
Chapter 11
Goal Programming: From Constrained
Regression to Bounded Rationality Theories

Jacinto González-Pachón and Carlos Romero

Abstract The purpose of the paper is to provide a critical overview of the decision-
making approach known as Goal Programming (GP). The paper starts by tracing the
origins of GP back to work by Charnes and Cooper at the end of the 1950s in fields
like non-parametric regression, and the analysis of contradictions in non-solvable
linear programming problems. After chronicling its evolution from its original form
into a powerful decision-making method, the GP approach is linked with the Simo-
nian bounded rationality theories based upon the “satisficing” concept. In this way,
several GP models are presented as fruitful vehicles for implementing this kind of
“satisficing” philosophy. The last part of the paper presents some critical issues and
extensions of the GP approach. The chapter ends by discussing potential extensions,
as well as GP’s role for solving complex real-world problems in the near future.

11.1 A Historical Sketch

The original idea of Goal Programming (GP) appears in a paper by Charnes, Cooper
and Ferguson published in Management Science in 1955 [19]. The paper was aimed
at developing an executive compensation formula for a division of a major company

for the coefficients of some variables into the model made it impossible to solve
by using classic regression analysis techniques. Given the insufficiency of classic
statistical techniques, they formulated a “constrained regression” model, minimiz-
ing the sum of the absolute deviations. Since absolute deviation is a non-linear form
that cannot be straightforwardly optimised, they linearised the model by introducing
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negative and positive deviation variables for the first time in the literature. The sem-
inal value of this paper is enormous for at least two reasons. First, it is the embryo
of the future GP methodology, although the term GP is not explicitly used. Second,
it is the outset of non-parametric regression methods.

Charnes and Cooper used the term GP explicitly for the first time six years later
in Appendix B of their classic book Management Models and Industrial Applica-
tions of Linear Programming , under the heading of “Basic Existence Theorems and
Goal Programming”. Paradoxically, the two fathers of GP do not address a proper
decision-making problem with multiple goals but analyse the contradictions in non-
solvable linear programming problems. In other words, they use GP as an approach
for determining a compromise solution to an infeasible linear programming prob-
lem.

In the early 1960s, Ignizio [32] had to solve a complex problem in the field of
engineering design with the deployment of the antenna system for the Saturn/Apollo
moon landing mission. This problem comprehended multiple goals, non-linear func-
tions, as well as integer variables. With the help of a GP formulation, he was able to
obtain implementable solutions.

Charnes et al. [20] demonstrated the potential of GP in financial and accounting
problems. Ijiri [39] developed mathematical techniques, like the inverse generalized
matrix to deal with preemptive priorities. Charnes et al. [18] formulated GP mod-
els to plan a company’s advertising campaign. Finally, in 1969 Jaaskelainen [40]
proposed a GP model for scheduling production, employment and inventories.

Two books published in the seventies and solely devoted to GP [33, 46] had a
seminal influence on the development of this approach. In the 1970s other key pa-
pers appeared introducing refinements and extensions of the GP approach like: inter-
active GP, fuzzy GP, interval GP, multidimensional dual, algorithmic improvements,
computer codes, etc. All these theoretical efforts fed a real explosion of applied pa-
pers, successfully addressing key decision-making problems through GP.

Some surveys and expository presentations of GP are, in chronological order,
Ignizio [34], Zanakis and Gupta [67], Romero [53], Schniederjans [58], Tamiz et al.
[63], Lee and Olson [47], Aouni and Kettani [3], Jones and Tamiz [43], Ignizio and
Romero [38], and Caballero et al. [7].

11.2 Goal Programming and Bounded Rationality Theories

Modern GP is philosophically underpinned by the Simonian concept of satisficing
that leads to a bounded rationality theory deeply rooted in psychology. This marks a
clear departure from the classical theories based upon a perfect rationality paradigm.
It should be noted that the term satisficing does not appear in English dictionaries.
“Satisficing” is a Northumbrian term, chosen by Simon, to indicate the DM’s desire
to get “satisfying” and “sufficient” solutions to many real-world problems [60]. In
short, “satisficing” is a merger of the words “satisfying” and “sufficing”.
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Let us develop the satisficing argument. Simon [59] conjectured that in today’s
complex organizations the environment is defined by incomplete information, lim-
ited resources, conflicts of interests, etc. In such an environment the decision-maker
(DM) does not try to maximize anything, much less a well-defined objective func-
tion, as is assumed by classic theories of perfect rationality. Quite the contrary,
within this kind of realistic environment, the DM tries to get as close as possible to
a set of goals as determined by a set of satisficing targets, where satisficing means
established figures that are perhaps not the “best” but are satisfactory and sufficient
for the decision-making problem under consideration.

Although the Simonian satisficing solution seems to be the most fruitful philo-
sophical groundwork for GP, it is not the only one. Section 11.4 of this chapter
illustrates how GP can also be interpreted in terms of classic utility theory.

According to the satisficing philosophy, GP can be defined as an analytical ap-
proach devised to address decision-making problems where targets have been as-
signed to all the attributes and the DM is interested in minimizing, in one way or
another, the non-achievement of the respective goals. As a consequence of the sat-
isficing philosophy, the “goodness” of any solution to a decision-making problem is
represented by an achievement function rather than a utility function or similar con-
struct. This type of function measures the degree of non-achievement of the defined
goals [38]. González-Pachón and Romero [27] give a formal derivation of the link
between satisficing logic and GP, attacking the problem axiomatically.

11.3 Some Basic Goal Programming Models

Let us consider a decision-making problem involving goals. The structure of the
generic ith goal reads as follows:

(gi) fi(x)+ ni− pi = ti (11.1)

where:

fi(x) = mathematical expression for the ith attribute (i.e. a function of the vector
x of decision variables).
ti = target value for the ith attribute; i.e. the achievement level that the DM con-
siders as satisficing for the ith attribute.
ni = negative deviation variable; i.e. quantification of the under-achievement of
the ith goal.
pi = positive deviation variable; i.e. quantification of the over-achievement of the
ith goal.

Once the goals have been formulated, the next step is to detect the unwanted
deviation variables. These variables are unwanted in the sense that they are the ones
a DM wants to minimize. To illustrate this idea, let us consider the following cases:
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1. The goal derives from a “more is better” attribute (i.e., satisfice f i(x) ≥ ti). In
this case, the DM does not want under-achievements with respect to target t i.
Consequently, the unwanted deviation variable would be the negative one (n i)
and would have to be minimized.

2. The goal derives from a “less is better” attribute (i.e., satisfice f i(x)≤ ti). In this
case, the DM does not want over-achievements with respect to target t i. Con-
sequently, the unwanted deviation variable would be the positive one (p i) and
would have to be minimized.

3. The goal derives from an attribute that needs to be achieved exactly (i.e., satis-
fice fi(x) = ti). In this case, the DM wants neither over-achievements nor under-
achievements with respect to target ti. Hence, both the negative variable ni and
the positive one pi are equally unwanted, making it necessary to minimize both
deviation variables.

Let us assume that the unwanted deviation variables for a given problem are

p1,n2, ...,ni, pi, ..., pq

The formulation of a GP model implies the minimization of a function of the
former unwanted deviation variables:

Min g(p1,n2, ...,ni, pi, ..., pq) (11.2)

The above function has a typical “less is better behaviour” and receives the name
of achievement function. The arguments (i.e. the unwanted deviation variables) of
(11.2) must be normalized. This type of normalization is required for two different
types of reasons. First, the goals are generally measured in different units. Therefore,
it makes no sense to apply a mathematical operator like the sum (e.g., to add together
kilos of potatoes and pints of beer). Second, the value of the targets might be very
different. Hence the minimization of (11.2) can lead to solutions biased towards
goal with higher values being held for their targets. Finally, it is also necessary to
introduce into (11.2) parameters reflecting the relative importance the DM attaches
to the achievement of the different goals. Therefore, the achievement function (11.2)
should read as follows:

Min g

(
W1 p1

K1
,
W2n2

K2
, ...,

(Wini,Wi pi)
Ki

, ...,
Wq pq

Kq

)
(11.3)

where Wi and Ki are the preferential weights and the normalizing factor attached to
the generic ith goal, respectively. A suitable normalization factor is the target value
of each goal; that is, Ki = ti. Thus, all deviations are measured on a percentage scale.
However, this normalization system is not applicable when any of the goals has a
target value of zero. In this case, it is possible to resort to other normalization sys-
tems. See Tamiz et al. [64] (pages 572–573) and Kettani et al. [44] for a discussion
of the different normalization techniques within a GP context.

Different methods can be used to minimize the achievement function, each one
leading to a different GP variant. Let us introduce first the variant known as weighted
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GP (WGP). The achievement function of a WGP model comprises the unwanted
deviation variables, each weighted according to their importance [33]. Thus, we
have:

Achievement function:

Min
q

∑
i=1

(αini + βi pi)

Goals and constraints:

fi(x)+ ni = ti, i ∈ {1, . . . ,q}
x ∈ F, n≥ 0, p≥ 0

(11.4)

where αi = Wi/Ki if ni is unwanted, otherwise αi = 0, βi = Wi/Ki if pi is unwanted,
otherwise βi = 0.

Let us now introduce the variant known as lexicographic GP (LGP). The achieve-
ment function of a LGP model is made up of an ordered vector whose dimension
is equal to the Q number of preemptive priority levels defined in the model. Each
component of this vector comprises the unwanted deviation variables of the goals
placed at the corresponding priority level [37, 46]. Thus, we have:

Achievement function:

Lex min a =

[
∑

i∈h1

(αini + βipi) , .... ∑
i∈hr

(αini + βi pi) , ...., ∑
i∈hQ

(αini + βi pi)

]
Goals and constraints:

fi(x)+ ni− pi = ti, i ∈ {1, . . . ,q}, i ∈ hr, r ∈ {1, . . . ,Q}
x ∈ F, n≥ 0, p≥ 0

(11.5)

where hr means the index set of goals placed at the rth priority level.
Finally, let us introduce the third classic variant called MINMAX (Chebyshev)

GP (MGP). The achievement function of a MGP implies the minimization of the
maximum deviation from any single goal [23]. Thus, we have:

Achievement function:

Min D

Goals and constraints:

(αini + βipi)−D≤ 0

fi(x)+ ni− pi = ti, i ∈ {1, . . . ,q}
x ∈ F, n≥ 0, p≥ 0

(11.6)

where the variable D represents the maximum weighted and normalized deviation.
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11.4 A Utility Interpretation of a Goal Programming Model

GP, like any other decision-making approach, can be based on different philosophies
or rationality theories. The primary philosophy underpinning GP is the Simonian
concept of “satisficing” that leads to a bounded rationality theory, as the preceding
sections show. However, this is not the only possible interpretation of GP. In this
section GP will be analysed from the point of view of utility theory.

Let us start with LGP, where the non-compatibility between lexicographic order-
ings and utility functions is well known. In order to properly assess the effect of this
property it is necessary to comprehend that the reason for this non-compatibility is
exclusively due to the non-continuity of preferences underlying lexicographic or-
derings [54] (pp. 43–46).

Rather than disqualifying LGP because it implicitly assumes a non-continuous
system of preferences, it would be worthwhile discussing whether or not the charac-
teristics of the problem situation justify a system of continuous preferences. Hence,
the possible problem associated with the use of the lexicographic variant lies not
in its incompatibility with utility functions, but in the careless use of this approach.
In contexts where the DM’s preferences are clearly continuous, a compensatory GP
model with utility support should be used.

It is relatively straightforward to demonstrate that a WGP model implies the max-
imization of a separable additive utility function in the attributes considered. This
solution provides the maximum aggregated achievement between the different goals
(e.g. [55]).

A MGP model implies the optimisation of a MINMAX utility function where
the maximum deviation D is minimized. This type of function provides a solution
that attaches the maximum importance to the most displaced goal with respect to
its target. This achieves the most balanced solution for the achievement across the
different goals (see [55, 64]).

11.5 Some Extensions of the Traditional Achievement Functions

Looking at GP models from the utility perspective discussed in the preceding sec-
tion, we can say that from a preferential point of view, the WGP and the MGP solu-
tions represent two opposite poles. Because the preferences underlying the weighted
option are assumed to be separable, this variant can produce extremely biased re-
sults against one of the goals under consideration. On the other hand, because one
of the goals is dominant, the MGP (Chebyshev) model sometimes provides results
with poor aggregate performance across different goals. In short, the WGP solution
implies the maximum aggregate achievement, while the MGP (Chebyshev) option
provides the most balanced solution for achievement across the different goals. The
extremity of both solutions can, in some cases, lead to solutions that are unaccept-
able for the DM. A possible solution for modelling this type of problem is a combi-
nation of the WGP and MGP models. This strikes a balance between the maximum
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aggregated achievement of the solution provided by the WGP model with the max-
imum balancedness of the solution provided by the MGP model. The result is the
following Extended GP (EGP) model [11, 64]:

Achievement function:

Min (1−λ)D+ λ
q

∑
i=1

(αini + βi pi)

Goals and constraints:

(αini + βipi)−D≤ 0

fi(x)+ ni− pi = ti, i ∈ {1, . . . ,q}
x ∈ F, n≥ 0, p≥ 0, λ ∈ [0,1]

(11.7)

where the different variables were previously defined and λ is a control parameter.
For λ = 0, we have the MGP achievement function, and for λ = 1 the WGP achieve-
ment function. For other values of parameter λ belonging to the open interval (0,1),
the weighted combination of these two GP options can provide intermediate solu-
tions, if they exist.

Two basic assumptions underlie all the achievement functions presented in the
preceding sections:

1. The DM associates a precise target to each attribute.
2. Any unwanted deviation with respect to its target is penalized according to a

constant marginal penalty; in other words, any marginal change is of equal im-
portance no matter how distant it is from the target.

It is rather obvious that these assumptions are very strong and although they
can suitably represent the preferences of certain DMs, they do not apply generally.
Indeed, many DMs are not able to or are not interested in associating specific targets
to certain attributes. Additionally, they may consider that the importance of marginal
changes in the achievement of the goal depends upon its distance to the target.

Different achievement functions have been proposed in order to weaken the
above assumptions. Chronologically, the first idea to address this problem was to
conjecture that the DM feels satisfied when the achievement of a goal lies within
the limits of a certain target interval [ai,bi]. This type of penalty function provides
what is known as “Interval GP” (IGP) [16] or “goal range programming” [30]. The
corresponding model implies a WGP formulation with a U-shaped penalty function
with (1+1) sides. The analytical structure of the corresponding IGP is:
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Achievement function:

Min
q

∑
i=1

(αiηi + βi pi)

Goals and constraints:

fi(x)+ ni− pi = ai

fi(x)+ ηi−ρi = bi, i ∈ {1, . . . ,q}
x ∈ F, n≥ 0, p≥ 0, ηηη ≥ 0, ρρρ ≥ 0

(11.8)

Jones and Tamiz [42] suggested an efficient way of incorporating this type of
penalty function into the achievement function of a GP model. For this type of mod-
elling, however, all the achievement functions built with penalty systems underlie
an assumption of separability of the DM’s preferences It was argued above that this
type of preference structure can produce biased results towards the achievement of
some of the goals. For this reason, the DM might not interested in maximizing the
aggregated achievement, but in getting the most balanced solution. To do this, some
extensions and refinements of Jones and Tamiz’s procedure have been proposed, like
MINMAX (Chebyshev), Interval GP model [66] and Extended Interval GP [56].

Finally, note that refinements have recently been proposed in this direction. Thus,
by using in part a computing procedure proposed by Li [48] for solving WGP prob-
lems, Chang [12, 13] introduced models that represent significant reductions in the
number of auxiliary variables, as well as in the number of auxiliary constraints re-
quired to build the respective interval GP models.

11.6 Some Critical Issues and Extensions

This section addresses some key issues in GP for avoiding poor modelling practices,
as well as for properly understanding the actual role of GP within a general MCDM
context

11.6.1 Paretian Efficiency and GP

Within a GP context, efficiency is a condition that must hold any solution. In fact, if
a GP solution is inefficient, then the achievement of at least one of the goals can be
improved without impoverishing the achievement of the others. However, a standard
GP formulation can produce inefficient solutions for all its variants. In the 1980s,
this led to serious arguments against this approach. However, these criticisms were
simply making a mountain out of a molehill. In fact, it has been demonstrated how
GP models can, through minor refinements of the approach, assure the generation
of efficient solutions.
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Thus, Hannan [31] proposed a test to check whether or not a GP solution is effi-
cient. The method can also establish the whole set of GP efficient solutions. Masud
and Hwang [50] demonstrated that, in order to assure efficiency, it is enough to add
an additional priority level to the GP model’s achievement function, maximizing the
sum of the wanted deviation variables. Tamiz and Jones [62] proposed a very general
procedure for distinguishing the efficient from the non-efficient goals. This proce-
dure can also restore the efficiency of the goals detected as non-efficient. Caballero
et al. [8] developed procedures for generating efficient GP solutions for non-linear
and convex models. Finally, Tamiz et al. [65] extended the issue of efficiency to
integer and binary GP models.

In conclusion, the GP model’s potential for generating an inefficient solution is
not a real problem nowadays, since modern GP approaches can quite easily find a
way around this prospective problem. In some areas, like engineering design, the
efficient solutions can be very unstable. This high instability of the efficient solu-
tions can make it sensible “to disregard” the issue of efficiency in some cases and to
concentrate on the issue of GP solution stability (see [36]).

11.6.2 The Selection of Preferential Weights in GP

The preceding section introduced weights Wi reflecting the DM’s preferences with
respect to the generic ith goal. An important question is how to derive this type of
weights in real applications. The following appear to be interesting procedures:

1. Establishing links between the Analytic Hierarchy Process (AHP) [57] and GP,
as was suggested by Gass [24]. In this way, the weights derived from “pairwise”
comparison matrices can be incorporated into a GP model.

2. Eliciting the preferential weights Wi through an interactive MCDM method. Lara
and Romero [45] incorporate into a GP model preferential weights Wi, previously
elicited using the Zionts-Wallenius interactive MCDM method [69].

3. Implementing a sensitivity analysis with the values of the preferential weights Wi

in order to test the robustness of the GP solution to possible changes of value.

11.6.3 Redundancy in LGP

Let us now address another critical issue in GP: naive prioritization and redundancy
in lexicographic models. It holds in all the algorithms solving LGP problems that if
the mathematical programming problem corresponding to the ith component of the
achievement function has no alternative optimal solutions, then the goals placed at
priorities lower than the ith would be redundant. In other words, these goals do not
play any real role in the optimisation process but become mere ornaments for the
lexicographic model!
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When the LGP model has a lot of priority levels, then lower priority goals are
very likely to be redundant and will therefore be of no real use in the optimisation
process. Such prioritisation is naive and should be avoided.

There being too many priority levels is not the only reason for the redundancy
of goals in LGP. In fact, if the target values associated with the goals are very high
(e.g. near their ideal values), then the likelihood of alternative optimal solutions is
very small. Another possibility of redundancy is that there are many goals for which
both deviational variables are unwanted. The exact achievement of a goal makes
it much harder for there to be alternative optimal solutions and, consequently, the
probability of redundant goals is high.

Goal redundancy is not just a theoretical possibility; it has important practical
implications. Noteworthy in this sense is a research by Amador and Romero [1],
testing more than twenty LGP applications reported in the literature for redundant
goals. In all but one of the analysed cases at least one of the priority levels was
redundant. In about 50% of the analysed cases, the number of redundant priorities
was greater than or equal to two. Finally, in terms of aggregated results, more than
a quarter of the goals considered were redundant.

11.6.4 Links Between GP and Other MCDM Approaches

It is common practice within the Multiple Criteria Decision Making (MCDM) field
to present its different approaches separately, giving the impression that each ap-
proach is completely independent. However, this is not the case. In fact, there are
significant connections between many MCDM methods. In this sense, the MUL-
TIPLEX approach proposed by Ignizio [35] is a good example of a GP structure
encompassing several single and multi-objective optimisation methods. Following
on in this unifying direction, Romero [55] proposed a theoretical structure with
the name of Extended Lexicographic Goal Programming (ELGP). If this structure
is considered the primary model, then it is easy to demonstrate that a great many
multi-criteria methods are just secondary models of ELGP. Thus, most of the multi-
criteria methods can be straightforwardly deduced just by applying different param-
eter specifications to the above model.

The use of GP as a unifying framework looks interesting for at least the following
reasons. The ELGP model stresses similarities between MCDM methods that can
help reduce gaps between the advocates of different approaches. This unifying ap-
proach can become a useful teaching tool for introducing MCDM, thus avoiding the
common presentation based upon a disconnected “pigeonhole” system of MCDM
methods.
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11.7 Other Topics

This section briefly presents some GP topics that are of clear theoretical and applied
interest but have not been covered in the chapter for reasons of space and/or because
some of these topics are still under development.

11.7.1 Interactive GP

The link between the interactive MCDM philosophy and GP can make GP more
flexible, as well as increase the DM’s level of involvement in the decision-making
process. In this way, it could be easier to find a vector of target values leading to
acceptable solutions for the DM. Some interesting GP proposals are: Spronk [61],
Masud and Hwang [50] and Caballero et al. [9]. The introduction of the concept
of meta-GP and its development and linkage within an interactive framework [52]
is of interest in this respect. From a meta-GP perspective, then, the DM can estab-
lish targets on several achievement functions and use an interactive procedure to
update these values. This alleviates the problem of selecting a suitable achievement
function [10].

11.7.2 GP and Artificial Intelligence

The use of methods from the field of artificial intelligence (AI) for solving GP mod-
els with complex structures (non-linear goals, non-convexities, etc.) is an area of
growing interest. Within the AI field, approaches like genetic algorithms, TABU
search and neuronal networks look especially applicable. Jones et al. [41] is an ex-
tensive survey of applications of AI methods to the MCDM field and, particularly,
to GP.

11.7.3 GP and the Aggregation of Individual Preferences

GP has proved to be a useful analytical tool for inducing models to aggregate in-
dividual preferences into a collective one. The basic idea underlying this type of
approach is to define a consensus by minimizing a distance function. This function
measures the distances between the information provided by the individual DMs and
the unknown consensus. Different GP models have been formulated and resolved as
a result of the distance function minimization process. Some results have been ob-
tained for the complete ordinal case [25], the partial ordinal case [26], the cardinal
case based upon utility functions [28] and the cardinal case based upon “pairwise”
comparison matrices [29].
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11.7.4 Stochastic GP

When any of the GP model parameters (target values, preferential weights, etc.)
are not precisely known, the model moves from a certainty context to a stochas-
tic/uncertainty context. Some attempts in the stochastic direction are Liu [49],
Ballestero [5], and Aouni et al. [2]. Liu [49] proposes a procedure for solving
stochastic GP problems with the help of genetic algorithms; Ballestero [5], presents
a stochastic GP formulation within a mean-variance format; and Aouni et al. [2],
model the DM’s preferences within a stochastic GP. In the uncertainty direction,
Rehman and Romero [51] proposed a procedure merging games against nature and
GP, and Chang [14, 15] introduced the concept of Multi-Choice GP for working
with target vectors instead of single figures.

11.7.5 Fuzzy GP

The basic idea underlying fuzzy GP is to represent some of the model parameters
not as precise crisp numbers but as imprecise fuzzy numbers. The parameters that
are usually fuzzyfied are the target values and the coefficients of the different goals.
Several mathematical structures have been used to characterize the fuzzy parame-
ters. The most widely used are triangular and trapezoidal fuzzy numbers. In this way,
fuzzy GP aims to add the imprecision usually inherent in the information available
into the models. Zimmerman [68] pioneered the work on fuzzy GP. Nowadays, all
the different crisp GP variants have been successfully adapted to a fuzzy context
(see [4, 6]).

11.7.6 GP and Data Envelopment Analysis

Data Envelopment Analysis (DEA) [21] is a linear programming-based, non-para-
metric approach widely used to analyse the efficiency of a set of organizational units,
like branches of a bank or farms in an agricultural district. As Cooper [22] indicates,
GP addresses management problems, while DEA targets problems related to the
control and evaluation of activities. Even though GP and DEA have very different
purposes, there are clear mathematical links between both approaches as Cooper
[22] (pages 6–7) clearly demonstrate. These links are especially strong when the
weighted GP variant is compared with the additive version of DEA.
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11.8 Conclusions and Areas for Future Research

The enormous complexity of modern organizations make it very difficult to model,
solve and analyse their real decision-making problems with methods of optimisa-
tion underpinned by classic theories of perfect rationality. In this context, the GP
approach, underpinned by a bounded rationality theory, has represented an effective
approach for solving decision-making problems in complex organizations. It is not
bold to conjecture that the complexity of organizations will not drop in the near
future and, consequently, GP will likely retain its prominent role for realistically
addressing decision-making problems.

The following areas of research in GP look promising:

1. The combination of GP with AI approaches is an effective means to develop
good solutions to very complex problems. In short, in many applied fields, the
GP modelling effort leads to complex highly non-linear problems with high di-
mensions. This type of problems is not solvable by resorting to precise optimisa-
tion techniques. However, experience shows how metaheuristic procedures can
output “good enough” solutions.

2. Connecting GP with other MCDM approaches. Good examples in this direction
are the relationship between GP and AHP. Thus, preferential weights derived
from the AHP approach can be fruitfully incorporated into a GP model. In the
same way, GP can be a useful tool for deriving the weights from “pairwise” com-
parison matrices, as well as for dealing with inconsistencies within “pairwise”
comparison scenarios.

3. Developing realistic and pragmatic interactive methods. This area can be a major
aid in improving GP’s inherent flexibility, allowing the DM to become involved
in the problem-solving process.

4. Using GP to induce models in the field of social choice. Some initial results in
this direction clearly show that this approach has enormous potential for deter-
mining social consensus.

5. The reliance on a single GP variant is not generally justified. It would be in-
teresting, therefore, to research new achievement function forms by hybridising
different variants. The recent idea of meta-goal programming offers an attractive
prospective for addressing this type of problems.
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Appendix: The Algebra Underlying Charnes and Cooper’s Ideas

The idea behind this appendix is to state the algebra underlying the two basic pillars
upon which GP has been built over the last fifty years.
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Let us start with the first pillar in the paper by Charnes et al. [19]. The authors
deal with a side constraint regression problem, with the following mathematical
structure:

Min
n

∑
i=1

d2
i

s.t. fi(x)+ di = ti, i = 1,2, . . . ,n
f (x) ∈ F

(11.9)

where fi(x) is the function to be statistically fitted to the n observations (t1,t2, ...,tn)
and F represents the set of side conditions defined over the parameters characteriz-
ing the function f (x) to be fitted. Model (11.9) is a quadratic programming problem
that was unsolvable in the mid-1950s. For that reason, instead of minimizing the
sum of the square deviations, Charnes et al. [19] proposed minimizing the sum of
the absolute deviations, as follows:

Min
n

∑
i=1
|ti− fi(x)|

s.t. f (x) ∈ F
(11.10)

However, as (11.10) implies the minimization of an absolute deviation, that is
a non-linear form that it was impossible to compute at that time, Charnes et al.
proposed linearizing the objective function of (11.10) by introducing the following
change of variables:

ni =
1
2

[|ti− fi(x)|+(ti− fi(x))] (11.11)

pi =
1
2

[|ti− fi(x)|− (ti− fi(x))] (11.12)

By adding (11.11) and (11.12), and by subtracting (11.12) from (11.11), we have:

ni + pi = |ti− fi(x)| (11.13)

ni− pi = ti− fi(x) (11.14)

Therefore, according to (11.13) and (11.14), the non-linear model (11.10) turns into
the following LP model:

Min
n

∑
i=1

(ni + pi)

s.t. fi(x)+ ni− pi = ti, i = 1,2, . . . ,n
f (x) ∈ F

(11.15)

Let us move now to Appendix B of the classic book by Charnes and Cooper [17].
In section 5 of Appendix B under the heading Goal Programming they address the
analysis of contradictions in non-solvable problems within a linear programming
context. They illustrate the basic idea with the help of the following illustrative
machine-loading problem:
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3x1 + 2x2 ≤ 12
5x1 ≤ 10
x1 + x2 ≥ 8
−x1 + x2 ≥ 4

x1, x2 ≥ 0

(11.16)

It is easy to check that there is no feasible solution to problem (11.16). Charnes
and Cooper suggest considering the first two equations of (11.16) as proper con-
straints, and the last two equations as goals to be attained as closely as possible.
Thus, model (11.16) turns into the following model:

Min |8− (x1 + x2)|+ |4− (−x1 + x2)|
s.t. 3x1 + 2x2 ≤ 12

5x1 ≤ 10
x1, x2 ≥ 0

(11.17)

Again by introducing the deviation variables (11.11) and (11.12), and by imple-
menting the above arithmetic operations, the non-linear model (11.17) turns into the
following linear structure:

Min n1 + n2

s.t. 3x1 + 2x2 ≤ 12
5x1 ≤ 10
x1 + x2 + n1 − p1 = 8
−x1 + x2 + n2 − p2 = 4

x1, x2 ≥ 0

(11.18)

Model (11.18) is a linear WGP model, for which the unwanted deviation vari-
ables appearing in the achievement function have not been normalized. This model
was proposed by Charnes and Cooper almost fifty years ago!
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