
Chapter 6
New Trends in Aggregation-Disaggregation
Approaches

Yannis Siskos and Evangelos Grigoroudis

Abstract The aggregation-disaggregation approaches as an important field of mul-
ticriteria decision-aid systems aim to infer global preference models from prefer-
ence structures, as directly expressed by one or more decision-makers. The main
objective of this chapter is to present new research developments of aggregation-
disaggregation models and discuss related research topics. These recent develop-
ments cover a wide variety of topics, like post-optimality analysis, robustness anal-
ysis, group and collective decision-making. They focus mainly on the UTA family
of models and highlight their most important advantages: they are flexible in the
modeling process of a decision problem, they may provide analytical results that
are able to analyze the behavior of the decision-maker, and they can offer alterna-
tive ways to reduce the preferential inconsistencies between the decision-maker and
the results of the disaggregation model. Finally, future research topics in the context
of preference disaggregation approaches are outlined in this chapter.

6.1 Introduction

Preference disaggregation constitutes an important Multiple Criteria Decision Aid
(MCDA) philosophy aiming to assess/infer global preference models from given
preference structures and to address decision-aiding activities through operational
models within the aforementioned framework. In other words, the preference disag-
gregation approach refers to the analysis (disaggregation) of the global preferences
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(judgment policy) of the Decision-Maker (DM) in order to identify the criteria ag-
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gregation model that underlies the preference result. From the previous it is clear
that contrary to the traditional aggregation paradigm, where the criteria aggregation
model is known a priori and the global preference is unknown, the philosophy of
preference disaggregation aims to infer the preference models from given global
preferences.

Although several approaches have developed in the context of aggregation-
disaggregation paradigm, UTA methods [14, 40] may be considered as the main
initiative and the most representative example of preference disaggregation theory.
UTA methods are regression-based approaches that have been developed as an al-
ternative to multiattribute utility theory (MAUT).

The philosophy of aggregation-disaggregation is explicitly presented in Figure
6.1, where the emphasis on the analysis of the behavior and the cognitive style
of the DM is clear. In the context of UTA methods, special iterative interactive
procedures are used, where the components of the problem and the DM’s global
judgment policy are analyzed and then they are aggregated into a value system.
The goal of this approach is to aid the DM to improve his/her knowledge about the
decision situation and his/her way of preferring that entails a consistent decision to
be achieved.

Consistency of the 
preference model and 
DM’s judgment policy

Preference model 
construction

Decision data - DM’s 
global judgment policyCriteria modeling

Decision

Problem

Fig. 6.1 The aggregation-disaggregation approach [39]

As known, in the general MCDA context the main objective is usually to analyze
a set A of potential actions (or objects, alternatives, decisions) in terms of multiple
criteria in order to model all the possible impacts, consequences or attributes re-
lated to this set A. However, in the aggregation-disaggregation approach, it is often
necessary to use a set reference actions AR in order to clarify the DM’s global pref-
erence [15]. This reference set may be a set of past decision alternatives, a subset of
decision actions, especially when A is large (AR ⊂ A), or a set of fictitious actions,
consisting of performances on the criteria, which can be easily judged by the DM to
perform global comparisons [38].

Moreover, following the general modeling methodology of MCDA problems, a
consistent family of criteria {g1,g2, ...,gn} should be assessed [26]. Each criterion
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is a non-decreasing real valued function defined on A, as follows:

gi : A→ [gi∗,g∗i ]⊂ R/a→ g(a) ∈ R (6.1)

where [gi∗,g∗i ] is the criterion evaluation scale, gi∗ and g∗i are the worst and the
best level of the i-th criterion respectively, gi(a) is the evaluation or performance of
action a on the i-th criterion and g(a) is the vector of performances of action a on
the n criteria.

Therefore, the preference structure on a set of actions, which is necessary in
a preference disaggregation approach, may have the following form, based on the
aforementioned definitions:{

gi(a) > gi(b)⇔ a� b (a is preferred to b)
gi(a) = gi(b)⇔ a∼ b (a is indifferent to b) (6.2)

This preference structure has a form of a weak-order, although alternative aggre-
gation-disaggregation approaches may adopt different problem statements. In any
case, the DM is asked to externalize and/or confirm his/her global preferences on the
set AR taking into account the performances of the reference actions on all criteria.
So, in the UTA family of models, the problem is to adjust additive value or utility
functions based on multiple criteria, in such a way that the resulting structure would
be as consistent as possible with the initial structure.

Goal programming techniques have always played an important role in the de-
velopment of preference disaggregation models. In fact, the history of the disag-
gregation principle in multidimensional/multicriteria analyses begins with the use
of this special form of linear programming. Between mid 50s and mid 70’s the
most important research efforts refer to the development of linear or non-linear
multidimensional regression analyses [4, 18, 20, 42, 45], while later works studied
the case of ordinal criteria in order to assess/infer preference/aggregation models
[14, 31, 40, 46]. Jacquet-Lagrèze and Siskos [15] and Siskos et al. [38] present an
analytical review of the history of aggregation-disaggregation principle.

The main objective of this chapter is to present new research developments
of aggregation-disaggregation approaches. Although these recent research efforts
cover a wide variety of research topics, the chapter focuses on particular issues that
have recently drawn significant attention in the literature, like post-optimality anal-
ysis, robustness analysis, group and collective decision-making.

The chapter is organized into 5 sections. Section 6.2 presents briefly the UTA
model, as well as its significant proposed extensions. Post-optimality and robustness
analysis in UTA-type models is discussed in section 6.3, while section 6.4 refers
to the presentation of UTA-based group and collective decision models. Finally,
section 6.5 summarizes some concluding remarks and outlines future research topics
in the context of preference disaggregation approaches.
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6.2 The UTA Family of Models

6.2.1 UTA and UTASTAR Methods

The UTA method initially proposed by Jacquet-Lagrèze and Siskos [14] originates
an entire family of preference disaggregation models during the last thirty years.
As already noted, the main objective of the method is to infer one or more additive
value functions from a given ranking on a reference set A R.

The original UTA method assumes an additive value function of the following
form:

u(g) =
n

∑
i=1

ui(gi) (6.3)

subject to normalization constraints:⎧⎨⎩
n

∑
i=1

ui(g∗i ) = 1

ui(gi∗) = 0 ∀i = 1,2, . . . ,n
(6.4)

where ui (i = 1,2, ...,n) are the marginal value functions.
As discussed by Siskos et al. [38], this additive formula satisfies the axioms of

comparability, reflexivity, transitivity of choices, continuity, and strict dominance,
since ui(gi)≥ 0 holds and dui/dgi > 0 is assumed (see [19] for a detailed discussion
about the properties of an additive utility model).

The method estimates the aforementioned value functions using linear goal pro-
gramming techniques so that the ranking(s) obtained through these functions on A R

is (are) as consistent as possible with the one given by the DM. Thus, introducing a
potential error σ(a) relative to AR, the value of each action may be written as:

u′[g(a)] =
n

∑
i=1

ui[gi(a)]+ σ(a) ∀a ∈ AR (6.5)

The implementation of the UTA algorithm requires the use of linear interpola-
tion in order to approximate the marginal value functions u i in a piecewise linear
form. Moreover, taking into account the DM’s ranking on A R = {a1,a2, ...,am}, the
reference actions are “rearranged” from the best (a 1) to the worst action (am).

As emphasized by Jacquet-Lagrèze and Siskos [14], DM’s ranking has the form
of weak order R, and thus, given the transitivity of R, it is possible to avoid unnec-
essary comparisons on AR. Thus, assuming that

Δ(ak,ak+1) = u′[(g(ak)]−u′[(g(ak+1)] (6.6)

the comparison of every pair of consecutive actions (a k,ak+1) gives the following
conditions: {

Δ(ak,ak+1)≥ δ iff ak � ak+1

Δ(ak,ak+1) = 0 iff ak ∼ ak+1
(6.7)
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where δ is a small positive number so as to discriminate significantly two successive
equivalence classes of R.

Taking into account the previous assumptions and notations, the following Linear
Program (LP) is used in order to estimate the marginal value functions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[min] F = ∑
a∈AR

σ(a)

s.t. Δ(ak,ak+1)≥ δ if ak � ak+1
Δ(ak,ak+1) = 0 if ak ∼ ak+1

}
∀k

ui(g
j+1
i )−ui(g

j
i )≥ si ∀ i and j

n

∑
i=1

ui(g∗i ) = 1

ui(gi∗) = 0, ui(g
j
i )≥ 0, σ(a)≥ 0 ∀a ∈ AR, ∀i and j

(6.8)

where the last two constraints refer to the monotonicity and normalization con-
straints of ui, respectively (with si ≥ 0 indifference thresholds defined on each cri-
terion).

On the other hand, the UTASTAR method proposed by Siskos and Yannacopou-
los [40] may be considered as an improved version of the original UTA model, since
it proposes two important modifications in the UTA algorithm:

• Double error function: the single error σ(a) is replaced by a double positive error
term (i.e. σ +(a) and σ−(a) being the overestimation and the underestimation
error, respectively) in order to assure the minimization of the objective function
of LP (6.8).

• Transformation of the variables: the original u i(g
j
i ) variables of LP (6.8) are re-

placed by the new transformation variables wi j , which represent the successive
steps of the marginal value functions ui, in order to reduce the size of LP (6.8)
by removing the monotonicity constraints of u i.

Siskos and Yannacopoulos [40] note that the UTASTAR algorithm perform better
compared to the original UTA method based on a variety of experimental data and
taking into account a number of comparison indicators (e.g. number of the necessary
simplex iterations for arriving at the optimal solution, Kendall’s τ between the initial
weak order and the one produced by the estimated model, and the total sum of errors
as the indicator of dispersion of the observations).

6.2.2 Extensions of the UTA Method

There are several variants and extensions of the UTA/UTASTAR method that try to
model different forms of DM’s preferences, apply different optimality criteria in the
aforementioned LP formulation, or adopt the method in different decision problems.

As presented in the previous section, the LP formulation is a simple but powerful
modeling approach that allows considering alternative types of global preference
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expressed by the DM. For example, Jacquet-Lagrèze and Siskos [14] propose to
infer u[g(a)] from pairwise comparisons among the actions of the A R. The intensity
of the DM’s preferences may also be considered in the formulation of LP (6.8) by
adding a series of constraints of the following type [38]:

Δ(a,b)−Δ(b,c)≥ ϕ (6.9)

where ϕ is a measure of preference intensity, which implies that the preference of
alternative a over alternative b is stronger than the preference of b over c.

Similar modeling approaches have been proposed by Despotis and Zopounidis
[6] and Oral and Ketanni [23], where a ratio scale is used to express intensity of
preferences.

Regarding the different optimality criteria, it should be emphasized that this prob-
lem is discussed by Jacquet-Lagrèze and Siskos [14] in the development of the orig-
inal UTA method. They propose, for example, the following alternatives:

1. Maximize the Kendall’s τ between the ranking provided by the DM and the rank-
ing given by the model (i.e. minimize the number of violated pairs between these
rankings).

2. Weight the potential errors in F taking into account a different degree of confi-
dence in each ranked action.

Alternative desired properties of ui may also lead to different variations of the
UTA/UTASTAR method. In this context, Despotis and Zopounidis [6] present ex-
tensions of the method in the case of non-monotonic marginal value functions or
other additional properties of the assessed value functions (e.g. concavity).

An analytical presentation and discussion of other variants of the UTA and
UTASTAR methods may be found in Jacquet-Lagrèze and Siskos [15] and Siskos
et al. [38]. The most important of these extensions include:

• The stochastic UTA method developed in the framework of multicriteria decision-
aid under uncertainty, where the adopted aggregation model has the form of a von
Neumann-Morgenstern additive utility function [33, 34].

• The UTA-type sorting methods, which are developed in the context of problem
statement β (sorting the actions into predefined and preference-ordered cate-
gories), like the UTADIS family of models [7, 47, 49] and the MHDIS method
[48].

• The incorporation of the UTA method in the solution process of multiobjective
programming problems (see for example the works of Stewart [43], Jacquet-
Lagrèze et al. [12], Siskos and Despotis [35]).

• The MACBETH method (Measuring Attractiveness by a Categorical Based Eval-
uation Technique) proposed by Bana e Costa and Vansnick [1], which infers a
single value function from pairwise comparisons externalized from the DM on
a single criterion in terms of criterion attractiveness. The same procedure is re-
peated for each criterion and, finally for the whole set of criteria in order to infer
the criteria weights. The overall evaluation model is an additive value model.
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Finally, it should be emphasized that the main principles of the aggregation-
disaggregation approach may be adopted in other MCDA fields (e.g. outranking
relation methods, ordinal regression analysis), where the problem is to extract DM’s
preferences (value system, model parameters, etc) in a consistent way. In general,
as mentioned by Siskos et al. [38] this philosophy is also employed in other non-
classical MCDA approaches, like rough sets, machine learning, and neural net-
works, in order to infer some form of a decision model (a set of decision rules
or a network) from given decision results involving assignment examples, ordinal
or measurable judgments.

6.3 Post-optimality Analysis and Robustness

6.3.1 Post-optimality Analysis

The stability analysis is considered as an important part of the algorithm of the UTA
methods, since all these approaches are based on a LP modeling and thus often the
problem of multiple or near optimal solutions appears.

In the classical approach of the UTA/UTASTAR method the stability analysis is
considered as a post-optimality analysis problem, based on a heuristic method for
near optimal solutions search [37]. These solutions have some desired properties,
while the heuristic technique is based on the following:

• In several cases, the optimal solutions are not the most interesting, given the
uncertainty of the model parameters and the preferences of the decision-maker
[44].

• The number of the optimal or near optimal solutions is often huge. Therefore an
exhaustive search method (reverse simplex, Manas-Nedoma algorithms) requires
a lot of computational effort.

In particular, if the optimum F ∗ = 0, the polyhedron of admissible solutions for
ui is not empty and many value functions lead to a perfect representation of the weak
order R. Even when the optimal value F ∗ > 0, other solutions, less good for F , can
improve other satisfactory criteria, like Kendall’s τ . In any case, as emphasized by
Jacquet-Lagrèze and Siskos [14], it is crucial to explore the post-optimal solutions
space defined by the polyhedron:{

F ≤ F∗+ k(F∗)
all the constraints of LP (6.8)

(6.10)

where k(F∗) is a positive threshold, which is a small proportion of F ∗.
The previous polyhedron is partially explored in the original UTA method by

solving the following LPs:
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[min] ui(g∗i )
in
polyhedron (6.10)

and

⎧⎨⎩
[max] ui(g∗i )
in
polyhedron (6.10)

∀i = 1,2, . . . ,n (6.11)

As noted by Siskos et al. [38], the solutions of the above LPs give the internal
variation of the weight of all criteria gi, and consequently give an idea of the im-
portance of these criteria in the DM’s preference system. The final solution of the
problem is calculated as the average of the previous LPs; this average solution is
less representative, if a large variation of the provided solutions appears.

However, the efficiency of the aforementioned optimization procedure is based
on the number and the meaning of the criteria introduced in the model. As men-
tioned by [32], when the number of criteria is small, the previous 2n LPs may be
solved, otherwise it is possible to solve only n LPs (maximization of u i(g∗i )). Nev-
ertheless, if there is an a priori typology of the criteria, i.e. when the criteria can
be grouped into different classes determining different policies of the DM, then it is
possible to minimize or maximize the sum of the weighting factors of the criteria for
each policy. In this way, the value systems obtained by the post-optimality analysis
are able to show the strengths and weaknesses of these policies, in relation to the
global policy and to the DM’s behavior.

Other approaches in the post-optimality analysis process of the UTA methods
may be also found in the literature. These approaches propose the use of alternative
optimality criteria during the exploration of the polyhedron (6.10), like the min-
imization of the errors’ dispersion, i.e. Tchebycheff criterion [5], or the optimal
assessment of the δ and s parameters in the context of the UTAMP models [2, 3].

6.3.2 Robustness in UTA-type Models

Roy [27] recently considers the robustness as a tool of resistance of decision analysts
against the phenomena of approximations and ignorance zones. In fact, robustness
appears as a tool to analyze the gap between the “true” DM’s model and the one
resulting from a computational mechanism. It is important to note that the robustness
analysis should be distinguished from the sensitivity analysis, which is marginal and
depends each time on the changes of one or more parameters. Moreover, it should
be emphasized that robustness refers mainly to the decision model, in the light of
the assertion “robust models produce a fortiori robust results”. However, robustness
should also refer to the results and the decision support activities (e.g. conclusions,
argumentation).

From the previous comments, it is clear that robustness should be measured and
controlled in any decision-aid activity. However, this need poses a number of new
problems referring to the measurement of the robustness of a decision model, the
development of appropriate robustness indicators, and the potential improvement of
robustness. Moreover, this measurement process should always take into account
the different perspectives of robustness:
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1. Analyst’s point of view (is a decision model reliable?)
2. DM’s point of view (is a decision model acceptable?)

As already mentioned, in the UTA family of models, robustness deals with LP,
which is the main mechanism to infer decision models. In particular robustness
refers to the post/near-optimality analysis, as presented in the previous section.

The general methodological framework for applying robustness analysis in the
context of preference disaggregation approaches is presented in Figure 6.2 and con-
sists of the following main steps:

1. The applied preference disaggregation method is used to infer a representative
additive value model based on AR. This step is discussed in the previous sections
of this chapter.

2. The inconsistencies between the DM’s preferences and the results of the disag-
gregation method are identified and removed using interactive techniques with
the DM. An example methodological approach for this is given in Figure 6.3,
while further details may be found in [36, 41].

3. A robustness measure is established.
4. If the robustness measure, established in step 3, is judged satisfactory by the

analyst, the model is proposed to the DM for application on the set A and the
process is terminated. Otherwise, the process goes to step 5.

5. Alternative rules of robustness analysis are examined and the process goes back
to step 3.

Particularly for the assessment of the robustness measures (step 3), it should
be noted that the robustness of the decision model depends on the post-optimality
analysis results, and especially on the form and the extent of the polyhedron of
multiple/near optimal value functions. In order to handle this polyhedron, the fol-
lowing heuristic is applied: during post-optimality analysis 2n LPs are formulated
and solved, which maximize and minimize repeatedly u i(g∗i ). The observed vari-
ance in the post-optimality matrix indicates the degree of instability of the results.
Thus, following the approach of Grigoroudis and Siskos [11] an Average Stability
Index (ASI) may be assessed as the mean value of the normalized standard deviation
of the estimated values ui(g∗i ). Alternatively, instead of exploring only the extreme
values of ui(g∗i ), the post-optimality analysis may investigate every value of each
criterion ui(g

j
i ). In this case, during the post-optimality stage, T = 2 ∑i(αi−1) LPs

are formulated and solved, which maximize and minimize repeatedly u i(g
j
i ) and the

ASI for the i-th criterion is assessed as follows:

ASI(i) = 1− 1
αi−1

αi−1

∑
j=1

√√√√T
T

∑
k=1

(
u jk

i

)2−
(

T

∑
k=1

u jk
i

)2

T
αi−1

√
αi−2

(6.12)

where αi is the number of points that are estimated in the interval [g i∗,g∗i ] and u jk
i is

the estimated value of ui(g
j
i ) in the k-th post-optimality analysis LP ( j = 1,2, ...,α i).
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No

Yes

Fig. 6.2 Robustness analysis in preference disaggregation approaches

Using formula (6.12), the global robustness measure may be assessed as the av-
erage of the individual ASI(i) values:

ASI =
1
n

n

∑
i=1

ASI(i) (6.13)

It should be noted that all the previous ASI measures are normalized in the in-
terval [0,1], and thus high levels of robustness are achieved when ASI is close to
1.

On the other hand, the alternative rules that should be applied if the analyst is not
satisfied with the value of the ASI measures (step 4), may include the following:

• Addition of new global preference judgments (e.g. pairwise comparisons, pref-
erence intensities as mentioned in section 6.2.2, or even new reference actions).

• Visualization of the observed value variations to support the DM in choosing
his/her own model (see the example below).

• Enumeration and management of the hyperpolyhedron vertices (Manas-Nedoma
algorithm, Tarry’s method, etc.) in post-optimality analysis.
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Fig. 6.3 Removal of inconsistencies in UTA methods [15]

• Building new preference relations on the set A during the extrapolation phase
(see the next section).

• Computation of the barycentre as a representative model.

In order to illustrate the aforementioned methodological approach, let us consider
a simple example where an ordinal evaluation scale is used in a single criterion
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case. Suppose that the evaluation scale has the following form: b=Bad, m=Medium,
g=Good, and e=Excellent. The problem is to estimate the DM’s value function u
on the scale {b, m, g, e}. Of course, this naı̈ve example is not realistic, but it is
presented here in order to illustrate the proposed robustness approach.

Taking into account the normalization constraints of u, we have u(b) = 0 and
u(e) = 1, while u(m) and u(g) are the model parameters that should be estimated.
Suppose also, that the DM’s preferences may be modeled according to the following
relations:

1. The value of u(m) should not be more than 20% and less than 10%:

0.1≤ u(m)≤ 0.2

2. The difference between “good” to “excellent” is at least 2 times more important
than the difference between “medium” and “good”:

u(e)− u(g)
u(g)−u(m)

≥ 2⇔ 1−u(g)≥ 2u(g)−2u(m)⇔ 3u(g)−2u(m)≤ 1

3. The indifference threshold on g is selected so as s = 0.01, thus:

u(g j+1)−u(g j)≥ s⇒
⎧⎨⎩

u(m)−u(b)≥0.01
u(g)−u(m)≥0.01
u(e)−u(g)≥0.01

⇒
⎧⎨⎩

u(m)≥0.01 (redundant)
u(g)−u(m)≥0.01

1−u(g)≥0.01 (redundant)

⇒ u(g)− u(m)≥0.01

Using the previous constraints and introducing the error variables, the preference
disaggregation LP has the following form:

min z = z1 + z2 + z3

s.t. −u(m) + u(g) ≥ 0.01
u(m) + z1 ≥ 0.1
u(m) − z2 ≤ 0.2

−2u(m) + 3u(g) − z3 ≤ 1
u(m) , u(g) , z1 , z2 , z3 ≥ 0

The previous LP gives z∗ = 0, while it should be emphasized the existence of op-
timal solutions, as indicated by the polygon ABCD in Figure 6.4. The solutions ob-
tained during the post-optimality analysis, where 4 LPs are formulated and solved,
are presented in Table 6.1. Also, the barycentral solution, along with the variation
of the value function in post-optimality analysis is given in Figure 6.5. Finally, us-
ing formula (6.12), the proposed robustness measure for the examined criterion is
calculated as ASI = 0.8059.

Although this value of ASI may be considered as acceptable by the analyst,
suppose that the DM is able to give new global preference judgments. For exam-
ple, if the value of “good” is assumed to be no less than 40%, the new constraint
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Fig. 6.4 Multiple optimal solutions for the numerical example

Table 6.1 Post-optimality analysis results

u(m) u(g)

[min] u(m) 0.10 0.40
[max] u(m) 0.20 0.21
[min] u(g) 0.10 0.11
[max] u(g) 0.20 0.47

u(m) ≥ 0.4 should be added in the previous LP. The new optimal solution is also
z∗ = 0, but the optimal solution space, as shown in Figure 6.6 is now defined by the
triangle CDE. In this case, the ASI increases from 80.59% to 91.97%. Figure 6.7
presents the revised barycentral solution for the simple numerical example, which
is more robust than the initial one. In any case, this Figure is able to visualize the
variability of the value function in order to support the DM in choosing his/her own
model.

Consequently, robustness may be considered as a gap between the “true” DM’s
model and the one resulting from a computational mechanism. Robustness is also a
decision support tool to decide about:

• the decision model and
• the answers to the decision problematic.
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b m g e
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Fig. 6.5 Visualization of multiple decision models for the numerical example

Although research about robustness could continue taking into account the
methodological issues highlighted in this chapter, the proposed stability index (ASI)
may provide a helpful robustness measure from post-optimality analysis stage in
any preference disaggregation method.
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Fig. 6.6 Revised optimal solution space for the numerical example
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Fig. 6.7 Revised decision models’ space for the numerical example

6.3.3 Building Preference Relations

An important alternative rule applicable in the proposed robustness analysis of
aggregation-disaggregation approaches refers to the assessment of preference re-
lations by exploiting the results of post-optimality analysis. Thus, such a rule is able
to deal with the problem of multiple optimal solutions.

In this context, Siskos [32] proposes the assessment of fuzzy outranking relations
based on the results of the UTA models. In this approach, the term “fuzzy” refers to
the fuzzy aspect of the DM’s preferences. In particular, these fuzzy relations analyze
the preference relation R and they are based on a system of additive value functions
estimated by a UTA model. It should be mentioned that a fuzzy outranking relation
is a fuzzy subset of the set of all pairs of actions, i.e. a fuzzy subset of the set A×A,
characterized by a membership function d(A×A) called the degree of credibility of
the outranking [25]. The main objective of the approach is to evaluate this degree
of superiority of one action to another, according to the information given by the
criteria and the a priori preferences of the DM.

As already noted, post-optimality analysis offers different possibilities to restitute
the weak order R by additive value functions. Thereby, Siskos [32] introduces the
notion of an additive value system, which is represented by a set of indexed value
functions U = {u1,u2, . . . ,ui, . . .} and must satisfy the following rules:

• ui must give a satisfactory degree of consistency between the weak order that it
defines over AR and the initial weak order R.

• The value functions of the system must be as characteristic as possible of the
polyhedron (6.10).

It should be emphasized that using the heuristic approach of exploring the multi-
ple/near optimal solutions space presented in the previous section (see LPs (6.11)),
the convex set of value functions defined by the polyhedron (6.10) becomes a dis-
crete and finite set.
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So, the problem is to synthesize the results on the set A, taking into account this
system of additive value functions U in order to obtain a general rule of decision.
According to Siskos [32], this synthesis may be done in a simple way, considering
the majority or concordance rule on the value functions of the system. In particular,
he suggests calculating the percentage of value functions for which an action is
better or equivalent than another.

The degree of credibility, which is actually the membership function of the fuzzy
relation in A×A, is defined by the following formula [32]:

d(a,b) =

∣∣u/ui[g(a)]−ui[g(b)]≥ 0
∣∣

|U | (6.14)

where
∣∣u/ui[g(a)]−ui[g(b)]≥ 0

∣∣ is the number of value functions for which a� b
or a∼ b and |U | is the number of value functions of the system U .

It is easy to see that 0 ≤ d(a,b) ≤ 1 , while it should be mentioned that the
previous fuzzy relation enables to measure the outranking degree of one action by
another, using only the ordinal structure determined over A by the additive value
functions of the system U .

Fuzzy preference relations have been extensively studied in the literature in or-
der to analyze their properties and examine the conditions under which they can
be applied in decision-making process. So, taking into account the aforementioned
definitions and assumptions, the following fuzzy preference relations may be intro-
duced [24]:

1. Fuzzy indifference relation

μe(a,b) = min{d(a,b),d(b,a)} (6.15)

2. Fuzzy strict preference relation

μ s(a,b) =
{

d(a,b)−d(b,a) if d(a,b)≥ d(b,a)
0 otherwise

(6.16)

Using the definition of μ s, the fuzzy nondomination degree of an action is given
by:

μND(a) = min
b∈A
{1− μ s(b,a)}= 1−max

b∈A
{μ s(b,a)}

= 1−max
b∈A
{d(b,a)−d(a,b)} (6.17)

The value μ ND(a) represents the degree to which the action a is dominated by
no one of the other actions in A [24].

So, under problematic α , the best action a∗ may be selected by maximizing
μND(a) on A. If μ ND(a)∗ = 1, then a full robustness is achieved, otherwise the
robustness of a∗ is characterized by a value between 0 and 1. Similarly, under prob-
lematic γ , the ranking of actions from A can be made according to the values of the
μND(a) indicator.
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The previous methodological approach is also adopted by the UTA GMS and GRIP
models, which are also based on the whole set of additive value functions “compat-
ible” with the given preference information.

In particular, the UTAGMS method requires a set of pairwise comparisons on AR

as the main input preference information. Using LP techniques, the method extrap-
olates the results on A by assessing two relations:

• The necessary weak preference relation which holds for any two alternatives
a,b ∈ A, if and only if all compatible value functions give to a a value greater
than the value given to b.

• The possible weak preference relation which holds for this pair a,b ∈ A, if and
only if at least one compatible value function give to a a value greater than the
value given to b.

The previous preference relations follow the main principles of the aforemen-
tioned fuzzy outranking relations proposed by Siskos [32]. In fact they may be con-
sidered as two special cases of the this fuzzy preference relation, with d(a,b) = 1
for the necessary relation and 0 < d(a,b)≤ 1 for the possible relation.

These preference relations are used the UTAGMS method in order to produce
two rankings on the set A, such that for any pair of solutions a,b ∈ A: (1) in the
necessary ranking, a is ranked at least as good as b, if and only if, u(a) ≥ u(b)
for all value functions compatible with the preference information and (2) in the
possible ranking, a is ranked at least as good as b, if and only if, u(a)≥ u(b) for at
least one value function compatible with the preference information.

As noted by Greco et al. [9] the necessary ranking can be considered as robust
with respect to the preference information: any pair of solutions is compared in the
same way whatever the additive value function compatible with the preference infor-
mation is. So, when no preference information is given, the necessary ranking boils
down to the dominance relation, and the possible ranking is a complete relation. The
addition of new pairwise comparisons on AR is able to enrich the necessary ranking
and impoverish the possible ranking, so that they converge with the incorporation of
this preference information. Thus, the method is intended to be used interactively,
with an increasing reference set AR and a progressive statement of pairwise compar-
isons.

In the same context, Figueira et al. [8] propose the GRIP (Generalized Regression
with Intensities of Preference) method as an extension of the UTA GMS approach,
which infers this set of compatible additive value functions, taking into account not
only a preorder on a set of alternatives, but also the intensities of preference among
alternatives. These comparisons may be expressed comprehensively (on all criteria)
and/or partially (on each criterion).

The previous methods, although able to deal with the robustness problem, can-
not always provide a “final solution” to the DM. For this reason, Greco et al. [10]
propose a procedure to explore the set of compatible value functions and identify
the “most representative” one. Their idea is to select among compatible value func-
tions the one that better highlights the necessary ranking (maximize the difference
of evaluations between actions for which there is a preference in the necessary rank-
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ing). Alternatively, they propose to minimize the difference of evaluations between
actions for which there is not a preference in the necessary ranking.

6.4 Group and Collective Decision Approaches

Most of the real-world decision-making problems involve multiple actors having
different viewpoints on the way the problem should be handled and the decision
to be made [17]. In these situations it is common to encounter conflict between the
opinions and desires of the group members. This conflict may arise because multiple
DMs have different value and informational systems (objectives, criteria, preference
relations, communication support, etc). This is also noted by Roy [26] as “distinct
value systems”, e.g. different ethical and or ideological beliefs, different specific
objectives, or different roles within an organization. In this context, MCDA meth-
ods have been used in numerous previous studies in order to represent the multiple
viewpoints of the problem, to aggregate the preferences of the multiple DMs, or to
organize the decision process (see [22] for a detailed review of MCDA methods in
group decision support systems).

The family of the UTA methods has been also used in several studies of con-
flict resolution in multi-actor decision situations [15]. These studies refer to the
development and application of group decision or negotiation support systems
[16, 28, 29, 30], or conflict resolution approaches for single actors [13]. Beside
UTA methods, Matsatsinis and Samaras [22] review several other aggregation-
disaggregation approaches incorporated in group decision support systems.

While group decision approaches aim to achieve consensus among the group of
DMs or at least attempt to reduce the amount of conflict by compensation, collec-
tive decision methods focus on the aggregation of the DMs’ preferences. Therefore,
in the latter case, the collective results are able to determine preferential inconsis-
tencies among the DMs, and to define potential interactions (trade-off process) that
may achieve a higher group and/or individual consistency level.

The UTA method may be extended in the case of multiple DMs, taking into
account different input information (criteria values) and preferences for a group of
DMs. Two alternative approaches may be found in the literature:

1. Application of the UTA/UTASTAR methods in order to optimally infer marginal
value functions of individual DMs; the approach enables each DM to analyze
his/her behavior according to the general framework of preference disaggrega-
tion.

2. Application of the UTA/UTASTAR methods in order to assess a set of collective
additive value functions; these value functions are as consistent as possible with
the preferences of the whole set of DMs, and thus they are able to aggregate
individual value systems.

In the context of the first approach, Matsatsinis et al. [21] propose a gen-
eral methodology for collective decision-making combining different MCDA ap-
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proaches. As shown in Figure 6.8, in the first step of the methodology, the UTAS-
TAR algorithm is implemented in order to assess individual’s preference systems.
Then, the values of the alternatives are aggregated with some averaging operator
(normalized relative utility values). However, such representations of group prefer-
ences were found no to guarantee neither a consensus nor a good compromise, since
individual assessments may be considerably different. Therefore, Matsatsinis et al.
[21] incorporate in their proposed methodology several criteria in order to measure
the DMs’ satisfaction over the aggregated rank-order of alternatives.

The UTA/UTASTAR method may also be applied in the problem of inferring
collective preference systems. Consider for example the case of q DMs evaluating
m alternatives (ak with k = 1,2, ...,m) according to a set of n criteria (gi with i =
1,2, ...,n) which are assessed in the interval [gi∗= g1

i ,g
2
i , ...,g

∗
i = gαi

i ]. Furthermore,
suppose that gr

i (ak) is the evaluation of the r-th DM for the k-th alternative on the
i-th criterion and Rr(ak) is the ranking of the the k-th alternative given by the r-th
DM.

Using the previous notations, formula (6.5), which represents the global value of
actions in terms of marginal values, may be rewritten as follows:

u′[gr(a)] =
n

∑
i=1

ui[gr
i (a)]−σ+

r (a)+ σ−r (a)∀a ∈ AR (6.18)

where a double error function is included, similar to the UTASTAR method.
Respectively, taking into account the multiple DMs, formula (6.6) becomes:

Δ r(ak,ak+1) = u′[(gr(ak)]−u′[(gr(ak+1)] (6.19)

and thus, the LP (6.8) may be written as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[min] F1 =
q

∑
r=1

m

∑
k=1

[
σ+

r (a)+ σ−r (a)
]

s.t. Δ r(ak,ak+1)≥ δ if ak � ak+1
Δ r(ak,ak+1) = 0 if ak ∼ ak+1

}
∀k,r

ui(g
j+1
i )−ui(g

j
i )≥ si ∀ i and j

n

∑
i=1

ui(g∗i ) = 1

ui(gi∗) = 0, ui(g
j
i )≥ 0, σ+

r (a), σ−r (a)≥ 0 ∀ i, j,k,r

(6.20)

This LP minimizes the sum of (absolute) errors for all DMs, which in several
cases may not provide a “compromise” solution. Therefore, different optimality cri-
teria in the previous LP formulation may be considered, given that the main ob-
jective of such methodology is to minimize potential individual deviation from the
inferred group preference system.

For example, the following LP minimizes the maximum sum of errors for every
DM (i.e. variance of errors to DMs):
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Fig. 6.8 Preference disaggregation approach for collective decision-making [21]
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[min] F2 = σmax

s.t. all the constraints of LP (6.20)
m

∑
k=1

[σ+
r (ak)+ σ−r (ak)]≤ σmax ∀r

(6.21)

Another approach is to consider the number of violated pairs of R r (equivalent to
Kendall’s τ). In this case, similarly to Jacquet-Lagrèze and Siskos [14], a set of new
binary variables should be introduced:

γr
ab =

{
0 if u[gr(a)]−u[gr(b)]≥ δ (the judgment is respected)
1 otherwise (the judgment is violated)

(6.22)

Thus the following LP minimizes the sum of violated judgments for all DMs:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[min] F3 =
q

∑
r=1

∑
(a,b)∈Rr

γr
ab

s.t.
n

∑
i=1
{ui[gr

i (ak)]−ui[gr
i (ak+1)]}+Mγr

ab ≥ δ if ar
k � ar

k+1

n

∑
i=1

{ui[gr
i (ak)]−ui[gr

i (ak+1)]}+Mγr
ab ≥ 0

n

∑
i=1

{ui[gr
i (ak)]−ui[gr

i (ak+1)]}+Mγr
ba ≤ 0

⎫⎪⎪⎬⎪⎪⎭ if ar
k ∼ ar

k+1

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
∀k,r

ui(g
j+1
i )−ui(g

j
i )≥ si ∀ i and j

n

∑
i=1

ui(g∗i ) = 1

ui(gi∗) = 0, ui(g
j
i )≥ 0, γ r

ab ∈ {0,1} ∀ i, j,r,(a,b) ∈ Rr

(6.23)

where M is a large number.
Finally, similarly to LP (6.21), the minimization of the maximum sum of violated

judgments for every DM may considered by the following LP:⎧⎪⎨⎪⎩
[min] F4 = γmax

s.t. all the constraints of LP (6.23)

∑
(a,b)∈Rr

γr
ab ≤ γmax ∀r

(6.24)

These alternative LP formulations may provide different collective results, and
thus provide alternative bases for the compensation process among the DM’s, which
is usually applied in order to achieve consensus. In order to illustrate the previous
modeling approaches, consider the simple example of Table 6.2, where 3 DMs eval-
uate a set of 7 alternatives (cars) using 6 criteria. As shown, the criteria evaluations
are the same for all DMs, except for the “design” criterion, where the DMs express
different preferences (this particular criterion is evaluated using a 5-point ordinal
scale). Also, Table 6.3 shows the different rankings given by the set of DMs.



210 Y. Siskos, E. Grigoroudis

Table 6.2 DMs’ evaluations

Alternatives
Horse power Max Speed Acceleration Consumption Design Price

(CV) (km/h) (0-100km/h) (lt/100km) DM1 DM2 DM3 (e)

Daewoo Matiz 75 152 16 6.7 **** * ** 19000
Opel Agila 80 155 13 6.7 **** **** **** 10500
Hyundai Atos 55 142 15 6.5 ** ***** ***** 18400
Daihatsu Cuore 60 140 13 6.5 * ** * 17500
Ford CA 70 155 15 6.6 ***** *** **** 18600
Suzuki Wagon 50 145 19 6.6 * **** ** 19000
Fiat Seicento 55 150 14 6.5 *** *** *** 18300

Table 6.3 DMs’ rankings

Ranking

Alternatives DM1 DM2 DM3

Daewoo Matiz 6 4 6
Opel Agila 1 5 3
Hyundai Atos 3 2 1
Daihatsu Cuore 4 1 2
Ford CA 5 2 4
Suzuki Wagon 2 4 3
Fiat Seicento 6 3 5

The previous alternative LP models give different optimization results and rank-
ings for the set of DMs as shown in Tables 6.4–6.5. These results correspond to
different collective solutions, and thus they are able to determine preferential incon-
sistencies among the DMs, and define potential interactions (trade-off process) that
may achieve a higher group and/or individual consistency level. For example, Fig-
ure 6.9 presents the alternative estimated values for the set of alternatives for every
DM.

Trade-off analysis can be used in order to reduce preferential inconsistencies
among the DMs. For example, the DMs’ preferences that may be modified include
the criteria evaluations gr

i (ak) or the ranking of alternatives Rr(ak). The process can
be easily implemented using the following approach:

1. Search error variables (σ +
r ,σ−r ,γr

ab) with non zero values.
2. Find gr

i (ak) and/or Rr(ak) that should be modified.
3. Propose changes that reduce inconsistencies, while creating new ones.

In any case, it should be emphasized that the UTA method can be easily extended
in the case of multiple actors, taking advantage of the flexibility of the LP modeling.
Moreover, the different optimality criteria may lead to different results and thus they
may offer alternative solutions to start a negotiation dialogue.
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Table 6.4 Optimization results for the alternative LPs

Optimality criteria SAE (F1) MAE (F2) SVJ (F3) MVJ (F4)

Sum of errors 0.892 1.05 2.206 1.90
Maximum error per DM 0.392 0.35 1.277 1.15
Sum of violated judgments 14 12 6 6
Maximum violated judgments per DM 15 14 3 2

Table 6.5 Rankings from the alternative LPs

Ranking (SAE) Ranking (MAE) Ranking (SVJ) Ranking (MVJ)

Alternatives DM1 DM2 DM3 DM1 DM2 DM3 DM1 DM2 DM3 DM1 DM2 DM3

Daewoo Matiz 7 7 7 7 7 7 2 6 5 2 2 2
Opel Agila 2 3 3 4 4 4 6 7 7 7 7 7
Hyundai Atos 4 4 4 3 3 3 5 1 1 6 1 1
Daihatsu Cuore 1 1 1 2 2 2 4 2 4 4 5 5
Ford CA 5 5 5 5 5 5 1 3 2 1 4 3
Suzuki Wagon 3 2 2 1 1 1 7 5 6 3 3 4
Fiat Seicento 6 6 6 6 6 6 3 4 3 5 6 6
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Fig. 6.9 Alternatives’ values for every DM

6.5 Conclusions and Future Research

The aggregation-disaggregation philosophy is not only an important field of MCDA,
but its principles can be found in other decision-making areas. The main aim of all
these approaches is to infer global preference models from preference structures, as
directly expressed by one or more DMs. In this context, the UTA methods not only
adopt the preference disaggregation principles, but they may also be considered as
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the main initiative and the most representative example of preference disaggregation
theory.

The new research developments of aggregation-disaggregation approaches pre-
sented in this chapter cover a variety of topics, like post-optimality analysis, robust-
ness analysis, group and collective decision-making. They focus mainly on the UTA
family of models and highlight their most important advantages (e.g. flexible mod-
eling, analytical results, and alternative ways to reduce preferential inconsistencies).

Besides the numerous previous studies, additional research efforts are necessary
in order to further exploit the potentials of the preference disaggregation philosophy
within the context of MCDA. These efforts may include the development of more
sophisticated aggregation models, the further exploitation of the provided results,
or the adoption of aggregation-disaggregation philosophy in other decision-making
approaches.
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RAIRO Recherche Opérationelle, 14:53–82, 1980.

32. J. Siskos. A way to deal with fuzzy preferences in multicriteria decision problems. European
Journal of Operational Research, 10(3):314–324, 1982.
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