i]) then

10: if Value(childs[i]) < solutionValue then
11: solutionValue ← Value(childs[i])
12: solution ← childs[i]
13: end if
14: else
15: Add(S, N) {Add the node N to the Linear Data Structure S}
16: end if
17: end if
18: end for
19: end while
20: return solution

In the Sphere-Decoding method, the k-level nodes are the lattice points inside
the sphere with radius r′m−k+1 and dimension m− k + 1. The leaves of the tree
would be the solutions of (6).

To fit the Sphere-Decoding method into a Branch and Bound scheme, each
node should keep the following information:

– Tree level: m− k + 1
– Value of yk|k+1
– Value of r′k
– Components of the vector ŝ determined up to this moment: ŝm, . . . , ŝk

where k = m, m−1, . . . , 1. The generation of branches of a node of level m−k+1
(given in the algorithm 1 by the routine Branch) should generate as many nodes
as elements has the alphabet or constellation, and the Bounding (given in the
algorithm 1 by the routine IsAcceptable) should be carried out accepting only
the nodes whose component ŝk−1 falls within the interval[⌈−r′k−1 + yk−1|k

Rk−1,k−1

⌉
,

⌊
r′k−1 + yk−1|k

Rk−1,k−1

⌋]
(12)
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All nodes whose level is m are solution nodes. The routine Value is defined for
these nodes, (points inside the hyper-sphere), which would return the value of
‖x−Hŝ‖2.

Since the Sphere-Decoding performs a depth-first search, looking for the best
of all possible solutions, the nodes are stored using a LIFO (Last-In First-Out)
Heap. This data structure is initialized using a special node N0 whose level in
the tree shall be 0, the value of ym+1|m+2 shall be the last component of the
vector y, the value of rm+1 might be the initial radius and the vector ŝ would
not have any defined component.

3 Sphere-Decoding Paralellization

In this section several possibilities for parallelization of the Sphere-Decoding
method shall be discussed. The models considered shall be the shared mem-
ory model, distributed memory model and a hybrid model where several shared
memory multiprocessors are interconnected. A study about parallelization of
Branch-and-Bound methods can be found in [5], where different techniques are
considered for distribution of workload among processors. In this section, it is de-
scribed the adaptation of these techniques, for parallelization of Sphere-Decoding,
using specific characteristics of the problem. including as well several novel pro-
posals oriented to minimize the communications and to correctly balance the
workload.

3.1 Distributed Memory Parallelization of Sphere-Decoding

The main issue in parallelizing Sphere-Decoding in a message-passing environ-
ment is the distribution of the tree among processors, so that the number of
nodes (and the workload) is distributed as evenly as possible.

The parallel algorithm has the following structure: First, the root processor
creates an initial node, and from this node starts a sequential execution of Sphere-
Decoding, until enough nodes have been generated to be distributed among the
rest of processors (at least one per processor). These nodes are distributed cycli-
cally, so that each processor has its own data structure (the distribution is cyclic
to avoid that some processors receive only nodes from the last levels, while others
receive nodes from the first levels; the nodes from the last levels should generate
much less work than the nodes from the first levels). See figure 3.

Then, in each iteration, each processor expands a fixed number of nodes in its
structure. When these nodes are expanded, there will be a synchronization point
so that all processors broadcast the state of its heap (empty or not) to the other
processors. The processors whose heap is empty select randomly a processor to
send a nodes request message. If it receives a negative (message reject) answer, it
would choose another processor, until it receives a positive answer or has received
a negative answer from all processors.

After expanding the pre-fixed number of nodes, the processors must check
their queue of messages, to see whether they have some request message. In such
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Fig. 3. Initial Expansion and distribution of nodes among processors

case, they answer with reject message if their structure is empty or accept if it
has nodes to send. If a processor is going to send nodes to other processor, it
will send a fixed percentage of nodes from its structure, chosen cyclically.

At the end of each iteration the processors must broadcast their best solution
(to use it for comparison with solutions found in further iterations) and the state
of their heap, to determine the end of the algorithm (which will happen when
all heaps are empty).

An important issue is the choice of the number of nodes to expand by each
processor. To avoid load imbalance, this number must be the same for each
processor. This number should not be neither too small (it would increase the
communications) nor too large (some processors might finish their search soon,
and should wait a long time for the other processors to finish)

It is proposed by the authors that the estimation of the number of nodes to
expand in a given iteration is carried out at the end of the former iteration;
each processor estimates the number of nodes that might expand in the next
iteration, broadcast the estimates to all processors, and the number of nodes to
expand would be the median of all estimates.

The authors propose as well that each processor carries out its relative esti-
mation taking into account the number of nodes in its heap, the levels of each
node and the cardinal of the constellation D. If the structure has l1 nodes with
level m− 1 and l2 nodes with level less than m− 1, then the estimate of nodes
that the processor might expand in the next iteration is

l1L + l2L
2 (13)

In the parallel version of Sphere-Decoding implemented in this work, both
proposals were included.

3.2 Shared Memory Parallelization of Sphere-Decoding

One of the drawbacks of the distributed memory parallelization is that, as shown
above, it is necessary to fix the number of nodes to be expanded in each iteration,
and check the state of the heap of each processor (empty or not). This number
of nodes to expand must be carefully estimated, to avoid extra communications
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or load imbalance. In a shared memory environment, this problem would not
exist.

A first design for shared memory implementation would be that all processors
share the heap, so that in each iteration each processor extracts a node, expands
it and adds the generated new nodes to the heap. The algorithm would finish
when the heap is empty.

The main problem of this design is that the operations of extraction and
addition of nodes must be carried out in a critical section, that is, in a given
time point only a single processor can add or extract nodes from the heap. It
has been checked that this creates a severe bottleneck; therefore, to share the
heap is not a good solution, and this means that each processor must keep and
handle its own heap.

The algorithm proposed is, therefore, similar to the one described in the sec-
tion 3.1. The main difference would be that there exist a global variable which
controls whether any processor has an empty queue. This variable can be up-
dated (within a critical section) by the first processor that becomes idle, and then
by the other processors when a redistribution of the nodes is carried out. There-
fore, all the processors search through their heaps until these become empty or
until the global variable indicates that some processor finished its job. Then, all
remaining nodes are collected in a global structure and redistributed cyclically
over all processors.

This variant, which can be applied only in shared memory machines, decreases
sensibly the likelihood of a workload imbalance.

3.3 Hybrid Parallelization of Sphere-Decoding

A different, hybrid, parallel architecture is formed by networks of shared mem-
ory multiprocessors (the memory of the global system is distributed, but the
multiprocessors share a local memory). Of course, the message passing library
MPI [10], can be used, although the message passing model may not be the most
suitable to take full advantage of the architecture.

Keeping in mind the parallel SD algorithms for shared memory and for dis-
tributed memory, is easy to obtain an algorithm for the hybrid case. The algo-
rithm would have the same parallel distribution that the distributed memory
algorithm described in 3.1, while the search caried out in each multiprocessor
would use the shared memory algorithm described in 3.2.

It must be considered that, in each iteration of the algorithm, each multipro-
cessor must select from its heap a fixed number of nodes to expand. Hence, the
shared memory algorithm to be executed by the processors within a multiproces-
sor is slightly different from the algorithm described above. Apart from sharing
a variable which indicates if a processor emptied its heap, they would share as
well a variable with the number of nodes to be expanded in that iteration by
the processor. Such variable should be decremented (in a critical region) by each
processor every time that a node is expanded, and if this variable becomes zero
all processors must stop to, through a reduction, determine the best solution
found and rebuild the heap with the nodes not yet processed.
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4 Experimental Results

The parallel algorithms outlined above where implemented in C, using the BLAS
library [6] for the operations between vectors. The version for shared memory ar-
chitecture was implemented using the OpenMP library [2], while the distributed
memory version was build with MPI. Both libraries were used for the hybrid
version. The algorithms were tested in a cluster composed of two PRIMERGY
RXI600, each one with 4 Dual-Core 1.4 GHz Intel Itanium–2�processors, shar-
ing a 4 GB RAM memory.

The experiments were designed so that the Sphere decoding algorithm gener-
ates a large number of nodes, and, consequently, the CPU time needed is also
large. The sizes of the generated trees (total number of nodes) of the test prob-
lems were 5 ·104, 1 ·105, 5 ·105, 1 ·106, 4 ·106, 5 ·106, 8 ·106 and 1 ·107. These trees
were generated in problems where n = m = 8, so that in all cases the number
of levels of the tree is 8. It must be remarked that the execution time of the
sphere decoding does not depend only on the number of nodes of the tree, but
also on the number of possible solutions (last level nodes, which would represent
lattice points inside the hyper-sphere). Given two trees with the same number
of possible solutions, the one with smaller number of last-level nodes would need
less execution time, since it would insert less nodes in the heap and there would
be less nodes to expand.

Figure 4 shows the speedup of the MPI parallel version for the test
problems considered. In the problems with smaller size (displayed with discon-
tinuous lines) the speedup decreases for more than 4 processors. In the larger
test cases there is a better speedup, although far from the optimum theoretical
speedup.

The speedup for the OpenMP version is shown in Figure 5. This version was
executed in one of the PRIMERGY RXI600 machines. It is quite remarkable

Fig. 4. SpeedUp of MPI parallel version of SD
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Fig. 5. SpeedUp of OpenMP parallel version of SD

Fig. 6. SpeedUp of hybrid parallel version of SD

that all curves present the same trend, and in all problems the optimal number
of processors is 6. The speedups in this case are close to theoretical optimum,
better in most cases than the obtained with the MPI version.

Finally, the speedup of the hybrid version is displayed in Figure 6. This hybrid
version was implemented in two levels, a global level implemented with MPI and
a second, local level implemented with OpenMP. In some cases, the speedup
obtained with this algorithm was far better than with the MPI or OpenMP
versions. The problems in which the speedup was larger than 7 were those with
a larger number of solution nodes in the tree (more than 70% of solution nodes).
In problems where the percentage of solution nodes is small, the performance
decreases, as in the case where the number of nodes is approximately 5 · 105.
From these, only 11% were solution nodes.
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5 Conclusions

Several possibilities for parallelization of the Sphere-Decoding method have been
proposed. These cover three possible computing environments: Distribute mem-
ory, shared memory, and hybrid machines, where shared memory machines are
connected. The hybrid version gave the greater speedups, although the shared
memory version had more stable and consistent speedups. This was an ex-
pected behaviour, given the reduced communications and the possibility of a
quite good work distribution. The workload balance is much more troublesome
in distributed memory environments, so that the performance of the MPI and
OpenMP+MPI versions suffers strong variations, depending on the structure
of the tree generated during the search. The overall good performance of the
OpenMP versions is quite relevant, since multicore processors and hybrid archi-
tectures are becoming increasingly popular.
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Abstract. A parallel version of the self-verified method for solving linear sys-
tems was presented in [20, 21]. In this research we propose improvements aiming
at a better performance. The idea is to implement an algorithm that uses tech-
nologies as MPI communication primitives associated to libraries as LAPACK,
BLAS and C-XSC, aiming to provide both self-verification and speed-up at the
same time. The algorithms should find an enclosure even for ill-conditioned prob-
lems. In this scenario, a parallel version of a self-verified solver for dense linear
systems appears to be essential in order to solve bigger problems. Moreover, the
major goal of this research is to provide a free, fast, reliable and accurate solver
for dense linear systems.

Topics of the conference list: Numerical algorithms for CS&E, Parallel or Dis-
tributed Computation and Cluster Computation.

1 Introduction

Many real problems are simulated and modeled using dense linear systems of equations
like Ax = b with an n × n matrix A ∈ R

n×n and a right hand side b ∈ R
n. This

is true for functional linear equations that occur like partial differential equations and
integral equations that appear in several problems of Physics and Engineering [6]. Many
different numerical algorithms contain this task as a subproblem.

There are numerous methods and algorithms which compute approximations to the
solution x in floating-point arithmetic. However, usually it is not clear how good these
approximations are, or if there exists a unique solution at all. In general, it is not possible
to answer these questions with mathematical rigor if only floating-point approximations
are used. These problems become especially difficult if the matrix A is ill conditioned.
The use of self-verified methods can lead to more reliable results [14]. Verified comput-
ing provides an interval result that surely contains the correct result [19, 22]. Like that
the algorithm also proves the existence and uniqueness of the solution of the problem.

J.M.L.M. Palma et al. (Eds.): VECPAR 2008, LNCS 5336, pp. 13–26, 2008.
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The algorithm will, in general, succeed in finding an enclosure of the correct solution.
If the solution is not found, the algorithm will let the user know.

The use of verified computing makes it possible to find the correct result. How-
ever, finding the verified result often increases the execution times dramatically [26].
The research already developed shows that the execution time of verified algorithms
are much larger than the execution time of algorithms that do not use this concept
[15, 16].

To compensate the lack of performance of such verified algorithms, some works
suggest the use of midpoint-radius arithmetic to achieve a better performance, since its
implementation can be done using only floating-point operations [28, 29]. This would
be a way to increase the performance of verified methods.

The advent of parallel computing and its impact in the overall performance of many
algorithms on numerical analysis can be seen in the past years [10]. The use of clus-
ters plays an important role in such a scenario as one of the most effective manner to
improve the computational power without increasing costs to prohibitive values. The
parallel solutions for linear solvers found in the literature explore many aspects and
constraints related to the adaptation of the numerical methods to high performance en-
vironments [7, 12, 13, 24, 27, 34]. However, those implementations do not deal with
verified methods. In the field of verified computing many important contributions have
been done in the last years. Some works related to verified solvers for dense linear sys-
tems [11, 14, 19, 25, 30] can be found in the literature. However, only a few papers on
verified solvers for dense systems together with parallel implementations were found
[18, 29, 33], but these authors implement other numerical problems or use a parallel
approach for other architectures than clusters.

The new algorithms should find an enclosure even for very ill-conditioned problems.
Moreover, the major goal of this research is to provide a free, fast, reliable and accurate
solver for dense linear systems.

New algorithms based on the C-XSC (C for eXtended Scientific Computing) [19]
methods were implemented, but using just libraries like BLAS (Basic Linear Algebra
Subprograms [8]) and LAPACK [1, 23] to achieve better performance. The idea of
reducing the switching of rounding mode presented by Bohlender was implemented as
well as an optimization of the residuum based on the INTLAB [17] method. In other
words, the new implementations try to join the best aspects of each library.

To ensure that an enclosure will be found, interval arithmetic was used. Several im-
plementations and tests were done to find the most appropriate arithmetic to be used.

Aiming at a better performance, the algorithm was parallelized using the libraries
SCALAPACK [3] (or Scalable LAPACK) and PBLAS. The idea of using popular and
highly optimized libraries to gain performance will also be maintained in the parallel
version.

One important advantage of the presented algorithm is the ability to find a solution
even for very ill-conditioned problems (in tests on personal computers an enclosure
could be found for condition number up to 1015) while most algorithms may lead to
an incorrect result when it is too ill-conditioned (above condition number 108). Our
main contribution is to increase the use of verified computing through its optimization
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and parallelization, once without parallel techniques it becomes the bottleneck of an
application.

2 Verified Computing

The use of verified computing guarantee the mathematical rigor of the result. This is
the most important advantage of such algorithms compared with ordinary methods. One
possibility to implement verified computing is using interval arithmetic combined with
suitable algorithms to find an interval result that will surely contain the correct result.

Section 2.1 presents some definitions of Interval Arithmetic. Considerations about
the proprieties of a verified algorithm are discussed in Section 2.2.

2.1 Interval Arithmetic

Let R denote the set of real numbers and PR the power set over R. The two most fre-
quently used representations for intervals over R, are the infimum-supremum
representation

[a1, a2] := {x ∈ R : a1 ≤ x ≤ a2} for some a1, a2 ∈ R, a1 ≤ a2, (1)

where ≤ is the partial ordering x ≤ y and the midpoint-radius representation

〈a, α〉 := {x ∈ R : |x− a| ≤ α} for some a ∈ R, 0 ≤ α ∈ R. (2)

The two representations are identical for real intervals (not for floating-point inter-
vals), whereas for complex intervals the first representation are rectangles, the second
one represents discs in the complex plane.

Today mostly the infimum-supremum arithmetic is used in computers. There are
two main reasons for that. First, the standard definition of midpoint-radius arithmetic
causes overestimation for multiplication and division, and second, the computed mid-
point of the floating point result of an operation is, in general, not exactly representable
in floating point, thus again causing overestimation and additional computational effort.
However, in [29], Rump shows that the overestimation of operations using midpoint-
radius representation compared to the result of the corresponding power set operation
is limited by at most a factor 1.5 in radius.

In the computer implementation of interval arithmetic, special care has to be taken
for the rounding [29]. Both infimum-supremum und midpoint-radius have advantages
and disadvantages. Some intervals are better represented in one arithmetic and have an
overestimation in other.

As presented in [29], the main point in using midpoint-radius arithmetic is that no
case distinctions, switching of rounding mode in inner loops, etc. are necessary, only
pure floating point matrix multiplications. And for those the fastest algorithms available
may be used, for example, BLAS. The latter bear the striking advantages that

1. they are available for almost every computer hardware, and that
2. they are individually adapted and tuned for specific hardware and compiler config-

urations.

This gives an advantage in computational speed which is difficult to achieve by other
implementations.
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2.2 Suitable Algorithm

As mentioned before, we have to ensure that the mathematical properties of interval
arithmetic as well as high accuracy arithmetic will be held if we want to achieve self-
verification. Based on that, we used Algorithm 1 as the starting point of a first parallel
version. This algorithm is based on the verified method fully described in [14] and will,
in general, succeed in finding and enclosing a solution or, if it does not succeed, will
let the user know. In the latter case, the user will know that the problem is likely to be
very ill-conditioned or that the matrix A is singular. In this case, the user can try to use
higher precision arithmetic.

Algorithm 1. Enclosure of a square linear system

1: R ≈ A−1{Compute an approximate inverse using LU-Decomposition algorithm}
2: x̃ ≈ R · b {compute the approximation of the solution}
3: [z] ⊇ R(b − Ax̃) {compute enclosure for the residuum}
4: [C] ⊇ (I − RA) {compute enclosure for the iteration matrix}
5: [w] := [z], k := 0 {initialize machine interval vector}
6: while not ([w]⊂̊[y] or k > 10) do
7: [y] := [w]
8: [w] := [z] + [C][y]
9: k + +

10: end while
11: if [w] ⊆ int[y] then
12: Σ(A, b) ⊆ x̃+[w]{The solution set (Σ) is contained in the solution found by the method}
13: else
14: no verification
15: end if

These enclosure method is based on the following interval Newton-like iteration:

xk+1 = Rb + (I −RA)xk, k = 0, 1, ... (3)

This equation is used to find a zero of f(x) = Ax− b with an arbitrary starting value
x0 and an approximate inverse R ≈ A−1 of A. If there is an index k with [x]k+1⊂̊[x]k
(the ⊂̊ operator denotes that [x]k+1 is included in the interior of [x]k), then the matrices
R and A are regular, and there is a unique solution x of the system Ax = b with
x ∈ [x]k+1. We assume that Ax = b is a dense square linear system and we do not
consider any special structure of the elements of A.

3 Tools and Solvers for Dense Linear Systems of Equations

This Section presents Tools and Solvers available to solve dense linear systems of equa-
tions. First we will present optimized tools that do not provide verified solutions (see
Section 3.1). Section 3.2 shows some verified solver also for dense linear systems of
equations. Finally, Section 3.3 discuss the advantages and disadvantages of these tools
and solvers.
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3.1 Optimized Tools and Solvers

LAPACK is a fortran library for numerical linear algebra. This package includes numer-
ical algorithms for the more common linear algebra problems in scientific computing
(solving linear equations, linear least squares, and eigenvalue problems for dense and
banded systems).

The numerical algorithms in LAPACK are based on BLAS routines. The BLAS is
composed of routines that provide standard building blocks for performing basic vec-
tor and matrix operations. The Level 1 BLAS perform scalar, vector and vector-vector
operations, the Level 2 BLAS perform matrix-vector operations, and the Level 3 BLAS
perform matrix-matrix operations. BLAS routines are efficient, portable, and widely
available. They use block-matrix operations, such as matrix-multiply in inner loops to
achieve high performance. These operations improve the performance by increasing the
granularity of the computations and keeping the most frequently accessed subregions
of a matrix in the fastest level of memory [9].

The SCALAPACK library includes a subset of LAPACK routines redesigned for
distributed memory computers. Like LAPACK, the SCALAPACK routines are based
on block-partitioned algorithms in order to minimize the frequency of data movement
between different levels of the memory hierarchy. (For such machines, the memory
hierarchy includes the off-processor memory of other processors, in addition to the
hierarchy of registers, cache, and local memory on each processor.)

The fundamental building blocks of the SCALAPACK library use PBLAS, the dis-
tributed memory versions of the Level 1, 2 and 3 BLAS, BLACS, a set of Basic Linear
Algebra Communication Subprograms for communication tasks that arise frequently in
parallel linear algebra computations. In the SCALAPACK routines, all interprocessor
communication occurs within the PBLAS and the BLACS.

3.2 Verified Tools and Solvers

There is a multitude of tools and algorithms that provide verified computing. Among
them, an option is C-XSC. C-XSC is a free and portable programming environment
for C and C++ programming languages, offering high accuracy and automatic verified
results. This programming tool allows the solution of many standard problems with
reliable results. The MATLAB [32] toolbox for self-verified algorithms, INTLAB, is
also an option. Like C-XSC, it also provides interval arithmetic for real and complex
data including vectors and matrices, interval arithmetic for real and complex sparse
matrices, rigorous real interval standard functions, rigorous complex interval standard
functions, rigorous input/output, accurate summation, dot product and matrix-vector
residuals, multiple precision interval arithmetic with error bounds, and more. However,
INTLAB can be used just together with the commercial MATLAB environment, which
can increase the costs to prohibitive values.

3.3 Comparison

Each tool has its advantages and disadvantages, some are more accurate and some are
faster. Another important aspect is the availability of these tools. A comparison among
C-XSC, INTLAB and LAPACK was performed.
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Both C-XSC and LAPACK are free libraries and can be used for educational and sci-
entific purposes. They can be downloaded from internet and used without any restric-
tions. INTLAB, otherwise, cannot be used freely. INTLAB itself has an open source,
but to be able to use INTLAB you have to buy the commercial product MATLAB. This
is a big disadvantage which can make the costs of using INTLAB prohibitively large.

C-XSC and INLAB present an interval as result. Both present enclosures of the exact
result. In several test cases, C-XSC presented a point interval, while INTLAB presented
some uncertainty digits. The verified result makes possible to evaluate how good the
floating-point approximation is. LAPACK in the other hand, does not provide a verified
result, just an approximation.

As expected, LAPACK presented the best performance. However it gives just an
approximation of the correct result, and not an inclusion as INTLAB and C-XSC. INT-
LAB is based on BLAS, therefore it presents also a good performance comparing with
C-XSC. The performance presented by C-XSC is not so optimal because the algo-
rithm uses special variables (data type dotprecision), which are simulated in software
to achieve high accuracy.

The results show that C-XSC has the most reliable results and the highest accuracy.
LAPACK is the one that presents the best performance, but results are not verified, and
in some cases less accurate. INTLAB is the best compromise between performance and
accuracy. However, as said before, it requires MATLAB which is not free. The tests
show that the method used in C-XSC is a good choice, but it should be optimized to
gain performance.

4 Parallel Approach

To implement the parallel version of Algorithm 1, we used an approach for cluster archi-
tectures with message passing programming model (MPI [31]) and the highly optimized
library PBLAS and SCALAPACK. Clusters of computers are considered a good option
to achieve better performance without using parallel programming models oriented to
very expensive (but not frequently used) machines. A parallel version for this algo-
rithm runs on distributed processors, requiring communication among the processors
connected by a fast network and the communication library.

The self-verified method presented above is divided in several steps. By tests, the
computation of R, the approximate inverse of matrix A, takes more than 50% of the total
processing time. Similarly, the computation of the interval matrix [C] that contains the
exact value of I−RA (iterative refinement) takes more than 40% of the total time, since
matrix multiplication requires O(n3) execution time, and the other operations are mostly
vector or matrix-vector operations which require at most O(n2). Both operations could
be implemented using SCALAPACK (R calculation) and PBLAS (C calculation).

A parallel version of the self-verified method for solving linear systems was pre-
sented in [20, 21]. In this paper we propose the following improvements aiming at a
better performance:

– Calculate R using just floating-point operations;
– Avoid the use of C-XSC elements that could slow down the execution;
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– Use of the fast and highly optimized libraries: BLAS and LAPACK in the first se-
quential version (for the parallel version PBLAS and SCALAPACK respectively);

– Use of both interval arithmetics: infimum-supremum and midpoint-radius (as pro-
posed by Rump [29] );

– Use of techniques to avoid the switching of rounding mode in infimum-supremum
operations (proposed by Bohlender [4, 5]).

To find the best arithmetic for this method, the sequential algorithms for point and
interval input data were written using both infimum-supremum and midpoint-radius
arithmetic. The performance tests showed that the midpoint-radius algorithm needs ap-
proximately the same time to solve a linear system with point or interval input data,
while the infimum-supremum algorithm needs much more time in the interval case,
since the interval multiplication must be implemented with case distinctions and opti-
mized functions from BLAS cannot be used. Therefore, midpoint-radius arithmetic was
chosen for the parallel implementation.

The parallel implementation uses the following SCALAPACK/PBLAS routines in
Algorithm 1:

– SCALAPACK
• pdgetrf : for the LU decomposition (matrix R on step 1);
• pdgetri: to find the approximation of the inverse matrix (matrix R on step 1).

– PBLAS
• pdgemm: matrix-matrix multiplication (matrix C on step 4);
• pdgemv: matrix-vector multiplication (many steps: 2, 3 and 8 to find the vectors

x, z and w);.

It is important to remember that behind every midpoint-radius interval operation more
than one floating-point operation should be done using the appropriate rounding mode.
The matrix multiplication R ∗A from step 4 needs the following operations:

Algorithm 2. Midpoint-radius matrix multiplication in F
n

1: c̃1 = �(R · mid(A))
2: c̃2 = �(R · mid(A))
3: c̃ = �(c̃1 + 0.5(c̃2 − c̃1))
4: γ̃ = �(c̃ − c̃1) + |R| · rad(A)

In this case, the routine PDGEMM of PBLAS would be called three times, one for
step 1, one for step 2, and one for step 4.

5 Results

This section presents some experimental results of the new parallel implementation.
Three different tests were executed. Performance tests are presented in Section 5.1,
accuracy tests are shown in Section 5.2 and finally a real problem test is discussed in
Section 5.3. This set of experiments represents a wide range of aspects that should be
tested in parallel verified algorithms.
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5.1 Performance

Performance analysis of this parallel solver was carried out varying the order of input
matrix A. Matrices with three different orders were used as test cases: 2.500 × 2.500,
5.000 × 5.000, and 10.000 × 10.000. For each of those matrices, executions with the
number of processors varying from 1 to 64 were performed. All matrices are dense
and were specifically generated for these experiments and are composed of random
numbers. This random numbers were generated with the function rand().

The results presented in this section were obtained on the HP XC6000, the high per-
formance computer of the federal state Baden-Württemberg. The HP XC6000 is a dis-
tributed memory parallel computer with 128 nodes all in all; 108 nodes consist of 2 Intel
Itanium2 processors with a frequency of 1.5 GHz and 12 nodes consist of 8 Intel Itanium2
processors with a frequency of 1.6 GHz. All nodes own local memory, local disks and
network adapters. Thus the theoretical peak performance of the system is 1.9 TFLOPS.
The main memory above all compute nodes is about 2 TB. All nodes are connected to
the Quadrics QsNet II interconnect that shows a high bandwidth of more than 800 MB/s
and a low latency. The basic operating system on each node is HP XC Linux for High
Performance Computing (HPC), the compiler used was the gcc and the MKL version
10.0.011 was used for an optimized version of libraries SCALAPACK and PBLAS.

Figure 1 presents a comparison of the speed-ups achieved for the tested matrices. The
proposed parallel solution presents a good scalability and improves the performance
of the application. As expected, the larger the input matrix, the better is the speed-up
achieved.

For larger dimensions, the speed-up is almost linear. In some cases, like for dimen-
sion 10.000 and 16 processors, we found a super linear speed-up. This is possible due
to cache effects resulting from the different memory hierarchies of a modern com-
puter. In this case, the size of accumulated caches from different processors can also
change, and sometimes all data can fit into caches and the memory access time reduces
dramatically, leading to a drastic speed-up. It is understandable that this effect occurs in
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this implementation since PBLAS and SCALAPACK were optimized to make the best
possible use of cache hierarchies.

Results for more than 64 processors were not presented for these test cases since
beyond this threshold the performance started to drop down. As can be seen in figure 2,
for 64 processors, the efficiency drops significatively, for the test case with dimension
2.500, it drops under 35%.

5.2 Accuracy

The accuracy depends on the condition number of the matrix A. For well conditioned
problems, the new algorithm may deliver a very accurate result with up to 16 correct
digits.

For example supposing A is a 10x10 point matrix with condition number 4.06 ·10+02

and b is a vector where each position has the value 1.0. The solution for x delivered by the
developed algorithm is presented in Table 1. Analyzing this results, it is possible to see
that the radius of the solution is very small, and therefore it is a very accurate solution.

The new implementation also finds an inclusion for ill-conditioned dense matrices,
but the accuracy may vary depending on the condition number as presented in Table 2.

It is important to mention that this relation between condition number and diameter
of the resulting interval was found for a special class of matrix: square, dense with
random numbers.

A well-known example of ill-conditioned matrix are the Boothroyd/Dekker matrices
that are defined by the following formula:

Aij =
(

n+i-1
i-1

)
×
(

n-1
n-j

)
× n

i+j−1 , bi = i, ∀i, j = 1..n,

For n = 10 this matrix has a condition number of 1.09 · 10+15. The result found by
this parallel solver is presented in Table 3.
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Table 1. Midpoint-radius and the equivalent infimum-supremum result

Res Midpoint Radius

x[0] = -1.81645396742261731e-05 3.30189340310308432e-18
x[1] = -1.81103764097278691e-06 1.27042988556363316e-18
x[2] = -3.50284396008609789e-06 8.65422361039543574e-19
x[...] = ... ...
x[8] = -2.65213537238245186e-06 1.12671706774209183e-18
x[9] = 3.01161008622528871e-05 4.81485187791373545e-18

Res Infimum Supremum

x[0] = -0.00001816453967423 -0.00001816453967422
x[1] = -0.00000181103764097 -0.00000181103764097
x[2] = -0.00000350284396009 -0.00000350284396009
x[...] = ... ...
x[8] = -0.00000265213537238 -0.00000265213537238
x[9] = 0.00003011610086225 0.00003011610086226

Table 2. Relation between condition number and diameter

Condition number diameter

101 10−14

102 10−13

103 10−12

104 10−11

105 10−10

106 10−9

107 10−8

108 10−7

109 10−6

Table 3. Results for the Boothroyd/Dekker 10x10 matrix

Res Midpoint Radius Infimum Supremum

x[0] 5.4711703e-07 2.8569585e-06 -0.0000023 0.0000034
x[1] 9.9999473e-01 2.7454332e-05 0.9999672 1.0000221
x[2] -1.9999718e+00 1.4633209e-04 -2.0001182 -1.9998255
x[3] 2.9998902e+00 5.7081064e-04 2.9993194 3.0004611
x[4] -3.9996506e+00 1.8174619e-03 -4.0014680 -3.9978331
x[5] 4.9990383e+00 5.0008707e-03 4.9940374 5.0040392
x[6] -5.9976307e+00 1.2322380e-02 -6.0099531 -5.9853083
x[7] 6.9946526e+00 2.7799205e-02 6.9668534 7.0224518
x[8] -7.9887617e+00 5.8434700e-02 -8.0471964 -7.9303270
x[9] 8.9777416e+00 1.1572349e-01 8.8620181 9.0934651
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Fig. 3. Structure view of matrix QH1484

Table 4. Results for QH1484: Quebec Hydroelectric Power System

Res Midpoint Radius Infimum Supremum

x[0] −4.1415310 · 10+00 2.0242898 · 10−07 −4.1415312 · 10+00 −4.1415308 · 10+00

x[1] −2.1936961 · 10+00 2.3526014 · 10−07 −2.1936964 · 10+00 −2.1936959 · 10+00

x[2] −4.1417322 · 10+00 2.0242898 · 10−07 −4.1417324 · 10+00 −4.1417320 · 10+00

x[3] −2.1954030 · 10+00 2.3526014 · 10−07 −2.1954032 · 10+00 −2.1954028 · 10+00

x[...] ... ... ... ...

As expected for an ill-conditioned problem, the accuracy of the results is not the
same as for a well-conditioned problem. It is important to remark that even if the result
has an average diameter of 4.436911 · 10−02, it is an inclusion. In other words, it is a
verified result.

5.3 Real Problem

For a real problem test, the used matrix is from the application of the Hydro-Quebec
power systems’ small-signal model, used for power systems simulations [2]. This prob-
lem uses a square 1484 x 1484 real unsymmetric matrix, with 6110 entries (1126 diag-
onals, 2492 below diagonal, 2492 above diagonal) as can be seen in Figure 3.

The presented solver was written for dense systems, therefore, this sparse systems
will be treated as a dense system. No special method or data storage was used/done
concerning the sparsity of this systems.

The first elements of the result vector found for this problem with conditional number
5.57 · 1017 is presented in Table 4.

Despite it is an ill-conditioned problem, the average diameter of the interval results
found by this solver was 1.26 · 10−8. This is a very accurate result for such an ill-
conditioned problem.
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Table 5. Real problem Execution time and Speed-up

Number of proc. Execution Time (sec) Speed-up

1 8.728 1.000
2 4.307 2.026
4 2.186 3.992
8 1.419 6.150

As shown in Section 5.1 for dimension 2.500 the efficiency drops very fast for small
matrices. Therefore we measure the execution time of this matrix until 8 processors. The
execution time and speed-up for solving this systems of linear equations is presented in
Table 5. This performance can be considered very fast to find a verified solution of a
linear system.

6 Results and Conclusions

New sequential algorithms based on a verified method using just libraries like BLAS
and LAPACK were implemented to achieve better performance. The idea of reducing
the switching of rounding mode presented by Bohlender was implemented as well as
an optimization of the residuum based on the INTLAB method. In other words, the new
implementations join the best aspects of each library.

To ensure that an enclosure will be found, interval arithmetic was used. To find the
best arithmetic for this method, the sequential algorithms for point input data were writ-
ten using both infimum-supremum and midpoint-radius arithmetic. The performance
tests showed that the midpoint-radius algorithm needs approximately the same time to
solve a linear system with point and interval input data, while the infimum-supremum
algorithm needs much more time in the interval case, since the interval multiplication
must be new implemented and in this case optimized functions from BLAS cannot be
used. Therefore, midpoint-radius arithmetic was chosen for the parallel implementation.

Aiming at a better performance, the algorithm was parallelized using the libraries
SCALAPACK and PBLAS. The performance results showed that the parallel imple-
mentation leads to nearly perfect speed-up in a wide range of processor numbers for
large dimensions. This is a very significant result for clusters of computers.

One important advantage of the presented algorithm is the ability to find a solution
even for ill-conditioned problems while most algorithms may lead to an incorrect result
when it is too ill-conditioned (above condition number 108). The accuracy of the results
in many cases depends on the condition number. However, the result of this method is
always an inclusion, given the guarantee that the correct result is inside the interval.

Our main contribution is to provide a free, fast, reliable and accurate solver for dense
linear systems and to increase the use of verified computing through its optimization
and parallelization, once without parallel techniques it becomes the bottleneck of an
application.

Among the ideas for future work the use of interval input data is the first to be
implemented. The parallelization of a verified method for solving sparse matrices is
also a goal for the future. Since many real problems are modeled using these systems,
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it is a natural choice to implement such methods, joining the benefits of verified and
parallel computing.
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Abstract. The sequential simulation of atmospheric flows over complex
terrain using Computational Fluid Dynamics tools (CFD) leads normally
to very large time-consuming runs. With the present day processors only
the power available using parallel computers is enough to produce a
true prediction using CFD tools, i.e. running the code faster than the
evolution of the real weather. In the present work, the parallelisation
strategy used to produce the parallel version of the VENTOS R© CFD
code is shown. A sample of the results included in the present abstract is
enough to show the code behaviour as a function of the number of sub-
domains, both number and direction along which the domain splitting
occurs, and their implications on both the iteration number and code
parallel efficiency.

Keywords: Atmospheric flows, computational fluid dynamics, domain
decomposition, micro and mesoscale coupling, wind power prediction.

1 Introduction

The sequential simulation of atmospheric flows over complex terrain using Com-
putational Fluid Dynamics tools (CFD) leads normally to very large time-
consuming runs, when temporal and spatial descriptions of the flows are needed.
These are for example the requirements of the simulations to be used in the
Short Term Prediction of the atmospheric flows over complex terrain. The Short
Term Prediction means predictions of time periods of 1–3 days, typically, and,
in the present context, requires the use of an operational Numerical Weather
Prediction (NWP) program coupled to a CFD code for performing a zooming
effect over the NWP results, which will produce results with higher accuracy.
With the present day processors only the power available using parallel comput-
ers is enough to produce a true prediction using CFD tools, i.e. running the code
faster than the evolution of the real weather.

In the present work, the parallelisation strategy used to produce the parallel
version of the VENTOS R© CFD code [1,2] is presented. This code has been used

J.M.L.M. Palma et al. (Eds.): VECPAR 2008, LNCS 5336, pp. 27–38, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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with success in the site assessment of wind farms and so the natural choice for
us to couple with mesoscale codes to produce a Short Term Prediction tool.

In the following sections, we show the fundamental equations being solved
(section 2). In section 3 the parallelisation strategy is presented and in section 4
the results are discussed. Conclusions are presented in section 5

2 Mathematical Model

This section covers the fundamental equations, coordinate transformation and
the numerical techniques used in the current study. A more complete description
of the model can be found in [2].

The continuity (1), the momentum (2), the potential temperature transport
(3) and the turbulence model equations (4 and 5) were written in tensor notation
for a generic coordinate system.
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The eddy viscosity was given by µt = ρCµk2/ε, where k and ε were obtained
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In the above equations, U , P and θ are the Reynolds averaged velocities, pres-
sure and dry potential temperature, ρ and µ are the air density and molecular
viscosity, and k and ε are the turbulence kinetic energy and its dissipation rate,
whose transport equations (4 and 5) and constants C1, C2 and σk were set as in
[3], whereas the constants Cµ and σε followed the recommendations by [4]. The
turbulent Prandtl number was chosen equal to unity which implies Kθ = µtcp.

The coordinate system is defined by transforming a physical Cartesian co-
ordinate system xi into a computational system ξi, where the co-factors are
βj

k = J∂ξj/∂xk and J is the determinant of the Jacobian matrix of the coordi-
nate transformation (cf., [5]). This transformation makes it relatively simple to
treat the boundary conditions and to use a structured mesh, where the physical
domain boundaries are the coordinate surfaces following the topography.

The transport equations (1 – 5) were discretized by finite volume techniques
using a central differencing scheme for the diffusive terms. The advective terms
were discretized by the hybrid scheme. In the case of the momentum equations
(2), an alternative 3rd order truncation scheme was used for the advective terms,
identical to the QUICK scheme for non-uniform meshes [6].

The resulting set of coupled algebraic equations was solved using the SIMPLE
algorithm of [6] and the Tri-Diagonal Matrix Algorithm solver, to take advantage
of the structure of the coefficient matrices. The pressure/velocity coupling in
non-staggered meshes was treated following the pressure-weighted interpolation
as in [7] and [8].

The equations can be solved in time-dependent mode, using a second order
implicit scheme, or in steady state formulation, in which case the time derivatives
in equations (2) – (5) were dropped. In either case the equations were solved
until mass and momentum could be satisfied to a dimensionless residual below
5×10−4.

The development and validation of the VENTOS R© code for a series of atmo-
spheric flows, as well as details on boundary and initial conditions, can be found
in [1] and [2].

3 Parallelisation Technique

The algorithm of the CFD code used in this work can be said to contain two
iterative levels: an inner iteration where the solution of each equation is iterated
a small number of sweeps – to each equation corresponds a different subroutine;
and an outer iteration which contains all the inner levels and is responsible for
the coupling between equations. The equations for different variables are solved
in a segregated manner, one after the other. In the inner iterations, we use
the Tri-Diagonal Matrix Algorithm (TDMA) (see, for example, [9]) to solve the
various algebraic systems. The Message Passing Interface library (MPI) is used
to implement the communication between processes.

The code was parallelised using a domain decomposition strategy, where the
physical domain, discretised by a mesh of control volumes with a central node,
was decomposed into several sub-domains, each being calculated in a dedicated
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Table 1. Speed-up and efficiency results for several partition schemes. Two sets are
shown, averaged results until convergence and averaged results at the end of 1000
iterations. Time is displayed in seconds and efficiency in %. Speedup corresponds to
the ratio of execution times and NP represents the number of processors.

Until convergence Per 1000 iterations
Partitions NP Iterations Time Efficiency Speed-Up Time Efficiency Speed-Up
1×1×1 1 1060 18504 - - 17456 - -
2×1×1 2 1129 11666 79.3 1.6 10333 84.5 1.7
1×2×1 2 984 9571 96.7 1.9 9727 89.7 1.8
1×1×2 2 1160 9138 101.3 2.0 7877 110.8 2.2
3×1×1 3 1404 16936 36.4 1.1 12063 48.2 1.5
1×3×1 3 968 7511 82.1 2.5 7759 75.0 2.3
1×1×3 3 1181 7779 79.3 2.4 6587 88.3 2.7
4×1×1 4 1815 15425 30.0 1.2 8499 51.4 2.1
2×2×1 4 1068 6997 66.1 2.6 6552 66.6 2.7
2×1×2 4 1194 5184 89.2 3.6 4341 100.5 4.0
1×4×1 4 979 4827 95.8 3.8 4931 88.5 3.5
1×2×2 4 1115 4834 95.7 3.8 4335 100.7 4.0
5×1×1 5 2302 11004 33.6 1.7 4780 73.0 3.7
1×5×1 5 1087 3108 119.1 5.9 2860 122.1 6.1
6×1×1 6 3620 11610 26.6 1.6 3207 90.7 5.4
3×2×1 6 1293 6120 50.4 3.0 4733 61.5 3.7
3×1×2 6 1271 6878 44.8 2.7 5411 53.8 3.2
2×3×1 6 1085 3860 79.9 4.8 3558 81.8 4.9
1×3×2 6 1055 2507 123.0 7.4 2376 122.4 7.4
4×2×1 8 1677 3741 61.8 4.9 2285 95.5 7.6
2×4×1 8 1114 2815 82.2 6.6 2527 86.3 6.9
2×2×2 8 1148 3500 66.1 5.3 3049 71.6 5.7
3×3×1 9 1316 2484 82.8 7.4 1888 102.8 9.3
5×2×1 10 2089 4989 37.1 3.7 2447 71.4 7.1
2×3×2 12 1103 1932 79.8 9.6 1752 83.1 10.0
5×3×1 15 2116 2863 43.1 6.5 1353 86.0 12.9
3×3×2 18 1181 1381 74.5 13.4 1169 83.0 14.9
2×5×2 20 1101 1094 84.6 16.9 994 87.8 17.6

processor. Inside each sub-domain, the code works essentially as its sequential
version plus the necessary communications to exchange the boundary informa-
tion with neighbouring sub-domains. This physical domain decomposition was
performed with a fixed overlap of two grid nodes (see figure 1).

Communication between adjoining sub-domains takes place after each sweep of
the local TDMA solvers, providing the exchange of the overlapped grid node val-
ues. Other communication instances occur at the beginning and end of each of the
subroutines, where communication of shared grid node values, momentum fluxes
at the control volumes boundaries and some algebraic equation coefficients are
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Fig. 1. Representation of overlapped domains

exchanged. For convergence checking, global residuals are constructed by collect-
ing local information from the individual sub-domains, which occurs at the end of
the outer iteration loop. Similar techniques can be found, for example, in [10].

All computation is thus parallelised: i.e. not only the algebraic solver, but also
the routines that construct the coefficient matrices, the reading of external files
and the writing of output files, with the exception of minimal output to standard
output to monitor the progress of the simulation and the construction of global
residuals and fluxes, which are handled by the master process.

4 Results

4.1 Speed-Up and Efficiency

In this section, we investigate the effect of different partitioning schemes on
convergence and computational time, as well as the effect of the size of the
mesh on the efficiency of the parallelisation. Speed-up and efficiency results were
measured from simulations of a real flow of 60◦ winds (WNW direction) over a
future wind farm at Mendoiro/Bustavade located in the North of Portugal. All
simulations were carried out in a cluster with 64 nodes using Intel(R) Xeon(TM)
CPU 3.00GHz, and all results shown in this section were obtained by averaging
over three different simulations performed at different instances, with the aim of
removing oscilations in the performance of the cluster.

The results for several runs, using a mesh of 113× 77 × 45 (= 391 545) grid
nodes and different partition schemes, are presented in table 1 and figures 2–3.
In table 1, the number of sub-domains used in each of the computational di-
rections is described in the partitions label, the first column. The total number
of processors used in the runs, equal to the number of sub-domains, are shown
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in variable NP. Two sets of results are shown: (i) results obtained for converged
simulations; and (ii) results after a fixed number of iterations (1000). Whilst
the former is included to indicate the speed-up of real applications, the latter
reveals the actual speed-up of the code in terms of parallel efficiency (i.e. how
much CPU time is being consumed in communication overheads, etc.). With
respect to the results using this mesh, one may observe that the computational
efficiency per 1000 iterations is quite high and that it does not degrade with
an increasing number of processors, (see blue dashed line in figure 2, which is a
linear regression curve with a slope of 0.849).

However, when CPU times are obtained from completed simulations, the ef-
ficiency decreases due to the larger number of iterations that some partition
schemes require. Partitioning often reduces the convergence rate because of the
slight decoupling that is introduced by the domain splitting. From table 1, one
can see that, in this case, partitioning in the first direction (i.e. schemes 2×1×1,
3×1×1, etc.), which is longitudinal with respect to the flow, has the effect of in-
creasing the number of iterations until convergence. This is not always the case,
and is highly dependent on the specific flow features. For other flows, it is slicing
the domain horizontally that has a strong impact on convergence, because quan-
tities vary more quickly in the vertical direction near the ground. What should
be retained, however, is that, despite some reduction in the convergence rate,
the parallelisation efficiency until convergence is still very significant: the blue
dashed line in figure 3, has a slope of 0.702.

A small number of partition schemes produced parallelisation efficiencies
slightly in excess of the maximum theoretical value of SPEED-UP = NP, which
can be confirmed by inspection of table 1 or figure 2. Since this occurred mainly
for the finer mesh and for partition schemes with relatively few subdomains
(namely, NP = 2, 4, 5, 6, 9, which means the size of the subdomains is still fairly
large), it is thought that it is not related to issues of memory management. In-
stead, the explanation is likely to be that the sequential runs were performed
in worse computational conditions than these parallel runs (i.e. the computer
cluster was heavily loaded, there were filesystem delay issues, etc.), which can
lead to some exaggeration of the speed-up of these cases, despite the efforts to
minimise this by performing three runs per case.

Figures 2–3 also contain results for a mesh with half the nodes in each direc-
tion, 57×38×23 (= 49 818) grid nodes. These data are not tabulated here. It can
be seen that for such a smaller case, the parallel efficiency decreases consider-
ably. This is to be expected since the bulk of the computational work performed
by the algebraic solver, where most gains are obtained when parallelising, has a
much smaller weight in the overall CPU time, when the mesh is small. This is
especially true when the number of processes is larger than 6, which means the
larger subdomain has less than 8000 grid nodes.

The increase in calculation speed obtained by the present parallelisation strat-
egy was sufficient to produce fast enough calculations, when using for example
9 processors, that enabled us to forecast in 2.5 days a forecast horizon of 5 days.
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Fig. 2. Speed-up versus number of processors, NP, per 1000 iterations for two mesh
sizes

4.2 Wind Prediction Results

In this section, results of the coupling between the parallel version of VENTOS
and the mesoscale code are presented and compared to field measurements. This
approach consists of two different simulations, mesoscale and microscale (CFD),
with one way coupling linking them. The objective is that the mesoscale model,
feed but planetary weather simulations, provides an accurate numerical weather
prediction for a large (130×130 km) area, encompassing the wind farm. The
CFD code then uses the mesoscale results as boundary conditions, bringing ad-
ditional accuracy due to the higher resolution meshes and more accurate terrain
representation.

A test case for this procedure was performed for the flow over the Men-
doiro/Bustavade wind farm site. Three different occasions were selected from
the year 2006; two winter occasions, 10 to 15 of January and 1 to 5 of December
and a Spring/Summer occasion, 1 to 5 of June. The 2006 year was chosen only
because of the availability of both experimental and NCEP (National Centers for
Environmental Prediction) results, the latter used to drive the WRF simulations
(Weather Research Forecast code from the National Center for Atmospheric Re-
search (NCAR) and others, see http://www.wrf-model.org).

The VENTOS simulations used a mesh of 39 × 39 × 55 grid nodes with 3 ×
3× 1 partitions, covering a domain of 22× 22 km in the horizontal and 7500 m
in the vertical. The mesh was almost uniform in the horizontal directions and
concentrated near the ground in the vertical direction, where control volumes
of 5 m height were used. The mesoscale simulations, using WRF-ARW core
(version 2.2.1 and WPS pre-processing system), were done using a mesh of 44×
44 × 31 grid nodes in a single processor, using a uniform mesh spacing in the



34 F.A. Castro, C.M.P.S. Santos, and J.M.L.M. Palma

Fig. 3. Speed-up versus number of processors, NP, until convergence for two mesh sizes

horizontal directions of 3000 m and 31 eta levels in the vertical, reaching almost
20 km in height. The time steps of VENTOS and WRF were 2 s and 10 s
respectively.

Representations of the horizontal extensions and meshes used in both codes
are shown in figures 4 and 5. The zooming effect produced by VENTOS is near
6×, as can be seen in figure 4. From figure 5, it can be seen that VENTOS uses
the WRF topography at the boundaries, being then operated a transition to a
higher resolution description of the topography. This transition occurs inside a
region surrounding the VENTOS domain of 3000 m.

To produce the VENTOS results the WRF simulations were first performed.
In the WRF simulations, the results were written to disk every 20 minutes, i.e.
every 120 time steps. These results were then interpolated to the boundaries
of the VENTOS mesh, producing files corresponding to each of the 20 minutes
snapshots from WRF. During the VENTOS simulations the boundary conditions
were updated every time step using linear interpolations in time between WRF
snapshots. All the simulations (VENTOS and WRF) were performed in the
aforementioned cluster during normal operation days. The VENTOS simulations
took nearly 1 cluster day for every 5 days of real time when the 3 × 3 × 1
partitioning was used, whilst the sequential version would require more cluster
days than days of real time.

For the site under study results from three meteorological masts operated
with cup anemometers at 60 m above the ground level were available. For this
study we present only results for one mast, known as PORT267.

The VENTOS and WRF results for the horizontal velocity magnitude (Vh)
are compared with cup anemometer results in figures 6-8. Figure 9 compares the
VENTOS and WRF predictions for the potential temperature (θ).
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Fig. 4. Meshes used by VENTOS (small extension) and WRF. The black line shows
the West Portuguese coast.

Fig. 5. Meshes and topography used by both codes
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Fig. 6. Time series of the horizontal velocity for the June occasion

Fig. 7. Time series of the horizontal velocity for the January occasion

Fig. 8. Time series of the horizontal velocity for the December occasion

Fig. 9. Time series of the potential temperature for the December occasion
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Table 2. RMS errors in m/s for the predictions at PORT267 for the 3 occasions under
study

Month VENTOS WRF
June 1.49 1.59
January 2.17 2.66
December 2.62 4.35

Figure 6 shows the time series of Vh for the warmer occasion under study,
10 to 15 of June. For this period the wind speed was not very height and so
thermal effects are more prone the determine the flow behaviour. In this case,
the VENTOS results were not a significant improvement over the WRF results.
This is partially explained by the simpler thermodynamics and heat-transfer
models used in VENTOS.

For the winter occasions, figures 7-8, the mean observed wind speed is higher
and the overall improvement introduced by VENTOS is very noticeable. In the
windiest period of the study, the first days of December, the improvement was
quite significant, when the WRF results were showing wind speeds almost 40%
lower than the experimental results.

The potential temperature predicted by VENTOS for December follows very
well the WRF results, as can be seen in figure 9. This shows that the ther-
modynamics and heat-transfer models used in VENTOS are well suited for the
application in mind, i.e. the wind power prediction, that deals mainly with the
operation of wind turbines for velocities above nearly 5 m/s.

The rms errors in m/s for the 3 periods under study are presented in table 4.2.
For the more interesting case, from the wind power point of view, the December
period, VENTOS reduced the error at PORT267 1.7 times.

5 Conclusions

The parallel version of the VENTOS CFD code was developed with the aim
of producing short term weather prediction. The parallelisation of a CFD code
was performed using a domain decomposition strategy, where the physical sim-
ulation domain, discretised by a mesh of control volumes with a central node,
was decomposed into several sub-domains, each being calculated in a dedicated
processor. The Message Passing Interface library (MPI) was used to implement
the communication between processes. High parallel efficiencies were obtained
(> 80%) even for 20 processors. The parallelisation introduced some decoupling
between sub-domains which can degrade the converge rate for certain cases.
Nevertheless, efficiencies of 70% are still obtained. The adopted strategy and its
numerical implementation permitted sufficiently faster execution times to enable
true predictions using the current CFD code.

A test case using a real flow over the wind farm of Mendoiro/Bustave, in Por-
tugal, showed that the coupling procedure can improve the mesoscale results.
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The improvement was more noticeable in windy conditions, the preferred situa-
tion for the application in mind, the wind power production. In the better case,
a reduction of 1.7 × in the error of the mesoscale results were obtained.
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Abstract. The Density Matrix Renormalization Group (DMRG)
method is widely used by computational physicists as a high accuracy
tool to obtain the ground state of large quantum lattice models. Since
the DMRG method has been originally developed for 1-D models, many
extended method to a 2-D model have been proposed. However, some of
them have issues in term of their accuracy. It is expected that the accu-
racy of the DMRG method extended directly to 2-D models is excellent.
The direct extension DMRG method demands an enormous memory
space. Therefore, we parallelize the matrix-vector multiplication in iter-
ative methods for solving the eigenvalue problem, which is the most time-
and memory-consuming operation. We find that the parallel efficiency of
the direct extension DMRG method shows a good one as the number of
states kept increases.

Keywords: Parallel and distributed computing, DMRG method,
matrix-vector multiplication, eigenvalue problem, quantum lattice
systems.

1 Introduction

Quantum lattice systems, e.g. Heisenberg model[1] and Hubbard model[2,3], have
attracted a tremendous number of physicists since the systems exhibit a lot
of interesting phenomenon such as High-Tc superconductivity. In order to un-
derstand the systems, some computational methods have been proposed. The
most accurate one of them is the exact diagonalization method, which solves the
ground state (the smallest eigenvalue and the corresponding eigenvector) of the
Hamiltonian matrix derived from the systems. We have actually parallelized the
exact diagonalization method and obtained some novel physical results[4,5,6,7].
However, the dimension of the Hamiltonian matrix for the exact diagonaliza-
tion method increases almost exponentially with the number of the lattice sites.

J.M.L.M. Palma et al. (Eds.): VECPAR 2008, LNCS 5336, pp. 39–45, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



40 S. Yamada, M. Okumura, and M. Machida

system environment
superblock

B
l

B
l’

renormalization

l l

B
l+1

B
l+1

B
l’’

Fig. 1. A schematic figure of the renormalization scheme of DMRG method for a 1-D
lattice model. The “superblock” is composed of the “system” and the “environment”.
The rectangles inside of the above superblock indicate the blocks which have l and
l′ lattice sites, and the dark circles present single sites. New block Bl+1 is formed by
renormalizing the left block Bl and the left single with keeping the number of the states
in the system block.

Thus, the limit of the simulation on a supercomputer with a terabyte memory
system is an about-20-site system[6,7].

In order to overcome the memory-size explosion problem, the Density Matrix
Renormalization Group (DMRG) method, which keeps the number of the rele-
vant quantum states constant by renormalizing the states of the previous step
on enlarging the system (see Fig. 1), has been proposed by S. R. White[8,9].
The DMRG has originally been developed for 1-leg (1-D) lattice models, and a
lot of problems for 1-D quantum lattice systems has been resolved. The DMRG
method can be directly extended to an s-leg (2-D) model as depicted in Fig.
2. The extension strategy is promising for the excellent accuracy and the good
convergence property. However, the method leads to a large amount of mem-
ory consumption, since the maximum number of the states required in the di-
rect extension DMRG algorithm is given as 16sm2 for the s-leg Hubbard model
per block, in which s and m are the number of the sites in the rung direction
and the number of states kept, respectively. Although the degree of freedom
practically decreases by eliminating physically irrelevant states, it is clear that
even a slight increment of the legs gives rise to an exponential growth of the
state number. Therefore, the previous 2-D DMRG method have adopted “mul-
tichain algorithm”, as depicted in Fig. 3, since its memory space is principally
comparable to the 1-D case. However, there remain unsolved issues in terms of
its accuracy[10,11]. Thus, we study the parallelization technique for the direct
extension of DMRG method to s-leg models on a distributed-memory parallel
computer, which totally has a huge memory system.
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system environmentleg direction

rung direction

Fig. 2. A superblock configuration in the direct exten-
sion of DMRG to a 4-leg model

system environment

Fig. 3. A superblock in the
multichain algorithm

2 Density Matrix Renormalization Group Method

2.1 Algorithm

In the DMRG method, the whole system of the lattice model is called “su-
perblock”, and the “superblock” is split into two blocks, which are called “sys-
tem block” and “environment block” (see Fig. 1). The procedure of the DMRG
method for 1-D model is described as follows:

1. Form the Hamiltonian matrix form the superblock and find the ground state
of the matrix.

2. Form the density matrix for the system block using the ground state.
3. Solve the eigenvalue problem for the density matrix, and discard all expect

for the largest m eigenvalues and the corresponding eigenvectors. Here, m
means the number of states kept per block.

4. Form the new system block, which is the previous system block plus one
site, using the eigenvectors, and construct the new superblock out of the
new system block and the relevant environment block.

In the direct extension DMRG for the s-leg model, a new system block is formed
with the previous system block and s sites. In this case, the dimension of the Hub-
bard Hamiltonian matrix for the new superblock is 16sm2. Although the dimen-
sion can decrease by eliminating the irrelevant states, the calculation for solving
the ground state of the Hamiltonian matrix is the most time- and memory-
consuming operation. Since the Hamiltonian matrix is a sparse symmetric ma-
trix, an iterative method, such as the Lanczos method [12] and the conjugate
gradient method [13,14], are utilized for solving the ground state. For these itera-
tive methods, the most difficult part is the parallelization of the multiplication of
the Hamiltonian matrix and a vector. Therefore, we focus on the parallelization
for the multiplication in the following.

2.2 Parallelization of Matrix-Vector Multiplication in DMRG

Each block of the superblock for the direct extension 2-D DMRG method is
called “block 1”, “block 2”, “block 3”, and “block 4” from the left, and state
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of the “block j” is represented as ij. We decompose the superblock into the
left block, the central block, and the right block as Fig. 4, and the Hamiltonian
matrices for the three blocks are represented as Hl, Hc, and Hr, respectively.
The Hamiltonian matrix for the superblock is decomposed into three matrices,
i.e. H1, H2, and H3, which correspond to the states i1 and i2, i3 and i4, and i2
and i3, respectively. Thus, the matrix-vector multiplication Hv is partitioned as

Hv = H1v + H2v + H3v. (1)

Here, let the ((i3 − 1)m2n + (i4 − 1)mn + (i2 − 1)m + i1)-th element of the
vector v, which corresponds to the |i1i2i3i4 > state, transform into the element
((i2 − 1)m + i1, (i3 − 1)m + i4) of a matrix V (see Fig. 5), in which n = 4s in
s-leg ladder Hubbard model. Then, the first two multiplications of (1) can be
transformed into matrix-matrix multiplications as

H1v → HlV,

H2v → V HT
r .

In addition, when the element of the vector v is transformed into the element
((i3 − 1)n + i2, (i4 − 1)m + i1)) of a matrix Vc (see Fig. 5), the last operation of
(1) is also transformed into a matrix-matrix multiplication as

H3v → HcVc.

We find that the matrix-vector multiplication Hv can be decomposed into
three matrix-matrix multiplications. It is expected that the multiplications can
be effectively parallelized by partitioning the matrices V and Vc. The parallel
computation for the multiplication Hv is realized by four calculation stages and
four communication ones as follows:

CAL 1: W c
1 = HlV

c,
COM 1: communication for transforming V c to V r,
CAL 2: Zr

2 = V rHT
r ,

COM 2: communication for transforming Zr
2 to W c

2 ,
COM 3: communication for transforming V c to V c

c ,
CAL 3: Zc

3 = HcV
c
c

COM 4: communication for transforming Zc
3 to W c

3 ,
CAL 4: W c = W c

1 + W c
2 + W c

3 ,

where the superscription c and r denote the columnwise and rowwise partitioning
in matrix data distribution, respectively. Although the matrices V and Vc are
originally dense matrices, the elements corresponding to the irrelevant states are
eliminated. Therefore, the matrices should be partitioned in consideration of the
arrangement of the relevant elements.
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Fig. 4. A definition for the Hamiltonian matrices Hl, Hr, and Hc. The superblock as
shown in the left side is decomposed into three blocks, i.e. the left block, the right
block, and central block, as shown in the right side. The matrix Hl, Hr, and Hc are the
Hamiltonian matrices for the left block, the right block, and central block, respectively.
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Fig. 5. A way to transform the vector v to the matrices V and Vc. The vector v is
hierarchically arranged as the upper of the figure. The element zi1i2i3i4 is arranged in
the matrix as this figure.

2.3 Data Locality

In the Hubbard model, there is no correlation among states with different number
of spins. Therefore, the three matrices Hl, Hc, and Hr, which are the Hamiltonian
matrices for the left block, central block, and right block, respectively, become
the block diagonal matrices, if the elements are rearranged by the number of
spins. The rearrangement improves the data locality, which strongly influences
the performance on a scalar computer.
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3 Numerical Experiment

We examine the performance of the direct extension 2-D DMRG method on SGI
Altix3700Bx2 in Japan Atomic Energy Agency. A test example is 4-leg (10× 4-
site) Hubbard model with 38 fermions (19 up-spins, 19 down-spins). Figure 6
shows a relationship between the number of states kept m and the elapsed time.
We find that as the number of processors increases from 32 to 128, the elapsed
time is reduced to be about one half, when m is about larger than 128. The result
shows that the present parallelization scheme is promising, since the obtained
ground state approaches to the true ground state with increasing the number of
the states kept m.
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Fig. 6. Relationship between the number m of states kept and the elapsed time of the
direct extension DMRG method for 10 × 4-site Hubbard model on SGI Altix 3700Bx2

4 Conclusion

In order to execute the direct extension of DMRG method to s-leg model on
distributed-memory parallel computers, we parallelized and tuned mainly the
matrix-vector multiplication in solving the eigenvalue problem for the Hamilto-
nian matrix, which is the most time- and memory-consuming operation. Con-
sequently, we found that the parallelization efficiency increases with increasing
the number of the states kept. Therefore, we believe that the direct extension
2-D DMRG method is a promising tool to explore large quantum 2-D lattice
systems.
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Abstract. The use of scientific computing centers becomes more and more dif-
ficult on modern parallel architectures. Users must face a large variety of batch
systems (with their own specific syntax) and have to set many parameters to tune
their applications (e.g., processors and/or threads mapping, memory resource
constraints). Moreover, finding the optimal performance is not the only criteria
when a pool of jobs is submitted on the Grid (for numerical parametric analysis
for instance) and one must focus on the wall-time completion. In this work we
tackle the problem by using the DIET Grid middleware that integrates an adapt-
able PASTIX service to solve a set of experiments issued from the simulations of
the ASTER project.

Keyword: Grid computing, Sparse linear solver, Performance prediction, Ap-
plication specific plug-in scheduling.

1 Introduction

Parallel computing and the design of high-performance codes to be executed on today’s
computing platforms are one of the major research activities in computer science. Such
architectures are now parallel computers organized as a large network of SMP nodes
and/or Grid platforms. On an other hand, solving large sparse systems of linear equa-
tions is a crucial and time-consuming step, arising in many scientific and engineering
applications. Consequently, many parallel techniques for sparse matrix factorization
have been studied and implemented.

In the context of the ASTER project (Adaptive MHD Simulation of Tokamak ELMs
for ITER), we develop and implement methods to improve the simulation of MHD insta-
bilities that are needed to evaluate mechanisms to control the energy losses observed in
the standard tokamak operating scenario (ITER). To resolve a wide range of timescales,
a fully implicit time evolution scheme is used; this leads to a large sparse matrix system

� This work is supported by the REDIMPS project JST-CNRS.
�� This work is supported by the LEGO project ANR-05-CIGC-11.

��� This work is supported by the ASTER project ANR-06-CIS-1 and SOLSTICE project ANR-
06-CIS-10.
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to be solved at every time step. To reduce the large memory requirements of the sparse
matrix solve, the PASTIX library [7] is being extended to support preconditioners using
incomplete factorization.

One of the aim of the ASTER project is to define the choice of optimal parameters of
the solver on a collection of test cases and to analyze the efficiency and convergence for
both parallel and sequential implementations [4]. Then, we must perform an exhaustive
set of experiments, whose objective is to collect the benchmark results induced by this
parametric analysis.

We address the efficiency problem with a Grid architecture relying on the DIET [3]
Grid middleware. The proposed solution integrates the development of a DIET clien-
t/server which gives access to the PASTIX service over the Grid, a transparent batch
parallel job submission mechanism to address batch systems heterogeneity as well as
mechanisms to obtain static and dynamic information on the resources of a site, a par-
allel job tuning to address the moldability of PASTIX (the possibility to set the number
of processors to use at launch time), and a distributed application-specific scheduler.

2 Related Work

The TLSE project 1 (Test for Large Systems of Equations) aims to provide an expert
Grid system, particularly to evaluate sparse direct solvers. TLSE relies on the DIET

Grid middleware to submit the computing analysis on the Grid. The context of work is
different than the one in this paper, because submission of parallel jobs was not avail-
able within the DIET API and such had to be done case by case (forks or batch scripts
had to be hard coded if used), and iterative solvers functionalities (incomplete factoriza-
tion for instance) cannot be taken into account. In any case, the platform will not allow
performance predictions and approximate wall-time. Furthermore, we want to take ad-
vantage of the moldability of PASTIX parallel jobs, which can be tuned accordingly,
for example to benefit of the maximum idle resources on a site.

3 Presentation of PASTIX

PASTIX 2 is a scientific library that provides a high performance parallel solver for very
large sparse linear systems based on block direct and block ILU(k) iterative methods.

The PASTIX library uses the graph partitioning and sparse matrix block ordering
package Scotch [8]. PASTIX is based on an efficient static scheduling and memory
manager by taking into account very precisely the computational costs of the BLAS
primitives, the communication costs and the cost of local aggregations.

In the context of SMP node architectures, we fully exploit shared memory advan-
tages. A relevant approach is then to use an hybrid MPI-thread implementation. This
not yet explored approach in the framework of direct solver aims at efficiently solving
3D problems with much more than 10 millions of unknowns. We have shown that this

1 http://gridtlse.org/
2 http://pastix.gforge.inria.fr

http://gridtlse.org/
http://pastix.gforge.inria.fr
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approach allows a great reduction of the memory required for communications [6]. Hy-
brid MPI-thread batch scheduling is then crucial to solve large problems even if those
requirements are often difficult to set on scientific computing center.

4 Presentation of DIET

DIET is a GridRPC middleware relying on the client/agent/server paradigm. A client is
an application which needs a computing service. The agent, which can be extended as
a hierarchy of agents, has the knowledge of several servers. The distributed scheduler
embedded in each agent chooses the best computing resource for the execution of a
given request considering a given metric. The server is a daemon running on the com-
puting resource. The server gives performance estimations to its agent and launches a
service each time requested by the client.

The mechanism to execute a request is shown in Figure 5: when an agent is contacted
by a client who wants to solve a problem (a), the request follows down the hierarchy of
agents to servers (b and c). They answer back performance information (c and b) which
is used up in the hierarchy to determine which one suits the best the resolution of the
service (b). The identity of the server is given to the client, who contacts the server and
sends its data (f). Once the computation is finished, results are transfered back to the
client.

5 Architecture of the Proposed Solution

The architecture of the solution is schemed in Figure 5. There are four main parts.
In the reverse order of the process of a request: a script parameterized with correct
values concerning the number of processors used in regard to both PASTIX and to the
batch scheduler has to be created. This means that the server can access the number of
available idle resources on the site through the batch scheduler (d); integrate a correct
knowledge to decide how many of them the PASTIX service will use (d); create and
transparently submit the batch script ((d) and (e)); higher in the hierarchy, the request is
processed by the hierarchical scheduler, which is specifically designed for the PASTIX
service (b). All this steps are described in this section.
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Fig. 1. Architecture of the proposed solution
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5.1 Improvements Realized in the DIET Grid Middleware

Re-designing the Implementation of DIET Servers

A server is now either a SERIAL, PARALLEL or a BATCH server. A SERIAL server
is the previous and unique kind of server available in DIET. It launches the resolution
of a service by forking the function which realizes the solve. It is still the default be-
havior if none is given in the server code. A PARALLEL server reads in a file the name
of the resources that it manages, and knows consequently their number. It launches a
script provided by the SED programmer (generally a MPI script) where the resources
and their number can be used with the help of meta-variables. It implied additional de-
velopments because the script is forked but its execution has still to be controlled for
asynchronous mode, to advertise the client when the job is terminated, or simply to
know when transferring back the results. A BATCH server reads the name of the batch
system in the server configuration file, and can submit consequently adaptable batch
scripts provided by the SED programmer. In that case, the SED requests the batch sys-
tem every 30 seconds to control the state of the job. For the moment, OARv1.6 and
Loadlever batch systems are supported.

A service is now declared and registered as sequential or parallel. This has three
main purposes: 1) A PARALLEL or BATCH server can provide two different imple-
mentations, one sequential and the other parallel, with the same name. Hence, a user
can request explicitly for one kind of service to explore some speed-up study, or the
DIET server can dynamically choose which one to execute depending on system per-
formances. Then, in that case, the user does not even now the nature of the resolution
nor the machine that has performed the resolution but only gets the results when the job
is finished. 2) The service and some of its characteristics (like being parallel or sequen-
tial) are registered in all the components from the server to the root agent (the Master
Agent) in the hierarchy. By default, if no constraint is specified by the user, DIET tries
to answer to the request with the best server (according to some metrics) able to solve
the service corresponding to the service name, and arguments number and type given
in the request. But if the client specifies the type of the service that he wants, then the
request is only forwarded down in the hierarchy to components that are aware of this
kind of service, making the scheduling process lighter and the latency smaller. 3) When
arriving at the last local agent, if there is no constraint on the request and if the server
can solve both kind of services, the request is duplicated when submitted to the server,
each one having the SERIAL or PARALLEL characteristic set. Hence, one can achieve
traditional (but surely inefficient) Round-Robin between services on all the platform as
a default scheduling policy.

An Extended API to Address Batch Systems Performance Estimations

DIET makes use of a performance module called CoRI (Collector of Resource Infor-
mation). CoRI proposes a generic API which lets the user get some given information
on the system by transparently transferring the request to a software or a built-in tool.
It is also used to set information that are transferred back to the agent, for application
specific scheduling.
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We have integrated a submodule which can get information through batch sched-
ulers. For now, only the necessary information for the work of this paper can be ob-
tained, namely the number of processors of the parallel resource and the number of idle
processors available in the system. Work has been made for new functionalities to be
added easily in the code and in the API.

A New API to Interface DIET and Batch Schedulers

We have extended the DIET API in order to provide means to submit a draft script
constructed by the SED programmer that DIET completes and submits to the system
with correct batch related information set (if PARALLEL or BATCH). Hence, DIET

transparently manages batch and parallel submissions. In order for the user to be able to
use system dependent information, DIET proposes a set of meta-variables that the SED
programmer can use in the draft script. They describe the system and are replaced by
the SED at launch time, The script is then submitted with the additional corresponding
batch syntax. Hence, the submission is conducted transparently for the client/server
programmer. This gives a higher level and much ease to the server programmer to design
a single generic server working on different batch systems. A small common set of
information can be used (number of processor, name of the frontal for ssh copies, etc.)
and further work has to be performed.

5.2 Interfacing PASTIX and DIET

Interfacing PASTIX and DIET occurs at three very different levels: first, we need to
use DIET functionalities to question the batch system about its load. We need as well
a PASTIX performance prediction to decide how many threads per reserved processors
will be used, in order to fully benefit from the moldability of PASTIX jobs; second,
a DIET client/server has to be designed with the DIET batch API, in order to propose
the PASTIX service to Grid users; third, due to the nature of the analysis, we focus on
cycle stealing. Then the scheduling metric is based on idle resources and an application
specific plug-in scheduler has to be defined.

Performance Predictions

Since the ordering step and the block symbolic factorization can be pre-calculated for
each problem, PASTIX is able to quickly estimate the execution time in function of the
number of processors (threads) before factorizing and solving the system. We can notice
that the size of the block symbolic matrix, used to compute the prediction, is small.
Moreover, at the same time, the exact memory requirement for each processor can be
computed. The script can then be built by DIET to fit the best PASTIX requirements
and accordingly to system performances (e.g., number of processors, walltime).

Designing the DIET Client/Server to Provide the PASTIX Service

We have used the new DIET batch API to write the PASTIX client/server, in order to
be able to submit transparently to clusters managed with OAR and to an AIX parallel
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machine managed with Loadleveler. Nonetheless, writing the DIET client/server is very
similar to the work in [1], except that meta-variables are used in a draft script and it is
launched with a special call, which completes the batch script and launches the script
in place of both the client and server programmer to the batch scheduler. The draft
script built by the DIET server takes into account the values given by the performance
prediction to reserve the correct number of processors (threads) for the correct duration.

Scheduling PASTIX Requests in DIET

Because we plan an extensive analysis, we need the maximum available resources. In this
paper, we consider a scheduling based on the availability of resources. The work is per-
formed using the new CoRI batch submodule to get the corresponding information on the
system and the plug-in scheduler functionality of DIET [2]. At each step in the hierarchy,
the aggregation method sorts the servers by the maximum available idle resources.

6 Conclusion

Concerning PASTIX, all the results and data will be collected in order to select the
parameters of the solver that best fit the simulations of MHD instabilities. Some im-
provements are currently developed into the solver to take care of NUMA (Non-Uniform
Memory Access) effects. This will induce some new constraints regarding the mapping
of resources during batch reservations on such architectures.

Concerning DIET, we will extend the number of recognized batch with OpenPBS
and SGE batch reservation systems. Furthermore, we will provide more functionalities
regarding batch integration: an improved performance prediction for given batch sys-
tems (collecting information and predicting system behaviors for example with the help
of Simbatch [5]), as well as better autoconfiguration tools on the server side, to auto-
matically discover batch queues and their respective information. These will lead to a
better information quality, which will be used in the DIET scheduling.

We plan to use these improvements in a future work concerning the resolution of a
set of experiments where the memory has to be taken into account in the scheduling
process as well as when solving the problem. Furthermore, the schema of this set of
experiments can be represented as a workflow whose branches can be pruned depending
on temporary results. Scheduling algorithms have then to be studied and tested.

The DIET extensions developed in this work are directly integrated in the internals of
DIET, and will be integrated in the LEGO demonstrator for the evaluation of the project.
Furthermore, it will be adapted when possible into the next evolutions of TLSE.
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Abstract. Commodity clusters revolutionized high performance computing in a 
fundamental way since its first inception, and now now dominate many of the 
world’s premiere supercomputers on the Top500, growing to the scale of over 
10,000 CPU cores and beyond. Still,"classical" specialized vector supercomput-
ers still remain to be sold and facilitated, especially at high end of the market, 
largely due to the nature of some of the HPC workloads still requiring the com-
puting power of vectors, in areas such as CFD, FEM with kernels such as FFT, 
characterized as mostly large-scale irregular sparse codes Finally, however, 
commoditization of vector computing is on the rise, lead by multimedia appli-
cation requirements, and spurred many architectures to arise such as GPUs and 
the Cell processor. But various problems still remain by which we cannot claim 
with 100% confidence that commodity vectors are here to stay in the HPC 
space. Research and development has to be conducted at various degrees of in-
tensity to utilize the new breed of commodity vector hardware to their fullest 
capabilities, just as various research were needed to harness the power and the 
scalability of commodity clusters. In the talk I will outline some of the details, 
and our recent research endeavors aimed at solving the various issues.  

1   Introduction––The Rise of the Commodity Vectors 

Commodity clusters revolutionized high performance computing in a fundamental 
way, Since its first inception (Wigraf) in 1994, it quickly spread and rode the rapid 
technology curve advances of commodity microprocessors, and now dominate many 
of the world’s premiere supercomputers on the Top500 [1], growing to the scale of 
over 10,000 CPU cores and beyond. 

The biggest cultural effect that were given rise by cluster computing was to bring 
HPC to the mainstream--- the building block components were those of commodity in 
nature, especially in the (albeit high-end) PC desktop & server ecosystem, and the 
architectural research on constructing a supercomputer now rested on how the com-
ponents are pieced together using innovative software techniques. This is in stark 
contrast to the old days of customized supercomputers of the past---the Crays / NEC 
SXs / Fujitsu VPPs / ETA10 / … etc., that star-studded the supercomputing arena 
only a decade earlier.  

Commoditization is very important from the industry ecosystem viewpoint, both 
for economy and sustainment of the infrastructure, as supercomputing now cannot be 
alienated from rest of the IT, both from a financial point of view as well as from a 
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technical point of view. For example, software compatibility and longevity are very 
important, from the software vendor’s standpoint in market penetration and customer 
retention, and from the user’s standpoint in availability/longevity, as well as contin-
uum with the now complex software R&D environment he would be using every day 
with sophisticated GUIs instead of the arcane half-duplex TTY systems (or even 
punch cards in the good old days.) 

Still, circa early 2008, one also notices that ``classical’’ specialized vector super-
computers, and non-commodity CPUs that emulate them to some extent, still remain 
to be sold and facilitated, especially at high end of the market, by major supercomput-
ing centers. These include the Cray Black Widow, the NEC SX-8/8R/9, and the high-
end IBM Power servers. The existence is largely due to the nature of some of the HPC 
workloads still requiring the computing power of vectors, mostly those that require 
high bandwidth and amenable to vectorization. These include areas such as CFD, 
FEM with kernels such as FFT, characterized as mostly large-scale irregular sparse 
codes sometimes with serialization bottlenecks. One could say that, irregular sparse 
codes and their kernels are the last stronghold of vector supercomputing market, as 
performance parity could occur for those types of applications due to higher effi-
ciency, and as a result, may lead to overall advantage for the classical vectors in the 
overall price, facility requirements, or application porting (for codes that had been 
optimized for vectors). 

Finally, however, starting from a few years ago, commoditization of vector com-
puting is on the rise, driven by the needs of multimedia, gaming, video, and other 
applications to offer richer UI experiences. Now, such capabilities are starting to be 
applied to non-graphical/media technical computing. This is synonymous to the first 
Beowulf cluster in 1994 where commodity desktop PC processors (Intel 486 CPUs at 
the time) were utilized to construct the first computing cluster. Despite that some of 
the earlier attempts especially. with GPUs had less than stellar performance, and/or 
the user having to deal with arcane programming model based on graphical pipelines, 
inherent advances to enrich the user experiences had lead to generalization of the 
overall architecture to be significantly resemble traditional many-core, multithreaded 
SIMD CPU in order to cope with very sophisticated rendering algorithms. As a result, 
recent hardware and software advances thereof are finally making the system to be 
tractable for a non-graphics layman in scientific computing, and the performance 
advantage potentials that are beginning to find substantive traction and impetus in the 
community. A recent IEEE article[2] gives an excellent overview of the history and 
the status quo of GPU computing, especially focusing on molecular dynamics that the 
one of the authors’ group had been working on in the context of Folding@Home[3] 
and other apps. Similar can be said for non-graphical but multimedia-oriented CPUs 
such as the CELL Broadband Engine[4]. 

There are less commoditized but still fairly inexpensive and general-purpose 
SIMD-Vector accelerators on the market, such as the ClearSpeed Accelerator 
board[5], the ones in particular which are housed in Tokyo Tech.’s supercomputer 
TSUBAME, representing almost half of the peak computing power provided by our 
Global Scientific Information and Computing Center (GSIC). ClearSpeed has been 
the driving force of TSUBAME's ability to retain the top performing position as the 
Japan's No. 1 supercomputer on the Top500, due to several innovative works in het-
erogeneous Linpack algorithm that we had developed that allowed increase of  
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performance over four consecutive rankings, the first of its kind in the world[6]. Still, 
one could claim that ClearSpeed is situated in the realm of commodity space, as it 
employs standard interfaces to the PC (PCI-X and PCI-E), and as such could be added 
onto any commodity desktop PC---and its price range is on the high end of commod-
ity platforms as well, in the low thousands of dollars as of 2008. 

Some may also claim that we had gone the way before---certainly we remember 
the old days of Weitek vector add-ons for early RISC based MPPs such as the Think-
ing Machine’s CM-5, Meiko CS-2, etc. There had also been dedicated accelerators 
that were more generic, such as Riken's Grape series such as the MD-Grape 2[7]. The 
differences being that, for the new breed of commodity vector accelerators above, 
both the hardware and the software are riding on the commodity ecosystem, whereas 
these older accelerators that were dedicated to particular hardware platforms were not. 
As a result, one could not, for example, easily "upgrade" the accelerator as the general 
CPU, and/or not being able to take advantage of a vast software infrastructures that 
were present, i.e., by the time the software would be customized to take advantage of 
acceleration, the hardware would be "caught up" with general-purpose CPUs such that 
it would effectively be rendered "obsolete". This emphasizes the importance of the 
acceleration being on the same performance growth curve as dictated by the Moore's 
law, but the only successful way of sustaining such a growth curve had been to ride 
on the commodity ecosystem. 

2   Challenges in Commodity Vectors 

So, it is our claim that commoditization of vectors are finally here, a phenomenon of 
such importance after numerous years of supercomputing such that it would propel 
HPC in the mainstream market--- over a decade of gradual commoditization of central 
pieces that effectively comprised supercomputers, starting from CPUs to memory 
systems, the operating systems and middleware, networks such as 10GbE and Infini-
band, and finally onto vector acceleration. But as pointed out, albeit from rather 
graphics-oriented point of view in [2], various problems still remain by which we 
cannot claim with 100% confidence that commodity vectors are here to stay in the 
HPC space. In fact, we are not even settled on what would be the governing architec-
ture, as various hardware chips differ considerably in the architectural organizations 
as of current, and their evolutions could even be more disparate, rather than being on 
the convergence paths. The associated software platforms are still nascent at best, a 
historical parallel to early days of older vector computing. In fact, some of the algo-
rithms and the software artifacts could be applied straightforwardly, but those are 
fairly few in number. In many cases, research and development has to be conducted at 
various degrees of intensity to utilize the new breed of commodity vector hardware to 
their fullest capabilities, just as various research were needed to harness the power 
and the scalability of commodity clusters. In the talk I will outline some of the details, 
and our recent research endeavors aimed at solving the various issues, but here are 
some of the highlights: 

1).  Combined Commodity Vector / CPU Algorithms and their Performance Models---
Commodity vectors such as GPUs are aimed mainly at stream processing, while 
CPUs are more general purpose and are more latency optimized, but still have 
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significant stream processing power. Moreover, communication bandwidth be-
tween commodity vector components and the CPUs are currently limited by the 
PCI-Express bus, whereby our measurements show that even for the most current 
generations being far inferior compared to naïve memory system performance 
(over 60GBytes/s for high-end GPU memory systems compared to 5GB/s for 
PCI-Express x16 Gen2). As such, devising an effective methodology as to how to 
divide the labor between the CPUs and commodity vectors in the system needs to 
be investigated. This is different from the classical vector days where algorithmic 
vectorization would be done gradually in a piecewise fashion in the performance 
critical portions of the code, whereby the merger between the scalar versus the 
vector processing came essentially for free.  

Our recent work in this context mentioned earlier[6] comes up with a method-
ology and an algorithmic instantiation in Linpack whereby we virtualize the 
ClearSpeed accelerators as CPUs (Figure 1). This is possible when the workload 
can be described as divisible labor in which both CPUs and vectors could  
compute the same subspace in the workload, albeit with different performance 
characteristics. The improved scheme now allows other CPUs to be consolidated 
into the system, allowing us to achieve over 67 Teraflops for yet another per-
formance-improvement Top500 submission for June, 2008. 

 

Fig. 1. Overview of Virtualization of SIMD Vector Processing in our Heterogeneous Linpack 
Algorithm presented in [6] 

Another one of our work [11] attempts to solve such disparity in hybrid FFT 
algorithm where we devise a higher-performing FFT algorithm compared to the 
vendor Cuda FFT library (Figure 1), and moreover, construct a performance 
model such that the combined heterogeneous outcome in performance can be ac-
curately described according to how we divide the labor; here the performance 
model was shown to be accurate to be within 5%, and effective division could be 
derived with a simple search for the minimal point in the performance curve in 
the model.  

Still another work by our collaborator, Professor Takayuki Aoki's group ap-
proaches the problem in a completely different fashion---in solving the Poisson 
equation for a benchmark CFD problem (Himeno Benchmark), the inner loop of 
the algorithm principally conducts discretized stencil differentiation operations 
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exploiting the computational power of multiple GPUs in a compute node, 
whereas the CPU "driver" routine is an outer-loop coordinator that effectively 
synchronizes the GPUs and conducts boundary region data exchange using 
OpenMP. As such, the CPU stays away from the core of the inner loop. The com-
bined parallel performance using four Nvidia 8800 GTX Ultra cards in a node es-
sentially "blew away" the previous known result for Himeno for a single node by 
several factors, achieving nearly 100GigaFlops on a 3-U chassis, allowing them 
to win the Himeno Benchmark Contest[12] for 2008. Now Aoki's team is starting 
to apply the methodology to more realistic CFD and related problems.  

 

Fig. 2. Overview of our hybrid GPUFFTW Algorithm 

 

Fig. 3. Performance comparison of our hybrid 1024-point 2-D FFT algorithm––predicated 
performance model instantiated by a 512-point sample run versus real measurement 
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2).  Effective usage of memory bandwidths---Vector accelerators, especially GPUs 
are heavily geared towards stream processing, and thus sport substantial mem-
ory bandwidth. Although there is some commonality to traditional vector ma-
chines, there are vast differences in how the memory system is architected,  
affecting how memory latency is tolerated. Traditional vector machines involve 
bank-interleaved memory of substantial parallelism, up to 128 on the NEC SX 
series[8]. Long-latency memory operations such as stride access are tolerated 
by such parallelism in the memory system, which would be quite expensive to 
implement for various reasons. GPUs, on the other hand, cannot afford such an 
expensive memory system. Instead, it relies heavily on multithreading to toler-
ate overall memory latency---a modern day GPU can have hundreds to thou-
sands of threads with outstanding memory operations in flight. However, 
maximum performance as afforded by the memory system can only be achieved 
when threads access the memory in an orderly fashion, enabling memory coa-
lescing, which is fairly large granule (64 bytes in the case of Nvidia 8800 
GTX/GTS) with strict access ordering constraints. Irregular memory accesses, 
such as stride access, are thus particularly poor-performing on GPUs, where la-
tency can be hidden but bandwidth is still sacrificed quite considerably. (The 
Cell processor is somewhat intermediate in that, they offer lower bandwidth but 
our measurements have found the stride access capability to be more flexible 
compared to GPUs.)  

The issue then, is how much the traditional vector-oriented algorithm devel-
oped over the years would be applicable (or not) to modern-day commodity vec-
tors from a performance perspective. Although there are no general answers to 
the question yet, there are several works in porting representative numerical ker-
nels effectively onto commodity vectors. BLAS kernel performance on 
Clearspeed is particularly both fast and efficient. [9] proposes mixed usage of 
GPUs and CPUSs in BLAS kernels, and [10] presents a work where Level-2 
BLAS achieves considerable stability over varying problem sizes on CUDA 
GPUs. Our recent work lead by Akira Nukada et. al. studies efficient 3-D FFT  
algorithm on a Nvidia CUDA GPU, where we found that some of the classical 
vector-based algorithms are well-applicable, but in other cases various resource 
constraints, particularly in the registers, plus the stringent memory coalescing re-
quirements call for substantive adaptation of such algorithms. The net results, 
however, are stellar: while a 16 CPU-core AMD Opteron (2.4 Ghz) node of 
TSUBAME achieves less than 20 Gigaflops in double precision for a 2563 3-D 
FFT calculation, a single precision version on a Nvidia 8800 GTX achieves al-
most 80 Gigaflops (Figure. If this were achieved in double precision, it would 
almost be equivalent to a single node performance on a NEC SX-8 (16 vector 
CPUs). It is quite interesting that, with appropriate tuning, a single graphics card 
almost achieves the same performance as a purpose-built high-end vector super-
computer costing 1000 times as much, and at the same semiconductor process 
(90nm).  
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Fig. 4. A 3U Compute Node with 4 Nvidia 8800GTS cards 

 

Fig. 5. Performance of our 2563 3D-FFT Library (written by Akira Nukada) in comparison to 
standard CPUs. Here, TSUBAME is a 16-core 2.4 Ghz Opteron node (SunFire x4600), and 
TSUBAME DDR2 is the 2.6 Ghz node with PC2700 DDR2 memory. For standard CPUs single 
and double precision performances have been found to be largely equivalent. 
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3)   Coping with poor vector accelerator to CPU (and network) bandwdith---We have 
already mentioned that there is a vast disparity between memory bandwidths esp. 
of GPUs versus the achievable transfer speed on a PCI-Express bus. Although 
this could be alleviated somewhat by stronger integration of CPUs and vector ac-
celerators as is the case for gaming consoles such as Sony PlayStation 3 or Mi-
crosoft Xbox 360, such disparity will likely persist at some scale due to substan-
tial increase in point-to-point data transfer rates of directly-attached memory ver-
sus those that are not.  

Given such fundamental restrictions in bandwidth, the current major work-
arounds are as follows 1) offload only non-bandwidth intensive application ker-
nels to a vector accelerator 2) confine (almost) the entire application kernel to re-
side on the vector accelerator, or 3) attempt to hide the transfer latency by over-
lapping computation with data transfer. Of these, 1) is the approach used in dense 
problems, in which data transfer relative to computation is minimal. 2) is often 
used in many applications to date, including applications we have written that ex-
ploits our 3-D FFT above. In particular, we were able to realize a 3-D protein 
docking application whose main driver loop resides entirely on the card, and 
whose computation is dominated by 3-D convolution / 3-D FFT, achieving al-
most 50 Gigaflops on a Nvidia 8800 GTS, avoiding the major PCI-Express trans-
fer bottleneck (Figure 6). However, this is not always applicable, and in fact 
could be difficult when the scalar bottleneck within the kernel becomes more 
dominant. 3) would be effective albeit in a smaller way, as the ability to overlap 
would depend on a good balance between computation and communication in the 
first place. Instead, the core solution to the problem from the software perspective 
would be to devise new algorithms such that 1)-3) or other methods would be ap-
plicable. Again, these may call for substantive research and development. 

    

Fig. 6. The graph on the left hand sides shows the overhead of PCI-E transfer of 2563 3-D FFT 
(using PCI-E Gen 2 x16). The docking application on the right eliminates the transfer overhead 
by combining the entire application loop, including 3-D FFT, within the GPU card. The sample 
run using Nvidia 8800 GTS is exhibiting almost 50 Gigaflops per card, largely preserving the 
3-D FFT performance. 
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Other difficulties include general programming issues, ranging from the higher-
level language model that would exploit the SIMD/thread parallelism while realiz-
ing orderly access to memory, as well as the actual software infrastructural support 
in program development, such as compilers, debuggers, various libraries, etc. An-
other issue is general reliability including numerical accuracy and fault tolerance. 
Some of the problems resemble those for the early days of cluster computing, and 
still would require several years of research to have them 100% resolved, despite 
the accumulation of knowledge and experiences from the cluster days, due to a 
very different computational hardware underneath. Nevertheless, as was with clus-
ters and classical vectors, such continued research and the resulting innovation, as 
well as user education, will likely allow commodity vectors to be used in an easy 
fashion 

3   The Future of Commodity Vectors 

As the commodity vectors progress, would there be convergence in the architec-
tures, just was as the case for standard CPUs to x86, due to software platform is-
sues, or instead, diverge and become more hybrid in order to exploit the various 
hardware advantages that are given rise due to the nature of the target application 
class? Would they still be subordinates to standard CPUs, where only specific 
workloads are offloaded, or would they become core compute engines for most 
HPC workloads, demoting the standard CPUs to subordinate status for essentially 
running errands? What would be the key technology advances that would sustain 
the tremendous performance growth, not only in hardware---3-D chip design, opti-
cal chip-chip interconnect, terabyte/s-bandwidth memory systems, etc.--- but also 
in software, to cope with the peaky and highly parallel nature of the architecture, 
where the approach could be leveraging much from classical vectors (i.e., rebirth), 
or will we be diverging considerably, due to the commodity nature of the hard-
ware? These and other questions are still unanswered, but their exploitations would 
lead to promising rise of the performance and applicability of commodity vectors, 
allowing us to reach not only the petaflops, but even exaflops and beyond in the 
very near future. 
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Abstract. The simulation of morphodynamical processes with a 3D
model requires high horizontal and vertical resolution at least in some
parts of the model domain. In particular, all areas with steep bathymetry
gradients like tidal rivulets or shipping channels require highly resolved
simulations. Since it is not feasible to run the total model domain with
the same high resolution everywhere, this problem calls for a multiply
nested approach. Still, the amount of grid points necessary for a multi-
ply nested simulation is enormous. Since in shallow areas the influence of
wave action on the bottom shear stress becomes important a wave model
particularly suitable for shallow water is coupled to the hydrodynamics.
The integrated system is implemented on a Linux cluster using the MPI
library. Performance results for different types of model coupling are
presented.

Keywords: hydrodynamics, wave model, hierarchical nesting, cluster
computing, morphodynamics.

Topics: Large Scale Simulations in CS&E, Parallel and Distributed
Computing, Cluster Computing.

1 Introduction

In the light of a possible sea level rise due to climate change coastal engineers
are interested in estimates of the impact of such a change on coastal protection
works like dikes. This motivates the development of a model system integrating
a current module, a wave module, and a morphodynamical module. Fig. 1 sym-
bolizes the physical processes involved. Besides tidal motion the main driving
force for currents is the stress executed by wind on the surface. This stress is also
a main driving force for the generation of waves. Waves and currents also inter-
act, and both are responsible for a stress force acting on the bottom. When the
bottom is allowed to change (erosion and/or deposition) and when this change
is fed back into the dynamical system the process is called morphodynamics.

This morphodynamical prediction system (MOPS) is still in development. In
particular the morphodynamics part is still missing. But the most important

J.M.L.M. Palma et al. (Eds.): VECPAR 2008, LNCS 5336, pp. 63–68, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.gkss.de


64 H. Kapitza

Fig. 1. Physical processes involved in a morphodynamical prediction system

prerequisites for estimating a reasonable bottom shear stress to be used for
morphodynamical processes are a coupled current and wave model.

2 Component Models

The hydrodynamical model used is based on TRIM3D from Casulli and co-
workers in Trento, Italy ([1]). It is a finite difference model discretized on a
staggered Arakawa-C cartesian grid. Optionally it allows inclusion of baroclinic
and non-hydrostatic terms, which are both not relevant for the cases presented
here. We have extended the original model to allow for a focused view on the
area of interest. The focus is realized by a set of hierarchical grids with increasing
refinement (usually by a factor of 2), where the boundary conditions of the finer
grids are provided by the results of the next coarser grid. For our test application
to be described later a staggering level of 4 was used with horizontal resolutions
varying from 800 to 100 m. The flow of information is still one-way from coarse
to fine. A two-way nesting providing part of the unresolved coarse grid terms
by fine grid results would constitute a major improvement and is on the to-
do-list. A further extension of TRIM3D was its parallelization for distributed
memory systems. A domain decomposition with explicit message passing using
the MPI-Library was chosen.

The wave model is a spectral model especially adapted for applications in
shallow waters with strong bathymetric gradients ([2]). It solves an equation
for energy density taking into account wave generation by wind and non-linear
dissipation effects due to wave breaking. Wave model and current model interact
in two ways. On one hand water depth and current velocity influence the wave
period, while on the other hand wave energy can also be transferred to currents
by terms called radiation stress. This effect occurs primarily in shallow water
with strong energy gradients and can lead to significant long shore currents.
Certainly, the effect is strongest during strong wave periods like storms.
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3 Test Case

The test bed for the combined system was the Hörnum tidal basin between
the islands of Sylt, Amrum and Föhr in the German Bight. Four nested grids
with horizontal resolutions of 800, 400, 200, and 100 m were used. Fig. 2 shows
a satellite picture with the position of the finest grid indicated by the yellow
rectangle. The coarsest grid was driven by data from the BSH (Bundesamt für
Seeschifffahrt und Hydrographie). Simulating time was a period of two years
from November 1999 to October 2001, which also includes a heavy storm (Anatol
on 3rd and 4th of December 1999). Fig. 3 shows the bathymetry of the finest
grid and in Fig. 4 the typical surface velocity pattern at maximum ebb tide is
presented. Very strong currents in the main tidal channel can be seen as well as
strong crosswise currents over the shallows at the southern tip of Sylt.

Fig. 2. German Bight with rectangle indicating the location of the finest grid

Fig. 3. Bathymetry of the 100 m resolution grid
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Fig. 4. Surface velocity vectors at maximum ebb tide

4 Timing Results

In a first setup for the model system the wave model was still not parallelized.
Therefore, it was placed on a separate processor on the Linux cluster with a
total of 64 2.4 GHz Intel Xeon processors (Fig. 5, left panel). Fig. 6 shows the
timing of the model system with data exchange directions and positions in time.
It turned out that the wave model was the bottle neck of the system. When run
on the finest grid it took 3 times longer than real time. On the other hand the
current model when run in fully nested mode on 8 processors was about 8 times
faster than reality. Since the latter timing was considered to be feasible in terms
of total CPU time for the whole simulation period the wave model was adapted
to a much coarser 400 m resolution on the finest grid domain in order to give
approximately the same CPU demands. This required a lot of interpolation back
and forth, which is certainly not ideal. Nevertheless, the system was run stably
and produced reasonable results giving estimates of the wave energy flux on the
coast line (which is the relevant parameter for coastal engineers).

In the meantime the model system has been migrated to another Linux cluster
consisting of 24 nodes with 2 dual-core 2.2 GHz Opteron processors on each node.
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MOPS – A Morphodynamical Prediction System on Cluster Computers 67
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150 s

60 s
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Time Step Control

TRIM 800 m

TRIM 400 m

TRIM 200 m

TRIM 100 m

K−Model

Water level TRIM coarse −−−> fine

Radiation Stress K−Model −−−> TRIM

Water level/Velocity TRIM −−−> K−Model

Fig. 6. Time step control of the coupled system. The arrows indicate data exchange.
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Fig. 7. Timing results for the Opteron cluster. NP is the number of processors used,
NPN denotes the number of processors per node utilized, CPU is total CPU time in
seconds for a 24-hour simulation, S is the speedup, and E the efficiency.

Fig. 7 shows performance results for a 24-hour simulation of the hydrodynamic
code alone. Interestingly the Opteron cluster shows super-linear speedup as long
as only one processor per node is used. This is probably a cache effect. The
more processors are used the smaller the individual sub-problems become fitting
more easily into the cache. Comparing the results for 24 processors but using
2 processors per node instead of 1 shows a significant drop in efficiency. This
is an indication of competition among several processors on limited resources
on a single node. In particular the output of the model is organized such that
each processor writes preliminary output on a scratch disk private to each node.
After the model run is finished a post-processing script collects all the sub-
domain files and transforms them into a single netCDF output file. The scratch
disk is shared among all processors on a node which could explain the drop in
performance when using more than one processor per node.
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In the next stage of development the wave model was parallelized with the
same domain decomposition approach as the current model (Fig. 5, right panel).
The coupling can now be much tighter (data exchange every time step), and
the synchronization is just a question of defining the sub-domains in order to
achieve load balance. Now the wave model can also be designed in a multiply
nested way, but it turned out quickly that now the computing time increases by
approximately a factor of 10. Running the coupled and fully parallelized system
on a much larger number of processors is not really a solution since then the sub-
domains become very small increasing the communication overhead. Therefore,
it is still a matter of research how to apply this system optimally on a cluster
computer. One solution might be to keep on running the wave model on the
coarser grids only. Another solution could be to switch on the wave model only
in situations where the coupling has significant influence on the results. As it
turned out from the two years simulation period only strong wind events create
strong enough waves to be of importance for the currents and bottom shear
stresses. Most of the time the differences between runs with or without waves
were negligible.

5 Conclusions and Outlook

In conclusion it was shown that a coupled system of current and wave prediction
results in a gain of quality of the results. It still needs to be shown that the
inclusion of a morphodynamic sub-module benefits from these results. Further-
more, the CPU requirements of the fully nested system for both currents and
waves are prohibiting for routine forecasts. There still needs to be found a way
to simplify the approach without loosing too much of forecast skill.
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Abstract. Parallel netCDF supports parallel I/O operations for a view
of data as a collection of self-describing, portable, and array-oriented ob-
jects that can be accessed through a simple interface. Its parallel I/O
operations are realized with the help of an MPI-I/O library. However,
such the operations are not available in remote I/O operations. So, a re-
mote I/O mechanism of a Stampi library was introduced in an MPI layer
of the parallel netCDF to realize such the operations. This system was
evaluated on two interconnected PC clusters, and sufficient performance
was achieved with a huge amount of data.

Corresponding topics: Parallel and Distributed Computing, Cluster
Computing.

1 Introduction

Recent parallel scientific computations require not only a huge amount of com-
puting power but also a huge amount of data storages. Scientific computations
usually output intermediate data for check-point restart or analysis by using
a visualization software after computation. In such the computation, common
portable data format and I/O interfaces are very useful because users want to
concentrate in their computations.

Several kinds of I/O interfaces such as netCDF [1] support such data format
and simple I/O interface. NetCDF was developed to support a view of data as
a collection of self-describing, portable, and array-oriented objects that can be
accessed through a simple interface. It provides a portable I/O interface which
supports not only fixed size arrays but also variable size arrays. It has been
widely used in many kinds of scientific computations such as meteorology.

NetCDF is a useful interface library, however, it only supports serialized I/O
operations. As a result, such I/O operations would be a bottleneck in par-
allel computation. A parallel I/O interface named parallel netCDF (hereafter
PnetCDF) was developed in order to realize effective parallel I/O operations for
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netCDF data with the help of an MPI-I/O library [2] such as ROMIO [3]. It suc-
ceeded in scientific computation [4] and several visualization softwares support
its data format. However, the same operations among computers have not been
available. Seamless remote I/O is useful for a user’s client application such as a
parallelized visualization software. A remote MPI-I/O mechanism of a Stampi
library [5] has been introduced in a PnetCDF’s MPI layer in order to realize this
mechanism. The MPI-I/O mechanism supports automatic selection of local and
remote I/O operations based on a target computer name which is specified in an
MPI Info object by an MPI program. MPI functions of a PnetCDF library have
been replaced with the Stampi’s MPI functions to support seamless remote I/O
operations through a PnetCDF interface without paying attention to complexity
and heterogeneity in underlying communication and I/O systems. In this paper,
architecture and execution mechanism of this system are discussed in Section
2. Performance results are reported in Section 3. Related work is remarked in
Section 4, followed by conclusions in Section 5.

2 Remote I/O through a PnetCDF Interface

In this section, we describe decompositions of multi-dimensional data, a derived
data type associated with the decompositions, and a remote I/O system with
such data type.

2.1 Decompositions of Multi-dimensional Data and Associated
Derived Data Types

In computer simulations, multi-dimensional data are frequently used to store
calculated results, for example. In this section, decompositions of n-dimensional
data sets and associated derived data types are discussed. We denote lengths
of each axis with index of 1, 2, . . . , n as L1, L2, . . . , Ln, respectively. In the data
sets, we suppose an array data in a C program. Let us assume that index of 1
is the most inner index and stands for the most significant dimension. On the
other hand, index of n is the most outer index and stands for the least significant
dimension.

Decompositions along the most inner and outer indexes make derived data
types as shown in Figures 1 (a) and (b), respectively. In Fig. 1 (a), each user
process accesses dotted non-contiguous data fields with L1/np for a block length
and rank × L1/np for a stride length, where np and rank stand for the number
of user processes and an unique ID in an MPI program, respectively. Each offset
is specified not to overwrite the data fields each other. On the other hand, Fig. 1
(b) shows a simple derived data type split evenly along the most outer index. It
is clear that splitting evenly along the most significant axis provides the most
complex data image and that along the least significant axis provides the most
simplest one. This kind of data type is easily created by MPI functions for
derived data types such as MPI Type vector(). In a PnetCDF interface, several
kinds of MPI functions are used to create such derived data types. This issue is
discussed in the next section.
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np-1

L1/np

L1

0
rank

block length                   : L1/np
block count                    : L2*L3* ... * Ln

stride for each process : rank*L1/np

0

np-1

(L1*L2* ... * Ln)/np

L1*L2* ... *Ln

rank

block length                   : (L1*L2* ... *Ln)/np
block count                    : 1
stride for each process : rank*(L1*L2* ... *Ln)/np

(a) (b)

Fig. 1. Derived data types split evenly along (a) the most inner and (b) the most outer
indexes for np user processes

2.2 Support of PnetCDF in Remote I/O

PnetCDF supports many kinds of parallel I/O interface functions, and their
parallel I/O mechanism is realized by using MPI functions inside them. As an
example, several PnetCDF functions and used MPI functions inside them are
listed in Table 1. In the PnetCDF, a native MPI library such as MPICH is
used. Parallel I/O operations inside the same MPI implementations are available,
however, remote I/O operations are not. As Stampi supports MPI functions
listed in the table, we have replaced native MPI functions with Stampi’s MPI
functions which start with MPI in order to develop the remote I/O system. As
the functions switch to local or remote I/O operations based on a destination
computer automatically, seamless I/O operations are available in the PnetCDF
layer. In the local I/O, portable interface functions of a native MPI library which
start with PMPI are called inside the Stampi layer. While in the remote I/O,
an I/O request and associated parameters such as message data size and a data
type are transfered to a corresponding remote MPI-I/O process. The MPI-I/O
process plays requested I/O operations. Details of this mechanism are discussed
in 2.5.

Table 1. Typical PnetCDF functions and MPI functions which are called inside them

PnetCDF functions Used MPI functions
ncmpi create(), ncmpi open() MPI File open(), MPI File delete(), etc.
ncmpi put var int() MPI Comm rank(), MPI File set view(),

MPI Type hvector(), MPI Type commit(),
MPI Type free(), MPI File write(), etc.

ncmpi put vars int all() MPI Comm rank(), MPI File set view(),
MPI Type hvector(), MPI Type commit(),
MPI Type free(), MPI File write all(), etc.

ncmpi close() MPI Allreduce(), MPI File close(), etc.
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2.3 Architecture of a Remote I/O Mechanism

Architecture of the I/O mechanism is depicted in Figure 2. MPI communica-
tions inside a computer are carried out by using a native MPI library. When
a PnetCDF interface is called for I/O operations inside a computer, associated
Stampi’s MPI interface functions are called, and high performance I/O opera-
tions are carried out by calling a native MPI library by the Stampi’s functions.
If the native one is not available, UNIX I/O functions are used instead of it.

 Computation nodes 

 Server node (IP reachable node) 

 Router 
 process 
 (Stampi) 

 TCP/IP 

Disk

 Router 
 process 
 (Stampi) 

 TCP/IP 

Disk

 Computation nodes 

< Local computer > < Remote computer >

 Vendor 
MPI

 User process 

 TCP/IP  UNIX I/O 

PnetCDF library
 Intermediate library 

(Stampi)

 TCP/IP 

 MPI-I/O process 
(Stampi)

 Intermediate library 
(Stampi)

 Vendor 
MPI UNIX I/O 

Fig. 2. Architecture of a remote I/O mechanism with PnetCDF interface support

While in MPI communications among computers, user’s MPI processes invoke
MPI processes on a remote computer by using rsh or ssh when a spawn func-
tion (MPI Comm spawn() or MPI Comm spawn multiple()) is called. MPI com-
munications between the local and remote MPI processes are carried out via
inter-connections established by TCP sockets. If computation nodes of a com-
puter can not communicate outside directly, a router process is invoked on an
IP reachable node to relay message data among computers. For remote I/O op-
erations, an MPI-I/O processes are invoked on a remote computer to play I/O
operations instead of the MPI processes when an MPI function to open such
as MPI File open() is called. In I/O operations by the MPI-I/O processes, a
native MPI library is used via a Stampi’s MPI interface library as default. If the
native one does not support MPI-I/O operations, UNIX I/O functions are used
instead of it.

2.4 Execution Mechanism

An execution mechanism of the remote I/O operations is illustrated in Figure 3.
Firstly, a user issues a Stampi’s start-up command to initiate a Stampi starter
(jmpirun) (1). The starter process invokes a native MPI start-up process (MPI
starter) such as mpirun (3). Later the MPI starter process invokes user’s MPI
processes (4). For remote I/O operations, parameters such as a host name of a
target computer, a user ID, and a work directory are specified in an MPI Info ob-
ject. When ncmpi create() (for creating a new file) or ncmpi open() (for open-
ing an existing file) is called by the user processes, a Stampi’s MPI File open()
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2. fork
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: MPI starter (e.g. mpirun)

4. start-up
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Disk
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 7. remote 
   start-up 

10. start-up

Fig. 3. Execution mechanism of remote I/O operations

is called by the PnetCDF function. After this operation, MPI-I/O processes are
invoked on a remote computer according to the parameters in the MPI Info ob-
ject (5-7, 9-12). If computation nodes where the MPI processes or MPI-I/O
processes are running can not communicate outside directly, a router process
is invoked on a server node by the Stampi starter (2, 8). Once a communica-
tion path is established among them, remote I/O operations are available by
sending I/O requests from the user processes to the MPI-I/O processes. After
I/O operations, ncmpi close() is called in the user processes to close a opened
file, followed by calling MPI File close() to close the file and terminating the
MPI-I/O processes inside it.

2.5 Execution Steps of PnetCDF Functions

I/O operations with a derived data type are essential mechanisms to support
PnetCDF. Execution steps of remote I/O operations using ncmpi put vars int
all() are explained as an example. Execution steps of I/O operations using the
function are illustrated in Figure 4. Before I/O operations, we need to specify
several parameters associated with the operations by using other PnetCDF and
MPI functions. Inside each PnetCDF function, several MPI functions are used
as listed in Table 1. Operations of this write function are grouped into two parts:
one is for creation of a derived data type, and other for I/O operations by using
the data type. The former part is carried out by using MPI Type hvector(),
MPI Type commit(), MPI File set view(), and so on. While the latter one is
carried out by using MPI File write all(). Execution steps for the former and
the latter operations are depicted in Figures 5(a) and (b), respectively. Firstly, a
derived data type is created by MPI Type hvector() and MPI Type commit() as
shown in Fig. 5(a). After a file view is created by MPI File set view(), several
parameters such as a unit data type, a block length, a stride length, and so on
are stored in a list-based table provided by a Stampi library in each user process.
A request of the function and the parameters are transfered to a corresponding
MPI-I/O process by calling a Stampi’s function which starts with MPI . As the
data transfer is carried out by nonblocking TCP socket connections, overlap of
computation by user processes and the data transfer would be expected. After
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ncmpi_create()

ncmpi_put_att_text()

MPI_Info_set()

ncmpi_def_var()

ncmpi_def_dim()

ncmpi_put_vars_int_all()

ncmpi_close()

set parameters

create a new file

write a text in a header
< attribute mode >

define dimension

define variables

close a file

< define mode >

< data mode : I/O phase >

ncmpi_end_def() end of define mode

(MPI_File_open())

(MPI_Type_hvector(),
MPI_Type_commit(),
MPI_File_set_view(),
MPI_File_write_all())(MPI_File_close())

write data

Fig. 4. Execution steps of typical collective write operations
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Fig. 5. Execution steps of (a) derived data type creation and (b) write operations.
Functions in rectangles which start with MPI are Stampi’s MPI interface functions.

each MPI-I/O process receives them, the same derived data type is created
using the same functions, and they are stored in the similar table provided by a
Stampi library in each MPI-I/O process. Each process returns a status value to
a corresponding user process by using the Stampi’s function at the final step.

Once we succeed to make a derived data type, we can start I/O operations us-
ing it as shown in Fig. 5(b). Associated MPI functions such as MPI File write
all() are called in an MPI layer of a PnetCDF interface. I/O requests of each
MPI functions and associated parameters are transfered to a corresponding MPI-
I/O process, and message data are also transfered later. Once each MPI-I/O
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process receives them, it plays I/O operations by using the derived data type.
When the I/O operations finish, each MPI-I/O process returns a status value to
the corresponding user process.

Concerning a derived data type, this system operates rearrangement of striped
data across I/O nodes by using intra-computer communications as shown in
Figure 6. Each rectangle stands for an assigned memory buffer provided by
this system. This mechanism has been adopted in order to reduce performance
degradation by derived data type creation. Times for rearrangement of striped
data by using intra-computer communications are quite shorter than those by
using inter-computer communications. We assume that there are high speed
intra-computer connections inside a PC cluster because each node is connected
to a high speed Ethernet switch. We can utilize full bandwidth of the switch
by using a vendor MPI. On the other hand, an inter-computer connection has
a narrow bandwidth because we have a single link between clusters in general.
We consider that it is better to reorder striped data inside a PC cluster.

3 Performance Evaluation

This system was evaluated among two PC clusters which were connected via 1
Gbps Ethernet. Specifications of the clusters are listed in Table 2. Each clus-
ter had one server PC node and four computation PC nodes. Interconnection
between the PC nodes was established via Gigabit Ethernet switches. In the
both clusters, MPICH [6] (version 1.2.7p1) was available as a native MPI li-
brary. PnetCDF version 0.9.4 was used in this system. PVFS2 [7] (version 1.4.0)
was available in the PC cluster II by collecting disk spaces of four computation
nodes. Network connections between the clusters were established by connecting
the both switches via a FreeBSD PC node which acted as a gateway.

In performance measurement, user processes were initiated on computation
nodes of the cluster I, and remote I/O operations to the PVFS2 file system were
carried out by invoking the same number of MPI-I/O processes on computation
nodes of the cluster II. The notation, np also stands for the number of MPI-I/O
processes in remote I/O operations. In this test, we used three-dimensional data
sets. The following four different message data sets were prepared by using an
integer data type (NC INT):

– 16× 16× 16 (16 Kbyte)
– 64× 64× 64 (1 Mbyte)
– 128× 128× 128 (8 Mbyte)
– 256× 256× 256 (64 Mbyte)

Firstly, we measured times for non-collective (ncmpi put(get) var int()) and
collective operations (ncmpi put(get) vars int all()) as shown in Figure 7.

It is remarked that the data were split along the z-axis evenly in the collec-
tive operations. In the both operations, the collective functions outperformed
the non-collective ones at each message data size, however, the times were not
minimized so much with an increase in the number of user processes. This was
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Fig. 6. Typical I/O and communications patterns in collective I/O with a derived data
type
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Fig. 7. Times of non-collective and collective remote I/O operations. Write and Read
denote non-collective operations. While Coll-write and Coll-read denote collective oper-
ations, where numbers which follow np are the number of user processes and MPI-I/O
processes.

due to a bottleneck in network connection between the clusters. Inter-computer
communication was a bottleneck and its operation times basically depended on
total data size. Furthermore, there was a single network link between PC clus-
ters and the total data size was constant even if we change the number of user
processes. As a result, total I/O times were bounded by inter-computer network
sustained bandwidth. Although we have such the restriction, this system would
be usable because total I/O times are not degraded so much with an increase
in the number of user processes. It is also noticed that it may be possible to in-
crease its total performance if we have multiple physical network links by using
link aggregation between PC clusters, for example.

Secondly, times for collective functions were measured with respect to axis
to split a data image along. It is obviously expected that the more I/O pattern
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Table 2. Specifications of PC clusters used in performance measurement, where serv
and comp in a bold font denote server and computation nodes, respectively

PC cluster I PC cluster II
serv Dell PowerEdge800 × 1 Dell PowerEdge1600SC × 1
comp Dell PowerEdge800 × 4 Dell PowerEdge1600SC × 4
CPU Intel Pentium-4 3.6 GHz × 1 Intel Xeon 2.4 GHz × 2
Chipset Intel E7221 ServerWorks GC-SL
Memory 1 Gbyte DDR2 533 SDRAM 2 Gbyte DDR 266 SDRAM
Disc system
serv 80 Gbyte (Serial ATA) × 1 73 Gbyte (Ultra320 SCSI) × 1
comp 80 Gbyte (Serial ATA) × 1 73 Gbyte (Ultra320 SCSI) × 2
NIC Broadcom BCM5721 Intel PRO/1000-XT (PCI-X board)

(on-board PCI-Express)
Switch 3Com SuperStack3 Switch 3812 3Com SuperStack3 Switch 4900
OS Fedora Core 3
kernel 2.6.12-1.1381 FC3smp(serv) 2.6.12-1.1381 FC3smp (serv)

2.6.11-1SCOREsmp (comp) 2.6.11 (comp)
Ethernet Broadcom tg3 v3.71b (serv) Intel e1000 version 6.0.54 (serv)
driver Broadcom tg3 v3.58b (comp) Intel e1000 version 5.6.10.1 (comp)
MPI library MPICH version 1.2.7p1

becomes complex, the more the I/O times increase. In this test, we measured
the times for splitting along x, y, and z-axes. The results are shown in Figure 8.
In both the read and the write operations, splitting the data image along the
z-axis provided the most shortest times, and the times for the x-axis were the
worst. Difference between the times for the x and z axes was around 0.5 s. It is
also noticed that the I/O times were almost the same between the cases for two
and four processes except the case of 256× 256× 256 message data in the read
operations.

To find reasons for the increase in the I/O times with respect to axis to split
along, we measured times for creation of a derived data type, synchronization of
collective operations by MPI File sync(), and MPI File write all() in remote
I/O by using a pure MPI program. We supposed that those functions simulated
I/O patterns which were carried out in the PnetCDF program.

Concerning creation of a derived data type, processing times were constant
and negligible (around 80 ms for two and four user processes) in the total I/O
times. Measured times of MPI File sync() in remote I/O are shown in Figure 9.
They became long with an increase in the message data size because the Stampi’s
MPI File sync() for remote I/O synchronized all the MPI-I/O processes after
I/O operations. Figure 10 shows measured I/O times of MPI File write all()
and MPI File read all() in remote I/O. For example, there is about 0.5 s
difference between the times for splitting the data image along the z-axis and
others. As it is hard to simulate operations of PnetCDF functions, this might
be rough analysis, however, it is concluded that the differences in the I/O times
with respect to axis to split along were mainly due to an increase in I/O times
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(a) write (np = 2)
(b) write (np = 4)

(c) read (np = 2) (d) read (np = 4)

Fig. 8. Times of collective PnetCDF functions in remote I/O with respect to axis to
split a three-dimensional data along. X, Y, and Z denote axes to split along.

(a) np = 2 (b) np = 4

Fig. 9. Times of MPI File sync() in remote I/O with (a) two and (b) four user pro-
cesses and MPI-I/O processes. X, Y, and Z denote axes to split a three-dimensional
data along.

of MPI File write all() and MPI File read all(). To check whether this is
coming from network data transfer or I/O operations on a remote computer, we
also measured local I/O times on the PVFS2 file system as shown in Figure 11. It
is obvious that the increase was coming from an increase in the times of the local
I/O operations. Moreover, the I/O times were almost the same and did not scale
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with regard to the number of user processes. This might be due to a bottleneck
in intra-computer data transfer for collective operations or I/O operations on a
PVFS2 file system.

4 Related Work

Providing a common data format makes data I/O operations portable for ap-
plication programmers. This kind of implementations such as netCDF [8] and
HDF5 [9] has been proposed. NetCDF provides a self-describing and common
multi-dimensional data format and a simple interface. Its parallel I/O operations
have been realized in PnetCDF, which is an extension of the interface, by intro-
ducing MPI-I/O functions as an underlying parallel I/O library [4]. On the other
hand, HDF5 provides hierarchical data format in order to access huge amount
of data effectively. An HDF5 interface has two objects, one is “Dataset” and an-
other “Group”. The Dataset manages multi-dimensional array data, while the
Group provides relational mechanisms among objects. Parallel I/O operations
are also available with this interface by introducing MPI-I/O functions as an
underlying parallel I/O interface library [10].

An MPI-I/O interface in the MPI-2 standard [2] realizes parallel I/O oper-
ations in an MPI program. Several implementations of it are available such as

(a) write (np = 2) (b) write (np = 4)

(c) read (np = 2) (d) read (np = 4)

Fig. 10. Times of MPI File write all()/ MPI File read all() in remote I/O. X, Y,
and Z denote axes to split a three-dimensional data along.
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(a) write (np = 2)
(b) write (np = 4)

(c) read (np = 2)
(d) read (np = 4)

Fig. 11. Times of local collective I/O on a PVFS2 file system, where X, Y, and Z
denote axes to split a three-dimensional data along

ROMIO [3]. Its MPI-I/O operations to many kinds of file systems are realized
through an ADIO interface [11]. It hides heterogeneity in architectures of each
systems and provides a common interface to an upper MPI-I/O layer. Remote
I/O operations using the ROMIO are available with the help of RFS [12]. An
RFS request handler on a remote computer receives I/O requests from client
processes and calls an appropriate ADIO library. On the other hand, Stampi
itself is not an MPI implementation but a bridging library among different MPI
implementations. It realizes seamless MPI operations among them by using TCP
socket communications.

Inter-operability among different MPI implementations is also important is-
sue, typically in a Grid computing environment. One of the representative works
is PACX-MPI [13]. It realizes inter-operable MPI communications by deploying
a common MPI interface library on top of each MPI implementation in order to
realize seamless MPI operations. This system provides high performance MPI
communications inside the same MPI implementations and seamless operations
among different ones. GridMPI [14] also realizes such mechanism in a Grid com-
puting environment. Inter-operable MPI communications are realized through
an IMPI interface by using P2P data communications. It is supported on many
kinds of MPI implementations. On the other hand, Stampi realizes the similar
communication mechanism with PACX-MPI with regard to a method to im-
plement a common communication layer on top of each MPI implementation.
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However, it realizes a flexible communication mechanism where invocation of
proxy process is dynamically selected according to communication topology of
each parallel computer.

5 Conclusion

We have developed a seamless remote I/O system using a PnetCDF interface
among different MPI implementations by using a Stampi library. Its collective
I/O interface outperformed its non-collective one in remote I/O. We also mea-
sured I/O times of collective one with respect to axis to split evenly along using
three-dimensional data sets. Derived data types were created based on the asso-
ciated splitting pattern. It was expected that the more complex the data type
became, the more its I/O time increased due to an increase in the number of
intra-computer data transfers for collective I/O. We have evaluated such the
I/O patterns in both remote and local I/O operations. In remote I/O by using
a PnetCDF interface, splitting along the most inner index provided the most
complex derived data type. As a result, its I/O times were the most longest. On
the other hand, times for splitting along the most outer index were the most
shortest. The increase in the times with regard to axis to split along was coming
from local I/O operations by using a native MPI library. The system did not
scale due to a bottleneck in inter-computer data transfer or I/O operations on a
PVFS2 file system, however, its performance was almost the same with respect
to the number of user processes. Optimization in message data transfer between
computers is considered as a future work. Implementation of non-blocking I/O
functions is also considered to minimize visible I/O times.
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Jordi Girona, 1-3, Mòdul D6 Campus Nord, 08034 Barcelona, Spain
Tel.: +34 934 017 001; Fax: +34 934 017 055
mpericas@ac.upc.edu, mateo@ac.upc.edu

3 Computer Engineering, Technical University of Delft
Mekelweg 4, 2628 CD Delft, The Netherlands
Tel.: +31 15 2786196; Fax: +31 15 2784898

g.n.gaydadjiev@tudelft.nl, s.vassiliadis@tudeflt.nl
4 Instituto Superior Tecnico, INESC-ID

ricardo.chaves@inesc-id.pt

Abstract. Parallelism has long been used to increase the throughput of
applications that process independent data. With the advent of multicore
technology designers and programmers are increasingly forced to think in
parallel. In this paper we present the evaluation of an encryption core ca-
pable of handling multiple data streams. The design is oriented towards
future scenarios for internet, where throughput capacity requirements
together with privacy and integrity will be critical for both personal and
corporate users. To power such scenarios we present a technique that in-
creases the efficiency of memory bandwidth utilization of cryptographic
cores. We propose to feed cryptographic engines with multiple streams to
better exploit the available bandwidth. To validate our claims, we have
developed an AES core capable of encrypting two streams in parallel
using either ECB or CBC modes. Our AES core implementation con-
sumes trivial amount of resources when a Virtex-II Pro FPGA device is
targeted.

Keywords: Parallel and Distributed Computing, Encryption.

1 Introduction

Advances in semiconductor technology have enabled industry to manufacture
cores with hundreds of millions of transistors. Industry is exploiting this feature
to implement chip-level parallelism in the form of multi-core on chip architec-
tures. While 2-8 multicore chips are now common in the market it is expected
that this trend will continue with even larger amounts of cores. Programmers
and designers will find themselves forced into thinking concurrently in order to
efficiently exploit such platforms.
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Parallelism is, of course, not a new concept and has been implemented ex-
tensively in the past. Since the earliest machines this technique has been used
to improve throughput. Parallelism can be found on all levels, from the small-
est circuits to parallel clusters. From the programmer point of view, there are
several ways in which to express parallel programs. One class are concurrent pro-
gramming models. They map directly onto multicore architectures, but have the
disadvantage that they leave the parallelization to the programmer, a task which
has been shown to be often quite complex. A different way to exploit parallelism
is by using SIMD programming techniques. Vector processors, for example, oper-
ate on entire vectors instead of scalar types. This programming model is effective
and simple, as it retains the sequential property of single-threaded programs.
However, it requires data parallelism with strict organizations in memory.

In this paper we investigate how parallelization can be used to achieve high
data transfer performance in future high-throughput networks. Personal users
and companies are placing growing demands of security on devices they use
for their daily work. Four requirements are in demand: privacy, authentication,
replay protection and message integrity. For this reason, implementations of
Virtual Private Networks (VPN) rely more and more on technologies such as
IPsec to secure the communication links.

A technology such as IPsec can work in two modes. In transport mode, the
endpoint computers perform the security processing. In tunnel mode, packet
traffic is secured by a single node for the entire computer network. In case of
large networks, high performance encryption devices are required. Such is also
the case with mobile VPNs. In a mobile VPN a device such as a handheld can
have secure access to a corporate LAN to securely perform such tasks as reading
email or using remote terminal sessions. It is expected that this type of networks
will grow very fast in popularity in the near future.

One of the most important encryption algorithms supported by many dif-
ferent protocols is the Advanced Encryption Standard (AES). This encryption
algorithm encrypts/decrypts blocks of 128 bits of data in 10, 12 or 14 serial
stages, using 128, 192 or 256 bit-keys, respectively. To simplify our study, but
without loss of generality, we will be focusing only on AES using a key size of
128 bits. In this variant the algorithm performs 10 stages to encrypt/decrypt
one data block.

There are several ways in which a stream of data can be encrypted. These are
referred to as Block Cypher modes of operation. Most of these modes require an
Initialization Vector, which is a fixed block of data used to trigger the encryption
mode. The simplest mode is the Electronic CodeBook mode (ECB). In this mode
the data stream is partitioned into blocks of equal length and all the resulting
blocks are encrypted independently. The obvious benefit of this scheme is high
parallelism. All blocks that make up the stream can be encrypted simultaneously.
The disadvantage of this scheme are known security concerns. More precisely,
ECB does not provide good confidentiality as it does not hide data patterns well.
To come up with a more robust solution several modes have been introduced. The
most common of these is the Cypher Block Chaining mode (CBC). In this mode,
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when a block is going to be encrypted, it has first to be exclusively OR’ed with
the encryption resulting from the previous block. The first block itself is XOR’ed
with the Initialization Vector. One drawback of this scheme is the dependency
between data blocks that the cypher mode introduces. This results in a reduced
efficiency concerning the available bandwidth. In this mode, the AES encryption
engine can only output a block of data every 10 stages. This means that only
10% of the output capacity is used. Note, however, that the interconnect itself
is independent from the engine capacity and may limit the throughput.

In cases where the available network bandwidth is larger than the single-
stream CBC output, we may want to search for ways to exploit the additional
bandwidth. In the domain of VPN tunnels, where a gateway is in charge of
encrypting large quantities of data, we can profit from the fact that multiple
(independent) channels are simultaneously active to improve the throughput of
the encryption.

In this paper we propose to design AES cores capable of encrypting multi-
ple streams at once. Using multiple streams enables parallelism and allows to
better exploit the available network bandwidth. This is analogous to using vec-
tor processors to better exploit memory hierarchy in supercomputers. Further,
we propose to use these cores to provide high performance file transfer between
computers in the case where a large file or multiple files are being transferred. In
this scenario, a user using a scp protocol to transfer the files, would experience
a large speed-up using our proposal together with a small modification of the
scp application. Finally, we also perform a pencil and paper evaluation of how
the proposed core can be fitted into current system architectures.

This paper makes the following contributions:

– We observe that encrypting several streams in parallel is a way to accelerate
the otherwise sequential CBC encryption.

– We implement a cryptographical unit capable of encrypting two streams in
parallel using the AES encryption algorithm.

– We analyze several applications of this scheme. In particular, we discuss how
this scheme can accelerate VPN networks and secure transfers of large files.

– We study two important issues relating to the implementation of the multiple-
stream encryption scheme: the programming model and the system architec-
ture.

This paper is organized as follows. Section 2 presents an overview of related
work. The design of the multiple-stream encryption unit is presented in section 3
while section 4 evaluates it. Section 5 analyzes the system architecture. Section 6
discusses several issues related to this design: sections 6.1 and 6.2 analyze pos-
sible applications of this work and section 6.3 analyzes the programming model.
Finally, section 7 concludes this discussion.

2 Related Work

Vectorization has long been an important technique to increase performance.
Vector processors handle complete vectors instead of registers as the basic type.
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Because no dependencies need to be tracked among the elements of a vector and
because the memory system can be optimized to efficiently cater the large data
amounts to the system, very high performance pipelines can be built. Vector
implementations have been exploited mostly by numerical codes and scientific
computing. These codes often feature large parallel loops that are well suited to
be implemented on a vector processor.

However, attempts to build parallel implementations of cryptographic engines
have not been very successful in the past, particularly those attempting to exploit
algorithm-level parallelism. This can be explained intuitively. In order to provide
a strong and hard-to-break encryption, algorithms rely on operations manipulat-
ing the whole data set and imposing tight dependencies among all data. Parallel
execution would be possible in a higher level by encrypting multiple blocks in
parallel, but this is in general precluded by the usage of block cypher modes
such as CBC. Therefore, the few successful attempts to have parallel hardware
accelerate an encryption procedure have relied on exploiting parallelism within
the individual operations of the algorithm.

There are some examples of this kind of optimization in the literature. For
example, Page et al. [1] used the SSE2 extensions of the Pentium4 are used to
accelerate long precision modular multiplication. Similarly, Crandall et al. [2]
used the AltiVec extension to implement long precision multiplications for the
RSA algorithm. These two approaches are targeted at accelerating the 1024-bit
multiplications frequently appearing in cryptographic algorithms. Another use
of AltiVec is the approach introduced by Bhaskar et al. to accelerate Galois Field
arithmetics [3]. This has been used to accelerate the AES algorithm, achieving
an encryption rate of one block every 162 cycles. While this is impressive, it
is far from what can be obtained with a hardware implementation like the one
discussed in this paper. One final attempt at vectorization is the one proposed
by Dixon et al., where a parallel approach is used to factorize large integers for
Elliptic Curve Cryptography [4].

In this paper, instead of optimizing the basic operations, we propose a vector
implementation for AES that exploits parallelism at the data level by processing
multiple streams concurrently. The proposal is based on the MOLEN polymor-
phic architecture and programming paradigm [5,6] proposed by Vassiliadis et al.
as a way to expose hardware resources to software system designers and allow
them to modify and extend the processor functionality at will. The outcome of
this paper is a cryptographic engine that exploits multiple streams using the
vector engine paradigm. The core of the cryptographic unit is based on work by
Chaves et al. within the context of the MOLEN polymorphic processor [7].

3 Multiple-Stream AES Core

To validate our assumptions we implemented an AES core capable of processing
two streams concurrently. The AES-MultipleStream core (AES-MS) was imple-
mented using the MOLEN prototype framework [8,5] and as such considers a
64-bit wide IO bus running at 100MHz. Although the width of the IO BUS has
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Fig. 1. Architecture of AES core handling two streams

been set at 64 bits, this is not a constraint and can be adjusted to accommodate
more or less data streams. The global design of the AES core with two streams
can be seen in Figure 1. It consists of two independent AES cores controlled by
a Control Unit. The unit activates the AES cores when needed and manages the
multiplexors that control bus access.

Each core implements an independent AES folded structure [7]. On the 64-
bit/100MHz bus, a single AES core takes two cycles to read 128 bits of input
data and two more cycles to output 128 bits of encrypted data. The processing
amounts to 10 cycles. Thus, once the core is running it moves 256 bits every 10
cycles.

Given that in 4 out of the 10 computational AES cycles the IO Bus is used
to read or write data blocks, the multiple stream version has been implemented
using two streams. This results in a bus occupation of 8 out of 10 cycles (80%). No
more streams can be added without changing the AES pipeline depth. The folded
AES cores themselves have no information on the number of active streams; this
information is handled by a small external control unit that drives the AES cores
and activates the necessary multiplexors to access the external memory system.

Assuming that the AES core and the IO bus run at the same frequency, it
is possible to accommodate a higher or lower number of streams depending on
the IO bus width. If the bus is 128 bits wide, a 128-bit data packet can be read
in a single cycle and written in another one. Given that an encryption takes 10
cycles, this would allow to encrypt up to 5 streams in parallel. Generically, with
the bus and engine running at the same speed, the number of streams that can
be accommodated as a function of the bus width is expressed by:

MaxNStreams = �5 · BusWidth

128bits
�. (1)

4 Performance and Results

The complete design of the two-stream AES unit was implemented in VHDL
targeting the Virtex-II Pro xc2vp30-7fg676 device. Synthesis and Place & Route
were both performed using Xilinx ISE 8.1. The AES core for single stream [7]
spans 12 BlockRAMs and 1083 logic slices. The two-streams AES core spans
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Table 1. 2-stream vs single-stream AES performance comparison

Architecture AES – 1 stream [7] AES – 2 streams

Cipher Enc./Dec. Enc./Dec.
Device XC2VP30 XC2VP30

Number of Slices 1083 2162
Number of BRAM 12 24

Operating Frequency 100 MHz 100 MHz
Latency (cycles) 10 10

Throughput (Mbps) 1280 2560

Throughput/Slice (Mbps/s) 1.1819 1.1841

24 BlockRAMs and 2162 logic slices. The two-streams implementation puts two
single-stream AES cores side-by-side and adds multiplexors that arbitrate the
memory access. Some logic is shared and in the end the number of logic slices
approximately doubles. Place & Route results show that the design can run at
100MHz which is the target frequency of the current MOLEN prototype. The
two-streams AES-MS core consumes 17% of available BlockRAMs, 15% of all
logic slices, and 38% of external IOBs while reaching a throughput of 2.56 Gbps.
Table 1 shows a summary of the results and compares them against [7]. Note
that the numbers provided for the original implementation of the AES core differ
from those provided in [7]. This is due to some different parameters that have
been used in the synthesis environment.

It should be noted that the initialization of the AES core, which includes
the transmission of the key, the transmission of the initialization vector and the
processor↔co-processor communication overhead, has a cost on performance. If
only one data block is ciphered, the cost of initializing the AES core is an order
of magnitude higher than the cost of processing the data itself. When the input
data is sufficiently large, the initialization cost becomes negligible. The ciphering
throughput varies from 60 Mbps for a single data block packet (128 bits) to 1.28
Gbps for a 16 kbyte packet.

5 Analysis of System Architecture

We will now present an evaluation of different system environments in which
the AES core may be implemented together with performance estimations. The
following cases of IO communication have been considered: the current MOLEN
prototype, HyperTransport eXpansion (HTX), PCI-X, and PCI-Express (PCIe).

As mentioned earlier, the AES core has been developed and tested within
the MOLEN environment. In this platform, the two-stream AES core runs at
100MHz and can encrypt and decrypt at a rate of 2.56Gbps. Considering input
and output this amounts to a total traffic of 5.12Gbps, which corresponds to 80%
of the total memory bandwidth in this scenario. In the following study we will
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assume an AES-MS core running at 100MHz, even though the busses themselves
are operated at different frequencies. We assume some sort of hardware performs
the interfacing without loss of capacity.

Recently, a protocol that has emerged with good support for reconfigurable
devices as coprocessors is the point-to-point HyperTransport protocol [9,10]. Hy-
perTransport defines an extension protocol for coprocessors called the Hyper-
Transport eXpansion (HTX). In the current incarnation, this standard defines
a protocol that is 16 bits wide and runs at 800MHz. The bandwidth provided
by a single link in single-data rate (SDR) is thus 12.8Gbps. Using two links
at double-data rate (DDR) yields the maximum aggregate bandwidth of 51.8
Gbps. The single link SDR bandwidth is exactly twice that which is available
in the current MOLEN prototype. Without changing the frequency of the AES
core (100MHz) one could double the amount of streams (4 streams, 10.24Gbps).
The remaining 2.56 Gbps are exactly the bandwidth required for one additional
stream so it is possible to add a 5th stream and thus run a 5-stream AES-MS
core attached to a HTX interface. Using the two HTX links with DDR would
enable to accommodate up to 20 streams. Note that in this analysis the AES
core and the bus operate at different frequencies. Thus we must calculate the
number of streams based on available bandwidth rather than using the formula
presented in section 3.

PCI-X [11] is a popular multidrop bus interconnect standard. PCI-X 1.0 fea-
tures a maximum bandwidth of 8.48 Gbps at speed grade PCI-X 133, which
would allow up to three streams using the AES-MS engine. A newer revision
of this standard, called PCI-X 2.0, has a maximum speed grade of PCI-X 533
resulting in a bandwidth of 34.4 Gbps. This can accommodate up to 13 streams
in parallel.

PCI Express (PCIe) [12] is yet another bus designed to subsitute the ancient
PCI bus. Like HTX, it is a point-to-point bus, but designed to manage a wider
range of devices. As a downside, it operates with slightly larger latencies. At
64 Gbps capacity (using 16 links) PCIe 1.0 would allow to interleave up to 25
streams. PCIe 2.0 runs twice as fast and would be able to accommodate up to
50 streams at maximum throughput.

Table 2. Maximum Number of Streams using 100MHz AES-MS cores

Interconnect Type Max Bandwidth Max Number of Streams

MOLEN Prototype 6.4 Gbps 2
HTX @ 1 Link (SDR) 12.8 Gbps 5
HTX @ 2 Links (DDR) 51.2 Gbps 20

PCI-X 133 (v1.0) 8.48 Gbps 3
PCI-X 533 (v2.0) 34.4 Gbps 13

PCIe 1.0 64 Gbps 25
PCIe 2.0 128 Gbps 50
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All these numbers may seem quite high. However, if the network capacity is
not as large, the AES-MS output capacity will be underutilized. In addition, as
already pointed out at the end of section 4, if keys are not static and the amount
of data is not sufficiently large, throughputs of Gbit/s cannot be reached as the
encryption processes will be limited by the initialization phase. The previous
results are summarized in Table 2. Note that in this table, Max Bandwidth refers
to the maximum bandwidth of the interconnect, not the maximum bandwidth
of the multiple stream encryption unit. Although we have not mentioned access
latencies for these technologies, we assume that in stationary mode the effects
of these latencies are negligible.

6 Discussion

In this section we discuss various issues related to AES-MS. So far we have
implemented a core capable of exploiting multiple streams. We will now present
some scenarios that can profit from the implementation and a programming
model to exploit the multiple-streams feature.

6.1 Virtual Private Networks

Figure 2 (a) shows the typical architecture for a virtual private network (VPN)
using unreliable connections, e.g. Internet. Such an architecture is used to se-
curely connect multiple networks. Locally, the networks can be considered secure
since the infrastructure belongs to the companies/institutions. However, on the
public infrastructure no such assumptions can be made. Privacy and authen-
tication support are required. To this end, encrypted tunnels are established.
The tunnels are authenticated when a session is established. Once established,
the session is kept mostly unmodified and the same keys are used to encrypt all
packets.

Figure 2 (b) shows the same scenario in the case of a mobile VPN. In a
mobile VPN the connection is not network-to-network but client-to-network.
Every client needs to have security software installed (e.g. its own IPsec stack).
The corporate side, however, looks fairly similar to the static VPN case. From
the point of view of the gateway, a mobile VPN will generate many more tunnels,
each of which moving a smaller quantity of data. Also, in a mobile VPN there
is much higher connect/disconnect activity.

In both cases the VPN gateways may require enormous encryption through-
put. Using AES-MS on the gateways may enable these requirements. Implemen-
tation details may vary a little for both cases of VPN. In static VPNs the keys
are mostly static. This means that a single trusted key could be used to encrypt
multiple communications inside a single gateway→gateway channel. From the
point of view of a multiple-stream encryption core this has the benefit that the
key need not be replicated. But this would imply that more ports are needed
into the key register. Adding simple circuitry, it is possible to read the register
only once and route the key segments to the corresponding encryption engine
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(a) (b)

Fig. 2. Sample Architecture for a static VPN (a) and for a mobile VPN (b). In both
cases the gateways may need to support high encryption throughput.

without increasing the number of ports. For an architecture in which the en-
cryptions proceed synchronously this technique is trivial; however, in our case,
multiple encryptions are performed in parallel but in different iterations. A dif-
ferent strategy is needed in order to maintain the read only once property. There
are two ways to proceed. One option is to store each segment of the key in a
different register. Every engine reads the corresponding key segment from the
corresponding register every cycle. Alternatively, we can reduce the number of
reads by having the segments read once and then routed to the engine through
an appropriate number of latches.

These techniques are easily implemented in ASIC technology; however, when
using FPGAs there are additional constraints. For our AES-MS implementation
on the Virtex2P this optimization was not readily available due to fact that
the base implementation [7] is already optimized to store the full key register
in a single BlockRAM using both available ports. However, it may be possible
to implement this technique using multiple BlockRAMs of 128 bits. This would
then allow to store the complete key schedule and to access the portions inde-
pendently. However, this particular implementation also consumes many more
BlockRAMs, a feature which is undesirable.

In the case of a mobile VPN the technique of sharing the key register is un-
likely to result in any benefits. In this environment every client is associated to
a different tunnel and each tunnel has its own key, so the gateway cannot share
them. Nevertheless, making use of multiple streams is still effective as the aggre-
gate bandwidth of all streams may be very large and serializing the encryption
of the packets could otherwise result in network communication degradation.

6.2 Secure File Transfers

When citing VPN we commented that having multiple streams is a key condi-
tion to enable our vectorized AES implementation. We now present a particular
but still common scenario in which having an AES-MS core can greatly benefit
the user.
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Fig. 3. Parallel file transfer using multiple channels by subdivision of a file into multiple
chunks

Transferring files among computers is one of the most common tasks happen-
ing on the internet. In general, bulk file transfers can take a long time as they
may consist of very large files such as backups, media files, software distributions,
etc., being sent to some remote computer. To avoid serialization in this scenario
we propose to implement a specialized transfer protocol that opens several tun-
nels and encrypts multiple parts simultaneously. A single file is subdivided into
chunks and sent as multiple files through different channels. This could be done,
for example, on modified versions of the scp or sftp protocols. Figure 3 shows
how this would look in the case of a parallel transfer of a single file subdivided
into chunks. AES-MS can then be used to accelerate the whole operation.

6.3 Vector Programming Models

So far we have mentioned the application of our technique to gateways in VPN
environments but have not commented about the architecture of the gateway
itself. There are various levels in which the multiple-stream technique can be
implemented. In a pure network device implementation it could be a hardware-
only implementation. In this case the gateway just requires a peripheral board
with the encryption engine, but this comes at the cost of versatility. The gateway
can also be implemented in a higher level using a special programming interface
to the device.

Vector architectures provide a special ISA interface in which vector registers
can be manipulated as regular registers. The addition of vector loads and stores
allows the memory controller to efficiently schedule memory access instructions
and better exploit memory bandwidth. Our multiple-stream interface follows
an equivalent goal. From the programmers point of view, the AES-MS engine
may be programmed as a vector device. Sending multiple unrelated files through
input/output channels in a single system call is known as Vector I/O or scat-
ter/gather. In Figure 4 we show how multiple streams could be encrypted using
scatter/gather. The key element of scatter/gather is a data structure that holds
a vector of data buffers and a corresponding vector with the sizes of each data
buffer. The system then reads this data structure and schedules the I/O accesses
to the different data buffers in order to maximize system performance. In the
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Fig. 4. A simplified Scatter-Gather Interface to Multiple-Stream AES

example, an AES-MS core with two streams is about to process two input data
buffers: inA and inB. The system reads the two buffers and interleaves them in
blocks of 128 bits. Once this interleaving is done the joint stream can be fed to
the AES-MS core for processing. After encryption, the procedure is inverted to
store the encrypted data in the corresponding output buffers.

7 Conclusions

In this paper we have described an AES unit capable of processing multiple
data streams. Like Vector Engines, our AES unit uses vectors of data to effi-
ciently exploit the external IO bandwidth. The proposed technique can be used
to improve throughput in important scenarios such as Virtual Private Networks
(VPN) or secure file transfer where large quantities of data are being trans-
ferred. We have presented characteristics of the design and proposed a possible
programming interface together with possible system architectures for using the
core as a coprocessor. The use of the Molen paradigm and the systems recon-
figurability, allows to extrapolate these results to other encryption cores. Also,
the flexible and modular structure of the used multi-stream AES core allows for
an easy integration of additional processing streams, if a higher bandwidth IO
bus is used. The bandwidth is being limited by the IO bus and its conservative
frequency value, used in the implemented prototype.
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Abstract. YML is a dedicated framework to develop and run parallel
applications over a large scale middleware. This framework makes eas-
ier the use of a grid and provides a high level programming tool. It is
independent from middlewares and users are not in charge to manage
communications. In consequence, it introduces a new level of commu-
nications and it generates an overhead. In this paper, we proposed to
show the overhead of YML is tolerable in comparison to a direct use of
a middleware. This is based on a matrix inversion method and a large
scale platform, Grid’5000.

1 Introduction

Intensive numerical applications like simulation, DNA decoding, climate pre-
diction are parallelised and distributed. Most of those experiments are made by
expert scientists of various domains on grids. The main difficulty for them is that
each grid has its own properties and different middlewares are deployed on them.
Therefore, scientist users must adapted the code to each middleware and this
induces a waste of time. The Grid complexity requires a high level programming
tool to hide all process to users.

YML [1] is one workflow solution. It is developed at the University of Versailles
by the Nahid Emad’s team. This framework is dedicated to develop and run
parallel applications over large scale middleware. A workflow language named
YvetteML is used by YML to describe parallelism of each application. YML
provides a compiler and a just-in-time scheduler which allows to manage the
execution of parallel applications. This transparent management allows to hide
numerous communications and code coupling for complex applications. However,
to make YML independent from middlewares, an additional communication level
is necessary to link the just-in-time scheduler and the selected middleware. The
fallout of this layer is that it creates an overhead contrary to a direct use of a
client middleware program.

We proposed to evaluate the overhead of YML in different cases. The sec-
ond section presents motivations of this paper. The third section introduces the
Grid’5000 experimental platform, gives an overview of YML Framework and the
grid middleware OmniRPC. Then, the Block-based Gauss-Jordan application
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will be quickly defined and explained. YML experiments and results are pre-
sented and analysed in the fifth section. Finally, we conclude and present our
future work in the sixth section.

2 Motivations

Companies and laboratories of various domains are more and more interested in
grid computing. But in most of case, they have not the technical knowledge to
program a grid. YML offers the possibility to develop and run a parallel applica-
tion without managing communications and is independent from middlewares.
The distributed computing is to speed up computations. So, the performance of
a workflow framework is an important point and it has not to introduce a sig-
nificant overhead. In this paper, we propose to estimate and compare the YML
overhead with OmniRPC, a cluster/grid middleware. Some experiments are pro-
posed and based on a classical algorithm of matrix inversion, the block-based
Gauss-Jordan method. This algorithm offers task dependencies and a lot of com-
munications which are keys of performances of a grid computation. Experiments
are done on Grid’5000, a French large scale infrastructure for grid research and
experiments. A cluster of 101 heterogeneous nodes is emulated on Grid’5000 to
begin. Secondly, we want to observe the management of the computation re-
sources when they are not enough numerous for the number of computation
tasks. A cluster emulation of 10 nodes is done with the same applications. How-
ever, most of computing resources are distributed across a city, a country or the
world like our platform distributed over three different sites (Lille and Orsay
in France, Tsukuba in Japan). We proposed to emulate this case on Grid’5000
with heterogeneous networks and heterogeneous computing nodes over five sites
geographically. Nevertheless, complex applications have a huge amount of data.
These applications use out-of-core techniques. The last experiment is done with
an OmniRPC program which uses out-of-core. This program is taken as referent
to evaluate the overhead generated by YML.

3 Platform and Environment

In a first step, the GRID’5000 platform is presented, followed by the YML frame-
work, OmniRPC middleware, and to finish by the block-based Gauss-Jordan
matrix application.

3.1 GRID’5000 Platform

Grid’5000 [2] is a large scale infrastructure for grid research. It is composed of
nine geographically distributed clusters and each one has between 100 to 1000
heterogeneous nodes. This cluster of clusters is interconnected by the French
national research network RENATER. Grid’5000 provides reconfiguration and
monitoring tools to find out grid issues. This platform allows users to make
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reservation, reconfiguration, run preparation and run experiment by using OAR
and Kadeploy for nodes reservation and deployment of specific environment
which built by user. Grid’5000 is used to investigate issues at different levels
of the grid. This includes network protocols, middleware, fault tolerance, paral-
lel/distributed programming, scheduling and issues in performance.

3.2 YML Framework

YML [3] is a framework dedicated to develop and run parallel applications on
grids and peer to peer middleware. It is composed of a compiler and a just-in-time
scheduler which manages tasks and data dependencies between components [4].
This framework implies a lot of data exchange through the network. To provide
and take over data to each component on demand, there is the Data Repository
server dedicated. Moreover, YML is independent from the middleware by using
an adaptation layer called back-end, see the figure 1.

To describe applications and their executions, YML includes a workflow lan-
guage called YvetteML. The development of an YML application is made using
components approach. YvetteML components are described using XML and they
are three of kinds:

– Abstract component: an abstract component defines the communication in-
terface with the other components. This definition gives the name and the
communication channels with other components. Each channel corresponds
to a data in input, in output or both and is typed. This component is used
in the code generation step and to create the graph.

Fig. 1. YML design



98 M. Hugues and S.G. Petiton

– Implementation component: an implementation component is the implemen-
tation of an abstract component. It provides the description of computations
The implementation is done by using common language like C or C++. They
can have several implementations for a same abstract component.

– Graph component: a graph component carries a graph expressed in Yvet-
teML instead of a description of computation. It provides the parallel and
sequential parts of an application and the synchronize events between de-
pendent components.

Moreover, those three components are independent of middlewares. So, to use
an application on another grid with a different middleware, the scientist user
has just to compile each component for the middleware of his choice.

3.3 OmniRPC

OmniRPC [5] is a thread-safe remote procedure call (RPC) system, based on
Ninf [6], for cluster and grid environment. It supports typical master/worker
grid applications. Workers are listed in a XML file named as the host file. For
each host, the maximum number of job, the path of OmniRPC, the connec-
tion protocol (ssh, rsh) and the user can be defined. An OmniRPC application
contains a client program which calls remote procedures through the OmniRPC
agent. Remote libraries which contain the remote procedures are executed by the
remote computation hosts. Remote libraries are implemented like a executable
program which contains a network stub routine as its main routine. The decla-
ration of a remote function of remote library is defined by an interface in the
Ninf interface definition language (IDL). The implementation can be written in
familiar scientific computation language like FORTRAN, C or C++.

3.4 Block-Based Gauss-Jordan Matrix Inversion

One of the most classical methods for dense matrix inversion is the block-based
Gauss-Jordan algorithm [7]. Let A and B be two squares matrices of dimension
N , partitioned into (p× p) blocks of dimension n. Let B be the inverted matrix
of A, progressively built. Each of the p steps has three parts (see (1), (2), (3) in
the corresponding algorithm 1).

The first part is to invert the pivot block. In the second part, 2(p− 1) blocks
product and finally (p− 1)2 blocks triadic are computed. (p− 1)2 processors are
necessary for computation and each loop ’For’ is executed in parallel.

It is necessary to take into account task dependencies. The figure 2 shows
the intra-step and inter-steps parallelism. At each step, the loops (1) and (2)
depend on the computation of the inverse block Bkk and the loop (3) partially
depends on (1) and (2). Then, all matrix products in the loops (1) and (2)
are independent tasks and are executed in parallel. The loop (3) is executed
in parallel too, because it can start without the complete end of (1) and (2).
At the step 2, the computation of the blocks represented by dark squares is
not finished. The small numbers in squares represent the computation of the
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Algorithm 1. The block-based Gauss-Jordan matrix inversion
Input: A (partitioned into p × p blocks)
Output: B = A−1

For k = 0 to p − 1
Bkk = A−1

kk

For i = k + 1 to p − 1 (1)
Aki = Bkk × Aki

End For
For i = 0 to p − 1 (2)

If (i �= k)
Bik = −Aik × Bkk

End If
If (i < k)

Bki = Bkk × Bki

End If
End For
For i = 0 to p − 1 (3)

If (i �= k)
For j = k + 1 to p − 1

Aij = Aij − Aik × Akj

End For
For j = 0 to k − 1

Bij = Bij − Aik × Bkj

End For
End If

End For
End For

step 3. Our implementation of the Gauss-Jordan algorithm only use the intra-
step parallelism. This method is implemented in a client OmniRPC program and
in a YML program

4 Experiments

The experiments are done with different architectures of clusters. The table 1
gives the description of the resources that we used. The sites are interconnected
by a heterogeneous gigabit ethernet. Before experiments, a node is reserved and
a minimal debian is deployed on it to build a dedicated environment. OmniRPC,
YML framework and the necessary libraries are installed on it. Then, the envi-
ronment is recorded on each necessary site for next deployments. The dedicated
environment is universal, so it is not necessary to rebuild it on each site to take
into account their particularities. The next step is to reserve the required nodes
on the grid for the experiment. A shell script is specified to deploy the dedicated
environment, prepare the host file which contains the list of computation nodes,
launch experiments and get results.
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Fig. 2. Intra-step and inter-steps dependencies

Table 1. Computational nodes of Grid’5000

Site Nodes CPU/Memory
Nancy 120 2x DC INTEL xeon, 1.6GHz/2GB
Nancy 47 2x AMD64 opteron, 2GHz/2GB
Orsay 216 2 x AMD64 Opteron, 2.0GHz/2GB
Lyon 70 2 x AMD64 Opteron, 2.4GHz/2GB

Sophia 56 2 x DC AMD64 Opteron, 2.2GHz/4GB
Rennes 99 2 x AMD64 Opteron, 2.0GHz/2GB
Rennes 64 2 x AMD64 Opteron, 2.2GHz/2GB

Moreover, one more node is deployed for each experiment. It is not taken into
account in the number of deployed nodes, only computation nodes are taken into
account. This node plays the role of the client/server and contains the host file
required by YML and OmniRPC. The secure shell (ssh) is defined in the host
file for communications between the master and workers. In the host file, the
maximum number of jobs is set to two because all nodes are dual-processors.
The multiplicity of cores are not taken into account in this number. To have a
correct estimation of the YML overhead the same parallelism and operations are
described in OmniRPC and YML. Four components are defined to implement
the block-based Gauss-Jordan algorithm:

1. inversion: to inverse one matrix block
2. prodMat: to compute the two blocks product
3. mProdMat: to compute the negative of two blocks product
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4. ProdDiff: to compute the difference between one block and a block matrix
product

For OmniRPC experiments, the remote libraries with four components are
registered on all computation nodes after the deployment. Then, the executable
program takes an argument the number of blocks and it is launched for each
value. For YML experiments, abstract and implementation components are com-
piled and saved in the dedicated environment. A graph component is defined for
each number of blocks. After the deployment, all graph components are copied
and compiled on the client node. Then, the Data Repository Server is started
and the scheduler is launched for each compiled graph component. The first ex-
periment is to emulate a cluster on Grid’5000. 101 nodes are reserved on two
clusters of Nancy with mainly dual core Intel Xeon. For a fixed block size (n
= 1500) the number of blocks is varied. The condition of (p - 1)2 processors is
respected. This increasing variation of the number of blocks goes up with the
number of tasks. Thereby, the amount of data dependencies and communications
increase too. The execution time of OmniRPC and YML should be made a cubic
variation with a constant gap of execution.

5 Results and Analysis

After, the presentation of the dedicated environment and the condition of exper-
iments, a description and an analysis of each experiment is done in this part. The
first experiment is an evaluation of the YML overhead in the situation of one
cluster composed of heteregenous nodes and networks. The second experiment
is similar to the first, but the computation resources are insufficient for the al-
gorithm of Gauss-Jordan. The third experiment is in case of a cluster of clusters
distributed geographically. The last section is experiments with an OmniRPC
program which uses out-of-core taken as referent to evaluate the overhead of
YML.

5.1 Cluster of 101 Nodes

YML overhead is first studied on a single cluster : one geographic site, with
heterogeneity of nodes and networks. The first experiment is an emulation on
Grid’5000 of a cluster composed of 101 nodes. The Xeon processors are the most
numerous nodes. So, the cluster offers 202 processors that satisfy the condition
of (p-1)2 processors required by the block-based Gauss-Jordan method. But this
condition is available until p equal 15, beyond the computation resources are in-
sufficient. The block size is fixed and for several number of blocks the experiment
is done.

The table 2 shows that the overhead is in relation with the number of blocks.
More the number of blocks is important, thereof the number of tasks because
there are correlated, more the overhead increases. Firstly, this evolution of the
overhead comes from in part of the resolution method of dependencies. The YML
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Table 2. Time of execution for a cluster of 101 nodes, with block size = 1500

p Number of tasks OmniRPC YML + Backend OmniRPC Overhead
2 8 281 s 344 s 22.41 %
3 27 487 s 559 s 14.78 %
4 64 712 s 914 s 28.37 %
5 125 965 s 1359 s 40.82 %
6 216 1250 s 2070 s 65.60 %
7 343 1575 s 3103 s 97.01 %
8 512 2102 s 5008 s 138.24 %

Table 3. Time of execution for a cluster of 101 nodes, with block size = 1000

p Number of tasks OmniRPC YML + Backend OmniRPC Overhead
2 8 108 s 132 s 22.22 %
3 27 165 s 236 s 43.03 %
4 64 242 s 323 s 33.47 %
5 125 328 s 461 s 40.54 %
6 216 425 s 653 s 53.64 %
7 343 541 s 905 s 67.28 %
8 512 676 s 1427 s 111.09 %

scheduler resolves task dependencies at run-time, in opposition to OmniRPC
which knows dependencies at compile-time. In an OmniRPC program, the user
defines the tasks which have to be waited and launched. In a YML program, the
program is translated into a workflow, then the scheduler reads the workflow
and launches the tasks without knowing which will end first. The main difficulty
for YML is to settle dependencies when it comes at the same time. Moreover,
YML has a centralized approach and manages dependencies and data exchange.

Secondly, in this experiment the client/server node has globally the same
configuration than the computing nodes. YML has a workload more important
than an OmniRPC application. The fallout is the time of execution of an YML
program is longer. Although, the overhead stays tolerable until p equal 6, with
an overhead of 65 % for 216 tasks.

The execution time of a job on a node play an important role in the overhead of
YML and the workload of the scheduler. To reduce the execution on a node and
to show this phenomenon, the block size is successively fixed at 1000 and 500. In
consequence, a computing node is going to be less loaded and the YML scheduler
will be more requested to resolve dependencies at a same time. Furthermore, the
data repository server will be more requested to deliver and receive data. So, in
this case the overhead should be more important than the first experiment with
the block size fixed at 1500.

The first observation is the overhead for a block size of 1000 is less important
than a block size of 1500, see table 3. This comes from YML which imports
and exports data on the hard disk. If the block size is decreased, the time to
read and write the data is shorter. The amount of data to treat between a block
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Table 4. Time of execution for a cluster of 101 nodes, with block size = 500

p Number of tasks OmniRPC YML + Backend OmniRPC Overhead
2 8 41 s 48 s 17.07 %
3 27 50 s 63 s 26.00 %
4 64 58 s 82 s 41.37 %
5 125 75 s 125 s 66.66 %
6 216 83 s 207 s 150.39 %
7 343 103 s 277 s 168.93 %
8 512 130 s 379 s 191.53 %

size of 1000 and 1500 has a ratio of 1/2. The computation time for a block
is approximately the same, but the time to write/read data on hard disk is
different. So, the access time to the disk gained by YML decreases the overhead.
But for a block size of 500, the overhead is more important, see table 4 and
figure 3. Because the computation time of a block on a node is shorter, then the
scheduler of YML is more requested to resolve dependencies. Furthermore, the
data repository server is more requested too for the data exchanges.

5.2 Cluster of 10 Nodes

To decrease the use of the YML scheduler and the data repository server, a
second experiment is done with few computation resources. The use case is the
same than the first experiment: one cluster, one geographic site, with hetero-
geneity of nodes and networks. The second experiment is an emulation of a
cluster composed of 10 nodes. So, the cluster offers 20 processors that satisfy
the condition of (p - 1)2 processors required by the block-based Gauss-Jordan
method. But this condition is available until p equal 5, beyond the computation
resources are insufficient. The block size is fixed and for several number of blocks
the experiment is done.

First observation, the execution times for a cluster of 10 nodes are less im-
portant than a cluster of 101 nodes until p equal 5 for a block size of 1500, see
table 5. When OmniRPC starts, it builds a database which contains the com-
puting nodes. In this experiment, the nodes are less than the experiment with
101 nodes. So, the database is built faster. For p from 6 to 8, the execution
times have an additional delay. Because the computing resources are not suffi-
cient beyond p equal 5. To execute the next task, it is required to expect a free
node.

Second observation, the overhead is not very important. It is between 10 and
20 percent for p from 2 to 5. The overhead is lower than the results of the
experiment of 101 nodes on one cluster. The number of tasks is more important
than the computer resources available. The fallout is the scheduler of YML is less
requested to solve the data dependencies at a same moment. The dependencies
are solved faster. The data repository server is less used to deliver and receive
the data. This explains that the execution times are approximately the same as
the experiment of 101 nodes for p > 5.
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Fig. 3. Overhead for different blocks size on a 101 nodes cluster on Nancy

5.3 Cluster of Clusters

After the evaluation of the YML overhead in the case of one cluster. We want
to evaluate the overhead in the case of a cluster of clusters like our platform
distributed between Lille, Orsay in France and Tsukuba in Japan. This experi-
ment is an emulation on Grid’5000 of a cluster of 101 nodes distributed over 5
geographic site (Nancy, Orsay, Sophia, Lyon, Rennes) and over 6 clusters. The
nodes are distributed in an homogeneous way, 17 nodes per site, excepted Rennes
which has 34 nodes distributed over two clusters. The site of Nancy counts 16
nodes and the node which plays the role of client/server. So, the cluster offers
202 processors that satisfy the condition of (p - 1)2 processors required by the
block-based Gauss-Jordan method. But this condition is available until p equal
15, beyond the computation resources are insufficient.

Table 5. Time of execution for a cluster of 10 nodes, with block size = 1500

p Number of tasks OmniRPC YML + Backend OmniRPC Overhead
2 8 203 s 247 s 21.67 %
3 27 406 s 453 s 11.57 %
4 64 660 s 740 s 12.12 %
5 125 982 s 1204 s 22.60 %
6 216 1454 s 1945 s 50.00 %
7 343 1874 s 3073 s 63.98 %
8 512 2600 s 6076 s 133.69 %
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Table 6. Time of execution for a cluster of clusters of 101 nodes, with block size =
1500

p Number of tasks OmniRPC YML + Backend OmniRPC Overhead
2 8 307 s 361 s 17.48 %
3 27 506 s 578 s 14.22 %
4 64 727 s 910 s 25.17 %
5 125 1193 s 1487 s 24.64 %
6 216 1659 s 2702 s 62.86 %
7 343 2258 s 3164 s 40.12 %
8 512 2921 s 5836 s 99.79 %

The heterogeneity of networks adds time for communications between the
computing nodes and the server. The difference of execution times for OmniRPC
between the table 6 and the table 2 are between 20 and 800s. In the case of YML,
the difference of execution times are less significative, between 20 and 630s.
The overhead of YML in this configuration of cluster of clusters are acceptable,
between 14 and 63 percent. Because the communication times are important, so
the scheduler and the data repository server of YML are less requested.

5.4 Out-of-Core Gauss-Jordan

The previous evaluations of the overhead are made in the worst case. After each
component call, YML reads and writes data on the hard disk. However, our
OmniRPC program stores data in live memory. So, the access time to the data
for YML is more important than OmniRPC. In this section, the evaluation of the
overhead is made with the same YML program and an OmniRPC program which
uses out-of-core. It is very important to notice that the OmniRPC program with
out-of-core is not a version of Gauss-Jordan with out-of-core. The program only
reads and writes data at each step of the Gauss-Jordan method, like [8]. This
evaluation is firstly done with the same condition than the first experiment: one
cluster, with heteregenous nodes and networks. This cluster is based on Nancy

Table 7. Time of execution of Gauss-Jordan out-of-core on a cluster of 101 nodes,
with block size = 1500

p Number of tasks OmniRPC out-of-core YML + Backend OmniRPC Overhead
2 8 321 s 344 s 7.16 %
3 27 539 s 559 s 3.71 %
4 64 851 s 914 s 7.40 %
5 125 1193 s 1359 s 13.91 %
6 216 1625 s 2070 s 27.38 %
7 343 2049 s 3103 s 51.44 %
8 512 2564 s 5008 s 95.31 %
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Table 8. Time of execution of Gauss-Jordan out-of-core on a cluster of clusters, with
block size = 1500

p Number of tasks OmniRPC Out-of-Core YML + Backend OmniRPC Overhead
2 8 329 s 361 s 9.72 %
3 27 590 s 578 s -2.03 %
4 64 947 s 910 s -3.90 %
5 125 1412 s 1487 s 5.31 %
6 216 2080 s 2702 s 29.90 %
7 343 2796 s 3164 s 13.16 %
8 512 3605 s 5836 s 61.88 %

and has 101 nodes. So, the cluster offers 202 processors that satisfy the condition
of (p - 1)2 processors required by the block-based Gauss-Jordan method. But
this condition is available until p equal 15, beyond the computation resources are
insufficient. To compare these new results with the first experiment, the block
size is fixed at 1500 and for several number of blocks the experiment is done.

In the table 7, the execution times of OmniRPC are higher than the results
in the table 2. This increase comes from the location of data. In the case of our
Gauss-Jordan out-of-core, data are located on the hard disk. They are loaded
in the main memory when they are going to be used in the step k. The access
time to data located on the hard disk is more important than the access time
to data located in main memory. The figure 4 shows the overhead is smaller

Fig. 4. Overheads with and without using out-of-core
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with an OmniRPC program which uses out-of-core. The difference between the
overheads varies from 11.07% for p=3 to 45.47% for p=7.

The overhead of YML is less in the case where the Gauss-Jordan algorithm
stores data on the hard disk. Moreover, we could see the cluster of clusters
configuration decreases the overhead. The next experiment is also to combine
this configuration with our OmniRPC out-of-core program. The goal of this
experiment is to see if the overhead of YML can be decreased in the case of a
large scale distributed application.

There is a gain for p equal 3 and 4. YML is faster than our OmniRPC program
for this two cases. The scheduler of YML solves dependencies at the runtime. In
opposition, the dependencies of our OmniRPC programme are specified by the
coder when he writes the application. So, the OmniRPC programme have not to
solve dependencies but only to synchronize the dependent tasks with some wait
and call functions.

6 Conclusion

In this work, we have evaluated the overhead of YML compared to an OmniRPC
programme with different architecture of cluster and in two cases of data storage.
In the first case, the OmniRPC program of reference stored data in the main
memory. So, the OmniRPC program accessed faster to data than YML which had
to load and unload data from hard disk at each component call. The experiments
have showed that the overhead of YML was not important when the scheduler is
not overloaded to solve the data dependencies, between 10 to 60% for a maximum
of 512 tasks. In the second case, we have taken as referent an OmniRPC program
which stores data on the hard disk. Because a lot of complex programs which
have an important amount of data use out-of-core techniques. In this context,
the overhead of YML is under 95% for the same experiments of the first case.
Furthermore, with an architecture of cluster of clusters, YML can be faster than
our OmniRPC program. Even though, 100 or 150% of overhead are high values
in some cases. It is important to notice that YML allows to reuse the code for
different middlewares. An YML application has not to be adapt for an other
platform which uses a different middleware. Moreover, it is not necessary to
manage communications like an MPI program. And the end user can improve
parts of code to decrease the overhead.

To complete this work, we plan to evaluate the overhead with huge matrix and
clusters which have more processors. YML does not integrate a data persistence
system and multicore management at the moment. But we could evaluate the
overhead with an emulation of the data persistence. The matrix blocks would
be regenerated on the nodes. And the scheduler of YML will be improve to
have less overhead. In the future, YML could use many middlewares at the
same moment with a multi-backend support. This feature is in prevision to
program hybrid clusters with a high level programming tool. For the moment, the
framework YML is a performing tool for average application and has a tolerable
overhead. It allows to program easily a grid without manage communications,
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it supports two middlewares and soon three with the arrival of the backend for
condor.
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Abstract. The World Wide Web has become a phenomenon that now  
influences our everyday life in any possible areas and disciplines. This paper 
investigates how a grid equivalent of the WWW, the World Wide Grid can be 
created. We define requirements towards a workflow-oriented computational 
World Wide Grid and propose a solution how current production Grids can be 
connected in order to form the technical basis of this infrastructure. A meta-
broker concept and its utilization to achieve the highest level of parallelism by 
the created architecture in a user transparent way are explained.  

Keywords: Grid interoperability, meta-broker, parallelism, grid workflow, 
World Wide Grid. 

1   Introduction 

The goal of this paper is to assess where we are in the road of establishing a scientific, 
workflow-oriented, computational World Wide Grid (WWG) that is similar to the 
World Wide Web (WWW) in the sense that anyone can access and use its services 
according to his needs. If we look at the current trend of how and where grid develops 
we can see that isolated production grids have been created that are based on different 
grid technologies that are not interoperable or only in a limited way. One of the big-
gest challenges of the grid community is to solve the interoperability of these produc-
tion grids in order to get closer to the idea of WWG. 

This paper is intended to show that we are not far from creating a WWG if we 
make reasonable assumptions how the users would like to use a WWG and reasonable 
restrictions how such a WWG can be used and for what purposes. The basic assump-
tions are as follows: 

1. We restrict ourselves to a computational grid type WWG 
2. The goal of the user is to dynamically collect and use as many grid resources as 

possible to accelerate his grid application 
3. The basic application type the user would run in the WWG is a complex work-

flow 
4. The WWG will be used in the beginning by the scientific community 
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Assumption 1 says that we restrict the first version of the WWG to a computational 
grid where the size of files used in the WWG is not too large and hence they can effi-
ciently be moved between computational grid resources. It does not exclude the usage 
of large files in the WWG but it significantly reduces the overall performance of the 
WWG if many users try to use large files. Obviously, in a longer term the efficient 
management of large files should also be solved in the WWG but since our goal is to 
show that a computational WWG is already feasible we neglect this problem in this 
paper. A follow-up paper will be written to outline the possible solutions for a data-
oriented WWG. 

Assumption 2 requires that all possible parallelisms of an application should be ex-
ploited in the WWG. Users go for the WWG to access and use many resources in 
parallel to speed up the execution of their complex applications. Section 2 will clas-
sify the types of parallelisms that can be achieved in the WWG and later it will be 
shown how such parallelisms can actually be utilized in the WWG.  

Assumption 3 might require some more explanations then the first two assump-
tions. Why workflow applications are so interesting for the WWG? The workflow 
concept abstracts a collection of services (tasks) that can be executed in a partially 
ordered way and hence it is general enough to include as a special case any other 
types of applications. As a result, workflows could be considered as the most generic 
type of applications including any other types as special cases. 

Assumption 4 is based on the current usage scenario of large e-science grids. In or-
der to establish a WWG that is used by the general public or by businesses, it requires 
a significant improvement in the development of a grid market model. If only the 
scientific community will use the first WWG, then the grid market model could be 
much simpler than a real commercial one. Since our interest is to establish a WWG as 
soon as possible, it is better to start with a scientific WWG and later extend it to other 
directions. 

At this point many readers could say that these assumptions are too restrictive and 
it is not worth defining and creating a WWG that can support only these kinds of 
applications and goals. We would argue that we cannot create at once the ultimate 
WWG. The WWW is much more complex today as it was in its initial stages and in 
the beginning it was used only for scientific purposes and only later it was extended 
towards the commercial world. Once we established an infrastructure that is useful 
and works, there are plenty of opportunities afterwards to improve and extend that 
system in the future. Even this restricted version of the WWG that is suggested in this 
paper can be used to support much more applications than we can dream today. The 
establishment of such a WWG could tremendously widen the user community of the 
grid and would significantly accelerate the take-up of grid technology world-wide and 
would lead later to a WWG usable for the whole population including commercial 
services as well. 

In this paper we identify the main steps of creating a WWG system according to 
the assumptions mentioned above, and describe in detail the first of these steps that 
provides the basic interconnection and access mechanism of such a WWG system. 
Section 2 analyses the reasons of the success of the WWW and compares the WWW 
concept with a potential WWG concept. Section 3 classifies the achievable types of 
parallelisms in a WWG system. Section 4 introduces the concept of meta-broker and 
shows how the various types of parallelisms can be exploited in the WWG by using 
the meta-broker concept. Section 5 gives a short overview of related research. 
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2   Comparison of WWW and WWG 

Before starting to explain the technical details of creating such a WWG, it is impor-
tant to compare the WWW concept and the proposed WWG concept. First of all, let’s 
see why the WWW concept is so popular and successful. There are five main aspects 
that make WWW so attractive: 

1. Services 
2. User interface 
3. Web search engines 
4. Security 
5. Interest to use 

The original WWW concept was based on the web page services. The idea is that 
anyone can create and publish web pages and anyone from any client machine can 
access these published web pages. Another important concept here is that web pages 
can be linked together and this significantly facilitates the creation and usage of web 
pages. 

The second appealing feature of the WWW is that its user interface is extremely 
simple and easy-to-use. A simple browser is sufficient to browse web pages no matter 
where these web pages were created. More than that these browsers are provided as 
part of the basic services of the client machines’ operating systems and hence the user 
does not have to install any complicated WWW access software, it comes together 
with the client machine. Web portals help the users to access structured information 
over a set of web pages. 

Web search engines [1][2][3] help the users to discover information in the Web. In 
fact the Web search engines provide the web information system by discovering rele-
vant web page contents. 

The HTTP and HTTPS protocols provide the necessary security mechanism. They 
require only a single port to be opened on the server machine and hence they can be 
securely managed. The security concept of the WWW is so reliable that even large 
banks trust this system and provide financial services through their web portals. 

The final aspect of the WWW is the motivation of people to use it or to provide 
services by it. The WWW is an excellent way of creating communities, accessing 
information and special (e.g. financial) services and hence people are interested in 
using the WWW services. At the beginning when commercial exploitation of the 
WWW was not so apparent, people were interested in creating web pages because in 
this way they could increase their or their company’s visibility. Later when it became 
clear that there are several business models by which companies can make profit by 
providing WWW services, the usage of the WWW became even more popular. 

After the overview of the main aspects of the WWW let’s see how these aspects 
can also be used to promote the WWG as a success story. In case of the WWG the 
services are grid resources (computing services, data services, etc.) or higher level 
grid services (for example, a workflow execution service). It is important that anyone 
should be able to provide grid services and anyone should be able to access these grid 
services from any client machine through the WWG. The same way as web pages can 
be linked together grid services should be linked together, too. 
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The user interface should be extremely simple and user-friendly, exactly the same 
way as in case of the WWW. Simple tools like a web browser should be available on 
every client machine in order to access the WWG services without installing any grid 
software on the users’ machines. However, in the WWG the main objective is to run 
applications and hence instead of a simple browser, rather a simple application builder 
is the right GUI. Grid portals should help users to access the WWG services in a co-
ordinated way releasing the user from the actual organization of resource collection 
and orchestration via the WWG. 

Grid search engines similar to the Web search engines should help both users and 
grid services to discover relevant services of the WWG. 

The current grid security mechanism is built on the concept of grid certificates and 
VOs. Although scientific papers always emphasize the importance of creating dy-
namic VOs, in practice VOs are quite static and their creation is a long procedure. 
This static nature of VOs is one of the reasons why the grid has been developed to-
wards the isolated grids direction and not towards the WWG direction. The current 
certificate and VO scheme make the usage of the grid much more complicated than 
the usage of the Web. As a consequence in this respect some revision is necessary if 
we want to make the WWG really easy-to-use and popular. 

Table 1. Comparison of WWW and WWG 

  WWW WWG 
Services 
• Anyone can 

create and pub-
lish  

• anyone can ac-
cess 

Web pages, web services Grid resources,  
computing services, 
data services, etc. 

User interface Web browsers 
Web portals 

Grid application 
builder 
Grid portals 

Information discov-
ery mechanism 

Web search engines Grid search engines 

Security HTTP and HTTPS protocols Revised dynamic VO 
concept 

Interest to join User: access information and 
services 
Provider: Increase own visibil-
ity, make money 

User: use grid re-
sources (by grid 
credit) 
Provider: collect grid 
credits (later make 
money)   

Finally, the motivation of the usage of WWG should be made tempting for large 
user and grid service provider communities. Once the usage of WWG is simple 
enough it will be really attractive for a large user community to access grid resources 
and services in an “unlimited” way. This will raise a new problem. If there is no limit 
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of accessing resources and services the whole WWG will collapse due to the huge 
demand of resources and services. A WWG market model is therefore unavoidable 
and obligatory from the very beginning in order to attract resource and service pro-
viders and to restrict the eagerness of WWG consumers in acquiring resources and 
services for their applications. A kind of WWG credit system must be introduced 
where resource and service providers can earn WWG credits and then their commu-
nity can use these credits to acquire WWG resources and services. 

Table 1 summarizes and compares the five main features of the existing WWW 
and a potential WWG. 

If there are so many similarities in the concept of WWW and WWG, then why are 
we still missing the WWG as a working infrastructure and service? Unfortunately, 
there are some problems concerning all the five required features of the WWG. 

Services and Resources 
There are many different production grids based on different grid technologies and 
middleware and they can not interoperate. As a result the services are not accessible 
by anyone from anywhere as it would be needed by the WWG concept proposed 
above. If a user is registered for the VOx of GridA then he cannot use the resources 
and services of VOy of GridB. Section 4 of this paper will show that based on as-
sumptions 1-3 we can easily solve this problem and create a WWG that satisfies the 
required criteria. 

User Interface 
The grid user interface is currently too complicated. In most cases production grids 
neglect the problem of user interface. They provide only a special command line 
interface and programming API. It means that there is no user interface standard like 
the web browser in case of the Web. Different grid middleware requires the usage of 
different command line interfaces and programming APIs. It means that a user who 
wants to use several grids (an obvious assumption of the WWG concept) has to learn 
several grid user interfaces. If the user wants to port a grid application from GridA to 
GridB he has to re-engineer the application according to the programming API of 
GridB.  

Information Discovery Mechanism 
The grid information system and discovery mechanism are not mature enough and the 
concept of a grid search engine is also missing from current grids. The usage of the 
information system is very limited in current production grids. 

Security 
The grid security mechanism is suitable for the rather static VO concept of current pro-
duction grids but not for the WWG where VOs should be formulated dynamically on 
demand. As a consequence the concept of VOs should be revised in the framework of 
the WWG. However, the subject is so big and significant that an independent paper 
should deal with this issue. One solution could be that only pre-registered and verified 
applications can be used in the WWG that are taken from certified application registries. 
Another solution could be the usage of virtualization where the application is distributed 
inside a virtual machine that can not cause any harm to the executor resource. 
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Interest to Join 
Since the current usage of grid lacks the market concept (everyone can get what he 
needs without payment) a WWG would lead to the tremendous overload of resources. 
At least, the introduction of a simplified grid market concept would be necessary to 
establish a scientific WWG. 

The following sections of this paper describe in detail the first of these features and 
show possible solutions that can be used in order to establish a scientific computa-
tional WWG. The analysis and solution of the other listed aspects will follow in future 
publications. Obviously, when the goal is to create a WWG as soon as possible any 
proposed solution should be built according to the current situation. It should be ac-
cepted as a fact that production grids already exist and they are not willing to give up 
their freedom of developing their own roadmap and direction. Therefore a WWG 
concept should be built on the autonomicity and collaboration of these existing pro-
duction grids. 

3   Parallelism in the WWG 

As we have seen in the Introduction, assumption 2 says that the goal of the user is to 

a. dynamically collect and use as many grid resources as possible  
b. in order to accelerate his grid application.  

Condition “a” means that the user needs a WWG where resources can be accessed 
from any production grid that are connected to the WWG no matter what type of grid 
middleware they are built on. As a result current production grids should be used in 
an interoperable way even if they are based on different grid middlewares. When this 
problem is solved any user from any grid can access all the grid resources and ser-
vices that are connected to the WWG. 

Condition “b” requires that both the application and the WWG should be able to 
support the largest possible classes of parallel execution.  

In order to fulfil our requirements, first we examine the impact of parallelism on 
the grid middleware, and then investigate the problem of grid interoperability. We 
shall see that both conditions can be fulfilled by the introduction of interoperable grid 
brokers or by the introduction of a meta-broker. 

There are two classes of parallelisms achievable in the WWG: 

1. Grid architecture parallelism 
2. Grid application parallelism 

The grid architecture parallelism can be further divided into two classes according 
to the usage of various grid resources: 

– Inter-Resource (IrR) parallelism (parallel usage of several resources) 
within which we can distinguish: 

- Inter-Grid (IrG) parallelism (parallel usage of several resources within  
several Grids) 

- Intra-Grid (IaG) parallelism (parallel usage of several resources in the same 
grid) 
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- Intra-Resource (IaR) parallelism (usage of parallelism in a single resource 
having parallel architecture, e.g. cluster) 

The current grids typically enable the exploitation of the Intra-Grid and Intra-
Resource parallelism but they do not support Inter-Grid parallelism. Even worse, 
within the same grid, users are restricted to use the resources of a certain VO only 
where they are accepted as members. The current concept of VOs is strongly against 
the nature of WWG. 

We can distinguish four types of grid application parallelism according to the 
granularity of tasks to be solved in the grid: 

– Single job/service level (SJ) 
– Parameter Sweep at job/service level (PSJ) 
– Workflow level (WF) 
– Parameter Sweep at workflow level (PSWF) 

Intra-Resource parallelism can be applied to any types of grid application parallel-
ism if the resource is a multi-processor one (either shared or distributed memory sys-
tem or even multi-core processor) and the local job manager is able to distribute the 
parallel components of the application among the processors of the resource. 

Single job level parallelism (SJ) can be exploited if the application consists of one 
job and this job is a parallel (e.g. MPI) one. In this case we can explore process  
parallelism that comes from the parallel execution of processes of the parallel appli-
cation. Although there are some research projects aiming at the exploitation of Inter-
Resource parallelism, SJ parallelism still best fits to the Intra-Resource parallelism 
where processes of a parallel application can be distributed among the nodes, proces-
sors or cores of a parallel resource. If there are N processes inside a parallel job, then 
the achievable parallelism is O(N). 

PS job level parallelism (PSJ) can be exploited if the application consists of one job 
and this job should be executed with many different parameter sets (this is called job 
instance parallelism). PSJ parallelism fits both to Intra-Resource and Inter-Resource 
parallelism no matter whether the job is a sequential or parallel one. In the case of a 
sequential job Intra-Resource parallelism can be exploited by allocating many instances 
of the same job to a multiprocessor resource and the different job instances are simulta-
neously executed by different processors of the resource. If a sequential job is to be 
executed with M parameters, then the achievable parallelism is O(M). If the job is a 
parallel application with N processes and this should be executed with M parameters, 
then both process parallelism and job instance parallelism can be exploited and the 
achievable parallelism is O(MxN). Since both N and M can be in the range of hundreds 
or thousands, PSJ parallelism can require several thousands of resources and hence it 
really needs the large number of resources available in the WWG. 

Workflow level parallelism (WF) can be exploited if there are parallel branches in 
the workflow. This is called workflow branch parallelism and it fits both to  
Intra-Resource and Inter-Resource parallelism. However, the amount of parallelism is 
typically not as big as in case of the PSJ parallelism so in many cases Intra-Grid par-
allelism is enough to handle it. If some of the jobs in the workflow are parallel (e.g. 
MPI) jobs, then two levels of parallelism can be exploited simultaneously: process 
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parallelism and workflow branch parallelism. Different MPI jobs of the different 
branches of the workflow can be simultaneously executed on different resources (In-
ter-Resource parallelism) and on each such resource Intra-Resource parallelism can 
be applied for the parallel execution of the processes of the MPI jobs. If the maximum 
number of parallel branches in the workflow is B and in every branch there is a paral-
lel application with N processes, then the achievable parallelism is O(BxN). 

PS workflow level parallelism (PSWF) can be exploited if the application consists of 
a workflow and this workflow should be executed with many different parameter sets 
(this is called workflow instance parallelism). In such case three levels of applica-
tion parallelism can be exploited: 

• Workflow instance parallelism (among the several instances of the workflow) 
• Workflow branch parallelism (among the branches of every workflow  

instance) 
• Process parallelism (among the processes of a parallel node of a workflow  

instance) 

Notice that job instance parallelism is a special case of workflow instance parallel-
ism when the workflow consists of a single job. From another point of view workflow 
instance parallelism is a sum of achievable job instance parallelism when the compo-
nent jobs of a workflow are executed with many parameters sets. 

In order to exploit these three levels of parallelism, PSWF parallelism can require 
thousands or even millions of resources and hence it really needs the large number of 
resources available in the WWG. PSWF parallelism fits to the Inter-Resource paral-
lelism (both IaG and IrG) and as a result can advantageously be used in the WWG. If 
the maximum number of parallel branches in the workflow is B and in every branch 
there is a parallel application with N processes, and the workflow should be executed 
with M different parameter sets, then the achievable parallelism is O(MxBxN). This is 
clearly the most demanding type of parallel application concerning the number of 
required grid resources. 

4   Resource Selection to Achieve the Highest Possible Parallelism 

After seeing that many resources should be used in a PSJ or PSWF application the 
next question is how to select the required resources in order to achieve the highest 
possible parallelism. In a WWG system four models can be distinguished: 

– User selected Grid User selected Resource (UGUR) 
– User selected Grid Broker selected Resource (UGBR) 
– Broker selected Grid User selected Resource (BGUR) 
– Broker selected Grid Broker selected Resource (BGBR) 

More and more production grids use brokers nowadays inside their own boundaries 
in order to select the most appropriate resources for execution. However, even if the 
user is allowed to submit jobs to several grids, it is his responsibility to select between 
these grids. Brokering at Grid level is not supported in today’s production environ-
ments. As a result, the BGBR model, that provides the largest freedom of accessing 
grid resources in the WWG, is hard to realize. The BGBR model means that the users 
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can access several grids simultaneously and these grids have got brokers. However, 
the user is not connected directly to a grid broker rather to a new level of brokers 
called as meta-broker. It is the task of the meta-broker to select the right grid accord-
ing to the users’ requirements as described in the Broker Property Description Lan-
guage (BPDL) [4]. BPDL is similar to the JSDL [6], but it provides metadata about 
brokers (grids) and not about resources. Once the grid is selected the meta-broker 
passes the job and the job description language (RSL [7], JDL [8] or JSDL depending 
on the actual grid) to the selected grid broker and it will be the task of this broker to 
select the best resource according to the requirements specified in the job description 
language (or sometimes called resource specification language). The architecture of 
the BGBR model can be seen in Fig. 1. 
 

 

Fig. 1. Grids connected by a meta-broker  

The proposed Meta-Broker architecture is described in detail in [5]. In order to make 
the concept of meta-broker clear a short overview of its architecture concept is given 
here. Fig. 2 introduces the proposed architecture of the Grid Meta-Broker that enables 
the users to access resources of different grids through their own brokers. The Translator 
components are responsible for translating the resource specification language of the 
user (JSDL) to the language of the selected resource broker. Once a broker will be ca-
pable of supporting the JSDL standard [6], the corresponding Translator can be re-
moved from the Meta-Broker. The Invokers are broker-specific components. They 
communicate with the interconnected brokers, invoking them with job requests and 
collecting the results. Data handling is also an important task of this component. After 
the user uploaded the job, proxy and input files to the Meta-Broker, the Matchmaker 
component tries to find a proper broker for the request. If no good broker was found, the 
request is rejected, otherwise the JSDL is translated to the language of the selected bro-
ker. The responsible Invoker takes care of transferring the necessary files to the selected 
grid environment. After job submission it stages the output files back, and upgrades the 
historical data stored in the Information Collector with the logging data of the utilized 
broker. The core component of the Meta-Broker is responsible for managing the com-
munication (information and data exchange) among the other components. The commu-
nication to the outer world is also done by this part through its web-service interface. 

  

Grid 1 OSG 
Meta- 
Broker 

Grid 2 EGEE 

Broker Broker 
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Fig. 2. The Grid Meta-Broker Architecture  

In the following we examine how SJ, PSJ, WF and PSWF parallelism can be ex-
ploited by the BGBR model and by a meta-broker.  

SJ Level Parallelism: 
In the BGBR case both the grids and the resources are selected by brokers and hence 
load-balancing can be achieved between grids and inside grids. 

PSJ Level Parallelism: 
Both grid and resource selection is done by a broker and hence both Inter-Grid (IrG) 
and Intra-Grid (IaG) parallelism are automatically provided by brokers. In principle 
all resources of all connected grids can be used in parallel and in a balanced way. 

WF Level Parallelism: 
Grid selection is the task of the broker and hence it is the broker’s responsibility to 
explore the Inter-Grid (IrG) parallelism through the workflow branch-parallelism. 
Resource selection is also the task of the broker and hence it is the broker’s responsi-
bility to explore Intra-Grid (IaG) parallelism through workflow branch-parallelism 
and to explore Intra-Resource (IaR) parallelism by assigning parallel jobs of the 
workflow to parallel grid resources. Since both the grid and the resources are selected 
by brokers, load balancing can be achieved between grids and inside grids. However, 
workflow scheduler support is needed for the broker to exploit workflow branch-
parallelism at IrG and IaG level. 

PSWF Level Parallelism: 
Both grid and resource selections are the tasks of the broker and hence both Inter-Grid 
(IrG) and Intra-Grid (IaG) parallelism can be exploited both through the workflow 
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branch-parallelism and workflow instance-parallelism by the broker. Intra-Resource 
(IaR) parallelism can also be achieved as described in Section 3. 

Advantages of the BGBR model are: 

• Workflow instance-parallelism can be exploited both at IrG and IaG level. 
• Workflow level scheduling support is not needed for the broker either at IrG or 

IaG level to achieve workflow-instance parallelism. 
• Balanced usage of grids and resources are provided by the broker. 

As a summary one can say that the most advantageous model to exploit every pos-
sible parallelism in a well balanced way is the BGBR model. So if we want to estab-
lish an efficient and powerful WWG it should be based on the concept of the BGBR 
model. Unfortunately, current grid middleware do not support the BGBR model. 
There is an on-going effort in the GIN VO of OGF to solve grid interoperability, but 
they concentrate at the moment on the SJ level. Within the framework of the Core-
Grid project SZTAKI and UPC work on to design a meta-broker that can efficiently 
support the BGBR model [9].  

Naturally, a single meta-broker would be a bottleneck in the WWG used by many 
thousands of scientists. Therefore, many uniform meta-brokers should be applied and 
these should be interconnected in order to realize load-balancing among them. In such 
a WWG every client can be connected in a standard way to one of the uniform meta-
brokers. As a result if we want to build the WWG, the only thing we have to do is to 
define and implement: 

1. The functionality of the meta-brokers 
2. The intercommunication protocol of meta-brokers 
3. The communication protocol of clients and meta-brokers 
4. The standard intercommunication protocol of meta-brokers and grid brokers 

The solution for requirements 1 and 3 are already designed and described in [5]. 
Work is needed for requirements 2 and 4. Notice that the BGBR model can be used 
even if requirement 4 is not fulfilled. 

5   Related Work 

The most notable work related to grid interoperability is carried out within the frame-
work of the GIN initiative [10] of the OGF. As written there: “The purpose of this 
group is to organize and manage a set of interoperation efforts among production grid 
projects interested in interoperating in support of applications that require resources in 
multiple grids.” The GIN related web page of the UK NGS [11] writes: “Grid Inter-
operation Now (GIN) is a Community Group of the Open Grid Forum (OGF). It aims 
to organize and manage a set of interoperation efforts among production grid projects 
to support applications that require resources in multiple grids.” Obviously the goal of 
the GIN is very close to the objectives of establishing a WWG although their ambi-
tions do not go so far. The phase 1 tasks of the GIN VO is “to plan and implement 
interoperation in specific areas, initially data location and movement, authentica-
tion/authorization and identity management, job description and execution, and in-
formation services.”  
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The GIN has created the GIN VO with resources from the major production grids: 
TeraGrid [20], UK NGS [11], EGEE [21], OSG [22] and NorduGrid [23]. All these 
grids allocated some grid sites to do experiments on their interoperability. In the 
framework of the GIN VO activity a GIN Resource testing portal [12] has been set up 
based on the P-GRADE/GEMLCA portal technology [19]. This portal enables the job 
submission (even workflow submission) to all these grid sites and hence can be used 
to constantly monitor their availability and usability in the GIN VO. Although the 
goals of the GIN and the WWG described in this paper have many similarities the 
concept of the GIN is quite different from the implementation concept of the WWG.  

A major European effort in providing grid interoperability between gLite, UNI-
CORE and Globus is the OMII-Europe project [13] that tries to establish interopera-
bility at the level of five services (JSDL, OGSA-DAI, VOMS, RUS and GridSphere).  

The World Wide Grid testbed [14] initiated by Monash University has the same 
name as we used in this paper but their WWG has a quite different meaning than our 
WWG. Their WWG is not about connecting the existing production grids in order to 
establish an interoperable WWG, rather it is a volunteer grid test-bed specifically 
intended to test the grid economy concept developed in the Grid Economy project 
[15]. Their recent paper on InterGrid [16] shows many similarities with our concept 
of connecting existing grids into a WWG. They introduce InterGrid Gateways to 
connect the different grids while we propose the usage of meta-brokers. They do not 
emphasize the importance of advance grid portals and workflow interoperability but 
they put more emphasis on grid economy.  

The meta-broker concept for providing grid interoperability is quite new and was 
first proposed by SZTAKI [17] at the CoreGrid workshop organized in conjunction with 
EuroPar’2006. Since that time another CoreGrid partner, the Technical University of 
Catalonia (UPC) has started to work on this concept. The redefinition of the Broker 
Property Description Language (BPDL) [9] is an on-going joint work between SZTAKI 
and UPC. The detailed architecture plan of the meta-broker is described in [5]. 

6   Conclusions 

We have seen that the highest level of parallelism can be exploited in the WWG if 
workflows are executed as parameter sweep applications. In order to exploit the larg-
est possible parallelism the most advanced architecture concept of the WWG is based 
on the BGBR model. In the BGBR model every client can be connected in a standard 
way to one of the uniform meta-brokers. As a result to build the WWG, the only thing 
we have to do is to define and implement: 

1. The functionality of the meta-brokers 
2. The intercommunication protocol of meta-brokers 
3. The communication protocol of clients and meta-brokers 
4. The standard intercommunication protocol of meta-brokers and grid brokers 

Once these requirements are defined and implemented, any existing grid can be 
connected to the WWG provided that the broker of the given grid realizes the stan-
dard intercommunication protocol of meta-brokers and grid brokers. Even if require-
ment 4 is not fulfilled, those grids for which the Translator and Invoker module of the 
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meta-broker is already available can be connected to the WWG. The meta-broker 
should be implemented as an open source grid service in order that any grid could 
extend it with the necessary Translator and Invoker module by which the given grid 
could be accessed by the Meta-Broker. 

Overall, we can state that there is no real technical obstacle to create a scientific 
computational World Wide Grid where complex parameter sweep workflow applica-
tions could run and exploit the largest possible parallelism. It means that technically 
the WWG can be established by simply introducing the meta-broker concept and 
using a network of uniform meta-brokers to connect the existing production grids. 
Obviously, the meta-broker itself does not help in managing workflows, only to sub-
mit nodes (jobs or service requests) of the workflow in a grid transparent way. To 
assist the workflow execution in the WWG workflow managers are needed. Moreover 
these workflow managers also should be interoperable. This issue has been investi-
gated in a CoreGrid technical report [18]. 
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Abstract. This paper addresses the problem of scheduling multi-user
jobs on clusters, both homogeneous and heterogeneous. A user job is
composed by a set of dependent tasks and it is described by a direct
acyclic graph (DAG). The aim is to maximize the resource usage by al-
lowing a floating mapping of processors to a given job, instead of the
common mapping approach that assigns a fixed set of processors to a
user for a period of time. The simulation results show a better clus-
ter usage. The scheduling algorithm minimizes the total length of the
schedule (makespan) of a given set of parallel jobs, whose priorities are
represented in a DAG. The algorithm is presented as producing static
schedules although it can be adapted to a dynamic behavior as discussed
in the paper.

Keywords: Static and dynamic scheduling, parallel task, list scheduling,
cluster computing.

1 Introduction

The aim of the work herein presented is to improve the performance of clusters
in the processing of applications (or jobs) composed by a set of dependent tasks.
The common scheduling approach is to consider a fixed number of available
processors to schedule the set of tasks [13,14,17,18,20] which on a multi-user
environment corresponds to fix the number of processors available for each user.
The presented model is based on a former model [2] to schedule DAGs of de-
pendent parallel tasks. A parallel task, also called malleable task, is a task that
can be executed on any number of processors with its execution time being a
function of the processors alloted to it [7,12,15].

The target computer platform is a cluster, either homogeneous or heteroge-
neous, with a dedicated network. Such clusters can be private clusters of some
organization but also they can be the nodes of a Grid infrastructure which to
have a good performance requires, at least, that the end clusters have also a
good performance.

The cluster schedulers usually allow that users specify the number of proces-
sors required to run their jobs, which imposes a static allocation of the cluster
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Fig. 1. A DAG composed by jobs of different users where job dependencies are created
by priority policies; each job is described by a DAG of dependent tasks

nodes and a non-unified cluster management based only on user requests. Users
try to allocate as much capacity as possible and there is not a global man-
agement. The proposed algorithm intends to optimize the cluster utilization by
allowing different number of processors to be used along the processing of the
tasks of a given user job. The algorithm is non-preemptive and achieves the goal
by considering different number of processors to process the tasks of a given
job. The DAG to schedule has two levels of detail. There is a master DAG, that
establishes priorities among user jobs, and there is a DAG for each job. Figure 1
exemplifies a typical DAG. The scheduler input is the global DAG and all ready
tasks are considered to schedule at a given time.

The common approach to schedule DAGs is the task parallel paradigm, which
assigns one task to one processor. The scheduling consists on the distribution of
the DAG nodes among the machine nodes, so that the makespan is minimum
[1,11,18,19,20]. Here it is considered the parallel task model where each task can
execute in more than one processor but one processor only participates in the
execution of a task at any given time [7,12,21].

The remaining of the paper is organized as follows: section 2 defines the
scheduling problem and revises related work in scheduling parallel and non-
parallel tasks. Section 3 presents the computational model and the methodology
used in this paper. Section 4 presents the list scheduling algorithm proposed in
this paper. Finally, section 5 presents results and section 6 conclusions.

2 Problem Definition and Related Work

The problem addressed in this paper is the scheduling of a parallel application
represented by a directed acyclic graph (DAG) on a distributed memory com-
puter (i.e. a cluster). A DAG G = (V, E), where V is the set of v nodes of the
graph, representing the tasks to be processed, and E is the set of e edges, rep-
resenting precedence among tasks and communication costs. For each node vi it
is defined a schedule start-time (ST (vi)) and a finish-time (FT (vi)), being the
schedule length given by maxi{FT (vi)}. Therefore, the goal of scheduling is to
minimize maxi{FT (vi)} [13].
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The above definition is valid either for homogeneous or heterogeneous ma-
chines and either for parallel tasks (executed on several processors) and non-
parallel tasks (executed on one processor). The existing work on scheduling
parallel tasks deals almost exclusively on homogeneous computers, and either
dependent or independent tasks. The problem is known as NP-Complete so that
several authors proposed polynomial approximation schemes [6,7,12,15,16,21].

The problem studied here considers the scheduling of general task dependency
graphs and both homogeneous and heterogeneous clusters. Tasks are considered
parallel and non-monotonic, this is, the execution time of task i, ti,p, is consid-
ered to be non-monotonic so that there is a number p of processors for which
ti,p < ti,p−1 and ti,p < ti,p+1. Mainly for heterogeneous clusters connected by a
standard network it was shown that, due to communication constraints and task
granularity, leaving processors in the idle state can reduce the processing time
[3,4,5]. The solution proposed is based on the list scheduling technique used for
non-parallel tasks [13,18,19,20].

DAG scheduling is commonly addressed as a non-parallel task problem
[13,14,17,18,20], therefore the algorithm proposed in this paper is compared to
the Heterogeneous Earliest-Finish-Time (HEFT) algorithm [20]. The authors
compared several scheduling algorithms for heterogeneous computing and con-
clude that HEFT is the best one for scheduling DAGs on those systems. HEFT
comprises two phases: first, there is a task prioritizing phase and second, a pro-
cessor selection phase that selects the processor that minimizes the task finish
time. It implements an insertion based policy which considers the possibility of
inserting a task in an earliest idle time slot between two already scheduled tasks
on a processor. The aim of comparing to HEFT is to show that the parallel-task
approach can improve significantly the performance of a cluster, heterogeneous
or not, in scheduling DAGs, with a scheduling algorithm of the same time com-
plexity as HEFT, which is O(v2 × P ) for a DAG of v tasks and a P processor
machine.

The former techniques are all static approaches of the mapping problem that
assume static conditions for a given period of time. A dynamic approach intends
to be more flexible concerning the availability of information about tasks arrival
time and machine availability. Dynamic mapping of tasks is usually addressed
as an independent task scheduling [9] problem. This approach can be applied
here at the job level because these are independent and our master DAG is also
based on job priorities and job deadlines. The dynamic scheduling can be ap-
plied with our scheduling algorithm in the following way: a dynamic policy like
[9] specifies the DAG for a given scheduling instant and our algorithm scheduled
tasks based on that DAG. The DAG is updated when new jobs arrive and a
schedule instant happens when there are tasks ready to schedule. However, in
this paper dynamic scheduling is not considered, because it requires more re-
search and also it would obfuscate the main comparison that is to show that a
parallel task scheduling achieves better performance than a non-parallel one on
a cluster.
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3 Computational Model

The computational platform considered is a distributed memory machine com-
posed by P processors of possibly different processing capacities (heterogeneous
cluster), connected by a switched network. It supports simultaneous communi-
cations between different pairs of machines. It is assumed that the application
is represented by a DAG and the execution time of the tasks can be estimated
at compile time or before starting the execution. The communications required
to complete a task are included in the computation time as a function of the
processors p used by that task. The inter-task communication is defined as a
function of the computational time of the sender task and it is represented by
the edges weight in the DAG.

The computational model that supports the estimation of the processing time,
for each task, is based on the processing capacity Si of processor i (i ∈ [1, P ])
measured in Mflop/s, the network latency TL, and the bandwidth ω measured
in Mbit/s. The total computation time is obtained by summing the time spent
communicating, Tcomm, and the time spent in parallel operations, Tparallel. The
time required to transmit a message of b elements is Tcomm = TL+bω−1. The time
required to compute the pure parallel part of the code, without any sequential
part or synchronization time, on p processors is Tparallel = f(n)/

∑p
i=1 Si. The

numerator f(n) is the cost function of the algorithm, measured in floating point
operations, depending on problem size n.

As an example, for a matrix multiplication of (n, n) matrices, using the algo-
rithm described in [10], the number of floating point operations is estimated to
be f(n) = 2n3. The total amount of data required to be transmitted in order
to complete the algorithm on a grid of processors P = r × c is n2(r − 1) across
rows of processors and n2(c − 1) across columns of processors, resulting in the
total of n2(r + c − 2) data elements. If the broadcast over a column or a row
of processors is considered sequential, then they are transformed in (r − 1) and
(c− 1) messages, respectively.

Finally, the time function for the matrix multiplication algorithm is given by:

T = Tcomm + Tparallel =
n2(r + c− 2)

w
+ TL +

2n3∑p
i=1 Si

(1)

This expression is computed for p = 1 to P and the number of processors that
minimize the processing time is determined. The computation of the best processor
grid for linear algebra kernels, on a heterogeneous machine, was discussed in [4].

4 Scheduling Algorithm

The scheduling algorithm is divided in two steps: first, a construction of a master
DAG where each node is a user job and each edge represents a priority of one job
over another, as shown in Figure 1; and second, a list scheduling algorithm, based
on [2], that schedules the master DAG, this is tasks of all jobs in a unique DAG.
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Fig. 2. Master DAG example; tasks of user 1 are organized separately to guarantee
the reservation policy

The master DAG is created based on job priorities and deadlines [9]. Here
it will be assumed that the master DAG is already defined and available to be
scheduled (first step). In the second step the algorithm ensures that user reser-
vation policy is not compromised such that, for example, if a user has reserved
20% of the cluster, their jobs will be schedule accordingly. The difference for the
fixed capacity schedule is that if the user does not need that capacity at a given
time, it will be available for other users. Figure 2 exemplifies the master DAG
construction. If user 1 has reserved part of the machine, his tasks are put in
parallel, at the top level. The tasks of other users are organized either in parallel
or sequentially according to the prioritizing policy [9].

The master DAG have artificial nodes in order to impose priorities among
jobs with zero processing time. Jobs are independent so that the edges have zero
communication costs. Communications are only considered inside each job.

The scheduling algorithm applied to the global DAG is a list scheduling tech-
nique [13] which consists in the following steps: a) determine the available tasks
to schedule, b) define a priority to them and c) until all tasks are scheduled,
select the task with higher priority and assign it to the processor that allows the
earliest start-time. For parallel tasks the last step selects not one processor but
several processors that allow the earliest start-time [2]. Note that at this step
we refer to tasks that result from all jobs.

Two frequently used attributes to define the tasks priorities are the t-level
(top-level) and the b-level (bottom-level). The t-level of a node ni is defined as
the length of the longest path from an entry node to ni (excluding ni). The
b-level of a node ni is the length of the longest path from ni to an exit node.
The nodes along the DAG with higher b-level belong to the critical path.

The execution time ti,p is considered to be non-monotonic so that there is
a number p of processors for which ti,p < ti,p−1 and ti,p < ti,p+1. Let t∗i,p be
the minimum processing time of task i on the heterogeneous machine, which is
achieved when the fastest p processors are used. Other combination of p proces-
sors will result in less computational capacity and consequently more processing
time. The specific best processor layout should be a parameter of the tasks so
that it can be considered in the optimal (t∗i,p) processing time computation. From



128 J. Barbosa and A.P. Monteiro

this definition we can estimate a lower bound for the makespan which is the sum
of the minimum processing time of the tasks on the critical path: t∞ =

∑
i t∗i,p,

which is the time required to solve all tasks assuming an unbounded number
of processors [21], and in this case it means that any task has the cluster fully
available for it.

The expected makespan is higher because not all concurrent tasks can execute
on the fastest processors which may change dynamically the critical path. Lower
priority tasks, after being scheduled, can be transformed in critical path tasks
if the capacity of the machine is lower than the required capacity to obtain t∗i,p
for all concurrent tasks. Therefore, the algorithm [2] evaluates dynamically the
b-level of the tasks being scheduled and makes scheduling corrections in order
to reduce the maximum b-level of those tasks.

The processing capacity required to achieve t∗i,p for task i considers the fastest
processors and is defined as S∗

i =
∑p

j=1 Sj . It is obvious that if slower processors
are used, the capacity that achieves minimum time for task i is S′

i < S∗
i , resulting

t′i > t∗i . Since more processors are required to obtain S∗
i they would imply more

communications and consequently more processing time; therefore, the minimum
processing time achievable will be certainly higher than the estimated t∗i .

Algorithm1
1. while tasks �= �
2. Compute the set of ready tasks
3. For each User k with limit>0
3. For each ready task i
4. Compute the optimal capacity S∗

i

5. if
∑

i S∗
i > Slimit

6. For each ready task i
7. S′

i = (Slimit/
∑

j S∗
j )S∗

i

8. else
9. For each ready task i S′

i = S∗
i

10. Smax = Smax −
∑

i S′
i

11. For each ready task i
12. Compute the optimal capacity S∗

i

13. if
∑

i S∗
i > Smax

14. For each ready task i
15. S′

i = (Smax/
∑

j S∗
j )S∗

i

16. else
17. For each ready task i S′

i = S∗
i

Algorithm 1 is based on [2]. Smax =
∑P

i=1 Si is the total capacity of the homo-
geneous or heterogeneous machine computed as the sum of the individual capac-
ity of each node. The while cycle at line 1 refers to all tasks of the DAG. In line
2 the ready tasks are those for which the predecessors have finished processing.
From line 3 to 9 the algorithm determines the computational capacity that min-
imizes each ready tasks S∗

i for the users that have reserved a slice of the cluster
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(represented by Slimit), according to the computational model and by assuming
that the fastest processors are used. The number of processors is not important
here and it is not registered. Then if the user limit Slimit is exceeded, the capacity
assigned to each tasks is limited to the relative weight of each task. On line 10 the
capacity left to other users that have no cluster reservation is computed. From line
11 to 17 the algorithm computes the same as from line 3 to 9 for the remaining
tasks. The time complexity of algorithm 1 is O(v × P + v) since each task is only
computed once: step 4 and 12 are O(v × P ); and step 6 and 14 are O(v).

Algorithm2
1. Compute tl
2. while ready tasks �= �
3. Select the minimum tl
4. Select processors that allow tl
5. while Si < S′

i and ti,p < ti,p−1
add processor

6. Compute bl
7. while true
8. Select task k with highest bl
9. Select task r with minimum bl
10. if r has been maximum

then break
11. Reduce one processor to task r
12. Assign it to task k
13. Re-evaluate processing time

of tasks r and k
14. Re-evaluate bl of tasks r and k

Algorithm 2 is the second part of the scheduling algorithm. Here t-level and
b-level were replaced by tl and bl respectively. From line 1 to 5 the algorithm
schedules all ready tasks trying to assign to them the processing capacity deter-
mined before in Algorithm 1. The selected processors allow the tasks to start on
their earliest start-time, but it also verifies if starting later, with more proces-
sors, they can finish at an earlier time. The processing time needs to be tested
since in general the processors used are not the fastest ones and consequently
the minimum processing time is achieved with less processing capacity, although
higher than t∗i,p.

From line 6 to 14 the algorithm tries to correct the last schedule by assigning
more processors to the tasks that have higher b-level. The computation of b-level
on line 6 and 14 uses t∗i,p for the tasks on following levels (not processed yet). For
tasks of the current level, the time computed on line 5 and 13 are respectively
used. The algorithm stops if the task with minimum b-level has been maximum
during the minimization procedure. At line 11 the computation time of tasks r
and k are re-evaluated considering the new set of processors assigned which have
resulted from the transference of one processor from the set of r to the set of k.
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The time complexity of b-level and t-level is O(e+v) [13]. The time complexity
of steps 3 to 5 is O(v × P ) since it is executed once for each task and combined
up to P processors. Steps 7 to 14 are O(v2×P ) since each task can be compared
to the others (v2) and each of those cases is combined up to P processors. The
resulting time complexity of both algorithms is O(v2 × P ).

The algorithm can be applied at the beginning of the computation and gener-
ates all the scheduling, resulting in a static scheduling. But if Algorithm 1 and 2
are executed every time that new ready tasks are available, this is, with the feed-
back of the computation and eventually with new jobs that may have arrived,
it will produce a dynamic scheduling that takes into account the availability of
the nodes (some may go off), the new jobs submitted and the expiration of user
reservations. In fact for a cluster only a dynamic behavior will be useful.

5 Results and Discussion

In this section the evaluation of the scheduling algorithm proposed in this paper
and a comparison to the HEFT [20], a reference algorithm of the related work sec-
tion, is presented. The results shown below are obtained from a simulation setup
but based on measures taken in the target cluster. The procedure to estimate com-
putation and communication times were presented and analyzed before [4].

5.1 Parallel Machine

Although both scheduling algorithms were designed to work on heterogeneous
machines, the machine considered here is homogeneous in order to have an un-
biased comparison of the algorithms behavior. In fact a homogeneous computer
is a particular case of the general heterogeneous paradigm.

The machine considered is composed by 20 processors, connected by a 100Mbit
switched Ethernet. The processors are Pentium IV at 3.2 GHz and 1 GB of RAM
with an individual capacity of 404Mflops. The main characteristic of the net-
work is that it allows simultaneous communications between different pairs of
machines. For parallel tasks this is an important characteristic because to com-
plete a task the involved processors (group) have to exchange data. In the general
case, when accounting for the amount of communication involved, we need to
ensure that inside the group there is no communication conflicts. Otherwise, it
would be very difficult to synchronize communications, in different parallel tasks,
to avoid conflicts.

5.2 DAGs and Tasks

There were used three DAGs, one with 10 tasks obtained from [20] and shown
in Figure 3, for direct comparison, and two other DAGs of 30 and 90 tasks.
These last two DAGs were generated based on the algorithm presented in [8]
which can be resumed as follows: there are Na nodes with no predecessors and
only successors, with ids ranging from 1 to Na; Nb nodes with both predecessors
and successors, with ids ranging from Na+1 to Na+Nb; Nc nodes with only
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Fig. 3. Sample DAG with 10 nodes obtained from [20]

predecessors and ids ranging from Na+Nb+1 to Na+Nb+Nc. Here we considered
Na=Nc=4 and Nb equal to the remaining nodes. The minimum and maximum
out node degree is 2 and 5 respectively. We also make all edges pointing from
smaller id nodes to larger id nodes.

The structure of the randomly generated DAG [8] can represent a collection of
jobs from one or several users that are organized in a master DAG as expressed
on section 4, and representing real applications. In this paper the tasks that form
all DAGs are linear algebra kernels namely tridiagonal factorization (TRD), ma-
trix Q computation, QR iteration and correlation (C). The size of each task is
randomly generated in the interval [100, 400]. The processing times estimated in
the scheduling algorithm are based on real values measured on the target pro-
cessors. Table 1 shows the relative computation and intra-task communication
weight of the tasks. The DAG edges are assigned a inter-task communication
cost of 30% of the computation time of the precedent task (computation to
communication ratio of 0.3).

5.3 Limitations of the Non-parallel Task Scheduling

First, it is shown that a non-parallel approach does not take advantage of the
capacity available mainly due to the serialization of tasks in the same proces-
sor in order to reduce inter-task communications. The scheduling resulted from

Table 1. Relative computational and intra-communication weights of tasks

Task type TRD Q QR C
Task relative

computational weight 1 0.82 2 3
Task relative

communication weight 1 0.125 0.25 0.50
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Table 2. Schedule length obtained with HEFT and Parallel Task scheduling

Algorithm DAG10 DAG30 DAG90
HEFT (s) 7.87 23.85 27.64

Parallel task
scheduling (s) 4.02 14.31 21.41

these algorithms, like HEFT, uses few processors because this results in an op-
timization of the scheduling length. Figure 4-a) shows the computational load
for a computer with 20 processors. It can be seen that for the 10 node DAG, of
Figure 3, only 3 processors have significant load; for the 30 node DAG only 4
processors and with very different loads; and for the 90 node DAG, 5 processors
are idle and other 5 have very low load, this is, half of the machine is idle almost
of the time. This behavior shows that if a user reserves a set of nodes for a given
period of time, it is not guaranteed that the machine is well used even if the user
has heavy DAGs to execute.

A parallel task scheduling, on the other hand, achieves better load distribution
and consequently better machine usage. Figure 4-b) shows the load distribution
for the same DAGs. Although this approach requires data redistribution between
tasks and intra-task communications, it reduces the scheduling length as shown
in table 2.

5.4 Scheduling with User Reservation of Machine Nodes

In point 5.3 it was shown the advantages of the parallel task scheduling. Fig-
ure 4 shows a better load balance for this algorithm but not a perfect one. A
perfect scheduling would result in the same load for all processors assigned to
a user. This may not be achievable due to DAG restrictions. Therefore, the al-
ternative proposed with algorithms 1 and 2 is to make a flexible management of
the nodes assigned to a user so that if at any given point the user cannot use
that processing capacity, it will be available for jobs of other users. Instead of
assigning processors it is assigned processing capacity so that along a DAG exe-
cution different processors can be used with the restriction of having, together,
the same processing capacity. This strategy is straightforward applied for the
heterogeneous case.

We distinguish two situations that are: a) the user tasks are independent or
the DAG executed allows an efficient usage of the processors reserved with few
idle periods; and b) the user DAG imposes some idle periods in the processors
reserved. In the first situation, the algorithm proposed here does not bring any
advantage, apart from the task parallel scheduling that may improve the schedule
as shown in point 5.3. It is for the second hypothesis that the usage of the machine
as a whole can be improved and consequently the schedule length of the jobs
in general. Next, it will be shown with a situation example how the scheduling
algorithm improves the global performance.

Consider that a user reserves 12 nodes of a 20 node computer for a pe-
riod of time. However, user1 runs a job with 10 nodes that finishes before the
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Fig. 4. Load distribution obtained with HEFT and parallel task scheduling algorithm

reserved period. Another user wants to run a job with 30 nodes which would use
the remaining 8 nodes. Table 3 resumes the schedule length obtained when an
exclusive usage is imposed and when a flexible usage is allowed with the global
management as proposed here.

In this case even user1 that consumed less computing power than the one
reserved was able to reduce the schedule length of the job. This is due to the
utilization of 13 processors in one given moment of the processing. This happened
due to rounding effects that resulted in the assignment of one more processor
to user1. The algorithm assigns computing power, but in shanks equivalent to
the computing power of the powerful node available. What was expected was to
obtain the same processing time as in the case of exclusive usage. The other user
reduces substantially the schedule length because when user1 does not use the
reserved power it is assigned to the other job. Figure 5 shows the assignment of
nodes to the tasks of user1 and user2 jobs when using the global management. It
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Table 3. Schedule length obtained with exclusive use of nodes and a global manage-
ment

user Schedule length (s)
Exclusive use Global Management

User1 (12 nodes) 106.59 93.60
User2 (8 nodes) 251.78 210.44

Fig. 5. Mapping of tasks to computer nodes with the global management; node number
in the vertical axis and time in the horizontal axis

can be seen that one task of user1 is executed on processor number 20 and that
before the end of the user1 job, user2’s job uses processors in the set of the first
12. This is because task restrictions in user1 DAG left several nodes idle. The
gaps between tasks of a given user are due to inter-task communications. The
gap is proportional to the edges arriving a node, because the algorithm sums
those communications.

6 Conclusions

The scheduling algorithm presented in this paper can improve the cluster utiliza-
tion and the response time once we allow a variable computing power (number
of processors) assigned for a job. Although the results presented are for a ho-
mogeneous cluster, the algorithm was designed for heterogeneous machines. To
overcame the heterogeneity of the machine, the algorithm starts by computing
the amount of capacity in Mflops, instead of number of processors, that min-
imizes the processing time of each task. For that it uses the fastest processors
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and determines the minimum processing time that each task can achieve in that
machine. Then, the algorithm joins processors until the maximum capacity re-
quired for each task is achieved, independently of the number of processors, but
restricted by the maximum capacity available.

The algorithmproposeddoes not require a fixed subdivision of processors.When
scheduling a set of ready tasks the machine is viewed has a whole, independently
of the groups of processors formed in the last level, thus allowing a better use of the
machine and consequently achieving improvements in processing time.

It was demonstrated that, when scheduling DAGs, a non-parallel task schedul-
ing has limitations to efficiently use a set of processors assigned to a job.

Acknowledgments

The work presented was partially done in the scope of the project Segmentation,
Tracking and Motion Analysis of Deformable (2D/3D) Objects using Physical
Principles, with reference POSC/EEA-SRI/55386/2004, financially supported
by FCT-Fundação para a Ciência e Tecnologia from Portugal.

References

1. Amoura, A.K., Bampis, E., König, J.-C.: Scheduling algorithms for parallel gaus-
sian elimination with communication costs. IEEE Transactions on Parallel and
Distributed Systems 9(7), 679–686 (1998)

2. Barbosa, J., Morais, C., Nobrega, R., Monteiro, A.P.: Static scheduling of depen-
dent parallel tasks on heterogeneous clusters. In: Heteropar 2005, pp. 1–8. IEEE
Computer Society, Los Alamitos (2005)

3. Barbosa, J., Padilha, A.J.: Algorithm-dependent method to determine the opti-
mal number of computers in parallel virtual machines. In: Hernández, V., Palma,
J.M.L.M., Dongarra, J. (eds.) VECPAR 1998. LNCS, vol. 1573, pp. 508–521.
Springer, Heidelberg (1999)

4. Barbosa, J., Tavares, J., Padilha, A.J.: Linear algebra algorithms in a heteroge-
neous cluster of personal computers. In: Proceedings of 9th Heterogeneous Com-
puting Workshop, pp. 147–159. IEEE CS Press, Los Alamitos (2000)

5. Berman, F., Wolski, R., Figueira, S., Schopf, J., Shao, G.: Application-level schedul-
ing on distributed heterogeneous networks. In: Supercomputing 1996 (1996)

6. Blazewicz, J., Dell’Olmo, P., Drozdowski, M., Maczka, P.: Scheduling multipro-
cessor tasks on parallel processors with limited availability. European journal of
Operational Research (149), 377–389 (2003)

7. Blazewicz, J., Machowiak, M., Weglarz, J., Kovalyov, M., Trystram, D.: Schedul-
ing malleable tasks on parallel processors to minimize the makespan. Annals of
Operations Research (129), 65–80 (2004)

8. Shivle, S., et al.: Mapping of subtasks with multiple versions in a heterogeneous ad
hoc grid environment. In: Heteropar 2004. IEEE Computer Society, Los Alamitos
(2004)

9. Kim, J.-K., et al.: Dynamically mapping tasks with priorities and multiple dead-
lines in a heterogeneous environment. Journal of Parallel and Distributed Comput-
ing 67, 154–169 (2007)



136 J. Barbosa and A.P. Monteiro

10. Geijn, R., Watts, J.: Summa: Scalable universal matrix multiplication algorithm.
Technical Report CS-95-286, University of Tennessee, Knoxville (1995)

11. Gerasoulis, A., Yang, T.: On the granularity and clustering of directed acyclic task
graphs. IEEE Transactions on Parallel and Distributed Systems, 686–701 (June
1993)

12. Jansen, K.: Scheduling malleable parallel tasks: An asymptotic fully polynomial
time approximation scheme. Algorithmica 39, 59–81 (2004)

13. Kwok, Y., Ahmad, I.: Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Computing Surveys 31(4), 406–471 (1999)

14. Kwok, Y., Ahmad, I.: On multiprocessor task scheduling using efficient state space
search approaches. Journal of Parallel and Distributed Computing 65, 1515–1532
(2005)

15. Lepère, R., Mounié, G., Trystram, D.: An approximation algorithm for scheduling
trees of malleable tasks. European journal of Operational Research (142), 242–249
(2002)

16. Oh-Heum, Chwa, K.-Y.: Scheduling parallel tasks with individual deadlines. The-
oretical Computer Science 215, 209–223 (1999)

17. Park, G.-L.: Performance evaluation of a list scheduling algorithm in distributed
memory multiprocessor systems. Future Generation Computer Systems (20), 249–
256 (2004)

18. Shirazi, B., Wang, M., Pathak, G.: Analysis and evaluation of heuristic methods for
static task scheduling. Journal of Parallel and Distributing Computing 10, 222–232
(1990)

19. Sinnen, O., Sousa, L.: List scheduling: extension for contention awareness and
evaluation of node priorities for heterogeneous cluster architectures. Parallel Com-
puting (30), 81–101 (2004)

20. Topcuoglu, H., Hariri, S., Wu, M.-Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Transactions on Parallel and
Distributed Systems 13(3), 260–274 (2002)

21. Trystram, D.: Scheduling parallel applications using malleable tasks on clusters. In:
15th International Conference on Parallel and Distributed Processing Symposium
(2001)



Data Locality Aware Strategy for Two-Phase
Collective I/O

Rosa Filgueira, David E. Singh, Juan C. Pichel, Florin Isaila, and Jesús Carretero
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Abstract. This paper presents Locality-Aware Two-Phase (LATP) I/O, an opti-
mization of the Two-Phase collective I/O technique from ROMIO, the most pop-
ular MPI-IO implementation. In order to increase the locality of the file accesses,
LATP employs the Linear Assignment Problem (LAP) for finding an optimal dis-
tribution of data to processes, an aspect that is not considered in the original tech-
nique. This assignment is based on the local data that each process stores and has
as main purpose the reduction of the number of communication involved in the
I/O collective operation and, therefore, the improvement of the global execution
time. Compared with Two-Phase I/O, LATP I/O obtains important improvements
in most of the considered scenarios.

1 Introduction

A large class of scientific applications operates on a high volume of data that needs to be
persistently stored. Parallel file systems such as GPFS [15], PVFS [11] and Lustre [12]
offer scalable solutions for concurrent and efficient access to storage. These parallel file
systems are accessed by the parallel applications through interfaces such as POSIX or
MPI-IO. This paper targets the optimization of the MPI-IO interface inside ROMIO,
the most popular MPI-IO distribution.

Many parallel applications consist of alternating compute and I/O phases. During
the I/O phase, the processes frequently access a common data set by issuing a large
number of small non-contiguous I/O requests [19,20]. Usually These requests originate
an important performance slowdown of the I/O subsystem. Collective I/O addresses this
problem by merging small individual requests into larger global requests in order to
optimize the network and disk performance. Depending on the place where the request
merging occurs, one can identify two collective I/O methods. If the requests are merged
at the I/O nodes the method is called disk-directed I/O [7,21]. If the merging occurs at
intermediary nodes or at compute nodes the method is called two-phase I/O [3,2].

In this work we focus on the Two-Phase I/O technique, extended by Thakur and
Choudhary in ROMIO[10]. Based on it we have developed and evaluated the Locality-
Aware Two-Phase I/O (LATP I/O) technique in which file data access is dependent on
the specific data distribution of each process. The comparison with the original version
of Two-Phase I/O shows that our technique obtains an important run time reduction .
This is achieved by increasing the locality of the first phase and, therefore, reducing the
number of communication operations.

J.M.L.M. Palma et al. (Eds.): VECPAR 2008, LNCS 5336, pp. 137–149, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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This paper is structured as follows. Section 2 contains the related work. Section 3 ex-
plains in detail the internal structure of Two-Phase I/O. Section 4 contains the description
of the Locality-Aware Two-Phase I/O. Section 5 is dedicated to performance evaluations.
Finally, in Section 6 we present the main conclusions derived from this work.

2 Related Work

There are several collective I/O implementations, based on the assumption that sev-
eral processes access concurrently, interleaved and non-overlapping a file (a common
case for parallel scientific applications). In disk-directed I/O [7], the compute nodes
fordward file requests to the I/O nodes. The I/O nodes merge and sort the requests be-
fore sending them to disk. In server-directed I/O of Panda [21], the I/O nodes sort the
requests on file offsets instead of disk addresses. Two-Phase I/O [3,2] consists of an
access phase, in which compute nodes exchange data with the file system according to
the file layout, and a shuffle phase, in which compute nodes redistribute the data among
each other according to the access pattern. We present this implementation of theses
technique in ROMIO in the next section. Using Lustre file joining (merging two files
into one) for improving collective I/O is presented in [22].

Several researchers have contributed with optimizations of MPI-IO data operations:
data sieving [10], non-contiguous access [16], collective caching [17], cooperating
write-behind buffering [18], integrated collective I/O and cooperative caching [14].

3 Internal Structure of Two-Phase I/O

As its name suggests, Two-Phase collective I/O consists of two phases: a shuffle phase
and an I/O phase. In the shuffle phase, small file requests merged into larger ones. In
the second phase, contiguous transfers are performed to or from the file system.

Before these two phases, Two-Phase I/O divides the file region between the mini-
mum and maximum file offsets of accesses of in equal contiguous regions,called File
Domains (FD) and assigns each FD to a configurable subset of compute nodes, called
aggregators. Each aggregator is responsible for aggregating all the data inside its as-
signed FD and for transferring the FD to or from the file system.

In the implementation of Two-Phase I/O the assignment of FD to aggregators is
fixed, independent of distribution of data over the compute nodes. In contrast, based
the processor data distribution, LATP minimises the total volume of communications.
By means of this strategy it is possible to reduce the communication and, therefore, the
overall I/O time.

We ilustrate the Two-Phase I/O technique through an example of a vector of 16
elements that is written in parallel by 4 processes (see Figure 1) to a file. The size
of one element is 4. Each process has previously declared a view on the file, i.e. non-
contiguous regions are “seen” as if they were contiguous. For instance, process 0 “sees”
the data at file offsets 0-3 and 20-23 contiguously, as view offsets 0-7.

Before performing the two mentioned phases, each process analyzes, which parts
of the file are stored locally by creating a list of offsets and list of lengths. According
to the example, process 0 is assigned three intervals: (offset=0, length=4), (offset=20,
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Fig. 1. File access example

P0 0 33 33 33 33 1 00 11 22 22 2211 2’2

Lenght_FD=16

FD for process 1

FD for Process 0

FD for process 2

FD for process 3

0 16 32 48

15 31 47 63

0(byte) 32(byte) 48(byte) 63(byte)
1 00 00

16(byte)

FD_begin

FD_end

Fig. 2. Assignment of file domain

length=8), (offset=40, length=4). The list of offsets for this process is: {0, 20, 40} and
the list of lengths is: {4, 8, 4}.

In addition, each process calculates the first and last byte of the accessed intervl. In
our example, the first byte that process 0 has stored is 0 and the last byte is 43. Next,
all processes exchange these values and compute the maximum and minimum of file
access range, in this case 0 and 63, respectively. The interval is then divided in to equal-
sized FDs. If all 4 compute nodes are aggregators, it will be divided in 4 chunks of 16
bytes, one for each aggregator. Each chunk is assigned to each aggregator according
to its rank value. That is, block 0 is assigned to process with rank 0, block 1 to rank
1, etc. Each chunk (FD) is written to file by the assigned process. For performing this
operation, each process needs all the data of its FD. If these data are stored in other
processes, they are exchanged during the communication phase.

Once the size of each FD is obtained, two lists with so many positions as number of
processes are created. The first list indicates the beginning of the FD of each process.
The second one indicates the final of the FD of each process. Figure 2 shows how the
vector is divided into different FDs. Each FD has been assigned a different color. Also,
it can be observed that the assignment of FD is independent of the local data of each
process. This scheme is inefficient in many situations. For example, the FD for process
3, begins at byte 48 and finalizes at byte 63. All these data are stored in the process 2, so
this implies unnecessary communications between process 2 and 3, because the process
2 has to send all this data to process 3, insted of writing it to disk.

Once each process knows all the referring data, it analyzes, which data from its FD
is not locally stored and what communication has be to be established in order to gather
the data. This stage is reflected in Figure 3. This figure shows the data of the P vector



140 R. Filgueira et al.

P0 in process 0 0 33 33 33 1 00 3300 1 00 11 22 22 2211 2’2

0 33 33 33 1 R RR S 00 1S 22 22 221S 2’2

0 33 33 33 1 00 3300 R R R 2S 2S 2SR 2’S

0 R R R R 0S 330S 1 0S 11 22 22 2211 2’2

0 3S 3S 3S 1 00 3S00 1 00 11 R R R11 R

P0 in process 1

P0 in process 2

P0 in process 3

Recv process 0 = 3
Send process 0 = 3

Recv process 1 = 3
Send process 1 = 3

Recv process 2 = 4
Send process 2 = 4

Recv process 3 = 4
Send process 3 = 4

Fig. 3. Data transfers between processes

P0 in process 0 33 33 33 1 00 3300 1 00 11 22 22 2211 2’2

0 33 33 33 1 R RR 00 1 22 22 221 2’2

0 33 33 33 1 00 3300 2 2 2

R 0 330 1 0 11 22 22 2211 2’2

0 3 3 3 1 00 300 1 00 1111

P0 in process 1

P0 in process 2

P0 in process 3

0 33 33 331 22 R3 4

R RR R

5 R RRR RR 8R6 7

10 11 129

14 15 1613

Buffer I/O process 0

Buffer I/O process 1

Buffer I/O process 2

Buffer I/O process 3

0 33 33 33 1 00 3300 1 00 11 22 22 2211 2’21 2 3 4 5 6 87 10 11 12 14 15 169 132
P in disk

Fig. 4. Write of data in disk

that each process has locally stored. For any process, the vector elements labeled ’R’
are received and the ones labled ’S’ are sent. The arrows represent communication
operations.

For example, in Figure 3, process 0 needs three elements that are stored in the process
3, and has stored three elements that processes 1 and 2 need. In the following step of
Two-Phase I/O technique, the processes exchange the previously calculated data. Once
all the processes have the data of their FD, they write to file a chunk of consecutive
entries as shown in Figure 4. Each process transfers only one contiguous region to
file (its FD), thus, reducing the number of I/O requests and improving the overall I/O
performance.

4 Locality Aware Strategy for Two-Phase I/O

As explained in Section 3, Two-Phase I/O makes a fixed assignment of the FDs to
processes. With the LA-Two-Phase I/O replaces the rigid assignment of the FDs by
an assignment dependent of the initial distribution of the data over the processes. Our
approach is based on the Linear Assignment Problem.
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4.1 Linear Assignment Problem

The Linear Assignment Problem (LAP) is a well studied problem in linear program-
ming and combinatorial optimization. LAP computes the optimal assigment of n items
to n elements given an n × n cost matrix. In other words, LAP selects n elements
of the matrix (for instance, the matrix from Table 1), so that there is exactly one ele-
ment in each row and one in each column, and the sum of the corresponding costs is
maximum.

The problem of finding the best interval assignment to the existing processes can be
efficiently solved by applying the existing solutions of this problem. In our case, the
LAP tries to assign FDs to processes, by maximizing the cost, given that we want to
assign to the process the interval, for which it has more local data.

A large number of algorithms, sequential and parallel, have been developed for LAP.
We have selected for our work the following algorithms, considered to be the most
representative ones:

– Hungarian algorithm [1]: This is the first polynomial-time primal-dual algorithm
that solves the assignment problem. The first version was invented and published
by Harold Kuhn in 1955 and has a O(n4) complexity. This was revised by James
Munkres in 1957, and has been known since as the Hungarian algorithm, the
Munkres assignment algorithm, or the Kuhn-Munkres algorithm.

– Jonker and Volgenant algorithm[5]: They develop a shortest augmenting path al-
gorithm for the linear assignment problem. It contains new initialization routines
and a special implementation of Dijkstra’s shortest path method. For both dense
and sparse problems computational experiments they show this algorithm to be uni-
formly faster than the best algorithms from the literature. It has a O(n3)
complexity.

– APC and APS Algorithms[4]: These codes implement the Lawler O(n3)) version
of the Hungarian algorithm by Carpenato, Martello and Toth. APC works on a
complete cost matrix, while APS works on a sparse one.

4.2 LA-Two-Phase I/O

In order to explain LA-Two-Phase I/O, we use the example for Section 2 with the same
data and distribution as in Figure 1.

The proposed technique differs from the original version in the assignment of the
FDs to processes. Each FD is assigned based on the distribution of the local data
of processes. In order to compute this initial distribution, the number of intervals in
which we can divide the file is computed. This is made by dividing the size of the ac-
cess interval by the sizes of the FD. In our example, the number of intervals is equal
to four.

The next step consists in assigning each interval to each process efficiently. First, a
matrix is constructed, with as many rows as processes, and so many columns as inter-
vals. Each matrix entry contains the number of elements that each process has stored.
The matrix from our example is shown in Table 1.

Our technique is based on maximizing the aggregator locality by applying a LAP
algorithm and obtaining a list with the assignment of intervals to processes. For our
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P0 0 33 33 33 1 00 3300 1 00 11 22 22 2211 2’2

Lenght_FD=16

FD for processor 0

FD for processor 3

FD for processor 1

FD for processor 2

16 32 48 0

31 47 63 15

0(byte) 16(byte) 32(byte) 48(byte) 63(byte)

FD_begin

FD_end

3 0 1 2Intervals

Fig. 5. Assignment of file domain for LA-Two-Phase I/O

P0 in process 0 0 33 33 33 1 00 3300 1 00 11 22 22 2211 2’2

0 33 33 33 S R RR 1 I R 11 22 22 221i1 2’2

0 33 33 33 1 00 3300 R R R 22 2i2 22R 22

S R R R R 0 R00 1 0S 11 22 22 2211 2’2

R 33 33 33 1 00 3iS00 1 00 11 R R R11 R

P0 in process 1

P0 in process 2

P0 in process 3

Recv process 0 = 2
Send process 0 = 2

Recv process 1 = 1
Send process 1 = 1

Recv process 2 = 0
Send process 2 = 0

Recv process 3 = 1
Send process 3 = 1

Fig. 6. Transfers of data between processes in LA-Two-Phase I/O

example, the assignment list is {3, 0, 1, 2} as indicated Figure 5. This list represents the
interval that has been assigned to each process.

This strategy reduces the number of communication operations, due to the fact that
each process increases the amount of locally assigned data. The following phases of
the LA-Two-Phase I/O are the same as those of the original version. Figure 6 shows
the communication operations between processes. In the corresponding step of original
Two-phase I/O, shown in Figure 3, process 2 sends four elements and receives four
elements. With our technique, the number of transfers of process 2 has been reduced to
none (see Figure 6). In this example the LA-Two-Phase I/O reduces the overall transfers
from 28 exchanged elements to 8.

Figure 7 shows the I/O phase of LA-Two-Phase I/O. In the same way that as in the
original technique, each process writes to file a contiguous data region.

Table 1. Number of elements of each interval

Interval/Process 0 1 2 3

0 1 2 1 0
1 0 1 3 0
2 0 0 0 4
3 3 1 0 0
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P0 in process 0 0 33 33 33 1 00 3300 1 00 11 22 22 2211 2’2

0 33 33 33 1 R RR 00 1 22 22 221 2’2

0 33 33 33 1 00 3300 2 2 2

R 0 330 1 0 11 22 22 2211 2’2

0 3 3 3 1 00 300 1 00 1111

P0 in process 1

P0 in process 2

P0 in process 3

0 33 33 331 22 R3 4

R RR R

5 R RRR RR 8R6 7

10 11 129

14 15 1613

Buffer I/O process 0

Buffer I/O process 1

Buffer I/O process 2

Buffer I/O process 3

0 33 33 33 1 00 3300 1 00 11 22 22 2211 2’21 2 3 4 5 6 87 10 11 12 14 15 169 132
P in disk

Fig. 7. Write of data in disk in LA-Two-Phase I/O

5 Performance Evaluation

The evaluations in this paper were performed by using the BIPS3D application with
different input meshes related to different semiconductor devices. We have compared
LATP I/O with the original version of the technique Two-Phase I/O implemented in
MPICH.

The tests have been made in Magerit cluster, installed in the CESVIMA supercom-
puting center. Magerit has 1200eServer BladeCenter JS202400 nodes, and each node
has two processors IBM 64 bits PowerPC single-core 970FX running at 2.2 GHz and
having 4GB RAM and 40GB HD. The interconnection network is Myrinet.

We have used the MPICHGM 2.7.15NOGM distribution for the basic implementa-
tion of Two-Phase I/O. We have developed our technique by modifying this code. The
parallel file system used is PVFS 1.6.3 with one metadata server and 8 I/O nodes with
a striping factor of 64KB.

The remainder of this section is divided as follows. Subsection 5.1 briefly overviews
the BIPS3D application. Subsection 5.2 contains the evaluation of the linear assignment
technique. Finally, the evaluation of LA-Two-Phase I/O is presented in subsection 5.3.

5.1 BIPS3D Simulator

BIPS3D is a 3-dimensional simulator of BJT and HBT bipolar devices [8]. The goal of
the 3D simulation is to relate electrical characteristics of the device with its physical
and geometrical parameters. The basic equations to be solved are Poisson’s equation
and electron and hole continuity in a stationary state.

Finite element methods are applied in order to discretize the Poisson equation, hole
and electron continuity equations by using tetrahedral elements. The result is an un-
structured mesh. In this work, we have used four different meshes, as described later.

Using the METIS library, this mesh is divided into sub-domains, in such a man-
ner that one sub-domain corresponds to one process. The next step is decoupling the
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Table 2. Size in MB of each file based on the mesh and loads

Mesh/Load mesh1 mesh2 mesh3 mesh4
100 18 12 28 110
200 36 25 56 221
500 90 63 140 552
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Poisson equation from the hole and electron continuity equations. They are linearized
by Newton method. Then we construct, for each sub-domain, in a parallel manner, the
part corresponding to the associated linear system. Each system is solved using domain
decomposition methods. Finally, the results are written to a file. For our evaluation
BIPS3D has been executed using four different meshes: mesh1 (47200 nodes), mesh2
(32888 nodes), mesh3 (732563 nodes) and mesh4 (289648 nodes), with different num-
ber of processes: 8, 16, 32 and 64. The BIPS3D associates a data stucture to each node
of a mesh. The contents of these data structures are the data written to disk during the
I/O phase. The number of elements that this structure has per each mesh entry is given
by the load parameter. This means that, given a mesh and a load, the number of data
written is the product of the number of mesh elements and the load. In this work we
have evaluated different loads, concretely, 100, 200 and 500. Table 2 lists the different
sizes (in MB) of each file based on load and mesh characteristics.

5.2 Performance of the Linear Assignment Problem

We have applied all the LAP algorithms described in Section 4 to our problem. We
have noticed that in all cases all algorithms produce the same assignment (of FDs to
processes). The only difference between them is the time to compute the optimal al-
location. Figure 8 shows the normalized execution time (taking the APC algorithm as
the reference technique) for solving the interval distribution using different number of
processes and mesh1 data distribution. Note that the fastest algorithm is the Jonker and
Volgenant, and for this reason we have chosen it to apply in LA-Two-Phase I/O.
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5.3 Performance Evaluation of LA-Two-Phase I/O

Figure 9 shows the percentage of reduction of communications for LA-Two-Phase I/O
over Two-Phase I/O for mesh1, mesh2, mesh3 and mesh4 and different numbers of
processes. We can see that, when LATP is applied, the volume of transferred data is
considerably reduced.

In the first step of our study we have analyzed the Two-Phase I/O, identifying the
stages of the technique that are more time-consuming. The stages of Two-Phase I/O are:

– Offsets and lengths calculation (st1): In this stage the list of offsets and lengths of
the file is calculated.

– Offsets and lengths communication (st2): Each process communicates its start and
end offsets to the other processes. In this way all processes have global information
about the involved file interval.

– Interval assignment (st3): This stage only exists in LA-Two-Phase I/O. First, it cal-
culates the number of intervals into which we can divide the file, and then, it assigns
intervals to processes by applying Linear Assignment Problem (see Table 1).

– File domain calculation (st4): The I/O workload is divided among processes (see
Figure 2). This is done by dividing the file into file domains (FDs). In this way,
in the following stages, each aggregator collects and transfers to the file the data
associated to its FD.

– Access request calculation (st5): It calculates the access requests for the file do-
mains of remote processes.

– Metadata transfer (st6): Transfer the lists of offsets and lengths.
– Buffer writing (st7): The data are sent to appropriate processes (see Figure 3).
– File writing (st8): The data are written to file (see Figure 4).

The buffer and file writing stages (st7 and st8), are repeated as many times as the
following calculus indicates: the size of the file portion of each process is divided by
the size of the Two-Phase I/O buffer (4 MB in our experiments). First, the write size
of each process is obtained by dividing the size of the file by the number of processes.
For example, for mesh4 with load 500 and using 8 processes the size of the file is 552
MB (see table 2). Therefore, the write size of each process is 69 MB. Then, the file size
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st1-st5 st6 st7 st8

(a)

st1-st5 st6 st7 st8

(b)

Fig. 10. Stages of Two-Phase I/O for mesh1: (a) with load 100 and 16 processes and (b) with
load 100 and 64 processes
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Fig. 11. Percentage of improvement for mesh1: (a) in Stage 6 and (b) in Stage 7

related to each process is divided to the buffer size of Two-Phase I/O. Consequently,
the number of times is given by this value divided by 4MB, for this example is 18.

Figure 11 represents the percentage of time of Two-Phase I/O for mesh1 with load
100, with 16 and 64 processes, respectively. The costs of stages st1, st2, st3, st4 and st5
have been added up, and we have represented this value in the figures as st1-st5.

As we can see in the Figures 10(a) and 10(b), the slowest stages are st6 and st7. Note
that the cost of the st6 stage increases with the number of processes. These figures show
the weight of the communication stages in the Two-Phase I/O technique. Moreover, we
can see that the cost of these stages increases with the number of processors. Based on
this, we conclude that this represents an important bottleneck in this technique. For this
reason we have developed the LA-Two-Phase I/O technique with the aim of reducing the
amount of communication. This technique reduces the global time of Two-Phase I/O.

LA-Two-Phase I/O technique improves the communication performance of st6 and
st7 stages. Figure 11(a) shows the percentage of improvement in st6 stage for mesh1,
for different loads and different number of processes.

In this figure we can see that the time of st6 stage is significantly reduced in most
cases. In this stage each process calculates what requests of other processes lie in its file
domain and creates a list of offset and lengths for each process, which has data stored
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in its FD. Besides, in this stage, each process sends the offset and length lists to the rest
of the processes. In LA-Two-Phase I/O, many of the data that each process has stored
belong to its FD (given that data locality is increased) and therefore less offsets and
lengths are communicated.

Figure 11(b) depicts the time of stage st7. Note that, again, this time is reduced
in most of cases. This is because in this stage, each process sends the data that has
calculated in st6 stage to the appropriate processes. In LA-Two-Phase I/O, many of the
data that each process has stored belong to its FD, therefore, they send less data to the
other processes, reducing the number of transfers and the volume of data.

Figure 12 shows the overall percentage of improvement of our technique for mesh1,
mesh2, mesh3 and mesh4 with 64 processes. In this figure, we included the time of all
stages. For this reason the percentage of improvement is smaller than in previous stages.
Nevertheless, we can notice that in the majority cases a significant improvement in
the execution time for LA-Two-Phase I/O technique. The original technique performed
better in 4 of the 48 cases, but the loss was under 5% in all the cases. It appears that,
for these cases (which represent less than 10% of the total), the data locality happened
to be good enough in the original distribution and the additional cost to find a better
distribution did not pay off.

It is important to emphasize that the additional cost of the new stage (st3) is very
small compared with the total time. The fraction of this stage in the overall execution
time is small: in the best case it is 0.07% of the time (mesh2, 8 processes and load 500)
and in the worst case the 7% (mesh3, 64 processes and load 100).
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Fig. 12. Overall improvement for: (a) mesh1 (b) mesh2 (c) mesh3 and (d) mesh4
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6 Conclusions

In this paper a new technique called LA-Two-Phase I/O based on the local data that
each process stores is presented. First of all, we have showed that the LA-Two-Phase
I/O improves the overall performance, when compared to the original Two-Phase I/O.
The new stage (st3), which we have added to the technique LA-Two-Phase I/O has an
insignificant overhead in comparison to the total execution time.

In the evaluation section we have shown that the greater number of processes, the
larger the improvement brought by our technique. Finally, it is important to emphasize,
that LA-Two-Phase I/O can be applied to every kind of data distribution.
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Abstract. Due to the rapid growth of the Internet, there has been a rising  
interest in using the Web as an interface to develop various applications over 
computational Grid environments. The purpose of this work is to develop a 
Grid-aware Web interface for linear algebra tasks with advanced service trad-
ing. Developing efficient and portable codes, requires users to face parallel 
computing and programming and to make use of different standard libraries, 
such as the BLAS [1], LAPACK [2] and ScaLAPACK [3] in order to solve 
computational tasks related to linear algebra. For this purpose, a scientific com-
puting environment based on a Web interface is described that allows users to 
perform their linear algebra tasks without explicitly calling the above men-
tioned libraries and softwarep tools, as well as without installing any piece of 
software on local computers: users enter algebraic formula (such as in Matlab 
or Scilab [4]) that are evaluated for determining the combinations of services 
answering the user request. Services are then executed locally or over the Grid 
using the Distributed Interactive Engineering Toolbox (DIET) [5] middleware. 

Keywords: Grid Computing, Linear Algebra, Scientific Computing, Web Por-
tal, Service Trading. 

1   Introduction 

Scientific computing aims at constructing mathematical models and numerical 
solution techniques for solving problems arising in science (including life and social 
sciences) and engineering. The solution of linear system of equations lies at the heart 
of most calculations in scientific computing. For the past twenty years, there has been 
a great deal of activity in the area of algorithms and software for solving linear 
algebra problems. ScaLAPACK is a library of high-performance linear algebra 
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routines for distributed-memory message-passing MIMD computers and networks of 
workstations supporting PVM and/or MPI. It contains routines for solving systems of 
linear equations, least squares problems and eigenvalue problems. The ScaLAPACK 
library is built upon a set of communication routines that are themselves a library, 
called the BLACS (Basic Linear Algebra Communication Subprograms) [6]. 
Furthermore, with ScaLAPACK comes an additional library called the PBLAS, which 
can be seen as a parallel distributed version of the BLAS (Basic Linear Algebra 
Subprograms) [1]. Using the PBLAS simple matrix/vector and more complex 
operations can be performed in parallel. 

Numerical simulations involving massive amounts of calculations are often executed 
on supercomputers or distributed computing platforms (e.g. clusters and Grids). It is 
often difficult for non expert users to use such computational infrastructures or even to 
use advanced libraries over clusters or Grids, because they often require to be familiar 
with Linux base OS, Grid computing middleware and tools (Glite, Globus, Condor; 
PBS, OAR; JDL, etc.), parallel programming techniques and packages (MPI; Mpich, 
Lam MPI; etc.) and linear algebra libraries (ScaLAPACK, LAPACK, BLAS, etc.). In 
order to overcome the above mentioned problems for linear algebra tasks, a Web portal 
has been developed, which is continuation of previous work [7]. 

The purpose of the work is to develop a Grid-aware Web portal for linear algebra 
tasks with advanced service trading. It provides a seamless bridge between high 
performance linear algebra libraries such as ScaLAPACK and those users who are not 
familiar with linear algebra softwares. Note that even when considering a well defined 
area such as linear algebra, determining the combination of functions (services) of 
BLAS, LAPACK and ScaLAPACK libraries satisfying a user request is very difficult 
to determine because many different services and services combinations in the various 
libraries can fulfill the same requirements. An advanced Grid service trading to 
compute and find the best service or combination of services that answer the user 
requirements [8] taking into account the amount of calculations of given expression is 
used. As a benefit, users do not need to make explicit call to specific services over the 
Grid (GridRPC, Corba, etc.) and to know the exact name of the service they are 
looking for: they just describe the expression they want to compute in a given 
applicative domain. 

The experiments of the interface have been carried out on the base of Armenian 
Grid [9] (SEE Grid site, http:www.cluster.am) and the French National Grid’5000 
infrastructures (see http://grid5000.org). 

2   Advanced Trading 

Identifying the computational service or the combination of computational services 
satisfying a user request may be quite challenging when a large amount of software is 
available either on a large scale distributed computing infrastructure or even on a sin-
gle computer. 

A grid service trading approach that computes the service or the combination of 
services answering an user request [10-11] is used. This trader is based on a semantic 
description of the available services (often in numerical libraries). Services are 
described in terms of their algebraic and semantic properties which is equivalent to 
provide a description of algorithms and objects properties in a given application area.  
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As a great benefit, users are not required to explicitly proceed to calls to numerical 
libraries or to grid-services, but instead manipulate high level mathematical 
expressions.  

2.1   Computing the Combination of Services Corresponding to a User's Request 

To identify all services and combinations of services that answer the user's problem, 
the description of the user's problem and the description of all the services are 
compared, taking into account the properties of the domain (here we focus on dense 
linear algebra). The realization consists in two steps. In the first step, all available 
services and combination of available services which answer the user request are 
computed. In the second step the best one, according to the user's criteria is chosen. It 
is possible to combine both steps for a better effectiveness.  

Using equational unification and more especially the work of Gallier and Snyder in 
[12] with some modifications in the transformations, an algorithm has been derived to 
solve the trading problem [10-11]. 

2.2   Semantic-Based Description of Service: Example in Dense Linear Algebra 

The semantic description is similar to algebraic data type description [13], the 
required information is: 

 the types (or sorts); 
 the main operators of the specific domain and their signatures (we allow 

overloading); the operators properties (such as commutativity and 
associativity) and the equations that link operators. 

When considering dense linear algebra and basic operations provided by the BLAS 
and LAPACK, we define: 

 Types: Int, Real, Char, Matrix , . . . 
 Operators and their signatures: 

o Addition of matrices: + : Matrix x Matrix -> Matrix 
o Multiplication : * : Real x Matrix -> Matrix;  * : Matrix  x Matrix  -> 

Matrix 
o Transpose of a matrix: T : Matrix  -> Matrix 
o Identity: I : -> Matrix; Null matrix: O : -> Matrix 
o . . . 

 Properties: 
o Commutativity, associativity (can be expressed directly by equations) 
o Neutral / Zero element: a : Matrix I  * a = a;  a : Matrix O *  a = O 
o Distributivity * /+: a : Matrix b : Matrix c : Matrix a  * (b + c) = (a *  b) 

+ (a * c) 

This approach is generic and can be extended to a wide range of domains as soon as a 
description based on algebraic data type can be defined (experiments have also been 
carried on in nonlinear optimization and signal processing). 
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2.3   Description of BLAS and LAPACK Libraries 

Describing the Level 3 BLAS or LAPACK procedures is then straightforward using a 
formalism very similar to the official BLAS specification [1], thanks to a description 
based on the operators of the domain (term over the algebra defined by this 
operators). This description has been extended to take into account numerical 
properties of the matrices and some “non-functional” parameters (like size of the 
matrices). 

In case of matrix-matrix multiplication, symmetry of one of the matrices involved 
in the operation may lead to select SSYMM rather than SGEMM and similarly in case 
of triangular matrix that is supported by STRMM. To take into account these 
properties, subtypes have been introduced in the description: 

 Types: 

o Invertible matrices: InvMatrix < Matrix 
o Symmetric matrices: SymetricMatrix < Matrix 
o Triangular matrices: TriangularMatrix < Matrix 
o . . . 

We proceed to the same extension on operators and their signatures e.g.: 

Multiplication of a symmetric matrix by a scalar: * : Real x SymetricMatrix -> 
SymetricMatrix (the symmetric property is conserved). 

SGEMM performs one of the matrix-matrix operations: C = alpha *  op(A ) 
op(B )+ beta *  C where alpha and beta are scalars, op(A ) and op(B ) are 
rectangular matrices of dimensions m-by-k and k-by-n, respectively, C  is a m-by-n 
matrix, and op(A ) is A  or AT. In the trader, SGEMM  is described by an XML 
document whose meaning is: 

SGEMM(TRANSA:Char, TRANSB:Char, M:Int, N:Int, K:Int, ALPHA:Real, A:Matrix, 
LDA:Int, B:Matrix, LDB:Int, BETA:Real, C:Matrix, LDC:Int) 

C <- ALPHA * op(TRANSA,A) * op(TRANSB,B) + BETA * C 
Some other information are also store in the XML file to give the meaning of the 
other parameters (M, N, K, LDA, LDB and LDC). 
Among the equations of the domain, we have: op('n', a) = a  and op('t', a) = aT. 

2.4   Example 1: Matrix-Matrix Multiplication  

Assume that a user wants to solve the following algebraic expression C = A * (B * C), 
where A, B and C are general matrices.  

One combination of services computed by the trader is: 

   p1=O; p2=O; 
  sgemm('n', 'n', nbRow(p1), nbCol(p1), nbCol(B), 1.0, B, nbRow(B), C, nbRow(C), 1.0, p1, 
nbRow(p1) ); //p1<-B*C 
  sgemm('n', 'n', nbRow(p2), nbCol(p2), nbCol(A), 1.0, A, nbRow(A), p1, nbRow(p1), 1.0, p2, 
nbRow(p2) ); //p2<-A*p1 
   p2; 

Where nbRow(X) is the number of rows of the matrix X and nbCol(X) its number of 
columns. 
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2.5   Example 2: Matrix Factorization  Using LAPACK 

We now assume that the available services are the ones from the Level 3 BLAS and 
some of LAPACK [2]: row interchanges SLASWP, the LU factorization SGETRF. 
The user wants to solve the linear system with multiple right-hand side members 
Ax=B (where no property is known about A). One answer computed by the trader is: 

p1=A; 
p2=(ipiv); 
sgetrf(nbRow(p1), nbCol(p1), p1, nbRow(p1), p2, (info) ); 
  //p2<-LU factorization (A= P*L*U) 
p3=B; 
slaswp(nbCol(p3), p3, nbRow(p3), (k1), (k2), p2, 1 ); 
  //p3<- line swap B 
p4=p3;  
strsm('l', 'l', 'n', 'n', nbRow(p4), nbCol(p4), 1.0, p1, nbRow(p1), p4, nbRow(p4) ); 
  //solve L*x=p3; p4<-x; 
p5=p4;  
strsm('l', 'u', 'n', 'n', nbRow(p5), nbCol(p5), 1.0,  p1, nbRow(p1), p5, nbRow(p5) ); 
  //solve U*x=p4; p5<-x; 
p5; 

This is nothing else than the task performed by the LAPACK procedure SGETRS that 
aims at solving a linear system, which demonstrates the viability of our approach. If 
the matrix A is known to be symmetric positive definite, a LU factorization will also 
proposed. 

3   Introduction to the Grid-Aware Web Portal  

The interface consists of the following three modules: 

 A front end module which interacts with users 
 The Grid service trading module that computes the service or the 

combination of services answering a user request. The execution of a service 
over the grid is nothing else then executing some BLAS, LAPACK or 
ScaLAPACK procedure or basic manipulation of numerical objects. 

 The Solver module which performs computations and uses the DIET 
middleware for managing executions over the Grid. 

3.1   Front End Module 

The frontend module is the main module which interacts with users. Linear algebra 
encompasses methods and concepts that solve many different types of practical 
problems on the base of numerical objects (number, vector, and matrix). The module 
allows users to create numerical objects, as well as define and submit various linear 
algebra expressions. Both uploading and generation mechanisms have been developed 
for creation of numerical objects by specifying their types: scalars, vectors (ones, 
zeros, integer, etc.), matrices (triangular, identity, symmetric, etc.). The interface 
supports different operations (download, delete or change parameters) for already 
uploaded numerical objects. The names and the paths of the user-defined numerical 
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objects are saved in the database. Only real and scalar types for numerical objects are 
implemented in the current experimental version. 

3.2   Grid Service Trading Module 

The purpose of the Grid trading module is to convert mathematical expressions into a 
list of procedures calls that answer the user request. In this experimental version, we 
only consider calling ScaLAPACK procedures but other libraries can easily be added. 
Executions compute a service or a workflow of services equivalent to the initial 
mathematical expression. Today the use of LEX [14] and YACC [15] or FLEX and 
BISON [16] are widely spread among compiler developers. From specifications of the 
lexical and syntactical structure of a language, using regular expressions and 
LALR(1) grammars, these tools generate the corresponding analyses. A PHP program 
based on Bison/YACC has been developed, which checks and compares the 
parameters of the numerical objects from database and do syntactic and semantic 
analysis before converting the equation into a sequence of procedure calls. 

Our service trading approach is based on a semantic description of services. It 
allows to compute the service or the combination of services that satisfy a user 
request (cf paragraph 2.). The input stream of the Grid service trading is a XML 
description that fully defines the given expression including the parameters and 
properties. The current module takes the expression from the front-end module, does 
syntactic and lexical analysis, converts the expression into the corresponding XML 
format, calls the Grid service trading service and as a result receives the list of 
LAPACK/ScaLAPACK or BLAS functions that can solve the problem (note that the 
result may depend on the size of the object manipulated within the expression, e.g. 
calls to serial or parallel computational services). Since that this approach is based on 
a semantic description of the libraries, it is easy to increase the number of libraries 
involved in our environment. 

3.3   The Solver Module 

Several approaches exist for porting applications to grid platforms e.g. message 
passing, batch processing, web portals, and Grid-RPC systems. In the case of the 
Grid-RPC model, clients submit computational requests to a scheduler or an agent 
that locates one or more servers available over the grid. The DIET Project aims at the 
development of a scalable middleware with initial efforts focused on distributing the 
scheduling problem across multiple agents. DIET consists into a set of elements that 
can be used together to build applications using the Grid-RPC paradigm. This 
middleware is able to find an appropriate server according to the information given in 
the client's request. The DIET environment consists of five different components: 
clients that submit problems to servers, servers that solve problems sent by clients, a 
database that contains information about software and hardware resources, a 
scheduler that chooses an appropriate server depending both of the problem sent and 
the information contained in the database, and finally monitors that get information 
about the status of the computational resources. The information stored on a server is 
the list of data it owns (eventually with their distribution and the way to access them), 
the list of problems that he can solve, and every information concerning its load (CPU 
capacity, available memory, etc.). 
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FORTRAN wrappers have been written for the ScaLAPACK functions in order to 
initialize the process grid, distribute the linear algebra objects on the process grid for the 
given function, call correspondent ScaLAPACK function and release the process grid, 
as well as shell scripts have been written for BLAS functions. After getting the list of 
functions to be called from the previous module, if the size of the data involved in the 
current call is not so large and can fits into the memory of the current machine, the 
expression is solved locally, otherwise and in most of cases, the Solver module, which 
acts as a DIET client, calls the corresponding ScaLAPACK subprogram through a 
FORTRAN wrapper. The output of the current DIET call can be used as an input of the 
next procedure call. On Figure 1, we give the detailed structure of the interface. 

 

Fig. 1. The Interface structure 

4   Examples 

To illustrated the possibilities of the framework, an example will be given. As an 
illustration of the Interface, we return back to the matrix-matrix multiplication example: 
C = A * ( B * C ), where A, B and C are general type 10000-by-10000 matrices.  

As mentioned above, the interface consists of the Front end, the Grid Service 
trading and the Solver modules. The interface then processes the request in the 
following way: 

 After successful identification, the user uploads the numerical objects (A, B, C 
matrices) into the database through the uploading subprogram that includes a 
numerical object correctness checker. Through the “View numerical objects” 
subprogram, user can see and edit its own uploaded numerical objects. Only the 
names and the paths are saved in the database. 
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 The user enters the mathematical expression to be evaluated that involves the 
numerical objects initialized as: A * ( B * C ) and then submits it for execution. 

 The syntactic and semantic analyzer subprogram based on Bison/YACC checks 
and compares the parameters (dimensions and names) of A, B, C matrices from 
the database and does syntactic and semantic analyzing before converting the 
equation. If the expression is correct, the analyzer creates an XML file that 
describes the expression: 

<requete> 
<domainName>LinearAlgebra</domainName> 
<term> 
  <expression> 
    <operatorName>*</operatorName> 
    <terms> 
      <term> 
        <variable> 
          <name>A</name> 
          <sorte>Matrix</sorte> 
        </variable> 
      </term> 
      <term> 
        <expression> 
          <operatorName>*</operatorName> 
          <terms> 
              <term> 
                <variable> 
                  <name>B</name> 
                  <sorte>Matrix</sorte> 
                </variable> 
              </term> 
              <term> 
                <variable> 
                  <name>C</name> 
                  <sorte>Matrix</sorte> 
                </variable> 
              </term> 
            </terms> 
        </expression> 
      </term> 
    </terms> 
  </expression> 
</term> 
</requete> 

 The service trading subprogram takes the XML file (fully defined expression) 
and converts it into the list of functions that can solve the requested expression. 
In our case the output is of the service trader is: 
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PsGEMM ('N', 'N', 10000, 10000, 10000, 1., B, 1, 1, DESCB, C, 1, 1, DESCC, 
0., p2, 1, 1, DESCp2 ) \\ p2= B * C 
PsGEMM ('N', 'N', 10000, 10000, 10000, 1 A, 1 1 DESCA, p2, 1, 1, DESCp2, 0., 
p1, 1, 1, DESCp1 ) \\ p1= A * p2 
p1 

, 

Here the PsGEMM procedure, for the PBLAS, performs one of the matrix-
matrix operations: C= α*op(A)*op(B)+β*op(C), where α and β are scalars, 
op(A) and op(B) are rectangular single precision real matrices of dimensions m-
by-k and k-by-n respectively, C is a m-by-n matrix, and op(A) is a A or AT.    

 A list of FORTRAN wrapers have been developed for all PBLAS and BLAS 
functions. The FORTRAN programs initialize the process grid, distribute the 
matrix on the process grid, call correspondent PBLAS routine and then release the 
process grid. Input parameters of FORTRAN subprograms include the paths and 
files names of numerical objects. The output is stored saved into a standard 
temporary ASCII file that can be used as an input for the next FORTRAN 
subprogram. Taking into account the dimensions of the numerical object for given 
routine, the solver module defines where it is wise to execute the ScaLAPACK 
subprogram and then executes it. If the dimensions of the current call are not too 
large and can fit into the memory of local PC, the expression is solved locally by 
calling correspondent BLAS function, otherwise and most of cases the Solver 
module performs executions over the grid using DIET and ScaLAPACK. 

 After successful executing all ScaLAPACK subprograms, the last output is saved 
into the database. The final result is accessible from the interface and user can 
download it if necessary. 

5   Conclusion 

The full implementation of our environment for scientific computing over the Grid 
will allow users, who are not familiar with the parallel programming technologies and 
software tools (Grid & Cluster middlewares, MPI, JAVA, Unix OS, Open PBS, 
Condor, ScaLAPACK, etc.), to create and submit their programs over a Web interface 
that hides all details of the underlying distributed infrastructure. Such an approach can 
be extended to any computational Grid that supports DIET (or another GridRPC type 
of middleware) and linear algebra libraries such as ScaLAPACK. It can be easily 
extended to any application area where software libraries are available. Note that it is 
also a nice environment for demonstrating how computations can be transparently – 
from the user point of view – performed over the Grid. 
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Abstract. We are interested in making use of Multiclusters to execute parallel
applications. The present work is developed within the M-CISNE project. M-
CISNE is a non-dedicated and heterogeneous Multicluster environment which
includes MetaLoRaS, a two-level MetaScheduler that manages the appropriate
job allocation to available resources.

In this paper, we present a new resource-matching model for MetaLoRaS,
which is aimed at mitigating the degraded turnaround time of co-allocated jobs,
caused by the contention on shared inter-cluster links. The model is linear pro-
gramming based and considers the availability of computational resources and
the contention of shared inter and intra-cluster links. Its goal is to minimize the
average turnaround time of the parallel applications without disturbing the local
applications excessively and maximize the prediction accuracy.

We also present a parallel job model that takes both computation and com-
munication characterizations into account. By doing this, greater accuracy is ob-
tained than in other models only focused on one of these characteristics.

Our preliminary performance results indicate that the linear programming
model for on-line resource matching is efficient in speed and accuracy and can be
successfully applied to co-allocate jobs across different clusters.

1 Introduction

A Multicluster system has a network topology made up of interconnected clusters, lim-
ited to a campus- or organization-wide network. There are collections of several clusters
formed by commodity workstations in many laboratories, Universities, and research
centers. The main goal of the present work is to make use of wasted computational
resources of non-dedicated and heterogeneous Multiclusters to execute parallel appli-
cations efficiently without disturbing the local applications excessively.

In order to manage the collective computational power of a Multicluster efficiently,
special scheduling mechanisms are required to select and map jobs to available resour-
ces. We refer to these schedulers as MetaSchedulers. In general, we consider a Me-
taScheduler to be the software that decides where, when, and how to schedule jobs in
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a Multicluster. In previous works [11,12], we presented MetaLoRaS, an efficient Me-
taScheduler made up of a queuing system with two-level hierarchical architecture for
a non-dedicated Multicluster. The most important contribution was the effective clus-
ter selection mechanism, based on the estimation of the job turnaround time. Parallel
applications were assigned to the clusters where the minimum turnaround time was ob-
tained. MetaLoRaS was globally aware of the state of the Multicluster and worked in
conjunction with each individual cluster’s local schedulers.

A Multicluster is distinguished from a traditional computational grid in that the Mul-
ticluster utilizes a dedicated interconnection network between cluster resources with a
known topology and predictable performance characteristics. This kind of networking
infrastructure allows for the possibility of mapping jobs across cluster boundaries in a
process known as co-allocation or multisite scheduling. Co-allocation of parallel jobs
is considered in this paper, as is minimizing their execution time, this being the desired
goal.

Previous work in the area of job co-allocation has tended to characterize jobs based
only on communication or computation models. Ernemann and Jones [6,10] describe
how schedulers designed to allocate node resources across cluster boundaries can result
in rather poor overall performance over a wide range of workload characterizations and
Multicluster configurations when co-allocated jobs contend for inter-cluster network
bandwidth. In order to overcome these situations, our model is based on co-allocating
job tasks to avoid both the communication saturation of inter-cluster links and the over-
loading of Multicluster nodes, which is not considered in these works. In [5,9,4,10]
only communication models are presented, being useful to evaluate the system perfor-
mance instead of taking online scheduling decisions and accurate predictions about the
execution time.

The essence of our MetaScheduling model is to solve the resource matching as an
integer-programming problem. Previous work [3,13] illustrates the benefits of using in-
teger programming techniques to solve scheduling problems. However, Naik [13] pro-
vides a globally optimal for the system performance assuming that workload is known,
and Banino [3] centered on time-sharing scheduling solutions difficult to implement in
practice.

The present work aims to extend the works presented in [10,14] and [11,8], creating
a MetaScheduling model which takes into account the effect of co-allocation on both
computing and communication times. By doing so, we are able to mitigate the negative
effect on co-allocated jobs, improving the prediction accuracy of the turnaround time
estimation of parallel jobs. This in turn increase the system performance by improving
the prediction-like scheduling system. Furthermore, the model takes into account the
resource occupancy and capacity of the forming non-dedicated Multicluster nodes. This
fact guarantees low impact on the performance of local user applications.

The rest of the paper is organized as follows. In section 2, we present the char-
acterization of both, the Multicluster environment and parallel jobs. In section 3, the
integer programming model for matching parallel applications in Multicluster systems
is presented. The applicability of the model and the goodness when applied in a real
Multicluster system is evaluated in Section 4. Finally, the conclusions and future work
are detailed.
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Fig. 1. Multicluster Architecture

2 Multicluster Environment

In [12] we proposed a Multicluster platform. The jobs arriving in the Multicluster enter
the Upper-level Queue awaiting scheduling by the MetaScheduler, named MetaLoRaS.
MetaLoRaS assigns jobs to the cluster with the minimum estimate of turnaround time.
The estimation is obtained by each local cluster or Low-level scheduler, named Lo-
RaS (Long Range Scheduler). LoRaS [7] is a space-sharing scheduler with an efficient
turnaround predictor [8].

MetaLoRaS is made up of five components (see Fig. 1). These are the Upper-level
Queue (a queuing system), the Multicluster scheduler (named MetaLoRaS), the Admis-
sion system, the Resource Manager and the Multicluster Controller.

MetaLoRaS is the Multicluster scheduling system. It is responsible for selecting the
next job to be executed from the Input Queue (the entry point of parallel jobs), and
also the cluster where this job will be executed. The part of MetaLoRaS responsible for
assigning jobs to clusters is denoted as Resource Matcher (RM).

The Admission System is responsible for admitting new jobs into the system. This
module will accept the new job whenever its required resources are satisfied. If not, the
job is discarded. The specified resources are the number of workstations, the Memory
size and the per-node bandwidth. It is possible to specify different resource limits in
each cluster.

The Multicluster Controller collects real time information about the state of each
cluster. If an event occurs in one cluster (job start, finish), the Multicluster Controller is
notified of such a change. The LoRaS system is responsible for notifying the Multiclus-
ter Controller about the cluster state changes.

The Resource Matcher (RM) has been designed as an Integer programming ap-
proach. The RM is responsible for obtaining a snapshot of the state of the resources
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Fig. 2. Multicluster topology

from the Multicluster Controller and for generating a mapping solution that will be
used by the MetaScheduler (MetaLoRaS). To do this, the RM performs the following
functions: (1) it accepts a job matching request through the MetaScheduler, (2) requests
the current status of the Multicluster from the Multicluster Controller, (3) obtains the
parallel application information, (4) submits the parallel application and the Multiclus-
ter status information to a mixed integer programming solver and (5) maps the job
accordingly to the results obtained in step 4.

Job co-allocation consists of mapping jobs across cluster boundaries. Co-allocation
is necessary when a job requires more nodes than the ones available on each particular
cluster, but collectively there may be enough available nodes elsewhere in the Multi-
cluster to accommodate such a job. There are situations where despite having enough
available nodes in a particular cluster, it may be better to take advantage of remote re-
sources, because they are more powerful or they are the more appropriate for the nature
of the parallel job. The Resource Matcher (RM) is responsible for deciding if the job
will be co-allocated across multiple clusters or mapped exclusively onto one cluster.
Scheduling decisions are based on minimizing the job execution time, despite the jobs
are exclusively assigned to an unique cluster or across multiple clusters.

2.1 Problem Statement

We are interested on Multiclusters defined as a collection of arbitrary sized clusters
with heterogeneous resources. Each cluster has its own internal switch. Clusters are
connected to each other by single dedicated links by means of a central switch.

Formally, a Multicluster M={C1..Cα} can be defined as a system comprised of α
heterogeneous clusters interconnected by means of dedicated links (see Fig. 2). Each
Cluster Ci (1 ≤i≤ α) is also made up by βi nodes, this is Ci={N1

i ..Nβi
i }. L is the set

of inter-cluster links (L ={L1..Lα}), and L={Li}={Lk
i , 1≤ i ≤α and 1≤k≤βi}, is the

set of intra-cluster links, where Lk
i denote the intra-cluster link between node k and the

switch of Cluster Ci. We suppose that network bandwidth and latency of inter-cluster
links are better than the intra-cluster ones.
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Fig. 3. Execution Slowdown

The model assumes that the jobs follow a BSP (Bulk Synchronous Parallel) model.
A BSP job is comprised of coarse or medium grained tasks that require a fixed number
of processors (one per task) during their lifetime. The size of their component tasks
is generally similar. In addition, each task is comprised of various iterations in which
computation alternates with communication and synchronization phases. The job as-
signment is static, that is, once the job is mapped into a particular set of nodes, no more
re-allocations are performed. Additionally, jobs can be co-allocated in a Multicluster
by allocating nodes from different clusters to the same job in order to better meet the
collective needs across the Multicluster.

We define the job’s execution time, T e (see Fig. 3), as follows:

T e = T p ·SP+ T c ·SC, (1)

where T p and T c are the processing and communicating times in a dedicated environ-
ment. In a real situation, due to the heterogeneity and the non-dedicated property of the
resources, T p and T c may be lengthened by SP and SC, the processing and communi-
cation slowdown respectively.

2.2 Processing Characterization

In a heterogeneous and non-dedicated environment, the computing power and its avail-
ability can provoke different processing capabilities of the constituent nodes. The cur-
rent work presents solutions for measuring these factors and studying their effect on the
execution time of the co-allocated jobs.

In a heterogeneous environment, we must take into account the computing power
differences between the processor units that form the Multicluster. According to [5], we
define the relative Power weight (Pk

i ) of the cluster i node k (1≤ i≤α and 1≤k≤βi), as
the computing power ratio of such node with respect to the most powerful node of the
Multicluster. The Pk

i range is 0 < Pk
i ≤ 1. Pk

i = 1 means that cluster i node k is the most
powerful node in the Multicluster. We obtain the relative computing power of each node
by averaging various relative power measurements with different applications.

Local and even parallel jobs executing on the cluster lower the performance of new
parallel jobs.The model takes this situation into account by sampling the availability of
the computing resources. As was shown in [14], we can obtain an effective measurement
of the CPU availability by relating the average of the number of process in the system
and the CPU occupancy. We define the Availability of the cluster i node k (Ak

i ) as
the percentage of CPU occupancy. Ak

i � 0 when 100% of the CPU is occupied and
0 < Ak

i ≤ 1 otherwise.
We define the Effective Power weight of cluster i node k (Γ k

i ) as the product between
the relative Power weight and the Availability of such a node. Formally, Γ k

i is defined
as follows:
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Γ k
i = Pk

i ·Ak
i , (2)

where Γ k
i = 1 means that cluster i node k has the full capacity to run the tasks at full

speed. When 0 < Γ k
i < 1, the node k of cluster i is unable to execute the task at full

speed. Therefore, the processing slowdown of such a node (SPk
i ) is inversely propor-

tional to its Effective Power weight, SPk
i = (Γ k

i )−1.
As in our model we assume that each job task is generally similar in size and they

are executing separately, the job execution time is defined as the elapsed execution
time of the slowly task. Thus, the processing slowdown can be obtained by taking the
node with the lowest Effective Power weight into account, or in other words, the node
with the maximum slowdown. According to this, we formally define the slowdown of
processing time (SP) in function of the slowdown obtained by each allocated node as
follows:

SP = max{SPk
i ,1≤ i≤ α and 1≤ k ≤ βi} (3)

2.3 Communication Characterization

Communication characterization is based on the model described by Jones in [10] for
homogeneous and dedicated environments. We provide resource heterogeneity to Jone’s
model. Furthermore, we add the ability to take into account the effect of the local work-
load on the co-allocated applications.

We assume that the parallel jobs follow an all-to-all communication pattern periodi-
cally throughout their execution, one of the most frequently used in parallel processing.
Each task of a given job j is characterized by an average per-node bandwidth metric,
PNBW j, consisting of the communication needs for job j.

In co-allocation cases, nodes can communicate across cluster boundaries. This com-
munication will require a certain amount of bandwidth on the inter-cluster network
links. Saturation of inter-cluster links reduces job performance drastically. In order to
determine when the inter-cluster links become saturated, we must identify how much
bandwidth a job will require, and more precisely, each forming task job.

We define BW j
i (equation 4) as the amount of bandwidth required by job j on inter-

cluster link i (1≤ i≤ α). Formally:

BW j
i =

(
n j

i ·PNBW j
)
·
(

n j
T −n j

i

n j
T −1

)
, (4)

where n j
T is the total number of nodes required by job j, and n j

i is the number of nodes
allocated to job j on the cluster Ci. The first factor of the equation is the total bandwidth
required by all the nodes associated with job j on cluster Ci. The second factor repre-
sents the communication percentage of job j with other cluster nodes (not in Ci), that
will use the inter-cluster link i.

Each communication link i is characterized by a maximum bandwidth rating, BW max
i .

We define the saturation degree of an inter-cluster link i (BWsat
i ) as the ratio between
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the maximum bandwidth and the total bandwidth required by the jobs that share the
link i. Formally:

BW sat
i =

BW max
i

BW consumed
i + BW j

i

, (5)

where BW consumed
i is the bandwidth occupied by other local or parallel applications in

the link i. When BW sat
i ≥ 1, the link i is not saturated. Otherwise, when 0≤ BW sat

i < 1
the link i is saturated.

A job j using a saturated inter-cluster link i will experience a communicating slow-
down inversely proportional to the saturation degree of such a link i. Formally:

SCi =
(
BW sat

i

)−1 (6)

If any, the most saturated inter-cluster link will determine the communication slow-
down of the co-allocated job. We define the communication slowdown of a job j (SC)
as the maximum communication slowdown of such job in each allocated inter-cluster
link. Formally:

SC = maxi{SCi, 1≤ i≤ α} (7)

3 IP Matching Model

Integer Programming (IP) is a technique for solving certain kinds of problems: maxi-
mizing or minimizing the value of an objective function subject to some constraints. The
objective function and constraints are linear expressions. In the following, we describe
our resource-matching approach based on mixed-integer programming techniques.

The problem to be solved in the IP model is the matching of jobs in a Multicluster
environment, while avoiding the negative effects of sharing the communication links
and processing resources. To do this, the IP model must represent the job matching re-
quest (specifying their resource requirements) and the state of the Multicluster resources
(Multicluster State) in order to search for an optimal solution.

The job matching request specifies the job requirements as the number of tasks,
amount of Memory, per-node bandwidth and the ratio between computation and total
execution time. Multicluster nodes without enough Memory are discarded.

The Multicluster State comprises the following information of every node: CPU and
Memory availability, and both maximum capacity and availability of the intra-cluster
communication links. The corresponding inter-cluster information is obtained from the
intra-cluster one and the previous job assignments. Only periodic samples of the Multi-
cluster nodes is necessary.

The Resource Matcher maps the jobs by minimizing the job execution time. Jobs
can be mapped across cluster boundaries. The obtaining of this minimum is performed
by means of the Integer Programming solver of CPLEX [1], by using the “Branch and
Bound” algorithm. Obviously, this is a well known NP-complete problem. The interest
of this work is centered in the definition of heuristics and constraints which delay the
exponential time-cost with the number of Multicluster nodes as much as possible.
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Input arguments:
1. j: job to be matched.
2. τ j: number of tasks making up job j.
3. PNBW j: per-node bandwidth requirement for the job j.
4. M = C..Cα : Multicluster composition.
5. L and L={Li}={Lk

i , 1≤ i≤α and 1≤k ≤βi}: set of inter- and intra- cluster links.
6. Γ k

i : Effective Power weight for the cluster i node k (1≤ i≤α and 1≤k ≤βi).
7. BW av

i : available bandwidth for each inter-cluster link Li, 1≤i≤ α .
8. BW max

i : maximum bandwidth for each inter-cluster link Li, 1≤i≤ α .
Output parameters:

9. Xk
i , 1≤ i ≤α and 1≤k ≤βi: boolean variable associated to cluster i node k. Xk

i =1 if job j is
matched to cluster i node k, and 0 otherwise.

10. SP: processing slowdown. SP = max{SPk
i ,1≤ i≤ α and 1 ≤ k ≤ βi}.

11. SC: inter-cluster link communication slowdown. SC = maxi{SCi, 1≤ i≤ α}.
Objective Function:

12. min{T e}
Constraints:

13. Gang matching.
14. Non inter-cluster link saturation.

Fig. 4. Model Definition

3.1 Model Definition

An integer-programming model includes input parameters, variables, a set of constraints
on the value of the variables, and an objective function. The goal of the model is to find
values for every variable so that all constraints are satisfied and the value of the objective
function is maximized or minimized.

The input parameters, objective function and constraints of the model presented in
this work, are shown in figure 4.

Given a job j, this model finds the best feasible match between the job and the
resources taking the heterogeneity and the availability of the resources into account
along with the requirements of the job j.

The model accepts as input argument a job j, defined by the number of tasks (τ j)
and the per-node bandwidth (PNBW j). Another group of input arguments are the ones
characterizing the Multicluster (M). The variable Γ k

i defines the Effective Power weight
of each node, and the variables BW av

i and BW max
i are the available and maximum band-

widths respectively of the inter-cluster links (L ).
The output parameter Xk

i is a boolean variable informing about the mapping of the
job j. Other outputs are SP and SC, defined in sections 2.2 and 2.3 respectively. The
constraints and the objective function are defined below.

3.2 Constraints

The IP model comprises two constraints, the Gang matching and the non-saturation
of inter-cluster links. As major network performance is supposed to inter-cluster links,
their constraints also includes the saturation of the intra-cluster ones. Next the two con-
straints are studied separately.
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Gang Matching This constraint ensures that we allocate all the required resources of
the parallel job j. In other words, each task is allocated to one processor. The gang
matching constraint is formalized with the linear equation 8.

∑
1≤i≤α ,1≤k≤βi

Xk
i = τ j, (8)

where τ j is the number of tasks making up job j and Xk
i is equal to 1 if a task in job j

is assigned to cluster i node k. This constraint guarantees the assignment of every task
making up job j.

Non Inter-Cluster Link Saturation Non-saturation of the inter-cluster links ensures
that the bandwidth consumed by the mapping does not exceed the total available band-
width capacity of the inter-cluster links. This constraint avoids the saturation of inter-
cluster links. We formalize this constraint with the equation 9.

SC≤ 1, (9)

where SC = maxi{SCi, 1≤ i≤ α} is the maximum slowdown of the inter-cluster links
used by job j. The inter-cluster link slowdown, SCi, was calculated by means of equa-
tion 6, explained in section 2.3.

3.3 Objective Function

The objective function defines the quality of a solution when multiple feasible solutions
exist. The matching solver uses the objective function to select the best matching solu-
tion. In the present work, we are interested in obtaining the minimum execution time for
parallel jobs (T e), defined in section 2.1 equation 1. Accordingly, the objective function
is formalized by equation 10.

min{T e} (10)

4 Experimentation

To study the efficiency of the proposed model we made a great range of tests modifying
the amount of resources, their utilization, and the parallel applications characterization.
Moreover, we tested the prediction accuracy of the execution time executing parallel
applications in a real environment.

The real environment was a Multicluster made up of 2 non-dedicated clusters
(CLUSTER1 and CLUSTER2). CLUSTER1 was made up of ten 3-GHz uni-processor
workstations with 1GB of RAM, interconnected by a 1-Gigabit network. CLUSTER2
was a heterogeneous cluster made up of ten workstations, five 3-GHz uni-processor
with 1GB of RAM and 1-Gigabit network link, and five 3-GHz multiprocessor with
512MB of RAM and 100Megabit network link.
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To carry out the experimentation, local and parallel applications need to be defined.
The local workload was represented by a synthetic benchmark (named local_bench)
that can emulate the usage of 3 different resources: CPU, Memory and Network traffic.
The use of these resources was parametrized in a real way. According to the values
obtained by collecting the user activity in an open laboratory over a couple of weeks,
local_bench was modeled to use 15% CPU, 35% Memory and a 0.5KB/sec LAN, in
each node where it was executed.

We selected two parallel applications, which follows the BSP model, from the NAS
parallel benchmarks suite [2]: MG (Multigrid) and IS (Integer Sort). However, the two
jobs had different communication patterns and processing/communication needs at each
iteration. These parallel jobs were characterized by the number of tasks, the computa-
tion time, and the size of their communications.

To study the effect of the constraints on the efficiency of our proposal we defined
three different models with different constraint specifications:

Optimal. This approach obtains the optimal solution, looking for the minimum effec-
tive slowdown of parallel applications. This model allows the utilization of satu-
rated links. It aims to obtain the best mapping by taking the characterization of
parallel jobs and the resource availability into account.

Non-Saturated. In this model the non inter-cluster link saturation constraint was ap-
plied. The solver attempts to minimize the execution time of the mapping solutions
that will not saturate any inter-cluster link.

Non-Saturated with Non-Optimization. This model does not looks for the optimal
solution. Thus, the first solution that avoids the inter-cluster links saturation is re-
turned. This model is thought to be useful with Multiclusters with a high number
of resources, where the obtaining of the optimal solution is excessively expansive.

To evaluate the efficiency of our mixed integer programming approach we compare the
elapsed time of the Resource Matcher to obtain a feasible solution (by means of the
CPLEX solver [1]) for different types of parallel jobs and local activity requirements,
with different amount of computational resources and inter-cluster links. The per-node
bandwidth requirements of the parallel task (PNBW j) was varied from 25% to 75%.
The number of workstations with local activity was varied from 0 to 75%.

4.1 Performance Results

First or all, we want to compare the effect of different processing and communication
loads on the Optimal and Non-Saturated models.

Figure 5 shows the resulting communication slowdown obtained by the matching
solver. As can be seen in Figure 5(right), the Non-Saturated model ensures the non inter-
cluster links saturation. Otherwise, in the Optimal model, figure 5(left), the slowdown
grows quickly with the network requirements of the parallel application (PNBW j). The
local activity has less effect in both models.

Figure 6 shows the effects of PNBW j and the local activity in the obtaining of the
resource matching (by the solver). The behaviour of the models are opposed. The Non-
Saturated model is more time-costly than the Optimal one by increasing the nodes with
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Fig. 5. Communication Slowdown varying PNBW j and the local activity (LA)
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 0
 100
 200
 300
 400
 500
 600
 700

 0
 100

 200
 300

 400
 500

.3.4.5.6.7
 0

100

200

300

400

500

600

700

                                                    Solver Time (sec.)

             Nodes
PNBW

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0
 100

 200
 300

 400
 500

0.1.2.3.4.5.6.7 0
 100
 200
 300
 400
 500
 600
 700
 800

                                                    Solver Time (sec.)

              Nodes
LA

Fig. 7. Solver time. (left) PNBW j vs. nodes (right) LA vs. nodes.

local activity and the PNBW j. We can observe as in the Optimal model, the band-
width requirements has a smooth effect on the solver behaviour. Meanwhile, for the
Non-saturation model, figure 6(right), the solver response time grows quickly with the
bandwidth requirements. This is produced because in the Non-saturated model there are
less valid solutions, an the obtaining of one of them is more difficult in time.

Figure 7 shows the solver response time of the Optimal model, by varying the num-
ber of nodes jointly with PNBW j (left) and the local activity (right). It can be appreci-
ated as the predominant parameter in this model is the number of nodes. These results
corroborates the ones obtained in Fig. 6(left).

Figure 8 shows the impact of the number of inter-cluster links on the solver response
time for different constraints. To study this relationship we fixed the number of nodes
per cluster (8 nodes) and ranged between 2 to 64 the number of clusters (inter-cluster
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links). The number of constraints in the model have a direct impact on the solver re-
sponse time. The obtained results indicate that Optimal and Non-Saturated models have
a correct behavior for a reasonable number of resources. In our case, below 16 inter-
cluster links with 8 nodes per cluster (128 nodes), the response time never overtake one
minute. Above this threshold it is advisable the use of the Non-Saturated with Non-
Optimization model.

4.2 Prediction Accuracy

In order to evaluate the prediction accuracy of the IP model, we compared the estima-
tions produced by the solver with the real executions of IS and MG. Both benchmarks
were executed multiple times with different number of tasks and different local activity
situations. Solver times were obtained by using the Optimal model.

The obtained results (see Fig. 9) are very hopeful. Despite the differences between
the estimated and real times, we thought that the estimated times can be corrected by
applying some sort of correction mechanism, because the two lines have a similar shape.
This is the most interesting field to be investigated in the future.



172 J. Ll. Lérida et al.

5 Conclusions and Future Work

In the present work we have presented a resource matching mechanism based on integer
programing, for non-dedicated and heterogeneous Mulsticluster systems. The model
fits efficiently both computation and communication parallel requirements to available
Mulsticluster resources by considering the sharing of resources between parallel and
local applications.

The results show that, using mixed integer programing, we can model different re-
source matching situations in a flexible way, and solve them efficiently. As we shows,
the number of resources has a great impact on the solver response time. It is important
to develop mechanisms to adapt dynamically to inter-arrival job rate, number of resour-
ces, etc. The IP model described in the present work allows to adapt the scheduling
system to these situations dynamically.

Future work is directed towards the search for a correction factor of the estimates.
We also will investigate regression models in the obtaining of the Multicluster State.
Due to the intrinsic dynamism of non-dedicated Multiclusters, their state change very
quickly, and the on-time monitoring used in this work does not reflect this situation
correctly.

In this study, we considered one job at a time. In a further work, we wish to consider
the matching problem for multiple jobs, in order to avoid solving large optimization
problems achieving a global optimal. Moreover, this matching scheme will allow the
matching solver to apply new objective functions based, for example, on throughput or
load balancing.

On the other hand, we want to compare the benefits on the system performance
obtained with the use of the mixed-integer programing approach, with other meta-
scheduling mechanisms based only on partial information about the communications
or computation capabilities.
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Abstract. This paper presents a parallel and fault tolerant version of
an incremental learning algorithm for feed-forward neural networks used
as function approximators. It has been shown in previous works that our
incremental algorithm builds networks of reduced size while providing
high quality approximations for real data sets. However, for very large
sets, the use of our learning process on a single machine may be quite
long and even sometimes impossible, due to memory limitations. The
parallel algorithm presented in this paper is usable in any parallel sys-
tem, and in particular, with large dynamical systems such as clusters and
grids in which faults may occur. Finally, the quality and performances
(without and with faults) of that algorithm are experimentally evaluated.

Keywords: Neural Networks, Learning algorithms, Parallelism.

Introduction

The work presented in this paper takes place in a multidisciplinary project called
Neurad, involving physicists1 and computer scientists2, whose goal is to enhance
the treatment planning of cancerous tumors by external radiotherapy. In our pre-
vious works [1,2], we proposed an original approach to solve scientific problems
whose accurate modeling and/or analytical description is not directly possible.
That method is based on the collaboration of computation codes and neural
networks used as universal approximators. Thanks to that method, the Neurad
software provides a fast and accurate evaluation of radiation doses in any given
environment (possibly heterogeneous) for given irradiation parameters. In that
context, a new learning algorithm has been designed which provides a network
of limited size while giving very accurate results.
1 IRMA/Crest team of the FEMTO-ST institute.
2 AND team of the LIFC and Algorille team of the LORIA.
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However, the sequential version of our algorithm is restrained by the use of
a single machine at the same time, which does not allow the learning of very
large data sets due to memory limitations and the induced important computa-
tion times. This is why the design of a parallel version has been planned. Our
approach uses domain decomposition to exploit parallelism, so that the initial
neural network is decomposed in several sub-networks. In order to ensure a good
quality of the global network while preserving good performances, a fine tuning
of the overlapping of the sub-domains is performed. Moreover, in order to be
usable in any kind of parallel system (parallel machine, cluster or grid), a fault
tolerance mechanism is included in our parallel algorithm.

In the following section, a brief state of the art on neural networks is pre-
sented. Then, our sequential incremental learning algorithm is detailed in Sect. 2.
In Sect. 3, our parallel version is fully described as well as our fault tolerance
mechanism. Finally, the presented algorithm is qualitatively and quantitatively
evaluated in Sect. 4.

1 State of the Art

Since the first developments of neural networks [3], the major encountered prob-
lems lie in their building and learning. Indeed, there are some results proving that
a multilayer neural network can be used as a universal approximator [4,5]. How-
ever, there is no result about how to build an optimal structure. Many algorithms
give good results, as the classical back propagation algorithm [6,7]. Moreover,
there exist many optimizations for that kind of algorithms. They concern the
structure, as the Square MLP [8] or the HPU [9] designs, and the learning pro-
cess, as the QuickProp [10] or the Rprop algorithm [11]. Nonetheless, they work
on static structures which have to be inferred manually according to the user’s
experience.

In order to solve that recurrent problem, new learning processes have been
proposed which aim at dynamically building the structure of the neural network
during the learning process. There are two main kinds of such algorithms.

The first kind corresponds to the incremental learning algorithms. Their prin-
ciple is to begin the learning process with a neural network of minimal size and
to progressively increase the number of neurons until satisfying the desired cri-
terion. The addition of a new node is conditioned by the stabilization of the
learning process while the requested accuracy is not reached yet. There exist
many variants of that incremental process [12,13,14,15].

The second kind of dynamic learning algorithms consists of the symmetric
approach, i.e, a decimation process. In this case, the learning process begins
with an over-sized complete structure containing a maximal or sufficiently large
number of fully connected neurons. Then, during the learning process, the links
and neurons which reveal to be useless are deleted. The most known algorithms
in this class are probably the "Optimal Brain Damage" algorithm [16] and the
"Optimal Brain Surgeon" algorithm [17].

Nevertheless, all those algorithms are sequential, which limit their use to a
single mono-processor machine. So, even if they give very good results, they



176 J.M. Bahi et al.

cannot be used in practice to process very large data sets. This is why there
has also been an important effort led towards the parallelization of existing al-
gorithms or the design of specific parallel learning algorithms. J.Torresen and
S.Tomita present a detailed report on parallel approaches in the context of clas-
sification neural networks [18]. The major approach in this field is to decompose
the initial data set and to build several sub-networks. In some cases, an addi-
tional global network is used to retrieve the sub-network corresponding to a given
input, such as in [19]. However, to the best of our knowledge, all those studies
are focused on classification networks and not on approximator ones. Moreover,
they do not take into account the robustness of the algorithm when it is used
in dynamical parallel systems, in which network or processor faults may occur.
This is an important feature of the parallel learning algorithm presented in this
paper.

2 Sequential Building/Learning Algorithm

2.1 Network Structure

As mentioned above, it has already been shown that a multilayer neural network
can be used as a universal approximator. We use here the common architecture
which consists in three layers of neurons (input, hidden and output). The number
of neurons in the input layer is determined by the number of parameters of the
function to approximate. In the same way, the number of neurons in the output
layer is directly induced by the number of outputs of the target function. In
the context of the Neurad project, which aims at evaluating radiation doses,
the number of neurons in the output layer is reduced to a single neuron which
delivers the dose. Finally, the last important parameter in the network structure
setup is the number of neurons in the hidden layer. As that number does not
directly depend on the number of inputs and outputs of the problem, there is
no precise rule to compute it. The only external information which may help to
fix that number is the variation degree of the input data. However, there is no
accurate relation between those two values. It is thus necessary to dynamically
set that number of hidden neurons during the learning process to obtain the
most suited networks. That incremental building is described in Sect. 2.2.

In addition to the three-layer organization, we have used a HPU (Higher-order
Processing Unit) structure [20] in order to enhance the capacity of the network
to approximate high degree functions with sharp variations while preserving a
limited number of neurons. That structure also permits to obtain faster trainings.
It consists in artificially increasing the number of inputs of the network with
polynomial combinations of the original inputs up to a maximal degree (referred
to as the order of the network). For example, the inputs of an HPU network
of order 3 corresponding to an original network with two inputs (x1, x2) are
(x1, x2, x

2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2).

In our applicative context, we have also noticed that another structural mod-
ification that can enhance the results of the neural network is to replace the
linear output neurons by sigmoid ones.
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2.2 Incremental Building/Learning

The classical back-propagation learning method is known to be rather slow. In
order to speed up the training process, we have chosen the Resilient back Prop-
agation (Rprop) algorithm [11], which is one of the most efficient optimizations
of that process (See [21] for a complete survey). Its main difference with the
classical back-propagation is that it only uses the sign of the error derivative to
update the weights in the network. Moreover, the updatings are performed, for
each weight, with a distinct value independent from the error. Those values are
respectively increased or decreased, similarly to an acceleration or a deceleration,
according to the direction of the error evolution.

Concerning the incremental building of the hidden layer of the network, the
principle of our algorithm, depicted in Fig. 1, is to perform a Rprop learning
over the current HPU neural network until the error either reaches the required
accuracy or does not sensibly evolve anymore according to a given threshold.

Initialization
with HPU
topology

RPROP
learning

Learning
error<accuracy

OR
limit #HN
reached

Learning
termination

Adding of a
neuron in the
hidden layer

Yes

No

Fig. 1. Incremental building rule

More precisely, our algorithm starts with a given number of hidden neurons
(one or a few). Then, when the neural network reaches the desired accuracy, the
learning process stops. Otherwise, when the learning limit of the current neural
network is considered to be reached (stabilization or over-learning), a neuron
initialized with null weights and threshold is added to the hidden layer without
modifying the other neurons and links. The null initialization of the additional
neuron and the non modification of the other elements in the network are impor-
tant to avoid any deviation of the current network from its optimization path.
After that, the learning process is resumed with that new network configuration.
That incremental process is repeated until the desired accuracy is reached or the
difference between the results of two consecutive configurations of network be-
comes too small. That last case corresponds to situations where the overall limit
of the network has been reached and the addition of hidden neurons does not
improve the results anymore.

As in other learning algorithms, the specification of a validation data set is
possible in order to control the learning process and avoid over-learning. More-
over, an upper bound to the number of hidden neurons (limit #HN in Fig. 1)
can be specified in order to limit the final size of the network.
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Finally, we obtain a sequential and incremental learning process that allows
us to build and train efficient and accurate neural networks of limited size for
function approximation. Moreover, our approach, used in the particular context
of the Neurad project, is general and can be used for any kind of data, real or
synthetic, and with any kind of activation function of the neurons.

3 Parallel Algorithm

Our parallel algorithm is based on the classical client-server model applied to
the distribution of the work. The role of the server is to distribute the different
tasks constituting the overall process to the other nodes, which are the clients.

In order to obtain such a simple operating scheme, it is necessary to divide
the learning in separate tasks. This is possible according to the principle that the
approximation of a function on a given domain can be obtained by performing
multiple approximations of that function on sub-domains forming a partition of
the initial domain. The following paragraph describes the domain decomposition
technique we have used in our algorithm.

3.1 Domain Decomposition

In the case of neural networks, the domain decomposition leads to a composition
of several sub-networks in order to perform the overall approximation of the tar-
get function. Indeed, the initial domain of the data set is divided into subspaces
along one or several of its input dimensions. Obviously, the output dimensions
cannot be divided as it would not be possible to know in advance what output
sub-domain corresponds to a given input vector.

So, the overall approximation of the initial data set is obtained by the sep-
arate learnings of the data subsets induced by the domain decomposition. The
decomposition along each dimension can be performed in any way. The simplest
decomposition is probably the one which produces data subsets of approximately
the same sizes. The decomposition principle is illustrated in Fig. 2.

In addition to the possibility to design a simple and efficient parallel algorithm,
the domain decomposition presents another important advantage in the case of

Fig. 2. Domain decomposition in 9 sub-domains of a two-dimensional data set
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neural network approximation. It significantly reduces the complexity of the
target functions to approximate. Indeed, it is far more easier to approximate a
function on a small interval than on a large one, especially if there are sharp
variations. Thus, a better accuracy can even be expected on each sub-domain.

However, performing the learnings on sub-domains constituting a partition
of the initial domain is not satisfying according to the quality of the results.
This comes from the fact that the accuracy of the approximation performed by
a neural network is not constant over the learned domain. Thus, it is necessary
to use an overlapping of the sub-domains as explained below.

3.2 Overlapping between Sub-domains

As mentioned above, the disadvantage brought by the use of several sub-networks
of neurons in place of a single one comes from accuracy problems at the frontiers
between each sub-network. Although the neural networks have the capacity of
generalization on any given training domain, they do not provide representative
results outside this domain and the approximation error increases toward the
limits of the domain. This mainly comes from the fact that on the borders of
the domain there is less available information about the target function than in
the middle of the domain. So, the error is smaller in the middle of the domain
than on its borders.

If this is not relevant when using a single neural network, it becomes an is-
sue when several sub-networks are used to represent the domain. Indeed, an
increase of the number of sub-networks directly increases the number of fron-
tiers between the sub-domains and then, the number of higher error areas in
the domain. Consequently, the average accuracy of the approximation may be
importantly reduced. Moreover, the error distribution becomes decomposition-
dependent, which is a very restrictive feature as it implies that no decomposition
should be made in the areas of higher interest.

Fortunately, there is a solution to that problem which consists in masking the
borders of the domains by performing an overlapping of the sub-domains during
the learning phase. Thus, we obtain a set of sub-networks whose approximation
errors at the frontiers between them is of the same order as anywhere else in the
domain. This mechanism implies the distinction, for each sub-network, between
its learning domain and its exploitation domain. The former is the domain used
to perform the learning of the sub-network; it overlaps with the learning domains
of the neighboring sub-networks. The latter is the domain of validity of the sub-
network during the exploitation phase; as it is used to find the most suited sub-
network to process a given input vector, it does not overlap with the exploitation
domain of any other sub-network. The overall principle is depicted in Fig. 3.

In this way, each sub-network has an exploitation domain smaller than its
training domain and the accuracy problems at the borders are no longer relevant.
Nonetheless, in order to preserve the performances of the parallel algorithm, it
is important to carefully set the overlapping ratio α. It must be large enough
to avoid the borders errors, and as small as possible to limit the size increase of
the data subsets. The trade-off value depends on the nature of the initial data
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Fig. 3. Overlapping for a sub-network in a two-dimensional domain with ratio α

set and thus, on the application field. In Sect. 4, a case study of that ratio is
performed in the context of the Neurad project, for radiation dose distributions.

3.3 Fault Tolerance Mechanism

In addition to our parallel scheme, a fault tolerance mechanism is included that
enables its use in any dynamical parallel system such as open multiuser clusters
or grids. Typically in such contexts, the communication links may be temporar-
ily or definitely interrupted, the processors speed may sharply vary due to the
multiuser context and the processors may even stop working. However, it is rea-
sonable to assume that the conjunction of all those possible faults is quite a rare
event. Moreover, extreme cases, in which all the processors or links are faulty,
are obviously out of consideration. Consequently, we assume in the following
that during the learning process, there is always at least one operational node
(the server is also the client). With those hypothesis, the goal of our fault toler-
ance mechanism is to ensure that the learning process continuously progresses
as efficiently as possible whatever the events occurring on the system are.

The principle of our system is based on regular message exchanges between
the server and the nodes in order to monitor their current state.

The server initializes, for each client, a structure containing:

– its current state: either waiting, learning or in fault
– the identifier of the sub-network it is in charge of
– the date of the last received message from that client
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Then, it enters the main learning loop in which it distributes the sub-networks
to train to the available clients and monitor their states in order to react to
potential faults. Hence, when a client is idle, the server sends it one of the
remaining sub-networks to process and its associated data subset.

It is importanttonotethatthesub-networksentmaybealreadypartially trained.
This is the case when the sub-network has been recovered from a previous learn-
ing interruption due to a fault in the system. When the client is processing a sub-
network, the server regularlyverifies that it is still alive.Finally, in order toavoid the
restarting from scratch of a previously faulted learning, the client regularly sends
to the server the current version of its sub-network. So, when a fault occurs on the
client, the sub-network can be redistributed to another idle client. However, it may
occur that a fault of a client comes from a temporary interruption of its link with
the server. In such cases, there is no way to identify the cause of the fault and the
server will also redistribute the work of that client to another one. Then, when the
faulty link comes back working, the server will detect a dual processing of the cor-
responding sub-network on two clients.

The chosen policy in this case is to let both the clients processing the same
sub-network and, as soon as one of them returns the result, the server sends an
interruption message to the other client in order to make it accept another work.
When there is no idle client although there remains sub-networks to process, the
server waits until one of the clients sends back its resulting sub-network after
the learning completion. Finally, the main process stops when there is no more
sub-network to train and all the clients have returned their results. Once this
is made, the server sends a message to all the clients, indicating the end of the
overall process, and saves the complete structure of the global network.

On the client side are the complementary operations to the server. When a
client receives a training message, it takes delivery of the sub-network and the
associated data subset. Then, the node performs the learning of the sub-network
using the learning algorithm previously described. During this stage, the node
regularly notifies its state to the server by sending the evaluation of its training
error. It also sends, less frequently, a safeguard copy of its current sub-network.

Figures 4 and 5 respectively depict the general algorithmic schemes used on
the server and on the client sides.

4 Experimental Results

In this section, the quality, performance and robustness of our algorithm are ex-
perimentally evaluated. Our algorithm has been implemented in standard C++
with the LAM/MPI communication library [22]. Although that library is not the
most suited to fault tolerance, it offers the minimal features of robustness allow-
ing us to validate our algorithm. It must be pointed out that our algorithm does
not depend on any implementation environment and another communication
library may be used.

The presented experiments have been performed on a multiuser cluster of 20
nodes (Intel PIV, 3Ghz, 1 Go RAM, Debian Linux).
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4.1 Quality of the Parallel Learnings

The first test shows the impact of the overlapping between sub-domains on the
learning error. We have used a training set containing only one distribution
of radiation dose deposit in a homogeneous material to perform this test. The
results of that first experiment are presented in Table 1.

Table 1. Impact of the overlapping between sub-domains onto the learning error

Overlapping (%) 0 5 7 10 50
Mean Error (%) 2.86 2.38 2.37 2.37 2.45
Mean Bias (%) 2.28 1.86 1.82 1.83 1.85

This experiment shows that the overlapping is necessary to obtain the best
accuracy with our parallel learning algorithm. Effectively, it can be seen that the
overlapping ratio directly influences the accuracy of the final network. However,
it also shows that this overlapping ratio cannot be fixed a priori without a
preliminary study. Indeed, If it is too small, the errors at the frontiers reduce the
quality of the final results, and if it is too large, the quality will also be degraded
due to a larger size of the sub-domains, implying a potentially higher complexity
of the sub-functions to approximate. Those two aspects clearly show that the
optimal value of the overlapping ratio is strictly positive but is also far smaller
than the maximal possible range. This comes from the fact that the accuracy
of the approximation at any given position in the domain, and in particular at
the frontiers between sub-domains, directly depends on the number of neighbors
used to perform the approximation and, in some sense, on the relative flexibility
of the elementary functions used in the neural network. Although there is no
analytical way to compute the optimal value of that overlapping ratio for the
moment - this will be the subject of future works - it seems quite obvious that
this ratio is directly linked to the complexity (maximal and/or mean frequency,
value range,...) of the function to approximate.

4.2 Performances of the Parallel Learning Scheme

That second experiment aims at evaluating the impact of the domain decompo-
sition on the performances and quality of our parallel learning algorithm. It has
been achieved with a training set generated by the BeamNrc code. That code is a
simulator based on the Monte Carlo technique for nuclear applications. The data
set is the results of three irradiations of a homogeneous environment of water at
three different distances (98, 100, and 102 cm). The set is composed of 1,500,000
points. For each point, we store: the spatial position, the material density and
the length between the water environment and the particle accelerator.

The results of our parallel learning algorithm on that data set are presented
in Table 2 for several configurations of domain decomposition performed on the
three spatial input parameters. The convergence ratio indicates the percentage
of sub-networks which have actually reached the requested accuracy. In fact, for
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Table 2. Results of our parallel algorithm for several domain decompositions performed
on the three spatial dimensions of the training set

Decomposition 1 × 1 × 1 2 × 1 × 2 2 × 2 × 2 3 × 1 × 3 3 × 2 × 3 3 × 3 × 3
Mean Error 6.20e-4 1.57e-4 1.0e-4 1.63e-4 1.0e-4 1.01e-4
Min Error 6.20e-4 9.99e-5 9.99e-5 9.99e-5 9.99e-5 9.99e-5
Max Error 6.20e-4 2.3e-4 1.01e-4 4.97 e-4 1.01e-4 1.23e-4
Convergence ratio (%) 0 25 33 62 66 92
Min Time 4H34 4H06 0H54 1H11 0H04 0H03
Max Time 4H34 8H10 3H25 5H59 3H47 1H42

each sub-network, the learning process may either stabilize before reaching the
desired accuracy or not reach it in reasonable time.

The results show that our parallel learning algorithm increases the global
accuracy of the neural network while decreasing its learning time. That double
gain is due, as mentioned in Sect. 3.1, to the fact the learnings are performed on
smaller domains than the initial one.

Concerning the quality of the network, it can be seen that the decomposition of
all the input dimensions facilitate the overall convergence of the learning process.
Moreover, the convergence rate is also greatly improved according to the number
of decomposed input dimensions and the total number of sub-networks.

Concerning the performances, it must be noticed that as the initial training
set is quite large, the first result with no domain decomposition has a null level
of convergence and its learning time does not actually correspond to the time
required to obtain the desired accuracy. So, that time should be far larger.

The larger maximal time of the 3 × 1 × 3 decomposition according to the
2×2×2 one is due to the difference in complexity of the function to approximate
in the respective sub-domains obtained. Moreover, as for the case without any
decomposition, the maximal times variations also come from the fact that the
learning process may be stopped before the convergence, in order to obtain
reasonable times. So, 3 × 1 × 3 has a larger maximal time but also has a far
better convergence rate. If the stopping criteria had been based only on the
convergence, it is strongly probable that the maximal time of 2 × 2 × 2 would
have been larger. It is also the case for 3× 2× 3 compared to 2× 2× 2.

It has to be noticed that our current version of the algorithm realizes an
implicit form of load-balancing by the use of a tasks queue managed in the
client-server scheme. However, that load-balancing could be improved - this is
also a future work - by performing a non-regular decomposition of the domain
in order to obtain approximately the same complexities of the sub-domains.
This should induce similar learning times of the sub-domains and thus sensibly
enhances the overall learning time of the entire domain.

4.3 Performances of the Robustness Mechanism

As our fault tolerance mechanism allows our algorithm to always successfully
terminate as long as there remains at least one operational client node in the
system, we focus here on the performances of our algorithm in presence of faults.
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However, as such an evaluation should require an entire study in itself, we do
not try to be exhaustive here but just give some hints on the behavior of our
algorithm. Hence, we use only one frequency of the intermediate backups of the
sub-networks here (every 5 learning iterations) but its optimal implementation
and value should be discussed in a further study.

We give on the left side of Table 3 the total times of a learning decomposed
in 9 sub-domains started with 9 clients in function of the number of permanent
client faults occurring during the process. Those results are means of several
executions with a general (uniform) random distribution of the faults during the
process. In order to make a comparison, the learning times obtained without any
fault are given for different numbers of clients on the right side of Table 3.

Table 3. Learning times with 9 initial clients in function of the number of permanent
client faults on the left. Learning times without faults in function of the number of
clients on the right.

# faults 1 2 3 4 5 6 7 8
Times (min) 13 14 18 19 21 23 26 42

# clients 9 8 7 6 5 4 3 2 1
Times (min) 10 10 11 12 16 16 29 32 58

It can be seen that the progression of the learning times according to the
number of faults merely follows the times obtained without faults when the
number of clients decreases. However, it is interesting to see that this progression
tends to slow down when the number of faults increases.

In fact, those results can be explained by the fact that, additionally to the
number of faults, the instants at which the faults occur also have an impact
on the performances. The latter they occur during the process, the better are
the performances. This comes from two factors. The most obvious and general
one is that the latter the faults occur, the longer the algorithm works with a
larger number of clients. The latter is more specific to the current version of
our parallel learning algorithm as there may be sensible differences between
the learning times of the sub-domains. Hence, for the latest faults, it is highly
probable that some of the sub-domains learnings are already completed and
that some clients are idle, offering the possibility to perform an immediate re-
assignation of a stopped learning when a fault occurs. In such cases, the impact
of the fault on the performances is minimal.

So, for uniform faults distributions and large numbers of faults during the
process, it is highly probable that some of them occur in the particular context
described above and thus have a very small impact on the overall performances.

Conclusion

A parallel learning algorithm has been presented which includes fault tolerance.
Its principle is based on a domain decomposition of the input parameters of the
training data set and on an overlapping of the sub-networks to ensure a good
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accuracy of the network on the entire domain of the data set. Moreover, the fault
tolerance enables the use of that algorithm on a large class of parallel systems,
including dynamical ones.

Qualitative and quantitative evaluations of the algorithm have been performed
experimentally on real data sets. They confirm the good behavior of our algo-
rithm in terms of performances, quality and robustness.

In the following of the Neurad project, it should be interesting to add another
important feature to our learning process which is the possibility to make a
network learn new data without loosing its previously accumulated knowledge.
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Abstract. Typical OLAP queries take a long time to be processed so speeding 
up the execution of each single query is imperative to decision making. Par-
GRES is an open-source database cluster middleware for high performance 
OLAP query processing. By exploiting intra-query parallelism on PC clusters, 
ParGRES has shown excellent performance using the TPC-H benchmark. In 
this paper, we evaluate ParGRES on a real-world OLAP database. Through 
adaptive virtual partitioning of the database, ParGRES yields linear and very of-
ten super-linear speedup for frequent queries. This shows that ParGRES is a 
very cost-effective solution for OLAP query processing in real settings. 

1   Introduction 

A Data Warehouse (DW) is a large database repository that integrates data from dif-
ferent sources and provides a single view of all or part of the business data collection 
in order to improve data analysis. Online analytical processing (OLAP) is a multidi-
mensional approach to analyze data and is used much in DW. This analysis is done 
through complex queries with high processing costs. The processing of a sequence of 
such queries can take hours or days. Often, this time-frame is above the deadline the 
decision makers have to obtain the required analysis.  

One of the challenges for OLAP applications is the reduction of individual query 
processing time. To improve performance in these applications, high-performance 
parallel database systems can be used [22]. Parallel database systems exploit inter- 
and intra-query parallelism. Inter-query parallelism runs each query sequentially, but 
many queries in parallel, thus improving overall throughput. Inter-query aims at 
OLTP queries running as many concurrent queries in parallel as possible. However, in 
OLAP, intra-query parallel processing is mandatory. There is an explicit order and 
sequential dependency between related queries. Running these queries in parallel will 
not lower the long running time of each query. The problem of using parallel database 
systems for high performance query processing is the vendor dependency and costs 
involved in software, hardware, and physical database design. 

The database cluster approach [1, 3, 8, 9] improves the performance of queries by 
applying parallel processing on top of a cluster of databases. High-performance 
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comes with a low cost implementation on top of PC clusters. Akal et al. [1] define a 
database cluster (DBC) as a standard computer cluster (a cluster of PC nodes) running 
a Database Management System (DBMS) instance at each node. A DBC middleware 
intercepts queries from an application and manages query execution by taking advan-
tage of the DBC. 

Following the DBC approach, ParGRES [9, 12] has been developed as a middle-
ware to provide for intra-query parallel processing on DBC. ParGRES is an  
open-source middleware between the application and DBMS that intercepts SQL 
queries to exploit intra-query parallelism. It orchestrates its execution with the help of 
the sequential DBMS, each running at a cluster node. ParGRES can also provide for 
inter-query parallelism. To preserve the sequential DBMS execution, virtual partition-
ing on a replicated database has been proposed in [1] to achieve intra-query parallel-
ism. ParGRES builds upon the virtual partitioning technique by creating an adaptive 
virtual partitioning that also allows for load-balancing. These features make ParGRES 
a unique solution for OLAP queries among several DBC systems, like PowerDB [14], 
C-JDBC [3], and Sequoia [18], 

The efficiency of ParGRES has been validated through experiments with typical 
queries of the TPC-H benchmark [20]. TPC-H represents OLAP business applications 
and has twenty two heavy-weight select queries and two update queries. Super-linear 
or linear speed-up was obtained with ParGRES [9] in all queries.  

The TPC-H benchmark can be considered a typical, well-behaved application. In 
our previous work [9] we had to force a non-uniform valued database to test query 
load-balancing. In this work, we evaluate ParGRES’ performance with a real-world 
OLAP application, from the Brazilian Institute of Geography and Statistics – IBGE. 
We focus on analyzing the ParGRES non-intrusive approach of its dynamic adaptive 
virtual partitioning design. This partitioning along with its load balancing during 
intra-query parallel processing is critical in the high-performance of OLAP queries. 

IBGE is the main provider of data and information about Brazil and is the govern-
ment agency responsible for Brazil’s censuses. IBGE provides for ad-hoc query ac-
cess to the census data through the Statistical Multidimensional Database (BME), 
which is an OLAP database.  Such queries are used by several municipalities and 
Federative Units to define urban planning. BME is also used in emergency situations 
such as evaluating the effects of a devastating disaster on local populations. BME is a 
large database and in our tests, we use a 20 GByte database. We analyzed BME query 
logs for the last two years to come up with fourteen typical SQL queries. These que-
ries have several joins including fact tables as well as dimension tables, aggregations, 
sub-queries, and predicates with all kinds of ranges of selectivity factors.  

To evaluate BME queries, all we had to do was to give ParGRES the names of the 
fact tables and their partitioning attributes, on which we created clustered indexes1. 
We ran BME queries on ParGRES by using a PC cluster with up to 64 nodes from 
Grid’5000 [4] and PostgreSQL [13] as the sequential DBMS running on each node. 
We replicated the BME database to be virtually partitioned during query execution. 
We performed several experiments with ParGRES and we obtained linear and almost 
always super-linear speedup on queries frequently issued to the BME census. We 

                                                           
1 Clustered indexes are typically found in most DBMS. They order (cluster) tuples physically 

according to the index. 
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noticed that, by using only a 4 node PC cluster, queries that take about 15 minutes 
drop to just half a minute. Since queries are ad-hoc, we did not perform any fine tun-
ing nor any optimization on PostgreSQL. Application migration costs and investments 
on this solution are negligible, being restricted to acquiring an off-the-shelf PC clus-
ter. These results can be further improved if caching and other optimizations are used. 
We believe the same results can be obtained with other OLAP applications such as 
TPC-H and BME. Particularly in Brazil, the government has many other OLAP data-
bases that could benefit from ParGRES. Extensive results show that ParGRES has 
proved to be a very cost-effective alternative solution for OLAP query processing in 
real scenarios. 

This paper is organized as follows. Section 2 shows ParGRES’ main features. Sec-
tion 3 describes the BME census database used in our experiments. Section 4 dis-
cusses experimental results. Related work is presented in Section 5 and Section 6 
concludes. 

2   ParGRES 

ParGRES [9, 12] is a high-performance database cluster middleware specially devel-
oped for OLAP query processing. By exploiting inter- and, in particular, intra-query 
parallelism, it significantly speeds up the execution of heavy-weight queries, typical 
from OLAP applications. Fig. 1 shows the general architecture of a DBC with Par-
GRES. 

Before using ParGRES, it is necessary to set the number of nodes to process que-
ries in parallel. When ParGRES receives an SQL query from client applications, it 
parses and analyzes it in order to determine if it can be processed through intra-query 
parallelism (following the guidelines specified in [1]). If this is the case, all nodes set 
in ParGRES are involved in the parallel processing. It re-writes the query in sub-
queries to be executed by the DBMS of the database cluster. Sub-queries are gener-
ated by using the technique called Virtual Partitioning (VP) [1]. Basically, it consists 
in rewriting the original query by adding range predicates to it, which originates as 
many sub-queries as the number of nodes available. Then, each node receives a dif-
ferent sub-query. If the database is fully replicated at all nodes, ParGRES can assign 
any sub-query to any node. Let us give an example with query Q on table part: 

Q: select sum (price) 

 from part 

 where category = ‘Y’; 

In order to implement VP, Q would be rewritten as follows: 

Qi: select sum (price) 

 from part 

 where category = ‘Y’ 

 and pid >= :v1 and pid < :v2; 
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In the example, pid is chosen as the virtual partitioning attribute (VPA) for table 
part. During query rewriting, a different pair of values (v1, v2) is assigned to each 
node. Similarly to Akal et al. [1], ParGRES does that by equally dividing the total 
value range currently assigned to pid by the number of nodes that are going to proc-
ess the query and giving each one exactly one sub-range. If, for example, pid current 
range is [1, 1000] and four nodes nj (j = 1 to 4) are configured in ParGRES, to process 
Q, node n1 receives v1 = 1 and v2 = 251, n2 receives v1 = 251 and v2 = 501, and so 
on. At each node the local sequential DBMS processes the sub-query on the specified 
exclusive virtual partition of the table part. This way, a database that is not physi-
cally partitioned can still be processed through intra-query parallelism. VP is adopted 
by ParGRES but only to perform its initial query rewriting. 

 

 

Fig. 1. ParGRES Database Cluster Architecture 

In ParGRES, when a node first receives a VP sub-query with its value range to 
VPA, it does not directly submit it to the local DBMS. At each node, ParGRES lo-
cally subdivides the value range generating “smaller” virtual partitions, i.e. sub-
queries. The idea is to have more flexibility on the load each node has to process. 
Since VP is based on table replication any node can process any sub-query. The ap-
proach of equally dividing the initial range by the number of nodes relies on the ab-
sence of data skew. Otherwise once a DBMS receives its sub-query the DBC can no 
longer reassign part of it to another node to do load balancing.  

At the node level, ParGRES adopts a variation of VP called Adaptive Virtual Parti-
tioning (AVP) proposed by Lima et al.[7]. The definition of the value range of the 
VPA is dynamically generated by adapting it to the processing response time of the 
nodes. When a node receives its sub-query, it subdivides the predicate value range 
into smaller ranges. Then it starts processing the range by sequentially submitting as 
many sub-queries as it takes to the local DBMS. Range sizes are continuously adapted 
by AVP in order to avoid full table scans (more details in [8]). Such an approach of 
having many sub-queries per node allied to database replication allows for dynamic 
load balancing. ParGRES redistributes the load by reassigning virtual partition ranges 
between nodes during query execution, as described in [8]. When a node finishes 
processing its sub-query, it sends messages to other nodes offering help to process 
their sub-queries. Due to replication, a node that needs help can reassign part of its 
unprocessed attribute range to this idle node. 
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VP requires an extra query processing phase to compose the final result from the 
partial ones produced by the sub-queries. ParGRES employs HSQLDB [5], a fast 
lightweight open-source DBMS, to perform result composition. For example, for 
processing Q, ParGRES would create a temporary table on HSQLDB as follows: 

create table tempResult (sprice double); 

Each sub-query result would then be inserted into tempResult. When all nodes 
are done, ParGRES performs final result composition by issuing the following query 
to HSQLDB: 

select sum (sprice) from tempResult; 

The final result is sent to the client application and tempResult is then discarded.  
ParGRES is fully distributed and it has local components running on each node. 

Result composition is a two-phase process: in the first phase, each node uses its local 
HSQLDB instance to perform local result composition; when all nodes are done, their 
final results are sent to global ParGRES components that use a global HSQLDB the 
same way to obtain the final result. 

ParGRES also supports data updates, requiring no read-only query processing in-
terruption to process them. As data updates are beyond the scope of this work, we 
refer the reader to [9], to find more detail. 

3   Population and Housing Census 2000 and BME Ad-Hoc Queries  

IBGE is responsible to support the demands of several different segments of civil 
society, as well of other governmental institutions at federal, state and municipal 
levels [2]. 

Population and Housing Censuses are the main sources of information about the 
living conditions of the population in each one of the municipalities and localities of 
Brazil. The censuses produce basic information for the formulation of public policies 
and for the decision-making processes of private or governmental investments [2]. 
The data of the survey we used in our tests was collected in the period of August, 1st 
to November, 30th, 2000, encompassing 5,507 Brazilian municipalities created and 
installed up to that date. All information from this Census are disseminated and or-
ganized in two data collections: Data of the Universe and Data of the Sample, and 
each data collection in three themes: Housing Units, Persons and Households. 

Through the Internet, IBGE makes its survey results available as dynamic pages, 
downloadable files and online tools to access data. One of these online tools is the 
Statistical Multidimensional Database - BME. 

BME [11] is an OLAP database developed by IBGE and its content is formed by 
microdata2 from IBGE’s surveys and the metadata associated to these data. This ap-
plication is intended for researchers who need to generate their own statistical  
information using microdata and for professionals involved in planning tasks and 
decision-making processes. BME allows its users to perform ad-hoc queries in a data-
base that has more than one billion tuples. 

                                                           
2 Microdata are nonagregated data about individual objects (persons, housing units, household-

ers, etc.) collected by statistical surveys, that is, the microdata is a record set about one object.  
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Population and Housing Census 2000 is available in BME and it is one of the 
greatest surveys in this database, with about 250 millions tuples. It is also the survey 
with the greatest number of submitted queries by BME users. 

The Data of the Sample specifications in BME contains 84 dimension tables, includ-
ing one time dimension and nine spatial dimensions, and three fact tables: DOMI (hous-
ing units data), PESS (persons data) and FAMI (households data). Time dimension refers 
to the period of the survey and spatial dimensions refer to the Brazilian territorial area.  

Fig. 2 shows the relationship between fact tables and time and spatial dimension 
tables. It presents time dimension (T004), spatial dimensions (G000, G031, G032, 
G033, G034, G035, G036, G037, G039 and G042) and fact tables (DOMI, PESS and 
FAMI). Fig. 2 also shows the cardinality of each table. Time and spatial dimensions 
are related to all fact tables through their foreign keys.  

Fig. 3 shows the relationship between fact tables. DOMI is related to the others fact 
tables, PESS and FAMI, and FAMI is related to PESS, through its primary key. 

Fig. 4 illustrates the relationship between DOMI and other dimension tables, ex-
cluding the time and the spatial dimensions. There are 24 dimensions, in this case. 
Their cardinalities are: |M003| = 12, |M075| = 3, |M078| = 5, |M102| = 4, |M103| = 7, 
|M104| = 4, |M105| = 4, |M106| = 4, |M109| = 8, |M115| = 8, |M116| = 8, |M128| = 6, 
|M129| = 8, |M208| = 2, |M209| = 12, |M233| = 5, |M270| = 3, |M272| = 10, |M273| = 
11, |M274| = 7, |M275| = 11, |M276| = 11, |M277| = 11 and |M278| = 11. 

Fig. 5 shows the relationship between FAMI and seven dimension tables, exclud-
ing the time and the spatial dimensions. Their cardinalities are: |M290| = 16, |M291| = 
17, |M292| = 17, |M293| = 8, |M295| = 13, |M296| = 16, |M297| = 13. 

Fig. 6 illustrates the relationship between PESS and other dimension tables, ex-
cluding the time and the spatial dimensions. There are 42 dimensions, in this case. 
Their cardinalities are: |M159| = 7, |M167| = 4, |M298| = 13, |M300| = 2,  |M301| = 13, 
|M302| = 21, |M306| = 144, |M307| = 54, |M308| = 6, |M309| = 7, |M311| = 3, |M314| 
= 8, |M315| = 5510, |M320| = 3, |M321| = 5, |M322| = 15, |M323| = 11, |M324| = 12, 
|M325| = 13, |M326| = 5, |M327| = 63,  |M330| = 5, |M331| = 7, |M332| = 7, |M333| = 
4, |M334| = 513, |M338| = 224, |M341| = 10, |M342| = 7, |M343| = 5, |M348| = 15, 
|M355| = 3, |M361| = 8,  |M4210| = 98, |M4219| = 260, |M4230| = 99, |M4239| = 261, 
|M4276| = 5605, |M4279| = 232, |M4300| = 21, |M4354| = 94 and |M4511| = 3. 

 

Fig. 2. Relationship between fact tables and dimension tables 

 

Fig. 3. Relationship between fact tables 
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Fig. 4. Relationship between DOMI and dimension tables 

 

Fig. 5. Relationship between FAMI and dimension tables 

 

Fig. 6. Relationship between PESS and dimension tables 

4   Experimental Evaluation 

In this section, we describe our experimental evaluation obtained by running BME 
OLAP queries on a database cluster managed by ParGRES. Section 4.1 describes our 
experimental setup and Section 4.2 analyzes the results we obtained.   

4.1   Experimental Setup 

The experiments were executed on a 64-node cluster of Grid’5000 [4]. Grid’5000 is a 
French project that provides a large-scale reconfigurable grid infrastructure to support 
distributed and parallel experiments. Each node has two Intel Xeon 2.3 GHz proces-
sors, 4 GB RAM and 160 GB HD. A PostgreSQL 8.2.4 DBMS [13] instance, running 
on Debian Linux version sid for amd64, is used to manage the Population and Hous-
ing Census (BME) database at each node.  

The BME database was generated according to specifications from the Statistical 
Multidimensional application [11]. It contains the dimension and fact tables described 
in the previous section. We created clustered indexes for the primary keys of each fact 
table, as required by VP. The total database size is 20 GB and it was fully replicated 
on the 64 cluster nodes used during our experiments.  

Due to ad-hoc BME OLAP queries, we analyzed past query loads and selected 
some typical queries for our experiments. More specifically, we analyze ParGRES 
performance while executing 14 queries with different complexity levels as shown in 
Table 1.  
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All queries use at least one fact table and two out of the dimension tables: one from 
the time dimension and one from the spatial dimensions. Also, all queries perform at 
least two aggregations. Queries Q3 and Q6 use only two dimensions (joined to the 
fact table) and perform four aggregations; Q3 does not have any predicate, while Q6 
has a 33.17% selective predicate. Queries Q1, Q2, Q4, Q5, Q7 and Q8 perform joins 
between a fact table and other dimensions besides the time and the spatial ones. Q1, 
Q2 and Q4 do not have any predicate. Q4 performs 3 aggregations. Q5 has an 83.95% 
selective predicate. Q7 and Q8 have high selective predicates, retrieving 2.92% and 
3.28% of tuples and perform 4 aggregation functions. Queries Q9, Q10, Q11 and Q13 
use two fact tables. Q12 and Q14 use all fact tables in addition to dimension tables. 
Only Q9 and Q13 do not have predicates, while Q10, Q11, Q12 and Q14 have high 
selective predicates, retrieving 2.32%, 2.56%, 6.87% and 1.13% of tuples, respec-
tively. Q12 performs 6 aggregations. Q7, Q8, Q10 and Q11 perform a join between a 
fact table and a relatively large dimension. All queries perform grouping operations. 
Table 1 summarizes their main characteristics.  

Table 1. Main characteristics of each query 

Query Number of 
aggregations 

Predicate Number of Dimen-
sion Tables 

Name(s) of 
Fact Table(s) 

Q1 2 N 3 DOMI 
Q2 2 N 3 PESS 
Q3 4 N 2 PESS 
Q4 3 N 3 PESS 
Q5 2 Y 3 PESS 
Q6 4 Y 2 PESS 

Q7, Q8 4 Y 3 PESS 
Q9 2 N 4 DOMI, PESS 

Q10, Q11 4 Y 4 DOMI, PESS 
Q12 6 Y 3 DOMI, PESS, FAMI 
Q13 2 N 3 DOMI, PESS 
Q14 2 Y 6 DOMI, PESS, FAMI 

4.2   Experimental Results 

In this section, we present the results obtained during our speedup experiments. Table 
2 shows the execution times (in seconds) obtained for each BME query while adding 
cluster nodes (from 1 to 64 nodes).  

Table 2 provides evidence of the excellent results obtained, which are better shown 
in Fig. 7, that we split in two figures to improve legibility. We present the normalized 
execution time for each query in Fig. 7 (a) and (b). Normalization was obtained by 
dividing each query execution time by the highest execution time of its associated 
query, i.e., the sequential execution of the query. With the sole exception of Q1, 
which is already quite fast, all other queries have super-linear speedup for all node 
configurations, as shown in Fig. 8. The speedup curves in Fig. 8 (a) and (b) are shown 
using log scale for y-axis and the x-axis represents the number of nodes. Fig. 8 also 
shows the linear speedup curve plotted with the thickest line style.  
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Table 2. Execution times (in seconds) per number of nodes 

Query 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes 
Q1 31.90 13.59 9.00 7.86 2.61 2.50 2.36 
Q2 217.41 113.30 24.41 17.85 13.70 7.18 2.50 
Q3 217.47 107.60 16.81 13.96 7.94 5.78 2.19 
Q4 217.90 101.76 16.89 12.88 12.36 4.79 2.24 
Q5 217.44 88.77 10.70 10.38 9.12 4.47 1.69 
Q6 217.62 92.48 11.45 11.42 7.44 1.91 1.75 
Q7 217.76 85.98 12.33 10.55 5.60 1.51 1.35 
Q8 217.67 86.19 10.08 9.01 8.35 2.30 1.81 
Q9 460.30 208.19 41.30 22.52 11.03 5.71 3.60 

Q10 586.65 244.96 16.18 10.86 8.86 5.70 1.70 
Q11 568.54 273.66 13.35 12.74 11.54 2.30 1.82 
Q12 1.242.22 618.85 174.95 84.45 42.25 21.91 11.43 
Q13 218.37 112.56 23.15 11.68 8.15 5.83 2.94 
Q14 1.030.08 511.11 93.80 48.08 25.50 14.45 9.20 

With 4 nodes, the virtually partitioned database may be fitting in the four nodes 
main memory, which explains the significant speedup for all queries with just 2 or 4 
nodes in Fig 7. However, even after the memory effect, execution time continues to 
drop significantly up to the 64 nodes. Q12 is the most time consuming query and its 
execution drops from 21 minutes to 1.5 minute with 8 nodes and to only 11.43 sec 
with 64 nodes. Even though some queries present some skew (Q7, Q8, Q10, Q11, 
Q12 and Q14), it was the same behavior of ParGRES while processing queries with 
uniform data. Considering that several time-consuming queries are submitted one 
after the other, often with one depending on the result of the other, intra-query paral-
lelism of ParGRES can significantly reduce the overall time needed for the decision 
making process. This is crucial in many situations such as disease control measures 
based on census dimensions and fact tables. 

5   Related Work 

Besides ParGRES, there are several DBC solutions designed to improve query process-
ing performance through parallel processing techniques, like PowerDB [14], C-JDBC 
[3], Apuama [10] and Sequoia [18], which is a follow up of C-JDBC. Only ParGRES 
and PowerDB provide for intra-query parallelism, but PowerDB presents severe limita-
tions in the presence of load unbalancing between nodes during query processing.  

PowerDB [14] is a DBC middleware that uses full database replication as physical 
data organization scheme to obtain parallel query processing. Different middleware 
solutions have been proposed in PowerDB for OLAP and OLTP query processing. 
With respect to OLAP, Akal et al. [1] have originally proposed VP to obtain intra-
query parallelism. However, VP has limitations as it relies on a uniform data value 
distribution for the VPA to achieve high-performance during query processing. Its 
“one sub-query per node” approach is also an issue as it prevents dynamic load bal-
ancing due to black-box DBMS. In our previous work [9] we show that our dynamic 
AVP outperforms VP for all TPC-H queries. Particularly, in the presence of data 
skew, the static features of using just VP imposed poor performance results, often 
with slow down factors. 
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Fig. 7. Query execution time experiments: (a) results for Q1-Q7; (b) results for Q8-Q14 

   

Fig. 8. Query speedup: (a) results for Q1-Q7; (b) results for Q8-Q14 

Röhm et al. [15] propose Hybrid Partitioning (HP), a physical database design ap-
proach that avoids full database replication by equally fragmenting the fact tables and 
allocating each fragment to a different cluster node. The dimensions are fully  
replicated between nodes. HP makes it possible to implement intra-query parallelism 
during OLAP query processing. However, if load unbalancing occurs during query 
execution, data transfers must be made in order to redistribute load. In fact, no dy-
namic load balancing policy is proposed by the authors. Other works were proposed 
in the context of PowerDB [16, 17] but they do not employ intra-query parallelism 
thus not reducing the execution time of individual queries, which is imperative for 
speeding up decision making process. Finally, PowerDB is not open-source nor is 
available for download.  

C-JDBC is an open-source DBC middleware designed by Cecchet et al. [3] just as 
ParGRES. However, it focuses on OLTP and e-commerce applications. It uses full 
and partial database replication to obtain inter-query parallelism. Intra-query parallel-
ism is not supported. C-JDBC shows good performance for the TPC-W Benchmark 
[21]. In particular, partial replication is better than full replication because of data 
updates, typical from e-commerce applications. However, without intra-query paral-
lelism, C-JDBC is not adequate to OLAP query processing. It is more suited to appli-
cations that issues fast concurrent queries, such as TPC-C [19] and TPC-W [21]. 
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Sequoia [18] is the sequence of the C-JDBC project and is a solution that offers 
clustering, load balancing and failover services for any database. Sequoia implements 
the concept of Redundant Array of Inexpensive Databases (RAIDb) (just as C-JDBC) 
to provide partial replication in order to tune the degree of replication of each database. 
It also improves performance using fine grain query caching and transparent connec-
tion pooling. Furthermore, Sequoia offers support for clusters of heterogeneous data-
base engines. Just as C-JDBC, it fits better for OLTP and e-commerce applications. 

Apuama is proposed by Miranda et al. [10] to add intra-query parallelism to C-
JDBC. Intra-query parallelism is implemented through static VP and full database 
replication, thus achieving good results. However, it does not properly deals with the 
DBMS as a black-box component as it uses DBMS-specific commands to force the 
use of clustered indexes during query processing in order to have good performance 
with VP. In addition, as PowerDB, it is also very sensitive to skew, since it cannot do 
dynamic load-balancing. 

6   Conclusions 

In this paper, we described an evaluation of ParGRES database cluster middleware in 
a real-world scenario. We have show experiments with Brazilian official census data-
base (Population and Housing Census 2000), 14 BME OLAP queries using a 64-node 
cluster of the Grid’5000 experimental platform. The Census 2000 database was gen-
erated according to BME specifications and it was fully replicated on the 64 cluster 
nodes used during our experiments. PostgreSQL DBMS was used to manage the 
database at each node. 

Our experiments explored intra-query parallel processing with time consuming 
typical BME census queries and the behavior of ParGRES open source database clus-
ter middleware by using a real scenario. The results showed that, in almost all cases, 
ParGRES yields super-linear speedup while adding cluster nodes (from 1 to 64 
nodes). With the exception of Q1 which is already quite fast, all other queries get 
significant super-linear speedup for all node configurations. 

Our experimental results show that AVP improves the performance of ad-hoc que-
ries in real scenarios, including data skew. These results are very encouraging and 
make ParGRES a very cost-effective alternative solution for OLAP applications de-
signed by governmental institutions and researchers in general. 

In future work, we will address concurrent sequences of queries. The experiments 
in this paper have focused on queries in isolation. It is necessary to evaluate the sys-
tem performance by simulating concurrent queries from a few users. Future experi-
ments should also focus on streams of queries as specified in TPC-H which is also 
typical of BME decision makers.  

Currently ParGRES team is developing GParGRES, its extension to grid platforms. 
Preliminary results on TPC-H also on Grid´5000 show encouraging results [6]. We 
also plan to evaluate our BME distributed design on top of grids using larger configu-
rations of nodes. However, dynamic load balancing in grids may compromise the 
speedup obtained with the cluster.   
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Abstract. In this paper we present strategies and experiments that
show how to take advantage of the multi-threading parallelism available
in Chip Multithreading (CMP) processors in the context of efficient query
processing for search engines. We show that scalable performance can be
achieved by letting the search engine go synchronous so that batches
of queries can be processed concurrently in a simple but very efficient
manner. Furthermore, our results indicate that the multithreading capa-
bilities of modern CMP systems are not fully exploited when the search
engine operates on a conventional asynchronous mode due to the mode-
rate thread level parallelism that can be extracted from a single query.

1 Introduction

The algorithmic design and implementation of current Web Search Engines is
based on the asynchronous message passing approach to parallel computing in
which each newly arriving query is serviced by an independent thread in a classi-
cal multiple masters/slaves scheme. Typical facilities for parallel query process-
ing at data centers are composed of a few thousand Linux boxes forming clusters
of computers.

On the other hand, the amount of work demanded by the solution of queries
follows the so-called Zipf’s law which in practice means that some queries, in
particular the ones composed of most popular terms, can demand large amounts
of processing times whereas others containing less frequent terms can require a
comparatively much smaller processing time.

Thus under this asynchronous approach and hardware latencies a given query
can easily restrain smaller queries by consuming comparatively larger amounts
of resources in processor cycles, disk and inter-processors network bandwidths.
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However, we have found that a careful design of the major steps involved
in the processing of queries can allow its decomposition in such a way that we
can let every query share the cluster resources evenly in a round-robin manner
[8,9]. We have observed that this scheme can be particularly useful in preventing
unstable behavior under unpredictable variations in the query traffic arriving to
the search engine.

In particular, we have observed for the standard asynchronous method of
query processing that sudden peaks in the query traffic can be very detrimental
to overall performance due to the Zipf’s law distribution of the workload per
query. We have also observed that the round-robin method of query processing
solves this problem efficiently. We have validated this claim through extensive
experimentation by running actual query logs upon actual 1TB samples of the
Web. Nevertheless, our experiments have been performed on standard machines
with coarse-grain threads implemented by Posix software running on clusters
supporting the distributed memory model and the MPI message passing com-
munication library.

Having said that, it is clear that this discussion is only valid at a macroscopic
level in terms of “heavy” threads and operations for query processing in a sharing
nothing model for data distribution. However, state of the art computer architec-
tures integrate facilities for light threads and shared memory, which are available
to the programmer in the form of efficient realizations of the OpenMP model of
parallel computing. In fact, future improvements in processor performance will
predominantly come from Thread Level Parallelism, rather than from increasing
clock frequency or processor complexity [2]. In this regard, we think that it is
an interesting research problem to validate the above claims in the context of
these new architectures and if not, explore new optimizations to achieve efficient
performance under this new setting.

In this paper, we provide a first step in this direction by studying differ-
ent realizations of standard and round-robin search engines implemented upon
a state-of-the art Chip Multithreading system [11] and its respective OpenMP
realization. As experimental platform we have chosen a Sun Microsystems’ Ul-
traSPARC T1 processor – code-named as Niagara [6] and marketed by Sun as
CoolThreads technology – since it symbolizes the recent shift to CMP in the
server market and presents a radical new approach to enable throughput com-
puting and scalability with low power consumption.

For programming purposes the T1 can be seen as a set of logical proces-
sors that share some resources. Consequently, one may think that paralleliza-
tion schemes targeted for other shared-memory multiprocessors, such as SMP
systems, are also good candidates for this processor. However, the sharing of
resources introduced on the T1 for increasing utilization may cause serious bot-
tlenecks and hence, strategies that are appropriate for these machines may be
inappropriate or less effective for the T1. One of the goals motivating this study
is to revise the implementation of parallel search engines in this light.

The rest of this paper is organized as follows: Section 2 and 3 describe our
search engine and the experimental framework respectively. Section 4 presents
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our parallel proposals and Section 5 shows some performance results. Finally the
paper ends with some conclusions and hints for future research.

2 Search Engine Overall Description

2.1 Distributed Inverted File

Web Search Engines use the inverted file data structure to index the text collection
and speed up query processing. A number of papers have been published report-
ing experiments and proposals for efficient parallel query processing upon inverted
files which are distributed on a set of P processor-memory pairs [1,3,4,7,8,9,10,14].
It is clear that efficiency on clusters of computers is only achieved by using strate-
gies devised to reduce communication among processors and maintain a reason-
able balance of the amount of computation and communication performed by the
processors to solve the search queries.

An inverted file is composed of a vocabulary table and a set of posting lists.
The vocabulary table contains the set of relevant terms found in the collection.
Each of these terms is associated with a posting list which contains the document
identifiers where the term appears in the collection along with additional data
used for ranking purposes. To solve a query, it is necessary to get the set of
documents ids associated with the query terms and then perform a ranking of
these documents so as to select the top K documents as the query answer.

Current search engines use the document partitioned approach to distributing
the inverted file on a set of P processors. In this case, the document collection is
evenly distributed at random on the processors and an inverted file is constructed
in each processor considering only the documents stored in the processor. Solving
a query involves to (a) place a copy of it in each processor, (b) let each processor
calculate their local top K results and (c) make a merge of all results to select
the global top K results.

Query operations over parallel search engines are usually read-only requests
upon the distributed inverted file. This means that one is not concerned with
multiple users attempting to write information on the same text collection. All of
them are serviced with no regards for consistency problems since no concurrent
updates are performed over the data structure. Insertion of new documents is
effected off-line.

2.2 Organizing Query Processing

At the parallel server side, queries arrive from a receptionist machine that we
call the broker. The broker machine is in charge of routing the queries to the
cluster’s processors (where for the scope of this paper each processor is a chip-
multiprocessor node of the cluster) and receiving the respective answers. It de-
cides to which processor routing a given query by using a load balancing heuristic.
The particular heuristic depends on the approach used to partition the inverted
file. Overall the broker tends to evenly distribute the queries on all processors.

More in detail, the parallel processing of queries is basically composed of a
phase in which it is necessary to fetch parts of all of the posting lists associated
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with each term present in the query, and perform a ranking of documents in order
to produce the results. After this, additional processing is required to produce the
answer to the user. This paper is concerned with the fetching+ranking part. We
are interested in situations where it is relevant to optimize the query throughput.

A relevant issue for this paper is the way we organize query processing upon
the piece of inverted file stored in each processor. We basically apply the com-
bination of two strategies we have devised to efficiently cope with hardware
resource contention among queries and dynamic variations in the query traffic:

– Round robin query processing. We let queries to use a fixed quantum of
computation, communication and disk access before granting the resources
to another query in a round-robin fashion.

– Operation mode. We dynamically switch the mode of operation of the
search engine between the asynchronous and synchronous message passing
modes of parallel computation in accordance with the observed query traffic.

In the following subsection we describe both strategies in detail.

2.3 Iterative Ranking and Round-Robin Query Processing

The processor in which a given query arrives is called the ranker for that query
since it is in this processor where the associated document ranking is performed.
Every query is processed iteratively using two major steps:

– Fetching. The first one consists on fetching a K-sized piece of every posting
list involved in the query and sending them to the ranker processor. In
essence, the ranker sends a copy of every query to all other P nodes. Next,
all nodes send K/P pairs (doc id, frequency) of their posting lists to the
ranker which performs the first iteration of the documents ranking process.

– Ranking. In the second step, the ranker performs the actual ranking of doc-
uments and, if necessary, it asks for additional K-sized pieces of the posting
lists in order to produce the K best ranked documents that are passed to
the broker as the query results. We use the vectorial method for performing
the ranking of documents along with the filtering technique proposed in [12].
Consequently, the posting lists are kept sorted by frequency in descending
order. Once the ranker for a query receives all the required pieces of posting
lists, they are merged into a single list and passed throughout the filters. If
it happens that the document with the less frequency in one of the arrived
pieces of posting lists passes the filter, then it is necessary to perform a new
iteration for this term and all others in the same situation.

Thus the ranking process can take one or more iterations to finish. In every
iteration a new piece of K pairs (doc id, frequency) from posting lists are sent
to the ranker for each term involved in the query. This concept of iteration is
essential to distribute and allocate system resources to the queries in a round-
robin fashion: the quantum comes from the fact that we let queries work on
chunks of posting lists of size K and organize document ranking in iterations.
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2.4 Operation Mode

As mentioned above, we dynamically switch the mode of operation in accordance
with the query traffic observed.

– Asynchronous mode. Low query traffic triggers an asynchronous mode
in which each query is serviced by a unique master thread in charge of
processing the query. This master thread can communicate with P other
slave threads, each located in one of the P cluster nodes.

– Synchronous mode. High query traffic triggers a mode in which all active
threads are blocked and a single thread takes the control of query processing
by grouping queries in batches and processing them sequentially. In this
case messages are buffered in all cluster nodes and sent out at the end of
the current batch being processed, point at which all processors are barrier
synchronized. Better utilization of system resources of this mode comes from
the fact that overheads such as thread scheduling and synchronization cost
are reduced significantly and communication is performed in bulk.

3 Experimental Framework: Computing Platform and
Data Set

As experimental platform, we have chosen a Sun Microsystems’ UltraSPARC T1
processor, whose main features are summarized in Table 1. Initially codenamed
as Niagara, the T1 is a special-purpose CMP designed by Sun for the server
market. It is available with four, six or eight CPU cores, and each core allows for
the execution of four threads concurrently. Essentially, T1 cores are fine-grain
multithreading (FGM) processors [5] that switch between threads of execution
on every cycle for hiding the inefficiencies caused by long operational latencies
such as memory accesses [13]. Single thread applications will perform better
on traditional processors, but multithreaded workloads may benefit from this
architecture: each thread is slower but this architecture yields better use of the
processor’s resources and potentially a higher overall throughput.

In our implementations, thread level parallelism has been exploited by means
of the OpenMP standard, which is supported by Sun’s native compilers.

3.1 Fixed-Point Ranking

The UltraSPARC-T1 processor has a limited floating-point capability since it
only provides one floating-point unit to support all 8 cores on the chip, i.e.
only one thread can use it at a time. Furthermore, even if just one thread uses
the floating-point unit, there is a 40 cycle penalty to access the unit. Most
commercial applications have little or no floating-point content so it is not a
major handicap. However, in our target application, one of the most costly phases
is the ranker process, which uses floating-point arithmetic to classify the most
relevant documents for a query.
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Table 1. Main features of the target computing platform

Processor

SUN UltraSPARC-T1 8 core processor (1.2GHz)
(4-way fine-grain multithreading core)

L1 Cache 16+8 KB (instruction+data)
(per core) 4-way associative, LRU
L2 Unified 3MB (4Banksx768KB)

Cache 12-way associative, pseudo-LRU
16 GBytes

Memory (4x4GBytes) DIMMS
533 MHz DDR2 SDRAM

Operating System SunOS 5.10 (Solaris 10) for UltraSparcT1
Sun C/C++ Compiler -fast -xarch=v9 -xipo=2

v5.8 Switches Parallelization with OpenMP: -xopenmp=parallel

To overcome this potential bottleneck, we have modified the ranker to avoid
floating-point arithmetic. Our implementation uses a 32-bit fixed-point data rep-
resentation for holding the appearance frequency in the posting lists, instead of
the conventional floating-point representation, and performs computations using
a customized fixed-point library that takes advantage of the T1 integer ALUs –
there is an integer ALU per core –. The overhead introduced in the fixed-point
version by overflow checking is around 20 to 40%, but the large penalties in-
troduced by floating-point operations (the floating-point sqrt takes thousand of
cycles) compensate this cost.

Figure 1 illustrates the potential benefits of this optimization. It shows the
scalability of a synthetic benchmark that tries to mimic the kind of computa-
tions performed by the ranking process – it mixes different arithmetic operations
such as divisions, multiplications, logarithms and square roots –. As expected,
the performance of the floating-point version is really poor but the fixed-point
counterpart scales reasonable well.

3.2 DataSet Inputs

All the results of this work have been obtained using a Chilean Web database
sample taken from www.todocl.cl. The index structure contains around 1 million
Spanish terms – 1.5 GBytes in size –. Queries have been selected randomly from
a set of 127.000 queries extracting from todocl logs.

4 Parallel Scheme

As mentioned above, the availability of chip multithreading architectures in-
troduces a new scenario in which thread-level parallelism becomes the key for
achieving performance. In this regard, a critical issue here is the operation mode
of the search engine since it strongly influences the way in which thread level
parallelism can be extracted:
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Fig. 1. Parallel efficiency of a synthetic benchmark that tries to mimic the kind of
computations performed by the ranking process using either floating-point or fixed
point arithmetic

– Synchronous mode. Under high query traffic, batching the queries and let-
ting the search engine go synchronous introduces regular coarse-grain paral-
lelism. This parallelism can be easily translated into thread level parallelism
in a simple manner by running queries into separate threads. Thread man-
agement overheads are relatively small at the expense of synchronization
cost. The question here is whether this coarse-grain parallelization fits well
with CMP characteristics.

– Asynchronous mode. Under low query traffic, it is necessary to resort
to other sources of parallelism. The question here is whether intra-query
parallelism is high enough to be exploited efficiently on CMP architectures.

In the following subsection we describe both approaches more precisely.

4.1 Synchronous Mode

The coarse-grain parallelism introduced by the synchronous mode can be easily
expressed by means of OpenMP directives using conventional query distribution
schemes. However, the similarities amongst the different threads – they execute
the same code with just a different query – may cause contention for the shared
resources of the T1, especially cache space and memory bandwidth. We have
tried to minimize these penalties with a data distribution and thread assignment
strategy that looks for batching queries with similar terms on the same processor.
Essentially, our idea is to take advantage of the available temporal locality, to
increase the cooperation between threads and avoid costly memory accesses as
much as possible.

Algorithm 1 shows the pseudo-code of our parallel approach with a first step
done by the broker machine (master), which tries to gather queries with some
terms in common, and then each processor (slaves) finds the best documents
associated to them in parallel.
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Algorithm 1. Our parallel proposal for the synchronous web search engine.
At the broker machine do:
// group together queries with similar terms
query batch = build clustered batch(current queries);
broadcast to all processors(query batch);

In each processor do:

#pragma omp parallel for private(...) shared(...)
for q=1:Nqueries processor do

query = query batch[q];
for term=1:terms in query do

posting list[term] = fetch(term);
end for
best docs[query] = ranking(posting list, terms in query);

end for
...

4.2 Asynchronous Mode

For the Asynchronous mode we use an OpenMP parallelization of the document
ranking routine executed by each query to get the top K documents. This par-
allelization involves deploying a team of OpenMP threads at various points of
the routine. In particular, for the cases of identical operations performed over
the complete piece of posting list for each query term, we do it in parallel by let-
ting each thread to work on a different segment of the posting list. The filtering
technique is a bit more involved. It needs synchronization to update the current
score barrier. Further documents down the posting list must beat this barrier in
order to be considered as candidates to be included in the top K results. The
barrier must be updated concurrently by the threads. This is solved by using a
critical section in the points at which this barrier is updated; though this occurs
less frequently during the processing of the posting lists.

5 Performance Results

In this Section we attempt to answer those questions raised above. Performance
results have been obtained on a single UltraSPARC-T1 processor. This study
can be viewed as a first approach of a more complex distributed system based
on CMP processors which should behave as slaves in our context. Our objective
is to analyze in detail the best intra-node parallel approaches and outline some
preliminary conclusions which could be extrapolated for a real infrastructure.



Improving Search Engines Performance on Multithreading Processors 209

Algorithm 2. Our parallel proposal for the asynchronous web search engine.
At the broker machine do:
// dispatch queries when they arrive
dispatch to processor P(query);

In each P processor do:

for term=1:terms in query do
#pragma omp parallel private(...) shared(...)
posting list[term] = parallel fetch and operations(term);

end for
best docs = parallel ranking(posting list, terms in query);
...

5.1 Synchronous Mode

Figure 2 shows the throughput achieved with our synchronous proposal. As
mentioned above, we have tried to improve implicit cooperation between threads
with a data distribution and thread assignment strategy that looks for batching
together queries with similar terms. To estimate the potential benefits of this
strategy we have compared two extreme scenarios. The gray column corresponds
to the most adverse situation: there is no common terms between subsequent
queries and all the threads of a given batch compete for the available resources.
The black column, in contrast, corresponds to the potentially most favorable
situation: all the threads of a given batch process queries with identical terms.

The noticeable difference between both scenarios when running 16 and 32
threads highlights the benefits of a conscious thread distribution. In any case,

Fig. 2. Query throughput achieved by the synchronous mode in the most adverse (gray
column) and favorable (black column) scenarios
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the throughput is satisfactory enough in both scenarios. The speedup increases
proportionally with the number of threads and in the most favorable scenario,
our synchronous search engine reaches a speedup of 22 using 32 threads.

5.2 Asynchronous Mode

Essentially, the experimental results (see Figure 3) show that the gain coming
from parallelism is not really significant. This is mainly due to the fact that
in each round-robin iteration of the processing of a given query, the amount of
data (the ones involved in the pieces of posting lists of size K) that is processed
is small. For example, at various points in the document ranking process it
is necessary to sort candidate documents. However, trying to do that sorting
in parallel by using OpenMP threads is not worthwhile since the amount of
document to be sorted is not large enough.

Fig. 3. Time (ms) per query using the asynchronous mode

Recall that round-robin is necessary to prevent large queries from consuming
all resources in detriment to small queries. In addition, the filtering technique
applied to avoid having to consider the complete posting list for each query term
is based on the update of a barrier which finally stop the ranking by deciding
that the remaining items in the involved posting lists are not able to include new
document among the top K results. When implemented using OpenMP threads
this barrier become a critical section of the ranking process whose serialization
introduces performance degradation.

We should emphasize that current search engines are fully asynchronous and
they are prone to this problem as well. In general these machines use techniques
to avoid scanning the complete posting list and thus they are essentially in the
same difficulties to get advantage of the capabilities provided by CMP systems.
In this regard, it can be argued that under high query traffic, the execution of
multiple queries would also overlap in the asynchronous mode and this overlap-
ping would provide enough parallelism. In the following we call this ideal case
Optimal-Async.
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Fig. 4. Query throughput achieved by the different operation modes under study

Figure 4 highlights that even in this case, an asynchronous engine will per-
form much worse than the synchronous counterpart. This figure shows the query
throughput achieved by the different modes. Despite the Optimal-Async model
exploits both sources of parallelism – inter and intra-query parallelism – in an
idealist and optimal way (thread management has been oversimplify in these sim-
ulations). Furthermore, for a given number of threads, we report the throughput
achieved by the optimal combination of inter and intra-parallelism, it does not
outperform the efficient synchronous model. Essentially, the overheads caused by
the asynchronous thread management and the limited intra-query parallelism in-
troduce an upper bound to the asynchronous scalability.

5.3 Fixed-Point Arithmetic: Impact on Performance and Validation

Figure 5 analyzes the impact of fixed-point arithmetic on scalability. It shows the
number of queries per second that we are able to solve in the synchronous version
when performing the ranking process with either floating-point or fixed point
arithmetic – under high query traffic the asynchronous version behaves similarly
–. As expected, the floating-point version does not scale beyond a modest number
of threads.

To the best of the authors’ knowledge, this is the first study that explores
fixed-point arithmetic for ranking purposes. A final question here to conclude
our discussion is whether the use of fixed-point operations (instead of floating-
point ones) produces some effect in (1) the final set of documents selected as the
answer to each query and (2) their relative position within the top K results. We
evaluated this experimentally by running both fixed and floating-point document
ranking functions under the same inverted file and set of queries.

We performed two tests on the set of documents generated in both cases
for each query – tests on sets A for fixed-point results and B for floating-point
results. The first test calculates the ratio |A∩B|/|B| for which we obtained results
very close to 1; we observed average values between 0.99 and 1.0 for different and
very large sets of queries. This indicates that both sets are practically identical.
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Fig. 5. Query throughput for the different numerical format representation: floating-
point (gray column) and fixed-point (black column)

The second test calculates the Pearson’s correlation of the sets A and B to
measure the relative position of the documents in A with respect to their position
in the top K query results present in B. Again we obtained values very close to
1 indicating that there are almost no difference in the relative position of the
documents A in the top K results for the queries.

6 Conclusions

A logical view of the T1 processor suggests the application of the general prin-
ciples of data partitioning to get the multithreaded versions of our Web Search
Engine. Essentially, this partitioning is performed running queries into separate
threads.

This strategy can be easily expressed with OpenMP directives. However, the
similarities amongst the different threads may cause contention for shared re-
sources, especially cache space and memory bandwidth. We have tried to mini-
mize these effects with a data distribution and thread assignment strategy that
looks for batching on the same processor and tries group together queries con-
taining common terms. This strategy aims at taking advantage of the temporal
data locality, and to avoid the costly memory access.

As further research we plan to increase locality by devising strategies that
re-organize the way in which the chunks of size K of posting are stored in main
and secondary memory in order to exploit locality. This should be made by
taking into consideration how frequently the terms appears in queries together,
which can be obtained from the logs that search engines maintain at their data
centers.
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Abstract. The Methods Development Group at Lawrence Livermore National 
Laboratory has historically developed and supported software for engineering 
simulations, with a focus on nonlinear structural mechanics and heat transfer. 
The quality, quantity and complexity of engineering analyses have continued to 
increase over time as advances in chip speed and multiprocessing computers 
have empowered this simulation software. As such, the evolution of simulation 
software has seen a greater focus on multimechanics and the incorporation of 
more sophisticated algorithms to improve accuracy, robustness and usability. 
This paper will give an overview of the latest code technologies developed by 
the Methods Development group in the areas of large deformation transient 
analysis and implicit coupled codes. Applications were run on the state of the 
art hardware available at the national laboratories.  

1   Introduction  

The Methods Development Group (MDG) supports a group of roughly seventy two 
engineering analysts at Lawrence Livermore National Laboratory (LLNL). It supports 
analysts at Los Alamos National Laboratory (LANL) and limited DoD sites. LLNL is 
the home of some of the fastest supercomputers in the world including the world’s 
fastest: Blue Gene/L. Much of the hardware and software development at the LLNL 
has been driven by the Advanced Simulation and Computing Program (ASC). ASC 
was created to help maintain the United States nuclear arsenal after the 1992 
moratorium on nuclear testing. The MDG group has traditionally supported roughly 
seventy-five analysts around the laboratory in the areas of weapons thermo-structural 
analysis, lasers and various physics groups. The group’s flagship codes: DYNA3D 
(explicit structural mechanics), NIKE3D (implicit structural mechanics) and the 
TOPAZ3D (thermal mechanics) were originally developed in the 1970’s. The latest 
parallel codes: PARADYN and DIABLO are the parallel explicit and implicit 
versions of the original codes. DIABLO, is the newest code and features support for 
coupled structural, thermal, diffusion and electromagnetic analyses. This paper 
presents the latest code technologies incorporated into these codes. 

The paper is organized as follows. First the issues and technologies most related to 
explicit/transient dynamics and the PARADYN code will be presented including: 
automatic/dynamic contact, extreme material deformations and coupled finite element/ 
meshless methods. Second, the underlying technologies and features unique to the 
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implicit statics/dynamics multimechanics code DIABLO will be presented. The 
treatment of contact is still one of the group’s biggest challenges, thus much of the 
focus of this paper. Additional aspects are presented in the areas of parallelization, 
solution schemes and adaptive mesh refinement. Numerous examples illustrating the 
latest features and run on Lab’s fastest hardware will be presented.  

2   Explicit Finite Elements: PARADYN  

The main focus of this code is in the area of transient structural mechanics with 
limited thermal and fluid mechanics coupling. Many of the parallel methods 
underlying PARADYN are well document and very good scaling has been observed 
on very massively parallel runs (Fig. 1). The primary applications include the 
simulation of container drop tests (Fig. 2), pressure vessels (Fig. 3), infrastructure 
failure, (Fig. 4) automobile crash (Fig. 5) and penetration (Fig. 6). One of the main 
challenges in most of these problems typically is how the contact (interpenetration) 
constraints are handled. Issues regarding explicit contact and searching are presented 
here. Furthermore, because meshless methods accommodate evolving connectivity, 
the same dynamic partitioning can be applied to the meshless implementation.  

 

Fig. 1. Performance in element-steps per second versus number of processors of a simple 90 
million element simulation using PARADYN on the ASC Purple and Blue Gene/ L platforms  

2.1   Explicit Node-on-Surface Contact Formulation  

The explicitly time integrated equations of motion specific to node-on-surface contact are 
given in Eq. 1.  

                                           (1) 
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                             M – diagonal mass matrix 
f -force vector (internal, contact and external)  
xn,vn,an  nodal position, velocity and acceleration vectors at time tn  

The internal forces are the forces elements apply to nodes, the external forces are 
the applied nodal loads and the contact forces enforce the interpenetration constraints. 
Here, all time tn quantities are known and the acceleration at time tn+1 is sought. The 
node-on-surface method computes a traction λ that forces penetrating nodes onto 
nearby facets. For example, in Fig. 5, the slave node S1 is forced onto segment M1-
M2 and the contact force f 

c 

is computed from the contact pressure λ at S1 and its 
distribution to node M1 and M2 based on where the closest point projection is. The 
single pass version of the method only forces slave nodes S onto opposing master 
segments. The symmetric or double pass version also forces master nodes M onto 
opposing slave segments. The contact pressure can be computed from the contact gap 
at time tn using a penalty method i.e. λ= κgn. Since this gap is based on known time tn, 
the contact force f 

c 

is known and the acceleration is found easily since the mass 
matrix is diagonal  

                                       
(2)

  

The velocities and positions are updated  

                 (3) 

The penalty method is often not sufficient to eliminate penetration since very high 
penalty values κ lower the stable time step. Here, Lagrange multipliers are used since 
they eliminate penetration, but don’t affect the time step. The predictor-corrector 

strategy [1] used here computes a predictor such that no contact is active f
c 

= 0 in  

Eq. 1. This step yields a predicted configuration with gaps . In the corrector 

step, the contact tractions are treated as unknowns such that f
c 

= G λ in Eq. 1 and the 
corrected displacement is computed due to these unknown contact forces  

                                           (4)  

Here the contact matrix G is based on segment normal vectors (Fig. 5) and is also 
used to compute the nodal gap vector i.e. g =Gx. Multiplying Eq. 4 by G yields the 
nodal gap vector based on the predicted configuration and unknown contact pressure  

                                  (5)  

The nodal gaps must satisfy the Kuhn Tucker conditions:  

                                             (6)  

i.e. contact pressure must be compressive, gaps must be open and only closed gaps 
have contact pressure. This is a mathematical programming problem and is solved via 
a parallel, constrained, preconditioned conjugate gradient method.  
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Fig. 2. Transportation container flange detail (Courtesy of Dan Badders, LLNL)  

 

Fig. 3. Hydrodynamic containment vessel (LANL Weapons Engineering)  

 

Fig. 4. Blast loading on apartment building, 30 millioin degrees of freedom (P. Papados, U.S. 
Army ERDC) 

 

Fig. 5. Sequence of deformation as penetrator goes through two plates. The secondary damage 
is a result of the inertia from the fragments from the first penetration. That is, new contact 
surface (fragments) and particles from the first penetration will impact the second plate. 
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Fig. 6. (a) Impacting bodies. (b) Intersecting slave and master contact surfaces. (c) Contact gap 
based on closest point, contact forces at slave node S1 and master nodes M1 and M2. 

2.2   Parallel Contact Search Algorithm  

The node-on-segment contact methods described in the previous section require a 
search for the “nearest” master segments for each slave node (and slave segment for 
each master node for the double pass version). This process can be one of the most 
time consuming in an explicit finite element code. Master segments are generated 
automatically by computing the free/exposed element faces on the mesh. For large 
deformation problems, elements will become damaged and no longer active. This 
“element erosion” defines new master segments that must be accounted for. The 
parallel contact algorithm is based on a static domain decomposition of the mesh and 
a dynamic decomposition of the contact segments as follows: 

1. Compute static decomposition of the mesh using METIS [2]. This is done once at 
problem initialization. Nodes on partition boundaries are assigned a home 
processor and are considered shared on remaining partitions.  

2. On each static partition, define all free facets to be candidate contact segments and 
define all nodes attached to these facets to be candidate slave nodes. This is a 
double pass algorithm.  

3. Based on a characteristic distance, subdivide the entire domain into bins and loop 
over all slave nodes and master segments to determine which bin it resides in.  

4. A graph structure where each bin is a vertex and each master segment that 
overlaps bins is considered a connective edge,  

5. Use METIS [2] to partition this graph structure to minimize edge cuts and assign 
bins to a partition.  

6. Assign each “dynamic” partition to the processor that most of its contact nodes 
have for the “static” partition.  

7. A serial algorithm (e.g. bucket sort) is done in each dynamic partition to find 
contact node-segment pairs. Segments that overlap partitions are shared, hence the 
METIS [2] partitioning reduces the search size.  

8. Contact forces are computed on each partition and then communicated to the home 
processor. The home processor then communicates the contact forces to the 
remaining shared partitions (processors) if any.  
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                                             (c)                                    (d)  
Fig. 7. (a) Static decomposition of mesh in un-deformed configuration. (b) Large deformations 
cause element erosion due to damage i.e. elements are eliminated. (c) The candidate contact 
segments are binned, partitioned according to METIS and placed on processors based on the 
home processors of the nodes in each bin. (d) This process is done dynamically as 
elementerosion defines new candidate master segments and large motions change the graph 
structure ofthe contact bins.  

This process is illustrated in Fig. 7. The simulation in Fig. 5 used this parallel search 
algorithm with the element erosion and the Lagrange multiplier contact. In that, the 
elements fail but the surrounding nodes are still considered point masses so that 
momentum is conserved. These point masses are included as potential contact node sin 
the process described above and cause secondary damage in the following plate.  

2.3   Meshless Methods  

The meshless methods were developed to handle very large deformation problems 
where mesh tangling becomes an issue. That is, when elements get so distorted due to 
deformation, they are no longer usable (e.g. the invert). Meshless methods do not rely 
on elements to parameterize deformation but instead use shape functions that can 
operate on arbitrary point clouds. The overlap (Fig. 8) of elliptical meshless shape 
functions defines the graph structure of the discretization [3]. Since the meshless 
particles flow such that new support overlaps need to be defined on a regular basis for  

 

 

Fig. 8. Overlapping elliptical supports of meshless method 
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(a)

(b)
 

Fig. 9. (a) Simulation of penetration of a reinforced concrete (tensile damage shown in red) (b) 
Rebar (shown alone) was attached to particles in the simulation and eventually fails upon exit 

large deformation problems, a dynamic partitioning method identical to that for 
contact should be used. Fig. 9 shows a simulation of a steel penetrator going through 
a concrete slab with rebar.  

3   Implicit Finite Elements: DIABLO  

Different strategies exist for how mechanics coupling is implemented in simulations 
codes. One of the simplest strategies is to take independent codes and then pass a 
limited amount of data (e.g. node positions, node temperatures and time) through an 
interface. This is the strategy for the coupling the DYNA3D structural mechanics 
mechanics code with the TOPAZ thermal mechanics code and the finite volume fluids 
code GEMINI. The codes themselves are standalone with minimum sharing of data 
structures and code reuse. This model can get more complicated when adaptive 
meshing (AMR) is employed since some common definition for the octree mesh 
needs to be defined. Because many of the operations needed to do error estimating 
and data remapping need to be written for data manipulation, a model that employs an 
ample amount of code reuse between the different mechanics becomes more tractable. 
As such, a single data structure for all the different mechanics would make this code 
re-use more practical. DIABLO is the latest MDG code project and employs the latter 
strategy. DIABLO currently has coupled solid mechanics, thermal mechanics, 
electromagnetics and diffusion along with adaptive meshing. Fig. 6 shows an example 
where AMR is applied to a coupled thermal structural simulation. Example 
applications include metal forming, rail gun etc. As with PARADYN, the contact 
algorithms are considered a key component of the code development of DIABLO and 
are highlighted here.  
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3.1   Implict Finite Elements: Segment-to-Segment Contact  

Node-on-segment algorithms are simple but have a number of flaws. In particular, 
they don’t transmit stresses or fluxes smoothly across the boundary. This is 
particularly important for solid mechanics where non-smooth force transmission 
hinders converge of the implicit non-linear algorithm and in electromagnetics where 
Nedelec edge elements are used. Referring to Fig. 11, the mortar segment-to-segment 
algorithm for solid mechanics [4,5] computes a nodal gap based on the integral  

gA = NA (x
s xm ) d

 
(7) 

Here the contact traction can be computed via a penalty A = gA  or an augmented 

Lagrangian A
i+1
= gA

i
+ A

i
 computed through an Uzawa algorithm. Now the static, 

implicit discrete equations of motion are written  

fn+1
int (xn+1) + fn+1

c fn+1
ext
= 0

 
(8) 

where the unknown configuration xn+1  is typically solved for using the linearized  
form of Eq. 8 in a Newton Raphson (or Quasi-Newton) scheme. The additional 
mechanics types compute an analogous discrete balance equation. Fig. 12 illustrates 
the nonlinear algorithm used in DIABLO. Fig. 13 demonstrates the robustness of 
mortar segment-to-segment contact method.  

3.2   Parallel Contact Search Algorithm  

The parallel implementation of this contact was kept simple for the sake of 
development and because communication costs for an implicit code are small 
compared to the solution of simultaneous equations. Here we choose to build an 
entirely static decomposition using METIS [2] and then add shared nodes from 
relevant contact surfaces on each partition (Fig. 14). Now a serial algorithm (e.g. 
bucket sort) can be performed on each processor for the contact search. Contact forces 
are only computed on contact home nodes and then scattered via point-to-point 
communications to shared nodes.  

3.3   Multimechanics Examples  

One of the main applications for the coupled solid electromagnetics is the rail gun. 
Here a high voltage is applied between two rails and an armature carries current 
between the rails (Fig. 15). Because of the transient time for the current to penetrate 
the rails and armature (magnetic diffusion), the current travels along the skin of the 
rails (i.e. skin effect). Ampere’s law B = µJ  predicts that the resulting magnet B 
field will be relatively high (pointing out) on the inside of the circuit (red) but small 
inside the surrounding iron armature and rails due to the low magnet  
permeability µ of the iron and high permeability µ of the air. This produces a Lorentz 
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(a) (b)

(c) (d)
 

Fig. 10. Thermal-structural AMR example: (a) ring with (tensile) pressure loading (over faces) 
and concentrated thermal fluxes Q, (on nodes) on left and right side. (b) initial quarter 
symmetry mesh (c) effective stress and (d) temperature on final adapted mesh. Note that 
refinement was made near stress concentrations on the inner corner and locations where nodal 
flux loads reside. 

Aslave

master

 

Fig. 11. Segment-to-segment contact computes the weighted volume between adjacent facets to 
get the nodal gap. This is simple in 2D (left). More sophisticated 3D algorithms require the 
intersection of adjacent slave and master segments to compute the nodal gap. 

 

force per unit length, F = J B on the armature propelling it outward. Referring to 
Fig. 15, the model uses a grid for the armature (blue), two grids for the rails and four 
grids for the air. Only the rail and armature meshes consist of solid elements. All 
meshes are required to capture the magnetic field. Two fine (inner) air meshes move 
with the armature and interact with the surrounding air and rail through 
electromagnetic (mortar) contact surfaces. Both mechanical and electromagnetic  
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Fig. 12. Flow of nonlinear solution algorithm over a time step. A Uzawa loop is included to 
enforce augmented Lagrange type contact for each mechanics. 

contact is used between the armature and the two rails Snapshots of the 3D simulation 
are shown in Fig. 16 as the armature slides across the rails. Quarter symmetry is used 
to reduce the model size such that only the top, left-hand side of the mesh is shown. 
Here it is confirmed that the B field is very high at the back of the armature (i.e. fine 
mesh in Fig. 15) and low in the surrounding air. The problem had ~4.5 million 
degrees of freedom and was run on 16 processors on the ASC Purple platform in 20 
hours.  

Another important application is in nuclear engineering (Fig. 17). Here, the fuel 
bundle is composed of hexagonal fuel rods (metal alloy tubes filled with nuclear 
fuel).The fuel is meshed as a homogenous material and acts as a neutron heat source. 
The rods are inserted into three restraint plates with hexagonal slots to constrain the 
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Fig. 13. Sequence of deformations of steel block penetrating rubber block and sliding. Because 
of the sharp corners and the “bumpy” segments, this problem can’t be solved using node-on 
segment with an implicit scheme. 

Home
Shared
Shared

I

II

I III

Shared
Home
Shared

II
Shared
Shared
Home

III
 

Fig. 14. DIABLO builds a static domain decompositions and then adds shared nodes to each 
partition so that all relevant contact nodes reside on the partition. So, for example, partition II 
computes contact gaps on its three (orange) home contact nodes using coordinates from its 
shared (green,blue) nodes. Forces are then communicated back to shared nodes. 
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Fig. 15. A 2D slice of a 3D mesh used for electromagnetic rail gun. A large voltage is applied 
across the rails (green) and the resulting current (red) stays close to the surface as it passes 
across the armature (blue). 

 

Fig. 16. A quarter symmetry simulation of the 3D rail gun simulation. The trailing B field is 
very high (green) whilst the B field in the air (blue) is very low. Only a little current is visible 
in the armature and rail at the early time, but it becomes particularly apparent in the outside 
portion (red) of the armature at the later time. 
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Fig. 17. Nuclear fuel bundle (one-third symmetry). Neutron heat sources cause thermal 
gradient and bending of fuel rods forming large gaps in contact surfaces between adjacent rods. 

individual rods. The model in Fig. 17 is one-third symmetry and includes 390 contact 
surfaces between each of the 75 rods and also the slots in the restraint plates. The 
boundary conditions include neutron heat sources near the top center of the fuel 
bundle and thermal boundary conditions on the outer edges of the constraint plates. A 
separate neutronics package determined the heat sources in the model. The model was 
over 2 million degrees of freedom and was solved using 32 partitions on 32  
(8 processor) nodes on the ASC Purple machine. Each partition had a dedicated 
processor and four threads per node were used for the parallel linear direct solver. The 
thermal gradient that results from the heating causes bending in the individual rods 
such that many large gaps open up between the adjacent rods near the top. 

4   Discussion  

Different methods were presented for doing parallel contact with applications in both 
large deformations with failure and multimechanics. A novel dynamic partitioning 
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algorithm was presented for the contact searching and meshless particle methods. An 
overview of a one-of-a-kind parallel implicit solid-thermal-electromagnetics code was 
presented along with its novel contact algorithms capabilities. Future work includes 
embedded mesh techniques and coupled mechanics on different meshes.  
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Abstract. We pursue the scalable parallel implementation of the factor-
ization of band matrices with medium to large bandwidth targeting SMP
and multi-core architectures. Our approach decomposes the computation
into a large number of fine-grained operations exposing a higher degree
of parallelism. The SuperMatrix run-time system allows an out-of-order
scheduling of operations that is transparent to the programmer. Exper-
imental results for the Cholesky factorization of band matrices on two
parallel platforms with sixteen processors demonstrate the scalability of
the solution.

Keywords: Cholesky factorization, band matrices, high-performance,
dy- namic scheduling, out-of-order execution, linear algebra libraries.

1 Introduction

How to extract parallelism from linear algebra libraries is being reevaluated with
the emergence of SMP architectures with many processors, multi-core systems
that will soon have many cores, and hardware accelerators such as the Cell BE
processor or graphics processors (GPUs). In this note, we demonstrate how tech-
niques that have shown to be extremely useful for the parallelization of dense
factorizations in this context [7,8,17,18,6,5] can also be extended for the factor-
ization of band matrices [19]. The result is an algorithm-by-blocks that yields
high performance and scalability for matrices of moderate to large bandwidth
while keeping the implementation simple by various programmability measures.
To illustrate our case, we employ the Cholesky factorization of band symmetric
positive definite matrices as a prototypical example. However, the same ideas
apply to algorithms for the LU and QR factorization of band matrices.

The contributions of this paper include the following:

– We demonstrate that high performance can be attained by programs coded
at a high level of abstraction, even by algorithms for complex operations like
the factorization of band matrices and on sophisticated environments like
many-threaded architectures.

J.M.L.M. Palma et al. (Eds.): VECPAR 2008, LNCS 5336, pp. 228–239, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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– We show how the SuperMatrix run-time system supports out-of-order com-
putation on blocks transparent to the programmer leading to a solution
which exhibits superior scalability for band matrices.

– We also show how the FLASH extension of FLAME supports storage by
blocks for band matrices different from the commonly-used packed storage
used in LAPACK [1].

– We compare and contrast a traditional blocked algorithm for the band
Cholesky factorization to a new algorithm-by-blocks.

This paper is structured as follows. In Section 2 we describe a blocked algo-
rithm for the Cholesky factorization of a band matrix which reflects the state-of-
the-art for this operation. Then, in Section 3, we present an algorithm-by-blocks
which advances operations that are in the critical path from “future” itera-
tions. The FLAME tools employed to implement this algorithm are outlined
in Section 4. In Section 5 we demonstrate the scalability of this solution on
a CC-NUMA with sixteen Intel Itanium2 processors and an SMP with 8 AMD
Opteron (dual core) processors. Finally, in Section 6 we provide a few concluding
remarks.

In the paper, matrices, vectors, and scalars are denoted by upper-case, lower-
case, and lower-case Greek letters, respectively. Algorithms are given in a nota-
tion that we have developed as part of the FLAME project [3]. If one keeps in
mind that the thick lines in the partitioned matrices and vectors relate to how
far the computation has proceeded, we believe the notation is mostly intuitive.
Otherwise, we suggest that the reader consult some of these related papers.

2 Computing the Cholesky Factorization of a Band
Matrix

Given a symmetric positive definite matrix A of dimension n× n, its Cholesky
factorization is given by A = LLT , where L is an n× n lower triangular matrix.
(Alternatively, A can be decomposed into the product A = UT U with U an
n× n upper triangular matrix, a case that we do not pursue further.) In case A
presents a band structure with upper and lower bandwidth kd (that is, all entries
below the kd +1 subdiagonal and above the kd +1 superdiagonal are zero), then
L presents the same lower bandwidth as A. Exploiting the band structure of
A when kd � n leads to important savings in both storage and computation.
This was already recognized in LINPACK and later in LAPACK which includes
unblocked and blocked routines for the Cholesky factorization of a band matrix.

2.1 The Blocked Algorithm in Routine pbtrf

It is well-known that high performance can be achieved in a portable fashion
by casting algorithms in terms of matrix-matrix multiplication [1,11]. Figure 1
illustrates how the LAPACK blocked routine pbtrf does so for the Cholesky
factorization of a band matrix with non-negligible bandwidth. For simplicity we
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Algorithm: [A] := band Choleskyblk(A)

Partition A →

0
B@

ATL �

AML AMM �

ABM ABR

1
CA

where ATL is 0 × 0 and AMM is kd × kd

while m(ATL) < m(A) do
Determine block size nb

Repartition

0
B@

ATL �

AML AMM �

ABM ABR

1
CA →

0
BBBB@

A00 � �

A10 A11 � �

A20 A21 A22 � �

A31 A32 A33 �

A42 A43 A44

1
CCCCA

where A11, A33 are nb × nb, and A22 is k × k, with k = kd − nb

A11 = L11L
T

11 Dense Cholesky factorization
A21 := A21L

−T

11 (= L21) Triangular system solve
A31 := A31L

−T

11 (= L31) Triangular system solve with triangular solution
A22 := A22 − L21L

T

21 Symmetric rank-k update
A32 := A32 − L31L

T

21 Triangular matrix-matrix product
A33 := A33 − L31L

T

31 Symmetric rank-nb update

Continue with

0
B@

ATL �

AML AMM �

ABM ABR

1
CA ←

0
BBBB@

A00 � �

A10 A11 � �

A20 A21 A22 � �

A31 A32 A33 �

A42 A43 A44

1
CCCCA

endwhile

Fig. 1. Blocked algorithm for the Cholesky factorization of a band matrix

consider there and hereafter that n and kd are exact multiples of kd and nb,
respectively. Provided nb � kd most of the computations in the algorithm are
cast into the symmetric rank-k update of A22.

Upon completion of the factorization using the algorithm in the figure, the
elements of L overwrite the corresponding entries of A. The “” symbols in
the figure denote symmetric parts in the upper triangle of A which are not
accessed/referenced.

2.2 Packed Storage in Routine pbtrf

Routine pbtrf employs a packed format to save storage. Specifically, the sym-
metry of A requires only its lower (or upper) triangular part to be stored,
which is saved following the pattern illustrated in Figure 2 (right). As they are
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Fig. 2. Symmetric 5× 5 band matrix with bandwidth kd = 2 (left) and packed storage
used in LAPACK (right). The ‘∗’ symbols denote the symmetric entries of the matrix
which are not stored in the packed format.

computed, the elements of L overwrite the corresponding entries of A in the
packed matrix.

Due to A31/L31 having only their upper triangular parts stored, some opera-
tions in the actual implementation of the algorithm in Figure 1 need special care,
as described next. In particular, in order to solve the triangular linear system for
A31, a copy of the upper triangular part of A31 is first obtained in an auxiliary
workspace W of dimension nb × nb with its subdiagonal entries set to zero; the
BLAS-3 solver trsm is then used to obtain W := WL−T

11 (= L31). Next, the
update of A32 is computed as a general matrix product using BLAS-3 kernel
gemm to yield A32 := A32−WLT

21. Finally, the update of A33 is obtained using
BLAS-3 kernel syrk as A33 := A33 −WWT , and the upper triangular part of
W is written back to A31.

2.3 Parallelism within the BLAS

Blocked implementations of the band Cholesky factorization are typically written
so that the bulk of the computation is performed by calls to the Basic Linear
Algebra Subprograms (BLAS), a standardized interface to routines that carry out
operations as matrix-vector (level-2 BLAS) and matrix-matrix multiplication
(level-3 BLAS).

Parallelism can be attained within each call to a BLAS routine with the
following benefits:

– The approach allows legacy libraries, such as LAPACK, to be used without
change.

– Parallelism within suboperations, e.g., the update of A11–A33 in Figure 1,
can be exploited through multithreaded implementations of BLAS. However,
note that in practice kd � nb and nb is typically small so that the major
bulk of the computations is in the update of A22 while the remaining oper-
ations may be too small to gain any benefit from the use of a multithreaded
implementation of BLAS.
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Disadvantages, on the other hand, include:

– The parallelism achieved is only as good as the underlying multithreaded
implementation of the BLAS.

– The end of each call to a BLAS operation becomes a synchronization point
(a barrier) for the threads. In [20] it is shown how the updates of A21, A31
can be merged into a single triangular linear system solve and the updates
A22, A32, and A33 into a single symmetric rank-kd update, so that a coarser
grain of parallelism is obtained and the number of synchronization points
is diminished. The performance increase which can be gained from this ap-
proach is modest, within 5–10% depending on the bandwidth of the matrix
and the architecture.

– For many operations the choice of algorithmic variant can severely impact
the performance that is achieved.

In the next section we propose an algorithm composed of operations with finer
granularity to overcome these difficulties.

3 An Algorithm-by-Blocks

Since the early 1990s, various researchers [10,12,13,16] have proposed that matri-
ces should be stored by blocks as opposed to the more customary column-major
storage used in Fortran and row-major storage used in C. Doing so recursively
is a generalization of that idea. The original reason was that by storing matrices
contiguously a performance benefit would result. More recently, we have pro-
posed that the blocks should be viewed as units of data and operations with
blocks as units of computation [7,9]. In the following we show how to decom-
pose the updates in the algorithm for the band Cholesky factorization so that
an algorithm-by-blocks results which performs all operations on “tiny” nb × nb

blocks.
For our discussion below, assume k = pnb for the blocked algorithm in

Figure 1. Then, given the dimensions imposed by the partitionings on A,

⎛⎝A11  
A21 A22 
A31 A32 A33

⎞⎠→

⎛⎜⎜⎜⎜⎜⎜⎜⎝

A11     
A0

21 A00
22    

A1
21 A10

22 A11
22   

...
...

...
. . .  

Ap−1
21 Ap−1,0

22 Ap−1,1
22 . . . Ap−1,p−1

22 

A31 A0
32 A1

32 . . . Ap−1
31 A33

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where all blocks are nb×nb. Therefore, the update A21 := A21L
−T
11 in the blocked

algorithm can be decomposed into⎛⎜⎜⎜⎝
A0

21
A1

21
...

Ap−1
21

⎞⎟⎟⎟⎠ :=

⎛⎜⎜⎜⎝
A0

21
A1

21
...

Ap−1
21

⎞⎟⎟⎟⎠L−T
11 , (1)



An Algorithm-by-Blocks for SuperMatrix Band Cholesky Factorization 233

which corresponds to p triangular linear systems on nb × nb blocks. Similarly,
the update A22 := A22 − L21L

T
21 becomes⎛⎜⎜⎜⎝

A00
22   

A10
22 A11

22  
...

...
. . . 

Ap−1,0
22 Ap−1,1

22 . . . Ap−1,p−1
22

⎞⎟⎟⎟⎠ :=

⎛⎜⎜⎜⎝
A00

22   
A10

22 A11
22  

...
...

. . . 

Ap−1,0
22 Ap−1,1

22 . . . Ap−1,p−1
22

⎞⎟⎟⎟⎠

−

⎛⎜⎜⎜⎝
A0

21
A1

21
...

Ap−1
21

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

A0
21

A1
21
...

Ap−1
21

⎞⎟⎟⎟⎠
T

,

(2)

where we can identify p symmetric rank-nb updates (for the nb × nb diagonal
blocks) and (p2/2 − p/2) general matrix products (for the nb × nb subdiagonal
blocks). Finally, the update A32 := A32 − L31L

T
21 is equivalent to

(
A0

32 A1
32 . . . Ap−1

31

)
:=

(
A0

32 A1
32 . . . Ap−1

31

)
−A31

⎛⎜⎜⎜⎝
A0

21
A1

21
...

Ap−1
21

⎞⎟⎟⎟⎠
T

(3)

which, given the upper triangular structure of A31, corresponds to p triangular
matrix-matrix products of dimension nb × nb.

The first key point to realize here is that all the operations on blocks in (1)
are independent and therefore can be performed concurrently. The same holds
for the operations in (2) and also for those in (3). By decomposing the updates
of A21, A22, and A32 as in (1)–(3) more parallelism is exposed at the block level
in the algorithm in Figure 1.

The second key point is that some of the block operations in (1) can proceed in
parallel with block operations in (2) and (3). Thus, for example, A1

21 := A1
21L

−1
11 is

independent from A00
22 := A00

22−A0
21(A

0
21)

T and both can be computed in parallel.
This is a fundamental difference compared with a parallelization entirely based
on a parallel (multithreaded) BLAS, where each BLAS call is a synchronization
point so that, e.g., no thread can be updating (a block of) A22 before the update
of (all blocks within) A21 is completed.

4 The FLAME Tools

In this section we briefly review some of the tools that the FLAME project puts
at our disposal.

4.1 FLAME

FLAME is a methodology for deriving and implementing dense linear algebra
operations [3]. The (semiautomatic) application of this methodology produces
provably correct algorithms for a wide variety of linear algebra computations.
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The use of the Application Programming Interface (API) for the C programming
language allows an easy translation of FLAME algorithm to C code, as illustrated
for dense linear algebra operations in [4].

4.2 FLASH

One naturally thinks of matrices stored by blocks as matrices of matrices. As a
result, if the API encapsulates information that describes a matrix in an object,
as FLAME does, and allows an element in a matrix to itself be a matrix object,
then algorithms over matrices stored by blocks can be represented in code at the
same high level of abstraction. Multiple layers of this idea can be used if multiple
hierarchical layers in the matrix are to be exposed. We call this extension to the
FLAME API the FLASH API [15]. Examples of how simpler operations can be
transformed from FLAME to FLASH implementations can be found in [7,9].

The FLASH API provides a manner to store band matrices that is conceptu-
ally different from that of LAPACK. Using the FLASH API, a blocked storage
is easy to implement where only those (nb×nb) blocks with elements within the
(nonzero) band are actually stored. The result is a packed storage which roughly
requires same the order of elements as the traditional packed scheme but which
decouples the logical and the physical storage patterns, yielding higher perfor-
mance. Special storage schemes for triangular and symmetric matrices can still
be combined for performance or to save space within the nb × nb blocks.

4.3 SuperMatrix

Given a FLAME algorithm implemented in code using the FLAME/C interface,
the SuperMatrix run-time system first builds a Directed Acyclic Graph (DAG)
that represents all operations that need to be performed together with the de-
pendencies among these. The run-time system then uses the information in the
DAG to schedule operations for execution dynamically, as dependencies are ful-
filled. These two phases, construction of the DAG and scheduling of operations,
can proceed completely transparent to the specific implementation of the library
routine. For further details on SuperMatrix, see [7,9].

We used OpenMP to provide multithreading facilities where each thread exe-
cutes asynchronously. We have also implemented SuperMatrix using the POSIX
threads API to reach a broader range of platforms.

Approaches similar to SuperMatrix have been described for more general ir-
regular problems in the frame of the Cilk project [14] (for problems that can
be easily formulated as divide-and-conquer, unlike the band Cholesky factor-
ization), and for general problems also but with the specific target of the Cell
processor in the CellSs project [2].

5 Experiments

In this section, we evaluate two implementations for the Cholesky factorization of
a band matrix with varying dimension and bandwidth. Details on the platforms
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that were employed in the experimental evaluation are given in Table 1. Both
architectures consist of a total of 16 CPUs: set is a CC-NUMA platform with
16 processors while neumann is an SMP of 8 processors with 2 cores each. The
peak performance is 96 GFLOPS (96 × 109 flops per second) for set and 70.4
GFLOPS for neumann.

Table 1. Architectures (top) and software (bottom) employed in the evaluation

Platform Architecture Frequency L2 cache L3 cache Total RAM
(GHz) (KBytes) (MBytes) (GBytes)

set Intel Itanium2 1.5 256 4096 30
neumann AMD Opteron 2.2 1024 – 63

Platform Compiler Optimization BLAS Operating
flags System

set icc 9.0 -O3 MKL 8.1 Linux 2.6.5-7.244-sn2
neumann icc 9.1 -O3 MKL 9.1 Linux 2.6.18-8.1.6.el5

 0

 5

 10

 15

 20

 50  100  150  200  250  300  350  400  450  500

G
F

L
O

P
S

Bandwidth (kd)

Band Cholesky factorization for n = 2000 on SET

LAPACK DPBTRF + multithreaded MKL on 1 proc.
LAPACK DPBTRF + multithreaded MKL on 2 proc.
LAPACK DPBTRF + multithreaded MKL on 4 proc.
LAPACK DPBTRF + multithreaded MKL on 8 proc.
LAPACK DPBTRF + multithreaded MKL on 16 proc.

 0

 5

 10

 15

 20

 50  100  150  200  250  300  350  400  450  500

G
F

L
O

P
S

Bandwidth (kd)

Band Cholesky factorization for n = 2000 on SET

AB + serial MKL on 4 proc.
AB + serial MKL on 8 proc.
AB + serial MKL on 16 proc.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 200  400  600  800  1000  1200

G
F

L
O

P
S

Bandwidth (kd)

Band Cholesky factorization for n = 5000 on SET

LAPACK DPBTRF + multithreaded MKL on 1 proc.
LAPACK DPBTRF + multithreaded MKL on 2 proc.
LAPACK DPBTRF + multithreaded MKL on 4 proc.
LAPACK DPBTRF + multithreaded MKL on 8 proc.
LAPACK DPBTRF + multithreaded MKL on 16 proc.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 200  400  600  800  1000  1200

G
F

L
O

P
S

Bandwidth (kd)

Band Cholesky factorization for n = 5000 on SET

AB + serial MKL on 4 proc.
AB + serial MKL on 8 proc.
AB + serial MKL on 16 proc.
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16 CPUs of set
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Fig. 4. Performance of the band Cholesky factorization algorithms on 1, 2, 4, 8, and
16 CPUs of neumman

We report the performance of two parallelizations of the Cholesky
factorization:

– LAPACK dpbtrf + multithreaded MKL. LAPACK 3.0 routine
dpbtrf linked to multithreaded BLAS in MKL.

– AB + serial MKL. Our implementation of the algorithm-by-blocks linked
to serial BLAS in MKL.

When hand-tuning block sizes, a best-effort was made to determine the best
values of nb in both cases.

Figures 3 and 4 report the performance of the two parallel implementations
for band matrices of order n = 2000 and n = 5000 with varying dimension
of the bandwidth and number of processors. The first thing to note from this
experiment is the lack of scalability of the solution based on a multithreaded
BLAS (plots on the left column): as more processors are added to the experiment,
the left plots in the figure shows a notable drop in the performance so that
using more than 2 or 4 processors basically yields no gain or even results in
a performance decrease. The situation is different for the algorithm-by-blocks
(plots on the right-hand side): For example, while using 4 or 8 processors on set

for a matrix of bandwidth below 200 attains a similar GFLOPS rate, using 8
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Fig. 5. Performance of the band Cholesky factorization algorithms

processors for matrices of larger bandwidth achieves a significant performance
increase. A similar behavior occurs when all 16 processors of set are employed
but at a higher threshold, kd ≈ 450.

Figure 5 compares the two parallel implementations using the optimal number
of processors: 2 (n=2000) and 4 (n=5000) on set for the LAPACK dpbtrf+
multithreaded MKL implementation; 4 (n=2000) and 16 (n=5000) for this same
algorithm on neumann; and 16 for the AB + serial MKL implementation
on both platforms. From this experiment it is clear the benefits of using an
algorithm-by-blocks on a machine with a large number of processors.

6 Conclusions

We have presented an extension of SuperMatrix that yields algorithms-by-blocks
for the Cholesky, LU (with and without pivoting) and QR factorizations of band
matrices. The programming effort was greatly reduced by coding the algorithms
with the FLAME/C and FLASH APIs. Using the algorithm-by-blocks, the Su-
perMatrix run-time system generates a DAG of operations which is then used
to schedule out-of-order computation on blocks transparent to the programmer.

The results on two different parallel architectures for an algorithm-by-blocks
for the band Cholesky factorization of matrices with medium to large
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bandwidth clearly report higher performance and superior scalability to those
of a traditional multithreaded approach using LAPACK.
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Abstract. In this paper we present a practical, efficient and robust al-
gorithm for detecting the global convergence in any asynchronous itera-
tive process. A proven theoretical version, together with a first practical
version, was presented in [1]. However, the main drawback of that first
practical version was to require the determination of the maximal com-
munication time between any couple of nodes in the system during the
entire iterative process. The version presented in this paper does not
require any additional information on the parallel system while always
ensuring correct detections.

Keyword: Asynchronous iterative algorithms, convergence detection.

1 Introduction

Iterative algorithms are very well suited to numerous problems in the context of
scientific computations. They are often opposed to direct algorithms which give
the exact solution of a problem within a finite number of operations whereas iter-
ative algorithms provide successive approximations of it. It is said that they con-
verge (asymptotically) towards the solution. When dealing with very large size
problems, iterative algorithms are preferred, especially if they give a good approx-
imation in a little number of iterations [2]. In other cases, they represent the only
way to solve the problem as, for example, in the polynomial roots finding problem.

For all those reasons, parallel iterative algorithms are very popular. Neverthe-
less, most of them are synchronous and we showed in [3] that using asynchronism
in such parallel iterative algorithms was far more efficient in the
emerging contexts of parallelism such as grid computing. In the scope of this
study, the term asynchronism means that each processor performs its local com-
putations without waiting for the last updates of data dependencies coming
from other processors. The asynchronous algorithms proposed in our first works
used a centralized method to detect the global convergence, which was not best
suited to grid contexts. In [1], both a theoretical and a practical version of a
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decentralized global convergence detection algorithm were proposed. The valid-
ity of the theoretical version designed for totally asynchronous algorithms was
proven, and a practical version working on partially asynchronous algorithms,
i.e. asynchronous algorithms with bounded delays, was deduced. However, that
last algorithm presented the drawback of requiring additional information on the
parallel system which is not easy, if not to say impossible, to collect in practice.

In this paper, we present another practical version of the decentralized algo-
rithm for detecting global convergence that no longer requires any additional
information on the system but only the local states of the nodes.

As in the previous version, messages for the computation and messages for the
convergence detection are distinguished. This provides some degree of loss toler-
ance on the computational messages. The messages involved in the convergence
detection are quite small and their limited number avoids any representative net-
work overload which could penalize the progress of the iterative process. Finally,
the delay of detection after the actual convergence stays reduced compared to the
global process.

The following section briefly presents the previous studies related to conver-
gence detection algorithms. Then, in order to be self-contained, the principles
of asynchronous iterative algorithms are given in Sect. 3. Section 4 describes the
main problems related to the convergence detection and the weaknesses of our
previous algorithm. The new practical version of the decentralized algorithm for
convergence detection is described in Sect. 5 and evaluated in Sect. 6.

2 Related Works

Most of the previous studies on the convergence detection problem in paral-
lel iterative algorithms (see for example [4]) are based on centralized and/or
synchronous algorithms (typically a global reduction), which are neither suited
to large scale and/or distant distributed computations nor to the decentralized
nature of asynchronous iterative algorithms.

Concerning the specific studies related to asynchronous iterative algorithms,
distributed convergence detection was firstly introduced in [5] under particular
assumptions, such as the particular behavior of the nodes which have reached
local convergence. Moreover, Savari and Bertsekas proposed another distributed
version in [6] under rather restrictive hypotheses such as FIFO communications
and with modifications of the iterative process itself in order to make it termi-
nate in finite time. Other authors have studied implementations of asynchronous
algorithms but always with centralized convergence detection [7].

As in [1], the algorithm presented in this paper is based on a leader election
algorithm to manage the termination of asynchronous iterative algorithms in a
decentralized way. However, contrary to the practical version presented in that
previous paper, the presented practical algorithm does not require any other
information apart from the local convergence states of the nodes.

For more information on the distinction between the theoretical and the prac-
tical versions of our convergence detection algorithm, and on the leader election
protocol, the reader should refer to [1] and the references therein.
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3 Asynchronous Iterative Algorithms

Iterative algorithms have the structure xk+1 = g(xk), k = 0, 1, ..., with x0 given,
where eachxk is ann - dimensional vector, and g is some function fromRn into itself.
A fixed point x∗ of g is characterized by the property g(x∗) = x∗. The goal of the
iterative algorithm is to reach such a fixed point starting from any initial vector x0.

The parallel version of the iterative algorithm presented above is obtained by
the classical block-decomposition of x into m block-components Xi, i ∈ {1, ..., m},
and g into a compatible way of m block-components Gi, to reformulate the itera-
tive process as: Xk+1

i = Gi

(
Xk

1 , ..., Xk
m

)
, i = 1, ..., m, with X0 given.

3.1 AIAC Algorithms

AIAC algorithms, which have been introduced in [8], are a variant of the totally
asynchronous algorithms. The reader should refer to [9] and [10] to get the two
major formulations of the theoretical model of totally asynchronous iterative al-
gorithms. In this paper, we only remind the reader that those algorithms mainly
induce the notion of delays between the components of the system. In totally
asynchronous iterations, some classical conditions are assumed over those delays
in order to ensure that the process actually evolves (see again [9]).

The acronym AIAC stands for Asynchronous Iterations - Asynchronous Com-
munications. It means that all the processors perform their iterations without
taking care of the progress of the other processors. They do not wait for pre-
determined data to become available from other processors but they keep on
computing, trying to solve the given problem with whatever data happen to be
available at that time. Those algorithms give very good results in the global
context of grid computing as has been shown in [3]. Nevertheless, a centralized
algorithm for detecting global convergence is not well suited to the context of
grid computing in which all the nodes may not be directly accessible to each
other for security reasons. Moreover, another reason for designing a decentral-
ized convergence detection algorithm is that the most general class of parallel
iterative algorithms corresponds to the asynchronous iterative algorithms, which
are not centralized by nature.

4 Practical Difficulties with Our Previous Algorithm

The ideal way to detect the global convergence of an asynchronous iterative
algorithm is to monitor the evolution of the global state of the system between
two consecutive periods. In the field of dynamic systems, a period corresponds
to a minimal span of time during which all the components of the system are
updated at least once with data at least as recent as the beginning of that
period. The evolution of the system is measured by the residual which is the
distance between the two global states according to an adequately chosen norm.
Hence, for any converging process, it has been shown that the residual using
the adequate norm monotonously decreases from a period to the following one.
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So, the convergence detection should only consist in verifying that this residual
becomes small enough (under a convergence threshold).

However, it is quite difficult and penalizing in practice to identify periods
at the global level of dynamical systems implemented on distributed systems.
So, the method commonly used to detect the global convergence is based on
a local notion of convergence. That local convergence is detected according to
the local residual between two consecutive iterates of the local block-component
according to the chosen norm. The local convergence is assumed when that
residual becomes smaller than a given threshold. And the global convergence
detection consists in verifying that all the nodes are in local convergence and
that those local states have been reached with relevant updates of the respective
dependent data. The major problem with this is that the local convergence is
quite an artificial notion which is not directly linked to the global convergence.
In particular, as the local residual is not computed on the global state-vector,
it is subject to slightly less restrictive constraints and it may not monotonously
decrease. So, additional mechanisms are required to avoid false detections.

In [1], each processor counts a given number of consecutive iterations for
which its residual is under the convergence threshold and, only then, it passes
in the local convergence state. Although in theory that number of consecutive
iterations, which ensures the local convergence of the node, exists and is finite, it
is quite difficult to evaluate in practice. Using an approximate value is possible
and greatly reduces the potential false detections. However, it requires a global
detection mechanism that takes into account possible divergences of the nodes.

In addition to that problem, which is common to every kind of iterative
processes, the communication delays induced by the asynchronism change the
behavior of the system and make it even more difficult to perform a correct con-
vergence detection. Typically, a processor may be under the threshold thanks to
old versions of data coming from some neighbor processors, which is not repre-
sentative of its potential stabilization.

In Fig. 1 we illustrate such a false detection. We assume that a processor i
has dependencies with processors i− 1 and i +1. We also assume that there is a
mechanism that detects the global convergence after a given span of time during
which all processors are in the local convergence state. The convergence detection
problem lies in the fact that processor 1 does not receive any message from its
neighbor (processor 2) during several consecutive iterations. Consequently, its
state reaches the local convergence that consequently enables the detection of
a global convergence. Nevertheless, processor 1 only uses old messages from
processor 2 to enter the local convergence state.

In [1], the global convergence detection mechanism is based on the leader
election algorithm in order to obtain a decentralized algorithm. In this way, the
local convergences of the nodes are propagated through a spanning tree of the
system until they meet on a single node. Moreover, some canceling messages
are used either to stop the propagation or to inform the elected node that one
node is no longer in local convergence (due to the problem of delays exhibited
above). This implies a waiting period after the global convergence detection
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Fig. 1. Example of false convergence detection due to the fact that processor 1 does
not receive messages from processor 2 during several consecutive iterations

on the elected node, in order to wait for any potential cancellation message
generated in the meantime.

Although that overall detection algorithm works quite well in practice, a crit-
icism can be formulated against it: two constants that depend on the system
must be evaluated. The first one is the number of successive iterations under the
threshold to assume the local convergence. It indirectly depends on the maximal
delays between a processor and its dependencies, and consequently, on the com-
putations performed in the iterative process. The second constant is the maximal
traversal time of the system by a cancellation message. It obviously depends on
the network configuration of the system. Such information is not easily evaluated
accurately in practice.

To bypass those problems, we have designed a new decentralized detection
algorithm that does not require any additional information about the system.

5 New Practical Version of the Decentralized Algorithm
for Convergence Detection

As seen above, our major problem in the context of asynchronous algorithms
is to get a correct image of the global state of the system. Indeed, the possible
variations of the local states of the nodes require a robust snapshot of the global
state of the system to ensure that all the nodes have verified the local convergence
conditions at the same time.

The practical version presented here is somewhat different from the one pro-
posed in [1]. Our new version does not require any specific information on the
parallel system used. Our approach is closer to the theoretical version presented
in our previous work in the sense that it lets the global detection happen even
if the local evolutions on the nodes change during the election process. Then,
after the global detection, an additional verification phase takes place to ensure
its validity. It is important to notice here that the iterative process is not in-
terrupted either during the global convergence detection process or during the
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verification phase. There are two reasons for that; the most obvious one is not
to slow down the iterative process itself, and the second one is that its evolution
during the global detection and verification processes represents a mandatory
piece of information.

The first of the two mechanisms mentioned above concerns the local conver-
gence detection on each node and consists in taking into account what we call
pseudo-periods in place of a given number (arbitrary in practice) of successive
iterations. The pseudo-period is quite a local version of the periods. For each
node, a pseudo-period corresponds to the minimal span of time during which
the node receives at least one newer data message from all its dependencies and
updates itself. In this way, the local evolution of the node is fully representative
between two consecutive pseudo-periods. Thus, the local convergence is assumed
only after at least one (but possibly several successive ones) pseudo-period is per-
formed while the residual is under the threshold. This has a far better regulating
effect on the local convergence detections in practice and, if it cannot avoid all
the false local detections, it strongly limits them.

The second mechanism takes place at the global level of the system, when
the global convergence is detected. As in our previous algorithm, the global
detection is performed by a leader-election-like algorithm, according to the local
convergences of the nodes. However, instead of using cancellation messages when
the state of a node changes, as in our previous version, our new process lets
the global detection occur. Nonetheless, a new step is added after that global
detection which consists in verifying that all the nodes were actually in local
convergence at the time of the detection and that their states were representative
of their evolutions. That additional step is decomposed into four steps:

1. Diffusion of a verification message from the elected node through the span-
ning tree to initiate the verification phase;

2. Elaboration on each node of its response to the verification request;
3. Gathering of the responses of all the nodes toward the elected node through

the spanning tree to get the verdict. The actual global convergence detection
occurs at this step under the form of a detection confirmation;

4. Diffusion of a verdict message from the elected node through the spanning
tree to finish the verification phase.

Some of those steps partially overlap in time. For example, when a node receives
the verification message from one of its neighbors (the asking one), it forwards
it to all its other neighbors (the replying ones) in the spanning tree (step 1)
and, while waiting for their responses (step 3), it elaborates its own one (step 2)
according to its local state. As soon as a negative response is detected on the
node (either from itself or from a replying neighbor), the final response to the
asking node can be sent. Otherwise, the node needs to wait for the gathering of
all the responses from its replying neighbors before sending a positive response.

Finally, when the elected node has its own response and those of its neighbors,
it deduces the final verdict, which corresponds to the actual global convergence
detection when positive, and sends it to all of its neighbors (step 4). Then,
each node receiving a verdict message forwards it to its other neighbors in the
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spanning tree (step 4). At the end of the verification phase, the state of each
node is set up according to that verdict.

As mentioned above, the response of each node depends on its state but also
on its evolution during the verification phase. Indeed, in order to ensure that
all the nodes are in local convergence at the same time (which corresponds to
the criterion used in the sequential and synchronous versions), the response of a
node is positive if and only if its residual stays under the threshold during the
span of time between its last sending of a local convergence message (PartialCV)
and the sending of its response to the verification request.

Moreover, to be sure that the response of each node is representative of its
actual state and evolution, the waiting of a pseudo-period is inserted before
the sending of the response. Hence, each node sends its response (depending on
its residual evolution) only after having performed at least one iteration with
versions of all its data dependencies at least as recent as the global detection
time. In this way, the response is fully representative of the actual evolution and
state of that node until that time. In fact, those pseudo-periods form, at the
global level of the system, a period which spreads from the global convergence
detection to the end of the pseudo-period on the latest node.

In order to force the nodes to use specific data versions during the verification
phase, a tagging system is included in the data messages in order to differentiate
them between the successive phases of the iterative process (normal processing
and verification phase). Moreover, since there may be several verification phases
during the whole iterative process, due to possible cancellations (negative ver-
dicts) of global detections, that tagging is also useful to distinguish the data
messages related to different verification phases.

Finally, such a tagging system is also useful in the messages related to the global
detection and verification processes in order to enhance the reactivity of the verifi-
cation phase. Indeed, as mentioned above, each node is allowed to send a negative
response as soon as it is able to deduce it, without waiting for all the responses
of its replying neighbors. It is also the case for the elected node that will send a
negative verdict without waiting for all the responses of its neighbors. However,
those unused responses must be correctly managed when they finally arrive on a
node and, in particular, they must not be confused with other responses related
to a more recent verification phase, as they may consequently overlap.

In order to respond to all those message distinction constraints, each phase of
the iterative process (normal computing and verification of the global
convergence) is distinguished in time by an integer tag incremented at each
phase transition, as shown in Fig. 2 with four nodes linearly organized for a span
of time beginning with the tag equal to k.

The whole mechanism of global detection and verification is detailed in Fig. 3,
in the case of a global convergence detected and confirmed on node P2. First of
all, the processors reach local convergence and inform their adequate neighbor
according to the leader election scheme, with PartialCV messages. Then, the
global convergence is detected on node P2 which initiates the verification phase
by sending verification messages which are propagated through the system. As
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time
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Fig. 2. Distinction of the successive phases during the iterative process

soon as the other nodes receive that message, they send their current version of
local data to their neighbors with tagged data messages. And as soon as a node
has received all its tagged data dependencies (not older than the last global
detection) and has performed one iteration with them (dark grey blocks), it
checks if its residual is still under the threshold since its last local convergence
detection (light grey blocks) and sends the adequate response. As node P3 is
not elected and is not at an extremity of the system, it aggregates its response
with the one of node P4 and sends to its demanding node (P2) the response
corresponding to that sub-tree of the system relatively to the current root (P2).
The elected node P2 meanwhile performs its own verification and as soon as it
has finished it and has received all the other responses, it emits the verdict. The
actual convergence detection takes place at this step when the verdict is positive.
Finally, the verdict is sent and propagated through the system.

As can be seen, in case of a positive verdict, the whole process ensures that
the residuals of all the nodes are under the threshold at least at the time at
which the global convergence is detected on the elected node.

Concerning the correctness of the detection, we remind the reader that the
ideal convergence criterion consists in verifying that the residual between two
consecutive periods is small enough (under a convergence threshold). However,

Ensured  instant of
local CV  on every node
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data dependencies

iterations
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P4
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Fig. 3. Global convergence detection mechanism
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as mentioned before, it is quite difficult and penalizing to identify all the periods
at the global level during the process. But it is far simpler to explicitly trigger
the execution of one period at a given time. This is what is done in Algorithm 9
in which the convergence criterion is composed of:

– A first pseudo-period with residual under the threshold;
– An arbitrary number (possibly 0) of consecutive pseudo-periods with residual

under the threshold (the global convergence detection happens in that part);
– A last pseudo-period performed with data no older than the last global con-

vergence detection and with residual under the threshold (the global conver-
gence confirmation takes place at the end of that part).

The first two elements identify a global context of residual under the threshold.
The last two elements contain an actual period which spreads between the global
convergence detection and the global convergence confirmation. That period
permits to ensure the validity of the detected convergence as it provides a similar
stopping criterion as in the sequential and synchronous cases.

As the behavior of the nodes is not the same according to the different steps
in the detection process and verification phase, it is also necessary to introduce
four main states:

– NORMAL: the basic state during the iterative process when the node is
not in the global convergence detection mechanism.

– WAIT4V: when the node is waiting for the local start of the verification
phase after its sending of a PartialCV message.

– VERIF: when the node is performing the verification phase, either after the
receipt of the corresponding message or by election.

– FINISHED: when the global convergence has been confirmed.

The transitions between those states are depicted in Fig. 4. Other states, present
at inner levels (see Table 1), are not depicted here for clarity sake.

The final scheme obtained is given in Algorithm 9. Due to length constraints
on that paper, only the list of the additional variables, according to the previous
algorithm, is given in Table 1. The reader should refer to [1] for a description of
the other variables.

election

 WAIT4VNORMAL

VERIF FINISHED

negative verdict

negative verdict

verdict
positive

election or receipt
of a verification msg

sending of a
PartialCV msg

Fig. 4. State transitions in the global convergence detection process
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Table 1. Description of the additional variables used in Algorithm 9

MyRank unique identifier of the current node
State current state of the node (NORMAL, WAIT4V, VERIF or FINISHED)
PhaseTag identifier of the current phase on the node
PseudoPerBeg boolean indicating that a pseudo-period has begun
PseudoPerEnd boolean indicating the end of a pseudo-period
NbDep number of computational dependencies of the node
NewerDep[NbDep] boolean array indicating for each data dependency if a newer version has

been received since the last pseudo-period
LastIter[NbDep] integer array indicating for each dependency node the iteration of produc-

tion of the last data received from that node
PartialCVSent boolean indicating that a PartialCV message has been sent
ElectedNode boolean indicating that the node is the elected one
Resps[NbNeig] integer array containing the responses of the neighbors of the current node

in the spanning tree. The values are either −1 (negative), 0 (no response
yet) or 1 (positive)

ResponseSent boolean indicating that the response has been sent

The different types of messages are listed below together with their contents:

– data message:
• identifier of the source node
• iteration number on the source node at the sending time
• phase tag of the source node at the sending time
• data

– PartialCV message and verification message:
• identifier of the source node
• phase tag of the source node at the sending time

– response message:
• identifier of the source node
• phase tag of the source node at the sending time
• response of the source node

– verdict message:
• identifier of the source node
• new phase tag to use on the receiver
• verdict

The algorithm also uses additional functions which are briefly described below:

– InitializeState(): (Re-)initializes the variables related to the convergence
detection process and sets the node in NORMAL state.

– ReinitializePPer(): (Re-)initializes the variables related to the pseudo-
period detection.

– InitializeVerif(): Initializes a new verification phase.

– RecvDataDependency(): Manages the receipts of data dependencies.
That function takes into account any newer data when the receiver is not
in verification phase. Otherwise, it filters the data produced after the last
global convergence detection, that is to say, with the same phase tag as the
receiver.
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– RecvPartialCV(): Manages the receipts of PartialCV messages. Also up-
dates the local state of the node when an election is possible. However, a
mutual exclusion mechanism is used to ensure that only one node is elected.

– RecvVerification(): Manages the receipts of verification messages. The
message is taken into account only when its phase tag corresponds to the
following phase on the receiver.

– RecvResponse(): Manages the receipts of response messages. The message
is taken into account only when the phase tag in the message corresponds
to the current phase tag on the receiver.

– RecvVerdict(): Manages the receipt of the verdict on the non-elected
nodes. The verdict is always taken into account and propagated through
the spanning tree to set all the nodes either in FINISHED state or back
in NORMAL state with a new phase tag. As no other global convergence
detection can happen before the end of the propagation of the verdict, there
cannot be any confusion with a similar message coming from a previous
verification phase.

– ChooseLeader(integer, integer): Chooses the elected node when there
are two possible candidates whose identifiers are given in parameters. That
function is not detailed in the following since it directly depends on the ref-
eree policy used. The choice of that policy is quite free as its only constraint
is to make a choice between the two proposed nodes.

Algorithm 1 Function InitializeState()
NbNotRecvd ← NbNeig
for Ind from 0 to NbNeig−1 do

RecvdPCV[Ind] ← false
end for
ElectedNode ← false
LocalCV ← false
PartialCVSent ← false
ReinitializePPer()
State ← NORMAL

Algorithm 3 Function InitializeVerif()
ReinitializePPer()
PhaseTag ← PhaseTag + 1
for Ind from 0 to NbNeig−1 do

Resps[Ind] ← 0
end for
ResponseSent ← false

Algorithm 5 Function RecvDataDependency()
Extract SrcNode, SrcIter and SrcTag from the
message
SrcIndDep ← index of SrcNode in the list of
dependencies of the receiver (−1 if �∈)
if SrcIndDep ≥ 0 then

if LastIter[SrcIndDep] < SrcIter and
(State �=VERIF or SrcTag=PhaseTag) then

Put the data from message at their place
in the local data array used for the com-
putations, according to SrcIndDep
LastIter[SrcIndDep] ← SrcIter
NewerDep[SrcIndDep] ← true

end if
end if

Algorithm 2 Function RecvVerification()
Extract SrcNode and SrcTag from the message
if SrcTag = PhaseTag + 1 then

InitializeVerif()
State ← VERIF
Broadcast the verification message to all its
neighbors but SrcNode

end if

Algorithm 4 Function ReinitializePPer()
PseudoPerBeg ← false
PseudoPerEnd ← false
for Ind from 0 to NbDep−1 do

NewerDep[Ind] ← false
end for

Algorithm 6 Function RecvPartialCV()
Extract SrcNode and SrcTag from the message
SrcIndNeig ← index of SrcNode in the list of
neighbors of the receiver
if SrcIndNeig ≥ 0 and SrcTag = PhaseTag
then

RecvdPCV[SrcIndNeig] ← true
NbNotRecvd ← NbNotRecvd−1
if NbNotRecvd=0 and PartialCVSent=true

and ChooseLeader(MyRank, SrcNode)
= MyRank then

ElectedNode ← true
InitializeVerif()
Broadcast a verification message to all its
neighbors
State ← VERIF

end if
end if
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Algorithm 7 Function RecvResponse()
Extract SrcNode, SrcTag and SrcResp from
the message
SrcIndNeig ← index of SrcNode in the list of
neighbors of the receiver
if SrcIndNeig ≥ 0

and PhaseTag = SrcTag then
Resps[SrcIndNeig] ← SrcResp

end if

Algorithm 8 Function RecvVerdict()
Extract SrcNode, SrcTag and SrcVerdict from
the message
if SrcVerdict is positive then

State ← FINISHED
else

InitializeState()
PhaseTag ← SrcTag

end if
Broadcast the verdict message to all its neigh-
bors but SrcNode

Algorithm 9 Decentralized algorithm for the global convergence detection
for all Pi, i ∈ {1, . . . , N} do

InitializeState()
UnderTh ← false
PhaseTag ← 0
repeat

. . . iterative process, data sendings and evaluation of UnderTh . . .
if State = NORMAL then

if UnderTh = false then
ReinitializePPer()

else
if PseudoPerBeg = false then

PseudoPerBeg ← true
else

if PseudoPerEnd = true then
LocalCV ← true
if NbNotRecvd = 0 then

ElectedNode ← true
InitializeVerif()
Broadcast a verification message to all its neighbors
State ← VERIF

else
if NbNotRecvd = 1 then

Send a PartialCV message to the neighbor corresponding to the unique cell of
RecvdPCV[] being false
PartialCVSent ← true
State ← WAIT4V

end if
end if

else
if all the cells of NewerDep[] are true then

PseudoPerEnd ← true
end if

. . .

end if
else if State = WAIT4V then

if UnderTh = false then
LocalCV ← false

end if
else if State = VERIF then

if ElectedNode = true then
if UnderTh = false or LocalCV = false

or at least one cell of Resps[] is negative then
PhaseTag ← PhaseTag + 1
Broadcast a negative verdict message to all its neighbors
InitializeState()

else
if PseudoPerEnd = true then

if there are no more 0 in Resps[] then
if all the cells of Resps[] are positive then

Broadcast a positive verdict message to all its neighbors
State ← FINISHED

else
PhaseTag ← PhaseTag + 1
Broadcast a negative verdict message to all its neighbors
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InitializeState()
end if

end if
else

if all the cells of NewerDep[] are true then
PseudoPerEnd ← true

end if
end if

end if
else

if ResponseSent = false then
if UnderTh = false or LocalCV = false

or at least one cell of Resps[] is negative then
Send a negative response to the asking neighbor
ResponseSent ← true

else
if PseudoPerEnd = true then

if there remains only one 0 in Resps[] then
if the other cells of Resps[] are all positive then

Send a positive response to the asking neighbor
else

Send a negative response to the asking neighbor
end if
ResponseSent ← true

end if
else

if all the cells of NewerDep[] are true then
PseudoPerEnd ← true

end if
. . .

end if
until State = FINISHED

end for

6 Experiments

In order to evaluate the efficiency of our algorithm, we have compared it with our
previous convergence detection algorithm on a typical asynchronous iterative al-
gorithm based on the inverse power method. At each iteration of the algorithm,
we solve a linear system using the multisplitting method [3]. A cluster of 16
machines (Pentium IV 3Ghz) with a 1Gbps network has been used. We have
chosen the problem D of the CG problem, reported in [11], in which the matrix
has a degree equals to 255,000 and 200 iterations are performed. That problem
is very well suited to our comparison as it requires 200 convergence detections.
We have implemented this algorithm in Java with the Jace environment [12].
In Table 2, we report the average times of ten executions of that problem with
our new convergence detection algorithm and with our previous version. In the
"without load" column, the machines run only our program without any other
load. As can be seen, the execution times are very similar although slightly
in favor of our new version. Also, in order to evaluate the robustness of our
new algorithm, we have performed another series of experiments in the same
conditions but we have slowed down some machines (2, 4 and 8) by adding
an additional load on them. In order to obtain a correct convergence detec-
tion with our previous algorithm in such a context, some of its parameters, such
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Table 2. Execution times with our two convergence detection algorithms and with or
without external load

Version Exec. times (s) Exec. times (s) Exec. times (s) Exec. times (s)
without load with 2 loads with 4 loads with 8 loads

Previous algorithm 661 740 772 866
New algorithm 655 712 732 809

as the number of successive iterations under the threshold and the maximal
traversal time of the system, had to be increased. As can be seen in the last
three columns of Table 2, such tunings imply larger detection latencies and thus
worse execution times than our new version, which does not require any context-
dependent tuning.

7 Conclusion

A new practical version of our decentralized algorithm for detecting the global
convergence in asynchronous iterative algorithms has been proposed. That new
version presents the advantage of not requiring any information on the parallel
system employed. This strongly broadens the contexts of use of AIAC algorithms
since they are then surely and efficiently usable with large scale parallel systems,
such as grids, in which the communication delays are subject to sharp variations
and their upper bound is difficult to evaluate.
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Abstract. In this paper we describe a parallel implementation of the
trace minimization method for symmetric generalized eigenvalue prob-
lems proposed by Sameh and Wisniewski. The implementation includes
several techniques proposed in a later article of Sameh, such as multi-
shifting, preconditioning and adaptive inner solver termination, which
accelerate the method and make it much more robust. A Davidson-type
variant of the algorithm has been also considered. The different methods
are analyzed in terms of sequential and parallel efficiency.

Topics: Numerical algorithms for CS&E, parallel and distributed
computing.

1 Introduction

Let A and B be large, sparse, symmetric (or Hermitian) matrices of order n. We
are concerned with the partial solution of the generalized eigenvalue problem
defined by these matrices, that is, the computation of a few pairs (λ, x) that
satisfy

Ax = λBx , (1)

where λ is a real scalar called the eigenvalue and x is an n-vector called the
eigenvector. This problem arises in many scientific and engineering areas such as
structural dynamics, electrical networks, quantum chemistry, and control theory.
In this work, we focus on the particular case that the wanted part of the spectrum
corresponds to the smallest eigenvalues. Also, we are mainly concerned with
matrix pairs where B is positive (semi-)definite, although this condition can be
relaxed under some circumstances.

Many different methods have been proposed for solving the above
problem, including subspace iteration, Krylov projection methods such as Lanc-
zos or Krylov-Schur, and Davidson-type methods such as Jacobi-Davidson. De-
tails of these methods can be found in [1,2,3,4]. Subspace iteration and Krylov
methods perform best when computing largest eigenvalues, but usually fail to
compute the smallest or interior eigenvalues. In that case, it can be useful to
combine the method with a spectral transformation technique, that is, to solve
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(A − σB)−1Bx = θx instead of Eq. 1. The problem with this approach is its
high computational cost, since linear systems are to be solved at each iteration
of the eigensolver, and they have to be solved very accurately. Preconditioned
eigensolvers such as Jacobi-Davidson try to reduce the cost, by solving systems
only approximately.

This work presents an implementation of the trace minimization eigensolver
with several optimizations, including dynamic multishifting, approximate solu-
tion of the inner system and preconditioning. This method, described in section
2, can be seen as an improvement on the subspace iteration method that is able
to compute smallest eigenvalues naturally. It can also be derived as a Davidson-
type algorithm.

The implementation is being integrated as a solver in SLEPc, the Scalable Li-
brary for Eigenvalue Problem Computations. SLEPc is a software library for the
solution of large, sparse eigenvalue problems on parallel computers, developed by
the authors and other colleagues. An overview is provided in section 3, together
with implementation details concerning the new solver, including the optimiza-
tions (preconditioning, multishifting and adaptive inner solver termination).

The paper is completed with section 4 showing the parallel performance of
the implementations and the impact of the optimizations, and section 5 with
some conclusions.

2 Trace Minimization Eigensolver

The trace minimization method for solving symmetric generalized eigenvalue
problems was proposed by Sameh and Wisniewski [5], and developed further
in [6]. The main idea of the method is to improve the update step of subspace
iteration for generalized eigensystems as explained below.

Let Eq. 1 be the order n generalized eigenproblem to solve, and assume that
Xk is a B-orthogonal basis of an approximate eigenspace associated to the small-
est p eigenvalues, being 1 ≤ p � n. In subspace iteration, the sequence of com-
puted approximations Xk is generated by the recurrence

Xk+1 = A−1BXk, k ≥ 0 , (2)

where the initial solution X0 is an n × p full rank matrix. During the process,
B-orthogonality of the columns of Xk is explicitly enforced. It can be shown that
Xk eventually spans a subspace that contains the required eigenvectors [4].

This procedure requires the solution of p linear systems of equations with co-
efficient matrix A at each step k (one system per each column of Xk). Moreover,
this has to be done very accurately (otherwise the global convergence is compro-
mised), which is significantly expensive. Trace minimization tries to overcome
that difficulty by exploiting a property stated in the following theorem.

Theorem 1 (Sameh and Wisniewski [5]). Let A and B be n× n real sym-
metric matrices, with positive definite B, and let X be the set of all n×p matrices
X for which XT BX = Ip, 1 ≤ p ≤ n. Then
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min
X∈X

tr(XT AX) =
p∑

i=1

λi , (3)

where λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of Ax = λBx. The equality holds
if and only if the columns of the matrix X, which achieves the minimum, span
the eigenspace corresponding to the smallest p eigenvalues.

The trace of a square matrix, tr(·), is defined as the sum of its diagonal elements,
and it can be shown to be equal to the sum of its eigenvalues [4].

The trace minimization algorithm updates the current approximation Xk by
subtracting a correction ∆k that it obtained by solving the following constrained
minimization problem,

minimize tr
[
(Xk −∆k)T A(Xk −∆k)

]
,

subject to XT
k B∆k = 0 .

(4)

As shown in [5], Xk+1 satisfies

tr(XT
k+1AXk+1) ≤ tr(XT

k AXk) , (5)

if Xk+1 is a B-orthonormal basis of the subspace spanned by Xk −∆k.
By the method of Lagrange multipliers, the solution of the minimization prob-

lem, Eq. 4, can be computed by solving a set of saddle-point systems of linear
equations, (

A BXk

XT
k B 0

)(
∆k

Lk

)
=
(

AXk

0

)
, (6)

being 2Lk the Lagrange multipliers.
Nevertheless, we are interested only in ∆k, so Eq. 6 can be reduced further,

as shown in [5], resulting in a set of constrained positive semi-definite systems,

(PAP )∆k = PAXk, XT
k B∆k = 0 , (7)

where P is the projector onto the orthogonal complement of BXk,

P = I −BXk(XT
k B2Xk)−1XT

k B . (8)

These systems can be solved by means of an iterative linear solver such as
conjugate gradient (CG) or generalized minimal residual (GMRES) method,
with a zero vector as initial solution so that the constraint is automatically
satisfied.

It may seem that the projector of Eq. 8 will introduce an excessive overhead
in the computation. However, in practice the overhead is not so high since p
is normally small and the projector is applied implicitly, i.e., without building
matrix P explicitly. Furthermore, PAP is better conditioned than A (as shown
in [6, Th. 2.3]), thus reducing the required number of linear solver iterations.

Algorithm 1 summarizes the basic trace minimization method.
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Algorithm 1 (Trace minimization)

Input: matrices A and B, number of desired eigenvalues p,
dimension of subspace s ≥ p

Output: resulting eigenpairs

Choose an n× s full rank matrix V1 such that V T
1 BV1 = Is

For k = 1, 2, . . .
1. Compute Wk ← AVk and Hk ← V T

k Wk.
2. Compute all eigenpairs of Hk, (Θk, Yk).
3. Compute the Ritz vectors, Xk ← VkYk.
4. Compute the residual vectors, Rk ←WkYk −BXkΘk.
5. Test for convergence.
6. Solve the inner system of Eq. 7 approximately.
7. Vk+1 ← B-orthonormalization of Xk −∆k.

End for

In step 2 of Algorithm 1, the eigenvalues have to be arranged in ascending
order and the eigenvectors need to be orthonormalized. Note that the search
subspace has dimension s, which can be for instance twice the number of wanted
eigenpairs. At the end of the computation, the first p diagonal elements of Θk

contain the computed Ritz values, and the first p columns of Xk contain the
corresponding Ritz vectors.

It can be shown that the columns of Xk in Algorithm 1 converge to the eigen-
vectors with an asymptotic rate bounded by λi/λs+1 [6, Th. 2.2]. Convergence
can also be proved under the assumption that the inner systems in Eq. 7 are
solved inexactly [6, §3.1].

Davidson-type version. The main drawback of Algorithm 1, inherited from
subspace iteration, is that the dimension of the subspace of approximants is
constant throughout the computation. In [6], Sameh and Tong propose a variant
with expanding subspaces, in which the number of columns of Vk grows, as well
as the dimension of the projected matrix, Hk. This variant is related to the
Generalized Davidson method, because it uses the preconditioned residuals for
expanding the search subspace. These residuals will replace the right hand sides
of the inner systems, Eq. 7. Integrating these two ideas with Algorithm 1 results
in the Davidson-type trace minimization method, Algorithm 2.

Algorithm 2 (Davidson-type trace minimization)

Input: matrices A and B, number of desired eigenvalues p,
block size s ≥ p, maximum subspace dimension m ≥ s

Output: resulting eigenpairs

Choose an n× s full rank matrix V1 such that V T
1 BV1 = Is

For k = 1, 2, . . .
1. Compute Wk ← AVk and Hk ← V T

k Wk.
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2. Compute s eigenpairs of Hk, (Θk, Yk).
3. Compute the Ritz vectors Xk ← VkYk.
4. Compute the residuals Rk ←WkYk −BXkΘk.
5. Test for convergence.
6. Solve the systems [P (A− σk,iB)P ]dk,i = Prk,i s.t. XT

k Bdk,i = 0.
7. If dim(Vk) ≤ m− s

then Vk+1 ← B-orthonormalization of [Vk, ∆k],
else Vk+1 ← B-orthonormalization of [Xk, ∆k].

End for

In Algorithm 2, the number of columns of Vk is s initially, but grows as the
iteration proceeds. The order of Hk grows accordingly, but only s eigenpairs are
computed in step 2, and therefore the number of columns of Xk is constant.
The other main difference with respect to Algorithm 1 is step 6, in which the
system to be solved is different. Vectors rk,i and dk,i denote the ith column of Rk

and ∆k, respectively. The role of σk,i and other considerations will be discussed
in subsection 3.2. Finally, step 7 expands the working subspace, except if the
maximum dimension has been reached, in which case Vk+1 is set to have 2s
columns only.

Apart from a much better behaviour in terms of convergence of Algorithm
2 with respect to Algorithm 1, there is another significant benefit, namely the
reduction of the cost of enforcement of the constraint. The orthogonality re-
quirement XT

k Bdk,i = 0 is now an implicit deflation of the s Ritz vectors, and s
can be much smaller than in the original algorithm. In fact, our implementation
defaults to s = p in Algorithm 2.

3 Implementation and Parallelization

The implementation has been developed in the context of the SLEPc library,
being our intent to include the eigensolver in forthcoming releases.

3.1 Overview of SLEPc

SLEPc, the Scalable Library for Eigenvalue Problem Computations [7]1, is a
software library for the solution of large, sparse eigenvalue and singular value
problems on parallel computers. It can be used for the solution of problems
formulated in either standard or generalized form, both Hermitian and non-
Hermitian, with either real or complex arithmetic.

SLEPc provides a collection of eigensolvers including Krylov-Schur, Arnoldi,
Lanczos, Subspace Iteration and Power/RQI. It also provides built-in support
for different types of problems and spectral transformations such as the shift-
and-invert technique.

SLEPc is built on top of PETSc (Portable, Extensible Toolkit for Scientific
Computation, [8]), a parallel framework for the numerical solution of partial
1 http://www.grycap.upv.es/slepc/

http://www.grycap.upv.es/slepc/
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differential equations, whose approach is to encapsulate mathematical algorithms
using object-oriented programming techniques in order to be able to manage the
complexity of efficient numerical message-passing codes. All the PETSc software
is freely available and used around the world in many application areas.

PETSc is object-oriented in the sense that all the code is built around a set
of data structures and algorithmic objects. The application programmer works
directly with these objects rather than concentrating on the underlying data
structures. The three basic abstract data objects are index sets, vectors and
matrices. Built on top of this foundation are various classes of solver objects,
including linear, nonlinear and time-stepping solvers. Many different iterative
linear solvers are provided, including CG and GMRES, together with various
preconditioners such as Jacobi or Incomplete Cholesky. PETSc has also the
provision to interface with third-party software such as HYPRE.

SLEPc extends PETSc with all the functionality necessary for the solution
of eigenvalue problems. SLEPc inherits all the good properties of PETSc, in-
cluding portability, scalability, efficiency and flexibility. SLEPc also leverages
well-established eigensolver packages such as ARPACK, integrating them seam-
lessly. Some of the outstanding features of SLEPc are the following:

– Easy programming with PETSc’s object-oriented style.
– Data-structure neutral implementation.
– Run-time flexibility, giving full control over the solution process.
– Portability to a wide range of parallel platforms.
– Usable from code written in C, C++ and Fortran.

3.2 Implementation Details

The current prototype implementation incorporates several improvements de-
scribed in [6]. Most of them refer to the solution of the linear system in step 6
in both algorithms, which is the most expensive operation.

Shifting Strategy. An important acceleration in the original algorithm, that
has been incorporated also in the Davidson-type version, comes from shifts.
Instead of Eq. 7, this technique solves the systems

[P (A− σk,iB)P ]dk,i = PAxk,i, XT
k Bdk,i = 0 , (9)

where dk,i and xk,i are the ith columns of ∆k and Xk, respectively, and σk,i is
the associated shift at step k.

If the desired eigenvalues are poorly separated from the remaining part of the
spectrum, the unshifted method converges too slowly. Choosing an appropriate
value of σk,i can improve the separation of eigenvalues and accelerate the conver-
gence. The shift heuristic strategy implemented in both algorithms is detailed in
[6]. This technique of multiple dynamic shifts consists in computing a different
shift σk,i for each required eigenvalue in every outer iteration. The heuristic can
be summarized as follows (i0 is the number of converged eigenpairs):
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– For i0 + 1:
if θi0+1 + ‖ri0+1‖B−1 ≤ θi0+2 − ‖ri0+2‖B−1 (test for cluster)

then σi0+1 ← θi0+1,
else σi0+1 ← max{θi0+1 − ‖ri0+1‖B−1 , λi0} .

– For every j > i0 + 1:
if σj−1 = θj−1 and θj < θj+1 − ‖rj+1‖B−1

then σj ← θj ,
else σj ← max{θl : θl < θj − ‖rj‖B−1} ∪ θi0+1 .

For practical reasons, employing 2-norms instead of B−1-norms is recom-
mended in [6]. However, this simplification does not result in a safe lower bound
for some B matrices with λmax(B) > 1, because a vector r satisfying θj −
‖r‖B−1 ≤ θj − ‖r‖2 exists if λmin(B−1) < 1, due to the property

‖x‖2
√

λmin(B−1) ≤ ‖x‖B−1 ≤ ‖x‖2
√

λmax(B−1) . (10)

To overcome this difficulty, our implementation can make use of an approxi-
mation of the smallest eigenvalue of B (provided by the user or computed by the
Gershgorin circle theorem) to obtain a better estimation of the shifts, because

‖r‖B−1 =
√

rT B−1r = ‖r‖2
√

zT B−1z ≤ ‖r‖2
√

λmax(B−1) = ‖r‖2λmin(B)−
1
2 .

Linear Solver and Preconditioning. When shifting strategies are used, the
inner system of Eq. 9 may be indefinite or ill-conditioned. In order to make its
resolution feasible with an iterative solver, it is necessary to use an effective
preconditioner. In PETSc, it is very easy to precondition a linear system whose
coefficient matrix is available explicitly. However, the preconditioning of Eq. 9
is not trivial.

Eq. 9 is a projected linear system with an orthogonality constraint,much like the
Jacobi-Davidson correction equation. In [9], Sleijpen et al. describe how to solve

(I − uuT )(A− σB)(I − uuT )t = r, s.t. t ⊥ u,

using a Krylov solver and an approximation K of A−σB. Adapting this idea to
the context of trace minimization results in solving Eq. 9 using a Krylov solver
with a left preconditioner K for A− σk,iB, the operator (PKP )P (A− σk,iB)P
and right hand side vector (PKP )(PA)xk,i. The transformation

F =
[
I −K−1BX(XT BK−1BX)−1XT B

]
K−1

is employed to optimize the application of the operator because

– if z = Fy and Py = y, then Pz = z and PKPz = y; and
– if the initial solution fed into the Krylov solver, v0, belongs to the range of the

operator, then all the subsequently generated vectors are in that subspace.

As a result, the matrix-vector product z = (PKP )P (A − σk,iB)Pv in the
Krylov solver can be calculated as z = F (A− σk,iB)v.



262 E. Romero and J.E. Roman

The F transformation is precomputed as

F =
[
I −K−1BX(XT BK−1BX)−1XT B

]
K−1 (11)

= K−1 −K−1BX(XT BK−1BX)−1XT BK−1 (12)
= K−1 − J̃ J̃T , (13)

where J̃ = K−1J , BX = JR, and JT K−1J = I. In the implementation, in
each external iteration a K−1-orthonormal basis of BX is built and then pre-
multiplied by K−1. Consequently, the product by F only requires an application
of J̃ J̃T and K−1 on the vector, together with a subtraction.

Stopping Criterion. Another issue that has a significant impact on overall
performance is the stopping criterion for the inner system solver. We adapt the
strategy proposed in [5] to the shifted inner system, Eq. 9, as developed in [6].
Like preconditioning, monitoring the convergence of the linear system can avoid
awkward breakdowns and unnecessary iterations.

The linear solver is configured to stop when either the error estimate is less
than a certain tolerance, τk,i, or the iterations of the method exceed a certain
maximum. The tolerances are calculated as

τk,i =

⎧⎨⎩
√

tol if k = 1
(θk,i − σk,i)/(θk−1,s − σk,i), if k > 1 and θk,i �= σk,i

(θk−1,i − σk,i)/(θk−1,s − σk,i), if k > 1 and θk,i = σk,i,
(14)

where tol is the tolerance demanded to the eigensolver. In some cases, τk,i is too
close to 1, resulting in a poor update of the associated eigenvector that slows
down its converge. To avoid this, our implementation allows the user to specify
a maximum value of the tolerance.

The maximum number of allowed iterations is also set by the user, since the
optimal value is dependent on the preconditioner and the conditioning of the
inner system. However too small values may prevent convergence of the method.

Orthogonalization. In terms of optimizations for parallel efficiency, the imple-
mentation makes use of an efficient Gram-Schmidt orthogonalization procedure
available in SLEPc and explained in [10]. The default option is set up to Classical
Gram-Schmidt with selective refinement.

4 Performance Analysis

This section summarizes the experiments carried out in order to evaluate the par-
allel performance of the implementations and the impact of the optimizations in
the global convergence. The matrices used for the tests were taken from the Ma-
trix Market and the University of Florida Sparse Matrix Collection. All test cases
correspond to real symmetric generalized eigenproblems arising in real applica-
tions. The test cases used in the analysis of the various optimizations are listed
in Table 1. For parallel performance tests, larger matrices were used, see Table 2.
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Table 1. Test cases from Matrix Market for testing optimizations (p: positive definite,
s: positive semi-definite, i : indefinite). The column speed-up shows the gain factor of
Algorithm 2 with respect to Algorithm 1. The dash (–) indicates cases that cannot be
solved with Algorithm 1.

A B
size nonzeros definiteness nonzeros definiteness speed-up

BCSST02 66 2,211 p 66 p 0.81
BCSST08 1,074 7,017 p 1,074 p 2.80
BCSST09 1,083 9,760 p 1,083 p 2.21
BCSST10 1,086 11,578 p 11,589 s 1.31
BCSST11 1,473 17,857 p 1,473 p 0.90
BCSST12 1,473 17,857 p 10,566 s 1.54
BCSST13 2,003 42,943 p 11,973 s 1.47
BCSST19 817 3,835 i 817 p –
BCSST21 3,600 15,100 i 3,600 p –
BCSST22 138 417 i 138 p –
BCSST23 3,134 24,156 i 3,134 p –
BCSST24 3,562 81,736 i 3,562 p –
BCSST25 15,439 133,840 i 15,439 p –
BCSST26 1,922 16,129 i 1,922 p –
BCSST27 1,224 28,675 p 28,675 i 1.26
BCSST38 8,032 355,460 p 10,485 i –

Table 2. Test cases from UF Matrix Collection for analyzing parallel performance

size A nonzeros B nonzeros
DIAMON5 19,200 9,347,698 3,115,256

BS01 127,224 6,715,152 2,238,384
GYRO 17,361 1,021,159 340,431

The tests were executed on two clusters: Odin, made up of 55 bi-processor nodes
with 2.80 GHz Pentium Xeon processors, arranged in a 2D torus topology with
SCI interconnect, and MareNostrum, consisting of 2,560 JS21 blade computing
nodes, each with 2 dual-core IBM 64-bit PowerPC 970MP processors running at
2.3 GHz, interconnected with a low latency Myrinet network. In this machine,
only 256 processors were employed due to account limitations.

Although in [6] CG is used as the solver for the linear system, in our experi-
ence only a few simple problems can be solved using that configuration. Unless
otherwise stated, all tests reported in this section use GMRES with an alge-
braic multigrid preconditioner. This preconditioner is one of those provided by
HYPRE [11]. With that configuration, all test cases in Tables 1 and 2 are solved
without convergence problems.

Original Version Vs. Davidson-type Version. As it was pointed out pre-
viously, Algorithm 2 not only reduces the time spent in the inner iteration, but
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Fig. 1. Gain factor of dynamic shifting (shifting) and dynamic shifting with corrected
norm (min eig shifting) with respect to the version without optimizations, in terms
of the total number of inner iterations

also the total number of inner iterations. In order to support that conclusion,
both algorithms have been compared using the test cases listed in Table 1. The
last column of this table shows the gain factor of Algorithm 2 with respect to
Algorithm 1, except for those problems with one of the two matrices indefinite,
which cannot be solved with for Algorithm 1. Furthermore, the frequency of use
of the most expensive operations is very similar in both variants, so the parallel
speed-up and scalability should be very similar (this can be confirmed in Figures
4 and 6). For these reasons, the optimization and parallelism analyses will focus
on the Davidson-type version.

Analysis of Optimizations. The benefits of the different improvements de-
scribed in section 3.2 have been analyzed using the test cases listed in Table
1. The results are shown in Figures 1, 2, and 3, as gain factors of the different
strategies with respect to the version without optimizations, in terms of the total
number of inner iterations. It can be observed from the figures that the opti-
mizations are effective in most problems (but not all), making the computation
up to 5 times faster in several cases, or even more.

The shifting strategy (Figure 1) accelerates the convergence in 66% of the
problems. The version that employs a shifting strategy with the correction pro-
vided by the smallest eigenvalue of B (see section 3.2) is usually to be preferred,
although it may be worse sometimes depending on the definiteness of matrix B.
The tolerance strategy (Figure 2) presents better speed-up, specially setting its
upper bound to 0.1. Finally, the combination of the two techniques is plotted in
Figure 3.
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Parallel Analysis. We start the parallel performance analysis with a scala-
bility study, that is, to measure the parallel speed-up for different number of
processors when the problem size is increased proportionally. Figure 4 presents
the scalability results in both clusters for the Davidson-type trace minimization
method, and also for the Krylov-Schur method (with shift-and-invert spectral
transformation), using diagonally dominant random tridiagonal A and B matri-
ces. In this case, the Jacobi preconditioner was employed when solving the inner
systems.
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Fig. 4. Scalability of Davidson-type trace minimization and Krylov-Schur methods
using a tridiagonal eigenproblem in odin (left) and MareNostrum (right)

The plots in Figure 4 indicate that both algorithms are reasonably scalable,
considering the fact that they consist in a nested inner-outer iteration requiring
a lot of communication among processors. In Odin, trace minimization seems to
scale better than Krylov-Schur, but the roles are reversed in MareNostrum. This
different behaviour could be explained by noticing that trace minimization spends
more time in vector dot products (VecMDot) and norms (VecNorm) than in vector
additions (VecMAXPY) and matrix-vector multiplications (MatMult), see Table
3. Vector products and norms scale worse, since they require a multi-reduction op-
eration involving all processors, whereas VecMAXPY operations are trivially par-
allelizable and MatMult operations scale usually well. Maybe, the multi-reduction
operation is less efficient in MareNostrum due to the hardware configuration.

We also presents results from some realistic problems, in particular those
listed in Table 2. The speed-up of Algorithm 2 for all three problems is shown in
Figure 5 for both platforms. For reference, the figure plots also the speed-up for
the preconditioner application only, showing a strong correlation between the
speed-up of the method and the preconditioner. We can conclude that a bad
speed-up in the eigensolver can be attributed to a non-scalable preconditioner
or a matrix with a disadvantageous sparsity pattern.

Finally, in Figure 6, we compare the speed-up of the Davidson-type implemen-
tation and the original trace minimization with the largest test case, showing a
slight advantage of the former.

Table 3. Percentage of execution time corresponding to the three most time consuming
operations, with 128 processors in MareNostrum

VecMAXPY MatMult VecMDot VecNorm
Krylov-Schur 32% 19% 10% 10%
Trace Minimization 29% 26% 24% 8%
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Fig. 6. Speed-up of the original trace minimization and Davidson-type methods, as
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5 Conclusions

A parallel implementation of the trace minimization method for generalized sym-
metric eigenvalue problems has been developed and analyzed, focusing on its
Davidson-type version. This implementation will be made available as a new
solver in the SLEPc library. Our tests with several problems show that the pro-
posed optimizations, such as multishifting, preconditioning and adaptive inner
solver termination, accelerate the method considerably and make it more robust.

The parallel performance is comparable to that of Krylov-Schur, but the
main advantage is that trace minimization can find the smallest eigenvalues in
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problems where Krylov-Schur (without shift-and-invert) cannot. This develop-
ment is the prelude to the implementation in SLEPc of more advanced precon-
ditioned eigensolvers such as Jacobi-Davidson.

Acknowledgements. The authors thankfully acknowledge the computer re-
sources and assistance provided by the Barcelona Supercomputing Center (BSC).

References

1. Parlett, B.N.: The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs
(1980); Reissued with revisions by SIAM, Philadelphia (1998)

2. Saad, Y.: Numerical Methods for Large Eigenvalue Problems: Theory and Algo-
rithms. John Wiley and Sons, New York (1992)

3. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.): Templates for
the Solution of Algebraic Eigenvalue Problems: A Practical Guide, Philadelphia,
PA. Society for Industrial and Applied Mathematics (2000)

4. Stewart, G.W.: Matrix Algorithms. Eigensystems, vol. II. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA (2001)

5. Sameh, A.H., Wisniewski, J.A.: A trace minimization algorithm for the generalized
eigenvalue problem. SIAM J. Numer. Anal. 19(6), 1243–1259 (1982)

6. Sameh, A., Tong, Z.: The trace minimization method for the symmetric generalized
eigenvalue problem. J. Comput. Appl. Math. 123(1-2), 155–175 (2000)

7. Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: A scalable and flexible toolkit for
the solution of eigenvalue problems. ACM Trans. Math. Soft. 31(3), 351–362 (2005)

8. Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.,
McInnes, L.C., Smith, B.F., Zhang, H.: PETSc users manual. Technical Report
ANL-95/11 - Revision 2.3.3, Argonne National Laboratory (2007)

9. Sleijpen, G.L.G., van der Vorst, H.A., Meijerink, E.: Efficient expansion of sub-
spaces in the Jacobi–Davidson method for standard and generalized eigenproblems.
Electron. Trans. Numer. Anal. 7, 75–89 (1998)

10. Hernandez, V., Roman, J.E., Tomas, A.: Parallel Arnoldi eigensolvers with
enhanced scalability via global communications rearrangement. Parallel Com-
put. 33(7–8), 521–540 (2007)

11. Henson, V.E., Yang, U.M.: BoomerAMG: A parallel algebraic multigrid solver and
preconditioner. Applied Numerical Mathematics: Transactions of IMACS 41(1),
155–177 (2002)

12. Sleijpen, G.L.G., der Vorst, H.A.V.: A Jacobi–Davidson iteration method for linear
eigenvalue problems. SIAM Rev. 42(2), 267–293 (2000)



J.M.L.M. Palma et al. (Eds.): VECPAR 2008, LNCS 5336, pp. 269–279, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

A Load Balancing Knapsack Algorithm for Parallel 
Fuzzy c-Means Cluster Analysis 

Marta V. Modenesi, Alexandre G. Evsukoff, and Myrian C.A. Costa 

COPPE/Federal University of Rio de Janeiro,  
P.O.Box 68506, 21945-970 Rio de Janeiro RJ, Brazil 

Tel.: (+55) 21 25627388, Fax: (+55) 21 25627392 
marta.modenesi@petrobras.com.br,  

alexandre.evsukoff@coc.ufrj.br, myrian@nacad.ufrj.br. 

Abstract. This work proposes a load balance algorithm to parallel processing 
based on a variation of the classical knapsack problem. The problem considers 
the distribution of a set of partitions, defined by the number of clusters, over a 
set of processors attempting to achieve a minimal overall processing cost.  

The work is an optimization for the parallel fuzzy c-means (FCM) clustering 
analysis algorithm proposed in a previous work composed by two distinct parts: 
the cluster analysis, properly said, using the FCM algorithm to calculate of clus-
ters centers and the PBM index to evaluate partitions, and the load balance, 
which is modeled by the multiple knapsack problem and implemented through a 
heuristic that incorporates the restrictions related to cluster analysis in order to 
gives more efficiency to the parallel process.  

Keywords: Unsupervised Classification, Fuzzy c-Means, Load Balance,  
Optimization. 

1   Introduction 

Cluster analysis is the unsupervised classification of data into groups (clusters) and it 
is one of the most intensive computational tasks in data mining. It is thus very attrac-
tive for parallel processing and many parallel and distributed clustering algorithms 
have been recently studied [1][2][3].  

There are several approaches that have been studied for cluster analysis algorithms 
[4]. In the partition approach, two main optimization problems are addressed: to find 
the number of clusters presents in the data and the location of clusters centers. The 
later problem is much easier to solve, and iterative greedy optimization algorithms, 
such as the k-means algorithm and its variants, are widely used for that purpose, being 
well known by the data mining community.  

The k-means algorithm has been extended to the fuzzy c-means algorithm by Bez-
dek in the early eighties [5]. The fuzzy c-means (FCM) algorithm computes a “fuzzy” 
partition where data records may be related to more than one cluster but with different 
membership values. The FCM solution is very useful in real applications because it 
provides soft boundaries for clusters taking classification uncertainty into account. 
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The problem of determining the number of clusters in a dataset is much more diffi-
cult to solve, both for crisp and fuzzy clustering algorithms. In general, a validation 
index that reflects the quality of the result is used as an optimization index and the 
clustering algorithm is executed for a range of clusters. Several cluster validation 
indexes have been proposed [6][7][8] and most of them are based on geometrical 
approaches with the aim of finding dense and separated clusters. 

In a previous work, Modenesi et al. [3] have presented a parallel clustering algo-
rithm that computes the location of clusters centers and the validation index simulta-
neously. In their approach, the FCM algorithm is iterated within the cluster validation 
loop, in which the clustering quality is computed by the PBM index, recently pro-
posed by Pakhira et al. [8]. In the parallel implementation, the dataset is equally di-
vided among the available processors, which compute the iterative steps, and the 
cluster and validation results are integrated by the master processor [3]. This approach 
causes a natural load balance in the parallel processing, but it has a high communica-
tion cost due to the need of frequent interaction among processors. The results show 
that parallelization is not efficient for a low number of clusters but the greater the 
dataset the better is the speed-up. 

In cluster analysis, the question of minimizing communication costs and maximizing 
the parallel processing efficiency can be understood as a knapsack problem where com-
putational capacity must be fulfilled minimizing the cluster analysis computation cost. 

The knapsack problem, proposed initially by Dantzig [9], consists in the problem of 
selecting, from a collection of items, with distinct benefits and costs, the ones that fit in 
a knapsack resulting in the maximum possible value and minimal cost. It is a well 
known problem in the area of combinatorial analysis with extensive applicability in 
many practical cases, such as: production and logistics planning, financial engineering, 
vehicles shipment, budget, among others. The knapsack problem is a NP-complete 
problem and, therefore, there is no global optimum solution known to be computed in 
polynomial time. Many methods, called heuristics, are studied for solving the knapsack 
problem. They only give approximate solutions to the problem [10][11][12]. 

In this work, the parallel FCM cluster analysis proposed in a previous work [3] is 
extended with a load balancing computed by the solution of the knapsack problem. A 
heuristic algorithm is proposed, based on the bin packing problem, which is a varia-
tion of the multiple knapsacks problem.  

The paper is organized as follows: section two reviews the parallel FCM cluster 
analysis algorithm; section three introduces the knapsack problem; section four pre-
sents the FCM cluster analysis with the load balance algorithm; section five describes 
tests with results and section six presents conclusions and suggests future works.  

2   The Parallel FCM Algorithm 

The cluster analysis FCM [3] aims to find the patterns present in data by processing a 
range of clusters by the calculation of distances of registers to clusters centers through 
the FCM algorithm and the selection of the best partition through the cluster validity 
index PBM.  

The parallel FCM cluster analysis procedure is described by the following sequence: 
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Step 1. (Master processor): Splits the data set equally among the available 
processors so that each one receives pN records, where N is the number of 

records and p is the number of processors. 
Step 2. (All processors): Compute the geometrical center of its local data and 

communicate this center to all processors, so that every processor can com-
pute the geometrical center of the entire database. Compute the global data 
density (factor 1E  of the PBM index) on local data and send it to master 
processor. 

Step 3. (Master processor): Sets initial centers and broadcasts them, so that all 
processors have the same clusters’ centers values at the beginning of the 
FCM looping. 

Step 4. (All processors): Until convergence is achieved compute the distances 
from each record in the local dataset to all clusters’ centers; update the parti-
tion matrix, calculate new clusters’ centers. 

Step 5. (All processors): Compute the cluster density (factor KE  of the PBM  

index) on its local data and send it to master processor.  
Step 6. (Master Processor): Integrates the calculations for the PBM index and 

stores it. If the range of number of clusters is covered, stops, otherwise re-
turns to Step3. 

The procedure described above is computed for each number of clusters in the cluster 
analysis, so that the procedure is repeated as many times as the desired range of numbers 
of clusters, so that the PBM index, as a function of the number of centers, is computed. 
The best partition is the one corresponding to the largest value of the PBM index. 

The computational cost of the algorithm is exponentially proportional to the num-
ber of patterns being analyzed.  The bigger is the number of clusters to calculate, 
more cycles of processing of distances of registers to clusters centers are necessary 
and greater is the computational effort. Moreover, each partition has a different com-
putational cost which is related to its number of clusters, meaning that processing 
partitions with bigger number of patterns (clusters) involve more computational effort 
than processing those with smaller ones. 

An approach to minimize the communication cost in the prior algorithm is to distribute 
partitions over processors, making processors in charge of calculating a partitions  ́group 
with no need of communication during the FCM loop, having at the end of the processing 
a master processor consolidating the results and indicating which is the best partition.   

To make this approach effective, a load balance policy must be implemented, en-
suring that processors receive a balanced charge of partitions to process in order to 
minimize the total time of the parallel processing. The load balance policy must dis-
tribute partitions over processors considering the computational cost of each partition. 
At this point the knapsack problem comes as a model of how to arrange partitions 
minimizing the processing cost. 

3   The Knapsack Problem 

All knapsack problems variations refer to a set of n  items where each item has an 

associated profit jp and weight jw , nj ≤≤1 , which are generally positive integers. 
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The problem consists in selecting which items must be included into the knapsack so 
that the total value is maximized without exceeding the knapsack capacity W . The 

selection value of an item is represented by the binary project variable }1,0{∈jx . 

The knapsack problem in its basic form can be formulated as:  
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Many kinds of knapsack problems arise from real situations where different con-
strains determine special cases. Among the knapsack problem direct generalizations, 
were applicable in this work the subset sum problem and the multiple knapsacks  
problem.  

The subset sum problem is characterized by the situation where items costs 
(weights) are equal to profits (values), i.e. jj pw =  [11][12]. It occurs when a quanti-

tative target should be reached, so that its negative deviation (or loss) must be mini-
mized and a positive deviation is not allowed.  

The knapsack problem becomes useful for load balancing in parallel processing 
when a set of m  knapsacks are considered. This problem is known as the subset-sum 
partition problem when the capacities of all knapsacks are equal, so that each knap-
sack capacity is mWWi /= , where W  is the overall capacity. The solution to the 

problem is represented by the binary variable }1,0{∈ijx  that assigns an item j  to the 

knapsack i . 
The multiple knapsacks’ problem is formulated as:  
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A special case of the multiple knapsacks problem is the bin packing problem, 
where items must be placed in the smallest number of knapsacks. 

The formulation of the multiple knapsacks problem for load balancing in the FCM 
parallel cluster analysis is discussed next. 

4   The Proposed Algorithm 

4.1   Problem Formulation 

The load balancing problem of the parallel FCM cluster analysis algorithm can be 
understood as a knapsack problem whose items are partitions to be processed by the 
algorithm, each partition defined by the number of clusters in the fuzzy partitions 
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range nj ≤≤2 . The load balancing problem is a multiple knapsacks problem where 

each processor represents a knapsack and the overall processing capacity is defined 
by the number of the available processors p . 

The main issue in the load balancing problem is to minimize the overall parallel 
processing time. The problem thus becomes a minimization problem, stated as follows: 
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The project variable }1,0{∈ijx  selects processor i  to evaluate the partition j , so 

that each partition is evaluated only once as it is expressed by the first constraint. The 
second constraint states that all partitions should be evaluated. 

The load ijw  represents the processing cost to evaluate the partition j at processor 

i  and depends mainly on the number of partitions itself, besides the number of re-
cords and variables of the dataset [3].  

In this work, the efficiency results obtained in [3] were used to define the loads as: 

ij
ijw

ε
1=  (4) 

where ijε  is the efficiency, i.e. the ratio between the speed-up and the number of 

processors, computed by the evaluation of the partition j  on processor i . 

4.2   Description of the Algorithm 

To ensure the optimization of the parallel processing time the definition of the knap-
sacks size (processing lines) is a critical factor. In the context of the FCM cluster 
analysis all partitions must be processed   and is reasonable to conclude the ideal load 

the average of the partitions values, where, being iK  a set of partitions where 

ni ≤≤2  and p  the number of processors, the average processing load would be: 
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This average size, however, cannot be always obtained in an exact manner. To en-
sure an efficient load balance strategy scalable for any set of partitions and number of 
processors, this work proposes a heuristic that uses two values: a lower limit defined 
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by the partitions average (the ideal load for the distribution) and a superior limit, 
which is the maximum load in the distribution that indicates the least possible cost for 
the parallel processing.  

The heuristic assemblies the knapsacks through an iterative process where a distri-
bution is generated and evaluated by a variation coefficient passed as a parameter at 
the beginning of the parallel process. If the group of knapsacks generated achieves a 
good variation coefficient, the algorithm goes on processing the FCM cluster analysis. 
Otherwise, the initial average value S  is increased. If the S adjusted value surpasses 
the distribution maximal load, the algorithm goes on processing the FCM cluster 
analysis. On the contrary, a new distribution is generated, in an attempt to push the 
loads to a smaller number of processors, trying to free processors that will be reallo-
cated to the evaluation of the bigger loads in order to reduce the overall parallel proc-
essing time. The looping ends when the distribution evaluation is considered ok or 
when the lower limit gets equal to the superior limit.  

The heuristic core is based on the well known first fit decreasing algorithm much 
used to treat the bin packing problem [13][14]. 

The parallel FCM cluster analysis balancing scheme is described by the following 
sequence: 

Step1. (Master processor):  Initial values calculation  
 Sort partitions in decreasing order 
 Calculate the average S  as (5).  

Step2. (Master processor): Knapsacks generation  
 2.1 Assign higher cost partitions 
 Place each partition with Sw j >1  into a single processor 

and consider the processor line full 
 Assign remaining partitions 

 For each partition j , place the partition in the next proces-

sor where lines sum >= partition cost 
 2.3 Assign partitions that did not fit in processing lines 

 Until all unassigned partitions are placed 
 Sort processing lines by load size 
 Place partition in the processor with the smaller 

total load 
 If it is the first distribution identify maximum load for the 

processing 
Step3. (Master processor): Knapsacks evaluation  

 3.1Calculate average, standard deviation and the load 
variation coefficient 

 If variation coefficient > input variation  
 3.2 Adjust distribution parameters 

a. S = S + 1  
b. Cancel processors with maximum load 

with idle processors to find out the itera-
tion maximum load 

 3.3 Evaluate if knapsack can be reorganized 
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a. If S  < iteration maximal load 
b. Returns to Step 2 

Step4. (Master processor): Assign idle processors  
 If there is any idle processor  

 For each idle processor, assign to processor the 
next greatest load  

Step5. (Master processor): Communicate to processors  
 Communicate processors´ partition lines  
 Communicate group information to processors who are 

part of a group 
Step6. (Master processor): Knapsack processing (All processors) 

 6.1 If processor belongs to a group 
 Split data among the group processors 

 6.2 For each partition in processor calculate FCM and 
PBM loop 

 6.3 Send results to master processor 
Step7. (Master processor): Select partition with the greatest PBM index  

When the rate between number of partitions and number of processors is high the 
load balancing generated is usually a good one and presents very small variation coeffi-
cient (Fig. 1). When the distribution using the average does not achieve a good result, 
such as in cases where the number of partitions is very close to the number of proces-
sors or, when the processors numbers are bigger than the number of partitions, the algo-
rithm recalculates the knapsacks distribution, “pushing” the loads to a point, trying to 
group them in fewer processors, so that some processors can be freed to process along 
others the higher cost loads in an attempt of improve de overall load balance (Fig. 2). 

 Partitions from 2 to 32.
Distr ibution  Variation Coefficient  = 0,63%
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Fig. 1. Knapsacks generated for partitions range of 2 to 32 partitions distributed among four 
processors 
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Fig. 2. Knapsacks generated in the first two iterations of the processing of the load balance 
algorithm when input variation coefficient = 20% 

5   Results and Discussion 

5.1   Environment and Test Description 

The SGI ALTIX 450 Venus machine with 32 Intel Itanium2 processor cores (1.6 
GHz) e 64 GB of memory from the High Performance Computing Center (NACAD) 
of COPPE/UFRJ was used for execution and performance analysis of this work. Jobs 
execution was controlled by PBS (Portable Batch System) job scheduler. The applica-
tion was developed using the C programming language and the Message Passing 
Interface (MPI) for processors communication. 

The tests were conducted with a synthetic file of one million record and seven 
variables. The file was processed for ranges of 3, 7, 15 e 31 partitions. The range of 
three partitions had 2, 3 and 4 clusters, the range of seven partitions had values from 2 
up to 8 clusters, the range of fifteen partitions had values from 2 up to 16 clusters and 
the range of 31 partitions had values from 2 up to 32 clusters. 

5.2   Results and Analysis 

The load balanced FCM cluster analysis algorithm shows a significant reduction in 
processing time when compared to the prior approach [3] as showed in Table 1.  

Table 1. Processing times of the synthetic dataset 

P r o c e s s o r s
B a la c e d  

A lg o r it h m 2  -  4 2  -  8 2  -  1 6 2  -  3 2

1 6 2 .5 7 6 7 6 3 2 3 8 .5 1 9 0 6 5 9 5 7 .6 2 4 8 6 9 4 ,0 4 2 .9 1 6 8 2 9
4 2 7 .6 5 9 8 8 7 6 5 .0 0 0 0 0 0 2 4 6 .0 9 3 3 7 5 1 ,0 2 6 .6 7 5 3 0 3
8 1 3 .4 4 0 1 0 2 4 6 .5 3 0 0 7 7 1 3 2 .0 0 0 0 0 0 5 1 7 .9 8 7 7 2 0

1 2 9 .1 0 3 4 4 0 3 1 .8 3 2 8 5 3 9 0 .0 0 0 0 0 0 3 5 2 .3 7 6 7 5 1

U n b a la n c e d  
A lg o r it h m

1 1 1 9 .4 4 8 0 5 0 4 7 5 .6 1 8 3 6 0 1 ,7 9 4 .8 6 8 0 5 8 7 ,3 5 0 .8 8 1 9 9 1
4 3 0 .3 8 3 5 8 3 1 1 4 .2 6 0 5 3 9 4 5 1 .3 4 7 4 6 6 1 ,8 3 7 .2 5 8 1 8 5
8 1 5 .6 3 6 8 8 1 5 7 .6 4 2 8 2 9 2 2 4 .1 3 0 6 1 9 9 0 9 .5 5 5 9 7 9

1 2 1 0 .3 5 8 8 9 4 3 8 .2 5 3 6 0 3 1 4 8 .8 5 1 8 5 9 6 1 6 .0 0 4 9 6 7

P a r t i t io n s  R a n g e  /  T im e  (s e c o n d s )
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Table 2. Ratio between partitions number and processors numbers 

3 7 15 31
1 3.00 7.00 15.00 31.00
4 0.75 1.75 3.75 7.75
8 0.38 0.88 1.88 3.88

12 0.25 0.58 1.25 2.58

N um b er o f P artition s
R atio  P artition s / P ro cesso rs

P rocs

 

The best processing times happen when the rate of number of partitions by number 
of processors has the highest values (Table 2), which means that communication is 
the biggest hindrance to the good performance of the algorithm. On the other hand, 
when the values rate go lower, the time reduction rate decreases. 

The balanced algorithm reduced the processing time in all tests (Table 3), but the 
best time savings advantages are for the biggest rates of number of partitions by num-
ber of processors. 

The unbalanced algorithm speed up and efficiency values where compared to the 
balanced algorithm single processor time because the sequential processing time of 
this algorithm was the best of them.  

The load balancing algorithm scales well for an increasing number of processors 
presenting good speed up and efficiency values, and in all cases presents better speed 
up and efficiency values than the unbalanced algorithm (Fig. 4) (Fig. 5).  

The balanced algorithm presents best speed up values when processing bigger 
range of partitions revealing that minimizing communications is a very effective way 
of reducing parallel processing time.  

Table 3. Percentage reduction values from comparing balanced and unbalanced algorithms 
when processing the one million lines dataset 

Processors 4 8 16 32
1 47.61% 49.85% 46.65% 45.00%
4 8.96% 43.11% 45.48% 44.12%
8 14.05% 19.28% 41.11% 43.05%

12 12.12% 16.78% 39.54% 42.80%
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Fig. 3 & Fig. 4. Balanced and unbalanced algorithms speed up values for one million lines 
dataset processing for different ranges of partitions 
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Fig. 5 & Fig. 6. Balanced and unbalanced algorithms efficiency values for one million lines 
dataset processing for different ranges of partitions 

6   Conclusions 

This work presents a significant improvement to the performance of the parallel FCM 
cluster analysis algorithm [3]. The load balancing for FCM cluster analysis algorithm 
scales well and presents good efficiency for all parallel contexts, bringing new levels 
of performance to the parallel FCM cluster analysis. 

Nevertheless, the applicability of this approach has to be improved with a strategy 
for establishing a lower bound for the algorithm, in order to not keep assigning proc-
essors to evaluate charges when there is no benefit from parallel execution, as in the 
situations of the analysis of small range of partitions. In such cases the parallel pro-
posed approach would keep using machine capacity without any benefit.  
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Scalable Parallel 3d FFTs for Electronic
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Abstract. First-principles methods based on Density Functional The-
ory (DFT) where the wavefunctions are expanded in plane waves (Fourier
components) are the most widely used approach for electronic structure
calculations in materials science. The scaling of this method depends
critically on having an efficient parallel 3d FFT that minimizes com-
munications and calculations. We present an implementation and per-
formance data of a parallel 3d FFT specifically designed for electronic
structure calculations that scales to thousands of processors on leading
parallel and vector computer platforms (IBM SP, Cray XT, NEC SX).

1 Parallel Implementation of 3d FFT

First-principles methods based on Density Functional Theory (DFT) in the
Kohn-Sham (KS) [1] formalism are the most widely used approach for electronic
structure calculations in materials science. The most common implementation
of this approach involves the expansion of the wave functions in plane waves
(Fourier components) and the use of pseudopotentials to replace the nucleus and
core electrons. In this implementation we require parallel 3d FFTs to transform
the electronic wavefunctions from Fourier space to real space to construct the
charge density. Parallel 3d FFTs are also required in other parts of the code e.g.
to transform potential terms from real space to Fourier space. This gives a com-
putationally very efficient approach with a full quantum mechanical treatment
for the valence electrons, allowing the study of systems containing hundreds of
atoms on modest-sized parallel computers. Taken as a method DFT-based codes
are one of the largest consumers of scientific computer cycles around the world
with theoretical chemists, biologists, experimentalists etc. now becoming users of
this approach. Parallel 3d FFTs are very demanding on the communication net-
work of parallel computers as they require global transpositions of the FFT grid
across the machine. The ratio of calculations to communications for 3d FFTs is
of order log N where N is the grid dimension (compared to a ration of N for a
distributed matrix multiply of matrix size N) which makes it one of the most
demanding algorithms to scale on a parallel machine. A scalable parallel 3d FFT
is critical to the overall scaling of plane wave DFT codes.

J.M.L.M. Palma et al. (Eds.): VECPAR 2008, LNCS 5336, pp. 280–286, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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The Kohn-Sham formalism of DFT within the Local Density Approximation
(LDA) requires that the wavefunctions of the electrons {ψi} satisfy

[−1
2
∇2 +

∑
R

vion(r −R) +
∫

ρ(r′)
|r − r′|d

3r′ + µxc(ρ(r))]ψi = εiψi (1)

where vion(r) is the ionic pseudopotential, ρ(r) is the charge density and µxc(ρ(r))
is the LDA exchange-correlation potential. We use periodic boundary conditions,
expanding the wavefunctions in plane waves (Fourier components),

ψj,k(r) =
∑
g

aj,k(g)ei(g+k).r . (2)

The selection of the number of plane waves is determined by a cutoff Ecut in
the plane-wave kinetic energy 1

2 |g + k|2 where {g} are reciprocal lattice vectors.
This means that the representation of the wavefunctions in Fourier space is a
sphere or ellipsoid with each g vector corresponding to a Fourier component (see
figure 1(a)). The k’s are vectors sampling the first Brillouin Zone (BZ) of the
chosen unit cell (or supercell). The Kohn-Sham equations are usually solved by
minimizing the total energy with an iterative scheme, such as conjugate gra-
dient (CG), for a fixed charge density and then updating the charge density
until self-consistency is achieved (for a review of this approach see reference [2]).
Some parts of the calculation are done in Fourier space and some in real space
transforming between the two using 3d FFTs. Our particular implementation
in PARATEC (PARAllel Total Energy Code) [3] is based on a Grassmann con-
jugate gradient minimization [4] where all bands are minimized simultaneously.
This allows us to use efficient BLAS3 routines for many parts of the calculation
and also to block the communications to ensure MPI messaging is not latency
dominated in the 3d FFTs.

The two most important criteria driving the choice of any parallelization strat-
egy are equal division of the computational workload among the processors (load
balancing) and minimization of the communications. We distribute the g vec-
tors for each band among the processors by giving out columns of g vectors to
each processor (see figure 1(a)). These columns are of different length depending
on where they are in the sphere with the longest columns cutting the center
of the sphere. The computations in PARATEC that are performed in Fourier
space (e.g. non-local pseudopotential and orthogonalization) are load balanced
by assigning each processor approximately the same number of g vectors. The
load-balancing algorithm first orders the columns in descending order, and then
distributes them among the processors such that the next-available column is as-
signed to the processor containing the fewest g vectors. The number of g vectors
a processor has corresponds to the total length of columns it holds. It is neces-
sary to distribute complete columns of g vectors to each processor as the first
step in the 3d FFT performs 1d FFTs on columns of g vectors. The real-space
data layout of the wavefunctions is on a standard Cartesian grid, where each
processor holds a contiguous part of the space arranged in columns, as shown
in figure 1(f). Each processor holds the same number of columns (to within one
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Fig. 1. Parallel three dimensional FFT. This figure shows which processors deal with
which part of the grid during the three dimensional FFT. The colors red, blue and
green correspond to the part of the grid that resides on processors zero to two.

column) which load balances the real space part of the calculation. The charge
density is constructed by performing 3d FFTs on each wavefunction to obtain the
wavefunction on the larger real space grid. The wavefunctions are then squared
and summed on this grid to produced the charge density that is then used in
the calculation of the potential for the next self-consistent step in the solution
of the Kohn-Sham equations.
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A 3d FFT consists of three sets of 1d FFTs in the x,y and z directions with
transpositions of the data between each set of 1d FFTs. Only two transposes
are needed if the final data layout is not required to have the same x,y,z order
in both spaces. Since the g vectors are distributed across the processors these
two transposes can require global communications across the parallel computer
and are the most communication intensive part of the whole calculation. We
have therefore written a specialized 3d FFT to minimize the amount of com-
munications. This 3d FFT is different from a standard 3d FFT as we have a
sphere of points in Fourier space rather than a standard grid. This 3d FFT
takes advantage of the fact that the real space grid is usually about twice the
diameter of the sphere and at each of the three sets of 1d FFTs this sphere is
in a sense expanding into the larger grid. We therefore only perform 1d FFTs
and communications on the non-zero data elements which greatly reduces the
amount of communications compared to using a standard library routine for the
3d FFT. Also when performing the second transpose to the final real space data
layout (see figure 1) we choose the data layout to have as closely as possible
complete planes of data on each processor so that the transpose is local and
there is little data communication. In this way it is only the first transpose on
the smaller data set where there is significant communication. Our 3d FFT can
run on any number of processors for any grid and sphere size. If we used vendor
supplied 3d FFTs we would have restrictions on grid sizes as well as performing
more calculations and communications than our specialized 3d FFT since the
grid size in Fourier and real space would have to be the same. Our specialized 3d
FFT is numerically equivalent to using a vendor supplied 3d FFT. The details
of each step in our Fourier space to real space 3d FFT are (with z,y,x ordering
in Fourier space and x,y,z in real space):

1. Each processor pads out the ends of each of the z-columns of g vector coeffi-
cients that it holds with zeros to form full length z-columns on each processor.
The complete data set is now a cylinder of length 2d and diameter d where
d is the diameter of the original g vector sphere and 2d is the cube size (see
figure 1(b)).

2. Each processor performs one-dimensional FFTs on its set of z-columns.
3. The cylinder of data is now reorganized from z-columns to y-columns (or-

dered by their x,z indices) with each processor now holding a contiguous set
of y-columns. Global data redistribution is required at this step (ie. going
from figure 1(b) to figure 1(c)),as can be seen by the changes in color of
the data elements. Each processor is given as closely as possible the same
number of y-columns.

4. The y-columns (which are sections through the cylinder) are now padded
with zeros at the ends to form full length columns. The complete data set is
now a slab of dimension d in the x direction and 2d in the other directions
(see figure 1(d)).

5. Each processor performs one-dimensional FFTs on its set of y-columns.
6. The slab of data is now transformed from y-columns (x,z ordered) to x-

columns (y,z ordered) with each processor now having a set of contiguous
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x-columns (ie. going from figure 1(d) to figure 1(e)). Each processor is given
as closely as possible the same number of x-columns. Communications are
minimized at this step since most of the transformations are local to the
processor with only data at the interfaces of the colored blocks being com-
municated. In the ideal case where there are complete (y, x) planes on each
processor the transpose can be done locally on each processor and there
are no communications. Due to our choice of data layouts in the FFT the
main communications are in step 3 where the data set (the cylinder) is much
smaller than the slab.

7. The x-columns are now padded at the ends with zeros so the global data set
is now the complete cube of side 2d (see figure 1(f)).

8. Each processor performs one-dimensional FFTs on its set of x-columns pro-
ducing the final distributed real space representation of the wavefunction in
x,y,z order.

An inverse 3d FFT is the reverse of these steps. While it is important to
minimize the amount of data transfer in 3d FFTs, communication latency can
also become a major issue. In the first transpose in the 3d FFT all the processors
are sending data to all the other processors so the data packet size (for a fixed
size physical system ) scales as the inverse of the number of processors squared.
Therefore as we scale up to thousands of processors the data packets can become
very small and communication latencies can dominate the code. To avoid this
problem in our code we use an all-band method that allows us to perform many
3d FFTs at the same time and block the communications. There is an input
parameter in our code which chooses the number of 3d FFTs to be performed at
the same time. In this way, at the cost of using more memory, we can increase the
packet size of the communications in the 3d FFTs to avoid the latency problem.
For machines with higher latency like the IBM SP we have found that this can
increase the speed of the code by 50-100% on runs in the hundreds of processor
regime. For large processor counts we typically do up to fifty 3d FFTs at the
same time which greatly reduces the latency problem.

2 Code Details and Performance

PARATEC is written in F90 and MPI and is designed primarily for massively
parallel computing platforms, but can also run on serial machines. The code
has run on many computer architectures and uses preprocessing to include ma-
chine specific routines such as the one dimensional FFT calls which are used in
our specialized 3d FFTs. For the parallel vector platforms (Cray X1 and NEC
SX) an efficient vector implementation of the one dimensional FFT libraries was
required. The standard vendor supplied 1D FFT routines (on which our own
specialized 3D FFTs are written) run at a relatively low percentage of peak.
Code transformation was therefore required to rewrite our 3D FFT routines to
use simultaneous (often called multiple) 1D FFT calls, which allow effective vec-
torization across many 1D FFTs. Additionally, compiler directives were inserted
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Table 1. PARATEC results for a 488 atom CdSe quantum dot on the different plat-
forms. The real space grid size for the 3d FFTs is 252*3. Bassi is an IBM SP with
eight Power 5 processors per node, located at the NERSC computer center, Lawrence
Berkeley National Laboratory. Th under is an Intel Itanium2 cluster with four proces-
sors per node and a Quadrics interconnect, located at Lawrence Livermore National
Laboratory. Phoenix is a Cray X1E vector architecture located at Oak Ridge National
Laboratory. The ES is the Earth Simulator which is a custom designed NEC SX6 lo-
cated at the Earth Simulator Center, Yokohama. Franklin is a Cray XT4 with dual
core Opteron processors and a 3d Torus interconnect, located at the NERSC computer
center, Lawrence Berkeley National Laboratory.

Bassi Thunder Phoenix ES Franklin
P IBM SP P5 Itanium2 Cray X1E NEC SX6 Cray XT4

Gflop/P %Pk Gflop/P %Pk Gflop/P %Pk Gflop/P %Pk Gflop/P %Pk
64 — — — — 4.88 27 — — — —

128 5.49 72 2.84 51 3.80 21 5.12 64 — —
256 5.52 73 2.63 47 3.24 18 4.97 62 3.36 65
512 5.13 67 2.44 44 2.22 12 4.36 55 3.15 61

1024 — — 1.77 32 — — 3.64 46 2.93 56
2048 — — — — — — 2.67 33 2.65 46

to force the vectorization and multistreaming (on the X1) for loops that con-
tained indirect addressing. The main communications in the code are performed
in the parallel 3d FFTs with most of the other parts of the code performing
dense linear algebra on their local data. For the data presented in this paper
the 3d FFTs typically take about 30% of the total runtime. The other parts of
the code run at a high percentage of peak as they are mainly performing dense
linear algebra on large matrices. Table 1 presents performance data for 3 CG
steps of a 488 atom CdSe (Cadmium Selenide) quantum dot and a standard
Local Density Approximation (LDA) run of PARATEC with a 35 Ry cut-off us-
ing norm-conserving pseudopotentials. The real space grid size for the 3d FFTs
is 252 cubed and the calculation is for 709 bands. A typical calculation would
require at least 60 CG iterations to converge the charge density for a CdSe dot.
CdSe quantum dots are luminescent in the optical range at different frequencies
depending on their size and can be used as electronic dye tags by attaching them
to organic molecules. They represent a nanosystem with important technological
applications.

As can be seen from Table 1 PARATEC obtains a high percentage of peak
on both superscalar and vector based architectures. The machines with the best
communication networks and lowest latency, such as the Cray XT4, have the
best scaling to large processor counts for the 3d FFT and hence the whole code.
The Power 5 chip has the highest per processor performance for this code. This
code makes heavy use of Cache in the FFTs as well as the other dense linear
algebra operations so that RISC type architectures obtain a percentage of peak
that is similar to vector machines. The ES achieved the highest peak performance
of 5.5 Tflops on 2048 processors with the Cray XT4 being only a few percent
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slower. The Cray X1E obtained a lower percentage of peak due in part to some
non-vectorizable sections of the code that run on the slow scalar processor. The
NEC ES has a relatively faster scalar processor.

3 Discussion and Conclusions

In this paper we have present an efficient implementation of a parallel 3d FFT
specifically designed for plane wave electronic structure codes. We have shown
that with this 3d FFT our electronic structure code can scale well to thousands
of processors on a variety of different computer architectures ranging from vector
to superscalar. The limiting factor to scaling to larger processor counts is the
communications in the 3d FFTs and we are investigating different communica-
tion schemes, such as using more collective operations, to allow us to scale to
larger processor counts.
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Abstract. The Chip Multiprocessor (CMP) will be the basic build-
ing block for computer systems ranging from laptops to supercomput-
ers. New software developments at all levels are needed to fully utilize
these systems. In this work, we evaluate performance of different high-
performance sparse LU factorization and triangular solution algorithms
on several representative multicore machines. We include both pthreads
and MPI implementations in this study, and found that the pthreads im-
plementation consistently delivers good performance and a left-looking
algorithm is usually superior.

1 Introduction

The Chip Multiprocessor (CMP) systems will be the basic building blocks for
computers ranging from laptops to supercomputers. Compared to the super-
scalar microprocessors exploiting high degree of instruction level parallelism,
the CMP designs represent a paradigm shift that strikes better trade-offs be-
tween performance (parallelism) and energy efficiency. In the case of multicore
architecture, high performance is achieved by replicating the execution units on
a single die while keeping the clock rate (hence power consumption) relatively
low. In the case of multithreaded architecture, high throughput is achieved by
providing multiple sets of hardware thread contexts for each FPU and simultane-
ously executing multiple streams of instructions without relying on speculation.
Multithreading can effectively hide instruction and cache latency. In theory, the
CMPs can often be programmed the same way as the conventional SMPs, but
the CMPs have lower memory bandwidth and an abundance of fine-grained par-
allelism. Given the diversity of CMP designs, it is necessary, albeit difficult, to
develop new software strategies at the system level as well as the application
level in order to fully utilize the hardware resources.

In this paper, we study several kernel algorithms associated with sparse direct
solvers on a couple of leading CMP systems. Direct solvers based on matrix
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factorizations are among the most reliable methods or preconditioners for solving
sparse linear and eigen systems. They are often the computational bottlenecks
in large-scale computer modeling codes. Over the past decade or so, we have
been developing new algorithms to exploit advanced high-performance, large-
scale parallel computers. Our algorithm research has led to the software package
called SuperLU [4,7], which is widely used in research and industry.

Previously, Williams et al. [14] performed extensive study and optimization
of sparse matrix-vector multiply (SpMV) on several leading CMP systems. In
SpMV, the matrix A needs to be read only once, hence the ratio of flops to
memory accesses is O(1). The operation is largely memory-bound, since there is
hardly any reuse, They develoepd various blocking strategies exploiting different
hardware components, including thread blocking, register blocking, cache and
local store blocking, and TLB blocking. In contrast, the factorization algorithm
need to access the matrix A, the L and U factors multiple times, which exhibit
higher reuse. But the ratio of flops to memory accesses changes throughout
the elimination process. In early stages of elimination, the factors are sparser
and workload is memory-bound. Whereas in later stages, the factors are denser;
level 3 BLAS are appropriate and hence the workload is compute-bound. The
change of arithmetic density makes it harder to develop uniform strategies for
performance optimization.

The goal of this study is two-fold. Firstly, we would like to evaluate per-
formance of the existing implementations on the new CMP architectures, and
secondly, we would like to identify the inefficiencies in the algorithms and/or im-
plementations and determine ways to improve them for the new architectures.

2 Experimental Machines

Our testing systems include an Intel Colvertown, a Sun VictoriaFalls, and an
IBM Power5. The last one contains a conventional SMP node.

The Intel Colvertown consists of two sockets, each with two pairs of dual-core
Xeon chips (Core2Duo), with total eight processors (Dell PowerEdge 1950 dual-
socket). Each core runs at 2.33 GHz with a peak performance of 9.3 Gflops (4
flops per cycle), and has a private 32 KB L1 cache. Each chip (two cores) share a
4 MB L2 cache. Each socket has access to a Front Side Bus (FSB) delivering 10.6
GB/s. The two independent FSBs are connected to the memory controller which
interfaces to the DRAM channels, delivering 21.3 GB/s read memory bandwidth
and 10.6 GB/s write bandwidth.

The dual-chip Sun VictoriaFalls contains 16 SPARCv9 cores, in which each
CMP is a Niagara2 chip with 8 cores. Each core runs at 1.16 GHz with a peak
performance of 1.16 Gflops, and has a private 8 KB L1 cache. All eight cores
share a 4 MB L2 cache. In addition, each core supports eight hardware threads,
and the entire dual-chip system provides a total of 128 threads. The two sockets
are interconnected via External Coherence Hubs (ECH). There are altogether 8
FBDIMM memory channels, delivering the aggregate DRAM bandwidth of 42.6
GB/s for read and 21.3 GB/s for write.
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The IBM p575 Power5 is a scalable distributed memory HPC system consist-
ing of conventional SMP nodes. The entire system (bassi at NERSC) has 111
compute nodes, each of which has 8 Power5 processors running at 1.9 GHz and
has a shared memory pool of 32 GBytes. Each processor has a peak performance
of 7.6 GFlops (4 flops per cycle), and has a private 32 KB L1 cache. We only
use one SMP node in this study.

Table 1 summarizes the key architectural features of the three systems used
in this study. Figure 1 shows the simplified block diagrams of the two CMP
systems. The sources come from [11,12,14].

Several characteristics in Table 1 are worth noting. Compared to the IBM
SMP node, the cores-to-DRAM bandwidths are considerably lower on the mul-
ticore systems. In addition, the write bandwidth on both multicore systems is
only half of the read bandwidth. The byte-per-flop ratio shows the balance of
the memory bandwidth versus floating-point speed, with larger ratio indicating
higher bandwidth relative to core speed. The CMP systems are clearly worse
than conventional SMPs in this regard, implying that algorithms demanding
larger memory bandwidth will be penalized in performance. The conventional
SMPs usually have more complex designs and consume more power, see the last
line in the table. The quoted number for p575 was measured while running a
full computational workload, which is much lower than the manufacturer’s peak
power rating [12].

Table 1. Summary of the experimental machines

Systems Intel Colvertown Sun VictoriaFalls IBM Power5 (575)
Core type superscalar (4) multithreaded (8) superscalar (4)

Clock (GHz) 2.3 1.16 1.9
L1 Dcache 32 KB 8 KB 32 KB
DP Gflops 9.3 1.16 7.6

# Sockets 2 2 8
# cores/socket 4 8 1

L2 cache 4 MB/2-cores 4 MB/socket 1.92 MB /core
(16 MB) (8 MB) (32 MB L3$/node)

DP Gflops 74.7 18.7 60.8
DRAM GB/s read 21.3 42.6 200

write 10.6 21.3 –
Byte/flop ratio 0.29 0.44 3.29

Power/socket 160 84 500
(Watts) (max) (max) (measured [12])

3 Overview of the Algorithms and Implementations

Over the years, we have been deveoping the SuperLU suite of libraries, with dif-
ferent variants of sparse Gaussian elimination targeted for shared or distributed
memory high performance machines [7]. Below, we briefly summarize the algo-
rithmic and implementational features of the two variants used in this study.
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Fig. 1. High level block diagrams of Intel Clovertown (left) and Sun VictoriaFalls
(right)

3.1 Factorization in SuperLU MT Using Pthreads or OpenMP

The initial target platforms of SuperLU MT were SMPs of modest size (e.g., 32
processors). It was first developed with Pthreads, and recently, we have added
OpenMP support. The earlier tests on a number of commercially popular SMPs,
such as Sun, DEC Alpha, SGI Origin, and Cray C90/J90, demonstrated excellent
speedups [3,6]. Pleasantly, we will show that this code is equally suitable for
the modern multicore machines. The algorithmic features and parallelization
techniques are outlined below:
– Use panel-based left-looking factorization, with partial pivoting and possibly

with diagonal preference to better preserve sparsity. Use supernode-panel
update kernel to effectively use Level 3 BLAS.

– Use an asychronous and barrier-free dynamic algorithm to schedule both
coarse-grain and fine-grain parallel tasks to achieve a high level of concur-
rency. A globally shared task queue is used to store the ready panels in the
column elimination tree, and whenever a thread becomes free, it obtains a
ready panel from the task queue. The coarse-grain task is to factorize the
independent panels in the disjoint subtrees, while the fine-grain task is to
update panels by previously computed supernodes. The scheduler facilitates
the smooth transition between the two types of tasks, and maintains load
balance dynamically.

Figure 2 illustrates the left-looking factorization scheme, and the dynamic
scheduling method using the elimination tree.

3.2 Factorization in SuperLU DIST Using MPI

The target platforms of this code are the massively parallel distributed memory
computers [8]. Previously, we tested this code on a number of HPC platforms,
including Cray T3E, IBM SP, and various Linux clusters. Good scalability was
demonstrated up to one thousand processors. In order to address the scalability
issues, the parallel algorithm is significantly different from that in SuperLU MT.
The main differences are in pivoting strategy and matrix distribution, which are
summarized below.
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Fig. 2. Panel-based left-looking algorithm in superlumt

– Use block-based right-looking factorization, which exhibits a high degree
of parallelism during the block outer-product updates to the trailing sub-
matrices. According to the supernode partition, perform a two-dimensional
(nonuniform) block-cyclic matrix-to-processor mapping. Use the elimination
DAGs to identify task and block dependencies, and a look-ahead mechanism
to better overlap communication with computation and shorten the critical
path.

– Before factorization, pre-permute the rows of the matrix so that the diagonal
has entries of large magnitude, using a weighted bipartite matching algorithm
from MC64 [5]. During factorization, allow single precision perturbation to
the small diagonal entries.

Figure 3 illustrates the 2D block-cyclic partition and distribution for a sparse
matrix.

Fig. 3. Block-based right-looking algorithm in SuperLU DIST

3.3 A Note on SuperLU MT — Symmetric Mode

In order to conduct direct comparision between SuperLU MT and SuperLU DIST,
we have added a new algorithmic choice for SuperLU MT, which is called sym-
metric mode. As is known, with partial pivoting (SuperLU MT), it is better to use
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AT A-based column ordering strategy to preserve sparsity, since pattern-wise,
the Cholesky factor of AT A upper bounds the LU factors in the decomposition
PA = LU , for any row permutation P . However, in the case of satic pivoting
where pivots are selected before hand (SuperLU DIST), no row interchanges are
made during factorization, then the AT A-based upper bound becomes too loose.
Therefore, we can use a tighter upper bound based on A + AT . The difference
in the amount of fill using an AT A-based sparsity ordering or an (A + AT )-
based one can be more than a factor of two. The new symmetric mode option in
SuperLU MT contains an algorithm that is similar to the one in SuperLU DIST —
it uses MC64 to perform static numerical pivoting, an (A+AT )-based symmetric
sparsity ordering, and single precision diagonal perturbations when needed.

All our experimental results used the symmetric mode in SuperLU MT. Thus,
the amount of fill and number of floating-point operations are roughly the same
with both solvers.

3.4 Triangular Solution in SuperLU DIST

The triangular solution phase in SuperLU MT is not yet parallel, therefore we will
evaluate only the parallel algorithm in SuperLU DIST. In Lx = b, where L is a
lower triangular matrix, the i-th solution component is computed as

xi =
bi −

∑i−1
j=1 Lij · xj

Lii
.

Therefore, computation of xi needs some or all of the previous solution com-
ponents xj , j < i, depending on the sparsity pattern of the i-th row of L. This
sequentiality often poses a scaling hurdle for a parallel algorithm. Another hurdle
to achieving good performance is the much lower arithmetic density as measured
by flops per byte of DRAM access or communication, compared to factorization.

In the current implementation of SuperLU DIST, the parallel triangular al-
gorithm uses the same 2D block-cyclic distribution as used in the factorization
phase. Figure 4 illustrate such a distribution and the solution process. The pro-
cesses owning the diagonal blocks (called diagonal processes) are responsible for
computing the corresponding blocks of the x components. When xj is needed in
Lij · xj , and the owners of xj and Lij are different, xj ’s processor needs to send
it to the processor of Lij , see ©1 in Figure 4. In case of ©2 , no communication is
needed because both xj and Lij reside on the same processor, i.e. processor 1.
After receiving the needed xj entries, each processor proceeds with local sum-
mation, i.e., step ©3 in Figure 4. Finally, the local sums are sent to the diagonal
processor which performs the division, see ©4 in the figure.

3.5 Entire Solvers

Since the numerical pivoting methods are different in the two solvers — par-
tial pivoting in SuperLU MT and static pivoting in SuperLU DIST, the high level
structure of the two codes are different. In case of partial pivoting, the fills are
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Fig. 4. Block-based triangular solution

generated dynamically, so the symbolic factorization step cannot be separated
from numerical factorization. Whereas with static pivoting, we can separate sym-
bolic and numerical factorization steps. Figure 5 summarizes the major steps of
the two solvers and highlights the differences between them.

SuperLU MT

1. Sparsity ordering
2. Factorization ... interleaveing:

2.1) partial pivoting
2.2) symbolic factorization
2.3) numerical factorization (BLAS 2.5)

3. Triangular solution

SuperLU DIST

1. Static pivoting
2. Sparsity ordering
3. Symbolic factorization
4. Numerical factorization (BLAS 3)
5. Triangular solution

Fig. 5. Major steps in the entire solvers.

4 Experimental Results

Table 2 presents the characteristics of our benchmarking matrices, which are
available from the University of Florida Sparse Matrix Collection [2]. In the
following subsections, we will present the parallel runtimes and analysis. We
benchmarked the Pthreads version of SuperLU MT, and SuperLU DIST using
MPICH [9].

4.1 Characterization from Hardware Performance Counters

Given that the memory system performance plays increasingly significant role
on the CMP architectures and with the sparse matrix algorithms, it would be
more relevant to quantify the memory access patterns of the different algorithms
than to count the flops alone. For simpler kernels like SpMV, it is possible to
count manually. For complex codes, we need to resort to performance analysis
tools.
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Table 2. Properties of the test matrices. Minimum degree algorithm was applied to
the structure of |A|+ |A|T . “fill-ratio” denotes the ratio of number of nonzeros in L+U
over that in A; “Mean S-node” refers to an average number of columns in a supernode.

application dimension nonzeros in A fill-ratio Mean S-node
g7jac200 economic model 59,310 837,936 40.2 1.9
stomach duodenum model 213,360 3,021,648 45.4 4.0
torso1 2D model of torso 116,158 8,516,500 3.1 4.0
twotone nonlinear anal. circuit 120,750 1,224,224 9.3 2.3

The first tool we used is PAPI [10] which provides an API to access machines’
hardware counters.As a first cut, we examine the load and store instruction counts,
which are independent of the cache memory organization. Table 3 compares the
counts of the left-looking (SuperLU MT) and right-looking (SuperLU DIST) factor-
ization algorithms. It is clear that right-looking algorithm incurs many more load
and store instructions, typically an order of magnitude more.

Table 3. Factorization load and store instruction counts (billions), reported by PAPI

LOAD STORE
SuperLU MT SuperLU DIST SuperLU MT SuperLU DIST

g7jac200 1.2 27.7 0.3 8.2
stomach 0.8 52.0 0.3 10.8
torso1 9.1 17.9 2.8 4.5
twotone 1.2 18.6 0.2 8.4

Although the load/store instruction count indicates the superiority of the
left-looking algorithm in the sense of program’s static behavior, we are also
interested in the temporal behavior of the codes while running on an actual
machine. Unfortunately, the two multicore machines do not yet have proper
PAPI support for such study. So we used the CrayPat performance tool provided
on the Cray XT systems [1]. CrayPat uses PAPI’s counters to collect raw data,
and then computes a variety of derived quantities which are easy to understand.
The machine we used is the Cray XT4 installed at NERSC. Each node consists
of a 2.6 GHz dual-core AMD Opteron processor, sharing 4 GBytes of memory.
Each core has a 64KB L1 data cache of and a 1MB L2 cache. The L2 cache is
a victim cache which holds only the cache lines evicted from L1, whereas most
data loaded from memory go directly to L1. We used only one core to run the
codes and collected data shown in Table 4, and the data are for the entire solvers.
We report two metrics: “Mem-to-D1” measures the amount of data transferred
between memory and L1 data cache, and “L2-to-Mem” measures the data traffic
between L2 and memory. In both metrics, we see that SuperLU DIST requires
considerably larger amount of data transfer.

Lastly, we examine the flop-to-load (store) ratio in the triangular soution
phase. We compare the metric for the two distinct stages of the solver, one
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Table 4. The solvers’ memory traffic (billion bytes) reported by CrayPat

Mem-to-D1 L2-to-Mem
SuperLU MT SuperLU DIST SuperLU MT SuperLU DIST

g7jac200 10.7 17.5 3.9 15.1
stomach 25.1 24.9 16.0 16.3
torso1 3.0 7.4 4.7 11.6
twotone 1.9 7.8 1.2 7.0

is “ordering + factor” and the other is “tri-solve”. In Table 5, we report the
respective ratios of flop-to-load and flop-to-store. As can be seen, in both metrics,
the triangular solution phase has much smaller flop density, sometimes can be
more than an order of mangnitude lower than the other part of the solver.

Table 5. Ratio of flops over load or store instructions in the triangular solution of
SuperLU DIST, compared with the rest of the program

LOAD STORE
ordering + factor tri-solve ordering + factor tri-solve

g7jac200 0.86 0.14 2.89 0.24
stomach 1.35 0.24 6.49 0.47
torso1 0.75 0.21 2.95 0.35
twotone 0.30 0.06 0.67 0.09

4.2 Runtime

In the factorization codes of both solvers, the BLAS routines could take more
than 30-40% of the time. Therefore the BLAS speed is a key performance bound.
In sparse codes, the matrix size for BLAS calls is usually small. The kernel in
SuperLU MT is “BLAS 2.5”, where we perform multiple DGEMV calls with dif-
ferent vectors while keeping the matrix in cache. Therefore, we usually keep the
matrix size bounded by 200×100. The kernel in SuperLU DIST is BLAS 3 (mostly
DGEMM). In order to maintain good load balance, we use even smaller block sizes,
such as 50 × 50. In Figure 6, we plot the performance (Gflops rate) of DGEMV
and DGEMM on Clovertown and VictoriaFalls. In each case, we used the vendor’s
high performance mathematical libraries — Intel’s MKL and Sun’s SunPerf.

Recall that each core processor of VictoriaFalls is hardware-multithreaded. But
without explicit parallelization (e.g., threading) at the software level, DGEMM
only achieves less than one-third of the peakperformance.That is, a single threaded
program is incapable of fully utilizing the resources provided by a multithreading
architecture.

Table 6 shows the parallel factorization times of the two solvers on Intel
Clovertown. For fair comparison, the time includes both symbolic and numerical
factorization, because it is not possible to separate these two steps in SuperLU MT,
see Figure 5.
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Fig. 6. BLAS performance on Intel Clovertown (left) and Sun VictoriaFalls (right).
The top dashed line shows the core’s peak performance.

First we note that MPICH can be configured with either ch shmem device for
shared memory processors, or ch p4 device for communication through sockets
on distributed memory machines. We first used the default ch p4 configuration
on the Clovertown cluster, and found that the code slowed down significantly
beyond two or four cores. After we switched to ch shmem setup, we obtained
respectable speedup. Therefore, for a large distributed system comprising many-
core chips, it is imperative to be able to configure MPICH in a hybrid device
mode — ch shmem mode within socket and ch p4 mode across sockets. Currently,
the hybrid mode is not avaialbe.

Secondly, we examine the single core performance. We would expect that
SuperLU DIST outperforms SuperLU MT, because the former uses BLAS 3
whereas the latter uses only BLAS 2.5. We see that this is true only with two
matrices, g7jac200 and stomach, which have relatively denser L and U factors
(the fill ratios are over 40, see Table 2), and hence BLAS 3 plays a larger role.
For sparser problems, the algorithms are memory-bound. We believe the worse
performance of SuperLU DIST is mainly due to more memory traffic of the right-
looking algorithm, especially more memory write operations, see the measures
presented in Section 4.1.

Thirdly, we examine the speedups of the two codes. The last column of Table 6
shows the speedup obtained when creating eight threads or MPI tasks. The
best speedup is 4.3 and is less than what we observed on conventional SMP
processors [3]. After performing code profiling, we found that the overhead of
the scheduling algorithm using the shared task queue and the synchronization
cost using mutexes (locks) are quite small. Further study is needed to understand
where the time goes.

In addition, SuperLU MT usually achieves more speedup than SuperLU DIST.
This can be seen in the row “speedup ratio ( MT/ DIST)” associated with each
matrix. In some cases, SuperLU MT achieves a factor of two more speedup than
SuperLU DIST.
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Table 6. Factorization time in seconds on Intel Clovertown

matrix threads or tasks 1 2 4 8 speedup
g7jac200 SuperLU MT 32.78 17.91 12.41 10.60 3.1

SuperLU DIST ch shmem 28.10 15.95 11.06 7.57 3.9
ch p4 28.62 22.98 56.31 62.39

speedup ratio ( MT/ DIST) 1.00 1.03 1.01 0.80
stomach SuperLU MT 64.38 37.15 20.39 17.24 3.7

SuperLU DIST ch shmem 43.45 25.91 15.81 13.64 3.4
ch p4 44.28 27.84 210.99 264.58

speedup ratio ( MT/ DIST) 1.00 0.99 1.10 1.10
torso1 SuperLU MT 9.43 4.92 2.87 2.20 4.3

SuperLU DIST ch shmem 9.43 5.83 4.55 4.76 2.2
ch p4 9.62 7.23 54.77 76.32

speedup ratio ( MT/ DIST) 1.00 1.12 1.49 1.99
twotone SuperLU MT 6.80 4.05 2.32 1.83 3.9

SuperLU DIST ch shmem 18.08 10.17 7.55 7.21 2.1
ch p4 18.34 12.19 47.30 60.99

speedup ratio ( MT/ DIST) 1.00 0.95 2.26 1.86

Table 7 shows the parallel factorization times on the Sun VictoriaFalls. Recall
that this system has 16 eight-way harware-threaded cores, and altogether we
can have up to 128 threads. The single-thread performance of SuperLU DIST is
usually better than that with SuperLU MT. This is probably because the machine
has a higher byte-to-flop ratio (see Table 1) compared to Clovertown, hence it
does not penalize an algorithm that is memory-bandwidth demanding, such as
the right-looking algorithm in SuperLU DIST.

However, the coarse-grain task parallelism supported by MPI programming
does not match the fine-grain multithreading architecture — MPICH often
crashes when more than 16 tasks are generated. The Pthreads programming
is much more robust, and SuperLU MT can effectively use 64 threads. Simi-
lar to the Clovertown results, SuperLU MT usually achieves more speedup than
SuperLU DIST. This can be seen in the row “speedup ratio ( MT/ DIST)” asso-
ciated with each matrix. In some cases, SuperLU MT achieves a factor of 2 more
speedup than SuperLU DIST.

We see that SuperLU MT achieves nearly perfect speedups for the first four to
eight threads. This may be related to the Sun Solaris’ round-robin scheduling
policy which schedules multisocket first, then multicore, then multithreads [13].
With this order, the first few threads are spread across different sockets, and do
not have much memory bus contention.

We now evaluate performance of the parallel triangular solution algorithm in
SuperLU DIST. We compare the eight-core Clovertown with the eight-processor
Power5 SMP node. The parallel runtimes are tabulated in Table 8. The columns
labeled “Current” correspond to the current implementation, and the columns
labeled “Improved” refer to the new implementation as a result of this study.

It is very disapointing that on the Clovertown, the current code runs much
more slowly with more cores involved. A similar trend was also observed on
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Table 7. Factorization time in seconds on Sun VictoriaFalls. “f” indicates that an MPI
failure occurred.

matrix threads or tasks 1 2 4 8 16 32 64 128
g7jac200 SuperLU MT 480.84 244.24 126.16 68.93 40.22 28.47 23.95 24.80

SuperLU DIST 283.44 153.18 83.09 49.20 31.70 f f f
speedup ratio ( MT/ DIST) 1.00 1.06 1.09 1.15 1.24

stomach SuperLU MT 1212.97 620.58 319.85 168.04 90.01 56.51 53.54 62.37
SuperLU DIST 598.49 329.28 183.90 116.22 85.56 f f f
speedup ratio ( MT/ DIST) 1.00 1.06 1.13 1.33 1.79

torso1 SuperLU MT 201.05 102.09 52.51 27.41 15.16 11.56 10.23 11.34
SuperLU DIST 101.68 58.25 32.53 21.83 17.06 f f f
speedup ratio ( MT/ DIST) 1.00 1.12 1.18 1.46 2.01

twotone SuperLU MT 113.12 60.09 31.50 17.18 11.17 8.17 7.26 7.90
SuperLU DIST 135.43 78.44 46.64 30.01 18.49 f f f
speedup ratio ( MT/ DIST) 1.00 1.08 1.19 1.38 1.26

the VictoriaFalls. After we profiled various parts of the code, we found that the
slowdown is due to many calls of MPI Reduce; in fact, on eight cores, MPI Reduce
can take over 75% of the time. Consider one block row of the L matrix, as circled
in Figure 4, the diagonal process 0 needs to know which off-diagonal processes (1
and 2) will have sum contributions to be sent to process 0. To compute this count,
every process holds a 0/1 flag depending on whether this process has nonzero
blocks. Then, all the processes in each process row perform an MPI Reduce (by
SUM) over the flags, with diagonal process being the root. Overall, each block
row corresponds to one such reduction operation.

To address this issue, we have made the following improvement. Instead of
performing many reductions with one integer, we allocate a flag array of integers,
the size of which is the number of block rows owned by each process. Each entry
is the flag associated with one block row. Then all the processes in the respective
process row perform only one reduction operation on this flag array. This has
greatly reduced the memory or communication latency cost. On the eight-core
Clovertown, the improvement is significant, ranging from 6- to 9-fold. Even on
the conventional SMP node, such as the eight-CPU Power5, we also obtained
restpectable improvement, from 63% to 84%.

Note that the Clovertown time still does not scale as well as the Power5 time.
Further investigation is needed in the future.

5 Final Remarks

We performed preliminary study of the SuperLU sparse direct solvers on rep-
resentative multicore achitectures. Using the performance analysis tools such
as PAPI and CrayPat, we gave quantitative measures of both static and tem-
poral memory access bahavior. We found that the left-looking factorization in-
curs much less memory traffic than the right-looking one, therefore, it performs
better on the CMP systems with limited memory bandwidth. We believe this
performance characteristics is very likely associated with the other right-looking
algorithm variants, such as a multifrontal algorithm. We also quantified that
the arithmetic density of the triangular solution algorithm can be over an order
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Table 8. SuperLU DIST triangular solution time in seconds on Intel Clovertown and
IBM Power5

Current Improved
matrix tasks 1 2 4 8 1 2 4 8
g7jac200 Clovertown 0.39 0.79 0.76 2.94 0.30 0.28 0.29 0.44

Power5 0.61 0.68 0.46 0.39 0.43 0.39 0.28 0.22
stomach Clovertown 0.93 1.21 3.79 6.74 0.77 0.74 0.53 0.90

Power5 1.24 1.29 0.86 0.75 0.92 0.77 0.59 0.46
torso1 Clovertown 0.28 0.52 1.98 3.22 0.21 0.29 0.32 0.45

Power5 0.31 0.41 0.27 0.24 0.22 0.24 0.18 0.13
twotone Clovertown 0.46 1.51 4.42 7.52 0.32 0.44 0.47 0.80

Power5 0.71 0.97 0.69 0.58 0.44 0.52 0.44 0.34

of magnitude lower than the preprocessing and factorization algorithms. The
Pthreads code is usually more robust and delivers consistently better perfor-
mance than the MPI code, particularly on a multicore+multithreading architec-
ture, such as Sun VictoriaFalls. These suggest that it will be beneficial to use
hybrid programming model, to design hybrid algorithms, and to provide hybrid
device mode for MPICH.

In the future, we plan to continue using the performance tools to refine our
understanding of multicore scaling, and find ways to enhance performance.
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Abstract. We recently proposed an iterative procedure which asymp-
totically scales the rows and columns of a given matrix to one in a
given norm. In this work, we briefly mention some of the properties
of that algorithm and discuss its efficient parallelization. We report on
a parallel performance study of our implementation on a few computing
environments.

Keywords: Sparse matrices; matrix scaling; equilibration; parallel
computing.

1 Introduction

Scaling a matrix consists of pre- and post-multiplying the original matrix by
two diagonal matrices. We consider the following scaling problem: given a large,
sparse matrix A ∈ Rm×n, find two positive diagonal matrices D1 and D2 so
that all rows and columns of the scaled matrix Â = D1AD2 have the same
magnitude in some norm. Two common choices for the norm are the ∞- and
the 1-norm. Recently, we proposed an iterative algorithm for this purpose [16].
In this paper, we present the algorithm briefly and discuss how we parallelize it.
We report experimental results with the parallel code on three parallel systems
that have different processors and interconnection networks.

Scaling or equilibration of data for linear systems of equations is a topic of
great importance that has already been the subject of several scientific publica-
tions, with many different developments depending on the properties required
from the scaling. It has given rise to several well known algorithms; see, for ex-
ample, [10,17]. If we denote by Â the scaled matrix Â = D1AD2, we then solve
the equation Âx̂ = b̂, where x̂ = D−1

2 x and b̂ = D1b.
A standard and well known approach to scaling is to do a row or column scal-

ing. For row scaling, each row in the original matrix is divided by the norm of the
row (using different norms, such as the∞-norm or the 1-norm, depending on the
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application). Column scaling is identical to row scaling, except that it considers
the columns of the original matrix. A different approach that considers the matrix
entries more globally is the one used in the HSL [13] routine MC29, which aims to
make the nonzeros of the scaled matrix close to one by minimizing the sum of the
squares of the logarithms of the moduli of the nonzeros in the scaled matrix; see [7].
MC29 reduces this sum in a global sense and therefore should be useful on a wide
range of sparse matrices. There is also the routine MC30 in HSL that is a variant of
the MC29 routine for symmetric matrices. Scaling can also be combined with per-
mutations; see [11] and the HSL routine MC64. In this approach, the matrix is first
permuted so that the product of absolute values of entries on the diagonal of the
permuted matrix is maximized (other measures such as maximizing the minimum
element are also options). Then the matrix is scaled so that the diagonal entries
are one and the off-diagonals are less than or equal to one. This provides a use-
ful preprocessing tool for pivoting for sparse direct solvers, as well as for building
good preconditioners for an iterative method.

A good scaling will normally improve (i.e., reduce) the condition number of
the matrix. Although this is not the whole story, for example in determining the
efficacy of scaling for direct methods, this is a metric that we will later use to
compare scaling algorithms.

The scaling algorithm and some of its properties are introduced in Section 2.
We discuss our parallelization approach in Section 3. Section 4 contains the
experimental results.

2 The Algorithm

Consider a general m × n real matrix A, and denote by ri = aT
i· ∈ R

n×1,
i = 1, . . . , m, the row-vectors from A and by cj = a·j ∈ Rn×1, j = 1, . . . , n, the
column-vectors from A. Denote by DR and DC the m×m and n× n diagonal
matrices given by:

DR = diag
(√

‖ri‖∞
)

i=1,...,m
and DC = diag

(√
‖cj‖∞

)
j=1,...,n

(1)

where ‖ · ‖∞ stands for the ∞-norm of a real vector (that is the maximum entry
in absolute value; sometimes called the max-norm). If a row (or a column) in
A has all entries equal to zero, we replace the diagonal entry in DR (or DC

respectively) by 1. In the following, we will assume that this does not happen,
considering that such cases are fictitious in the sense that zero rows or columns
should be taken away and the system reduced.

We then scale matrix A on both sides, forming the scaled matrix Â in the
following way

Â = D−1
R AD−1

C . (2)

The idea of the proposed algorithm is to iterate that process, resulting in
Algorithm 1. Convergence is obtained when

max
1≤i≤m

{
|(1− ‖r(k)

i ‖∞)|
}
≤ ε and max

1≤j≤n

{
|(1 − ‖c(k)

j ‖∞)|
}
≤ ε (3)
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for a given value of ε > 0. We have shown [16] that the algorithm has fast linear
convergence with an asymptotic rate of 1/2.

Algorithm 1. Simultaneous row and column iterative scaling in ∞-norm

1: D(0)
1 = Im

2: D(0)
2 = In

3: for k = 0, 1, 2, . . . until convergence do

4: DR = diag
(√

‖r(k)
i ‖∞

)
i=1,...,m

5: DC = diag
(√

‖c(k)
j ‖∞

)
j=1,...,n

6: D(k+1)
1 = D(k)

1 D−1
R

7: D(k+1)
2 = D(k)

2 D−1
C

8: Â(k+1) = D(k+1)
1 AD(k+1)

2

For nonnegative square matrices, using the 1-norm, instead of the ∞-norm
in lines 4 and 5 results in a scaling algorithm for the 1-norm, i.e., in the scaled
matrix, the 1-norm of each row and column is asymptotically equal to 1. Con-
vergence in the 1-norm case of both A(k) and D(k)

1 and D(k)
2 is guaranteed for

nonnegative matrices with total support—a square matrix is said to have total
support if all entries can appear in some zero-free diagonal after row or col-
umn permutations. If a matrix does not have total support but just support
(i.e., there exists a zero-free diagonal after row or column permutations), then
the algorithm converges only for the A(k) iterates; see [16] for details. We have
observed in practical experiments that convergence for the 1-norm is fast for ma-
trices with total support; for matrices with support but without total support,
some entries should asymptotically go to zero, and a painfully slow convergence
can be observed. Rothblum et al. have shown [15, page 13] that the problem of
scaling a matrix A in the lp-norm, 1 < p < ∞ can be reduced to the problem of
scaling in the 1-norm the pth Hadamard power of A, i.e.,the matrix A[p] = [ap

ij ].
We applied that discussion to Algorithm 1 by replacing the matrix A with A[p]

and by taking the Hadamard pth root, e.g., D[1/p]
1 = [d1/p

ii ], of the resulting
iterates. Hence, we argue that all of the convergence results that hold for the
1-norm hold for any of the lp norms for 1 < p <∞.

We emphasize that the proposed iterative scaling procedure preserves the
symmetry of the original matrix. If the given matrix A is symmetric, then the
diagonal matrices DR and DC in Eq. (1) are equal and, consequently, matrix Â
in Eq. (2) is symmetric, as is the case for the matrices Â(k) at any iteration in
Algorithm 1. This is not the case for most scaling algorithms which alternately
scale rows followed by columns or vice-versa.

In the case of unsymmetric matrices, one may consider the use of the Sinkhorn-
Knopp iterations [18] with the∞-norm in place of the 1-norm. This method sim-
ply normalizes all rows and then columns in A, and iterates on this process until
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convergence. In the∞-norm, this is obtained after a single step. Because of its sim-
plicity, this method is very appealing. Notice, however, that the Sinkhorn-Knopp
iteration may provide very different results when applied to A or AT . On the con-
trary, Algorithm 1 provides exactly the same results when applied to A or AT in
the sense that the scaled matrix obtained from AT is the transpose of that ob-
tained from A. Another related property of Algorithm 1 is that it is independent
of matrix permutations. In other words, the scaling factors of the permuted matrix
are equivalent to the permuted scaling factors of the original matrix.

3 Parallelization

Algorithm 1 involves the scaled matrix Â(k), the original matrix A, the two scal-
ing (diagonal)matricesD(k)

1 andD(k)
2 , and two temporary (diagonal)matricesDR

and DC to compute the next iterates. To reduce the memory requirements, it is
advisable not to store the scaled matrix Â(k) = D(k)

1 AD(k)
2 explicitly; an individ-

ual matrix entry a
(k)
ij at iteration k can be computed using d

(k)
1 (i)×|aij|×d

(k)
2 (j),

where d
(k)
1 (i) and d

(k)
2 (j) correspond to the ith and jth diagonal entries of the

respective scaling matrices. Therefore, a parallelization of the algorithm on dis-
tributed memory processors necessitates the distribution of the matrices A, D1,
D2, DR and DC . Observe that D1 and D2 are kept and updated at each iteration,
whereas DR and DC are computed afresh at every iteration.

Assume that the matrix A is distributed among P processors. At this point
we do not assume a particular distribution. Rather, we deal with the most gen-
eral case in which each processor holds a set of nonzeros aij along with the
corresponding row and column indices, i.e., each processor holds a set of triplets
of the form 〈i, j, aij〉. We use aij ∈ p to denote that the processor p has the
nonzero aij . At each iteration, we first compute the contribution to the matri-
ces DR and DC on each processor, using Dp

R and Dp
C—the latter two matrices

denote the matrices belonging to the processor p such that dp
R(i) and dp

C(j)
denote the contributions of processor p to dR(i) and dC(j), respectively. These
two matrices are then reduced to update the diagonal matrices D1 and D2 that
are distributed among the processors; i.e., the partial results dp

R(i) and dp
C(j)

should be combined at certain processors according to the partitions on D1 and
D2. Hence, our problem reduces to partitioning the diagonal matrices D1 and
D2 for a given partition on A in order to have an efficient parallelization of
Algorithm 1. The most common communication cost metric addressed in similar
parallelization problems is the total communication volume. Therefore our aim
is to find partitions on D1 and D2 for a given partition on A to minimize the
total communication volume.

In order to solve the partitioning problem, let us examine the computational
dependencies. Each processor p should use its triplets 〈i, j, aij〉 to compute partial
results for dR(i) and dC(j), e.g., for the ∞-norm processor p should compute

dp
R(i) = max

j

{
d
(k)
1 (i)× |aij | × d

(k)
2 (j) : aij ∈ p

}
.
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The partial results should be reduced for each d
(k+1)
1 (i) and d

(k+1)
2 (j), e.g., in

the ∞-norm the owner of d1(i) should compute

d
(k+1)
1 (i) = d

(k)
1 (i)× 1√

max{dp
R(i) : 1 ≤ p ≤ P}

.

Note that the communication operations take place during these reduction oper-
ations. That is, the partial results dp

R(i) from each processor p, where 1 ≤ p ≤ P
and there exist a aik ∈ p for some k, should be sent to the processor which is
responsible for computing d

(k+1)
1 (i). After computing d

(k+1)
1 (i), the owner should

send the new values back to the contributing processors to enable the computa-
tion of Â(k+1). That is, the owner sends the updated d

(k+1)
1 (i) to each processor

p having a nonzero in row i, e.g., to a processor p where aik ∈ p for some k.
Therefore, the volume of data a processor receives to compute d

(k+1)
1 (i) is equal

to the volume of data it sends after computing the final value.
If the nonzeros in row ri are split among s processors, then a reduction on

s partial results will be necessary. If one of those processors owns d1(i), then
s− 1 partial results will be sent to the owner; if not, then s partial results will
be sent to the owner. Hence, for a given partition on A, the minimum volume
of communication regarding ri is s− 1. The same assertions hold for d2(j) with
respect to the nonzeros in column cj . Therefore, if the nonzeros in row ri and
column cj are split among sr(i) and sc(j) processors, respectively, then the
minimum total communication volume is

2×
∑

(sr(i)− 1) + 2×
∑

(sc(j)− 1) , (4)

where half of the communication volume is incurred while reducing the new
values and the other half is incurred while sending back the updated values. The
minimum total communication volume can be achieved for any partition on A
as long as each d1(i) and d2(j) are assigned to a processor which has nonzeros
in row ri and column cj , respectively. Furthermore, any d1(i) to processor p (or
d2(j) to processor p) assignment will attain the same minimum as long as the
processor p has at least one nonzero in row ri (or column cj).

It can be seen from Eq. (4) that the communication volume requirements of
the proposed algorithm are closely related to those of repeated sparse matrix-
vector multiply operations; see for example [4,12]. In fact, the communication
operations in an iteration of Algorithm 1 are the same as those in the computa-
tions y ← Ax followed by x← AT y, when the partitions on x and y are equal
to the partitions on D2 and D1, respectively. Having observed that, we can use
hypergraph models, see for example [4,20,22], to partition the matrix A, and
then follow the above development to partition D1 and D2 to achieve efficient
parallelization. Moreover, due to the equivalence between the communication
operations of the proposed algorithm and those of sparse matrix-vector multiply
operations, we can adopt the vector partitioning techniques discussed in [1,21]
to partition D1 and D2.

We wanted to have a parallelization of the scaling algorithm independent of
the matrix partitioning. This is because we imagine the use of the algorithm in



306 P.R. Amestoy et al.

a parallel linear system solver context where the matrix is already distributed.
Therefore, as an alternative to the existing partitioning methods [1,21], we de-
veloped the following parallel algorithm to partition D1 and D2 among P pro-
cessors. In the conceived partitioning although, each d1(i) will be assigned to the
processor which has the closest entry to a fictitious diagonal (on a square matrix
of order max{m, n}). The same strategy is used for each d2(j) with respect to
the columns. If, for example, the matrix A is square and has a zero-free diagonal,
then the proposed approach will partition D1 and D2 in such a way that the
processor which holds aii will own d1(i) and d2(i). This is the common approach
taken in standard matrix partitioning approaches, see for example [4,6]. The
MPI standard [14] defines an operation, minloc, which can be used to accom-
plish this task. In general, minloc can be used to compute a global minimum
and the rank of the process whose data contain that minimum value. Below,
we discuss how we went about implementing this operation for our partitioning
method (essentially the same as minloc operation).

In our implementation, we perform a reduction operation on two arrays of
sizes 2 ×m and 2 × n. Each processor p initializes a local copy of both arrays
by setting gp

r (i) = m + n for 1 ≤ i ≤ m and gp
r (i) = p for i > m, and similarly

gp
c (j) = m+n for 1 ≤ j ≤ n and gp

c (j) = p. Then, each processor sweeps over its
triplets 〈i, j, aij〉 and computes its shortest distance to the diagonal entry in row
i and its shortest distance to the diagonal entry in column j. That is, processor
p computes

gp
r (i) = min{|i− j| : aij ∈ p}

and
gp

c (j) = min{|j − i| : aij ∈ p} .

As we see, at the end of these operations, the shortest distances are stored in
the first halves of the arrays whereas the second halves store the rank of the
associated processor. A global all-reduce operation is performed on these two
arrays to yield an array gr of size 2×m and another one gc of size 2× n on all
processors. The reduction operation is performed with the minimum operation
to set

gr(i) = min
p
{gp

r (i) : 1 ≤ p ≤ P} for 1 ≤ i ≤ m

and
gc(j) = min

p
{gp

c (j) : 1 ≤ p ≤ P} for 1 ≤ j ≤ n .

The second halves of the arrays are used to store the ranks of the processor
that give the minimum value stored in the corresponding entries in the first
halves of the arrays. The second halves are necessary to guarantee a unique
partitioning vector on all processors. If there is a tie for an entry in the first
half of the arrays, the processor with the smaller rank is declared as the one
giving the minimum—a unique partitioning vector is not possible without further
communication if, for example, the second halves were not used and the ties were
broken at random. Note that, although different implementations are possible,
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MPI’s minloc operation also uses an array of size twice the number of data items
to store the rank of the processor that owns a copy of the minimum value.

We make a few observations about the proposed partitioning algorithm.
Firstly, the proposed diagonal matrix partitioning approach tries to exploit the
given partition of the matrix A and obtains the minimum total volume of com-
munication possible (with respect to the given partition on A). This is achieved
by assigning each d1(i) or d2(j) to a processor having nonzeros entries in the
respective row or column of the matrix. In other words, the proposed algorithm
achieves the minimum given in Eq. (4); if the matrix is partitioned with the
objective of minimizing the total communication volume, then the total com-
munication volume found there is retained intact by the algorithm. Secondly,
we believe that the algorithm is likely to achieve a balance on the number of
D1 and D2 matrix entries assigned to the processors, hence in a way it will
achieve a balance on communication loads of the processors. We investigate the
issue of the balance achieved in the communication loads of the processors in
the next section. We note that the problem of optimizing the partitioning of D1
and D2 for some other communication cost metrics such as the total number
of messages with a balancing constraint on the communication volume loads of
processors, or the maximum volume of messages sent and received by a single
processor is NP-complete; see [20] and [1], respectively. Rather than addressing
such communication cost metrics explicitly, we prefer the proposed partitioning
algorithm, as it is easy to implement and is fast to run in parallel.

4 Experiments

We have implemented a parallel program for the proposed matrix scaling algo-
rithm in C using LAM/MPI [3]. The experiments were carried out on up to 16
nodes of two PC clusters of Beowulf class [19]. In the first cluster, the nodes
are Intel Pentium IV 2.6 GHz processors with 1GB of RAM, and they run De-
bian/GNU Linux. This cluster has a Gigabit Ethernet switch. The cluster has a
measured latency of 37 microseconds and a measured bandwidth of 75MB/s. The
second cluster has an Infiniband interconnection network and is based on Dual
250 Opteron AMD processors each having 4GB of RAM. In this cluster, latency
and bandwidth are measured as 3.3 microseconds and 772MB/s, respectively. In
both of the systems, the program is compiled with gcc using the optimization
option -O3.

We ran the program on a set of matrices from the University of Florida sparse
matrix collection [8]. The characteristics of the matrices are shown in Table 1.

We have observed that usually 25–30 iterations of the discussed scaling algo-
rithm is sufficient to improve the condition number of the matrices. We used the
performance profiles discussed in [9] to generate the plot shown in Fig. 1. The
plot compares estimates of the condition numbers for the scaled matrices result-
ing from four different scaling algorithms and those of the original matrices. For a
given τ , the plot shows the probability for a scaling algorithm that the condition
estimate due to this algorithm is within τ times the best (among all 5 condition
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Table 1. Matrices used in measuring the parallel performance, their size, number of
nonzeros, and the number of iterations to converge in the ∞- and 1-norms with error
tolerance of 1.0e-6. The number 1000 indicates cases where the method did not converge
in 1000 iterations (those matrices, except Hamrle3, do not have total support). Matrices
are listed in increasing order of the number of nonzeros.

number of iterations
matrix n nnz ∞-norm 1-norm

aug3dcqp 35543 128115 26 50
a5esindl 60008 255004 2 107
a2nnsnsl 80016 355034 22 115
a0nsdsil 80016 355034 22 106
blockqp1 60012 640033 2 48
olesnik0 88263 744216 23 1000
c-71 76638 859554 24 1000
boyd1 93279 1211231 25 28
twotone 120750 1224224 24 1000
lhr71c 70304 1528092 27 1000
H2O 67024 2283760 2 16
filter3D 106437 2813616 3 20
Hamrle3 1447360 5514242 23 1000
G3 circuit 1585478 9246304 2 19
thermal2 1228045 9808358 2 18
SiO2 155331 11438834 2 16

estimates). Therefore, the higher the probability the more preferable the scaling
method. We have plotted the performance profiles up to τ = 5. As seen in the
plot, the condition estimate of the original matrix has the worst profile; at any τ ,
the condition estimate of the original matrix has the least probability to be the
best. As also seen from the plot, the discussed scaling algorithm with any of the
norms (1-, 2-, or ∞) has higher probability to be better than that of Bunch’s for
τ a little larger than 1.5. We note that Bunch’s algorithm is a direct approach;
it computes the scaling factors without any iterations. Note that for these re-
sults we run the parallel scaling algorithms for at most 25 iterations. Although
the 1- and 2-norm scaling algorithms did not fully converge in 136 of the 245
cases, the resulting condition estimates after 25 iterations were close to the best
value, e.g., with a high probability, the results are within a small τ of the best.
The Sinkhorn-Knopp algorithm gave almost the same condition estimates as the
parallel scaling algorithm with the 1- and 2-norms.

To measure the average running time of an iteration, we ran the program for
1000 iterations, without testing convergence. We used the fine-grain hypergraph
model [6] and the hypergraph partitioning tool PaToH [5] with default options
to partition the matrices. In the fine-grain model, the nonzeros of a matrix are
partitioned independently, i.e., nonzeros in a row or a column are not necessarily
assigned to a common processor. We compute the partitions on D1 and D2 with
the parallel algorithm proposed towards the end of Section 3.
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Fig. 1. Performance profiles for the condition number estimates for 245 matrices. A
marks the condition number estimate of the original matrix; B marks that of Bunch’s
algorithm [2]; inf, 1, and 2 mark that of the parallel scaling algorithm with ∞-, 1-, and
2-norms (with at most 25 iterations). At, for example τ = 3, the curves from top to
bottom correspond to the labels given in the legend from left to right.

Table 2 shows the speedups we have obtained for the matrices in our data
set. Note that we measure the time spent in the iterations, and hence assume
that the matrix is already distributed among the processors. During these ex-
periments, the convergence tests are not performed, and hence the reported time
of the iterations does not include the time spent doing the convergence checks.
The speedups are the averages of 10 different matrix partitions obtained with the
fine-grain model. As is seen in the table, good results are obtained for the bigger
(in terms of number of nonzeros) matrices (except for c-71 and H2O). That is,
most of the time, we obtain better speedups for matrices with a larger number of
nonzeros. This is expected as the computation to communication ratio is small
for sparse matrix-vector multiply type operations. Therefore, if the matrix has
a small number of nonzeros, the communication overhead becomes significant
and degrades the performance. We investigated the communication patterns in
an attempt to understand the performance of the proposed parallelization ap-
proach. Notice that the load balance and the total communication volume are
determined according to the given matrix distribution. In all cases, the load im-
balance was less than 0.03; we measure the imbalance as (wmax − wavg)/wavg,
where wmax is the maximum load and wavg is total load divided by the number
processors, so the value zero would indicate perfect balance, a value of 1 that the
maximum load was twice the average and a value greater than 1 would indicate
severe imbalance. The algorithm proposed for partitioning D1 and D2 resulted
in acceptable imbalances among the communication loads of the processors. In
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Table 2. Speedup values of the parallel scaling algorithm with ∞-norm, on P =
2, 4, 8, and 16 processors for two different parallel systems. For each matrix, the first
and second lines correspond to the experiments run on, respectively, PC cluster with
Intel processors and PC cluster with AMD processors. For each matrix, the sequential
running time of the scaling algorithm for 1000 iterations is listed in units of seconds
under the column Seq.Time.

P
matrix Seq.Time 2 4 8 16

aug3dcqp 8.30 1.7 2.9 4.1 4.5
3.06 1.9 3.8 4.3 3.6

a5esindl 15.09 1.8 3.0 4.1 4.8
5.12 1.5 1.9 2.3 3.8

a2nnsnsl 20.71 1.8 3.1 4.0 4.8
7.24 1.5 1.8 2.1 3.3

a0nsdsil 20.92 1.8 3.1 4.0 4.6
7.22 1.5 1.8 2.1 3.2

blockqp1 32.55 1.9 3.4 5.5 7.4
8.97 1.6 2.4 3.3 4.9

olesnik0 46.08 1.9 3.7 6.9 12.3
14.91 1.9 3.9 7.5 13.6

c-71 51.60 1.8 3.3 5.4 7.6
17.54 1.6 3.3 5.3 6.7

boyd1 70.34 1.9 3.6 6.3 10.2
24.57 1.8 3.1 4.9 7.6

twotone 74.76 1.9 3.7 7.0 11.8
25.40 1.9 3.7 6.9 11.3

lhr71 78.25 2.0 3.8 7.3 13.5
18.10 2.0 3.4 6.8 14.0

H2O 111.33 1.9 2.8 2.4 6.7
29.33 1.6 2.5 4.2 7.7

filter3D 146.83 1.9 3.7 7.1 13.3
52.66 2.1 3.5 6.7 12.7

Hamrle3 337.99 1.9 3.8 7.3 13.9
146.15 1.9 3.8 7.0 12.6

G3 circuit 455.25 1.8 3.8 7.4 14.0
173.11 1.9 3.3 6.9 14.5

thermal2 573.24 2.0 3.9 7.6 14.4
208.20 1.6 3.4 6.5 13.1

SiO2 545.90 1.9 3.7 6.9 11.3
180.09 1.9 3.6 5.9 9.5

terms of number messages sent by a single processor, the imbalance among loads
of the processors, is on the average, 0.25 with a maximum of 1.45. In terms of
volume of messages sent by a single processor, the average imbalance is 0.4, with
a maximum of 3.27. We further investigated the communication patterns for 64-
and 128-way partitions of the matrices in our data set. Although we have seen
some large numbers, the average imbalance is around 3.2 using a metric of the
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maximum number of messages per processor, and 4.3 with the metric being the
maximum volume of messages per processor.

In an attempt to verify empirically that the proposed algorithm for partition-
ing D1 and D2 works well for a number of systems, we performed experiments
on the nodes of a CRAY XD1 system at CERFACS. This system has two AMD
Opteron 2.4 GHz processors per node, each having 2GBytes of memory. The
nodes are connected with a RapidArray interconnect with an MPI latency of 1.7
microseconds and a bandwidth of 4GB/s between nodes. The speedups obtained
in this system are similar to the reported results.

We have also investigated a sensible alternative partitioning approach on the
three parallel systems mentioned so far. The alternative approach is to assign
d1(i) to the processor with the smallest rank among those having nonzeros in
row ri; assign d2(j) to the processor with the largest rank among those hav-
ing nonzeros in column cj . Note that this alternative will also achieve the same
minimum in the total volume of communication metric, see Eq. (4). On the PC
cluster with AMD processors and Infiniband interconnect and also on the CRAY
XD1, the use of this alternative resulted in speedups similar to those resulting
from the proposed partitioning approach. However, the alternative did not per-
form as well on the PC cluster mentioned before. Note that the alternative can
produce high imbalance among the number of messages sent by a single proces-
sor. Furthermore, the messages are usually short. Combined with the relatively
high message latency overhead, this is the most probable reason behind the PC
cluster being intolerant to simple partitioning algorithms. In fact, we have ob-
served that the alternative resulted in imbalances, on the average, of around 1.0
for the communication cost metrics of number of messages and communication
volume per processor, both in terms of sends and receives, with the maximum
being 7.0 for all of the metrics, which is really a very bad imbalance.

5 Conclusion

In this work, we reviewed an iterative algorithm which scales the l-norm, for
l = 1, 2, . . . ,∞, of the rows and columns of a matrix to 1 and briefly men-
tioned some of its properties. We discussed the parallelization of the algorithm.
We argued that the parallelization requires a careful partitioning of two diag-
onal matrices in addition to a standard sparse matrix partitioning for parallel
matrix-vector multiply operations. We proposed a method based on an all-reduce
operation to partition the diagonal matrices. We discussed performance results
on different parallel systems where good speedups are obtained for matrices
having a reasonably large number of nonzeros.
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9. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance
profiles. Mathematical Programming 91(2), 201–213 (2002)

10. Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Oxford
University Press, London (1986)

11. Duff, I.S., Koster, J.: On algorithms for permuting large entries to the diagonal of a
sparse matrix. SIAM Journal on Matrix Analysis and Applications 22(4), 973–996
(2001)

12. Hendrickson, B., Kolda, T.G.: Partitioning rectangular and structurally unsym-
metric sparse matrices for parallel processing. SIAM Journal on Scientific Com-
puting 21(6), 2048–2072 (2000)

13. HSL: A collection of Fortran codes for large-scale scientific computation (2004),
http://www.cse.scitech.ac.uk/nag/hsl

14. MPI: A Message-Passing Interface Standard, Version 2.1 (2008),
http://www.mpi-forum.org/docs/

15. Rothblum, U.G., Schneider, H., Schneider, M.H.: Scaling matrices to prescribed row
and column maxima. SIAM Journal on Matrix Analysis and Applications 15(1),
1–14 (1994)

16. Ruiz, D.: A scaling algorithm to equilibrate both rows and columns norms in matri-
ces. Technical Report RAL-TR-2001-034 and RT/APO/01/4, Rutherford Appleton
Laboratory, Oxon, UK and ENSEEIHT-IRIT, Toulouse, France (2001)

17. Schneider, M.H., Zenios, S.: A comparative study of algorithms for matrix balanc-
ing. Operations Research 38(3), 439–455 (1990)

http://www.cise.ufl.edu/research/sparse/matrices
http://www.cse.scitech.ac.uk/nag/hsl
http://www.mpi-forum.org/docs/


A Parallel Matrix Scaling Algorithm 313

18. Sinkhorn, R., Knopp, P.: Concerning nonnegative matrices and doubly stochastic
matrices. Pacific Journal of Mathematics 21(2), 343–348 (1967)

19. Sterling, T., Savarese, D., Becker, D.J., Dorband, J.E., Ranaweke, U.A., Packer,
C.V.: BEOWULF: A parallel workstation for scientific computation. In: Proceed-
ings of the 24th International Conference on Parallel Processing (1995)
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Abstract. In this paper, we present a parallel multilevel ILU precon-
ditioner implemented with OpenMP. We employ METIS partitioning
algorithms to decompose the computation into concurrent tasks, which
are then scheduled to threads. Concretely, we combine decompositions
which obtain significantly more tasks than processors, and the use of
dynamic scheduling strategies in order to reduce the thread’s idle time,
which it is shown to be the main source of overhead in our parallel algo-
rithm. Experimental results on a shared-memory platform consisting of
16 processors report remarkable performance for our approach.

Keywords: Sparse linear system, incomplete LU factorization, paral-
lel algorithm, OpenMP, shared-memory multiprocessor.

Related conference topics: Parallel and Distributing Computing, Nu-
merical Algorithms for CS&E.

1 Introduction

The solution of large sparse linear systems is an ubiquitous problem in chem-
istry, physics, and engineering applications. Often, sparse direct solvers are used
to deal with these problems, but the large amount of memory they sometimes re-
quire (due to, e.g., excessive fill-in in the factors), in practice limits the size of the
problems these methods can solve. In recent years, iterative methods based on
Krylov subspaces combined with preconditioners as, e.g., incomplete LU decom-
positions, have become popular and successful in many application problems.
Among these methods, ILUPACK1 (Incomplete LU decomposition PACKage) is
a novel software package based on approximate factorizations which enhances
the performance of the process in terms of a more accurate solution and a lower
execution time.

1 http://www.math.tu-berlin.de/ilupack

J.M.L.M. Palma et al. (Eds.): VECPAR 2008, LNCS 5336, pp. 314–327, 2008.
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Our mid-term goal is to develop a parallel package to solve large sparse linear
systems on shared-memory multiprocessors (including novel multicore proces-
sors) using the same techniques employed in ILUPACK. In an earlier paper [1],
we presented a parallel preconditioner for the solution of sparse linear systems
with symmetric positive definite coefficient matrix, and an OpenMP-based im-
plementation of this preconditioner. In this paper, we extend previous work with
the following new contributions:

– We discuss in detail the foundations of the design of the parallel precondi-
tioner.

– We evaluate the preconditioner using a benchmark collection with problems
arising from different domains such as, e.g., computational fluid dynamics
(CFD) or circuit simulation.

– We split the task tree deeply in order to decompose the computation into a
large number of fine-grain tasks.

– We provide a detailed explanation of the experimental performance. In par-
ticular, we use the KOJAK2 and VAMPIR3 performance analysis tools to
gain a complete understanding of the performance of the parallel algorithm.

The paper is structured as follows. In Section 2 we briefly review the basis
of the preconditioning procedure underlying ILUPACK. Next, in Section 3, we
offer further details on the design of our parallel preconditioner. Section 4 gathers
data from numerical experiments with our parallel algorithm implementation.
Concluding remarks and future research goals follow in Section 5.

2 An Overview of ILUPACK

ILUPACK is a preconditioning package to solve large sparse linear systems via
preconditioned Krylov subspace methods, where the preconditioner is based on
multilevel ILUs. We will focus on the computation of the preconditioner since
this is the most challenging task from the parallelization viewpoint.

The rationale behind the computation of the preconditioner is to obtain an
incomplete LU decomposition of the coefficient matrix A in such a way that ele-
ment growth in the inverse triangular factors remains bounded, thereby improv-
ing the quality of the preconditioner [3,4,5,14]. ILUPACK adopts the following
combination of steps in a multilevel manner in pursue of this goal:

1. A static pre-ordering and scaling of the system to transform A as

A→ PT D1AD2Q = Â. (1)

The reordering strategy is intended to reduce the fill-in, while scaling is
applied in order to balance the size of the entries.

2. A partial incomplete LU factorization of Â is applied, where rows/columns
associated with “tiny” diagonal pivots are permuted to the bottom right
corner of the matrix; see Figure 1. For the multilevel ILU, a bound κ for the

2 http://www.fz-juelich.de/jsc/kojak/
3 http://www.vampir-ng.de
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Fig. 1. ILUPACK pivoting strategy

(norm of the) inverse triangular factors is prescribed. Tiny pivots are thus
defined as those which cause these inverses to exceed κ. These rows/columns
are not considered further in this step: their decomposition is delayed until
the next level. Thus, we obtain a partial approximation of the following
reordered system

P̂T ÂP̂ =
(

B F
E C

)
≈
(

LB 0
LE I

)(
DB 0
0 S

)(
UB UF

0 I

)
, (2)

where LB, UT
B are unit lower triangular factors, DB is a diagonal matrix,

and S is the approximate Schur complement, where tiny pivots reside. The
Schur complement corresponds to:

S ≈ C − LEDBUF . (3)

Elements of magnitude ε/κ are dropped from the factors as well as from
S during the computation, where ε is a user-defined tolerance. For details,
see [5].

3. A multilevel configuration, which recursively applies the previous two steps
to S, completes the partial decomposition of step 2.

3 Parallel Multilevel Preconditioners

3.1 Task Decomposition

The first step in the development of a parallel preconditioner consists of split-
ting the procedure that computes the preconditioner into tasks, and identifying
the dependencies among these. In the context of the sparse direct solvers, elim-
ination trees are widely used as a source of coarse-grain parallelism [8]. The
starting point of our approach is the elimination tree [7] of a sparse symmet-
ric matrix ordering. Thus, e.g., if Ti and Tj are independent subtrees of the
elimination tree (i.e., neither root node of the subtrees is a descendant of the
other), then the operations on the rows corresponding to the nodes in Ti can
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T1 T2

T

T T

T T

Task (dependency) tree

Independent subtrees

Elimination tree

3 4

5 6

7

Fig. 2. Elimination tree and an associated task tree of height 2

proceed independently from those corresponding to the nodes in Tj. Hence these
computations can be done simultaneously by separate processors with no com-
munication between them. Therefore, we can define a new tree, which we call
the task (dependency) tree, where the leaf tasks correspond to the independent
subtrees, and the intermediate dependent tasks correspond to the ancestor nodes
of these subtrees in the elimination tree; see Figure 2.

These abstractions reveal the parallelism in the sparse Cholesky factorization,
and can also be used to obtain a multilevel ILU preconditioner in parallel. We
now discuss how this preconditioner is computed using the task tree in Figu-
re 2 (right). We first note that this task tree yields a partition of the coefficient
matrix A. For the discussion, we consider the matrix reordering which corre-
sponds to a breadth-first traversal of the task tree from bottom to top:

A→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11 0 0 0 A15 0 A17
0 A22 0 0 A25 0 A27
0 0 A33 0 0 A36 A37
0 0 0 A44 0 A46 A47

AT
15 AT

25 0 0 A55 0 A57
0 0 AT

36 AT
46 0 A66 A67

AT
17 AT

27 AT
37 AT

47 AT
57 AT

67 A77

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4)

Here the separating lines represent the partition with respect to the levels of the
task tree. In order to compute the factorization in parallel, we split A into the
sum of four submatrices:

A = PT
1

⎛⎝A11 A15 A17

AT
15 A1

55 A1
57

AT
17 (A1

57)
T A1

77

⎞⎠
︸ ︷︷ ︸

A1

P1 + PT
2

⎛⎝A22 A25 A27

AT
25 A2

55 A2
57

AT
27 (A2

57)
T A2

77

⎞⎠
︸ ︷︷ ︸

A2

P2 +
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PT
3

⎛⎝A33 A36 A37

AT
36 A3

66 A3
67

AT
37 (A3

67)
T A3

77

⎞⎠
︸ ︷︷ ︸

A3

P3 + PT
4

⎛⎝A44 A46 A47

AT
46 A4

66 A4
67

AT
47 (A4

67)
T A4

77

⎞⎠
︸ ︷︷ ︸

A4

P4, (5)

where P1, P2, . . . , P4 denote block permutations, and A55 = A1
55 + A2

55, A57 =
A1

57 +A2
57, A66 = A3

66 +A4
66, A77 = A1

77 +A2
77 +A3

77+A4
77. In this paper, we have

selected A1
55 = A2

55, A1
57 = A2

57, A3
66 = A4

66, A3
67 = A4

67, and A1
77 = A2

77 = A3
77 =

A4
77, to comply with (5). In (5), the separating lines for a given Ai, represent the

partitioning with respect to the path from leaf task Ti to the root.
Then, tasks T1, T2, . . . , T4 compute, respectively, multilevel ILU decomposi-

tions of A1, A2, . . . , A4 following the approach presented in Section 2. We focus
next on how the decomposition of A1 is carried out in a parallel environment.
The other submatrices are treated analogously. First, step 1 from Section 2 is
restricted to the A11 block, i.e.:

P = Q =
(

P11 0
0 I

)
, D1 = D2 =

(
D11 0
0 I

)
, (6)

with P11 and D11 of the same row dimension as A11. Next, in step 2 tiny pivots
are moved to the end of the A11 block, instead of the end of A1. Thus,

P̂T
1 A1P̂1 =

⎛⎜⎜⎝
B11 F11 Â15 Â17

FT
11 C11 Ã15 Ã17

ÂT
15 ÃT

15 A1
55 A1

57

ÂT
17 ÃT

17 (A1
57)

T A1
77

⎞⎟⎟⎠ , (7)

and we obtain the following approximate partial factorization:

P̂T
1 A1P̂1 ≈

⎛⎜⎜⎝
ÛT

11 0 0 0
ŨT

11 I 0 0
UT

15 0 I 0
UT

17 0 0 I

⎞⎟⎟⎠
⎛⎜⎜⎝

D11 0 0 0
0 S11 S15 S17

0 ST
15 S1

55 S1
57

0 ST
17 (S1

57)
T S1

77

⎞⎟⎟⎠
⎛⎜⎜⎝

Û11 Ũ11 U15 U17
0 I 0 0
0 0 I 0
0 0 0 I

⎞⎟⎟⎠ . (8)

The multilevel approach from Section 2 is repeated on the remaining Schur
complement (Sij)i,j=1,5,7, until either S11 is empty or when trying to decompose
S11, the number of rows factorized is small with respect to the size of S11.

After computing the multilevel ILU decompositions of A1, A2, . . . , A4, we
define how the parallel algorithm proceeds with the next level inside the task
tree. To do this, we form matrices S5 and S6, which are the input matrices for T5
and T6, respectively. Now, we show how S5 is built from the Schur complements
computed by T1 and T2:

S5 =

⎛⎜⎜⎝
S11 0 S15 S17
0 0 0 0

ST
15 0 S1

55 S1
57

ST
17 0 (S1

57)
T S1

77

⎞⎟⎟⎠
︸ ︷︷ ︸

S1

+

⎛⎜⎜⎝
0 0 0 0
0 S22 S25 S27
0 ST

25 S2
55 S2

57
0 ST

27 (S2
57)

T S2
77

⎞⎟⎟⎠
︸ ︷︷ ︸

S2

. (9)
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(a)
T

T T1 2

3

−→
⎛⎝A11 0 A13

0 A22 A23

AT
13 AT

23 A33

⎞⎠

(b)

T

T

T T

1

2 2
1 2

T3
2

3

−→

⎛⎜⎜⎜⎜⎝
A11 0 0 0 A13

0 A11
22 0 A13

22 A1
23

0 0 A22
22 A23

22 A2
23

0 (A13
22)T (A23

22)T A33
22 A3

23

AT
13 A1 T

23 A2 T
23 A3 T

23 A33

⎞⎟⎟⎟⎟⎠
Fig. 3. Task tree height vs. number of artificial structural levels. (a) A task tree of
height one introduces two levels. (b) If task T2 of task tree (a) is split further into two
leaves, the resulting task tree introduces one additional level.

Equation (9) is the key to understand how task interaction works: once T1
and T2 are completed, so that their corresponding Schur complements S1 and S2
are available, the corresponding processes in charge of T1 and T2 send S1 and S2
to the process in charge of T5, which then computes S5 = S1 + S2. Tasks T3, T4
and T6 operate in the same way with S3, S4 and S6. Then, T5 and T6 compute
a partial multilevel ILU decomposition of S5 and S6, as T1, T2, . . . , T4 did with
submatrices A1, A2, . . . , A4. This recursive parallel process is completed when
the root task T7 fully factorizes S1,2,3,4

77 , which is computed by the interaction of
T5, T6 and T7 once the second level of the tree is completed.

This process yields a template for the computation of multilevel precondition-
ers based on partial approximations such as, e.g., [13]. The procedure is easily
generalized for task trees of height larger than 2, and also for non-complete4

task trees. Finally, from the mathematical point of view, the parallel approach
introduces artificial structure levels to compute the preconditioner in parallel,
which may not be necessary in the sequential algorithm; see Figure 3. Therefore,
the computations as well as the preconditioners computed by the sequential and
the parallel algorithms are, in general, different. The same happens when com-
puting parallel preconditioners with task trees of different heights, as we will see
in Section 4.

3.2 Quality of the Task Trees

The performance of the parallel algorithm directly depends on properties of the
task tree such as its shape or the computational costs associated with its tasks.
Assuming the number of processors is a power of two, a desirable task tree should
present the following properties:
4 In this context, a complete task tree is one in which all leaves present the same

height.
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1. It should be a complete binary task tree of height log2(p), where p is the
number of processors, as this enables enough concurrency for p processors
(a task tree of this shape has p leaf tasks).

2. Leaf tasks should concentrate the computational cost of the whole process:
in a complete binary task tree the number of processors which can operate
in parallel is divided by two when we move one level higher in the tree.

3. Leaf tasks should have similar costs as, otherwise, a static mapping of tasks
to processors can lead to an unbalanced distribution of the computational
load.

In practice, those three properties are difficult to satisfy simultaneously. For
the first two properties, remind that the task tree is constructed from the elim-
ination tree, whose shape strongly depends on the selected coefficient matrix
ordering. Thus, given an elimination tree, there is no guarantee that the desired
number of independent subtrees (p) will be obtained at a certain level (log2(p)).
Besides, there is no guarantee either that the independent subtrees which are
identified will not concentrate the bulk of the computational cost; such case hap-
pens, e.g., when the number of nodes of the independent subtrees is relatively
small compared with the number of nodes of the whole elimination tree.

In order to address these two difficulties, we employ the MultiLevel Nested
Dissection (MLND) sparse matrix ordering algorithm provided by the METIS
library5 [9]. MLND produces fill-reducing orderings with balanced elimination
trees and a high degree of concurrency. Furthermore, intermediate tasks obtained
as a by-product of MLND orderings correspond to node graph separators. MLND
has been found to produce very small node separators, so that independent
subtrees are likely to concentrate most of the nodes of the elimination tree.

MLND helps with the first two items, but we still have to address the diffi-
culties associated with the third property: the computational costs of tasks are
unknown before execution and they can be heterogenous. The cost of a task de-
pends on many factors such as, e.g., the size of the associated block, its density
and sparsity pattern, the growth of the inverse factors, etc. Unfortunately, many
of these are unknown until the approximation has been computed. Therefore, it
can be interesting to obtain more leaf tasks than processors and use dynamic
scheduling to deal with tasks irregularity as, assuming that leaves concentrate
the major part of the computation, load unbalance in the computation of leaf
tasks is likely to become the main source of overhead in the parallel algorithm.

The leaf tasks which present a “high” relative cost are a potential source of
load unbalance. Our approach focuses on these tasks, which are further split
into finer-grain tasks. As we mentioned before, these costs are unknown a priori,
so that we must use an heuristic which yields an estimation of the cost of a
leaf task. Currently, our heuristic is based on the number of nonzeros of the
submatrix being approximated. For example, the heuristic of the relative cost
of task T1 (see Figure 2) is h1 = nnz(A1)

nnz(A) , where nnz(M) denotes the number
of nonzero elements of the matrix M . Moreover, we must define the criterion to

5 http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
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decide whether to split a given leaf task. Currently, we split those leaves which
satisfy hi > 1

f , where f is a user-defined threshold for the splitting mechanism.
Thus, larger values of f yield a higher task tree. In this paper, we have selected
f to be a modest multiple of the number of processors p. Roughly, if we select
f = kp, we get at least k tasks per processor. For example, assuming a complete
task tree of height log2(p) and k = 1, where h1 ≈ h2 . . . ≈ hp, we obtain p
leaves. However, if some leaves at level log2(p) have a high value of hi, then
some branches are split more than others, yielding a non-complete task tree
with more leaves than processors.

3.3 Implementation Details

We now discuss some aspects related with the OpenMP implementation. The
task tree is constructed sequentially, prior to the parallel computation of the pre-
conditioner. Then, the computation of the preconditioner begins, and tasks are
executed by threads following a dynamic scheduling strategy, which maps tasks
to threads on execution time. In general, an optimal scheduling executes ready
tasks (i.e., those with their dependencies fulfilled) with highest computational
cost as soon as possible. Our scheduling strategy applies this requirement only
to the leaves of the task tree, as those concentrate the bulk of the computation.
Concretely, it always gives leaves higher priority over inner tasks; among leaves,
it schedules those with higher computational time first. The priority between
inner tasks depends on our implementation, which we discuss next.

The key of our implementation is a ready queue which contains those tasks
with their dependencies resolved. Tasks are dequeued for execution from the
head, and new ready tasks are enqueued at the tail of this structure. Leaf tasks
are initially enqueued in order of priority following our heuristic approach; see
Figure 4 (a). The execution of tasks is scheduled dynamically: whenever threads
become idle, they monitor the queue for pending tasks. When a thread completes
execution of a task, the task dependent on it is examined, and if its dependencies
have been resolved, then it is enqueued at the ready queue by this thread. Fig-
ure 4 (b) illustrates an example scenario of how this mechanism works with p = 2

(a)

T

T T

T T21

T T3 4

5 6

7

1> h2> h4 > h5h

Ready Queue

New ready tasks T1TTT 245
Execution

(b)

1T2exec. of T

P1 P begin2T1TTT 245 T5
P 2  completes T2

P  enqueues T2 3

TT 43

    

...TT 45
P  completes T11

P1 4 begin exec. of T

Fig. 4. Dynamic scheduling implementation. (a) The initial state of the ready queue.
(b) An example scenario of how dynamic scheduling works with p = 2. Note that in
this situation there has been a heuristic missestimation: T1 is completed before T2.
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and the task tree of Figure 4 (a). As can be observed, when thread 2 (i.e., P2)
completes the execution of T2, dependencies of T3 are resolved and T3 becomes
ready. Idle threads continue to dequeue tasks until all tasks have been executed.
Similar mechanisms have been proposed for irregular codes as part of the Cilk
project [10] and for dense linear algebra codes in the FLAME project [6].

4 Experimental Results

All experiments in this section were obtained on a SGI Altix 350 CC-NUMA
multiprocessor consisting of 16 Intel Itanium2@1.5 GHz processors sharing 32
GBytes of RAM via a SGI NUMAlink interconnect. IEEE double-precision arith-
metic was employed in all experiments, and one thread was binded per processor.
In both the serial and parallel algorithms we used ILUPACK default values for
the condition estimator (κ=100), as well as default the drop tolerances for the L
factor (ε1=10−2) and the Schur complement (ε2=10−2).

Table 1 characterizes the benchmark matrices from the UF sparse matrix
collection6 employed in the evaluation. As shown there, they arise from different
application areas. Table 2 reports the results obtained from the execution of
the serial algorithm in ILUPACK: serial execution time and fill-in factor (ratio
between the number of nonzero elements in the triangular factors produced by
the algorithm and the coefficient matrix). In the multilevel configuration, the
input matrix for the first level has been pre-ordered with MLND, while the
input matrices for the rest of the levels are not pre-ordered.

Table 1. Benchmark matrices selected to test the parallel multilevel ILU

Code Group/Name Problem Domain Rows/Cols. Nonzeros

m1 GHS psdef/bmwcra 1 Structural Problem 148770 10641602
m2 Wissgott/parabolic fem Computational Fluid Dynamics 525825 3674625
m3 Schmid/thermal2 Thermal Problem 1228045 8580313
m4 AMD/G3 circuit Circuit Simulation Problem 1585478 7660826

Table 2. Results from the execution of the serial algorithm in ILUPACK

Code m1 m2 m3 m4

Time (secs.) 98.6 9.63 22.4 32.1
Fill-in factor 7.2 4.4 4.3 5.0

For the parallel algorithm, the multilevel configuration of the sequential al-
gorithm is kept. For simplicity, we only present results for f = p, 2p, 4p, with
p = 2, 4, 8, 16 processors, but note that our implementation also allows values of
6 http://www.cise.ufl.edu/research/sparse/matrices
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f and p which are not power of two, e.g., p = 12 and f = 3p, and values of f
which are not a multiple of p. Therefore, we use six different values of f , resulting
in as many different preconditioners. Some of these are computed varying the
number of processors; thus, e.g., f = 8 is used for p = 2, 4, 8 processors. Table 3
reports the number of leaves in the task trees and the fill-in factor for the corre-
sponding preconditioner obtained by various choices of f . The fill-in factors are
similar to those attained by the serial algorithm in ILUPACK, except for matrix
M1, for which the fill-in tends to be more reduced. The height of the tree de-
pends on the value of f . As stated in Section 3.1, the computed preconditioners
may differ when employing task trees of different heights. Therefore, the fill-in
may change.

To give a rough idea of how our approach will perform, we simulate how dy-
namic scheduling would work in case of hi = ci, where ci is the relative computa-
tional cost of a given task Ti. For example, assuming the task tree of Figure 4 (a),
with h1 = 0.39, h2 = 0.29, h4 = 0.2 and h5 = 0.1, and p = 2, then the leaf tasks
scheduling events are simulated to happen in the following order: T1 scheduled to
P1, T2 scheduled to P2, T4 scheduled to P2, and T5 scheduled to P1. If we define
P1 = h1+h5 and P2 = h2+h4, we can compute the variation coefficient ch = σh/h̄
with σh the standard deviation and h̄ the average of these values (i.e., P1 and P2).
Table 3 reports the value of ch (expressed as a percentage) of each combination
for all four matrices m1-m4, fraction, and number of processors. A ratio close to
0% implies an accurate heuristic balancing (e.g., m2/f = 16/p = 16), while a
ratio significantly large (e.g., m1/f = 16/p = 16) indicates heuristic unbalance.
As can be observed in Table 3, it is a good strategy to employ the same task tree
while reducing the number of processors. For example, for matrix m1/f = 16,
ch is reduced by factor of 73% when we use p = 4 instead of p = 16 processors.
Therefore, in general, a larger number of leaves per processor increases heuristic
balancing. For matrix m2 this difference is not observed. This is due to the struc-
ture of the graph underlying m2, which allows MLND to produce high balanced
elimination trees. This can be observed from the fact that, for f = 2, 4, 8, 16, we
obtain complete binary task trees with f leaves.

Table 4 reports the execution time and the speed-up of the parallel algorithm.
The speed-up is computed with respect to the parallel algorithm executed using
the same task tree on a single processor. A comparison with the serial algorithm
in ILUPACK offers superlinear speed-ups in many cases (see execution times in
Table 1) and has little meaning here. Table 4 also reports the variation coefficient
ct (expressed as a percentage), which takes into consideration measured data
from the execution instead of estimations, as ch do. A ratio close to 0% indicates
a balanced distribution of the workload (e.g., m2/f = 16/p = 16), while a ratio
significantly large (e.g., m1/f = 16/p = 16) indicates an unbalanced distribution
of the computational load.

For matrices m2, m3, m4, and p = 2, 4, 8, 16, it was enough to select f = p
in order to get remarkable speed-ups (close to linear). This situation was well
predicted by our current heuristic, as can be observed by comparing the values
of ch and ct in Tables 3- 4. However, for matrix m1 it is not enough to select
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Table 3. Number of leaf tasks of the tasks trees constructed, fill-in generated for each
selected value of f and variation coefficient for each combination of f and p

m1

f

L
ea

ve
s

F
ill

-i
n

p ch

2 2 6.3 2 1

4 6 4.6
2 1
4 4

8 10 4.2
2 0
4 8
8 9

16 20 3.4
4 3
8 9

16 11

32 36 2.9
8 5

16 9
64 66 2.7 16 5

m2

f

L
ea

ve
s

F
ill

-i
n

p ch

2 2 4.4 2 0

4 4 4.4
2 0
4 0

8 8 4.4
2 0
4 0
8 0

16 16 4.5
4 0
8 0

16 0

32 34 4.5 8 2
16 2

64 70 4.4 16 3

m3

f

L
ea

ve
s

F
ill

-i
n

p ch

2 4 4.3 2 1

4 7 4.3
2 0
4 1

8 12 4.3
2 1
4 1
8 2

16 22 4.3
4 0
8 2

16 2

32 43 4.4 8 1
16 2

64 83 4.4 16 1

m4

f

L
ea

ve
s

F
ill

-i
n

p ch

2 5 5.0 2 0

4 11 5.0
2 0
4 0

8 19 5.0
2 1
4 1
8 2

16 38 5.0
4 0
8 1

16 2

32 74 5.0 8 1
16 1

64 158 5.0 16 0

f = p; see, e.g., what happens for f = 8/p = 8 and f = 16/p = 16, where the
speed-up are 4.74 and 9.26 respectively. This situation was not well predicted
by our heuristic, which makes too optimistic predictions in these situations. A
closer inspection of the task tree for f = 16, reveals 20 highly irregular leaf tasks
to be mapped to p = 16 processors. In this case, dynamic mapping is useless,
and hence the computational load is unbalanced. However, using this task tree
with p = 8 and p = 4 leads to better results: when obtaining more leaves per
processor, dynamic mapping is able to balance the computational load. Further
splitting the task tree led to better performance in many situations, as happened,
e.g., for m1/p = 8, where the speed-up was increased from 4.74 (f = 8) to 7.54
(f = 32). Finally, the relationship between ct and the speed-up, confirms that
the computational cost is concentrated on the leaves, and hence load balancing
in the computation of these tasks led to high parallel performance.

We also traced the execution of our parallel algorithm with the KOJAK and
VAMPIR performance analysis tools. Concretely, we focus on the influence of
the potential sources of overhead in our parallel algorithm as idle threads, syn-
chronization, access to shared resources on the SMM, CC-NUMA data locality,
etc. We observed that idle threads are the main source of overhead, while the
influence of other factors is negligible. For example, for p = 16 and matrix
m1, the mean time to access the shared queue used for the dynamic scheduling
implementation is approximately 40 µsecs. Therefore, as we employ large-grain
parallelism (i.e., f a modest multiple of p), this overall synchronization overhead
does not hurt performance.

In some situations dynamic mapping could have further reduced idle threads
with a better heuristic estimation. To reduce idle threads it is mandatory to
schedule those tasks which are in the critical path (that is, those leaf tasks with
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Table 4. Performance of the parallel multilevel ILU

m1

f p
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c.
)
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ee

d-
U

p
ct

2 2 43.7 1.92 1

4
2 28.6 1.96 2
4 15.9 3.52 11

8
2 28.1 1.92 4
4 15.2 3.57 10
8 11.4 4.74 35

16
4 13.2 3.81 4
8 8.55 5.91 18

16 5.45 9.26 37

32 8 6.00 7.54 2
16 3.44 13.1 7

64 16 3.61 13.0 7

m2

f p

T
im

e(
se

c.
)

Sp
ee

d-
U

p

ct

2 2 4.88 1.97 0

4
2 4.77 1.99 1
4 2.41 3.93 1

8
2 4.70 1.99 0
4 2.37 3.95 0
8 1.23 7.63 2

16
4 2.33 3.98 0
8 1.20 7.77 1

16 0.65 14.3 3

32 8 1.20 7.61 2
16 0.65 14.0 3

64 16 0.62 14.6 3

m3

f p

T
im

e(
se

c.
)

Sp
ee

d-
U

p

ct

2 2 11.1 1.97 0

4
2 11.0 1.98 1
4 5.58 3.91 1

8
2 11.1 1.96 2
4 5.59 3.89 2
8 2.89 7.54 2

16
4 5.53 3.92 2
8 2.82 7.67 2

16 1.46 14.8 2

32 8 2.77 7.76 1
16 1.45 14.8 2

64 16 1.42 14.9 2

m4

f p

T
im

e(
se

c.
)

Sp
ee

d-
U

p

ct

2 2 16.1 1.98 0

4
2 16.1 1.98 1
4 8.20 3.89 1

8
2 16.2 1.96 2
4 8.22 3.87 2
8 4.20 7.57 2

16
4 8.09 3.90 2
8 4.23 7.46 3
16 2.26 14.0 3

32 8 4.14 7.60 2
16 2.21 14.2 4

64 16 2.16 14.6 2

higher cost) as soon as possible. As mentioned in Section 3.3, we priorize the
execution of leaves with higher heuristic by inserting them first in the queue. If
some leaves costs are missestimated dynamic mapping can not comply with this
requirement. Figure 5 shows a capture of the global timeline view of VAMPIR
when displaying a trace of our parallel algorithm with m1/f = 16/p = 8. For
each thread (i.e., each horizontal stripe), the display shows the different states
and their change over execution time along a horizontal time axis. Concretely,
black bars represent time intervals where threads are executing tasks, while white
bars represent other thread states, such as idle or synchronization states. As can
be observed, the two boxed leaf tasks present a high relative cost, and have
been scheduled after other leaves with less computational cost, due to heuristic
missestimation. Here, delays due to idle threads are further reduced by splitting
the task tree: thus, the efficiency attained for m1/f = 16/p = 4 is 95%.

Finally, we employed our own implementation [2] of the PCG solver to evaluate
and compare the numerical quality of our parallel preconditioners and those com-
puted by ILUPACK serial routines. The preconditioned iteration was stopped
when either the iteration count exceeded 1000 iterations or the iterates satisfied
the stopping criterion described in [11]. Table 5 shows the number of iteration
steps required by the PCG to solve the preconditioned linear systems considered,
as a function of the f parameter. The values at column f = 1 correspond to ILU-
PACK preconditioning serial routines. For matrix m1, we changed the default
value for the condition estimator from κ=100 to κ=5 because the PCG solver
did not converge within the maximum prescribed number of iteration steps.
The preliminary results shown at Table 5 confirm that the numerical quality of
the computed parallel preconditioners mildly depends on the task tree. This is
currently under investigation.
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Fig. 5. VAMPIR global timeline view for m1/f = 16/p = 8. The two boxed leaf
tasks present a high relative cost, and have been scheduled after other leaves with less
computational cost.

Table 5. Iteration count for the PCG with our parallel multilevel ILU preconditioners

Code\f 1 2 4 8 16 32 64
m1 780 836 839 855 842 835 828
m2 90 93 92 95 104 107 112
m3 138 147 156 162 165 170 185
m4 69 75 77 80 79 79 85

5 Conclusions and Future Work

We have presented in detail the design foundations of a parallel multilevel precon-
ditioner for the iterative solution of sparse linear systems using Krylov subspace
methods. Our OpenMP implementation internally employs the serial routines
in ILUPACK. MLND ordering, task splitting, and dynamic scheduling of tasks
are used to enhance the degree of parallelism of the computational procedure.
The use of large-grain decompositions (f = p) led to poor performance in some
situations. This can be solved by obtaining finer-grain decompositions (f = 4p)
combined with dynamic scheduling to deal with tasks irregularity. Remarkable
performance has been reported on a CC-NUMA platform with 16 Itanium2 pro-
cessors and we have gained more insights on the performance attained with the
performance analysis tools employed.

Future work includes:
– To compare and contrast the numerical properties of the preconditioner in

ILUPACK and our parallel preconditioner.
– To develop parallel algorithms to apply the preconditioner to the system,

and to solve the system iteratively.
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– To develop parallel preconditioners for non-SPD linear systems.
– To analyze alternative heuristics.
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Abstract. Sparse direct solvers, and in particular multifrontal methods, are
widely used in various simulation problems. Because of their large memory re-
quirements, the use of out-of-core solvers is compulsory for large-scale problems,
where disks are used to extend the core memory. This study is at the junction of
two previous independent works: it extends the problem of the minimization of
the volume of I/O [4] in the multifrontal method to the more general flexible par-
ent allocation algorithm [8]. We explain how to compute the I/O volume with
respect to this scheme and propose an efficient greedy heuristic which signifi-
cantly reduces the I/O volume on real-life problems in this new context.

1 Introduction

We are interested in the direct solution of systems of equations of the form Ax = b,
where A is a large sparse matrix. In direct methods, because the storage requirements
are large compared to the initial matrix A, out-of-core approaches may become nec-
essary. In such cases, left-looking [13,14] and multifrontal [1,12] methods are the two
most widely used approaches. One drawback of multifrontal methods comes from large
dense matrices that give a lower bound on the minimum core memory requirements.
However, those dense matrices may fit in memory, or they can be treated with an out-
of-core process. Apart from these dense matrices, the out-of-core multifrontal method
follows a write-once/read-once scheme, which makes it interesting when one is inter-
ested in limiting the volume of I/O. For matrices A with a symmetric structure (or in
approaches like [6] when the structure of A is unsymmetric), the dependency graph
of the multifrontal approach is given by a tree, processed from leaves to root. The tree
structure results from the sparsity of the matrix and from the order in which the variables
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of the sparse matrix are eliminated; different branches of the tree may be processed in-
dependently. To each node of the tree is associated a so called frontal matrix, which is
a dense matrix divided into two parts (see Figure 1, left): (i) a fully summed block, that
will be factorized, and a non-fully summed block that cannot be factorized yet but will
be updated and used later at the parent node, after it has been replaced by a Schur com-
plement, or contribution block. To be more precise, the following tasks are performed
at each node of the tree:

(i) allocation of the frontal matrix in memory;
(ii) assembly of data (contribution blocks) coming from the child nodes into that

frontal matrix;
(iii) partial factorization of the fully summed part of the frontal matrix, and update of

the rest.

After step (iii), the fully summed part of the frontal matrix has been modified and
contains factors, that will only be reused at the solution stage, whereas the non fully
summed part contains the Schur complement, that will contribute to the frontal matrix
from the parent node (see Figure 1, right). Because factors are not re-accessed during
the multifrontal factorization, they can be written to disk directly, freeing some storage.
Then remains the temporary storage associated to the contribution blocks waiting to be
assembled and to the current frontal matrix. In the classical multifrontal scheme, the
frontal matrix of a parent is allocated (and then factored) only after all children have
been processed. We call this approach terminal allocation. Assuming that a postorder
of the tree is used, contribution blocks can then be managed thanks to a stack mecha-
nism. Furthermore, the order in which the children are processed (or tree traversal) has
a strong impact on both the storage requirement for the stack and the volume of I/O,
should this stack be processed out-of-core.

A more extensive description of the multifrontal approach can be found in, for ex-
ample, [7,11]. In general a large workarray is pre-allocated, in order to store the current
frontal matrix and the contribution blocks. Allowing the frontal matrix of the parent to
overlap with the contribution block of the last child is possible, and significantly reduces
the overall storage requirement. Considering a so-called family composed of a parent
node, with a frontal matrix of size m, and its set of n children that produce contribution

summed
block

block
Fully summed

Contribution

block, or Schur

complement

Non fully

U

L

Fig. 1. Frontal matrix at a node of the tree before (left) and after (right) the partial factorization
of step (iii) in the unsymmetric case (LU factorization)
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blocks of size cbi, i = 1, . . . , n, [10] shows that the storage requirement to process the
tree rooted at the parent is

Sterminal = max

(
max
j=1,n

(Sterminal
j +

j−1∑
k=1

cbk), m +
n−1∑
k=1

cbk

)
(1)

(where Sterminal
j is recursively the storage for the subtree rooted at child j) and can be

minimized by sorting the children in decreasing order of max(Sterminal
j , m)− cbj . By

applying this formula and this ordering at each level of the tree, we obtain the volume
of I/O for the complete tree, together with the tree traversal. Starting from (1), we have
shown in [4] that for a given amount of available memory, M0, the volume of I/O
(=volume written=volume read) associated to the temporary storage of the multifrontal
method is

V terminal = max

(
0, max(max

j=1,n
(min(Sterminal

j , M0) +
j−1∑
k=1

cbk), m +
n−1∑
k=1

cbk) − M0

)

+
n∑

j=1

V terminal
j

(2)

which is minimized by sorting the children in decreasing order of

max(min(Sterminal
j , M0), m)− cbj

at each level of the tree. This gives an optimal tree traversal which is different from
the one from [10]: minimizing the I/O volume is different from minimizing the overall
storage requirement.

2 Flexible Parent Allocation

With the terminal allocation scheme, steps (i), (ii) and (iii) for a parent node are only
performed when all children have been processed. However, the main constraint is that
the partial factorization (step (iii) above) at the parent level must be performed after the
assembly step (ii) has been performed for all child contributions. Thus, the allocation
of the parent node (step (i)), and the assembly of the contributions of some children can
be performed (and the corresponding contribution block freed) without waiting that all
children have been processed. This flexibility has been exploited by [8] to further reduce
the storage requirement for temporary data. Assume that the parent node is allocated
after p children have been processed, and that the memory for the pth child overlaps
with the memory for the parent. The storage required for a parent in this flexible scheme
is then given by:

Sflex = max

⎛⎜⎝ max
j=1, p

(Sflex
j +

j−1∑
k=1

cbk), m +

p −1∑
k=1

cbk, m + max
j=p+1,n

Sflex
j

⎞⎟⎠ (3)
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When the parent is allocated, all the contributions from its factored children are assem-
bled and discarded. From that point on, each child that is factored sees its contribution
block immediately assembled and its memory is released. [8] shows how to choose the
point (split point) where the parent should be allocated and how to order the children
so that the storage requirement Sflex is minimized.

Now if the value of Sflex is larger than the available memory, then disk storage
must be used. In that case, rather than minimizing Sflex, it becomes more interesting
to minimize the volume of I/O: this is the objective of the current paper. To limit the
volume of I/O, minimizing Sflex can appear like a good heuristic. In [12], the authors
have done so, adapting [8] with respect to some additional constraints imposed by their
code. However, by computing the volume of I/O formally, we can show the limits of
a memory-minimizing approach when aiming at decreasing the I/O volume: similarly
to the terminal allocation case, minimizing the volume of I/O in the flexible allocation
scheme is different from minimizing the storage requirement.

3 Volume of I/O in a Flexible Multifrontal Method

The main difference compared to (2) is that with a flexible allocation scheme, a child
j processed after the parent allocation (j > p) may also generate I/O. Indeed, if this
child cannot be processed in-core together with the frontal matrix of the parent, then
part (or the whole) of the frontal matrix has to be written to disk in order to make
room and process the child with a maximum of available memory. This possible extra-
I/O corresponds to underbrace (a) of Formula (4). After that, the factor block of the
frontal matrix of child j is written to disk and its contribution block is ready to be
assembled into the frontal matrix of the parent; to do so, and because we cannot easily
rely on a simple property to find which rows of the contribution block, if any, can be
assembled into the part of the frontal matrix available in memory, we assume that this
latter frontal matrix is fully re-loaded into memory (reading back from disk the part
previously written). This operation may again generate I/O: if the contribution block of
child j and the frontal matrix of its parent cannot hold together in memory, a part of cbj

has to be written to disk, then read back (panel by panel) and finally assembled. This
second possible extra-I/O is counted in underbrace (b) of Formula (4). All in all, and
using the storage definition from Formula (3), the volume of I/O required to process the
subtree rooted at the parent node is given by:

V flex = max

⎛⎜⎝0, max

⎛⎜⎝ max
j=1, p

(
min(Sflex

j , M0) +
j−1∑
k=1

cbk

)
, m +

p −1∑
k=1

cbk

⎞⎟⎠ − M0

⎞⎟⎠
+

n∑
j=1

V flex
j

+
n∑

j=p+1

(
max(0, m + min(Sflex

j , M0) − M0)
)

︸ ︷︷ ︸
(a)

+
n∑

j=p+1

(max(0, m + cbj − M0))︸ ︷︷ ︸
(b)

(4)

Again, a recursion gives the I/O volume for the whole tree.
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4 Minimizing the I/O Volume in the Flexible Multifrontal Method

With the terminal allocation scheme, the I/O volume (on a parent node and its n chil-
dren) is minimized by sorting the children in an appropriate order. With the flexible
scheme, one should moreover determine the appropriate split point, i.e. the best value
for p. In other words, the flexible I/O volume is minimized when together (i) the children
processed before the parent allocation are correctly separated from the ones processed
after and (ii) each one of this set is processed in an appropriate order. Exploring these
n.n! combinations is not always conceivable since some families may have a very large
number n of children (more than one hundred for instance for the GUPTA3 matrix).
However, relying on [4] and Formula 2, we know that an optimal order among children
processed before the parent allocation is obtained when they are sorted in decreasing
order of max(min(Sflex

j , M0), m) − cbj . Moreover, the I/O volume on the children
processed after the allocation is independent of their relative processing order. Said dif-
ferently, these two remarks mean that (ii) is actually obvious when (i) is determined:
we only have to determine to which set (before or after the parent allocation) each child
belongs to. But this still makes an exponential (2n) number of possibilities to explore.

Actually, the decision problem associated to this minimization problem is NP-com-
plete. In other words, given an arbitrary target amount of I/O V , there is no deterministic
polynomial algorithm that can consistently decide whether there exists a partition of the
children inducing a volume of I/O lower than or equal to V (except if P = NP). The
proof of the NP-completeness (reduction from 2-PARTITION) is out-of-scope for this
paper and is provided in [3].

To further reduce the complexity, remark that if a child is such that m+Sflex
j ≤M0,

ordering this child after the parent allocation does not introduce any additional I/O ((a)
and (b) are both 0 in (4)), whereas this may not be the case if it is processed before
the parent allocation. Therefore, we conclude that we can place all children verifying
m + Sflex

j ≤ M0 after the parent allocation. Furthermore, consider the case where

Sflex
j ≥ M0 − m + cbj and m + cbj ≤ M0. Processing this child after the parent

allocation (see Formula (4)) leads to a volume of I/O either equal to m (if Sflex
j >=

M0) – which is greater than cbj , or to Sflex
j − M0 + m (if Sflex

j ≤ M0) – which
is also greater than cbj . On the other hand, treating that child first (this may not be
optimal) will lead to a maximum additional volume of I/O equal to cbj . Therefore, we
can conclude that we should process it before the parent allocation. For the same type
of reasons, children verifying Sflex

j ≥ 2(M0 −m) and m + cbj > M0 should also be
processed before the parent allocation.

We will say that a child is fixed if it verifies one of the above properties: a straight-
forward analysis - independent of the metrics of its siblings - determines if it should
be processed before or after the allocation of the parent node. Even though the num-
ber of fixed children can be large in practice, some matrices may have a few families
with a large number of unfixed children, as shown in Figure 2 for two sparse problems.
For instance, among the 28 families inducing I/O for the GUPTA3 matrix ordered with
METIS when a memory of M0 = 684686 reals is available, 21 families have no unfixed
children (thus for them the optimum process is directly known), but one family keeps
having 54 unfixed children. In such cases, heuristics are necessary and we designed one
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(a) GUPTA3 matrix - METIS ordering
M0=684686

(b) TWOTONE matrix - PORD ordering
M0=7572632

Fig. 2. Distribution of the families in function of their total and unfixed number of children. After
a straightforward analysis, most families have few (or no) unfixed children.

consisting in moving after the allocation the child which is responsible for the peak of
storage until one move does not decrease the volume of I/O anymore.

5 Experimental Results

In order to evaluate the impact of this flexible allocation scheme on the volume of I/O,
we compare the results of our heuristic (Flex-MinIO) both to the terminal allocation
scheme with the IO-minimizing algorithm of [4] (Term-MinIO) and to the flexible
allocation scheme with the memory-minimizing algorithm of [8] (Flex-MinMEM).

The volumes of I/O were computed by instrumenting the analysis phase of MUMPS
[5] which allowed us to experiment several ordering heuristics. We retained results with
both METIS [9] and PORD [15]. For a given matrix, an ordering heuristic defines the
order in which the variables of the matrix are eliminated and an associated task depen-
dency graph (or tree, see Section 1). It impacts the computational complexity as well as
different metrics such as the volume of I/O.

Table 1. Test problems. Size of factors (nnz(L|U)) and number of floating-point operations
(Flops) were computed with PORD ordering, except the ones of GUPTA3 for which METIS
ordering was used.

Matrix Order nnz Type nnz(L|U) Flops Description
(×106) (×109)

CONV3D 64 836550 12548250 UNS 4690.6 48520 Provided by CEA-CESTA; generated using AQUILON

(http://www.enscpb.fr/master/aquilon).
GUPTA3 16783 4670105 SYM 10.1 6.3 Linear programming matrix (AA’), Anshul Gupta

(Univ. Florida collection).
MHD1 485597 24233141 UNS 1169.7 8382 Unsymmetric magneto-hydrodynamic 3D problem,

provided by Pierre Ramet.
TWOTONE 120750 1224224 UNS 30.7 39.7 AT&T,harmonic balance method, two-tone. More off-

diag nz than onetone (Univ. Florida collection).
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(b) GUPTA3 matrix ordered with METIS
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Fig. 3. I/O volume on the stack of contribution blocks as a function of the core memory available
for the three heuristics with four different matrices

We have selected four test problems that we present in Table 1 and for which we
have observed significant gains.

Figure 3 shows the evolution of the corresponding volume of I/O with the avail-
able memory on the target machine. When a large amount of memory is available
(right part of the graphs), the flexible allocation schemes (both Flex-MinMEM and
Flex-MinIO) induce a small amount of I/O compared to the terminal allocation
scheme (Term-MinIO). Indeed, with such an amount of memory, many children can
be processed after the allocation of their parent without inducing any I/O (or inducing a
small amount of I/O): the possible extra-I/Os corresponding to underbraces (a) and (b)
of Formula (4) are actually equal (or almost equal) to zero for those children.

When the amount of available memory is small (left part of the graphs), the memory-
minimizing algorithm (Flex-MinMEM) induces a very large amount of I/O compared
to the I/O-minimization algorithms (both Flex-MinIO and Term-MinIO). Indeed,
processing a child after the parent allocation may then induce a very large amount of
I/O (M0 is small in underbraces (a) and (b) of Formula (4)) but memory-minimization
algorithms do not take into account the amount of available memory to choose the split
point.

Finally, when the amount of available memory is intermediate, the heuristic we have
proposed (Flex-MinIO) induces less I/O than both other approaches. Indeed, accord-



On the I/O Volume in Out-of-Core Multifrontal Methods 335

ing to the memory, not only does the heuristic use a flexible allocation scheme on the
families for which it is profitable, but it can also adapt the number of children to be
processed after the parent allocation.

6 Conclusion

The algorithms presented in this paper should allow to improve the new generation of
serial [12] out-of-core multifrontal codes, based on the flexible allocation scheme, as
well as the serial parts of the parallel ones [2]. Implementation issues of the method are
further discussed in [3].
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Banach space. The numerical approach used to compute the (cluster of) eigen-
values and associated invariant subspace basis for the integral operator is based
on its projection into a finite dimensional subspace. By evaluating the projected
problem on a specific basis function, an algebraic eigenvalue problem is obtained;
further, the corresponding coefficient matrix is banded.

This work examines the numerical computation of eigenpairs of the matrix
of the integral operator using state-of-the-art numerical methods implemented
in publicly available software packages. Numerical results using both direct and
iterative parallel strategies are presented and discussed.

Section 2 provides a brief description of the problem and the necessary mathe-
matical formalism, from the discretization method used to the projected approx-
imate eigenvalue problem. Section 3 summarizes the computing platforms used
for the performance analysis, along with a description of the installed software
in each one of the platforms. In Sections 4 and 5, implementation details on the
data generation as well as on the numerical methods used are addressed. The
former section deals with numerical experiments with the ScaLAPACK library,
therefore focusing on direct methods capable of delivering all (or a subset of)
eigenpairs of the matrix problem. The latter section is driven by the SLEPc
library: a number of state-of-the-art iterative methods are tested, providing in-
sights in the more appropriate methods as well as in parameters specification.
Both ScaLAPACK and SLEPc are available in the ACTS Collection of the US
Department of Energy (DOE) [1]. The work finishes with conclusions and guide-
lines for the solution of similar problems in the context of high performance
computing.

2 Problem Description

We seek to solve
Tϕ = λϕ (1)

where T : X → X is an integral operator defined in X = L1 ([0, τ∗]), that
satisfies

(Tx) (τ) =
�

2

∫
τ∗

E1 (|τ − τ∗|)x (τ ′) dτ ′, 0 < τ ≤ τ∗ (2)

where τ is the optical depth of the stellar atmosphere, τ∗ is the optical thickness
of the stellar atmosphere, � ∈ [0, 1] is the albedo, and E1 = �

2

∫∞
1

exp(−τµ)
µ dµ

is the first exponential-integral function. We refer the reader to [2,3] for details
on the formulation of the problem. In a previous work two of the authors have
investigated techniques for the solution of the associated radiative transfer equa-
tion [4]. Here we apply direct and iterative parallel strategies to investigate the
spectral properties of the problem.

An integral equation of this type can be solved by a discretization mechanism,
for instance by projecting it into a finite dimensional subspace. In particular,
Tϕ = λϕ can be approximated by

Tmϕm = λmϕm (3)
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in the finite dimensional subspace given by an m-dimensional subspace of X
spanned by m linearly independent functions (em,j)

m
j=1, Xm. Also, 0 = τm,0 <

τm,1 < . . . < τm,m = τ∗. A nonuniform grid can be used, taking into account
the boundary layer at 0. However, a symmetric matrix is obtained if a uniform
grid is used instead. Moreover, a symmetrization operation can be applied to
the non-symmetric operator matrix.

The projection approximation of T , Tm : X → Xm, is defined by

Tmx = πmTx =
m∑

j=1

〈x, T ∗e∗m,j〉em,j. (4)

being πm the projection in the finite dimensional space. This leads to the eigen-
value problem

Ax = θx (5)

of dimension m where A, large sparse and symmetric, corresponds to the restric-
tion of Tm to Xm. The coefficients of A are given by:{

�
[
1 + 1

di,i−1
(E3 (di,i−1)− 1

2 )
]
, i > j

�
2di,i−1

[−E3 (di,j) + E3 (di−1,j) + E3 (di,j−1)− E3 (di−1,j−1)] , i �= j
(6)

being di,j = |τm,i − τm,j |, E3(τ) =
∫∞
1

exp(−τµ)
µ3 dµ, and E3(0) = 1

2 . For further
details, we refer the reader to [2].

For computational purposes, the E3 function is evaluated according to [5].
Noteworthily, the values of A decay significantly from the diagonal and for prac-
tical purposes the matrix can be considered banded.

Our goal is to approximate Tmϕm = λmϕm by solving an associated symmet-
ric eigenvalue problem Ax = θx for large values of m.

3 Test Cases and Computing Platforms

The performance analysis was performed using test problems of different size,
which were obtained by varying the resolution of the discretization mesh.

Our tests were performed on three platforms: bassi and jacquard, located
at DOE’s National Energy Research Center (NERSC), and odin, located at
Universidad Politécnica de Valencia. Bassi is an IBM p575 POWER 5 system
with 122 8-processor nodes and 32 GB of memory per node. Jacquard is an
AMD Opteron cluster with 356 dual-processor nodes, 2.2 GHz processors, 6 GB
of memory per node, interconnected with a high-speed InfiniBand network. Odin
is a cluster of 55 nodes with dual Pentium Xeon processor at 2 GHz with 1 GB
of memory per node and interconnected with a high-speed SCI network with 2-D
torus topology. On bassi we used the basic linear algebra subroutines (BLAS)
available in the ESSL library, while on jacquard we used the BLAS available
in the ACML library. The software installation on odin includes SLEPc 2.3.3,
PETSc 2.3.3, PRIMME 1.1, Hypre 2.0, and MUMPS 4.7.3.
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For all cases showed in this paper we used � = 0.75 (although not shown, tests
with larger values of � required similar computing times). We used a relative
error ε ≤ 10−12 for the stopping criterion of the iterative method in order to
obtain solutions as “accurate” as the direct method, and also to perform a more
realistic comparison of the algorithms’ computational performance.

The test cases that have been used for analyzing the performance of the solvers
correspond to matrix dimensions (m) of 4K, 8K, 16K, 32K, 64K, 128K and 216K.
The average number of non-zero elements per row is about 75. For example, the
matrix of order 4K has 290,668 non-zero elements.

4 Solution Strategy with a Direct Eigensolver

4.1 Numerical Components

In this section we focus on ScaLAPACK’s pdsyevx [6] for the solution of eigen-
value problem (5). This routine can compute all eigenvalues and (optionally)
the corresponding eigenvectors, or only those eigenvalues specified by a range
of values or a range of indices. The calculations consist of the following steps:
reduction of the input (symmetric matrix) to tridiagonal form, computation of
the eigenvalues of the tridiagonal using bisection, computation of the eigenvec-
tors of the tridiagonal using inverse iteration, and (if eigenvectors are required)
multiplication of the orthogonal transformation matrix from the reduction to
tridiagonal form by the eigenvectors of the tridiagonal. Noticeably, pdsyevx may
fail to produce orthogonal eigenvectors for tighly clustered eigenvalues. Also, it
does not reorthogonalize eigenvectors that are on different processes (the extent
of reorthogonalization is determined by the memory available).

ScaLAPACK assumes that the global data has been distributed to the pro-
cesses with a one or two-dimensional block-cyclic data distribution. In the present
work we have generated A using a 1-D block column distribution, i.e. each pro-
cessor generates a block of columns of A. Since in our case A is banded, the 1-D
column distribution is more natural and easier to implement. It would be de-
sirable to take advantage of these properties but ScaLAPACK implements only
LU and Cholesky factorizations for band matrices.

4.2 Performance Results

Figures 1 and 2 show the timings for the generation of A, and the eigensolution
phase with pdsyevx, for matrices of dimension 4K, 8K, 16K and 32K, on up to 128
processors. As expected, the generation of A scales almost ideally when the num-
ber of processors is increased. Concerning the eigensolution phase, the timings
on bassi refer to the computation of all eigenvalues but no eigenvectors, while on
jacquard to the computation of the five largest eigenvalues and corresponding
eigenvectors. In both cases, the scaling of pdsyevx showed to be satisfactory for
the dimensions and number of processors that we have considered. Although
the generation of A following a 2-D block cyclic distribution might lead to a
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Fig. 1. Execution times for the matrix generation and eigensolution (pdsyevx) phases
on bassi. The timings are for the computation of all eigenvalues but no eigenvectors.
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better performance, we anticipate that for much larger matrices a direct method
would be penalizing. This is also because the matrices become more banded (a
property that currently we cannot take advantage of). It is well known that for
most cases the reduction to tridiagonal form dominates the costs. However, for
some pathological cases, where the eigenvalues are highly clustered, the costs for
computing eigenvalues and orthogonalizing them may also be significant [7]. For
our problems, the largest eigenvalues become very clustered as the dimension
increases. This means that the corresponding eigenvectors would probably have
to be orthogonalized more often, therefore increasing the computational costs.

5 Solution Strategy with an Iterative Eigensolver

An iterative eigensolver allows for the solution of larger problems, since one can
better exploit the characteristics of the associated matrices (such as sparsity)
and no direct transformation of the matrices is needed (such as reduction to
tridiagonal form). Also, an iterative eigensolver is usually cheaper than a di-
rect eigensolver when only a subset of eigenvalues and eigenvectors is required.
The price to be paid is the convergence rate when there are tightly clustered
eigenvalues, as well as the complexity of the different numerical algorithms that
have to be used in order to get a scalable solution. Fortunately, there are soft-
ware tools available that implement those algorithms, and their integration is
relatively easy as explained below.

5.1 Numerical Components

PETSc1, the Portable Extensible Toolkit for Scientific Computation [8], is a
parallel framework for the numerical solution of problems arising in applications
modeled by partial differential equations. Its design follows an object-oriented
approach in order to be able to manage the complexity of numerical methods for
very large and sparse problems on parallel computers. It is designed to provide
enough flexibility to make software reuse feasible in many different contexts, but
also with other goals in mind such as numerical robustness, computational effi-
ciency, portability to different computing platforms, interoperability with other
software, etc.

In PETSc all the code is built around a set of objects that encapsulate data
structures and solution algorithms. The application programmer works directly
with these objects rather than concentrating on the underlying data structures.
The data objects include management of index sets, vectors and sparse matrices
in different formats, as well as basic support for structured and unstructured
meshes. Built on top of this foundation are various classes of solver objects,
including linear, nonlinear and time-stepping solvers.

For solving linear systems of equations, PETSc provides a variety of iterative
methods such as Conjugate Gradient and GMRES, that can be combined with

1 PETSc is available at http://www.mcs.anl.gov/petsc
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different preconditioners such as the incomplete LU factorization. Additionally,
direct methods for linear systems are also available via complete factorizations
that are handled in a similar way to preconditioners. In both cases, PETSc allows
the use of external libraries that are seamlessly integrated in the framework, thus
complementing the offered functionality. Examples of such libraries are MUMPS
[9] for direct solvers and Hypre for preconditioners, the latter providing different
methods such as the algebraic multigrid preconditioner, BoomerAMG [10].

SLEPc2, the Scalable Library for Eigenvalue Problem Computations [11,12], is
a software library for the solution of large, sparse eigenvalue problems on parallel
computers. It can be used for the solution of eigenproblems formulated in either
standard or generalized form (Ax = λx or Ax = λBx), both Hermitian and
non-Hermitian, with either real or complex arithmetic, as well as other related
problems such as the singular value decomposition.

SLEPc is built on top of PETSc, and extends it with all the functionality
necessary for the solution of eigenvalue problems. It provides uniform and effi-
cient access to a growing number of eigensolvers. Most of these solvers belong
to the class of Krylov projection methods, see [13]. In particular, SLEPc im-
plements several variants of the Arnoldi and Lanczos methods, as well as the
recently proposed Krylov-Schur method [14] that incorporates a very efficient
restarting mechanism. In addition to these solvers, SLEPc seamlessly integrates
third-party eigensolver software such as PRIMME [15]. The user is able to eas-
ily switch among different eigensolvers by simply specifying the method at run
time. Apart from the solver, many other options can be specified such as the
number of eigenvalues to compute, the requested tolerance, or the portion of the
spectrum of interest.

SLEPc also provides built-in support for different spectral transformations
such as the shift-and-invert technique. When such a transformation is applied,
the matrix inverses such as (A−σB)−1 are not computed explicitly but handled
implicitly via a linear system solver provided by PETSc.

For the application described in section 2, the algebraic problem is a standard
eigenproblem, that can be symmetric or non-symmetric depending on whether
the discretization grid is uniform or not. In the following, we will consider only
the symmetric case.

As mentioned in section 2, the sparsity pattern of the matrix is quite special.
In fact, it is not really sparse but banded, with a dense band. This will have some
implications when treating the matrix from a sparse perspective. In particular,
some operations may be quite inefficient with respect to the purely sparse case.

For moderate problem sizes, the Krylov-Schur method does a very good job
in computing the largest eigenvalues, i.e. those closest to �, and the correspond-
ing eigenvectors. However, as the problem size grows, it is increasingly difficult
for the method to have the solution converged. This difficulty is illustrated in
Table 1, with the execution time and number of iterations required to compute
5 eigenpairs of the smallest test cases. In order for the Krylov-Schur method to
get the solution in a reasonable number of iterations, it is necessary to increase

2 SLEPc is available at http://www.grycap.upv.es/slepc.
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Table 1. Performance of SLEPc and PRIMME on several test cases: m is the matrix
size, k is the dimension of the subspace employed by the solver. For the Krylov-Schur
and Jacobi-Davidson methods, the required iterations (its) and elapsed time (in sec-
onds) is shown.

Krylov-Schur Jacobi-Davidson
m k its time k its time
4K 48 230 27 48 68 14
8K 96 145 103 48 79 44
16K 192 119 789 48 89 181

the dimension of the subspace used by the solver. The table also shows results
for the Jacobi-Davison method implemented in PRIMME, which is able to com-
pute the solution faster and without having to increase the subspace dimension.
Unfortunately, for larger test cases both methods fail to compute the solution in
a reasonable time.

The problem of slow convergence is due to the fact that eigenvalues get more
and more clustered around � as the the order of the matrix grows, and it is well
known that convergence of Krylov eigensolvers gets worse when the separation
of eigenvalues is poor. Fortunately, the shift-and-invert spectral transformation
is a workaround for this problem that fits very well in this application. The idea
is to reformulate the eigenproblem as

(A−�I)−1xi = θixi. (7)

This transformation does not alter the eigenvectors, xi, and eigenvalues are mod-
ified in a simple way, (λi−�)−1 = θi, where λi are the eigenvalues of the original
eigenproblem. If the Krylov-Schur eigensolver is applied to the transformed prob-
lem, the eigenvalues closest to � will be retrieved first, as before, the difference
being a more favourable separation of eigenvalues.

To illustrate the benefits of shift-and-invert, especially for large matrices, we
show some performance data in Table 2. The first eigenvalue is very close to �,
and the next ones are very tightly clustered, with a separation of order 10−9 in
the two largest test cases. With a basis size of 12 vectors, Krylov-Schur requires
more than 20,000 restarts to attain the requested tolerance. As mentioned before,
increasing the basis size would alleviate this bad convergence, but this is not
viable for the largest test cases. In contrast, shift-and-invert performs extremely
well, with only three restarts independently of the matrix size, and a total of
just 23 linear solves. In the sequel, we will consider only runs of Krylov-Schur
with shift-and-invert using a basis size of 12 vectors.

The spectral transformation enhances convergence dramatically, and it is pro-
vided by SLEPc in a straightforward manner. The downside is that the code has
to deal with an inverted matrix, (A−�I)−1. Of course, this matrix is not com-
puted explicitly. Instead, linear solves are performed whenever a matrix-vector
product is required by the eigensolver.
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Table 2. Performance of SLEPc on several test cases: m is the dimension of the matrix,
λ1 is the largest eigenvalue, sep is the average distance among the 5 largest eigenvalues.
For the Krylov-Schur method (K-S) with and without shift-and-invert (S-I), the table
shows the required iterations (its) and elapsed time (with MUMPS in the latter case).

K-S K-S with S-I
m λ1 sep its time its time
4K 0.749999813794 1.12 · 10−6 21,349 298 3 0.21
64K 0.749999999272 4.37 · 10−9 N/A N/A 3 3.54
128K 0.749999999818 1.09 · 10−9 N/A N/A 3 7.09

Two alternatives exist for solving linear systems: direct and iterative meth-
ods. And both alternatives are provided in the context of PETSc, as mentioned
before. For the shift-and-invert spectral transformation, it is more natural to use
a direct method, providing full accuracy for the computed vector. However, that
approach could lead to a non-scalable code or represent an exceedingly high cost.
The iterative solver alternative can be a cheap and effective solution, provided
that the requested tolerance is sufficient and that the convergence of the inner
iteration is guaranteed by a good preconditioner.

Since only a subset of the eigenpairs are computed with SLEPc, the eigensolu-
tion stage will be relatively fast and the higher cost will reside in the computation
of the matrix elements. Thus, the matrix generation stage has to be effectively
parallelized in order to achieve good overall performance.

In PETSc, parallel matrices are distributed by blocks of contiguous rows. That
is, a given processor owns a range of matrix rows and stores them in a sparse
format. The internal format may vary depending on which solver is going to
be used, but this is transparent to the code that sets the matrix elements. For
instance, direct solvers such as MUMPS use a particular storage scheme.

In order to exploit the data distribution scheme during the parallel matrix
generation, the different processors will compute only the matrix elements that
belong to their locally owned rows. With this simple rule, there is no commu-
nication involved in the creation of the matrix, and parallel performance should
be close to optimal provided that the matrix rows are equally distributed. How-
ever, it turns out that the number of non-zero elements is not uniform across
the different rows, and this may lead to load imbalance. This imbalance is not
severe, though, as will be illustrated in the performance results below. On the
other hand, there is no obvious way of predicting how elements decay in a given
row of the matrix, so the number of non-zero elements cannot be estimated prior
to the actual computation of matrix elements.

In addition to the scheme discussed in the previous paragraph, our actual
implementation incorporates the following enhancements:

1. Symmetry is exploited, that is, whenever a matrix element ai,j is computed,
it is set also in the position corresponding to the symmetric element, aj,i.
This reduces the cost of the computation roughly by half. The drawback is
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that when the computation is done in parallel, the assembly of the matrix
will imply communication among the processors.

2. The computation of each E3(di,j) can be amortized because it is used in many
different matrix elements. It is difficult to determine a priori which are those
elements. Nevertheless, there is a locality effect that makes reuse more likely
in close matrix elements. In order to exploit this fact, we implemented a
simple caching mechanism that stores recently computed values of E3. With
a cache size of only 12 values, the percentage of cache hits in a typical run
is 75%, so three quarters of the computation is avoided.

The above optimizations are a detriment to parallel efficiency, but we opted for
prioritizing sequential performance and still retain good parallel behaviour.

5.2 Performance Results

For analyzing the parallel performance of the SLEPc-based code, the test prob-
lems have been solved on odin, requesting only 5 eigenvalues with a basis size of
12 vectors. In this section, only results are shown corresponding to the largest
test case. Despite the large matrix size, the eigensolver does a very good job in
getting the solution converged, because of the effectiveness of shift-and-invert in
this case.

If a direct linear solver is used for the systems associated to the shift-and-
invert transformation, then the computation with one processor is really fast. For
instance, with MUMPS the overall eigencomputation takes 7 seconds. However,
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the situation is worse in parallel: 22.6 seconds with 2 processors, and this time
cannot be reduced with more processors, see the horizontal line in Figure 3.
Therefore, we discard the use of direct linear solvers in this setting, because
they are not scalable, at least in this type of platforms. It should be stressed
that the non-scalability comes from the problem properties, because MUMPS is
not optimized for the case of banded, dense matrices.

As discussed before, the alternative is to use an iterative linear solver for
the shift-and-invert transformation. In our application, GMRES combined with
the algebraic multigrid preconditioner works very well. With one processor the
computation is significantly slower (80 seconds), but scalability is remarkably
good up to 32 processors and it catches up soon. Figures 3 and 4 show the
execution time and the speed-up, respectively. Up to 32 processors, the execution
time decreases with constant slope, and speed-up is close to the optimal one. The
data for more processors are not shown in these figures, because the number of
iterations of the linear system solver changes significantly (e.g. with 40 processors
it makes a total of 115 linear iterations, whereas only 70 are necessary up to
32 processors), and thus those times are not comparable. It seems that the
preconditioner starts to lose effectiveness when the piece of the matrix assigned
to each processor becomes too small.

Regarding the generation of the matrix, Figure 3 shows a time curve that
starts with a significantly flatter slope. This is due to the fact that the en-
hancements discussed before make matrix generation sequentially very efficient.
The consequence is a moderate speed-up, as illustrated in Figure 4. Overall, the
efficiency of the computation is reasonably good.
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Table 3. Scalability of SLEPc. For p processors, a problem of order m = 4000 · p is
solved. Tgen and Tsolve are the execution times (in seconds) for matrix generation and
eigencomputation, respectively. its are the accumulated GMRES iterations.

p m Tgen Tsolve its
1 4K 21 2.70 92
2 8K 40 2.85 92
4 16K 75 2.91 91
8 32K 145 2.91 89
16 64K 294 2.83 82
32 128K 630 2.94 73
54 216K 1012 3.37 86

In order to carry out a fair comparison of the performance for more than 32
processors, we run test cases with increasing problem size, so that the number
of matrix rows assigned to each processor remains constant. Table 3 presents
the obtained execution times, showing that the time for the eigencomputa-
tion phase is more or less constant. The total of accumulated linear solve
iterations do not vary too much in this case. We can conclude that the com-
putation of eigenvalues with SLEPc and BoomerAMG scales linearly with the
problem size.

6 Conclusions

In this contribution we considered the numerical computation of eigenelements
of integral operators associated to a radiative transfer problem, using direct
and iterative strategies available in publicly available software packages. The
generation of the associated matrices in parallel leads to a significant reduc-
tion in computing time. Concerning the eigensolution phase, the algorithm im-
plemented ScaLAPACK’s pdsyevx showed good scalability for the number of
processors used, for computing all eigenvalues only, or a subset of eigenvalues
and corresponding eigenvectors. Similarly, SLEPc showed good scalability for
the number of processors used for computing a subset of eigenvalues and cor-
responding eigenvectors. However, a closer look at Figures 1-2 and 3-4 reveals
that a direct method becomes more costly as the problem size increases, greatly
surpassing the (by itself costly) generation of the matrix. This results from the
O(n3) complexity of the algorithm (in particular the reduction to tridiagonal
form) and also because we cannot exploit the band structure of our problems.
A strong point in favor of a direct method would be the proper determination
of eigenvalue multiplicities. However, we have also been able to deal with such
cases with iterative methods. Therefore, for our applications, iterative methods
become the method of choice when a subset of eigenvalues is wanted.
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High Performance Computing and the Progress
of Weather and Climate Forecasting

Philippe Bougeault

European Centre for Medium-Range Weather Forecasts, UK

Abstract. Over the last few years, global weather forecasts from a num-
ber of operational numerical weather prediction centres have continued
to progress steadily in skill and reach an impressive level of quality. The
drivers of progress are increased resolution, better numerical algorithms,
massive amounts of new observations from satellites, and very advanced
data assimilation schemes to ingest observations in models. All of these
aspects rely heavily on the ever increasing computing resources that have
become available. The first part of the talk will describe some aspects of
these improvements and will give considerations on how much each type
of improvement has actually contributed to the overall improvement in
forecast skill.

While the most advanced weather forecasting models have reached
global horizontal resolutions of about 20km, climate models are rather
ranging from 300km to 100km. Recent research points to the need to
increase the resolution of climate models to benefit from the same large
improvements as the weather forecast models have undergone. In fact the
concept of seamless weather and climate forecasts is rapidly developing.
The second part of the talk will focus on this concept.

The third part of the talk will highlight current difficulties in de-
veloping highly scalable systems, based on the ECMWF example. The
ECMWF high performance computer system consists of 2 IBM
POWER5+ Cluster 1600 supercomputer systems. Each cluster is made
up of 155 compute nodes, plus a further 10 nodes which are used for
I/O and networking. Each node consists of 8 Dual-core Power5+ pro-
cessors, ie 16 physical cores, which have a clock frequency of 1.9 GHz.,
a peak performance of 7.6 Gflops/core and a sustained performance of
1 Gflop/core. Simultaneous Multi-Threading (SMT) means that each
physical core can run 2 threads concurrently. So with SMT switched on,
each node can be considered to have 32 logical cores. Users specify jobs
by the number of MPI processes and the number of OpenMP threads. I
will show examples of work to improve the scalability of various parts of
our forecasting system on this machine.
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Abstract. In order to better understand the internal structure of aster-
oids orbiting in the Solar system and then the response of such objects
to impacts, seismic wave propagation in asteroid 433-Eros is performed
numerically based on a spectral-element method at frequencies lying be-
tween 2 Hz and 22 Hz. In the year 2000, the NEAR Shoemaker mission
to Eros has provided images of the asteroid surface, which contains nu-
merous fractures that likely extend to its interior. Our goal is to be able
to propagate seismic waves resulting from an impact in such models. For
that purpose we create and mesh both homogeneous and fractured mod-
els with a highly-dispersive regolith layer at the surface using the CUBIT
mesh generator developed at Sandia National Laboratories (USA). The
unstructured meshes are partitioned using the METIS software package
in order to minimize edge cuts and therefore optimize load balancing
in our parallel blocking or non-blocking MPI implementations. We show
the results of several simulations and illustrate the fact that they exhibit
good scaling.

Keywords: Non-blocking MPI, load balancing, scaling, mesh partition-
ing, seismic wave propagation, asteroids.

1 Introduction

In the context of seismic exploration, it is of crucial importance to develop effi-
cient numerical tools to model seismic wave propagation in complex structures
with great accuracy at scales of at least tens of kilometers. For this purpose, the
seismic wave equation can be solved numerically in heterogeneous media using
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different methods, for instance the finite-difference technique or the boundary in-
tegral technique. In the last decade, the spectral-element method (SEM), which is
more accurate and flexible, has been used extensively in the context of regional
or global seismology. The SEM was introduced twenty years ago in computa-
tional fluid mechanics by [1]. It is a high-order variational method that retains
the ability of finite elements to handle complicated geometries while keeping
the exponential convergence rate of spectral methods. Complex topographies,
dipping or curved interfaces, interface and surface waves, and distorted meshes
can be easily taken into account. Indeed, the SEM provides a more natural con-
text to describe the free surface of the model thanks to the weak formulation
of the equations that is used, for which the free surface condition is a natu-
ral condition. The formulation of the SEM based on the displacement vector
and on Gauss-Lobatto-Legendre numerical integration which is implemented in
our software package called SPECFEM has the property to retain a diagonal
mass matrix and is therefore easier to implement than classical low-order finite-
element methods. Applications of the SEM to two-dimensional (2D) (e.g., [3,4])
and three-dimensional (3D) elastodynamics (e.g., [5,6]) have shown that high
accuracy (i.e., small numerical dispersion) is obtained. The time discretization
is an explicit conditionally-stable second-order centered finite-difference scheme.
Because of the diagonal mass matrix and of the standard explicit time scheme, no
inversion of a linear system is needed and therefore the method can be efficiently
implemented in parallel and large 3D models can be handled (e.g., [5,6,7]). In
this article, we use the SEM to simulate seismic wave propagation resulting from
an impact at the surface of a 2D cut plane in an asteroid.

Asteroids are metallic or rocky bodies orbiting in the Solar System. Very little
is known about their internal structure and therefore several models of their
interior have been proposed, for instance monoliths (objects of low porosity,
good transmitters of elastic stress) or rubble pile (shattered bodies whose pieces
are grouped into a loose and porous packing [8]). Depending on its structure,
the response of an asteroid to an impact (for instance when it is hit by a meteor
or by an artificial impactor sent on it at high velocity) can be very different [9]:
a rubble pile would be harder to disrupt than a monolith [8]. Thus, to develop
mitigation techniques (to prevent a potential collision of a hazardous object with
the Earth) it is important to be able to perform simulations of body disruption
on reliable models of an asteroid interior [10]. The geophysical knowledge of
asteroid interiors can be improved by space missions sent to comets or asteroids.
In the year 2000, the NEAR Shoemaker mission to 433-Eros has provided images
of the asteroid surface, which displayed numerous fractures and evidence of a
coherent but fractured interior [11]. The study of the crater distribution at the
surface of Eros has highlighted a deficit in the distribution of small crater sizes.
To explain this observation, [12] have proposed impact-induced vibrations as a
possible source of downslope movements on crater walls. The related mobilized
material could fill the smallest craters, leading to their erasure. In this study we
therefore simulate wave propagation in different models of the interior of asteroid
433-Eros.
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2 Spatial and Temporal Discretization of the Governing
Equations

We consider a linear isotropic elastic rheology for the heterogeneous solid, and
therefore the seismic wave equation can be written in the strong form as:

ρü=∇ · σ + f ,

σ =C : ε = λtr(ε)I + 2µε ,

ε = 1
2 [∇u + (∇u)T ] ,

(1)

where u denotes the displacement vector, σ the symmetric, second-order stress
tensor, ε the symmetric, second-order strain tensor, C the fourth-order stiffness
tensor, λ and µ the two Lamé parameters, ρ the density, and f an external
force. The trace of the strain tensor is denoted by tr(ε), I denotes the identity
tensor, the tensor product is denoted by a colon, and a superscript T denotes
the transpose. A dot over a symbol indicates time differentiation. The physical
domain is denoted by Ω, and its outer boundary by Γ . The material parameters
of the solid, C (or equivalently λ and µ) and ρ, can be spatially heterogeneous.
We can then rewrite the system (1) in a variational weak form by dotting it with
an arbitrary test function w and integrating by parts over the whole domain as:∫

Ω

ρw · ü dΩ +
∫

Ω

∇w : C : ∇u dΩ =
∫

Ω

w · f dΩ +
∫

Γ

(σ · n̂) ·w dΓ . (2)

The free surface (i.e. traction free) boundary condition on Γ is easily imple-
mented in the weak formulation since the integral of traction along the boundary
simply vanishes (e.g., [5]) when we set τ = σ · n̂ = 0 at the free surface.

This formulation is solved on a mesh of quadrangular elements in 2D, which
honors both the free surface of the asteroid and its main internal discontinu-
ities (for instance its fractures). The unknown wave field is expressed in terms
of high-degree Lagrange polynomials on Gauss-Lobatto-Legendre interpolation
points, which results in an exactly diagonal mass matrix that leads to a simple
time integration scheme (e.g. Komatitsch et al., 2005). Let wN , uN denote the
piecewise-polynomial approximations of the test functions and the displacement,
respectively. Making use of (2), the discrete variational problem to be solved can
thus be expressed as: for all time t, find uN such that for all wN we have∫

Ω

ρwN · üN dΩ +
∫

Ω

∇wN : C : ∇uN dΩ =
∫

Ω

wN · f dΩ . (3)

We can rewrite this system (3) in matrix form as:

Md̈ + Kd = F , (4)

where M is the diagonal mass matrix, F is the source term, and K is the stiff-
ness matrix. For detailed expression of these matrices, the reader is referred for
instance to [6].
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Time discretization of the second-order ordinary differential equation (4) is
achieved using the explicit Newmark central finite-difference scheme [5,6], which
is second order accurate and conditionally stable :

M d̈n+1 + Kdn+1 = Fn+1 , (5)

where

dn+1 = dn + ∆tḋn +
∆t2

2
d̈n , (6)

and
ḋn+1 = ḋn +

∆t

2
[d̈n + d̈n+1] . (7)

At the initial time t = 0, null initial conditions are assumed i.e., d = 0 and ḋ = 0.
The time step ∆t and the distribution of mesh sizes h(x, y) are chosen such
that the Courant-Friedrichs-Lewy (CFL) stability condition and a numerical
dispersion condition are satisfied. The CFL condition is :

max

(
cp(x, y)
h(x, y)

)
∆t ≤ α , (8)

where cp(x, y) is the pressure velocity distribution in the model under study, and
the numerical dispersion condition is

min

(
cs(x, y)
h(x, y)

)
/(2.5f0) ≥ nλ , (9)

where f0 is the dominant frequency of the seismic source, cs(x, y) the shear ve-
locity distribution in the model and nλ the minimum number of grid points per
seismic wavelength. In practice α is taken lower than 0.5, and nλ about 5 [13].

3 Model of the Asteroid

The size of Eros is approximately 34 km (length) by 17 km (height) and we
have designed its model according to the dataset provided by the NEAR Shoe-
maker spacecraft. These data display a regolith blanket at the surface (formed
by crushed rocks during impacts) of thickness ranging from tens to hundreds of
meters [11]. We therefore added a regolith blanket around the asteroid, with a
thickness ranging from 50 to 150 m. The images of the surface of Eros also dis-
play numerous craters and fractures. These fractures are thought to be formed
by impacts and the regolith depression found around them suggests regolith infil-
tration [11]. This regolith depression can be up to 300 m wide, for instance near
the Rahe Dorsum ridge. This long fracture, striking on Eros images, probably
crosses the asteroid interior and is therefore included in our 2D model. Except
Rahe Dorsum, all fractures have been designed under the main craters in our
2D model and filled with the same material as the regolith. Because of technical
constraints, we designed simple fracture shapes, and to avoid low angles in the
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Table 1. The quality of the quadrangle elements can be defined by their angles θ (rad)
or equivalently by their skewness, which is defined as |(2θ − π)/π|. Ideal angles are
right angles (90 degrees) with skewness of 0, and poor angles are lower than typically
30 degrees with skewness beyond approximately 0.65. Here the number of poor elements
is small and their influence on the global calculations is therefore expected to remain
reasonable.

Model Homogeneous (3744 elements) Fractured (57275 elements)
Average angle 84.14 81.98

Standard deviation angle 5.57 7.44
Min Angle 59.83 29.76
Max angle 89.94 89.97

Average skew 0.0606 0.0861
Standard deviation skew 0.0575 0.0925

Min skew 0 0
Max skew 0.356 0.647

mesh elements, we tried to draw the fracture geometry with angles close to 90
degrees. We extended the fracture network to a depth of one crater radius or
more according to [16].

We define two models of the interior of Eros: one that is homogeneous (it
includes the topography of Eros and an elastic material characterized by a pres-
sure wave velocity cp = 3000 m.s−1, a shear wave velocity cs = 1700 m.s−1, and
a density = 2700 kg.m−3), and another one that in addition comprises a regolith
layer as well as fracture networks. The interior of the fractures and the regolith
layer have the same material properties: cp= 900 m.s−1, cs= 500 m.s−1, and a
density of 2000 kg.m−3. Seismic attenuation (i.e., loss of energy by viscoelastic-
ity) can be ignored in this problem because seismic studies performed on the
Moon have shown that it is negligible.

The two models are meshed with CUBIT quadrangular and hexahedral mesh
generator developed at Sandia National Laboratories (http://cubit.sandia.gov,
USA). Table 1 shows that the quality of the meshes obtained for the two models
displayed in Figure 1 is good: the angles of the elements are acceptable (com-
prised between approximately 30 and 90 degrees) with a related skewness lying
between 0 and 0.65 (0 corresponds to the best case of a perfectly cubic element
and 1 corresponds to the worst case of a flat element). For speed-up scaling pur-
poses we perform different calculations by increasing the number of mesh points
and elements while we increase the dominant frequency of the seismic source
according to the dispersion relation. Subsequently the number of partitions in-
creases accordingly, each mesh partition being mapped to one processor core.
Dominant frequencies are chosen from 2 Hz to 22 Hz and element sizes take
values of 18 m (in fractures and regolith layers) to 522 m (in the bedrock) at
2 Hz, and 1.68 m (fractures and regolith) to 47.5 m (bedrock) at 22 Hz. Chosing
higher frequencies is not relevant because the available data resolution (300 m)
as well as the interior structure are not known accurately enough from a physical
point of view.
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Fig. 1. Meshes created using the CUBIT mesh generator for an homogeneous model
of asteroid Eros (top, 3744 elements) and a more complex model with a regolith layer
and a network of fractures (bottom, 52275 elements) for simulations performed at a
central frequency of 2 Hz. Close-ups on the white frame are also shown.

4 Mesh Partitioning and Non-blocking MPI
Implementation

A 2D mesh designed for a very high-resolution simulation is too large to fit on a
single computer. We therefore implement the calculation in parallel based upon
MPI. We first partition the mesh using the METIS graph partitioning library
[14], which focuses on balancing the size of the different domains and minimiz-
ing the edge cut. Figure 2 shows how the mesh for the homogeneous model is
partitioned by METIS into 8 or into 80 domains. Balancing the size of the do-
mains ensures that no processor core will be idle for a significant amount of time
while others are still running at each iteration of the time loop, while a small
edge cut reduces the number and the size of the communications. Contribu-
tions between neighboring elements that are located on different processor cores
are added using non-blocking MPI sends and receives and following a similar
implementation for low-order finite element method described in [15]. The com-
munication scheme used is the following: contributions (i.e., mechanical internal
forces) from the outer elements of a given mesh slice (i.e., elements that have
an edge in common with an element located on a different processor core) are
computed first and sent to the neighbors of that mesh slice using a non-blocking
MPI send. Similarly, each processor core issues non-blocking MPI receives. This
allows for classical overlapping of the communications by the calculations, i.e.
each process then has time to compute mechanical forces in its inner elements
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Fig. 2. Partitioning of the mesh for the homogeneous model (Figure 1) obtained with
METIS in the case of 8 (left) and 80 (right) domains. We observe that the number
of elements along the interface of the partitions is small compared to the number of
elements inside each partition in the case of 8 domains, and therefore overlapping
of communications with calculations is expected to work fine. But in the case of 80
domains, this number becomes comparable or even higher than the number of inner
elements, in which case overlapping is expected to fail, and poor performance should
result.

while the communications travel across the network, and if the number of outer
elements is small compared to the number of inner elements in all the mesh slices
we can be confident that the messages will be arrived when the internal calcu-
lations are finished. Once the contributions from neighbors have been received,
they are added to the corresponding elements locally. We ran the code on a Dell
PowerEdge 1950 cluster with Intel EM64T Xeon 5345 (Clovertown) processors
(2333 MHz clock frequency, 9.330 Gigaflops peak performance) and Myrinet net-
work, located at the California Institute of Technology (USA). Each processor
is dual core, so we prefer to speak here in terms of processes or processor cores
with one process per processor core.

5 Numerical Simulations and Scaling of the Code

In all the simulations we use a polynomial of degree N = 4 to integrate variables
at the (N + 1)2 = 25 Gauss-Lobatto-Legendre points along each direction of
any spectral element. A series of simulations to measure speedup and scaling
are performed at a dominant frequency of 2 Hz for the homogeneous model first
and then for the fractured model. A third series of tests are computed to study
the weak scaling of the code. By weak scaling we mean how the time to solve
a problem with increasing size can be held constant by enlarging the number
of processes used and by maintaining a fixed system size per process: when one
doubles the number of processes one also doubles the system size.

Moderate mesh sizes are considered for the homogeneous model, and moder-
ate to large mesh sizes for the fractured model (Table 1). The seismic source is
an impact represented by a force normal to the surface and located at point (x
= -9023 m, y = 6131 m) in the mesh. The time variation of the source is the
second derivative of a Gaussian. The time step used is ∆t = 1 ms and the signal
is propagated for 150000 time steps (i. e. 150 s). In the case of the homogeneous
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Fig. 3. Snapshots of the propagation of simulated seismic waves in the asteroid for a
total duration of 65 seconds in the case of the mesh for a homogeneous model displayed
in Figure 1. Snapshots are shown at 10 s, 25 s (top) and 45 s, 65 s (bottom). We
represent the vertical component of the displacement vector in red (positive) or blue
(negative) at each grid point when it has an amplitude higher than a threshold of 1% of
the maximum, and the normalized value is raised to the power 0.30 in order to enhance
small amplitudes that would otherwise not be clearly visible.

Fig. 4. Snapshots of the propagation of simulated seismic waves in the asteroid for a
total duration of 65 seconds in the case of the mesh for the more complex model with
a regolith layer and networks of fractures displayed in Figure 1. Snapshots are shown
at 10 s, 25 s (top) and 45 s, 65 s (bottom). We represent the vertical component of the
displacement vector in red (positive) or blue (negative) at each grid point when it has
an amplitude higher than a threshold of 1% of the maximum, and the normalized value
is raised to the power 0.30 in order to enhance small amplitudes that would otherwise
not be clearly visible.
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Fig. 5. Scaling of the code in the case of the mesh for the homogeneous model repre-
sented in Figure 1 for blocking (top) and non blocking communications (bottom). For
both strategies the measured total time spent in the calculations and communications
(long dashed line with single crosses) is compared to the theoretical straight line ob-
tained assuming perfect scaling (solid line) for different numbers of processes (one per
mesh partition): 1, 2, 4, 8, 32, 64 and 80. The two curves are in very good agreement as
long as the number of outer elements is small compared to the number of inner elements
in all the mesh slices, in which case overlapping of communications with calculations
using non-blocking MPI works very well. Here for the relatively small mesh used this is
true when we use a number of processes lower than 32. When we use a larger number
of processes scaling quickly becomes very poor because communications are no longer
overlapped. One can also observe that the total time spent in communications and
calculations is similar between blocking and non-blocking communication strategies.
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Fig. 6. Scaling of the code in the case of the mesh for the fractured model represented
in Figure 1 for blocking (top) and non blocking communication (bottom) strategies.
For both strategies the measured total time spent in the calculations and communi-
cations (long dashed line with single crosses) is compared to the theoretical straight
line obtained assuming perfect scaling (solid line) for different numbers of processor
cores (one per mesh partition): 1, 2, 4, 8, 32, 64, 80. The two curves are in very good
agreement as long as the number of outer elements is small compared to the number
of inner elements in all the mesh slices, in which case overlapping of communications
with calculations using non-blocking MPI works very well. Here for the relatively small
mesh used this is always the case. We do not observe the same poor scaling as in the
homogeneous case but it should start to appear if we used more than 80 processes.
Total time spent in communications and calculations is not really different between
blocking and non-blocking communication procedures for this specific application, as
observed in the homogeneous case.
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Fig. 7. Weak scaling of the code for the fractured model represented in Figure 1 in the
case of non blocking (top) and blocking (bottom) communications. The measured total
time spent in the calculations and communications (long dashed line with single crosses)
is compared to the theoretical straight line obtained assuming perfect scaling (solid line)
for different numbers of processor cores (one per mesh partition) and different dominant
frequencies : 1 (2 Hz and 57275 elements), 4, 9, 16, 25, 36, 49, 64, 81, 121 (22 Hz and
around 110 million points) processes. As we increase the number of processes and
the corresponding seismic frequency, the number of elements increases until reaching
more than 110 million points for 121 processes. It is interesting to note that the total
computational time spent per process remains constant for more than 10 processes in
the non-blocking case. Similar results are obtained for blocking communications.
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model, Figure 3 shows pressure, shear and surface waves propagating inside Eros
and along its surface for 65 seconds. One can see in particular the pressure wave
front that is reflected on the lower free surface and the shear wave front that
closely follows the pressure wave front, as well as many reflections and conver-
sions of waves generated along the whole surface of the object. On the contrary,
in the fractured model (figure 4), waves travel mostly inside the dispersive sur-
face layer of regolith as well as the fractures, which act as wave guides. The
waves then reflect off all the boundaries and are trapped for a while in the left
part of the model, where the source is located, and then progressively move to
the right part, the large transversal fracture acting as a geological barrier.

Figure 5 shows the scaling of the code for 1 to 80 processes in the case of the
mesh for the homogeneous model with 3744 elements with sizes from 147 m to
470 m. As expected, scaling is very good (close to the straight line obtained for
hypothetical perfect scaling) as long as the number of outer elements is small
compared to the number of inner elements in all the mesh slices, in which case
overlapping of communications with calculations using non-blocking MPI works
very well. Here for the relatively small mesh used this is true when we use a
number of processes lower than 32. When we use a number of processes that is
larger and for which this assumption ceases to be true, scaling quickly becomes
very poor because communications are no longer overlapped. Indeed, for more
than 32 processes the total measured time goes through a minimum and then
starts to increase. The three other curves (medium and tiny dashed lines and
filled square lines), which represent the lowest, average and highest values of the
sum of the time spent in calculations and communications in the outer elements
of all the partitions, increase when we use more than 32 processes, which explains
the poor scaling observed in this case. It is observed that total time spent in
communications and calculations is not really different between blocking and
non-blocking communication procedures for this specific application.

In the fractured case, scaling is performed for 57275 spectral elements (919709
grid points) at 2 Hz by increasing the number of processes from 1 to 121. Figure 6
shows that the scaling is much better than for the homogeneous case. The poor
scaling that appears beyond 32 processes in the homogeneous case will appear
for a much higher number of processes in this heterogeneous case. This is not
surprising because the number of elements is higher inside each partition.

Now, instead of increasing the number of processes for a given fixed mesh, a
weak scaling study is performed for the complex and highly unstructured meshes
generated for the fractured model. The dominant frequency of the source is in-
creased from 2 Hz to 22 Hz while we refine the mesh in the same ratio and
increase the number of processor cores consequently from 1 to 121. By construc-
tion of the cracks in the asteroid and using a mesh decimation technique in
each element, skewnesses and angles are reasonably preserved when the num-
ber of elements increases. Time steps and mesh sizes are respectively decreased
from 0.45 ms (2 Hz) to 0.04 ms (22 Hz). At 2 Hz, mesh sizes take values vary-
ing from 18 m (regolith) to 522 m (bedrock), while at 22 Hz they vary from
1.68 m to 47 m. In Figure 7 we observe that the total computational time per
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process is nearly constant as the number of processes increases beyond more than
10 processes approximately. This is observed for both blocking or non-blocking
communication strategies, which give similar results. The tests correspond to
57275 elements (nearly 1 million points at 2 Hz) for 1 processor core and to
nearly 6 million elements (nearly 111 million points at 22 Hz) for 121 processor
cores. The number of degrees of freedom (the two components of the displace-
ment vector) is exactly twice the number of points, i.e., close to 222 millions.
Let us finally mention that a mixed MPI/OpenMP model could also be used but
Komatitsch et al. [7] have shown that it does not bring any significant gain in
performance for this particular application.

6 Conclusions

We have simulated wave propagation in a homogeneous or a fractured model of
an asteroid represented by a non-structured mesh. A mesh with good skewness
has been developed with CUBIT. For both blocking and non-blocking commu-
nication strategies using METIS, similar scalings are obtained and mesh config-
urations of 110 million points can be computed using 121 processor cores and
dominant seismic frequencies of up to 22 Hz. In future work it would be inter-
esting to extend the simulations to 3D at high resolution and to apply L2 cache
misses reduction techniques [17].
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Abstract. We use 2166 processors of the MareNostrum (IBM PowerPC
970) supercomputer to model seismic wave propagation in the inner
core of the Earth following an earthquake. Simulations are performed
based upon the spectral-element method, a high-degree finite-element
technique with an exactly diagonal mass matrix. We use a mesh with 21
billion grid points (and therefore approximately 21 billion degrees of free-
dom because a scalar unknown is used in most of the mesh). A total of
2.5 terabytes of memory is needed. Our implementation is purely based
upon MPI. We optimize it using the ParaVer analysis tool in order to
significantly improve load balancing and therefore overall performance.
Cache misses are reduced based upon renumbering of the mesh points.

Keywords: load balancing, cache misses, mesh partitioning, seismic
wave propagation, global Earth.

1 Introduction

Modeling of seismic wave propagation resulting from large earthquakes in the
three-dimensional (3D) Earth is of considerable interest in seismology because
analyzing seismic wave propagation in the Earth is one of the few ways of study-
ing the structure of the Earth’s interior, based upon seismic tomography. Seismic
waves resulting from earthquakes can be classified in two main categories: body
waves, which propagate inside the medium and are of two types: compressional
(pressure) waves, called P waves, and shear waves, called S waves; and surface
waves, which travel along the surface of the medium and have an exponentially
decreasing amplitude with depth. The analysis of the 3D geophysical structure of
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Fig. 1. Sketch of how PKP seismic phases propagate in the Earth after an earth-
quake, i.e. illustration of their ray paths. They therefore carry information about the
anisotropic structure of the inner core.

the Earth therefore requires the ability to calculate accurate numerical seismo-
grams (time series representing the three component of displacement at points
located on the surface of the Earth). In particular, pressure waves can be used
to study the solid inner core of the Earth and its anisotropy (i.e. varying seismic
wave speed in different spatial directions). Figure 1 shows a sketch of PKP seis-
mic phases, which are pressure waves that travel inside the core of the Earth.
They travel through the Earth’s mantle, then through its fluid outer core and
solid inner core, then again in the mantle, and then reach the surface, where
they are recorded.

The field of numerical modeling of seismic wave propagation in 3D geological
media has significantly evolved in the last decade due to the introduction of
the spectral-element method (SEM), which is a high-degree version of the finite-
element method that is very accurate for linear hyperbolic problems such as
wave propagation, having very little intrinsic numerical dispersion. It combines
the flexibility of the finite-element method with the accuracy of the pseudospec-
tral method. In addition, the mass matrix is exactly diagonal by construction,
which makes it much easier to implement on parallel machines because no linear
system needs to be inverted. The 3D SEM was first used in seismology for local
and regional simulations (e.g., [1,2,3]) and then adapted to wave propagation at
the scale of the full Earth (e.g., [4,5]). Until recently, at the scale of the global
Earth available computer resources intrinsically limited such large calculations.
For instance, on a PC cluster with 150 processors, Komatitsch and Tromp [4]
reached a maximum seismic frequency of 0.0555 Hz, and on 1944 processors of
the Japanese Earth Simulator Komatitsch et al. [6] reached a maximum seismic
frequency of 0.2 Hz. Such frequencies are not high enough to capture important
differential effects on seismic wave propagation related to anisotropy in the inner
core of the Earth. Here we implement the SEM on MareNostrum, the world’s
number 13 supercomputer as of the November 2007 Top500 list of supercom-
puters, which is located in Barcelona, Catalonia, Spain. We show that on 2166
of its IBM PowerPC 970 processors we can simulate seismic waveforms accu-
rately up to a maximum frequency of 0.5 Hz based upon message passing with
MPI.
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2 Spatial and Temporal Discretization of the Governing
Equations

We consider a linear anisotropic elastic rheology for the heterogeneous solid
Earth, and therefore the seismic wave equation can be written in the strong
(i.e., differential) form as:

ρü = ∇ · σ + f ,
σ = C : ε ,
ε = 1

2 [∇u + (∇u)T ] ,
(1)

where u denotes the displacement vector, σ the symmetric, second-order stress
tensor, ε the symmetric, second-order strain tensor, C the fourth-order stiffness
tensor, ρ the density, and f an external force. The tensor product is denoted by a
colon, a superscript T denotes the transpose, and a dot over a symbol indicates
time differentiation. The physical domain of the model is denoted by Ω and
its outer boundary by Γ . The material parameters of the solid, C and ρ, can
be spatially heterogeneous. We can then rewrite the system (1) in a weak (i.e.,
variational) form by dotting it with an arbitrary test function w and integrating
by parts over the whole domain:∫

Ω

ρw · ü dΩ +
∫

Ω

∇w : C : ∇u dΩ =
∫

Ω

w · f dΩ +
∫

Γ

(σ · n̂) ·w dΓ . (2)

The free surface (i.e., traction free) boundary condition is easily implemented
in the weak formulation since the integral of traction τ = σ·n̂ along the boundary
simply vanishes when we set τ = 0 at the free surface of the Earth.

This formulation is solved on a mesh of hexahedral elements in 3D, which
honors both the free surface of the model and its main internal discontinuities
(i.e., its geological layers). The unknown wave field is expressed in terms of
high-degree Lagrange polynomials of degree N on Gauss-Lobatto-Legendre in-
terpolation (GLL) points, which results in a diagonal mass matrix that leads
to a simple time integration scheme (e.g., [1,3]). Because that matrix is diago-
nal, no linear system needs to be inverted and the method lends itself well to
calculations on large parallel machines with distributed memory. Let wN , uN

denote the piecewise-polynomial approximations of the test functions and the
displacement respectively. Making use of (2), the discrete variational problem to
be solved can thus be expressed as: for all time t, find uN such that for all wN

we have: ∫
Ω

ρwN · üN dΩ +
∫

Ω

∇wN : C : ∇uN dΩ =
∫

Ω

wN · f dΩ . (3)

We can rewrite this system (3) in matrix form as:

Md̈ + Kd = F , (4)

where M is the diagonal mass matrix, F is the source term, and K is the stiff-
ness matrix. For detailed expression of these matrices, the reader is referred for
instance to [3].
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Time discretization of the second-order ordinary differential equation (4) with
a time step ∆t is achieved using the explicit Newmark central finite-difference
scheme [7] which is second-order accurate and conditionally stable :

M d̈n+1 + Kdn+1 = Fn+1 , (5)

where

dn+1 = dn + ∆tḋn +
∆t2

2
d̈n and ḋn+1 = ḋn +

∆t

2
[d̈n + d̈n+1] . (6)

At the initial time t = 0, null initial conditions are assumed i.e., d = 0 and
ḋ = 0. The stability condition is ∆t(cp/∆x)max ≤ c, where ∆x is the distance
between two adjacent grid points, cp is the speed of the pressure waves in the
geological medium, and c is a constant that is of the order of 0.5 [8].

3 Implementation of the Spectral-Element Method on
MareNostrum

3.1 Acoustic/Elastic Formulation

We are interested in differential effects on very high frequency (0.5 Hertz) seismic
phases when they propagate inside the solid inner core of the Earth, therefore to
significantly reduce the computational cost we suppress the crust of the Earth
and replace it with an extended upper mantle, and convert the whole mantle
from elastic to acoustic, thus reducing the problem in that part of the model
from a vectorial unknown to a scalar unknown, i.e. reducing memory usage and
CPU cost by a factor of roughly three in 3D. In the acoustic mantle and crust
we solve the acoustic wave equation in terms of a fluid potential [4]. We keep
a (much more expensive to solve) elastic anisotropic medium in the inner core
only. In that small part of the mesh we also model seismic attenuation (i.e., loss
of energy by viscoelasticity), which has a significant impact on the cost of that
small part of the simulation because memory requirements increase by a factor
of roughly 2 and CPU time by a factor of roughly 1.5 [4].

3.2 Mesh Generation

Figure 2 shows a global view at the surface of the Earth of the spectral-element
mesh we designed, which is accurate up to a frequency of 0.5 Hertz for pressure
waves and which fits on 2166 processor cores (6 blocks of 19 × 19 slices). The
sphere is meshed using hexahedra only, based upon an analytical mapping from
the six sides of a unit cube to a six-block decomposition of the surface of the
sphere called the ‘cubed sphere’ [9,4,5]. Each of the six sides of the ‘cubed sphere’
mesh is divided into 19 × 19 slices, shown with different colors, for a total of 2166
slices. We allocate one slice and therefore one MPI process per processor core
(which means that in the remainder of the article when we say ‘one processor’
for simplicity we actually mean ‘one processor core’).
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Fig. 2. The SEM uses a mesh of hexahedral finite elements on which the wave field
is interpolated by high-degree Lagrange polynomials on Gauss-Lobatto-Legendre inte-
gration points. The figure shows a global view of the mesh at the surface, illustrating
that each of the six sides of the so-called ‘cubed sphere’ mesh is divided into 19 ×
19 slices, shown here with different colors, for a total of 2166 slices (i.e., one slice per
processor core).

The total number of spectral elements in this mesh is 323 millions, which
corresponds to a total of approximately 21 billion global grid points (the ‘equiv-
alent’ of a 2770 × 2770 × 2770 grid), because each spectral element contains
(N + 1)3 = 5× 5× 5 = 125 grid points since we use polynomial basis functions
of degree N = 4, but with points on its faces shared by neighboring elements.
This in turn also corresponds to approximately 21 billion degrees of freedom
because a scalar unknown is used in most of the mesh (everywhere except in the
inner core of the Earth, as mentioned above). Such simulations use a total of
approximately 2.5 terabytes of memory.

Our SEM software package is called SPECFEM3D. Version 1.0 was released
in 1999 and the current stable version is 3.6. In order to be able to run our
large-scale calculations on MareNostrum, we had to fix some significant load
balancing issues in version 3.6 and therefore produce a new version called 4.0.
Below we discuss the main improvements made.

3.3 Type of Operations Performed at Each Time Step

At each iteration of the serial time loop, which are all identical, four main types
of operations are performed:

- update of global arrays, for instance: for each i from 1 to Npoint,
displacement[i] += ∆t velocity[i] + ∆t2 acceleration[i] / 2,
where displacement, velocity and acceleration are three global arrays, and Npoint
is the number of grid points

- relatively large and purely local calculations of the product of predefined
derivation matrices with a local copy of the displacement vector along cut planes
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in the three directions (i, j and k) of a 3D spectral element, which contains
(N+1)3 = 125 points; therefore, each index i, j or k varies between 1 and N+1

- element-by-element products and sums of arrays of dimension (N+1,N+1,
N+1,Nspec), where Nspec is the number of spectral elements, which involve a
quadruple loop on the dimensions of the arrays

- sum of the contributions (which are elemental force vectors from a physical
point of view) computed locally in arrays of dimension (N+1,N+1,N+1,Nspec)
into global arrays of dimension Npoint using indirect addressing. This sum is
called the ‘assembly’ process in finite elements.

3.4 Exploiting Locality

Increasing and exploiting locality of memory references is an important opti-
mization technique. Locality must be optimized in loops that tend to reference
arrays or other data structures by indices. The principle of locality deals with the
process of accessing a single resource multiple times; in particular regarding tem-
poral locality (a resource referenced at one point in time will be referenced again
sometime in the near future) and spatial locality (the likelihood of referencing a
resource is higher if a resource in the same neighborhood has been referenced).
Memory should therefore be accessed sequentially as often as possible.

In the spectral-element method these are important issues because, as can be
seen in Figure 3 drawn in 2D, each spectral element contains (N +1)2 = 25 GLL
points, and points lying on edges or corners (as well as on faces in 3D) are shared
between elements. The contributions to the global system of degrees of freedom,

1
Ω Ω

Ω Ω

2

3 4

Fig. 3. Illustration of the local and global meshes for a four-element 2D spectral-
element discretization with a polynomial degree of N = 4. Each element contains
(N +1)2 = 25 Gauss-Lobatto-Legendre points. Points lying on edges or corners (as well
as on faces in 3D) are shared between elements. The contributions to the global system
of degrees of freedom, computed separately on each element, have to be summed at the
common points represented by black dots. Corners can be shared by any number of
elements depending on the topology of the mesh, which is in most cases non structured.
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computed separately on each element, therefore have to be summed at the com-
mon points, and the corners can be shared by any number of elements depending
on the topology of the mesh, which is in most cases (included ours) non struc-
tured. For instance in 3D for a regular hexahedral mesh there are (N+1)3 = 125
GLL integration points in each element, of which 27 belong only to this element
(21.6%), 54 belong to two elements (43.2%), 36 belong to four elements (28.8%)
and eight belong to 8 elements (6.4%). Hence, 78.4% of the points belong to at
least two elements and it is therefore interesting to reuse these points by keeping
them in the cache. During mesh creation we must therefore optimize the global
numbering which maps point (i,j,k) of local element num element to a unique
global point number (after removal of the duplicated common points shared by
more than one element) called global addressing(num element, i, j, k).

To do this, the mesh is created element by element, then the common points
are identified, and a global addressing is created. This array must be reordered
once and for all in the mesher to optimize the future memory access order of
the points and elements in the solver, in order to maximize spatial and temporal
locality and to access memory sequentially as often as possible. Simple renum-
bering based on looping on the elements in the mesher in the order in which
they will be accessed in the solver and masking points already found works fine
for this problem. A more sophisticated approach is to also change the order of
the elements (in addition to the numbering of the points) based on the classical
reverse Cuthill-McKee algorithm [10] to reduce the average memory strides to
access the points shared by several elements, but improvements are very small
in the case of the spectral-element method because one spectral element fits en-
tirely in the Level 1 (L1) cache, several tens of spectral elements fit in the L2
cache and a large number of operations are performed on each spectral element
because it contains 125 points. Detailed tests not shown here have shown us that
it is not necessary in practice to use this algorithm for our problem.

The elementary contributions (internal mechanical forces) from each mesh el-
ement are computed based upon products of cut planes in the 3D memory block
representing the element with a matrix called the ‘derivation matrix’ in order
to compute the derivative of a given vector or scalar field. We therefore thought
about using Basic Linear Algebra Subroutines (BLAS3) ‘sgemm’ calls in ver-
sion 4.0 of the code instead of the Fortran loops used in version 3.6. However,
this turned out to be inefficient for several reasons. First, these matrix-matrix
products are performed on 2D cut planes that are extracted from different (or-
thogonal) directions of a given 3D memory block. Therefore, in order to use
BLAS3 we need to perform some memory copies from the 3D blocks to 2D ma-
trices for some (but not all) of the BLAS3 calls, in order for the input matrix
to be correctly structured, which induces significant overhead. Second, these
matrices are very small in each element (5 × 5 or 25 × 5) and therefore the ma-
trix operations are too small to be efficiently replaced by BLAS3 calls because
the overhead is large. Even if we compute all the elements (whose number is
large in each mesh slice, typically more than 100,000) simultaneously with one
BLAS3 call, we are still dealing with the multiplication of a 5 × 5 matrix with a
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5 × 500,000 matrix, a situation for which BLAS3 usually does not perform very
well. Third, because we use static loop sizes in the solver (the only drawback
being that we need to recompile the solver every time we change the size of
the mesh), at compile time the compiler knows the size of all the loops and can
therefore very efficiently optimize them (using unrolling for instance). Because
the inner loops are very small (of size N+1 = 5), it is very difficult to do bet-
ter than loop unrolling performed automatically by the compiler. Therefore it
is better in terms of performance to let the compiler optimize the static loops
rather than to switch to BLAS3.

One way of improving performance is to manually use the Altivec/VMX vec-
tor unit of the PowerPC, which can handle four single-precision floating-point
operations in a vector and is therefore well suited for our small matrix products
since we can load a vector unit with 4 floats, perform several ‘multiply-and-add’
(vec MADD) operations to compute the matrix-matrix product, and store the
results in four consecutive elements of the result matrix. Since our matrices are
of size 5 × 5 and not 4 × 4, we use vector instructions for 4 out of each set
of 5 values and compute the last one serially in regular Fortran. To improve
performance and get correct results we align our 3D blocks of 5 × 5 × 5 = 125
floats on 128 in memory using padding with three dummy values, which induces
a negligible waste of memory of 128 / 125 = 2.4% (non aligned accesses lead to
incorrect results in Altivec). We typically gain between 15% and 20% in CPU
time with respect to version 4.0 without Altivec.

3.5 MPI Implementation and Load Balancing

Our SEM solver is based upon a pure MPI implementation. A few years ago
on the Japanese Earth Simulator we implemented a mixed MPI – OpenMP
solution, using MPI between nodes (i.e., between blocks of 8 processors with
shared memory) and OpenMP inside each node. However, in practice, tests on
a small number of processors gave a CPU time that was almost identical to a
pure MPI run, and therefore we decided to permanently switch to pure MPI [6].
We do not claim that this conclusion is general; it might well be specific to our
SEM algorithm, in particular we did not try the mixed OpenMP – MPI solution
on a large number of nodes or on MareNostrum. Other groups have successfully
implemented algorithms based upon mixed OpenMP – MPI models on large
parallel machines.

I/O is not an issue in our simulations because we only output a small number
of time series (called ‘seismograms’) to record seismic motion (the three compo-
nents of the displacement vector) at a small number of points at the surface of
the mesh. This means that the amount of data saved by our SEM is small.

Figure 4 shows that a regular mesh has the undesirable property that the size
of the elements decreases dramatically with depth. To maintain a relatively con-
stant number of grid points per wavelength, element size should increase with
depth. In version 3.6 of SPECFEM3D, this was accomplished in three stages
based on a simple ‘doubling brick’. Each block has four sides that need to match
up exactly with four other blocks to complete the cube. Schematically, these four
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Fig. 4. A regular mesh (top left) has the undesirable property that the size of the
elements decreases dramatically with depth. To maintain a relatively constant number
of grid points per wave length, element size should increase with depth. In version 3.6 of
SPECFEM3D, this is accomplished in three stages based on a simple ‘doubling brick’
(top right). Each block has four sides that need to match up exactly with four other
blocks to complete the cube (bottom), as indicated by the arrows. Schematically, these
four sides have one of three designs: A, B, or C, as illustrated on the right. When the
six blocks are assembled to make the entire globe, they match perfectly. Unfortunately,
the fact that the three types of blocks have a significantly different number of mesh
elements induces significant load imbalance.

sides have one of three designs: A, B, or C. When the six blocks are assembled to
make the entire globe, they match perfectly. However, because with that simple
‘doubling brick’ doubling the mesh in two directions in the same layer is topolog-
ically impossible, the three mesh types A, B and C contain a significantly (15%
to 20%) different number of mesh elements, which in turn results in load imbal-
ance in the same amount because in the SEM one performs the same number
of elementary calculations in each element. In addition, an analysis of version
3.6 performed with the ParaVer analysis tool (Figure 5) also showed significant
load imbalance in terms of the number of Level 2 (L2) data cache misses in
each mesh slice (this will be further discussed below). ParaVer (see e.g. [11] and
www.cepba.upc.es/paraver) is a tool developed at the Barcelona Supercomput-
ing Center that is designed to analyze the number of data cache misses and of
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Number of L2 data cache misses in v3.6 Number of L2 data cache misses in v4.0

Histogram of instructions in v4.0 Useful duration of calculations in v4.0

Fig. 5. ParaVer analysis of the code on 96 processors, from processor 1 at the top of
each picture to processor 96 at the bottom. Top left: In version 3.6 of SPECFEM3D,
L2 cache misses were very poorly balanced between mesh slices (irregular blue and
green curve), thus inducing severe load imbalance. In version 4.0 (top right), L2 cache
misses (represented on the same horizontal scale) have been drastically reduced and
very well balanced (straight blue line). The number of instructions executed is also
very well balanced (bottom left, straight blue line). As a result, useful duration of the
calculations (bottom right, orange points) is well balanced too.

instructions of MPI processes as well as the useful duration of calculations per-
formed, among many other things. Let us mention that the imbalance observed
in terms of cache misses was also observed between slices belonging to the same
chunk type (A, B or C) and was therefore mostly due to the numbering of the
mesh points (i.e., the order in which they were accessed) and not only to the
different mesh structure between different chunks.

In order to address the first issue of geometrical mesh imbalance, in version
4.0 the mesh doubling of Figure 4 is now accomplished in only one level instead
of two based on a more efficient geometrical ‘doubling brick’ which is assembled
in a symmetric block of four ‘doubling bricks’ based on mirror symmetry of
the basic brick (Figure 6). This makes it possible to carry out the doubling in
both directions in the same layer. As a result, while in the old mesh of version
3.6 there are three types of mesh chunks (labeled A, B and C in Figure 4),
in version 4.0 of the code this poor property of the mesh is suppressed and
all the mesh chunks have the same shape and exact same number of elements,
thus resulting in perfect geometrical mesh balancing. Because the number of
operations performed in each element is the same, load balancing is therefore
very significantly improved.

In order to have more uniform mesh sampling in the inner core of the Earth,
in version 4.0 we also slightly inflate the central cube in order to better balance
the mesh angles compared to version 3.6 (Figure 7). When the central cube is
not inflated, some elements can have a poor skewness and/or poor aspect ratio
in the vicinity of the central cube. Inflating it significantly improves both the
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Fig. 6. In version 4.0 of SPECFEM3D, the mesh doubling of Figure 4 is accomplished
in only one level instead of two in each mesh chunk and therefore three in the whole
sphere, based on a more efficient geometrical ‘doubling brick’ (top, left and center)
which is assembled in a symmetric block of four ‘doubling bricks’ based on mirror
symmetry (top right). As a result, when we zoom on a region of contact between three
of the six mesh chunks of Figure 2, we can see that while in the old mesh of version 3.6
(bottom left) there are three types of mesh chunks (labeled A, B and C in Figure 4),
in version 4.0 of the code (bottom right) this poor property of the mesh has been
suppressed and all the mesh chunks have the same shape and exact same number of
elements, thus resulting in perfect geometrical mesh balancing.

skewness and the aspect ratio (both the average value for all the elements and
the worst value for the most distorted element).

In the SEM one needs to assemble internal force contributions between neigh-
boring slices, as mentioned above and in Figure 3. The pattern of communica-
tions needed to assemble such slices on the edges and corners of the six blocks
of the cubed-sphere mesh can be determined from Figure 2 (for instance the
valence of most surface points is 4, but it is three at the corners of the six
blocks). Because the mass matrix is exactly diagonal, processors spend most of
their time performing actual computations, and the amount of communications
is comparatively small (in spite of the fact that the number of points to exchange
increases approximately as N2, but the polynomial degree N is always chosen
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Fig. 7. In order to have more uniform mesh sampling in the inner core of the Earth,
in version 4.0 of SPECFEM (middle) we slightly inflate the central cube in order to
better balance the mesh angles compared to version 3.6 (left), as illustrated here in a
2D cut plane. In 3D this results in the inflated cube represented on the right.

small, between 4 and 7 in practice, see e.g. [3,8]). We thought about switching
from the blocking MPI implementation used in version 3.6 to a non-blocking
implementation in order to overlap the communications with calculations. This
would imply first looping on the elements that are located on the edges of the
mesh slices, computing their contributions, starting non-blocking SENDs of their
contributions, and computing the rest of the elements inside the slices while the
communications are being performed (see e.g. [12]). We implemented this strat-
egy in a 2D version of our code (for simplicity) but did not notice any significant
gain in terms of performance because the overall cost of communications is very
small (< 5%) compared to CPU time. We therefore concluded that there was no
real need to switch to non-blocking MPI in the 3D version of the code.

3.6 Performance and Scaling Results

Let us perform an analysis of the improved code on 96 processors using ParaVer.
Figure 5 shows that in the initial version 3.6, the number of L2 cache misses was
very different between mesh slices, thus inducing severe load imbalance. In the
improved version 4.0, L2 cache misses have been drastically reduced and very
well balanced. The number of instructions executed is also very well balanced.
As a result, useful duration of the calculations is well balanced too. In total, we
gain a huge factor of 3.3 in terms of wall-clock time between both versions. This
shows that the IBM PowerPC 970 is very sensitive to cache misses because the
same run performed on an Intel Itanium and also on an AMD Opteron cluster
shows a factor of ‘only’ 1.55 to 1.60.

Let us now analyze scaling by measuring wall-clock time per time step (av-
eraged over 700 time steps in order for the measurement to be reliable) for a
medium-size run performed on 24, 54, 96 and 216 processors (we also tried to
run the test on 6 processors but it was too big to fit in memory). In Figure 8
we compare the scaling curve to the theoretical curve corresponding to per-
fect linear scaling, which we compute using the time measured on 96 processors
and scaling it by the ratio of the number of processors used. The conclusion
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Fig. 8. Scaling in logarithmic scale measured (in red) for the same run performed on
24, 54, 96 and 216 processors, compared to perfect linear scaling (in blue) computed
using the run on 96 processors as a reference. The two curves are very similar.

is that the scaling of the code is excellent. We therefore conclude that we are
now ready to run the code for a real application on a very large number of
processors of MareNostrum. MareNostrum has 2560 two-biprocessor blades, for
a total of 10240 processor cores. Each blade has 8 gigabytes of memory, for a
total of 20480 gigabytes of memory. For the final high-resolution run, we used
2166 processor cores and computed 50600 time steps of the explicit time integra-
tion scheme of the SEM algorithm. Total memory used was 2.5 terabytes. The
code performed well and performance levels obtained were very satisfactory, the
whole run took slightly less than 60 hours of wall-clock time (being the only user
running on the corresponding dedicated blades). The geophysical analysis of the
seismograms is currently under way.

4 Conclusions

MareNostrum has allowed us to reach unprecedented resolution for the simula-
tion of seismic wave propagation resulting from an earthquake in the 3D inner
core of the Earth using a spectral-element method implemented based upon
MPI. A combination of better mesh design and improved point numbering has
allowed us to balance the number of instructions very well, drastically reduce
the number of L2 cache misses and also balance them very well, and as a result
reach very good balancing in terms of the useful duration of the calculations in
each mesh slice. BLAS3 or non-blocking MPI have not been required to achieve
this, but using Altivec vector instructions such as multiply-and-add has allowed
us to gain 20% in terms of CPU time.
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Abstract. Clustering aims to partition a data set by bringing together
similar elements in subsets. Spectral clustering consists in selecting dom-
inant eigenvectors of a matrix called affinity matrix in order to define a
low-dimensional data space in which data points are easy to cluster. The
key is to design a good affinity matrix. If we consider the usual Gaussian
affinity matrix, it depends on a scaling parameter which is difficult to
select. Our goal is to grasp the influence of this parameter and to propose
an expression with a reasonable computational cost.

1 Introduction

Clustering has many applications in a large variety of fields : biology, information
retrieval, image segmentation, etc. Spectral clustering methods use eigenvalues
and eigenvectors of a matrix, called affinity matrix, which is built from the raw
data. The idea is to cluster data points in a low-dimensional space described by a
small number of these eigenvectors. By far, it is commonly agreed that the design
and normalization of this affinity matrix is the most critical part in the clustering
process. We are concerned with the Gaussian affinity matrices because they are
very largely used. The expression of the Gaussian affinity matrix depends on
a parameter σ and the quality of the results drastically depends on the good
choice of this parameter. As said by several authors [3],[6] and [4], the scaling
parameter controls the similarity between data. We propose a new expression
based on a geometrical interpretation which is a trade-off between computational
cost and efficiency and test it with classical challenging problems. This definition
integrates both dimension and density of data.

2 Algorithm Ng, Jordan and Weiss (NJW)

Let x1, ..xm be a m points data set in a n-dimensional euclidean space. The aim
is to cluster those m points in k clusters in order to have better within-cluster
affinities and weaker affinities across clusters. We suppose that the number k
of targeted clusters is given. The affinity between two points xi and xj could
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be defined by Aij = exp(−‖xi − xj‖2/σ2) where ‖.‖ is the euclidean norm. We
consider the spectral clustering algorithm proposed by NJW [3] which is based
on the extraction of dominant eigenvalues and their corresponding eigenvectors
from the normalized affinity matrix A. This approach resumes in the following
steps :

– Form the affinity matrix A ∈ Rm×m defined by:

Aij =

{
exp(− ‖xi−xj‖2

2σ2 ) if i �= j,
0 otherwise

– Construct the normalized matrix : L = D−1/2AD−1/2 with Di,i =
∑m

j=1 Aij

– Construct the matrix X = [x1x2..xk] ∈ Rm×k by stacking the eigenvectors
associated with the k largest eigenvalues of L

– Form the matrix Y by normalizing each rows in the m× k matrix X

– Treat each row of Y as a point in R
k, and group them in k clusters via the

K-means method
– Assign the original point xi to cluster j if and only if row i of matrix Y was

assigned to cluster j.

NJW justify this algorithm by considering an ideal case with three well-
separated clusters. With the assumption that the points are already indexed by
clusters consecutively, the affinity matrix has a block-diagonal structure. Thus,
the largest eigenvalue of the normalized affinity matrix is 1, with multiplicity
of order 3. The normalized rows of the extracted dominant eigenvectors are
piecewise constant. In the field of the rows of these largest eigenvectors, it is
easy to identify the three well-separated points that correspond to these three
piecewise constant eigenvectors, and then to define the clusters accordingly. As
already said in [4], one crucial step is to select appropriately the parameter σ
and, in that respect, we have to decide between a global parameter as in [3], [2]
and [1] or a local parameter that depends on the points xi and xj as in [6].

3 Towards the Choice of a Global Parameter from a
Geometric Point of View

As already said in introduction, the purpose is to build an affinity matrix that
can integrate both the dimension of the problem as well as the density of points
in the given n-th dimensional data set.

For the sake of efficiency, we shall investigate global parameters that can be
used to derive the affinity matrix in the usual way, as a function of the distances
between points in the data set. To this end, we first make the assumption that
the n-th dimensional data set is isotropic enough, in the sense that there does not
exist some privileged directions with very different magnitudes in the distances



380 S. Mouysset, J. Noailles, and D. Ruiz

between points along these directions. Let us denote by S = {xi, 1 ≤ i ≤ m}
the data set of points, and by

Dmax = max
1≤i,j≤m

‖xi − xj‖ ,

the largest distance between all pairs of points in S. Under this first hypothesis,
we can then state that the data set of points in essentially included in a n-th
dimensional box with edge size bounded by Dmax.

If we expect to be able to identify some clusters within the set of points S,
we must depart from the uniform distribution of m points in this enclosing n-th
dimensional box. This uniform distribution is reached when dividing the box in
m smaller boxes all of the same size, each with a volume of order Dn

max/m, with
a corresponding edge size that we shall denote as

σ =
Dmax

m
1
n

(1)

What can be expected, indeed, is that if there exists some clusters, there must
be at least some points that will be at a distance lower than a fraction of this
edge size σ. Otherwise, the points should all be at a distance of order σ of each
other, since we have made the assumption of isotropy and since all the points
are included in the box of edge size Dmax.

Our proposal is thus to build the affinity matrix as a function of the ratio of the
distances between points and the reference distance value σ

2 . To incorporate the
dimension n of the problem of clustering, we also propose to consider the control
volumes around points instead of the square of the distances as commonly used.
If we consider for instance the usual affinity matrix made of the exponential of
these distances, we then propose to build the following matrix

Aij = {exp
(
−‖xi − xj‖2

(σ/2)

)n

} , (2)

where 1 ≤ i ≤ m correspond to the row indexes and 1 ≤ j ≤ m to the column
indexes in A, and to zero the diagonal in the usual way to get the affinity matrix
to be used in the spectral embedding technique.

We first point out that this model relies upon the fact that the n-th dimen-
sional box can be divided into smaller bricks in all directions. In other words,
this means that the value m

1
n is close to some integer and at least larger than 2.

We shall come back later on this point, which will take some importance when
the dimension n of the problem becomes large, in which case the above model
might be weakened of slight modifications. This will be addressed in more details
in the experiments.

Under the hypothesis that the n-dimensional data set is still isotropic enough,
but when there exists some directions with varying amplitudes in the data, we
can adapt slightly the computation of σ by considering that the set of points is
included in a rectangular n-dimensional box. To approximate the volume of this
non square box, we compute the largest distances between all pairs of points
along each direction to define the size of the edges :
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ρk = max
1≤i≤n

xik − min
1≤j≤n

xjk, k ∈ {1, . . . , m} .

The vector ρ incorporates the sizes of the intervals in which each variable is
included separately and, in this case, we shall consider that the enclosing rect-
angular box has the same aspect ratio as the one defined by the intervals lengths
given in ρ, and with maximum edge size given by Dmax. Then, we can take

σ =
Dmax

√
n

‖ρ‖2

(∏n
i=1 ρi

m

) 1
n

, (3)

which resumes to equation (1) when ρ is all constant and the box is square. A
more general way, which is the basis of the Mahalanobis distance, would be to
compute the spectral orientation of the dispersion of the data to fix the axes
and compute the amplitudes along these axes. But this is more computation-
ally demanding and assumes that the original data are linked together in some
particular way. In this case, we can expect some preprocessing must be done to
prepare the data appropriately.

4 Measures of Clustering

Ng and Weiss [3] suggest to make many tests with several values of σ and to
select the ones with least distortion in the resulting spectral embedding. In some
cases, the choice of σ is not very sensitive and good results can be obtained
easily. Still, there exists many examples where this choice is rather tight, as for
example in cases with geometrical figures plus background noise. In the following
of this section, we introduce two measures of quality that can be used to identify
the interval of appropriate values for the choice of σ.

4.1 Ratio of Frobenius Norms

In general cases, the off-diagonal blocks in the normalized affinity matrix L are
all non-zero and, for example, with k = 3, we can write :

L̂ =

⎡⎣L(11) L(12) L(13)

L(21) L(22) L(23)

L(31) L(32) L(33)

⎤⎦
We can then evaluate the ratios between the Frobenius norm of the off-diagonal-
blocks and that of the diagonal ones.

rij =
‖L(ij)‖F

‖L(ii)‖F

with i �= j and i, j ∈ 1, .., k If the mean (or the max) of these values rij is close
to 0, the affinity matrix has a near block diagonal structure. For example, in the
following figure, we plot the value of these ratios in the case of two examples
with two geometric clusters of points each.
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From the behavior of these measures, we can see that there exists some interval
in which the affinity matrix appears to be near block diagonal. This interval
depends of course on the nature of the problem, and can be very different. For
instance, in these examples, the length of this interval is of 0.4 in the first case
and of 0.1 in the second one. The dash-dot line indicates the value of the heuristic
(1) given in the previous section for the computation of σ. We can observe that
this heuristic value falls in the corresponding intervals.

4.2 Confusion Matrix

We now introduce an evaluation of the true error in clustering in the sense of the
number of mis-assigned points within clusters. Let C ∈Mk,k(R) be the so-called
confusion matrix :

C =

⎡⎣C(11) C(12) C(13)

C(21) C(22) C(23)

C(31) C(32) C(33)

⎤⎦
(as for example in the case of three clusters) where C(ij) is the number of points
that were assigned in cluster j instead of cluster i for i �= j, and Cii the number
of well-assigned points for each cluster i.

We define the percentage of mis-clustered points by:

p =

∑k
i�=j C(ij)

m
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This matrix gives an estimate of the real error in the clustering method. The
results from the previous two examples show that the interval value for the
appropriate choice of parameter σ is approximatively the same as that observed
with the ratios of Frobenius norms. We note that the clustering percentage of
error varies almost instantaneously when σ just exits the appropriate interval.
Again, we can observe that the value of the heuristic (1) corresponds to a value
of σ with almost no clustering error.

5 Results

In order to validate the geometrical approach detailed in section 3, we consider
two n-dimensional benchmark examples, one with six n-th dimensional uniform
blocks slightly separated from each other, and another one made of pieces of
n-spheres in Rn (see figure 1). The affinity matrix is defined by :

Aij = {exp
(
−‖xi − xj‖2

σ/2

)d

} (4)

where d will be alternatively set to the different integer values from 1 to 5, in
order to verify experimentally the adequacy of the power d (usually taken as
d = 2) with respect to the dimension of the problem n, as suggested in section
3. To obtain the results given in the following tables, we have tried consecutive
values of σ from 0.01 to 0.15 and computed the two error measures discussed in
the previous section. This enabled us to determine approximately an interval of
feasibility for the values of σ. The purpose of that was to verify if the heuristics
(1) or (3) would belong to the appropriate intervals or not.
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Fig. 1. Example 1 & 2 : six blocks and three pieces of n-spheres

5.1 First Example: Six Blocks

This geometrical example is made of n-th dimensional blocks with uniform dis-
tribution each, slightly separated from each other, and is in perfect agreement
with the assumption of isotropy used in the developments of section 3. Each
block is composed of pn points with a step size of 0.1 in each direction, and with
p = 4 in the case of n = {2, 3} and p = 3 in the case of n = 4. Finally, the blocks
are separated from each other by a step size of 0.13. This example corresponds
to the basic configuration that the heuristic (3) for σ should address well by
default, and is therefore a fundamental case study.

In table (1), we indicate the results obtained for three different values of the
dimension n of the problem, and we also indicate in each case the values σ1 and
σ2 corresponding to the heuristics (1) and (3) respectively. For each of these
dimensions, we vary the power d for the computation of the affinity matrix as
indicated in (4), and we compute in all of these cases the intervals of feasibility
for the values of σ with respect to the quality measures introduced in section
4. To determine these intervals in the case of ratio of Frobenius norms between
blocks, the quality has been taken as acceptable when the mean of these ratios
was inferior or equal to 0.15.

The results in table (1) show that the two heuristics σ1 and σ2 fall into the ap-
propriate intervals in almost all cases. This is in agreementwith the expectations in
the sense that the affinity matrix is able to separate well the data. We also mention
that the lengths of the interval, specially with the first quality measure, are larger
for a value of d close to n, which is partly in favor of the considerationof the volumes
instead of squared distances when building the affinity matrix in usual way.

5.2 Second Example: Three Pieces of n-Spheres with 1200 Points

This second example is built in the same spirit as the first one, except that each
cluster has a different volume, and the spherical shape on some of the boundaries
prevents k-means like techniques to separate well the clusters from scratch.
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Table 1. 6 n-dimensional blocks

(a) n = 2 and σ1 = 0.1398 and σ2 = 0.1328

d 1 2 3 4 5
Ratio of Frobenius norm < 0.15 [0.02;0.3] [0.02;0.56] [0.02;0.6] [0.02;0.62] [0.02;0.6]

Clustering error [0.12;1.6] [0.06;1.24] [0.08;1.06] [0.1;1.18] [0.12;1.1]

(b) n = 3 and σ1 = 0.1930 and σ2 = 0.1510

d 1 2 3 4 5
Ratio of Frobenius norm < 0.15 [0.02;0.3] [0.02;0.58] [0.02;0.64] [0.02;0.66] [0.02;0.66]

Clustering error [0.02;3] [0.06;2.2] [0.04;1.4] [0.04;1.2] [0.04;1.2]

(c) n = 4, σ1 = 0.2234 and σ2 = 0.1566

d 1 2 3 4 5
Ratio of Frobenius norm < 0.15 [0.02;0.3] [0.02;0.22] [0.02;0.26] [0.02;0.28] [0.02;0.28]

Clustering error [0.02;1.2] [0.04;0.78] [0.02;0.62] [0.12;0.52] [0.14;0.48]

As in the previous example, table (2) shows the results for the spectral cluster-
ing with the two quality measures in function of both d and n. We can observe
again that the heuristics (1) and (3) are within the validity interval for both
measures, and that for increasing values of the dimension n, the affinity matrix
is better determined with the clusters when the power d is closer to n.

5.3 Image Segmentation

We consider now an example of image segmentation. In this case, we investigate
two different approaches to define the affinity matrix :

– as a 3-dimension rectangular box : since the image data can be considered as
isotropic enough because the steps between pixels and brightness are about
the same magnitude, we can try to identify the image data as a 3-dimensional
rectangular set and incorporate the heuristic (3) for σ in the affinity matrix
given by (2).

– as a product of a brightness similarity term and a spatial one : the second
possibility is to consider that the image data are composed of two distinct
sets of variables, each one with specific amplitude and density. Indeed, the
spatial distribution of the pixels is isotropic but the brightness is scattered
into levels (256 maximum) and the brightness density cannot be derived
from the number of points. Therefore, what is usually considered in papers
dealing with image segmentation (see for instance [4,5]) is the product of an
affinity matrix for the spatial data with an affinity matrix for the brightness
values, each with its specific σ parameter reflecting the local densities. We
then propose to build the affinity matrix in the following way :
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Table 2. 3 pieces of n-sphere

(a) n = 2 and σ1 = 0.0288 and σ2 = 0.0278

d 1 2 3 4 5
Ratio of Frobenius norm < 0.15 [0.04;0.14] [0.04;0.18] [0.6;0.2] [0.06;0.2] [0.06;0.18]

Clustering error [0.04;0.08] [0.02;0.14] [0.06;0.18] [0.6;0.18] [0.06;0.18]

(b) n = 3 and σ1 = 0.1074 and σ2 = 0.1044

d 1 2 3 4 5
Ratio of Frobenius norm < 0.15 [0.02;0.12] [0.02;0.3] [0.04;0.5] [0.06;0.5] [0.08;0.5]

Clustering error [0.02;0.12] [0.04;0.16] [0.04;0.16] [0.08;0.18] [0.08;0.18]

(c) n = 4, σh = 0.1704 and σ2 = 0.1658

d 1 2 3 4 5
Ratio of Frobenius norm < 0.15 [0.04;0.04] [0.02;0.04] [0.04;0.08] [0.06;0.1] [0.1;0.16]

Clustering error [0.02;0.02] [0.04;0.1] [0.06;0.16] [0.08;0.18] [0.1;0.2]

Aij = exp(−‖xi − xj‖2
(σG/2)2

− |I(i)− I(j)|
(σB/2)

) , (5)

where I(i) is the brightness value in R and xi the coordinates of pixel i in
R2. The parameter σG is given by (1) applied only to the spatial data, and
σB is fixed to (Imax/�) with � a characteristic number of brightness levels.
For instance, in the following example, � is equal to the number of threshold
in the picture and σB will define the length of the intervals under which
brightness values should be grouped together.

We point out that this way of doing is still in the spirit of the devel-
opments in section 3, because σ given by (1) reflects a clustering reference
distance in the case of locally isotropic and scattered enough distribution of
points. With 256 maximum brightness levels, the distribution cannot be con-
sidered anymore as locally scattered (lots of values are even equal to each
other) and one must give a priori the characteristic distance under which
brightness values can be clustered. We note also that the solution of taking
σB = Imax/256 would result in grouping the brightness values into clusters of
length one approximately, and the segmentation of the image will require the
analysis of a lot of clusters made of pixels close to each other and with about
the same brightness level, equivalent to a very fine grain decomposition of
the image.

In the following results, we test the approaches (2) and (5) for the computation
of the affinity matrix on a 50×50 pixels picture. On the left, we show the original
thresholded image and, on the right, the results obtained with either (2) in figure
2 or with (5) in figure 3.



Using a Global Parameter for Gaussian Affinity Matrices 387

Threshold number = 20 Clusters number = 20

(a) 20 bright levels and 20 clusters

Threshold number = 40 Clusters number = 20

(b) 40 bright levels and 20 clusters

Fig. 2. Test of the 3-dimension rectangular affinity box on a flower

Threshold number = 20 Clusters number = 20

(a) 20 bright levels and 20 clusters

Threshold number = 40 Clusters number = 20

(b) 40 bright levels and 20 clusters

Fig. 3. Test of the product 2D by 1D affinity boxes on a flower
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Fig. 4. Examples with σ proposed by Perona and al
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Fig. 5. Examples with σ proposed by Brand and al

In both cases, the results are visually acceptable. The 3-dimensional approach
seems to provide nicer results than the 2D by 1D product, but we need more
investigations to ensure which one of these two approaches is the best in general
and to refine the results.

6 Remarks and Conclusions

The problematic of choosing an adequate parameter in order to improve the
results has also been treated by some authors. Different points of view could be
adopted.

– Perona and Zelnik-Manor [6] propose a locally approach. They assign a
different scaling parameter σi to each point xi in the data set. σi is equal
to the distance between xi and its P-th neighbors. This method gives great
results in some kind of problems where the effect of local analyze provides
enough information to create the clusters : for example, recovering a tight
cluster within background noise. But computing a value of σ for each point
xi can be costly and the value P must be fixed empirically (P=7).
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Fig. 6. Examples with the heuristic σ for n = 2

– Brand and Huang [2] define a global scale parameter : the mean between
each data point and its first neighbor. In many examples, we obtain well
clustered data representations.

In the examples introduced in figure 5, the density of points varies within
each cluster. These results illustrate the fact that without global density in-
formation, it can be difficult to cluster well the data points in some cases.
We test our definition (1) of global parameter for these examples in
figure 6.

As recalled above, this global parameter gives good results in these four cases.
We mention however that this heuristic parameter gives information about the
spatial repartition of the data in a box of dimension Dmax. So when we have
cases with an important noise density, the noise is difficult to separate from the
existing clusters and can be assigned to its closest cluster. Only a local parameter
can help to identify the noise from the cluster.

In conclusion, we have proposed a parameter for the construction of the affin-
ity matrix used within spectral clustering techniques. This approach is adapted
to n-dimensional cases, and based on a geometric point of view. With an isotropic
assumption, this parameter represents the threshold of affinity between points
within the same cluster. With quality measures such as ratio of Frobenius norms
and confusion matrix, the rule of σ is observed and our definition is validated on
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a few n-dimensional geometrical examples. We have also tried a case of im-
age segmentation, but we still need deeper investigations and larger sets of
test examples to ensure the validity as well as to determine the limitations of
this approach. We plan also to test this general approach in a case of biologic
topic.
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Abstract. We describe some features of a three-dimensional numerical simula-
tor currently under development for studying water physico-chemical properties
during the flooding of hydroelectric plants reservoirs. The work is sponsored by
the Brazilian Electric Energy National Agency (ANEEL) and conducted with
Furnas Centrais Elétricas S. A., the leading Brazilian power utility company. An
overview of the simulator requirements is given. The mathematical model, the
software modules, and engineering solutions are briefly discussed, including the
finite element based transport module. We compare methods, iterative methods
and preconditioners used to solve the sparse linear systems which arise from the
discretization of three-dimensional partial differential equations.

1 Introduction

Is flooding of soils, consecutive to the creation of water reservoirs, a significant an-
thropic source of greenhouse gases (GHG) emissions? In a mid and long term perspec-
tive, can hydroelectrical energy be considered as a clean energy? The answers of the
scientific and industrial communities to these questions are not conclusive [1], [2]. In
order to participate in this discussion, a group of researchers has been developing a nu-
merical simulator for studying water physico-chemical properties during the flooding
of hydroelectric plants reservoirs [3,4]. In the near future, this simulator will be able to
analyze the production, stocking, consumption, transport, and emission of carbon diox-
ide (CO2) and methane (CH4) in reservoirs. The simulator comprises a Graphical User
Interface (GUI) using OpenGL, and a Shell Interpreter. Geographical data in various
formats are fed to the Terrain module, that generates the level sets and prepares the site
geometry for the next module, Phyto. Drainage and phyto-physionomy data are added
by Phyto and handed over to the Mesh module which generates the grid for the transport
simulator. The prototype was developed with Matlab and is currently being rewritten
in C++. The Transport module comprises the core of the simulator and uses a mixed
finite element scheme.

The simulator is based on a nonlinear system of partial differential equations, the
Navier-Stokes equations and a scalar transport equation [5, 6], presented below in a
nondimensional form:

J.M.L.M. Palma et al. (Eds.): VECPAR 2008, LNCS 5336, pp. 391–404, 2008.
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Fig. 1. Mini element with velocity in five points (centroid included) and pressure in four

∂u
∂t

+ u · ∇u = −∇p +
1

Re
∇ · νt(∇u +∇uT )

∇ · u = 0
∂c

∂t
+ u · ∇c =

1
Re Sc

∇ ·Dt∇c + S ,

(1)

where u, p are, respectively, the nondimensional velocity and pressure, Re is the
Reynolds number, νt is the nondimensional effective viscosity, c is the advected scalar,
Sc is the Schmidt number, Dt is the nondimensional effective diffusion tensor and S is
a source term.

In the current version, the simulator implements a cubic tetrahedron element, mini
element [7,8], with the velocity evaluated at the vertices and the centroid of the element;
pressure is evaluated only in the vertices, see Figure 1.

For the treatment of these equations a common approach is the Galerkin method [9,
10] which transforms the equations (1) in a system of ordinary differential equations:

M u̇ +
1

Re
Ku + Gp = b̂1

Du = b2

Mcċ +
1

Re Sc
Kcc = b3 ,

(2)

in equations (1) and (2) we are using the same symbols u, p, c for continuous and
discrete variables, and the matrices we describe in the next section.

A semi-Lagrangian method [11] is used for the time discretization. This approach
changes the system (2) into:

M(
un+1

i − un
d

∆t
) +

1
Re

Kun+1 + Gpn+1 = b̂1

Dun+1 = b2

Mc(
cn+1
i − cn

d

∆t
) +

1
Re Sc

Kcc
n+1 = b3 .

(3)

The variables from the previous time step are used to evaluate the chemical species
field, uncoupling the hydrodynamics from the transport of the scalar variables. As the
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simulator models three-dimensional space, the linear systems arising from these schemes
are huge and it is mandatory to implement iterative methods for their solutions.

2 Coupled and Segregated Methods

The first two equations of (3) yield the following linear system:(
A G
D 0

)(
u
p

)
=
(

b1
b2

)
or Ax = b , (4)

where A = ( 1
∆tM+ 1

ReK) ∈ R
n×n is symmetric and positive definite, G, DT ∈ R

n×m

and n ≥ m, both have full rank. The unknown u represents the velocity and p the
pressure in each point. Vectors b1 = (b̂1 + 1

∆tMun
d ) and b2 compose the constant right-

hand side. The matrixA is known as saddle point matrix [12]. The third equation in (3)
produces an easier system, that we are not treating in this work.

In order to uncouple the velocity and the pressure components in (4), one may use a
segregated approach performing a block LU factorization of the original matrix:(

A G
D 0

)
∼
(

A 0
D −DÃ−1G

)(
I Ã−1G
0 I

)
, (5)

where Ã is either equal to A or an approximation of A that is easier to solve. For the
former, S = −DÃ−1G is the exact Schur complement matrix of the zero block of the
matrix A, and for the latter is an approximation of the Schur complement matrix. One
has to compute:

Algorithm 1 (Projection Method)
Let v be an auxiliary variable.

1. Av = b1;
2. −DÃ−1Gp = b2 −Dv;
3. u = v − Ã−1Gp;

in a Fluid Dynamics framework, this alternative is called Projection method [13].
Depending on boundary conditions the complete system can be symmetric or non-

symmetric. When A is symmetric and positive definite (SPD) and G = DT , if Ã is
a diagonal matrix, then −DÃ−1G is also symmetric. In this case, both systems can
be solved using the preconditioned conjugate gradient method (PCG) [14, 15]. When
G �= DT the approximated Schur complement matrix can be solved using GMRes [16]
or BiCGStab [17]. The right-hand side of (5) replaces the original matrix involved in
the linear system (4), and the computed solution accuracy depends on the quality of
the approximation Ã of A. Yet another segregated option is to obtain an approximation
for the Schur complement matrix −DÃ−1G instead of an approximation for A. In this
case, it is necessary to substitute the third step of Algorithm 1 by

Au = b1 −Gp . (6)
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Fig. 2. A representation of a Schur complement matrix with tiny entries far from the main diagonal

The Schur complement matrix S, in our application, is dense and huge with order
equal to the number of vertices of a three-dimensional mesh. However, Figure 2 repre-
sents a typical S matrix with tiny entries spread out of a few central diagonals. One may
implement implicit and explicit alternatives for treating S. In the implicit case the ma-
trix S is kept as the product−DÃ−1G and in the explicit alternative an approximation
of S is computed. In section 3, we address some explicit alternatives we have tested.

The coupled method disregards the saddle point structure then equation (4) can be
solved, for instance, by GMRes or BiCGStab. Nevertheless, this statement can be re-
laxed with the use of preconditioners that take into account the saddle point structure.
The coupled approach spends much more computational resources than the segregated
alternative but, in general, with a better numerical behavior, see section 6. Also, in order
to obtain convergence it is necessary to use preconditioners, and reorderings.

3 Explicit Schur Complement Matrix

We have implemented three alternatives in order to assemble S = −DÃ−1G: diagonal,
probe, and complete approximation matrix.

3.1 Diagonal

Ã is a diagonal matrix with two possibilities: diagonal and lumped. In the former, Ã =
diag(A), the diagonal of A, in the latter

Ãii =
n∑

j=1

Aij ,

where Ãii is the diagonal element of Ã in position (i, i). In both cases S is still sparse,
as the product Ã−1G does not change the sparsity pattern of G, and the product of D
by Ã−1G, as long as the sparsity is considered, only puts in relation vertices that are
“neighbors of neighbors”, which is still quite sparse in the problem’s three-dimensional
mesh.

3.2 Probe

In [18], Chan and Mathew presented a quite simple idea for retrieving elements of
an unassembled matrix E originated from a structured mesh. A set of probe vectors
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composed by zeros and ones forms a rectangular matrix W , for instance, when using
three probe vectors

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
...

...
...

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

If E is a tridiagonal matrix the product EW retrieves exactly the three diagonals of
E. If the diagonals of E far from the main diagonal have an important decreasing, this
approach can provide a good approximation for E. Although the simulator mesh is not
structured, we have noted, during the experiments, that S has tiny elements far from the
main diagonal. So we have tested a probed approximation for S. As an approximation
of the Cholesky factors of A are available, for instance, from a previous solution of
the (1, 1)-block using an incomplete Cholesky factorization of A, we have tested the
following algorithm for obtaining an approximation of S:

Algorithm 2 (Probing S)
Let C and CT be approximated Cholesky factors of A.

1. F = GW ;
2. H = C−1(C−T F ), forward and backward substitutions;
3. S̃ = DH ;
4. S = f(S̃), where f retrieves the desired entries.

This alternative gave poor numerical results, we are not even presenting numerical
results. Although we were aware of approaches tailored to saddle point problems with
unstructured meshes [19], their implementation is a matter of future tests.

3.3 Complete Approximated Matrix

Another alternative is to use the following algorithm:

Algorithm 3 (Approximating S)
Let F has the same size as G.

1. AF = G, multiple right-hand side problem;
2. S̃ = −DF ;
3. S = g(S̃) where g modifies the sparsity pattern of the operated matrix by applying

a threshold.

The first step is the most expensive one. Although it can be done in various ways,
for instance as a multiple right-hand side problem, we have implemented it using the
approximated Cholesky factors of A. In Matlab, this alternative can be quite time costly
as one needs to exclude tiny elements in first and third steps out of the internal Matlab
loops, but deserves further developments, mainly in C++, as the numerical results are
comparable to other alternatives.
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4 Segregated Solvers

After assembling the Schur complement matrix or an approximation of it (in the fol-
lowing we call both S), one has to solve the block system(

A 0
D S

)(
I Ã−1G
0 I

)(
u
p

)
=
(

b1
b2

)
(7)

using Algorithm 1. As A is SPD, the PCG is the chosen algorithm for the first step of
Algorithm 1; for solving the second step, for S, we have implemented GMRes.

As the actual solution for (4) was available, we could measure the error, instead
of simply the residual, and we observed that, although cheaper than the coupled al-
ternatives, the segregated solvers gave worse solutions. So we also tested an iterative
refinement algorithm [20,21] for the projection method by applying it to the residual of
the computed solution. In our experiments three to five iterative steps were enough to
improve the solution quality, see section 6.

5 Preconditioners

We describe preconditioners for both segregated and coupled methods. Based on [22],
we also address preconditioners for the coupled approach by applying the segregated
method to the residual. As the reorderings have an important impact on the global per-
formance, for the sake of completeness, we also describe the used alternatives.

5.1 Preconditioners for Coupled Methods

We have tested seven preconditioners for the solution of Ax = b by a coupled method
using iterative Krylov subspace projection methods: GMRes and BiCGStab. For all
tested cases, we approximate A by Ã.

Diagonal

1. Traditional, where Ã is the diagonal of A.
2. Lumped, where Ã is such that Ãii =

∑n
j=1 Aij .

ILU(0). Ã is such that its incomplete LU decomposition preserves the same sparse
structure as A.

ILUT(τ ). The ILUT(τ ) is the incomplete LU with a threshold τ ; this preconditioner
is dynamically formed, as the elements smaller than τ in absolute value are discarded,
so one does not know beforehand its sparsity pattern.

Segregated Preconditioner. Based on [22], we have used the segregated method, pre-
sented in section 4, as a preconditioner for the coupled method. The segregated methods
are inexpensive, although, sometimes, have a poor numerical result, they can perform
very well in practice as preconditioners .
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Block Preconditioners. In [23] some preconditioners were proposed, we have imple-
mented two of them: a block diagonal and a block triangular. The applications of these
preconditioners generate inner-outer iterations schemes [24, 25, 26], and generate two
linear systems that ought to be solved for the right-hand side residual.

Block Diagonal: This preconditioner uncouples the variables and writes

P1 =
(

A 0
0 DA−1G

)
. (8)

In exact arithmetic, the preconditioned matrix P−1
1 A, as A is nonsingular, has three

distinct eigenvalues (1, and 1±√
5

2 ), and the minimum polynomial has degree three,
which guarantees the convergence of a Krylov subspace projection method in
three iterations, in exact arithmetic.

Algorithm 4 (Block Diagonal)
1. Az1 = r1
2. DA−1Gz2 = r2

In the first step of Algorithm 4, we apply the PCG method with an incomplete Cholesky
with threshold (ICCT) preconditioner. In the second step, we choose one of the available
approximations to S, and we apply the GMRes method with an ILUT(τ ) preconditioner.

Block Triangular: Another preconditioner based on the saddle point structure writes

P2 =
(

A G
0 DA−1G

)
. (9)

The preconditioned matrix P−1
2 A, as A is nonsingular, has two distinct eigenval-

ues: ±1. In this case, the minimum polynomial has degree two, and a Krylov subspace
projection method converges in two iterations, in exact arithmetic.

Algorithm 5 (Block Triangular)
1. DA−1Gz2 = r2
2. Az1 = r1 −Gz2

Here, In the first step, after choosing an approximation for S, we apply the GMRes
method with ILUT(τ ) as the preconditioner. Then we apply the PCG with ICCT pre-
conditioner in the second step.

5.2 Segregated Preconditioners

We need two preconditioners in Algorithm 1 one for the first and third (depending on
the construction of S) steps and other for the second step. We observe that the incom-
plete factorizations of A used as preconditioners in the first and third steps can be used
for approximating S. Although the preconditioners are applied independently, we can
interpret this as we have implemented the block diagonal version of [23], as addressed
just above.
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5.3 Reorderings

In addition, we consider the previous preconditioners combined with two block reorder-
ings applied to (4). Namely, we investigate the column approximate minimum degree
permutation (AMD) [27] and the symmetric reverse Cuthill-McKee (SRCM) [28, 29].
In order to preserve the saddle point structure, we reordered firstly the symmetric
matrix A.

Â = PT
A APA

where PA is a column-permutation matrix for A. As the Schur complement matrix, S,
was almost symmetric by structure, we also applied a symmetric reordering besides
AMD.

Ŝ = PT
S SPS

where PS is a column-permutation matrix for S.
According to the given notations, Ĝ and D̂ should be:

Ĝ = PT
A GPS , and D̂ = PT

S DPA

In Figure 3, we present the structure of a simulator typical saddle point matrix before
and after reordering.

6 Numerical Tests

We have used Matlab 7, on a AMD X2 4200+ (dual core - 1024MB of cache), with 4Gb
of RAM. The tested matrices are issued by the following three-dimensional problems:

1. a channel, the matrix order is 42,630 with 0.072% nonzeros,
2. a channel with step, the matrix order is 42,630 with 0.072% nonzeros,
3. a compartment of an actual reservoir, the matrix order is 34,578 with 0.085%

nonzeros.

(a) Saddle point matrix without re-
ordering.

(b) Saddle point matrix with AMD
reordering.

Fig. 3. Examples of saddle point matrix before and after reordering
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The problems were tested with CFL=1 and CFL=5, and Reynolds number of 10,000.
The convergence criterion is Matlab’s default: relative residual less than 10−6. All the
measures were done for one time step of a simulation when solving one linear system
of the problems. The Krylov methods have 200 as the maximum number of iterations
and GMRes was implemented without restart.

As long as reorderings are concerned, some remarks are necessary. Firstly, without
any reordering the time for solving a typical problem is 80 times slower than with AMD
or SRCM reorderings. As matter of fact, from a performance viewpoint, the reordering
is the most important step in the reservoir problem simulation as soon as, as depicted in
Figure 3(a), the arrowed structure of the matrix implies in a tremendous fill in process
when computing a complete or an incomplete factorization. Secondly, the two ordering
schemes are equivalent with a very light bias towards SRCM, so we are addressing
figures only for this alternative.

The fill-in zero preconditioners, ILU(0) and ICC(0), did not converge or become
singular for every test, for the three problems, so we are not presenting figures for these
preconditioners. Also the probing construction for the Schur complement matrix, as we
should have expected, presented a very bad behavior.

We present three types of tables: with complete preconditioners comparisons for
the reservoir problem (Tables 1, 2, and 3), tables comparing the performance of the
methods and preconditioners for the three problems with CFL=1 and CFL=5 (Tables 4
and 5), and tables comparing the segregated and coupled methods for the reservoir
simulation (Tables 6 and 7).

For every table, the labels mean: Preconditioner, the preconditioner: None (without
a preconditioner), Diagonal (classical diagonal), Lumped (lumped diagonal),
ILUT(10−3) (ILUT with an absolute threshold of 10−3), Projection (the projection
method used as a preconditioner), MGW1 (block diagonal described in section 5.1),
and MGW2 (block triangular described in section 5.1); Approx. stands for the kind of
Schur complement matrix approximation (cam is the complete approximated matrix),
as described in section 3; T.Prec is related to the normalized time of the preconditioner

Table 1. Reservoir, coupled approach, left-preconditioned GMRes, CFL=5

Preconditioner Approx. of S T.Prec. T.Sol. Error Iter.

None · · · 57.90 4.78 200
Diagonal · · · 1.00 4.80 0.92 200
Lumped · · · 1.00 4.81 0.99 200

ILUT(10−3) · · · 63.30 1.06 6.2e-7 9

Projection
diagonal 1.85 1.00 3.6e-5 13
lumped 1.86 1.11 9.2e-5 12

cam 42.30 2.33 7.2e-6 17

MGW1
diagonal 1.84 2.22 1.1e-4 27
lumped 1.73 2.22 1.1e-4 27

cam 42.30 3.81 6.7e-6 35

MGW2
diagonal 1.85 1.04 3.0e-5 13
lumped 1.73 1.05 3.0e-5 13

cam 42.30 1.95 9.9e-6 17



400 L.M. Carvalho, W. Fortes, and L. Giraud

Table 2. Reservoir, coupled approach, right-preconditioned GMRes, CFL=5

Preconditioner Approx. of S T.Prec. T.Sol. Error Iter.

Diagonal · · · 1.00 4.91 0.92 200
Lumped · · · 1.00 4.90 0.99 200

ILUT(10−3) · · · 63.30 1.00 6.2e-7 9

Projection
diagonal 1.85 1.66 1.9e-5 20
lumped 1.86 1.40 8.4e-5 16

cam 42.30 2.67 4.2e-7 20

MGW1
diagonal 1.85 3.30 5.4e-5 38
lumped 1.73 3.30 5.4e-5 38

cam 42.20 4.39 2.1e-6 40

MGW2
diagonal 1.85 1.56 6.5e-5 19
lumped 1.73 1.56 6.5e-5 19

cam 42.30 2.23 2.3e-6 20

Table 3. Reservoir, coupled approach, preconditioned BiCGStab, CFL=5

Preconditioner Approx. of S T.Prec. T.Sol. Error Iter.

None · · · 1.24 0.92 190
Diagonal · · · 1.00 1.34 0.97 134
Lumped · · · nc nc nc nc

ILUT(10−3) · · · 63.30 1.00 1.1e-6 5

Projection
diagonal 1.85 23.39 4.6e-9 60
lumped 1.86 27.39 1e-3.0 80

cam 42.30 3.78 5.8e-8 14

MGW1
diagonal 1.85 27.30 7.0e-6 80
lumped 1.73 27.30 7.0e-6 80

cam 42.30 3.15 2.0e-7 14

MGW2
diagonal 1.85 27.30 7.0e-6 80
lumped 1.68 27.30 7.0e-9 80

cam 42.30 3.15 2.0e-7 14

Table 4. Comparing times in the three problems, with CFL=1

Problem Solver Preconditioner Approx. T.Prec. T.Sol. Error

Channel
RP-GMRes Projection diagonal 1.62 1.00 3.1e-8
RP-GMRes MGW 2 lumped 1.53 1.10 6.3e-8

Step
RP-GMRes Projection diagonal 1.62 1.02 9.9e-9
RP-GMRes MGW 2 lumped 1.53 1.11 1.2e-7

Reservoir
LP-GMRes MGW 2 lumped 1.00 1.14 8.0e-6
LP-GMRes Projection diagonal 1.07 1.13 4.6e-6



Comparing Some Methods and Preconditioners 401

Table 5. Comparing times in the three problems, with CFL=5

Problem Solver Preconditioner Approx. T.Prec. T.Sol. Error

Channel
BiCGStab Projection lumped 1.00 1.00 1.4e-7

RP-GMRes Projection diagonal 1.00 1.04 9.0e-8

Step
RP-GMRes MGW 2 lumped 6.69 10.34 3.3e-8
BiCGStab MGW 1 lumped 6.98 10.43 2.9e-8

Reservoir
LP-GMRes MGW 2 lumped 4.29 10.94 3.0e-5
LP-GMRes Projection diagonal 4.59 10.34 3.6e-5

Table 6. Comparing segregated/coupled method for the reservoir problem with CFL=1

Method Solver Preconditioner Approx. T.Tot Error

Segregated
Projection

MGW 1
lumped 1.00 1.1e-2

IR lumped 4.95 1.7e-4

Coupled
LP-GMRes MGW 2 lumped 9.50 8.0e-6
BiCGStab Projection diagonal 15.20 1.8e-9

Table 7. Comparing segregated/coupled method for the reservoir problem with CFL=5

Method Solver Preconditioner Approx. T.Tot Error

Segregated
Projection

MGW 1
lumped 1.00 8.6e-2

IR lumped 2.36 2.2e-3

Coupled
LP-GMRes MGW 2 lumped 4.51 3.0e-5
BiCGStab Projection cam 28.60 5.8e-8

construction, T.Sol is the normalized time of the complete iterations of the precon-
ditioned iterative Krylov methods, Error is the relative Euclidean norm of the actual
error, i.e., the norm of the difference between the correct and the approximated solution
divided by the correct solution norm. For computing the actual solution, we have used
the backslash Matlab operator with iterative refinement in order to reach an accuracy of
10−15.

In Tables 1 to 3, the column Iter. shows the number of iterations of the Krylov
method. In Tables 4 and 5, Problem is the problem type - a channel, a channel with a
step, or a reservoir branch. In Tables 4 to 7, Solver means the type of method, segregated
or coupled. IR means the iterative refinement for the projection method. In Tables 6 and
7, T.Tot is the normalized total time for both the construction of the preconditioner and
the iterative method, Method is the segregated or the coupled methods.

There are still some conventions. When the iterative method fails, we use nc. In the
Approx. column, · · · means that there is no approximation for the Schur matrix, as we
are treating, in this case, the coupled approach with a preconditioner that does not take
into account the saddle point structure. All the times are normalized with respect to the
least time in each column.

In Tables 1 to 3, we show figures for the reservoir problem, comparing differ-
ent methods, Schur complement matrix approximations, and preconditioners using the
same reordering scheme (SRCM) and CFL=5. We can observe that in Table 1 using
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the coupled method with left-preconditioned GMRes, Projection and MGW2 present
almost the same behavior, and ILUT(10−3) although has a better numerical perfor-
mance spends too much time for its construction. As we have mentioned before the
Schur complement “cam” approximation is still too expensive in the construction step
although with a good numerical result. In Table 2 using the coupled method with right-
preconditioned GMRes, we can observe that almost the same behavior is found, with
MGW2 and Projection alternatives performing similarly. Table 3, using BiCGStab for
the same problem, shows that this iterative method does not perform well. Another re-
mark is that the preconditioners that do not take into account the saddle point structure
have a poor performance; in this case, ILUT(10−3) although having a good numerical
performance, has an expensive construction step.

In Tables 4 and 5, we rank the computational and the numerical behavior of all al-
ternatives for the three studied problems. For each one, the first line presents the better
result with respect to time, both preconditioner construction and iterative method execu-
tion times. The second line presents the least error amongst all experiments. The saddle
point based preconditioners with quite simple approximations for the Schur comple-
ment matrix perform quite well. For simple problems, BiCGStab has the best behavior,
outperforming GMRes.

Finally, in Tables 6 and 7, we address comparisons between the segregated and the
coupled methods. For each one the first line presents the best normalized total time
and the second line the least error. As we can observe in the last row of this table, the
“cam” option has the least error, nonetheless with a quite expensive construction step.
In the case of the segregated problem, we have implemented ICC(10−3) for the (1,1)-
block and ILUT(10−3) for the Schur complement block. We can see that, depending
on the accuracy of the solution, the segregated method with iterative refinement is quite
competitive with the more expensive coupled approaches.
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Abstract. The increase in performance of the last generations of graph-
ics processors (GPUs) has made this class of hardware a coprocessing
platform of remarkable success in certain types of operations. In this pa-
per we evaluate the performance of linear algebra and image processing
routines, both on classical and unified GPU architectures and traditional
processors (CPUs). From this study, we gain insights on the properties
that make an algorithm likely to deliver high performance on a GPU.
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1 Introduction

During the last years, since the emergence of the first generation of programma-
ble graphics processors (GPUs), many studies have evaluated the performance
of these architectures on a large number of applications. Thus, linear algebra
operations [10,6], medical image processing [9,12], or database querying [8] are
just a few examples of different arenas in which GPU computation has been
successfully applied.

Recently, the design of GPUs with unified architecture and the development of
general-purpose languages which enable the use of the GPU as a general-purpose
coprocessor has renewed and increased the interest in this class of processors.
Unfortunately, the rapid evolution of both the hardware and software (program-
ming languages) of GPUs has outdated most of the performance studies available
to date.

In this paper, we design and implement a reduced collection of “benchmark”
routines, composed of four linear algebra operations (matrix-matrix product,
matrix-vector product, saxpy, and scaling of a vector) and an image processing
kernel (convolution filter). These routines are employed to evaluate the impact
of the improvements introduced in the new generation of GPUs (Nvidia G80),
comparing the results with those obtained on a GPU from a previous generation
(Nvidia NV44) and current general-purpose processors (AMD Athlon XP 2400+
and Intel Core 2 Duo). The ultimate purpose of this evaluation is to characterize
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the properties that need to be present in an algorithm so that it can be correctly
and efficiently adapted into the GPU execution model.

The rest of the paper is organized as follows. Section 2 describes the basic
architecture and execution model of both the old and new generations of GPUs
Section 3 characterizes the routines in the benchmark collection. Sections 4 and 5
evaluate the performance of the benchmark routines on the Nvidia NV44 and
the Nvidia G80, respectively, comparing the results with those obtained on a
CPU, and identifying a set of properties that must be present in an algorithm
to deliver high performance on that GPUs. Finally, Section 6 summarizes the
conclusions that can be extracted from our analysis.

2 GPU Architecture and Execution Model

2.1 GPU Graphics Pipeline

The graphics pipeline consists of a set of sequential stages, each one with a
specific functionality and operating on an specific type of data. The process
transforms original graphical information (vertices) into data suitable for being
shown on display (pixels). Figure 1 illustrates the usual stages (or phases) that
form the graphics pipeline.

Current GPUs implement this pipeline depending on the generation they be-
long to. Thus, classical GPUs have specific hardware units, known as shaders
(or processors), for each one of the stages of the graphics pipeline. On the other
hand, GPUs from the latest generation have a unified shader (or unified proces-
sor), with the ability to both execute any of the stages of the pipeline and work
with any type of graphical data.

2.2 Classical Architecture

Until 2006 GPUs were based on a design where each pipeline stage was exe-
cuted on a specific hardware unit or processor inside the pipeline. Thus, e.g.,
vertices are processed by vertex processors while pixels (also called fragments)
are transformed by fragment processors. In practice, general-purpose algorithms
implemented on these classical architectures exploit fragment processors only,
due to their larger number and broader functionality. Fragment processors op-
erate in SIMD mode, taking a fragment as input, and processing its attributes;

Fig. 1. Graphics pipeline process with its main stages
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they can also process vectorial data types, working simultaneously on the four
components of a fragment (R, G, B, and A). This class of hardware is able to
read from random memory locations (commonly known as a gather operation in
graphics algorithms), but can only modify one memory position per processed
fragment, the one associated with the position of the fragment. This lack of
support for scatter is one of the main restrictions of the classical GPU.

In the latter generations of this “classical architecture”, programming capa-
bilities were added to vertex and fragment processors. Altogether, the previous
characteristics enable the use of fragment processors as a hardware platform to
process non-graphical data. Unfortunately, the graphical-oriented design of this
class of hardware, its SIMD execution model, the lack of a sophisticated memory
hierarchy and the use of graphical-oriented APIs are problems for an efficient
implementation of general-purpose applications on the GPU.

2.3 Unified Architecture

In 2006 a new generation of GPUs was introduced, with a completely different
architectural design. These new platforms feature a unified architecture, with one
processing unit or unified shader that is able to work with any kind of graphical
data, transforming the sequential pipeline in Figure 1 into a cyclic one, in which
the behavior of the unified shader varies depending on the stage of the pipeline
that it is being executed at each moment.

There are several characteristics in the new generation of GPUs which specif-
ically favor their use as a general-purpose coprocessor: in general, the clock
frequency of the unified shader is much higher than that of a fragment processor
(even though it is still much lower than the clock frequency of current CPUs);
the shader consists of a large collection of computation units (up to 128, de-
pending on the GPU version), called Streaming Processors (SPs), which operate
in clusters of 16 processors in SIMD mode on the input data stream; and the
architecture includes a sophisticated memory hierarchy, which comprises a L2
cache and small fast memories shared by all the SP in the same cluster.

These hardware advances are complemented with the CUDA [3] general-
purpose programming library, which eases the programming effort on these
platforms. In fact, CUDA has been proposed as a standard (although only com-
patible with Nvidia hardware) to program the new generation of GPUs, without
the requirement of learning more complex graphics-oriented languages.

3 Benchmark Collection

In order to identify the algorithmic properties that yield correct and efficient
codes for the GPU execution model, we have studied three major computational
aspects of algorithms:

Data parallelism. The replication of functional units inside the GPU (frag-
ment processors in the non-unified architectures, SPs in the unified architec-
tures) makes this class of architectures specially appropriate for applications
which exhibit a high degree of data parallelism.
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Input data reutilization. The simple memory hierarchy in non-unified GPUs
makes it difficult to exploit the locality of reference; in these architectures,
high memory latency and limited bus bandwidth imply a penalty cost much
higher than in a CPU; for this reason, input data reutilization is one of the
biggest issues when trying to attain high performance on graphics processors.

Computational intensity per stream element. Due to the previous
restriction, to achieve high performance the expensive cost of memory ref-
erences should be masked with a high number of operations per memory
access.

Our benchmark collection is composed of four Basic Linear Algebra Subprograms
or BLAS [5]: the matrix-matrix product (SGEMM), the matrix-vector product
(SGEMV), the “saxpy” (SAXPY), and the scaling of a vector (SSCAL); and a convo-
lution filter, common in image processing. From the computational viewpoint,
the routines in the benchmark present the following properties:

SGEMM. The matrix multiplication routine,

C = α · A · B + β · C

where A is m × k, B is k × n, and C is m × n, being α and β scalars, features
some properties that make it a good candidate to achieve good results when
mapped into graphics hardware. It exhibits a regular memory access pattern, a
high degree of data parallelism, and a very high computational load. On the other
side, it is interesting to study the importance of the high input data reutilization
in this type of algorithm.

For our study, we have chosen square matrices to evaluate the performance
of the routine, and a non-transposed memory layout. The scalars α and β were
set to 1. For a detailed study of the SGEMM performance on a GPU, refer to [1].

SGEMV. The matrix-vector multiplication routine

y = α · A · x + β · y

where A is a m × n matrix, x and y are vectors of length n and α and β are
scalars, exhibits a smaller input data reutilization than SGEMM. Thus, while each
input element for the SGEMM routine is used O(n) times to compute the result,
SGEMV reutilizes O(n) times the data of the input vector, but only O(1) times
the data of the input matrix. This behavior makes the matrix-vector product
routine a more streaming-oriented code, and so it is theoretically possible to
achieve better results on a GPU. The simplest form of de SGEMV routine will be
evaluated, with the matrix A not transposed in memory, and α = β = 1.

SAXPY and SSCAL. The BLAS-1 routines SAXPY and SSCAL

y = α · x + y x = α · x
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where x and y are vectors, and α is a scalar, are specially interesting for graphics
processors, as they do not reutilize input data at all. These algorithms fit per-
fectly to the GPU architecture explained in Section 2. In fact, they can be seen
as fully stream-oriented algorithms, where the input is a stream of data (for the
SSCAL routine) or two streams (for the SAXPY), operations are performed over
each of the elements of the input stream, without any kind of data reutilization,
and finally an output data stream is returned.

The main difference between these two operations, from the performance view-
point, is the amount of computational load per stream element. Thus, SAXPY per-
forms twice as many operations as SSCAL per element. This difference offers some
information on the importance of the computational load in the performance of
the processor.

2D Convolution. Image processing algorithms traditionally exhibit a high
performance when executed on graphics processors. More specifically, the con-
volution filters exhibit some properties which favor GPU hardware. First, the
high degree of data parallelism will take advantage of fragment processors (or
SP) replication of modern GPUs. Second, input data reutilization is very low
(proportional to the size of the applied filter, usually small). Third, the com-
putational load per calculated element is high, and based on multiply-and-add
(MAD) operations, for which the GPU is specially appropriate.

For our evaluation purposes, we have implemented a bidimensional convolu-
tion filter with a square mask of different sizes, comparing optimized versions on
CPU, using tuned BLAS libraries, and on GPU, using optimized Cg and CUDA
implementations.

4 Previous Generation GPU-CPU Comparison

4.1 Experimental Setup

In this first experiment, we have chosen two experimental platforms of the same
generation, an AMD AthlonXP 2400+ CPU and a Nvidia NV44 GPU processor
(both from year 2004), so that we can do a fair comparison between general-
purpose and graphics processors. Details on these architectures are given in
Table 1. The GNU gcc 4.1.2 compiler is employed in the evaluation.

4.2 Implementation Details

The highly tuned implementation of linear algebra kernels in GotoBLAS 1.15 [7]
was used to evaluate the performance of the CPU. The convolution filter im-
plementation was built on top of GotoBLAS, using exclusively fully optimized
BLAS operations.

On the other hand, the GPU was programmed using OpenGL and the Cg
language (version 1.5). The routines were adapted to the architecture of the
Nvidia NV44 in order to optimize performance, as is briefly described next.
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Table 1. Description of the hardware used in our first experimental study.

CPU GPU
Processor AMD AthlonXP 2400+ Nvidia GeForce 6200
Codename Thoroughbred A NV44A
Clock frequency 2 GHz 350 MHz
Memory speed 2 × 133 MHz 2 × 250 MHz
Peak performance 8 GFLOPS 11.2 GFLOPS
Bus width 64 bits 64 bits
Max. bandwidth 2.1 GB/s 4 GB/s
Memory 512 MB DDR 128 MB DDR
Bus Type AGP 8x (2 GB/s transfer rate)
Year 2004 2004

For routine SGEMM, we start from a simple implementation, applying successive
refinements in pursue of high performance. First, we adapt the original algorithm
using the vectorial capabilities of the fragment processors, as proposed in [4].
This type of optimization usually yields a four-fold increase in performance, and
is frequently applied to all types of GPU codes. In addition, we try to exploit
the simple cache hierarchy of the Nvidia NV44 by implementing a multipass
algorithm, following the ideas in [11]. The goal here is analogous to blocking
techniques for CPUs; however, this technique often delivers poorer results on
GPUs as the multiple memory writes after each rendering pass penalize the
global performance. In general, an SIMD architecture attains higher performance
when the instructions are executed only once on the data stream.

We have also implemented optimized versions of routines SGEMV, SAXPY, and
SSCAL which exploit the vectorial capabilities of the GPU by applying analogous
optimizations to those described above for routine SGEMM.

Convolution filters allow us to introduce simple but powerful optimizations
starting from a basic implementation. Our proposal to achieve high performance
when executing this operation on a GPU is to divide the original N ×N image
into four N/2 × N/2 quadrants. For simplicity, we assume here that N is a
multiple of 2; the overlap applied to the boundaries is not illustrated. We then
map the (i, j) elements of the four quadrants onto the four channels (R, G, B,
and A) of an N/2×N/2 data structure. Since a GPU can process four-channel
tuples as a scalar element, we can get up to four times higher performance with
this type of optimization. Figure 2 illustrates the process. Although this strategy
is quite simple, it illustrates the type of optimizations that can be easily applied
when implementing general-purpose algorithms on a GPU.

4.3 Experimental Results

By analyzing the experimental results, the goal to determine which algorith-
mic properties (computational aspects in Section 3) favor the execution of an
algorithm on a GPU with a classical architecture.

Data Reutilization: SGEMM vs. SGEMV

Figure 3 shows the results for routines SGEMM and SGEMV on the CPU and GPU. On
the latter architecture, we report two different MFLOPs rates, labeled as “GPU”/
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Fig. 2. Optimization applied to the computation of a convolution filters on a GPU
with a classical architecture

Fig. 3. Performance of routines SGEMM (left-hand side) and SGEMV (right-hand side) on
the AMD AthlonXP 2400+ CPU and the Nvidia NV44 GPU

“GPU w. TX”, obtained respectively by measuring only the execution time on the
GPU or timing also the period required to transfer data and results between RAM
and video memory. The high input data reutilization of the matrix-matrix product
(see left-hand side plot) explains why the routine in Goto BLAS, which exploits
the sophisticated cache hierarchy of the AMD CPU, outperforms the GPU imple-
mentation by a factor up to 4. The right-hand side plot illustrates how, when the
data reutilization is lower as, e.g., in the matrix-vector product, the difference in
performance between the CPU and GPU routines decreases, though still favors the
CPU (between two and three times higher MFLOPs rate on this architecture).

The figure also reports that the impact of the data transference, however, is
less important for routine SGEMM, which carries out a higher computational load
per element that is transferred through the bus. From the previous results, it is
possible to conclude that the amount of data reutilization is an important factor
in order to achieve high performance on a GPU.

Computation Load Per Stream Element: BLAS-1 Routines

Therefore, one could expect that BLAS-1 operations (SAXPY and SSCAL) will
deliver a high MFLOPs rate on this class of hardware. Surprisingly, as shown
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Fig. 4. Performance of routines SAXPY (left-hand side) and SSCAL (right-hand side) on
the AMD AthlonXP 2400+ CPU and the Nvidia NV44 GPU

in Figure 4, we get a poor performance for our implementations of SAXPY and
SSCAL, much lower than those of the corresponding CPU implementations.

This behavior can be explained as follows: the scarce amount of computational
load per memory access in BLAS-1 operations limits their performance. This is
partially due to the lower efficiency of the memory system of the Nvidia NV44
GPU, with a poor use of cache memories. The elaborated cache memory of
the CPU, and its efficient use by the optimized routines in Goto BLAS, are
the reasons for such a notable difference in efficiency. Furthermore, results on
the GPU are slightly better for SAXPY when compared with the corresponding
implementation on CPU than for SSCAL, as the computational load per stream
element calculated in the former operation is twice as high as that of SSCAL.

In conclusion, high computational load per stream element is one of the basic
conditions for an algorithm to deliver high performance when executed on GPU.

Bidimensional Convolution Filters

Convolution filters combine in the same operation a set of very favorable prop-
erties for GPUs: high data parallelism, low input data reutilization, and high
computational load per stream element. Figure 5 shows the results of the im-
plementations of the convolution filter on the CPU and GPU. The optimized
implementation on GPU (labeled as “GPU4”) employs the four channels of each
element of the input stream in order to store data (as explained at the end of
Section 4), attaining a speed-up factor close to 4x with respect to a basic GPU
implementation (labeled as “GPU”). The comparison between this implementa-
tion and the optimized CPU version shows a comparable performance between
the optimized CPU implementation and the optimized GPU one.

Convolution filters are the type of algorithms that better fit into the execution
model of GPUs with classical architecture. These operations exhibit all the prop-
erties that make good use of GPUs computational power and, at the same time,
hide those aspects in which CPUs are better than graphics processors (basically
at memory access).
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Fig. 5. Performance of the implementations of the convolution filter on the AMD
AthlonXP 2400+ CPU and the Nvidia NV44 GPU

Impact of Data Transfers

From the empirical results, it is possible to conclude that the data transfer stage
previous to any operation executed on GPU is a penalty to the final perfor-
mance, although the overhead introduced is not critical. For this generation of
GPUs, the AGP port is not a significative bottleneck for the overall computa-
tion process. In fact, the impact of data transfer is minimal for those routines in
which the computational load per transferred element is high, e.g. matrix-matrix
multiplication or convolution.

5 New Generation GPU-CPU Comparison

5.1 Comparison Goals

Although the study of the non-unified generation of GPUs has identified some
of the characteristics desirable in algorithms that target GPUs with classical
architecture, it is also interesting to carry over this study to new generation
GPUs with unified architecture. The goal of this study is to verify if our previous
insights also hold for these new architectures, and to evaluate how the hardware
and software improvements (at computational power, memory hierarchies and
interconnection buses level) affect the performance of the implemented routines.

5.2 Experimental Setup

In this second set of experiments, we again chose two experimental platforms
from the same generation, an Intel Core 2 Duo CPU and a Nvidia GeForce 8800
Ultra (with a Nvidia G80 processor) GPU (year 2007); see Table 2 for details.
The GNU gcc 4.1.2 compiler is employed in the evaluation. The multithreading
capabilities of Goto BLAS were enabled so that the two cores in the Intel CPU
cooperate in solving the linear algebra operations.
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Table 2. Description of the hardware used in our second experimental study

CPU GPU
Processor Intel Core 2 Duo Nvidia GeForce 8800 Ultra
Codename Crusoe E6320 G80
Clock frequency 1.86 GHz 575 MHz
Peak performance 14.9 GFLOPS 520 GFLOPS
Memory speed 2 × 333 MHz 2 × 900 MHz
Bus width 64 bits 384 bits
Max. bandwidth 5.3 GB/s 86.4 GB/s
Memory 1024 MB DDR 768 MB DDR
Bus PCI Express x16 (4 GB/s transfer rate)
Year 2007 2007

The implementations of the linear algebra routines in the the CUBLAS li-
brary ([2]) were used in the evaluation. This is a library developed by Nvidia,
implemented on top of CUDA, and optimized for unified graphics architectures
as the Nvidia G80. The experimental evaluation showed that the implementa-
tions in CUBLAS outperformed our implementations using Cg.

For the convolution filter, we implemented a tuned version using CUDA, with
intensive use of the fast shared memory per group of SP in order to optimize
performance. We also applied other optimization guidelines proposed in [3], and
common in the CUDA programming paradigm. On the CPU side, an optimized,
BLAS-based implementation of the bidimensional convolution filter was used.
This type of implementation is fully optimized with respect to the memory and
SSE unit, so the comparison is considered to be fair.

5.3 Experimental Results

Input Data reutilization: SGEMM vs. SGEMV

Figure 6 (left-hand side) shows the performance of routine SGEMM on both plat-
forms. Although this is not the most appropriate algorithm for the GPU (indeed,
it only delivers about 20% of the peak power of the GPU), the performance on
that platform is roughly 10 times higher than that obtained on the CPU.

The impact of the data transfer bottleneck in the performance of a routine is
higher when its computational load decreases. For example, Figure 6 (right-hand
side) illustrates the performance of routine SGEMV. The decrease in the GFLOPS
rate is higher in this case when the transmission time is included. This difference
is so important for this routine that, in case the transfer time is considered in
the evaluation, the performance is lower on the GPU than on the CPU. When
transfer times are not considered, the implementation on the CPU outperforms
the CUBLAS implementation for large stream dimensions.

Note the different behavior of the SGEMV routine executed on CPU and on
GPU. While on a general purpose processor the peak performance is achieved
for relatively small amounts of data, obtaining worse results for bigger vectors,
the maximum performance on GPU is always attained for large vectors. In fact,
the optimized implementations of the BLAS, such as GotoBLAS, exploit very
well the sophisticated cache systems of the most modern processors, and thus
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Fig. 6. Performance of routines SGEMM (left-hand side) and SGEMV (right-hand side) on
the Intel Core 2 Duo CPU and the Nvidia G80 GPU

benefits the computation with small matrices. On the other hand, GPUs do
not present such advanced cache memories; this fact, and the stream-oriented
architecture of this class of processors, benefit the computation over big amounts
or streams of data, attaining poor results for small vectors.

Comparing routines SGEMM and SGEMV, the introduction of a sophisticated mem-
ory hierarchy in the Nvidia G80 diminishes the impact of the data reutilization.
The results for routine SGEMM are better when we compare them with CPU im-
plementation than the results we obtain for routine SGEMV. The introduction of
cache memories is one of the main differences between both generations of GPU
and, from the previous results, we can conclude it has an important influence in the
performance of general-purpose algorithms on GPUs with unified architectures.

Computational Load Per Stream Element: BLAS-1 Routines

The amount of computational load per stream element is also critical in this
class of architectures. Figure 7 reports the results for routines SAXPY and SSCAL.
Compared with the results attained for the classical architectures in Figure 4,
although being better in absolute terms, the behaviors are similar: despite being
stream-oriented algorithms, without any type of input data reutilization, the
results are not comparable with those obtained by the tuned implementations in
GotoBLAS. As occurred in previous experiments, results are better for a more
computationally intensive algorithm such as SAXPY, attaining better results than
SSCAL. The transfer time is more relevant in this case, as the computational
load of the algorithms is quite low compared with that on more computationally
intense routines, such as SGEMM.

Bidimensional Convolution Filter

Figure 8 shows the results obtained for the application of a convolution filter
on a 512 × 512 image and variable filter size. This application again presents
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Fig. 7. Performance of routines SAXPY (left-hand side) and SSCAL (right-hand side) on
the Intel Core 2 Duo CPU and the Nvidia G80 GPU

the most favorable properties for its execution on current GPU architectures,
attaining results up to 20 times better than those achieved for the same routines
on a CPU. This is, in fact, the highest speedup achieved in our study.

Impact of Data Transfers

Data transfers were not a critical stage for the past generation GPUs. However,
from the empirical results extracted for the most modern generation of graphics
processors, we have proved that communication through the PCIExpress bus is
now a factor to be considered.

The impact of the transfer time is larger for the unified architecture compared
with non-unified architecture, with less powerful interconnection buses. In fact,
the peak performance of the Nvidia G80 is about 20 times higher than that of the
Nvidia NV44, but the speed of the interconnection bus in the unified platform
is only twice as fast as the one in the non-unified platform. This is a major
bottleneck in current graphics platforms, and determines that GPU algorithms

Fig. 8. Performance of the implementations of the convolution filter on the Intel Core 2
Duo CPU and the Nvidia G80 GPU
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must be redesigned to reduce the communications so that data in video memory
is reused as much as possible before sending them back to RAM.

The latest GPU models from NVIDIA support the overlapping between mem-
ory transfer and computation on GPU, making it possible to hide the data
transfer bottleneck for some operations. Unfortunately, the tested GPU did not
support this feature.

6 Conclusions

We have presented a study of the properties which favor efficient execution of
general-purpose algorithms on a graphics processor, considering both classical
and unified architectures.

GPUs from previous generations, with classical architecture, are suitable for
certain types of general-purpose algorithms with three basic characteristics: low
input data reutilization, high data level parallelism, and high computational
load per stream element. Despite their high computational power, the graphics-
oriented nature of this class of hardware carries a set of limitations at the
architecture level which ultimately limit the performance of certain types of
algorithms like, e.g., routines from BLAS. On the other hand, GPUs of this na-
ture obtain remarkable results for general-purpose algorithms which exhibit the
three properties specified above, outperforming in this case the CPU.

The improvements introduced in the new generation of GPU (unified architec-
ture, higher processing units replication, more sophisticated memory hierarchies,
etc.) have increased the efficiency of this hardware to execute also for general-
purpose algorithms. In fact, current GPUs deliver higher performance than that
of timely CPUs in many applications.

Therefore, the last generation of GPUs appears as a high performance and low
cost co-processing platform for a larger variety of applications. The emergence
of general-purpose languages that facilitate their programming makes them even
more interesting hardware from general-purpose computations. Nevertheless,
GPUs still present some limitations in general-purpose computing such as nu-
merical precision, data transfer stages, memory hierarchies not as sophisticated
as CPU ones, etc. All this makes necessary to evaluate carefully the suitability
of GPU as an accelerator for calculations.
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Abstract. The general framework of the Optimised Computational
Functional Imaging for Arteries (OCFIA) program is to introduce high-
performance scientific computing in the medical domain with the aim to
rationalize therapeutic decisions in respect to vascular diseases yet poorly
understood. More precisely, it consists in coupling medical imaging tech-
niques, essentially morphological, with scientific computing, through
Computational Fluid Dynamics (CFD), to yield functional imaging, thus
providing to physicians a better quantitative knowledge of the biome-
chanical state (field of speeds, pressure, wall and Stent Graft loads ...)
to the patients.

1 Introduction

Risk factors for cardiovascular disease (hypertension and high cholesterol) and
their role have been identified, but cannot explain the observed localised occur-
rence and the progression of the disease (stenosis, aneurysm rupture, aortic dis-
section). Currently, available techniques such as Computed Tomography (CT),
Magnetic Resonance Imaging (MRI) and Ultrasound (US) do not allow accurate
determination of the complex velocity distribution and biomechanical load on the
arterial wall. Nevertheless there is not doubt that medical imaging is an essential
tool for the understanding of these pathological processes. Cardiovascular disease
is clearly multi-factorial and it has been shown that deviations of the normal
velocity field (changes in wall shear stress) play a key role [Caro,1969]. Despite
many hemodynamic studies carried out with models of arterial bifurcations, es-
pecially the carotid artery bifurcation, the precise role played by wall shear stress
(WSS) in the development and progression of atherosclerosis remains unclear.
Still, it is certain that the mechanical load induced by the fluid on atherosclerotic
plaques and their surrounding tissues is of the utmost importance for predict-
ing future rupture (culprit plaques) and preventing ischemic events [Corti,2002].
In the same way, the risk of rupture of an aortic abdominal aneurysm (AAA)
depends more on biomechanical factors than simply on the aneurysm diameter.
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Although clinical decisions are based only on the latter today, wall tension is a
significant predictive factor of pending rupture [Aaron, 2000].

Computational Fluid Dynamics (CFD) techniques can provide extremely de-
tailed analysis of the flow field and wall stress (shear & tensile) to very high
accuracy. New advances in simulation techniques could make a significant con-
tribution to a better quantitative knowledge of the biomechanical condition of
the arteries and lead to a new understanding via deepened insights into these
conditions. Advanced simulations could potentially be used for predicting plaque
and aneurysm rupture, improving endovascular prosthesis design, as well as for
guiding treatment decisions by predicting the outcome of interventional gesture
(i.e. stent-coil technique).

However, applying computational fluid dynamics (CFD) to actual patholog-
ical regions of the arterial tree is very challenging and has never been done
so far with sufficient accuracy and time efficiency to be useful in the clinical
practice. Today’s medical research is strongly linked with advances in parallel
and high performance computing. Ambitious research programs such as Neu-
roSpin (Saclay, France) are feasible thanks to the support of the computational
ressources of CEA (9968, 63 TFlops, 7th in the top 500 supercomputers). Data
storage, visualization and grid infrastructure are also key issues. The develop-
ment of Virtual Vascular Surgery is encouraged by grid computing consortiums
such as Crossgrid. There is no doubt that advances in computational ressources
and infrastructure will benefit to the medical community. In return, more and
more challenging applications will rise and stimulate research and development.

We present a complete, optimized calculation chain whose input come from an
entirely non-invasive 4D MRI protocol that provides time varying geometry and
flow rates and output is a realistic functional imaging description of the arterial
tree region of interest. Preliminar results were obtained through parallel com-
puting with AVBP code (CERFACS, Toulouse, France) and classical Arbitrary
Langrangian Eulerian (ALE) formulation.

2 Materials and Methods

2.1 Image Acquisition: MRI Protocol

All the images were obtained with a 1.5 T MR scanner (Intera; Philips Medical
Systems, the Netherlands) with a 5-element phased-array coil for signal reception
(Sense Cardiac, Philips Medical Systems).

Theobjectiveoffollowingprocessingstepswastotranslatetheimagedataset into
patient-specific conditions (boundary conditions) suitable for CFD calculations.

MR Angiography. The routine injected (Gd-DTPA, Magnevist, Schering, vol-
ume injected 20mL, injection rate 5mL/s) T1-Full Field Echo sequence was per-
formed on sagittal-oblique planes, parallel to the major aortic axis, in order to
cover the whole aorta geometry (field of view, 450x450x126mm) with a spatial
resolution of 0,88x0,88x1.80mm3. This acquisition was trigged to the patient
ECG, 430ms after the R wave (diastolic phase).
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Single Slice 2D MR Cine Imaging. A dynamic balanced Steady State Free
precession (b-SSFP) sequence, was performed on transverse planes, to cover the
thoracic aorta and segment the cardiac cycle in 20-40 phases.

MR flow quantification. 2D Phase-Contrast (PC) sequences, performed or-
thogonal to the vessel axis, provided the velocity inlet profiles at the ascending,
descending aorta, and supraaortic vessels. Supplementary transversal-oblique
and sagittal-oblique acquisitions, respectively ortogonal to the short and long
aortas axis, were performed to compare quantitatively the velocity results from
the CFD.

2.2 Image Data Processing

All of the next procedures described in this chapter were developed in-house
in a Matlab language (The Matlabworks, Inc) with some C compiled routines
(mexfiles) integrated to main sources. Some of them (affine coregistration and
high dimensional warping are initially developped by John Ashburner into SPM
(statistical parametric mapping toolbox University College London, 2000), an
image processing toolbox dedicated to computational neuroanatomy. The images
were initially obtained in DICOM format and were converted to the Analyze-7
format (Mayo Clinic, Rochester, USA., http://www.mayo.edu/bir/) for filtering
and non-linear-transformation operations. The meshes were initially built in an
ASCII format (*.cas) into the Amira 4.1 environement(TGS, Mercury Computer
Systems, USA). The final set of moving meshes and hemodynamic boundary
conditions are exported into the correct AVBP format (CERFACS, Toulouse,
France, http://www.cerfacs.fr) in order to perform CFD runs. Finally, all post-
processing steps before CFD step were operated with a Pentium(R) Duo 3,4
GHz processor with 1.5Go RAM. The geometrical post-processing operations
are highlighted on the figure 1.

Filtering. MR image noise affects the post-processing algorithms. Filtering can
be used to limit image noise but current filters reduce spatial resolution. In this
work we applied a selective blurring filter to anatomical MR data. The filtered
static data acquisition are submited to 3D Level Set algorithm (see section Initial
Mesh) for a segmentation step. Compared to other classical filters, this filter
achieves the best compromise between spatial resolution and noise reduction
[Gensanne, 2005]. The homogeneous regions must have the same gray level, so if
the noise (gradient) is less than 2xSNR (95%), the selective blurring filter apply
a hard smooth (weighting=1). The treatment is different for the fine details
where gradient is greather than 2xSNR the filter gradually weight the smooth
according to the image neighbours gradient (weighting=1/gradient).

Initial Mesh. After this stage of filtering, the anatomical surface can be ex-
tracted by means of level-set/fast marching methods [Sethian, 1999] that ac-
curately model the complex surfaces of pathological objects. With the static
geometry acquisition, the level set methods offer a highly robust and accurate
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Fig. 1. Postprocessing steps for moving mesh preparation from MRI acquisitions

method for tracking the interface in a volume of interest coming from the static
and contrast-enhanced MRI acquisition.

Given an initial position for an interface γ0 (endovascular surface), where γ
is a closed surface in R3 , and a speed function F which gives the speed of γ in
its normal direction, the level set method takes the perspective of viewing γ as
a zero level set of a function φ from R3 to R whose evolution equation is eq. 1
and where φ represents the distance function.{

φt − F |∇φ| = 0
φ(x, t = 0) = ±d(x) (1)

The filtered static data acquisitions (T1-Full Field Echo sequences) are sub-
mitted to the in-house 3D Level Set algorithm for a fine geometrical extraction
step (Matlab 7.0, the MathWorks, Inc). An initial computational grid was ob-
tained by the discretization of this geometry (Amira 4.1).

Moving Mesh. Wall movements were imposed to the initial grid according to
cine scan acquisition (b-SSFP), by means of the non linear transformation field
algorithm of SPM-2 toolbox (Matlab 7.0, the MathWorks, Inc). A tetraedral
moving grid was built [Moreno, 2006] according to estimated non-linear defor-
mation fields (Fig. 2 shows the mesh and its deformation on a section). Each
phase of the transformation process consists in estimating the defomation be-
tween the native and a target image. Therefore, the whole transformation is
completed when the deformations to all the target images of a cardiac cycle are
computed. The meshes used at each time step of CFD simulation are obtained
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by applying the computed deformation (according to cine scan images) to the
native mesh (obtained from injected sequence).

Specifically, the optimization approach is used here. We are trying to find the
best compromise between effective transformation, by a function F2 (eq.3), and
regular transformation, by a function F1 (eq.2) which corresponds to the sum
of local volume variations (∆V

V = |J | − 1). The deformation gradient tensor J is
computed according to the coordinates of T (x). Optimization process consists
in finding T which minimizes a linear combination of F1 and F2 (eq.4).

F1 =
∫

Ω

(|J | − 1) dΩ +
∫

Ω

(
|J |−1 − 1

)
dΩ (2)

F2 =
∫

Ω

[Isource(x) − Itarget(T (x))]2dΩ (3)

F = λF1 + F2 (4)

The derivative of F is computed with symbolic calculation tool and a gradient
algorithm is used. The phases of the transformation process (Fig. 2) can be
computed independently. This is a strightforward parallelization.

Hemodynamic Boundary Conditions. A region of interest (ROI) defined
the vascular area on the Phase Contrast (PC) quantitative images to extract ve-
locity data samples. A curve fitting calculation was applied to this data set using
the general Fourier model in order to obtain a time-dependent function. This
process was applied to all the orthogonal sections to the short aorta axis (Fig.
3). The areas corresponding to the ascending, descending aorta and supraaortic
vessels provided inlet and oulet conditions for CFD, while the mid descending
aorta was used for the control. The arrow on the right side image points out a
strongly turbulent flow. Note that these MRI images give the vertical component
of velocity.

Fig. 2. Moving meshes (2 cardiac phases)
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Fig. 3. Phase contrast aquisition for the inlet/oulet velocity evaluation

2.3 CFD Application

A first numerical model was developed [Nicoud, 2005] in order to assess the wall
shear stress changes after endovascular stenting. In this approach, the fully cou-
pled fluid–structure problem is replaced by a simpler fluid problem with moving
boundaries. The NavierStokes equations were solved numerically with an appro-
priate finite-element-based method which handles time-dependent geometries.
The main result supports the idea that stenting can induce endothelial dysfunc-
tion via haemodynamic perturbations. From this study, which enabled us to
check the feasibility of an uncoupled CFD, we widened the problem with the
more complex case of vascular geometries.

The flow simulations were performed using the finite volume (FV) method,
as implemented in the AVBP code (CERFACS, European Center for Research
and Advanced Training in Scientific Computation, Toulouse, France).

The FV method used in the code solves the full Navier-Stokes equation, who
governs the flow, by an efficient explicit Arbitrary Lagrangian Eulerian (ALE)
formulation (Fig. 4), which allows to impose the tetraedral moving grid within
cardiac cycles.

Hemodynamic conditions (time-dependent functions) were synchronized with
the wall motion and were imposed in the form of speed profiles at the entry
(ascending aorta) and exit (descending aorta, supraortic vessels) of the numerical
field (aorta district). Blood was assumed to be a homogeneous newtonian fluid
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Fig. 4. Total mesh volume : run process (one ALE run per cardiac phase) for HPC

with a dynamic viscosity approximated as 4 cPoi and a density of 1050 kg/m3
(physiologic blood value in aorta and collaterals). The simulations began from
an initially quiescent flow state and continued for a number of full cardiac cycles
in order to allow the development of a fully periodic flow, representative of a
regular heartbeat. It was found that the main features of the vascular flow field
became stable within four cycles.

Uncoupled CFD results were performed in HPC system (IBM, Power4, Cines,
Montpellier, France) and were controlled by the additional MRI quantitative-
flow-imaging performed at intermediate levels during the examination. Geomet-
ric deformation field was validated by 3D visual correlation between moving
mesh and cine scan imaging.

Tetraedral Grid Resolution (minimum length: 1mm; maximum lenght 2.3
mm), balanced between the grid independence and time efficiency conditions,
was sufficient for preliminar results on Carotid Bifurcation and Thoracic Aorta
CFD calculations.

3 Results

Thoracic aorta studies were performed in both volunteers and patient cases
(Fig.5). Boundary conditions were flow controlled and Risk Factors were ob-
served in relation with ’hot spots’ in wall stress and hemodynamic results (shear
stress and velocity). Patient data set was treated in 24 hours, according to the
description of the table 1.

The data processing is virtually automatic, the only manual interventions are
corrections of errors of the native geometry and preparation of boundary con-
ditions during the extraction process. Normal WSS values calculated by CFD
on healthy ascending regions on patients were similar to data available on lit-
erature [Efstathopoulos, 2008] performed on healthy subjects by phase-contrast
MRI flow measurements and straightforward methodologies based on Poiseuille’s
theory of flow. Systolic (0.3 ± 0.2 N/m2 compared to 0.4 ± 0.2 N/m2) and
diastolic (0.065 ± 0.04 N/m2 compared to 0.11 ± 0.07 N/m2). The same group
of patients presented abnormal WSS values on landing zones (+12% at systole,
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Fig. 5. Stented thoracic aorta : wall shear stress, stream lines velocity, control fow at
intermediate level for rigid and moving wall

+35% at diastole), ’kinked’ zones (+38% ± 6% at systole and +25 ± 11% at
diastole) and collateral (neck vessels) zones (+6 ± 2% at systole).

On the 4D-CFD models, the patterns of the aortic velocity (streamlines, vector
fields) were clearly observed. Localized sharp increases - defined as hot spots -
were quantitatively depicted and referred to on the color-coded scale (cm/sec) at
the side of each model. These velocity hot spots were found at the zones of sharp
diameter transitions (210±30 cm/sec at systole and 50±30 cm/sec at diastole)
as observed in the stenotic fluidodynamic patterns. This was observed both in
the native aorta as well as in the stent-graft. The vector fields analysis in m/s
well-represented the velocity patterns at specific targeted levels and could be
reformatted according to the users purpose.

Characterizing the dynamic components of blood flow and cardiovascular
function can provide insights into normal and pathological physiology. Both vas-
cular anatomy and hemodynamics in arterial pathologies are of high interest
for the understanding of the development and progression of diseases as well as
justifying the therapeutic decision. During the last decade, many experiences
have been focusing on the relevance of the flow dynamics in the prediction of
abdominal aneurysm growth and rupture[Ekaterinaris, 2006]. The aortic wall
stresses have been proposed as new, more precise markers for patients monitoring
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and predicting rupture, and, very recently, novel non-invasive applications have
shown up to estimate the parietal tension

4 Discussion

Following the extraction from the Level Set method, we found that it was re-
strictive to make weary calculations to extract the initial geometry. Sethian’s
method is indeed very interesting but it depends heavily on the image qual-
ity. Partial volume artefacts increase with the thickness of the slice for a given
imaging volume and results in blurring in regions where several vessels cross.
An extraction method with the Level Set technique is erroneous because it sees
a single vessel rather than distinguishing them. We try to solve this problem
by asking experienced radiologists to make the geometry extraction through a
threshold setting procedure. It revealed to be very efficient, the extraction being
made instanteneously with the possibility for error correction by the user.

The flow curves obtained in the reference plan reveals the importance of taking
into account the mobile wall in a realistic case. The result obtained in a rigid
mesh is far better compared to the MRI measures. Yet the results obtained on
a moving mesh are very similar to the control measures. It seems obvious that
a realistic calculation needs to be done according to the rheology of the wall.

The calculations of deformation fields require a single pair of reference volumes
(source and template). The computations have been performed on a dual-core
processor (table. 1). The N deformations to be computed are dispatched on the
processors. As they are independant, no communication is required during the
parallel computing. It is thus trivial to reduce the time to 1/n if we have such
processors at our disposal.

Table 1. Time consuming for the general clinical case

Chain element process Time consuming

MRI protocol. 30 min
Level Set geometry extraction (not parallel). 60 min

Native mesh prepartation and correction (interactive, manual). 120 min
Moving mesh estimation process (not parallel). 600 min

Moving mesh estimation process (parallel@2proc). 300 min
CFD (HPC, 24 proc). 600 min

TOTAL 1410 min (23h30 min)

Table 2. Run characteristics

parameter value

number of tetraedral elements 145848
number of iterations for convergence 2.6182e+08

fixed time step for moving wall 0.55E-04 s
time step for rigid wall 0.32E-04 s

delta Volume for moving mesh 84 mL
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5 Conclusion

The proposed approach permits the computation of the blood flow under real-
istic in vivo, time evolving and flow controlled conditions. It is much simpler
than the full coupled fluid-structure problem and has the potential to provide
a better picture of the specific hemodynamic status. The method gives a di-
rect way to impose realistic wall interaction to hemodynamic time boundary
conditions, from medical examinations performed into a simple MR protocol. A
future improvement in the processing chain described in this work will facilitate
biomechanical functional imaging in less than 8 hours, which would be useful
for clinical practice. Insights about the physiopathology of some arterial diseases
and endovascular treatment are also expected.
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Abstract. Modern graphics processing units (GPU) are becoming more
and more suitable for general purpose computing due to its growing
computational power. These commodity processors follow, in general,
a parallel SIMD execution model whose efficiency is subject to a right
exploitation of the explicit memory hierarchy, among other factors. In
this paper we analyze the implementation of the Fast Fourier Transform
using the programming model of the Compute Unified Device Architec-
ture (CUDA) recently released by NVIDIA for its new graphics plat-
forms. Within this model we propose an FFT implementation that takes
into account memory reference locality issues that are crucial in order
to achieve a high execution performance. This proposal has been exper-
imentally tested and compared with other well known approaches such
as the manufacturer’s FFT library.

Keywords: Graphics Processing Unit (GPU), Compute Unified Device
Architecture (CUDA), Fast Fourier Transform, memory reference locality.

1 Introduction

The Fast Fourier Transform (FFT) nowadays constitutes a keystone for many
algorithms and applications in the context of signal processing. Basically, the
FFT follows a divide and conquer strategy in order to reduce the computational
complexity of the discrete Fourier transform (DFT), which provides a discrete
frequency-domain representation X [k] from a discrete time-domain signal x[n].
For a 1-dimensional signal of N samples, DFT is defined by the following pair
of transformations (forward and inverse):

X = DFT (x) : X [k] =
N−1∑
n=0

x[n]Wnk
N , 0≤k<N

x=IDFT (X) : x[n]=
1
N

N−1∑
k=0

X [k]W−kn
N , 0≤n<N

where the powers of WN = e−j 2π
N are the so-called twiddle factors.
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Fig. 1. Radix-2 decimation-in time FFT in terms of butterfly operators

The FFT organizes the DFT computations, as shown in Fig. 1, in terms of
basic blocks, known as butterflies. The computation is carried out along log2 N
stages being computed N coefficients per stage. This way, the computational
complexity is reduced to O(N log2(N)) instead of O(N×N) as inferred directly
from the DFT definition.

Several configurational issues have been preset in Fig. 1. This configuration
is known as radix two because butterflies operate on two inputs generating two
transformed coefficients. Before the first stage, input coefficients are permuted
in bit reversal order with the purpose of obtaining the right output arrangement.
Such a rearrangement in time domain gives rise to the denomination decimation-
in-time algorithm. This configuration is used the rest of the paper.

From the viewpoint of memory reference locality, we can observe that if the
input coefficients are located into consecutive memory positions, the reference
patterns of higher stages will exhibit poorer locality features than the lower
ones. In addition, we must remark that if the input coefficients are permuted
properly, it is possible to carry out one of the stages using the access pattern of
another, simply by using the corresponding twiddle factors. Such an equivalence
is depicted in Fig. 2 showing how 5th and 6th stages can be performed with the
access pattern of the 3rd and 4th ones, after permuting the coefficients.

For subsequent use, we will denote L(N,j,i)(x) as the computation of j-th stage
of a N -sample signal, but using the access pattern of the i-th stage (excluding
the permutation) and L(N,i)(x) = L(N,i,i)(x) the computation of the i-th stage
with the proper pattern and twiddle factors. This way we can write the full FFT
computation as X = FFT (x) = L(N,s−1)(...(L(N,1)(L(N,0)(P (x))))...), assum-
ing that the number of samples is N = 2s, and P represents the bit reversal
permutation of the signal.
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Fig. 2. Computing 3rd and 4th stages of the FFT (a); computing 5th and 6th stages of
the FFT using the pattern of 3rd and 4th stages over a properly permuted input (b)

2 CUDA Programming Model

The Compute Unified Device Architecture (CUDATM) from NVIDIA�, is both
a hardware and software architecture for issuing and managing computations on
the GPU, making it to operate as a truly generic data-parallel computing device.
An extension to the C programming language is provided in order to develop
source codes.

From the hardware viewpoint, the GPU device consists of a set of SIMD
(Single Instruction Multiple Data) multiprocessors each one containing several
processing elements (processors), as shown in Fig. 3. Different memory spaces
are available. The global device memory is a unique space accessible by all mul-
tiprocessors, acting as the main device memory with a large capacity. Besides,
each multiprocessor owns a private on-chip memory, called shared memory or
parallel data cache, of a smaller size and lower access latency than the global
memory. A shared memory can be only accessed by the multiprocessor that
owns it. In addition, there are other addressing spaces, omitted in the figure, for
specific purposes: texture and constant memories.

CUDA execution model is based on a hierarchy of abstraction layers: grids,
blocks, warps and threads (Fig. 4). The thread is the basic execution unit that is
actually mapped onto one processor. A block is a batch of threads cooperating
together on one multiprocessor and therefore all threads in a block share the par-
allel data cache. A grid is composed by several blocks, and because there can be
more blocks than multiprocessors, different blocks of a grid are scheduled among
the set of multiprocessors. In turn, a warp is a group of threads executing in an
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Fig. 4. Thread-based execution model in CUDA

SIMD way, so threads of a same block are scheduled in a given multiprocessor
warp by warp.

Two kinds of codes are considered in the CUDA programming model: those
executed by the CPU (host side) and those executed by the GPU, called kernel
codes. The CPU is responsible of transferring data between host and device mem-
ories as well as invoking the kernel code, setting the grid and block dimensions.
Such kernels are intended to be executed in an SIMD fashion over the processors.

Memory accesses and synchronization scheme are the most important aspects
to take into account. Warp addresses issued by SIMD memory access instructions
may be grouped thus obtaining a high memory bandwidth. This is known as
coalescing condition. Otherwise, access will be serialized and the resulting latency
will be difficult to hide with the execution of other warps of the same block.
Global synchronization is not provided at the device side, only threads in a block
can be waiting one to each other. Thus block synchronization mechanism must
be explicitly implemented by the host through consecutive kernel invocations.
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Fig. 5. Data transfer pattern between device and shared memory of copy in/copy out
operations

3 Implementation Strategies for the FFT

In this section we analyze an FFT implementation using the programming model
previously described. The goal is to obtain a high degree of parallelism taking
into account system constrains, specifically those related to the memory hier-
archy. The basic idea consists of mapping coefficients placed in global (device)
memory into the data parallel cache (shared memory), performing all possible
computations with these local data and then copying the updated coefficients
back to the global memory. This process may be repeated with different mapping
functions until all stages are done.

In order to be more precise we firstly introduce some useful functions de-
scribing the FFT implementations under study. These functions represent data
transfers and transformations accomplished in a single shared memory.

Function copy in(ii,nc,sz,st) copies a subset of signal coefficients from the
device memory into consecutive positions of the shared memory, adding a
padding when necessary to avoid memory bank conflicts. Its behaviour is de-
picted in Fig. 5. It starts from the ii-th coefficient and copies nc chunks of size
sz coefficients separated by a stride st. Symmetrically, copy out(ii,nc,sz,st)

copies coefficients from shared memory back to the device memory. During the
SIMD execution of these functions, each thread is in charge of transferring only
a pair of coefficients. Observe that threads in a warp must access consecutive
memory locations with the purpose of coalescing global memory accesses. Thus,
the arguments of such functions describes how coefficients are accessed and hence
if this transference fulfills coalescing criteria. In general, the chunk size must be
a multiple of the warp size for an optimal transfer. Accesses are serialized when
the chunk size is smaller.

The function fft level(i,j) corresponds to the application of the operator
L(N,i,j)(x) as described in section 1. Such a function is intended to be applied to
the coefficient vector x, previously transferred to shared memory, and it operates
in-place. The number of blocks of threads is N

2r , where 2r is the number of
coefficients copied into shared memory. Executing this function in an SIMD
way on a butterfly-per-thread basis, the b-th thread computes the b-th butterfly
transformation, so a block performs 2r−1 butterflies, one per thread. Twiddle
factors for this case are determined by the b-th butterfly of the j-th FFT stage,
whereas the coefficients to be transformed are those involved in the b-th butterfly
of the i-th FFT stage.
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GPU side, one single block

copy_in(0,1,N,1);
for (i=0; i<s; i++) {

syncthreads();
fft_level(i,i);

}
copy_out(0,1,N,1);

Fig. 6. FFT of a signal fitting the shared memory

Let us analyze the naive case when the whole input signal fits into the shared
memory of one SIMD multiprocessor (N ≤ 2r), whose implementation is shown in
Fig. 6. After a bit reversal permutation, coefficients are transferred to the shared
memory, then s invocations of fft level are executed and finally coefficients are
returned to the device memory. Note that as all the threads belong to the only
block, global synchronization can be performed among threads. Besides, the orig-
inal FFT scheme is applied locally (both fft level arguments are equal).

The generic case of a signal whose size exceeds the available shared memory
of a multiprocessor (N > 2r) is discussed in next subsections. In this case sev-
eral multiprocessors are involved, meaning that different blocks of threads must
collaborate to perform the FFT.

3.1 Straightforward Approach

The first approach to be analyzed is a straightforward solution, but it exploits
barely the locality features of the memory access pattern. As threads of differ-
ent blocks cannot be synchronized within kernel code, required synchronizations
must be carried out in the host side through successive kernel function invoca-
tions. Each kernel code invokes copy in and copy out. Between these two invoca-
tions, several fft level stages need to be performed. The larger the signal size,
the larger the number of butterflies operators and also the larger the number of
FFT stages. Due to the fixed size of shared memories, the input signal must be
distributed among the blocks of threads. Thus, a number of blocks of threads
equal to N

2r will work with their corresponding set of disjoint coefficients. Let
us consider each block with a set of 2r consecutive complex coefficients. This
way the first r FFT stages can be performed independently of the work of other
blocks. Nevertheless, threads within the block must be synchronized before every
stage in order to ensure that its input coefficients are updated by the previous
stage. The remainder FFT stages involve coefficients located at a distance larger
than 2r, that is, their copies are located on different shared memories, on differ-
ent multiprocessors. In order to proceed forward, coefficients must be properly
rearranged. This fact involves a copy out and a host synchronization prior to
continue with the next stages.

At this point, all output coefficients of the r-th FFT stage can be found in
the device memory. For the sake of a simplified discussion, let be 2r ≥ N/2r

(2s ≤ 22r), that is, the total number of FFT stages s is at most 2r. As these
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Host side

q=min(r,s);
FirstKernel〈〈〈2s−q,2q−1〉〉〉(q); --->

if (s>r) {
q=s-r;
NextKernel〈〈〈2r,2s−r−1〉〉〉(q);--->

}

GPU side, block j

copy_in(j*2q,1,2q,1);
for (i=1; i≤q; i++)
{

syncthreads();
fft_level(i,i);

}
copy_out(j*2q,1,2q,1);

copy_in(j,2q,1,2r);
for (i=1; i≤q; i++)
{

syncthreads();
fft_level(i,i+r);

}
copy_out(j,2q,1,2r);
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Fig. 7. Straightforward FFT implementation for large signals

r levels have been just computed, only r subsequent stages remain at most,
and therefore only a new kernel invocation is needed. In general, � s

r � kernel
invocations will be required. Assigning the 2r sequences of size 2s−r coefficients
with stride 2r to different blocks (one sequence per block), all the s−r remaining
stages can be performed as shown in Fig.7. This pictorial example shows how a
16-samples FFT (s = 4) is performed for r = 2, that is 4 coefficients per block.
Following the notation introduced by CUDA for its extended C language, the
numbers enclosed in the triple angle notation (〈〈〈nB,nTpB〉〉〉) stand for the total
number of blocks and the number of threads per block respectively.

Observe that an important fact affects adversely the performance of the sec-
ond kernel call (NextKernel). As threads are scheduled in warps behaving like
gangs of threads that execute the same SIMD instruction, the memory address-
ing mode must follow a specific pattern for an efficient execution. In the case
of global memory, threads of a same warp must access to consecutive memory
locations, otherwise accesses are serialized. This condition is called coalescing
requirement. The approach of Fig. 7 suffers from this lack of coalescing because
memory locations accessed by copy operations do not contain chunks of consec-
utive coefficients. Observe that the third argument (size of chunks) of the copy
functions in NextKernel invocation is set to one. This way, the first block in the
example operates with vector (0, 4, 8, 12).
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Host side

q=min(r,s);
FFTKernel(q); ------------>

Transposition(); ------------>

if (s>r) {
q=s-r;
FFTKernel(q); ------------>

}

Transposition(); ------------>

GPU side, block j

copy_in(j*2q,1,2q,1);
for (i=1; i≤q; i++) {

syncthreads();
fft_level(i,i);

}
copy_out(j*2q,1,2q,1);

copy_in(...);
TranspositionCore();
copy_out(...);

copy_in(j*2q,1,2q,1);
for (i=0; i≤q; i++) {

syncthreads();
fft_level(i,i+r);

}
copy_out(j*2q,1,2q,1);

copy_in(...);
TranspositionCore();
copy_out(...);

Fig. 8. FFT implementation for large signals using matrix transpositions

3.2 Transposition-Based FFT

A well known solution to this problem is to store the input signal in a 2D matrix
(2s1×2s2 with s = s1+s2), 1D FFT is applied to every row (first s1 stages), then
the matrix is transposed and finally 1D FFT is again applied to every row (last
s2 stages). In order to apply correctly these last stages, a transformation of the
transposed matrix is required as described in [6]. This step can be avoided if these
1D FFT stages use the corresponding twiddle factors of the original FFT higher
stages as shown in Fig. 8. Note that input coefficients for the second invocation
to the FFTKernel are now located on consecutive positions satisfying memory
access coalescing demands, but this technique requires extra copy in/copy out

operations for each transposition stage.
Broadly, a matrix transposition can be carried out in a block fashion by de-

composing it into submatrices of size m× n fitting the shared memory. Subma-
trix (i, j) can be copied-in fulfilling the coalescing requirements because the m
elements in the same row are consecutive. Once in the shared memory, the sub-
matrix is transposed. Finally, the transposed submatrix is efficiently copied-out
in its symmetrical position (j, i) as there are m chunks of n consecutive elements.
Source codes for an efficient implementation of the matrix transposition can be
found in the manufacturer’s website [8].
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For signal size larger than 2r×2r this approach uses a higher dimensional ma-
trix representation of the coefficients. In general, for 2n×r coefficients a n−dimen-
sional matrix is required. For example, if 22r < N ≤ 23r, signal coefficients are
arranged in a 3D matrix. In this manner, 1D FFT is needed for each dimension,
being necessary to do and undo transpositions not only for the second dimension
but also for the third one.

3.3 Locality Improved FFT

With the purpose of improving the data locality in the higher levels of the FFT of
large signals, we propose the technique described as follows. The key idea consists
of transferring chunks of consecutive coefficients with a given stride among them,
allowing the application of higher FFT stages using lower FFT stage access
patterns. This technique is depicted in Fig. 9, where the left column corresponds
with the host side code for a generic signal size, which has been unrolled to the
particular case of two iterations matching a signal up to 22r samples. Observe
that invocations to NextKernel are not preceded by any transposition and, what is
more important, copy in/copy out operations meet the coalescing condition. This
way, on avoiding transposition stages, the number of memory transfer operations
is significatively reduced. The number of higher FFT stages that can be mapped
on lower ones depends on the number of chunks (nC), in particular log2(nC)
stages. Moreover, the number of chunks depends on the size of the chunks, which
is determined by the number of threads of a warp (coalescing condition). For this
reason, in the example of Fig. 9 the host invokes NextKernel two times, one half
of the higher stages are performed in each invocation. Observe that the third
argument (size of chunks) of the copy functions in NextKernel invocation is set
to 2r−q where q is the number of FFT stages to be computed. Therefore the
lower the number of stages the higher the number of kernel invocations and so
less reusability of data in the shared memory. Nevertheles if q is less than the
warp size the coalescing gets worse.

By way of illustration, let us consider the case of an FFT of an input signal
whose size is 256 coefficients (8 FFT radix-2 stages), running on a GPU with 8
threads per block assembled in 4 threads per warp and a shared memory with
room for 16 coefficients per block. With this configuration, the whole FFT can
be decomposed into 16 block of 16 consecutive coefficients (after a bit reversal
permutation) performing the four first FFT stages. Then, coefficients must be
rearranged in order to proceed with the next stages. As warps are made of 4
threads, the chunk size is fixed to 4 consecutive coefficients, but pairs of coeffi-
cients separated 24 are required, so the stride is 16. Function copy in(4j,4,4,16)

collects all coefficients for the j-th block, enabling it to perform 5th and 6th stages
using the access patterns of 3rd and 4th stages by means of FFT LEVEL(3,5) and
FFT LEVEL(4,6). This is the same example shown in Fig. 2. Note that 5th and 6th

stages can not be remapped onto stages 1st and 2nd because of their shared mem-
ory access pattern. This involves that stages 7th and 8th must be performed after
a new rearrangement of the coefficients (copy in(4j,4,4,64); FFT LEVEL(3,7);

FFT LEVEL(4,8)).
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Host side

q=min(r,s);

FirstKernel(q);

p=0;

while (q<s){

p=p+q;

q=min(r/2,s-p);

NextKernel(p,q);

}

Host side (unrolled)

q=min(r,s);

FirstKernel(q); --->

p=0;

/*1st iteration*/

if (s>r) {

p=p+q;

q=min(r/2,s-p);

NextKernel(p,q);--->

}

/*2nd iteration*/

if (s>r+r/2) {

p=p+q;

q=s-p-r/2;

NextKernel(p,q);--->

}

GPU side, block j

copy_in(j*2q,1,2q,1);

for (i=1; i≤q; i++) {

syncthreads();

fft_level(i,i);

}

copy_out(j*2q,1,2q,1);

copy_in((j+j/2q)*2q,2q,2r−q,2p);

for (i=1; i≤q; i++) {

syncthreads();

fft_level(r-q+i,p+i);

}

copy_out((j+j/2q)*2q,2q,2r−q,2p);

copy_in((j+j/2q)*2q,2q,2r−q,2p);

for (i=1; i≤q; i++) {

syncthreads();

fft_level(r-q+i,p+i);

}

copy_out((j+j/2q)*2q,2q,2r−q,2p);

Fig. 9. Improved-locality FFT implementation for large signals

According to the hardware specifications of the target platform, the maximum
number of threads per block is 512, the maximum number of threads per warp
is 32 and the shared memory size is 8 Kbytes, so 1024 complex coefficients fit.
First 10 FFT stages (r=10) are performed in the invocation of FirstKernel.
In order to maximize the coalescing the chunk size should be a multiple of
the maximum number of threads per warp. Since there are 32 chunks of 32
coefficients in 1024 coefficients, the 6th stage is the first one onto which a higher
stage can be mapped. This fact involves that only 5 higher stages can be done
in each invocation to NextKernel. A lower number of threads per warp allows
NextKernel to perform more stages, however the degree of fine-grained parallelism
will decrease. In Fig. 9 the invocation to FirstKernel performs r stages whilst
successive invocations to NextKernel perform at most r

2 stages. Although this
technique can double the number of NextKernel invocations compared with the
straightforward solution, that is, host side synchronizations, the improvement of
coalesced global memory accesses is worthwhile because non-coalesced accesses
are serialized (up to 32, the number of thread per warp).
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4 Experimental Results

The locality-improved strategy for the 1D radix-2 complex FFT above dis-
cussed has been implemented and tested. Experiments have been conducted
on a NVIDIA GeForce�8800GTX GPU, which includes 16 multiprocessors of
eight processors, working at 1.35GHz with a device memory of 768MB. Each
multiprocessor has a 8KB parallel data cache (shared memory). The latency for
global memory is about 200 clock cycles, whereas the latency for the shared
memory is only one cycle.

Codes have been written in C using the version 1.1 of CUDATM, released
by NVIDIA�[8]. The manufacturer provides a platform–tuned FFT library,
CUFFT, which allows the users to easily run FFT transformations on the graphic
platform. The CUFFT library offers an API modelled after FFTW [2,3], for dif-
ferent kinds of transformations and dimensions. We have chosen CUFFT to be
used with the purpose of measurement comparisons. Since the manufacturer rec-
ommends the transposition strategy for signals exceeding the supported signal
size limit, CUFFT for supported signal sizes can be considered an upper limit
for the transposition technique.

We have executed a forward FFT measuring the number of GigaFLOPS ob-
tained. A common metric [2] considers that the number of floating point opera-
tions required by a radix-2 FFT is 5Nlog2(N). Thus, if the number of seconds
spent by the forward FFT is tFFT, the number of GFLOPS for a N -sample signal
will be GFLOPS = 5Nlog2(N)

tFFT
10−9. According to the CUFFT/FFTW interface,

two dimensionality parameters are taken into consideration: the signal size (N)
and the number of signals (b) of the given size to be processed. In literature
that is known as a batch of b signals. For example, the transformation of four

Table 1. Measured GFLOPS for the CUFFT library and the proposed locality-
improved FFT version (liFFT). N represents the number of coefficients of the trans-
form for a batch of one single signal (b = 1). Void entries correspond to unsupported
configurations due to memory constraints.

Single signal of N coefficients
log2(N) 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
CUFFT 0.43 0.47 0.98 2.01 3.68 6.03 10.7 13.9 13.6 19.4 23.0 19.6 16.9 16.9 - -
liFFT 0.35 0.77 1.63 3.28 5.82 9.38 12.6 15.7 18.6 20.8 21.67 21.1 20.7 20.8 20.9 20.8

Table 2. Measured GFLOPS for the CUFFT library and the proposed locality-
improved FFT version (liFFT). N represents the number of coefficients of the trans-
form for a batch of 8 signals (b = 8). Void entry corresponds to CUFFT unsupported
configuration.

Batch of 8 signals, N coefficients per signal
log2(N) 10 11 12 13 14 15 16 17 18 19 20 21 22
CUFFT 3.44 3.64 6.18 9.61 10.0 12.9 18.8 20.9 17.1 23.3 26.2 22.5 20.2
liFFT 2.80 4.81 7.95 11.9 14.9 17.3 19.7 21.0 21.9 22.7 22.6 21.5 20.8
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Table 3. Measured GFLOPS for the CUFFT library and the proposed locality-
improved FFT version (liFFT). N represents the number of coefficients of each signal
in the batch. The total number of coefficients (b × N) to be processed is fixed to 220

coefficients.

220 coefficients, batch of 220/N signals
log2(N) 10 11 12 13 14 15 16 17 18 19 20
CUFFT 39.9 21.2 19.6 19.7 12.9 15.2 20.4 20.9 16.5 21.4 23.0
liFFT 17.9 18.6 19.3 19.8 20.4 20.1 20.7 21.0 21.4 21.9 21.7

Table 4. Measured GFLOPS for the CUFFT library and the proposed locality-
improved FFT version (liFFT). N represents the number of coefficients of each signal
in the batch. The total number of coefficients (b × N) to be processed is fixed to 225

coefficients. Void entries correspond to unsupported memory configurations.

225 coefficients, batch of 225/N signals
log2(N) 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
CUFFT 43.8 25.1 - - 13.6 16.2 22.0 22.7 17.7 23.8 26.5 22.7 20.2 19.5 - -
liFFT 19.0 19.8 20.5 21.0 21.3 21.6 21.8 22.1 22.6 22.9 22.6 21.4 20.8 20.8 21.0 20.8

1024-sample signals (N = 1024) can be permormed by one FFT call using an
input vector of 4096 coefficients arranged in a 4-signal batch (b = 4). Observe
that in this case only 10 FFT levels are carried out. Therefore the measured
GFLOPS can be calculated as

GFLOPS = b
5Nlog2(N)

tFFT
10−9.

In the case of CUFFT library, the measured time includes function invocations
to create the configuration plan and release its resources.

Tables 1, 2, 3 and 4 show the experimental results, measured in GFLOPS, by us-
ing the previous definition. Table 1 compiles results corresponding to single-signal
tranforms in function of the signal size (from 1Ksamples to 32Msamples). The
performance of the proposed locality-improved FFT implementation is compared
with this one of the CUFFT library. A similar comparison is shown in
Table 2, where 8-signal batch transforms are considered. Note that for our locality-
improved implementation, the upper limit for the total number of coefficients (b×
N) is imposed by the size of the device memory, being 225 coefficients. Results in
tables 3 and 4 show, by means of two series of experiments, the effect of the number
of signals in the batch. In both series, the total number of coefficients (b×N) to be
processed has been kept constant and equal to 220 and 225 respectively. Observe
that, for 225 coefficients, the CUFFT library does not support some configurations
although all the coefficients fit in the global memory.

Although for batches with a large number of small signals, the CUFFT imple-
mentation appears to perform better, the proposed implementation makes a good
exploitation of memory locality, allowing a good scalability with the signal size.
In fact, for several interesting situations the locality-improved implementation
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is able to provide better results than CUFFT. Examples of such situations are
when there is a high number of signals in a batch and for very large signal size.
This ability to manage large size signal constitutes an important feature of the
proposed implementation. The CUFFT library is unable to perform the trans-
form beyond 8 million elements (223) [8] whereas our implementation can manage
up to 225 coefficients (about 32 million samples), making a better exploitation
of the available device memory.

5 Related Work

The FFT represents a computationally intensive floating-point algorithm whose
generalized application makes it adequate for being accelerated on graphics plat-
forms. Due to its interest, several contributions can be found in the literature of
the last years focused on porting FFT algorithms to graphics processing units.
In [9] very basic ideas of how to implement the FFT algorithm are collected.
In [7], implementations of the FFT in the context of image processing appli-
cations are presented using GPU shader programming. Also in other specific
contexts FFT has been developed on graphics hardware, like [10,1,5]. A discus-
sion about the FFT implementation, together with other algorithms, is found
in [4]. This last work tries to exploit the GPU memory hierarchy in order to im-
prove the performance of the implementations but using programming models
prior to CUDA.

6 Conclusions

Locality features of some implementations of the Fast Fourier Transform using
the NVIDIA CUDA programming model are discussed in this work. A radix-two
decimation-in-time FFT implementation is proposed, that can take advantage
of the GPU memory organization. With this purpose, the proposed implemen-
tation intends to exploit memory reference locality, making an optimized use
of the parallel data cache of the target device. Compared to the FFT library
provided by the graphics processor manufacturer, our proposal exhibits a good
scalability and it is able to achieve a better performance for certain signal sizes.
Moreover, it is able to work with signals of larger size than the manufacturer’s
implementation.
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Abstract. Combustion is the source of eighty percent of the energy
produced in the world: it is therefore a topic of major interest in the
present context of global warming and decreasing fuel resources. Simu-
lating combustors and especially instability mechanisms in these systems
has become a central issue in the combustion community in the last ten
years. This can be achieved only on massively parallel computers. This
paper presents modern techniques to simulate reacting flows in realistic
geometries and shows how parallel computing (typically thousands of
processors) has made these simulations possible. The physics of reacting
flows are only discussed briefly to concentrate on specific issues linked to
massively parallel computing, to the turbulent character of the flow and
the effects of rounding errors.

1 Introduction

This paper presents an overview of combustion and of CFD (Computational
Fluid Dynamics) for combustion. It focuses on the place of instabilities in react-
ing flows and on the role of massively parallel computations. These instabilities
are found at many levels:

– Like any shear flow, reacting flows are submitted to hydrodynamic instabili-
ties [1,2] and to vortex formation. Such vortices are easily observed in nature,
like in the wake of aircrafts for example. When they are found within com-
bustion chambers, they can constitute a major danger.

– Acoustics play a major role in reacting flows: by coupling with heat release,
they are the source of a major problem in many combustion devices: combus-
tion instabilities [3,4] which can induce high vibration levels and, in extreme
cases, destroy combustion hardware in a few seconds.

– Instabilities are present in the physical problem to study but they are also
present in the numerical methods used to simulate these mechanisms. Most
high-fidelity numerical schemes required for Computational Fluid Dynam-
ics exhibit low dissipation and therefore multiple non-physical instabilities
(wiggles) which can require significant efforts to be kept under control [5,6,4].

– Finally, CFD for reacting flows is performed today on massively parallel
machines: these architectures coupled with centered schemes needed for tur-
bulent flows lead to an additional type of instability linked to the growth of
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rounding errors and to a new type of instability where the solution depends
on unexpected parameters such as the commutativity errors of addition, the
initial condition or the number of processors.

All these phenomena are ’instabilities’ even though they correspond to very
different physical mechanisms. In many cases, they can couple and in LES of
combustion instabilities, the first issue is to be able to control the non physical
waves due to the high-order spatial scheme as well as the rounding errors due
to massively parallel computing. In this paper, the physics of combustion and
of instabilities are briefly discussed before presenting a code used for LES of
combustion by multiple groups and discussing one specific issue linked to the
effect of rounding errors in simulations of turbulent flows.

2 Combustion: The Source of Our Energy

Combustion is the unknown heart of most present problems discussed everyday
on global change and pollution issues. More than eighty percent of the energy
produced on earth is obtained by burning some fossil fuel. This combustion can
be produced by burning wood and producing a few Watts or by running 20
meter long industrial turbines producing 200 MWatts or more. The processes
used for combustion can be simplified and non optimized like for wood combus-
tion or highly technological like in reciprocating engines. This makes combustion
the first contributor to our life style, our energy consumption and to the pro-
duction of pollutants such as NOx or CO2. This also implies that controlling
global change problems implies first to control combustion technologies since
they are the major source of the problem and the first place to act. Considering
that there is no real substitute for combustion at the moment in many applica-
tions (aircrafts, cars, energy production), it also means that the optimization of
combustion processes is the most effective method to control global change.

The optimization of combustion is an ongoing work since 1900 but recent
progress in this field has been tremendous. In the last twenty years, combustion
devices have been optimized in terms of efficiency and pollution emissions to
reach norms which were impossible to imagine before. This has been done by the
introduction of electronic monitoring and control (especially for car engines) but
also by a better understanding of combustion phenomena and an optimization
of the parameters of combustion chambers. These parameters are not limited to
the combustion chamber shape: the fuel injection strategy, for example, is a key
point to control combustion. Optimizing a combustion chamber is therefore an
extremely difficult process and this complexity is obvious when one considers
the results of these optimization processes in combustion companies: while the
shapes of most civil aircrafts today look the same, all combustion chambers are
different showing that the optimum is by no means simple to define.

What makes combustor optimization even more difficult is the multiple non-
linearities and instabilities found in reacting flows:

– Minimizing pollutant is easy to obtain by simply injecting less fuel in a
chamber. The problem however is that, below a certain equivalence ratio
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(below a certain amount of kg of fuel per kg of air), combustion simply
stops [3,7,4]. The existence of this flammability limit makes optimization
delicate because bringing the combustor close to extinction is dangerous (for
aircrafts and helicopters for example, this is definitely something which must
be avoided for obvious reasons).

– Optimization of combustion devices must be sought for a whole range of
operating conditions. Many chambers can be optimized at one regime (for
example idle conditions in a car) but then will not be efficient for another
regime (full power for example). Moreover, a chamber can be optimized for
a regime (a gas turbine for example) but impossible to ignite or too sensitive
to sudden quenching.

– The most critical problem encountered since the end of the 20th century in
the field of gas turbines is combustion instabilities [8,9,10,4]. Most chambers
which were optimized to minimize NOx emissions and maximize efficiency
in the last ten years have been subject to combustion instability problems.
In Europe, the LOW NOx projects initiated by the European Commission
are now being continued through combustion instability studies because the
gains in NOx and efficiency are often compromised by the impact of com-
bustion instabilities. Section 3 will focus on this specific issue.

3 Combustion and Instabilities

Reacting flows are compressible flows. They exhibit acoustic / combustion insta-
bilities which can be extremely strong [3,11,4]. The fact that flames can couple
with acoustics has been known for a long time [12] even though it is still not
fully understood. Combustion instabilities are difficult to predict and are usually
discovered at a late stage during the development of engine programmes so that
they represent a significant industrial risk.

In steady combustors like gas turbines, instabilities can lead to oscillations
of all flow parameters, reaching levels which are incompatible with the normal
operation of the chamber. High levels of structure oscillations are found, very
high levels of RMS pressure can be observed. In a given chamber, while normal
turbulent combustion usually leads to 10 to 100 Pa RMS pressure levels, it is
not uncommon to see chambers where the RMS pressure reaches 20000 Pa (180
dB) when a combustion instability begins. At these levels, the acoustic velocity
associated to the RMS pressure can reach 1 to 20 m/s so that the perturba-
tions induced by the acoustic field are absolutely not negligible. In such cases,
the engine structure can fail, the fuel injector can burn, the flame might totally
quench or flashback. Flashback is a phenomenon encountered when the acoustic
velocity is larger than the mean flow leading to flow reversal at the combustor
inlet: in other words, the flow leaves the combustor through the inlet instead
of entering it; the flame does the same and ends up upstream of the combus-
tion chamber, in a zone which was not designed to sustain high temperatures.
Combustion instabilities have been the source of multiple failures in rocket en-
gines, as early as the Saturne or the Ariane 4 project, in aircraft engines (main
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Fig. 1. Snapshots of flame position (isosurface of temperature) during one oscillation
cycle at 120 Hz in an industrial gas turbine [13]. LES result

chamber of post combustion chamber), in industrial gas turbines, in industrial
furnaces, etc. Fig. 1 shows an example of simulation of ’mild’ oscillation in a gas
turbine[13] where the flame position (visualized by an isosurface of temperature
colored by axial velocity) pulsates strongly at four instants of a cycle occur-
ing at 120 Hz). For such a mild oscillation, a limit cycle is obtained and the
chamber can operate for a long time without problem except for a high noise
level.

Predicting and controlling combustion instabilities is a major challenge for
combustion research. Today, the most promising path is to understand these
phenomena using Large Eddy Simulation methods which are able to predict
these combustion oscillations [4,14,15] something which was impossible 10 years
ago with classical Reynolds Averaged methods.

4 DNS, LES and RANS for Combustion

Turbulent combustion is encountered in most practical combustion systems such
as rockets, internal combustion or aircraft engines, industrial burners and fur-
naces. . . while laminar combustion applications are almost limited to candles,
lighters and some domestic furnaces. Studying and modeling turbulent combus-
tion processes is therefore an important issue to develop and improve practical
systems (i.e. to increase efficiency and reduce fuel consumption and pollutant
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Fig. 2. Examples of time evolutions of the local temperature computed with DNS,
RANS or LES in a turbulent flame brush

Fig. 3. DNS of a premixed flame interacting with three-dimensional isotropic turbu-
lence [16]. An isosurface of temperature is visualized. The reaction rate is presented in
two planes which are normal to the mean flame front. The vorticity field, corresponding
to turbulent motions, is also displayed in the bottom plane.

formation). As combustion processes are difficult to handle using analytical tech-
niques, numerical combustion for turbulent flames is a fast growing area.

The three main numerical approaches used in turbulent combustion model-
ing are Reynolds Averaged Navier Stokes (RANS) where all turbulent scales
are modelled, Direct Numerical Simulation (DNS) where all scales are resolved
and Large Eddy Simulation (LES) where larger scales are explicitly computed
whereas the effects of smaller ones are modeled:
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– Reynolds Averaged Navier Stokes (or RANS) computations have histori-
cally been the first possible approach because the computation of the in-
stantaneous flow field in a turbulent flame was impossible. Therefore, RANS
techniques were developed to solve for the mean values of all quantities.
The balance equations for Reynolds or Favre (i.e. mass-weighted) averaged
quantities are obtained by averaging the instantaneous balance equations.
The averaged equations require closure rules: a turbulence model to deal
with the flow dynamics in combination with a turbulent combustion model
to describe chemical species conversion and heat release. Solving these equa-
tions provides averaged quantities corresponding to averages over time for
stationary mean flows or averages over different realizations (or cycles) for
periodic flows like those found in piston engines (i.e. phase averaging). For
a stabilized flame, the temperature predicted with RANS at a given point is
a constant corresponding to the mean temperature at this point (Fig. 2).

– The second level corresponds to Large-Eddy simulation (LES). The large
vortices are explicitly calculated whereas the smaller ones are modeled using
subgrid closure rules. The balance equations for large-eddy simulations are
obtained by filtering the instantaneous balance equations. LES determine the
instantaneous position of a “large scale” resolved flame front but a subgrid
model is still required to take into account the effects of small turbulent
scales on combustion. LES would capture the low-frequency variations of
temperature (Fig. 2).

– The third level of combustion simulations is Direct Numerical Simulation
(DNS) where the full instantaneous Navier-Stokes equations are solved with-
out any model for turbulent motions: all turbulence scales are explicitly de-
termined and their effects on combustion are captured. DNS would predict
all time variations of temperature (Fig. 2) exactly like a high-resolution sen-
sor would measure them in an experiment (Fig. 3). Developed in the last
twenty years thanks to the development of high performance computers,
DNS have changed the analysis of turbulent combustion but are still limited
to simple academic flows (i.e. simple geometries and somewhat low Reynolds
numbers).

In terms of computational requirements, CFD for non-reacting and reacting
flows follow similar trends: DNS is the most demanding method and is limited to
fairly low Reynolds numbers and simplified geometries. LES works with coarser
grids (only larger scales have to be resolved) and may be used to deal with
higher Reynolds numbers but require subgrid-scale models. In current engineer-
ing practice, RANS is extensively used because it is less demanding in terms of
resources.

5 Massively Parallel LES of Combustion

Performing LES of real devices requires extremely large parallel machines. The
solver used in this paper is an explicit solver called AVBP and developed by
CERFACS and Institut Francais du Pétrole [17,18,19] for multiple industrial
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Fig. 4. Elapsed CPU times for AVBP to perform one time iteration on a 10 million
point grid

users and research laboratories (www.cerfacs.fr/cfd/parallel.php). AVBP solves
the compressible Navier Stokes equations in a multispecies gas with chemical
reactions [4]. This implies typically advancing 10 variables (3 velocities, density,
temperature and five chemical species) on a 10 million grid points over 1 million
time iterations. The usual duration of a computation in physical time is of the
order of 0.5 seconds for a real combustion chamber. This time is sufficient to
understand instabilities which can develop in these devices. In terms of human
time, such a computation can take from one day to one month.

Over the last ten years, AVBP has been applied succesfully to multiple non
reacting flows [20,21,22], piston engine configurations [23,24], academic combus-
tors [25,26,27,28], combustion instabilities [29,30,15], ramjet engines [31] and
real gas turbines [32,33]. A key aspect of the success of AVBP is its capability
to make use of all existing parallel machines with very limited adaptations.

To achieve efficiency on parallel architectures, AVBP uses MPI for message
passing and HDF 5 for data format. Since the beginning of the AVBP project,
two main choices have been made in order to be ready for massively parallel
machines:

– LES solvers are unsteady solvers: they advance the solution in time. This is
done with an explicit method to be able to scale on very large number of
processors.

– The data structure is built for hybrid meshes (structured and unstructured)
to allow easy mesh decomposition even on large number of processors.

As a result, AVBP has been used on multiple parallel architectures: Fig. 4
shows typical CPU times required to perform one time iteration on a 10 million
cell grid using 32 processors. Of course, machines like BlueGene provide less
efficient results when the number of processors is limited (here to 32). However,
our objective is not to run on 32 processors but on 4000 or 40000. In this case,
Fig. 5 shows that the parallel efficiency of machines like BlueGene is very high
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Fig. 5. Speed ups of AVBP measured on various parallel architectures

and that AVBP scales almost perfectly. This is a key issue when performing runs
on machines with more than 100,000 processors (see for example the INCITE
program at www.sc.doe.gov/ascr/incite/index.html)

6 Rounding Errors and LES

The literature shows the power of Large Eddy Simulation (LES) to predict non-
reacting [34,35] as well as reacting turbulent flows[36,4,37,38,39,28]. The previ-
ous sections have suggested that the main strength of LES compared to classical
Reynolds Averaged (RANS) methods is that, like Direct Numerical Simulation
(DNS)[40,41,42], LES explicitely captures large scale unsteady motions due to
turbulence instead of modeling them. An often ignored aspect of this feature
is that like DNS, LES is also submitted to a well-known feature of turbulent
flows: the exponential separation of trajectories [43] implies that the flow solu-
tion exhibited by LES is very sensitive to any “small perturbation” with respect
to a reference state. These small perturbations which can induce new ’instabil-
ities’ can have different sources. Rounding errors are the first source of random
noise in any finite precision computation: they constitute an unavoidable forcing
for the Navier-Stokes equations and may lead to LES variability. The study of
error growth in finite precision computations is an important topic in applied
mathematics [44,45] but has found few applications in multidimensional fluid
mechanics because of the complexity of the codes used in CFD.

Initial conditions are a second source of LES result variabilities: these condi-
tions are often unknown and any small change in initial conditions may trigger
significant changes in the LES solution.

Due to its large computational resource requirements, modern LES heavily
relies on parallel computing. However, in codes using domain decomposition,
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i.e. most of them, it is also an additional “noise” source in the Navier-Stokes
equations especially at partition interfaces. Even in explicit codes where the al-
gorithm is independent of the number of processors, the different summation or-
ders with which a nodal value is reconstructed at partition interfaces may induce
non-associativity errors. For example, in explicit codes on unstructured meshes
using cell vertex methods[17], the residual at one node is obtained by adding
the weighted residuals of the surrounding cells. Additions of only two summands
are perfectly associative. Moreover, it must be noted that not all additions of
more than two summands generate non-associativity errors. However, in some
cases summation may yield distinct results for floating-point accumulation: the
rounding errors in (a + b) + c and in a + (b + c) may be different, in particular if
there are large differences in orders of magnitude between the terms[46]. After
thousands of iterations, the LES result may be affected. Since these rounding
errors are induced by non deterministic message arrival at partition interfaces,
it is believed that such behaviour may occur for any unstructured parallel CFD
code, regardless of the numerical schemes used. As a consequence, the simulation
output might change when run on a different number of processors. The case of
implicit codes in time[36,35,47] or in space such as compact schemes[48,49,50]
is not considered here: for such schemes, the methods [51,52] used to solve the
linear system appearing at each iteration depend on the number of processors.
Therefore, rounding errors are not the only reason why solutions obtained with
different numbers of processors differ. Even on a single processor computation,
internal parameters of the partitioning algorithm may couple with rounding er-
rors to force the LES solution. For example, a different reordering of nodes using
the Cuthill-McKee (CM) or the reverse Cuthill-McKee (RCM) algorithm[53,54]
may produce the same effect as a simple perturbation and can be the source of
solution divergence.

Turbulence theory indicates that LES/DNS solutions have a meaning only in
a statistical manner [55]: observing that the solution of a given LES/DNS at a
given instant changes when the rounding errors or the initial conditions change is
not really surprising. It becomes a real difficulty in the practical use of LES/DNS
because running the same simulation on two different machines or one machine
with a different number of processors or slightly different initial conditions can
lead to totally different instantaneous results. For steady flows in the mean,
statistics do not depend on these changes and mean profiles will be identical.
However, when the objective of the LES is the study of unsteady phenomena
such as ignition or quenching in a combustor[26], knowing that results depend on
these parameters is certainly a sobering thought for the LES/DNS community
and a drawback in terms of industrial exploitation.

This last section addresses these issues and tries to answer a simple question
which is of interest for all practitioneers of LES: how does the solution produced
by LES depend on the number of processors used to run the simulation? On the
initial condition? On internal details of the algorithm?

First, we will present an example of the effects of the number of processors
in a simple case: a rectangular turbulent channel computed with a fully explicit
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LES code[19]. This example shows that even in an explicit code, running a sim-
ulation twice on a different number of processors can lead to totally different
instantaneous solutions. The second section then gives a systematic description
of the effects of rounding errors in two flows: a turbulent channel and a laminar
Poiseuille flow. For all cases, the difference between two instantaneous solutions
obtained by changing either the number of processors, the initial condition or
the graph ordering is quantified in terms of norms between the two solutions.
The effects of time step and machine precision (simple, double and quadruple)
are also investigated.

6.1 Effects of the Number of Processors on LES

This first example is the LES of a rectangular fully developed turbulent channel
of dimensions: 75x25x50 mm (Fig. 6). A pressure gradient is applied to a periodic
channel flow and random disturbances are added to pass transition to turbulence.
There are no boundary conditions except for the walls. The Reynolds number
is Reτ = δuτ/ν = 1500, where δ is half the channel height and uτ the friction
velocity at the wall: uτ = (τwall/ρ)1/2 with τwall being the wall stress. The mesh
contains 303 hexahedral elements, it is not refined at walls. The first grid point
is at a reduced distance y+ = yuτ/ν ≈ 100 of the wall. The subgrid model is
the Smagorinsky model and a law-of-the-wall is used at the walls[28]. The CFL
number λ controlling the time step ∆t is λ = max((u + c)∆t/∆) where u is
the local convective velocity, c the speed of sound and ∆ the mesh size. For all
simulations discussed below, the initial condition corresponds to a snapshot of
the flow at a given instant, long after turbulence was initialized so that it is fully
established. The computation is performed with an explicit code where domain
decomposition is such that the method is perfectly equivalent on any number
of processors. The Recursive Inertial Bisection (RIB)[56,57] algorithm has been
used to partition the grid and the Cuthill-McKee algorithm is considered as the
default graph reordering strategy. The scheme used here is the Lax-Wendroff
scheme[58]. Additional tests were performed using a third-order scheme in space
and time[18] but led to the same conclusions.

Figs. 7–9 show fields of axial velocity in the central plane of the channel at
three instants after the run initialization. Two simulations performed on re-
spectively 4 (TC1) and 8 processors (TC2) with identical initial conditions are
compared. The characterictics of all presented simulations are displayed in Ta-
ble 1 and 2. The instants correspond to (in wall units) t+ = 7.68, t+ = 18.43
and t+ = 26.11 respectively where t+ = uτ t/δ. Obviously, the two flow fields
observed at t+ = 7.68 are identical. However, at t+ = 18.43, differences start to
become visible. Finally, at t+ = 26.11, the instantaneous flow fields obtained in
TC1 and TC2 are totally different. Even though the instantaneous flow fields are
different, statistics remain the same: mean and root mean square axial velocity
profiles averaged over t+ ≈ 60 are identical for both simulations.

This very simple example illustrates the main question of the present work: is
the result of Figs. 7–9 reasonable? If it is not a simple programming error (the next
section will show that it is not), can other parameters produce similar effects?
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FLOW DIRECTION

X = 75 mm

WALLS

Y = 25 mm

Z = 50 mm

τ wall

τ wall

Fig. 6. Schematic of a periodic channel. The upper and lower boundaries consist of
walls, all other boundaries are pairwise periodic.

(a) Run with 4 processors (b) Run with 8 processors

Fig. 7. Instantaneous field of axial velocity in the central plane of the channel at
t+ = 7.68. a) run TC1 (4 processors), b) run TC2 (8 processors)

(a) Run with 4 processors (b) Run with 8 processors

Fig. 8. Instantaneous field of axial velocity in the central plane of the channel at
t+ = 18.43. a) run TC1 (4 processors), b) run TC2 (8 processors)

6.2 Sensitivity of LES in Laminar and Turbulent Flows

To understand how LES can produce diverging instantaneous results such as
those shown in the previous section, simple tests were performed to investigate
the effects of various aspects of the methodology:

– laminar/turbulent baseline flow,
– number of processors,
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(a) Run with 4 processors (b) Run with 8 processors

Fig. 9. Instantaneous field of axial velocity in the central plane of the channel at
t+ = 26.11. a) run TC1 (4 processors), b) run TC2 (8 processors)

Table 1. Summary of turbulent LES runs (fully developed turbulent channel)

Run Nbr Init. Precision Graph CFL
Id proc cond. ordering λ

TC1 4 Fixed Double CM 0.7
TC2 8 Fixed Double CM 0.7
TC3 1 Fixed Double CM 0.7
TC4 1 Modif. Double CM 0.7
TC5 1 Fixed Double RCM 0.7
TC6 4 Fixed Double CM 0.35
TC7 8 Fixed Double CM 0.35
TC8 4 Fixed Simple CM 0.7
TC9 8 Fixed Simple CM 0.7
TC10 28 Fixed Quadr. CM 0.7
TC11 32 Fixed Quadr. CM 0.7

– initial condition,
– graph ordering,
– time step,
– machine precision.

For these tests, the objective is to quantify the differences between two LES
solutions produced by a couple of simulations in Table 1 and 2. Let u1 and u2
be the scalar fields of two given instantaneous solutions at the same instant after
initialization. A proper method to compare the latter is to use the following norms:

Nmax =max(u1(x)−u2(x)) for x∈ΩNmean =(
1
VΩ

∫
Ω

(u1(x)−u2(x))2dΩ)
1
2 forx∈Ω

(1)
where Ω and VΩ respectively denote the computational domain and its volume.
Both norms (in m/s) will be applied to the axial velocity field so that Nmax

provides the maximum local velocity difference in the field between two solu-
tions while Nmean yields a volumetrically averaged difference between the two
solutions. The growth of Nmax and Nmean versus the number of iterations will
be used as a direct indicator for the divergence of the solutions.
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6.3 A Fully Deterministic LES?

First, it is useful to indicate that performing any of the LES of Table 1 twice on
the same machine with the same number of processors, the same initial condi-
tions and the same partition algorithm leads to exactly the same solution, Nmax

and Nmean being zero to machine accuracy. In that sense, the LES remains fully
deterministic. However, this is true only if the order of operations at interfaces
is not determined by the order of message arrival so that summations are always
carried out in the same order. Otherwise, the randomness induced by the non
deterministic order of message arrival is enough to induce diverging solutions.
Note that such an option can be expensive and that blocking messages order can
increase the overall simulation cost by a large amount.

6.4 Influence of Turbulence

The first test is to compare a turbulent channel flow studied in the previous
section and a laminar flow. A three dimensional Poiseuille flow was used as test
case. The Poiseuille computation is performed on a pipe geometry with 361 by 26
points. The flow is laminar and the Reynolds number based on the bulk velocity
and diameter is approximately 500. The boundary conditions are set periodic at
the inlet/outlet and no slip at the duct walls, a constant axial pressure gradient
is imposed in the entire domain.

Figure 10 shows the evolutions of Nmax and Nmean versus iteration for runs
TC1/TC2 and LP1/LP2. Note that the first point of the graph is the evaluation
of the difference after one iteration. The only parameter tested here is a change
of the number of processors. As expected from the snapshots of Figs. 7–9, the
turbulent channel simulations are very sensitive to a change in the number of pro-
cessors and the solutions of TC1 and TC2 diverge rapidly leading to a maximum
difference of 20 m/s and a mean difference of 3-4 m/s after 90,000 iterations. On
the other hand, the difference between LP1 and LP2 hardly increases and levels
off when reaching values of the order or 10−12. This is expected since there is
obviously only one stable solution for the Poiseuille flow for infinite times and
laminar flows do not induce exponential divergence of trajectories. However, this
simple test case confirms that the turbulent character of the flow is the source
of the divergence of solutions. This phenomenon must not be confused with the
growth of a hydrodynamic mode, which is induced by the bifurcation in phase
space of an equilibrium state of a given physical system. Obviously, such an
equilibrium state does not exist for a fully developed turbulent channel flow.

Table 2. Summary of laminar runs (Poiseuille flow)

Run Nbr Init. Precision Graph CFL
Id proc cond. ordering λ

LP1 4 Fixed Double CM 0.7
LP2 8 Fixed Double CM 0.7
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Fig. 10. Effects of turbulence. Differences between solutions measured by Nmax (open
symbols) and Nmean (closed symbols) versus iteration. Squares: differences between
TC1 and TC2 (turbulent channel). Circles: differences between LP1 and LP2 (laminar
Poiseuille flow).

In this case, the separation of trajectories is caused by vorticity, which leads to
an increase in the number of degrees of freedom in phase space [59] and thus
high sensitivity to initial conditions. Moreover, the stagnation of absolute and
mean differences between TC1/TC2 simply implies that after 90,000 iterations
solutions have become fully uncorrelated and should not be misinterpreted as
the saturation of an exponentially growing mode.

The basic mechanism leading to Figs. 7–9 is that the turbulent flow acts as an
amplifier for rounding errors generated by the fact that the mesh is decomposed
differently in TC1 and TC2. The source of this difference is the new graph
reordering obtained for both decompositions. This implies a different ordering
when adding the contributions to a cell residual for nodes inside the subdomains
but mainly at partition interfaces. This random noise roughly starts at machine
accuracy (Fig. 10) at a few points in the flow and grows continuously if the flow
is turbulent.

6.5 Influence of Initial Conditions

The previous section has shown that turbulence combined with a different do-
main decomposition (i.e. a different number of processors for the following) is
sufficient to lead to totally different instantaneous flow realizations. It is ex-
pected that a perturbation in initial conditions will have the same effect as
domain decomposition. This is verified in runs TC3 and TC4 which are run on
one processor only, thereby eliminating issues linked to parallel implementation.
The only difference between TC3 and TC4 is that in TC4, the initial solution
is identical to TC3 except at one random point where a 10−16 perturbation is
applied to the streamwise velocity component. Simulations with different loca-
tions of the perturbation were run to ensure that their position did not affect
results.
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Fig. 11. Effects of initial conditions. Differences between solutions measured by Nmax

(open symbols) and Nmean (closed symbols) versus iteration. Squares: differences be-
tween TC1 and TC2 (different numbers of processors). Circles: differences between
TC3 and TC4 (different initial conditions).

Figure 11 shows that the growth rate of the difference between TC3 and TC4
is exactly the same as the one observed between TC1 and TC2 (also displayed in
Fig. 11): two solutions starting from a very slightly perturbed initial condition
diverge as fast as two solutions starting from the same solution but running on
different numbers of processors. Note that the difference between runs TC1 and
TC2 comes from random rounding errors introduced at each time step while
TC3 and TC4 differ only through the initial condition: no perturbation is added
during the simulation. Still, the differences between TC3 and TC4 increase as
fast as those between TC1 and TC2: this confirms that a turbulent flow amplifies
any difference in the same manner, whether it is due to rounding errors or to a
perturbation of the initial conditions.

6.6 Effects of Graph Ordering

It has already been indicated that performing the same simulation twice (with
the same number of processors and same initial conditions) leads to exactly
the same result. However, this is only true as long as exactly the same code is
used. It is not verified any more as soon as a modification affecting rounding
errors is done in the code. At this point, so many factors affecting rounding
errors can be cited that a general discussion is pointless. This paper will focus
on fully explicit codes and on one example only: the order used to add residuals
at nodes in a cell vertex scheme. This order is controlled by the developer.
For simulation TC5, the ordering of this addition was changed (reverse Cuthill-
McKee algorithm): the residual at a given mesh node was assembled by adding
the contributions to a cell residual in a different order. This change does not
affect the flow data: in TC5 the node residual in a regular tetrahedral mesh is
obtained by 1/4(R1+(R2+(R3+R4)) where the Ri’s are the residuals of the cells
surrounding the node and by 1/4(R4 +(R3 +(R2 +R1)) in TC3. It has an effect,
however, on rounding errors and the cumulated effects of this non-associativity



Large Eddy Simulation of Combustion on Massively Parallel Machines 459

0 1e+05 2e+05 3e+05 4e+05
Number of iterations

1e-15

1e-12

1e-09

1e-06

1e-03

1e+00

Differences
 (log scale)

Nmax TC1/TC2
Nmean TC1/TC2
Nmax TC3/TC5
Nmean TC3/TC5

Fig. 12. Effects of addition order. Differences between solutions measured by Nmax

(open symbols) and Nmean (closed symbols) versus iteration. Squares: differences be-
tween TC1 and TC2. Circles: differences between TC3 and TC5.

error are what this test tries to isolate. TC5 and TC3 are performed with the
same initial condition and run on one processor only. The only difference is the
graph reordering strategy.

As shown by Fig. 12, the differences between TC5 and TC3 are again similar
to those observed between TC1 and TC2 (obtained by changing the number of
processors). This confirms that rounding errors (and not the parallel character of
the code) are the source of the solution divergence. It also shows that any modi-
fication of the code could lead to such a divergence, suggesting that repeating an
LES simulation with the same code after a few months and a few modifications
will probably never yield the same instantaneous flow fields, potentially leading
to discussions on the validity of the modified code.

6.7 Effects of Time Step

It is interesting to verify that numerical aspects do not influence the growth
rate of the solutions difference and that the growth rate is only determined by
the physical and geometrical parameters of the configuration. On that account,
simulations TC6 and TC7 are performed with a time step reduced by a factor
2 compared to simulations TC1 and TC2. TC6 and TC7 are carried out on re-
spectively 4 and 8 processors. The norms between TC6 and TC7 are displayed in
Fig. 13 and compared to the norms between TC1 and TC2. From the explana-
tions given above, similar growth rates are expected when comparing the growth
rates over physical time. The growth rates observed in Fig. 13 are indeed very
similar. The slight difference is probably due to the variation of the numerical
dispersion and dissipation properties of the scheme with the time step [58].

6.8 Effects of Machine Precision

A last test to verify that the divergence between solutions is not due to a pro-
gramming error but depends primarily on rounding errors is to perform the same
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Fig. 13. Effects of time step. Differences between solutions measured by Nmax (open
symbols) and Nmean (closed symbols) versus physical time. Squares: differences be-
tween TC1 and TC2 (time step ∆t). Circles: differences between TC6 and TC7 (time
step ∆t/2).

computation with simple/quadruple precision instead of double precision. Sim-
ulations TC1 and TC2 were repeated using simple precision in runs TC8 and
TC9 (Table 1) and quadruple precision in TC10 and TC11. To compensate for
the increase in computational time for quadruple precision simulations, roughly
a factor ten compared to double precision, TC10 and TC11 were carried out on
respectively 28 and 32 processors in order to yield a reasonable restitution time.
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Fig. 14. Effects of machine accuracy. Differences between solutions measured by Nmax

(open symbols) and Nmean (closed symbols) versus iteration. Squares: differences be-
tween TC1 and TC2 (double precision). Circles: differences between TC8 and TC9
(simple precision). Triangles: differences between TC10 and TC11 (quadruple preci-
sion).
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Results are displayed in Fig. 14 and compared to the difference between TC1
and TC2.

Figure 14 shows that the solutions differences for TC8/TC9 and TC10/TC11
roughly start from the respective machine accuracies (differences of 10−6 for
simple precision after one iteration, differences of 10−30 for quadruple precision
after one iteration) and increase exponentially with the same growth rate before
reaching the same difference levels for all three cases. This shows that higher pre-
cision computations cannot prevent the exponentional divergence of trajectories
but only delay it.

7 Conclusions

This paper has shown the power of Large Eddy Simulation to understand com-
bustion instabilities and has focused on the efficiency of modern parallel solvers
for reacting flows. A new specific question raised by these solvers for turbulent
flows is the sensitivity of instantaneous LES fields to multiple parameters such as
number of processors, initial condition, time step, changes in addition ordering of
cell residuals for cell vertex methods. The baseline simulation used for the tests
was a fully developed turbulent channel. Results confirm that any turbulent flow
computed in LES exhibits significant sensitivity to these parameters, leading to
instantaneous solutions which can be totally different. Laminar flows are almost
insensitive to these parameters. The divergence of solutions is due to two com-
bined facts: (1) the exponential separation of trajectories in turbulent flows and
(2) the non-deterministic rounding errors induced by different domain decom-
positions or different ordering of operations. More generally any change in the
code lines affecting rounding errors will have the same effects. Similarly, small
changes in initial condition (of the order of machine accuracy at one point of
the flow only) produce a divergence of solutions. Working with higher precision
machines does not suppress the divergence of solutions but delays it.

These results confirm the expected nature of LES [55] in which solutions
are meaningful only in a statistical sense and instantaneous values can not be
used for analysis. However, on a more practical level, they point out various
difficulties to develop LES codes: (1) repeating the results of a given LES after
modifying the code and verifying that instantaneous solutions have not changed
is not always possible. Since any programming error will also lead to a change in
instantaneous solutions, identifying errors introduced by new lines will require a
detailed analysis based on average fields (and not on instantaneous fields) and
a significant loss of time. (2) Verifying a LES code on a parallel machine is a
difficult task: running the code on different numbers of processors will lead to
different solutions and make comparisons impossible. (3) Porting a LES code
from one machine to another will also produce different solutions for turbulent
runs, making comparison and validations of new architectures difficult.

The concept of “quality” in LES requires obviously more detailed studies and
tools than what has been used up to now in Reynolds Averaged simulations.
Instabilities appearing in a given LES on a given computer can have sources
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which were not expected at first sight (like the number of processors). Mastering
these instabilities (or at least understanding them) will be an important task to
get the full power of LES techniques.
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40. Poinsot, T., Candel, S., Trouvé, A.: Application of direct numerical simulation to
premixed turbulent combustion. Prog. Energy Comb. Sci. 21, 531–576 (1996)

41. Moin, P., Mahesh, K.: Dns: a tool in turbulence research. Ann. Rev. Fluid Mech. 30,
539–578 (1998)

42. Vervisch, L., Poinsot, T.: Direct numerical simulation of non premixed turbulent
flames. Ann. Rev. Fluid Mech. 30, 655–692 (1998)

43. Tennekes, H., Lumley, J.L.: A first course in turbulence. MIT Press, Cambridge
(1972)

44. Stoer, J.S., Bulirsch, R.: An introduction to numerical analysis. Springer, Berlin
(1980)
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Abstract. We study a new hybrid RANS/Variational Multiscale LES
(VMS-LES) model for bluff body flows. The simulations have been car-
ried out using a parallelized solver, based on a mixed element/volume
formulation on unstructured grids. First, the behavior of a VMS-LES
model with different subgrid scale models is investigated for the flow past
a circular cylinder at Reynolds number Re =3900. Second, a new strat-
egy for blending RANS and LES methods in a hybrid model is described
and applied to the simulation of the flow around a circular cylinder at
Re = 140000.

Keywords: Bluff-body flows, variational multiscale LES, hybrid RANS/
LES approach, parallel simulation.

1 Introduction

The approach involving the Reynolds-Averaged Navier-Stokes equations (RANS)
is widely used for the simulation of complex turbulent flows. However these mod-
els are not sufficient to properly simulate complex flows with massive separations
such as the flow around bluff bodies. The LES approach gives generally more
accurate predictions but requires higher computational cost.

The traditional LES approach is based on a filtering operation, the large
energy-containing scales are resolved and the smallest scales are modeled using
a sub-grid scale (SGS) model. Usual LES subgrid stress modeling like in the
Smagorinsky model are based on the assumption of an universal behavior of
the subgrid scales. Due to this assumption, energy-containing eddies must not
be filtered. Then large Reynolds numbers cannot be addressed with reasonable
coarse meshes, except, in particular regions of detached eddies. Even in the case
of low Reynolds number or detached eddies, a particular attention must be paid
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to energetic eddies. For example, the classical eddy-viscosity models are purely
dissipative. Often unable to model backscatter, they apply, instead, damping to
large resolved energetic eddies.

Starting from these remarks, we investigate the application of a complemen-
tary mechanism for filtering scales. The Variational Multiscale (VMS) concept
of Hughes [9] appears as a reasonable answer to the filtering issue. The VMS ap-
proach was originally introduced by Hughes [9,29] for the LES of incompressible
flows and implemented in a Fourier spectral framework using a frequency cutoff
for the scale separation (small and large scales). In this approach, the Navier-
Stokes equations are not filtered but are treated by variational projection, and
the effect of the unresolved scales is modeled only in the equations representing
the small resolved scales. The VMS-LES approach (even with simple subgrid
scale models as Smagorinsky’s model) and dynamic LES models have shown
similar order of accuracy, but the former is less computationally expensive and
does not require any ad hoc treatement (smoothing and clipping of the dynamic
constant, as usually required with dynamic LES models) in order to avoid stabil-
ity problems. In this work, we consider the VMS-LES implementation presented
in [13] for the simulation of compressible turbulent flows on unstructured grids
within a mixed finite volume/finite element framwork. We investigate the ef-
fect of subgrid scale models in our VMS-LES method for the simulation of a
bluff-body flow.

Another major difficulty for the success of LES for the simulation of complex
flows is the fact that the cost of LES increases as the flow Reynolds number is
increased. Indeed, the grid has to be fine enough to resolve a significant part
of the turbulent scales, and this becomes particularly critical in the near-wall
regions. A new class of models has recently been proposed in the literature in
which RANS and LES approaches are combined together in order to obtain sim-
ulations as accurate as in the LES case but at reasonable computational costs.
Among these so-called hybrid models described in the literature, the Detached
Eddy Simulation (DES) [27] has received the largest attention. Among these
so-called hybrid models, we proposed a new strategy for blending RANS and
LES approaches in a hybrid model [20,7]. To this purpose, as in [16], the flow
variables are decomposed in a RANS part (i.e. the averaged flow field), a cor-
rection part that takes into account the turbulent large-scale fluctuations, and
a third part made of the unresolved or SGS fluctuations. The basic idea is to
solve the RANS equations in the whole computational domain and to correct
the obtained averaged flow field by adding, where the grid is adequately refined,
the remaining resolved fluctuations. We search here for a hybridization strategy
in which the RANS and LES models are blended in the computational domain
following a given criterion. To this aim, a blending function is introduced, θ,
which smoothly varies between 0 and 1. In particular, two different definitions
of the blending function θ are proposed and examined in this paper. They are
based on the ratios between (i) two eddy viscosities and (ii) two characteris-
tic length scales. The RANS model used in the proposed hybrid approach is a
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low-Reynolds version [8] of the standard k− ε model, while for the LES part the
Variational Multiscale approach (VMS) is adopted [9].

In this paper, we present VMS-LES and RANS/LES parallel simulations of
bluff-body flows, by a computational fluid dynamics (CFD) software which com-
bines mesh partitioning techniques and a domain decomposition method. These
simulations require to discretize the fluid equations on large three-dimensional
meshes with small time-steps. Therefore they require intensive computational
ressource (in terms of CPU and memory) and parallel computation is of partic-
ular interest for such applications.

2 Turbulence Modeling

2.1 Variational Multiscale LES

In this paper, we consider the Koobus-Farhat VMS implementation [13] for the
simulation of compressible turbulent flows. It uses the flow variable
decomposition [6]:

W = W︸︷︷︸
LRS

+ W ′︸︷︷︸
SRS

+WSGS (1)

where W is the large resolved scale (LRS) component of W , W ′ is its small
resolved scale (SRS) component, and WSGS the non-resolved component. The
decomposition of the resolved component is obtained by projection onto two
complementary spaces W (LRS space) and W ′ (SRS space) of the resolved scale
space:

W ∈ W ; W ′ ∈ W ′ . (2)

A projector operator onto the LRS space W is defined by spatial averaging on
macro cells, obtained by finite-volume agglomeration which splits the basis/test
functions φl into large scale basis denoted φl, and small scale basis denoted φ′

l.

W =
∑

W lφl ; W ′ =
∑

W ′
lφ

′
l (3)

By variational projection onto W and W ′, we obtain the equations governing
the large resolved scales and the equations governing the small resolved scales.
A key feature of the VMS model is that we set to zero the modeled influence of
the unresolved scales on the large resolved ones. The SGS model is introduced
only in the equations governing the small resolved scales, and, by combining
the small and large resolved scale equations, the resulting Galerkin variational
formulation of the VMS model writes:(

∂(W + W ′)
∂t

, φl

)
+
(
∇ · F (W + W ′), φl

)
= −

(
τLES(W ′), φ′

l

)
l = 1, N

(4)
where τLES(W ′) is the subgrid scale tensor computed using the SRS component
and which is defined by a SGS eddy-viscosity model.
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For the purpose of this study, three SGS eddy-viscosity models are considered:
the classical model of Smagorinsky [25], and two recent and promising models,
namely the WALE model [21] and the one of Vreman [31]. More details on this
VMS-LES approach can be found in [13].

2.2 Hybrid RANS/VMS-LES

As in Labourasse and Sagaut [16], the following decomposition of the flow vari-
ables is adopted:

W = < W >︸ ︷︷ ︸
RANS

+ W c︸︷︷︸
correction

+WSGS

where < W > are the RANS flow variables, obtained by applying an averaging
operator to the Navier-Stokes equations, W c are the remaining resolved fluc-
tuations (i.e. < W > +W c are the flow variables in LES) and WSGS are the
unresolved or SGS fluctuations.

If we write the Navier-Stokes equations in the following compact conservative
form:

∂W

∂t
+∇ · F (W ) = 0

in which F represents both the viscous and the convective fluxes, for the averaged
flow 〈W 〉 we get:

∂〈W 〉
∂t

+∇ · F (〈W 〉) = −τRANS(〈W 〉) (5)

where τRANS(〈W 〉) is the closure term given by a RANS turbulence model.
As well known, by applying a filtering operator to the Navier-Stokes equations,

the LES equations are obtained, which can be written as follows:

∂〈W 〉+ W c

∂t
+∇ · F (〈W 〉+ W c) = −τLES(〈W 〉+ W c) (6)

where τLES is the SGS term.
An equation for the resolved fluctuations W c can thus be derived (see also

[16]):

∂W c

∂t
+∇·F (〈W 〉+W c) − ∇·F (〈W 〉) = τRANS(〈W 〉)−τLES(〈W 〉+W c) (7)

The basic idea of the proposed hybrid model is to solve Eq. (5) in the whole
domain and to correct the obtained averaged flow by adding the remaining re-
solved fluctuations (computed through Eq. (7)), wherever the grid resolution is
adequate for a LES. To identify the regions where the additional fluctuations
must be computed, we introduce a blending function, θ, smoothly varying be-
tween 0 and 1. When θ = 1, no correction to 〈W 〉 is computed and, thus, the
RANS approach is recovered. Conversely, wherever θ < 1, additional resolved
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fluctuations are computed; in the limit of θ → 0 we want to recover a full LES
approach. Thus, the following equation is used here for the correction term:

∂W c

∂t
+ ∇ · F (〈W 〉+ W c) − ∇ · F (〈W 〉) =

(1 − θ)
[
τRANS(〈W 〉)− τLES(〈W 〉 + W c)

] (8)

Although it could seem rather arbitrary from a physical point of view, in Eq.
(8) the damping of the righthandside term through multiplication by (1− θ) is
aimed to obtain a smooth transition between RANS and LES. More specifically,
we wish to obtain a progressive addition of fluctuations when the grid resolution
increases and the model switches from the RANS to the LES mode.

Summarizing, the ingredients of the proposed approach are: a RANS closure
model, a SGS model for LES and the definition of the blending function.

RANS and LES closures: For the LES mode, we wish to recover the varia-
tional multiscale approach described in Section 2.1. Thus, the Galerkin projec-
tion of the equations for averaged flow and for correction terms in the proposed
hybrid model become respectively:(

∂〈W 〉
∂t

, ψl

)
+ (∇ · Fc(〈W 〉), ψl) + (∇ · Fv(〈W 〉), φl) =

−
(
τRANS(〈W 〉), φl

)
l = 1, N

(9)

(
∂W c

∂t
, ψl

)
+ (∇ · Fc(〈W 〉+ W c), ψl)− (∇ · Fc(〈W 〉), ψl)+

(∇ · Fv(W c), φl) = (1− θ)
[(

τRANS(〈W 〉), φl

)
−
(
τLES(W ′), φ′

l

)]
l = 1, N

(10)
where τRANS(〈W 〉 is the closure term given by a RANS turbulence model and
τLES(W ′) is given by one of the SGS closures mentioned in Section 2.1.

As far the closure of the RANS equations is concerned, the low Reynolds k−ε
model proposed in [8] is used.

Definition of the blending function and simplified model: As a possible
choice for θ, the following function is used in the present study:

θ = F (ξ) = tanh(ξ2) (11)

where ξ is the blending parameter, which should indicate whether the grid resolu-
tion is fine enough to resolve a significant part of the turbulence fluctuations, i.e.
to obtain a LES-like simulation. The choice of the blending parameter is clearly
a key point for the definition of the present hybrid model. In the present study,
different options are proposed and investigated, namely: the ratio between the
eddy viscosities given by the LES and the RANS closures and the ratio between
the LES filter width and a typical length in the RANS approach.

To avoid the solution of two different systems of PDEs and the consequent
increase of required computational resources, Eqs. (9) and (10) can be recast
together as:
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∂W

∂t
, ψl

)
+ (∇ · Fc(W ), ψl) + (∇ · Fv(W ), φl) =

−θ
(

τRANS(〈W 〉), φl

)
− (1 − θ)

(
τLES(W ′), φ′

l

)
l = 1, N

(12)

Clearly, if only Eq. (12) is solved, 〈W 〉 is not available at each time step. Two
different options are possible: either to use an approximation of 〈W 〉 obtained
by averaging and smoothing of W , in the spirit of VMS, or to simply use in Eq.
(12) τRANS(W ). The second option is adopted here as a first approximation.
We refer to [20,7] for further details.

3 Numerical Method and Parallelisation Strategy

The fluid solver AERO under consideration is based on a mixed finite ele-
ment/finite volume formulation on unstructured tetrahedral meshes. The scheme
is vertex-centered, the diffusive terms are discretized using P1 Galerkin finite
elements and the convective terms with finite volumes. The Monotone Upwind
Scheme for Conservation Laws reconstruction method (MUSCL) is adopted here
and the scheme is stabilized with sixth-order spatial derivatives. An upwind pa-
rameter γ, which multiplies the stabilization part of the scheme, allows a direct
control of the numerical viscosity, leading to a full upwind scheme for γ = 1 and
to a centered scheme for γ = 0. This low-diffusion MUSCL reconstruction, which
limits as far as possible the interaction between numerical and SGS dissipation,
is described in detail in [4].

The flow equations are advanced in time with an implicit scheme, based on a
second-order time-accurate backward difference scheme. The non-linear discre-
tised equations are solved by a defect-correction (Newton-like) method in which
a first order semi-discretisation of the Jacobian is used. At each time-step, the
resulting sparse linear system is solved by a Restricted Additive Schwarz (RAS)
method [13]. More specifically, the linear solver is based on GMRES with a RAS
preconditioning and the subdomain problems are solved with ILU(0). Typically,
two defect-correction iterations requiring each of them a maximum of 20 RAS
iterations are used per time-step. This implicit scheme is linearly unconditionally
stable and second-order accurate.

For what concerns the parallelisation strategy used in this study, it com-
bines mesh partitioning techniques and a message-passing programming model
[16,20]. The mesh is assumed to be partitioned into several submeshes, each one
defining a subdomain. Basically the same serial code is going to be executed
within every subdomain. Modifications for parallel implementation occured in
the main stepping-loop in order to take into account several assembly phases of
the subdomain results, depending on the fluid equations (viscous/inviscid flows),
the spatial approximation and on the nature of the time advancing procedure
(explcit/implicit). Because mesh partitions with overlapping incur redundant
floating-point operations, non-overlapping mesh partitions are chosen. It has
been shown in [20] that the latter option is more efficient though it induces ad-
ditional communication steps. For our applications, in a prepocessing step we
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use an automatic mesh partitioner that creates load balanced submeshes induc-
ing a minimum amount of interprocessor communications. Data communications
between neighboring subdomains are achieved through the MPI communication
library.

For the simulations presented in the next section, the Roe-Turkel solver is
used with a numerical viscosity parameter γ equal to 0.2. The CFL number was
chosen so that a vortex shedding cycle is sampled in around 400 time steps for
the low-Reynolds simulations and at least 600 time steps for the simulations at
Re =140000.

4 VMS-LES Simulations

In this section, we apply our VMS-LES methodology to the simulation of a flow
past a circular cylinder at Mach number M∞ = 0.1. The subcritical Reynolds
number equal to 3900, is based on body diameter and freestream velocity.

The computational domain size is: −10 ≤ x/D ≤ 25, −20 ≤ y/D ≤ 20 and
−π/2 ≤ z/D ≤ π/2, where x, y and z denote the streamwise, transverse and
spanwise direction respectively. The cylinder of unit diameter D is centered on
(x, y) = (0, 0).

The flow domain is discretized by an unstructured tetrahedral grid which
consists of approximatively 2.9×105 nodes. The averaged distance of the nearest
point to the cylinder boundary is 0.017D, which corresponds to y+ ≈ 3.31.

For the purpose of these simulations, the Steger-Warming conditions [28] are
imposed at the inflow and outflow as well as on the upper and lower surface
(y = ±Hy). In the spanwise direction periodic boundary conditions are applied
and on the cylinder surface no-slip boundary conditions are set.

To investigate the effect of the different SGS models in the VMS-LES ap-
proach, three simulations are carried out on the same grid: VMS-LES with classi-
cal Smagorinsky’s SGS model (VMSLES1), VMS-LES with Vreman’s SGS model
(VMSLES2) and VMS-LES with WALE SGS model (VMSLES3). To evaluate
the performance of VMS-LES methodology over classical LES, three simulations
using Smagorinsky’s model (LES1), Vreman’s model (LES2) and WALE model
(LES3) are presented.

Instantaneous streamwise velocity isocontours using VMS-LES approach are
plotted in Figure 1. This plot highlights the small structures predicted in the
wake by the rather coarse mesh employed in this work, and the three dimension-
ality of the flow.

The averaged data are obtained using about 20 shedding cycles or 150 nondi-
mensional time units after the initial transient period.

Time-averaged values and turbulence parameters are summarized in Table 1
and compared to data from experiments and to numerical results obtained by
other investigators using dynamic LES models on finer grids (containing be-
tween half a million and 7.5 million nodes). Parameters obtained from VMS-LES
simulations are in better agreement with the experimental values compared to
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Fig. 1. Circular cylinder: Instantaneous streamwise velocity

Table 1. Circular cylinder: Bulk coefficients, comparison with experimental data and
with other simulations in the literature. Cd denotes the mean drag coefficient, St the
Strouhal number, lr the mean recirculation length: the distance on the centerline direc-
tion from the surface of the cylinder tot he point where the time-averaged streamwise
velocity is zero, CPb the mean back-pressure coefficient and Umin the minimum cen-
terline streamwise velocity.

data from Cd St lr CPb Umin

LES1 1.16 0.212 0.81 -1.17 -0.26
LES2 1.04 0.221 0.97 -1.01 -0.28
LES3 1.14 0.214 0.75 -1.20 -0.25

VMSLES1 1.00 0.221 1.05 -0.96 -0.29
VMSLES2 1.00 0.220 1.07 -0.97 -0.28
VMSLES3 1.03 0.219 0.94 -1.01 -0.28

Numerical data
[15] 1.04 0.210 1.35 -0.94 -0.37
[3] 1.07 1.197 -1.011
[10] 0.99 0.212 1.36 -0.94 -0.33

Experiments
[22] 0.99±0.05 0.215±0.05 -0.88±0.05 -0.24±0.1
[5] 0.215±0.005 1.33±0.05
[23] 0.21±0.005 1.4±0.1 -0.24±0.1
[19] 1.18±0.05

simulations using LES, especially for the prediction of the mean drag. Smagorin-
sky’s and Vreman’s SGS model give best results.

Figure 2 (a) shows the time-averaged streamwise velocity on the centerline
direction of the present simulations. They are in accordance with the experiments
of Lourenco and Shih (data from Beaudan and Moin [2]) and Ong and Wallace
[23], even this is probably a sign of lack of grid resolution, as discussed in [15].
We can notice an improvment of VMS-LES over classical LES method.

Figure 2 (b) shows the pressure distribution on the cylinder surface averaged
in time and on homogeneous z direction. The results from the simulations are
very close each other on the whole cylinder and it appears a deviation with the
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Fig. 2. (a) Time averaged and z-averaged streamwise velocity on the centerline di-
rection, experiments: Lourenco and Shih [19] (LS) and Ong and Wallace [23] (OW)
(b) Time averaged and z-averaged pressure distribution on the surface of the cylinder,
experiments: Norberg [22]

experimental data from Norberg [22]. The discrepancies visible between 60 and
100 degrees may be explained by the rather coarse grid used.

The Fourier energy spectrum of the spanwise velocity at P(3, 0.5, 0) for Vre-
man SGS model with LES and VMS-LES methodology is displayed in Figure 3.
The frequency is nondimensionalized by the Strouhal shedding frequency. Via
the Taylor hypothesis of frozen turbulence (which is justified since the mean con-
vection velocity is large at that point) which allows to assume that high (low)
time frequencies correspond to small (large) scale in space, we observe that the
energy in the large resolved scales are higher with VMS-LES than with LES.
These results corroborate the fact that in the VMS-LES approach, the modeling
of the energy dissipation effects of the unresolved scales affects only the small
resolved scales contrary to the LES approach in which these dissipative effects
act on all the resolved scales.

For this problem involving 1.5 million degrees of freedom and for twenty shed-
ding cycles simulation, the simulation time is about 7 hours on a 32-processor
IBM Power 4 computer.

5 Hybrid RANS/VMS-LES Simulations

The new proposed hybrid model (Fluctuation Correction Model,FCM) has been
applied to the simulation of the flow around a circular cylinder at Re = 140000
(based on the far-field velocity and the cylinder diameter). The domain dimen-
sions are: −5 ≤ x/D ≤ 15, −7 ≤ y/D ≤ 7 and 0 ≤ z/D ≤ 2 (the symbols
are the same as in Section 4). Two grids have been used, the first one (GR1)
has 4.6×105 nodes, while the second one has (GR2) 1.4×106 nodes. Both grids
are composed of a structured part around the cylinder boundary and a unstruc-
tured part in the rest of the domain. The inflow conditions are the same as
in the DES simulations of Travin et al. [30]. In particular, the flow is assumed
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Table 2. Simulation name and their main characteristics

Simulation Blending parameter Grid LES-SGS model
FCM1 VR GR1 Smagorinsky
FCM2 LR GR1 Smagorinsky
FCM3 LR GR2 Smagorinsky
FCM4 LR GR1 Vreman
FCM5 LR GR1 Wale

to be highly turbulent by setting the inflow value of eddy-viscosity to about 5
times the molecular viscosity as in the DES simulation of Travin et al. [30]. This
setting corresponds to a free-stream turbulence level u′2/U0 (where u′ is the
inlet velocity fluctuation and U0 is the free-stream mean velocity) of the order
of 4%. As discussed also by Travin et al. [30], the effect of such a high level
of free-stream turbulence is to make the boundary layer almost entirely turbu-
lent also at the relatively moderate considered Reynolds number. The boundary
treatment is the same as for simulations using VMS-LES approach in Section
4, except that wall laws are now used. The RANS model is that based on the
low-Reynolds approach [8]. The LES closure is based on the VMS approach (see
Section2.1). The SGS models used in the simulations are those given in Section2.
The main parameters characterizing the simulations carried out with the FCM
are summarized in Table 2.

The main flow bulk parameters obtained in the present simulations are sum-
marized in Table 3, together with the results of DES simulations in the literature
and some experimental data. They have been computed by averaging in time,
over at least 17 shedding cycles and in the spanwise direction. Let us analyze,
first, the sensitivity to the blending parameter, by comparing the results of the
simulation FCM1 and FCM2. The results are practically insensitive to the defini-
tion of the blending parameter. Conversely, the grid refinement produces a delay
in the boundary layer separation which results in a decrease of C̄d (compare
FCM2 and FCM3). However, note that, for unstructured grids, the refinement
changes the local quality of the grid (in terms of homogeneity and regularity of
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Table 3. Main bulk flow quantities for the circular cylinder test case. Same notations
as in Table 1, θsep the separation angle.

Data from Re Cd C′
l St lr θsep

FCM1 1.4 105 0.62 0.083 0.30 1.20 108
FCM2 1.4 105 0.60 0.082 0.31 1.15 113
FCM3 1.4 105 0.54 0.065 0.33 1.13 115
FCM4 1.4 105 0.62 0.127 0.28 1.19 117
FCM5 1.4 105 0.60 0.083 0.30 1.23 114

Numerical data
DES [30] 1.4 105 0.57-0.65 0.08-0.1 0.28-0.31 1.1 -1.4 93-99
DES [18] 1.4 105 0.6-0.81 – 0.29-0.3 0.6-0.81 101-105

Experiments
[11] 3.8 106 0.58 – 0.25 – 110
[1] 5 106 0.7 – – – 112
[24] 8 106 0.52 0.06 0.28 – –
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Fig. 4. C̄p on the cylinder surface compared to numerical and experimental results: ∗
Jones, + James, o Roshko, � Travin et al

the elements) and this may enhance the sensitivity of the results. The sensitivity
to the VMS-LES closure model is also quiet low (compare FCM2, FCM4 and
FCM5). This low sensitivity has been observed also in VMS-LES simulations
at low Reynolds number see Section4 and, thus, it seems more peculiar to the
VMS-LES approach rather than to the hybrid model.

The agreement with the DES results is fairly good. As for the comparison
with the experiments, as also stated in Travin et al. [30], since our simulations
are characterized by a high level of turbulence intensity at the inflow, it makes
sense to compare the results with experiments at higher Reynolds number, in
which, although the level of turbulence intensity of the incoming flow is very low,
the transition to turbulence of the boundary layer occurs upstream separation.
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The agreement with these high Re experiments is indeed fairly good, as shown
in Table 3 and in Figure 4. The behavior of the separation angle requires a brief
discussion. There is a significant discrepancy between the values obtained in
DES and the experimental ones. For our simulations, the values of θsep shown in
Table 3 are estimated by considering the point at which the Cp distribution over
the cylinder becomes nearly constant (see e.g. Figure 4), as usually done in ex-
perimental studies. Indeed, the reported values are generally in better agreement
with the experiments than those obtained by DES. Finally, the model works in
RANS mode in the boundary layer and in the shear-layers detaching from the
cylinder, while in the wake a full VMS-LES correction is recovered.

For this problem involving 3.2 million degrees of freedom and for twenty shed-
ding cycles simulation, the simulation time is about 30 hours on a 32-processor
IBM Power 4 computer and about 16 hours on a 32-processor IBM Power 5
computer.

6 Conclusion

In this paper we have presented parallel simulations of three-dimensional turbu-
lent flows. We have first investigated the application of a Variational multiscale
LES for the simulations of a flow past a circular cylinder at a subcritical Reynolds
number equal to Re =3900. Although a rather coarse grid has been used, this
model gives accurate predictions of bulk coefficients and shows that two recently
developed SGS models, the Vreman’s model and the WALE model combine well in
the VMS formulation. Moreover, it appears in this approach that the influence of
the SGS model is weak, but this seems to give a support to the VMS idea of adding
some dissipation only to the smallest resolved scales. In a second part, we have
presented a hybrid RANS/LES approach using different definitions of blending
parameter and SGS models. For the closure of the LES part, the VMS approach
has been used. This model is validated on the prediction of a flow around a circular
cylinder at higher supercritical Reynolds number (Re =140000). The results ob-
tained correlate well with the experimental and numerical data from the literature
as well as the behavior of the blending function.
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Abstract. We present Vortex Methods implemented in massively par-
allel computer architectures for the Direct Numerical Simulations of high
Reynolds numbers flows. Periodic and non-periodic domains are consid-
ered leading to unprecedented simulations using billions of particles. We
discuss the implementation performance of the method up to 16k IBM
BG/L nodes and the evolutionary optimization of long wavelength in-
stabilities in aircraft wakes.

1 Introduction

Vortex methods exemplify the computational advantages and challenges of par-
ticle methods in simulations of incompressible vortical flows. These simulations
are based on the discretization of the vorticity-velocity formulation of the Navier-
Stokes equations in a Lagrangian form.

In the recent years hybrid techniques (see [1,2] and references therein) have
been proposed where a mesh is used along with the particles in order to develop
efficient and accurate computations of vortical flows.

In this work, we present an efficient and scalable implementation of these
methodological advances for the massively parallel architecture of the IBM BG/L.
The present results involve DNS on 4k processors and an efficiency investigation
going up to 16k processors and 6 billion particles.

The method is applied to the decay of aircraft wakes and vortex rings. The
wake of an aircraft consists of long trailing vortices that can subject the fol-
lowing aircraft to a large downwash. Several research efforts have focused on
the identification of the governing physical mechanisms of wake evolution that
would lead to design of vortex wake alleviation schemes[3,4,5,6,7]. Flight realistic
conditions involve turbulent flows (Re ∼ 106) in unbounded domains for which
DNS reference data is still lacking.

J.M.L.M. Palma et al. (Eds.): VECPAR 2008, LNCS 5336, pp. 479–489, 2008.
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State of the art simulations have been limited to low resolution LES in large
domains[8], or vortex method simulations[9,10] which achieved Re=5000 DNS
in short domains and investigated various subgrid stress models for LES in long
domains.

The present work enables unprecedented resolutions for the DNS of long wave-
length instabilities. The long domain calculation at Re=6000 presented herein
constitutes the largest DNS ever achieved for a vortex particle method. We also
present results for the turbulent decay of a vortex ring at ReΓ = 7500. Ongoing
work includes simulations at even higher Reynolds on larger partitions of BG/L,
the development of unbounded conditions and the coupling of this methodology
with evolutionary algorithms in order to accelerate the decay and mixing inside
these vortical flows.

2 Methodology

2.1 The Remeshed Vortex Particle Method

We consider a three dimensional incompressible flow and the Navier-Stokes equa-
tions in its velocity (u)-vorticity (ω = ∇× u) form :

Dω

Dt
= (ω · ∇)u + ν∇2ω (1)

∇ · u = 0 (2)

where D
Dt = ∂

∂t + u ·∇ denotes the Lagrangian derivative and ν is the kinematic
viscosity.

Vortex methods discretize the vorticity field with particles, characterized by
a position xp, a volume Vp and a strength αp =

∫
Vp

ωdx. The field is then

ω(x, t) ≈
∑

p

αp(t)ζh (x− xp(t)) , (3)

where ζ is the interpolation kernel and h the mesh spacing. Particles are convected
by the flow field and their strength undergoes vortex stretching and diffusion

dxp

dt
= u(xp) ,

dαp

dt
=
∫

Vp

(ω · ∇)u + ν∇2ωdx ,

�
(
(ω · ∇)u(xp) + ν∇2ω(xp)

)
Vp .

(4)

Using the definition of vorticity and the incompressibility constraint the velocity
field is computed by solving the Poisson equation

∇2u = −∇× ω . (5)
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The solution of this equation can be computed by using the Green’s function
solution of the Poisson equation or, as in the present hybrid formulation, grid
solvers.

The use of a mesh (M) conjointly with the particles (P) allows the use of
efficient tools such as grid solvers and Finite Differences. This is demonstrated
below in the case of a Euler time-step

– (P → M) Interpolate particle strengths on a lattice by evaluating Eq. 3 on
grid locations

ω(xij...) =
∑

p

αpζ
h (xij... − xp) (6)

where xij... is a grid node and ij . . . are node indices.
– (M→ M) Perform operations on the grid, i.e. solve the Poisson equation for

velocity in Fourier space, use Finite Differences and evaluate the right-hand
sides of the system of Eq. 4

– (M→ P) Interpolate velocities, right-hand sides, respectively back onto the
particles,

u(xp) =
∑

i

∑
j

∑
...

h−du(xij...)ζh (xp − xij...)

Dω

Dt
(xp) =

∑
i

∑
j

∑
...

h−d Dω

Dt
(xij...)ζh (xp − xij...)

(7)

and advance the quantities and locations.

The Lagrangian distortion of the particles leads to loss of convergence[11,12]. We
ensure accuracy by means of a periodic reinitialization of the particle locations
[13,14,15,16,1]. This remeshing procedure, essentially a P→ M interpolation, is
performed at the end of every time step and uses the third order accurate M ′

4
kernel[17].

2.2 Implementation for Parallel Computer Architectures

The method was implemented as a client application of the open source Par-
allel Particle Mesh (PPM) library[18]. PPM provides a general-purpose frame-
work that can handle the simulation of particle-only, mesh-only or particle-mesh
systems. The library defines topologies, i.e. space decompositions and the as-
signment of sub-domains to processors, which achieve particle- and mesh-based
load balancing. The library provides several tools for the efficient parallelization
of the particle-mesh approach described in Section 2.1. Data communication is
organized in local and global mappings. Local mappings handle

– the advection of particles from a sub-domain into another
– ghost mesh points for the consistent summation of particle contributions

along sub-domain boundaries, e.g. in the P → M step: the interpolation
stencil will distribute particle strength to ghost points outside its own sub-
domain

– ghost mesh points for consistent Finite Difference operations.
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Global mappings are used for the transfer of mesh data from a topology to
another, as in the case of the pencil topologies involved in multi-dimensional
FFTs. PPM is written in Fortran 90 on top of the Message Passing Interface
(MPI); the client uses the FFTW library[19] inside the Fourier solver.

The code is run on an IBM Blue Gene/L solution with dual cores nodes
based on the PowerPC 440 700Mhz low power processor. Each node has 512MB
of memory. The computations are all carried out in co-processor mode: one of the
two CPUs is fully devoted to the communications. The machine used for produc-
tion was the BG/L at IBM T.J. Watson Research Center - Yorktown Heights1

whereas porting, optimization and testing was done on the BG/L system of the
IBM Zurich Research Laboratory. Machine dependent optimization consisted in

1. data reordering and compiler directives to exploit the double floating point
unit of the PowerPC 440 processors,

2. mapping of the cartesian communicators to the BG/L torus,
3. use of the BG/L tree network for global reductions.

3 Aircraft Wakes

The evolution and eventual destruction of the trailing vortices is affected by
several types of instabilities, usually classified according to their wavelength.
Long wavelength instabilities are the most powerful to drive the collapse of a
vortex pair albeit with a slow growth rate. The well-known Crow instability[20]
is an example of such instabilities that deforms the vortex lines into sinusoidal
structures until vortices of opposite sign reconnect and form rings.

More complex systems with multiple vortex pairs can undergo other instabil-
ities. A rapidly growing, medium-wavelength instability has been the focus of
recent experimental [5,7,21] and numerical studies[8,9,10]. This instability oc-
curs in the presence of a secondary vortex pair that is counter-rotating relative
to the main pair. These secondary vortices are generated by a sufficient negative
load on the horizontal tail or the inboard edge of outboard flaps. Being weaker,
they eventually wrap around the primary ones in so-called Ω-loops, leading to
the reconnection of vortices of unequal circulations. This in turn triggers an
accelerated vortex destruction.

3.1 Convergence and Scalability

We use the geometry of this particular medium wavelength instability to assess
the performance of our code. The geometry of the problem is taken from [9]; it
comprises two counter-rotating vortex pairs with spans b1, b2 and circulations
Γ1, Γ2. The Reynolds number is Re = Γ0/ν = 3500, where Γ0 = Γ1 + Γ2.
Three grid sizes were considered, 64 × 320 × 192, 128 × 640 × 384, and 256 ×
1280 × 768, resulting in 4, 32 and 252 million particles respectively. All three
configurations were run on 1024 processors of IBM BG/L. The time-step was kept

1 Compiled with XLF version 10.1, with BG/L driver V1.3 and FFTW 3.1.1.
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(a) t/t0 = 0 (b) t/t0 = 0.68

(c) t/t0 = 0.96 (d) t/t0 = 1.23

Fig. 1. Medium-wavelength instability of counter-rotating vortices, 128×640×384-grid:
evolution of vorticity iso-surfaces. The opaque surface corresponds to |ω| = 10Γ1/b2

1;
the transparent one, to |ω| = 2Γ1/b2

1.

constant for all resolutions ∆t = 3.3 10−4t0 where t0 = 2πb20
Γ0

and b0 = Γ1b1+Γ2b2
Γ0

.
Figure 1 shows the evolution of vorticity iso-surfaces and the wrapping-around
of the secondary vortices around the main ones. Diagnostics (Fig. 2) such as the
evolution of enstrophy, which measures the energy decay and the evolution of
the effective numerical viscosity confirm the low dissipation of the method and
its convergence.

The parallel scalability was assessed for 512 ≤ NCPU ≤ 16384 on IBM BG/L.
We measure the strong efficiency as

ηstrong =
N ref

CPUS T (N ref
CPUS)

NCPUS T (NCPUS)
(8)

where T is the average computation time of one time step. In order to test
the code up to the large sizes allowed by BG/L, we used N ref

CPUS = 2048 and
a problem size of 768 × 1024 × 2048 or 1.6 billion particles. This brings the
per-processor problem size from 786432 down to 98304 when we run on the
maximum number of processors. The curve (Fig. 3(b)) displays a plateau up
to NCPUS = 4096, with the per-processor problem size becoming progressively
smaller and communication overhead overwhelming the computing cycles.

From this result, we base our weak scalability study on a constant per-
processor number of particles of Mper CPU � 4 105. We used the following
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Fig. 2. Medium-wavelength instability of counter-rotating vortices: convergence and
diagnostics for three spatial resolutions: Nx = 64 (solid thick), 128 (dashed) and 256
(solid thin)

measure

ηweak =
T (N ref

CPUS, M
ref)

T (NCPUS,
NCPUS
Nref

CPUS
M ref)

. (9)

where we took N ref
CPUS = 512. The code displays (Fig. 3(a)) excellent scal-

ability up to NCPUS = 4096 . Eq. 9 assumes linear complexity for the
problem at hand. There is however an O(N log N) component to the overall
complexity of the present problem as we are solving the Poisson equation for
the convection velocity. The two curves (with and without the cost for the so-
lution of the Poisson equation) are shown in (Fig. 3(a)); the relatively small
gap between the two curves manifests the good performance of the Poisson
solver.

3.2 Instability Initiation by Ambient Noise in a Large Domain

We consider the configuration presented in the state of the art calculations in [8,
see configuration 2] simulating the onset of instabilities of multiple wavelengths
in a long domain. The domain length is chosen as the wavelength of maximum
growth rate for the Crow instability, Lx = 9.4285b1. The transversal dimensions
are Ly = 1/2 Lx and Lz = 3/8 Lx. The vortices have Gaussian cores

ω(r) =
1

2πσ2 exp(−(r/2σ)2) (10)

with σ1/b1 = 0.05 and σ2/b1 = 0.025. The secondary pair is located at b2/b1 =
0.5, with a relative strength Γ2/Γ1 = −0.35. In addition to the initially
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Fig. 3. Medium-wavelength instability of counter-rotating vortices: parallel efficiencies
on IBM BlueGene/L

(a) t/t0 = 0.21 (b) t/t0 = 0.25

(c) t/t0 = 0.27 (d) t/t0 = 0.34

Fig. 4. Counter-rotating vortices in a periodic domain, initiation by ambient noise: vi-
sualization of the vorticity structures by volume rendering. High vorticity norm regions
correspond to red and opaque; low vorticity are blue and transparent.
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(a) (b) (c)

Fig. 5. Evolution of a Vortex ring at Re=7500: vorticity iso-surfaces colored by the
stream-wise component of vorticity

unperturbed vortices, the vorticity field is filled with a white noise that pro-
duces uRMS = 0.005 umax. We study this flow with DNS at ReΓ1 = 6000. This
represents a three-fold increase over previously reported Reynolds numbers [8].
In addition, these prior simulations used a coarse resolution and a crude LES
model (MILES[22]) to model the high Reynolds number dynamics of the flow.
The present DNS is afforded due to a mesh resolution of 2048× 1024× 768 and
1.6 billion particles. It is run on 4096 CPUs; the wall-clock computation time
was 39s on average per time step. With approximately 10000 time steps, this
represents a time-to-solution of 100 hours.

Figure 4 shows that this system with a random initial condition picks up
the medium-wavelength instability. At t/t0 = 0.25 (Fig. 4(b)), we count 10 and
11 Ω-loops along the two primary vortices. This corresponds to the average
wavelengths λ/b1 = 0.943 and 0.86. These values are sensibly different from the
ones reported in [8], 1.047 and 1.309. This comparison, however, considers the
problem at the end of the exponential growth and ignores the uneven distribution
of loop wavelengths and hence, individual growth rates.

4 Vortex Rings

The same code has been applied to the turbulent decay of vortex rings at
ReΓ = 7500[23]. It allowed the analysis of the vortex dynamics in the non-linear
stage and their correlation with structures captured in dye visualization and
an observed decay of circulation. Figure 5 shows the emergence of stream-wise
structures in the ring.

5 Extensions

5.1 Unbounded Poisson Solvers

As mentioned in Section 2.2, the Poisson equation for velocity (Eq. 5) is solved
on a grid in Fourier space. This approach exploits the good scalability of Fourier
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Fig. 6. Counter-rotating vortices in an unbounded domain, initiation by ambient noise:
vorticity structures at t/t0 = 0.22

transforms and the associated data mappings but it imposes the use of large
domains in order to mitigate the effect of the periodic images. We have imple-
mented solvers which carry out the fast convolutions of the unbounded Green’s
functions in Fourier space[24]. As a result, the same parallel FFTs can be used
and even combined to achieve mixed periodic-unbounded conditions. We note
that this can also be carried out with Fast Multipole Methods[9,10] but at the
cost of more complex communication patterns. Figure 6 shows results for the
medium wavelength instability in an unbounded domain at ReΓ1 = 8000. The
higher Reynolds number is afforded thanks to the unbounded solver computa-
tional savings; it allows short wavelength instabilities to develop inside the vortex
cores. An in-depth analysis of this method is currently under preparation[25].

5.2 Wake Optimization

Our vortex code has been coupled to an Evolution Strategy(ES), here with
Covariance Matrix Adaptation[26], in order to accelerate the decay of a wake.
The wake consists of perturbed co-rotating pairs[3]; this model approximates
wing tip and flap vortices and the effect of an active device. The ES searches the
space of the parameters describing the wake base structure and the perturbation.
The performance of each configuration is measured by a scalar objective function,
e.g. energy decay. Each function evaluation thus entails the computation of a
transient flow on large partitions of parallel computers (128 to 512 CPUs for
approximately 10 wallclock hours).

6 Conclusions

This paper presents the implementation of an efficient particle-mesh method for
massively parallel architectures and its application to wakes. We refer to [27] for
a more extensive assessment of the method.

Our code displays good scalability up to 16K processors on BlueGene/L. The
origin of the parallel efficiency drop at 4K is being investigated; a possible cause
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is the recurrent computation of mesh intersections inside the global mappings.
Other code development efforts include the implementation of unbounded and
non-periodic boundary conditions. Finally, the optimization of vortex dynamics
for enhanced decay and mixing is the subject of ongoing investigations.
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Abstract. Originally developed by the consortium Sony-Toshiba-IBM
for the Playstation 3 game console, the Cell Broadband Engine proces-
sor has been increasingly used in a much wider range of applications like
HDTV sets and multimedia devices. Conforming the new Cell Broad-
band Engine Architecture that extends the PowerPC architecture, this
processor can deliver high computational power embedding nine cores in
a single chip: one general purpose PowerPC core and eight vector cores
optimized for compute-intensive tasks. The processor’s performance is
enhanced by single-instruction-multiple-data (SIMD) instructions that
allow to execute up to four floating-point operations in one clock cy-
cle. This multi-level parallel environment is highly suited to applications
processing data streams: encryption/decryption, multimedia, image and
signal processing, among others. This paper discusses the use of Cell
BE to solve engineering problems and the practical aspects of the im-
plementation of numerical method codes in this new architecture. To
demonstrate the Cell BE programming techniques and the efficient port-
ing of existing scalar algorithms to run on a multi-level parallel processor,
the authors present the techniques applied to a well-known program for
the solution of two dimensional elastostatic problems with the Boundary
Element Method. The programming guidelines provided here may also
be extended to other numerical methods. Numerical experiments show
the effectiveness of the proposed approach.

Keywords: Cell Broadband Engine, Boundary Element Method,
Boundary Elements, Parallel Programming, Vectorization, SIMD.

1 Introduction

Limitations on power and memory use and processor frequency are leading hard-
ware manufacturers to develop new architectures that are changing the pro-
gramming paradigms established in the last decades. The performance of a large
number of existing serial codes no longer benefits from the rising multi-core
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technology without a proper porting to these environments. Even parallel appli-
cations may need some redesign and rewriting to obtain optimum performance
on contemporary microprocessors. One clear example are vectorization tech-
niques much used in the past with vector computers that are now surpassed by
the SIMD instructions used in multimedia applications. This particular kind of
vectorization differs from old vectorization techniques since it relies on hardware
features and extended instruction sets only present on modern processors.

The Cell Broadband Engine is a new architecture that is already playing a sig-
nificant role in the computing industry in some specific areas [13,14,15] and the
knowledge of its strengths and also its current limitations is a decisive factor for
engineers and scientists willing to find high-performance solutions to the increas-
ing complexity of their problems and applications. To achieve this goal, this paper
introduces the Cell Broadband Engine Architecture and describes in some detail
the porting of a well-known serial engineering code to an efficient multi-level par-
allel implementation.

The implementation of engineering codes, specially using numerical methods
to solve elastostatic problems, usually consists in assembling and solving linear
equations systems. Even more sophisticated analysis involving elastoplastics or
dynamics can be decomposed into a set of such procedures. To generate these sys-
tems of equations, numerical methods like finite or boundary elements compute
a number of small matrices that are assembled into the equations system accord-
ingly to boundary conditions defined by the problem. In our application, these 2x2
floating-point arrays are specially suited to be computed with SIMD instructions
and the paper describes in detail the use of such instructions and how the original
algorithm is rewritten to benefit from this vectorization approach.

The text also shows how the proposed algorithm takes advantage of the par-
allel nature of the Boundary Element Method to efficiently distribute the gener-
ation of the equations system among the multiple cores. Since each of the eight
computing cores addresses only 256 KB of memory, another challenge to the im-
plementation of engineering codes is the efficient division of the problem - data
and code - to fit the memory restraints of these cores. Here, the authors describe
the memory transfer mechanisms available on the Cell BE and introduces the
use of advanced techniques to hide communication latencies.

The present text is organized as follows: the section 2 presents an outline of
the boundary element theory and the following section describes the selected
application. Section 4 introduces the Cell Broadband Architecture, its mem-
ory transfers mechanisms and the Streaming SIMD Extensions while Section 5
details the multi-level parallel implementation of the code. In section 6 a per-
formance analysis is presented. The paper ends with a summary of the main
conclusions.

2 Outline of the Boundary Element Method

The Boundary Element Method (BEM) is a technique for the numerical solution
of partial differential equations with initial and boundary conditions [1].
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Using a weighted residual formulation, Green’s third identity, Betty’s recipro-
cal theorem or some other procedure, an equivalent integral equation can be ob-
tained and converted to a form that involves only surface integrals performed over
the boundary. The bounding surface is then divided into elements and the original
integrals over the boundary are simply the sum of the integrations over each ele-
ment, resulting in a reduced dense and non-symmetric system of linear equations.

The discretization process involves selecting nodes on the boundary, where
unknown values are considered. Interpolation functions relate such nodes to the
approximated displacements and tractions distributions on the respective bound-
ary elements. The simplest case places a node in the center of each element and
defines an interpolation function that is constant over the entire element. For
linear 2-D elements, nodes are placed at, or near, the end of each element and the
interpolation function is a linear combination of the two nodal values. High-order
elements, quadratic or cubic, can be used to better represent curved boundaries
using three and four nodes, respectively.

Once the boundary solution has been obtained, interior point results can be
computed directly from the basic integral equation in a post-processing routine.

2.1 Differential Equation

Elastostatic problems are governed by the well-known Navier equilibrium equa-
tion which, using the so-called Cartesian tensor notation, may be written for a
domain Ω in the form :

G uj,kk +
G

1− 2 ν
uk,kj + bj = 0 inΩ (1)

subject to the boundary conditions :

u = ū on Γ1 and

p = p̄ on Γ2 (2)

where u are displacements, p are surface tractions, ū and p̄ are prescribed values
and the total boundary of the body is Γ = Γ1 +Γ2. G is the shear modulus, ν is
Poisson’s ratio and bj is the body force component. Notice that the subdivision
of Γ into two parts is conceptual, i.e., the same physical point of Γ can have the
two types of boundary conditions in different directions.

2.2 Integral Equation

An integral equation, equivalent to Eqs. (1) and (2), can be obtained through a
weighted residual formulation or Betty’s reciprocal theorem. This equation, also
known as Somigliana’s identity for displacements, can be written as :

ui(ξ) =
∫

Γ

u∗
ij(ξ, x) pj(x) dΓ (x)−

∫
Γ

p∗ij(ξ, x) uj(x) dΓ (x) (3)
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where bi = 0 was assumed for simplicity and the starred tensors, u∗
ij and p∗ij ,

represent the displacement and traction components in the direction j at the
field point x due a unit load applied at the source point ξ in i direction.

In order to obtain an integral equation involving only variables on the bound-
ary, one can take the limit of Eq. (3) as the point ξ tends to the boundary Γ .
This limit has to be carefully taken since the boundary integrals become singular
at ξ. The resulting equation is :

cij(ξ) uj(ξ) +
∫

Γ

p∗ij(ξ, x) uj(x) dΓ (x) =
∫

Γ

u∗
ij(ξ, x) pj(x) dΓ (x) (4)

where the coefficient cij is a function of the geometry of Γ at the point ξ and
the integral on the left is to be computed in a Cauchy principal value sense.

2.3 Discretization

Assuming that the boundary Γ is discretized into N elements, Eq. (4) can be
written in the form :

cij uj +
N∑

k=1

∫
Γk

p∗ij uj dΓ =
N∑

k=1

∫
Γk

u∗
ij pj dΓ (5)

The substitution of displacements and tractions by element approximated inter-
polation functions in Eq. (5) leads to :

ci ui +
N∑

k=1

h u =
N∑

k=1

g p (6)

which can be rearranged in a simpler matrix form :

H u = G p (7)

By applying the prescribed boundary conditions, the problem unknowns can
be grouped on the left-hand side of Eq. (7) to obtain a system of equations ready
to be solved by standard methods.

This system of linear equations can be written as :

A x = f (8)

where A is a dense square matrix, vector x contains the unknown tractions
and displacements nodal values and vector f is formed by the product of the
prescribed boundary conditions by the corresponding columns of matrices H
and G. Note that Eq. (8) can be assembled directly from the elements h and g
without need to generate first Eq. (7).

2.4 Internal Points

Since Somigliana’s identity provides a continuous representation of displacements
at any point ξ ∈ Ω, it can also be used to generate the internal stresses. The dis-
cretization process, described above, can also be applied now in a post-processing
routine.
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3 The Application Program

The program reviewed here is a well-known Fortran code presented by Telles [1]
for the solution of two dimensional elastostatic problems using linear elements.

The main program defines some general variables and arrays, integer and real,
as shown below :

program MAIN

integer :: NN,NE,NP,IPL,INFB,NT,NN2,info
integer,parameter :: NMAX=4000
integer,dimension(NMAX) :: IDUP
integer,dimension(NMAX*2) :: IFIP,ipiv
integer,dimension(NMAX,2) :: INC

real :: E,PO,C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11
real,dimension(NMAX) :: X,Y,C
real,dimension(NMAX*2) :: P,XM
real,dimension(NMAX*2,NMAX*2) :: A

! data input
call INPUT
! compute matrix A and independent term XM
call MATRX
! solve system of equations
call SGESV ( NN2, 1, A, NMAX*2, ipiv, XM, NMAX*2, info )
if ( info == 0 ) then
! output results
call OUTPT

else
write (*,*) ’SGESV : ’,info

endif

end program MAIN

The INPUT routine reads the program data, the MATRX routine computes ma-
trix A and the right hand side vector f , stored in vector XM, while the OUTPT
routine prints the boundary solution, computes and prints boundary stresses
and internal displacements and stresses. The original SLNPD subroutine is here
replaced by the LAPACK solver SGESV [2] which is being ported for the Cell BE
processor [8,9].

Subroutine MATRX generates the system of equations by assembling directly
matrix A without creating the global H and G matrices. This is done by con-
sidering the prescribed boundary conditions for the node under consideration
before assembling. The leading diagonal submatrices corresponding to H are
calculated using rigid body translations. Consequently, when the boundary is
unbounded a different type of rigid body consideration needs to be applied.

The element influence coefficients are computed calling subroutine FUNC. This
routine computes all the element integrals required for the system of equations,
internal displacements and internal stresses. Numerical integrals are performed
over non-singular elements by using Gauss integration. For elements with the
singularity at one of its extremities the required integrals are computed analyt-
ically to obtain more accurate results.

The boundary stresses are evaluated using subroutine FENC that employs the
interpolated displacements and tractions to this end. Here, the contribution of
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adjacent elements to the common boundary nodes is automatically averaged
for non-double nodes. The internal displacements and stresses are obtained by
integrating over the boundary elements using subroutine FUNC.

The solver is usually the most time consuming routine in BEM programs and
various studies have been published on this matter [2]. However, the generation
of the equations system as well as the computing of internal points together can
take the most part of the processing time [5] and demand special care. While
many high-performance parallel solvers are available from standard libraries [2],
those two procedures are usually implemented by the researcher and greatly
limit the speedup if not optimized. Hence, the Cell BE programming techniques
are here applied to the generation of the system of equations and the evaluation
of internal point displacements and stresses can also be implemented with the
same techniques.

4 The Cell Broadband Engine

The Cell Broadband Engine is a new architecture that succeeds the well-known
PowerPC architecture. The Cell BE processor joins in a single chip one Pow-
erPC Processor Element (PPU) and eight Synergistic Processor Elements (SPU).
While the PPU runs the operating system and usually the control thread of an
application, the SPUs are independent processors optimized to execute data-
intensive routines and threads.

At the time of this writing, software for Cell BE is written with C/C++
compilers with vector/SIMD multimedia extensions. However, different SIMD
instructions sets for the PPU and SPUs force the programmer to compile sep-
arated objects (code modules) in a Cell BE application. Indeed, in a high-level
language source code, the SIMD intrinsics for the SPEs are not the same for the
PPE which are also different from the PowerPC Altivec instructions, even when
executing exactly the same operation.

4.1 The Cell BE Memory Model

The Cell BE Architecture implements a radically new memory organization
where PPEs and SPEs access memory in different ways. While the PPE accesses
the whole system address space, the SPEs can only address its own private mem-
ory. Direct memory access (DMA) commands are used to move data between
the main memory and the local memory of each SPEs. With no cache or other
hardware mechanisms to automatically load code and data when needed, this
memory model leaves to the programmer the task of scheduling DMA transfers
between the PPE and the eight SPEs efficiently.

Each SPE private memory includes a 256 KB local storage (LS) to be shared
by code and data and 128 registers 128-bits wide. One load and store unit handles
data transfers between the local storage and the register file while asynchronous
DMA transfers are supported by the Memory Flow Controller (MFC). The MFC
supports a maximum transfer size of 16 KB and peak performance is achieved
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b1 b2 b3 b4

a1 + b1 a2 + b2 a3 + b3 a4 + b4 vec2

vec1

vec0

vec2 = spu add(vec0,vec1)

Fig. 1. SIMD Addition

when both the effective (main memory) and LS addresses are 128-bytes aligned
and the transfer size is an even multiple of 128.

Besides DMA, Mailboxes is another primary communication mechanism used
to exchange queued 32-bits messages. Mailboxes are an useful way to transfer
memory addresses and general counters from the PPE to SPEs and can also be
used by SPEs to notify the PPE that a memory transfer or computational task
has ended.

A third type of communication mechanism, signal notification registers, will
not be addressed here. More details on the Cell Broadband Engine Architecture
can be found in the literature [10,11,12].

4.2 The Vector/SIMD Multimedia Instructions

Computers were originally classified by Flynn’s taxonomy according to instruc-
tions and data streams as SISD (single-instruction single-data), SIMD (single-
instruction multiple-data), MISD (multiple-instruction single-data) and MIMD
(multiple-instruction multiple-data) [6].

As the name suggests, the SIMD model applies to systems where a single
instruction processes a vector data set, instead of scalar operands and SIMD
instructions perform one operation on two sets of four floating-point single-
precision values, simultaneously, as illustrated in Figure 1.

Cell BE provides a large set of SIMD operations. For a full description of all
SIMD intrinsic functions the reader is referred to [10]. The implementation of the
code here in study with SIMD instructions will be addressed in the next section.

5 The Cell BE Implementation

In the application under study, an equation system is generated in routine MATRX
with its influence coefficients computed by subroutine FUNC. This routine evalu-
ates all the non-singular element integrals using Gauss integration. For elements
with the singularity at one of its extremities the required integrals are com-
puted analytically. In the first case, a set of small matrix operations are initially
computed, as follows :
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[
UL11 UL12
UL21 UL22

]
= −C1

[[
C2 logR 0

0 C2 logR

]
−

[
DR11 DR12
DR21 DR22

]]
[

P L11 P L12
P L21 P L22

]
= −C3

[[[
C4 0
0 C4

]
+ 2

[
DR11 DR12
DR21 DR22

]]
DRDN + C4

[
0 DRBN12

DRBN21 0

]] 1

R

Those 2x2 matrices can be converted into vectors of size 4 and matrix oper-
ations can be performed with vector instructions. Thus, a straightforward ap-
proach is to use SIMD to evaluate those matrices leaving some intermediate
operations to be executed with scalar instructions.

In the original algorithm, those matrices are computed from 2 to 6 times,
accordingly to the number of Gauss integration points defined by the chosen in-
tegration rule. Alternatively, a fully vector implementation of the matrix compu-
tation above can be achieved by using 4 Gauss integration points and evaluating
all four values of each coefficient at once, including the intermediate values.

In the application under observation, for each integration point i, the matrix
coefficients can be computed as :

XMXIi = CTEi ∗ DXY 1 + XXS

Y MY Ii = CTEi ∗ DXY 2 + Y Y S

Ri =
√

XMXI2
i

+ Y MY I2
i

DR1i = XMXIi / Ri

DR2i = Y MY Ii / Ri

UL11i = DR12i − C2 ∗ log Ri

UL22i = DR22i − C2 ∗ log Ri

UL12i = DR1i ∗ DR2i

DRDNi = DR1i ∗ BN1i + DR2i ∗ BN2i

P L11i = (C4 + 2 ∗ DR12i ) ∗ DRDNi / Ri

P L22i = (C4 + 2 ∗ DR22i ) ∗ DRDNi / Ri

P L12i = (2 ∗ DR1i ∗ DR2i ∗ DRDNi + C4 ∗ (DR2i ∗ BN1i − DR1i ∗ BN2i)) / Ri

P L21i = (2 ∗ DR1i ∗ DR2i ∗ DRDNi − C4 ∗ (DR2i ∗ BN1i − DR1i ∗ BN2i)) / Ri

Initially using two-dimensional arrays and executed with scalar instructions,
the computation presented above - including the intermediate operations - are
now performed on vectors and four values are evaluated in each operation. Most
of those operations can be performed with basic memory and arithmetic SIMD
instructions introduced in the previous section. An SIMD implementation of the
vector computation being discussed is presented in Listing 1.

For each integration point i, UL and PL are used to compute two other
matrices, G and H :

[
G11 G12 G13 G14
G21 G22 G23 G24

]
=

[
G11 G12 G23 G24
G21 G22 G23 G24

]
+

[[
ULi

11 ULi
12

ULi
21 ULi

22

]
∗ B

i
1

[
ULi

11 ULi
12

ULi
21 ULi

22

]
∗ B

i
2

]
∗ W

i

[
H11 H12 H13 H14
H21 H22 H23 H24

]
=

[
H11 H12 H23 H24
H21 H22 H23 H24

]
+

[[
PLi

11 PLi
12

PLi
21 PLi

22

]
∗ B

i
1

[
PLi

11 PLi
12

PLi
21 PLi

22

]
∗ B

i
2

]
∗ W

i

Each one of the 2x4 matrices above can be splitted into two 2x2 matrices, as
sampled below :

[
G11 G12
G21 G22

]
=

[
G11 G12
G21 G22

]
+

[
ULi

11 ULi
12

ULi
21 ULi

22

]
∗ Bi

1 ∗ W i

Since all values of UL are stored in vectors, it is quite simple to perform the
multiplications of each value by the respective four values stored in B1 and W .
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Listing 1.

DXY1 = spu_splats(DXY[0]); // DXY1
DXY2 = spu_splats(DXY[1]); // DXY2
tmp0 = spu_splats(xxs); // X[II] - XS
tmp1 = spu_splats(yys); // Y[II] - YS
XMXI = spu_madd(CTE,DXY1,tmp0); // .5 (XI + 1) DXY1 + X[II] - XS
YMYI = spu_madd(CTE,DXY2,tmp1); // .5 (XI + 1) DXY2 + Y[II] - YS
tmp2 = spu_mul(YMYI,YMYI); // YMYI^2
tmp3 = spu_madd(XMXI,XMXI,tmp2); // XMXI^2 + YMYI^2
INVR = rsqrtf4(tmp3); // sqrt(XMXI^2 + YMYI^2)
DR1 = spu_mul(XMXI,INVR); // XMXI / R
DR2 = spu_mul(YMYI,INVR); // YMYI / R
LOGR = logf4(INVR); // log R
BN2 = spu_splats(BN[1]); // BN2
UL12 = spu_mul(DR1,DR2); // DR1 DR2
DR11 = spu_mul(DR1,DR1); // DR1^2
DR22 = spu_mul(DR2,DR2); // DR2^2
tmp4 = spu_mul(DR2,BN2); // DR2 BN2
tmp5 = spu_mul(DR1,BN2); // DR1 BN2
BN1 = spu_splats(BN[0]); // BN1
UL11 = spu_madd(C2v,LOGR,DR11); // DR1^2 + C2 log R
UL22 = spu_madd(C2v,LOGR,DR22); // DR2^2 + C2 log R
tmp6 = spu_madd(DR11,TWO,C4v); // 2 DR1^2 + C4
tmp7 = spu_madd(DR22,TWO,C4v); // 2 DR2^2 + C4
tmp8 = spu_add(UL12,UL12); // 2 DR1 DR2
tmp9 = spu_msub(DR2,BN1,tmp5); // DR2 BN1 - DR1 BN2
DRDN = spu_madd(DR1,BN1,tmp4); // DR1 BN1 + DR2 BN2
tmp10 = spu_mul(tmp6,DRDN); // (2 DR1^2 + C4) DRDN
tmp11 = spu_mul(tmp7,DRDN); // (2 DR2^2 + C4) DRDN
tmp12 = spu_mul(tmp9,C4v); // C4 (DR2 BN1 - DR1 BN2)
PL11 = spu_mul(tmp10,INVR); // (2 DR1^2 + C4) DRDN / R
PL22 = spu_mul(tmp11,INVR); // (2 DR2^2 + C4) DRDN / R
tmp13 = spu_msub(tmp8,DRDN,tmp12); // 2 DR1 DR2 DRDN - C4 (DR2 BN1 - DR1 BN2)
tmp14 = spu_madd(tmp8,DRDN,tmp12); // 2 DR1 DR2 DRDN + C4 (DR1 BN2 - DR2 BN1)
PL21 = spu_mul(tmp13,INVR); // (2 DR1 DR2 DRDN - C4 (DR1 BN2 - DR2 BN1)) / R
PL12 = spu_mul(tmp14,INVR); // (2 DR1 DR2 DRDN + C4 (DR1 BN2 - DR2 BN1)) / R

However, there is no SIMD instruction to perform the sum of the elements of
a vector needed in the computation of G. Using the SIMD shuffle instructions,
the values stored on four vectors can be reordered to obtain the same effect of a
matrix transposition, although here the operations are performed on vectors. A
possible SIMD implementation of the computations just presented is presented
in Listing 2.

Well-known optimization techniques usually applied to scalar codes can also
be used in the implementation of vector algorithms in order to replace long la-
tency instructions and to reduce data dependence. Data dependence is the major
obstacle to the vectorization of any algorithm. Even well-written programs en-
close data dependencies due to the nature of the applications. High performance
techniques are presented by the authors in previous studies [3,4] and will not be
addressed here.

The boundary element method has a parallel nature since each boundary
node generates two rows on the equations systems. The computing of each pair
of rows is totally independent and can safely be performed concurrently. Hence, a
straightforward approach is to distribute the boundary elements equally between
the eight SPEs. The same procedure can also be used to the computing of internal
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points. With no communications needed between the SPEs and taking in ac-
count that each boundary node must be integrated with all elements on the
boundary, an efficient approach is to leave to the SPEs the task of moving and
processing data while the PPE only starts the same thread on each SPE, trans-
ferring the global addresses of input data vectors and arrays, as demonstrated in
Listing 3.

Listing 2.

vector unsigned char permvec1 =
{0,1,2,3,16,17,18,19,4,5,6,7,20,21,22,23}; vector unsigned char
permvec2 = {8,9,10,11,24,25,26,27,12,13,14,15,28,29,30,31}; vector
unsigned char permvec3 =
{0,1,2,3,4,5,6,7,16,17,18,19,20,21,22,23}; vector unsigned char
permvec4 = {8,9,10,11,12,13,14,15,24,25,26,27,28,29,30,31}; ...
tmp0 = spu_mul(UL11,B1W); tmp1 = spu_mul(UL12,B1W); tmp2 =
spu_mul(UL22,B1W); tmp3 = spu_shuffle(tmp0,tmp1,permvec1); tmp4
= spu_shuffle(tmp0,tmp1,permvec2); tmp5 =
spu_shuffle(tmp1,tmp2,permvec1); tmp6 =
spu_shuffle(tmp1,tmp2,permvec2); tmp7 =
spu_shuffle(tmp3,tmp5,permvec3); tmp8 =
spu_shuffle(tmp3,tmp5,permvec4); tmp9 =
spu_shuffle(tmp4,tmp6,permvec3); tmp10 =
spu_shuffle(tmp4,tmp6,permvec4); tmp11 = spu_add(tmp7,tmp8); tmp12
= spu_add(tmp9,tmp10); tmp13 = spu_add(tmp11,tmp12); Cv =
spu_splats(C); CC1 = spu_mul(Cv,C1v); G1 =
spu_mul(tmp13,CC1); ...

In each SPU, the SPU number (spu id) is read from the PPU using mailbox
and the input data is transfered from main memory to local arrays using DMA.
In this implementation, the boundary nodes are evenly distributed among the
SPUs and only a pair of rows of the equations system corresponding to each
node is computed and transfered from the local storage to the main memory in
each iteration, as shown in Listing 4.

The concurrent computing of a given pair of rows with the asynchronous DMA
transfer of the previous pairs of rows is a technique used to hide memory transfer
latencies, known as double-buffering.

Due to 256 KB local storage size, the initial approach of loading all the input
data in SPU’s local arrays limits the number of nodes to approximately 4000. In
an alternative implementation, only parts of each input array can be transfered
from the PPU to the SPU. Although increasing the number of DMA transfers,
this technique reduces the memory size demand and increases the maximum
number of the nodes to be processed. Using 1 GB main memory (QS20), the
total number of nodes is limited to 6000 while in a 2 GB system (QS21) it is
limited to 10000, approximately.

6 Results

The parallel implementation presented here run on a Cell Blade QS21 server
with two processors and 2 GB main memory shared between the processors.
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Listing 3.

typedef struct {
float *X;
...

} BESTRUCT;
float X[NMAX] __attribute__((aligned(128)));
...
BESTRUCT bestruct __attribute__((aligned(128)));
bestruct.X = X;
...
extern spe_program_handle_t bizep_spu;
int main(void) {

ppu_pthread_data_t ppdata[8];
for (i=0;i<NSPU;i++) {
ppdata[i].context = spe_context_create(0,NULL);
spe_program_load(ppdata[i].context,&bizep_spu);
ppdata[i].entry = SPE_DEFAULT_ENTRY;
ppdata[i].argp = (void *) &bestruct;
ppdata[i].envp = (void *) 128;
pthread_create(&ppdata[i].pthread,NULL,&ppu_pthread_function,&ppdata[i]);
spe_in_mbox_write(ppdata[i].context,&i,1,SPE_MBOX_ANY_NONBLOCKING);

}
for (i=0;i<NSPU;i++) {
pthread_join(ppdata[i].pthread,NULL);
spe_context_destroy(ppdata[i].context);

}
printf ("End of PPU thread\n");
return 0;

}

Listing 4.

// the MATRX routine is now the main function running on the SPE
int main(unsigned long long speid,unsigned long long argp,unsigned long long envp) {

BESTRUCT bestruct __attribute__((aligned(128)));
// read the SPU id using mailbox
unsigned int spu_id = spu_read_in_mbox();
// transfer the structure data from PPU to SPU using DMA
int tag = 1, tag_mask = 1<<tag;
mfc_get(&bestruct,(unsigned int) argp,envp,tag,0,0);
mfc_write_tag_mask(tag_mask);
mfc_read_tag_status_all();
// transfer vectors and arrays using DMA
mfc_get((char *) X,(unsigned long int) bestruct.X,16384,tag,0,0);
mfc_read_tag_status_all();
...
for (i=first_node;i<=last_node;i++) { // loop over boundary nodes
for (j=1;j<=bestruct.NE;j++) { // loop over boundary elements

FUNC(ICOD,C,II,IF,XS,YS,G,H); // SIMD routine
...

}
// transfer local array A using DMA
ppu_address = (unsigned long int) (i-1) * sizeof(A);
for (j=0;j<4;j++)

mfc_put((char *) A+j*16384,(unsigned long int) ppu_address+j*16384,16384,tag,0,0);
mfc_read_tag_status_all();

}
return 0;

}
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Fig. 2. A square plate under biaxial load

Table 1. QS21 Results - 4000 nodes

SPUs 1 2 4 8
real 7.617s 3.822s 1.926s 0.978s
user 0.002s 0.002s 0.002s 0.002s
sys 0.148s 0.151s 0.159s 0.171s
Speedup - 1.993 3.955 7.788

Each 3.2 GHz processor has a 64-bits PowerPC with two 32 KB L1 caches and
a 512 KB L2 cache and eight SPUs with 256 KB memory each. The operating
system is Linux Fedora 7 with Cell BE SDK 3.0.

The study case to be presented here corresponds to a square plate under
biaxial load, as found in [1]. The schematic description of the problem is depicted
in Figure 2.

The results shown on Table 1 refer to the generation of a 8000x8000 equations
system while Table 2 refers to a 20000x20000 equations system of single-precision
floating-point elements . The use of a smaller number of SPUs is presented here
only for sake of reference, since in practice there is no sense to leave a vector core
idle. Also for sake of reference, the results of the SIMD implementation [6,7] of
the same code on another architecture, a quadcore Intel Xeon 2.66 GHz (X5355)
processor with 8 GB memory, is presented on Tables 3 and 4.

Table 2. QS21 Results - 10000 nodes

SPUs 1 2 4 8
real 3m4.297s 1m32.350s 46.252s 23.245s
user 0.002s 0.002s 0.002s 0.003s
sys 0.887s 0.901s 0.920s 1.098s
Speedup - 1.996 3.985 7.928
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Table 3. Intel Xeon Results - 4000 nodes

time Original Autovectorization SSE Intrinsics
real 5.132 3.604 1.992
user 0.212 0.152 0.196
sys 0:5.35s 0:3.75 0:2.18

Table 4. Intel Xeon Results - 10000 nodes

time Original Autovectorization SSE Intrinsics
real 45.822 32.918 12.880
user 1.184 0.956 1.160
sys 0:47.02 0:33.88 0:14.06

The almost linear speedups shown in Tables 1 and 2 show the effectiveness
of the algorithm used here and emphasize the parallel nature of the Boundary
Element Method. The technique of distributing the boundary nodes between the
SPUs can also be used to distribute workload between the cores of a blade and
among multiple blades. The same approach is used in the shared and distributed
memory implementations of this and other BEM codes [4,5] and will not be
discussed here.

It must be noticed that the results shown in Table 1 refers to an implemen-
tation where all the input data are loaded to the SPE local store while Table 2
refers to an implementation where only parts of input data are transfered during
the runtime, as explained in the previous section. In the first case, most of DMA
transfers (99%) are used to write the equations system into main memory. In
the second case, to bypass the SPE local store size limitation, most of DMA
transfers (92%) are performed to load the input data into SPE’s local store. A
radical change in the input data layout could reduce DMA reads and will be
implemented in a subsequent work.

7 Conclusions

The Cell Broadband Engine processor is a new architecture developed origi-
nally to be used in game consoles and multimedia devices. To face the current
limitations on power and memory use and processor frequency, the Cell Broad-
band Engine introduces a multi-core processor with a highly innovative memory
model. As one of the many options of a changing industry, this paper addresses
the viability of this environment to run engineering codes, specially numerical
methods applications.

Here, the basic aspects of Cell BE architecture and its programming tech-
niques are presented with the porting of a well-known boundary element code
to solve two-dimensional elastostatic problems. As shown, existing codes can be
rewritten to run on Cell BE after a careful change of the serial algorithm in
order to benefit from the multiple vector cores. The results presented here show
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the effectiveness of the proposed algorithm and emphasize the parallel nature
of Boundary Elements. The same parallelization technique can be used to dis-
tribute the workload between the SPUs, the cores of a Cell BE blade or among
multiple blades. At the time of this writing, these results clearly show the Cell
BE well suited to run the kind of engineering application presented here.

However, some current limitations of Cell BE must be taken in account. The
first implementation of this family of processors is designed to handle efficiently
single-precision floating-point operations while double-precision are usually ten
times slower. With no cache and other hardware mechanism developed to handle
the processor-memory performance gap, the Cell BE leaves to the programmer
the task of scheduling data transfers between main memory and local storages
efficiently. This radical design leads to greater learning and programming efforts.
A very limited amount of memory in each vector core also implies in significant
changes on existing algorithms resulting in increasing development costs and loss
of portability.

With the implementation of efficient double-precision floating-point opera-
tions, larger memory, a greater number of vector cores and a set of development
tools, the next generations of Cell Broadband Engine will play a major role in
the computer industry in the near future and become one of the main options
for engineering and scientific applications.
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Abstract. Initially developed for the scientific community, Grid computing is 
now gaining much interest in important areas such as enterprise information 
systems. This makes data management critical since the techniques must scale 
up while addressing the autonomy, dynamicity and heterogeneity of the data 
sources. In this paper, we discuss the main open problems and new issues re-
lated to Grid data management. We first recall the main principles behind data 
management in distributed systems and the basic techniques. Next we make 
precise the requirements for Grid data management and introduce the main 
techniques needed to address these requirements mainly by using P2P tech-
niques. To illustrate the use of these techniques that may be implemented in 
Grid infrastructures, we present a peer to peer multi-master replication approach 
for collaborative applications, and continuous stream processing  algorithms 
built over distributed hash tables using gossiping. 
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Abstract. In this article, we give our vision of a Pervasive Grid: A grid
dealing with light, mobile and uncertain devices, using context-awareness
for delivering the right information using the right infrastructure to final
users. We focus on the data side of the problem, since it encompasses a
number of problems related to such an environment, from data access,
query optimization, data placement, to security, adaptation,...

Keywords: Grid computing, pervasive systems, data management.

1 Introduction

The last decade have seen the wide development and adoption of Grid Comput-
ing [16],[18]. Its main purpose is to help for coordinating large-scale heteroge-
neous resources sharing (hardware, software) and problem solving in dynamic,
multi-institutional virtual organizations. From its original purpose of distributed
supercomputing and massive data processing, Grid computing moves more and
more to become a common platform and way for utility and service comput-
ing. It allows the sharing and the coordination in heterogeneous environments
(from clusters, main frames to personal computers) through relatively well devel-
oped middlewares architectures like OGSA [17] and one major implementation
Globus [1].

On the other hand, mobile, small, wearable personal devices are entering our
everyday life. People expect more and more information and services to be acces-
sible or readable on their hand-held digital assistant, from cell phones to personal
digital assistants. Pervasive Information Systems aims at offering the right in-
formation, to the right people, at the right time, on the right format. People are
not aware of the transparent infrastructure that offers them the information or
the service. Non intrusiveness, mobility, context-awareness and unpredictability
characterize the key constraints of these environments.

The current trend is to interconnect the two domains, offering the enormous
potential for resource sharing to hand-held devices. Grid services would then
be accessible, controllable from pervasive devices, and results would be sent to
these devices for on-site or remote analysis.

Our purpose is a little bit different, and go a step further : We envision a Per-
vasive Grid [28]. In this Pervasive Grid, resource sharing is still the key concept,
and we include the full heterogeneity of devices (even hand-helds) in this Grid.
While I. Foster and al. denote in [16] ”A computational grid is a hardware and
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software infrastructure that provides dependable, consistent, pervasive, and in-
expensive access to high-end computational capabilities”, the pervasive term has
been foreseen here as a way to offer a transparent access for high computational
resources for end-users. To paraphrase I. Foster, a Pervasive Grid is a hardware
and software infrastructure that provides dependable, consistent and inexpen-
sive access to pervasive resource sharing capabilities. Users are not aware of the
set of available resources, they just use services without notice. These resources
may be either computational clusters, mobile phones, or whatever can share
something with the outside world. Conversely, in a proactive way, the pervasive
environment may provide users with information according to their preferences.

In the following, P-Grid will refer to Pervasive Grid.
Applications taking advantage of a P-Grid can be categorized in three groups:

– Opportunistic applications: These applications will discover and use perva-
sive information and resources to potentially adapt, optimize, improve QoS.
As an example, vehicle safety systems may use information from other vehi-
cles to warn about hazards.

– Cooperative applications: These use multiple application entities (provid-
ing subset of service or information) allowing for making decision in an
autonomous manner. For instance group of cars can share information to
estimate global traffic

– Control Applications: These provide autonomic control capabilities using
actuators to impact their environment, e.g. a car may anticipate road con-
ditions to use the brakes.

P-Grids environments are inherently large, heterogeneous, dynamic (mobility,
context), aggregating a large number of potentially unknown and constrained
entities (energy, CPU power, HD space, security) with a potential for high com-
putations and/or tremendous amount of data.

Key aspect is uncertainty. Uncertainty is found as several levels:

– Systems: in their structure (flat, P2P,), dynamism (entities may enter or
leave at any time), components (in terms of reliability, capabilities, costs,
energy), constituents (number, protocols, locations,)

– Applications: dynamism in their compositions, couplings and interactions
(opportunistically connecting)

– Information: quality, availability, placement, trust, compliance with common
understanding and semantics

The need to adapt to changes in the environment or context is mandatory. Appli-
cations should be constructed from discrete, self managing components with sep-
arate functional, non-functional (QoS, reliability,costs), interaction-coordination
behaviors. Semantic knowledge and autonomous mechanisms must be enforced
at the middleware and application level. As a general rule, systems and middle-
ware should support context-/content-/location-awareness, with dynamic data-
/knowledge and time constraints for the executions, the adaptations and the
compositions of services and application while guaranteeing reliable and resilient
execution and predictable performance.
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As one can imagine, inventing such a Pervasive Grid is a large task, that
can not be described in one chapter. We will focus our purpose in this arti-
cle on the data side of the problem : data management in a Pervasive Grid.
The first reason for this is that data is the core of the system: Most of the ap-
plications use data as input or produce data as output. The second reason is
because the data management has long been forgotten in Grid Computing, and
efforts has been made late in order to handle the available data. And finally,
the data side exhibits a number of problems symptomatic of the Pervasive Grid
environment.

The rest of the chapter is organized as follows : After motivating the lacks
in existing systems (either Pervasive or Grid Computing) to achieve our vision
in section 2, we detail in section 3 who are the actors of a Pervasive Grid in
a global architecture view, and we identify a number of standalone services for
data management one would like to integrate. We present in section 4 mutual
links, interactions, and today advances in our group with the most promising
steps in the direction of a Pervasive Grid. Before concluding, we discuss some
implementation issues in section 5.

2 Related Work

The two domains related to a Pervasive Grid are the Grid and the Pervasive
systems, which are both very young research fields. Nevertheless, due to both
very active communities, some works have already started in the direction of a
P-Grid.

Davies, Storz and Friday [15][39] were the first to introduce the concept of
”Ubiquitous Grid”, that is close to our P-Grid. The purpose of their article
is to compare the notion of Grid Computing (definition of I. Foster [17]) and
the notion of Pervasive Systems (definition of M. Weiser [40]). They identify
similar interests : heterogeneity, interoperability, scalability, adaptability and
fault tolerance, resources management, services composition, discovery, security,
communication, audit, payment. They present briefly an use case developed with
Globus Toolkit 3 (GT3), for an ubiquitous grid and their solution. Lack of details
makes it difficult to evaluate exactly what has been done to make GT3 behave
like an ubiquitous grid, and what parts of ubiquity has been addressed. Moreover,
the authors do not deal with data management.

Hingne et al. [22] propose a multi-agent approach to realize a P-Grid. They are
interested in communication, heterogeneity, discovery and services composition,
and scheduling of tasks between the different devices constituting the P-Grid.
Almost nothing is said concerning the data management.

McKnight et al. [27] introduce the concept of Wireless Grid. Their interest
is on the mobile and nomadic issues that they compare with traditional com-
puting grids, P2P networks and web services. An interesting point of this arti-
cle is to put in light the relationships between these actors. The authors focus
their interest on services they identify as the most important: resources descrip-
tion and discovery, coordination, trust management and access control. These
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latter points are related to data management, together with the resources (data)
description and discovery.

In [37], S.H. Srinivasan details a Wireless Pervasive Grid architecture. The
author separates its grid in two parts: One is the ”backbone grid”, physically
linked like the network backbones; the other one is wireless, the ”access grid”.
Agents realize the proxy between the two grids, and behave on behalf of the mo-
bile devices of the ”access grid” on the ”backbone grid”. Interesting points in this
proposal concern the pro-activity and the context-awareness of the presentation
to the end-users.

Coulson et al. [14] present a middleware structured using a lightweight run-
time component model (OpenCom) that enables appropriate profiles to be con-
figured on a wide rage of device types, and facilitates runtime reconfiguration
(as required to adapt to dynamic environments).

More recently, Coronato and De Pietro [13] describe MiPEG, a middleware
consisting of a set of services (compliant to grid standard OGSA) enhancing
classic Grid environments (namely the Globus Toolkit) with mechanisms for
handling mobility, context-awareness, users’ session and distribution of tasks on
the users’ computing facilities.

Complementary to these, some other works exist to tackle some aspects of
pervasive systems in the computing grids, mainly mobility and adaptation to
light devices. Some works [3,21,19] have focused on the use of light devices
to interact with computing grids, submitting jobs and visualizing results. In-
tegrating more the mobile devices in the grids are [30,29] that propose proxy
services to distribute and organize the jobs among a pool of light devices. [25]
solicits surrounding devices to participate in a problem solving environment.
Others [2,24] are interested in the advantages of mobility features of IPv6 in
the notification and adaptation of grids. Mobile agents are used in [8,5] to mi-
grate objects between sites. Some researchers [11,12] have investigated how a
grid middleware (Legion, OGSI.NET) can be adapted to tackle mobility issues.
Context-awareness are basis for the works of [42], while the authors in [41]
include mobility and context-awareness in their approach. Context-awareness is
the primary focus of the work presented in [23]. The authors present an extension
of virtual organization to context, providing personalization of the services.

In the context of data management, [10] was one of the first to examine the
problems inherent to pervasive computing related with data management. In
the Grid computing field, Stockinger et al. [38] have exhibited in the framework
of the european DataGrid project the major issues a data management toolkit
should address. These papers served as basis for our work.

Unfortunately, almost none of these works handle the complexity of a P-Grid
as a whole, dealing with mobility, context-awareness and uncertainty, at the same
time. And none are handling the data management itself. We thus propose in
the following to have an integrated view of services related to data management
in a Pervasive Grid.
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3 Services for Data Management in a P-Grid

3.1 Data

The first thing is to identify which data a P-Grid can deal with. We have iden-
tified 3 different kinds of data:

– User data: These include personal data (for instance stored on personal hand-
held) or business data (stored on high-end storage)

– Application data (or service data): These data are produced by an applica-
tion, and represent its output.

– Acquired data: These are coming from sensors and help either to construct
the context of the data usage or impact the functions of the middleware
system.

These data differs in terms of size, confidentiality, quality, frequency, opera-
tions. These different characteristics lead to different need for data management
in terms of storage, reliability, availability, security, sensitiveness and quality.
Hence the data quality and information uncertainty management must be tackle
appropriately. We foresee thus the need to synthesize information with dynamic
properties and properties from data streams, to detect events, to assess data
quality, to cluster data, to adapt the frequency and the level of information
gathering, to support online, in-network and immediate use and processing

3.2 Services

Data management in a P-Grid shares some characteristics of Grid computing and
Pervasive computing. It should share some trends from autonomous computing
and semantic web/grid and some ideas coming from P2P computing, Mobile
computing, ad-hoc and sensors network, embedded systems.

In the following, we follow a service oriented architecture for data management
in a P-Grid, keeping in mind the needs sketched in the previous section as well
as the constraints of the environment and the data.

We have identified a minimal set of services related to the management of
data, that must be present in a P-Grid. We expose in this section these services,
while we will figure out the location of these services in the global architecture,
as well as their mutual links in the section 4.

– storage: This service is responsible for the physical storage of the data on
the P-Grid, regardless the reliability of the storage site. This service allows
one user (or application) to store one piece of data on the system: The
underlying storage solution may be a file system, a database or whatever
can store data. The user is the source of authority (SOA) of this data, and
controls the authorizations of access, replication, ... One can notice that all
data may not be in the P-Grid, for performance or security reasons. For
instance, it may become impossible to store all data issued by sensors since
the throughput could be too large. Some data, like medical data, may never
be stored ”as is” outside an hospital, for obvious confidentiality reasons and
should be anonymized or encrypted beforehand.
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– replication: Two main reasons push in favor of the replication service: perfor-
mance and reliability. Adjusting the number of copies and their location to
suit their usages (i.e. moving the replicas around) helps to increase the per-
formance of the system and to decrease the user queries process time. The
second motivation comes from the instability of the P-Grid storage sites.
Increasing the number of replicas of data allows to increase their availabil-
ity, but decreases the control over their proliferation and their consistency.
This is particularly important when dealing with volatile and mobile devices.
Nevertheless, all data can not be replicated, and a judicious choice must be
done according to the usage of the data, which must be monitored.

– cache: A cache service allows to keep in temporary storage space some ac-
cessed data or results of user queries. This reduces the cost of accessing
data (it may be a network cost as well as a financial cost). The main differ-
ence with the previous replication service is the hidden property of a cache
service, that acts transparently with respect to the users requests. It is a
proxy between these and the data themselves. Collaborative caching must
be deployed, so that several distributed cache services cooperate, using the
semantics of the cached data (notice here that a global agreement of data
semantic representations has to be accepted -ontologies can help in this mat-
ter). This collaboration increases the total space dedicated to the cache as
well as the global hit-rate. The collaboration of the caches can handle the
split of files in different caches but then appears the problem of volatility of
the devices, making some parts of the data temporary unavailable (thus a
replication service have to be coupled to the cache service).

– access: This service has two tasks. First, it accesses the data previously stored
by the storage service. Second, it realizes the access to data stored outside
the P-Grid, in external databases, flat files... Doing this, it must implement
an integration mechanism between the different available data sources.

– indexing: The indexation service is responsible for maintaining a global link
between a physical data and a logical representation of this data. This rep-
resentation may be a logical name, or a more detailed semantic description
contained in metadata. This latter, that is a semantic indexing of the data,
allows to have a semantic view of the available data. This issue can help
to group geographically data (or their replicas) which are dealing with the
same themes. A second benefit of a semantic indexing is to optimize the
replacement policies of the collaborative caches, keeping in those the hottest
topics (the data related to the more accessed themes). Finally, it allows to
group efficiently data to apply an adapted access control policy to a set of
data.

– search: This service relies on the previous one to find data. But it must also
allow for hybrid queries, that act on stored data as well as on computable
data (i.e. data that can be extracted or generated from stored data, after
processing).

– transport:Data transport service is managing the communication of the data
in the P-Grid. It relies on the the local available infrastructure to deliver the
data: It can be either FTP-like for classic data, streaming for multimedia
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data, it can use UDP or TCP over a UMTS, WiFi, Bluetooth underly-
ing protocol. As multiple transport solutions may coexist on one particular
device, this service must choose which combination is the best choice for
one communication. Moreover, the data transport capacity might evolve
over time as the user is mobile and network settings and quality change
continuously.

– security: This service can be decomposed in several parts. Data security is
fundamental in a P-Grid, given its high degree of dynamic and unreliabil-
ity. Allowing one to access a piece of data is first to allow one to enter
the device storing the data. This must be controlled via identification, then
authentication. This is far from trivial when users can not be known every-
where, and when centralized solutions (like CAs) must not become single
points of failure. A high level of decentralization must be achieved. Typi-
cally, a Single Sign On must be available in the infrastructure, and trust
management procedures have to be enforced. When one is authenticated,
then comes the problem of authorization. Data access must be controlled
at a fine grain, at the closest to the data itself, to allow the SOA of the
data to give minimal sufficient rights, and the sites holding the data must
control the given permission on the fly. Splitting the data from the per-
missions to access the data is a solution to limit the scope of corrupted
sites (increasing fault tolerance). Finally, an encryption mechanism must
be provided in order to increase the confidentiality and non disclosure of
the data on the devices. The communication encryption is the problem of
the transport service. Related to security is also the history service, that
will be detailed later, to allow for traceability in the users’ usage of the
data.

– adaptation: The adaptation service is a key service for the data in a P-Grid.
Before delivering a piece of data to the final user, it must be adapted to
the device of this user: First, it may not correspond to the physical char-
acteristics of the device (for instance, the result is an audio file, but no
audio output is available on the device; the result should be transformed
to plain text). Second, the profile of the user must be taken in considera-
tion (for example, the language of the result should be changed). Finally,
the available transport service might not handle the result (if the result is
a video, and Bluetooth is the only communication possibility, the bit-rate
should be adapted accordingly). Adaptation services must be available on
the P-Grid, or external and accessible through the P-Grid. Combining and
chaining these services, using their operational semantic is the responsibility
of the adaptation service.

– processing: The above adaptation service is a particular processing service.
The user may initiate any available service on data, from visualization to
anonymisation, for instance. This aspect is not directly related to data and
will not be discussed further.

– computer-human interaction: The wills of the user, as well as his feedback
regarding the usage of the system should be taken into account for present-
ing data and computation results. Non intrusiveness and intuition should
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drive the research in this field and interaction systems using all modalities
of interaction (from visual to sound to tactile) be developed.

These different services must be developed as independent modules, if possible,
and must not rely on a specific middleware : Indeed, a hand-held device will
not have the same capabilities to embed a heavy middleware compared to an
office computer. Only their presentation (API, exchange protocols and messages
format) must be inter-operable. We will discuss in section 5 which technologies
can be used to achieve these constraints.

These modules must also be developed as distributed and decentralized mod-
ules when possible. Scalability issues lead to avoid single point of decision, that
could become single point of failure. Providing distributed modules may increase
the reliability of the system (if it exists a part of redundancy) and also increase
the global performance of the system, balancing the load between several in-
stances of one service. Autonomy and self-organization of the modules must be
enforced in their development and management.

To the minimal set of services dedicated to data management, expressed
above, we express the need of underlying services, not specific to data man-
agement but useful for it.

– execution service: This service is responsible for the execution of services on
the P-Grid. It realizes the interface with the scheduler, organizes and verifies
the correct execution of the tasks.

– monitoring service: The monitoring service must be aware of the current
state of the resources, from services to network to hosts. This service allows
two benefits: to have a global view of the P-Grid, in terms of available ser-
vices (and their state : working, idle, stopped, ...), hosts, network resources,
data location, ... and to personalize this view according to the dynamic per-
missions and needs of the users.

– discovery service: Discovery is important for mobile or transient devices.
It permits these devices to know which are the available services in their
neighborhood, so that interactions can be initiated.

– history service: This service is a memory of what occurred on the P-Grid. It
has two main roles : First, it keeps a trace of the access to the services and the
data, for traceability or financial reasons. Second, it allows to reconstruct a
composition of services for one user (or a group of users), in a given context,
saving some time discovering the services or the data available. Techniques
such a data mining in this history can be used for this issue.

The presented architecture is quite different from a Computing Grid, taking into
account at each stage of the services development the uncertainty, the instabil-
ity, the mobility and the context-awareness of some components of the P-Grid.
Conversely, it differs from a pure pervasive systems since it can use some stable
infrastructure to store data or execute some compute-intensive services. It is not
either a Peer2Peer architecture, since each node does not have the same role,
and roles may be distributed dynamically.
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4 Links, Interactions, and Today First Steps

In a P-Grid, several infrastructures may coexist, some being stable, some being
unstable. It is thus necessary to identify which services must be deployed on the
stable part, and which services may be deployed on the unstable part. Moreover,
all services do not need to be embedded everywhere: Indeed, some devices can
not afford to have too much services on them. The placement of the services in
the architecture depends on a number of factors: its importance in the global
architecture, the importance of its responsiveness, of the quality of the response...
Moreover, the properties of these factors evolve with time and the available
infrastructure. As an example, if a device is connected to the Internet, it can use
distant web services while he can only use its surroundings in the other case.

Finally, to construct a P-Grid and thus the data management in a P-Grid,
two approaches are complementary. The first one consists in modifying a normal
grid middleware (like Globus for instance in [13]) and to inject the mobility of
the actors, the context of the actors, the unpredictability and more importantly
uncertainty of the data and systems.

The second one consists in constructing a new adapted modular middleware
with some key features that can be summarized here:

– Decentralization: no centralized control, a complete autonomy with locality
of processing and data

– Fault tolerance and security.
– Interoperable with existing services.
– Dynamic: Decisions have to adapt to context. Also the need for both reac-

tivity and pro-activity.
– Semantics: protocols, algorithms, taking into account the semantics of the

data, the accesses and the services
– Context awareness, mobility awareness, energy awareness
– Uncertainty

For designing the global architecture, we start from the data end. It seems im-
portant to describe the data, and at two different levels: First, the data structure
must be available so that the data access service can use mediators to find ap-
propriate mappings between data sources. Second, data itself must be described,
for instance for the semantic indexation service or the adaptation service. Se-
mantic data description is maintained by metadata associated to data (in [31],
we proposed to index the documents according to their content). We propose to
keep these metadata in a database, one database by data source, being on the
hosting machine of the data themselves. The accesses on these metadata (avail-
ability and access permissions) are those of the data. Moreover, the metadata
are generally small compared to the original data, they thus do not increase the
load of the data server. The metadata are extracted either manually (given at
the same time than the data), or automatically using services available on the
P-Grid. If the storage site do not have enough space or the user does not want
to store these metadata for any reason, this latter solution allows to reconstruct
dynamically the metadata.
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One of the consumers of these metadata is the indexation service. This service
is replicated on the P-Grid, to balance the load, to make it closer to the data and
to increase the robustness of the system. One indexation service is responsible
for a set of data sources, each service collaborating with others to have a larger
view of the available data, wrt the limit of local index size. The indexing of
data in the related indexation service can be either automatic a priori (when
the data enters the data source, they register with the indexation service), or a
posteriori. In this latter approach, developed in [26], the indexing is done when
data is transmitted on the network: Indeed, active routers can examine passing
packets and decide on their indexation. Unfortunately, this solution only indexes
data being requested, and is complimentary to the a priori solution.

Once the data indexed, the search is facilitated since one must only contact
the indexation services. A collaboration between them must be constructed so
that they can exchange their content. We have shown in [31,9] that a two-levels
collaboration is suitable and is enough, allowing to exchange only a small amount
of the data while still being efficient during the search.

The next step is to effectively access the data, and thus to secure this access.
We must handle AAA (Authentication, Authorization and Accounting). First,
we secure the access to the site itself. We use an authentication mechanism based
on a distrust certification model [32]. The idea is, for a given user identified on
a home site H to gain access to other sites thanks to a trust chain between these
and the original site H. The user gets a home certificate and gain trust certifi-
cates during his visits. Each certificate embeds a profile, which is correlated with
local permissions. Each device that may accept incoming visitors must host the
authentication service of its site. Without any certificate, visitors access limited
resources (default profile). Second, data access must be controlled at a fine grain,
as close as possible to the data, in order for the SOA of the data to give minimal
sufficient rights; the sites holding the data must control the given permission on
the fly. We propose to use Sygn [34,36] for this purpose. Sygn allows for a role
based access control, and is based on certificate given by the SOA of the data
to the potential user of this data. The process involves only these two users and
do not need any stable infrastructure. Only an access control service must be
deployed where the data are held, which controls the validity of the presented
certificates according to the action being requested on the data. This control
is only based, from the storage point of view, on the association between the
identifier of the SOA of the data and the identifier of the data. One important
characteristic is the necessity to have unique identifier of the data on the P-Grid:
This can be achieved through the use of users public keys. These two mecha-
nisms (authentication and authorization) use certificates: These are generally
small in size and can be embedded on mobile devices with the users (usb keys,
...). This is preferable to a central storage site, being a single point of failure
and a privileged target for attacks. Nevertheless, we can imagine a proxy acting
for the user as a cache when certificates are needed (for performance and ease
of use reasons). Third, concerning the accounting, Sygn can be set so that every
accesses to the data are stored together with the data. We believe the access to
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the data is the right location for this accounting, providing we store the identifier
of the requester and his associated action. Finally, security is also achieved by
encrypting data. An encryption service must be provided in order to increase
the confidentiality and non disclosure of the data on the devices. This service
can be embedded on devices, but some permanent services on the stable infras-
tructure must exist for those too short in computing resources. We propose to
use CryptStore [35], which rely on the distribution of key shares on the network.
This flexible solution allows the user to delegate the encryption/decryption ser-
vice out of its device, while keeping a secure control of the encrypted data. The
key shares to decrypt the data are spread on storage sites, where their access
is controlled in the same way than the data. One advantage of this solution is
the fact that the SOA does not need any key management procedure. Another
advantage is the fact that only a parameterizable subset of all the key shares
are necessary to decrypt the data, increasing the reliability of the system when
some key servers are down or unreachable.

Once the data accessed, it can be interesting to create replicas of these, or more
simply to cache them. The replication service presented in [20] needs monitoring
services to optimize the placement of the replicas. This monitoring must give
up-to-date information on the status of network resources, and aggregate these
so that it reflects the cost to get a file. On the other side, the cache service [9]
needs the semantic indexation service presented above to adapt the replacement
policies to the data usage. It also handles metadata thus it needs a database to
keep those.

Before delivering the data to the user, it can be adapted to his context. This
adaptation (or any treatment on the data), will use services available on the
P-Grid. It needs to interact with a middleware that will launch, execute and
monitor the services. Moreover, the adaptation service [6] is based on the de-
scription of available services and on the adequate representation of the context.

More generally, a service to discover and register available services is manda-
tory and should exist on every devices. This local service interacts with other
services on the stable infrastructure, and with its surroundings to discover the
locally available services.

From the user point of view, only a discovery service and a set of certificates
must be present with him. These will allow him (and, by delegation his device)
to reconstruct part by part his (its) view of the P-Grid.

5 Implementation Issues

The architecture described in the previous sections is not working as a whole
set. Nevertheless, efforts in our group for implementing parts of it have already
been done and could be successfully reutilized and integrated in a P-Grid: Some
works [6,31,32,20] have been initiated in the context of pervasive systems, others
in the context of data grids [35,34,36,9].

In the case of the data grids, we have developed our contributions using
standard middlewares like Globus [1], conforming to the OGSA/WSRF
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architecture [4]. OGSA offers the desired functionalities of the components of
the architecture, the infrastructure being assured by WSRF (Web Service re-
source Framework). On the data side of the architecture, OGSA does not offer
an integrated view by rather a set of tools and services to access the data (OGSA-
DAI-Data Access and Integration), to handle the replicas (RMS - Replica Man-
agement Service), to transfer the data (GridFTP). Moreover, some activities that
are directly related to data management are studied as different fields, like for
instance the information service (that can provide information on data sources,
storage resources, ...). Some problems we face using OGSA is the heaviness of
the protocols and the architecture. As an example, in WSRF, the service calls
are encapsulated in SOAP, that adds a large amount of payload to the service. In
a light device infrastructure, the cost of this protocol can be seen as a potential
bottleneck. Moreover, it is difficult to separate efficiently the services in OGSA
to manage a light architecture, embeddable on light devices with poor memory
and network connections. Finally, OGSA does not deal with mobility, locality,
context-awareness in its development. But it can be a relatively good starting
point ( [11],[13]) and since it is widely adopted and standardized. But one would
have to adapt the services to pervasive environment, and to work on the effective
modularity of the architecture.

On the pervasive systems side, we have developed a software platform called
PerSE [33,7] that can host pervasive services. It is user oriented, and is based on
the principle of service composition to handle user wills (the users describe par-
tial actions that are transformed in fully described actions based on the context
of use). Available services can be constructed outside PerSE, only their interface
(messages, protocols) have to be known in PerSE for the composition. The core
PerSE base is small, and can be extended using security or log services, indepen-
dently developed and attached on demand to PerSE. Efficiency and development
reactivity is a key concept in the construction of PerSE, thus it does not rely
on well established standards. The drawback is the limited easiness to distribute
and extend the PerSE base as is.

In our P-Grid approach, we plan to take some ideas from the two worlds, with
the flexibility of PerSE to construct services and chain them, and the ambition
of OGSA for its wide adoption and standardization process.

6 Conclusion and Future Works

In this article, we first gave our vision of a Pervasive Grid, from the data side
point of view. We exhibit existing solutions and show their limitation, partic-
ularly for the data management side. We then identified a number of services
useful in this context, and we explained their respective roles. We tried to orga-
nize these and to describe their mutual links and the links with an underlying
infrastructure, as well as some already developed bricks. We illustrated our ap-
proach with an use-case before giving some trails for a real implementation.

Pervasive Grid represents a tremendous and exiting environment in which
many known solutions from classical distributed systems do not apply well. We
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foresee the development of dedicated algorithm and a continuous interest of re-
searchers worldwide, with the current inclusion of more and more devices (known
or hidden) in our everyday life.
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Abstract. Grid systems provide access to huge storage and computing
resources at large scale. While they have been mainly dedicated to scien-
tific computing for years, grids are now considered as a viable solution for
hosting data-intensive applications. To this end, databases are replicated
over the grid in order to achieve high availability and fast transaction
processing thanks to parallelism. However, achieving both fast and con-
sistent data access on such architectures is challenging at many points.
In particular, centralized control is prohibited because of its vulnerabil-
ity and lack of efficiency at large scale. In this article, we propose a novel
solution for the distributed control of transaction routing in a large scale
network. We leverage a cluster-oriented routing solution with a fully dis-
tributed approach that uses a large scale distributed directory to handle
routing metadata. Moreover, we demonstrate the feasibility of our imple-
mentation through experimentation: results expose linear scale-up, and
transaction routing time is fast enough to make our solution eligible for
update intensive applications such as world wide online booking.

1 Introduction

Grid systems use a distributed approach to deal with heterogeneous resources,
high autonomy and large-scale distribution. Thus, they present a real interest to
important areas of enterprise information systems. For instance, Global Distri-
bution Systems (GDS) like Amadeus [2], Sabre [17], Galileo [6] manage a huge
amount of data for airline companies, hotels and travel agencies. For instance,
Amadeus system information manages data for 62.000 travel agencies, 734 air-
line companies, 61560 hotels and covers more than 207 countries. The challenge
for these systems is to ensure data availability and consistency in order to deal
with fast updates. To solve this problem, these systems use expensive parallel
servers. Furthermore data is located on single site, which limits scalability and
availability. Mapping these GDS systems to a grid allows to overcome these lim-
itations at a rather low cost. In such architecture, the data accessed by the GDS
will be stored by the participants (hotels, airline companies, etc.) and can be
shared. Thus, the data is distributed and parallel executions can be done so that
load balancing is achieved.
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In order to improve data availability, data is replicated and transactions are
routed to the replicas. However, the mutual consistency can be compromised,
because of concurrent updates. Let us illustrate the problem with a concurrent
update. Assume that we have two replicas R1 and R2 and we have two trans-
actions T1 and T2 which are sent respectively by two applications (or travel
agency) A1 and A2. Each transaction aims for making a reservation operation in
the same flight (AF709) of Air France airline company. Assuming that only one
seat is available and T1 are routed to R1 and T2 to R2, then the simultaneous
execution of T1 and T2 produces a data inconsistency: one of travel agencies
sales a non-existing seat. Another point is that some queries can be executed
at a node which misses the latest updates. For instance, a request which com-
putes the number of passengers of a flight can be executed in a (few loaded)
stale node. To this end, two conditions must be satisfied: (i) the staleness of the
node, expressed in number of missing updates, does not exceed the quantity of
overbooking the company is allowed, and (ii) the request does not perform up-
dates, for sake of consistency. In other words, controlling the freshness of nodes
for executing read-only queries can help in improving performances through a
better load balancing. Many solutions have been proposed in distributed sys-
tems for managing replicas [14], [12], [9], [8], [5] and [13]. Some of them include
freshness control [16], [7], [10] and [1]. We base our work on the Leg@net ap-
proach [7], since it offers update anywhere and freshness control features and
does not require any modification of the underlying DBMS nor of the application
source code.

However, cluster systems deal with homogeneous nodes and are not suitable
for systems which have heterogeneous and independent entities such as GDS. In
order to make Leg@net system suitable to GDS applications, it is necessary to
modify its architecture such that it becomes fully distributed on grid system. To
reach this goal, the router and the metadata will be replicated at many sites of
the grid.

In this paper, we aim to design a new system relying on the Leg@net principles
to deal with transaction routing at a large-scale. Our main contributions are:

– A fully distributed transaction routing model which targets update-intensive
applications. Our middleware, ensures data distribution transparency and
does not require synchronization (through 2PC or group communication)
while updating data.

– A large-scale distributed directory for metadata, highly available and easy
to access. It enables to keep data consistency with few communications mes-
sages between routers.

– Experimental evaluation of our approach that show its feasibility.

The rest of this paper is organized as follows. We first present in Section 2
the global system architecture, the replication and freshness model. Section 3
describes our algorithm for transaction routing with freshness control. Section 4
presents experimental evaluations of our system and Section 5 concludes.
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2 System Architecture and Model

In this section we describe how our system architecture and model are defined.
We first present the global architecture which is needed for understanding our
solution. Then we describe the replication and freshness model used in order to
preserve global consistency.

2.1 Architecture

The global architecture of our system is depicted on Figure 1. Transactions
are sent by applications to any Transaction Manager (TM). TM uses metadata
stored in a shared directory implemented into JuxMem [3], to route the trans-
action for execution on a data node (N i) while maintaining global consistency.
JuxMem provides the abstraction of a shared memory over a distributed grid in-
frastructure, by transparently handling consistency in a fault-tolerant way. Data
nodes use a local relational DBMS to store data and performs local execution of
transactions sent by TMs.

2.2 Replication and Freshness Model

We assume a single database composed of relations R1, R2...Rn that is fully
replicated at nodes N1, N2...Nm. The local copy of Ri at node Nj is denoted by
Ri

j and is managed by the local DBMS. We use a lazy multi-master (or update
everywhere) replication scheme. Each node can be updated by any incoming
transaction and is called the initial node of the transaction. Other nodes are
later refreshed by propagating the transaction through refresh transactions. We
distinguish between three kinds of transactions:

– Update transactions are composed of one or several SQL statements which
update the database.

– Refresh transactions are used to propagate update transactions to the other
nodes for refreshment. They can be seen as “replaying” an update transaction
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on another node than the initial one. Refresh transactions ar distinguished
from update transactions by memorizing in the shared directory, for each
data node, the transactions already routed to that node.

– Queries are read-only transactions, and thus need not be refreshed.

Let us note that, because we assume a single replicated database, we do not
need to deal with distributed transactions, i.e. , each incoming transaction can
be entirely executed at a single node.

2.3 Freshness Model and Metadata

Every transaction (update, refresh or query) reads a set of relations, every update
and refresh transaction writes a set of relation. This information can be obtained
by parsing transactions code, and is stored into the shared directory.

Queries may access to stale data, provided it is controlled by applications. To
this end, application can associate a tolerated staleness with queries. Staleness
can be defined through various measures [10]. In this paper, we only consider one
measure, defined as the number of updated tuples, for each relation Ri accessed
by a transaction T . More precisely, the staleness of Ri

j is equal to the maximum
number of tuples of Ri already updated on any node but not yet updated on
Nj . The tolerated staleness of a query is thus, for each relation read-accessed by
the query, the maximum number of updates that can be missing on a node to be
read by the query. Tolerated staleness reflects the freshness level a query requires
to be executed on a given node. For instance, if the query requires perfectly fresh
data, its tolerated staleness is equal to zero. This information is also stored in the
shared directory. Note that, for consistency reasons, update (and thus refresh)
transactions must read perfectly fresh data, thus their tolerated staleness is
always equal to zero for every relation they access.

To compute the staleness of a relation copy Ri
j , we store in the shared direc-

tory, for each update transaction T writing Ri, the maximum number of tuples
T may update on Ri. We also store the system global state, i.e. for each up-
date transaction, the nodes where it has been already executed. This allows for
computing a lower bound of Ri

j ’s staleness, which is lower or equal to the actual
staleness. This guarantees that, when executing a query with tolerated staleness
ts on a node with an estimated staleness s ≤ ts, then the actual freshness of the
node is sufficient to fulfil the query requirement.

The shared directory also stores, for each transaction T , the estimated time
of processing T , which is a moving average based on previous executions of T .
It is initialized by a default value obtained by running T on an unloaded node.
It serves at computing the cost function used for transaction routing and load
balancing (see Section 3.1).

2.4 Global Consistency

In a lazy multi-master replicated database, the mutual consistency of the
database can be compromised by conflicting transactions executing at differ-
ent nodes. To solve this problem, update transactions are executed at database
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nodes in compatible orders, thus producing mutually consistent states on all
database replicas. Queries are sent to any node that is fresh enough with re-
spect to the query requirement. This implies that a query can read different
database states according to the node it is sent to. However, since queries are
not distributed, they always read a consistent (though stale) state. To achieve
global consistency, we maintain a graph in the shared directory, called global
precedence order graph. It keeps track of the conflict dependencies among active
transactions, i.e. , the transactions currently running in the system but not yet
committed. It is based on the notion of potential conflict: an incoming trans-
action potentially conflicts with a running transaction if they potentially access
at least one relation in common, and at least one of the transactions performs
a write on that relation. This pre-ordering strategy, already used in Leg@net,
is comparable to the one of [4]. The main difference is that the global ordering
graph is also used for computing nodes freshness

3 Transaction Routing with Freshness Control

In this section, we describe how transactions are routed in order to improve
performance. First, we present the routing algorithm, directly inspired from [7].
Then, we discuss the specific issues raised by the use of a shared directory.

3.1 Routing Algorithm

Our routing strategy is cost based and uses late synchronization, thus it takes
into account the cost of refreshing a node before sending a transaction T to it.
As mentioned in [7], the routing complexity is linear in the number of active
transactions and the number of nodes, which makes our approach scalable. The
cost-based routing algorithm evaluates, for each node Nj :

– Nj ’s load. This cost is computed by evaluating the remaining execution time
of all running or waiting transactions at node Nj .

– the cost of refreshing Nj enough (if necessary) to meet the freshness re-
quirement of T . To this end, it computes a refresh sequence S for Nj : the
minimal sequence of refresh transactions to be executed on Nj to make it
fresh enough wrt. T ’s requirement. In other words, after applying the refresh
sequence on Nj, its staleness wrt. each relation read-accessed T is lower than
the respective staleness tolerated by T (remember that this tolerated stale-
ness is always 0 if T is an update). The cost is the estimated time needed to
execute the sequence S.

– the cost of executing T itself.

Then it chooses the node N which minimizes the cost, i.e. the sum of the preced-
ing three costs, and sends to N the sequence S followed by T . It also updates the
shared directory: all the transactions in S (plus T if T is an update) are dropped
from the set of transactions waiting to be executed on N. In order to ensure global
consistency, refresh transactions are inserted in the refresh sequence according
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to the global serialization order: whenever a refresh transaction is inserted, all its
predecessors not yet executed on the node are also inserted, in the appropriate
order, so that the sequence order is compatible with the global precedence order
(see Section 2.4 )

3.2 Concurrent Access to the Shared Directory

As opposed to the centralized version of [7], where a single router is interacting
sequentially with the directory, we must here take into account the concurrency
problem due to the presence of several routers, thus to simultaneous access the
metadata. We decided to solve this problem using traditional two phase locking
(locks on metadata are kept until the end of the routing process), based on two
observations: (1) the routing process is very fast compared to the execution of
the refresh sequence and of the transaction itself, thus locks are released rather
quickly, and (2), locking is provided by JuxMem, which makes the implemen-
tation straightforward. In order to validate this choice, we ran experiments to
measure the overhead due to concurrent access to the shared directory (see next
Section).

4 Experimental Validation

In this section we evaluate the performances of our solution through experimen-
tation. In [7], the Leg@net router was demonstrated to perform better than well
known routing strategies such as round robin or least loaded node routing. Since
our solution relies on the same cost based routing algorithm, we focus here on
comparing the distributed version of the routing algorithm with the Leg@net
centralized one.

The experiments follow two goals. First, we need to check that the distributed
router is not a bottleneck, i.e. , it routes every transaction fast enough. Second,
we want to assess if the distributed router brings some global benefit for the
applications i.e. , if it improves transaction response time.

4.1 Experimental Setup

We run all the experiments on a 20 nodes (P4, 3GHz, 2GB RAM) cluster with
1Gb/s inter node connection as well as some desktop computers from the labo-
ratory to host end user applications. The router is implemented in C language
and relies upon JuxMem services, which are built on top of Sun JXTA layer.
JuxMem provides a grid-wide RAM access. Our router acts as a middleware; it
provides a transaction processing interface for the applications. A cluster node
has two roles: it acts as a router node and/or a DBMS node.

4.2 Distributed Directory Access Overhead

The first set of experiments focuses on the routing step itself. It measures
the overhead of using a distributed directory to manage router metadata. The
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Fig. 2. Middleware throughput

workload is made of an increasing number of applications, each of them is send-
ing one transaction per second to a single router. We measure the resulting
throughput (in transactions/second) that the router achieves. Figure 2 shows
that a single router can process up to 40 transactions per second. This thresh-
old is satisfying considering that more routers would be able to handle higher
workloads.

A part of the routing process is to access the distributed directory. In order
to quantify the directory access overhead and then to know if our approach can
scale out, we increase the directory size by adding database replicas, since more
replicas imply more metadata. We report on Figure 3, the output workload that a
router achieves in 3 cases: small , medium and large directory size (respectively 5
, 50, 100 replicas). We measure a slowdown of less than 20% for a large directory
that has a replication degree of 100. For a smaller replication degree of 50, the
slow down is only 5%. Since most of the applications, in our context, require
a replication degree lesser than 10, we conclude that the distributed directory
access is not a performance brake.

Furthermore, we study the impact of multiple routers concurrently accessing
the distributed directory. The workload is made of the same applications as the
former experiment, but the transactions are sent to 2 routers (such that half
of the workload goes to each router). The results of Figure 4 are obtained in
the worst case (i.e. all transactions access to the same data leading the routers
to do so with metadata) and they shows a maximal throughput of 20 transac-
tions/second that is half of the standalone throughput. Indeed, waiting for locks
is decreasing the router throughput. Thus, in the worst case where each directory
access is delayed by a concurrent access to the same metadata, the router is still
able to provide reasonable throughput. We note that, in our context, concurrent
situations are not frequent since metadata is fragmented and the probability of
concurrent access to the same fragment is weak. Nevertheless, ongoing experi-
mentations aim to evaluate precisely the slowdown led by concurrent access to
the distributed directory wrt concurrency degree. In other words, we will vary
the concurrency degree between 0% and 100% and measure the variations of the
performances.
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Fig. 3. Directory size overhead

Fig. 4. Concurrent access

4.3 Overall Routing Performance

This experiment focuses on the overall transactional performance of the dis-
tributed routing (DR). We measure the increase in throughput compared to the
centralized routing (CR) of [7]. The workload is made of N applications of 3
kinds (N/3 apps of each kind). Each kind of application is accessing a distinct
part of the database and is connected to a distinct router. In other words, there
is no concurrency between routers when accessing the directory We measure the
output throughput when N is varying from 15 to 150 applications. On Figure 5,
we compare theses results with a case where a single router receives the whole
identical workload. As n is increasing, the gap between DR and CR is expand-
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Fig. 5. Distributed vs centralized algorithm

ing. For a heavy workload of 150 applications, DR outperforms CR by a ratio of
3. The main reason is that centralized routing quickly reaches its performance
limit due to the time required to route each transaction. We note that the benefit
ratio equals the number of routers: that demonstrates a linear scale up. Ongoing
experimentations are conducted to assess up to which number of routers our
solution scales linearly.

4.4 Dealing with Scale Up

In order to deal with a large scale network, our experiments must take into ac-
count the databases and directory replication at large scale such as grid systems.
However, in this paper, our main goal is to demonstrate the performance benefit
that we achieve by distributing the routing protocol. To this end, replicating
our middleware over few nodes, at least one router per cluster, is sufficient.
More precisely, we note that JuxMem experiments [11] reported the time to
write metadata stored on a remote cluster that belongs to the Grid5000 [15]
infrastructure: more than 90 milliseconds per write. In such an environment, the
routing time of our system would be around 100 milliseconds. Then, the router
throughput falls to 10 transactions per second.

However, if every router access only a part of the distributed directory that
is managed locally on the same cluster, the throughput performance (up to 40
transactions/second) is still observed, even if the databases are replicated over
many remote clusters. In this case, the response time slightly increases depending
on network latency between clusters.

5 Conclusion

This paper presents an ongoing work towards the design and implementation of a
grid-based large scale data management system. This system extends Leg@net, a
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previous work designed for clusters, to the grid context. It uses JuxMem, a shared
main memory system designed for grids, to implement a shared distributed direc-
tory which stores metadata useful for transaction routing and freshness control.
The experimental evaluations, led on a first version of the system, show that the
overhead due to accessing to the distributed directory is rather low. They also
show that, using the distributed directory, we can implement several instances
of the router in the network. For heavy workloads, this increases significantly
the global throughput of the system with respect to the centralized version of
the router used in Leg@net.

Ongoing experimentations are conducted to find out the optimal number of
router instances with respect to the heaviness of the workload. After, we plan to
evaluate precisely the slowdown led by multiple routers concurrently accessing
the distributed directory wrt to concurrency degree. We will also take into ac-
count the grid heterogeneity (intra-cluster links faster than inter-cluster links)
in our cost estimations, in order to improve node choice and thus to yield better
performances. Next, we will run the same experimentation as the one led with
Leg@net to measure the benefit, in terms of response time, that the queries will
achieve with respect to the staleness they tolerate. Furthermore, we plan to deal
with fault tolerance.
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Abstract. This paper addresses the problem of efficiently storing and
accessing massive data blocks in a large-scale distributed environment,
while providing efficient fine-grain access to data subsets. This issue is
crucial in the context of applications in the field of databases, data min-
ing and multimedia. We propose a data sharing service based on dis-
tributed, RAM-based storage of data, while leveraging a DHT-based,
natively parallel metadata management scheme. As opposed to the most
commonly used grid storage infrastructures that provide mechanisms for
explicit data localization and transfer, we provide a transparent access
model, where data are accessed through global identifiers. Our proposal
has been validated through a prototype implementation whose prelimi-
nary evaluation on the Grid’5000 testbed provides promising results.

1 Introduction

Managing data at a large scale is paramount nowadays. Governmental and com-
mercial statistics, climate modeling, cosmology, genetics, bio-informatics, etc.
are just a few examples of fields routinely generating huge amounts of data. It
becomes crucial to efficiently manipulate these data, which must be shared at the
global scale. In such a context, one important goal is to provide mechanisms al-
lowing to manage massive data blocks (e.g., of several terabytes), while providing
efficient fine-grain access to small parts of the data. Several types of applications
exhibit such a need for efficient scaling to huge data sizes: databases ([1,2,3]),
data mining [4], multimedia [5], etc.

Towards transparent management of data on the grid. The management of
massive data blocks naturally requires the use of data fragmentation and of dis-
tributed storage. Grid infrastructures, typically built by aggregating distributed
resources that may belong to different administration domains, provide an appro-
priate solution. When considering the existing approaches to grid data manage-
ment, we can notice that most of them heavily rely on explicit data localization
and on explicit transfers of large amounts of data across the distributed architec-
ture: GridFTP [6], Reptor [7], Optor [7], LDR [8],Chirp [9], IBP [10], NeST [11],
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etc. Managing huge amounts of data in such an explicit way at a very large
scale makes the design of grid application much more complex. One key issue to
be addressed is therefore the transparency with respect to data localization and
data movements. Such a transparency is highly suitable, as it liberates the user
from the need to handle data localization and transfers.

However, a few grid data management systems acknowledge that providing
a transparent data access model is important by integrating this idea at the
early stages of their design. Grid file systems, for instance, provide a familiar,
file-oriented API allowing to transparently access physically distributed data
through globally unique, logical file paths. The applications simply open and
access such files as if they were stored on a local file system. A very large dis-
tributed storage space is thus made available to those existing applications that
usually use file storage, with no need for modifications. This approach has been
taken by a few projects like GFarm [12], GridNFS [13], LegionFS [14], etc.

On the other hand, the transparent data access model is equally defended by
the concept of grid data-sharing service [15], illustrated by the JuxMem plat-
form [16]. Such a service provides the grid applications with the abstraction
of a globally shared memory, in which data can be easily stored and accessed
through global identifiers. To meet this goal, the design of JuxMem leverages the
strengths of several building blocks: consistency protocols inspired by DSM sys-
tems; algorithms for fault-tolerant distributed systems; protocols for scalability
and volatility support from peer-to-peer (P2P) systems. Note that such a system
is fundamentally different from traditional DSM systems (such as TreadMarks,
etc.). First, it targets a larger scale through hierarchical consistency protocols
suitable for an efficient exploitation of grids made of a federation of clusters.
Second, it addresses from the very beginning the problem of resource volatility
due to failures or to the lack of resource availability.

Compared to the grid file system approach, this approach improves access
efficiency by totally relying on main memory storage. Besides the fact that a
main memory access is more efficient than a disk access, the system can leverage
locality-optimization schemes developed for the DSM consistency protocols.

Limitations. However, the JuxMem grid data-sharing service suffers from some
limitations with respect to the efficient storage and access of massive data blocks.
Actually, data are not fragmented in JuxMem: each individual data is physically
stored as a single data block in the main memory of a storage provider, and pos-
sibly replicated as such on multiple backup providers. Consequently, the largest
data block that the service is able to store is limited by the size of the RAM
of a single provider, typically, a few gigabytes. This lack of fragmentation has
another drawback regarding load balancing as all accesses to different parts of
the same massive block are served by the same RAM provider.

Recently, the efficient allocation and access of massive data blocks in main
memory has been addressed by the JumboMem [17] system. This system is
designed for clusters, not for grids. It allows users to manipulate large contiguous
data blocks (of the order of 1 TB) using the aggregated RAM of a set of nodes
interconnected through a high-speed Infiniband System Area Network. However,
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JumboMem is targeted for a single user and does not enable data sharing: it
does not provide synchronization, nor replication, nor optimized mechanisms
for distributed access by multiple users. In contrast, a lot of applications in
the field of databases and data-mining target multi-user environments. This
requires adding an efficient concurrency control, which is not natively provided
by JumboMem.

Our approach. Our contribution is twofold. First, we propose a data sharing
service allowing to store massive blocks of data in a distributed, multi-user
environment. Second, efficient fine-grain access to the data is provided thanks
to distributed, RAM-based storage of data fragments, while leveraging a DHT-
based metadata management scheme, which is natively parallel.

This paper is organized as follows. Section 2 gives an overview of our architec-
ture and describes how data access operations are handled. Section 3 provides
a few implementation details and reports on a preliminary experimental evalu-
ation. Finally, on-going and future work is discussed in Section 4.

2 Enabling Efficient Fine-Grain Access

Our goal is to provide efficient fine-grain access to massive data blocks stored in
large-scale distributed environments such as grids. To goal is addressed in the
following way. Data is fragmented into small equally-sized chunks (which will be
called pages below) and distributed across the local memory of a large number of
grid nodes, which act as providers of storage space. This fragmentation allows:
1) to store huge data blocks; and 2) to avoid contention for disjoint accesses
to pages. To each data block, we associate some metadata allowing to identify
and localize the pages that belong to that block. In order to avoid contention for
metadata access, metadata is structured in a fine-grained manner to be described
below, and stored in a distributed hash table (DHT). Finally, efficient large-scale
concurrency both for reads and writes is achieved using versioning : concurrent
writes to the same page can proceed in parallel on multiple versions of that page.
Our contribution lies in the adequate combination of these techniques to achieve
efficient fine-grained access to massive data.

2.1 Architecture

Our service relies on a set of distributed processes communicating through re-
mote procedure calls (RPCs). In a typical setting, each process is running on a
different physical node.

Data providers are responsible for storing and retrieving individual pages in
their local RAM.

A versioning manager is responsible for serializing write requests and for di-
recting read requests to the latest version available for reading.

Metadata providers are responsible for storing information about the iden-
tity and localization of the individual pages that make up a data block. In
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our design, metadata providers are organized as a Distributed Hash Table
(DHT). Details are given in Section 2.3.

A provider manager receives and solves the clients’ requests for data
providers. Available providers must previously register with this entity.

To interact with the service, client processes simply use a client library, to which
they pass a list of DHT gateways and the network id (IP address, port) of the
versioning manager. The rest of the system is transparent to the clients.

2.2 User Interface

Clients manipulate massive data blocks through a simple API:

b l o ck id = a l l o c ( page s iz e , da t a s i z e )
b l o ck v e r s i o n = w r i t e ( b l o ck id , l o c a l bu f f e r , o f f s e t , s i z e )
read ( b l o ck id , b l o ck v e r s i on , l o c a l bu f f e r , o f f s e t , s i z e )

Massive blocks are identified and accessed through a globally unique id, gen-
erated when the block is allocated. The user is able to control the granularity
(page size) and maximal size of the block (data size). Fine-grain access for reads
and writes is enabled through ( offset , size ) range queries. Each write generates
a new block version. Read operations may explicitly reference a block version.
By default, they return the latest available version.

2.3 Metadata Organization

Metadata serves the purpose of identifying and localizing the pages correspond-
ing to the range ( offset , size ) specified by read and write operations. Our design
aims at favoring fast concurrent accesses to metadata.

When the user allocates data size bytes for a block, the service actually
allocates adjusted size bytes, where adjusted size is the smallest power of 2
larger than data size. We organize metadata as a full binary tree. At each
level, the nodes of the tree cover disjoint ( offset , size ) ranges. The root covers
(0, adjusted size), that is, the whole data block. An intermediate node covering
( offset , size ) points to its left child covering ( offset , size/2), and to its right
child covering ( offset + size/2, size/2). Leaves cover single pages and point to
the page id and to provider holding the page (see Figure 1).

A tree node covering ( offset , size) is identified by a key, obtained by apply-
ing a hashing function on the tuple (block id, offset , size , block version). Inter-
mediate tree nodes store the following information: offset , size , left key and
right key, which are respectively the keys of its left and right child. Leaves (cov-
ering single pages) store a page id and a provider id. Tree nodes are stored on
the metadata providers using a DHT structure using the keys defined above.
This approach is inspired by Merkle trees [18], initially developed to handle
Lamport’s one-time signatures.

By relying on the DHT architecture and by selecting an adequate hashing
function, an even distribution of page requests among metadata providers can
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Fig. 1. Metadata representation for a 4-page block. Leaves store page ids Id and the
corresponding provider ids P. All nodes are labeled with the ( offset , size ) range they
cover.

be guaranteed with a high probability. Each client takes profit of this even dis-
tribution by simultaneously contacting a large number of different gateways to
the DHT service when executing parallel requests.

2.4 Managing Allocs, Reads and Writes

Allocation is the cheapest and simplest operation. The client merely contacts the
versioning manager providing a page size and total block size. The versioning
manager assigns this block an initial version number, 0.

To perform a read if no block version is specified, the client (Figure 2(a))
contacts the versioning manager and requests the latest block version available.
If a block version is specified by the read operation, then this step is simply
skipped. Then, the client contacts the metadata providers and recursively queries
the tree nodes covering the range given by ( offset , size) for that particular block
version, starting from the root and descending towards the leaves. When a leaf is
reached, the client directly contacts the appointed data provider and downloads
the actual page. The read operation completes successfully when all the pages
have been downloaded. It fails if a node or a page could not be retrieved. In order
to enhance parallelism, requests and responses for tree nodes and for pages are
handled asynchronously by multiple threads on the client side, and are served
in parallel by the various metadata and data providers, respectively.

Awriteoperation(Figure2(b)) initiatedbytheclientcompletes in several stages.

1. The client contacts the provider manager to retrieve a list of active data
providers available to store the pages in ( offset , size) to be written. After
receiving the reply, it associates a random data provider and a random page
id to each page, so as to uniquely identify the page in the system with
high probability. Then, it contacts the data providers, requesting them to
store the pages. As in the case of the read operation, write requests sent to
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(a) Reading a block: sequence of RPC
calls

(b) Writes: sequence of RPC calls

Fig. 2. Managing reads and writes: different line styles denote RPCs running in parallel

providers are asynchronously handled by the client, and served in parallel
by the data providers.

2. After all providers acknowledge that the pages have been stored, the client
contacts the versioning manager to receive a new version number which shall
identify the new block version. The versioning manager enqueues this write
request, marks it as pending and returns the version number to the client. Af-
ter receiving it, the client generates the corresponding tree nodes with respect
to the new block version, starting from the leaves up to this new root. All tree
nodes whose range is totally included in the interval [ offset , offset + size ]
are written to the metadata providers. The rest of the nodes are stored for
later processing. The goal of this processing is to properly handle concurrent
metadata updates for a single block.

3. Then, the client contacts the versioning manager requesting permission to
complete the write operation. If this write request is the oldest one in the
queue, then the versioning manager grants permission to complete the write.
Otherwise it waits for previous pending writes to be dequeued before granting
permission. After receiving permission, the client builds the remaining tree
nodes. These nodes cover ranges not included in [ offset , offset + size ]. They
must correctly reference their children corresponding to nodes not modified
by the current write, by using the latest block version previously completed.
At the end of this stage, all generated tree nodes are sent to the metadata
providers.

4. Finally, the client confirms write completion to the versioning manager,
which dequeues the write and marks its corresponding version as the lat-
est block version.
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Note that various versions of the same page may be stored on different
providers: for each new page version to be written, the least loaded known
provider is chosen for its storage, in order to preserve a global load balance
in terms of amount of data stored by the providers. (The precise description of
this scheme is out of the scope of this paper.)

An important consequence of this property is that successive incremental
versions of a data block can be stored as long as storage space is still globally
available in the system: thanks to our choice of preserving a global load balance,
a provider will run out of storage space only when all the providers collectively
reach their storage limits. In this case, ad-hoc garbage collection can be used
to remove the oldest version of the data block. Such a feature has not been
implemented in our system, yet.

3 Implementation and Experimental Evaluation

Evaluations are performed using the Grid’5000 [19] testbed, a reconfigurable,
controllable and monitorable experimental Grid platform spread over 9 sites ge-
ographically distributed in France. We use 160 nodes of a Grid’5000 cluster. Each
node has a Intel Pentium 4 CPU running at 2.6 GHz under Linux 2.6 (Ubuntu),
outfitted with 4 GB of RAM each, and interconnected by a Gigabit Ethernet
network. The theoretical maximum network bandwidth is thus 125 MB/s. How-
ever, if we consider the IP and TCP header overhead, this maximum becomes
slightly lower: 117.5 MB/s for a MTU of 1500 B. In practice, we could measure
111 MB/s for a standard TCP socket end-to-end transfer.

3.1 Implementation Details

We use BambooDHT [20], which provides a stable, scalable DHT implementation
on top of which we build the abstraction of our metadata providers and of the
provider manager.

The providers and the versioning manager are implemented in C++ using
the Boost C++ collection of libraries. We chose Boost for its standardization
throughout the C++ community, and for the wide range of functionalities it
provides, among which serialization, threading and asynchronous I/O are of
particular interest to us.

3.2 Performance and Evaluation

In this section, we assess the effectiveness of our implementation by running a
set of experiments. To support our claim of efficiently dealing with both massive
blocks and fine-grain access, we fix the allocated block size at 1 TB, and the
page size at 64 kB for all our experiments. Thus, the metadata tree generates a
significant overhead as the actual data accesses will concern various continuous
ranges from 16 MB up to 1 GB within the overall range of 1 TB.
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Using a single client. Our first series of experiments (Figure 3) assesses the
overhead of metadata management. We deploy one versioning manager, 100 data
providers, and a variable number of metadata providers. Each physical node runs
at most one data provider and one metadata provider. A single client writes a
series of data, and then reads them back.

It first writes a range size of 16 MB starting from offset 0. Then, it continues
writing a second range of 32 MB, starting from the end of the previous range,
and so on, doubling the size parameter each time until writing a range of 1 GB.
Then, the client successively reads back each of the consecutive segments.

The individual writing and reading times for each segment are logged, sorting
out the time used in managing the metadata with respect to the total writing
or reading time. Such a cycle is repeated 100 times. This experiment is done for
several numbers of metadata providers, that is, several sizes of the DHT, ranging
from 5 to 100.

The average timings are reported on Figure 3. Of course, the larger the
DHT, the larger the degree of parallelism in accessing its nodes from the client’s
threads, whence the shorter the overall time.

These timings show an overhead of 18% for metadata read operations (Fig-
ure 3(a)) and 23% for metadata write operations (Figure 3(b)) for 100 meta-
data providers. This effectively results in a bandwidth of 92 MB/s for reads and
86 MB/s for writes in accessing the final 1 GB range, to be compared to the
maximal limit of 111 MB/s measured in standard TCP socket end-to-end trans-
fer. On the other hand, using only 5 metadata providers results in a metadata
management overhead exceeding 68%, which demonstrates the benefits of using
a large number of metadata providers, that is, a large DHT.

Using multiple concurrent clients. Our next series of experiments (Figure 4)
benchmarks our system in a highly concurrent environment, evaluating its scal-
ability when increasing the number of simultaneous reads and writes. For com-
parison, we also report on what we call an “ideal” bandwidth corresponding to
the aggregation of totally independent read (resp., write) operations. That is,
we multiply the bandwidth of a single reader (resp., writer) by the number of
readers (resp., writers).

We deploy 80 data providers and 80 metadata providers. Each physical node
runs one data provider and one metadata provider. The versioning manager is
run on a separate node. Then, we deploy a variable number of clients, each
of which being run on a separate node, different from the ones used for data,
metadata and versioning manager. Clients are synchronized to start simulta-
neously. They either read or write a disjoint range of the block: client i uses
offset = i× 64 MB, size = 64 MB. For reads, data is prewritten. We measure
the average aggregated bandwidth, both for reads and writes, and compare it to
the ideal aggregation of bandwidth obtained from a single reader/writer.

As it can be observed, the fine-grained dispersion of data and metadata allows
for high bandwidth under heavy concurrency, especially for reads (Figure 4(a)).
Writes suffer from a slight performance penalty because of metadata synchro-
nization (Section 2.4). Contacting different providers and different metadata
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Fig. 4. Average aggregated bandwidth when varying the number of concurrent clients

providers concurrently enables a high degree of load balancing among the net-
work nodes. As such, it makes up for the metadata overhead observed in the
first series of experiments.

4 Conclusion

We have addressed the problem of efficiently storing massive data of the or-
der of terabytes in a grid distributed environment. Our contribution consists in
proposing a data-sharing service allowing to efficiently allocate, access and mod-
ify such massive blocks of data in a distributed, multi-user environment. Efficient
fine-grain access to arbitrarily small parts of the data is provided thanks to dis-
tributed, RAM-based storage of data fragments, while leveraging a DHT-based,
natively parallel metadata management scheme. Preliminary experiments per-
formed with our prototype using the Grid’5000 testbed show that our approach
scales well, both in terms of storage providers and in terms of concurrency degree.

Our prototype is however a work in progress and definitely demands fur-
ther refinement. Fault tolerance, which becomes critical in grid environments, is
only partially addressed. We currently leverage some fault-tolerance mechanisms
provided by the DHT on which we rely for the implementation of some of the
entities of our architecture, the metadata providers and the provider manager.
This enhances the availability of metadata thanks to the underlying replication
used by the DHT. However, the versioning manager, though not under heavy
load, is still a single point of failure in this preliminary scheme. Besides, data is
not replicated: for each page, a single copy is kept on a single provider. In order
to improve fault-tolerance, replication-based mechanisms could be envisioned in
both cases. To this purpose, we intend to explore the possibility to use self-
organizing groups to represent these entities, built on fault-tolerant distributed
algorithms for atomic multicast, as in [21].

While targeting database, data-mining and multimedia applications, we have
not experimented, yet, with a standard implementation that could use our ser-
vice. We are considering interfacing our service with the PostgreSQL DBMS, in
order to provide an efficient support for snapshot isolation.
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Abstract. BLAST is one of the most popular computational biology
tools. The execution cost of BLAST is highly dependent on database
sizes, which have considerably increased following all recent advances in
sequencing methods. The evaluation of BLAST in distributed and paral-
lel environments like PC clusters and Grids has been largely investigated
in order to obtain better performances. This work evaluates a replicated
allocation of the (sequences) database, where each copy is also physi-
cally fragmented. We investigate two dynamic workload balancing meth-
ods that focus on our database allocation strategy. Preliminary practical
results show that we achieve both a balanced workload and very good
performances. We briefly discuss ideas that would make our approach
feasible for Grid computational environments.

1 Introduction

In this work we are interested in evaluating one of the most popular operations in
bioinformatics, namely BLAST - Basic Local Alignment Search Tool - evaluation
[2]. BLAST is a popular family of algorithms for (bio)sequences comparison and
alignment operations. These operations are widely and often used in laboratories
that make Genome sequencing and analysis.

Except for single input queries and small sequence databases, BLAST pro-
cessing is very time consuming and performance is a key issue regarding that
genomic databases are getting bigger. Therefore, many different ideas have been
proposed to improve BLAST execution times. Among them, parallel and dis-
tributed strategies on top of clusters and grids are available (e.g. [1,8]).

From a database point of view, there are two basic approaches: either the
sequence database is fully replicated at all processing nodes (single nodes or
clusters), and there is query segmentation, or the database is split into disjoint
fragments and the complete query sequences input is executed at all sites [4].
While the replicated-database case is a straightforward inter-query paralleliza-
tion method, the fragmented situation leads to a more complicated situation:
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BLAST execution on smaller fragments may not generate the correct (sequen-
tial) results if run time statistical parameters (e.g. Z for WU-BLAST [13] and
Y for NCBI-BLAST [9]) are not well defined [7].

Furthermore, as in many other parallel computation problems, when there is
an uneven workload, all the benefits that come with these approaches may be
lost. Therefore, load balancing strategies must be considered [5]. In this paper
we propose an approach to execute BLAST on distributed and autonomous en-
vironments, where we are mainly concerned with workload balancing. This work
evaluates a replicated allocation of the (sequences) database, where each copy
is also physically fragmented. We investigate two dynamic workload balancing
methods that focus on our database allocation strategy. Preliminary results show
that we achieve both a balanced workload and very good performances.

The remainder of this paper is organized as follows: we discuss BLAST paral-
lelization, particularly workload balancing, in Section 2. Then, in Section 3, we
present our main ideas about database allocation and a BLAST parallelization
approach. Some preliminary results are given in Section 4. Finally, Section 5 lists
contributions, conclusions and possible extensions.

2 Motivation

The work in [4] presents a detailed discussion and implementation results re-
garding database distribution design in order to execute BLAST in workstation
clusters. We have compared methods that run on both partitioned and replicated
database situations. Both input sequences (query) allocation and database dis-
tribution strategies are shown to be important in order to improve the parallel
execution of BLAST processes.

We have also evaluated a few different workload balancing methods that may
be used when running BLAST in parallel. These include strategies that consider
the total number of sequences allocated to each node, methods that estimate the
total execution time at each site and also on-demand approaches, that distribute
tasks (queries and data) to sites whenever these become idle [4].

Fig. 1. Uneven Workload for Equal DB sizes
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Due to the sensibility of each strategy with respect to multiple parameters,
different techniques may be applied in order to deal with data skew factors.
Particularly, dynamic issues like similarity skew, which cannot be detected before
the actual execution [5], must be taken into account.

We show in Figure 1 an example of BLAST parallel execution on a 8-nodes ho-
mogeneous cluster, with a pure fragmented database configuration - distinct frag-
ments at approximately the same size at each node. Some of the input sequences
were randomly taken from the same database. One could expect a ”perfect” load
balancing when considering only database sizes. However, query decomposition
assigns distinct input sequences to each node. As some of the sequences are
more similar to the database sequences than others, the alignment process takes
longer to finish. This similarity (or alignment) skew generates a clear uneven
distribution of tasks.

There are many works that focus on BLAST parallelization. MPI-BLAST
[8] is widely accepted as the standard parallel BLAST tool. It copies all query
sequences to each workstation, while the database is segmented for a demand
driven delivery. For each idle workstation, a new database fragment is sent.
MPI-BLAST developers argue that the process should use multiple fragments
in order to balance the workload. However, it is not a trivial task to determine
the optimal granularity for good performances. Moreover, concurrency is an
important problem when workstations get fragments from the same master node.

Some other works discuss further issues. Just to mention a few, the authors in
[1] propose a strategy called Dynamic BLAST. They show that one of the main
problems for running BLAST in a distributed environment is related to assigning
fragments with distinct sizes to each processing node. However, we have already
shown that the similarity degree among is also a fundamental factor. The same
question appears in [14], where the authors look forward to extend MPIBLAST
for grid environments. The basic idea is that most biology research labs cannot
afford to keep efficient PC clusters environments. Nevertheless, the MPIBLAST
tool is not that straightforward to use: it needs frequent database re-formatting
when either the database is updated, or the number of sites changes. Another
solution is proposed in [12] and is not only dedicated to BLAST. There are fault-
tolerant methods that could be considered as a load balancing strategy. However,
the goal is to guarantee completeness, not necessarily with best performances.

The work in [10] modifies BLAST source code in order to minimize memory
utilization and execute parallel disk access. There are machine clusters, each
containing a database replica and a fragment of the query sequences. BLAST
code is adapted to enable every machine in the cluster to access distinct frag-
ments from a single database non-physically fragmented, and assigned to only
one machine, called coordinator. All machines in a given cluster have the same
input sequences. Therefore, it is a static load balancing technique that, among
others, does not take into account similarity skew.

Many other proposals exist in the literature. Our work here brings a some-
what distinct point of view, focusing on a database-approach (database distribu-
tion design, I/O parallelism and query execution) to improve BLAST evaluation
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in clusters or Grids. In the next section we present our strategy for BLAST
parallelization, which considers dynamic load balancing to obtain good overall
performances.

3 BLAST Parallelization Approach

In this paper we propose an approach to execute BLAST on distributed and
autonomous environments, where the database is fully replicated at each site.
Each copy is then physically fragmented at each site, where distinct sets of frag-
ments, called primary copies, are mainly responsible for local BLAST processing.
Figure 2 illustrates this our database allocation.

The main idea underlying this database assignment to processing nodes is
twofold: on one hand, fragmentation enables a distributed execution and will
be very effective when there is an even workload. When load unbalancing is
detected, due to similarity skew or any other reason (e.g. a broken connection
to one node), all other non-primary fragments already available at each site
are then considered to achieve the complete execution. On the other hand, as
the database is also replicated, it enables a correct BLAST execution regarding
statistical issues and parametrization.

Fig. 2. Database replicated on 3 sites, each with their own primary fragments
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The physical fragmentation method may vary. We have mostly used a frag-
mentation process that aims at obtaining fragments with approximately the same
size. As we have already shown that equal database sizes are not sufficient for
an even distribution of parallel tasks, we could have considered as well a simple
round-robin database distribution [6].

At least two dynamic load balancing techniques may be applied for running
BLAST in a cluster of workstations. A demand-driven approach, where process-
ing sites ask for new tasks (input sequences and database fragments subset)
when become idle and a task stealing strategy - where a site may execute part
of a job originally assigned to another site. In this paper we argue that with
these rather simple yet effective strategies, we make better use of the available
resources in distributed environments. Both strategies are briefly explained in
Figures 3 and 4.

3.1 Demand-Driven Approach

We will consider here that the database is replicated and contains primary frag-
ments. The main goal of the demand-driven approach is to send new tasks as
soon as given workstation becomes idle. This way we should make better use of
the available resources.

A task is defined as a set of input (query) sequences and one (or more) frag-
ments from the database. In order guarantee completeness of the execution, we
may consider the following notation for a task sent, and assigned to a workstation:

Expression 1
T (x : y)(z : w)
∀x, y, z and w; x ≤ y and z ≤ w.

Variables x and y represent the range of input sequences, and z and w the
range within fragments. For example, the task T(1 : 5),(6 : 8) means: BLAST
execution of sequences 1 to 5 checked with all fragments 6, 7 and 8. We define a
range for a given task, rS for sequences and rF for fragments. In the previous
example, the range of query sequences is rS = 5 and of fragments is rF = 3.

The initial task at each workstation has x = 1 and y is a parameter that
defines the number of sequences per task. When the task is completed, the
corresponding (partial) result is sent to the coordinating site and the processing
node becomes idle, waiting for a new task. This process is repeated, with tasks
being allocated to idle workstations until all tasks are finished.

We should observe that, with this strategy, a task is divided among many
others, and these are executed in parallel. If we consider a complete BLAST
processing as a single task, we can represent it as T(1 : n),(1 : m), where n is
the number of input sequences and m the number of fragments. The subtasks
can be defined as follows:

Let ∆n = �n/rS� , ∆m = �m/rF �
For the sake of simplicity, we consider that the remainder of both n/rS and

m/rF is zero.
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Expression 2
T (1 : n)(1 : m)
≡

∆m−1∑
j=0

∆n−1∑
i=0

T (i ∗ rS + 1 : (i + 1) ∗ rS)(j ∗ rF + 1 : (j + 1) ∗ rF )

This way one can verify if the whole execution has finished by checking if
the complete task T(1 : n),(1 : m), or the equivalent expression, is executed.
We illustrate this situation in Figure 3, that shows a demand-driven approach.
Initially, each node gets a task including input query sequences and primary
fragments. Input sequences are compared with the available fragments and, for
each comparison, the result is sent to the master node. If there are still tasks
available, the managing site sends it to the idle station.

We may suppose that all tasks (T(1 : n)(z : w)) initially defined for a machine
are completely executed. Thus, this machine may work on other tasks with
different values for z and w. When the managing station finds out that all reports
for the same input sequence compared to all fragments are available, another
concurrent process is generated, and will be responsible to gather all results in
a single output file. This final assembly basically merges the hits for each file,
optimizing disk access. As soon as all sequences are built up, we may concatenate
the results.

Fig. 3. Demand-driven load balancing strategy for BLAST



550 D.X. de Sousa, S. Lifschitz, and P. Valduriez

3.2 Task Stealing Strategy

In this approach, a task that represents the complete execution is divided by
the number of available processing nodes, so that each node gets some part of
the full task. When a machine finishes processing its initially assigned subtask,
and there are machines still working, the idle machine may contribute getting
(or ”stealing”) part of the subtask that is still active in another node. The goal
here is to fine tune the initial unbalanced task allocation.

We can once more explain our strategy and its completeness through some
expressions:

T(1 : n)(1 : m),
with n the number of sequences and m the number of fragments. The first step
of the task stealing approach is to divide the task so that each subtask reaches one
givenworkstation.We may represent these subtasks and their allocation as follows:

Expression 3
T (1 : n)(xi : xi + rF )
where xi is the first fragment assigned to the processing site and rF the range

of fragments considered. If we sum up all submitted tasks, we have a single task
expressed by:

Let: ∆m = �m/rF �
Once again, we consider zero the remainder of m/rF.

Expression 4
T(1 : n)(1 : m) ≡

∆m−1∑
i=0

T (1 : n)(i ∗ rF + 1 : (i + 1) ∗ rF )

Figure 4 illustrates the way the task stealing strategy works. Initially the
coordinating station assigns one task to each machine. At each processing node,
the input sequences are compared to a fragment, until all task sequences are
over. At the end of the comparison, the results are sent to the managing station
and some machines become idle. At this moment, the Task Provider module is
called and it identifies the idle machine, the slowest among all active machines
and the remainder of the original task to be executed that can be reassigned.
Then, the slowest machine sends part of its execution to the idle station.

The coordinating station, as soon as it gets some partial result, verifies if the se-
quence was already compared to all fragments. In case of positive answer, another
process is created to merge the results, similarly to the demand-driven strategy.

There might be 2 ways to reallocate a task: either the reallocation module de-
cides that it will send only a few sequences. The second way would be to submit
a full fragment that would be processed by all sequences at the idle machine.

We may observe that in this strategy, and due to the replicated database
schema with primary fragments, there are no actual transmission of sequences
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Fig. 4. Task stealing load balancing strategy for BLAST

or fragments during the re-assignment process. All data is already available at
all machines. Only metadata messages are sent, informing and defining the task
that will be executed.

4 Preliminary Experimental Results

In order to give an idea of the results obtained, we have observed (e.g. Fig-
ure 5) that both approaches (demand-driven and task-stealing) achieve much

Fig. 5. Comparison among strategies
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Fig. 6. Demand-driven Strategy and Load Balancing

Fig. 7. Task-stealing Strategy and Load Balancing

better performances when compared to serial execution. We have compared our
strategies to MPI-BLAST [8] and we have observed better performance as well.

We have executed MPI-BLAST with 2 fragment configurations, 48 and 96, and
this helps the proposed load balancing method. Moreover, database fragments
are all copied at each workstation, with no delays due to fragment copy from
the coordinating site to workstations during executions. We still need to make
an extensive study but our preliminary results comparing our strategies and
MPI-BLAST have shown that our method is more efficient.

We should note that Figure 5 shows a comparison with MPI-BLAST (version
1.4) using 96 database fragments. Even though we have pushed all fragments into
each workstation before actual execution, in order to reduce communication costs
between the workstations and the master node, our strategies still outperform
MPI-BLAST.

Our workload balancing strategies, demand driven and task stealing, initially
split both the database and query sequences in order to process the entire
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database. Each strategy has some parameters that the user can initially set.
These parameters are very important, as they can make the strategy fit at
different environments, either clusters or a grid, or even a more general P2P
architecture. For these particular tests shown in Figure 5, the demand driven
strategy sends runs 32 query sequences each time and the execution uses a frag-
mented database with 48 parts. Many other experimental results, mostly for
cluster-based environments, can be found in [6].

Finally, besides efficiency, we show in Figure 6 and 7 how effective our ap-
proaches are regarding load balancing. Our performance results show that these
dynamic strategies to balance the workload do not become an overhead for exe-
cuting BLAST in parallel.

5 Conclusion

This paper discusses a database-oriented approach to deal with BLAST execu-
tion in distributed environments. Our goal is to fully exploit I/O parallelism and
database partitioning, while guaranteeing correctness of BLAST execution. The
main idea underlying replicated databases with primary fragments is that the
workload may be initially distributed and, in case of any problems related to
unavailability from single nodes to clusters, at least two load balancing methods
could be considered.

In distributed, autonomous and independent environments like the grid, coop-
eration for parallel execution needs consistency (of program versions and data),
otherwise the results would not be reliable. A replicated database is, then, more
than natural, since genomic databases are usually kept at unique repositories in
the web and users may download them at every new release. However, a parallel
execution could be further exploited if at each site the BLAST program runs on
only a fraction of the database - as we have done here.

An additional observation is related to the fact that we adopt a non-intrusive
approach, that is, we make no changes to the specific (and usual) BLAST pro-
gram used at each site. Indeed, we focus on a database point of view, investi-
gating query processing and database allocation issues. For Grid environments,
methods that modify particular source codes should be avoided. These and other
data intensive challenges within a Grid are well discussed in [11].
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Abstract. Typical distributed testing architectures decompose test
cases in actions and dispatch them to different nodes. They use a central
test controller to synchronize the action execution sequence. This archi-
tecture is not fully adapted to large scale distributed systems, since the
central controller does not scale up. This paper presents two approaches
to synchronize the action execution sequence in a distributed manner.
The first approach organizes the testers in a B-tree manner synchroniz-
ing through messages exchanged among parents and children. The sec-
ond approach synchronizes through gossiping messages exchanged among
consecutive testers. We compare these two approaches and discuss their
advantages and drawbacks.

1 Introduction

Current Grid solutions focus on data sharing and collaboration for statically
defined virtual organizations with powerful servers. They cannot be easily ex-
tended to satisfy the needs of dynamic virtual organizations such as professional
communities where members contribute their own data sources, perhaps small
ones but in high numbers, and may join and leave the Grid at will. In particular,
current solutions require heavy organization, administration and tuning which
are not appropriate for large numbers of small devices.

Peer-to-Peer (P2P) techniques which focus on scalability, dynamism, auton-
omy and decentralized control can be very useful to Grid data management.
The synergy between P2P computing and Grid computing has been advocated
to help resolve their respective deficiencies [13]. For instance, Narada [14], P-
Grid [2] and Organic Grid [5] develop self-organizing and scalable Grid services
using P2P interactions. The Grid4All European project [8] which aims at de-
mocratizing the Grid is also using P2P techniques. As further evidence of this
trend, the Global Grid Forum has recently created the OGSA-P2P group [4] to
extend OGSA for the development of P2P applications.

Grid and P2P systems are becoming key technologies for software develop-
ment, but still lack an integrated solution to validate the final software, in terms
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of correctness and security. Although Grid and P2P systems usually have a sim-
ple public interface, the interaction between nodes is rather complex and difficult
to test. For instance, distributed hash tables (DHTs) [23,25], provide only three
public operations (insert, retrieve and lookup), but need very complex interac-
tions to ensure the persistence of data while nodes leave or join the system.
Testing these three operations is rather simple. However, testing that a node
correctly transfers its data to another node before leaving requires the system to
be in a particular state. Setting a system into a given state requires the execution
of a sequence of actions, corresponding to the public operation calls as well as
the requests to join or leave the system, in a precise order. The same rationale
can be applied to data grid management systems (DGMS) [16].

In Grid and P2P systems, actions can be executed in parallel, on different
nodes. Thus, an action can run faster or slower depending on the node comput-
ing power. Synchronization is then needed to ensure that a sequence of actions
of a test case is correctly executed. For instance, suppose a simple test case
where a node removes a value previously inserted by another node. To correctly
execute this test case, the execution must ensure that the insertion is performed
before the removal. Typical testing architectures [11,19,28,10] use a central test
controller to synchronize the execution of test cases on distributed nodes. This
approach is not fully adapted for large scale systems, since it does not scale up
while testing on a large number of nodes.

In this paper, we propose two different architectures to synchronize the exe-
cution of test cases in distributed systems. The first architecture organizes the
testers in a balanced tree [3] (B-Tree) structure where the synchronization is
performed from the root to the leaves. The second approach uses gossiping mes-
sages among testers, reducing communications among the testers responsible to
execute consecutive test case actions. Since both architectures do not rely on a
central coordinator they scale up correctly.

This paper is organized as follows. Section 2 discusses the related work. In Sec-
tion 3, we introduce some fundamental concepts in software testing. In Section
4, we discuss the centralized approach in detail, and present two distributed ap-
proaches and their trade-off. In Section 5, we present some initial results through
implementation and experimentation. Section 6 concludes.

2 Related Work

In the context of distributed systems testing, different approaches can be used
either to schedule or control the execution of test case actions. However, these
approaches neither ensure the correct execution of a sequence of actions, nor
scale up with the system under test.

Typical Grid task scheduling techniques, using centralized [9,22] or distributed
[26] approaches are not suitable for system testing, since they do not follow the
same objectives. While the objective of task scheduling is to dispatch tasks to
the most available nodes, the objective of the test controller is to dispatch tasks
(i.e. test case actions) to predefined nodes. Moreover, task scheduling focus on
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parallel execution, while the test controller must ensure the execution sequence
of tasks.

In the domain of distributed system testing, Kapfhammer [19] describes an
approach that distributes the execution of test cases. The approach is composed
of three components. The first component is the TestController which is respon-
sible to prepare the test cases and to write them into the second component
called TestSpace, that is a storage area. The third component, called TestEx-
ecutor, is responsible to consume the test cases from the TestSpace, to execute
them, and to write the results back into the TestSpace. A solution based on this
approach, called GridUnit, is presented by Duarte et al. [11,12]. The main goal
of GridUnit is to deploy and to control unit tests over a grid with minimum
user intervention aiming to distribute the execution of tests to speed up the
testing process. To distribute the execution, different test cases can be executed
by different nodes. However, a single test case is executed only by a single node.
Unlike our approach, in GridUnit, it is not possible to write more complex test
cases where different nodes execute different actions of the same test case. More-
over, GridUnit does not handle node failure, and this may assign a false-negative
verdict to test cases.

Ulrich et al. [28] describe two test architectures for testing distributed systems
using a global tester and a distributed tester. The distributed tester architecture,
which is close to our algorithm, divides test cases in small parts called partial test
cases (PTC). Each PTC is assigned to a distributed tester and can be executed
in parallel to another PTC with respect to a function that controls the mutual
exclusivity. The behavior of the distributed testers is controlled by a Test Coordi-
nation Procedure (TCP) which coordinates the PTCs execution by synchroniza-
tion events. Through this approach different nodes can execute different actions,
however, the same action can not be executed in parallel by different nodes. Such
kind of execution can be very useful in certain kinds of tests like performance or
stress testing, where several nodes insert data at the same time.

3 Testing Large Scale Distributed Systems

Software testing aims at detecting faults and usually consists of executing a
system with a suite of test cases and comparing the actual behavior (e.g. the
observable outputs) with the expected one. The objective of a test case is thus
both to exercise the system and to check whether an erroneous behavior occurs.
The first aspect relates to test inputs (or test scenario) generation, which may
be guided by various test criteria (control/based-flow based coverage criteria,
specification-based coverage criteria). The second aspect concerns the way the
verdict is obtained (often call the ’oracle’), which means a mechanism to check
whether the execution is correct (e.g. embedded assertions).

The role of the oracle is to compare the output values with the expected ones
and to assign a verdict to the test case. If the values are the same, the verdict is
pass. Otherwise, the verdict is fail. The verdict may also be inconclusive, meaning
that the test case output is not precise enough to satisfy the test intent and the
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Fig. 1. Typical Centralized Tester Architecture

test must be done again. There are different sorts of oracles: assertions [27], value
comparison, log file analysis, manual, etc.

A testing technique thus includes test criteria, test cases generation techniques
and mechanisms for obtaining the oracle. In this paper, we roughly define a test
case as being composed of a name, an intent, a sequence of input data and the
expected outputs.

Grid and P2P systems are distributed applications, and should be firstly tested
using appropriate tools dedicated to distributed system testing. Distributed sys-
tems are commonly tested using conformance testing [24]. The purpose of con-
formance testing is to determine to what extent the implementation of a system
conforms to its specification. The tester specifies the system using Finite State
Machines [7,15,6], Labeled Transition Systems [17,21,18] and uses this specifica-
tion to generate a test suite that is able to verify (totally or partially) whether
each specified transition is correctly implemented. The tester then observes the
events sent among the different nodes of the system and verifies that the sequence
of events corresponds to the state machine (or to the transition system).

The classical architecture for testing a distributed system, illustrated by the
UML deployment diagram presented in Figure 3, consists of a test controller
which sends the test inputs, controls the synchronization of the distributed sys-
tem and receives the outputs (or local verdicts) of each node of the system under
test (SUT). In many cases, the distributed system under test is perceived as a
single application and it is tested using its external functionalities, without con-
sidering its components (i.e. black-box testing). The tester in that case must
interpret results which include non-determinism since several input/outputs or-
derings can be considered as correct.

The observation of the outputs for a distributed system can also be achieved
using the traces (i.e. logs) produced by each node. The integration of the traces
of all nodes is used to generate an event timeline for the entire system. Most of
these techniques do not deal with large scale systems, in the sense they target
a small number of communicating nodes. In the case of Grid and P2P systems,
the tester must observe the remote interface of peers to observe their behavior
and she must deal with a potentially large number of peers. Writing test cases
is then particularly difficult, because non-trivial test cases must execute actions
on different peers. Consequently, synchronization among actions is necessary to
control the execution sequence of the whole test case.
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Analyzing the specific features of Grid and P2P system, we remark that they
are distributed systems, but the existing testing techniques for distributed sys-
tems do not address the issue of synchronization when a large number of nodes
are involved. Moreover, the typical centralized tester architecture can be a bot-
tleneck when building a testing framework for these systems.

3.1 Test Case Sample

A test case noted τ is a tuple τ = (Aτ , T τ , V τ , Sτ ) where Aτ ⊆ A is an ordered
set of m actions {a0, . . . , am}, T τ a set of n testers {t0, . . . , tn}, V τ is a set of
local verdicts and Sτ is a schedule.

The schedule is a map between actions and sets of testers, where each action
corresponds to the set of testers that execute it.

A test case action is a tuple aτ
i = (Ψa, θa, T a

i ) where Ψa is a set of instructions,
θa is the interval of time in which a should be executed and T a

i ⊆ T is a subset
of testers {tτ0 , . . . , tτn} that execute the action. The are three different kinds of
instructions: (i) calls to the peer application public interface; (ii) calls to the
tester interface and (iii) any statement in the test case programming language.
The time interval θ ensures that actions do not wait eternally for a blocked peer.

Let us illustrate these definitions with a simple distributed test case (see
example 1). The aim of this test case is to detect errors on a Distributed Hash
Table (DHT) implementation. More precisely, it verifies if a node successfully
resolves a given query, and continues to do so in the future.

Example 1 (Simple test case).

Action Nodes Instructions
(a1) 0,1,2 Join the system;
(a2) 2 Insert the string ”One” at key 1;

Insert the string ”Two” at key 2;
(a3) * Pause;
(a4) 0 Retrieve data at key 1;

Retrieve data at key 2;
(a5) 1 Leave the system;
(a6) 0 Retrieve data at key 1;

Retrieve data at key 2;
(a7) 0,2 Leave the system;
(v0) 0 Calculate a verdict;

This test case involves three testers T τ = {t0, t1, t2} managing seven actions
Aτ = {a1, ..., a7} on three nodes P = {p0, p1, p2}. The goal of the first three
actions is to populate the DHT. The only local verdict is given by t0. If the data
retrieved by p0 is the same as the one inserted by p2, then the verdict is pass.
If the data is not the same, the verdict is fail. If p0 is not able to retrieve any
data, then the verdict is inconclusive.
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execute(a2)

executionEnd(a2)

put(1,"One")

:Node :Controllert0:Testert2:Tester t1:Tester

put(2,"Two")

execute(a1)

executionEnd(a1)

join()

Fig. 2. Test case execution

The UML sequence diagram presented in Figure 2 illustrates the execution of
the first two actions of the test case. First, the test controller asks all testers to
execute action a1. Then, each tester executes a set of instructions, interacting
with the SUT. Before asking tester t2 to execute action a2, the test controller
waits for the execution of a1 to end. Once the execution of the test case is finished,
all testers send their local verdicts to the test controller. The later compiles all
local verdicts and assigns a verdict to the test case.

3.2 Problem Statement

In a centralized testing architecture, the test controller dispatches actions to
a variable number of testers and waits for execution results from them. The
controller must then maintain a bidirectional communication channel with all
testers, excluding the use of a multicasting protocol, which is fast and scalable,
but unidirectional. Multicasting could be used to dispatch efficiently actions to
all testers, but not to receive the execution results.

The complexity of the execution algorithm is O(n), meaning that the typical
architecture for testing distributed systems, using a unique test controller, is
thus not adapted for testing large scale distributed systems.

4 Architecture

In this section, we present two alternatives to the centralized test controller
architecture.

4.1 B-Tree

The first architecture presented here consists of organizing testers in a B-Tree
structure, similarly to the overlay network used by GFS-Btree [20]. The idea
is to drop the test controller and use the tester that is the root of the tree to
control the execution of test cases and to assign their verdict. When executing a
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Fig. 3. B-Tree Architecture

test case, the root dispatches actions to its child testers, who dispatch actions to
their children. Once an action is executed, the leaves send their results to their
parents, until the root receives all results and can dispatch the next actions.

Figure 3 presents an example of tester organization using a B-Tree of order 1,
where tester 4 is the root. Tester 4 will only communicate with testers 2 and 6.
The leaves, 1, 3, 5 and 7 do not dispatch any action, they only send their results
to their parents.

The order of the B-Tree is not fixed, it may vary according to the number of
testers, which is known at the beginning of the execution. The goal is to have a
well-proportioned tree, where the depth is equivalent to its order.

4.2 Gossiping

Besides the B-tree approach, the Gossiping is another solution to synchronize
the execution of actions in a distributed manner. In Gossiping, we use the same
architecture used by the B-Tree approach with a tester per node, however, the
synchronization of actions is executed by gossiping the coordination messages
among the testers.

The Gossiping approach has the following steps. First, any node p in the
system P is designated to execute the first tester t0. This tester will act as
an identifier to all the other testers tn that join the system. The identification
follows an incremental sequence from 0 up to n and is used to select the actions
a node should execute. Second, t0 creates a multicast address for each test case
action. Third, the decomposed test case is deployed through P and stored at each
tester. Then, each tester verifies which actions it should execute and subscribes
to the suitable multicast addresses. Finally, the testers responsible for the first
action start the execution.

A tester can play two different roles during the test case execution:

– Busy tester. This tester executes an action ai and gossips its completion to
the multicast address of the next action ai+1. Once it has sent a gossip, it
becomes an Idle tester.

– Idle tester. This tester remains idle waiting the gossips from all the Busy
testers. Once it receives all their gossips, then it becomes a Busy tester.
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Fig. 4. Gossiping Architecture

The gossiping between these two types of testers guarantees the execution
sequence of the whole test case.

We use the example 1 to illustrate this approach. Initially any node is chosen
to be tester t0. Then, the other nodes contact t0 to receive an identifier n and
subscribe to the suitable multicast addresses. For instance, if a tester receives
n = 1, it subscribes to the addresses of a1, a3 and a5. Figure 4 presents the
first action a1 being executed by testers {t0, t1, t2}. Once the execution of a1 is
finished, the testers gossip the completion to the multicast address of the next
action a2. Once tester t2 receives all three multicast messages, it executes a2
gossiping in the end as well. This happens consecutively up to the last action a7.
Finally, each tester calculates a local verdict and sends it to t0, which assigns a
verdict of the entire test case.

5 Experimentation

When implementing PeerUnit [10], we have chosen a centralized architecture.
This choice was due to its simplicity. However, as the performance evaluation
shows, this architecture may limit the number of testers and thus, the number
of nodes of the system under test. We intend to implement the two architectures
presented here and evaluate their performance using the same experimentation.

For our experiments, we implemented the test controller in Java (version 1.5),
and we use two clusters of 64 machines1 running Linux. In the first cluster,
each machine has 2 Intel Xeon 2.33GHz dual-core processors. In the second
cluster, each machine has 2 AMD Opteron 248 2.2GHz processors. Since we can
have full control over these clusters during experimentation, our experiments are
1 The clusters are part of the Grid5000 project [1].
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reproducible. The implementation produced for this paper can be found in our
web page2. We allocate the peers equally through the nodes in the clusters up
to 8 peers per machine. In all experiments reported in this paper, each node is
configured to run in a single Java VM.

5.1 Centralized Test Controller

In order to measure the response time of action synchronization, we submitted
a fake test case, composed of empty actions through a different range of testers.
Then, for each action, we measured the whole execution time, which comprises
remote invocations, execution of empty actions and confirmations.

The evaluation works as follows. We deploy the fake test case through several
testers. The testers register their actions with the coordinator. Once the regis-
tration is finished, the coordinator executes all the test case actions inside and
measures their execution time. The evaluation finishes when the execution of all
actions is over.

The fake test case contains 8 empty actions (we choose this number arbitrarily)
and is executed until a limit of 2048 testers running in parallel. Figure 5 presents
the response time for action synchronization for a varying number of testers.
The response time grows linearly with the number of nodes as expected for an
algorithmic complexity of O(n).

5.2 Discussion

The centralized test controller showed a linear performance in terms of response
time. Although this result was expected, its implementation is easy and can
2 Peerunit project, http://peerunit.gforge.inria.fr
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be even used while testing in small scale environments. Our target, however, is
testing in large scale environments.

The B-tree approach relies on communications between parents and children
in order to reduce the communication cost and avoid the use of a centralized test
controller either. In one hand, this approach scales up better than any approach
described in this paper. In the other hand, it has two problems. First, a tree
structure has to be built in the beginning of each execution. Second, a new
action will start the execution in the root earlier than in the leaves.

The Gossiping approach can also be easy to implement and has two main
advantages. First, it does not require any particular node structure (e.g. B-
Tree or ring). Second, the communication can be implemented using multicast
messages in order to reduce the communication cost. A weakness of this approach
is the execution of consecutive actions by all the testers which requires O(n)
gossiping messages.

As a comparison, using the example 1 and considering that the worst case hap-
pens between actions a2 and a3, the B-Tree approach would need two messages
to coordinate the test while the Gossiping would need three messages. In one
hand, the B-Tree uses round-trip messages while the gossiping uses multicast. In
the other hand, in the B-Tree a tester waits a maximum of two messages from
its children while in gossiping the same tester would wait n multicast messages,
n = 3 in this case.

6 Conclusion

In this paper, we presented two synchronization approaches to control the exe-
cution of test cases in a distributed manner using P2P techniques. Since both
approaches do not rely on a central coordinator they scale up correctly.

We discuss the approaches, including the centralized, presenting their
strengths and weaknesses.

We currently implement a testing tool that supports both distributed ap-
proaches for later evaluation.
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2. Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M.,

Punceva, M., Schmidt, R.: P-grid: a self-organizing structured p2p system. SIG-
MOD Rec. 32(3), 29–33 (2003)

3. Bayer, R., McCreight, E.M.: Organization and maintenance of large ordered in-
dices. Acta Inf. 1, 173–189 (1972)

4. Bhatia, K.: Peer-to-peer requirements on the open grid services architecture frame-
work. OGF Informational Documents (INFO) GFD-I.049, OGSA-P2P Research
Group (2005)

5. Chakravarti, A.J., Baumgartner, G., Lauria, M.: The organic grid: self-organizing
computation on a peer-to-peer network. IEEE Transactions on Systems, Man, and
Cybernetics, Part A 35(3), 373–384 (2005)

http://www.grid5000.fr/


Testing Architectures for Large Scale Systems 565

6. Kai Chen, Fan Jiang, and Chuan dong Huang. A new method of generating syn-
chronizable test sequences that detect output-shifting faults based on multiple uio
sequences. In SAC, pages 1791–1797, 2006.

7. Chen, W.-H., Ural, H.: Synchronizable test sequences based on multiple uio se-
quences. IEEE/ACM Trans. Netw. 3(2), 152–157 (1995)

8. Grid4All Consortium. Grid4all: democratize the grid. World Wide Web electronic
publication (2008)

9. da Silva, D.P., Cirne, W., Brasileiro, F.: Trading cycles for information: Using
replication to schedule bag-of-tasks applications on computational grids. In: Kosch,
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Abstract. Storage is undoubtedly one of the main resources in data grids, and 
planning the capacity of storage nodes is an important step in any data-grid de-
sign. This paper focuses on storage-capacity planning for data grids. We have 
developed a tool to calculate, for a specific scenario, the minimum capacity re-
quired for each storage node in a grid, and we have used this tool to show that 
different strategies used for data replication may lead to different storage re-
quirements, affecting the storage-capacity planning.  
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1   Introduction 

Grid computing addresses the challenge of coordinating resource sharing and problem 
solving in dynamic, multi-institutional virtual organizations [3]. Though we often 
think of processor power as a primary motivation for grid computing, access to dis-
tributed data is typically as important as access to distributed computational re-
sources. In fields such as high-energy physics, biology and medical image processing, 
and earth observations, experiments can produce massive amounts of data, on the 
scale of petabytes per year [4]. The global sharing of such large amounts of data in-
troduces access, processing, and distribution difficulties. With the massive size of the 
data, the task of managing the data quickly becomes a problem. Data grids have been 
developed to facilitate the efficient storage and quick distribution of this data [11].  

A data grid connects a collection of geographically distributed computer and stor-
age resources, enabling users to share data and other resources in a seamless fashion. 
The European Data Grid project is an effort to achieve the vision of uniform and 
transparent access to data and computing resources [10]. The vision is a computing 
environment in which a scientist who wants to run a computationally intensive proc-
ess on a huge data set has several options. If there are sufficient computing resources 
on the local network, the scientist should be able to download the data to a local des-
tination and perform the job locally. If the local site lacks the necessary computing 
resources, the scientist could choose to off-load the processing to the data site.  
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However, if the data site is under heavy load, the scientist could also request that the 
data be replicated to another site and run the job on that site. 

The design of a data grid requires forethought concerning the capacity of resources 
in order to avoid over-provisioning and/or under-provisioning at different locations of 
the grid. Capacity planning is defined as the process of assessing the cost/benefit of a 
system configuration before actually building it [1, 5, 6]. A useful prediction neces-
sarily considers the evolution of the workload on the data grid. With capacity plan-
ning, system administrators can input different network topologies, while varying the 
number of resource requests and other parameters (such as network link capacities, 
node storage capacities, and data replication strategies) in order to fine-tune the data 
grid's resource utilization. 

Since one of the main resources in data grids is storage, planning the capacity of 
storage nodes is a key part of a data-grid design. This paper focuses on storage-
capacity planning for data grids. We have developed a tool to calculate, for a specific 
scenario, the minimum capacity required for each storage node in a grid. The scenar-
ios are defined by the network topology and the workload characteristics. The tool 
combines the topology with the load characteristics to produce guidelines on the 
minimum storage capacity required in each storage node to provide enough space to 
the workload considered. We have used this tool to compare data-replication strate-
gies and show that they affect the storage required. 

This paper is organized as follows. Section 2 discusses data replication. Section 3 
presents a strategy for calculating storage capacity, taking into account data replica-
tion. Section 4 shows how data replication affects the need for storage in data grids. 
Section 5 concludes. 

2   Data Replication 

Data replication is a technique used in grid computing to both decrease access time to 
data and increase fault tolerance. Replication is especially important when consider-
ing requests for transferring massive amounts of data between geographically distant 
locations, which consume large amounts of bandwidth and are delayed by possibly 
high latencies [8, 9].  

With the goal of reducing access latency and bandwidth consumption, recent  
research has addressed the usefulness of creating replicas to distribute data among 
scientists within a grid environment. Data replication can be managed statically or 
dynamically. Though static replication plans do improve load balancing and reliabil-
ity, it does not adapt to changes in load behavior. Since data grids are intended for a 
global computing environment, where variable data-access patterns are expected, 
dynamic replication is preferred. With dynamic replication, the replication strategies 
adapt to changes in user behavior, making heavy use of locality in determining where 
files should be replicated. Decisions are made based on the notion that recently ac-
cessed files are more likely to be accessed again (temporal locality), files recently 
accessed by a node are likely to be accessed by nearby nodes (geographical locality), 
and files near recently accessed files are likely to be accessed (spatial locality). 
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In [8], the authors discussed and evaluated six replication/caching strategies:  

• No replication or caching. 
• Best client: Nodes maintain an access history for each file, and when a threshold 

number of accesses is reached, review the history to determine the replica destina-
tion. 

• Cascading replication: Take advantage of the hierarchical layout of a grid by repli-
cating the requested file along the path from server to requester. A replica is made 
to the next node on the path to the requester only after a threshold number of re-
quests have been recorded at the data site. 

• Plain caching: Simply store a local copy on the requesting node. 
• Caching plus cascading replication: The requester caches files locally and the 

server periodically identifies popular files to propagate down the network  
hierarchy. 

• Fast spread: Requested files are stored at each node along the path from server to 
client. 

The results of the study indicate that among the six replication/caching strategies, 
cascading and fast spread provide the best overall performance, where performance is 
measured as savings in latency and bandwidth consumption. The distinction between 
the two strategies is that fast spread works well in a network where users exhibit total 
randomness in accessing data. Cascading is the best option when access patterns ex-
hibit geographical locality.  

3   Calculating Storage Capacity 

The data-grid capacity planner will take two main inputs: (1) the network topology, 
which specifies how the storage nodes are connected, and (2) a synthetic trace, which 
simulates requests for data. Based on these two inputs, it simulates the requests on the 
topology, tracking the storage usage at each node, according to a replication strategy. 
The main goal of the tool is to calculate the maximum storage capacity needed at each 
storage node after all the requests were processed. The output is a table detailing 
storage consumption at each node.  

The requests will determine the data to be copied from the source to one or more 
nodes, according to the replication strategy. We propose the following scheme to 
characterize the requests: 

• The source nodes, in which data is generated and from which it is disseminated, 
are determined initially. This information is provided by the user, who also deter-
mines the size of the data initially placed in each node and a number of tags to 
identify portions of each data. Each tag is associated with a size as well. 

• Another parameter provided by the user is the lifetime of each request, which 
represents the time interval during which data should be useful for the destination 
node. This information could be a constant value or generated uniformly within a 
range provided by the user. 

• Each request will have a source node, a destination node, a tag, and a lifetime. 
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The algorithm for calculating the capacity is shown below. After the initial data is 
assigned to each source node, as determined by the user, and each source node has its 
current capacity updated, the algorithm starts processing the requests. A request will 
identify a source, a tag, a destination, and a lifetime. According to the replication 
strategy, the algorithm will decide which nodes need to receive the data. Note that, 
together, the source and the tag identify a piece of data, which should not be dupli-
cated in a node. In each node, a piece of data is identified by the source node, the tag, 
and the lifetime of the request. If a piece of data is supposed to be copied to a node, 
which already has that particular piece of data, the copying is avoided, and the life-
time of the data is updated to reflect the latest request. 
 
Calculate_Capacity ( ) 
begin 
 for each node i 
  max_capacity of i = curr_capacity of i = initial capacity of i 
 for each request for data <s, tag> from s to d, with lifetime l and timestamp ts 
  eliminate old data from nodes, according to ts 
  update curr_capacity for the nodes which had data eliminated 
  for each node k receiving a copy of the data 
   if node k already has data <s, tag> 
    update the lifetime for <s, tag> in node k  
   else 
    update curr_capacity of k 
    if (curr_capacity of k > max_capacity of k) 
     max_capacity of k = curr_capacity of k 
   end if 
  end for 
 end for 
end 
 

The input and output values for the algorithm are described in the sub-sections below. 

3.1   Inputs 

Network Topology 
The network topology is read from a file. Each line in the file represents a node in the 
network, and is described by the node’s neighbors and the associated cost between the 
node and each neighbor.  Data centers can be identified by specifying, in a separate 
file, the tags and each tag’s corresponding size.   

Traffic Trace File 
A synthetic trace for data requests represents the workload for a given topology.  We 
use a traffic simulation tool, Flexible Optical Network Traffic Simulator (FONTS) 
[7], to generate a trace of data requests that simulates on-demand and advance-
reservation requests with different stochastic characteristics. FONTS is based on a 
stochastic model that incorporates a variety of variables to model data transfer behav-
ior of applications requiring sustained bandwidth. FONTS can be used to model bulk 
data transfer within the grid infrastructure, and thus is suitable for our use. Though the 
program allows the user to fine-tune numerous simulation parameters, we are  
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interested in configuring the request type (advanced-reservation or on-demand), 
source node, and destination node. The user simply generates a trace with FONTS, 
and that trace can be passed directly to the capacity planner for interpretation. 

Replication Strategy 
As the results in [8] show that only two of the six proposed replication/caching strate-
gies demonstrate practical viability, for the moment, the capacity planner just consid-
ers these two replicating options: cascading with caching and fast spread. 

3.2   Outputs 

The storage-capacity planner produces as output a table summarizing storage con-
sumption in the network.  Specifically, the report shows the number of requests ser-
viced and the initial, maximum, and current capacity at each node.   

4   Experiment 

Our storage-capacity planner enables a study of the effect of different data replication 
strategies on storage consumption. It is hypothesized that data networks replicating 
with fast-spread will consume more resources than networks using cascading with 
caching. In particular, as the network size increases, data sets in fast-spread networks 
are distributed more quickly and, therefore, the overall capacity to accommodate the 
rapid distribution will quickly outgrow that of cascading networks. 

An experiment was designed to test this hypothesis. The experiment uses a topol-
ogy typical of grids—the ring with chords. The topological variables in the experi-
ment include: the size of the network, measured by the total number of nodes, and the 
degree of interconnectedness, measured by the number of chords. The number of 
nodes in the networks studied ranged from 2 to 20.  The networks were also deter-
mined by the interconnectivity parameter, where 2- to 10-chord networks were simu-
lated. The chords were randomly placed. A sample 10-node ring with 5 chords, as 
used in the experiment, is shown in Fig. 1. 

As for the input traffic traces, advanced reservation requests can be generated with 
FONTS. Relevant configurable variables for the FONTS traces include a uniform 
distribution for the source and destination of a request and the number of switching 
nodes (to match the topology under study). The final and most important variable is 
the replication strategy used, which can be either fast-spread or cascading with cach-
ing. Results from the simulations can be used to quantify either the substantiation or 
contradiction of the hypothesis. Graphs should also be plotted to visualize potential 
trends from the collected data that, otherwise, might have been overlooked in the 
hypothesis. 

The storage-capacity planner output is a table detailing the initial, current, and 
maximum storage resources consumed at each node in the network during the simula-
tion. We aggregate the results into a succinct and meaningful mathematical value so 
that the simulated network configurations can be easily compared to one another. 
That mathematical value is obtained by averaging the maximum storage consumed, 
which provides a useful index for evaluating the overall distribution of maximum 
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resources utilized. The calculated indices are plotted as average capacity versus the 
number of nodes in the simulated network. The number of chords is also varied. A 
representative set of these experiments is shown in Fig. 2 to Fig. 6.   

 

 
 
 
 
 
 
 
 
 
 

Fig. 1. 10-node ring with 5 chords 
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Fig. 2. Ring with no chords 
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Fig. 3. Ring with 2 chords 
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Fig. 4. Ring with 4 chords 
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Fig. 5. Ring with 8 chords  
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Fig. 6. Ring with 10 chords 

The trends observed in the graphs confirm the hypothesis—that is, fast-spread repli-
cation on average consumes more storage resources than cascading with caching. With 
increasing network size, the storage utilization gap between the two replication strate-
gies widens. The results correspond to the intuition that, if we more readily replicate,  
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then the overall storage spending increases accordingly. When there are more nodes in 
the network, since the fast-spread replication algorithm may distribute data to nearly all 
the nodes, the average storage usage shows a relatively uniform distribution. However, 
the more conservative cascading algorithm replicates only after a predetermined thresh-
old number of requests have been reached. As network size increases, a smaller fraction 
of the nodes in the network will contain replicated data. Therefore, with an increasing 
network size, the average storage utilization shows a decreasing (somewhat linear) 
trend. The fast-spread strategy’s somewhat constant average capacity, together with the 
cascading strategy’s decreasing average capacity, explains the widening gap in resource 
utilization between the two replication strategies. 

An unanticipated result is the overlapping capacity indices between the replication 
strategies when there are approximately five to nine nodes in the network. The ob-
served trend sharpens with an increased interconnectivity. This finding provides valu-
able insight for data-grid designers, because it mitigates the often complicated trade-
off between time (data access speed) and space (storage resources). If the network is 
relatively small, such that there are no more than ten nodes, and some interconnectiv-
ity exists, then the tradeoff is unnecessary. Fast-spread data replication will consume 
on average the same amount of capacity as cascading while providing low access 
latency. However, as the number of nodes increases, the network designer must more 
carefully consider the time-and-space tradeoff. If access speed is critical, we must 
endure the increased storage consumption for low latency access. If the budget for 
storage resources is restricted, then use cascading replication to conserve capacity. 
There exists also demand for relatively low latency, but with a limited storage budget. 
Such a scenario requires an average capacity that lies somewhere between that of fast-
spread and cascading, which may be achieved by a combination of the two replication 
strategies.  

5   Conclusion 

Data replication has been explored as a performance-tuning parameter for data grids, 
wherein two replication strategies (fast-spread and cascading with caching) have been 
identified to effectively reduce access latency or bandwidth consumption. A storage-
capacity planner was developed to help data-grid designers better gauge the cost (in 
terms of storage resources) for fast-spread and cascading replication. An experiment 
was designed to estimate capacity consumption of the two replication strategies on 
ring networks. The results of the experiment coincided with the intuition that  
fast-spread networks consume more resources than cascading networks. The time-
and-space tradeoff in network design was discussed, and a hypothesis was made that 
certain scenarios may require the use of both replication strategies in order to achieve 
good latency with moderate, or limited, storage resource funds. As future work, this 
feature can be incorporated into the storage-capacity planner, and a new experiment 
conducted to verify if a network combining both replication strategies would indeed 
yield the expected capacity consumption. 
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Abstract. The objective of this paper is to describe the implementation of text 
mining grid services for Aîuri Project, which is a framework that includes a 
friendly user interface, data and text mining tasks, database access and a visu-
alization tool integrated with various grid environments. The focus is the devel-
opment and test of components for analysis and evaluation of unstructured data 
into distinct grid environments. These components are grid services for text 
mining processes using several approaches of execution, depending on which 
grid environment the user choose to submit his jobs. All components are open 
source and are freely available to the scientific community, providing access to 
existing services as well as encouraging the addition of new ones.  

Keywords: Text Mining, Categorization, Grid Computing and Portal. 

1   Introduction 

Due to the continuous growth of the volume of available electronic data, automatic 
knowledge discovery techniques become necessary in order to manipulate huge 
amounts of data. Huge amounts of numerical data and countless pages of text are 
produced every day, in the academic or enterprise fields, documenting projects, ac-
tions or ideas. All the knowledge expressed in structured or unstructured form repre-
sents the most important property of an institution, either competitive advantage for 
companies or the availability of concepts and ideas for the academia.  The techniques 
of text mining aims at extracting implicit knowledge in a collection of texts and 
documents [1]. 

Nowadays, the advances in education and research in the areas of text mining are 
leading to a torrent of new algorithms and methodologies for solving complex engi-
neering and advanced sciences problems. Teaching those new algorithms and meth-
ods becomes itself a big challenge, if it is supposed that the use of programs with a 
friendly user interface and efficient visualization tools is necessary, even though this 
is not the main focus of the work and sometimes it is not present. Such difficulties can 
be minimized with the utilization of a well-defined environment that contains the 
previously mentioned facilities, leading to time savings on development, as well as 
keeping the focus on development and test of algorithms. 
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Grid computing is an infrastructure that integrates distributed and heterogeneous 
hardware and software resources, providing a virtual platform for computation and 
data management [2]. The growth of the environments of cooperative research en-
ables the collaboration of researchers from geographically scattered locations. This 
scenario demands new dynamics and software that fulfills the modern needs of the 
researchers, such that development of new methodologies that integrate several de-
velopment phases of new applications is possible. 

However, the benefits brought by the use of computational grids can not be fully 
explored if they can not be easily accessed by an ordinary user. The user needs a 
friendly interface to interact with the grid environment. The contribution of this work 
is the construction of a friendly tool that allows the users to submit their tasks into 
three distinct environments, so that they can select the most suitable one to his task. 
This access is transparent to the user [16]. To test the tool two well-known text min-
ing algorithms are used: Naïve Bayes and Linear Score, using the concepts of grid 
services.  

2   Description of the Aîuri Project 

The objective of Aîuri Project is the creation of a friendly user interface to provide easy 
access to at least one grid environment that is used to run, for instance, text mining 
algorithms. The web-based interface built in the Aîuri Project is, in fact, a framework 
that aggregates a friendly user interface and the tasks of text mining, using one or more 
grid environments. The focus of the project is the development of a high performance 
academic cooperative environment, which will be used for education and research in the 
areas of computational intelligence, analysis, evaluation and visualization of data via 
grid services that encapsulate the algorithms of data and text mining process. The soft-
ware integrated in this environment is open source and available for the community, 
which will be capable of accessing built-in services and/or add new ones. 

Grid computing infrastructure aggregates the collaboration feature, allowing the utili-
zation and/or incorporation of new strategies for the research of new algorithms and 
different approaches for the solution of advanced engineering and science problems. 

This paper describes the implementation of a text mining grid service for the Aîuri 
Project. 

3   Text Mining Tasks on the Aîuri Environment 

Text Mining, also known as Knowledge Discovery form textual databases [3], refers 
to the non trivial extraction of implicit, previously unknown, and potentially useful 
information from large amounts of textual data, such as documents and unstructured 
data. Text Mining describes an assembly of processes with algorithms and efficient 
techniques that allow the manipulation of texts. Different algorithms can be used 
depending on the discovery goal. 

The main phases of text mining process are text preparation, text mining pattern dis-
covery and post-processing or interpretation and evaluation; this is shown in figure 1.  
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Fig. 1. Scheme of Text Mining Process, showing its main phases 

3.1   Text Preparation 

The text preparation phase consists of the selection of terms that better describe 
document contents, neglecting any unimportant information. This type of selection 
improves performance and classification effectiveness. The activities that must be 
performed are: lexical analysis that identifies each term as a character sequence; mor-
phological analysis or stemming that reduces each term to its radical, made by a 
stemmer; stop words removal that consists of removing terms with no special mean-
ing from the texts, like prepositions, articles and conjunctions; utilization of a thesau-
rus in order to replace different terms with a key term that has the semantic meaning.  

The use of these techniques results in a collection of representations of words of a 
document, which is mapped into a term-document table. 

3.2   Text Mining Pattern Discovery 

Among the diverse approaches of analysis for the extraction of knowledge, categori-
zation tasks are intended to automatically classify documents related to a collection of 
previously defined categories [4]. This task can be used, for example, to insert a new 
document in a collection divided into categories. To achieve this goal the categories 
must be represented by terms or a set of terms that bear the meaning of the category 
concept. The categorization technique is defined as the process of finding a model 
that describes a category. Given a collection of labeled records, each of them contain-
ing a set of features and the category, the model for a category is a function of the 
values of the features. Usually, the data set is divided into training and test sets, where 
the training set is used to build the model and test set is used to validate it and deter-
mine its accuracy. The goal of this process is to assign categories to previously unseen 
records as accurately as possible. 
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3.3   Post-processing 

The post-processing task consists of the validation, visualization and evaluation of the 
obtained patterns from the expert point of view. The evaluation accuracy and the 
visualization tools are especially important to achieve the most useful and relevant 
conclusions. This phase is not treated in the present paper, because post-processing is 
subject of research and development in future projects.  

4   The Aîuri Portal 

The Aîuri portal is a web interface that allows users to request execution of text min-
ing tasks in three distinct environments. Due to the particular features of each type of 
task, the application behavior varies depending on how the user chooses the task pa-
rameters. The access to the portal is controlled by a user/password authentication 
method. All the services are available to all users. This is summarized in table 1. 

Table 1. Portal  Functions 

Function Description 
Upload Certificate It carries out the load of the certificate. 

Upload File It carries out the load of the files of the user. 

Training set XML Generation of the file with the training set. 

Test set XML Generation of the file with the test set. 

Make Stemmer Generation of the file with stems. 

Bayesian categorization Naïve Bayes categorizer. 

Linear categorization Linear Score categorizer. 

The portal encapsulates the structure of the Aîuri project. The Aîuri project has 
three main components: a portal, which is the interface between user and the services 
and the grid services, which implement the tasks of text mining and maintain all the 
files uploaded to the environment. 

Web-based Grid computing portals are effective tools for providing users with 
simple, intuitive interfaces for accessing grid information and its resources [5]. The 
software used to build grid portals interacts with the middleware running on the re-
sources. The portal software must be compatible with common Web servers and 
browsers/clients. Grid portals make the distributed heterogeneous computing and data 
grid environments more accessible to grid users by using common Web and UI (User 
Interfaces) conventions. 

The processes performed by the portal are shown in the figure 2. The first step is 
the upload of the data necessary to perform the mining task. For the execution of a 
text mining task all the text files which are part of the knowledge base must be up-
loaded. Each user has a private knowledge base in an exclusive area. Once the files 
are uploaded, the next step is to create the training and test sets, by converting them to 
the XML format. These sets will be stored in the user area too. In the grid environ-
ment these uploaded and converted files can be stored in the environment. 
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After that, the user can choose the parameters of the text mining task, enabling the 
portal to generate an object with the states of the parameters. Among other parame-
ters, the user can specify the name of the dictionary, the amount of words and the key 
term for the categorization task.  

At this moment the portal queries the available resources for the grid execution and 
lets the user choose the appropriate resource. The grid information service provides 
the states and workload of the grid resources. For the submission of the text mining 
task for execution, the portal contacts the job management service of the grid and 
waits for the task results. 

The results are sent back to the portal and visualized by the user. 

 

Fig. 2. Aîuri portal processes 

4.1   Text Mining Grid Service 

The first application implemented is text mining categorization. The application was 
developed in Java and is performed by the Naïve Bayes and Linear Score algorithms. 
The probabilistic Naïve Bayes (NB) classifier has been widely used with good per-
formance for document classification. It is based on the Bayes’ Theorem [6,7]. The 
basic idea is to join the key words in categories to estimate the probabilities of the 
categories of a new document. The algorithm computes the a posteriori probabilities 
of a document to belong to distinct classes and assigns it to the class with larger a 
posteriori probability. The a posteriori probability is computed using the Bayes’ rule 
and the test set is assigned to the class with the largest a posteriori probability. The 
naïve part of the NB algorithm is the independence assumption of the characteristics 
of the word, that is, it is assumed that the effect of the characteristics of the word of 
which conditional probability is associated to a category is independent of the charac-
teristics of the other words of that category. Several experiments have been performed 
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with the NB algorithm [8], presenting satisfactory results for pattern classification. 
However, other methods are also used in the text mining area. The NB algorithm 
presents several advantages over other techniques. It is quite simple and easy to im-
plement. Additionally, no learning process is required, because the probabilities are 
estimated based on the frequency of the terms. Moreover, the classification process is 
efficient, since the characteristics are independent of each other. On the other hand, 
the NB algorithm has some drawbacks. It requires many probabilities to be known a 
priori, and the computing cost grows linearly, depending on the quantity of existing 
words and characteristics. 

The linear score classifier is based on linear methods, which are a classical ap-
proach for the solution of prediction problems. The Bayesian method, used in this 
work, can be viewed as a special case of the linear method, but without problems with 
redundant attributes, since it performs better when the number of attributes is small, 
which is not the case when dictionaries with thousands of words are created. The 
linear score method [11] sets a positive score to the classes identified as positive and a 
negative one to the classes identified as negative, such that for every  word that ap-
pears in a document its corresponding weight is determined. These weights must be 
summed to compute the score of the document. An advantage of the linear approach 
is the simplicity of the construction of the model, provided that a set of significant 
terms of the document is chosen and the learning algorithm is capable of determining 
the weight of each term created.  

5   Grid Environments 

A grid is an internet-connected computing environment in which computing and data 
resources are geographically distributed over different administrative domains, often 
with separate policies for security and use of resources [9]. Two distinct computa-
tional grid environments are used in this work: the NACAD Grid, installed at the 
NACAD laboratory, and the EELA Grid. 

5.1   NACAD Grid Environment 

The NACAD Grid uses Globus GT4 [10] as grid middleware. In order to integrate the 
framework to the GT4 infrastructure, some entities (classes) were created to allow the 
integration of the system with this new environment. GT4 is a grid middleware based 
on grid services. Grid services is a technology based on the concepts and technologies 
of grids and web services and can be defined as a web service that delivers a set of 
interfaces that follows specific conventions. This technology was originated from the 
necessity to integrate services through virtual, heterogeneous and dynamic organiza-
tions, composed of distinct resources, whether within the same organization or by 
resource sharing. The structure of the NACAD grid is shown in figure 3. 

5.2   EELA Grid Envrionment 

The second integration was carried out within the EELA (E-Infrastructure Shared 
Between Europe and Latin America) Project. The objective of the EELA Project is to 
establish a human collaboration network to share an infrastructure to support test and  
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Fig. 3. Components of the Aîuri project 

development of advanced applications. EELA-2 is the second phase of EELA Pro-
ject. The integration to this environment required the implementation of the fol-
lowing activities: (i) Use of AMGA (ARDA Metadata Grid Application): AMGA 
[12] is a metadata service for computational grids. It can be viewed as a data base 
access service for grid applications, which enables jobs running on the grid to 
access the data base, providing authentication, as well as a layer that hides from 
the user the technical details of  distinct data bases, providing the user a unique 
method of access to all data bases in the environment. In fact, AMGA is a service 
that functions between the SGDB and the client application. AMGA is used to 
create a structure that validates the user at the moment he logs into the environ-
ment; (ii) Use of GSAF (Grid Storage Access Framework): GSAF [13] is a frame-
work that encapsulates the access method to data by providing API’s that enable 
access to AMGA, to the files catalogue and storage elements. The structure of 
AMGA and use of GSAF are shown in figures 5a and 5b; (iii) Job submission: to 
submit jobs to the EELA grid the API LCG (LHC Computing Grid) is used. This 
API provides a number of functionalities to access this environment. To submit 
jobs using this API a file that describes the properties of the jobs must be created. 
The Job Description Language [14] (JDL) is a language intended to create such 
description. The class implemented to perform the submission activities is an ex-
ample of a JDL file is shown in figure 6. 
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Fig. 5a. Schematic example of the AMGA structure for Aîuri Project 

 

Fig. 5b. Use of GSAF structure 

 

 

Fig. 6. Example of the GSAF architecture 
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It is necessary to remark that the work philosophy of the Aîuri Portal is to provide 
grid services to its users. In a preliminary approach, using the grid structure available 
at NACAD, all the grid services implemented are based on web services technology. 
In a second approach, using the EELA grid, the grid services are not based on web 
services, but its services are also enabled for the users by the portal.  

6   Experiments 

In order to evaluate the quality of the results obtained and, specially, to validate the 
environments, two experiments are presented. Two sets of texts are used, taken from 
CETENFolha [15], which are previously classified by Computational Process of Por-
tuguese Project. This previous classification is used to create a categorization model 
and later, to check the categorized results. The tests were carried out with and without 
balancing. These tests were performed based on four distinct approaches: (i) stems 
and stop words were not used; (ii) stop words were used; (iii) stems and stop words 
were both used; (iv) only stems were used. The graphics are used to display the re-
sults of the models, with their corresponding f-measures and time processing for the 
best models created using a local computer and the NACAD Grid. The structure of 
the tests is shown in table 2.  

Table 2. Structure of the experiments 

Not Balanced Balanced 

Topic Trainning Test 
Brazil 2483 100 

Money 2124 100 

Sport 2594 100 

World 1565 100  

Topic Trainning Test 
Brazil 1250 250 

Money 1250 250 

Sport 1250 250 

World 1250 250  
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Fig. 7a. Comparison of the results computed by the bayesian and linear score categorizers (not 
balanced) 
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Fig. 7b. Comparison of the results computed by the bayesian and linear score categorizers 
(balanced) 

The experiments show that the best classification results were obtained with the 
class Sport. This is so, certainly, because the vocabulary in this class is quite dis-
tinct from the vocabulary of the remaining classes. During the experiments, it was 
observed that the use of stems, in average, caused an improvement of about 2% in 
the generated models.  Both categorizers show similar results, as shown in figures 
7a and 7b. However, the Bayesian categorizer, in average, performed faster, and 
obtained classification models slight better than those obtained by the linear score 
categorizer.  

7   Conclusion 

We discuss the use of the Aîuri Portal for the execution of text mining grid services 
processed in grids environments. 

The Aîuri Portal provides a very effective means of submission of algorithms to 
grid environments, since its functionalities encapsulate several tasks that, without the 
portal, would be performed by the user, making the use of computational grids acces-
sible to ordinary users.  

An additional advantage of our portal is its versatility, since two grid environments 
and the local machine are available to the user, and more environments can be incor-
porated to it. 

The experiments show very good text mining processing times on a grid environ-
ment compared to local execution, encouraging the continuity of the development. 

The results obtained with the Bayesian algorithm were slightly better than those 
obtained with the linear score algorithm. The algorithms were tested using global 
dictionaries, which boosts the quality of the models when compared with the use of 
local dictionaries. 
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Abstract. Stemming algorithms are commonly used in Information Retrieval
with the goal of reducing the number of the words which are in the same morpho-
logical variant in a common representation. Stemming analysis is one of the tasks
of the pre-processing phase on text mining that consumes a lot of time. This
study proposes a model of distributed stemming analysis on a grid environment
to reduce the stemming processing time; this speeds up the text preparation. This
model can be integrated into grid-based text mining tool, helping to improve the
overall performance of the text mining process.

Keywords: Grid environment, distributed computing, text mining, stemming
analysis.

1 Introduction

The enormous amount of information stored in unstructured texts cannot simply be
processed by computers which typically handle text as simple sequences of character
strings. Text mining is the process of extracting interesting information and knowledge
from unstructured text. It runs several processes, such as document collection, pre-
processing and preparation, pattern discovery and evaluation and interpretation of the
results.

Text mining techniques gained considerable importance as a technology to retrieve
data from huge amount of digitally stored documents [1]. In order to extract useful
patterns [2] pre-processing tasks and algorithms are required. Stemming analysis, which
is used in this paper, is one of the pre-processing tasks of text mining.

Due to the large quantity of documents, pre-processing tasks are computationally
intensive. In order to reduce the time spent in pre-processing we distribute the stem-
ming analysis on a grid environment. This environment is a geographically distributed
computation infrastructure composed of a set of heterogeneous resources.

2 Text Mining

Text mining is a relatively new practice derived from Information Retrieval (IR) [3,
4] and Natural Language Processing (NLP) [5]. The strict definition of text mining
includes only the methods capable of discovering new information that is not obvious
or easy to find out in a document collection, i.e., reports, historical documents, e-mails,
spreadsheets, papers and others.

J.M.L.M. Palma et al. (Eds.): VECPAR 2008, LNCS 5336, pp. 588–593, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. Summary of the text mining phases

Text mining executes several processes, each one consisting of multiple phases,
which transform or organize an amount of documents in a systematized structure. These
phases enable the use further processed documents, in an efficient and intelligent way.
The processes that compose the text mining can be visualized in Figure 1 that is a sum-
marized version of the figure model from [6] on page 6.

The text mining processes are divided into the following phases:

1. Document collection: consists of the definition of the documents set from which
knowledge must be extracted.

2. Pre-processing and preparation: consists of a set of actions that transform the set
of documents in natural language into a list of useful terms. Then from these terms
will be identified and selected the relevant terms.

3. Text Mining Pattern Discovery: consists of the application of machine learning
techniques to identify patterns that can classify or cluster the documents in the
collection.

4. Evaluation and interpretation of the results: consists of the results analysis.

The pre-processing phase in text mining is essential and usually time consuming. As
texts are originally non-structured, some steps are required to represent them in a format
which is compatible with knowledge extraction methods and tools.

2.1 The Stemming Process

The stemming process is an important pre-processing task before indexing input docu-
ments for text mining. The term stemming refers to the reduction of words to their roots
so that, different grammatical forms or declinations of verbs are identified and indexed
(counted) as the same word. For example, stemming will ensure that both “takes” and
“take” will be recognized by the program as the same word [7]. In most cases, morpho-
logical variants of words have similar semantic interpretations and can be considered
as equivalent for the purpose of Information Retrieval applications. For this reason, a
number of so-called stemming Algorithms, or stemmers, have been developed, which
attempt to reduce a word to its root form.
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Lovins [8] described the first stemmer developed specifically for Information
Retrieval applications and introduced the idea of stemming based on a dictionary of
common suffixes. This algorithm stimulated the development of many subsequent al-
gorithms [9,10] and, more generally, the use of stemming as a general tool in the Infor-
mation Retrieval area [10, 11, 12, 13, 14].

In this model two well-known stemmer algorithms will be implemented: Porter stem-
mer and Paice/Husk stemmer. The Porter stemming algorithm [15] is a process in which is
removed the commoner morphological and suffixes from words. Its main use is as part of
a term normalization process that is usually done when setting up Information Retrieval
systems [16]. The Paice/Husk stemmer [17] is iterative and uses a single table of rules.
Each rule may specify the removal or replacement of an ending. The rules are grouped
into sections corresponding to the final letter of the suffix; this meas that the rule table is
accessed quickly by looking up the final letter of the current word or truncated word.

3 Grid Environment

A grid is a geographically distributed computation infrastructure composed of a set of
heterogeneous machines, often with separate policies for security and resource use [18],
that users can access via a single interface. Grids therefore, provide a common resource-
access technology and operational servicesacrosswidely distributedvirtualorganizations
composed of institutions or individuals that share resources. Today grids can be used as
effective infrastructures for distributed high-performance computing and data processing
[19]. Figure 2 shows the Grid NACAD infrastructure that will be used in this work.

Fig. 2. The Grid NACAD infrastructure
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In this work we use the Globus Toolkit 4 (GT4) [20], which is a widely used middle-
ware in scientific and data-intensive grid applications, and is becoming standard for im-
plementing grid systems. The toolkit addresses security, information discovery, resource
and data management, communication, fault-detection, and portability issues. Nowa-
days, Globus and the other grid tools are used in many projects worldwide. Although
there is most of these projects are in scientific and technical computing fields, a growing
number of grid projects in education, industry, and commerce being implemented.

4 Distributed Stemming Analysis on a Grid

The pre-processing phase is very time consuming, particulary the stemming task. This
is so because of the large number of words that a document collection contains. To
reduce the time spent for stemming, we distribute the documents on a grid environment
to process the stemming simultaneously in the grid nodes.

The Globus Toolkit provides a number of components for performing data manage-
ment. Data management tools (GridFTP, RFT, RLS) are concerned with the location,
transfer, and management of distributed data [21]. GridFTP protocol provides a secure
way to transfer data in a grid. RFT (Reliable File Transfer) is a Web Services Resource
Framework (WSRF) [22] compliant web service for managing multiple data transfers.
The Replica Location Service (RLS) [23] maintains and provides access to mapping
information from logical names for data items onto target names. These target names
may represent physical locations of data items, or an entry in the RLS may map to
another level of logical naming for the data item. The RLS is intended to be one of a
set of services for providing data replication management in grids. In additional of this
components, the LIGO Data Replicator (LDR) [24, 25] will be used. LDR is a collec-
tion of some components provided by the Globus project with some extra logic to pull
the components together. This minimum collection of components is necessary for fast,
efficient, robust, and secure replication of data. The Globus components included are:
GridFTP, Globus Replica Location Service (RLS) and a metadata service developed by
the LDR team but based on a prototype Globus Metadata Catalog Service (MCS) [26]
for organizing useful information about the data files, especially as it pertains to when
and where the data should be replicated.

Figure 3 shows the distributed stemming analysis on a grid model. The grid user
owns a grid certificate, which provides him the grid credentials [27] to log into the grid
and submit jobs to it, which is done by means of a Portal, accessible from the user’s
workstation. After logged in, the user can access his documents or public documents
that are stored in the grid. He submits to the Portal information about the documents
that will be analyzed (1). The Portal uses the LDR queries to find out whether there
is a local copy of the documents, if not, RLS tells the Portal where the documents are
in the grid (2). Then the LDR system generates a request to copy the documents to
the local storage system and registers the new copy in the local RLS server. The grid
nodes receive from the Portal the phases to run the stemming task (3) and using the RFT
service it copies the replicas of the documents from the storage to the grid nodes (4).
When the stemming task is concluded, the Portal collects all sets of documents from
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Fig. 3. Distributed stemming analysis model

each node and returns the result of the stemming to the user, who stores the documents
in his grid account area.

5 Summary

In this paper we presented a distributed stemming analysis model. This model focuses
on reducing the stemming task processing time, using a grid environment to distribute
the documents to speed up the stemming task within a group of documents. The next
step is to develop this model and integrate it to a text mining system through a grid
service using the Globus Toolkit middleware in the Grid NACAD.
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