
Chapter 7
Disaggregation Analysis and Statistical
Learning: An Integrated Framework for
Multicriteria Decision Support

Michael Doumpos and Constantin Zopounidis

Abstract Disaggregation methods have become popular in multicriteria decision
aiding (MCDA) for eliciting preferential information and constructing decision
models from decision examples. From a statistical point of view, data mining and
machine learning are also involved with similar problems, mainly with regard to
identifying patterns and extracting knowledge from data. Recent research has also
focused on the introduction of specific domain knowledge in machine learning algo-
rithms. Thus, the connections between disaggregation methods in MCDA and tra-
ditional machine learning tools are becoming stronger. In this chapter the relation-
ships between the two fields are explored. The differences and similarities between
the two approaches are identified and a review is given regarding the integration of
the two fields.

7.1 Introduction

Decision-making under multiple criteria or uncertainty is a subjective task that de-
pends on the system of preferences of the decision-maker (DM). Multicriteria de-
cision aid (MCDA) provides a broad set of methodologies suitable for such situ-
ations, where conflicting criteria, goals, objectives, and points of view, have to be
taken into consideration. Among others, MCDA is involved with problem structur-
ing, preference modeling, the construction and characterization of different forms of

aid/support procedures.
In many cases, the decision situation involves a finite set of actions or alterna-

tives that need to be evaluated following a choice, ranking, sorting or description
decision problematic [116]. Within this context, the evaluation process is based on a
combination of all the criteria describing the performance of the alternatives. Such a
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criteria aggregation models, as well as the design of interactive solution and decision

215



216 M. Doumpos, C. Zopounidis

combination, however, cannot be meaningful within a given decision context, unless
it is able to represent (with some acceptable accuracy) the DM’s judgment policy.
This can be achieved in two quite different ways.

The first, is a “forward” approach based on interactive, structured communication
sessions between the analyst and the DM, during which the analyst elicits specific
information about the DM’s preferences (e.g., weights, trade-offs, aspiration levels,
etc.). The success of this approach is heavily based on the willingness of the DM to
participate actively in the process, as well as the ability of the analyst to guide the
interactive process in order to address the DM’s cognitive limitations. This kind of
approach is widely used in situations involving decisions of strategic character.

However, depending on the selected criteria aggregation model, a considerable
amount of information may be needed by the DM. In “repetitive” decisions, where
time limitations exist, the above direct approach may not be applicable. Disaggre-
gation methods [72] are very helpful in this context. Disaggregation methods use
regression-like techniques to infer a decision model from a set of decision examples
on some reference alternatives, so that the model is as consistent as possible with
the actual evaluation of the alternatives by the DM. This model inference approach
provides a starting basis for the decision-aiding process. If the obtained model’s pa-
rameters are in accordance with the actual preferential system of the DM, then the
model can be directly applied to new decision instances. On the other hand, if the
model is consistent with the sample decisions, but its parameters are inconsistent
with the DM’s preferential system (which may happen if, for example, the decision
examples are inadequate), then the DM has a starting basis upon which he/she can
provide recommendations to the analyst about the calibration of the model in the
form of constraints about the parameters of the model. Thus, starting with a model
that is consistent with a set of reference examples, an interactive model calibration
process is invoked.

Similarly to disaggregation analysis, statistical learning and data mining are also
involved with learning from examples [61, 62]. Many advances have been made
within these fields for regression, classification and clustering problems. Recently
there has been a growing interesting among machine learning researchers towards
preference modeling and decision-making. Some interest has also been developed
by MCDA researchers on exploiting the advances in machine learning.

Given the growing interest on the integration of the two fields, the objective of
this chapter is to explore their connections, to highlight their similarities and differ-
ences and analyze the potential from their integration towards providing improved
decision support.

The rest of the chapter is organized as follows: We begin with an introduction
to disaggregation paradigm of MCDA in section 7.2, followed by an introduction
to statistical learning and data mining (section 7.3). Then, section 7.4 discusses the
differences and the similarities between the two fields, whereas section 7.5 provides
a literature review on the interactions between them. Finally, section 7.6 concludes
the chapter and discusses some future research directions.
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7.2 The Disaggregation Approach in MCDA

7.2.1 General Framework

Disaggregation analysis (DA) provides a general methodological framework for the
analysis of the actual decisions taken by a DM so that an appropriate model can be
constructed representing the DM’s system of preferences, as consistently as possi-
ble. The main input used in this process is a reference set of alternatives evaluated
by the DM. The reference set may consist of past decisions, a subset of the alter-
natives under consideration, or a set of fictitious alternatives which can be easily
judged by the DM [72]. Depending on the decision problematic, the evaluation of
the reference alternatives may be expressed by defining an order structure (total,
weak, partial, etc. [106]) or by classifying them into appropriate classes.

Formally, let D(X) denote the DM’s evaluation of a set X consisting of m refer-
ence alternatives described over n criteria (the description of alternative i on criterion
j will henceforth be denoted by xi j). The DM’s evaluation is assumed to be based
(implicitly) on a decision model fβ defined by some parameters β , which repre-
sents the actual preferential system of the DM. Different classes of models can be
considered. Typical examples include:

• Value functions defined such that V (x) > V (y) iff alternative x is preferred over
alternative y and V (x) = V (y) in cases of indifference [77]. The parameters of a
value function model involve the criteria tradeoffs and the form of the marginal
value functions.

• Outranking relations defined such that xSy iff alternative x is at least as good as
alternative y [115]. Depending on the specific method used, the parameters of an
outranking model, may involve the weights of the criteria, as well as preference,
indifference and veto thresholds, etc.

• “If ... then ...” decision rules [53]. In this case the parameters of the model involve
the conditions and the conclusions associated to each rule.

The objective of DA is to infer the “optimal” parameters β̂ ∗ that approximate,
as accurately as possible, the actual preferential system of the DM as represented in
the unknown set of parameters β , i.e.:

β̂ ∗ = arg min
β̂∈A
‖β̂ −β‖ (7.1)

where A is a set of feasible values for the parameters β̂ . With the obtained param-
eters, the evaluations performed with the corresponding decision model f β̂ ∗ will be
consistent with the evaluations actually performed by the DM for any set of alterna-
tives.

However, problem (7.1) cannot be solved explicitly because β is unknown. In-
stead, an empirical estimation approach is employed using the DM’s evaluation of
the reference alternatives to proxy β . Thus, the general form of the optimization
problem is now expressed as follows:
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β̂ ∗ = arg min
β̂∈A

L[D(X),D̂(X , fβ̂ )] (7.2)

where D̂(X , fβ̂ ) denotes the recommendations of the model f β̂ for the alternatives in

X and L(·) is a function that measures the differences between D(X) and D̂(X , fβ̂ ).
Through the solution of (7.2), it is implicitly assumed that the decision model’s

estimated parameters β̂ ∗ represent the actual preferential system of the DM within
some acceptable error threshold ε > 0, i.e., ‖ β̂ ∗ −β‖ < ε . This, however, may not
be true for a number of reasons related to the quality of the reference set (e.g., too
small, noisy, etc.). Thus, problems (7.1) and (7.2) are not necessarily equivalent in
a realistic setting.

7.2.2 Methods and Implementations

The general framework of DA is materialized in several MCDA methods that enable
the development of decision models in different forms. This section focus on two
popular paradigms, which involve functional and relational models. Symbolic mod-
els have also become quite popular recently. However, given their close connections
with machine learning methods, the discussion of this modeling form is given later
in section 7.5.1.2.

7.2.2.1 Functional Models

Value functions are the most widely used type of functional models in MCDA. A
value function aggregates all the criteria into an overall performance measure V
defined such that:

V (x) > V (y)⇔ x� y

V (x) = V (y)⇔ x∼ y
(7.3)

where � and ∼ denote the preference and indifference relations, respectively. A
value function may expressed in different forms, depending on the criteria indepen-
dence conditions that describe the DM’s preferences [77]. Due to its simplicity, the
most widely used form of value function is the additive one:

V (x) =
n

∑
j=1

wjv j(x j) (7.4)

where w1, . . . ,wn are non-negative constants representing the criteria tradeoffs (w 1 +
· · ·+ wn = 1) and v1(x1), . . . ,vn(xn) are the marginal value functions of the criteria,
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usually scaled such that v j(x j∗) = 0 and v j(x∗j) = 1, where x j∗ and x∗j are the least
and the most preferred level of criterion j, respectively.

Such a model can be used to rank a set of alternatives or to classify them in pre-
defined groups. In the ranking case, the relationships (7.3) provide a straightforward
way to compare the alternatives. In the classification case, the simplest approach is
to define groups G1,G2, . . . ,Gq in the value scale with the following rule:

tk ≤V (x) < tk−1⇔ x ∈ Gk (7.5)

where 0 = tq < tq−1 < · · ·< t1 < t0 = 1 are thresholds that distinguish the groups.
The construction of a value function from a set of reference examples can be

performed using mathematical programming techniques. For example, in an ordinal
regression setting, the DM’s defines a weak-order of the alternatives in the reference
set, by ranking them from the best one (alternative x 1) to the worst one (alternative
xm). Then, the general form of the optimization problem can be expressed as in the
case of the UTA method [71] as follows:

min
m

∑
i=1

σi

s.t.
n

∑
j=1

[v j(xi j)− v j(xi+1, j)]+ σi−σi+1 ≥ δ , ∀xi � xi+1

n

∑
j=1

[v j(xi j)− v j(xi+1, j)]+ σi−σi+1 = 0, ∀xi ∼ xi+1

v j(x j) non-decreasing, with v j(x j∗) = 0 and
n

∑
j=1

v j(x∗j) = 1

σi ≥ 0, ∀ i

(7.6)

The solution of this optimization problem provides an additive value function that
reproduces the DM’s ranking of the reference alternatives as accurately as possible.
The differences between the model’s recommendations and the DM’s weak-order
are measured by the error variables σ1, . . . ,σm. In this case the value function is
expressed in pure additive form as:

V (x) = v1(x1)+ · · ·+ vn(xn) (7.7)

where the marginal value functions are now scaled such that v j(x j∗) = 0 and
v j(x∗j) = wj. By modeling the marginal values as piecewise linear functions, the
above optimization problem can be re-expressed in linear programming form (for
the details see [71]).

Several variants of the UTA method for ordinal regression problems have been
presented. Siskos et al. [125] provide a detailed review of different formulations,
whereas Beuthe and Scannella [13] present a comparative analysis. Some recent ex-
tensions are presented by Figueira et al. [41] and Greco et al. [56]. Formulations for
classification problems have also been developed, such as the UTADIS method and
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its variants [34, 37, 71, 80], the MHDIS method [150], and other similar approaches
[19, 28, 81].

The optimization processes most often used involve linear and integer program-
ming formulations (LP, IP). LP models are usually used to minimize some prede-
fined norm (L1 or L∞) of real-valued error variables representing the violations of
(7.3) or (7.5). The optimization problem (7.6) is an example using the L 1 norm of
the error variables σ1, . . . ,σm for the reference alternatives. IP formulations on the
other hand, consider more direct measures of the number of disagreements between
the recommendations of the estimated decision model and the actual evaluation of
the reference alternatives by the DM. The Kendall’s τ rank correlation coefficient is
a typical example of such a measure.

It is also worth mentioning the considerable recent research on extending this
modeling framework, which is based on simple form of value functions, towards
more general preference modeling forms that allow the consideration of interaction
between the criteria. The use of the Choquet integral as an aggregation function has
proved quite useful and convenient towards this direction. Marichal and Roubens
[93] first introduced a methodology implementing this approach in a disaggregation
context. Some works on this topic can be found in the works of Angilella et al.
[5] and Kojadinovic [78, 79], while a review of this topic has been presented by
Grabisch et al. [51].

7.2.2.2 Relational Models

The evaluations performed on the basis of value functions are transitive and com-
plete. In several cases, however, preferences do not satisfy these properties. Intransi-
tivity is often observed and furthermore the alternatives can be incomparable. Rela-
tional models enable the modeling of such situations. The outranking relations the-
ory of MCDA [115] describes such models, with close connections to social choice
theory.

Typically, an outranking relation S between a pair of alternatives x and y is de-
fined as:

xSy⇔ x is at least as good as y (7.8)

Outranking techniques operate in two stages. The first stage involves the pairwise
comparison of the alternatives. Then, an algorithmic procedure is used in the second
stage to derive the evaluation results from the pairwise comparisons of the first stage.

There are several outranking methods that implement the above framework in
different ways. The most widely used include the families of ELECTRE [115] and
PROMETHEE methods [10, 14]. Martel and Matarazzo [94] provide a comprehen-
sive review of other outranking approaches. Other non-outranking relational models
based on distances have been presented by Chen et al. [23, 24].

In contrast to a value function approach, outranking models usually require too
many parameters, which define the decision model in a complex non-linear way.
This fact poses a significant computational burden in eliciting the preferential pa-
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rameters from decision examples. With some simplifying assumptions this issue
can be resolved. For instance, Mousseau et al. [98], Dias et al. [29], Ngo The and
Mousseau [101], and Dias and Mousseau [30] developed several LP simplifications
and heuristics to infer some of the parameters of pessimistic ELECTRE TRI mod-
els, while assuming the others fixed. Conventional optimization approaches (LP
and quadratic programming) are generally applicable for simpler forms of outrank-
ing/relational models that implement a compensatory approach (see for instance
[23, 24, 36].

A first attempt to develop an “holistic” approach for more complex outrank-
ing models was presented by Mousseau and Slowinski [99] for the ELECTRE TRI
method. Similarly to the previous studies, they assumed the pessimistic assignment
rule, and developed a non-linear, non-convex optimization formulation to infer all
the parameters of a classification decision model from a set of assignment examples.
Later, Doumpos and Zopounidis [35] presented an alternative approach combining
heuristic rules with LP formulations. Recently, metaheuristics and evolutionary ap-
proaches have been used. Goletsis et al. [49] used a genetic algorithm for the de-
velopment of an outranking model in a two-group problem involving ischemic beat
classification. Fernandez et al. [40] used a multiobjective genetic optimization ap-
proach for constructing an outranking classification model, whereas Belacel et al.
[11] used the reduced variable neighborhood search metaheuristic to infer the pa-
rameters of the PROAFTN method from a set of reference examples, and Doumpos
et al. [33] used the differential evolution algorithm to develop classification models
based on the ELECTRE TRI.

7.3 Statistical Learning and Data Mining

7.3.1 General Framework

Hand et al. [61] define data mining as “the analysis of (often large) observational
data sets to find unsuspected relationships and to summarize the data in novel ways
that are both understandable and useful to the data owner”.

Statistical learning plays an important role in the data mining process, by describ-
ing the theory that underlies the identification of such relationships and providing
the necessary analysis techniques. According to Vapnik [135, 136] the process of
learning from examples includes three main components:

1. A set X of data vectors x drawn independently from a probability distribution
P(x). This distribution is assumed to be unknown, thus implying that there is no
control on how the data are observed [128].

2. An output y from a set Y , which is defined for every input x according to an
unknown conditional distribution function P(y | x). This implies that the rela-
tionship between the input data and the outputs is unknown.
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3. A learning method (machine), which is able to assign a function f β : X → Y ,
where β are some parameters of the unknown function.

The best function fβ is the one that best approximates the actual outputs, i.e., the
one that minimizes: ∫

L[y, fβ (x)]dP(x,y) (7.9)

where L[y, fβ (x)] is a function of the differences between the actual output y and the
estimate fβ (x),1 and P(x,y) = P(x)P(y | x) is the joint probability distribution of x
and y. However, this joint distribution is unknown and the only available information
is contained in a training set of m objects {(x1,y1), . . . ,(xm,ym)}, which are assumed
to be generated independently from this unknown distribution. Thus, the objective
(7.9) is substituted by its empirical estimate:

1
m

m

∑
i=1

L[yi, fβ (xi)] (7.10)

For a class of functions fβ of a given complexity, the minimization of (7.10)
leads to the minimization of an upper bound for (7.9).

7.3.2 Methods

One of the main research directions in statistical learning involves the study of the
theoretical properties of the optimization problem (7.10) in order to derive data in-
dependent bounds of the generalization performance of learning machines (for a
complete coverage of the theoretical aspects of statistical learning, see [136]). The
other main direction involves the development of efficient learning methods and al-
gorithms. While a full review of all methods and algorithms is out of the scope of
this chapter (detailed presentations are available in [61, 62]), a brief outline of some
popular schemes is given below.

7.3.3 Neural Networks

Neural networks have been one of the most popular approaches in statistical learning
and data mining. Neural networks are based on an “artificial” representation of the
human brain, through a directed acyclic graph with nodes (neurons) organized into
layers. In a typical feed-forward architecture, there is an layer of input nodes, a layer
of output nodes, and a series of intermediate layers. The input nodes correspond to

1 The specification of the loss function L depends on the problem under consideration. For instance,
in a regression setting it may correspond to the mean squared error, whereas in a classification
context it may represent the accuracy rate.
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the information that is available for every input vector (the attributes/independent
variables), whereas the output nodes provide the recommendations of the network.
The nodes in the intermediate (hidden) layers are parallel processing units that de-
fine the input-output relationship. Every neuron at a given layer receives as input the
weighted average of the outputs of the neurons at the preceding layer and maps it
to an output signal through a predefined transformation function. Depending on the
topology of the network and the selection of the neurons’ transformation functions,
a neural network can model real functions of arbitrary complexity. This flexibility
has made neural networks a very popular modeling approach in addressing complex
real-world problems in engineering and management.

Training a neural network involves the optimization of the connections’ weights.
In a supervised learning context, the optimization is based on a training set, in accor-
dance with the general framework of statistical learning. Unconstrained non-linear
optimization algorithms are commonly used in this context [63]. Evolutionary tech-
niques have also been recently used [1].

7.3.4 Decision Trees and Rule-Based Models

Symbolic models expressed as decision trees and rule sets are quite popular among
machine learning researchers and practitioners, mainly due to their interpretability.
Typically, the nodes of a decision tree represent a series of (usually) binary splits
defined on the independent variables, while the recommendations of the model are
given at the terminal nodes of the tree. Decision tree models can also be expressed
in a rule-based format of the form of “If ... then ...” decision rules. The first part
of a given rule examines the necessary conditions required for the conclusion part
to be valid. The conclusion provides the recommendation (output) of the rule. Ex-
cept for the easy interpretation and use of such models by DMs and analysts, other
advantages also include their ability to handle different types of data (quantitative
or qualitative), the handling of missing data, as well as their applications in dis-
covering interesting relations between variables in large databases (e.g., through the
development of association rules [4]).

Some typical examples of algorithms used to build decision trees and rule-based
models include, among others, ID3 [112] and its successor C4.5 [113], as well as
CART [18], CHAID [76], and rough sets [108].

7.3.5 Support Vector Machines

Support vector machines (SVMs) have become increasingly popular among the sta-
tistical learning community. SVMs implement the structural risk minimization prin-
ciple taking into consideration the empirical loss (7.10), while controlling the com-
plexity of the model through a Tikhonov regularization approach. The empirical
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error can be minimized with a highly complex model, but in such cases the model is
usually unstable to the selection of the training set, and consequently its generaliz-
ing ability is poor. SVMs introduce this tradeoff in the analysis providing a unified
framework for both linear and non-linear models.

SVMs are usually realized in a binary classification setting, but they are also
applicable in multi-group classification, regression, and clustering problems. In the
simplest case involving a binary classification task, the two groups are defined by
the canonical hyperplanes a + wx = ±1 (where a is a constant term and w is the
normal vector for the hyperplane), such that a + wx ≥ 1 for the positive examples
and a + wx≤ −1 for the negative ones. The distance (separating margin) between
the two hyperplane is then 2/‖w‖ and it is related to an upper bound of the proba-
bility that an observation will be misclassified (the higher the margin the lower the
misclassification probability [120]). Extending, this reasoning by introducing the
classification errors, leads to the following convex quadratic programming formula-
tion:

min
1
2

w�w+C
m

∑
i=1

σi

s.t. yi(a+ wxi)+ σi ≥ 1, ∀ i
σi ≥ 0, ∀ i
a,w ∈ R

(7.11)

where yi =±1 denotes the class label for observation i, σ i is the corresponding slack
variable defined such that σi > 0 iff yi(a + wxi) < 1, and C > 0 is a user-defined
constant that defines the trade-off between the two conflicting objectives (margin
maximization and error minimization).

The generalization to the nonlinear case is achieved by mapping the problem data
to a higher dimensional space H (feature space) through a transformation of the form
xix�j = φ(xi)φ�(x j). The mapping function φ is implicitly defined through a sym-

metric positive definite kernel function K(x i,x j) = φ(xi)φ�(x j). The representation
of the data using the kernel function enables the development of a linear model in
the feature space H.

For large training sets several computational procedures have been proposed to
enable the fast training of SVM models. Most of these procedures are based on
a decomposition scheme, where the optimization problem is split into a series of
smaller subproblems. Other algorithms are based on reformulations of the optimiza-
tion problem that enable the development of the model through the solution of a set
of linear equations. Linear programming formulations have also been used.

A detailed presentation of SVMs, the theory of kernel methods, the existing op-
timization tools, and applications, can be found in the book of Schölkopf and Smola
[120] as well as the review paper of Campbell [20].
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7.3.6 Ensembles

Individual learning algorithms often exhibit instability to the training data. This may
lead to high bias/variance and poor generalizing performance. A popular approach
to address this issue is to combine multiple models, thus forming ensemble predic-
tors. This is not a new issue, since the first works on the combination of regression
forecasts can be traced back to the work of Bates and Granger [9]. Recently, the-
oretical evidences have been presented (no free lunch theorems [146, 147, 148])
showing that there is no method that is universally better than others in terms of
its predictive performance. On the basis of such findings, it is natural to investi-
gate the potential of a method/model combination framework. Of course, combined
models are also subject to the no free lunch theorem. However, the development of
combined models aims at the reduction of the bias and/or variance of the individual
models, which is expected to be useful in improving the results in real-world situa-
tions. The combination is most useful when the predictions of the models which are
combined have low correlations to each other.

Since the 1990s there has been a considerable growth in the research on model
combination approaches and several algorithm-independent approaches have been
proposed that exploit the instability of statistical learning models and the differences
between methods. Some approaches combine multiple models of the same learning
method, each developed using different perturbations of the training set [15, 16, 43],
while other approaches enable the combination of models from multiple methods
[45, 145]. A review of different ensemble approaches can be found in [31].

7.4 Similarities and Differences

Disaggregation analysis and statistical learning have evolved significantly over the
past two decades, as two separate fields. Nevertheless, the similarities between
the two fields are obvious, since both consider the problem of learning a deci-
sion/prediction model from data. Within this context, it is worth noting that the
minimization of the empirical loss (7.10) in statistical learning methods is actually
identical to the optimization problem (7.2), which is commonly used in disaggrega-
tion methods. This may lead to the conclusion that both fields actually address the
same problem. But there are a series of noticeable differences.

1. Model interpretability: The interpretability of MCDA models is of outmost im-
portance. Interpretable and easy to understand decision models enable the DM’s
active participation in the decision-aiding process, they provide insights on the
characteristics of the alternatives, and the DMs often feel more confident with
them in their daily practice. On the other hand, statistical learning theory has
mostly focused on the development of models of high predicting ability. In most
cases these models are too complex to interpret (e.g., neural networks, non-linear
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SVMs, ensembles, etc.), and consequently their operation has often been de-
scribed as a “black box”.

2. Data dimensionality: Real world applications of statistical learning methods in-
volve large (often massive) data sets and considerable research has been devoted
to the development of computationally efficient algorithms that scale up well
with the size of the training data. DA methods, on the other, usually assume that
only a small reference set is available, since it is difficult for the DMs to express
their global preferences on too many alternatives.

3. Inconsistencies: In DA, data inconsistencies are usually explicitly treated during
the model development process [50, 88, 96, 97]. This is done through interactive
procedures whose objective is to reveal the inconsistencies to the DM, to support
their resolution, and to enhance the DM’s understanding of the problem data.
Contrary to this approach, data mining treats inconsistencies in the training data
as “hard cases”, i.e., observations which are simply difficult to learn and predict.
Only outliers are treated as real inconsistencies.

4. Model validation: While model validation is used in both DA and statistical
learning to check the quality of the model, the implementation of the valida-
tion process differs. In DA it is usually assumed that the analyst cooperates with
the DM and the validation is an interactive process, during which the DM checks
the validity of the parameters’ estimation results. The generalizing ability of the
model, is on the other hand, the core issue in the validation stage of all statisti-
cal learning models. This is tested using additional data sets, outside the training
sample, or through resampling methods (e.g., cross-validation, bootstrap, etc.).

The differences between statistical learning and disaggregation methods in MCDA
have also been discussed by Waegeman et al. [138]. In addition to the above points,
the authors have also noted some other interesting issues:

1. The role of the DM: In MCDA, the DM participates actively in the decision mod-
eling process and interacts with the analyst in order to achieve the best calibration
of the decision model. This interactive process is dynamic in nature, in that the
DM’s preferences may change as he/she gains insight to the problem data and
its characteristics. Statistical learning and data mining on the other hand, assume
that only a statistical sample, whereas specific inputs from the DM are not.

2. Regularization: The traditional MCDA disaggregation methods usually do not
take into account the trade-off between model complexity and model perfor-
mance. On the other hand, regularization has become a crucial issue in statistical
learning processes.

3. Data type: The data considered in an MCDA setting involve the description of the
alternatives over a number of criteria. In addition to this type of data setting, sta-
tistical learning is also concerned with more complex structures, which are often
encountered in areas such as text mining, image analysis, and signal processing.

Overall, these differences really seem quite fundamental; an indeed they are. But
the consideration of these differences, should take into account the crucial aspect of
the scope of the application of DA methods as opposed to the common uses of data
mining.
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DA methods are used in a MCDA context to facilitate the decision support pro-
cess. In particular, the main objective of eliciting preferential information through
decision examples is to facilitate the DM in gaining insight into: (1) the charac-
teristics of the problem data (alternatives and criteria), (2) the implications of the
judgments that (s)he implicitly makes, (3) the characteristics and limitations of the
modeling process, (4) the interpretations of the results, and ultimately (4) the actions
that need to be taken in order to obtain good decisions through a practical model.

On the other hand, modern statistical learning and data mining adopt an algo-
rithmic modeling culture as described by Breiman [17], in which the focus is shifted
from data models to the characteristics and predictive performance of learning algo-
rithms. In this framework, the data generation process in a real problem is a “black
box whose insides are complex, mysterious and, at least, partly unknowable” [17],
thus leading to the important issue of developing efficient algorithms that provide
accurate predictions of the observed outcome from some given input data.

7.5 Interactions

Despite the development of MCDA and statistical learning/data mining as separate
fields, and the differences outlined in the previous section, there have been several
attempts to integrate concepts and methods from the two fields. This section re-
views this emerging research stream and its potential towards the development of
improved decision support methodologies. The interactions of the two fields are ex-
amined in two opposite directions. The first involves the use of statistical learning
and data mining techniques in a decision aiding context through disaggregation anal-
ysis and preference learning. The second direction involves the implementation of
MCDA concepts in a statistical learning framework and the development of hybrid
methodologies.

7.5.1 Using Statistical Learning Methods for Disaggregation
Analysis and MCDA

7.5.1.1 Neural Networks

One of the main advantages of neural network (NN) models is their ability to model
highly complex problems, with an unknown underlying structure. This characteristic
has important implications for MCDA, mainly with respect to modeling general
preference structures.

Within this context, NNs have been successfully used for learning generalized
MCDA models from decision examples. Wang and Malakooti [141], and Malakooti
and Zhou [91] used feedforward NNs to learn an arbitrary value function for rank-
ing a set of alternatives, as well as to learn a relational multicriteria model based on
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pairwise comparisons (binary relations) among the alternatives. The main advantage
of this NN-based approach, is that the resulting decision models are free of the var-
ious independence assumptions, which are often implied by commonly used value
function models (see [77]). Thus, the model is independent of functional form and
quite stable to parameter perturbations. The authors examined the conditions that
characterize the monotonicity of the NN model, as well as its convexity/concavity
properties. The monotonicity condition of the form (7.3) is a fundamental prop-
erty for any rational decision model. On the other hand, the convexity/concavity
properties are very useful for calibrating the model development (training) process
in order to ensure that the final model complies with the DM’s preference policy.
Experimental simulation results showed that NN trained models performed very
well in representing various forms of decision models, outperforming other popular
model development techniques based on linear programming formulations. Wang et
al. [142] applied a similar NN model to a job shop production system problem.

In a different framework compared to the aforementioned studies, Stam et al.
[127] used NNs within the context of the analytic hierarchy process (AHP) [117].
AHP is based on a hierarchical structuring of the decision problem, with the overall
goal on the top of the hierarchy and the alternatives at the bottom. With this hierar-
chical structure, the DM is asked to perform pairwise comparisons of the elements
at each level of the hierarchy with respect to the elements of the preceding (higher)
level. The principal eigenvalues and the corresponding normalized eigenvectors of
the resulting reciprocal pairwise comparison matrices are then used to obtain prefer-
ence ratings for the alternatives. This eigenvector-based approach has received much
criticism (see for example [8]). Stam at el. investigated two different NN structures
for accurately approximating the preferences ratings of the alternatives, within the
context of imprecise preference judgments by the DM. They showed that a modified
Hopfield network has very close connections to the mechanics of the AHP, but found
that this network formulation cannot provide good results in estimating the mapping
from a positive reciprocal pairwise comparison matrix to its preference rating vec-
tor. On the other hand, a feed-forward NN model was found to provide very good
approximations of the preference ratings in the presence of impreciseness. This NN
model was actually superior to the standard principal eigenvector method.

Similar NN-based methodologies have also be used to address dynamic MCDA
problems (where the DM’s preferences change over time) [90], to learn fuzzy pref-
erences [139, 140, 143] and outranking relations [67], to provide support in group
decision making problems [143], as well as in multicriteria clustering [89].

NNs have also been employed for preference representation and learning in mul-
tiobjective optimization (MOP). The main goal in a MOP problem is to identify
the set of non-dominated solutions (Pareto optimal solutions) and then to select the
most appropriate one that best fits the DM’s preferences. Within this context, Sun et
al. [130] proposed a feed-forward NN model, which is trained to represent the DM’s
preference structure. The training of the model is performed using a representative
sample of non-dominated solutions, which are evaluated by the DM. The flexibility
of NNs enables them to model complex preference structures, even highly nonlin-
ear ones. Thus, the trained NN model is used to formulate the objective function of
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a nonlinear programming problem, which is solved in order to find a solution that
maximizes the output of the trained NN. A similar NN optimization formulation
has also been proposed by Chen and Lin [21], while Shimizu et al. [122] presented
a web-based implementation integrating a NN model with AHP. Such approaches
are generally similar to techniques proposed in the MOP literature based on tra-
ditional value function models (see for example [124]). Despite the good results
obtained with this approach and its robustness to the NN’s architecture, the solution
of the nonlinear optimization problem having the NN’s output as the objective is
often cumbersome. To overcome this difficulty, Sun et al. [131] presented a hybrid
methodology combining the feed-forward NN model with the interactive weighted
Tchebycheff procedure (IWTP) [129]. In this case a trained NN model is used to
evaluate a set of nondominated solutions and to select the ones that are most likely to
be of interest to the DM, thus supporting the interactive search procedure. Results on
various test problems characterized with different underlying value functions (linear
and nonlinear) indicated that the use of the NN-based approach provided improved
results compared to IWTP and a NN-based optimization model. Other NN archi-
tectures have also been used as optimizers in MOP problems [48, 87, 95, 144] and
hybrid evaluation systems [6, 111, 114, 121].

7.5.1.2 Rule-based Models

Rule-based and decision tree models are very popular within the machine learn-
ing research community. The symbolic nature of such models makes them easy to
understand, which usually is a very important characteristic in decision aiding prob-
lems. During the last decade significant research has been devoted on the use of such
approaches as preference modeling tools in MCDA and disaggregation analysis.

Within this framework there has been proposed a complete and well-axiomatized
methodology for constructing decision rule preference models from decision exam-
ples, based on the rough sets theory [108, 109]. Rough sets have been initially intro-
duced as a methodology to describe dependencies between attributes, to evaluate the
significance of attributes and to deal with inconsistent data in multicriteria decision
problems. However, over the past decade significant research has been conducted on
the use of the rough set approach as a methodology for preference modeling in mul-
ticriteria decision problems [52, 53]. The main novelty of this approach concerns
the possibility of handling criteria, i.e. attributes with preference ordered domains,
and preference ordered classes in the analysis of sorting examples and the induc-
tion of decision rules. The rough approximations of decision classes involve the
dominance relation, instead of the indiscernibility relation considered in the basic
rough sets approach. They are build of reference alternatives given in the decision
examples. Decision rules derived from these approximations constitute a preference
model. Each “if ... then ...” decision rule is composed of a condition part specifying
a partial profile on a subset of criteria to which an alternative is compared using the
dominance relation, and a decision part suggesting an assignment of the alternative
to “at least” or “at most” a given class.
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The decision rule preference model has also been considered in terms of conjoint
measurement [55] and Bayesian decision theory [57]. A representation theorem [55]
for multicriteria sorting states an equivalence of simple cancellation property, a gen-
eral discriminant (sorting) function and a specific outranking relation, on the one
hand, and the decision rule model on the other hand. It is also shown that the de-
cision rule model resulting from the dominance-based rough set approach has an
advantage over the usual functional and relational models because it permits han-
dling inconsistent sorting examples. The inconsistency in sorting examples is not
unusual due to instability of preference, incomplete determination of criteria and
hesitation of the DM.

An important feature of this methodology is that its applicability is not restricted
to multicriteria classification problems, but is also extended to ranking and choice
decision problems [42, 53], as well as to MOP problems [56]. It also provides the
ability to work with missing data and to handle cases that involved both criteria and
attributes (whose domains are not preference ordered; see [54]).

A similar approach that implements symbolic models has also been presented by
Dombi and Zsiros [32], while Hammer et al. [60] modified the LAD method (logi-
cal analysis of data), which is based on the theory of boolean functions, to address
multicriteria classification problems through the introduction of Pareto-optimal pat-
terns.

7.5.1.3 Kernel Methods and Margin-Based Approaches

Kernel methods become an important research direction in statistical learning and
they are now widely used for classification and regression models, as well as for
density estimation. Kernel methods map the problem data to a high dimensional
space (feature space), thus enabling the development of complex nonlinear decision
and prediction models, using linear estimation methods [65, 119]. This kind of rep-
resentation is based on a positive definite kernel function, which corresponds to a
dot product in the feature space. The main novelty of the introduction of the kernel
function is that it makes the explicit computation of the feature space unnecessary.

SVMs are one of the most common implementations of the theory of kernel
methods, with numerous application in pattern recognition problems. Recently, they
have also been used within the context of preference learning for approximating
arbitrary utility/value functions and preference aggregation.

Herbrich et al. [64] illustrated the use of kernel approaches, within the context of
SVM formulations, for representing value/ranking functions of the generalized form
V (x) = wφ(x), where φ is a possibly infinite-dimensional and in general unknown
feature mapping. The authors derived bounds on the generalizing performance of the
estimated ranking models, based on the margin separating objects in consecutive
ranks. A similar approach was also explored by Joachims [75] in the RankSVM
algorithm, which has been used to improve the retrieval quality of search engines.

Waegeman et al. [138] extend this approach to relational models. In this case,
the preference model of the form f (x i,x j) = wφ(xi,x j) is developed to repre-
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sent the preference of alternative i compared to alternative j. This framework is
general enough to accommodate special modeling forms. For instance, it includes
value models as a special case, and similar techniques can also be used to kernel-
ize Choquet integrals. As an example, Waegeman et al. illustrated the potential of
this framework in the case of valued concordance relations, which are used in the
ELECTRE methods.

Together with the use the kernel approach for the development of generalized
decision models, an additional important feature of SVM formulations, is the im-
plementation of the regularization concept to handle the complexity of the models.
Evgeniou et al. [39] gave an interpretation of this regularization approach within the
context of estimating a linear value function V (x) = wx used for ranking purposes
(ordinal regression). From a geometric point of view, assuming the simplest case
where the reference data are representable by such a linear model with no errors,
the value function that minimizes ‖w‖ corresponds to the most robust solution in
the feasible space defined by constraints of the form:

w(xi−x j)≥ 1, ∀ xi � x j

The term “robust” in this case refers to the solution that is the center of the largest
sphere in the polyhedron defined by the constraints [39]. In the general case, when
the reference data include some inconsistent comparisons, Evgeniou et al. intuitively
explained the minimization of the violations of the above constraints together with
the minimization of ‖w‖, as the search of a decision model that minimizes the er-
rors compared to the DM’s judgments, while satisfying the correct comparisons as
much as possible. The authors also describe the generalization of this framework to
nonlinear (polynomial) value function models.

Doumpos and Zopounidis [37] analyzed a similar methodology for the construc-
tion of additive value functions, using the L1 norm of the parameters of the function.
They showed that formulating an augmented linear objective function considering
both the errors of the model and its complexity, leads to interesting insights on the
quality of the reference set. Experimental results on both ranking and classification
problems showed that such a modification improves both the generalizing perfor-
mance of the obtained decision models and their robustness.

In a different context, Dembczynski et al. [28] combined concepts from the
dominance-based rough set approach and SVMs towards the development of addi-
tive value function models in classification problems. Contrary to the methodology
of Doumpos and Zopounidis [37], the authors used a regularization term based on
the L2 norm, and illustrated how the formulation can be expressed in kernel form.

The margin maximization principle, which is implemented in SVMs as a regu-
larization mechanism, has also been explored in connection to some ensemble algo-
rithms, such as boosting [43, 118]. Within this context, Freund et al. [44] developed
the RankBoost algorithm, which provides a single linear ordering of the given set
of objects by combining a set of given linear orderings on a set of ranking features.
Instead of using the evaluation criteria as ranking features, Freund et al. developed
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an algorithm to combine multiple “weak” rankings defined over the criteria, in a
weighted additive model (similar to an additive value function).

7.5.2 MCDA Concepts in Statistical Learning Models

7.5.2.1 MCDA Methodologies for Building Statistical Learning Models

As mentioned in section 7.3.1, the development of statistical learning models is
based on the minimization of a loss function measured on the basis of a set of train-
ing samples. This general setting, however, can be implemented in many differ-
ent ways. The variety of loss functions employed in different models indicates that
model development is not based on a straightforward, universally accepted crite-
rion. For instance, in regression problems measures such as the mean squared error
or the mean absolute error may lead to completely different models. In classifica-
tion problems, similar L1, L2 and L∞ norms have been used, together with measures
such as the classification error rate or the area under the receiver operating charac-
teristic curve. The introduction of the regularization terms also adds complexity and
degrees of freedom on the model development process.

Similar “multicriteria” issues also arise in specification of the predictor variables
(feature selection and extraction), the construction of ensemble models, the pruning
and selection of decision rules, as well as the extension of case-based reasoning
models on the basis of generalized distance metrics.

The existing research on all the above topics is indeed quite rich. Some indicative
works include:

• Learning through multiobjective optimization [38, 47, 59, 74, 83, 84, 100, 132].
• Feature selection and feature extraction [46, 68, 103, 149].
• Construction of ensemble models [58, 69, 70, 73].
• Pruning and use of decision rules [105, 126].
• Case-based reasoning [85, 86, 107].

7.5.2.2 Model Performance Evaluation

The approaches discussed in the previous subsection aim towards the consideration
of multiple performance measures at the model construction (optimization) phase.
Obviously, multiple performance measures can also be used when evaluating the
suitability and performance of a given set of models. For instance, Osei-Bryson
[104] proposed a multicriteria methodology to evaluate decision trees based on cri-
teria related to their discriminatory power, simplicity, and stability, taking into ac-
count the DM’s subjective judgements on the relative importance of these criteria.
In a later study Osei-Bryson applied this modeling framework to the problem of
pruning decision trees [105]. In a similar context, Choi et al. [25] and Chen [22]
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introduced multiple criteria for the evaluation of association rules using MCDA
approaches. In a neural network setting, Das [26] used the TOPSIS multicriteria
method to evaluate neural network models using multiple performance measures
(e.g., mean squared error, the Akaike’s information criterion, the Bayesian infor-
mation criterion, cross-validation accuracy, etc.), whereas Ni et al. [102] used the
PROMETHEE multicriteria method to evaluate different neural network architec-
tures developed for the prediction of carbamate concentrations in ternary mixtures.

7.5.2.3 Monotonicity in Predictive Modeling

Monotonicity plays a crucial role in decision modeling and aiding. In simple terms,
given two alternatives such that xi ≥ x j, the monotonicity principle implies that
alternative j cannot be preferred over alternative i. Assuming, for instance, a func-
tional decision model (e.g., value/ranking function) f (x), the monotonicity condi-
tion requires that f (·) is monotone with respect to the inputs, i.e., x i ≥ x j⇒ f (xi)≥
f (x j).

Monotonicity is usually not taken into consideration in a data mining context.
However, in several cases, the users of prediction models would like the models not
only to predict well, but also to make sense within the context of a specific appli-
cation domain. Furthermore, studies have shown that the introduction of specific
domain knowledge into the statistical learning process, may actually improve the
generalizing ability of the obtained models [3, 92, 133], by reducing overfitting,
minimizing the effect of noisy data, and controlling the complexity of the model.

Within this context, monotonicity can be considered as a special form of domain
knowledge. In simple linear decision models of the form f (x) = wx, monotonicity
can be easily introduced by imposing the condition w≥ 0, which requires the scaling
constants to be non-negative. For generalized non-linear decision models, however,
the introduction of monotonic conditions is more involved.

Ben-David et al. [12] were among the first to explore this issue within the context
of rule-based models. Some recent works on learning monotonic rule-based mod-
els and decision trees can be found in [27, 82, 110, 134]. Studies involving other
learning models, such as neural networks and SVMs, include [2, 7, 66, 123, 137].

7.6 Conclusions

Data mining/statistical learning and the disaggregation approach of MCDA, both
study similar problems in a different context. Data mining has focused on the de-
velopment of generalized prediction models from a statistical point of view and
statistical learning has focused on the theory of the learning process aiming at the
development of scalable algorithms for accurate predictive modeling with large and
complex data sets. On the other hand, the disaggregation approach of MCDA has
mainly focused on the development of comprehensible decision models from small
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data sets, whose main objective is to support decision aiding through an interactive
model calibration process.

Despite the conceptual and modeling differences in the two paradigms, there
are clear connections. This chapter highlighted these connections together with the
existing differences. The literature review also shows that the interactions between
the two fields have already been explored, thus enabling the development of new
improved techniques, which can be used either for predictive purposed in a pure
data mining context or for aiding the DMs in complex decision problems.

The road ahead should mainly focus on exploring further ways to integrate the
two fields. The use of statistical learning approaches for modeling new types of
preference models, the addition of comprehensibility into data mining tools, the
issues of validation, regularization, and robustness of preference models developed
through DA, the scalability of disaggregation methods to large data sets, and the
applications of new models into innovative fields, are only some indicative topics
where future research can focus.
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