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Preface

The material published in this volume comes essentially from a course given
at the Conference on “Boltzmann equation and fluidodynamic limits”, held in
Trieste in June 2006. The author is very grateful to Fabio Ancona and Stefano
Bianchini for their invitation, and their encouragements to write these lecture
notes.

The aim of this book is to present some mathematical results describing
the transition from kinetic theory, and more precisely from the Boltzmann
equation for perfect gases to hydrodynamics. Different fluid asymptotics will
be investigated, starting always from solutions of the Boltzmann equation
which are only assumed to satisfy the estimates coming from physics, namely
some bounds on mass, energy and entropy. In particular the present survey
does not consider convergence results requiring further regularity. However,
for the sake of completeness, we will give in the first chapter some rough
statements and bibliographical references for these smooth asymptotics of the
Boltzmann equation, as well as for the transition from Hamiltonian systems
to hydrodynamics.

Our starting point in the second chapter is some brief presentation of the
Boltzmann equation, including its fundamental properties such as the formal
conservations of mass, momentum and energy and the decay of entropy (for
further details we refer to the book of Cercignani, Illner and Pulvirenti [31]
or to the survey of Villani [106]). We then introduce the physical parameters
characterizing the qualitative behaviour of the gas, and we derive formally the
various hydrodynamic approximations obtained in the fast relaxation limit,
i.e. when the collision process is dominating. We finally introduce the main
existing mathematical frameworks dealing with the Cauchy problem for the
Boltzmann equation, which can be useful for the study of hydrodynamic lim-
its : we will particularly focus on the notion of renormalized solution defined
by DiPerna and Lions [44], which will be used in all the sequel.

The third chapter is devoted to some technical results which are crucial
tools for the mathematical derivation of hydrodynamic limits. Note that the
general strategy to rigorously justify the formal asymptotics is to proceed by

v



vi Preface

analogy, that is to recognize the structure of the expected limiting hydrody-
namic model in the corresponding scaled Boltzmann equation. These tools will
therefore not be equally used in all fluid regimes. The first point to be discussed
is the implications of the entropy inequality, which provides some bound on
the (relative) entropy, as well as some control on the entropy dissipation, and
possibly some estimates on a boundary term known as the Darrozès-Guiraud
information, depending on the scaling to be considered. The second point is
to understand how these bounds, especially that on the entropy dissipation,
allow to control the relaxation mechanism, and which consequences this im-
plies on the distribution function. Note that, for fluctuations around a global
equilibrium, such a study goes back to Hilbert [65] and Grad [59]. The last
point to be investigated is the balance between this relaxation process due
to collisions, and the other important physical mechanism, namely the free
transport : in viscous regime the global structure of the scaled Boltzmann
equation is actually of hypoelliptic type, and one can exhibit some regulariz-
ing effect of the free transport (extending for instance the velocity averaging
lemma due to Golse, Lions, Perthame and Sentis [53]).

The incompressible Navier-Stokes limit, studied extensively in the fourth
chapter, is therefore the only hydrodynamic asymptotics of the Boltzmann
equation for which we are actually able to implement all the mathematical
tools presented in Chapter 3, and for which an optimal convergence result is
known. By “optimal”, we mean here that this convergence result

- holds globally in time;
- does not require any assumption on the initial velocity profile;
- does not assume any constraint on the initial thermodynamic fields;
- takes into account boundary conditions, and describes their limiting form.
We start by recalling some basic facts about the limiting system, in partic-

ular its weak stability established by Leray [70]. We then explain the general
strategy used to establish the convergence result of the renormalized solu-
tions to the suitably scaled Boltzmann equation (which is very similar to the
weak compactness argument of Leray), as well as the main difficulties to be
overcomed.

The moment method, introduced by Bardos, Golse and Levermore [5] re-
quires indeed to understand how one recovers the local conservation laws in
the limit, and to determine the asymptotic behaviour of the flux terms, espe-
cially of the convection terms which are quadratic functions of the moments.
In order to do so, the moments are actually proved to be regular with respect
to the space variables x by a refined version of the velocity averaging result
due to Golse and the author [56]. Furthermore the high frequency oscillating
parts of the moments, known as acoustic waves, are filtered out by a compen-
sated compactness argument due to Lions and Masmoudi [76]. One therefore
gets a global weak convergence result ([54] or [55]) which does not require a
precise study of the relaxation or oscillation phenomena.

In the case of a domain with boundaries, one has further to take into
account the interactions between the gas and the wall, which leads to a braking
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condition if the kinetic condition is a diffuse reflection, and a slipping condition
if the kinetic condition is a specular reflection.

The state of the art about the incompressible Euler limit, which is the
main matter of the fifh chapter, is not so complete as for the incompresi-
ble Navier-Stokes limit. Due to the lack of regularity estimates for inviscid
incompressible models, the convergence results describing the incompressible
Euler asymptotics of the Boltzmann equation require additional regularity
assumptions on the solution to the target equations.

Furthermore, the relative entropy method leading to these stability results
controls the convergence in a very strong sense, which imposes additional
conditions either on the solution to the asymptotic equations (“well-prepared
initial data”), or on the solutions to the scaled Boltzmann equation (namely
some additional non uniform a priori estimates giving in particular the local
conservation of momentum and energy).

Under these additional a priori estimates, it is indeed possible to improve
the relative entropy method, so as to take into account the acoustic waves and
the Knudsen layers.

The last chapter of this survey is devoted to the compressible Euler limit,
and is actually a series of remarks and open problems more than a com-
pendium of results. The main challenge is of course to understand how the
entropy dissipation concentrates on shocks and discontinuities, which should
be studied in one space dimension.

Paris, France Laure Saint-Raymond
November 2008
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1

Introduction

1.1 The Sixth Problem of Hilbert

1.1.1 The Mathematical Treatment of the Axioms of Physics

The sixth problem asked by Hilbert in the occasion of the International
Congress of Mathematicians held in Paris in 1900 is concerned with the math-
ematical treatment of the axioms of Physics, by analogy with the axioms of
Geometry. Precisely, it states as follows :

“Quant aux principes de la Mécanique, nous possédons déjà au point de vue
physique des recherches d’une haute portée; je citerai, par exemple, les écrits
de MM. Mach [81], Hertz [64], Boltzmann [14] et Volkmann [107]. Il serait
aussi très désirable qu’un examen approfondi des principes de la Mécanique
fût alors tenté par les mathématiciens. Ainsi le Livre de M. Boltzmann sur les
Principes de la Mécanique nous incite à établir et à discuter au point de vue
mathématique d’une manière complète et rigoureuse les méthodes basées sur
l’idée de passage à la limite, et qui de la conception atomique nous conduisent
aux lois du mouvement des continua. Inversement on pourrait, au moyen de
méthodes basées sur l’idée de passage à la limite, chercher à déduire les lois
du mouvement des corps rigides d’un système d’axiomes reposant sur la no-
tion d’états d’une matière remplissant tout l’espace d’une manière continue,
variant d’une manière continue et que l’on devra définir paramétriquement.

Quoi qu’il en soit, c’est la question de l’équivalence des divers systèmes
d’axiomes qui présentera toujours l’intérêt le plus grand quant aux principes.”

The problem, suggested by Boltzmann’s work on the principles of mechan-
ics, is therefore to develop “mathematically the limiting processes [. . . ] which
lead from the atomistic view to the laws of motion of continua”, namely to
obtain a unified description of gas dynamics, including all levels of description.
In other words, the challenging question is whether macroscopic concepts such
as the viscosity or the nonlinearity can be understood microscopically.

L. Saint-Raymond, Hydrodynamic Limits of the Boltzmann Equation, 1
Lecture Notes in Mathematics 1971, DOI: 10.1007/978-3-540-92847-8 1,
c© Springer-Verlag Berlin Heidelberg 2009



2 1 Introduction

1.1.2 From Microscopic to Macroscopic Equations

Classical dynamics for systems constituted of identical particles are charac-
terized by a Hamiltonian

H(x, v) =
1
2

N∑
i=1

|vi|2 +
∑
i6=j

V (xi − xj)

with V a two-body potential.
The corresponding Liouville equation is

∂tfN (t, x, v) + LfN (t, x, v) = 0 (1.1)

where fN is the density with respect to the Lebesgue measure of the system
at time t, and the Liouville operator is given by

L =
N∑
i=1

[
∂H

∂vi

∂

∂xi
− ∂H

∂xi

∂

∂vi

]
.

For a given configuration ω(t) = (x(t), v(t)) the empirical density and
momentum (which rigorously speaking are measures) are then defined by

Rω(X) =
1
N

N∑
i=1

δ(X − xi)

Qω(X) =
1
N

N∑
i=1

viδ(X − xi)

Macroscopic equations such as the Euler equations or the Navier-Stokes equa-
tions (which have been historically derived through a continuum formulation
of conservation of mass, momentum and energy) are then expected to be
obtained as some asymptotics of the equations governing these observable
quantities.

1.2 Formal Study of the Transitions

The microscopic versions of density, velocity, and energy should actually as-
sume their macroscopic, deterministic values through the law of large num-
bers. Therefore, in order the equations describing the evolution of macroscopic
quantities to be exact, certain limits have to be taken, with suitably chosen
scalings of space, time, and other macroscopic parameters of the systems. So
the first step in the derivation of such equations is a choice of scaling.
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1.2.1 Scalings

Denote coordinates by (x, t) in the microscopic scale, and by (x̃, t̃) in the
macroscopic scale. Let ρ = N/L3 be the typical density in the microscopic
unit, i.e. the number of particles per microscopic unit volume. Then, if ε is
the ratio between the microscopic unit and the macroscopic unit, there are
typically three choices of scalings :

• the Grad limit ρ = ε, (x̃, t̃) = (εx, εt);
(The typical number of collisions per particle is finite.)

• the Euler limit ρ = 1, (x̃, t̃) = (εx, εt);
(The typical number of collisions per particle is ε−1.)

• the diffusive limit ρ = 1, (x̃, t̃) = (εx, ε2t);
(The typical number of collisions per particle is ε−2.)

The Euler and diffusive limits will be referred to as hydrodynamic limits.

Fig. 1.1. Transitions between the different levels of description

1.2.2 Hydrodynamic Limits

To obtain hydrodynamic equations, we then differentiate the scaled empirical
density and momentum and more precisely their integral agasinst any test
function ϕ :



4 1 Introduction∫
ϕ(x̃)Rω(t̃/ε),ε(x̃)dx̃ =

1
N

N∑
i=1

ϕ(εxi(t̃/ε)),

∫
ϕ(x̃)Qω(t̃/ε),ε(x̃)dx̃ =

1
N

N∑
i=1

vi(t̃/ε)ϕ(εxi(t̃/ε)).

We get for instance

d

dt̃

1
N

N∑
i=1

vi(t̃/ε)ϕ(εxi(t̃/ε)) = − 1
N

N∑
i=1

ε−1ϕ(εxi)
∂H

∂xi
+

1
N

N∑
i=1

vi∂iϕ(εxi)
∂H

∂vi

= − 1
2N

N∑
i=1

∇ϕ(εxi)
∑
i6=j

xi − xj
ε
· ∇V

(
xi − xj

ε

)
+

1
N

N∑
i=1

vi ⊗ vi∇ϕ(εxi) +O(ε)

using Taylor’s formula for ϕ, and symmetries to discard the main term.
In order to obtain the conservation of momentum in the Euler equations

we then need to show that the microscopic current

− 1
2N

N∑
i=1

∇ϕ(εxi)
∑
i 6=j

xi − xj
ε

· ∇V
(
xi − xj

ε

)

converges to some macroscopic current P = P (R,Q,E) depending on the
macroscopic density, momentum and internal energy, in the limit ε→ 0. This
convergence has to be understood in the sense of law of large numbers with
respect to the density fN (solution to the Liouville equation)

1
N

∫
fN (t, ω)

∣∣∣∣∣∣
∑
i

∇ϕ(εxi)

∑
i 6=j

xi − xj
ε

· ∇V
(
xi − xj

ε

)
− P (R,Q,E)

∣∣∣∣∣∣ dω→ 0

(1.2)

The key observation, due to Morrey [86], is that (1.2) holds if we replace
fN by any Gibbs measure with Hamiltonian H, or more generally if “locally”
fN is a Gibbs measure of the Hamiltonian H.

The point is therefore to establish that “locally” fN (t) is a equilibrium
measure with finite specific entropy. The conclusion follows then from the er-
godicity of the infinite system of interacting particles : the translation invariant
stationary measures of the dynamics such that the entropy per microscopic
unit of volume is finite are Gibbs (exp(−βH)).

The Navier-Stokes equations are the next order corrections to the Euler
equations. In order to derive them one needs to show that the microscopic
current is well approximated up to order ε by the sum of the macroscopic
current P = P (R,Q,E) and a viscosity term εν∇Q (in the sense of law of
large numbers).
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Since there is an ε appearing in the viscosity term, proving such an asymp-
totics requires to understand the next order correction to Boltzmann’s hy-
pothesis. This difficulty, recognized long time ago by Dobrushin, Lebowitz
and Spohn, has been overcome recently for simplified particle dynamics :
the mathematical interpretation is indeed given by the fluctuation-dissipation
equation which states

− 1
2N

N∑
i=1

∇ϕ(εxi)
∑
i 6=j

xi − xj
2ε

· ∇V
(
xi − xj

ε

)
= P (Rω,ε, Qω,ε, Eω,ε) + εν∇Qω,ε + εLgω,ε + o(ε)

(1.3)

for some function gω,ε, where L is the Liouville operator. In other words,
the expected asymptotics is correct only up to a quotient of the image of
the Liouville operator. The image of the Liouville operator is understood as a
fluctuation, negligible in the relevant scale after time average : for any bounded
function g

ε

∫ t

0
dsfN (s, ω)(εLg)(ω)dω = ε2(fN (t, ω)− fN (s, ω))g(ω)dω = O(ε2)

and is thus negligible to the first order in ε.
In order to avoid the difficulties of the multiscale asymptotics, we may

turn to the incompressible Navier-Stokes equations which are invariant
under the incompressible scaling

(x, t, u, p) 7→ (λx, λ2t, λ−1u, λ2p)

under which the fluctuation-dissipation equation becomes

− 1
2N

N∑
i=1

∇ϕ(εxi)
∑
i6=j

xi − xj
ε
· ∇V

(
xi − xj

ε

)
= P (Rω,ε, Qω,ε, Eω,ε) + ν∇Qω,ε + Lgω,ε + o(ε)

(1.4)

where both the viscosity ν and the functions g are unknown. Notice that
the solution to the fluctuation-dissipation equation requires inversion of the
Liouville operator.

In the following two sections, we intend to describe briefly the different
mathematical approaches which allow to obtain rigorous convergence results
for these asymptotics. These results will be stated in a rather unformal way in
order to avoid definitions and notations. We refer to the quoted publications
for precise statements and proofs.

1.3 The Probabilistic Approach

The most natural approach for the mathematical understanding of hydro-
dynamic limits consists in using probabilistic tools such as the law of large
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numbers and some large deviations principle. Nevertheless the complexity of
the problem is such that there is still no complete derivation of fluid models
starting from the full deterministic Hamiltonian dynamics.

1.3.1 The Euler Limit

Concerning the derivation of the Euler equations, what has been proved by
Olla, Varadhan and Yau [89] is the following result.

Theorem 1.3.1 Consider a general Hamiltonian system with superstable
pairwise potential, and the corresponding stochastic dynamics obtained by
adding a noise term which exchanges the momenta of nearby particles. Sup-
pose the Euler equation has a smooth solution in [0, T ]. Then the empirical
density, velocity and energy converge to the solution of the Euler equations in
[0, T ] with probability one.

The strength of the noise term is of course chosen to be very small so that
it disappears in the scaling limit.

The proof consists of two main ingredients. The first point is to establish
the ergodicity of the system, and more precisely the following statement : if,
under a stationary measure, the distribution of velocities conditioned to the
positions is a convex combinations of gaussians, then the stationary measure
is a convex combination of Gibbs. Noise is therefore added to the system in
order to guarantee such information on the distributions. The second point is
to prove that there is no spatial or temporal meso-scale fluctuation to prevent
the convergence (1.2).

It is based on the relative entropy method, so-called because the funda-
mental quantity to be considered is the relative entropy defined by

H(f |g) =
∫
f log(f/g)dω

for any two probability densities f and g.
If fN is the solution to the Liouville equation (1.1) and ψt is any density,

we have the following identity

∂tH(fN (t)|ψt) = −
∫
fN (t)

(
ψ−1
t (L− ∂t)ψt

)
dω .

From Jensen’s inequality, we then deduce that

∂tH(fN (t)|ψt) ≤ H(fN (t)|ψt) + log
∫
ψt
(
ψ−1
t (L− ∂t)ψt

)
dω .

Thus, if we have

1
N

log
∫
ψt
(
ψ−1
t (L− ∂t)ψt

)
dω → 0 (1.5)
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the relative entropy can be controlled on the relevant time scale. The remain-
ing argument can be summarized as showing that a weak version of (1.5) holds
if and only if ψt is a local Gibbs state with density, velocity and energy chosen
according to the Euler equations :

∂tR+∇x · (RU) = 0,
∂t(RU) +∇x · (RU ⊗ U + P ) = 0,
∂t(RE) +∇x · (REU − UP ) = 0.

This is therefore a dynamical variational approach because the problem is
solved by guessing a good test function.

1.3.2 The Incompressible Navier-Stokes Equations

Equation (1.4) is very difficult to solve as it requires inversion of the Liouville
operator. It has been first studied by Landim and Yau [68] for the asymmetric
exclusion process.

The rigorous derivation of the incompressible Navier-Stokes equations from
particle systems has then been obtained in the framework of stochastic lat-
tice models which are more manageable. Esposito, Marra and Yau [46] have
established the convergence when the target equations have smooth solutions :

Theorem 1.3.2 Consider a 3D lattice system of particles evolving by random
walks and binary collisions, with “good” ergodic and symmetry properties.
Suppose the incompressible Navier-Stokes equations have a smooth solution
u in [0, t∗]. Then the rescaled empirical velocity densities uε converge to that
solution u.

Quastel and Yau [91] have then been able to remove the regularity as-
sumption :

Theorem 1.3.3 Consider a 3D lattice system of particles evolving by random
walks and binary collisions, with “good” ergodic and symmetry properties. Let
uε be the distributions of the empirical velocity densities. Then uε are precom-
pact as a set of probability measures with respect to a suitable topology, and
any weak limit is entirely supported on weak solutions of the incompressible
Navier-Stokes equations satisfying the energy inequality.

The method used to prove this last result differs from the relative entropy
method, insofar as it considers more general solutions to the target equations,
but - as a counterpart - gives a weaker form of convergence. One main step
of the proof is to obtain the energy estimate for the incompressible Navier-
Stokes equations directly from the lattice gas dynamics by implementing a
renormalization group. A difficult point is to control the large fluctuation
using the entropy method and logarithmic Sobolev inequalities.

It is important to note that such a derivation fails if the dimension of the
physical space is less than three, meaning in particular that the 2D Navier-
Stokes equations should be relevant only for 3D flows having some translation
invariance.
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1.4 The Analytic Approach

Here we will adopt a slightly different approach since our starting point will
be the Boltzmann equation, which is the master equation of collisional kinetic
theory. In other words, we will focus on the transition from the mesoscopic
level of description to fluid mechanics indicated by the boldtype arrow in
Figure 1.1.

Note that this will give a partial answer to Hilbert’s problem insofar as
Lanford [69] has proved the convergence of the hard core billiards to the
Boltzmann equation in the Grad limit. Lanford’s result, which is the only
rigorous result on the scaling limits of many-body Hamiltonian systems with
no unproven assumption, is however restrictive as it considers only short times
(which will be not uniform in the hydrodynamic scalings) and perfect gases
(low density limit).

For the sake of simplicity, we will consider in this section the only case
when the microscopic interaction between particles is that of a hard sphere
gas. We refer to the next chapter for a discussion on collision cross-sections.

1.4.1 Formal Derivations

The first mathematical studies of hydrodynamic limits of the Boltzmnn equa-
tion are due to Hilbert [65] on the one hand, and to Chapman and Enskog
[33] on the other hand. Note that, in both cases, the derivations are purely
formal.

Hilbert’s method consists in seeking a formal solution to the scaled Boltz-
mann equation

∂tf + v · ∇xf =
1
ε
Q(f, f)

with small variable Knudsen number ε, in the form

f(t, x, v, ε) =
∞∑
n=0

εnfn(t, x, v).

Identifying the coefficients of the different powers of ε, we then obtain systems
of equations for the successive approximations f0, f0 + εf1, .....

Chapman-Enskog’s method is a variant of the previous asymptotic ex-
pansion, in which the coefficients fn are functions of the velocity v and of
the hydrodynamic fields, namely the macroscopic density R(t, x, ε), the bulk
velocity U(t, x, ε) and the temperature T (t, x, ε) associated to f . For details,
we refer to the next chapter.

Both methods allow to derive formally the Euler equations, as well as
the weakly viscous Navier-Stokes equations. Let us mention however that, at
higher order with respect to ε, one obtains systems of equations such as the
Burnett model, the physical relevance of which is not clear. Moreover, these
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asymptotic expansions do not converge in general for fixed ε, and thus can
represent only a very restricted class of solutions to the Boltzmann equation.

Grad [59] has proposed another, much simpler, method to derive formally
hydrodynamic limits of the Boltzmann equation. This method, also called mo-
ment method can be actually compared to Morrey’s analysis in the framework
of particle systems. The first step consists in writing the local conservation
laws for the hydrodynamic fields, namely the macroscopic density R(t, x, ε),
the bulk velocity U(t, x, ε) and the temperature T (t, x, ε) associated to f .
The problem is then to get a closure for this system of equations, i.e. a state
relation based on the hypothesis of local thermodynamic equilibrium.

1.4.2 Convergence Proofs Based on Asymptotic Expansions

Many of the early justifications of hydrodynamic limits of the Boltzmann
equation are based on truncated asymptotic expansions. For instance, Caflisch
[24] gave a rigorous justification of the compressible Euler limit up to the first
singular time for the solution of the Euler system, which is the counterpart of
the result in [89] for particle systems :

Theorem 1.4.1 Suppose the Euler equations have a smooth solution (R,U, T )
in [0, t∗]. Then there exists a sequence (fε) of Boltzmann solutions

∂tf + v · ∇xf =
1
ε
Q(f, f)

the moments (Rε, Uε, Tε) of which tend to (R,U, T ) as the mean free path ε
tends to zero.

Later Lachowicz [66] completed Caflisch’s analysis by including initial lay-
ers in the asymptotic expansion, thereby dealing with more general initial
data than in Caflish’s original paper.

By the same method, DeMasi, Esposito and Lebowitz [42] justified the
hydrodynamic limit of the Boltzmann equation leading to the incompressible
Navier-Stokes equations. Like Caflisch’s, their proof holds for as long as the
solution of the Navier-Stokes equations is smooth, which is also reminiscent
of the difficulty encountered in the framework of particle systems [46].

Theorem 1.4.2 Suppose the incompressible Navier-Stokes equations have a
smooth solution u in [0, t∗]. Then there exists a sequence (fε) of Boltzmann
solutions

∂tf +
1
ε
v · ∇xf =

1
ε2Q(f, f)

which is close to the Maxwellian M(1,εu,1) with unit density and temperature,
and bulk velocity εu, in some appropriate function space.

Besides the solution of the Boltzmann equation so constructed that con-
verges to a local equilibrium governed by the Navier-Stokes equation fail to be
nonnegative. It could be that this problem can be solved by the same method
as in Lachowicz’s paper; however there is no written account of this so far.
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1.4.3 Convergence Proofs Based on Spectral Results

Many other rigorous results have been obtained in a perturbative frame-
work, using the spectral properties of the linearized collision operator at some
Maxwellian equilibrium. Let us mention for instance the result by Nishida
[88] which was the first mathematical proof of the compressible Euler limit of
the Boltzmann equation. His argument used the description of the spectrum
of the linearized Boltzmann equation by Ellis and Pinski [45], together with
an abstract variant of the Cauchy-Kovalevski theorem due to Nirenberg and
Ovsyannikov.

The more striking result based on such a spectral analysis is probably the
one by Bardos and Ukai [7] concerning the incompressible Navier-Stokes limit
of the Boltzmann equation. Although in the same spirit as Nishida’s result,
it puts less severe restrictions on the regularity of the target hydrodynamic
solutions. Indeed Nishida’s analysis considered analytic solutions of the com-
pressible Euler system, and therefore was only local in time; on the contrary,
the work of Bardos and Ukai considered global solutions to the Navier-Stokes
equations, corresponding to initial velocity fields that are small in some ap-
propriate Sobolev norm.

Theorem 1.4.3 Let M be a global thermodynamic equilibrium (for instance
the reduced centered Gaussian), and g0 be some fluctuation of small norm in
some appropriate weighted Sobolev space.

Then, for any ε ∈]0, 1] there exists a unique global solution fε = M(1+εgε)
to the scaled Boltzmann equation

∂tfε +
1
ε
v · ∇xfε =

1
ε2Q(fε, fε),

fε|t=0 = M(1 + εg0) .

Furthermore the bulk velocity
∫
Mgεvdv converges uniformly to the unique

strong solution of the incompressible Navier-Stokes equations.

The perturbative method employed to prove that result uses the existence
of classical solutions for the incompressible Navier-Stokes equations in the
Sobolev space H l for l > 3

2 with initial data small enough. The main idea by
Ukai [103] is to prove that a similar theory holds for the Boltzmann equation
in diffusive regime. The derivation of the Navier-Stokes limit relies then on
a rigorous proof of the relation between these two theories. The point to
be stressed is that exactly the same type of assumptions are made on the
initial data. The Bardos-Ukai statement results then from sharp bounds on
the linearized collision operator.

1.4.4 A Program of Deriving Weak Solutions

The main restrictions in the previous results are the regularity and smallness
conditions on the initial data (the second assumption being possibly replaced
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by some restriction on the time interval on which one can prove the validity
of the approximation). Such assumptions are not expected to be necessary,
working with Leray solutions of the incompressible Navier-Stokes equations
and with renormalized solutions to the Boltzmann equation.

That is why Bardos, Golse and Levermore [4, 5] have proposed - at the be-
ginning of the nineties - a program of deriving weak solutions of fluid models
from the DiPerna-Lions solutions of the Boltzmann equation. Their ultimate
goal was to obtain a theorem of hydrodynamic limits that should need only
a priori estimates coming from physics, i.e. from mass, energy and entropy
bounds. In spite of significant difficulties linked to our poor understanding of
renormalized solutions, this program has achieved important successes, espe-
cially in the diffusive scaling limit for which a complete convergence result is
now established.

The goal of the present volume is to present an overview of these relatively
recent results, and some challenging questions that remain open in that field.



2

The Boltzmann Equation and its Formal
Hydrodynamic Limits

The kinetic theory, introduced by Boltzmann at the end of the nineteenth
century, provides a description of gases at an intermediate level between the
hydrodynamic description which does not allow to take into account phenom-
ena far from thermodynamic equilibrium, and the atomistic description which
is often too complex. For a detailed presentation of the various models and
their derivation from the fundamental laws of physics, we refer to the book
of Cercignani, Illner and Pulvirenti [31] or to the survey on the Boltzmann
equation by Villani [106]. Here we will just recall some basic facts which are
useful for the understanding of the problem of hydrodynamic limits.

Kinetic theory aims at describing a gas (or a plasma), that is a system
constituted of a large number N of electrically neutral (or charged) particles
from a microscopic point of view. The state of the gas is therefore modelled
by a distribution function in the particle phase space, which includes both
macroscopic variables, i.e. the position x in physical space, and microscopic
variables, for instance the velocity v. In the case of a monatomic gas,

f ≡ f(t, x, v), t > 0, x ∈ Ω, v ∈ R3 .

meaning that, for all infinitesimal volume dxdv around the point (x, v) of the
phase space, f(t, x, v)dxdv represents the number of particles, which at time t,
have position x and velocity v.

The function f is of course nonnegative, it is not directly observable but
allows to compute all measurable macroscopic quantities which can be ex-
pressed in terms of microscopic averages, namely the local density R, the
local bulk velocity U or the local temperature T

R(t, x) =
∫
f(t, x, v)dv, RU(t, x) =

∫
f(t, x, v)vdv,

R(|U |2 + 3T )(t, x) =
∫
f(t, x, v)|v|2dv.

(2.1)

L. Saint-Raymond, Hydrodynamic Limits of the Boltzmann Equation, 13
Lecture Notes in Mathematics 1971, DOI: 10.1007/978-3-540-92847-8 2,
c© Springer-Verlag Berlin Heidelberg 2009
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The distribution function f can actually be seen as the one-particle
marginal of some probability density f (N) on the space (Ω ×R3)N of all mi-
croscopic configurations. Of course such a statistical description makes sense
only if the number N of particles is sufficiently large so that the gas can be
considered as a continuous medium. Kinetic equations are thus obtained in
the thermodynamic limit, i.e. as N tends to infinity.

From Newton’s principle we can deduce a linear partial differential equa-
tion for f (N), the so-called Liouville equation, and then, if we neglect the
interactions between particles, we obtain the following free transport equation
for f :

∂tf + v · ∇xf = 0, (2.2)

meaning that particles travel at constant velocity, along straight lines, and
that the density is constant along characteristic lines

dx

dt
= v,

dv

dt
= 0 .

The operator v ·∇x is the classical transport operator. Its mathematical prop-
erties are much subtler than it would seem at first sight and will be discussed
later. Complemented with suitable boundary conditions, equation (2.2) is the
right equation for describing a classical gas of noninteracting particles. Many
variants are possible. For instance, in the relativistic case, v should be replaced
in (2.2) by p/

√
m2 + (p/c)2, where c is the speed of light and m is the mass

of elementary particles.
Now, if the microscopic interactions between particles are described through

a very long-range potential (namely in the case of electromagnetic interactions),
it is enough to consider only the global effect on each particle of the interaction
forces exerted by all other particles, and we get mean field models of the following
type

∂tf + v · ∇xf + F · ∇vf = 0, (2.3)

where the force F can be computed in terms of the distribution function f . For
instance, in the electrostatic approximation, F is proportional to the electric
field, which is itself obtained from the density ρ =

∫
fdv by the Poisson

equation.
In the case when microscopic interactions are described by some short-

range potential, it is not possible to evaluate the effects of the interacting
forces in a global way, using only some averaged quantities. The interactions
are indeed very sensitive to the exact positions and velocities of the particles :
considering for instance a system of hard spheres, i.e. of particles which collide
bounce on each other like billiard balls, it is indeed easy to see that changing
slightly the position of one particle may modify strongly the dynamics of the
system (see Figure 2.1).

The derivation of collisional kinetic models requires therefore very strong
assumptions to guarantee some “statistical stability” of the dynamics.
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In a statistical description (which does not distinguish particles), such a perturbation has a weak
effect on the binary collision.

Fig. 2.1. Instability of trajectories

2.1 Formulation and Fundamental Properties
of the Boltzmann Equation

2.1.1 The Boltzmann Collision Integral

The Boltzmann equation is obtained in the thermodynamic limit N → ∞
under the following conditions :

• particles interact via binary collisions, meaning that the gas is dilute
enough that the effect of interactions involving more than two particles
can be neglected. Furthermore, collisions are localized both in space and
time, meaning that the typical duration and impact parameter of the in-
teracting processes are negligible compared respectively to the typical time
and space scales of the description.
More precisely, the system has to satisfy the scaling assumption, known
as Boltzmann-Grad scaling

Nd3 << L3, Nd2 = O(L2),

where d denotes the typical range of microscopic interactions, and L is the
typical macroscopic length scale.

• collisions are elastic, meaning that momentum and kinetic energy are pre-
served in the microscopic collision process. Denoting by v′, v′∗ the veloci-
ties before collision, and by v, v∗ the velocities after collision, the following
equations have to be satisfied

v′ + v′∗ = v + v∗, |v′|2 + |v′∗|2 = |v|2 + |v∗|2, (2.4)
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V*

V

V’
*

V’

Fig. 2.2. Parametrization of elastic collisions

so that v′ and v′∗ can be parametrized by σ ∈ S2 as shown in Figure 2.2

v′ =
v + v∗

2
+
|v − v∗|

2
σ, v′∗ =

v + v∗
2
− |v − v

∗|
2

σ (2.5)

Note that, as the microscopic dynamics is time-reversible, the probability
that (v, v∗) are changed into (v′, v′∗) in a collision process is the same as
the probability that (v′, v′∗) are changed into (v, v∗).

• collisions involve only uncorrelated particles, meaning in particular that
particles which have already collided are expected not to re-collide in the
future. Such a chaos assumption (which implies an asymmetry between
the past and the future) allows to consider that the joint distribution of
velocities of particles which are about to collide is given by a tensor product
(in velocity space) of f with itself.
It has been proved by Lanford in 1978 [69] that chaos is asymptotically
propagated in the Boltzmann-Grad limit (at least for small times), pro-
vided that the initial probability density f

(N)
in is sufficiently close to a

tensor product (fin)⊗N .

The Boltzmann equation reads therefore

∂tf + v · ∇xf = Q(f, f) (2.6)

where Q is a quadratic operator acting only on the v variable (first assump-
tion), and involving tensor products (third assumption).

It is given by

Q(f, f) =
∫
R3
dv∗

∫
S2
dσB(v − v∗, σ)(f ′f ′∗ − ff∗) (2.7)

where we have used the standard abbreviations
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f ′ = f(v′), f ′∗ = f(v′∗), f∗ = f(v∗)

with (v′, v′∗) given by (2.5) (second assumption).
The Boltzmann collision operator can therefore be split into a gain term

and a loss term
Q(f, f) = Q+(f, f)−Q−(f, f).

The loss term counts all collisions in which a given particle of velocity v will
encounter another particle, of velocity v∗, and thus will change its velocity
leading to a loss of particles of velocity v, whereas the gain term measures
the number of particles of velocity v which are created due to some collision
between particles of velocities v′ and v′∗.

The collisional cross-section B ≡ B(z, σ) is a nonnegative function
depending only on |z| and the scalar product z · σ (because of the microre-
versibility assumption), which measures in some sense the statistical reparti-
tion of post-collisional velocities given the pre-collisional velocities. It depends
crucially on the nature of the microscopic interactions.

If the particles are assumed to interact via a given potential Φ, the post-
collisional velocities and especially the deviation angle θ defined by

cos θ =
v − v∗
|v − v∗|

· σ

can be computed in terms of the impact parameter b and relative velocity
z = v−v∗ as the result of a classical scattering problem (see [28] for instance) :

θ(b, z) = π − 2
∫ b/s0

0

du√
1− u2 − 4

|z|2Φ
(
b
u

) ,
where s0 is the positive root of

1− b2

s2
0
− 4

Φ(s0)
|z|2

= 0 .

Then the cross-section B is implicitly defined by

B(|z|, cos θ) =
b

sin θ
db

dθ
|z|.

It can be made explicit in the case of hard spheres

B(|z|, cos θ) = a2|z|,

where a is the (scaled) radius of the spheres, and in the case of Coulomb inter-
action where B is given by Rutherford’s formula. In the important model case
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of inverse-power law potentials, the cross-section cannot be computed explic-
itly, but one can show that

B(|z|, cos θ) = b(cos θ)|z|γ

where γ depends on the power occurring in the potential, and b is a lo-
cally smooth function with a nonintegrable singularity at θ = 0. The case
of Maxwellian molecules corresponds to the situation when γ = 0, which is
not physically relevant but enables one to do many explicit calculations in
agreement with physical observations.

The nonintegrable singularity in the angular cross-section b is an effect of
the huge amount of grazing collisions, i.e. of collisions with a very large impact
parameter so that colliding particles are hardly deviated. Such a singularity
appears as soon as the forces are of infinite range, no matter how fast they
decay at infinity. By the way, it seems strange to allow infinite-range forces,
while we assumed interactions to be localized. Anyhow, in all the sequel we
shall tame the singularity for grazing collisions and replace the cross-section by
a locally integrable one, which is referred to as cut-off process. More precisely,
following Grad [59], we will assume

0 < B(|z|, σ) ≤ Cb(1 + |z|)β a.e. on R3×S2, with β ∈ [0, 1]∫∫
S2
B(z, σ)dσ ≥ 1

Cb

|z|
1 + |z|

a.e. on R3 .
(2.8)

In the case of a spatial domain Ω ⊂ R3 with boundaries, the Boltzmann
equation has to be supplemented with boundary conditions which model the
interaction between the particles and the frontiers of the domain ∂Ω. These
boundary conditions have to be prescribed only on incoming trajectories, that
is on the set

Σ− = {(t, x, v) ∈ R+ × ∂Ω ×R3 / v · n(x) < 0} (2.9)

where n(x) stands for the outward unit normal vector at x ∈ ∂Ω.
The most natural boundary condition is the specular reflection

f(t, x,Rxv) = f(t, x, v), Rxv = v − 2(v · n(x))n(x), x ∈ ∂Ω. (2.10)

Such a condition expresses the fact that particles bounce back on the wall with
a post-collisional angle equal to the pre-collisional angle. The wall is therefore
considered as a perfect solid with a regular surface whose direction is precisely
known. In particular, the atomistic nature of the solid and the fine details of
the gas-surface interaction are not taken into account.

An alternative consists in modelling the statistical effects of the boundary
irregularities, using a scattering kernel K (see [28] for further details on this
topic) :

f(t, x, v) =
∫
v′·n(x)>0

K(v′, v)f(t, x, v′)dv′, on Σ−, (2.11)
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A particular case is the Maxwellian reflection

f(t, x, v) =

(∫
v′·n(x)>0

f(t, x, v′)dv′
)
MW (v), on Σ−, (2.12)

where MW is some fixed normalized gaussian distribution depending on the
temperature of the wall. In this model, particles are absorbed and then re-
emitted according to the distribution MW , corresponding to a thermodynamic
equilibrium between particles and the wall.

Of course one can combine the above conditions, which leads to more
realistic models.

It is important to note that the set of characteristics relying on the singular
set

Σ0 = {(t, x, v) ∈ R+×∂Ω ×R3 / v · n(x) = 0}

is of zero Lebesgue measure, so that it is not necessary to define the distri-
bution function on it. (We refer for instance to the results - based on Sard’s
Theorem - established by Bardos in [3].)

2.1.2 Local Conservation Laws

The pre-postcollisional change of variable

(v′, v′∗, σ) 7→ (v, v∗, σ)

is involutive (since the collisions are assumed to be elastic) and has therefore
unit Jacobian. Furthermore, as a consequence of microreversibility, it leaves
the cross-section invariant.

Then, if ϕ is an arbitray continuous function of the velocity v∫
R3
Q(f, f)ϕ(v)dv

=
∫
R3×R3

dvdv∗

∫
S2
dσB(v − v∗, σ)(f ′f ′∗ − ff∗)ϕ

=
1
2

∫
R3×R3

dvdv∗

∫
S2
dσB(v − v∗, σ)(f ′f ′∗ − ff∗)(ϕ+ ϕ∗)

=
1
4

∫
R3×R3

dvdv∗

∫
S2
dσB(v − v∗, σ)(f ′f ′∗ − ff∗)(ϕ+ ϕ∗ − ϕ′ − ϕ′∗)

provided that f satisfies convenient integrability conditions.
As an immediate consequence, whenever ϕ satisfies the functional equation

ϕ(v) + ϕ(v∗) = ϕ(v′) + ϕ(v′∗) ∀(v, v∗, σ) ∈ R3×R3×S2 (2.13)

then, at least formally ∫
R3
Q(f, f)ϕ(v)dv = 0.
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An important result in the theory of the Boltzmann equation asserts that all
measurable a.e. finite functions satisfying (2.13) are linear combinations of
the collision invariants

1, v1, v2, v3, |v|2.
The proof of this result is far from obvious; see for instance [28].

This leads to the formal conservation laws for the Boltzmann equation.

Proposition 2.1.1 Let f ≡ f(t, x, v) be a solution of the Boltzmann equation
(2.6) that is locally integrable and rapidly decaying in v for each (t, x). Then
the following local conservation laws hold :

∂t

∫
R3
fdv +∇x ·

∫
R3
vfdv = 0,

∂t

∫
R3
vfdv +∇x ·

∫
R3
v ⊗ vfdv = 0,

∂t

∫
R3

1
2
|v|2fdv +∇x ·

∫
R3

1
2
|v|2vfdv = 0,

(2.14)

respectively the local conservation of mass, momentum and energy.

Yet, to this date, no mathematical theory has been able to justify these
simple rules at a sufficient level of generality. Even the corresponding global
conservation laws in the absence of boundaries are not established. The prob-
lem is of course that too little is known about how well behaved are the
solutions to the Boltzmann equation.

With the notations of the introduction for the thermodynamic fields,
namely the local density R, the local bulk velocity U and the local tem-
perature T

R(t, x) =
∫
f(t, x, v)dv, RU(t, x) =

∫
f(t, x, v)vdv,

R(|U |2 + 3T )(t, x) =
∫
f(t, x, v)|v|2dv,

and the following definition of the pressure tensor

P (t, x) =
∫

(v − U)⊗2f(t, x, v)dv

these continuity equations are

∂tR+∇x · (RU) = 0,
∂t(RU) +∇x · (RU ⊗ U + P ) = 0,
∂t(R|U |2 + tr(P )) +∇x ·

(
U(R|U |2+tr(P )) + 2P · U)

= −∇x ·
(∫

(v − U)|v − U |2fdv
)
,

where tr(P ) denotes the trace of the pressure tensor. Note that these equations
are very similar to the Euler equations for compressible perfect gases.
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2.1.3 Boltzmann’s H Theorem

The other very important feature of the Boltzmann equation comes also from
the symmetries of the collision operator. Without caring about integrabil-
ity issues, we plug ϕ = log f into the symmetrized integral obtained in the
previous paragraph, and use the properties of the logarithm, to find

D(f) def= −
∫
Q(f, f) log fdv

=
1
4

∫
R3×R3×S2

dvdv∗dσB(v − v∗, σ)(f ′f ′∗ − ff∗) log
f ′f ′∗
ff∗

≥ 0

(2.15)

The so-defined entropy dissipation is therefore a nonnegative functional, and
it can be proved that its minimizers (in the class of locally integrable func-
tions rapidly decaying and such that log f has at most polynomial growth as
|v| → ∞) are Maxwellian densities, i.e. distribution functions of the following
form

MR,U,T (v) =
R

(2πT )3/2 exp
(
−|v − U |

2

2T

)
(2.16)

for some R, T > 0 and U ∈ R3. This result is an easy consequence of the
characterization of the collision invariants provided that f is continuous. In
the general case, it can be proved by a nice argument due to Perthame (see
[16] for instance) using the Fourier transform of the functional equation on f .

This leads to Boltzmann’s H theorem, also known as second principle of
thermodynamics, stating that the entropy is (at least formally) a Lyapunov
functional for the Boltzmann equation :

Proposition 2.1.2 Let f ≡ f(t, x, v) be a solution of the Boltzmann equation
(2.6) that is locally integrable and such that f is rapidly decaying in v and log f
has at most polynomial growth as |v| → ∞ for each (t, x). Then the following
local entropy inequality holds :

∂t

∫
f log fdv +∇x ·

∫
vf log fdv = −D(f) ≤ 0. (2.17)

Again this differential inequality is formally reminiscent of the Lax-
Friedrichs criterion that selects admissible solutions of the compressible Euler
equations. In particular, it demonstrates that the Boltzmann model has some
irreversibility built in. However a considerable difference with the theory of
hyperbolic system of conservations laws is that Boltzmann’s H theorem pro-
vides an expression for the entropy dissipation rate in terms of the distribution
function, which is local in (t, x).
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2.2 Orders of Magnitude and Qualitative Behaviour
of the Boltzmann Equation

The aim of this section is to give an overview of the dynamics associated with
the Boltzmann equation, depending on the relative sizes of the various physical
parameters. Roughly speaking, the convection phenomena are governed by the
transport operator, whereas the diffusion phenomena are ruled by the collision
operator. The main features of the macroscopic flow should then depend on
the balance between these two terms, and especially of the ratio between the
various typical length (or time) scales arising in the system.

2.2.1 Nondimensional Form of the Boltzmann Equation

Choose some observation (macroscopic) length scale lo and time scale to, and
a reference temperature To. This defines two velocity scales :

• one is the speed at which some macroscopic portion of the gas is trans-
ported over a distance lo in time to, i.e.

lo
to

;

• the other one is the thermal speed of the molecules with energy 3
2kTo,

where k is the Boltzmann constant; in fact, it is more natural to define
this velocity scale as

c =

√
5
3
kTo
m

m being the molecular mass, which is the speed of sound in a monatomic
gas at the temperature To.

Define next the dimensionless variables involved in the Boltzmann equa-
tion, i.e. the dimensionless time, space and velocity variables as

t̃ =
t

to
, x̃ =

x

lo
, and ṽ =

v

c
.

Define also the dimensionless number density

f̃(t̃, x̃, ṽ) =
l3oc

3

N
f(t, x, v) def=

c3

Ro
f(t, x, v),

where N is the total number of gas molecules in a volume l3o, meaning that
Ro is the average macroscopic density.

Finally, since the Boltzmann kernel B has units of the reciprocal product
of density by time, it determines a timescale τ by∫

M(Ro,0,To)(v)M(Ro,0,To)(v∗)B(v − v∗, σ)dσdv∗dv =
N

l3oτ
.
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The finiteness of the above integral is ensured by Grad’s cutoff assumption
(2.8) on B, so that 0 < τ < +∞. This is the scale of the average time that
particles in the equilibrium density M(R0,0,T0) spend traveling freely between
two collisions, the so-called mean free time. It is related to the length scale of
the mean free path λ

λ = cτ.

Define the dimensionless Boltzmann kernel B̃ by the relation

B̃(ṽ − ṽ∗, σ) = R0τB(v − v∗, σ)

and set the corresponding dimensionless collision operator to be

Q̃(f̃ , f̃) =
∫∫

dv∗dσB̃(ṽ − ṽ∗, σ)(f̃ ′∗f̃
′ − f̃∗f̃).

Then, the Boltzmann equation

∂tf + v · ∇xf = Q(f, f),

can be reformulated in terms of dimensionless variables

lo
cto

∂t̃f̃ + ṽ · ∇x̃f̃ =
lo
λ
Q̃(f̃ , f̃).

The factor multiplying the collision integral is the inverse Knudsen number

Kn =
λ

lo
,

while the factor multiplying the time derivative is the kinetic Strouhal number

St =
lo
cto

(by analogy with the notion of Strouhal number used in the dynamics of vor-
tices). Hence the dimensionless form of the Boltzmann equation is (dropping
all tildas)

St∂tf + v · ∇xf =
1

Kn
Q(f, f). (2.18)

Before discussing the qualitative behaviour of the solution to the
Boltzmann equation in terms of the relative sizes of the parameters Kn and St,
let us comment a little bit on the choice of the reference scales, and introduce
another dimensionless parameter which allows to compensate the arbitrariness
of this choice.

A rather natural thing to do is to choose the length, time and temperature
scales lo, to, To in a way that is consistent with the geometry of the domain
where the gas motion takes place, the time necessary to observe significant
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gas motion, and the distribution function at the initial instant of time. In this
case, the ratio lo/to corresponds to the bulk velocity uo of the flow and the
Strouhal number is nothing else than the Mach number

Ma =
uo
c
.

However, considering small fluctuations around some reference flow, it may
happen that the bulk velocity uo to be studied is very small compared to the
ratio lo/to (which leads to some “linearized” hydrodynamics), so it makes
sense to consider situations such that

Ma << St.

2.2.2 Hydrodynamic Regimes

All hydrodynamic limits of the Boltzmann equation correspond to situations
where the Knudsen number Kn satisfies

Kn << 1 .

Indeed, in view of Boltzmann’s H theorem, one expects the distribution func-
tion to resemble more and more a local Maxwellian when Kn → 0. In other
words, the collision mechanism holds on a time scale which is very small
compared to the observation time scale, so that one can consider that local
thermodynamic equilibrium is reached almost instantaneously. This means
that the Knudsen number Kn governs the transition from kinetic theory to
hydrodynamics.

But there is no universal prescription for the Strouhal number in this
context; as we shall see below, various hydrodynamic regimes can be derived
from the Boltzmann equation by appropriately tuning the Strouhal number St.

The Compressible Euler Limit

is the easiest of all hydrodynamic limits of the Boltzmann equation at the
formal level, as can be expected from the previously mentioned analogy be-
tween the system of conservation laws (2.14) associated with the Boltzmann
equation, and the compressible Euler system. Indeed, as Kn→ 0, solutions of
the Boltzmann equation behave as local Maxwellians, namely

f(t, x, v) ∼ R(t, x)
(2πT (t, x))3/2 exp

(
−|v − U(t, x)|2

2T (t, x)

)
for some R(t, x), T (t, x) > 0 and U(t, x) ∈ R3.
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Therefore, passing to the limit in the local conservation laws (2.14), we get

St∂tR+∇x · (RU) = 0,
St∂t(RU) +∇x · (RU ⊗ U +RTId) = 0,
St∂t(R|U |2 + 3RT ) +∇x ·

(
U(R|U |2 + 5RT )

)
= 0,

(2.19)

which are the equations of hydrodynamics for perfect gases, satisfying in par-
ticular the state relation

P = RTId.

That there is no excluded volume in this state relation is strongly linked with
the Boltzmann-Grad scaling assumption Nd3 << l3o, which expresses the fact
that the volume occupied by the particles is negligible compared with the
volume of the domain.

Furthermore, taking limits in the local entropy inequality (2.17), we obtain

St∂t

(
R log

R

T 3/2

)
+∇x ·

(
RU log

R

T 3/2

)
≤ 0, (2.20)

which is exactly the Lax admissibility condition, characterizing among the
solutions of (2.19) those which are physically relevant, i.e. which satisfied the
second principle of thermodynamics.

In other words, we expect the moments of the solution f to the Boltzmann
equation to be approximated at order O(Kn) by the solution to the compress-
ible Euler equations.

A natural question is then to determine higher order hydrodynamic cor-
rections to the compressible Euler system.

Higher Order Hydrodynamic Approximations

can be obtained by using asymptotic expansions of the distribution function
in terms of the Knudsen number Kn, or in other words by seeking solutions
of the scaled Boltzmann equation (2.18) as formal power series in Kn

f(t, x, v) =
∑
k≥0

(Kn)kfk(t, x, v),

with coefficients fk that are smooth in (t, x, v) and rapidly decaying as
|v| → ∞. Of course the leading order approximation f0 is expected to be
the limiting hydrodynamic distribution function, that is the local Maxwellian
with thermodynamic fields satisfying the compressible Euler equations (2.19),
while the successive corrections fk account for finite Knudsen effects. Note
that, depending on the exact form of the Ansatz, this process will lead to
different hierarchies of PDEs.
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Hilbert’s expansion

f(t, x, v) = f0(t, x, v)

1 +
∑
k≥1

(Kn)kgk(t, x, v)


is historically the older and goes back to Hilbert’s fundamental paper [65] on
the kinetic theory of gases. Plugging this Ansatz in the scaled Boltzmann equa-
tion (2.18), and balancing the resulting coefficients of the successive powers of
Kn, one gets, as compatibility conditions to solve the hierarchy, that at each
order k ≥ 1, the hydrodynamic part of gk satisfies the linearized compressible
Euler equations (with source terms depending on gk−j , for j = 1, ..., n− 1). It
seems then natural to collect all the contributions to the local thermodynamic
equilibrium at leading order.

Such a variant of Hilbert’s expansion was found independently by
Chapman and Enskog, and is known today as Chapman-Enskog’s expan-
sion [33]

f(t, x, v) =Mf (t, x, v)

1 +
∑
k≥1

(Kn)kg̃k(t, x, v)


where Mf is the local Maxwellian with same moments as f

Mf (t, x, v) =
R(t, x)

(2πT (t, x))3/2 exp
(
−|v − U(t, x)|2

2T (t, x)

)
,

R(t, x) =
∫
f(t, x, v)dv, RU(t, x) =

∫
vf(t, x, v)dv,

R(|U |2 + 3T )(t, x) =
∫
|v|2f(t, x, v)dv,

(2.21)

and the fluctuations g̃k are functions of v depending on (t, x) through R(t, x),
U(t, x) and T (t, x) and their partial x-derivatives evaluated at (t, x). Note
that, at variance with Hilbert’s expansion, Chapman-Enskog’s Ansatz requires
knowing in advance that the successive corrections to the compressible Euler
system (2.19) within any order in Kn are systems of local conservation laws.

The first correction to the compressible Euler equations is then given by

St∂tMf + v · ∇xMf = −MfLMf
(g̃1),

or equivalently

St∂t

(
logR− 3

2
log T − 1

2T
|v − U |2

)
+∇x

(
logR− 3

2
log T − 1

2T
|v − U |2

)
·v

= −LMf
(g̃1),

where LMf
denotes the linearization of the collision operator at the local

Maxwellian Mf . Then, using the properties of the linearized collision oper-
ator LMf

(to be studied in the next chapter), namely the fact that it is a
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Fredholm operator, one obtains the compressible Navier-Stokes system with
O(Kn) dissipation terms :

St∂tR+∇x · (RU) = 0,
St∂t(RU) +∇x ·RU ⊗ U +RTId) = Kn∇x · (µ(R, T )DU) +O(Kn2),
St∂t(R|U |2 + 3RT ) +∇x ·

(
U(R|U |2 + 5RT )

)
= Kn∇x · (κ(R, T )∇xT )

+Kn∇x · (µ(R, T )DU · U) +O(Kn2),
(2.22)

where DU denotes the traceless part of the deformation tensor

DU =
1
2

(∇xU + (∇xU)T )− 1
3

(∇x · U) Id,

and the diffusive coefficients, namely the viscosity µ ≡ µ(R, T ) and the heat
conductivity κ ≡ κ(R, T ), are defined in terms of the linearized collision op-
erator LMf

.

We then deduce formally that the solution to the Navier-Stokes equations
is close to the moments of the solution f to the Boltzmann equation at order
O(Kn2).

Such a process can be iterated in order to get further corrections to the
Navier-Stokes system, which leads to a hierarchy of hydrodynamic models
(note however that their well-posedness requires a convenient truncation al-
gorithm, as that proposed recently by Bobylev and Levermore [13]).

The Main Qualitative Features of the Hydrodynamic Flows

governed by the Boltzman equation can therefore be characterized in terms
of the nondimensional parameters introduced at the beginning of this section,
namely the Knudsen, Strouhal and Mach numbers Kn, St and Ma.

The previous results are summarized in Figure 2.3.

2.2.3 Corrections to Hydrodynamic Approximations

Furthermore we are also able to estimate by how much the solutions to the
scaled Boltzmann equation deviate from their hydrodynamic approximations,
at least inside the domain Ω (see Figure 2.4).

The adiabaticity of the gas is indeed measured in terms of the Knudsen
number Kn. In a gas close to local thermodynamic equilibrium, the deviation
from the hydrodynamic approximation is given by an entropic relaxation on
a time scale of order Kn.

The compressibility of the fluid is then measured in terms of the Mach
number Ma. In a weakly compressible fluid, the deviation from the incom-
pressible approximation is given by compression/decompression waves, also
called acoustic waves, oscillating on a period of order Ma.

The viscosity of a perfect gas is measured in terms of the Reynolds number
Re = Ma/Kn. In a weakly viscous fluid, the deviation from the hyperbolic
approximation is given by a small diffusion which smoothes the shock profiles
on length scales of order 1/

√
Re.
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Scaled Boltzmann equation

compressible Euler equations
(+ viscous correction O(Kn))

incompressible Euler equations incompressible Navier-Stokes equations

AROUND A GLOBAL EQUILIBRIUM
INCOMPRESSIBLE LIMIT Ma<<1

FAST RELAXATION LIMIT Kn<<1

Kn<<Ma Kn~Ma

Fig. 2.3. Hydrodynamic models for rarefied gases

RELAXATION
t

Kn

OSCILLATIONS

tMa

SMOOTHING
x

(Re)-1/2

Fig. 2.4. Corrections to hydrodynamic approximations
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2.2.4 Taking into Account the Boundary

It remains then to understand what happens in the vicinity of the boundaries
∂Ω, which can be either exterior boundaries or obstacles.

Let us first recall that, at the microscopic level, the interaction between
the gas and the boundaries is modelized phenomenologically by Maxwell’s
condition. If the boundary is perfectly smooth, the reflection is specular. If
the boundary is rough, one further introduces some diffusion by a scattering
operator, which is a relevant approximation when considering large length
scales compared to the boundary irregularities. The roughness of the boundary
is then measured by a supplementary non-dimensional parameter α ∈ [0, 1],
called the accommodation coefficient. More precisely the balance between the
outgoing and incoming part of the trace of f states

f|Σ− = (1− α)Lf|Σ+ + αK(f|Σ+) on Σ− (2.23)

where we recall that the outgoing/incoming sets Σ+ and Σ− at the boundary
∂Ω are defined by

Σ± = {(x, v) ∈ ∂Ω ×R3, ±n(x) · v > 0} (2.24)

denoting by n the outward normal on ∂Ω.
The local reflection operator L is given by

Lf(x, v) = f(x,Rxv) (2.25)

where Rxv = v − 2(v · n(x))n(x) is the velocity before the collision with the
wall. The diffuse reflection operator K is given by

Kf(x, v) = MW (v)
∫
v′.n(x)>0

f(x, v′) (v′ · n(x))dv′ (2.26)

where MW is some Maxwellian distribution characterizing the state of the
wall and such that∫

v.n(x)>0
(v · n(x))MW (v)dv =

∫
v.n(x)<0

|v · n(x)|MW (v) dv = 1,

which expresses the conservation of mass at the boundary.
At the macroscopic level, one can obtain two types of behaviours at the

boundary : either a braking (represented by the Dirichlet boundary condition)
or a slipping (represented by the Navier boundary condition), or a combination
of these two phenomena (expressed by some mixed Robin boundary condition).
This behaviour will depend of course on the nature of the boundary, but also
on the viscosity of the fluid.

If the fluid is viscous, one can characterize the fluid/boundary interaction
in terms of the ratio α/Ma (full braking if α/Ma → +∞, perfect slipping if
α/Ma→ 0).
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If the fluid is inviscid, the braking condition is not mathematically admis-
sible. This means that the flow inside the domain will not depend (at least
formally) on the nature of the boundary. The fluid/boundary interaction ap-
pears only on a thin layer (of size 1/

√
Re), called Prandtl layer. Nevertheless

this layer is generally unstable (see [61] for instance) and may give rise to
turbulent effects (reflected back inside the domain).

2.3 Mathematical Theories for the Boltzmann Equation

In this section, we will introduce the main existing mathematical frameworks
dealing with the Cauchy problem for the Boltzmann equation, which can
be useful for the study of hydrodynamic limits. In particular, we will discuss
neither the numerous results concerning the spatially homogeneous Boltzmann
equation, nor the local existence results.

Let us first describe briefly the most apparent problems in trying to con-
struct a general, good theory. In the full, general situation, known a priori
estimates for the Boltzmann equation are only those which are associated
to the basic physical laws, namely the formal conservation of mass and en-
ergy, and the bounds on entropy and entropy dissipation. Note that, when the
physical space is unbounded, the dispersive properties of the free transport
operator allow to further expect some control on the moments with respect
to x-variables. Yet the Boltzmann collision integral is a quadratic operator
that is purely local in the position and time variables, meaning that it acts
as a convolution in the v variable, but as a pointwise multiplication in the t
and x variables : thus, with the only a priori estimates which seem to hold
in full generality, the collision integral is even not a well-defined distribution
with respect to x-variables. This major obstruction is one of the reasons why
the Cauchy problem for the Boltzmann equation is so tricky, another reason
being the intricate nature of the Boltzmann operator.

2.3.1 Perturbative Framework : Global Existence of Smooth
Solutions

Historically the first global existence result for the spatially inhomogeneous
Boltzmann equation is due to Ukai [103], who considered initial data that
are fluctuations around a global equilibrium, for instance around the reduced
centered Gaussian M :

fin = M(1 + gin).

He proved the global existence of a solution to the Cauchy problem for (2.6)
under the assumption that this initial perturbation gin is smooth and small
enough in a norm that involves derivatives and weights so as to ensure decay
for large v.
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The convenient functional space to be considered is indeed

Hl,k = {g ≡ g(x, v) | ‖g‖l,k = sup
v

(1 + |v|k)‖M 1/2g(·, v)‖Hlx < +∞} .

Theorem 2.3.1 Assume that the collision kernel satisfies Grad’s cutoff as-
sumption (2.8) for some β ∈ [0, 1]. Let gin ∈ Hl,k for l > 3/2 and k > 5/2
such that

‖gin‖l,k ≤ a0 (2.27)

for some a0 sufficiently small.
Then, there exists a unique global solution f = M(1 + g) with g ∈

L∞(R+, Hl,k)∩C(R+, Hl,k) to the Boltzmann equation (2.6) with initial data

g|t=0 = gin .

Remark 2.3.2 The classical theory of the Boltzmann equation close to equi-
librium, started with the works of Ukai, has been developed in the framework
of hard potentials. Many such existence results, based on linearization and
spectral estimates, have been proved, considering initial data which are small
and very smooth perturbations of a global (Maxwellian) equilibrium.

Using some “nonlinear energy method” instead of the spectral study of the
linearized problem, and the decomposition of the solution into a “hydrody-
namic” part and a “purely kinetic” part, Guo [62] was then able to extend the
theory of Boltzmann’s equation close to equilibrium, to cover basically all the
physically meaningful range of decays of the cross-section.

Sketch of proof of Theorem 2.3.1. Such a global existence result is based on
Duhamel’s formula and on Picard’s fixed point theorem. It requires a very
precise study of the linearized collision operator LM defined by

LMg = − 2
M
Q(M,Mg),

and more precisely of the semi-group U generated by

1
St
v · ∇x +

1
StKn

LM .

• The first step consists actually in reducing the Boltzmann equation to
the integral equation

g = N [g], (2.28)

where the functional N is defined by

N [g](t) = U(t)gin + ψ[g, g](t) ,

ψ[g, g](t) =
1

Kn

∫ t

0
U(t− s) 1

M
Q(Mg,Mg)(s)ds .

(2.29)

The global well-posedness of the Cauchy problem for (2.6) will then be es-
tablished by proving that N is a contraction in a ball of L∞(R+, Hl,k) ∩
C(R+, Hl,k).
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• The second step is to prove the continuity of the linear semi-group U . Us-
ing its spectral representation and spectral estimates due to Ellis and Pinsky
[45], one obtains the continuity of U in H l

x(L2(Mdv)).
In order to obtain refined estimates, and especially to gain integrability

with respect to the v-variable, one has to use more about the structure of
the linearized collision operator, namely the following decomposition due to
Hilbert [65] (see also section 2 in Chapter 3)

LM = ν −K

where the frequency part satisfies the lower bound

ν(|v|) ≥ ν− > 0 ,

and the integral part K improves integrability in the v variable (as proved by
Caflisch [23]) :

K : H l
x(L2

v)→ Hl,0 , and K : Hl,k → Hl,k+1 .

From the explicit formula for the semi-group Ū generated by

1
St
v · ∇x +

1
StKn

ν

and Duhamel’s formula

U(t) = Ū(t) +
1

StKn

∫ t

0
Ū(t− s)KU(s)ds ,

we deduce that

‖U(t)g‖Y ≤ exp
(
− ν−

StKn
t
)
‖g‖Y +CX→Y

∫ t

0
exp
(
− ν−

StKn
(t− s)

)
‖U(s)u‖Xds

where K maps X into Y .
Iterating the process shows that, if k > 3

2 , there exists a nonnegative
constant C1 (depending on l and k) such that

‖U(t)g‖l,k ≤ C1‖g‖l,k .

• The continuity of the bilinear operator ψ is obtained in a very similar
way.

Standard continuity estimates for Q shows that∥∥∥∥ν−1 1
M
Q(Mg,Mh)

∥∥∥∥
l,k

+
∥∥∥∥ 1
M
Q(Mg,Mh)

∥∥∥∥
L1(dx,(L2(Mdv))

≤ C‖g‖l,k‖h‖l,k .

for k > 3/2, l > 3/2.
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Then, starting from the spectral estimates on U and using Hilbert’s de-
composition to gain integrability in the v variable as previously, we obtain the
expected continuity property, namely

‖ψ[g, h]‖l,k ≤ C2‖g‖l,k‖h‖l,k ,

where C2 is a nonnegative constant depending on l and k, provided that
Hl,k ⊂ νH l

x(L2(Mdv)), or equivalently k > 5/2.

• Equipped with these preliminary results, we get immediately the global
existence of a unique solution to (2.6). Indeed, we have

‖N [g]‖l,k ≤ C1‖gin‖l,k + C2‖g‖2
l,k

and
‖N [g]−N [h]‖l,k ≤ C2 (‖g‖l,k + ‖h‖l,k) ‖g − h‖l,k

Choosing a0 and a1 such that

2C2a1 < 1 and C1a0 + C2a
2
1 ≤ a1 ,

we get that N is a contraction on the ball of radius a1 as soon as

‖gin‖l,k ≤ a0 ,

We then conclude by Picard’s fixed point theorem. ut

The first disadvantage inherent to that strategy is the need for a deep result
of spectral theory. In particular, this approach fails to provide a real under-
standing of the coupling between relaxation and hydrodynamic modes in the
full nonlinear Boltzmann equation.

For the purpose of deriving incompressible hydrodynamic limits, it would
seem that Ukai’s result is exactly what is needed. The difficulty is that it
cannot be used as a black box, because of the potential lack of uniformity
with respect to the Knudsen number Kn on the critical size of the initial
perturbation that guarantees global existence. Let us mention however that
Bardos and Ukai [7] have obtained the first mathematical derivation of the
incompressible Navier-Stokes equations in that framework.

Nevertheless one cannot expect to extend such a result to classes of initial
data with less regularity.

2.3.2 Physical Framework : Global Existence
of Renormalized Solutions

For those reasons, we will use a global existence theory for the Boltzmann
equation that holds for physically admissible initial data of arbitrary sizes.
This theory goes back to the late 80s and is due to DiPerna and Lions [44].
For the sake of completeness, we shall sketch here the main arguments leading
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to that result, most of which will be detailed in the next chapter since they
are also fundamental tools to study hydrodynamic limits.

Our presentation of the subject incorporates later developments of the
theory of renormalized solutions :

- we will indeed consider solutions of the Boltzmann equation that converge
at infinity to some uniform Maxwellian, for instance the reduced centered
Gaussian M (following Lions in [73]);

- we will further present a simplification of the original proof based on
compactness properties of the gain term in the collision operator (established
by Lions in [72]);

- we will give moreover a weak version of the global conservation of energy
and of the local conservation of momentum, involving some defect measure
which characterizes the possible loss of energy at large velocities in the ap-
proximation scheme (introduced by Lions and Masmoudi in [75]);

- we will also take into account the boundary effects (modelized by
Maxwell’s boundary condition) (using some refined results of functional anal-
ysis due to Mischler [84][85]).

The DiPerna-Lions theory does not yield solutions that are known to solve
the Boltzmann equation in the usual weak sense. Rather, it gives the exis-
tence of a global weak solution to a class of formally equivalent initial-value
problems.

Definition 2.3.3 A renormalized solution of the Boltzmann equation(2.6)
(2.23) relatively to the global equilibrium M is a function

f ∈ C(R+, L1
loc(Ω ×R3))

which satisfies in the sense of distributions

M
(
St∂t + v · ∇x

)
Γ

(
f

M

)
=

1
Kn

Γ ′
(
f

M

)
Q(f, f) on R+×Ω ×R3 ,

f|t=0 = fin ≥ 0 on Ω ×R3,
(2.30)

for any Γ ∈ C1(R+) such that |Γ ′(z)| ≤ C/
√

1 + z.
We further require that for every ϕ ∈ C1

c(Ω̄×R3) and every [t1, t2] ⊂ R+,
we have

St
∫
Ω

∫
MϕΓ

(
f

M

)
(t2, x, v)dvdx− St

∫
Ω

∫
MϕΓ

(
f

M

)
(t1, x, v)dvdx

−
∫ t2

t1

∫
Ω

∫
M(v · ∇xϕ)Γ

(
f

M

)
(t, x, v)dvdxdt

+
∫ t2

t1

∫
∂Ω

∫
MϕΓ

(
f

M

)
(t, x, v)(v.n(x))dvdσxdt

=
1

Kn

∫ t2

t1

∫
Ω

∫
ϕΓ ′

(
f

M

)
Q(f, f)(t, x, v)dvdxdt

(2.31)
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with the renormalized boundary condition

Γ

(
f|Σ−
M

)
= Γ

(
(1− α)L(f|Σ+) + α

√
2πM

∫
f|Σ+(v · n(x))+dv

M

)
on Σ−.

(2.32)

With the above definition of renormalized solution relatively to M , the
following existence result holds :

Theorem 2.3.4 Assume that the collision kernel satisfies Grad’s cutoff as-
sumption (2.8) for some β ∈ [0, 1]. Given any initial data fin satisfying

H(fin|M)
def
=
∫
Ω

∫ (
fin log

fin
M
− fin +M

)
(x, v) dv dx < +∞, (2.33)

there exists a renormalized solution f ∈ C(R+, L1
loc(Ω ×R3)) relatively to M

to the Boltzmann equation (2.6)(2.23) with initial data fin.
Moreover, f satisfies
- the continuity equation

St∂t
∫
fdv +∇x ·

∫
fvdv = 0; (2.34)

- the momentum equation with defect measure

St∂t
∫
fvdv +∇x ·

∫
fv ⊗ vdv +∇x ·m = 0 (2.35)

where m is a Radon measure on R+×Ω with values in the nonnegative sym-
metric matrices;

- the entropy inequality

H(f |M)(t) +
∫

tr(m)(t) +
1

StKn

∫ t

0

∫
Ω

D(f)(s, x)dsdx

+
α

St

∫ t

0

∫
∂Ω

E(f |M)(s, x)dsdσx ≤ H(fin|M)
(2.36)

where tr(m) is the trace of the nonnegative symmetric matrix m, the entropy
dissipation D(f) is defined by (2.15) and the boundary term E(f |M), referred
to as the Darrozès-Guiraud information is defined by

E(f |M)(s, x) =
∫
v·n(x)>0

(
f log

f

M
− f +M

)
(v · n(x))dv

−
(∫

f(x, v) (v · n(x))+dv

)
log
(∫

f(x, v)
√

2π(v · n(x))+dv

)
+
(∫

f(x, v) (v · n(x))+dv

)
− 1√

2π

(2.37)
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Sketch of proof of Theorem 2.3.4. We recall here the main arguments leading
to that existence result, following the presentation of Golse and the author in
[58] for the convergence of the approximation scheme inside the domain Ω,
and the proof of Mischler in [85] for the convergence at the boundary.

Because our goal is to point out similarities between these arguments and
those used in the framework of hydrodynamic limits, we focus on the weak sta-
bility of sequences (fn) of renormalized solutions to (2.6), and do not present
the underlying approximation scheme. Note that, in any case, the parameters
Kn and St are fixed.

Step 1 : weak compactness results.
We have first to obtain some weak compactness on (fn) using the (physical)

a priori bounds.
From the uniform bound on the relative entropy

sup
t∈R+

H(fn|M)(t) ≤ C,

we deduce by Young’s inequality (see (3.4) in Chapter 3) and pointwise esti-
mates that(

fn
M

)
is bounded in L∞(dt, L1

loc(dx, L
1(M(1 + |v|2)dv))),(

fn
M

)
is weakly compact in L1

loc(dtdxdv)
(2.38)

(see Lemma 3.1.2 in Chapter 3 for a detailed proof of that statement), and

fn
M
− 1
δ

log
(

1 + δ
fn
M

)
→ 0 in L∞(R+, L1

loc(dx, L
1(Mdv))) uniformly in n

(2.39)
as δ → 0. In particular, for fixed δ > 0,(

Q−(fn, fn)
1 + δfn/M

)
is weakly compact in L1

loc(dtdxdv).

Then, from the uniform bound on the entropy dissipation∫ +∞

0

∫
Ω

D(fn)(t, x)dxdt ≤ C,

we deduce, using a convenient splitting of the integral according to the tail of
(fnfn∗)/(f ′nf

′
n∗), that for fixed δ > 0,(
Q(fn, fn)

1 + δfn/M

)
is weakly compact in L1

loc(dtdxdv). (2.40)

In particular, the sequence 1
δ log(1 + δ fnM ) (which is uniformly bounded in

L∞(R+, L2
loc(dx, L

2(M(1 + |v|)dv))) by the relative entropy bound) satisfies
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M(St∂t + v · ∇x)
1
δ

log
(

1 + δ
fn
M

)
=

1
Kn

Q(fn, fn)
1 + δfn/M

= O(1)L1
loc(dtdxdv).

(2.41)
By interpolation (see [74] for instance), we eventually arrive at(
1
δ

log(1 + δ
fn
M

)
)

is relatively compact in C([0, T ], w − L2
loc(dxMdv)),

which, coupled with (2.38) and (2.39), leads to

fn ⇀ f weakly in L1
loc(dx, L

1(dv)) locally uniformly in t as n→∞ (2.42)

modulo extraction of a subsequence.

Step 2 : strong compactness results.
In order to take limits in the renormalized Boltzmann equation, we have

further to obtain some strong compactness, which is the matter of the second
step. The crucial idea here is to use the velocity averaging lemma due to
Golse, Lions, Perthame and Sentis [53] (and detailed in the third section of
Chapter 3), stating that the moments in v of the solution to some transport
equation are more regular than the function itself.

From the uniform bound on 1
δ log(1 + δ fnM ) and the estimate (2.41) on the

transport, we deduce in particular that, for all ϕ ∈ C1(R3) with subquadratic
growth at infinity,

1
δ

∫
M log

(
1 + δ

fn
M

)
ϕ(v)dv is strongly relatively compact in L1

loc(dtdx),

and thus by (2.39) that∫
fnϕ(v)dv is strongly relatively compact in Lploc(dt, L

1
loc(dx)). (2.43)

This convergence statement allows to take limits in the Boltzmann collision
integral, once it is renormalized by some convenient macroscopic quantity.
This average renormalization is here only to guarantee that all the quantities
considered are at least locally integrable. Using a variant of Egorov’s Theorem
(namely the Product Limit theorem established in [44] and recalled in
Appendix A), we are actually able to establish that, modulo extraction of a
subsequence, for all φ ∈ Cc(R+×Ω ×R3)∫

Q±(fn, fn)
1 +

∫
fndv

φdv →
∫

Q±(f, f)
1 +

∫
fdv

φdv in L1
loc(dtdx). (2.44)

Step 3 : limiting macroscopic equations.
From the previous steps, one can easily obtain the entropy inequality and

the variants of the conservation laws satisfied by f .
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By (2.38), we have∫
fndv ⇀

∫
fdv∫

fnvdv ⇀

∫
fvdv

weakly in L1
loc(dtdx)

which allows to take limits in the local conservation of mass. Furthermore, by
the Banach-Alaoglu theorem, up to extraction of a subsequence, for each i, j∫

fnvivjdv ⇀ µij weakly-* in L∞(R+,M(Ω)). (2.45)

By monotone convergence, one can then prove that

µij =
∫
fvivjdv +mij ,

where mij is a nonnegative symmetric element of L∞(R+,M(Ω,M3(R))).
Taking limits in the local conservation of momentum leads then to (2.35).

By weak limits

fn ⇀ f in L1
loc(dtdx, L

1((1 + |v|)dv)

∫
fn|v|2dv ⇀

∫
f |v|2dv + tr(m) in L∞(R+,M(Ω))

and
fnfn∗

1 + δ
∫
fndv

⇀
ff∗

1 + δ
∫
fdv

in L1
loc(dtdx, L

1(Bdvdv∗dσ))

f ′nf
′
n∗

1 + δ
∫
fndv

⇀
f ′f ′∗

1 + δ
∫
fdv

in L1
loc(dtdx, L

1(Bdvdv∗dσ))

(obtained similarly as (2.44)), using the convexity of the functionals defining
the relative entropy and the entropy dissipation, we get

H(f |M)(t) +
∫

tr(m)(t) ≤ lim inf
n→∞

H(fn|M)(t),∫ t

0

∫
D(f)(s, x)dxds ≤ lim inf

n→∞

∫ t

0

∫
D(fn)(s, x)dxds

(2.46)

thus passing to the limit in the entropy inequality leads to (2.36) in the absence
of boundary.

Step 4 : limiting renormalized kinetic equation.
The most technical step of the proof is then to take limits in the renor-

malized equation (2.30). With the information at our disposal, and although
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the previous step provides useful information on the nonlinear term, this con-
vergence is not trivial, in particular because the only source of compactness
in the problem, i.e. velocity averaging, does not give any information on the
distribution fn itself.
• Using pointwise estimates on Γδ(z) = z

1+δz and on its derivative, we
deduce from the weak compactness statements established in Step 1 that, for
all δ > 0,

MΓδ

(
fn
M

)
⇀ fδ weakly-* in L∞(R+×Ω ×R3),

Γ ′δ

(
fn
M

)
Q±(fn, fn) ⇀ Q±δ weakly in L1

loc(R
+×Ω ×R3).

(2.47)

Furthermore, from the relative entropy bound and the uniform convergence
(2.42) we deduce that

fn
M

(t)− Γδ
(
fn
M

)
(t)→ 0 in L1

loc(dx, L
1(dv)) uniformly in t, n as δ → 0,

and thus that

fδ → f as δ → 0 in L1
loc(dx, L

1(dv)) uniformly in t,

and a.e. on R+×Ω ×R3 .
(2.48)

The idea is then to take limits in

M(St∂t + v · ∇x) log
(

1 +
fδ
M

)
=

1
Kn

Q+
δ −Q

−
δ

1 + fδ/M
,

fδ|t=0 = Γδ(fin).

• By the strong compactness statements (2.43) established in Step 2, and
the Product Limit theorem, we have, for all δ > 0,

Q−(fn, fn)
(1 + δfn/M)2 =

fn
(1 + δfn/M)2

∫∫
fn∗Bdv∗dσ

⇀ f̃δ

∫∫
f∗Bdv∗dσ in L1

loc(R
+×Ω ×R3)

with f̃δ ≤ fδ and

f̃δ → f as δ → 0 in L1
loc(dx, L

1(dv)) uniformly in t,

and a.e. on R+×Ω ×R3,

using the same arguments as for (2.48). We then obtain the convergence of
the loss term (up to extraction of a subsequence)

Q−δ
1 + fδ/M

→ f

1 + f/M

∫∫
f∗Bdv∗dσ as δ → 0 a.e. on R+×Ω× R3 (2.49)



40 2 The Boltzmann Equation and its Formal Hydrodynamic Limits

and thus in L1
loc(R

+×Ω ×R3) by Lebesgue’s theorem.
• The convergence of the gain term is more complicated to establish. Start-

ing from

Γ ′δ

(
fn
M

)
Q+(fn, fn)
1 +

∫
fndv

≤
(
fn
M

)
Q+(fn, fn)
1 +

∫
fndv

then integrating against some φ = φ(v) ≥ 0 and taking limits as n → ∞, we
get

Q+
δ ≤ Q

+(f, f) a.e. on R+×Ω ×R3

using the convergence (2.44) obtained in Step 2, and the Product Limit
theorem.

Then, introducing some suitable decomposition according to the tail of
(f ′nf

′
n∗)/(fnfn∗), and using the convergence (2.44) and the Product Limit

theorem, we establish that, for all λ > 0,

Q+(fn, fn)
1 + λ

∫
fn∗dv∗

⇀
Q+(f, f)

1 + λ
∫
f∗dv∗

weakly in L1
loc(R

+×Ω ×R3).

Starting from a refined decomposition, and using the convergence of the en-
tropy dissipation in the vague sense of measures, we then obtain that, for all
λ > 0,

Q+(f, f)
1 + λ

∫
f∗dv∗

≤ lim inf
δ→0

Q+
δ .

Finally, we get

Q+
δ

1 + fδ/M
→ Q+(f, f)

1 + f/M
as δ → 0 a.e. on R+×Ω ×R3 (2.50)

and thus in L1
loc(R

+ ×Ω ×R3) by Lebesgue’s theorem.
• Combining all results leads to

M(St∂t + v · ∇x) log
(

1 +
f

M

)
=

1
Kn

Q+(f, f)−Q−(f, f)
1 + f/M

,

with initial condition f|t=0 = fin (since the convergence is uniform in t).
It remains then to check that the same identity holds for any admissible
renormalization Γ

M(St∂t + v · ∇x)Γ
(
f

M

)
=

1
Kn

Γ ′
(
f

M

)
(Q+(f, f)−Q−(f, f)), (2.51)

which is done by composition if |Γ ′(z)| ≤ C(1 + z)−1, and else by approxi-
mation, using the fact that Q(f, f)/

√
1 + f/M is controlled by the entropy

dissipation and the relative entropy (see the proof of Proposition 4.3.1 in
Chapter 4 for an analogous result).
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Step 5 : limiting boundary conditions.
In the case of a spatial domain with boundary, it remains then to take

limits in Maxwell’s boundary condition. This requires powerful tools of func-
tional analysis, which are consequences of Chacon’s Biting Lemma and are
stated in Appendix C.

Let us first note that the boundary term obtained formally in the entropy
inequality∫ t

0

∫
∂Ω

∫ (
fn|Σ+ log

fn|Σ+

M
− fn|Σ+ +M

)
(s, x, v)(v · n(x))+dvdσxds

−
∫ t

0

∫
∂Ω

∫ (
fn|Σ− log

fn|Σ−

M
− fn|Σ− +M

)
(s, x,Rxv)(v · n(x))+dvdσxds

controls the Darrozès-Guiraud information

α

∫ t

0

∫
∂Ω

E(fn)(s, x)dσxds

defined by (2.37) (by a simple convexity argument), and so we start from a
sequence (fn) such that the Darrozès-Guiraud information E(fn) is uniformly
bounded in L1(R+×∂Ω).

The trace is then defined by some Green’s formula written on the renor-
malized equation. The main difficulty to take limits in the renormalized form
(2.32) of Maxwell’s boundary condition, is therefore the lack of an a priori
bound on the trace, giving in particular some local equi-integrability in v.
• We first establish the following renormalized convergence (see

Appendix C for a precise definition of this notion)

fn|∂Ω → f∂Ω in renormalized sense on R+×∂Ω ×R3, (2.52)

using the a priori estimates coming from the inside, and the weak formulation
(2.31) of the renormalized Boltzmann equation.

Starting from (2.31) with

ϕ(x, v) =
v · n(x)
1 + |v|2

χ(x)

where χ ∈ C∞c (R3,R+) and n denotes some vector field of W 1,∞(Ω̄) which
coincides with the outward unit normal vector at the boundary, we get∫ t2

t1

∫
∂Ω

∫
M

(v · n(x))2χ(x)
1 + |v|2

Γ

(
fn|∂Ω

M

)
(t, x, v)dvdσxdt

= St
∫
Ω

∫
M

(v · n(x))χ(x)
1 + |v|2

Γ

(
fn
M

)
(t1, x, v)dvdx

−St
∫
Ω

∫
M

(v · n(x))χ(x)
1 + |v|2

Γ

(
fn
M

)
(t2, x, v)dvdx

+
∫ t2

t1

∫
Ω

∫
M(v · ∇x)

(
(v · n(x))χ(x)

1 + |v|2

)
Γ

(
fn
M

)
(t, x, v)dvdxdt

+
1

Kn

∫ t2

t1

∫
Ω

∫
(v · n(x))χ(x)

1 + |v|2
Γ ′
(
fn
M

)
Q(fn, fn)(t, x, v)dvdxdt.

(2.53)
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Thus from the uniform bounds obtained in Step 1 and Cauchy-Schwarz in-
equality, we deduce that

MΓ

(
fn|∂Ω

M

)
is weakly compact in L1

loc(dtdσx, L
1(|v · n(x)|dv)) .

Using the convergence results stated in Step 4, we can take limits as n→∞
in the right-hand side of (2.53), and then identify the limit writing Green’s
formula for the limiting kinetic equation (2.51). We thus obtain

MΓ

(
fn|∂Ω

M

)
⇀MΓ

(
f|∂Ω

M

)
weakly in L1

loc(dtdσx, L
1(|v · n(x)|dv)).

which implies the renormalized convergence (2.52). Note that, up to extraction
of a subsequence, we also get the pointwise convergence

fn|∂Ω → f|∂Ω a.e. on R+×∂Ω ×R3 .

• Then, using the uniform bound on the Darrozès-Guiraud information,
we prove that∫

fn|∂Ω(v · n(x))+dv → f̃|∂Ω in renormalized sense on R+×∂Ω, (2.54)

for some measurable, almost everywhere finite function f̃|∂Ω .
Indeed, remarking that

(z log z − z + 1)− (y log y − y + 1)− (z − y) log y =
∫ 1

0

|z − y|2

τx+ (1− τ)y
dτ

≥
(√
z −√y

)2

and that∫ (
fn −

√
2πM

∫
fn(v · n(x))+dv

)
log
(∫
fn(v · n(x))+dv

)
(v · n(x))+dv = 0

we get

∫ (√
fn
M
−

√∫
fn
√

2π(v · n(x))+dv

)2

M(v · n(x))+dv ≤ 2E(fn|M)

which, coupled with the uniform bound on the Darrozès-Guiraud information,
shows that√
fn
M
−

√∫
fn
√

2π(v ·n(x))+dv is weakly compact in L2(dt(v ·n(x))+dσxMdv),

(2.55)
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and thus converges a.e. on Σ+ up to extraction of a subsequence.
Therefore, from the decomposition√∫

fn
√

2π(v · n(x))+dv =

√∫
fn
√

2π(v · n(x))+dv −
√
fn
M

+

√
fn
M

the renormalized convergence (2.52) and the weak compactness (2.55), we
deduce that (2.54) holds up to extraction of a subsequence.
• It remains then to characterize the limit f̃|∂Ω in terms of f|∂Ω , which

requires a variant of Chacon’s Biting Lemma giving some partial equiintegra-
bility on fn|∂Ω with respect to the v variables.

From (2.54) and the uniform bound on the Darrozès-Guiraud information,
we deduce by Proposition C.4 in Appendix that for every ε > 0 and every
compact K ⊂ R+×∂Ω, one can find some A ⊂ K with∫
K\A

dtdσx < ε and fn|∂Ω ⇀ f|∂Ω weakly in L1(A×R3, dt(v · n(x))+dσxdv).

In particular,

f̃|∂Ω =
∫
f|∂Ω(v · n(x))+dv on every such A,

and thus a.e. on R+×∂Ω.
We are then able to take limits in the renormalized form of Maxwell’s

boundary condition (2.32), which leads to

Γ

(
f|Σ−
M

)
= Γ

(
(1− α)L(f|Σ+) + αK(f|Σ+)

M

)
on Σ−.

Furthermore, using the convexity of the Darrozès-Guiraud information
(also established in Proposition C.4), we get∫ t

0

∫
∂Ω

E(f |M)(s, x)dσxds ≤ lim inf
n→∞

∫ t

0

∫
∂Ω

E(fn|M)(s, x)dσxds,

which concludes the proof of the entropy inequality (2.36) studied in Step 3,
in the case of a spatial domain with boundary. ut

2.3.3 Further Results in One Space Dimension

In the one spatial dimensional case, the previous result has actually been
improved by Cercignani [29], who established the global existence of weak
solutions to (2.6) satisfying in particular the global conservation of energy.

The key idea of that theory is to introduce the weak form of the collision
term, and the corresponding suitable notion of weak solution. For the sake
of simplicity, we will restrict our attention to the case of a spatial domain
without boundary, for instance the periodic box T.
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Definition 2.3.5 A weak solution to the one-dimensional Boltzmann equa-
tion (2.6) is a function

f ∈ C(R+, L1(T×R3))

such that, for every test function ϕ ∈ C1
c(R

+×T×R3) which is twice dif-
ferentiable as a function of v with second derivatives uniformly bounded with
respect to x and t, we have∫∫∫

f(St∂tϕ+ v1∂xϕ)(t, x, v)dxdvdt+
∫∫

finϕ(0, x, v)dxdv

=
1

2Kn

∫∫ (∫∫∫
ff∗(ϕ+ ϕ∗ − ϕ′ − ϕ′∗)B(v − v∗, σ)dvdv∗dσ

)
(t, x)dxdt

(2.56)

With the above definition of weak solution, the following existence result
holds :

Theorem 2.3.6 Assume that the collision kernel B is bounded and satisfies
Grad’s cutoff assumption (2.8) as well as∫

S2
(1 + cos θ)B(v − v∗, σ)dσ ≥ r

∫
S2
B(v − v∗, σ)dσ (2.57)

for some r > 0. Given any initial data fin ∈ L1
loc(T×R3) satisfying

H(fin|M)
def
=
∫∫ (

fin log
fin
M
− fin +M

)
(x, v) dv dx < +∞, (2.58)

there exists a weak solution f ∈ C(R+, L1(T×R3)) to (2.6) with initial data
fin.

Furthermore this solution satisfies the continuity equation (2.34), the mo-
mentum equation (2.35) without defect measure and the entropy inequality
(2.36) without defect measure, as well as the energy conservation∫∫

f(t, x, v)|v|2dvdx =
∫∫

fin(x, v)|v|2dvdx.

Sketch of Proof of Theorem 2.3.6. The idea is to use the knowledge that there
is a renormalized solution in the sense of DiPerna-Lions, and to establish es-
timates which entail that this solution is indeed a weak solution in the sense
defined above. As usual these estimates will be obtained by formal compu-
tations, which can be justified for approximate solutions to the Boltzmann
equation (2.6), and then established for any renormalized solution by passing
to the limit.
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The crucial tool to establish these estimates, which is specific to the one-
dimensional case, is the functional

I(f)(t) def=
∫∫

x<y

∫∫
(v1 − v1∗)f(t, x, v)f(t, y, v∗)dv∗dvdxdy (2.59)

which extends the potential for interaction introduced by Bony in the one-
dimensional discrete velocity context. No functional with similar pleasant
properties is known, at this time, in more than one dimension. Note indeed
that, because of the bounds on the total mass

∫∫
f(t, x, v)dvdx and on the to-

tal momentum
∫∫
f(t, x, v)v1dvdx in x-direction, we have the following control

over the functional I(f)(t)

∀t ∈ R, |I(f)(t)| ≤ Cin,

where Cin is a constant depending only on the initial data.

• The first step of the proof consists then in using that bound to establish
the following basic estimates∫ t

0

∫ ∫∫
(v1 − u1(s, x))2f(s, x, v)f(s, x, v∗)dv∗dvdxds ≤ Cin,∫ t

0

∫ ∫∫
|v − v∗|2f(s, x, v)f(s, x, v∗)B(v − v∗, σ)dσdv∗dvdxds ≤ Cin

(2.60)

where Cin is as previously some constant depending only on the initial data,
and u1 is the bulk velocity defined by

u1(s, x) =
∫
v1f(s, x, v)dv∫
f(s, x, v)dv

.

A short calculation with proper use of the collision invariants of the Boltz-
mann collision operator shows that

I(f)(t)− I(f)(0) = −
∫ t

0

∫ ∫∫
(v1 − v1∗)2f(s, x, v)f(s, x, v∗)dv∗dvdxdt.

which immediately gives the first estimate in (2.60), remarking that∫
(v1 − v1∗)2f(s, x, v∗)dv∗ ≥

∫
(v1 − u1)2f(s, x, v∗)dv∗ .

From the weak form of the Boltzmann equation, we deduce using the
conservation of mass and momentum that

2Kn
∫∫

fv2
1dvdx− 2Kn

∫∫
finv

2
1dvdx =∫ t

0

∫∫∫∫
ff∗((v1 − u1)2+(v1∗ − u1)2 − (v′1 − u1)2 − (v′1∗ − u1)2)Bdvdv∗dσdxdt
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The loss term is bounded because of the bound on the collision frequency and
the first estimate in (2.60), and the left hand side is bounded because of the
energy bound. We therefore deduce that the gain term is also bounded. Then
by explicit computations based on symmetries and assumption (2.57), we get
the second estimate in (2.60).

• Equipped with these preliminary estimates, we are now able to prove
that the integral defining the weak form of the collision operator is bounded
in terms of constants depending on the initial data, for any test function
ϕ ≡ ϕ(t, x, v) which is twice differentiable as a function of v with second
derivatives uniformly bounded with respect to x and t.

The result follows from Taylor’s formula at second order, remarking that
the expression multiplying the first derivatives is zero because of momentum
conservation. We indeed have, using the second estimate in (2.60),∫∫ (∫∫∫

ff∗|ϕ+ ϕ∗ − ϕ′ − ϕ′∗|B(v − v∗, σ)dvdv∗dσ
)
dxdt

≤ C
∫∫∫∫∫

ff∗
(
|v − v∗|2 + |v − v′|2 + |v − v′∗|2

)
B(v − v∗, σ)dvdv∗dσdxdt

≤ 6C
∫∫∫∫∫

ff∗|v − v∗|2B(v − v∗, σ)dvdv∗dσdxdt ≤ 6CCin

which shows that the weak form of Q(f, f) is well-defined. ut

Remark 2.3.7 The present result can actually be extended to slightly more
general situations.
• Easy modifications, presented for instance in the paper [30] by Cercignani

and Illner, allow to deal with the case of different boundary conditions, namely
to consider the case of a slab with diffusive boundary conditions.
• Let us now discuss the assumptions on the collision kernel B. In prin-

ciple, solutions for inverse power potentials might be considered without in-
troducing Grad’s cutoff (2.8) : this would require considering approximate
solutions of the Boltzmann equation without cutoff, and study precisely the
convergences, instead of using the knowledge that there is a renormalized
solution.

On the other hand, the present version of the result does not allow a growth
for large values of the relative velocity |v− v∗|, i.e. excludes hard spheres and
potentials harder than the inverse fifth power. This is an important simplifi-
cation, which perhaps might be removed by much harder work.

This particular structure of the Boltzmann equation in one space dimen-
sion is reminiscent of the specificity of the one dimensional hyperbolic systems
of conservation laws. In particular the functional referred to as the potential
for interaction, and obtained by doubling the space variable, has to be com-
pared with Glimm’s functional for systems of conservation laws, which could
be a track to investigate the compressible hydrodynamic limits.



3

Mathematical Tools for the Derivation
of Hydrodynamic Limits

In all existing works on the subject, the general strategy to derive hydro-
dynamic limits is to proceed by analogy, that is to recognize the structure
of the expected limiting hydrodynamic model in the corresponding scaled
Boltzmann equation. This explains for instance why all hydrodynamic limits
are not equally understood.

The aim of this chapter is therefore to detail these analogies, focusing our
attention on the point of view of functional analysis.

3.1 Physical a Priori Estimates : Definition of Suitable
Functional Spaces

Let us first recall from the previous chapter, that, in a general setting, the
only a priori bounds we dispose of for the solutions to the scaled Boltzmann
equation are those coming from physics, namely from the global conservation
of mass and energy, and from Boltzmann’s H theorem. Considering the case
of a gas which is at Maxwellian equilibrium M at infinity (or which is con-
fined in a domain with diffuse reflection according to the distribution M at
the boundary), all these physical estimates lead to the unique scaled relative
entropy inequality∫∫

Mh

(
f −M
M

)
(t, x, v)dxdv +

1
KnSt

∫ t

0

∫
D(f)(s, x)dxds

+
α

St

∫ t

0

∫
∂Ω

E(f |M)(s, x)dxds

≤
∫∫

Mh

(
fin −M
M

)
(x, v)dxdv def= Hin.

(3.1)

where h is the convex function defined on ]−1,+∞[ by

h(z) = (1 + z) log(1 + z)− z,

L. Saint-Raymond, Hydrodynamic Limits of the Boltzmann Equation, 47
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c© Springer-Verlag Berlin Heidelberg 2009
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and D and E are respectively the entropy dissipation defined by (2.15) and
the Darrozès-Guiraud information defined by (2.37).

We thus expect the appropriate functional framework for the study of
hydrodynamic limits to be defined in terms of these three functionals, namely
the relative entropy, the entropy dissipation, and the Darrozès-Guiraud
information.

3.1.1 The Entropy Bound

The relative entropy bound

∀t ≥ 0, H(f |M)(t) def=
∫∫

Mh

(
f −M
M

)
(t, x, v)dxdv ≤ Hin

controls thedistanceof thedistribution functionf to thebackgroundMaxwellian
M , in a sense to be precised.

In the General (Non Perturbative) Framework,

that is in the situation when

Hin = O(1),

the entropy bound leads to the following macroscopic bounds :

Lemma 3.1.1 Let f be a (nonnegative) distribution function such that∫∫
Mh

(
f −M
M

)
(t, x, v)dxdv ≤ Hin,

where M is the global Maxwellian of density R0, bulk velocity U0 and temper-
ature T0.

Then, the corresponding macroscopic fields R, U , T defined by

R(t, x) =
∫
f(t, x, v)dv, RU(t, x) =

∫
f(t, x, v)vdv,

R(|U |2 + 3T )(t, x) =
∫
f(t, x, v)|v|2dv.

satisfy the bounds∫
R0h

(
R

R0
− 1
)

(t, x)dx ≤ Hin,

1
2T0

∫
R|U − U0|2(t, x)dx ≤ Hin,

3
2

∫
R

(
T

T0
− log

T

T0
− 1
)

(t, x)dx ≤ Hin.
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Proof. Such a result is proved very easily using the explicit formula for

H(Mf |M)(t) def=
∫∫

Mh

(
Mf −M

M

)
(t, x, v)dxdv

where Mf is the local Maxwellian of same moments as f defined by (2.21),
i.e.

Mf (t, x, v) =
R(t, x)

(2πT (t, x))3/2 exp
(
−|v − U(t, x)|2

2T (t, x)

)
,

and the fundamental inequality

H(Mf |M) ≤ H(f |M)

expressing the fact that the Maxwellian distribution minimizes the entropy
for fixed density, bulk velocity and temperature.

Indeed

H(f |M)(t) =
∫ (

f log
f

M
− f +M

)
(t, x, v)dxdv

=
∫ (

f log
f

Mf
− f +Mf

)
(t, x, v)dxdv

+
∫ (
Mf log

Mf

M
−Mf +M

)
(t, x, v)dxdv

+
∫

(f −Mf ) log
Mf

M
(t, x, v)dxdv

= H(f |Mf )(t) +H(Mf |M)(t)

using the fact that f and Mf have the same moments up to order 2, and
that log(Mf/M) (considered as a function of v) is nothing else than a linear
combination of 1, v and |v|2. ut

This implies in particular that the functional setting for the study of the
compressible Euler limit is very intricated, which is not surprising in view of
the few stability results established for this system.

For Fluctuations around the Global Maxwellian State M ,

that are functions of the form

f = M(1 + Ma g), (3.2)

or more precisely for solutions of the Boltzmann equation such that

Hin =
∫∫

Mh (Ma gin) (x, v)dxdv = O(Ma2),
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the functional spaces defined asymptotically as Ma→ 0 by the relative entropy
are flat spaces with hilbertian structure.

Without loss of generality, we will assume in all the sequel that M is the
reduced centered Gaussian

M(v) =
1

(2π)3/2 exp
(
−|v|

2

2

)
,

meaning that R0 = T0 = 1, and U0 = 0, which can be obtained by a rescaling
process and a galilean change of coordinates.

The implications of the relative entropy bound that we shall discuss here
are straightforward consequences of pointwise inequalities satisfied by the non-
linearity h that defines the relative entropy. Recall that

H(f |M) =
∫∫

h(Mag)Mdvdx ;

since
h(z) ∼ 1

2
z2 as z → 0 , (3.3)

one could think that the relative entropy bound is more or less equivalent to
a L2 estimate of the type∫∫

|g(t, x, v)|2Mdvdx ≤ 2
Hin

Ma2 .

However, this is not entirely correct, since g can take values that are very
large compared with 1/Ma, for which replacing h(z) by 1

2z
2 is not justified.

Instead of (3.3), we must use global properties of h. First, h satisfies
Young’s inequality

pz ≤ h∗(p) + h(z) , ∀p, z ≥ 0 ,

where h∗ is the Legendre dual of h:

h∗(p) = ep − p− 1 .

Notice that h∗ is super-quadratic (as can be seen from the Taylor series that
defines h∗): in other words

h∗(λp) ≤ λ2h∗(p) , ∀p ≥ 0 ,∀λ ∈ [0, 1] .

Also, notice that
h(|z|) ≤ h(z) , ∀z > −1 .

Putting all these inequalities together, we arrive at the following improvement
of Young’s inequality above:

p|z| ≤ λh∗(p) +
1
λ
h(z) , ∀p ≥ 0 , ∀z ≥ −1 , ∀λ ∈ (0, 1] . (3.4)
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Lemma 3.1.2 For each sequence Man → 0, let (fn) be a sequence of mea-
surable, a.e. nonnegative distribution functions such that

∀t ≥ 0, H(fn|M)(t) ≤ CMa2
n.

Then, the sequence of fluctuations (gn) defined by

fn = M(1 + Mangn)

is weakly relatively compact in L1
loc(dtdx, L

1(M(1 + |v|2)dv)).

Proof. Pick η ∈ (0, 1|; Young’s inequality (3.4) implies that, for each n such
that Man ∈ (0, η), i.e. for all but a finite number of n’s, one has

(1 + |v|2)|gn| ≤
4η

Ma2
n

h(Mangn) +
4
η
h∗
(

1 + |v|2

4

)
by taking

z = Mangn, p =
1
4

Man
η

(1 + |v|2) and λ =
Man
η

.

Consider first the case η = 1; hence, for each measurable set E ⊂ Ω of
finite measure∫

E

∫
(1 + |v|2)|gn(t)|Mdvdx ≤ 4C + 4|E|

∫
exp(

1
4

(1 + |v|2))Mdv .

Hence
(1 + |v|2)gn is bounded in L∞(dt;L1

loc(dx : L1(Mdv))) .

For general η ∈ (0, 1), for each n such that Man < η∫
E

∫
(1 + |v|2)|gn(t)|Mdvdx ≤ 4ηC +

4
η
|E|
∫

exp(
1
4

(1 + |v|2))Mdv .

Choosing η = |E|1/2 shows that∫
E

∫
(1 + |v|2)|gn(t)|Mdvdx ≤ C|E|1/2

for each n such that Man < |E|1/2, i.e. for all but a finite number of n’s. This
shows that the sequence

(1 + |v|2)gn is uniformly integrable on Ω ×R3

uniformly in t ≥ 0. By Dunford-Pettis’ criterion, this implies the announced
weak compactness for the sequence (gn) of fluctuations. ut
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The formal argument given at the beginning of this paragraph suggests
however that, in the vanishing Mach limit Ma → 0, the limiting fluctuation
belongs to L2(Mdvdx) uniformly in t. Hence the weighted L1-bound given by
Lemma 3.1.2 is certainly not optimal.

We propose therefore to consider the following renormalized fluctuation

ĝ =
2

Ma

(√
f

M
− 1

)
, (3.5)

instead of the fluctuation

g =
1

Ma

(
f

M
− 1
)
.

The advantage of this renormalized fluctuation over the original one is ex-
plained in the next lemma.

Lemma 3.1.3 For each sequence Man → 0, let (fn) be a sequence of mea-
surable, a.e. nonnegative distribution functions such that

∀t ≥ 0, H(fn|M)(t) ≤ CMa2
n.

Then, the family of renormalized fluctuations (ĝn) defined by (3.5) is
bounded in L∞(R+;L2(Mdvdx)).

Proof. The elementary inequality

1
2
h(z) ≥ (

√
1 + z − 1)2 , ∀z > −1 (3.6)

implies that ∫∫
ĝ2
n(t, x, v)M(v)dxdv ≤ 2

Ma2
n

H(fn|M)(t) ≤ 2C ,

which is the announced result. ut

A natural application of this refined a priori estimate is to decompose

g = ĝ +
1
4

Maĝ2. (3.7)

Therefore, we see that the fluctuation g is bounded in L2(Mdvdx), up to a
remainder of order Ma in L1(Mdvdx), uniformly in t ≥ 0.
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3.1.2 The Darrozès-Guiraud Information

The bound on the Darrozès-Guiraud information

α

St

∫ +∞

0

∫
∂Ω

E(f |M)(t, x)dσxdt ≤ Hin

is expected to give some control on the trace of the distribution function f
on the boundary ∂Ω, or more precisely on the variation (with respect to the
v variable) of the trace

f|∂Ω −M
∫
f|∂Ω
√

2π(v · n(x))+dv

on Σ+. We have indeed the following estimate

Lemma 3.1.4 Let (fn) be a sequence of measurable, a.e. nonnegative distri-
bution functions such that

∀t > 0,
∫ t

0

∫
∂Ω

E(f |M)(s, x)dσxds ≤ CMa2
n

Stn
αn

.

Then the family of renormalized trace variations (η̂n) defined by

η̂n =
2

Man

√
αn
Stn

1Σ+

(√
fn|∂Ω

M
−

√∫
fn|∂Ω

√
2π(v · n(x))+dv

)
(3.8)

is uniformly bounded in L2
loc(dt, L

2(M(v · n(x))+dσxdv)).

Proof. Denoting by 〈·〉∂Ω the average of any quantity defined on the boundary

〈g〉∂Ω =
∫
Mg|∂Ω

√
2π(v · n(x))+dv,

we get

αn

Ma2
nStn

∫ t

0

∫
∂Ω

〈
h

(
fn|∂Ω −M

M

)
− h

(〈fn −M
M

〉
∂Ω

)〉
∂Ω

dσxds ≤ C
√

2π.

By Taylor’s formula,〈
h

(
fn −M
M

)
− h

(〈fn −M
M

〉
∂Ω

)〉
∂Ω

=
1
2

∫ 1

0

〈(
fn|∂Ω

M
−
〈fn
M

〉
∂Ω

)2

h′′
(
τ
fn|∂Ω

M
+ (1− τ)

〈fn
M

〉
∂Ω

− 1
)〉

∂Ω

dτ

because the term of first order cancels〈(
fn|∂Ω

M
−
〈fn
M

〉
∂Ω

)
h′
(〈fn

M

〉
∂Ω

)〉
∂Ω

= 0.
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Then∫ 1

0

〈(
fn|∂Ω

M
−
〈fn
M

〉
∂Ω

)2

h′′
(
τ
fn|∂Ω

M
+ (1− τ)

〈fn
M

〉
∂Ω
− 1
)〉

∂Ω

dτ

= O

(
Ma2

nStn
αn

)
L1(dtdσx)

(3.9)

Besides we have

η̂n =
2

Man

√
αn
Stn

1Σ+

(√
fn|∂Ω

M
−
√〈fn

M

〉
∂Ω

)

=
2

Man

√
αn
Stn

1Σ+

(
fn|∂Ω

M
−
〈fn
M

〉
∂Ω

)(√
fn|∂Ω

M
+

√〈fn
M

〉
∂Ω

)−1

and

h′′
(
τ
fn|∂Ω

M
+ (1− τ)

〈fn
M

〉
∂Ω
− 1
)

=
1

τfn|∂Ω/M + (1− τ)〈fn/M〉∂Ω
.

Therefore,

4αn
Ma2

nStn

(
fn|∂Ω

M
−
〈fn
M

〉
∂Ω

)2

h′′
(
τ
fn|∂Ω

M
+ (1− τ)

〈fn
M

〉
∂Ω
− 1
)
≥ η̂2

n.

Plugging this inequality in (3.9) leads to the expected L2 estimate on η̂n.
ut

3.1.3 The Entropy Dissipation Bound

Because of Boltzmann’s H theorem, we expect the entropy dissipation bound

∀t ≥ 0,
1

StKn

∫ t

0

∫
D(f)(s, x)dxds ≤ Hin

to control the distance between the distribution function f and the set of all
Maxwellian distributions.

In the Absence of Further Estimates

on the distribution function f , the relaxation mechanism for the (homoge-
neous) Boltzmann equation is however not sufficiently well understood to de-
duce from this dissipation bound a precise estimate on the distance between
f and Mf . This is another reason why the compressible Euler limit has (at
present time) no mathematical justification in full generality.
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In the Perturbative Framework,

the results by Hilbert [65] and Grad [59] on the linearized collision operator
allow to control the distance between the fluctuation g defined by (3.2) (or
the renormalized fluctuation ĝ defined by (3.5)) and its projection on hydro-
dynamic modes. Those results are the matter of the next section.

In Both Situations,

a consequence of pointwise inequalities satisfied by the nonlinearity which
defines the entropy dissipation is the following estimate on the renormalized
collision kernel :

Lemma 3.1.5 Let (fn) be a sequence of measurable, a.e. nonnegative distri-
bution functions such that

∀t ≥ 0,
∫ t

0

∫
D(fn)(s, x)dxds ≤ CMa2

nKnnStn.

Then, the family of renormalized collision terms (q̂n) defined by

q̂n =
1

Man
√

StnKnn

1
M
Q(
√
Mfn,

√
Mfn) (3.10)

is bounded in L2(ν−1Mdvdxdt), where ν is the collision frequency defined by

ν(v) =
∫∫

M∗B(v − v∗, σ)dv∗dσ.

Proof. By Cauchy-Schwarz’ inequality, we have

q̂2 ≤ 1
Ma2StKn

(∫∫
1

MM∗
(
√
MM∗ff∗ −

√
M ′M ′∗f

′f ′∗)
2B(v − v∗, σ)dv∗dσ

)
×
(∫∫

1
MM∗

M 2
∗B(v − v∗, σ)dv∗dσ

)
≤ 1

Ma2StKn
ν

M

(∫∫
(
√
ff∗ −

√
f ′f ′∗)

2B(v − v∗, σ)dv∗dσ
)

From the elementary inequality

(x− y) log
x

y
≥ 4(
√
x−√y)2 , x, y > 0

we then deduce that∫ t

0

∫∫
q̂2(s, x, v)ν−1M(v)dxdvds ≤ 1

Ma2StKn

∫ t

0

∫
D(f)(s, x)dsdx ≤ C ,

which is the announced result. ut
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3.2 Properties of the Collision Operator : Relaxation
Towards Equilibrium and Regularization in v Variables

3.2.1 Some Results in the Non Perturbative Framework

Let us start by informally discussing some features which may help the trend
to equilibrium, or on the contrary make it more difficult, both from the phys-
ical and from the mathematical points of view.

First of all the distribution tails are usually at the origin of the worst
difficulties. By distribution tails, we mean how fast the distribution func-
tion decreases as |v| → ∞, or |x| → ∞. This is not only a technical point;
Bobylev has shown that large tails could be a true obstacle to a good trend
to equilibrium for the Boltzmann equation. More precisely, he proved the fol-
lowing result [11]. Consider the spatially homogeneous Boltzmann equation
with Maxwell cross-section

∂tf = Q(f, f)
f|t=0 = fin

(3.11)

and fix the mass, momentum and energy of the initial datum fin. Let M be
the corresponding equilibrium state. Then, for any ε > 0 one can construct
an initial datum fε,in such that the associated solution fε ≡ fε(t, v) of the
homogeneous Cauchy problem (3.11) satisfies

∀t ≥ 0, ‖fε(t)−M‖L1(R3) ≥ Kεe
−εt, Kε > 0.

Note however that most of the discrepancy between fε and M is located at
very high velocities. This illustrates the general fact that precise “experimen-
tal” information about rates of convergence to equilibrium is very difficult to
have, if one wants to take into account distribution tails.

Next, it is clear that the more collisions there are, the more likely conver-
gence is found to be fast. This is why the size of the cross-section does matter,
in particular difficulties arise in the study of hard potentials because of the
vanishing of the cross-section at zero relative velocities. However studies of
the linearized operator ([65],[59]) show that in principle, one could expect an
exponential decay to equilibrium for the spatially homogeneous Boltzmann
equation with hard potentials (under strong control on the distribution tails).

In order to derive rigorously hydrodynamic limits of the Boltzmann equa-
tion, we need to understand the effects of the relaxation process, especially
to establish quantitative variants of the mechanism of decreasing of the en-
tropy. More precisely, one would like to prove an entropy-entropy dissipation
inequality : this is a functional inequality of the type

D(f) ≥ Θ(H(f |M))

where H 7→ Θ(H) is some continuous function, strictly positive when H > 0.
Such an inequality, coupled with Boltzmann’s H theorem would indeed imply
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that any solution to the spatially homogeneous Boltzmann equation satisfies
H(f |M)(t) → 0 as t → +∞, and one would be further able to compute an
explicit rate of convergence.

An old conjecture of Cercignani, formulated at the beginning of the eight-
ies, was that the spatially homogeneous Boltzmann equation would satisfy a
linear entropy-entropy dissipation inequality

D(f) ≥ 2λ(f)H(f |M) (3.12)

for some λ(f) depending on f only via some estimates of moments, Sobolev
regularity, lower bound. Bobylev and Cercignani [12] have actually disproved
this conjecture, by considering distributions close to the equilibrium M , with
a very tiny bump at large velocities.

However, Mouhot [87] has recently established that the exponential trend
to equilibrium which should be implied by (3.12), namely

‖f(t)−M‖L1 ≤ Ce−µt (3.13)

holds true in the particular case of hard spheres (and for more general hard
potentials with cut-off, under a very strong decay condition). The idea of the
proof is to combine linear and nonlinear techniques : quantitative estimates
of exponential decay on the evolution semi-group associated to the linearized
collision operator (to be detailed in the next paragraph) are used to estimate
the rate of convergence when the solution is close to equilibrium (where the
linear part of the collision operator is dominant), whereas the existing non-
linear entropy method, combined with some L1 a priori estimates, is used to
estimate the rate of convergence for solutions far from equilibrium.

Such a method should open new perspectives in the field of compressible
hydrodynamic limits, for which the understanding of the nonlinear relaxation
process is crucial. Of course, this would suppose to obtain pointwise estimates
on the moments of the solution to the spatially inhomogeneous Boltzmann
equation, which remains an outstanding problem.

In order to avoid this additional difficulty, in all situations requiring some
control on the nonlinear relaxation process, we will consider the BGK equation
instead of the Boltzmann equation, namely

St∂tf + v · ∇xf =
1

Kn
(Mf − f),

Mf (t, x, v) =
R(t, x)

(2πT (t, x))3/2 exp
(
−|v − U(t, x)|2

2T (t, x)

)
,

R(t, x) =
∫
f(t, x, v)dv, RU(t, x) =

∫
vf(t, x, v)dv,

R(|U |2 + 3T )(t, x) =
∫
|v|2f(t, x, v)dv,

(3.14)

which is the simpler relaxation model associated with the Boltzmann equation.
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3.2.2 Coercivity of the Linearized Collision Operator

The perturbative framework is again much more propicious for a mathematical
study. Considering indeed some fluctuation f around a global equilibrium
state M

f = M(1 + Mag),

it is easy to see that the relaxation process is governed by the linearized
collision operator LM defined by

LMg
def= − 2

M
Q(M,Mg)

=
∫
R3
dv∗

∫
S2
dσM∗B(v − v∗, σ)(g + g∗ − g′ − g′∗),

(3.15)

which has been extensively studied by Hilbert [65], then Grad [59] and Caflisch
[23].

Because of the translation and scaling invariance of the collision kernel,
we will actually restrict our attention in the sequel to the case where M is
the reduced centered Gaussian

M(v) =
1

(2π)3/2 exp
(
−|v|

2

2

)
.

Indeed, if τw and mλ denote respectively the translation and scaling isometries
on L1(R3) defined by

τwf(v) = f(v − w), (mλf)(v) = λ−3f(λ−1w)

one has

Q(τwf, τwf) = τwQ(f, f) , Q(mλf,mλf) = λmλQ(f, f) .

We then deduce that

LMR0,U0,T0
(φ) = (R0

√
T0)τU0m

√
T0
LM (m1/

√
T0
τ−U0φ) . (3.16)

Hilbert’s Decomposition

In order to establish the coercivity of the linearized collision operator LM , the
first step is to introduce Hilbert’s decomposition [65], showing that LM is just
a compact perturbation of some multiplication operator :

Proposition 3.2.1 Assume that B satisfies Grad’s cut-off assumption (2.8)
for some β ∈ [0, 1]. Then the linearized collision operator LM defined by (3.15)
can be decomposed as

LMg(v) = ν(|v|)g(v)−Kg(v)
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v

v*v’

v’*

dv’

dS(v*’)

Fig. 3.1. Carleman’s parametrization

where K is a compact integral operator on L2(Mdv) and ν = ν(|v|) is a scalar
function called the collision frequency that satisfies, for some C > 1,

0 < ν− ≤ ν(|v|) ≤ C(1 + |v|)β .

Sketch of proof of Proposition 3.2.1. The method is based on a clever change
of variables sometimes called “Carleman’s collision parametrization” although
it goes back to Hilbert [65].

One changes variables in the integrals defining ν and K, by using the
transformation (see Figure 3.1)

(v∗, σ) ∈ R3×S2 7→ (v′, v′∗) ∈ C,

where
C = {(v′, v′∗) ∈ R3×R3 / (v − v′∗) · (v′ − v) = 0}.

This transformation sends the measure |(v − v∗) · σ|dv∗dσ on the measure
dv′dS(v′∗), where dS is the surface element on the plane orthogonal to (v′−v)
passing through v.

With this change of variables, we obtain exact and convenient form for the
function ν

ν(v) = 2π
∫∫

B(|v − v∗|, cos θ)M(v∗) sin θdθdv∗

As for the integral operator K, one first computes its integral kernel k. More
precisely, one further splits the operator K as K = −K1 +K2, where

K1g(v) =
∫
R3
dv∗

∫
S2
dσM∗B(v − v∗, σ)g∗ ,
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and
K2g(v) =

∫
R3
dv∗

∫
S2
dσM∗B(v − v∗, σ)(g′ + g′∗) .

The integral kernels k1 and k2 are therefore defined by

k1(v, w) = 2π
∫
B(|v − w|, cos θ)M(w) sin θdθ,

k2(v, w) =
2

|v − w|2
exp

(
−1

4
|w|2 +

1
4
|v|2 − 1

8
|v − w|2

)
×
∫
η⊥(w−v)

B

(
|v − w|2 + |η|2)1/2,

(
1 +

|η|2

|v − w|2

)− 1
2
)
M

(
η +

1
2

(v + w)
)
dη

That K1 and K2 are self-adjoint is easily seen on these formulas. That K1 is
compact on L2(Mdv) is obvious; that K2 is also compact on L2(Mdv) follows
from observing that K4

2 is in the Hilbert-Schmidt class on L2(Mdv). To see
this, one computes from k2 the integral kernel of K4

2, say k
(4)
2 , and observe

that

(v, w) 7→ k
(4)
2 (v, w)

M(v)1/2

M(w)1/2

belongs to L2(R3×R3; dvdw). ut

The Relative Coercivity Estimate

With the above preliminary results, we then establish the main property of the
linearized collision operator LM , i.e. that it satisfies the Fredholm alternative
in some weighted L2 space.

Proposition 3.2.2 Assume that B satisfies Grad’s cut-off assumption (2.8)
for some β ∈ [0, 1]. Then the linear collision operator LM defined by (3.15) is
a nonnegative unbounded self-adjoint operator on L2(Mdv) with domain

D(LM ) = {g ∈ L2(Mdv) | νg ∈ L2(Mdv)} = L2(R3; νM(v)dv)

and nullspace
Ker(LM ) = span{1, v1, v2, v3, |v|2} .

Moreover the following coercivity estimate holds: there exists C > 0 such that,
for each g ∈ D(LM ) ∩ (Ker(LM ))⊥∫

gLMg(v)M(v)dv ≥ C‖g‖2
L2(Mνdv) .

Sketch of Proof of Proposition 3.2.2.
• The first step consists in characterizing the nullspace of LM . It must

contain the collision invariants since the integrand in
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LMg =
∫∫

(g + g∗ − g′ − g′∗)B(v − v∗, σ)M∗dv∗dσ

vanishes identically if g(v) = 1, v1, v2v3 or |v|2. Conversely, the same symme-
tries of the collision integral as in section 1 of Chapter 2 imply that∫

ψLMgMdv =

1
4

∫∫∫
(ψ+ψ∗−ψ′−ψ′∗)(g+g∗−g′−g′∗)B(v − v∗, σ)M∗dv∗dσ .

Letting g = ψ implies that LM is a nonnegative self-adjoint operator on the
weighted space L2(Mνdv). In particular, if g belongs to the nullspace of LM ,

1
4

∫∫∫
(g + g∗ − g′ − g′∗)2B(v − v∗, σ)M∗dv∗dvdσ = 0 ,

so that, for almost all (v∗, σ) ∈ R3×S2

g + g∗ = g′ + g′∗.

In other words, g is a collision invariant, which entails that g is a linear
combination of 1, v1, v2, v3 and |v|2.

• Next we prove the coercivity estimate. First the multiplication operator
g 7→ νg is self-adjoint on L2(R3;Mνdv) and has continuous spectrum which
consists of the numerical range of ν, i.e. ν(R+) ⊂ [ν−,+∞) where

ν− = inf
v∈R3

ν(|v|) > 0.

By Weyl’s theorem, as K is self-adjoint and compact on L2(R3;Mdv), the
spectrum of LM consists of ν(R+) and of a sequence of eigenvalues in the
interval [0, ν−] with ν− as only possible accumulation point.

In particular, there exists a smallest positive element λ1 of the spectrum
of LM , called the spectral gap, and one has∫

gLMg(v)M(v)dv ≥ λ1‖g‖2
L2(Mdv)

for each g ∈ D(LM ) ∩ (Ker(LM ))⊥.
The identity∫

gLMgM(v)dv =
∫
g2νM(v)dv −

∫
gKgM(v)dv

together with the continuity of K and the coercivity estimate above imply the
stronger, weighted estimate announced in the statement of Proposition 3.2.2.

ut
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Remark 3.2.3 Because LM is a Fredholm operator, one can define L−1
M on

the orthogonal complement (KerLM )⊥ of KerLM , especially on the following
quantities

Φ(v) = v ⊗ v − 1
3
|v|2 Id, Ψ(v) =

1
2
v(|v|2 − 5),

which are the kinetic versions of the momentum flux and heat flux, and there-
fore play a fundamental role in the study of hydrodynamic limits.

Note that, using some invariance properties of LM (due to the isotropy
of the collision process), one can obtain some additional information on the
structure of

Φ̃ = L−1
M Φ and Ψ̃ = L−1

M Ψ, (3.17)

already mentioned in the works of the physicists Chapman and Cowling [33].
Desvillettes and Golse [43] have then proved that there exist two scalar

functions ϕ and ψ such that

Φ̃(v) = ϕ(|v|)Φ(v) and Ψ̃(v) = ψ(|v|)Ψ(v).

Golse and the author have further established [57] a polynomial growth esti-
mate on both functions ϕ and ψ. This additional structure explains in par-
ticular why the viscosity µ and heat conductivity κ obtained in (2.22) are
nonnegative scalar fields.

Control of the Relaxation in Perturbative Regimes

Consider, as in the previous section, solutions of the Boltzmann equation such
that

Hin =
∫∫

Mh (Magin) (x, v)dxdv = O(Ma2),

and define the corresponding renormalized fluctuations by (3.5)

ĝ =
2

Ma

(√
f

M
− 1

)
,

so that
∀t ≥ 0,

∫∫
M |ĝ|2(t, x, v)dxdv ≤ 2Hin

Ma2 = O(1).

We also recall that the fluctuation

g = ĝ +
Ma
4
ĝ2

is therefore bounded in L∞t (L1(Mdvdx)).
Then, the entropy dissipation bound, coupled with the coercivity esti-

mate stated in the previous paragraph, provides the following control on the
relaxation :
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Lemma 3.2.4 For each sequence Man → 0, let (fn) be a sequence of mea-
surable, a.e. nonnegative distribution functions such that

∀t ≥ 0, H(fn|M)(t) ≤ CMa2
n,

and

∀t ≥ 0,
∫ t

0

∫
D(fn)(s, x)dxds ≤ CMa2

nKnnStn .

Then, the family of fluctuations (ĝn) defined by

ĝn =
2

Man

(√
fn
M
− 1

)
,

satisfies

‖ĝn −Πĝn‖L2(Mdv) ≤ O(
√

KnnStn)L2
t,x

+O(Man)‖ĝn‖2
L2(Mdv), (3.18)

where Π denotes the orthogonal projection on KerLM .

Proof. In order to simplify the presentation, we first introduce some fictitious
collision integrals L̃M and Q̃, obtained from LM and Q by replacing the
original cross-section B with

B̃(v − v∗, σ) =
B(v − v∗, σ)

1 +
∫∫
B(v − v∗, σ)M∗dv∗dσ

.

Note that the corresponding collision frequency

ν̃(v) =
∫∫

M∗B̃(v − v∗, σ)dv∗dσ

is therefore bounded from up and below.
Start then from the elementary formula

M L̃M ĝn =
Man

2
Q̃(Mĝn,Mĝn)− 2

Man
Q̃(
√
Mfn,

√
Mfn) (3.19)

Mutiplying both sides of this equation by ĝn and using the coercivity estimate
stated in Proposition 3.2.2 leads to

‖ĝn −Πĝn‖L2(Mdv)

≤ CMan
2

∥∥∥∥ 1
M
Q̃(Mĝn,Mĝn)

∥∥∥∥
L2(Mdv)

+ 2C
√

StnKnn ‖q̃n‖L2(Mdv)

where q̃n denotes the renormalized collision integral

q̃n =
1

Man
√

StnKnn

1
M
Q̃(
√
Mfn,

√
Mfn).



64 3 Mathematical Tools for the Derivation of Hydrodynamic Limits

The same arguments as in the proof of Lemma 3.1.5 show that∫ t

0

∫∫
q̃2
n(s, x, v)M(v)dxdvds ≤ 1

Ma2
nStnKnn

∫ t

0

∫
D(fn)(s, x)dsdx.

By the continuity properties of the quadratic collision operator (see [59] for
instance), we further have∥∥∥∥ 1

M
Q̃(Mĝn,Mĝn)

∥∥∥∥
L2(Mdv)

≤ C‖ĝn‖2
L2(Mdv).

Combining both estimates leads to

‖ĝn −Πĝn‖L2(Mdv)

≤ C
√

StnKnn ‖q̃n‖L2(Mdv) + CMan‖ĝn‖2
L2(Mdv)

which is the expected inequality. ut

3.2.3 Improving Integrability with Respect to the v Variables

An important consequence of the previous control on the relaxation is to
provide further integrability with respect to v-variables on the (renormalized)
fluctuation ĝn. We have indeed the following lemma :

Lemma 3.2.5 Let (Man), (Knn) and (Stn) be sequences such that

Man → 0, KnnStn ≤ Ma2
n.

Let (fn) be a sequence of measurable, a.e. nonnegative distribution functions
such that

∀t ≥ 0, H(fn|M)(t) ≤ CMa2
n,

and

∀t ≥ 0,
∫ t

0

∫
D(fn)(s, x)dxds ≤ CMa2

nKnnStn .

Then, the family of fluctuations (ĝn) defined by

ĝn =
2

Man

(√
fn
M
− 1

)
,

is such that ((1 + |v|)pM |ĝn|2) is uniformly integrable in v on [0, T ]×K ×R3

for each T > 0, each compact K ⊂ Ω and each p < 2, meaning that

lim
η→0

sup
n

∫ T

0

∫
K

(
sup
|A|≤η

∫
A

(1 + |v|)pM |ĝn|2(t, x, v)dv

)
dtdx = 0.
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Proof. The crucial idea behind this result is to decompose ĝn according to

ĝn = (ĝn −Πĝn) +Πĝn.

• From the L2 bound on ĝn and the explicit formula for Πĝn we deduce that

ĝn(1 + |v|)pΠĝn = O(1)L∞t (L1
x(Lr(Mdv))) for r < 2. (3.20)

• It remains then to estimate

(1 + |v|)p(ĝn −Πĝn)ĝn

for p < 2, using the control on the relaxation provided by Lemma 3.2.4.
By Young’s inequality, we have for each δ > 0

(1 + |v|)pĝ2
n ≤

δ2

Ma2
n

∣∣∣∣fnM − 1
∣∣∣∣ (1 + |v|)p

δ2

≤ δ2

Ma2
n

h

(
fn
M
− 1
)

+
δ2

Ma2
n

exp
(

(1 + |v|)p

δ2

) (3.21)

so that for each q < +∞

(1 + |v|)p/2ĝn = O(δ)L∞t (L2(Mdvdx)) +O

(
Cp,q,δ
Man

)
L∞t,x(Lq(Mdv))

where Cp,q,δ is some nonnegative constant depending only on p, q and δ.
We therefore have

(1 + |v|)p(ĝn −Πĝn)ĝn = O(δ)L∞t (L2(Mdvdx))(1 + |v|)p/2(ĝn −Πĝn)

+O
(
Cp,q,δ
Man

)
L∞t,x(Lq(Mdv))

(1 + |v|)p/2(ĝn −Πĝn)

(3.22)
from which we deduce that∫

A

(1 + |v|)p|(ĝn −Πĝn)ĝn|Mdv = O(δ)L∞t (L2
x)

(∫
A

(1 + |v|)p|ĝn|2Mdv

)1/2

+O(δ)L∞t (L2
x)

(∫
A

(1 + |v|)p|Πĝn|2Mdv

)1/2

+
Cp,q,δ
Man

(
O(
√

KnnStn)L2
t,x

+O(Man)‖ĝn‖2
L2(Mdv)

)(∫
A

M(1 + |v|)pq̃/2dv

)1/q̃

(3.23)
with 1/q + 1/q̃ = 1/2.
• Plugging (3.20) and (3.23) together, we get∫
A

(1 +|v|)p|ĝn|2Mdv

=
(∫

A

Mdv

)1− 1
r

O(1)L∞t (L2
x) +O(δ)L∞t (L2

x)

(∫
A

(1 + |v|)p|ĝn|2Mdv

)1/2

+
(∫

A

M(1 + |v|)pq̃/2dv

)1/q̃
Cp,q,δ
Man

(
O(
√

KnnStn)L2
t,x

+O(Man)L∞t (L1
x)

)
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Choosing δ small enough, and using Cauchy-Schwarz’ inequality to master
the second term in the right-hand side, we obtain the expected local equiin-
tegrability with respect to v. ut

Remark 3.2.6 In the general non perturbative framework, the entropy dissi-
pation bound is also expected to give some further integrability with respect to
v variables on the distribution fn.

Of course it is not clear that the second term in the decomposition

fn =Mfn + (fn −Mfn)

can be controlled by the entropy dissipation. However, instead of using the
local Maxwellian Mfn in the above decomposition, one can consider the local
pseudo-equilibrium

Afn =
1
ρn
Q̃+(fn, fn)

where ρn =
∫
fndv and Q̃+ is the gain part of some fictitious collision operator

Q̃.
For a suitable choice of Q̃ one expects Afn − fn to be controlled by the

entropy dissipation and thus to be small in the fast relaxation limit, whereas
Afn should have further integrability in the v variables due to the compactness
properties of Q̃+ (shown by Lions [72] or Bouchut and Desvillettes [15]).

3.3 Properties of the Free Transport Operator :
Dispersion and Averaging Lemmas

According to our principle that the structure of the limiting hydrodynamic
system should be recognized in the corresponding scaled Boltzmann equation,
we expect further regularity estimates to hold, at least in the hydrodynamic
regime leading to the incompressible Navier-Stokes system. In such a viscous
regime, the entropy dissipation bound gives actually a control on the collision
term, which can be considered as a source term for the free transport equa-
tion. It remains then to understand the smoothing process leading to these
regularity estimates.

The fundamental operator in kinetic theory is the advection or free-
transport operator

St∂t + v · ∇x
which is the prototype of hyperbolic operators. It expresses that a particle
of velocity v is advected of a distance dx = vdt during the infinitesimal time
interval dt. The solution of the advection equation

St∂tf + v · ∇xf = 0

is actually given by the method of characteristics
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f(t,X(t, x, v), V (t, x, v)) = fin(x, v)

or equivalently

f(t, x, v) = fin(X(−t, x, v), V (−t, x, v))

where
dX

dt
= V,

dV

dt
= 0, (X,V )(0, x, v) = (x, v)

(possibly supplemented with boundary conditions). A consequence of that
formula is that singularities of the initial or boundary data are propagated at
finite speed |v|/St inside the domain where the equation is posed. In particular,
one cannot hope to gain regularity or compactness on the distribution function
f itself.

With a view towards hydrodynamic limits we then anticipate that only
macroscopic variables, i.e. moments in v of the distribution function of the
type ∫

R3
f(t, x, v)ϕ(v)dv

for some test function ϕ, should be regular or compact. This is precisely the
essence of the class of results known as “velocity averaging”, to be described
below.

Let us first concentrate on the case of the whole space x ∈ R3.

3.3.1 L2 Averaging Lemmas

The first regularity results bearing on moments of the solution of a transport
equation were obtained in the L2 setting. Indeed, the key idea of the proof
of such results is a kind of reduction to the one dimensional case, which is
especially simple when expressed in terms of Fourier variables.

The regularity of the averages is actually due to the ellipticity of the symbol
of the free transport operator St∂t + v · ∇x outside from a small subset of the
velocity space R3

v. In Fourier variables, one has indeed

i(Stτ + v · ξ)Ff(τ, ξ, v) = FS,

where S denotes some source term : this seems to indicate that Ff should
have good decay properties with respect to the ξ variables.

If |Stτ + v · ξ| > α, one obtains some regularity on the corresponding
part of the solution (all the more that α is large). If |Stτ + v · ξ| ≤ α, the
contribution of the corresponding part of the solution to the average is small
(all the smaller that α is small). See Figure 3.2.

Translating the previous argument into a precise mathematical statement,
and choosing α to optimize the resulting estimate leads to the following by
now classical proposition (obtained independently by Golse, Lions, Perthame,
Sentis [53] and Agoshkov [1]).
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v1

v2

|St +v. | > 

|St +v. | < |St +v. | > 

Small contribution
to the average

Ellipticity of
the symbol

Ellipticity of
the symbol

Fig. 3.2. Symbol of the free transport operator

Proposition 3.3.1 Let f ∈ L2(Rt×R3
x×R3

v) be the solution of the free-
transport equation

St∂tf + v · ∇xf = S.

Then, for all compactly supported test function ϕ ∈ L∞(R3
v), the following

regularity estimate holds∥∥∥∥∫ fϕ(v)dv
∥∥∥∥
L2(R,H1/2(R3))

≤ C‖f‖1/2
L2(Rt×R3

x×R3
v)‖S‖

1/2
L2(Rt×R3

x×R3
v)

for some nonnegative constant C depending only on ϕ.

Proof. Let us introduce as previously the time and space Fourier variables
(τ, ξ). The Fourier transform of the moment is therefore∫

Ff(τ, ξ, v)ϕ(v)dv.

As explained above, the estimate is obtained by splitting this integral into
two contributions∣∣∣∣∫ Ff(τ, ξ, v)ϕ(v)dv

∣∣∣∣ ≤ ∫ 1|Stτ+v·ξ|≤α|Ff(τ, ξ, v)ϕ(v)|dv

+
∫

1|Stτ+v·ξ|>α|Ff(τ, ξ, v)ϕ(v)|dv .
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By Cauchy-Schwarz’ inequality, we then get∣∣∣∣∫ Ff(τ, ξ, v)ϕ(v)dv
∣∣∣∣ ≤ (∫ |Ff(τ, ξ, v)|2dv

) 1
2
(∫

1|Stτ+v·ξ|≤α|ϕ(v)|2dv
) 1

2

+
(∫
|FS(τ, ξ, v)|2dv

) 1
2
(∫ 1|Stτ+v·ξ|>α

|Stτ + v · ξ|2
|ϕ(v)|2dv

) 1
2

≤ C‖Ff‖L2(R3
v)

(
α

|ξ|

)1/2

+ C‖FS‖L2(R3
v)

(
1
α|ξ|

)1/2

where C is some nonnegative constant depending only on ‖ϕ‖∞ and of the
support of ϕ. Thus, using Plancherel’s identity and choosing the truncation
parameter α = ‖FS‖L2/‖Ff‖L2 leads to the optimal estimate. ut

Remark 3.3.2 This fundamental result can be extended in several directions :
• a refined estimate shows that on can also gain some regularity with re-

spect to the scaled time variable t/St;
• the same compactness result still holds for generalized advection operators

St∂t + a(v) · ∇x

(up to some loss in the regularity exponent), provided that they satisfy a non
concentration condition of the following type

∀R > 0, lim
ε→0

sup
e∈S2

∣∣{v ∈ R3 / |v| ≤ R and |a(v) · e| ≤ ε}
∣∣ = 0.

In particular this condition is satisfied for the relativistic free transport oper-
ator a(v) = v/

√
1 + |v|2.

• more generally, if f and S belong to Lp(R×R3×R3), one has the sim-
ilar regularity estimate∥∥∥∥∫ fϕ(v)dv

∥∥∥∥
Lp(R,W s,p(R3))

≤ C(‖f‖Lp(Rt×R3
x×R3

v) + ‖S‖Lp(Rt×R3
x×R3

v))

where s = min(1/p, 1/p′) (see [53] for the detailed interpolation argument).
In particular, if p = 1 or +∞, there is no general velocity averaging result.

That velocity averaging fails in L1 and L∞ is not due to some technical
deficiency in the proof, but rather to a real difficulty linked with concentration
phenomena, as shown by the following counterexample taken from [53].

Let Sn ≡ Sn(t, x, v) be a bounded sequence in L1(R×R3×R3) such that

Sn → Stϕ′(t)δ
x−St−1

v0t
⊗ δv−v0

for some test function ϕ ∈ C∞c (R), where v0 6= 0. Let fn ≡ fn(t, x, v) be the
sequence of solutions of the transport equation
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St∂tfn + v · ∇xfn = Sn , (t, x, v) ∈ R×R3×R3 .

The method of characteristics provides

fn(t, x, v) = St−1
∫ t

−∞
Sn(s, x− St−1v(t− s), v)ds

and thus, for each φ ∈ Cc(R3)∫
R3
φ(x)

(∫
R3
fn(t, x, v)dv

)
dx

= St−1
∫ t

−∞

∫∫
R3×R3

Sn(s, z, v)φ(z + St−1v(t− s))dvdzds

→ ϕ(t)φ(St−1v0t)

as n→ +∞. Hence∫
R3
fndv converges to some density carried by the half plane R×R+ v0

in the weak sense of measures as n→ +∞. In particular∫
R3
fndv is not relatively compact in L1

loc(R×R3)

although
‖fn‖L1(R×R3×R3) ≤ C,
‖St∂tfn + v · ∇xfn‖L1(R×R3×R3) ≤ C.

This counterexample suggests in particular that one should try by all
means to control concentration effects.

3.3.2 Dispersive Properties of the Free-Transport Operator

A first remark is that it is actually sufficient to control the concentration
effects in the v variables, the non concentration in the x variables arising then
as a consequence of some dispersion properties of the free transport operator.

These dispersion properties are linked with the propagation of the volumes
in the phase space. Indeed, by the free transport, the domains of the phase
space become stretched in the x direction, according to the scheme represented
in Figure 3.3.

A set of “small measure in x” is changed into a set of “small measure in v”,
which can be referred to as a mixing property of the free transport operator.

More precisely, using the exact representation of the solution to the free
transport equation, and an appropriate change of variables, Castella and
Perthame have obtained the following gain of integrability with respect to
x variables [26] :
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v

x

E(s)
E(t)

(t-s)v

Fig. 3.3. Dispersion by the free transport operator

Proposition 3.3.3 Let χ be the solution of the free-transport equation

∂sχ+ v · ∇xχ = 0 on R×R3
x×R3

v,

χ|s=0 = χ0 on R3
x×R3

v .

Then, for all pair (p, q) ∈ [1,+∞] with p ≤ q, the following pointwise estimate
holds

∀t ∈ R∗, ‖χ(s)‖Lqx(Lpv) ≤ |s|
−3( 1

p−
1
q ) ‖χ0‖Lpx(Lqv).

Proof. In the absence of external force and source term, the solution χ is given
by

χ(s, x, v) = χ0(x− sv, v),

which immediately leads to

‖χ(s)‖L∞x (L1
v) ≤ |s|

−3 ‖χ0‖L1
x(L∞v ),

and more generally to

‖χ(s)‖L∞x (Lpv) ≤ |s|
−3/p ‖χ0‖Lpx(L∞v ).

On the other hand, the conservation of the Lp norm gives

‖χ(s)‖Lpx,v = ‖χ0‖Lpx,v .

Thus, by interpolation,

‖χ(s)‖Lqx(Lpv) ≤ |s|
− 3
p (1− pq ) ‖χ0‖Lpx(Lqv),

which is the expected estimate. ut
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Remark 3.3.4 • The extension of such a result to the relativistic case is not
so trivial : due to the Jacobian of the change of variables

v 7→ v√
1 + v2

the resulting dispersion estimate will involve moments of the initial data, which
has however no consequence in the context of hydrodynamic limits.
• This result will be indeed used to transfer some local equiintegrability

from v variables (coming from the control on the relaxation) to x variables,
meaning that in all proofs we will restrict our attention to a bounded set of
velocities.

3.3.3 L1 Averaging Lemmas

Combining both techniques, we are then able to improve the velocity averaging
results, extending them in the L1 setting under an additional condition of
equiintegrability with respect to v, to be recalled now.

We say that a bounded sequence (ψn) of L1
x,v is uniformly equiintegrable

with respect to v if

lim
η→0

sup
n

∫
R3

(
sup
|A|≤η

∫
A

|ψn(x, v)|dv

)
dx = 0.

As a consequence of Proposition 3.3.3, we indeed establish, using Dunford-
Pettis’ criterion, that the uniform integrability in v is a L1 weak compactness
criterion for the solutions to the free transport equation.

Proposition 3.3.5 Let (fn) be a bounded sequence in L∞(R+, L1(R3×R3))
such that

(St∂tfn + v · ∇xfn) is bounded in L1(R+×R3×R3),
(fn) is uniformly equiintegrable in v.

Then the sequence (fn) is uniformly equiintegrable (in all variables), and thus
weakly compact by Dunford-Pettis’ criterion.

Proof. This result was stated and proved in [56], extending an earlier remark
by the author [92]. It relies on Proposition 3.3.3, coupled with Green’s formula.

Without loss of generality, we assume that fn is nonnegative, and that all
the fn’s are supported in the same compact K of R×R3×R3.
• The first step consists in splitting any “small” measurable subset A of

K in three subsets A0, A1 and A2 which are “small” respectively in the t, x
and v variables.

In order to do that, we define

A0 = {(t, x, v) ∈ A/
∫∫

1A(t, x, v)dxdv > |A|1/2},



3.3 Dispersion and Averaging Lemmas 73

A1 = {(t, x, v) ∈ A \A0 /

∫
1A(t, x, v)dv > |A|1/4},

and
A2 = A \ (A0 ∪A1).

From the Bienaymé-Tchebichev inequality

|{x/|χ(x)| ≥ y}| ≤ 1
y

∫
|χ(x)|dx, (3.24)

we therefore deduce the following estimates

‖1A0‖L1
t(L∞x,v) ≤ |A|1/2,

‖1A1‖L∞t (L1
x(L∞v )) ≤ |A|1/4,

‖1A2‖L∞t,x(L1
v) ≤ |A|1/4.

(3.25)

In particular, from the uniform equiintegrability in the t and v variables,
we get that the first and third terms in the decomposition∫∫∫

A

fn(t, x, v)dtdxdv =
∫∫∫

A0

fn(t, x, v)dtdxdv

+
∫∫∫

A1

fn(t, x, v)dtdxdv

+
∫∫∫

A2

fn(t, x, v)dtdxdv

go to zero as |A| → 0. It remains then to transfer some of the equiintegrability
in the v variables on the x variables, to establish that the second term goes
also to zero as |A| → 0.
• The second step relies then crucially on the mixing properties of the free

transport operator.
We start by introducing an additional parameter s∗, to be optimized in the

sequel. We therefore consider the solution χ ≡ χ(s, t, x, v) of the free transport
equation

∂sχ+ St∂tχ+ v · ∇xχ = 0 , s > 0 , (t, x, v) ∈ R×R3×R3 ,

χ(0, t, x, v) = 1A1(t, x, v) , (t, x, v) ∈ R×R3×R3 .

Clearly, χ(s, t, x, v) = 1A1(t−Sts, x−sv, v). A slight adaptation of Proposition
3.3.3 and the second estimate in (3.25) imply that

‖χ(s∗, ., ., .)‖L∞t,x(L1
v) ≤

1
|s∗|3

‖1A1‖L∞t (L1
x(L∞v )) ≤

|A|1/4

|s∗|3
(3.26)

Applying Green’s formula to the integral∫ s∗

0
ds

∫∫
K

dtdxdvfn(t, x, v)(∂s + St∂t + v · ∇x)χ(s, t, x, v)
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leads then to∫∫∫
A1

fn(t, x, v)dtdxdv =
∫∫∫

K

fnχ(s∗, t, x, v)dtdvdx

−
∫ s∗

0

∫∫∫
K

χ(s, t, x, v)(St∂t + v · ∇x)fn(t, x, v)dsdtdxdv

(3.27)

From the uniform L1 bound on (St∂tfn + v · ∇xfn) we deduce that the
second term in the right side of (3.27) tends to zero as |s∗| → 0. Furthermore,
using the equiintegrability of (fn) with respect to v and the estimate (3.26)
shows that the first term tends to zero as |A|1/4/|s∗|3 → 0. Therefore, choosing
for instance |s∗| = |A|1/24, we get that∫∫∫

A1

fn(t, x, v)dtdxdv → 0 as |A| → 0,

which, coupled with the previous results, leads to the expected equiintegra-
bility. ut

Equipped with this preliminary result, we can now state the main L1 ve-
locity averaging result, to be used in the context of the incompressible Navier-
Stokes limit of the Boltzmann equation.

Theorem 3.3.6 Let (fn) be a bounded sequence in L∞(R+, L1(R3×R3))
such that

(St∂tfn + v · ∇xfn) is bounded in L1(R+×R3×R3),
(fn) is uniformly equiintegrable in v.

Then, for all compactly supported test function ϕ ∈ L∞(R3
v), the sequence

(
∫
fnϕ(v)dv) is strongly compact with respect to the x variables, in the sense

that, for all compact subset K̃ of R+×R3,

lim
|η|→0

∫∫
K̃

∣∣∣∣∫ fn(t, x, v)ϕ(v)dv −
∫
fn(t, x+ η, v)ϕ(v)dv

∣∣∣∣ dxdt = 0.

Proof. Without loss of generality, we again assume that fn is nonnegative.
• The first step consists in establishing the compactness statement assum-

ing that both families (fn) and (St∂tfn + v · ∇xfn) are weakly compact in
L1, which has been done in the original paper by Golse, Lions, Perthame and
Sentis [53].

Define
φn = fn + (St∂t + v · ∇x)fn

and for all λ > 0

φλ,+n = φn1φn>λ, φλ,−n = φn1φn≤λ.
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We also denote by fλ,+n and fλ,−n the solutions to

φλ,+n = fλ,+n + (St∂t + v · ∇x)fλ,+n , φλ,−n = fλ,−n + (St∂t + v · ∇x)fλ,−n .

From the explicit formula of the resolvent R = (Id +St∂t + v · ∇x)−1

Rφ(t, x, v) =
∫ +∞

0
e−σφ(t− Stσ, x− σv, v)dσ

we deduce that

(fλ,−n ) and ((St∂t + v · ∇x)fλ,−n ) are uniformly bounded in L2
t,x,v

by the L2-norm of φλ,−n , i.e. by a constant depending only on λ. Applying the
L2 averaging lemma leads then to∥∥∥∥∫ fλ,−n ϕ(v)dv

∥∥∥∥
L2
t(H

1/2
x )
≤ Cλ.

On the other hand, the same explicit formula for the resolvent R shows that

‖fλ,+n ‖L1
t,x,v
≤ ‖φλ,+n ‖L1

t,x,v

and thus converges to 0 as λ → +∞ by the equiintegrability assumption. In
particular, for all compact K ⊂ [0, T ] ×R3 and for all δ > 0, there exists λ
such that ∫∫

K

∣∣∣∣∫ fλ,+n (t, x, v)ϕ(v)dv
∣∣∣∣ dxdt ≤ δ.

Then, choosing η sufficiently small,∫∫
K̃

∣∣∣∣∫ fλ,−n (t, x, v)ϕ(v)dv −
∫
fλ,−n (t, x+ η, v)ϕ(v)dv

∣∣∣∣ dxdt ≤ δ.
Combining both estimates leads to the expected regularity result.

• The second step consists in extending this result in the case when
(St∂tfn + v · ∇xfn) is only assumed to be bounded in L1.

To do that, we introduce another truncation parameter, as follows. For
each µ > 0, set

Rµ = (µ Id +St∂t + v · ∇x)−1.

Using the explicit formula

Rµφ(t, x, v) =
∫ +∞

0
e−µσφ(t− Stσ, x− σv, v)dσ,

one easily checks that, for each p ∈ [1,+∞],

‖Rµφ‖Lpt,x,v ≤
‖φ‖Lpt,x,v

µ
.
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Write

fn = Rµ
(
µf
)

+Rµ
(
(St∂t + v · ∇x)fn

)
= fµ,1n + fµ,2n

so that ∫
fnϕ(v)dv =

∫
fµ,1n ϕ(v)dv +

∫
fµ,2n ϕ(v)dv,

with
fµ,1n = µRµfn and fµ,2n = Rµ((St∂t + v · ∇x)fn).

Since (St∂t + v · ∇x)fn is uniformly bounded in L1
t,x,v, the second term

on the right hand side of the equality above can be made arbitrarily small in
L1
t,x,v for some µ > 0 large enough : for all δ > 0, there exists µ such that∫∫

K

∣∣∣∣∫ fµ,2n (t, x, v)ϕ(v)dv
∣∣∣∣ dxdt ≤ δ.

For such a µ, the first term on the right hand side of the equality above
satisfies :∫∫

K̃

∣∣∣∣∫ fµ,1n (t, x, v)ϕ(v)dv −
∫
fµ,1n (t, x+ η, v)ϕ(v)dv

∣∣∣∣ dxdt ≤ δ
provided that η is sufficiently small (depending on δ and µ). Combining both
estimates leads to the expected regularity result.

Note that these two first steps rely actually on the following simple char-
acterization of relatively compact sets :

K relatively compact ⇔ ∀ε > 0, ∃Kε compact, d(K,Kε) ≤ ε. (3.28)

• The final step consists then in relaxing the equiintegrability assump-
tion on (fn), assuming only that (fn) is uniformly equiintegrable in the (t, v)
variables. This follows directly from Proposition 3.3.5. ut

3.3.4 The Case of a Spatial Domain with Boundaries

In the case of a spatial domain with boundaries, the boundary conditions do
not allow in general to get an explicit formula for the characteristics, and
therefore for the solution of the free transport equation.

Nevertheless, a simple localization argument allows to extend all the pre-
vious results, starting for instance from the a priori estimates obtained in
Appendix B.
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The fundamental averaging result states :

Proposition 3.3.7 Let Ω be some smooth open domain of R3. Let f ∈
L2
loc(Rt×Ωx ×R3

v) be the solution to the free-transport equation

St∂tf + v · ∇xf = S,

for some S ∈ L2
loc(Rt×Ωx × R3

v). Then, for all compactly supported test
function ϕ ∈ L∞(R3

v), all T > 0 and all compact subset Kx of Ω, the following
regularity estimate holds∥∥∥∥∫ fϕ(v)dv

∥∥∥∥
L2([−T,T ],H1/2(Kx))

≤ C

for some nonnegative constant C depending only on ϕ, T and Kx.

Sketch of proof of Proposition 3.3.7. We will not give extensive proof of that
result, insofar as it is essentially based on the same arguments as in the case
of the whole space. Let us just explain how we introduce the truncation, and
what are the main subsequent modifications.

Let Ω be some smooth open domain. Then, for any compact K ⊂ R×Ω,
there exist some compact K̃ ⊂ R×Ω and some C∞ function χ1 (see Figure
3.4) such that

χ1 ≡ 1 on K, and χ1 ≡ 0 outside from K̃.

In the same way, we can truncate large velocities |v| ≥ R (far from the support
of ϕ) by some smooth function χ2 ∈ C∞c (R3

v). We then denote χ = χ1χ2.
For any f ∈ L2

loc(R
+×Ω×R3

v), we define fχ on R+×Ω×R3
v, then extend

it to R+×Ω ×R3
v by 0. We then have

‖fχ‖L2(R+×R3×R3) ≤ C‖f‖L2(K̃×BR ).

In the same way,

St∂t(fχ) + v · ∇x(fχ) = Sχ+ f(St∂tχ+ v · ∇xχ) ,

so that
‖(St∂t + v · ∇x)(fχ)‖L2(R+×R3×R3)

≤ C
(
‖S‖L2(K̃×BR) + ‖f‖L2(K̃×BR)

)
We then apply Proposition 3.3.1, from which we deduce that the moment∫

fχϕdv = χ1

∫
fϕdv

belongs to L2(R+, H1/2(R3)). We obviously have the same regularity on the
subdomain K on which fχ1 = f . ut
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Fig. 3.4. The truncation function χ1

The same procedure allows actually to extend any averaging result on
smooth domains, even in the L1 case. Note indeed that the so-called “disper-
sion property” used to obtain the L1 result is not really a global result in the
sense that it does not use the decay estimate as time tends to infinity, but
rather a short time estimate. Combined with Gronwall’s lemma, it gives in
fact a (local) mixing property with respect to x and v. That is why it can be
extended to bounded domains :

Theorem 3.3.8 Let Ω be some smooth open domain. Let (fn) be a bounded
sequence in L∞loc(R

+, L1
loc(Ω ×R3)) such that

(St∂tfn + v · ∇xfn) is bounded in L1
loc(R

+×Ω ×R3),
(fn) is locally uniformly equiintegrable in v.

Then, for all compactly supported test function ϕ ∈ L∞(R3
v), the sequence

(
∫
fnϕ(v)dv) is strongly compact with respect to x variables, in the sense that,

for all compact subset K of R+×Ω,

lim
|η|→0

∫∫
K

∣∣∣∣∫ fn(t, x, v)ϕ(v)dv −
∫
fn(t, x+ η, v)ϕ(v)dv

∣∣∣∣ dxdt = 0.
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The Incompressible Navier-Stokes Limit

At the present time, the incompressible Navier-Stokes limit is the only hy-
drodynamic asymptotics of the Boltzmann equation for which an optimal
convergence result is known (and for which we are actually able to implement
all the mathematical tools presented in the previous chapter). By “optimal”,
we mean here that this convergence result

- holds globally in time;
- does not require any assumption on the initial velocity profile;
- does not assume any constraint on the initial thermodynamic fields;
- takes into account boundary conditions, and describes their limiting form.

4.1 Convergence Result : From the Boltzmann Equation
to the Incompressible Navier-Stokes-Fourier System

4.1.1 Mathematical Theories for the Incompressible Navier-Stokes
Equations

Before giving the precise mathematical statement of this convergence result,
let us first recall some basic facts about the homogeneous incompressible
Navier-Stokes equations.

The first equation expresses the incompressibility constraint

∇ · u = 0,

and the second equation is the local conservations of momentum

∂tu+ (u · ∇x)u+∇p = µ∆u,

where the macroscopic density R and the viscosity µ of the gas are assumed
to be constant, and the pressure p is the Lagrange multiplier associated with
the incompressibility constraint. The diffusion operator is expected to have a
smoothing effect, which is linked to the fact that informations propagate with
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an infinite speed, or in other words to the fact that the bulk velocity of the
gas is negligible compared to the speed of sound.

The fundamental estimates for the study of hydrodynamic models are
those coming from physics, namely the conservations of total mass and en-
ergy, as well as the possible decrease of entropy. In the case of homogeneous
incompressible fluids, these estimates provide bounds of L2 type on the veloc-
ity field. They are formally obtained by a simple computation of hilbertian
analysis, remarking that the scalar product of a gradient field by a divergence-
free vector field (with zero mass flux at the boundary) is zero :

Proposition 4.1.1 Let u ≡ u(t, x) be a solution of the incompressible Navier-
Stokes equations

∂tu+ (u · ∇x)u+∇p = µ∆u, ∇x · u = 0, (4.1)

u|t=0 = uin, (4.2)

that is sufficiently smooth (for instance in C(R+, H1(Ω))) and satisfies the
zero mass flux condition at the boundary

n · u|∂Ω = 0,

where n is the outward unit normal to ∂Ω. Then the following energy estimate
holds :

‖u(t)‖2
L2(Ω) + 2µ

∫ t

0
‖∇u(s)‖2

L2(Ω)ds+ 2
∫ t

0

∫
∂Ω

Σ : n⊗ u(s, x)dσxds

= ‖uin‖2
L2(Ω)

(4.3)

where Σ is the stress tensor defined by

Σ = µ(∇u+ (∇u)T )− p Id,

and σx the surface measure on ∂Ω.

Another important property which is useful for the study of this type of
models is the scaling invariance, namely the fact that for any solution u to
(4.1), and any λ > 0, the function uλ defined by

uλ(t, x) = λu(λ2t, λx)

is still a solution to (4.1). Although this property has no physical meaning, it
allows on the one hand to determine critical functional spaces, in which one
can expect to establish global existence of solutions with small data (see for
instance the work by Cannone, Meyer and Planchon [25]), and on the other
hand to study qualitative properties of the solutions (for instance their large
time behaviour, using self-similar solutions to (4.1) [49]).
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Weak Solutions “à la Leray”

By using only the L2 energy estimate, Leray [70] has proved the global exis-
tence of weak solutions to (4.1)(4.2). Indeed the additional regularity coming
from the dissipation term in the energy inequality allows to take weak limits
in some approximation scheme.

This argument is reminiscent from the gain of spatial regularity on the
moments of the Boltzmann equation, obtained from the entropy dissipation
bound by the averaging lemma : the presence at some position x ∈ Ω of
particles with different velocities leads to some friction, and consequently to
some correlation between the bulk velocities at adjoining positions. We will see
later in this chapter a more precise mathematical formulation of this analogy.

Theorem 4.1.2 Let uin ∈ L2(Ω) be a divergence free vector field. Then there
exists (at least) one global weak solution u ∈ L2

loc(R
+, H1(Ω)) ∩ C(R+, w −

L2(Ω)) to the incompressible Navier-Stokes equations (4.1)(4.2) supplemented
by boundary conditions, either the Dirichlet boundary condition

u|∂Ω = 0, (4.4)

or the Navier boundary condition

n · u|∂Ω = 0 and n ∧ (Σ · n− λu)|∂Ω = 0 (4.5)

It further satisfies the energy inequality

‖u(t)‖2
L2(Ω) + 2µ

∫ t

0
‖∇u(s)‖2

L2(Ω)ds ≤ ‖uin‖
2
L2(Ω) (4.6)

in the Dirichlet case, and

‖u(t)‖2
L2(Ω) + 2µ

∫ t

0
‖∇u(s)‖2

L2(Ω)ds+ 2λ
∫ t

0

∫
∂Ω

|u|2(s, x)dσxds ≤ ‖uin‖2
L2(Ω)

(4.7)

in the Navier case.

As mentioned in the previous paragraph, the Leray solutions to the incom-
pressible Navier-Stokes equations are built by taking weak limits in some con-
venient approximation scheme, for instance the so-called Friedrichs scheme.

- Approximate equations are obtained by projecting (4.1) on suitable
Hilbert spaces of finite dimension, generated by eigenmodes of the Stokes
operator (with convenient boundary conditions). These ordinary differential
equations can be solved by using the Cauchy-Lipschitz theory, which further
provides some regularity estimates.

- From the uniform energy bound, on can then obtain spatial regularity
estimates on the approximate solutions, and thereby some control on their
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time derivatives. By interpolation, one thus gets some strong compactness on
the sequence of approximate solutions.

- Taking limits in the weak formulation of (4.1)(4.2), and in the energy
inequality provides then the expected result.

Remark 4.1.3 Note that such a method does not allow in general to obtain
further regularity or stability results.
• In two space dimensions, it happens however that the functional spaces

defined by the energy bounds, namely L∞t (L2
x) and L2

t(Ḣ
1
x), are scaling invari-

ant. One can then prove, using methods of harmonic analysis (to be sketched
in the next paragraph) that the solution is unique, and depends Lipschitz con-
tinuously on the initial data.
• In three space dimensions, functional spaces which are scaling invari-

ant involve more regularity or more integrability (for instance L∞t (Ḣ1/2
x ) and

L2
t(Ḣ

3/2
x )), and thus do not correspond to (global) physical a priori estimates.

Refined results due to Leray [70] and to Caffarelli, Kohn and Nirenberg [22] al-
low to improve regularity estimates for weak solutions, namely to prove that the
Leray solutions to (4.1)(4.2) are smooth outside from small time sets (of zero
Hausdorff measure), but this is not enough to obtain stability and uniqueness.

Smooth Solutions

In 3D, considering the scaling invariant functional space L∞t (Ḣ1/2
x )∩L2

t(Ḣ
3/2
x ),

Fujita and Kato [48] have established the global existence and uniqueness
of solutions under a suitable smallness assumption on the initial data, and
the local existence and uniqueness of solutions for general initial data. Their
result has then be extended to more general scaling invariant functional spaces
([25],[27]).

For the sake of simplicity, we restrict here our attention to the case of the
whole space, which avoids to determine the suitable formulation of boundary
conditions (compatible with the required regularity).

Theorem 4.1.4 Let uin ∈ H1/2(R3) be a divergence free vector field. Then
there exists a unique maximal solution

u ∈ C([0, t∗), H1/2(R3)) with ∇u ∈ L2
loc([0, t

∗), H1/2(R3))

to the incompressible Navier-Stokes equations (4.1)(4.2).
Furthermore, if t∗ < +∞,∫ t∗

0
‖∇u(t)‖2

Ḣ1/2(R3)dt = +∞.

The key argument in the proof is the stability estimate established by
Serrin [99], stating that all weak solutions to (4.1)(4.2) must coincide with
the strong solution if the latter does exist.
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- The first step consists actually in establishing the global existence and
uniqueness of the solution for any initial data in a subset of the critical space
(here a small ball of Ḣ1/2(R3)). For such solutions, the precised energy esti-
mate allows to obtain a global a priori bound in the critical space. This regu-
larity estimate, coupled with the stability argument, implies the uniqueness.

- One can then prove the local existence and uniqueness of the solution
for any initial data in the critical space, by splitting this solution as the sum
of a solution of the corresponding Stokes equation, and a small remainder in
Ḣ1/2(R3) (which can be dealt with as in the first step).

Strong-Weak Stability

The uniqueness of the solution is therefore essentially based on a stability
result, which is obtained as an energy estimate

Proposition 4.1.5 Let u and ũ be two Leray solutions to the incompressible
Navier-Stokes equations (4.1) with respective initial data uin, ũin ∈ L2(R3).
Assume that, for some nonnegative t∗ > 0, ũ belongs to L∞([0, t∗], H1/2(R3))∩
L2([0, t∗], H3/2(R3)). Then, for all t ≤ t∗,

‖u(t)−ũ(t)‖2
L2(R3) ≤ ‖uin−ũin‖

2
L2(R3) exp

(
C

µ

∫ t

0
‖∇ũ(s)‖2

Ḣ1/2(R3)ds

)
, (4.8)

for some nonnegative constant C.
In particular, u = ũ on [0, t∗]×R3 if uin = ũin.

Proof. In order to obtain the stability estimate, the first step consists in writ-
ing the equation satisfied by w = u− ũ :

∂tw + u · ∇w − µ∆w = −∇p− w · ∇ũ ,

from which we deduce the formal L2 estimate :

‖w(t)‖2
L2(R3) − ‖win‖

2
L2(R3)

≤ −2
∫ t

0

∫
(u · ∇)w · w(s, x)dxds+ 2µ

∫
∆w · w(s, x)dxds

+2
∫ t

0

∫
(w · ∇)ũ · w(s, x)dxds

≤ −2µ
∫ t

0
‖∇w(s)‖2

L2(R3)ds+ 2
∫ t

0

∫
(w · ∇)ũ · w(s, x)dxds

because u and w are divergence free vector fields. (In order to justify
this formal computation one should of course proceed by approximation,
namely establish similar inequalities for the smooth approximate solutions
to (4.1)(4.2), then take limits using the regularity of ũ and the uniform a
priori bounds coming from the energy estimate).



84 4 The Incompressible Navier-Stokes Limit

By Hölder’s inequality, we have∣∣∣∣∫ (w · ∇)ũ · w(s, x)dx
∣∣∣∣ ≤ ‖w(s)‖L2(R3)‖∇ũ(s)‖L3(R3)‖w(s)‖L6(R3) ,

and thus, by Sobolev’s embeddings,∣∣∣∣∫ (w · ∇)ũ · w(s, x)dx
∣∣∣∣ ≤ C‖w(s)‖L2(R3)‖∇ũ(s)‖Ḣ1/2(R3)‖∇w(s)‖L2(R3) .

From Cauchy-Schwarz’ inequality we then deduce that

‖w(t)‖2
L2(R3) − ‖win‖

2
L2(R3) + 2µ

∫ t

0
‖∇w(s)‖2

L2(R3)ds

≤ µ
∫ t

0
‖∇w(s)‖2

L2(R3)ds+
C2

µ

∫ t

0
‖w(s)‖2

L2(R3)‖∇ũ(s)‖2
Ḣ1/2(R3)ds .

We conclude by Gronwall’s lemma. ut

4.1.2 Analogies with the Scaled Boltzmann Equation

• The Leray energy inequality (which allows to define global weak solutions
to the incompressible Navier-Stokes equation (4.1)(4.2))

‖u(t)‖2
L2(R3) + 2µ

∫ t

0
‖∇u(s)‖2

L2(R3)ds ≤ ‖uin‖
2
L2(R3)

and the DiPerna-Lions entropy inequality (which allows to define global renor-
malized solutions to the Boltzmann equation (2.18))

1
Ma2H(f |M)(t) +

1
KnStMa2

∫ t

0

∫
D(f)(s, x)dxds ≤ 1

Ma2H(fin|M)

are actually very similar objects.
More precisely, it was proved by Bardos, Golse and Levermore in [5] that

the Leray energy inequality is the limiting form of the DiPerna-Lions entropy
inequality in incompressible viscous hydrodynamic regime

Kn = Ma = St = ε→ 0,

since any limiting point g of the sequence of renormalized fluctuations ĝε
(defined by (3.5)) satisfies

1
2

∫∫
M |g|2(t, x, v)dxdv ≤ lim inf

ε→0

1
ε2H(fε|M)(t) ,
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and∫ t

0

∫∫
Mν−1|v · ∇xg|2(s, x, v)dsdxdv ≤ lim inf

ε→0

1
ε4

∫ t

0

∫
D(fε)(s, x)dsdx .

The second bound, coupled with velocity averaging lemma established in the
previous chapter, provides spatial regularity on the moments of g, as does the
dissipation term in the Leray energy inequality.

This confirms the view expressed by Lions (see [74]) : “[...] the global
existence result of [renormalized] solutions [...] can be seen as the analogue for
Boltzmann’s equation to the pioneering work on the Navier-Stokes equations
by J. Leray”.

Note that this analogy can be extended when considering domains with
boundary (see [82]). The dissipation due to the interaction with the boundary
in the case of a slipping condition arises indeed as the limiting form of the
boundary term in the entropy inequality :

λ

∫∫∫
Σ+

M(v · n)(g − 〈g〉∂Ω)2(s, x, v)dvdσxds

≤ lim inf
ε→0

1√
2πε3

∫ t

0

∫
∂Ω

〈
h

(
fε|Σ+

M

)
− h

(
fε|Σ−
M

)〉
∂Ω

dσxds

where 〈g〉∂Ω is defined as the average

〈g〉∂Ω(s, x) =
√

2π
∫
M(v · n)+g(s, x, v)dv .

Note that the Darrozès-Guiraud information is asymptotically equal to one
half of the boundary term, so that we only have

1
2
λ

∫∫∫
Σ+

M(v · n)(g − 〈g〉∂Ω)2(s, x, v)dvdσxds

≤ lim inf
ε→0

αε
ε3

∫ t

0

∫
∂Ω

E(fε|M)(s, x)dσxds

• Similarities also appear in the framework of smooth solutions, which is
the fundamental idea in the pioneering work by Bardos and Ukai [7] on the
Navier-Stokes limit of the Boltzmann equation. They have indeed proved that,
for small enough initial data, the scaled Boltzmann equation (2.18) with

Kn = Ma = St = ε

has global classical solutions in the weighted Sobolev space Hl,k (for l > 3/2,
k > 5/2) defined by

Hl,k = {f = M(1 + εg) / sup
v∈R3

(1 + |v|k)‖M 1/2g‖Hl(R3
x) < +∞.}
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Their derivation of the Navier-Stokes limit relies then on a rigorous proof of
the relation between such a well-posedness result for the Boltzmann equation
and the Fujita-Kato theory of the Navier-Stokes equation. The point to be
stressed is that exactly the same type of assumptions are made on the initial
data.

Nevertheless, as mentioned in the introduction, this result requires sharp
estimates on the linearized collision operator LM , and overall regularity and
smallness conditions on the initial data (which have no physical meaning). We
have therefore decided not to explain it in details in this survey.

It would be however possible to consider the hybrid case, namely the
asymptotics of renormalized solutions to the Boltzmann equation leading to
some smooth solution to the incompressible Navier-Stokes equation, which is
the counterpart at kinetic level of the strong-weak uniqueness principle stated
in Proposition 4.1.5.

In [52], Golse, Levermore and the author have actually established a sta-
bility inequality of the following type

1
ε2H(fε|M1,εu,1)(t) +

1
ε4

∫ t

0

∫
D(fε)(s, x)dsdx

≤ C

ε2H(fε,in|M1,εuin,1) exp
(
C

∫ t

0
‖∇u(s)‖L∞∩L1(R3)ds

)
.

as long as u is sufficiently smooth. This means in particular that one can
expect to establish a strong convergence result for well-prepared initial data,
provided that the limiting system has a (unique) strong solution. The relative
entropy method leading to such a result will be detailed in the next chapter, in
the framework of the inviscid incompressible limit of the Boltzmann equation,
for which the weak compactness method fails.

Note that the strong convergence result, stating that the relative entropy
1
ε2H(fε|M1,εu,1)(t)→ 0,

holds actually under the only assumption that the limiting Navier-Stokes sys-
tem has a unique solution, satisfying the energy equality (see [5] for instance).

4.1.3 Statement of the Result

The weak compactness method initiated by Bardos, Golse and Levermore in [5]
consists in getting the asymptotic hydrodynamic equations by taking limits
in the local conservation laws associated with the Boltzmann equation, as
proposed by Grad in the framework of the compressible Euler limit. In such
an approach we are therefore interested only in the macroscopic parameters,
and will neglect completely all problems due to initial or boundary layers,
where the gas could be far from local thermodynamic equilibrium.

Theorem 4.1.6 Let (fε,in) be a family of initial fluctuations around a global
equilibrium M , i.e. such that
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1
ε2H(fε,in|M) ≤ Cin, (4.9)

and satisfying further the weak convergences

1
ε
P

∫
fε,invdv ⇀ uin,

1
ε

∫
(fε,in −M)(

1
5
|v|2 − 1)dv ⇀ θin,

in L1
loc(Ω), where P denotes the Leray projection onto divergence free vector

fields.
Let (fε) be a family of renormalized solutions to the scaled Boltzmann

equation

ε∂tfε + v · ∇xfε =
1
ε
Q(fε, fε) on R+×Ω ×R3,

fε(0, x, v) = fε,in(x, v) on Ω ×R3,

fε(t, x, v) = (1− αε)fε(t, x,Rxv) +
√

2παεM(v)
∫

(v′ · n)+fε(t, x, v′)dv′ on Σ−

(4.10)

where Q is the collision operator defined by (2.7) associated with some collision
kernel B satisfying Grad’s cut off assumption (2.8), and where the accommo-
dation coefficient αε is assumed to satisfy the scaling assumption

αε√
2π ε

→ λ ∈ [0,+∞].

Then the family of fluctuations (gε) defined by fε = M(1+εgε) is relatively
weakly compact in L1

loc(dtdx, L
1((1+ |v|2)Mdv)), and any limit point g of (gε)

is an infinitesimal Maxwellian

g = Πg = ρ+ u · v + θ
|v|2 − 3

2

where Π is the projection on the kernel of the linearized collision operator
LM .

Furthermore the moments of the limiting fluctuation satisfy the Navier-
Stokes Fourier system, namely

∂tu+ u · ∇xu+∇p− µ∆xu = 0, ∇x · u = 0 on R+×Ω,
∂tθ + u · ∇xθ − κ∆xθ = 0, ∇x(ρ+ θ) = 0 on R+×Ω,
u|t=0 = uin, θ|t=0 = θin on Ω

(4.11)

supplemented either by the Navier boundary condition if λ < +∞

(µ(∇u+ (∇u)T ) · n− λu) ∧ n = 0, u · n = 0 on R+×∂Ω,

κ
∂θ

∂n
− 4

5
λθ = 0 on R+×∂Ω,

(4.12)

or by the Dirichlet boundary condition if λ = +∞

u = 0, θ = 0 on R+×∂Ω. (4.13)
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Remark 4.1.7 (i) The solution u to the Navier-Stokes equations obtained at
the limit is not necessarily a Leray solution to (4.1)(4.2) since it is not known
to satisfy the energy inequality in the form (4.6) or (4.7).

(ii) Once a weak solution

u ∈ L2
loc(R

+, H1(Ω)) ∩ C(R+, w − L2(Ω))

of the incompressible Navier-Stokes equations (4.1)(4.2) is known, it is easy
to see that the Fourier equation

∂tθ + u · ∇θ − κ∆θ = 0

supplemented with some initial data θin ∈ L2(Ω) and convenient boundary
conditions, has a unique weak solution

θ ∈ L2
loc(R

+, H1(Ω)) ∩ C(R+, w − L2(Ω))

satisfying further the L2 estimate

‖θ(t)‖2
L2(Ω) + 2κ

∫ t

0
‖∇θ(s)‖2

L2(Ω)ds ≤ ‖θin‖
2
L2(Ω).

Note that the quantities involved here do not clearly come from physics, in
particular they do not correspond to the internal part of the global energy.
They actually arise when linearizing the entropy functional for fluctuations
around a global equilibrium.

As mentioned in the previous paragraph, this weak convergence result can
be strengthened in a strong convergence result, if there is no acoustic waves
and provided that the limiting system has a unique solution satisfying the
energy estimate.

In order to state this convergence result, we need the notion of entropic
convergence introduced by Bardos, Golse and Levermore in [5].

Definition 4.1.8 The family of fluctuations (gε) is said to converge entrop-
ically of order δε to g ∈ L2(dxMdv) if and only if

gε ⇀ g weakly in L1
loc(dxMdv),

1
δ2
ε

H
(
M(1 + δεgε)|M

)
→ 1

2

∫∫
Mg2(x, v)dxdv. (4.14)

With this definition, we have the following result :

Theorem 4.1.9 Let (fε,in) be a family of initial fluctuations around a global
equilibrium M , i.e satisfying (4.9). Assume that (gε,in) converges entropically
(of order ε) to the infinitesimal Maxwellian gin defined by

gin(x, v) = uin(x) · v + θin(x)
|v|2 − 5

2
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for some given (uin, θin) ∈ L2(Ω) such that

∇ · uin = 0 in Ω, n · uin = 0 on ∂Ω.

Let (fε) be a family of renormalized solutions to the scaled Boltzmann
equation (4.10) where Q is the collision operator defined by (2.7) associated
with some collision kernel B satisfying Grad’s cut off assumption (2.8), and
the accommodation coefficient αε is assumed to satisfy the scaling assumption

αε√
2πε
→ λ ∈ [0,+∞].

Assume that the Navier-Stokes Fourier system (4.11) supplemented either
by the Navier condition (4.12) if λ < +∞, or by the Dirichlet condition
(4.13) in the opposite case, admits a (unique) weak solution (u, θ) satisfying
the energy equality.

Then, for almost all t > 0, the family of fluctuations (gε(t)) defined by
fε = M(1 + εgε) converges entropically to the infinitesimal Maxwellian g(t)
given by

g(t, x, v) = u(t, x) · v + θ(t, x)
|v|2 − 5

2
.

4.2 The Moment Method

4.2.1 Description of the Strategy

Our goal here is to establish the convergence of appropriately scaled families of
solutions to the Boltzmann equation towards solutions of the incompressible
Navier-Stokes (Fourier) equations, without restrictions on the size, regularity
or well-preparedness of the initial data. This means in particular that, given
the state of the art about the Boltzmann equation, we consider renormalized
solutions to (4.10). Note however that the method we present here could apply
without important simplifications to any solution of the Boltzmann equation,
since the uniform estimates come mainly from the entropy inequality.

The first results in this framework are due to Bardos, Golse and Levermore
for the time independent case [5], and to Lions and Masmoudi for the time
dependent problem [76]. The principle of the derivation is as follows :

• In terms of gε, the Boltzmann equation (4.10) becomes

ε∂tgε + v · ∇xgε +
1
ε
LMgε =

1
M
Q(Mgε,Mgε), (4.15)

where LM denotes as previously the linearization of Boltzmann’s collision
operator at the Maxwellian state M . Therefore, multiplying (4.15) by ε
and letting ε→ 0 suggests that (gε) converges in the sense of distributions
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to some infinitesimal Maxwellian g (see Proposition 3.2.2 in the previous
chapter)

g(t, x, v) = ρ(t, x) + u(t, x) · v +
1
2
θ(t, x)(|v|2 − 3).

• Passing to the limit in the local conservations of mass and momentum
leads then to the constraints

∇x ·
∫
Mgvdv = 0 and ∇x

∫
Mg|v|2dv = 0,

or equivalently
∇x · u = 0 and ∇x(ρ+ θ) = 0,

known as the incompressibility and Boussinesq relations.
• Recast finally the formal momentum and energy equations as

∂t

∫
Mgεvdv +∇x ·

1
ε

∫
MgεΦ(v)dv +∇x

(
1
3ε

∫
Mgε|v|2dv

)
= 0,

∂t

∫
Mgε

1
2

(|v|2 − 5)dv +∇x ·
1
ε

∫
MgεΨ(v)dv = 0

where Φ and Ψ are the momentum flux tensor and heat flux function
defined by (3.17). By Remark 3.2.3 in the previous chapter and (4.15),
one thus has

∂tP

∫
Mgεvdv + P∇x ·

∫
(Q(Mgε,Mgε)− v · ∇xMgε) Φ̃(v)dv = O(ε),

∂t

∫
Mgε

|v|2 − 5
2

dv+∇x ·
∫

(Q(Mgε,Mgε)− v · ∇xMgε) Ψ̃(v)dv = O(ε)

so that, using the relaxation gε ∼ Πgε where Π denotes as previously the
L2 orthogonal projection onto Ker(LM ), and the identity

Q(MΠg,MΠg) =
1
2
MLM (Πg)2, (4.16)

we can identify in both equations the convection and diffusion terms, and
get in the limit ε→ 0 the motion and heat equations in (4.11).

In [5] or [76], such a formal process was justified assuming :
(i) the local conservations of momentum and energy, which are not guar-

anteed for the renormalized solutions of the Boltzmann equation;
(ii) some nonlinear estimate, namely

(1 + |v|2)
g2
ε

1 + ε
2gε

relatively weakly compact in L1
loc(dtdx, L

1(Mdv))
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which provides both a control on large velocities v, and some equiintegrability
with respect to space variables x.

In [51], Golse and Levermore have developed (in the framework of the
Stokes asymptotics) an argument based on the study of the conservation de-
fects, in order to establish that the local conservation laws hold asymptotically
and to remove completely assumption (i). Such a method can be extended to
the Navier-Stokes asymptotics under assumption (ii) for instance.

Hence, verifying (ii) remained the main obstruction to derive the Navier-
Stokes (Fourier) equations from the Boltzmann equation. In the framework
of the BGK equation (which is the relaxation model associated to the Boltz-
mann equation), a weak variant of (ii), which is actually sufficient to obtain
a rigorous derivation of the Navier-Stokes limit, has been established by the
author in [92]. It uses in a crucial way the dissipation control given by the H
Theorem, namely the fact that

fε −Mfε = O(ε2),

combined with dispersive properties of the free-transport operator leading to
L1 velocity averaging (see Proposition 3.3.5 in the previous chapter). This
argument has then been extended to the case of the Boltzmann equation for
Maxwell molecules (corresponding to some bounded cross-section B) by Golse
and the author [54], considering some pseudo-equilibriumAfε , defined in terms
of the gain part of the collision operator, instead of the local MaxwellianMfε

fε −Afε = O(ε2).

The proof can actually be simplified and generalized to all hard potentials
with cut off (see [55]), by using the renormalized fluctuation

ĝε ∈ L∞(R+, L2(dxMdv))

defined by (3.5), and the hilbertian structure of the domain of LM , which
allow in particular to establish in a simple way

ĝε −Πĝε = O(ε),

(see Proposition 3.2.4 in the previous chapter).
The suitable functional framework to study the Navier-Stokes Fourier

asymptotics is therefore that defined in the previous chapter, starting from
the scaled entropy inequality, and using both the properties of the linearized
collision operator LM and the properties of the free transport operator
(ε∂t + v · ∇x). Let us then recall the notations and basic estimates obtained
for the scaled Boltzmann equation (4.10).

Two important quantities are the renormalized fluctuation ĝε and the
renormalized collision integral q̂ε defined by

ĝε =
2
ε

(√
fε
M
− 1

)
, q̂ε =

1
ε2

1
M
Q(
√
Mfε,

√
Mfε) (4.17)
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for which the relative entropy and the entropy dissipation give the following
L2 bounds

‖ĝε‖2
L∞(R+,L2(Mdvdx)) ≤ 2Cin, ‖q̂ε‖2

L2(dtdxν−1Mdv) ≤ Cin . (4.18)

By Lemmas 3.2.4 and 3.2.5 we further have the following relaxation bound
and integrability estimate with respect to v

‖ĝε −Πĝε‖L2(Mdv) = O(ε)L2
t,x

+O(ε)‖ĝε‖2
L2(Mdv), (4.19)

and

(1 + |v|p)M |ĝε|2 is uniformly integrable in v on [0, T ]×K ×R3, (4.20)

for all p < 2, all T > 0 and all compact K ⊂ Ω.
From these estimates, we can easily deduce that any limiting fluctuation

g ∈ L∞(R+, L2(dxMdv)) is an infinitesimal Maxwellian, i.e.

g(t, x, v) = Πg(t, x, v) = ρ(t, x) + u(t, x) · v + θ(t, x)
1
2

(|v|2 − 3),

and that its moments ρ, u and θ satisfy the incompressibility and Boussinesq
constraints. In the sequel, we will therefore focus on the derivation of the
motion and temperature equations.

4.2.2 Convergence of the Conservation Defects

Start from the scaled Boltzmann equation (4.10) renormalized relatively to
M with the nonlinearity Γ (z) = (z − 1)γ(z) where γ is a smooth truncation
such that

γ ∈ C∞(R+, [0, 1]), γ|[0,3/2] ≡ 1, γ(z) ≤ C

1 + z
(4.21)

With the notations γε for γ(fε/M) and γ̂ε for Γ ′(fε/M), this equation is

∂t(gεγε) +
1
ε
v · ∇x(gεγε) =

1
ε3 γ̂ε

1
M
Q(fε, fε).

Multiplying each size of the equation above by ϕ(v)1|v|2≤Kε with Kε =
K| log ε| for some K to be fixed later and ϕ some collision invariant, then
averaging with respect to Mdv leads to

∂t

∫
Mgεγεϕ1|v|2≤Kεdv +

1
ε
∇x ·

∫
Mgεγεϕ1|v|2≤Kεvdv

=
1
ε3

∫
γ̂εQ(fε, fε)ϕ1|v|2≤Kεdv.
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Below we use the notations

Fε(Φ) =
1
ε

∫
MgεγεΦ1|v|2≤Kεdv, Fε(Ψ) =

1
ε

∫
MgεγεΨ1|v|2≤Kεdv (4.22)

for the fluxes (where Φ and Ψ are the kinetic momentum and energy fluxes
defined by (3.17)), and

Dε(v) =
1
ε3

∫
γ̂εQ(fε, fε)v1|v|2≤Kεdv,

Dε

(
1
2

(|v|2 − 5)
)

=
1
ε3

∫
γ̂εQ(fε, fε)

1
2

(|v|2 − 5)1|v|2≤Kεdv
(4.23)

for the corresponding conservation defects.
The Navier-Stokes motion equation is then obtained by passing to the

limit as ε→ 0 modulo gradient fields in

∂t

∫
Mgεγε1|v|2≤Kεvdv +∇x · Fε(Φ) +∇xpε = Dε(v) , (4.24)

while the temperature equation is obtained by passing to the limit in

∂t

∫
Mgεγε1|v|2≤Kε

1
2

(|v|2 − 5)dv +∇x · Fε(Ψ) = Dε

(
1
2

(|v|2 − 5)
)
. (4.25)

The first step of the proof is then to establish the vanishing of conservation
defects :

Proposition 4.2.1 Under the same assumptions as in Theorem 4.1.6, one
has

Dε(1)→ 0, Dε(v)→ 0 and Dε

(
1
2

(|v|2 − 5)
)
→ 0 in L1

loc(dtdx) as ε→ 0.

Proof. In order to establish the previous proposition, we will introduce a con-
venient decomposition of Dε(ϕ) for any collision invariant ϕ, then estimate
the different terms using the bounds (4.18), (4.19), and (4.20), as well as the
following equiintegrability statement

(1 + |v|p)M |ĝε|2 is uniformly integrable on [0, T ]×K ×R3, (4.26)

for all T > 0, K ⊂⊂ Ω and p < 2, coming from Proposition 3.3.5, and which
will be proved later (see Proposition 4.3.1).

The decomposition to be used is as follows

Dε(ϕ) =
1
ε3

∫∫∫
γ̂ε1|v|2≤Kε(

√
f ′εf
′
ε∗ −

√
fεfε∗)2ϕB(v − v∗, σ)dvdv∗dσ

+
2
ε3

∫∫∫
γ̂ε1|v|2≤Kε(

√
f ′εf
′
ε∗ −

√
fεfε∗)

√
fεfε∗ϕB(v − v∗, σ)dvdv∗dσ
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or equivalently

Dε(ϕ) =
1
ε3

∫∫∫
γ̂ε1|v|2≤Kε(

√
f ′εf
′
ε∗ −

√
fεfε∗)2ϕB(v − v∗, σ)dvdv∗dσ

− 2
ε3

∫∫∫
γ̂ε1|v|2>Kε(

√
f ′εf
′
ε∗ −

√
fεfε∗)

√
fεfε∗ϕB(v − v∗, σ)dvdv∗dσ

+
2
ε3

∫∫∫
γ̂ε(1− γ̂ε∗)(

√
f ′εf
′
ε∗ −

√
fεfε∗)

√
fεfε∗ϕB(v − v∗, σ)dvdv∗dσ

+
2
ε3

∫∫∫
γ̂εγ̂ε∗(1− γ̂′εγ̂′ε∗)(

√
f ′εf
′
ε∗ −

√
fεfε∗)

√
fεfε∗ϕB(v − v∗, σ)dvdv∗dσ

− 1
2ε3

∫∫∫
γ̂εγ̂
′
εγ̂ε∗γ̂

′
ε∗(
√
f ′εf
′
ε∗ −

√
fεfε∗)2(ϕ+ ϕ∗)B(v − v∗, σ)dvdv∗dσ

def= D1
ε(ϕ) +D2

ε(ϕ) +D3
ε(ϕ) +D4

ε(ϕ) +D5
ε(ϕ)

(4.27)

where we have used that ϕ is a collision invariant to symmetrize the last term.

• That the term D1
ε(ϕ) vanishes for ϕ(v) = O(|v|2) as |v| → +∞ is easily

seen as follows

‖D1
ε(ϕ)‖L1

t,x
≤ Cε‖γ̂ε1|v|2≤Kεϕ‖L∞

∥∥∥∥∥
√
f ′εf
′
ε∗ −

√
fεfε∗

ε2

∥∥∥∥∥
2

L2(dtdxBdvdv∗dσ)
= O(ε| log ε|)

because of the entropy dissipation bound.

• The second term D2
ε(ϕ) is controlled by the following estimate on the

tails of Gaussian distributions :∫
|v|2>R

|v|pM(v)dv ∼
√

2
π
R(p+1)/2e−R/2 (4.28)

We have indeed, because of the upper bound on the collision cross-section
in (2.8)

|D2
ε(ϕ)|

≤ 2
ε

∥∥∥∥∥
√
f ′εf
′
ε∗ −

√
fεfε∗

ε2

∥∥∥∥∥
L2(Bdvdv∗dσ)

∥∥∥γ̂ε1|v|2>Kεϕ√fεfε∗∥∥∥
L2(Bdvdv∗dσ)

≤ 2
ε

∥∥∥∥∥
√
f ′εf
′
ε∗ −

√
fεfε∗

ε2

∥∥∥∥∥
L2(Bdvdv∗dσ)

∥∥∥∥∥γ̂ε
√
fε
M

∥∥∥∥∥
L∞

∥∥∥∥∥
√
fε
M

∥∥∥∥∥
L2((1+|v|)βMdv)

×‖1|v|2>Kεϕ‖L2((1+|v|)βMdv)

where β is the parameter arising in Grad’s cut-off assumption (2.8).
Thus, using the entropy dissipation bound, some pointwise estimate on√

zγ(z), the Gaussian decay estimate (4.28) and the L∞t (L1
loc(dx, L

1(M(1 +
|v|2)dv))) bound on the fluctuation coming from Young’s inequality (see
Lemma 3.1.2), we get for all ϕ(v) = O(|v|2) as |v| → +∞
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‖D2
ε(ϕ)‖L2

t(L1
x) = O(εK/2−1| log ε|(β+5)/2)→ 0

as soon as K > 2.

• The last term D5
ε(ϕ) is mastered using the same tools.

For high energies, i.e. when |v|2 + |v∗|2 > K| log ε|, we use a variant of the
estimate (4.28) on the tails of Gaussian distributions, namely∫∫

|v|2+|v∗|2>R
(|v|2 + |v∗|2)p/2M(v)M(v∗)dvdv∗ ∼ CR(p+4)/2e−R/2,

to obtain, using Grad’s cut off assumption (2.8),

|D5>
ε (ϕ)|

def=
∣∣∣∣ 1
2ε3

∫∫∫
γ̂εγ̂
′
εγ̂ε∗γ̂

′
ε∗1|v|2+|v∗|2>Kε(

√
f ′εf
′
ε∗ −

√
fεfε∗)2(ϕ+ϕ∗)Bdvdv∗dσ

∣∣∣∣
≤ 2
ε3

∥∥∥∥ fεM γ̂ε

∥∥∥∥2

L∞
‖γ̂ε‖2

L∞ ‖1|v|2+|v∗|2>Kε(ϕ+ ϕ∗)‖L1(MM∗Bdvdv∗dσ)

≤ C

ε3

∫∫
|v|2+|v∗|2>Kε

(|v|2 + |v∗|2)1+β/2M(v)M(v∗)dvdv∗

so that
‖D5>

ε (ϕ)‖L∞t,x = O(εK/2−3| log ε|(β+6)/2)→ 0

for all ϕ(v) = O(|v|2) as |v| → +∞, as soon as K > 6.
For moderated energies, i.e. when |v|2 + |v∗|2 ≤ K| log ε|, the entropy

dissipation bound provides (as in the first step above)

‖D5<
ε (ϕ)‖L1

t,x
= O(ε| log ε|)

for ϕ(v) = O(|v|2) as |v| → +∞.

• To handle D3
ε(ϕ) requires the additional equiintegrability statement

(4.26). For each T > 0 and each compact K ⊂ Ω, one has by Cauchy-Schwarz’
inequality

‖D3
ε(ϕ)‖L1([0,T ]×K)≤C

∥∥∥∥∥
√
f ′εf
′
ε∗ −

√
fεfε∗

ε2

∥∥∥∥∥
L2(dtdxBdvdv∗dσ)

‖ϕ‖L2((1+|v|)βMdv)

×

∥∥∥∥∥γ̂ε
√
fε
M

∥∥∥∥∥
L∞

∥∥∥∥∥1
ε

(1−γ̂ε)
√
fε
M

∥∥∥∥∥
L2([0,T ]×K,L2((1+|v|)βMdv))

≤C
∥∥∥∥1
ε

(1− γ̂ε)(1 +
ε

2
ĝε)
∥∥∥∥
L2([0,T ]×K,L2((1+|v|)βMdv))

Because of the condition on the support of 1− γ

1
ε
|1− γ̂ε|(1 + ε|ĝε|) ≤ 3|1− γ̂ε||ĝε|
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In particular, from (4.26) and the fact that 1 − γ̂ε is bounded in L∞ and
converges a.e. to 0, we deduce by the Product Limit Theorem (stated in
Appendix A) that for any p < 2

1
ε

(1− γ̂ε)(1 + ε|ĝε|)→ 0 in L2([0, T ]×K,L2((1 + |v|p)Mdv)). (4.29)

Therefore
‖D3

ε(ϕ)‖L1([0,T ]×K) → 0 as ε→ 0.

• A similar argument provides the convergence of the remaining term
D4
ε(ϕ). For each T > 0 and each compact K ⊂ Ω, one has by Cauchy-Schwarz

inequality

‖D4
ε(ϕ)‖L1([0,T ]×K) ≤ C

∥∥∥∥∥
√
f ′εf
′
ε∗ −

√
fεfε∗

ε2

∥∥∥∥∥
L2(dtdxBdvdv∗dσ)

∥∥∥∥∥γ̂ε
√
fε
M

∥∥∥∥∥
2

L∞

×
∥∥∥∥1
ε

(1− γ̂εγ̂ε∗)ϕ
∥∥∥∥
L2([0,T ]×K,L2(MM∗Bdvdv∗dσ))

≤ C

∥∥∥∥1
ε

(1− γ̂ε)
∥∥∥∥
L2([0,T ]×K,Lp(Mdv))

for any p > 2.
Using again the pointwise estimate

1
ε
|1− γε| ≤ 3|ĝε||1− γε|

≤ 3(|Πĝε|+ |ĝε −Πĝε|)|1− γε|

with (4.19), we obtain that for all p < +∞
1− γε
ε

= O(1)L∞t (L2(dx,Lp(Mdv))) +O(ε)L1
loc(dtdx,L2(Mdv))

On the other hand,

1− γε
ε

= O(1)L∞t (L2(dxMdv)) and
1− γε
ε

= O

(
1
ε

)
L∞t,x,v

Thus, for all p < 4

1− γε
ε

= O(1)L2
loc(dtdx,Lp(Mdv)).

Using (4.29), we then get

1− γε
ε
→ 0 in L2

loc(dtdx, L
p(Mdv)) (4.30)

for all p < 4.
We therefore conclude that

‖D4
ε(ϕ)‖L1([0,T ]×K) → 0 as ε→ 0.

Plugging all estimates in (4.27) leads to the expected convergence. ut



4.2 The Moment Method 97

4.2.3 Decomposition of the Flux Term

We have then to characterize the asymptotic behaviour of the flux terms :

Proposition 4.2.2 Under the same assumptions as in Theorem 4.1.6, one
has

Fε(Φ)− 1
2

∫
M(Πĝε)2Φdv + 2

∫
Mq̂εΦ̃dv → 0,

Fε(Ψ)− 1
2

∫
M(Πĝε)2Ψdv + 2

∫
Mq̂εΨ̃dv → 0,

in L1
loc(dtdx) as ε→ 0.

Proof. Let us first recall from the formal derivation that the flux term should
be decomposed according to a convection term and a diffusion term, using
the fact that the distribution fε is expected to be well approximated by the
corresponding local thermodynamic equilibrium :

fε =Mfε + (fε −Mfε).

However, we have seen in the previous chapter that such an ingenuous method
fails because the entropy dissipation is not known to control the quantity
(fε −Mfε) in some suitable norm.

The convenient alternative is actually to consider the linearized version of
this decomposition

ĝε = Πĝε + (ĝε −Πĝε)

where Π is the L2 orthogonal projection on KerLM , and ĝε is the renormalized
fluctuation (which can be studied in the framework of the linear hilbertian
theory).

• The first step consists therefore in introducing a suitable decomposition
of the flux term, well adapted to the structure of the collision operator.

Fε(ζ) =
1
4

∫
Mĝ2

εγεζ1|v|2≤Kεdv +
1
ε

∫
Mĝεγεζ1|v|2≤Kεdv

=
1
4

∫
M(Πĝε)2ζdv +

1
ε

∫
Mĝεζdv

+
1
4

∫
M(ĝ2

ε−(Πĝε)2)γε1|v|2≤Kεζdv +
1
4

∫
M(γε1|v|2≤Kε−1)(Πĝε)2ζdv

+
1
ε

∫
Mĝε(γε1|v|2≤Kε − 1)ζdv

def=
1
4

∫
M(Πĝε)2ζdv +

1
ε

∫
Mĝεζdv + F 1

ε (ζ) + F 2
ε (ζ) + F 3

ε (ζ)

By (4.19), (4.26) and (4.29) the remainder terms F 1
ε (ζ), F 2

ε (ζ) and F 3
ε (ζ)

are expected to converge to 0. It remains then to determine the asymptotic
behaviour of the second term in the right hand side of the previous identity.
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The crucial remark here is that ζ belongs to (KerLM )⊥ so that there
exists a (unique) element ζ̃ ∈ L2(νMdv)∩ (KerLM )⊥ such that LM ζ̃ = ζ. By
Proposition 3.2.2 and the identity

M L̃M ĝε =
ε

2
Q̃(Mĝε,Mĝε)−

2
ε
Q̃(
√
Mfε,

√
Mfε)

one has therefore

1
ε

∫
Mĝεζdv =

1
ε

∫
MLM ĝεζ̃dv

=
1
2

∫
Q(Mĝε,Mĝε)ζ̃dv − 2

∫
Mq̂εζ̃dv

=
1
2

∫
Q(MΠĝε,MΠĝε)ζ̃dv − 2

∫
Mq̂εζ̃dv

+
1
2

∫
Q
(
M(ĝε −Πĝε),M(ĝε +Πĝε)

)
ζ̃dv

def=
1
2

∫
Q(MΠĝε,MΠĝε)ζ̃dv − 2

∫
Mq̂εζ̃dv + F 4

ε (ζ)

Combining both equalities and using identity (4.16), we finally deduce that

Fε(ζ)− 1
2

∫
M(Πĝε)2ζdv + 2

∫
Mq̂εζ̃dv

= F 1
ε (ζ) + F 2

ε (ζ) + F 3
ε (ζ) + F 4

ε (ζ)
(4.31)

so that proving Proposition 4.2.2 comes down to establish the convergence to
zero of the four remainder terms F 1

ε (ζ), F 2
ε (ζ), F 3

ε (ζ) and F 4
ε (ζ).

• The first term F 1
ε (ζ) requires a careful treatment because of the weight

ζ(v) = O(|v|3) as |v| → +∞. By the Cauchy-Schwarz inequality, for each
T > 0 and each compact K ⊂ Ω

‖F 1
ε (ζ)‖L1([0,T ]×K) ≤

∥∥(ĝε +Πĝε)γεζ1|v|2≤K| log ε|
∥∥
L2([0,T ]×K,L2(Mdv))

×‖ĝε −Πĝε‖L2([0,T ]×K,L2(Mdv))

By (4.26) and the relaxation bound (4.19), one easily establishes, using
Lebesgue’s theorem, that for any q < 2

‖ĝε −Πĝε‖L2([0,T ]×K,L2((1+|v|q)Mdv)) → 0 as ε→ 0.

It remains then to obtain a suitable control on large velocities. By (4.18), one
has for all p < +∞

Πĝε = O(1)L∞t (L2
x(Lp(Mdv)))

so that
ĝε = O(1)L∞t (L2(dx,Lp(Mdv))) +O(ε)L1

loc(dtdx,L2(Mdv))
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On the other hand,

ĝεγ
2
ε = O(1)L∞t (L2(dxMdv)) and ĝεγ

2
ε = O

(
1
ε

)
L∞t,x,v

Thus, for all p < 4

(ĝε +Πĝε)γε = O(1)L2
loc(dtdx,Lp(Mdv))

Plugging this last estimate in the inequality leads to

F 1
ε (ζ)→ 0 in L1

loc(dtdx) as ε→ 0.

• The term F 2
ε (ζ) is easily disposed of, using the equiintegrability state-

ment (4.26) which implies in particular that

M(Πĝε)2(1 + |v|p) is uniformly integrable on [0, T ]×K ×R3,

for each T > 0, each compact K ⊂ Ω and each p < +∞. Then, by the Product
Limit Theorem (stated in Appendix A), as (γε1|v|2≤Kε −1) is bounded in L∞

and converges a.e. to 0,

F 2
ε (ζ)→ 0 in L1

loc(dtdx) as ε→ 0.

• In order to get the convergence of F 3
ε (ζ), we use both the estimate (4.28)

on the tails of Gaussian distributions, and the convergence (4.30) obtained in
the previous paragraph.

One indeed has, by (4.28),∥∥∥∥1
ε

∫
Mĝεγε(1|v|2≤Kε − 1)ζdv

∥∥∥∥
L∞t (L2(dx))

≤ 1
ε
‖γε‖L∞‖ĝε‖L∞t (L2(dxMdv))

(∫
M1|v|2>Kεζ

2dv

)1/2

≤ CεK/4−1| log ε|7/4

since ζ2(v) = O(|v|6) as |v| → +∞.
On the other hand, by (4.30)∥∥∥∥1

ε

∫
Mĝε(γε − 1)ζdv

∥∥∥∥
L2([0,T ],L1(K))

≤
∥∥∥∥ζ γε − 1

ε

∥∥∥∥
L2([0,T ]×K,L2(Mdv))

‖ĝε‖L∞t (L2(dxMdv)) → 0.

Thus,
F 3
ε (ζ)→ 0 in L1

loc(dtdx) as ε→ 0.
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• The continuity of Q∥∥∥∥ 1
M
Q(Mg,Mg)

∥∥∥∥
L2(Mν−1dv)

≤ C‖g‖L2(Mdv)‖g‖L2(M(1+|v|)βdv)

implies that, for each T > 0 and each compact K ⊂ Ω,

‖F 4
ε (ζ)‖L1([0,T ]×K) ≤ C‖ζ̃‖L2(νMdv)‖ĝε −Πĝε‖L2([0,T ]×K,L2((1+|v|)βMdv))

×‖ĝε +Πĝε‖L2([0,T ]×K,L2((1+|v|)βMdv)).

Therefore
F 4
ε (ζ)→ 0 in L1

loc(dtdx) as ε→ 0.

Combining all results leads to the expected convergence. ut

4.3 Study of the Convection and Diffusion Terms

Let us first recall that the strategy used here to obtain the Navier-Stokes
Fourier equations consists in taking limits in (4.24) (modulo gradients) and
(4.25), namely in

∂t

∫
Mgεγε1|v|2≤Kεvdv +∇x · Fε(Φ) +∇xpε = Dε(v) ,

∂t

∫
Mgεγε1|v|2≤Kε

1
2

(|v|2 − 5)dv +∇x · Fε(Ψ) = Dε

(
1
2

(|v|2 − 5)
)
.

Therefore, in view of the results established in the previous section, our main
task now is to determine the asymptotic behaviour of the convection terms

1
2

∫
M(Πĝε)2Φdv and

1
2

∫
M(Πĝε)2Ψdv,

and of the diffusion terms

2
∫
Mq̂εΦ̃dv and 2

∫
Mq̂εΨ̃dv.

Explicit computations show that the convection terms can be expressed in
terms of the moments of Πĝε (which are equal by definition to those of ĝε).
We have indeed (see [5] p. 71 for instance)

1
2

∫
M(Πĝε)2Φdv = u⊗2

ε −
1
3
|uε|2 Id,

1
2

∫
M(Πĝε)2Ψdv =

5
2
uεθε,
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where uε and θε are the bulk velocity and temperature associated with ĝε. The
difficulty is therefore to obtain enough strong compactness on the moments
of ĝε to establish the convergence of the previous quadratic quantities.

Dealing with the diffusion terms is less difficult, in the sense that it involves
only weak compactness arguments. The only point is to characterize the weak
limit of the sequence (q̂ε).

4.3.1 Spatial Regularity Coming from Averaging Lemmas

The first step is then to study the spatial regularity of the renormalized fluctu-
ation ĝε, and of the corresponding moments, which is based on the properties
of the free transport operator stated in the previous chapter, namely the dis-
persion and velocity averaging results.

Proposition 4.3.1 Under the same assumptions as in Theorem 4.1.6, one
has for all p < 2, all T > 0 and all compact K ⊂ Ω
• the family ((1 + |v|p)M |ĝε|2) is uniformly integrable on [0, T ]×K ×R3,
• for any ϕ ∈ L2(Mdv)∥∥∥∥∫ Mĝε(t, x+ y, v)ϕ(v)dv−

∫
Mĝε(t, x, v)ϕ(v)dv

∥∥∥∥2

L2([0,T ]×K)
→ 0 as |y| → 0.

Proof. Starting from the uniform equiintegrability in v stated in (4.20), we
expect these estimates to be obtained thanks to the mixing and velocity av-
eraging properties of the free transport operator described in the previous
chapter.
• The first requirement is therefore to get a control on the source term. As

the squareroot renormalization is not admissible for the Boltzmann equation
(because of the singularity at 0), we introduce some modified renormalized
fluctuation √

fε/M + εa − 1
ε

,

for some a > 0 to be chosen later, and compute

(ε∂t + v · ∇x)

√
fε/M + εa − 1

ε
.

We will prove that

(ε∂t + v · ∇x)

√
fε/M + εa − 1

ε
=O(ε2−a/2)L1(dtdxMdv)+O(1)L2(dtdxν−1Mdv) +O(ε)L1

loc(dtdx,L2((1+|v|)−βMdv))

(4.32)

Renormalize the Boltzmann equation (4.10) relatively to M by the non-
linearity Γε(z) = 1

ε (
√
z + εa − 1)
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(ε∂t + v · ∇x)

√
fε/M + εa − 1

ε

=
1

2ε2

1
√
fε + εaM

√
M

∫∫ (√
f ′εf
′
ε∗ −

√
fεfε∗

)2
B(v − v∗, σ)dσdv∗

+
1
ε2

√
fε√

fε + εaM
√
M

∫∫ (√
f ′εf
′
ε∗ −

√
fεfε∗

)√
fε∗B(v − v∗, σ)dσdv∗

def= Q1
ε +Q2

ε

(4.33)

The L2 bound (4.18) on q̂ε implies that the first term in the right hand side
satisfies

‖Q1
ε‖L1(dtdxMdv) ≤

1
2
Cinε

2−a/2.

The weigthed L2 bound (4.20) on ĝε implies that√
fε∗
M∗

= 1 +O(ε)L2
loc(dtdx,L2(M∗(1+|v∗|)βdv∗)),

from which we deduce that the second term in the right hand side of the free
transport equation satisfies

Q2
ε = O(1)L2(dtdxν−1Mdv) +O(ε)L1

loc(dtdx,L2((1+|v|)−βMdv)).

Combining both estimates leads to (4.32).
• Combining this estimate on the source term with the L2 bound on ĝε,

and applying Proposition 3.3.5 of the previous chapter, we are then able to
establish the equiintegrability of the following quantity

φδε =

(√
fε/M + εa − 1

ε

)2

γ

(
εδ

(√
fε/M + εa − 1

ε

))
,

where γ is a smooth truncation.
Using a decomposition according to the tail of fε/M , one first proves that√
fε/M + εa − 1

ε
− ĝε = O(εa−1)L∞t,x,v +O(εa/2)L2

loc(dtdx,L2(M(1+|v|p)dv))

for p < 2, which coupled with the L2 bound (4.18) on ĝε leads to(√
fε/M + εa − 1

ε

)2

− ĝ2
ε = O(εa−1)L2

loc(dtdx,L2((1+|v|p)Mdv))

+O(εa/2)L2
loc(dtdx,L1((1+|v|p)Mdv)).

(4.34)

In particular, by (4.20)

φδε = O(1)L1
loc(dtdx,L1((1+|v|p)Mdv)),

φδε is uniformly integrable in the v variables.
(4.35)
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On the other hand, from (4.32) one deduces that

(ε∂t + v · ∇x)φδε = O

(
1
δ

)
L1
loc(dtdxMdv)

(4.36)

provided that 1 < a < 2. Indeed

(ε∂t+v ·∇x)φδε =
1
δ
γ̃

(
δ

(√
fε/M + εa − 1

ε

))
(ε∂t+v ·∇x)

√
fε/M + εa − 1

ε

Thus, using (4.32), (4.20) and pointwise estimates on γ̃(z) = 2zγ(z)+z2γ′(z),
we get (4.36).

By (4.35), (4.36) and Proposition 3.3.5, we finally get that, for all T > 0
and all compact K ⊂ Ω,

φδε is uniformly integrable on [0, T ]×K ×R3 .

• A simple comparison allows then to obtain the first statement in
Proposition 4.3.1.

Indeed, we have∣∣∣∣∣∣φδε −
(√

fε/M + εa − 1
ε

)2
∣∣∣∣∣∣ ≤ C

ε2

fε
M

1fε/M>1/δ2

so that, by the entropy inequality,

φδε −

(√
fε/M + εa − 1

ε

)2

= O

(
1

| log δ|

)
L∞t (L1(dxMdv))

, (4.37)

uniformly in ε.
Combining (4.34), (4.37) and the equiintegrability statement for φδε leads

then to
M |ĝε|2 locally uniformly integrable on R+×Ω ×R3,

and we conclude using the weighted L2 bound (4.20).
• It remains then to establish the second statement, namely the spatial

compactness of the moments, which is done using again some approximation
of the fluctuation and applying Theorem 3.3.6 of the previous chapter.

The estimate (4.34) shows that one can replace ĝε by

Γε(fε/M) =

√
fε/M + εa − 1

ε

with a > 1 in the equicontinuity statement to be proved.
By (4.32) and the local equiintegrability of Γ 2

ε (fε/M) obtained in the
previous step, we obtain the equicontinuity statement in L1

loc(dtdx). It remains
then to prove that the same convergence holds in L2

loc(dtdx), which is achieved
by using a suitable decomposition of the integral and the equiintegrability of
Γ 2
ε (fε/M) (see [54] for instance). ut
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4.3.2 Filtering of Acoustic Waves

It remains to obtain compactness with respect to the time variable. As we
shall see, the solenoidal part of uε =

∫
Mĝεvdv and the linear combination

3θε − 2ρε =
∫
Mĝε(|v|2 − 5)dv are strongly compact, but their orthogonal

complement (relatively to the incompressibility and Boussinesq constraints)
are not because of high frequency oscillations in t, known as acoustic waves.

Nevertheless Lions and Masmoudi [76] have developed a compensated com-
pactness argument, inspired of the filtering method found independently by
Schochet [96] and Grenier [60], which allows to prove that these acoustic waves
do not occur in the limiting system.

Proposition 4.3.2 Consider two families πε and ∇ψε uniformly bounded in
L∞loc(R

+, L2(Ω)), which satisfy the following equicontinuity statement : for all
compact K ⊂ Ω and all T > 0, there exists some continuity modulus ω

∀δ sufficiently small, ‖τδπε − πε‖L2([0,T ]×K) ≤ ω(|δ|),
‖τδ∇ψε −∇ψε‖L2([0,T ]×K) ≤ ω(|δ|) (4.38)

where τδ denotes the spatial translation of δ. Assume that

∂tπε +
1
ε
∆xψε =

1
ε
Sε,

∂t∇ψε +
5
3ε
∇xπε =

1
ε
S′ε,

(4.39)

where Sε, S′ε → 0 in L1
loc(R

+,W−s,1(Ω)) for some s > 1.
Then, denoting by P the Leray projection onto divergence free vector fields,

P∇x · ((∇ψε)⊗2)→ 0, and ∇x · (πε∇ψε)→ 0

in the sense of distributions on R+×Ω.

Proof. First we introduce the following regularization : let χ ∈ C∞c (R3,R+)
be such that

χ(x) = 0 if |x| ≥ 1, and
∫
χ(x)dx = 1,

and define
χδ(x) = δ−3χ

(x
δ

)
.

Denoting by πδε = χδ ∗ πε and ∇ψδε = χδ ∗ πε, one has by (4.39)

ε∂tπ
δ
ε +∆xψ

δ
ε = Sδε ,

ε∂t∇ψδε +
5
3
∇xπδε = S′ε

δ
,

with Sδε , S
′
ε
δ → 0 in L1

loc(R
+, Hs

loc(Ω)) for all s > 0.
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In particular, from the elementary computations

∇x · ((∇ψδε)⊗2)

=
1
2
∇x(|∇xψδε |2) +∇xψδε∆xψ

δ
ε

=
1
2
∇x(|∇xψδε |2) +∇xψδε(Sδε − ε∂tπδε)

=
1
2
∇x(|∇xψδε |2) +∇xψδεSδε − ε∂t

(
πδε∇xψδε

)
+ πδε

(
S′ε
δ − 5

3
∇xπδε

)
=

1
2
∇x
(
|∇xψδε |2 −

5
3

(πδε)
2
)
− ε∂t

(
πδε∇xψδε

)
+∇xψδεSδε + πδεS

′
ε
δ

and

∇x · (πδε∇xψδε) = πδε∆xψ
δ
ε +∇xπδε · ∇xψδε

= πδε(S
δ
ε − ε∂tπδε) +∇xψδε ·

3
5

(S′ε
δ − ε∂t∇xψδε)

= −ε
2
∂t

(
(πδε)

2 +
3
5
|∇ψδε |2

)
+ πδεS

δ
ε +

3
5
∇xψδε · S′ε

δ

we deduce that, for all fixed δ > 0

P∇x · ((∇ψδε)⊗2)→ 0, and ∇x · (πδε∇ψδε)→ 0

in the sense of distributions, as ε→ 0.
It remains then to get rid of the regularization, which is done using the

equicontinuity statement (4.38). Note that, once again, we actually use the
characterization of relatively compact sets (3.28):

K relatively compact ⇔ ∀δ > 0, ∃Kδ compact, d(K,Kδ) ≤ δ.

Indeed, for all compact K ⊂ Ω and all T > 0,

‖∇xψδε −∇xψε‖L2([0,T ]×K) ≤ C sup
[0,δ]

ω, ‖πδε − πε‖L2([0,T ]×K) ≤ C sup
[0,δ]

ω.

Therefore

P∇x · ((∇ψδε)⊗2 − (∇xψε)⊗2)→ 0, and ∇x · (πδε∇ψδε − πε∇ψε)→ 0

in L1
loc(dtdx) uniformly in ε as δ → 0.

Combining both convergence statements concludes the proof. ut

4.3.3 Convergence of the Nonlinear Convection Term

Equipped with the previous results, we are now able to characterize the lim-
iting convection terms.
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Proposition 4.3.3 Under the same assumptions as in Theorem 4.1.6, one
can extract a subsequence of renormalized fluctuation (ĝε) such that

ĝε ⇀ g weakly in L2
loc(dt, L

2(dxMdv)).

Denote then by uε and θε the bulk velocity and temperature associated
with the renormalized fluctuation ĝε and by u and θ the bulk velocity and
temperature associated with g. Then,

P∇x · (u⊗2
ε −

1
3
|uε|2 Id)→ P∇x · (u⊗2),

∇x · (uεθε)→ ∇x · (uθ),

in the sense of distributions.

Proof. As suggested in the previous paragraph, the convergence of the con-
vection terms is obtained using a suitable decomposition of the moments uε
and θε in a strongly compact part, and a high frequency oscillating part. How-
ever, because the square-root renormalization of the Boltzmann equation is
not admissible, we are not able to control directly the time derivatives of the
moments of ĝε.
•We start by approximating uε, θε and ρε =

∫
Mĝεdv by the moments of

gεγε1|v|2≤Kε :

ρ̃ε =
∫
Mgεγε1|v|2≤Kεdv, ũε =

∫
Mgεγε1|v|2≤Kεvdv

and θ̃ε =
1
3

∫
Mgεγε1|v|2≤Kε(|v|

2 − 3)dv.

Observe that

gεγε1|v|2≤Kε − ĝε =
1
2
ĝε

(
γε1|v|2≤Kε

(√
fε
M

+ 1

)
− 2

)

Using the equiintegrability statement (4.26) established in Proposition 4.3.1
and the fact that the second factor in the identity above is bounded in L∞

and converges a.e. to 0, we obtain by the Product Limit theorem that

gεγε1|v|2≤Kε − ĝε → 0 in L2
loc(dtdx, L

2(Mdv)). (4.40)

In particular

ρε − ρ̃ε → 0, uε − ũε → 0, and θε − θ̃ε → 0 in L2
loc(dtdx) as ε→ 0. (4.41)

Furthermore, by Proposition 4.3.1, one has for all T > 0, all compact
K ⊂ Ω and all ϕ ∈ L2(Mdv)
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∫
Mĝε(t, x, v)ϕ(v)dv

∥∥∥∥2

L2([0,T ]×K)
→ 0

as |y| → 0 uniformly in ε. From (4.41), we then deduce that there exists some
continuity modulus ω such that, for all δ and for all ε sufficiently small

‖τδũε − ũε‖L2([0,T ]×K) ≤ ω(δ), ‖τδ θ̃ε − θ̃ε‖L2([0,T ]×K) ≤ ω(δ)
and ‖τδρ̃ε − ρ̃ε‖L2([0,T ]×K) ≤ ω(δ) .

(4.42)

Finally, starting from (4.24), (4.25) and the analogous renormalized con-
servation of mass

∂t

∫
Mgεγε1|v|2≤Kεdv +

1
ε
∇x ·

∫
Mgεγε1|v|2≤Kεvdv = Dε(1) ,

∂t

∫
Mgεγε1|v|2≤Kεvdv+∇x · Fε(Φ)+

1
3ε
∇x
∫
Mgεγε1|v|2≤Kε |v|

2dv=Dε(v) ,

∂t

∫
Mgεγε1|v|2≤Kε

1
2

(|v|2 − 5)dv +∇x · Fε(Ψ) = Dε(
1
2

(|v|2 − 5)) .

then using Propositions 4.2.1 and 4.2.2 and the L2 bound (4.18) on q̂ε, we
obtain

∂tρ̃ε +
1
ε
∇x · ũε = Dε(1) ,

∂tũε +
1
ε
∇x(ρ̃ε + θ̃ε) = Dε(v)−∇x · Fε(Φ) ,

∂t
1
2

(3θ̃ε − 2ρ̃ε) = Dε

(
1
2

(|v|2 − 5)
)
−∇x · Fε(Ψ) ,

(4.43)

where the source terms are bounded in L1
loc(dt,W

−1,1
loc (dx)).

• In the second step, we deal with the compact components of the moments
ũε and θ̃ε, namely

Pũε and
1
2

(3θ̃ε − 2ρ̃ε).

The equicontinuity statement (4.42) together with the fact that P is a
pseudo-differential operator of order 0 implies that

‖τδPũε − Pũε‖L2([0,T ]×K) → 0∥∥∥∥τδ (1
2

(3θ̃ε − 2ρ̃ε)
)
− 1

2
(3θ̃ε − 2ρ̃ε)

∥∥∥∥
L2([0,T ]×K)

→ 0 (4.44)

uniformly in ε as δ → 0.
On the other hand, the conservation laws (4.39) imply that

∂t
1
2

(3θ̃ε − 2ρ̃ε) = O(1)L1
loc(dt,W−1,1(dx)) (4.45)

and
∂t

∫
Ω

Pũε · ξdx = O(1)L1
loc(dt) (4.46)
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for each compactly supported, solenoidal vector field ξ ∈ H3(Ω). Also,

ũε = O(1) in L∞(R+;L2(dx))

From (4.44) and (4.45) we deduce by interpolation (using for instance
Aubin’s lemma [2]) that

1
2

(3θ̃ε − 2ρ̃ε) is strongly compact in L2
loc(dtdx),

and we can identify its limit using the Boussinesq relation

1
5

(3θ̃ε − 2ρ̃ε)→ θ strongly in L2
loc(dtdx).

For the solenoidal part of the velocity, the argument is more intricated
because of the Leray projection. Since the class of C∞, compactly supported
solenoidal vector fields is dense in that of all L2 solenoidal vector fields (see
Appendix A of [74]), these estimates imply that

Pũε is relatively compact in C(R+;w-L2(Ω)) .

As for the L2
loc(dtdx) compactness, observe that (4.44) implies that

Pũε ? χδ is relatively compact in L2
loc(dtdx)

where (χδ) designates any mollifying sequence. Hence

Pũε · Pũε ? χδ ⇀ Pu · Pu ? χδ

weakly in L1
loc(dtdx) as ε→ 0. By (4.44),

Pũε ? χδ → Pũε

in L2
loc(dtdx) uniformly in ε as δ → 0. With this, we conclude that

|Pũε|2 → |Pu|2 in w-L1
loc(dtdx)

which implies in view of the incompressibility constraint that

Pũε → u strongly in L2
loc(dtdx).

In particular, one has

P∇x · ((Pũε)⊗2)→ P∇x(u⊗2) and ∇x ·
(

1
5

(3θ̃ε − 2ρ̃ε)Pũε

)
→ ∇x · (θu)

(4.47)

in the sense of distributions.

• It remains then to prove that acoustic waves do not occur in the limiting
equations, which is based on Proposition 4.3.2. Define indeed
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∇xψε = ũε − Pũε and πε =
3
5

(ρ̃ε + θ̃ε).

From the L2 estimates (4.18) and (4.41), and the incompressibility and
Boussinesq relations, we deduce that

∇xψε ⇀ 0, πε ⇀ 0 weakly in L2
loc(dtdx).

In particular
P∇x · (ũε ⊗∇xψε +∇xψε ⊗ ũε)→ 0,

∇x ·
(

1
5

(3θ̃ε − 2ρ̃ε)∇xψε +
2
3
πεũε

)
→ 0 (4.48)

in the sense of distributions.
By (4.42) and (4.44), ∇ψε and πε satisfy assumption (4.38) in Proposition

4.3.2. On the other hand, from (4.43), we deduce that ∇ψε and πε “almost
satisfy” assumption (4.39) : there is actually a difficulty due to the fact that
the Leray projection is non local. For a detailed treatment of that point (which
requires additional regularizations), we refer to the original paper by Golse
and the author [55]. Then,

P∇x · ((∇ψε)⊗2)→ 0 and ∇x ·
(

2
3
πε∇ψε

)
→ 0 (4.49)

in the sense of distributions.
Combining (4.47), (4.48) and (4.49) leads to

P∇x · ((ũε)⊗2)→ P∇x(u⊗2) and ∇x ·
(
θ̃εũε

)
→ ∇x · (θu)

which, coupled with (4.41), gives the expected convergences for the convection
terms. ut

4.3.4 Convergence of the Diffusion Term

This paragraph is devoted to the last step in the proof of convergence inside
the domain Ω, namely to the characterization of the limiting diffusion terms.

Proposition 4.3.4 Under the same assumptions as in Theorem 4.1.6, if we
denote by g and q any joint limit points of the sequences (ĝε) and (q̂ε) defined
by (4.17), one has

q =
1
2
v · ∇xg =

1
2

(Φ : ∇xu+ Ψ · ∇xθ) (4.50)

where u and θ are the bulk velocity and temperature associated with the limiting
fluctuation g, Φ and Ψ are the kinetic fluxes defined by (3.17), and Φ̃ and Ψ̃
are their pseudo-inverses under LM .
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In particular the following weak L2 convergences hold for the diffusion
terms

2
∫
Mq̂εΦ̃dv → ∇xu :

∫
MΦ̃⊗ Φdv = µ(∇xu+ (∇xu)T ),

2
∫
Mq̂εΨ̃dv → ∇xθ :

∫
MΨ̃ ⊗ Ψdv = κ∇xθ,

Proof. The second statement is easily deduced from the first one, using the
weak compactness of (q̂ε) coming from (4.18), and the structure of the kinetic
flux functions Φ and Ψ and their pseudo-inverses Φ̃ and Ψ̃ (see Remark 3.2.3).
Let us then focus on the proof of the first statement.

Start from the square-root renormalization of the scaled Boltzmann
equation (4.33)

(ε∂t + v · ∇x)

√
fε/M + εa − 1

ε

=
1

2ε2

1
√
fε + εaM

√
M

∫∫ (√
f ′εf
′
ε∗ −

√
fεfε∗

)2
B(v − v∗, σ)dσdv∗

+
1
ε2

√
fε√

fε + εaM
√
M

∫∫ (√
f ′εf
′
ε∗ −

√
fεfε∗

)√
fε∗B(v − v∗, σ)dσdv∗

def= Q1
ε +Q2

ε

By the weighted L2 estimate (4.20), one has for all p < 2√
fε
M
→ 1 in L2

loc(dtdx, L
2((1 + |v|p)Mdv)) as ε→ 0.

Furthermore the entropy dissipation bound shows that

1
ε2

(√
f ′εfε∗ −

√
fεfε∗

)
is weakly compact in L2

loc(dtdx, L
2(Bdvdv∗dσ)),

so that, up to extraction of a subsequence such that q̂ε ⇀ q,

1
ε2

1√
M

∫∫ (√
f ′εf
′
ε∗ −

√
fεfε∗

)√
fε∗B(v − v∗, σ)dσdv∗ ⇀ q

weakly in L1
loc(dtdx, L

1(Mdv)). Since on the other hand
√
fε/
√
fε + εaM is

bounded in L∞ and converges a.e. to 0, by the Product Limit theorem, we
conclude that

Q2
ε ⇀ q weakly in L1

loc(dtdx, L
1(Mdv)).

On the other hand,

‖Q1
ε‖L1(dtdxMdv) ≤

1
2
Cinε

2−a/2.

Then using the comparison estimate (4.34) and taking limits in (4.33)
leads to

1
2
v · ∇xg = q,

which concludes the proof. ut
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4.4 Taking into Account Boundary Conditions

Taking limits in the boundary conditions requires that some additional diffi-
culties be overcome :
• for the renormalized solutions to the Boltzmann equation, the trace is

indeed defined in a very weak sense;
• the only uniform bound, i.e. the bound on the Darrozès-Guiraud infor-

mation, gives a control rather on the quantity (gε|∂Ω − 〈gε〉∂Ω) where

〈gε〉∂Ω =
√

2π
∫
gε|∂ΩM(v · n(x))+dv

than on the total trace gε|∂Ω .
In order to get rid of the first difficulty, a natural idea is to take limits in

the weak formulation (2.31) and to prove that the moments u and θ satisfy
asymptotically the weak formulation of the Navier-Stokes Fourier equations,
which will be done in the case of the Navier boundary condition. In the case of
the Dirichlet boundary condition, it is actually possible to take limits directly
in Maxwell’s boundary condition.

In both cases, the strategy initiated by Masmoudi and the author in [82]
to derive the limiting boundary conditions is very similar to the one used
to establish the asymptotic inside the domain. First, we check that, up to
extraction of a subsequence, the traces converge in a sense to be made precise.
Then, using the classical theory of traces for the transport equation recalled
in the previous chapter, we show that the limiting trace is of the form

g|∂Ω = u|∂Ω · v + θ|∂Ω

(
|v|2 − 5

2

)
.

The last and most difficult step is to take limits in Maxwell’s boundary con-
dition, either in a weak or in a strong form depending on the scaling.

In this method, a priori estimates and convergence results on the traces
come both from results established inside the domain and from the boundary
term in the entropy inequality. This means that, given the asymptotic be-
haviour of the fluctuation gε inside the domain Ω, the possibility of deriving
the limiting boundary conditions depends only on the scaling of the free-
transport operator. We point out in particular that such a method cannot
be applied in the Euler scaling since there is no bound on the spatial deriva-
tives of the fluctuation, which is consistent with the longstanding problem of
Prandtl layers.

In all the sequel, we consider a subsequence of renormalized fluctuations
ĝε (still denoted ĝε) such that

ĝε → g weakly in L2
loc(dt, L

2(dxMdv))
q̂ε → q weakly in L2(dtdxMdv)
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4.4.1 A Priori Estimates Coming from the Inside

The first type of control obtained on the trace gε|∂Ω is inferred from the
bounds on gε and (ε∂t + v · ∇x)gε inside the domain R+×Ω ×R3.

Proposition 4.4.1 Under the same assumptions as in Theorem 4.1.6, the
trace of the limiting fluctuation

g|∂Ω ∈ L1
loc(dtdσx;L1(M |v · n(x)|dv))

satisfies the identity

g|∂Ω = u|∂Ω · v + θ|∂Ω

(
|v|2 − 5

2

)
(4.51)

Furthermore, for all p > 0, and all smooth truncation γ ∈ C∞(R+) such
that

γ|[0,3/2] ≡ 1, |γ(z)|+ z|γ′(z)| ≤ C

1 + z

we have the following convergences :

(gεγε)|∂Ω → g|∂Ω weakly in L1
loc(dtdσx;L1(M(1 + |v|p)|v · n(x)|dv)) (4.52)

εgε|∂Ω → 0 a.e. on R+×∂Ω ×R3 (4.53)

Proof. Proposition 4.4.1 is based on classical properties of the traces of solu-
tions to the free transport equation (which can be found for instance in [38]
and are recalled in Appendix B).

• Inside the domain Ω, we have

g = v · u+
1
2

(|v|2 − 5)θ in L2
loc(dt, L

2(Mdvdx)),

v · ∇xg = 2q = (Φ : ∇xu+ Ψ · ∇xθ) in L2
loc(dt, L

2(Mdvdx)).

Then, g, u and θ have traces in the classical sense, and identity (4.51) holds
in L1

loc(dtdσx, L
1(M |v · n(x)|dv)).

• We have then to establish the weak compactness of the sequence
(gεγε)|∂Ω . We recall that for any q < 2

gεγε = O(1)L2
loc(dtdx,L2((1+|v|q)Mdv)) and gεγε = O

(
1
ε

)
L∞t,x,v

coming from the L2 estimate (4.18) on ĝε and some pointwise estimate on√
zγ(z). Furthermore, we have
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(ε∂t + v · ∇x)M(gεγε)2

=
2
ε2 gεγεγ̂εQ(fε, fε)

=
2
ε2

∫∫
gεγεγ̂ε(

√
f ′εf
′
ε∗ −

√
fεfε∗)2B(v − v∗, σ)dv∗dσ

+
4
ε2

∫∫
gεγεγ̂ε

√
fε(
√
f ′εf
′
ε∗ −

√
fεfε∗)B(v − v∗, σ)dv∗dσ

+
4
ε2

∫∫
εgεγεγ̂ε

√
fε

1
ε

(
√
fε∗ − 1)(

√
f ′εf
′
ε∗ −

√
fεfε∗)B(v − v∗, σ)dv∗dσ

where we denote as previously

γ̂ε = γ̂

(
fε
M

)
with γ̂(z) = γ(z) + (z − 1)γ′(z).

Thus using the entropy dissipation bound, we get

(ε∂t + v · ∇x)M(gεγε)2 = O(ε)L1(dtdxdv) +O(1)L1
loc(dtdx,L1(dv)).

The smoothness assumption made on the boundary implies the existence of
a vector field n(x) which belongs to W 1,∞

loc (Ω̄) and coincides with the outward
unit normal vector at the boundary. Then,∫ t2

t1

∫
∂Ω

∫
M |(gεγε)|∂Ω |2(t, x, v)

(v.n(x))2χ(x)
1 + |v|2

dv dσx dt

= ε

∫
Ω

∫
Mϕ|gεγε|2(t1, x, v)dvdx− ε

∫
Ω

∫
Mϕ|gεγε|2(t2, x, v)dvdx

+
∫ t2

t1

∫
Ω

∫
M(v · ∇xϕ)|gεγε|2(t, x, v)dvdxdt

+
∫ t2

t1

∫
Ω

∫
Mϕ(ε∂t + v · ∇x)(gεγε)2(t, x, v)dvdxdt

with

ϕ(x, v) =
v.n(x)χ(x)
(1 + |v|2)

for any localization function χ ∈ C∞c (Ω̄, [0, 1]).
From the uniform bounds on (gεγε)2 and (ε∂t + v · ∇x)(gεγε)2, we deduce

that ∫ t2

t1

∫
∂Ω

∫
M |(gεγε)|∂Ω |2(t, x, v)

(v.n(x))2χ(x)
1 + |v|2

dv dσx dt ≤ C (4.54)

The weak compactness asserted in (4.52) follows directly by Hölder’s inequal-
ity. Indeed, for all A ⊂ [t1, t2]× (∂Ω ∩K)×R3, and all p < +∞,∫∫∫

A
M
∣∣(γεgε)|∂Ω(1 + |v|p)v.n(x)

∣∣dvdσxdt
≤
(∫ t2

t1

∫∫
M |(gεγε)|∂Ω |2

(v.n(x))21K(x)
1 + |v|2

dvdσxdt

)1/2

×
(∫∫∫

A
M(1 + |v|2)(1 + |v|p)2dvdσxdt

)1/2

.

(4.55)
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Then, using (4.54), we obtain

(γεgε)|∂Ω is equiintegrable in L1
loc(dtdσx;L1(M(1 + |v|p)|v · n(x)|dv))

and thus relatively weakly compact by Dunford-Pettis theorem.

• Then we have to identify the limiting points of (gεγε)|∂Ω . From the
limiting Boltzmann equation (4.50) we deduce that for all ϕ ∈ C1([0, T ]×Ω̄×
R3) ∫ t2

t1

∫
∂Ω

∫
Mϕg|∂Ω(v.n(x))dvdσxdt

=
∫ t2

t1

∫
Ω

∫
M(v · ∇xϕ)gdvdxdt+ 2

∫ t2

t1

∫
Ω

∫
Mϕqdvdxdt

(4.56)

On the other hand, by (2.31) we have,∫ t2

t1

∫
∂Ω

∫
Mϕ(gεγε)|∂Ω(v · n(x))dvdσx dt

= ε

∫
Ω

∫
Mϕgεγε(t1)dvdx− ε

∫
Ω

∫
Mϕgεγε(t2)dvdx

+
∫ t2

t1

∫
Ω

∫
M(v · ∇xϕ)(gεγε)(t, x, v)dvdxdt

+
∫ t2

t1

∫
Ω

Mϕ(ε∂t + v · ∇x)(gεγε)dvdxdt

(4.57)

with
M(ε∂t + v · ∇x)(gεγε)

=
1
ε2 γ̂εQ(fε, fε)

=
1
ε2

∫∫
γ̂ε(
√
f ′εf
′
ε∗ −

√
fεfε∗)2B(v − v∗, σ)dv∗dσ

+
2
ε2

∫∫
γ̂ε(
√
fε
√
fε∗−1)(

√
f ′εf
′
ε∗−

√
fεfε∗)B(v−v∗, σ)dv∗dσ + 2Mγ̂εq̂ε

def= 2Mγ̂εq̂ε +O(ε)L1
loc(dtdx,L1(dv))

Then, taking limits in (4.57) and identifying with (4.56), we obtain

(gεγε)|∂Ω → g|∂Ω weakly in L1
loc(dtdσx, L

1(M(1 + |v|p)|v · n(x)|dv)).

• It remains to establish the pointwise convergence of the trace of gεγε.
By definition of the trace fε|∂Ω , for any admissible renormalization Γ ,

(Γ (fε))|∂Ω = Γ (fε|∂Ω).

In particular,
(gεγε)|∂Ω = gε|∂Ωγ

(
1 + εgε|∂Ω

)
Then, by (4.52),

ε(gεγε)|∂Ω = εgε|∂Ωγ
(
1 + εgε|∂Ω

)
→ 0 almost everywhere on R+×∂Ω×R3 ,

which concludes the proof. ut
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4.4.2 A Priori Estimates Coming from the Boundary

Let us first recall from Chapter 3 that the uniform bound on the scaled
Darrozès-Guiraud information

αε
ε

∫ t

0

∫
∂Ω

E(fε|M)(s, x)dσxds ≤ H(fε,in|M). (4.58)

allows to control the renormalized trace variation η̂ε defined by

η̂ε =
2
ε

√
αε
ε

1Σ+

(√
fε
M
−
√〈 fε

M

〉
∂Ω

)
(4.59)

where 〈.〉∂Ω denotes as previously the average (with respect to v) of any
quantity defined on the boundary

〈g〉∂Ω =
√

2π
∫
Mg|∂Ω(v · n)+dv.

We have indeed
‖η̂ε‖L2(dtdσxM(v·n)+dv) ≤ Cin. (4.60)

In the case where
αε√
2πε
→ λ ∈]0,+∞],

this estimate, combined with the convergence studied in Proposition 4.4.1,
allows to identify the limiting trace.

Proposition 4.4.2 With the same notations and assumptions as in Theorem
4.1.6, define

∆ε = 1Σ+

(
gε|∂Ω − 〈gε〉∂Ω

)
. (4.61)

Assume that
αε
ε
→
√

2πλ ∈]0,+∞].

Then,
γε|∂Ω∆ε ⇀ 1Σ+

(
g|∂Ω − 〈g〉∂Ω

)
weakly in L1

loc(dt, L
1(M |v · n(x)|dσxdv)).

Proof. In order to establish that result, we have to identify the weak limit us-
ing both the convergence coming from the inside and the convergence coming
from the boundary.

• Start from the identity

∆ε =
√

ε

αε
η̂ε
√
〈1 + εgε〉∂Ω +

ε2

4αε
η̂2
ε. (4.62)

By Proposition 4.4.1, γε|∂Ω is bounded and converges pointwise to 1 and
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γε|∂Ω
√

1 + εgε|∂Ω → 1 in L2
loc(dtdσx;L2(M(1 + |v|)p(v · n(x))+dv))

Therefore, by the L2 estimate on η̂ε and the Product Limit Theorem,

1Σ+γε|∂Ω
√
〈1 + εgε〉∂Ω = 1Σ+γε|∂Ω

(√
1 + εgε −

ε

2

√
ε

αε
η̂ε

)
→ 1Σ+ in L2

loc(dtdσx, L
2(M(v · n)+dv))

(4.63)

Using again the Product Limit theorem and the L2 estimate on η̂ε we then
deduce that, up to extraction of a subsequence,

γε|∂Ω∆ε converges weakly in L1
loc(dtdσx, L

1(M(v · n(x))+dv)). (4.64)

On the other hand, using the definition (4.61) of ∆ε and the definition of
the trace gε|∂Ω , we get

γε|∂Ω∆ε = 1Σ+

(
(gεγε)|∂Ω − γε|∂Ω〈gε〉∂Ω

)
.

From the convergence statement (4.52) obtained from the inside and the con-
vergence (4.64) coming from the boundary term in the entropy inequality, we
deduce that

γε|∂Ω〈gε〉∂Ω converges weakly in L1
loc(dtdσx, L

1(M(v · n(x))+dv)). (4.65)

• It remains then to identity the limit of this averaged part. We first prove
that it is of the form 1Σ+ρ for some ρ ∈ L1

loc(dtdσx).
Indeed define

ρε = 〈gε〉∂Ω
(
γε|Σ+ + L(γε|Σ+)

)
where L denotes - as in Chapter 2 - the local reflection operator. Hence, by
(4.65), there exists ρ ∈ L1

loc(dtdσx, L
1(M |v · n(x)|dv)) such that

ρε → ρ and 1Σ+γε|∂Ω〈gε〉∂Ω = 1Σ+ρε → 1Σ+ρ

weakly in L1
loc(dtdσx, L

1(M |v · n(x)|dv)).
Because 〈gε〉∂Ω depends only on t and x, and

(γε|Σ+ + L(γε|Σ+))

is bounded and converges a.e. to 1 on R+×∂Ω×R3, we deduce from a result of
variables separating, which is actually a variant of the Product Limit theorem
(see Proposition A.2 in Appendix A) that

ρ ≡ ρ(t, x).

Gathering all results together, we thus have

γε|∂Ω∆ε ⇀ 1Σ+(g|∂Ω − ρ) in L1
loc(dtdσx, L

1(M(v · n(x))+dv)).
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We also point out that there is no possible mass going to infinity in the
v-variable since

∆ε =
√

ε

αε
η̂ε +

√
ε

αε
η̂ε

(√
〈1 + εgε〉∂Ω − 1

)
+

ε2

4αε
η̂2
ε

is the sum of a term bounded in L2
loc(dt, L

2(M(v · n(x))+dvdσx)) and terms
going strongly to 0 in L1

loc(dt, L
1(M(v · n(x))+dσxdv)). Then, because

〈∆ε〉∂Ω = 0,
ρ = 〈g〉∂Ω , (4.66)

which concludes the proof. ut

4.4.3 The Limiting Boundary Conditions

Using the results of the two previous paragraphs, we can now pass to the limit
in the boundary conditions. We start with the Dirichlet boundary condition,
which turns out to be easier because we recover it directly.

The Limiting Dirichlet Boundary Condition

If we assume that αε/ε → +∞, then the uniform L2 estimate on η̂ε shows
that

γε|∂Ω∆ε =
√

ε

αε
η̂ε
√
〈1 + εgε〉∂Ωγε|∂Ω +

ε2

4αε
η̂2
εγε|∂Ω

converges to 0 strongly in L1
loc(dtdσx, L

1(M(v · n(x))+dv)).
Proposition 4.4.2 implies then that

1Σ+(g|∂Ω − 〈g〉∂Ω) = 0.

Finally, by (4.51), we have necessarily

u|∂Ω = 0 and θ|∂Ω = 0.

The Limiting Navier Boundary Condition

• The condition of zero mass flux

n · u|∂Ω = 0

(which corresponds to the incompressibility constraint inside the domain Ω)
is obtained in a very simple way, using only the weak compactness statement
and the pointwise convergence established in Proposition 4.4.1.
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The renormalized form (2.32) of Maxwell’s boundary condition reads
indeed

(gεγε)|Σ−

=
(

(1− αε)L(gε|Σ+) + αε〈gε〉∂Ω
)
γ

(
1 + ε

(
(1− αε)L(gε|Σ+) + αε〈gε〉∂Ω

))
.

Then, assuming that αε = O(ε) and passing to the limit in the sense of
distributions, or, more precisely, weakly in L1

loc(dtdσx, L
1(M |v · n(x)|dv)), we

get that
g|Σ− = Lg|Σ+ ,

from which we deduce easily that n · u|∂Ω = 0.

• The main difficulty is (as for the inside) to take limits in the conservation
laws written in weak form. Start from the weak forms of (4.24) and (4.25),
namely∫
Ω

w ·
∫
M1|v|2≤Kεvgεγε(t2, x, v)dvdx−

∫
Ω

w ·
∫
M1|v|2≤Kεvgεγε(t1, x, v)dvdx

−
∫ t2

t1

∫
Ω

∇xw : Fε(Φ)(t, x)dxdt−
∫ t2

t1

∫
Ω

w ·Dε(v)(t, x)dxdt

= −1
ε

∫ t2

t1

∫
∂Ω

w ·
∫
M1|v|2≤Kεvgεγε(t, x, v)(v · n(x))dvdσxdt ,

and∫
Ω

ϕ

∫
M1|v|2≤Kε

(
|v|2

5
− 1
)
gεγε(t2, x, v)dvdx

−
∫
Ω

ϕ

∫
M1|v|2≤Kε

(
|v|2

5
− 1
)
gεγε(t1, x, v)dvdx

−2
5

∫ t2

t1

∫
Ω

∇xϕ · Fε(Ψ)(t, x)dxdt−
∫ t2

t1

∫
Ω

ϕDε

(
|v|2

5
− 1
)

(t, x)dxdt

= −1
ε

∫ t2

t1

∫
∂Ω

ϕ

∫
M1|v|2≤Kε

(
|v|2

5
− 1
)
gεγε(t, x, v)(v · n(x))dvdσxdt ,

for all divergence free vector field w ∈ C∞c (Ω̄) with n · w|∂Ω = 0, and all
ϕ ∈ C∞c (Ω̄). Then taking limits in the flux terms and conservation defects as
in the previous section leads to∫

Ω

w · u(t2, x)dx−
∫
Ω

w · u(t1, x)dx+ lim
ε→0

Bε(w · v)

=
∫ t2

t1

∫
Ω

∇xw :
(
u⊗ u− µ(∇xu+ (∇xu)T )

)
(t, x)dxdt

and
∫
Ω

ϕθ(t2, x)dx−
∫
Ω

ϕθ(t1, x)dx+ lim
ε→0

Bε

(
ϕ

(
|v|2

5
− 1
))

=
∫ t2

t1

∫
Ω

∇xϕ · (uθ − κ∇xθ) (t, x)dxdt

(4.67)



4.4 Taking into Account Boundary Conditions 119

where

Bε(ζ) =
1
ε

∫ t2

t1

∫
∂Ω

∫
M1|v|2≤Kεζgεγε(t, x, v)(v · n(x))dvdσxdt. (4.68)

Next, in order to obtain the limiting boundary conditions, we have to
compute the limits of Bε(w ·v) and Bε

(
ϕ
(
|v|2/5− 1

))
. We start by expressing

Bε(ζ) in terms of the controlled quantities. The crucial remark here is that
Lζ = ζ a.e. on ∂Ω×R3 (using the zero mass flux condition n ·w|∂Ω = 0). We
therefore have∫

M1|v|2≤Kεζgεγε(v · n(x))dvdσxdt

=
∫
M1|v|2≤Kεζ(1Σ+gεγε − L(1Σ−gεγε))(v · n(x))+dv

Using Taylor’s formula, we get

gεγε − L(1Σ−gεγε)

= gεγ(1 + εgε)−
(

(1− αε)gε + αε〈gε〉∂Ω
)
γ

(
1 + ε ((1− αε)gε + αε〈gε〉∂Ω)

)
= αε(gε − 〈gε〉∂Ω)

∫ 1

0
γ̂ε,τdτ

where we denote

γ̂ε,τ = γ̂
(

(1−ταε)(1+εgε)+ταε〈1+εgε〉∂Ω
)

with γ̂(z) = γ(z)+(z−1)γ′(z).

Therefore

Bε(ζ) =
αε√
2πε

∫ t2

t1

∫
∂Ω

∫ 1

0

〈
1|v|2≤Kεζ∆εγ̂ε,τ

〉
∂Ω

(t, x)dτdσxdt (4.69)

As we have assumed that αε/ε →
√

2πλ < +∞, for ε sufficiently small, we
further have

γ̂ε,τ ≤
C

1 + (1− ταε)(1 + εgε) + ταε〈1 + εgε〉∂Ω
≤ 2C

3 + εgε
.

- If λ = 0, by (4.62), the decomposition in (4.63) together with Proposition
4.4.1 and the L2 estimate on η̂ε shows that√

αε
ε
γ̂ε,τ

√
〈1 + εgε〉∂Ω = O

(√
αε
ε

)
L2
loc(dtdσx,L2((1+|v|)p(v·n(x))+Mdv))

+O(ε)L2
loc(dtdσx,L2((v·n(x))+Mdv))
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We then have

αε
ε
∆εγ̂ε,τ = O

(√
αε
ε

)
L1
loc(dtdσx,L1((1+|v|)p(v·n(x))+Mdv))

+O(ε)L1
loc(dtdσx,L1((v·n(x))+Mdv))

from which we deduce, using the L∞ bound on ζ1|v|2≤Kε , that

Bε(ζ)→ 0.

- If λ ∈]0,+∞[, using both the identity (4.62) and the decomposition in
(4.63), we get

∆εγ̂ε,τ =
√

ε

αε
η̂εγ̂ε,τ

√
1 + εgε +O(ε)L1

loc(dtdσx,L1((v·n(x))+Mdv)).

The first term in the right-hand side is uniformly bounded in L2
loc(dtdσx, L

2

((v ·n(x))+Mdv)), and we can identify its weak limit using Proposition 4.4.2 :√
ε

αε
η̂εγ̂ε,τ

√
1 + εgε → 1Σ+(g|∂Ω − 〈g〉∂Ω).

We then conclude, using again the L∞ bound on ζ1|v|2≤Kε , that

Bε(ζ)→ λ

∫ t2

t1

∫
∂Ω

〈
ζ(g − 〈g〉∂Ω)

〉
∂Ω

(t, x)dσxdt.

Because u and w satisfy the zero mass flux condition, we can use (4.51)
to compute both limits in terms of u|∂Ω and θ|∂Ω . We then obtain the weak
form of the Navier-Stokes Fourier system with Navier boundary conditions :∫

Ω

w · u(t2, x)dx−
∫
Ω

w · u(t1, x)dx+ λ

∫ t2

t1

∫
∂Ω

w · u(t, x)dσxdt

=
∫ t2

t1

∫
Ω

∇xw :
(
u⊗ u− µ(∇xu+ (∇xu)T )

)
(t, x)dxdt

and
∫
Ω

ϕθ(t2, x)dx−
∫
Ω

ϕθ(t1, x)dx+
4
5
λ

∫ t2

t1

∫
∂Ω

ϕθ(t, x)dσxdt

=
∫ t2

t1

∫
Ω

∇xϕ · (uθ − κ∇xθ) (t, x)dxdt,

which concludes the proof. ut



5

The Incompressible Euler Limit

The aim of this chapter is to describe the state of the art about the incom-
pressible Euler limit of the Boltzmann equation, which is not so complete as
the incompresible Navier-Stokes limit presented in the previous chapter.

Due to the lack of regularity estimates for inviscid incompressible models,
the convergence results describing the incompressible Euler asymptotics of the
Boltzmann equation require additional regularity assumptions on the solution
to the target equations.

Furthermore, the relative entropy method leading to these stability results
controls the convergence in a very strong sense, which imposes additional
conditions either on the solution to the asymptotic equations (“well-prepared
initial data”), or on the solutions to the scaled Boltzmann equation (namely
some additional non uniform a priori estimates giving in particular the local
conservation of momentum and energy).

5.1 Convergence Result : From the Boltzmann Equation
to the Incompressible Euler System

5.1.1 Mathematical Theories for the Incompressible Euler
Equations

Before giving the precise mathematical statement of the convergence result,
let us first recall some basic facts about the limiting system.

The incompressible Euler equations govern the velocity field u ≡ u(t, x) of
an inviscid incompressible homogeneous fluid. They are

∂tu+ (u · ∇x)u+∇xp = 0, ∇x · u = 0. (5.1)

The first equality in (5.1) states that the fluid preserves the volume, and is
referred to as the incompressibility condition; the second equality expresses
Newton’s law of dynamics for an infinitesimal volume of fluid.

L. Saint-Raymond, Hydrodynamic Limits of the Boltzmann Equation, 121
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Note that (5.1) can be formally obtained from the incompressible Navier-
Stokes equations (4.1) in the vanishing viscosity limit, so taking µ = 0. In
particular the fundamental energy estimate becomes:

Proposition 5.1.1 Let u ≡ u(t, x) be a solution of the incompressible Eu-
ler equations (5.1) on R+×Ω that is sufficiently smooth (which belongs for
instance to C(R+, H1(Ω))) and satisfies the zero mass flux condition

n · u|∂Ω = 0,

where n denotes as previously the outward unit normal to ∂Ω. Then the fol-
lowing energy estimate holds :

‖u(t)‖2
L2(Ω) = ‖uin‖2

L2(Ω) . (5.2)

The crucial difference with the energy estimate (4.3) obtained for the in-
compressible Navier-Stokes equations is that (5.2) does not provide any spatial
regularity on the velocity field u. This lack of a priori estimates induces many
difficulties when dealing with the Cauchy problem for (5.1).

Local Smooth Solutions

The first result concerning the Cauchy problem (5.1) has been obtained by
Lichtenstein [71] in the framework of C1,1 initial data.

It has been later improved by many authors. In particular, Beale, Kato and
Majda [10] have established the following sharp persistence criterion involving
the vorticity :

Theorem 5.1.2 Let uin ∈ Hs(Ω) for s > 5/2 be a divergence free vector
field. Then there exists a unique maximal solution

u ∈ L∞loc([0, t∗), Hs(Ω))

to the incompressible Euler equations (5.1) with initial data uin and supple-
mented by the boundary condition

n · u|∂Ω = 0, (5.3)

which satisfies in addition∫ t∗

0
‖rot xu(t)‖L∞(Ω)dt = +∞ . (5.4)

The local existence of such a smooth solution is obtained using a standard
approximation scheme, and some a priori bounds based on trilinear estimates
of the following type :

〈w, (u · ∇x)w〉Hs(R3) ≤ C‖w‖2
Hs(R3)‖u‖Hs(R3)
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for divergence free vector fields. That determines in particular the critical
regularity s0 = 5/2 required on the initial data.

The extension of such trilinear estimates to the case of domains with
boundaries requires elliptic estimates and composition theorems which can
be found for instance in the paper [20] by Brézis and Bourguignon.

The study of persistence is based on some precised energy inequalities very
similar to (4.8) which show that the propagation of the Hs norm on [0, t] is
controlled by the quantity

‖∇xu+ (∇xu)T ‖L1([0,t],L∞(Ω)).

A refined study using crucially the fact that u is a divergence free vector
field, shows that the propagation of the Hs norm on [0, t] is actually controlled
by the vorticity

‖rot xu‖L1([0,t],L∞(Ω))

(we refer to [10] for the proof of the refined blow-up condition (5.4)).

Remark 5.1.3 Note that such a local existence result can be improved in two
space dimensions. First of all the critical regularity becomes s0 = 2. Further-
more the vorticity ω = ∂2u1 − ∂1u2 satisfies the transport equation

∂tω + u · ∇xω = 0, (5.5)

so that, assuming that the initial vorticity ωin is bounded in L∞(Ω), Theorem
5.1.2 provides a global existence result.

Strong-Weak Stability

Blow up criteria are therefore based on propagation results, which are obtained
as energy estimates :

Proposition 5.1.4 Let u ∈ L∞([0, t∗], L2(Ω)) ∩ C([0, t∗], w − L2(Ω)) be a
weak solution to the incompressible Euler equations (5.1)(5.3) with initial data
uin satisfying the energy inequality

∀t ∈ [0, t∗], ‖u(t)‖2
L2(Ω) ≤ ‖uin‖

2
L2(Ω).

Let ũ ∈ C([0, t∗], L2(Ω)) be a strong solution to (5.1)(5.3) with initial data
ũin such that ∫ t∗

0
‖∇xũ+ (∇xũ)T (t)‖L∞(Ω)dt < +∞.

Then the following stability inequality holds for all t ≤ t∗,

‖u(t)− ũ(t)‖2
L2(Ω) ≤ ‖uin − ũin‖

2
L2(Ω) exp

(∫ t

0
‖(∇ũ+ (∇ũ)T )(s)‖L∞(Ω)ds

)
.

(5.6)

In particular, u = ũ on [0, t∗]×Ω if uin = ũin.
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Proof. In order to obtain the stability estimate, we start by writing the equa-
tion satisfied by w = u− ũ :

∂tw + u · ∇w = −∇p− w · ∇ũ ,

from which we deduce the formal L2 estimate :

‖w(t)‖2
L2(Ω) − ‖win‖

2
L2(Ω)

≤ −2
∫ t

0

∫
(u · ∇)w · w(s, x)dxds− 2

∫ t

0

∫
(w · ∇)ũ · w(s, x)dxds

≤
∫ t

0

∫
‖(∇ũ+ (∇ũ)T )‖L∞(Ω)‖w‖2

L2(Ω)(s)ds

because u and w are divergence free vector fields and satisfy the zero mass
flux condition (5.3). (In order to justify this formal computation one should
of course proceed by approximation). We then conclude using Gronwall’s
lemma. ut

Weak Solutions

In two space dimensions, because of the special structure of the vorticity
equation (5.5), one has a global unique smooth solution to (5.1) as soon as
ωin ∈ L∞(Ω).

Furthermore one can build global weak solutions requiring much less reg-
ularity on the initial data : see for instance the results by Yudovitch [110] in
the case

uin ∈ L2(R2), ωin ∈ Lp(R2) with p > 1,

and those by Delort [41] in the case of vortex sheets

uin ∈ L2(R2), ωin ∈M+(R2).

Nevertheless, we have no uniqueness for these solutions. In a recent paper
[40], De Lellis and Székelyhidi have indeed studied various admissibility cri-
teria that could be imposed on weak solutions of Euler, and they have shown
that none of these criteria implies uniqueness for general L2 initial data. More
precisely, they have proved the following

Proposition 5.1.5 There exist bounded and compactly supported divergence-
free vector fields uin for which there are

• infinitely many weak solutions of (5.1) satisfying both the strong energy
equality

‖u(t)‖2
L2 = ‖u(s)‖2

L2 for every pair (s, t) with s < t, (5.7)

and the local energy equality

∂t|u|2 +∇x · (u(|u|2 + 2p)) = 0; (5.8)
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• weak solutions of (5.1) satisfying the strong energy inequality

‖u(t)‖2
L2 ≤ ‖u(s)‖2

L2 for every pair (s, t) with s < t, (5.9)

but not the energy equality (5.7);
• weak solutions of (5.1) satisfying the weak energy inequality

‖u(t)‖2
L2 ≤ ‖u(s)‖2

L2 for almost every pair (s, t) with s < t, (5.10)

but not the strong energy inequality (5.9).

Their examples display a very wild behavior, such as dissipation of the
energy and amplitude of high-frequency oscillations.

Dissipative Solutions

In three space dimensions the question of the global continuation of solutions
(even in weak sense) remains completely open. As an alternative, starting from
(5.6), Lions [74] has proposed the following very weak notion of solution :

Definition 5.1.6 A dissipative solution on [0, t∗) to (5.1)(5.3) with initial
data uin is a function

u ∈ L∞([0, t∗), L2(Ω)) ∩ C([0, t∗), w − L2(Ω))

satisfying ∇·u = 0 and u|t=0 = uin in the sense of distributions and such that

‖u(t)− ũ(t)‖2
L2(Ω) ≤ ‖uin − ũin‖

2
L2(Ω) exp

(∫ t

0
‖(∇ũ+ (∇ũ)T )(s)‖L∞(Ω)ds

)
+
∫ t

0

∫
A(ũ) · (ũ− u)(s, x)dx exp

(∫ t

s

‖(∇ũ+ (∇ũ)T )(τ)‖L∞(Ω)dτ

)
(5.11)

for all t ∈ [0, t∗) and all test functions ũ ∈ C([0, t∗]×Ω) such that

∇ · ũ = 0, n · ũ|∂Ω = 0,

(∇ũ+ (∇ũ)T ) ∈ L1([0, t∗], L∞(Ω)),

A(ũ) = ∂tũ+ (ũ · ∇)ũ ∈ L1([0, t∗], L2(Ω)).

(5.12)

Such solutions always exist, they are not known to be weak solutions of
(5.1) in conservative form, but they coincide with the unique smooth solution
with same initial data as long as the latter does exist. Indeed the stability
principle stated in Proposition 5.1.4 can be extended as follows

Proposition 5.1.7 Let u ∈ L∞([0, t∗], L2(Ω)) ∩C([0, t∗), w− L2(Ω)) be any
dissipative solution to the incompressible Euler equations (5.1)(5.3) with ini-
tial data uin, and ũ ∈ C([0, t∗], L2(Ω)) be a strong solution to (5.1)(5.3) with
initial data ũin such that
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0
‖∇xũ+ (∇xũ)T (t)‖L∞(Ω)dt < +∞,∫ t∗

0
‖∂tũ+ (ũ · ∇)ũ‖L2(Ω)dt < +∞.

Then the following stability inequality holds for all t ≤ t∗,

‖u(t)− ũ(t)‖2
L2(Ω) ≤ ‖uin − ũin‖

2
L2(Ω) exp

(∫ t

0
‖(∇ũ+ (∇ũ)T )(s)‖L∞(Ω)ds

)
.

(5.13)
In particular, u = ũ on [0, t∗]×Ω if uin = ũin.

Note that the notion of dissipative solution has been introduced especially
to investigate the inviscid limit of the incompressible Navier-Stokes equa-
tions, and then used to study various asymptotics such as the gyrokinetic or
quasineutral limits of the Vlasov-Poisson equation [17].

5.1.2 Analogies with the Scaled Boltzmann Equation

As mentioned in Chapter 4 in the framework of the Navier-Stokes limit, a pos-
sibility to describe the incompressible hydrodynamic limits of the Boltzmann
equation is to get some counterpart at kinetic level of the strong-weak unique-
ness principle stated in Proposition 5.1.7.

The functional which measures the stability for the scaled Boltzmann equa-
tion is obtained naturally from the relative entropy

H(fε|M) =
∫∫ (

fε log
fε
M
− fε +M

)
dvdx

which is a nonnegative Lyapunov functional for the Boltzmann equation (see
Boltzmann’s H theorem in Chapter 2), and controls the size of the fluctuation
in incompressible regimes (see Lemmas 3.1.2 and 3.1.3 in Chapter 3). The idea
of using the notion of relative entropy for this kind of problems comes actually
from the notion of entropic convergence developed by C. Bardos, F. Golse and
C.D. Levermore in [5], and on the other hand from Yau’s elegant derivation
of the hydrodynamic limit of the Ginzburg-Landau lattice model [108].

The modulated entropy is then defined for each test field (R,U, T ) ∈
C∞c (R+×Ω) by

H(fε|M(R,U,T ))
def=
∫∫ (

fε log
fε

M(R,U,T )
− fε +M(R,U,T )

)
dvdx

= H(fε|M) +
∫∫ (

− log
R

T 3/2 +
|v − U |2

2T
− |v|

2

2

)
fεdvdx

−
∫∫ (

fε −M(R,U,T )
)
dvdx

(5.14)
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Our goal here will be therefore to establish a stability inequality on the
modulated entropy of the same type as (5.1.7), in the scaling leading to the
incompressible Euler limit, i.e. for

R = exp(ερ),
U = εu,
T = exp(εθ).

Note that, because of a poor understanding of the limiting system, we
are not able at the present time to develop alternative strategies, leading for
instance to weak convergence results, nor to consider spatial domains with
some diffuse reflection at the boundary.

5.1.3 The Convergence Results for “Well-Prepared” Initial Data

Let us first recall from Chapter 2 that, at the present time, the mathematical
theory of the Boltzmann equation is not really complete, insofar as there is
no global existence and uniqueness result for general initial data with finite
mass, energy and entropy.

We have therefore at our disposal either strong solutions with higher regu-
larity which require smoothness and smallness assumptions on the initial data,
or very weak solutions satisfying only a family of formally equivalent equa-
tions and thus called renormalized solutions. These renormalized solutions,
built by DiPerna and Lions [44], exist globally in time without restriction on
the size of the initial data but are not known to be unique, neither to satisfy
the local conservations of momentum and energy.

In the framework of renormalized solutions, the strategy presented in the
previous paragraph will not be completely effective, since the stability inequal-
ity for the modulated entropy relies crucially on the local conservation laws.
We will thus restrict our attention to the particular case when the initial data
is well-prepared, i.e. when ρin = θin = ∇ · uin = 0. The approximate solution
in (5.14) will therefore satisfy T ≡ 1 and we will not need anymore the local
conservation of energy.

Theorem 5.1.8 Let (fε,in) be a family of initial fluctuations around a global
equilibrium M , i.e. satisfying

1
ε2H(fε,in|M) ≤ Cin, (5.15)

and converging entropically at order ε to gin(x, v) = uin(x) · v

1
ε2H(fε,in|M1,εuin,1)→ 0 as ε→ 0, (5.16)

for some given divergence-free vector field uin ∈ L2(Ω).
Let (fε) be a family of renormalized solutions to the scaled Boltzmann

equation
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ε∂tfε + v · ∇xfε =
1
εq
Q(fε, fε) on R+×Ω ×R3,

fε(0, x, v) = fε,in(x, v) on Ω ×R3,
fε(t, x, v) = fε(t, x,Rxv) on Σ−

(5.17)

for some q > 1, where Q is the collision operator defined by (2.7) associated
with some collision kernel B satisfying Grad’s cut off assumption (2.8).

Then the family of scaled bulk velocities (uε) defined by uε = 1
ε

∫
fεvdv

is relatively weakly compact in L1
loc(dtdx), and any limit point u of (uε) is a

dissipative solution to the incompressible Euler equations (5.1)(5.3).

If the limiting initial data uin is smooth and such that (5.1) has a (unique)
smooth solution u, the stability result above can be strengthened as follows,
using the notion of entropic convergence defined in Chapter 4 :

Corollary 5.1.9 Let (fε,in) be a family of initial fluctuations around a global
equilibrium M , converging entropically at order ε to gin(x, v) = uin(x) · v for
some given uin ∈ Hs(Ω) (s > 5/2).

Let (fε) be a family of renormalized solutions to the scaled Boltzmann equa-
tion (5.17) for some q > 1, where Q is the collision operator defined by (2.7)
associated with some collision kernel B satisfying Grad’s cut off assumption
(2.8).

Assume that the incompressible Euler equations (5.1) admit a strong solu-
tion u ∈ L∞loc([0, t∗], Hs(Ω)) such that∫ t∗

0
‖∇xu+ (∇xu)T ‖L2∩L∞(Ω)(t)dt < +∞.

Then, for almost all t ∈ [0, t∗], the family of fluctuations (gε(t)) defined by
fε = M(1 + εgε) converges entropically to the infinitesimal Maxwellian g(t)
given by

g(t, x, v) = u(t, x) · v.

Note that (5.16) is a very strong assumption on the family of initial data,
meaning that well-prepared initial data has to be understood in the following
sense.

• We first require that the initial distribution has a velocity profile close to
local thermodynamic equilibrium

ρin + uin · v + θin
|v|2 − 3

2
,

in order that there is no relaxation layer.
• We then ask the asymptotic initial thermodynamic fields to satisfy the

incompressibility and Boussinesq constraints

∇ · uin = 0, ∇(ρin + θin) = 0 ,
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which ensures that there is no acoustic wave. We further require that the
initial temperature fluctuation (and thus mass fluctuation) is negligible

ρin = −θin = 0 .

We therefore expect the temperature fluctuation to remain negligible.
• We finally need some spatial regularity on the limiting bulk velocity, more

precisely we require some Lipschitz continuity.

We are thus able to consider very general initial data (satisfying only the
physical estimate (5.15)), but in the vicinity of a small set of asymptotic
distributions.

A natural question is then to know whether or not it is possible to get
rid of these restrictions on the asymptotic distribution. In the proof that we
will give in Sections 5.2 and 5.3, we will see that the first two assumptions
come from the poor understanding of the Boltzmann equation, in particular
from the fact that renormalized solutions to the Boltzmann equation are not
known to satisfy the local conservation of energy (the heat flux is not even
defined), whereas the last assumption concerning the regularity of the limiting
distribution is inherent to the modulated entropy method.

Considering solutions to the Boltzmann equation satisfying rigorously the
basic physical properties, we can actually expect to control the energy flux
and extend the convergence result to take into account acoustic waves. In
order to also deal with the relaxation layer, we further need to understand
the dissipation mechanism, which can be done by slight modifications of the
method.

On the contrary, relaxing the regularity assumption requires new ideas : the
stability in energy and entropy methods is indeed controlled by the Lipschitz
norm of the limiting field. In 3D, the incompressible Euler equations are not
known to have weak solutions, so that we do not expect to extend our con-
vergence result for distributions with lower regularity. In return, in 2D, the
mathematical theory of the incompressible Euler equations is much better
understood and singular solutions such as vortex patches are known to exist
globally in time : it should be then relevant to study the hydrodynamic limit
of the Boltzmann equation in this setting. By analogy with the compressible
Euler equations, we would expect the spatial discontinuities to dissipate en-
tropy, or in other words to create layers where the distribution is far from local
thermodynamic equilibrium. The difficulty should be to split the space-time
domain according to these layers.

5.1.4 The Convergence Result for General Initial Data

The second result we will state here answers the previous question in the case
of smooth limiting fields. Considering a stronger notion of solution for the
Boltzmann equation (5.17), for instance using the classical solutions built by
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Guo [62], we can prove the convergence to the incompressible Euler equations
for general initial data.

We indeed recall that nonlinear energy methods allow to build global
smooth solutions to the Boltzmann equation for small data (see [62]) :

Proposition 5.1.10 Consider the collision cross-section B of hard spheres.
Given any initial data fin satisfying∥∥∥∥(1 + |v|)1/2Ds

x

(
fin −M√

M

)∥∥∥∥
L2(R3×R3)

≤ δ

for s ≥ 4 and δ sufficiently small, there exists a unique classical solution f
to the Boltzmann equation (5.17) with initial data fin (such that the previ-
ous norm remains bounded for all time). In particular it satisfies the local
conservation laws as well as the local entropy inequality.

Note that, for our asymptotic study, we do not need so much regularity : we
will only require that the solutions of the Boltzmann equation to be considered
satisfy the non uniform nonlinear estimate

1
ε2

∫
M

(
fε −M
M

)2

dv ≤ C

ε2 a.e. on R+× Ω

The previous proposition just ensures that such solutions exist.

Theorem 5.1.11 Let (fε,in) be a family of nonnegative functions on Ω×R3

satisfying the scaling condition (5.15)

1
ε2H(fε,in|M) ≤ Cin.

Without loss of generality, we further assume that the fluctuations (gε,in) de-
fined by fε,in = M(1 + εgε,in) converge entropically (of order ε) to some gin:

1
ε2H(fε,in|M)→ 1

2

∫∫
Mg2

indvdx. (5.18)

Let (fε) be some family of solutions to the scaled Boltzmann equation
(5.17) with q > 1, satisfying further∫

M

(
fε −M
M

)2

dv ≤ C a.e. on R+×Ω . (5.19)

Then, up to extraction of a subsequence, the family of fluctuations (gε)
defined by fε = M(1 + εgε) converges weakly to u · v + 1

2θ
(
|v|2 − 5

)
, where

(u, θ) is the Lipschitz solution to the incompressible Euler equations

∂tu+ u · ∇xu+∇xp = 0, ∇x · u = 0 on R+×Ω,
∂tθ + u · ∇xθ = 0 on R+×Ω,
u(0, x) = Puin(x), θ(0, x) =

1
5

(3θin − 2ρin) on Ω,

(5.20)

as long as the latter does exist.
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Furthermore the difference gε − g behaves asymptotically in L1 as

gosc(
t

ε
, x, v) = (ρosc, uosc, θosc)(

t

ε
, x) ·

(
1, v,

1
2

(|v|2 − 3)
)

where (ρosc, uosc, θosc) is the solution of the acoustic system (5.45) stated in
Section 5.4.1.

Note that the purely kinetic part does not appear in that convergence
statement since its contribution to the L1 norm is negligible. The entropic
convergence we will establish is actually stronger.

5.2 The Relative Entropy Method

5.2.1 Description of the Strategy

Our goal here is to establish the convergence of appropriately scaled families of
solutions to the Boltzmann equation towards solutions of the incompressible
Euler equations.

The first result in the framework of renormalized solutions is due to Golse
[16], and is based on the relative entropy method, which can be sketched as
follows :

• In terms of gε, the Boltzmann equation (5.17) become

εq∂tgε + εq−1v · ∇xgε +
1
ε
LMgε =

1
M
Q(Mgε,Mgε), (5.21)

where−LM denotes as previously the linearization of Boltzmann’s collision
integral at the Maxwellian state M . Therefore, multiplying (5.21) by ε and
letting ε → 0 suggests that gε converges in the sense of distributions to
some infinitesimal Maxwellian g (see Proposition 3.2.2 in Chapter 3) :

g(t, x, v) = ρ(t, x) + u(t, x) · v +
1
2
θ(t, x)(|v|2 − 3).

• Passing to the limit in the local conservations of mass and momentum
leads then to

∇x · u = 0 and ∇x(ρ+ θ) = 0,

known as incompressibility and Boussinesq relations.
• The core of the proof is therefore to establish a stability inequality on the

modulated entropy of the same type as (5.11) :
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1
ε2H

(
fε|M(exp(ερ̃),εũ,exp(εθ̃))

)
(t) +

1
εq+3

∫ t

0

∫
D(fε)dsdx

≤ 1
ε2H

(
fε,in|M(exp(ερ̃in),εũin,exp(εθ̃in))

)
+

1
ε2

∫ t

0

∫
∂t exp(ερ̃)dxds

−1
ε

∫ t

0

∫∫
fε

(
1, e−εθ̃(v − εũ),

1
2

(
|v − εũ|2

eεθ̃
− 3
))

·Aε(ρ̃, ũ, θ̃)dvdxds

− 1
ε2

∫ t

0

∫∫
fε

(
∇xũ : Φε + e

1
2 εθ̃∇xθ̃ · Ψε

)
dxdvds

denoting by Aε(ρ, u, θ) the acceleration operator (which differs from the
incompressible Euler equations with temperature (5.20) by some penaliza-
tion describing the acoustic waves), and by Φε and Ψε the kinetic momen-
tum and energy fluxes - which are scaled translated variants of

Φ =
(
v⊗2 − 1

3
|v|2Id

)
,

Ψ =
1
2
v
(
|v|2 − 5

)
.

We conclude then the proof of Theorem 5.1.8 by remarking that the rel-
ative entropy ε−2H(fε|M(exp(ερ̃),εũ,exp(εθ̃))) controls asymptotically the L2

norm of (ρ− ρ̃), (u− ũ) and (θ − θ̃).
• In the case when the incompressible Euler equations admit a smooth so-

lution u, we have further

1
ε2H

(
fε|M(exp(ερ),εu,exp(εθ))

)
→ 0

just by choosing ρ̃ = ρ, ũ = u and θ̃ = θ in the previous stability inequality,
and thus the expected entropic convergence.

In [16], the convergence of renormalized solutions of the scaled Boltzmann
equation to solutions of the incompressible Euler equations is established
assuming

(i) the initial data to be well-prepared

ρin = θin = ∇ · uin = 0,

and thus choosing only test fields such that

ρ̃ = θ̃ = ∇ · ũ = 0;

(ii) some nonlinear estimate, namely

(1 + |v|2)
g2
ε

1 + ε
2gε

relatively weakly compact in L1
loc(dtdx,w − L1(Mdv))

which provides both a control on large velocities v, and some equiinte-
grability with respect to space variables x; and
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(iii) the local conservation of momentum which is not guaranteed for renor-
malized solutions of the Boltzmann equation — see Chapter 2 for a
discussion of this particular point.

Assumption (iii) was removed by Lions and Masmoudi in [75]; their ar-
gument uses the local conservation of momentum with matrix-valued de-
fect measure satisfied by renormalized solutions of the Boltzmann equation
(see Theorem 2.3.4 in Chapter 2). That this defect measure vanishes in the
incompressible Euler limit will follow from the strong convergence result to
be proved.

Another, more serious difficulty is to circumvent the need for assumption
(ii). Indeed we cannot hope to establish such a statement since, in incompress-
ible inviscid regime, even at formal level, we have no control on the transport
(ε∂t + v · ∇x)gε, and therefore no spatial regularity (as for the target equa-
tions). The idea is to introduce a suitable decomposition of the momentum
flux, and to estimate each term in that decomposition either by the modulated
entropy, or by the entropy dissipation. In other words, the argument is based
on loop estimates instead of a priori estimates, and the conclusion follows from
Gronwall’s inequality. This strategy based on Gronwall’s inequality has been
first used in the framework of the BGK equation [93], and then adapted to
the original Boltzmann equation [94] using refined dissipation estimates from
[54] and [55] discussed in Chapter 3.

Assumption (i) has been removed by the author in [95] under an additional
integrability condition on the solutions to the scaled Boltzmann equation. It
will be discussed in the last two sections of this chapter. In Section 5.4, we
will indeed describe the (fast oscillating) acoustic waves arising when the
thermodynamic fields are not well-prepared, i.e. when the incompressibility
and Boussinesq constraints

∇ · u = 0, ∇(ρ+ θ) = 0

are not satisfied initially. In Section 5.5, we will then deal with the relaxation
layer arising when the initial velocity profile is not close to local thermody-
namic equilibrium, i.e. when

1
ε2H(fε,in|M(exp(ερin),εuin,exp(εθin)))

does not converge to 0. In both cases, we will build refined approximate solu-
tions such that the modulated entropy converges strongly to 0. Let us however
point out that the convergence proof, in particular the estimate on the flux
terms, requires some additional integrability condition on the solutions to the
scaled Boltzmann equation.

The suitable functional framework to study the Euler asymptotics is there-
fore slightly different from that defined in the previous chapters. Instead of
defining the fluctuation relative to the global equilibrium M , we will consider
the fluctuation relative to the local equilibrium
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Mε
def= M(exp(ερ̃),εũ,exp(εθ̃))

occuring in the modulated entropy, and use the properties of the linearized
collision operator Lε defined by

Lεg = − 2
Mε

Q (Mε,Mεg) , (5.22)

which can be easily deduced from the properties of LM by translation.
Let us therefore introduce the suitable corresponding notations and basic

estimates obtained for the scaled Boltzmann equation (5.17). Two important
quantities are the renormalized fluctuation g̃ε and the renormalized collision
integral q̃ε defined by

g̃ε =
2
ε

(√
fε
Mε
− 1

)
,

q̃ε =
1

ε(q+3)/2

1
Mε

Q(
√
Mεfε,

√
Mεfε)

(5.23)

for which the modulated entropy and the entropy dissipation give the following
L2 bounds

‖g̃ε‖2
L∞(R+,L2(Mεdvdx)) ≤

2
ε2H(fε|Mε),

‖q̃ε‖2
L2(dtdxν−1

ε Mεdv) ≤
1
εq+3

∫∫
D(fε)(t, x)dtdx ≤ Cin

(5.24)

By some variant of Lemma 3.2.4 we further have the following relaxation
bound

‖g̃ε −Πεg̃ε‖L2(Mεdv) = O(ε(q+1)/2)L2
t,x

+O(ε)‖g̃ε‖2
L2(Mεdv), (5.25)

where Πε denotes the orthogonal projection on the kernel of Lε.

5.2.2 The Stability Inequality in the Framework of Renormalized
Solutions

In order to establish the stability inequality leading to the entropic conver-
gence stated in Theorem 5.1.8, the starting point is the derivation of the
modulated entropy :

Proposition 5.2.1 For any divergence free vector-field ũ ∈ C∞c (R+×Ω)
such that n · ũ|∂Ω = 0, denote

Mε
def
= M(1,εũ,1).
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Then, under the same assumptions as in Theorem 5.1.8, one has

1
ε2H(fε|Mε)(t) +

1
ε2

∫
tr(mε)(t) +

1
εq+3

∫ t

0

∫
D(fε)(s, x)dxds

≤ 1
ε2H(fε,in|Mε,in) +

1
ε

∫ t

0

∫
A(ũ) ·

∫
(εũ− v)fε(s, x, v)dvdxds

− 1
2ε2

∫ t

0

∫
(∇xũ+ (∇xũ)T ) :

(
mε(s) +

∫
(v − εũ)⊗2fε(s, x, v)dvdx

)
ds

(5.26)
with

A(ũ) = ∂tũ+ (ũ · ∇x)ũ . (5.27)

Proof. Let us first recall the entropy inequality with defect measure (2.36)
satisfied by renormalized solutions of the scaled Boltzmann equation (5.17)
with specular reflection at the boundary:

H(fε(t)|M) +
∫
R3

tr(mε)(t) +
1
εq+1

∫ t

0

∫
D(fε)(s, x)dsdx ≤ H(fε,in|M)

(5.28)

where mε ∈ L∞(R+,M(Ω,M3(R))) is the momentum defect measure.
By definition of the modulated entropy (5.14), we then have

H(fε|Mε)(t) +
∫
R3

tr(mε)(t) +
1
εq+1

∫ t

0

∫
D(fε)dsdx

≤ H(fε,in|Mε,in) +
∫ t

0

d

dt

∫∫
1
2

(ε2ũ2 − 2εv · ũ)fε(s, x, v)dvdxds

From the continuity equation

∂t

∫
fεdv +∇x ·

1
ε

∫
vfεdv = 0 , (5.29)

and the conservation of momentum with defect measure

∂t

∫
vfεdv +∇x ·

1
ε

∫
v ⊗ vfεdv +

1
ε
∇x ·mε = 0 , (5.30)

we deduce that

H(fε|Mε)(t) +
∫
R3

tr(mε)(t) +
1
εq+1

∫ t

0

∫
D(fε)dsdx

≤ H(fε,in|Mε,in) +
∫ t

0

∫∫
ε∂tũ · (εũ− v)fε(s, x, v)dvdxds

−1
2

∫ t

0

∫
εũ2(s, x)∇x ·

(∫
vfε(s, x, v)dv

)
dxds

+
∫ t

0

∫
ũ ·
(
∇x ·

(∫
v ⊗ vfε(s, x, v)dvdx+mε(s, x)

))
ds
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Integrating by parts (using the zero mass flux condition on ũ and the specular
reflection for fε), we get

H(fε|Mε)(t) +
∫
R3

tr(mε)(t) +
1
εq+1

∫ t

0

∫
D(fε)dsdx

≤ H(fε,in|Mε,in) +
∫ t

0

∫∫
ε∂tũ · (εũ− v)fε(s, x, v)dvdxds

+
∫ t

0

∫
ε∇xũ : ũ⊗

(∫
vfε(s, x, v)dv

)
dxds

−
∫ t

0

∫
∇xũ :

(∫
v ⊗ vfε(s, x, v)dvdx+mε(s, x)

)
ds

This clearly implies

H(fε|Mε)(t) +
∫
R3

tr(mε)(t) +
1
εq+1

∫ t

0

∫
D(fε)dsdx

≤ H(fε,in|Mε,in) +
∫ t

0

∫∫
ε∂tũ · (εũ− v)fε(s, x, v)dvdxds

−
∫ t

0

∫
∇xũ :

(∫
(v − εũ)⊗ vfε(s, x, v)dvdx+mε(s, x)

)
ds

or equivalently

H(fε|Mε)(t) +
∫
R3

tr(mε)(t) +
1
εq+1

∫ t

0

∫
D(fε)dsdx

≤ H(fε,in|Mε,in) +
∫ t

0

∫∫
ε∂tũ · (εũ− v)fε(s, x, v)dvdxds

−
∫ t

0

∫
∇xũ :

(∫
(v − εũ)⊗2fε(s, x, v)dvdx+mε(s, x)

)
dxds

−
∫ t

0

∫
ε∇xũ :

(∫
(v − εũ)⊗ ũfε(s, x, v)dv

)
ds

Introducing the acceleration operator A(ũ) leads therefore to the expected
inequality. ut

5.2.3 The Stability Inequality Under the Additional Integrability
Assumption

Under the assumption (5.19) of Theorem 5.1.11, the previous modulated en-
tropy inequality can be extended as follows :

Proposition 5.2.2 Denote by Mε the fluctuation of Maxwellian defined by

Mε
def
= M(exp(ερ̃),εũ,exp(εθ̃))

for any (ρ̃, ũ, θ̃) ∈ C∞c (R+×Ω).
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Then, any solution to the scaled Boltzmann equation (5.17) such that
(5.19) holds, satisfies the following modulated entropy inequality

H (fε|Mε)(t) +
1
εq+1

∫ t

0

∫
D(fε)dsdx

≤ H(fε,in|Mε,in) +
∫ t

0

∫
∂t exp(ερ̃)dxds

−ε
∫ t

0

∫∫
fε

(
1, e−εθ̃(v − εũ),

1
2

(
e−εθ̃|v − εũ|2 − 3

))
·Aε(ρ̃, ũ, θ̃)dvdxds

−
∫ t

0

∫∫
fε∇xũ : Φεdxdv +

∫∫
fεe

1
2 εθ̃∇xθ̃ · Ψεdxdvds

(5.31)
for some acceleration operator Aε(ρ̃, ũ, θ̃) to be defined by (5.35).

Proof. Start from the entropy inequality satisfied by the solution of the scaled
Boltzmann equation with specular reflection at the boundary:

H(fε(t)|M) +
1
εq+1

∫ t

0

∫
D(fε)(s, x)dsdx ≤ H(f inε |M) (5.32)

By definition of the modulated entropy and of the approximate solution
Mε, we then have

H (fε|Mε)(t) +
1
εq+1

∫ t

0

∫
D(fε)dsdx

≤ H(fε,in|Mε,in) +
∫ t

0

∫
∂t

(∫
Mεdv

)
dxds

−
∫ t

0

d

dt

∫∫ (
ε

(
ρ̃− 3

2
θ̃

)
− 1

2
e−εθ̃|v − εũ|2 +

1
2
|v|2
)
fεdvdxds

(5.33)

with ∫
Mεdv = exp(ερ̃).

Now, let us point out that, under assumption (5.19), fε satisfies the local
conservation laws. Then, using the continuity equation

∂t

∫
fεdv +∇x ·

1
ε

∫
vfεdv = 0 ,

the conservation of momentum

∂t

∫
vfεdv +∇x ·

1
ε

∫
v ⊗ vfεdv = 0 ,

and the conservation of energy

∂t

∫
1
2
|v|2fεdv +∇x ·

1
ε

∫
1
2
|v|2vfεdv = 0 ,
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as well as the boundary condition on Σ−

fε(t, x, v) = fε(t, x, v − 2(v · n(x))n(x)) ,

and integrating by parts, we obtain

1
ε

d

dt

∫∫ (
ε

(
ρ̃− 3

2
θ̃

)
− 1

2
e−εθ̃|v − εũ|2 +

1
2
|v|2
)
fεdvdx

=
∫∫

fε

(
∂t

(
ρ̃− 3

2
θ̃

)
+ (ũ · ∇x)

(
ρ̃− 3

2
θ̃

)
+

1
ε

(v − εũ) · ∇x
(
ρ̃− 3

2
θ̃

))
dvdx

+
∫∫

fεe
−εθ̃(v − εũ) ·

(
∂tũ+ (ũ · ∇x)ũ+

1
ε

(v − εũ) · ∇xũ
)
dvdx

+
1
2

∫∫
fεe
−εθ̃|v − εũ|2

(
∂tθ̃ + (ũ · ∇x)θ̃ +

1
ε

(v − εũ) · ∇xθ̃
)
dvdx

provided that ũ · n = 0 on ∂Ω.
Let us then introduce the kinetic momentum and energy fluxes

Φε = e−εθ̃
(

(v − εũ)⊗2 − 1
3
|v − εũ|2Id

)
,

Ψε =
1
2
e−

3
2 εθ̃(v − εũ)

(
|v − εũ|2 − 5eεθ̃

) (5.34)

and recall that Φε and Ψε belong to the orthogonal complement of the kernel
KerLε where Lε is the linearized collision operator at Mε. We have

e−εθ̃∇xũ : (v − εũ)⊗2 = ∇xũ : Φε +
1
3
e−εθ̃∇x · ũ|v − εũ|2

1
2
e−εθ̃∇xθ̃ · (v − εũ)|v − εũ|2 = e

1
2 εθ̃∇xθ̃ · Ψε +

5
2
∇xθ̃ · (v − εũ)

so that
1
ε

d

dt

∫∫ (
ε

(
ρ̃− 3

2
θ̃

)
− 1

2
e−εθ̃|v − εũ|2 +

1
2
|v|2
)
fεdvdx

=
∫∫

fε

(
∂t

(
ρ̃− 3

2
θ̃

)
+ (ũ · ∇x)

(
ρ̃− 3

2
θ̃

))
dvdx

+
∫∫

fεe
−εθ̃(v−εũ)·

(
∂tũ+ (ũ · ∇x)ũ+

1
ε
eεθ̃∇x

(
ρ̃− 3

2
θ̃

)
+

5
2ε
eεθ̃∇xθ̃

)
dvdx

+
1
2

∫∫
fεe
−εθ̃|v − εũ|2

(
∂tθ̃ + (ũ · ∇x)θ̃ +

2
3
∇x · ũ

)
dvdx

+
1
ε

∫∫
fε∇xũ : Φεdxdv +

1
ε

∫∫
fεe

1
2 εθ̃∇xθ̃ · Ψεdxdv

It is then natural to define the acceleration operator

Aε(ρ, u, θ) =


∂tρ+ (u · ∇x)ρ+

1
ε
∇x · u

∂tu+ (u · ∇x)u+
(
eεθ − 1
ε

)
∇x(ρ+ θ) +

1
ε
∇x(ρ+ θ)

∂tθ + (u · ∇x)θ +
2
3ε
∇x · u


(5.35)
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so that the inequality can be recasted in suitable form

1
ε

d

dt

∫∫ (
ε

(
ρ̃− 3

2
θ̃

)
− 1

2
e−εθ̃|v − εũ|2 +

1
2
|v|2
)
fεdvdx

=
∫∫

fε

(
1, e−εθ̃(v − εũ),

1
2

(
e−εθ̃|v − εũ|2 − 3

))
·Aε(ρ̃, ũ, θ̃)dvdx

+
1
ε

∫∫
fε∇xũ : Φεdxdv +

1
ε

∫∫
fεe

1
2 εθ̃∇xθ̃ · Ψεdxdv

Plugging this last inequality in (5.33) leads to the announced result.
Note that the acceleration operator defined by (5.35) differs from the pre-

vious one (5.27) (defined for well-prepared initial data) by some penalization
forcing the weak limit to satisfy the constraints

∇x · u = 0, ∇x(ρ+ θ) = 0.

ut

5.3 The Case of “Well-Prepared” Initial Data

We first focus on the case of “well-prepared” initial data. In that case, we
have only to consider test Maxwellians

Mε =M(exp(ερ̃,εũ,exp(εθ̃)) with ρ̃ = θ̃ = ∇ · ũ = 0.

We have then, considering any renormalized solution to (5.17)

1
ε2H(fε|Mε)(t) +

1
ε2

∫
tr(mε)(t) +

1
εq+3

∫ t

0

∫
D(fε)(s, x)dxds

≤ 1
ε2H(fε,in|Mε,in) +

1
ε

∫ t

0

∫
A(ũ) ·

∫
(εũ− v)fε(s, x, v)dvdxds

− 1
2ε2

∫ t

0

∫
(∇xũ+ (∇xũ)T ) :

(
mε(s) +

∫
Φεfε(s, x, v)dvdx

)
ds

with
Φε(v) = (v − εũ)⊗2 − 1

3
|v − εũ|2 Id .

5.3.1 Control of the Flux Term

We expect to deduce from that inequality the convenient stability inequality,
provided that we are able to deal with the flux term, namely with

− 1
2ε2

∫ t

0

∫∫
(∇xũ+ (∇xũ)T ) : Φεfε(s, x, v)dvdxds
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Passing to the limit directly in the flux term requires a priori estimates
that control the effect of large velocities v and entail equiintegrability with
respect to x variables. Such a method fails therefore with this type of scaling
since no uniform spatial regularity is known to hold a priori.

The key idea is then to estimate the flux in terms of the modulated entropy
and of the entropy dissipation, and then to conclude by Gronwall’s lemma.
We have

Proposition 5.3.1 Under the same assumptions as in Theorem 5.1.8, for all
solenoidal vector field ũ ∈ C∞c ([0, t∗]× Ω̄),

− 1
2ε2

∫ t

0

∫∫
(∇xũ+ (∇xũ)T ) : Φε(fε −Mε)(s, x, v)dvdxds

≤ C

ε2

∫ t

0
‖(∇xũ+ (∇xũ)T )‖L2∩L∞(Ω)H(fε|Mε)(s)ds+ o(1)

(5.36)

Proof. The main idea behind this result is that the local thermodynamic
equilibriumMfε is expected to give a good approximation of the distribution
fε in the fast relaxation limit, at least if the moments remain bounded. Now,
for Maxwellian distributions, i.e. if fε =Mfε , the flux term can be computed
explicitly in terms of the moments and estimated by the modulated entropy
H(Mfε |Mε) which is more or less equivalent to the L2 norm of the moments
of Mfε −Mε :

H(Mfε |Mε) =
∫
h (Rε − 1) (t, x)dx+

1
2

∫
Rε|Uε − εũ|2(t, x)dx

+
3
2

∫
Rε (Tε − log Tε − 1) (t, x)dx

The difficulty to apply this strategy is to obtain a control on the relaxation
to local Maxwellians. Indeed, in the case of the Boltzmann equation, the
entropy production is not known to measure the distance between fε and
Mfε in some suitable sense (see Chapter 3 for a brief discussion on that
point).

• The first step consists therefore in introducing a suitable decomposition
of the flux term (as in the case of the Navier-Stokes limit), well adapted to
the structure of the collision operator :

1
ε2

∫
Φε(fε −Mε)(t, x, v)dv =

∫
ΦεMε

(
1
ε
g̃ε +

1
4
g̃2
ε

)
(t, x, v)dv

=
∫
Φ̃εMε

1
ε
Lεg̃ε(t, x, v)dv +

1
4

∫
ΦεMεg̃

2
ε(t, x, v)dv

where Φ̃ε is the pseudo-inverse by Lε of Φε, which can be obtained from Φ̃
defined in Remark 3.2.3 by translation.
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Then, using the identity

1
ε
MεLεg̃ε = − 2

ε2Q(
√
Mεfε,

√
Mεfε) +

1
2
Q(Mεg̃ε,Mεg̃ε) (5.37)

which is the translated variant of (3.19) used in Chapter 3, we eventually
arrive at the following decomposition

1
ε2

∫
Φε(fε −Mε)(t, x, v)dv = −2ε(q−1)/2

∫
Φ̃εMεq̃ε(t, x, v)dv

+
1
2

∫
Φ̃εQ(Mεg̃ε,Mεg̃ε)(t, x, v)dv

+
1
4

∫
ΦεMεg̃

2
ε(t, x, v)dv

def= I1 + I2 + I3

(5.38)

The term I1 measures in some sense the relaxation of fε to the manifold
of local Maxwellians, and is controlled by (5.24) :

‖I1‖L2(dtdx) ≤ 2ε(q−1)/2‖q̃ε‖L2(dtdxν−1
ε Mεdv)‖Φ̃ε‖L2(νεMεdv) ,

from which we conclude that

I1 = o(1)L2(dxdt) (5.39)

Estimating the term I2 requires to obtain some further integrability (with
respect to v) on g̃ε. Indeed, using the continuity of the collision operator,
namely∥∥∥∥ 1

Mε
Q(Mεg̃,Mεg̃)

∥∥∥∥
L2(Mεν

−1
ε dv)

≤ C‖g̃‖L2(Mεdv)‖g̃‖L2(Mε(1+|v|)βdv),

we have

‖I2(t)‖L1(dx) ≤ C‖Φ̃ε‖L2(νεMεdv)‖(g̃ε)2(t)‖L1(dx(1+|v|)βMεdv).

Controlling the term I3 requires still further integrability (with respect to v)
since Φε = O(|v|2) as |v| → ∞.

‖I3(t)‖L1(dx) ≤ C‖(g̃ε)2(t)‖L1(dx(1+|v|)2Mεdv).

•We will obtain this additional integrability using the same arguments as
in Lemma 3.2.5, namely the relaxation estimate (5.25)

‖g̃ε −Πεg̃ε‖L2(Mεdv) = O(ε(q+1)/2)L2
t,x

+O(ε)‖g̃ε‖2
L2(Mεdv),

together with Young’s inequality. The crucial point is of course the fact that,
by definition of Πεg̃ε, for all p < +∞
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(Πεg̃ε)2 = O

(
1
ε2H(fε|Mε)

)
L1(dx,Lp(Mεdv))

.

We first introduce some truncation

γ̃ε = γ

(
fε
Mε

)
where γ ∈ C∞c (R+, [0, 1]) satisfies γ|[0,2] ≡ 1, so that

εγ̃εg̃ε = O(1)L∞t,x,v , ‖γ̃εg̃ε‖L2(dxMεdv) = O

(
1
ε
H(fε|Mε)1/2

)
.

For moderated tails, we have

γ̃εg̃
2
ε = εγ̃εg̃ε

(
g̃ε −Πεg̃ε

ε

)
+ γ̃εg̃εΠεg̃ε

= O

(
1
ε2H(fε|Mε)

)
L∞t (L1

x(Lp(Mεdv))
+ o(1)L2(dtdxMεdv)

for all p < 2. In particular

γ̃εg̃
2
ε(1 + |v|2) = O

(
1
ε2H(fε|Mε)

)
L∞t (L1(dxMεdv))

+ o(1)L2(dtdx,L1(Mεdv))

(5.40)
On the other hand, by Young’s inequality, we have

(1 + |v|)2g̃2
ε(1− γ̃ε) ≤

10
ε2

∣∣∣∣ fεMε
− 1
∣∣∣∣ (1 + |v|)2

10
(1− γ̃ε)

≤ 10
ε2 h

(
fε
Mε
− 1
)

+
10
ε2 (1− γ̃ε)2e

(1+|v|)2
10

(5.41)

The first term in the right-hand side is controlled by the modulated entropy,
whereas the second one is dealt with using again the relaxation estimate. We
have indeed

(1− γ̃ε) = O(1)L∞t,x,v ,
∥∥∥∥1− γ̃ε

ε

∥∥∥∥
L2(dxMεdv)

= O

(
1
ε
H(fε|Mε)1/2

)
,

and
1− γ̃ε
ε
≤ (1− γ̃ε)g̃ε ≤ (1− γ̃ε)(g̃ε −Πεg̃ε) + (1− γ̃ε)Πεg̃ε

= O

(
1
ε
H(fε|Mε)

)
L1(dx,L2(Mεdv))

+ o(ε)L2(dtdxMεdv)

+O

(
1
ε2H(fε|Mε)

)
L2(dx,Lp(Mεdv))

for any p < +∞, from which we deduce that(
1− γ̃ε
ε

)2

e
(1+|v|)2

10 = O

(
1
ε2H(fε|Mε)

)
L∞t (L1(dxMεdv))

+ o(1)L2(dtdx,L1(Mεdv))

(5.42)
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• By (5.40), (5.41) and (5.42), we get finally

|I2|+ |I3| = O

(
1
ε2H(fε|Mε)

)
L1(dx)

+ o(1)L2(dtdx) (5.43)

Combining (5.38) with (5.39) and (5.43) leads then to

1
ε2

∫
Φε(fε −Mε)(t, x, v)dv = O

(
1
ε2H(fε|Mε)

)
L1(dx)

+ o(1)L2(dtdx)

which completes the proof of Proposition 5.3.1. ut

5.3.2 Proof of Theorem 5.1.8 and Corollary 5.1.9

We deduce from (5.26) and (5.36) that

1
ε2H(fε|Mε)(t) +

1
ε2

∫
R3

tr(mε)(t) +
1
εq+3

∫ t

0

∫
D(fε)dxds

≤ 1
ε2H(fε,in|Mε,in) + o(1)

+C
∫ t

0
‖∇xũ+ (∇xũ)T ‖L2∩L∞

(
1
ε2H(fε|Mε) +

1
ε2

∫
Ω

tr(mε)
)

(s)ds

+
1
ε

∫ t

0

∫
A(ũ) ·

∫
(εũ− v)fε(s, x, v)dvdxds

Integrating next this differential inequality leads to

1
ε2H(fε|Mε)(t) +

1
ε2

∫
Ω

tr(mε)(t) +
1
εq+3

∫ t

0

∫
D(fε)dxds

≤ 1
ε2H(fε,in|Mε,in) exp

(
C

∫ t

0
‖∇xũ+ (∇xũ)T ‖L2∩L∞(s)ds

)
+ o(1)

+
∫ t

0
exp

(
C

∫ t

s

‖∇xũ+ (∇xũ)T ‖L2∩L∞(τ)dτ
)∫∫

A(ũ) · (ũ− v

ε
)fεdvdxds

(5.44)

for any divergence free vector-field ũ ∈ C∞c (R+×Ω) such that n · ũ|∂Ω = 0.
• In the general case, we will then deduce that any limit point of the

sequence of scaled bulk velocities (uε) is a dissipative solution to the incom-
pressible Euler equations (5.1)(5.3).

Let us first recall that, by Lemma 3.1.2 in Chapter 3, up to extraction of
a subsequence, we have the convergences

uε =
1
ε

∫
fεvdv ⇀ u weakly in L1

loc(dtdx),

Rε =
∫
fεdv → 1 strongly in L1

loc(dtdx).
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Furthermore, taking limits in the local conservation of mass

∂t

∫
fεdv +

1
ε
∇x ·

∫
fεvdv = 0

shows that
∇x · u = 0.

In order to prove that u is a dissipative solution to the incompressible Euler
equations (5.1)(5.3), it remains then to check that it satisfies the stability
inequality (5.11). Denote as previously by Mfε the local Maxwellian having
the same moments as fε. Simple computations give

1
ε2H(fε|Mε) =

1
ε2H(Mfε |Mε) +

1
ε2H(fε|Mfε)

≥ 1
ε2H(Mfε |Mε) ≥

1
2

∫
(uε −Rεũ)2

Rε
dx ,

By convexity of the functional

(R, u) 7→ (u−Rũ)2

R
,

since Rε → 1 and uε → u in the vague sense of measures,

1
2
‖u− ũ‖2

L2(Ω) ≤ lim inf
ε→0

1
2

∫
(uε −Rεũ)2

Rε
dx.

Combining these inequalities with (5.44) leads then to

1
2
‖(u− ũ)(t)‖2

L2(Ω)

≤
(

lim inf
ε→0

1
ε2H(fε,in|Mε,in)

)
exp

(
C

∫ t

0
‖∇xũ+ (∇xũ)T ‖L2∩L∞(s)ds

)
+
∫ t

0
exp

(
C

∫ t

s

‖∇xũ+ (∇xũ)T ‖L2∩L∞(τ)dτ
)∫

A(ũ) · (ũ− u)(s)dxds.

Then, from (5.16) and the identity

1
ε2H(fε,in|Mε,in) =

1
ε2H(fε,in|M(1,εuin,1)) +

1
2

∫∫
fε,in(uin − ũin)2dvdx

+
1
ε

∫∫
fε,in(v − εuin) · (uin − ũin)dvdx

=
1
ε2H(fε,in|M(1,εuin,1)) +

1
2
‖uin − ũin‖2

L2(Ω)

+
1
2

∫∫
(fε,in −M(1,εuin,1))(uin − ũin)2dvdx

+
1
ε

∫∫
(fε,in −M(1,εuin,1))(v − εuin) · (uin − ũin)dvdx
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we deduce, using Young’s inequality, that

1
ε2H(fε,in|M(1,εũin,1)) =

1
2
‖uin − ũin‖2

L2(Ω) + o(1).

Therefore

1
2
‖(u− ũ)(t)‖2

L2(Ω)

≤ 1
2
‖uin − ũin‖2

L2(Ω) exp
(
C

∫ t

0
‖∇xũ+ (∇xũ)T ‖L2∩L∞(s)ds

)
+
∫ t

0
exp

(
C

∫ t

s

‖∇xũ+ (∇xũ)T ‖L2∩L∞(τ)dτ
)∫

A(ũ) · (ũ− u)(s)dxds.

for any divergence free vector-field ũ ∈ C∞c (R+×Ω) such that n · ũ|∂Ω = 0.
By a standard density argument, the previous inequality can be extended

to any divergence free vector-field

ũ ∈ L∞([0, t∗], L2(Ω)) ∩ L1([0, t∗], H1 ∩W 1,∞(Ω)))

such that n·ũ|∂Ω = 0. We conclude that u is a dissipative solution to (5.1)(5.3).

• In the case where the incompressible Euler equations (5.1)(5.3) have a
unique smooth solution u on [0, t∗] with initial data uin, we know of course
that any dissipative solution of (5.1)(5.3) will coincide with u. In particular,
the sequence of scaled bulk velocities (uε) converge to u. We have furthermore
the entropic convergence of the sequence (gε(t)) defined by fε = M(1 + εgε)
for all t ∈ [0, t∗].

Indeed, by the assumption (5.16) on the initial data, we see that

1
ε2H(fε|M(1,εu,1))(t)→ 0 as ε→ 0 .

5.4 Taking into Account Acoustic Waves

The proof of Theorem 5.1.11 requires some improvements of the relative en-
tropy method developed previously. The main idea is that, in domains where
the distribution is expected to present rapid variations, the formal hydrody-
namic approximation is not relevant, and that correctors have to be added in
order to obtain the convenient asymptotics. The point is indeed to obtain a
refined decription of the asymptotics taking into account both the relaxation
in the initial layer and the acoustic waves.

Taking into account acoustic waves (and the heat equation) does not mod-
ify strongly the method since they only contribute to the hydrodynamic part
of the distribution. We indeed recall from Section 5.2 that, under the addi-
tional assumption (5.19), for any (ρ̃, ũ, θ̃) ∈ C∞c (R+×Ω), denoting
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Mε
def= M(exp(ερ̃),εũ,exp(εθ̃)),

we have the following modulated entropy inequality

H (fε|Mε)(t) +
1
εq+1

∫ t

0

∫
D(fε)dsdx

≤ H(fε,in|Mε,in) +
∫ t

0

∫
∂t exp(ερ̃)dxds

− ε
∫ t

0

∫∫
fε

(
1, e−εθ̃(v − εũ),

1
2

(
e−εθ̃|v − εũ|2 − 3

))
·Aε(ρ̃, ũ, θ̃)dvdxds

−
∫ t

0

∫∫
fε∇xũ : Φεdxdv +

∫∫
fεe

1
2 εθ̃∇xθ̃ · Ψεdxdvds

for any solution to the Boltzmann equation satisfying the conservation laws.

5.4.1 Construction of Approximate Solutions by a Filtering
Method

We then have to construct a sequence of approximate solutions to the systems

Aε(ρ, u, θ) = 0,

or in other words to the systems

∂tρ+ (u · ∇x)ρ+
1
ε
∇x · u = 0,

∂tu+ (u · ∇x)u+
(
eεθ − 1
ε

)
∇x (ρ+ θ) +

1
ε
∇x(ρ+ θ) = 0,

∂tθ + (u · ∇x)θ +
2
3ε
∇x · u = 0

(5.45)

More precisely, we will require that

Aε(ρε, uε, θε)→ 0 in L2(dtdx) as ε→ 0. (5.46)

One of the difficulty here (in comparison with classical penalization problems)
is that we further need that these approximate solutions conserve the total
mass at higher order

1
ε2

∫
∂t exp(ερε)dx→ 0 in L1(dt) as ε→ 0. (5.47)

(Note that, for exact solutions, the total mass is exactly conserved.)
Such a construction is done by a filtering method (see [60] or [96] for

instance), i.e. considering the familyW
(
t
ε

)
(ρ, u, θ) whereW is the semigroup

generated by the linear penalization operator W defined by

W (ρ, u, θ) =
(
∇x · u,∇x(ρ+ θ),

2
3
∇x · u

)
.
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The first order approximation is then obtained by taking (strong ) limits in
the filtered system. Nevertheless, because of the high frequency oscillations, we
do not expect the error in this first order approximation to converge strongly
to 0.

We therefore have to add some correctors (i.e. the second and third order
approximations) in order to establish the convergence statements (5.46)(5.47).

More precisely, we have the following

Proposition 5.4.1 Let (ρin, uin, θin) belong to Hs(Ω) for some s > 5
2 . Then

there exist some t∗ > 0, and some family (ρNε , u
N
ε , θ

N
ε ) satisfying the uniform

bound
sup
N∈N

lim
ε→0
‖(ρNε , uNε , θNε )‖L1([0,t∗],Hs(Ω)) ≤ C (5.48)

and such that the following convergences hold as ε→ 0 then N →∞ :

(ρNε,in, u
N
ε,in, θ

N
ε,in)→ (ρin, uin, θin) in Hs(dx), (5.49)

Aε(ρNε , u
N
ε , θ

N
ε )→ 0 in L2(dtdx), (5.50)

1
ε2

∫
∂t exp(ερNε )dx→ 0 in L1(dt). (5.51)

Proof. Since the proof of that proposition is very technical, we will only sketch
the main arguments here, and refer to [95] for the details.

Let us first introduce some notations to recast the system

Aε(ρ, u, θ) = 0

in a suitable form. For any V = (ρ, u, θ) we define the symmetric bilinear form
B by

B(V, V ) =

 (u · ∇x)ρ
(u · ∇x)u+ θ∇x (ρ+ θ)
(u · ∇x)θ


We are therefore interested in the (approximate) solutions to

∂tV +
1
ε
WV + B(V, V ) = −

 0
1
ε (eεθ − 1− εθ)∇x (ρ+ θ)

0


which are also approximate solutions (in the sense of (5.50)) to

∂tV +
1
ε
WV + B(V, V ) = 0

provided that V is uniformly bounded in L∞([0, t∗],W 1,∞ ∩ L2(Ω)). Let us
also recall that we further need that these approximate solutions satisfy some
global conservation of mass (5.51).
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•We first conjugate the system by the semi-groupW
(
t
ε

)
generated by W

∂t

(
W
(
t

ε

)
V

)
+W

(
t

ε

)
B(V, V ) = 0,

or equivalently

∂tṼ +W
(
t

ε

)
B
(
W
(
− t
ε

)
Ṽ ,W

(
− t
ε

)
Ṽ

)
= 0 (5.52)

denoting by Ṽ the filtered field Ṽ =W
(
t
ε

)
V .

We therefore expect the solutions (and approximate solutions) to (5.52)
to have a very different behaviour depending on the nature of the spectrum
of W . In the case when Ω is a smooth bounded domain, (Id − ∆)−1 is a
compact operator with discrete spectrum, from which we deduce that W has
discrete spectrum. The (formal) limit system depends therefore on the reso-
nances between acoustic modes. In the case when Ω is an exterior domain,
the Laplacian has continuous spectrum and one can prove using dispersion
properties that the corresponding acoustic waves converge strongly to 0.

For the sake of simplicity, we will focus here on the case of bounded do-
mains (or of the torus T3). We will denote by (iλk) the sequence of eigenvalues
of W corresponding to the boundary condition of Neumann type

u · n = 0 on ∂Ω,

and by Πλ the projection on Ker(W − λId).

• At leading order, we then obtain

∂tṼ0 + BW (Ṽ0, Ṽ0) = 0. (5.53)

denoting by BW the limiting quadratic operator defined by

BW =
∑
k

∑
λk1 +λk2 =λk

ΠλkB(Πλk1
·, Πλk2

·). (5.54)

An algebraic computation (which is the basic argument in the compensated
compactness method, see [77] or Proposition 4.3.2 in the previous chapter)
shows that, for all λ, µ 6= 0

Π0B(ΠλṼ0, ΠµṼ0) = 0.

Indeed we have the following formula for Π0

Π0(ρ, u, θ) =
(

2ρ− 3θ
5

, Pu,
3θ − 2ρ

5

)
.
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Then, with the notations ΠλṼ0 = (ρλ, uλ, θλ) and ΠµṼ0 = (ρµ, uµ, θµ), we get

Π0B(ΠλṼ0, ΠµṼ0) =
1
2
Π0

 (uλ · ∇x)ρµ+(uµ · ∇x)ρλ
(uλ · ∇x)uµ+(uµ · ∇x)uλ+ 5

2θµ∇xθλ+ 5
2θλ∇xθµ

(uλ · ∇x)θµ+(uµ · ∇x)θλ


=

1
10

 (uλ · ∇x)(2ρµ − 3θµ) + (uµ · ∇x)(2ρλ − 3θλ)
5P ((uλ · ∇x)uµ + (uµ · ∇x)uλ)
(uλ · ∇x)(3θµ − 2ρµ) + (uµ · ∇x)(3θλ − 2ρλ)


=

1
2

 0
P (∇x(uλ · uµ)− uµ ∧ (∇x ∧ uλ)− uλ ∧ (∇x ∧ uµ))
0


(5.55)

since ∇x ∧ uλ = 0 and 3θλ − 2ρλ = 0.

In other words the equation governing the non-oscillating part can be
decoupled from the rest of the system

∂tΠ0Ṽ0 +Π0B(Π0Ṽ0, Π0Ṽ0) = 0,

which can be rewritten
∂tρ̄+ (ū · ∇x)ρ̄ = 0, ∇x(ρ̄+ θ̄) = 0,
∂tū+ (ū · ∇x)ū+∇xp = 0, ∇x · ū = 0, (5.56)

where (ρ̄, ū, θ̄) = Π0Ṽ0 = Π0V0. Note in particular that

∂t

∫
ρ̄dx = 0.

A classical study based on harmonic analysis allows to prove that (5.53) has
a unique strong solution V0 ∈ L∞loc([0, t∗), Hs(Ω)) provided that Vin ∈ Hs(Ω)
for s > 5

2 . The point is to check that

‖V ‖2
Hs(Ω) ∼ ‖Π0V ‖2

Hs(Ω) +
∑
k

(1 + λ2
k)s‖ΠkV ‖2

L2(Ω)

which comes from the fact that the acoustic operator acts as a derivation on
the orthogonal complement of its kernel.

For that solution, we also have a uniform bound on the time derivative

∂tṼ0 ∈ L∞loc([0, t∗), Hs−1(Ω)).

Remarking that, for all λ 6= 0,∫
ρλdx =

1
iλ

∫
(∇x · uλ)dx =

1
iλ

∫
∂Ω

uλ · ndσx = 0, (5.57)

we get, denoting (ρ0, u0, θ0) = V0 =W
(
− t
ε

)
Ṽ0,

∂t

∫
ρ0dx = ∂t

∫
ρ̄dx = 0.
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Furthermore, denoting by JN the projection on the N first eigenmodes,

Ṽ0 − JN Ṽ0 → 0 as N →∞ in L∞loc([0, t
∗), Hs(Ω)) ∩W 1,∞

loc ([0, t∗), Hs−1(Ω)),

and ∫
ρN0 dx =

∫
ρ0dx.

Note however that Ṽ0 (and consequently Ṽ N0 = JN Ṽ0) is not an approxi-
mate solution to (5.52) in the sense of (5.50). We have indeed

∂tṼ
N

0 +W
(
t

ε

)
B
(
W
(
− t
ε

)
Ṽ N0 ,W

(
− t
ε

)
Ṽ N0

)
= (Id− JN )BW (Ṽ0, Ṽ0) + BW (Ṽ N0 − Ṽ0, Ṽ

N
0 + Ṽ0)

+W
(
t

ε

)
B
(
W
(
− t
ε

)
Ṽ N0 ,W

(
− t
ε

)
Ṽ N0

)
− BW (Ṽ N0 , Ṽ N0 )

where the last term is expected to be an oscillating term, that is to converge
weakly but not strongly to 0. We therefore need to add some correctors.

• The second order approximation V N1 is defined by

Ṽ N1 = JN
∑

λk1 +λk2 6=λk

exp
(
it
ε (λk − λk1 − λk2)

)
i(λk1 + λk2 − λk)

ΠλkB(Πλk1
Ṽ N0 , Πλk2

Ṽ N0 )

From the bounds on Ṽ0 (which are clearly inherited by Ṽ N0 ) and the definition
of B, we deduce that, for all N > 0 and all σ > 0

Ṽ N1 in L∞loc([0, t
∗), Hσ(Ω))

(with an estimate depending on N), and that, for all t < t∗

sup
N∈N

lim
ε→0
‖Ṽ N0 + εṼ N1 ‖L∞([0,t],Hs(Ω)) ≤ C‖Ṽ0‖L∞([0,t∗],Hs(Ω)).

It remains then to check that Ṽ N0 + εṼ N1 is an approximate solution to (5.52)
in a strong sense.

∂t(Ṽ N0 + εṼ N1 ) +W
(
t

ε

)
B
(
W
(
−t
ε

)
(Ṽ N0 + εṼ N1 ),W

(
−t
ε

)
(Ṽ N0 + εṼ N1 )

)
= (Id− JN )BW (Ṽ0, Ṽ0) + BW (Ṽ N0 − Ṽ0, Ṽ0 + Ṽ N0 )

+(Id− JN )
∑

λk1 +λk2 6=λk

exp
(
i
t

ε
(λk − λk1 − λk2)

)
ΠλkB(Πλk1

Ṽ N0 , Πλk2
Ṽ N0 )

+εW
(
t

ε

)
B
(
W
(
− t
ε

)
Ṽ N1 ,W

(
− t
ε

)
(2Ṽ N0 + εṼ N1 )

)
−2εJN

∑
λk1 +λk2 6=λk

exp
(
− itε (λk1 + λk2 − λk)

)
i(λk − λk1 − λk2)

ΠλkB(Πλk1
∂tṼ

N
0 , Πλk2

Ṽ N0 )

(5.58)



5.4 Taking into Account Acoustic Waves 151

From the uniform bound on Ṽ N0 and the convergence Ṽ N0 → Ṽ0 we deduce
that the first three terms in the right-hand side of the previous identity go to
zero as N → ∞. For fixed N , using the (non-uniform) estimates on Ṽ N0 and
Ṽ N1 and the bound from below on |λk − λk1 − λk2 |, we obtain that the three
other terms go to zero as ε→ 0. We conclude that

∂t(Ṽ N0 +εṼ N1 )+W
(
t

ε

)
B
(
W
(
− t
ε

)
(Ṽ N0 + εṼ N1 ),W

(
− t
ε

)
(Ṽ N0 + εṼ N1 )

)
goes to zero in L∞loc([0, t

∗), Hs−1(Ω)) as ε→ 0 then N →∞.

In other words (Ṽ N0 +εṼ N1 ) is an approximate solution to (5.52) in the sense
of (5.50). However it does not satisfy the (approximate) global conservation
of mass (5.51).

Indeed we have proved that the oscillating modes have zero total mass
(see (5.57)) and that the equation governing the non-oscillating part of Ṽ0 is
conservative, from which we deduce that the first three terms in the right-
hand side of (5.58) have no contribution to the variation of the total mass.
But the last two terms are expected to give some variation of the total mass
of order ε, which is not admissible for (5.51) to hold.

• We therefore have to build some third order approximation Ṽ N2 , which
is done by the same process, using the fact that the only contribution to
the total mass comes from the non-oscillating part. We skip that part of the
construction and refer to [95] for the details.

Defining

(ρNε , u
N
ε , θ

N
ε ) =W

(
− t
ε

)
(Ṽ N0 + εṼ N1 + ε2Ṽ N2 )

we then check easily that the uniform bound (5.48) and the convergences
(5.49)(5.50) and (5.51) are satisfied. ut

5.4.2 Control of the Flux Term and Proof of Convergence

The conclusion is then very similar to the “well-prepared” case. We start
by estimating the momentum and energy fluxes in terms of the modulated
entropy and entropy dissipation :

Proposition 5.4.2 Under the same assumptions as in Theorem 5.1.11, for
any (ρ̃, ũ, θ̃) ∈ C∞c ([0, t∗]× Ω̄) such that n · ũ|∂Ω = 0,

− 1
ε2

∫ t

0

∫∫
fε∇xũ : Φεdxdvds−

1
ε2

∫ t

0

∫∫
fεe

1
2 εθ̃∇xθ̃ · Ψεdxdvds

≤ C

ε2

∫ t

0
‖Dx(ũ, θ̃)(s)‖L2∩L∞(Ω)H(fε|Mε)(s)ds+ o(1)

(5.59)

where the constant C depends only on the L∞ norm of (ρ̃, ũ, θ̃).
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Proof. The proof relies on the same type of decomposition of the fluxes :

1
ε2

∫
Φε(fε −Mε)(t, x, v)dv = −2ε(q−1)/2

∫
Φ̃εMεq̃ε(t, x, v)dv

+
1
2

∫
Φ̃εQ(Mεg̃ε,Mεg̃ε)(t, x, v)dv

+
1
4

∫
ΦεMεg̃

2
ε(t, x, v)dv ,

and

1
ε2

∫
Ψε(fε −Mε)(t, x, v)dv = −2ε(q−1)/2

∫
Ψ̃εMεq̃ε(t, x, v)dv

+
1
2

∫
Ψ̃εQ(Mεg̃ε,Mεg̃ε)(t, x, v)dv

+
1
4

∫
ΨεMεg̃

2
ε(t, x, v)dv .

The difficulty comes from the fact that Ψε = O(|v|3) as |v| → ∞, and that mo-
ments of order 3 cannot be controlled by the modulated entropy via Young’s
inequality.

Instead of the controls (5.41) on large velocities, we will therefore use the
additional (non uniform) a priori estimate (5.19) on large tails. We have indeed
for all p < 1∫

Mε

(
fε
Mε

)2p

dv ≤
(∫

f 2
ε

M
dv

)p(∫ (
Mρ

M2p−1
ε

)1/(1−p)

dv

)1−p

≤ Cp

provided that ε is sufficiently small (depending on p), since the moments of
Mε differ from those of M by quantities of order ε. We then have

εg̃ε = O(1)L∞t,x(L4p(Mεdv)) and thus ε(g̃ε −Πg̃ε) = O(1)L∞t,x(L4p(Mεdv)).

On the other hand, the relaxation estimate states

g̃ε −Πεg̃ε = ε
q+1

2 O

(
1

ε
q+3

2

D(fε)1/2
)
L2(Mεdv)

+ εO

(
1
ε2H(fε|Mε)

)
L1
x(L2(Mεdv))

Coupling both estimates leads finally to the following control on large velocities

g̃2
ε = ε(q−1)/2O

(
1

ε(q+3)/2D(fε)1/2
)

L
4p

2p+1 (Mεdv)

+O
(

1
ε2H(fε|Mε)

)
L1(dx,L

4p
2p+1 (Mεdv))

(5.60)

From that weighted L2 estimate on g̃ε and the bound on q̃ε coming from
the entropy dissipation, we finally deduce that
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1
ε2

∫
Φε(fε −Mε)(t, x, v)dv = ε(q−1)/2O

(
1

ε(q+3)/2

(∫
D(fε)dx

)1/2
)
L2(dx)

+O
(

1
ε2H(fε|Mε)

)
L1(dx)

,

and

1
ε2

∫
Ψε(fε −Mε)(t, x, v)dv = ε(q−1)/2 O

(
1

ε(q+3)/2

(∫
D(fε)dx

)1/2
)
L2(dx)

+O
(

1
ε2H(fε|Mε)

)
L1(dx)

.

which is the convenient form to apply Gronwall’s lemma.
Note that the condition (5.19) is actually a very strong assumption, which

could be relaxed since we only need to control the third moment of the
distribution. ut

We then establish the convergence result stated in Theorem 5.1.11 in the
case of well-prepared velocity profiles

gin = ρin + uin · v +
1
2
θin(|v|2 − 3) (5.61)

by the same arguments as in paragraph 5.3.2.

• Combining (5.31) and (5.59), and integrating the resulting differential
inequality, we get by Gronwall’s lemma

1
ε2 H(fε|Mε)(t) +

1
εq+3

∫ t

0

∫
D(fε)dxds

≤ 1
ε2H(fε,in|Mε,in) exp

(
C

∫ t

0

(
‖∇xũ‖L2∩L∞+‖∇xθ̃‖L2∩L∞

)
ds

)
+o(1)

−
∫ t

0
exp

(
C

∫ t

s

(
‖∇xũ‖L2∩L∞ + ‖∇xθ̃‖L2∩L∞

)
dτ

)
∫∫ (

1, e−εθ̃(v − εũ),
1
2

(
e−εθ̃|v − εũ|2 − 3

))
·Aε(ρ̃, ũ, θ̃)fεdvdxds

(5.62)
for any (ρ̃, ũ, θ̃) ∈ C∞c (R+×Ω) such that n · ũ|∂Ω = 0.

• Plugging the approximate solution (ρNε , u
N
ε , θ

N
ε ) built in Proposition

5.4.1 in Gronwall’s inequality (5.62)

MN
ε =M(exp(ερNε ),εuNε ,exp(εθNε ))
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leads then to

1
ε2H(fε|MN

ε )→ 0 in L∞loc([0, t
∗)) as ε→ 0 then N →∞. (5.63)

We first prove that the first term in the right-hand side of (5.62) converges
to 0 as ε→ 0 then N →∞. Denoting

Mε,in =M(exp(ερin),εuin,exp(εθin))

we have the identity

H(fε,in|MN
ε,in)=H (fε,in|Mε,in)+H

(
Mε,in|MN

ε,in

)
+
∫∫

(fε,in −Mε,in) log
Mε,in

MN
ε,in

dvdx

We therefore obtain (5.63) from the assumptions on the initial data (5.18)
(5.61) and the convergence statement (5.49)

(ρNε,in, u
N
ε,in, θ

N
ε,in)→ (ρin, uin, θin)

which implies in particular that

1
ε2H

(
Mε,in|MN

ε,in

)
→ 0 .

The convergence of the two other terms in the right-hand side of (5.62) is
obtained by combining the uniform bound (with respect to ε and N)

‖Dx(uNε , θ
N
ε )‖L∞([0,t],L2∩L∞(Ω)) ≤ C

with the convergence statements (5.50) and (5.51) :

1
ε2

∫
∂t exp(ερNε )dx→ 0, Aε(ρNε , u

N
ε , θ

N
ε )→ 0.

• From the entropic convergence (5.63) we deduce the convergence of the
moments stated in Theorem 5.1.11 by the same type of functional inequalities
as in paragraph 5.3.2.

We indeed recall that, by Lemma 3.1.2 in Chapter 3, up to extraction of
a subsequence, we have the convergences

ρε =
1
ε

∫
(fε −M)dv → ρ weakly in L∞loc(dt, L

1
loc(dx)),

uε =
1
ε

∫
fεvdv ⇀ u weakly in L∞loc(dt, L

1
loc(dx)),



5.5 Taking into Account the Knudsen Layer 155

θε =
1
3ε

∫
(fε −M)(|v|2 − 3)dv ⇀ θ weakly in L∞loc(dt, L

1
loc(dx)).

Furthermore, taking limits in the local conservations of mass and momentum

∂t

∫
fεdv +

1
ε
∇x ·

∫
fεvdv = 0

∂t

∫
fεvdv +

1
ε
∇x ·

∫
fεv
⊗2dv = 0

shows that
∇x · u = 0, ∇x(ρ+ θ) = 0.

We further have

1
ε2H(fε|Mε) ≥

1
ε2H(Mfε |Mε)

≥
∫

exp(ερNε )h
(
Rε exp(−ερNε )− 1

)
(t, x)dx

+
1
2

∫
Rεe

−εθNε |Uε − εuNε |2(t, x)dx

+
3
2

∫
Rε
(
Tε exp(−εθNε )− log(Tε exp(−εθNε ))− 1

)
(t, x)dx

with

Rε = 1 + ερε, Uε = εuε +O(ε2) and Tε = 1 + εθε +O(ε2).

We therefore have

ρε − ρNε → 0 strongly in L∞loc(dt, L
1
loc(dx)),

uε − uNε → 0 strongly in L∞loc(dt, L
1
loc(dx)),

θε − θNε → 0 strongly in L∞loc(dt, L
1
loc(dx)).

Moreover, by construction of (ρNε , u
N
ε , θ

N
ε ), we know that it converges weakly

to the solution (ρ̄, ū, θ̄) of the incompressible Euler equations (5.56).
This concludes the proof in the case when the initial data is close to ther-

modynamic equilibrium (5.61), i.e. in the case when there is no relaxation
layer.

5.5 Taking into Account the Knudsen Layer

For general initial data, the purely kinetic part of the solution to the
Boltzmann equation is expected to converge to 0 exponentially in time, in
particular in L1

loc(dtdxdv), but not in L∞loc(dt, L
1
loc(dxdv)). In order to con-

sider the relaxation process in the relative entropy method, one thus has to
construct a refined approximation fapp, and then to introduce it in the mod-
ulated entropy inequality (5.31). This requires in particular to also modulate
the entropy dissipation.
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5.5.1 The Refined Stability Inequality

Proposition 5.5.1 Denote by fapp some smooth function on [0, t∗]×Ω×R3

satisfying the boundary condition

fapp(t, x, v) = fapp(t, x, v − 2(v · n(x))n(x)) on Σ− .

Then, any solution to the scaled Boltzmann equation (5.17) such that
(5.19) holds satisfies the following modulated entropy inequality

H(fε |fapp)(t) +
1
εq+1

∫ t

0

∫
D(fε|fapp)dsdx ≤ H(f inε |f inapp)

−ε
∫ t

0

∫∫
g̃ε

(
∂tfapp +

1
ε
v · ∇xfapp −

1
εq+1Q(fapp, fapp)

)
dvdxds

+
1

4εq−1

∫ t

0

∫∫∫∫
(g̃εg̃ε1 − g̃′εg̃′ε1)

(
f ′appf

′
app1 − fappfapp1

)
Bdvdv1dσdxds

(5.64)
where g̃ε denotes the fluctuation

g̃ε =
1
ε

fε − fapp
fapp

,

and D(fε|fapp) is the modulated entropy dissipation defined by

D(fε|fapp) =
1
4

∫∫
(f ′εf

′
ε1 − fεfε1) log

(
f ′εf
′
ε1fappfapp1

fεfε1f ′appf
′
app1

)

−
(
f ′appf

′
app1 − fappfapp1

)( f ′εf
′
ε1

f ′appf
′
app1

− fεfε1

fappfapp1

)
Bdvdv1dσ.

(5.65)

Remark 5.5.2 Note that the integrand arising in the definition of the mod-
ulated entropy dissipation is always nonnegative, which is crucial to get some
stability. We have indeed

D(fε|fapp) =
1
4

∫∫∫
fεfε1

(
k

(
f ′εf
′
ε1

fεfε1

)
− k

(
f ′appf

′
app1

fappfapp1

)
−
(
f ′εf
′
ε1

fεfε1
−
f ′appf

′
app1

fappfapp1

)
k′
(
f ′appf

′
app1

fappfapp1

))
Bdvdv1dσ

where k is the convex function defined by k(z) = (z − 1) log z.
This has naturally to be compared with the definition (5.14) of the modu-

lated entropy

H(fε|fapp)=
∫∫

fapp (h(fε − 1)− h(fapp − 1)− (fε − fapp)h′(fapp − 1)) dvdx

with h(z) = (1 + z) log(1 + z)− z.
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Proof. Start from the entropy inequality (5.32) satisfied by the solution of the
scaled Boltzmann equation with specular reflection at the boundary:

H(fε(t)|M) +
1
εq+1

∫ t

0

∫
D(fε)(s, x)dsdx ≤ H(fε,in|M)

By definition of the modulated entropy (5.14), we then have

H (fε|fapp)(t) +
1
εq+1

∫ t

0

∫
D(fε)dsdx

≤ H(fε,in|fapp,in)−
∫ t

0

∫∫
log fapp

(
∂t +

1
ε
v · ∇x

)
fεdvdxds

−
∫ t

0

∫∫ (
fε
fapp

− 1
)(

∂t +
1
ε
v · ∇x

)
fappdvdxds

(5.66)

using the specular reflection on the boundary for fε and fapp.
Now, for solutions of the Boltzmann equation satisfying (5.19), the collision

term Q(fε, fε) makes sense, and the kinetic equation (5.17) holds in the sense
of distributions. We thus have

−
∫ t

0

∫∫
log fapp

(
∂t +

1
ε
v · ∇x

)
fεdvdxds

= − 1
εq+1

∫ t

0

∫∫
(log fapp)Q(fε, fε)dvdxds

= − 1
4εq+1

∫ t

0

∫∫ ∫∫
(f ′εf

′
ε1 − fεfε1) log

(
fappfapp1

f ′appf
′
app1

)
Bdvdv1dσdxds

using the classical symmetries of the collision integrand.
In the same way, we have

−
∫ t

0

∫∫ (
fε
fapp

− 1
)(

∂t +
1
ε
v · ∇x

)
fappdvdxds

= −
∫ t

0

∫∫
fε − fapp
fapp

(
∂tfapp +

1
ε
v · ∇xfapp −

1
εq+1Q(fapp, fapp)

)
dvdxds

+
1

4εq+1

∫ t

0

∫∫∫∫ (
f ′appf

′
app1 − fappfapp1

)(
f ′ε
f ′app

+
f ′ε1

f ′app1
− fε
fapp

− fε1

fapp1

)
Bdvdv1dσdxds

= −
∫ t

0

∫∫
fε − fapp
fapp

(
∂tfapp +

1
ε
v · ∇xfapp −

1
εq+1Q(fapp, fapp)

)
dvdxds

+
1

4εq

∫ t

0

∫∫∫∫ (
f ′appf

′
app1−fappfapp1

)
(g̃′ε+g̃′ε1−g̃ε−g̃ε1)Bdvdv1dσdxds
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Plugging both identities in (5.66) leads then to

H (fε|fapp)(t) +
1
εq+1

∫ t

0

∫
D(fε|fapp)dsdx ≤ H(fε,in|fapp,in)

−
∫ t

0

∫∫
fε − fapp
fapp

(
∂tfapp +

1
ε
v · ∇xfapp −

1
εq+1Q(fapp, fapp)

)
dvdxds

+
1

4εq+1

∫ t

0

∫∫∫∫ (
f ′appf

′
app1 − fappfapp1

)
(g̃εg̃ε1 − g̃′εg̃′ε1)Bdvdv1dσdxds

which is the expected inequality. ut
5.5.2 Construction of An Approximate Solution

The next step is to construct suitable approximate solutions fapp. Let us
recall that, in the initial layer, the dominating process is expected to be the
relaxation, so that the transport can be neglected in first approximation.

We thus solve the homogeneous equation

∂tf =
1
εq+1Q(f, f),

f(x)|t=0 = fin(x).

(5.67)

using a fixed point argument in some functional space with exponential time
decay (see [59] for the well-posedness of (5.67) and Appendix B2 of [95] for
the suitable relaxation estimate).

One of the difficulty here is that we further need to control the dependence
with respect to the spatial variable x, to get some uniform bound on

1
ε2

∫ τε

0
‖v · ∇x log fapp(s)‖L∞(Ω,Lp′ (fappdv))ds

for some τε characterizing the size of the initial layer and some p′ > 2 to be
determined later.

What can be proved is the following

Proposition 5.5.3 Let (fε,in) be some sequence of initial data such that the
sequence of fluctuations (gε,in) defined by fε,in = M(1 + εgε,in) converges
entropically to some gin ∈ L2(Mdvdx), i.e. such that

1
ε2H(fε,in|M)→

∫∫
M(gin)2dxdv. (5.68)

Then there exists some family (fNε ) of nonnegative functions satisfying
approximatively the homogeneous Boltzmann equation as ε→ 0 then N →∞

∂tf
N
ε −

1
εq+1Q(fNε , f

N
ε )→ 0 in L2(dtdx, Lp

′
(fNε dv)) (5.69)
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with suitable initial data
1
ε2H(fε,in|fNε,in)→ 0 . (5.70)

It furthermore satisfies the relaxation estimate

1
εq+1

∫ t

0

∥∥∥∥∥fNε
′
fNε,1
′

fNε f
N
ε,1
− 1

∥∥∥∥∥
L∞(Ω,Lp′ (fNε f

N
ε,1Bdvdv1dσ))

ds→ 0, (5.71)

and the regularity estimate∥∥v · ∇x log fNε
∥∥
L2(dx,Lp′ (fNε dv)) ≤ Cε uniformly in time, (5.72)

for some p′ > 4.

Sketch of the Proof of Proposition 5.5.3. The proof of the previous result is
very technical and can be found in [95]. We just give here the main ideas.

In order to build the approximate solution we need, we start from the solu-
tion of the homogeneous Boltzmann equation (5.67) with some smooth initial
data, then truncate the contribution of large velocities to get a Maxwellian
bound from below on fNε .
• The first step consists therefore in choosing some suitable initial data.

In order that the solution to (5.67) has good decay properties with respect
to v and a smooth dependence with respect to x (which is now a simple
parameter), it is enough to impose such conditions on the initial data.

The approximate initial data fNε,in is therefore obtained by some spatial
regularization and some truncation of large velocities, such that

1
ε2H(fε,in|fNε,in)→ 0 as ε→ 0 then N →∞.

Standard results on the collision operator ensure then that the regularity
in x, and decay in v are propagated, and that the corresponding solution f̃Nε
of (5.67) tends exponentially in (t/εq+1) to local equilibrium.

• In order to have a bound from below on fNε , we then need to truncate
large velocities

fNε = (f̃Nε −Mf̃Nε
)1|v|2≤K| log ε| +Mf̃Nε

.

For ε sufficiently small, we can prove that the approximate solution fNε
satisfies

fNε,in = f̃Nε,in

and satisfies both (5.71) and (5.72).
However the homogeneous Boltzmann equation (5.67) is no longer satis-

fied : it remains then to check that (5.69) holds. The conclusion follows from
standard estimates on the tails of Maxwellian distributions and a suitable
choice of the truncation parameter K. ut
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5.5.3 Control of the Flux Term and Proof of Convergence

The previous estimates on the sequence of approximate solutions to the homo-
geneous Boltzmann equation (5.67) should allow to control the different terms
in the entropy inequality (5.64) provided that the fluctuation g̃ε defined by

g̃ε =
1
ε

fε − fNε
fNε

,

can be estimated in terms of the scaled relative entropy ε−2H(fε|fNε ) in a
suitable norm.

• Because fNε is bounded from up and below by some Maxwellians, the
same arguments as in the proof of Proposition 5.4.2 show that, under the
assumption (5.19), for all p < 4

3 , there exists Cp > 0 such that

‖g̃ε‖2
L2(Ω,Lp(fNε dv)) ≤

Cp
ε2 H(fε|fNε ) + o(1). (5.73)

Equipped with these preliminary results, we are now able to achieve the
proof of Theorem 5.1.11 in the general case. Actually we will prove that on a
thin time layer, the distribution becomes close to local thermodynamic equi-
librium in the following sense

1
ε2H(fε(τε)|Mε,in)→ 0 for some τε → 0 as ε→ 0,

where Mε,in is the initial local thermodynamic equilibrium

Mε,in =M(exp(ερin),εuin,exp(εθin)).

Then, we will use the results of the previous section, combined with the
continuity with respect to time of the solutions to the system (5.45), to obtain
the convergence on the time interval [τε, t∗).

• Combining Proposition 5.5.1 and estimate (5.73) leads to the following
inequality

1
ε2 H(fε|fNε )(t) +

1
εq+3

∫ t

0

∫
D(fε|fNε )dsdx ≤ 1

ε2H(fε,in|fNε,in)

−1
ε

∫ t

0

∫∫
g̃ε

(
∂tf

N
ε +

1
ε
v · ∇xfNε −

1
εq+1Q(fNε , f

N
ε )
)
dvdxds

+
Cp

2εq+1

∫ t

0

∥∥∥∥∥fNε
′
fNε,1
′

fNε
′
fNε,1
− 1

∥∥∥∥∥
L∞(Ω,Lp′ (fNε f

N
ε,1Bdvdv1dσ))

1
ε2H(fε|fNε )(s)ds
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Integrating next this differential inequality leads to

1
ε2H(fε|fNε )(t) +

1
εq+3

∫ t

0

∫
D(fε|fNε )dvdxds

≤ 1
ε2H(fε,in|fNε,in) exp

(
χNε (0, t)

)
+

1
ε

∫ t

0
exp

(
χNε (s, t)

) ∫∫
g̃ε

(
∂tf

N
ε +

1
ε
v · ∇xfNε −

1
εq+1Q(fNε , f

N
ε )
)
dvdxds

(5.74)
where χNε is the function defined by

χNε (s, t) =
Cp

2εq+1

∫ t

s

∥∥∥∥∥fNε
′
fNε,1
′

fNε
′
fNε,1
− 1

∥∥∥∥∥
L∞(Ω,Lp′ (fNε f

N
ε,1Bdvdv1dσ))

ds.

Using the estimates on fNε established in Proposition 5.5.3 leads then to

sup
t∈[0,τε]

1
ε2H(fε|fNε )(t)→ 0 (5.75)

for any τε such that
εq+1

τε
→ 0 and

τε
ε
→ 0.

Indeed the first term in the right-hand side of (5.74) is proved to converge to
0 as ε → 0 using the convergence of the initial data (5.18) and the uniform
bound (5.71) :

1
ε2H(fε,in|fNε,in) exp (χε(0, t))→ 0.

The convergence of the other term in the right-hand side of (5.74) is obtained
by combining the uniform bound (5.71) with the convergence statement (5.69)
and the regularity estimate (5.72)

1
ε

∫ t

0
exp

(
χNε (s, t)

) ∫∫
g̃ε

(
∂tf

N
ε −

1
εq+1Q(fNε , f

N
ε )
)
dvdxds→ 0,

1
ε

∫ t

0
exp

(
χNε (s, t)

) ∫∫
g̃ε

(
1
ε
v · ∇xfNε

)
dvdxds→ 0.

• We choose for instance
τε = εq

as the upper bound for the relaxation layer.
Inside the relaxation layer, we use the previous arguments which prove

that fε remains close to fNε . In particular, for t = τε, the distribution is close
to thermodynamic equilibrium, meaning that it satisfies (5.61).

Outside from the relaxation layer, we are then brought back to the situ-
ation when the velocity profile is well-prepared, situation we have dealt with
in Section 4.4. We therefore define Mε on [τε, t∗) by
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MN
ε =M(exp(ερNε ),εuNε ,exp(εθNε ))

with the following continuity condition for the moments

(ρNε , u
N
ε , θ

N
ε )(τε) = lim

t→τ−ε
(ρNε , u

N
ε , θ

N
ε )(t).

Defining (ρNε , u
N
ε , θ

N
ε ) on [τε, t∗) as in Proposition 5.4.1, we then have

1
ε2H(fε|MN

ε )(t) +
1
εq+3

∫ t

τε

∫
D(fε)dxds

≤ 1
ε2H(fε|MN

ε )(τε) exp
(
C

∫ t

τε

(
‖Dx(uNε , θ

N
ε )‖L2∩L∞

)
ds

)
+ o(1)

−
∫ t

τε

exp
(
C

∫ t

s

(
‖Dx(uNε , θ

N
ε )‖L2∩L∞

)
dτ

)
∫∫ (

1, e−εθ
N
ε (v − εuNε ),

1
2

(
e−εθ

N
ε |v − εuNε |2−3

))
·Aε(ρNε , u

N
ε , θ

N
ε )fεdvdxds

(5.76)
from which we deduce that

sup
s∈[τε,t]

1
ε2H(fε|MN

ε )→ 0 for all t < t∗, (5.77)

provided that the first term in the right-hand side converges to 0 as ε → 0
then N →∞.

It remains therefore to check that
1
ε2H(fε|MN

ε )(τε)→ 0

which results from the estimate obtained in the first step. We indeed have
1
ε2H(fε|fNε )(τε)→ 0

and, by Proposition 5.5.3,

fNε
MN

ε

(τε) = 1 +O
(
ε exp

(
− τε
εq+1

))
L∞

,

from which we deduce that
1
ε2H(fε|MN

ε )(τε) =
1
ε2H(fε|fNε )(τε) +

1
ε2

∫∫
fε log

fNε
MN

ε

(τε)dxdv → 0

as ε→ 0 then N →∞.

• The entropic convergences (5.75)(5.77) imply the strong convergence of
the fluctuation g̃ε in L∞loc([0, t

∗), L1(Mdxdv)) as ε→ 0 then N →∞.
Finally, using the fact that the purely kinetic part of the approximate

solution is equal to 0 on [τε, t∗) and converges to 0 in L1
loc([0, t

∗), L1(dxdv)),
we get the following convergences as ε→ 0 :

gε − g − gosc → 0 in L∞loc((0, t
∗), L1(dxdv)) ∩ L1

loc([0, t
∗), L1(dxdv)).
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The Compressible Euler Limit

The last chapter of this survey is devoted to the compressible Euler limit, and
is actually a series of remarks and open problems more than a compendium
of results.

We will discuss some perspectives regarding the mathematical treatment
of this asymptotics. Slight adaptations of the modulated entropy method
presented in the previous chapter should give likewise the local convergence
towards smooth solutions to the compressible Euler equations under some
integrability assumption on the solutions to the Boltzmann equation.

We further hope that suitable improvements of the modulated entropy
method (including the modulation of the entropy dissipation) should provide
the global convergence of weak solutions to the Boltzmann equation towards
entropic solutions to the Riemann problem in one space dimension. The main
challenge is of course to understand how the entropy dissipation concentrates
on shocks and discontinuities.

6.1 Mathematical Theories for the Compressible
Euler System

Let us first recall that the compressible Euler equations constitute a system
of conservation laws

∂tR+∇x · (RU) = 0,
∂t(RU) +∇x · (RU ⊗ U +RTId) = 0,
∂t(R|U |2 + 3RT ) +∇x ·

(
U(R|U |2 + 5RT )

)
= 0,

(6.1)

insofar as the density R, momentum RU and energy 1
2 (R|U |2 + 3RT ), which

characterize the state of the fluid, are conserved, and that their fluxes
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depend only on the state of the fluid (in particular, microscopic dissipa-
tive effects are neglected). Denoting by V the five-components vector field
V = (R,RU,R|U |2 + 3RT ), we can therefore recast the system (6.1) in the
abstract form

∂tV +∇x · F (V ) = 0 .

That system is hyperbolic since the flux matrix

DF (V ) · ω is diagonalizable in R3 for any ω ∈ R3 . (6.2)

Because (6.1) admits an entropy, namely log(R/T 3/2), the system is further
symmetrizable, meaning that there exists some positive definite matrix A0(V )
depending smoothly on V such that

A0DF (V ) · ω is symmetric for any ω ∈ R3 . (6.3)

This property, coming from an observation of Friedrichs [35] is actually much
stronger than the hyperbolicity condition (6.2).

The goal of this first part is to give briefly an idea of the mathematical
tools used to study such hyperbolic systems. For more details, we refer to text
books such as [101], [36] or [97].

6.1.1 Local Smooth Solutions

The results by Friedrichs [35] show actually that all hyperbolic systems are
locally well-posed.

Theorem 6.1.1 Let (Rin, Uin, Tin) ∈ Hs(R3) (s > 5
2 ) be some given initial

density, bulk velocity and temperature with Rin and Tin bounded from below.
Then there exists some t∗ > 0 and some (R,U, T ) ∈ C0([0, t∗), Hs(R3))

such that (R,U, T ) is a strong solution of (6.1) on [0, t∗).

Except for very particular initial data, the maximal time t∗ of existence of
such a smooth solution is finite (see [100] for instance). In general, the blow-up
corresponds to the apparition of a discontinuity (also called singularity). Note
that, in the case of the Euler equations, since the hyperbolicity of the system
is lost for instance if the density vanishes (cavitation), there could be other
sources of blow-up.

Remark 6.1.2 The previous result can be extended without difficulty to the
torus T3, or even to domains with boundaries provided that the boundary con-
ditions are smooth and satisfy some compatibility conditions (only incoming
fluxes can be prescribed).
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6.1.2 Weak and Entropic Solutions

If one allows solutions to be discontinuous (considering for instance fields
in L∞ satisfying (6.1) in the sense of distributions), then there is no more
uniqueness, nor stability of solutions with respect to initial data. More pre-
cisely, one can find sequences of solutions to (6.1) converging in w ∗ −L∞
towards functions which do not satisfy the equations.

In order to retrieve the stability of solutions, one has therefore to impose
additional conditions on the weak solutions.

Definition 6.1.3 An entropic solution to the compressible Euler equations
(6.1) is a field

(R,U, T ) ∈ L∞([0, t∗)× R3)

satisfying (6.1) in the sense of distributions, as well as the entropy inequality

∂t

(
R log

R

T 3/2

)
+∇x ·

(
RU log

R

T 3/2

)
≤ 0.

That entropy condition introduces some irreversibility, and is expected
to ensure the stability. Nevertheless, in dimension higher than 1, it is not
sufficient to define a suitable mathematical framework, and to obtain a global
existence and uniqueness theorem.

The only results about the existence of multidimensional discontinuous
solutions known at the present time give the existence of shock profiles under
some conditions (see [97], [98] or [47] for instance).

Regarding the uniqueness, as a byproduct of their analysis concerning weak
solutions to the incompressible Euler equations, De Lellis and Székelyhidi [40]
have obtained a negative result for some hyperbolic system of conservation
laws, in particular for the p-system of isentropic gas dynamics

∂tR+∇x · (RU) = 0,
∂t(RU) +∇x · (RU ⊗ U + P (R)Id) = 0. (6.4)

They have indeed proved that in dimension higher than 1, for any given func-
tion P , there exist bounded initial data (Rin, Uin) with Rin ≥ c > 0 for which
there are infinitely many bounded admissible solutions (R,U) of (6.4) with
R ≥ c > 0.

6.1.3 Global Entropic Solutions in One Spatial Dimension

In one spatial dimension, a good framework to study hyperbolic systems is
the space of functions with bounded total variation, i.e. of L∞ functions with
derivatives in the space of bounded measures.

In that framework, if the hyperbolic system under consideration admits
an entropy, then one has a theorem giving the global existence of entropic
solutions for initial data with small total variation. In the particular case of
the compressible Euler equations, the result can be stated as follows (see [78]).
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Theorem 6.1.4 LetR0, T0 be some nonnegative constants, and (Rin, Uin, Tin)
be some perturbation with bounded variation of the constant state (R0, 0, T0).

Then if the total variation TV (Rin, Uin, Tin) is sufficiently small, the com-
pressible Euler equations (6.1) admits a global entropic solution (R,U, T ) on
R+×R3.

Sketch of proof. That result is established by methods - based on numerical
schemes - which describe approximatively the discontinuities and the way they
propagate. The pioneering works in that direction are due to Glimm [50].
Alternative schemes have been given for instance by Bressan and Colombo
[21].

• The first remark is that the Riemann problem, i.e. the Cauchy problem
for initial data of the type

Vin(x) = V− if x < 0, Vin(x) = V+ if x > 0

admits a solution (which can be computed almost explicitely) under the only
condition that ‖V+ − V−‖∞ is sufficiently small [67].

In order to obtain that solution, one has to study the Rankine-Hugoniot
curves, i.e. the curves representing the states connected to V− by a single
wave (shock wave, or rarefaction wave, or contact discontinuity), then to prove
that they provide a system of suitable coordinates, or in other words a good
covering of the state space in the vicinity of V−, using some local inversion
theorem.

• The proof of the theorem relies then on four main arguments. One starts
by building approximate solutions by gathering together elementary solutions
of Riemann’s problems. Then, for each one of these approximate solutions,
one has to estimate the interactions between waves coming from two different
Riemann’s problems. These estimates on the potential for interaction allow
to get compactness on that sequence of approximate solutions. The last step
consists in proving that the limit points of this sequence are solutions to the
original Cauchy problem.

• Actually the proof of Theorem 6.1.4 presents an additional difficulty
related to the possible cavitation. Indeed, we recall that, when the density
vanishes, the system (6.1) is no more hyperbolic so that the previous meth-
ods cannot be applied. One has therefore to check that the density remains
bounded from below everywhere. That problem has been dealt with by Liu
[78]. ut

Note that the front tracking algorithm developed by Bressan and Colombo
[21] (which is a variant of the previous approximation process) gives the
uniqueness of solutions as well as their L1 stability with respect to initial
data (see [19]).
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6.2 Some Perspectives

At the present time, the mathematical derivation of the compressible Euler
equations from Boltzmann’s kinetic theory remains an outstanding open
problem.

The only rigorous results have been proved by Nishida [88] and Ukai and
Asano [105], then improved by Liu and Yu [79], [80] and can be stated roughly
as follows : as long as the compressible Euler equations have a smooth solu-
tion (R,U, T ), one can construct a sequence of smooth solutions to the scaled
Boltzmann equation the moments of which converge to (R,U, T ). The method
consists in deriving local strong a priori estimates (inherited from the propa-
gation of regularity), and concluding by some fixed point argument, which is
very similar to the proof of well-posedness for hyperbolic systems by Friedrichs
[35]. Some works in progress by Métivier and Zumbrun [83] should further im-
prove these results insofar as they also consider weak (viscous) shocks.

6.2.1 Convergence Towards Smooth Solutions

A first direction to extend that result would be to establish some strong-
weak stability principle, i.e. to prove the convergence of any sequence of the
appropriately scaled Boltzmann equation to the solution of the compressible
Euler equations, as long as the latter does exist. In other words, this would
be the counterpart of Theorem 5.1.10 that holds in incompressible regime.

A natural idea to do that is to derive some modulated entropy inequality,
insofar as

• it involves only physical quantities (entropy, entropy dissipation, mass,
momentum and energy);

• it looks very similar to the strong-weak uniqueness principle for sym-
metrizable hyperbolic systems (see [36] for instance).

As in the previous chapter, the difficulty will be to control the energy flux -
which is defined by a moment of third order - in terms of the modulated en-
tropy and entropy dissipation. This indeed requires to have a L∞ bound with
respect to the spatial variables, which is not known to hold for renormalized
solutions to the Boltzmann equation.

Considering for instance the classical solutions built by Guo [62] allows to
get rid of that problem, but it is then not clear that it improves the result by
Liu, Yang and Yu [80].

6.2.2 Convergence Towards Weak Solutions
in One Space Dimension

Another track would be to consider only the one dimensional case, for which
the structure of hyperbolic systems is much better understood, exploiting in
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particular the similarities between the weak solutions to the Boltzmann equa-
tion built by Cercignani [29], and the entropic solutions to the compressible
Euler system built by Glimm [50].

Indeed the key arguments leading to the global existence result in both
cases are

• the entropy inequality choosing among elementary solutions the one
which satisfies some causality principle;

• the a priori bound on some quantity, referred to as the potential for
interaction, controlling the effect of the nonlinearity;

• the specificity of the one dimensional problem, due to the very particular
properties of the scalar product.

Note that, in the absence of additional conditions, solutions of both equa-
tions are not known to be unique, so that we cannot expect to obtain a strong
convergence statement.

The idea is therefore to obtain suitable a priori estimates on the moments
of the scaled Boltzmann equation combining the bound on the potential for
interaction together with some suitable micro-macro decomposition. The con-
clusion would then follow from some standard moment method (see the study
of the incompressible Navier-Stokes asymptotics in Chapter 4).

Another approach would be to search for additional conditions which guar-
antee the uniqueness and some strong stability, such as the one given by
Bressan and Colombo [21] for hyperbolic systems, which consists in restrict-
ing the attention to solutions obtained by front tracking methods.

The idea is therefore to define a similar algorithm of approximation for
the solutions to the Boltzmann equation, and to prove that, for such solu-
tions, there exists some functional controlling the stability and therefore the
convergence to the compressible Euler equations.

Note that other attempts to obtain stability criteria for hyperbolic systems
have been made for instance by Bardos and Pironneau [8] considering the lin-
earized version of the equations in the vicinity of shocks. But for the moment
we have no idea on possible use of these ideas in the context of hydrodynamic
limits.
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A Some Consequences of Egorov’s Theorem

Let us first recall the statement of Egorov’s theorem :

Theorem A.1 Let (X,µ) be some measure space with finite positive measure.
Consider a sequence (gn) such that gn → g almost everywhere. Then, for each
ε > 0, there exists a measurable E ⊂ X such that

µ(X \ E) < ε and gn → g uniformly on E.

A.1 The Product Limit Theorem

We now give a corollary of Egorov’s theorem, established by DiPerna and
Lions [44], which is used repeatedly for the study of the Boltzmann equation
and its hydrodynamic limits.

Proposition A.2 Let (X,µ) be some measure space with finite positive mea-
sure. Consider two sequences of real-valued measurable functions defined on
X, denoted (fn) and (gn). If (gn) is bounded in L∞(X) such that gn → g
almost everywhere, and fn ⇀ f weakly in L1(X) then fngn ⇀ fg weakly in
L1(X).

Proof. Without loss of generality, we can assume that g = 0.
Let δ be any fixed nonnegative constant. The sequence (fn), being rela-

tively weakly compact in L1(X), is equiintegrable. Thus, by picking α > 0
sufficiently small, one has for every measurable set A such that µ(A) < α,∫

A

|fn − f |(x)dµ(x) < δ uniformly in n. (A.1)

Fix such a constant α. By Egorov’s theorem, as (gn) is bounded in L∞(X),
and gn → 0 almost everywhere, there exists a measurable set A such that
µ(A) < α and

169
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gn → 0 as n→∞ uniformly on X \A. (A.2)

Fix such a set A. Then,∫
|(fn − f)gn|dµ =

∫
A

|(fn − f)gn|dµ+
∫
X\A
|(fn − f)gn|dµ

By (A.1) the first term in the right-hand side satisfies∫
A

|(fn − f)gn|dµ ≤ ‖g‖L∞(X)

∫
A

|fn − f |dµ ≤ ‖g‖L∞(X)δ,

whereas by (A.2) the second term converges to 0 as n→∞ :∫
X\A
|(fn − f)gn|dµ ≤

(
sup
n
‖fn − f‖L1(X)

)
‖gn‖L∞(X\A) → 0.

Finally

lim
n→∞

∫
|(fn − f)gn|dµ ≤ ‖g‖L∞(X)δ,

but δ was arbitrary, whence Proposition A.2 holds. ut

A.2 An Asymptotic Result of Variables Separating

For the study of boundary conditions, we also need the following variant of
the Product Limit theorem, which has been proved in [82] :

Proposition A.3 Let (X,µX) and (Y, µY ) be two measure spaces of finite
measures. Consider a family of nonnegative functions (χε) uniformly bounded
in L∞(X × Y ) converging almost everywhere to 1 on X × Y , and a family
(ρε) of nonnegative functions of L1(X) such that

(χερε) is relatively weakly compact in L1(X × Y )

Then any limit point ρ of (χερε) belongs to L1(X), namely does not depend
on y ∈ Y .

Before giving the proof, let us notice that if (ρε) were supposed to be
relatively weakly compact in L1(X × Y ) then the conclusion of the lemma
would be straightforward.

Proof. Consider a subsequence of (χερε) (still denoted (χερε)) converging to
ρ as ε→ 0. Let δ be any fixed nonnegative constant. As χε converges almost
everywhere to 1, there exist A ⊂ X × Y with |X × Y \ A| ≤ δ, and ε0 > 0
such that

∀ε ≤ ε0, χε|A ≥
1
2
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By the Product Limit theorem, as
(

1A
χε

)
ε≤ε0

is bounded in L∞(X × Y )

and converges a.e. to 1A,

ρε1A = ρεχε
1A
χε

⇀ ρ1A weakly in L1(X × Y ).

Define

AX =
{
x ∈ X /

∫
1A(x, y)dµY (y) ≥ µY (Y )

2

}
.

From Bienaymé Tchebichev’s inequality

1AX (x)ρε(x) ≤ 1AX (x)ρε(x)
2
∫

1A(x, y)dµY (y)
µY (Y )

=
21AX
µY (Y )

∫
ρε(x)1A(x, y)dµY (y)

(A.3)

we deduce that (1AXρε) is weakly compact in L1(X). Then, up to extraction
of a subsequence,

1AXρε ⇀ ρ̃ weakly in L1(X)
By the Product Limit theorem, as (χε) is bounded in L∞(X × Y ) and con-
verges a.e. to 1,

1AXρεχε ⇀ ρ̃ weakly in L1(X × Y )
from which we deduce that

ρ1AX = ρ̃ ∈ L1(X) (A.4)

On the other hand, if x 6∈ AX ,∫
1X×Y \A(x, y)dµY (y) =

∫
(1− 1A)(x, y)dµY (y) ≥ µY (Y )

2
Then,∫

1X\AX (x)dµX(x) ≤
∫

1X\AX (x)
2
∫

1X×Y \A(x, y)dµY (y)
µY (Y )

dµX(x)

≤ 2
µY (Y )

δ
(A.5)

As there exists AX satisfying (A.4) and (A.5) for all δ > 0, ρ depends only
on the variable x, and thus ρ ∈ L1(X). ut

B Classical Trace Results on the Solutions
of Transport Equations

In order to deal with kinetic equations involving reflection conditions at the
boundary, we need the following fundamental result due to Cessenat [32] fol-
lowing Bardos [3] and Ukai [104], which allows to define the trace of any weak
solution to the free-transport equation in a very general setting.
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B.1 Definition of the Trace

Proposition B.1 For any smooth subset Ω of R3, denote by W p(Ω) the
functional space

{f ∈ Lp(R×Ω ×R3) / (St∂t + v · ∇x)f ∈ Lp(R×Ω ×R3)}.

Then the trace operator

γ : f ∈W p(Ω) 7→ f|∂Ω ∈ Lp(R×∂Ω ×R3, dtdσx|v · n(x)|2(1 + |v|)−1dv)

is continuous.

Proof. Without loss of generality, we can restrict our attention to nonnegative
functions.

By Green’s formula, we have for any bounded function ϕ ∈ C1(Ω̄ ×R3),

p

∫∫∫
ϕ(x, v)fp−1(St∂t + v · ∇x)f(t, x, v)dtdxdv

+
∫∫∫

(v · ∇x)ϕ(x, v)fp(t, x, v)dtdxdv

=
∫∫∫

ϕ(x, v)fp(t, x, v)(v · n(x))dtdσxdv

(B.6)

As Ω is assumed to be smooth, there exists some vector field n ∈ W 1,∞(Ω̄)
which coincides with the outward unit normal at the boundary. Thus, choosing

ϕ(x, v) =
(v · n(x))

(1 + |v|2)1/2

we get ∥∥f|∂Ω∥∥Lp(dtdσx|v·n(x)|2(1+|v|)−1dv)
≤ C

(
‖f‖Lp(dtdxdv) + ‖(St + v · ∇x)f‖Lp(dtdxdv)

)
,

(B.7)

which concludes the proof. ut

B.2 Free Transport with Reflection at the Boundary

In order to extend regularity and dispersion results to free transport with
reflection at the boundary, we have then to establish a priori estimates on the
incoming flux (which is defined in terms of the outgoing flux).

Proposition B.2 Let Ω be any smooth subset of R3, and f ∈ L1(R×Ω×R3)
be a solution to the free-transport equation

St∂tf + v · ∇xf = S

supplemented with Maxwell’s boundary condition
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f|Σ− = (1− α)Lf|Σ+ + αKf|Σ+ on Σ−

where the outgoing/incoming sets Σ+ and Σ− at the boundary ∂Ω are defined
by

Σ± = {(x, v) ∈ ∂Ω ×R3, ±n(x) · v > 0},

the local reflection operator L is given by

Lf(x, v) = f(x, v − 2(v · n(x))n(x)),

and the diffuse reflection operator K is given by

Kf(x, v) = Mw(v)
∫
v′.n(x)>0

f(x, v′) (v′ · n(x))dv′

for some normalized Maxwellian distribution Mw characterizing the state of
the wall.

Then, there exists some nonnegative constant C (depending on the Lips-
chitz norm of n) such that∫∫∫

f|Σ |v · n(x)|dvdxdt ≤ C

α
(‖f‖L1(R×Ω×R3) + ‖S‖L1(R×Ω×R3)).

Proof. The smoothness assumption made on the boundary implies the exis-
tence of a vector field n which belongs to W 1,∞(Ω̄) and coincides with the
outward unit normal vector at the boundary. Therefore, multiplying the trans-
port equation by (n(x)·v)/(1+|v|) and integrating with respect to all variables,
we get ∫∫∫

v · n(x)
1 + |v|

(v · ∇x)fdvdxdt =
∫∫∫

v · n(x)
1 + |v|

Sdvdxdt

Then, using Green’s formula, we get∫∫∫
f|Σ

(v · n(x))2

1 + |v|
dvdσxdt ≤ C(‖f‖L1(R×Ω×R3) + ‖S‖L1(R×Ω×R3)).

In particular

α

∫∫∫
v·n<0

Kf|Σ+

(v · n(x))2

1 + |v|
dvdσxdt≤C(‖f‖L1(R×Ω×R3)+‖S‖L1(R×Ω×R3)).

By definition of K, we have the spreading condition∫
v·n(x)>0

f|Σ+(v · n(x))dv ≤ κ0

∫
v·n(x)<0

Kf|Σ+

(v · n(x))2

1 + |v|
dv.

We then deduce that∫∫∫
v·n(x)>0

f|Σ+(v · n(x))dvdσxdt ≤
Cκ0

α
(‖f‖L1(R×Ω×R3) + ‖S‖L1(R×Ω×R3)).
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On the other hand, the normalization condition on Mw implies

−
∫
v·n(x)<0

f|Σ(v · n(x))dv =
∫
v·n(x)>0

f|Σ(v · n(x))dv.

We therefore have∫∫∫
f|Σ |v · n(x)|dvdσxdt ≤

2Cκ0

α
(‖f‖L1(R×Ω×R3) + ‖S‖L1(R×Ω×R3)).

which is the expected inequality. ut

Remark B.3 Note that, in the case of a purely specular reflection, we do not
obtain such a bound on the trace. Nevertheless, because the specular reflection
is completely transparent in the weak formulation of the transport equation (by
obvious symmetry properties), the study is actually much easier (very similar
to the case when there is no boundary). We refer to the work [63] by Hamdache
for a careful treatment of that case.

C Some Consequences of Chacon’s Biting Lemma

Let us first recall the statement of Chacon’s Biting Lemma [21]:

Theorem C.1 Let (X,µ) be some measure space with finite positive measure.
Consider a sequence (gn) bounded in L1(X). Then, there exists a subsequence
(g′n) of (gn) and some function g ∈ L1(X) such that g′n → g in the sense of
Chacon, meaning that for each ε > 0, there exists a measurable E ⊂ X such
that µ(X \ E) ≤ ε and

g′n → g in L1(E).

C.1 From Renormalized Convergence to Chacon’s Convergence

We now give an extension of Chacon’s Biting Lemma to the space of mea-
surable and almost everywhere finite functions, established by Mischler [85]
to study the traces of kinetic equations in the framework of renormalized
solutions.

This requires the following definition of renormalized convergence (see [85]
and the references therein for basic results concerning renormalized conver-
gence) :

Definition C.2 A sequence (gn) of measurable and almost everywhere finite
functions is said to converge in renormalized sense to some measurable and
almost everywhere finite function g, if for any increasing sequence ΓM ∈ C ∩
L∞(R+) converging simply to Id|R+ as M → ∞, and any subsequence (g′n)
of (gn), there exists a sequence γM and a subsequence (g′′n) of (g′n) such that

ΓM (g′′n) ⇀ γM weakly-* in L∞(X) and γM → g a.e. in X.
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We have then the following relation between renormalized convergence and
convergence in the sense of Chacon (see [85]) :

Proposition C.3 Let (X,µ) be some measure space with finite positive mea-
sure. Consider a sequence (gn) of measurable and almost everywhere finite
functions, such that

gn → g in renormalized sense,

where g is some measurable and almost everywhere finite function. Then,

lim
M→+∞

sup
n
µ({gn ≥M}) = 0,

and there exists a subsequence (g′n) of (gn) such that g′n → g in the sense of
Chacon.

Proof. Without loss of generality, we can restrict our attention to nonnegative
functions.

• We first prove the L0 bound, arguing by contradiction. Since g is a
measurable and almost everywhere finite function, for any arbitrary ε > 0,
there exists E ⊂ X such that µ(X \ E) < ε and g ∈ L1(E).

If there is no m such that

sup
n
µ({gn ≥ m}) < ε

there exists an increasing sequence (nm) such that

∀m ∈ N, µ({gnm ≥ m}) ≥ ε.

Therefore, for any l ∈ N and any m ≥ l,∫
E

Γl(gnm)dµ ≥ lε,

where Γl is some smooth version of the truncation x 7→ min(x, l). Passing to
the limit m→∞ leads to ∫

E

gdµ ≥
∫
E

γldµ ≥ εl,

by definition of the renormalized convergence. Thus∫
E

gdµ ≥ lim
l→∞

εl,

which gives the expected contradiction.

• We have then to prove the convergence in the sense of Chacon. Given
ε > 0, one can choose E ⊂ X such that µ(X \ E) < ε and g ∈ L1(E).
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We construct a first subsequence (nl) such that∫
E

Γl(gnl)dµ ≤
∫
E

gdµ+
1
l
.

Then, for any m ≤ l, Γm(gnl) ≤ Γl(gnl) so that

g = lim sup
m→∞

γm ≤ lim sup
m→∞

lim inf
l→∞

Γl(gnl),

where the lim inf is taken in the sense of Chacon. By Fatou’s lemma and the
definition of the renormalized convergence, we also have

∀A ⊂ X,
∫
A

lim sup
l→∞

Γl(gnl)dµ ≤ lim sup
l→∞

∫
A

Γl(gnl)dµ ≤
∫
A

gdµ.

Combining all these results show that

Γl(gnl)→ g in the sense of Chacon on E.

In other words, there exists E′ such that µ(E \ E′) < ε and

Γl(gnl) ⇀ g weakly in L1(E′).

Furthermore, since (gn) is bounded in L0, one can choose a second subse-
quence (still denoted (gnl)) such that the sets ZL defined by

ZL = {∃l ≥ L/ gnl 6= Γl(gnl)}

satisfy
µ(ZL) ≤

∑
l≥L

µ({gnl > l})→ 0 as L→∞.

Finally, choosing L large enough such that µ(ZL) < ε, and setting E′′ =
E′ \ ZL, we obtain

µ(X \ E′′) < 3ε and gnl ⇀ g weakly in L1(E′′).

We conclude thanks to a diagonal process. ut

C.2 A Result of Partial Equiintegrability

In order to characterize the limiting incoming flux in Maxwell’s boundary
condition, we also need the following variant of the previous result, also es-
tablished in [85].

Proposition C.4 Let (X,µX) be some measure space with finite positive
measure, and (µY (x))x∈X a family of probability measures on the space Y ,
and denote 〈g〉Y =

∫
gdµY .
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Let h ∈ C(R+,R+) be some convex function of class C2(R+
∗ ) with su-

perlinear growth at infinity, and such that H(s, t) ≡ (h(t) − h(s))(t − s) is
convex.

Consider a sequence (gn) of measurable nonnegative and almost everywhere
finite functions on X × Y , such that∫ (

〈h(gn)〉Y − h (〈gn〉Y )
)
dµX ≤ C,

〈gn〉Y → ḡ in renormalized sense on X
(C.8)

Then there exists g ∈ L1(X ×Y, dµX(x)dµY (x, y)) and a subsequence (g′n)
of (gn) such that, for every ε > 0, one can find some E ⊂ X with

µX(X \ E) < ε and g′n ⇀ g weakly in L1(E × Y ).

In particular, ḡ(x) = 〈g〉Y almost everywhere.
Furthermore ∫ (

〈h(g)〉Y − h (〈g〉Y )
)
dµX ≤ C.

Proof. The point to be understood here is how the (convex) functional which
generalizes the Darrozès-Guiraud information allows to gain some equiinte-
grability with respect to y, and thus to establish the convergence of some
integral quantities.

• By Proposition C.3, we deduce from the renormalized convergence in
(C.8) that, up to extraction of a subsequence,

〈gn〉Y → ḡ in the sense of Chacon.

In particular, for any ε > 0, there exists A ⊂ X such that

µX(X \A) < ε and 〈gn〉Y → ḡ weakly in L1(A).

Thanks to Dunford-Pettis’ lemma, there is therefore a (nonnegative increas-
ing) convex function Φ with superlinear growth at infinity such that Φ(0) = 0,
Φ′(0) > 0 and ∫

A

Φ(〈gn〉Y )dµX ≤ C1.

We are then able to build some (nonnegative increasing) convex function
Ψ with superlinear growth at infinity such that Ψ(0) = 0, Ψ ′(0) > 0 and

Ψ ≤ Φ,
h− Ψ is convex.

Jensen’s inequality, written for the function h−Ψ , combined with the uniform
bound in (C.8), gives therefore
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〈Ψ(gn)〉Y − Ψ (〈gn〉Y )

)
dµX ≤ C,

and thus ∫∫
A×Y

Ψ(gn)dµY dµX ≤ C + C1.

By Dunford-Pettis’ lemma, we obtain that (gn) belongs to a weak compact
subset of L1(A× Y ).

We conclude, by a diagonal process, that there is a function g in L1(X ×
Y ) and a subsequence of (gn) which converges to g in the sense stated in
Proposition C.4. In particular, for any ε > 0, there exists A ⊂ X such that

µX(X \A) < ε and 〈gn〉Y → 〈g〉Y in L1(A).

Identifying the limit leads to ḡ = 〈g〉Y for almost every x ∈ X.

• It remains then to take limits in the uniform bound in (C.8).
We start by proving that, for all x ∈ X,

E : g ∈ L1(Y ) 7→ E(g) =
〈
h(g)

〉
Y

− h
(
〈g(y)〉Y

)
is a convex functional. We proceed indeed by approximation replacing h by
hε : z 7→ h(z + ε)− h(ε). As hε ∈ C2(R+),

DEε(g1) · g2 =
〈
h′ε(g1).g2

〉
Y

− h′ε
(
〈g1〉Y

)
〈g2〉Y .

Therefore, by Jensen’s inequality, we have for g1, g2 ∈ L∞(Y )(
DEε(g1)−DEε(g2)

)
· (g1 − g2)

=
〈
H(g1, g2)

〉
Y

−H
(
〈g1〉Y , 〈g2〉Y

)
≥ 0,

so that DEε is monotone and Eε is convex on L∞(Y ). Passing to the limit
ε→ 0, we then obtain that E is convex on L∞(Y ) :

∀t ∈ [0, 1], E(tg1 + (1− t)g2)) ≤ tE(g1) + (1− t)E(g2).

Now let g1, g2 ∈ L1(Y ). If h(g1) or h(g2) does not belong to L1(Y ) the convex
inequality obviously holds. In the other case, we choose two sequences (g1ε)
and (g2ε) of L∞(Y ) such that g1ε ↗ g1 and g2ε ↗ g2 almost everywhere, and
passing to the limit ε→ 0 in the convex inequality written for g1ε and g2ε, we
get by Lebesgue’s theorem and Fatou’s lemma that

∀t ∈ [0, 1], E(tg1 + (1− t)g2)) ≤ tE(g1) + (1− t)E(g2).
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Now, if g1, g2 ∈ L1(X × Y ), then g1(x, .), g2(x, .) ∈ L1(Y ) for almost all
x ∈ X and, integrating the previous convex inequality, we obtain that the
functional

g ∈ L1(X × Y ) 7→
∫
E(g)dµX

is convex. Furthermore, by Fatou’s Lemma, this functional is lower semi-
continuous.

From the convergence stated in Proposition C.4 and established previously,
we then deduce that ∫ (

〈h(g)〉Y − h (〈g〉Y )
)
dµX ≤ C,

which concludes the proof. ut
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71. L. Lichtenstein: Über einige Existenz Problem der hydrodynamik homogener un-

zusammendrückbarer, reibunglosser Flüssikeiten und die Helmholtzschen Wirbel-
salitze, Mat. Zeit. Phys. 23 (1925), 89154; 26 (1927), 193323; 32 (1930), 608.

72. P.-L. Lions, Compactness in Boltzmann’s equation via Fourier integral operators
and applications J. Math. Kyoto Univ. 34 (1994), 391–427, 429–461, 539–584.

73. P.-L. Lions, Conditions at infinity for Boltzmann’s equation, Comm. Partial Dif-
ferential Equations 19 (1994), 335–367.

74. P.-L. Lions: “Mathematical Topics in Fluid Mechanics, Vol. 1: Incompressible
Models”, The Clarendon Press, Oxford University Press, New York, 1996.

75. P.-L. Lions, N. Masmoudi: From Boltzmann Equation to the Navier-Stokes and
Euler Equations I, Archive Rat. Mech. & Anal. 158 (2001), 173–193.

76. P.-L. Lions, N. Masmoudi: From Boltzmann Equation to the Navier-Stokes and
Euler Equations II, Archive Rat. Mech. & Anal. 158 (2001), 195–211.

77. P.-L. Lions, N. Masmoudi: Une approche locale de la limite incompressible, C. R.
Acad. Sci. Paris Sr. I Math. 329 (1999), 387–392.

78. T. P. Liu. Solutions in the large for the equations of nonisentropic gas dynamics,
Indiana Univ. Math. J. 26 (1977), 147–177.

79. T.-P. Liu, S.-H. Yu: Boltzmann equation: micro-macro decompositions and posi-
tivity of shock profiles, Comm. Math. Phys. 246 (2004), 133–179.

80. T.-P. Liu, T. Yang, S.-H. Yu: Energy method for Boltzmann equation, Phys. D
188 (2004), 178–192.

81. E. Mach. Die Mechanik in ihrer Entwickelung. Leipzig, zweite Auflage, 1889.
82. N. Masmoudi, L. Saint-Raymond. From the Boltzmann equation to the Stokes-

Fourier system in a bounded domain, Comm. Pure Appl. Math., 56 (2003), 1263–
1293.

83. G. Métivier, K. Zumbrun. Existence of semilinear relaxation shocks. Preprint
2008.



References 185

84. S. Mischler. On the initial boundary value problem for the Vlasov-Poisson-
Boltzmann system, Comm. Math. Phys. 210 (2000), 447–466.

85. S. Mischler. Kinetic equations with Maxwell boundary condition, Preprint (2002).
86. C. B. Morrey. On the derivation of the equations of hydrodynamics from Statistical

Mechanics, Commun. Pure Appl. Math., 8 (1955), 279–290.
87. C. Mouhot. Rate of convergence to equilibrium for the spatially homogeneous

Boltzmann equation with hard potentials, Comm. Math. Phys. 261 (2006),
629–672.

88. T. Nishida. Fluid dynamical limit of the nonlinear Boltzmann equation to the level
of the compressible Euler equation. Comm. Math. Phys. 61 (1978), 119–148.

89. S. Olla, S. Varadhan, H. Yau, Hydrodynamical limit for a Hamiltonian system
with weak noise, Commun. Math. Phys. 155 (1993), 523–560.

90. B. Perthame: Introduction to the collision models in Boltzmann’s theory, in “Mod-
eling of Collisions”, P.-A. Raviart ed., Masson, Paris, 1997.

91. J. Quastel and H.-T. Yau, Lattice gases, large deviations, and the incompressible
Navier-Stokes equations, Ann. of Math. 148 (1998), 51–108.

92. L. Saint-Raymond: From the BGK model to the Navier-Stokes equations, Ann.
Sci. Ecole Norm. Sup. (4) 36 (2003), 271–317.
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107. P. Volkmann. Einführung in das Studium der theoretischen Physik. Leipzig, 1900.



186 References

108. H. T. Yau. Relative entropy and hydrodynamics of Ginzburg-Landau models, Lett.
Math. Phys. 22 (1991), 63–80.

109. H. T. Yau. Scaling limit of particle systems, incompressible Navier-Stokes equa-
tion and Boltzmann equation. Proceedings of the International Congress of
Mathematicians, Doc. Math. 3 (1998), 193–202.

110. V. Yudovitch. Non stationnary flows of an ideal incompressible fluid, Zh. Vych.
Math. 3 (1963), 1032–1066.



Index

a priori estimates, 47
accommodation coefficient, 29
acoustic waves, 27, 104
adiabaticity, 27
asymptotic expansion

Chapman-Enskog’s expansion, 26
Hilbert’s expansion, 26

asymptotic expansions
Chapman-Enskog’s expansion, 8
Hilbert’s expansion, 8
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by other people. They may be based on specialised lecture courses. Furthermore, the
manuscripts should provide sufficient motivation, examples and applications. This clearly
distinguishes Lecture Notes from journal articles or technical reports which normally are
very concise. Articles intended for a journal but too long to be accepted by most journals,
usually do not have this “lecture notes” character. For similar reasons it is unusual for
doctoral theses to be accepted for the Lecture Notes series, though habilitation theses may
be appropriate.

2. Manuscripts should be submitted either online at www.editorialmanager.com/lnm to
Springer’s mathematics editorial in Heidelberg, or to one of the series editors. In general,
manuscripts will be sent out to 2 external referees for evaluation. If a decision cannot yet
be reached on the basis of the first 2 reports, further referees may be contacted: The author
will be informed of this. A final decision to publish can be made only on the basis of the
complete manuscript, however a refereeing process leading to a preliminary decision can
be based on a pre-final or incomplete manuscript. The strict minimum amount of material
that will be considered should include a detailed outline describing the planned contents
of each chapter, a bibliography and several sample chapters.

Authors should be aware that incomplete or insufficiently close to final manuscripts
almost always result in longer refereeing times and nevertheless unclear referees’ recom-
mendations, making further refereeing of a final draft necessary.

Authors should also be aware that parallel submission of their manuscript to another
publisher while under consideration for LNM will in general lead to immediate rejection.

3. Manuscripts should in general be submitted in English. Final manuscripts should contain
at least 100 pages of mathematical text and should always include

– a table of contents;
– an informative introduction, with adequate motivation and perhaps some historical re-

marks: it should be accessible to a reader not intimately familiar with the topic treated;
– a subject index: as a rule this is genuinely helpful for the reader.

For evaluation purposes, manuscripts may be submitted in print or electronic form (print
form is still preferred by most referees), in the latter case preferably as pdf- or zipped
ps-files. Lecture Notes volumes are, as a rule, printed digitally from the authors’ files.
To ensure best results, authors are asked to use the LaTeX2e style files available from
Springer’s web-server at:

ftp://ftp.springer.de/pub/tex/latex/svmonot1/ (for monographs) and
ftp://ftp.springer.de/pub/tex/latex/svmultt1/ (for summer schools/tutorials).



Additional technical instructions, if necessary, are available on request from:
lnm@springer.com.

4. Careful preparation of the manuscripts will help keep production time short besides en-
suring satisfactory appearance of the finished book in print and online. After acceptance
of the manuscript authors will be asked to prepare the final LaTeX source files and also
the corresponding dvi-, pdf- or zipped ps-file. The LaTeX source files are essential for
producing the full-text online version of the book (see
http://www.springerlink.com/openurl.asp?genre=journal&issn=0075-8434 for the exist-
ing online volumes of LNM).

The actual production of a Lecture Notes volume takes approximately 12 weeks.

5. Authors receive a total of 50 free copies of their volume, but no royalties. They are entitled
to a discount of 33.3% on the price of Springer books purchased for their personal use, if
ordering directly from Springer.

6. Commitment to publish is made by letter of intent rather than by signing a formal contract.
Springer-Verlag secures the copyright for each volume. Authors are free to reuse material
contained in their LNM volumes in later publications: a brief written (or e-mail) request
for formal permission is sufficient.
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