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Abstract — In this paper, we present a series of algorithms 
for dealing with artifacts in electroencephalograms (EEG), 
electrooculograms (EOG) and electromyograms (EMG). The 
aim is to apply artifact correction whenever possible in order 
to lose a minimum of data, and to identify the remaining arti-
facts so as not take them into account during the sleep stage 
classification. Nine procedures were implemented to minimize 
cardiac interference and slow ondulations, and to detect mus-
cle artifacts, failing electrode, 50/60Hz main interference, 
saturations, highlights abrupt transitions, EOG interferences 
and artifacts in EOG. Detection methods were developed in the 
time domain as well as in the frequency domain, using adjust-
able parameters. A database of 20 excerpts of polysomno-
graphic sleep recordings scored in artifacts by an expert was 
available for developing (excerpts 1 to 10) and testing (excerpts 
11 to 20) the automatic artifact detection algorithms. We ob-
tained a global agreement rate of 96.06%, with sensitivity and 
specificity of 83.67% and 96.47% respectively. 
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I. INTRODUCTION  

While trying to automatically classify sleep stages, one is 
generally faced with the problem of artifacts. Indeed, arti-
facts contained in the analyzed polysomnographic signals 
introduce spurious components during features extraction, 
which lead to incorrect interpretation of the results [1]. 
Dealing with artifacts is therefore mandatory before any 
other classification operation.  

In the literature, three main approaches have been pro-
posed to detect and correct them. The first approach is 
based on autoregressive modeling [2, 3, 4] and is used for 
two purposes: (i) estimating the recorded EEG and identi-
fies transient events like muscle or movement artifacts by 
locating the abrupt variations of the parameters; (ii) remov-
ing artifact from the EEG by estimating the parameters of 
the mathematical model that describe the recorded EEG as 
an overlap of the real EEG and the artifact interference. 

The second approach uses standard voltage thresholds 
(overflow check) [4-5]. While these thresholds can some-
times be fixed (e.g 50μV), it is univocally accepted that 
using values related to the energy distribution of the signal 

in the frequency or time domain is preferable since voltage 
levels can strongly vary between subjects and recordings. 

Finally, some authors investigated the use of independent 
component analysis (ICA) to remove the artifacts [6-7]. 
Unfortunately, their methods often required many EEG 
channels and implied to visually select the origin of the 
interference among estimated sources. 

In the present study, we introduce algorithms for process-
ing artifacts on EEG, EOG and EMG which are suitable for 
automatic sleep stages classification. The strategy is to 
imitate human behavior by locating the short duration arti-
facts so as to ignore them during the feature extraction stage 
of sleep stage classification.  

However, cardiac interferences and slow undulations (e.g 
caused by breath interferences or by sweat) could not be 
processed using this strategy because these artifacts can last 
several hours. This is why we also developed two artifact 
correction algorithms in order to minimize the loss of data. 

Nine procedures were finally implemented to remove 
cardiac interference and slow ondulations, and to detect 
muscle artifacts, failing electrode, 50/60Hz main interfer-
ence, saturations, highlights abrupt transitions, EOG inter-
ferences and artifacts in EOG. 

The performances of the algorithms were evaluated on a 
database of 20 polysomnographic sleep recordings scored in 
artifacts by an expert. 

II. MATERIALS AND METHODS 

A. Data 

Data used in this study were recorded at the Sleep Labo-
ratory of the André Vésale hospital (Montigny-le-Tilleul, 
Belgium). They are composed of 20 excerpts of 15 minutes-
long polysomnographic (PSG) sleep recordings carried out 
during the night. The recordings were taken from 20 pa-
tients (15 males and 5 females aged between 31 and 73) 
with different pathologies (dysomnia, restless legs syn-
drome, insomnia, apnoea/hypopnoea syndrome).  The sam-
pling rates were 50, 100 and 200Hz. The 20 excerpts were 
visually examined by an expert to identify the various arti-
facts. Then they were separated into two groups for devel-
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oping (excerpts 1 to 10) and testing (excerpts 11 to 20) the 
automatic artifact detection algorithms. 

B. Artifacts detection/correction processes 

Two procedures were developed to minimize cardiac in-
terference and slow ondulations (P1-P2) and seven other 
procedures were implemented to indentify the remaining 
short artifacts (P3-P9). These detection algorithms operate 
on fixed length epochs (1.25 second by default). They are 
mainly binary: if any of the parameters exceeds the corre-
sponding threshold, the epoch is marked as an artifact. As 
the signal energy distribution in the frequency or time do-
main varies strongly between subjects, we have chosen 
thresholds relative to the statistical properties of the consid-
ered signal. For example:  

   ( ) * ( )threshold mean EEG k std EEG� �  

where k is a factor of proportionality and std is the standard 
deviation. 

The various procedures are the following (for more de-
tails, see http://tcts.fpms.ac.be/publications/techreports/DEA_sd.pdf): 

P1. Cardiac interference detection and correction on 
EEG (Atf_cardE) and on EOG (Atf_cardO). The basis of 
the method for removing cardiac interference was presented 
in [8]. It is based on a modification of the independent com-
ponent analysis algorithm which gives promising results 
while only using a single-channel EEG (or EOG) and the 
ECG. 

P2. Slow ondulations detection and correction on EEG 
(Atf_ondE) and on EOG (Atf_ondO). Slow ondulation arti-
facts are generally due to breathing or sweating. Their fre-
quencies are lower than those of the slowest waves of the 
sleep (rhythm delta). Therefore, their extraction can be 
realized by a simple filtering, with cut-off frequency ad-
justed to the smallest frequency of the delta band. 

P3. Saturations detection on EEG (Atf_satE), on EOG 
(Atf_satO) and on EMG (Atf_satM). The basic idea of this 
procedure is to locate epochs where the EEG signal remains 
at its maximal value of saturation during a sufficient time. 

P4. Unusual increase of EEG detection (Atf_highE). 
These artifacts can for example be caused by EOG interfer-
ences. If the amplitude of the EEG signal exceeds a first 
threshold for any of the epochs, the onset and the offset of 
the artifact are researched. These are defined as the instant 
after which the amplitude of the EEG becomes lower than a 
second threshold (lower than the first threshold). Then the 
corresponding epochs are marked as artifact epochs.  

P5. Failing electrode detection on EEG (Atf_noE) and on 
EOG (Atf_noO).This procedure locates the relatively con-
stant amplitude (near to zero) of the signals EEG or EOG. 

Such artifacts are sometimes obtained at the end of the 
nights when the electrodes are disconnected. 

P6. Highlights abrupt transitions detection on EEG 
(Atf_transE). Highlights abrupt transitions such as spikes 
are identified by locating slopes above some threshold. Let 

 

Fig. 1 Examples of muscle or movement artifacts 

us note that epileptic spikes are not actually artifacts (since 
they have no artificial origin), but they can nonetheless 
obstruct the sleep stage classification. This is why we iden-
tified them as the artifacts. 

P7. 50/60Hz mains interferences detection on EEG 
(Atf_50E). This interference network can easily be detected 
given the evident peak which takes place around 50Hz (or 
60Hz) on the Fourier transform. 

P8. Muscle or movement artifacts detection on EEG 
(Atf_mvtE). This algorithm detects temporary increase of 
muscular tone accompanied by disturbances on the EEG. 
These disturbances are of two types: they can be either a 
voltage increase as illustrated on Fig 1a. , or a change of 
rhythm of the EEG activity such as illustrated on Fig 1b. 

P9. Detection of artifacts in EOG constituted of in-phase 
movements (Atf_phaseO). As the ocular movements are 
binocular and synchronous, the EOG recordings should 
appear in opposition of phase while placing electrodes on 
the lateral canthi and by using the same reference on the 
mastoid. The ocular artifacts are therefore easily identifiable 
since they correspond to in-phase movements of the EOG. 
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III. RESULTS 

A. Content of the artifact database 

 On the basis of the artifact scoring carried out by the 
expert, we first examined the content of the database in 
terms of short duration artifacts (Table 1). 

Table 1 content of the artifact database based on the visual artifact scoring 

Code Type Number of 
seconds % 

P3-a Saturations of EEG (Atf_satE) 0 0 
P3-b Saturations of EOG (Atf_satO) 0 0 
P3-c Saturations of EMG (Atf_satM) 0 0 
P4 Unusual increases of EEG (Atf_highE) 639,180 3,551 
P5-a Failing electrode on EEG (Atf_noE) 118,610 0,659 
P5-b Failing electrode on EOG (Atf_noO) 118,520 0,658 

P6 Highlights abrupt transitions of EEG 
(Atf_transE) 46,790 0,260 

P7 50/60Hz on EEG (Atf_50E) 23,980 0,133 

P8 Muscle or movement artifacts on EEG 
(Atf_mvtE) 494,600 2,748 

P9 artifacts in EOG (Atf_phaseO) 566,270 3,146 
O-a Other artifacts on EEG 129,73 0,72 
O-b Other artifacts on EOG 6,190 0,034 
 All short artifacts on EEG 1014,930 5,639 
 All short artifacts on EOG 690,980 3,839 
 All short artifacts on EMG 0,000 0,000 

The difference between the total duration of all short arti-
facts on EEG and the sum of durations of each type of arti-
fact on this signal (P3-a+P4+P5a+P6+P7+P8) is due to the 
presence of multiple artifacts in some epochs. 

As it can be seen, 5.64% of the total EEG recorded time 
contains artifacts. Among those, most frequent artifacts are 
"unusual increase of EEG" followed by "artifacts in EOG" 
and then "Muscle or movement artifacts". 

No "saturation" artifact was found in the database. We 
therefore used other polysomnographic signals to tune the 
parameters of this procedure. These signals were not scored 
by the expert but simply examined visually by the authors. 

B. Results of the minimization procedures 

The ECG artifact removal procedure was previously 
tested on 10 excerpts of polysomnographic sleep recordings 
containing ECG artifacts and other typical artifacts [8]. It 
was shown that it is robust to various waveforms of cardiac 
interference and to the presence of other artifacts. Two 
hundred successive interference peaks of each of these ex-

cerpts were visually examined to compute the number of 
corrected peaks. We found a correction rate of 91.1%. 

The removal of slow ondulations artifacts was only 
checked visually by the expert. It seems that the artifact can 
be well corrected without distorting the EEG, as it can be 
seen in Fig 2.  

 

Fig. 2  Removal of slow ondulations artifacts on EEG 

C. Results of the detection procedures 

Concerning the short duration artifacts, the concordance 
between the expert scoring and the automatic detection 
procedures with the default thresholds, was examined as 
follows: 1) a true positive (TP) was counted when an arti-
fact was automatically detected in an epoch also marked as 
an artifact by the expert, 2) a false positive (FP) when an 
artifact was automatically detected in an epoch classed as 
non-artifact by the expert, 3) a true negative (TN) when no 
artifact was detected neither automatically nor visually by 
the expert, 4) a false negative (FN) when no artifact was 
automatically detected in an epoch marked as artifact by the 
expert.  

Then we computed the agreement rate= (TP+TN)/ 
(TP+TN+FP+FN), the sensitivity=TP/(TP+FN) and the 
specificity=TN/(TN+FP). 

The results obtained for each detection procedure on the 
central EEG are exposed in Fig 3, as well as the global 
results of the detection of any artifacts on this EEG. The 
results corresponding to the EOGs and the EMG are shown 
on Fig 4. If an artifact is not present (according to the ex-
pert) in the training database, the sensitivity figure has no 
sense. That is why we indicated it by an asterisk (*). 

As it can be seen, the procedures corresponding to the 
more frequent artifacts (i.e. unusual increase of EEG, arti-
facts in phase on EOG and Muscle artifacts) are unfortu-
nately those which have the lowest sensitivities. However, 
as a whole, the results show an acceptable agreement be-
tween our package of software and the human scoring with 
agreement rates of 92.18%, 95.98% and 100% respectively 
on the EEG, EOG and EMG. Without making distinction 
between the various signals, these results correspond to a 
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global agreement rate of 96.06%, a global sensitivity of 
83.67% and a global specificity of 96.47%. 

Finally, by varying the length of the analysis epoch from 
1.25s to 1s, we observed that it introduced only little 
changes in the expert/software concordance (agreement 
rate = 96.46%, sensitivity = 82.33% and specificity 
=96.90%). 

 

Fig. 3 Results of the detection procedure on the central EEG 

 

Fig. 4 Results of the detection procedure on the EEGs and on the EMG 

 

Fig. 5 Illustrative example of detection process 

IV. DISCUSSION 

By looking at the Fig 3, one could be surprised of obtain-
ing a total rate of agreement on the EEG of only 92.18% 
whereas each separate procedure has a higher agreement 

rate. Actually, this is due to the fact that false positives (FP) 
introduced by the various algorithms are not always located 
at the same place, while true positives (TP) are sometimes 
detected at the same epochs (fig 5). There is thus an in-
crease in FP (proportionally to the number of TP) in the 
global detection on EEG. This explains why the total 
agreement rate is lower, while sensitivity is slightly modi-
fied and sensitivity is not affected. Fortunately, the number 
of epochs classified as non-artifact remains sufficient for 
feature extraction and sleep stage classification. 

V. CONCLUSIONS 

In conclusion, our findings showed that the proposed ar-
tifact minimization procedures and detection algorithms 
(although rather simple since they are mainly binary) are 
reliable in a context of classification in sleep stage classifi-
cation. Indeed they give promising and repeatable results 
(agreement rate = 96.06%, sensitivity = 83.67% and speci-
ficity =96.47%) without requiring any human intervention. 

The approach has however some limitations: (i) it is run-
ning on epochs of fixed length rather than locating the ac-
tual onset and offset of the artifacts. However using fixed 
length epochs dramatically simplifies the algorithm and the 
remaining part of signal is generally sufficient for the sleep 
stage classification. (ii) Although the parameters are calcu-
lated according to the statistical properties of the signal, 
their values (once determined) remain unchanged for all the 
duration of the recording. This can be can be inappropriate 
in sleep recording with fluctuation of tonicity level. The use 
of adaptive threshold rather than absolute threshold could 
then be investigated in future works. 
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