
Chapter 10
On Multi-Objective Evolutionary Algorithms

Dalila B.M.M. Fontes and António Gaspar-Cunha

Abstract In this chapter Multi-Objective Evolutionary Algorithms (MOEAs) are
introduced and some details discussed. A presentation of some of the concepts in
which this type of algorithms are based on is given. Then, a summary of the main
algorithms behind these approaches and their applications is provided, together with
a brief discussion including their advantages and disadvantages, degree of applica-
bility, and some known applications. Finally, future trends in this area and some
possible paths for future research are pointed out.

10.1 Introduction

Most real-world optimization problems are multi-objective since they require the si-
multaneous satisfaction of several objectives. The most usual approach to deal with
the multi-objective nature of these problems consists on congregating the various

timization problem. In this case, it is necessary to define a priori a compromise be-
tween the objectives considered. If the relative importance of the criteria is changed
a new optimization run needs to be carried out.
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individual objectives into a unique function in order to form a single-objective op-
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Other possible approach takes advantages of the fact that Evolutionary Algo-
rithms (EAs) work with a population of points processed in each iteration, yielding
a set of non-dominated vectors, designated as Pareto optimal solutions. In this case,
all the objectives are optimized simultaneously.

EAs mimic the process of natural evolution where an analogy between the mech-
anisms of natural selection and a learning (or optimization) process is made through
the application of certain heuristic techniques [38]. These techniques can be classi-
fied into four main categories, Genetic Algorithms [42], Evolution Strategies [64],
Evolutionary Programming [30] and Genetic Programming [52]. However, this clas-
sification is due to historical developments rather than to major functioning differ-
ences, since the basis of these techniques is essentially the same.

After using evolutionary techniques for single-objective optimization during
more than two decades, the incorporation of more than one objective has finally be-
come a popular area of research. As a consequence, many new evolutionary-based
approaches and variations of existing techniques have recently been published in the
literature [14]. The large number of applications [4, 8] and the continuously growing
interest in this field are due to several advantages of EAs:

1. In-depth mathematical understanding of the problems to which they are applied
to is not required;

2. Some of the solutions obtained by the EAs were previously out of range of the
solutions obtained by other methods;

3. EAs can be applied to problems that cannot be solved by analytical mathematical
techniques or that involve so many variables that other methods would take too
long to solve them.

4. EAs can be applied to a high range of problems since they are robust;
5. EAs are relatively cheap and simple to implement;
6. It is easy to combine EAs with other techniques, such as local search and other

heuristics (hybridization);
7. EAs are extremely adaptable due to the fact that the evolutionary mechanism

is separate from the problem representation. Therefore, they can be transferred
from problem to problem, that is, they are modular and portable;

8. EAs allow for the use of arbitrary constraints, simultaneous multiple objectives
and the mixing of continuous and discrete parameters;

9. In addition, EAS are intrinsically parallel, i.e., they can be easily adapted to par-
allel computation.

Regarding multi-objective optimization problems they also have the advantage
of working with a population of solutions rather than with a single solution. The
ability to simultaneously search different regions of a solution space not only makes
it possible to find a diverse set of solutions but also to address problems with non-
convex, discontinuous, and multi-modal solutions spaces. These features enable the
creation of Pareto fronts representing the trade-off between the criteria.

Multi-Objective Optimization (MOO) is undoubtedly a very important research
topic both for scientists and practitioners, not only because of the multi-objective
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nature of most real-world problems but also because there are still many open ques-
tions in this area. The conflict of objectives entailed in MOO places the issue of
compromise in a central position. Edgeworth [26] and Pareto [61] captured this
notion mathematically in the criterion widely known as Pareto optimality [14]. So-
lutions belonging to the Pareto optimal set of a particular MOO problem perform
better in one or more objectives and worst in the other objectives. In other words,
solutions in the Pareto optimal set display different trade-offs.

Since, usually, no single solution optimizes simultaneously all objectives, deci-
sion making based on subjective human preference is an inherent aspect in solving
MOO problems. Only a single solution out of the Pareto optimal set is required.
Preference is the basis of tie-breaking between solutions in the Pareto optimal set.
In the areas of Multi-criteria Decision Making (MCDM) and multi-objective De-
cision Aid (MCDA) a variety of frameworks capturing the decision maker(s) pref-
erences have been proposed. Multi-attribute utility theory (MAUT) [49], Analytic
Hierarchy Process [66] and outranking synthesis [78] are some of the most pop-
ular preference specification schemes. The multiplicity of preference articulation
schemes highlights the complexity of human preference. Many approaches to this
type of problems have been suggested, going all the way from naively combining
objectives into one, to the use of game theory to coordinate the relative importance
of each objective.

This chapter emphasizes the importance of looking at previous work in opera-
tions research, not only to get a good understanding of some of the existing tech-
niques, but also to motivate the development of new EA-based approaches. Finally,
some real applications are also described to provide the reader with a more complete
idea of the range of applicability and the underlying motivation of this technique.

10.2 Multi-Objective Optimization

10.2.1 Definitions and Concepts

As soon as there are many (possibly conflicting) objectives to be optimized simulta-
neously, there is no longer a single optimal solution but rather a whole set of possible
solutions of equivalent quality.

The general Multi-Objective Optimization Problem (MOOP) may be stated as
finding the value for a set of n decision variables which must satisfy some constraints
(J inequalities and K equalities) such that the M objective functions are optimized
and can be modeled as follows:



290 D.B.M.M. Fontes, A. Gaspar-Cunha

(P) Optimize fm(xi) for all m = 1,2, . . . ,M

subject to

g j(xi)≥ 0 for all j = 1,2, . . . ,J

hk(xi) = 0 for all k = 1,2, . . . ,K

where xi = {x1,x2, . . . ,xn} is the vector of decision variables.
In general the objectives are non-commensurable and in conflict with each other.

Therefore, optimizing means finding a solution having values, for all objective func-
tions, which satisfy the decision maker.

Generally speaking, in MOOPs two different solutions are related to each other
in two possible ways: either one dominates the other or none of them is dominated.
The set of Pareto solutions consists of good solutions, where none can be said to
be better than the others, that is, the set of nondominated solutions. This concept
is illustrated in Figure 10.1, where solutions 1, 2, 3 and 4 are non-dominated and
constitute the Pareto front.
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Fig. 10.1 Concept of non-dominance.

The optimal solution of a MOOP is not a single solution but a set of solutions
composed by all the potential solutions such that the components of the objectives
vector cannot be simultaneously improved. These solutions are known as Pareto
optimal solutions, i.e., the set of non-dominated solutions. A solution is optimal
when it is non-dominated by all other feasible solutions. In practice, it is generally
impossible to know the actual optimal set and the corresponding Pareto optimal
front, but, instead the optimization algorithms find an approximation to this set. The
above mentioned concepts can be formally defined as follows:

Pareto Dominance:
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Given the vector of objective functions f m = ( f1, . . . , fM) is said that candidate x1

dominates x2 (for minimizing), written as x1 � x2, if

fm(x1)≤ fm(x2), ∀m ∈ {1, . . . ,M} and

∃m ∈ {1, . . . ,M} : fm(x1) < fm(x2).
(10.1)

Pareto Optimality:
For a MOP, a given solution x∗ is Pareto optimal if and only if there is no vector
x ∈F (F is the set of feasible candidate solutions), so that

fm(x)≤ fm(x∗), ∀m ∈ {1, . . . ,M} and

fm(x) < fm(x∗) for at least one objective function.
(10.2)

Pareto Optimal Set:
For a MOP, the Pareto Optimal Set (P ∗) is defined as

P∗ := {x ∈Ω |¬∃x′ ∈ F(x′)� f (x)}. (10.3)

Pareto Front:
For a MOP and Pareto Optimal Set (P ∗), the Pareto Front (PF ∗) is defined as

PF ∗ := { fm(x) = ( f1(x), f2(x), · · · , fM(x)|x ∈P}. (10.4)

In extending the ideas of single-objective EAs to multi-objective cases, three
major problems must be addressed (Figure 10.2).

1. How to accomplish fitness assignment and selection in order to guide the search
towards the Pareto optimal set;

2. How to maintain a diverse population in order to prevent premature convergence
and achieve a well distributed, wide spread trade-off front;

3. How to prevent, during the successive generations, that some good solutions are
lost.

It should be noticed that the objective function itself no longer qualifies as fitness
function since it is a vector of values and not a scalar value. Different approaches to
relate the fitness function to the objective functions are discussed in the following
section, further details can be found, for example, in [14, 11].

To maintain good diversity of the population it is necessary to have a density esti-
mation operator, such as, for example, niching [16]. It consists basically in counting
the number of neighborhoods around each solution in order to deteriorate the fitness
of the different individuals, i.e., the fitness decreases for the individuals with more
neighbors.
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Fig. 10.2 Basic functions of a MOEA.

The third problem is usually solved by keeping the best solutions found so far in
an archive in order to ensure that good individuals do not get lost, by mutation or
recombination.

10.2.2 Addressing Multi-Objectives

Since there is no accepted definition of optimum as in single-objective optimiza-
tion problems, it is difficult to compare reported results, as normally, the decision
about the best answer corresponds to the so-called (human) decision maker. The
decision maker preference for a particular solution is vague, base on perceptive
information, and highly dependent on the application context. The vagueness and
context-dependence of the decision makers preference structure have lead to the
development of various mathematical models and techniques.

The approaches can be divided into two main categories. One that solves a single-
objective problem, achieved by combining the objectives into a single-objective
function, and another that searches for the Pareto optimal solutions set. In the for-
mer case, determination of a single-objective is possible with methods such as util-
ity theory, weighted sum, etc., but the problem lies in the proper selection of the
weights or utility functions to characterize the decision maker’s preferences. Fol-
lowing the classification of Veldhuizen [77], Multi-objective Evolutionary Algo-
rithms (MOEAs) may be a priori, interactive, or a posteriori algorithms based on
the treatment of preference. A priori MOEAs involve preference specification prior
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to the optimization stage, and are traditionally implemented by aggregating objec-
tives into a single fitness function with parameters reflecting the preference of the
decision maker(s). Interactive MOEAs allow decision maker(s) to alter parameters
during the search, effectively influencing the direction of the search. A posteriori
MOEAs find the set of Pareto optimal solutions and relegate decision making based
on human preference to a later stage.

In a priori algorithms, the decision maker states the preferences, which are then
incorporated into the objective function through aggregation, prior to the optimiza-
tion. This new formulation is then incorporated in the fitness function computation
and cannot be changed throughout the optimization process. Aggregation of the ob-
jectives can be made in lexicographic order, that is the objectives are optimized in
their order of the importance, or by linear/nonlinear combination of the objectives.
In the latter case a single-objective function, reflecting the decision maker prefer-
ences, is obtained. This is the simpler approach to MOO, therefore a good choice if
the preferences can be captured by the mathematical model and no practical com-
putational difficulties arise. However, this is rarely the case, since often the non-
commensurability of objectives makes it very hard, if not impossible to model them
in a priori preference specification. In addition, this type of approach requires deep
knowledge of the problem in hands, which usually is not possible. Furthermore,
practical computational difficulties may also arise due to the non-convex nature of
the Pareto front introduced through the combination of the objectives. The main
drawback of this type of approach is that scaling amongst objectives is needed and
small perturbations in the weights can lead to quite different solutions. In addition,
the optimization method devised would return a single solution rather than a set of
solutions that can be examined for trade-offs. See Figure 10.3 for an illustration of
this approach. For a recent review on preference incorporation in multi-objective
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Fig. 10.3 Decision making in MOOP addressing preferences a priori.

evolutionary algorithms the reader is referred to the work by Abass and Sarker [63].
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Interactive algorithms tend to be the most adequate approaches to MOO problems
since they involve the decision maker in the optimization process. For this type of
approach the decision maker only needs to specify a few parameters a priori. As
the search progresses and more information on the problem becomes available, the
decision maker can make better judgments and therefore parameter specifications.
However, interactive approaches require intensive collaboration with the decision
maker and quite often become a challenge due to the existence of more than one
decision maker. Fonseca and Fleming [31] proposed the incorporation of an expert
system to “replace” the decision maker. Nevertheless, the construction of an expert
system still requires extensive problem knowledge and, as it is widely recognized,
its success is highly dependent on the application context.

A posteriori algorithms tend to be the most popular since its application allows
for independent optimization and decision making processes. The optimization and
decision maker issues are separated by leaving the latter ones to a post-optimization
stage. An illustration of such approach is provided in Figure 10.4. In these ap-
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Fig. 10.4 Decision making in MOOP addressing preferences a posteriori.

proaches, the aim of the optimization process is, therefore, to find a set of well-
distributed solutions along the Pareto front. Some challenging computational issues
are avoided by only looking for such a set of solutions and leaving the choice of
the preferred solution to the decision maker. However, ensuring that these solutions
represent a wide range of trade-offs may be computationally expensive. Population-
wide Pareto ranking, archiving strategy, and diversity preservation measures are fea-
tures commonly found in the MOEAs which are computationally expensive. Efforts
have been introduced to cut down on the computational burden, see ,e.g., [46]. In
this case, the algorithm seeks to find the entire Pareto optimal solution set or, at
least a representative subset of it. Pareto optimal solution sets are often preferred to
single solutions because they can be practical when considering real-life problems
since the final solution of the decision maker is always a trade-off.
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Over the years several different alternative techniques have been proposed, some
of which will be discussed below. However, identifying the entire Pareto optimal
set, for many multi-objective problems, is practically impossible due to its size and,
depending on the techniques, also due to its shape and properties. In addition, for
many problems, especially for combinatorial optimization problems, proof of solu-
tion optimality is computationally infeasible. Thus, the approach commonly used is
to search for a set of solutions that represent the Pareto optimal set. Therefore, such
an approach should find a set of Pareto solutions such that [81]:

1. it is as close as possible to the true Pareto front,
2. the solutions are uniformly distributed and diverse, to cover a wide range of trade-

offs,
3. it includes solutions at the extreme ends of the objective function space.

However, these characteristics are conflicting since (for a given computational
time limit) the first one requires deep search on a particular region of the search
space, the second leads to a distributed search effort, while the third requires the
search to be directed to the extremes.

10.3 Multi-Objective Evolutionary Algorithms

After the seminal work of Schaffer [67, 68], a substantial number of different Multi-
Objective Evolutionary Algorithms (MOEAs) have been proposed. Good reviews
about this subject have been prepared by [14, 11]. Usually, these algorithms can be
divided into three classes.

The first class is based on non-Pareto approaches, including techniques such as
aggregating functions [14] and VEGA (Vector Evaluated Genetic Algorithm) [67].
In these cases, the decision maker’s preferences are stated before the search (a pri-
ori), and the solution obtained is a single point. These techniques do not incorporate
directly the concept of Pareto optimum, are unable to find some portions of the
Pareto front, and are only capable of handling a small number of objectives. How-
ever, they are easy to implement.

The second class emerged after Goldbergs suggestion [38] that selection should
be made using a non-dominated ranking scheme and that diversity should be main-
tained with the use of a sharing function, being based on the concept of Pareto
Optimality. Some examples of such approach are referred to next. The algorithm
proposed in [31] (MOGA) uses a ranking scheme where the rank of each individual
corresponds to the number of individuals in the current population by which it is
dominated. Fitness sharing is used in order to maintain diversity, together with a
mating restriction scheme that avoids crossover between very distant individuals in
the search space. Latter, Srinivas and Deb [74] implemented a Pareto based ranking
scheme in the Non-dominated Sorting Genetic Algorithm (NSGA). They sort the
population in various fronts. The non-dominated individuals belonging to the first
front are more fit, hence they are removed from the population and the process is
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repeated until the entire population is classified. Then, Horn et al. [44] proposed a
different algorithm (NPGA) that uses a tournament selection scheme based on the
concept of Pareto dominance.

Lately, a third class of MOEAs based on the use of an elite-preserving opera-
tor, that suppresses the deterioration of the population fitness along the successive
generations, has been proposed. These algorithms perform sequentially the three
basic tasks of fitness assignment, density estimation and archiving. Deb and co-
authors ([15, 17]) suggested an elitist non-dominated sorting GA (known as NSGA-
II). The method uses simultaneously an elite preservation strategy and an explicit
diversity preserving mechanism. First, an offspring population is created using the
parent population, both of size N. These populations are combined together to form
a single population of size 2N. Then, a classification of the population using a non-
dominated sorting is performed. Finally, the new population is filled with the in-
dividuals of the best fronts, until its size becomes equal to N. If the population
becomes larger than N, a niching strategy is used to select the individuals of the
last front. The algorithm proposed by Zitzler and Thiele [83], called Strength Pareto
EA (SPEA), introduces elitism by maintaining an external population. Initially, a
random population of size N and an empty external population of size N e are cre-
ated. In each generation the solutions belonging to the best front are copied to the
external population. Then, the dominated solutions found in this modified popula-
tion are deleted. When the number of solutions in the external population exceeds
Ne, a clustering algorithm is used to eliminate the more crowded solutions. This
algorithm was modified recently, in order to incorporate a fine-grained fitness as-
signment strategy, a density estimation technique and an enhanced archive trunca-
tion method - the SPEA2 algorithm [82]. Corne et al. [12] proposed PESA (Pareto
Envelope-based Selection Algorithm), which uses a small internal population and
a larger external population. Initially, an internal population and an empty external
population are created. Then, the non-dominated points of the internal population
are incorporated in the external population. When a stop criterion is reached, the
result will be the non-dominated individuals of the external population. Otherwise,
the individuals of the internal population are deleted and new ones are created by
crossover and mutation, using as parents the individuals of the external population.
Finally, Knowles and Corne [51] introduced an algorithm based on the use of an
(1+1) evolution strategy and of an external archive of all the non-dominated solu-
tions. Diversity is maintained though the use of an adaptive grid technique, which
is based on a new crowding procedure where the objective space is divided recur-
sively. According to the authors this technique has lower computational cost and the
setting of the niche-size parameter is carried out in an adaptive mode [51].

10.3.1 Reduced Pareto Set Genetic Algorithm (RPSGA)

As stated before, in MOEAs only the selection phase of the traditional EA must be
changed in order to be possible to deal with the multiple objectives (Figure 10.5).
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Fig. 10.5 Flowchart of a MOEA.

In this work a MOEA developed previously by one of the authors will be adopted
to optimize the processes described in the next section. This algorithm is named
Reduced Pareto Set Genetic Algorithm (RPSGA), involving the use of a clustering
technique to reduce the number of solutions on the Pareto front [34, 36]. The main
steps of this algorithm are illustrated below (Algorithm 1).

Algorithm 1

1. Generate a random initial population (internal).

2. Create an empty external population.

3. While not Stop-Condition Do

a) Evaluate internal population.

b) Calculate the Fitness of the individuals using clustering.

c) Copy the best individuals to the external population.
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d) If the external population becomes full then
Apply the clustering to this population.
Copy the best individuals to the internal population.
End If

e) Select the individuals for reproduction.

f) Apply crossover.

g) Apply mutation.

End While

Initially, an internal population of size N is randomly generated (step 1) and an
empty external population created (step 2). At each generation, i.e., while a stop
condition is not found (step 3) the following operations are performed in turn: i)
The internal population is evaluated using the modeling routine (step 3a); ii) A clus-
tering technique is applied to reduce the number of solutions on the efficient front
and to calculate the fitness of the individuals of the internal population (step 3b)
[36]; iii) A fixed number of best individuals are copied to an external population
(step 3c); iv) If the external population is not totally full, the genetic operators of
selection (step 3e), crossover (step 3f) and mutation (step 3g) are applied to the inter-
nal population to generate a new better population; v) When the external population
becomes full (step d) the clustering technique is applied to sort the individuals of
the external population, and a pre-defined number of the best individuals are incor-
porated into the internal population by replacing lowest fitness individuals. Detailed
information about this algorithm can be found elsewhere [34, 36]. The influence of
some important algorithm parameters, such as the size of the internal and of the ex-
ternal populations, the number of individuals copied to the external population and
from the external population (to the internal population) in each generation, and the
limits of the indifference of the clustering technique have been studied, see [36] for
further details.

10.3.2 Recent Developments

Often, solving real optimization problems is very complex since the system per-
formance and characteristics are influenced by more than one field of knowledge
and, in addition, requires the use of powerful computational tools. Good examples
of such type of problems are the optimization and design of, amongst others, aero-
planes, automobiles and building structures. The traditional way of tackling this type
of problems consists of using approximation and decomposition techniques to split
a problem into simpler blocks, which are individually solved. A global solution, to
the original problem, is then obtained by integrating the solutions to the simpler
blocks. This type of approach does not satisfy the actual needs as far as the increas-
ing cost of the design life cycle is concerned. Simultaneously, the high efficiency of
the numerical methods available for analyzing specific engineering problems (e.g.,
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computational fluid dynamics and structural mechanics) and the existence of high
performance computers enabled the possibility of numerically solving such prob-
lems. However, these advantages must go together with the development of more
efficient and advanced approaches. Nevertheless, some difficulties persists. First,
the result of a MOEA is a set of solutions, but in real problems only a single solu-
tion can be used. As a consequence, it will be necessary to provide additional in-
formation regarding the relative importance of every objective on the system. This
is usually, accomplished by introducing, in the optimization system, the preferences
of a Decision Maker [14]. Although some recent work enabled the development of
an efficient decision making methodology based on the preferences of the decision
maker [28, 29], additional developments are still needed.

In addition, robustness of the solutions should be seek [35, 27] since in real ap-
plications small changes on the design variables or on the environmental parameters
may happen or may be imposed. Such changes should not affect, or at least affect
only slightly, the quality of the proposed solution. Changes in a problem under con-
sideration may arise due to several reasons:

1. parameter values may change due to, for example, data noise (originated by
sources such as sensors) or environmental changes,

2. change in the design variables magnitude or on themselves (some may become
parameters and new ones may appear),

3. uncertainty on or approximation of some values (parameters, assessment func-
tion, etc.),

4. dynamic nature of the problem or evaluation criteria.

From the above, it is clear that robustness is an important aspect to consider during
optimization, nevertheless it is rarely included in traditional algorithms. Recently,
problems of the second category have been addressed by the authors [35, 27].

One of the major difficulties in applying MOEAs to real problems is the large
number of evaluations of the objective functions needed to obtain an acceptable so-
lution - typically of the order of several thousands. Often these are time-consuming
evaluations obtained by solving numerical codes with expensive methods like
finite-differences or finite-elements. Therefore, reducing the number of evaluations
needed, to reach an acceptable solution, is thus of major importance. Finding good
approximate methods is even harder for multi-objective problems due to the num-
ber of objectives and to the possible interactions between them. Two different effi-
cient methodologies were recently proposed, an Inverse Artificial Neural Network
(IANN) approach [37] and a hybrid algorithm based on the use of a filter method as
local search procedure [57].

Finally, another important issue that needs to be addressed is dimension of multi-
objective problems since as the number of objectives grows, the number of incom-
parable solutions also grows. Therefore, the problem becomes much more difficult
to solve, regarding the point of view of the EAs, since a large number of solutions
move from one generation to the next, reducing the selection pressure. Moreover,
with more than two objectives, the visualization of the compromises between dif-
ferent solutions becomes extremely complex. In order to tackle real problems with
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several objectives, it is necessary to investigate ways of reducing the number of
objectives. Several approaches based on statistical techniques are reported in the
literature [13].

Clearly, the research in multidisciplinary design optimization methodologies and
its application to multi-objective engineering problems requires expertise in opti-
mization (e.g., optimization methods, decision support, solution robustness, reduc-
tion of the computational requirements, and reduction of the number of objectives)
and engineering tools (e.g., computational fluid dynamics, aerodynamics, structural
mechanics, aesthetics, etc.). Further research in MOEAs will, certainly, encompass
methodologies for dealing and linking these different tools.

10.4 Applications

The very large number of papers published in the last few years, either on interna-
tional journals or conferences, dealing with applications of MOEAs can be consid-
ered a measure of its importance both for the practitioner and scientific communi-
ties. A good example is the book by Coello and Lamont [8], where applications on
the areas of engineering, industry, economics and management, science and others
have been presented.

10.4.1 Engineering

The use of MOEAs in engineering has been quite extensive. Therefore, engineering
applications include many different problems, such as: design of welded beams,
bulk carriers, airfoil, industrial magnetic devices, optimization of ground water
monitoring networks, combinatorial logic circuits, autonomous vehicles navigation,
control systems, polymer extrusion problems, truss optimization, city and regional
planning, covering tour problem, routing and supersonic wings. Several of the above
mentioned applications are described in [8].

Recent works still report new problems or improved methodologies for prob-
lems previously addressed. Examples of such works are, for example, the works by
Gaspar-Cunha and Covas [36], Gong et al. [39] and Herrero et al. [41], to name just
a few.

In [36] an automatic optimization methodology of the polymer extrusion process,
using a Multiobjective Optimization Genetic Algorithms approach is proposed. The
Reduce Pareto Set Genetic Algorithm with Elitism (RPSGAe), see [34], was applied
to the optimization of the operating conditions and to the screw design of a polymer
extrusion process, to automatically optimize, in terms of prescribed attributes, the
values of important parameters, such as operating conditions and screw geometry.
The results obtained for specific case studies have physical meaning and correspond
to a successful optimization of the process.
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In [39] it is proposed a differential evolution algorithm that adopts the orthog-
onal design method with quantization technique to generate the initial archive and
evolutionary population. In order to keep the nondominated solutions found the au-
thors use a secondary population, which is updated by a new relaxed form of Pareto
dominance, at each generation. The authors found their method to be capable of
yielding a good coverage and convergence to the true Pareto-optimal fronts for four
engineering design problems, namely: Two-bar truss design, Welded beam design,
Speed reducer design, and Disc brake design.

Herrero et al. [41] address the problem of designing nonlinear tracking filters un-
der up to several hundreds performance specifications. The suitability of different
evolutionary computation techniques for solving such a problem has been analyzed.
The authors have found that the application of different MOEA techniques can lead
to very different performances. Based on the results obtained and after trying sev-
eral combination strategies to build the fitness function, the authors propose to build
a fitness function based on an operator that selects worst cases of multiple speci-
fications in different situations. Results are obtained for the design of an air traffic
control (ATC) tracking filter that should accomplish a specific normative with 264
specifications. The results show good performance, both in terms of effectiveness
and computational load.

Let us now illustrate the use of a MOEA to solve a feature extraction problem.
The aim here is not to present all the details, but rather show how the RPSGAe
algorithm can be used to solve such a problem. The problem to be addressed is a
classification problem that can be solved using different methods such as logistics,
support vector machines and artificial neural networks. The objective is to find the
minimum number of features needed to obtain the maximum accuracy of the compa-
nies evaluation. Examples of the features considered are the number of employees,
the fixed assets, the current ratio, the liquidity ratio, and the stock turnover days.
For that purpose we consider a database with 30 features or attributes characterizing
1200 different companies, for a given year. Regarding the company evaluation we
measure whether the company has survived or gone into bankruptcy. In the present
study, and for illustration purposes, we have used the logistics and support vector
machines methods with a gradient descent and holdout validation, having learning
rate and training fraction of 0.01 and 0.6, respectively. The runs performed used the
following RPSGA parameters (see [36] for more details): the main and the elitist
populations had 100 and 200 individuals, respectively; a roulette wheel selection
strategy was adopted; the crossover and mutation probabilities were, respectively,
set to 80% and 5%, the number of ranks and the limits of indifference for the clus-
tering technique were chosen to be 30 and 0.01, respectively. The results obtained
are reported in Figure 10.6. As it can be seen, 100 generations of evolution lead to
a considerable gain in accuracy while decreasing significantly the number of fea-
tures needed. On the final population only 4 non-dominated solutions exist having,
respectively 2, 3, 5 and 6 features, which are identified in Figure 10.7.
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Fig. 10.6 MOEA results: initial population and non-dominated solutions after 100 generations.

Fig. 10.7 Features used in the 4 non-dominated solutions after 100 generations.

10.4.2 Industrial

Industrial applications of EAs have been the subject of research for many years.
Both the single-objective and multi-objective versions of several problem types have
been addressed in the literature. In here, we look at recent work on multi-objective
versions of cellular manufacturing systems, balancing assembly lines, and schedul-
ing problems.

Cellular manufacturing attempts to bring the benefits of mass production to job-
shop production systems. Recent surveys, see e.g., [79] indicate that the practical
implementation of cellular manufacturing systems involves many conflicting objec-
tives, however most of the literature is on the single-objective version of the prob-
lem. Even when the existence of multiple objectives is acknowledge the proposed
solution methodologies, typically, aggregate objectives into a single one, see for
example the reviews by Mansouri [56] and Dimopoulos [19]. A recent exception,
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although others exist, is that of Dimopoulos [20]. In this work the author proposes
multi-objective genetic programming single-linkage cluster analysis (GP-SLCA) for
the solution of the multi-objective cell-formation problem. The Multi-objective GP-
SLCA combines an existing algorithm for the solution of single-objective cell for-
mation problems [21] with NSGA-II, an elitist evolutionary multi-objective opti-
mization technique, in order to automatically generate a set of non-dominated solu-
tions for a given multi-objective cell-formation problem. Although the results pre-
sented in the article indicate that multi-objective GP-SLCA is a promising approach
to the solution of the multi-objective cell-formation problem, the experimental ba-
sis that exists for this problem is small, and consequently there are no extensive
comparative results.

The assembly line balancing problem (ALBP) is a decision problem arising when
an assembly line has to be (re)-configured, and consists of determining the optimal
partitioning of the assembly work among the workstations in accordance with some
objectives [71]. These objectives usually take one of two forms: i) either minimising
the number of workstations given the cycle time of the line, or ii) minimising the cy-
cle time given the number of workstations. The multi-objective ALBP has attracted
a considerable research attention in the last decade. There is a lack in the litera-
ture regarding the use of EAs for solving the multi-criteria ALBP of type ii above.
Furthermore, as point out by Scholl and Becker [72], the computational testing of
most EAs has been performed ignoring existing ALBP test bed. In a recent work,
Nearchou [60] presents a differential evolution based approach , inspired on that of
Murata [58], for solving the bi-criteria ALBP. The main objective was to minimize
the cycle time of the line and secondary objectives to minimize balance delay time
and workload smoothness index. The proposed method formulates the cost function
of each individual solution as a weighted-sum of multiple objectives functions with
self-adapted weights. It maintains and updates a separate population with diverse
Pareto-optimal solutions, injects the actual evolving population with some Pareto-
optimal solutions to preserve non-dominated solutions found over generations. The
encoding scheme used maps real-valued vectors to integer strings corresponding to
feasible solutions. The computational results reported are for benchmark problems
taken from the open literature and are compared to that of two other previously pro-
posed methods, namely, a weighted sum Pareto GA [58], and a Pareto-niched GA
[50].

Production scheduling problems have been researched for many years, how-
ever the literature on multi-objective scheduling is notably sparser than on single-
objective scheduling. The interest in multi-objective production scheduling, espe-
cially in the multi-objective deterministic problem has been sparked by some recent
surveys. Particularly after the survey by Nagar et al. [59], which provides a good
review of the research on this type of problems up to the early 1990s. They discuss
the single machine bi-criteria problem, the single machine multi-criteria problem,
the multiple machine bi-criteria problem, and the multiple machine multi-criteria
problem. Later, Tkindt et al. [76] present a discussion on the one-machine job shop,
the parallel-machine job shop, and the flow shop. For these problems more than 100
published papers have been listed. In a recent work, Hoogeveen [43] looks closer to
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the earliness-tardiness scheduling and the scheduling with the controllable process-
ing time. More recently Lei [54] looks into multi-objective scheduling after 1995
and an extensively list of papers is provided. The author classifies the scheduling
problems based on the nature of the problem, shop configuration, and the descrip-
tion method of uncertainty. Then, the main characteristics of the previous research
are summarized, and finally the new trends in scheduling with multiple objectives
are pointed out. The author also reviews some less researched problems.

10.4.3 Economics and Management

Economics and management are very promising research areas to apply Evolution-
ary Algorithms (EAs) for two kinds of reasons. On the one hand, problems within
these areas are quite difficult, see for example Schlottmann and Seese [70] for proof
of NP-completeness of some financial problems. On the other hand, although the use
of EAs in these areas is not an emerging research area [7], the use of multi-objective
EAs is still scarce and not many different problems have yet been addressed.

Regarding the use of MOEAs several problems have been addressed, such as time
series forecasting, stock ranking, economic exploitation levels, risk management,
forest management, space allocation. Recently, very good surveys have been written
on applications of MOEAs to problems in economics and management, see [69, 24,
73, 75]. Here we only mention a few new approaches to the portfolio optimization
problem, since it has been the most popular, just to show how active is the research
on finding solutions to problems in economics and management using MOEAs.

The portfolio optimization problem is a well-known difficult problem occurring
in the financial world. In this problem a collection of assets is chosen to be held by
an institution or a private individual. The choice is done such that the expected re-
turn (mean profit) is maximized, while at the same time the risk is to be minimized.
Since the optimal solution depends on the users risk aversion, various trade-offs are
usually seek. In [6] the authors propose an approach that integrates an active set
algorithm optimized for portfolio selection into a multi-objective evolutionary algo-
rithm (MOEA). The MOEA provides some convex subsets of the set of all feasible
portfolios and then a critical line algorithm is solved for each subset. Finally, the
partial solutions are merged to obtain the solution to the original non-convex prob-
lem. The authors were able to show that their envelope-based MOEA significantly
outperforms existing MOEAs, when solving some benchmark problems.

In another recent work Li proposes a multi-objective genetic programming sys-
tem [55]. This system improves on the previous one, in two different ways, by taking
advantage of the MOEAs. One the one hand, it improves on efficiency since a set
of Pareto front solutions is obtained in one single execution. On the other hand,
from the users perspective, it is simpler as it eliminates a number of user-supplied
parameters previously required.

Other problems such as forest management have also been addressed by evolu-
tionary algorithms, see for example [25] and the references therein.
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10.4.4 Other Applications

In this section we include several application types that we designate by others.
Such applications include for example spectroscopic data analysis, medical image
processing, computer-aided diagnosis, treatment planning, machine learning, selec-
tion of attributes in data mining, regression and prediction, series forecasting, and
biometric applications.

Since here we refer to several applications areas where vast research has been
occurring we refer the reader to some recent surveys. In [62] the authors provide
an overview of the application of evolutionary computation in the medical domains.
First, six types of evolutionary algorithms are outlined (genetic algorithms, genetic
programming, evolution strategies, evolutionary programming, classifier systems,
and hybrid systems). Then their application to obtain solutions to medical problems,
including diagnosis, prognosis, imaging, signal processing, planning, and schedul-
ing, is discussed. Finally, the authors provide an extensive bibliography, classified
both according to the medical task addressed and according to the evolutionary tech-
nique used. Another review is provided by Handl et al. [40]. In this work, the appli-
cation of multi-objective optimization in the fields of bioinformatics and computa-
tional biology is reviewed. The literature reviewed in the survey, over 140 papers, is
arranged by biological problem domain, namely classification problems (unsuper-
vised, supervised, and semisupervised), inverse modeling problems (i.e. problems
were it is intended to infer the original system from the observed data), sequence
and structure alignment (which involves assessment of similarity and the identifica-
tion of related sequences or structures), structure prediction and design, and system
optimization and experimental design (investigate the degree of optimality of nat-
urally occurring biochemical systems or to design optimal biochemical processes).
Another important issue studied in this survey is the identification of five distinct
problem contexts, giving rise to multiple objective problems.

A very interesting work, regarding the use of MOEAs, is that of Hruschka et
al. [45]. This work provides an up-to-date overview of the use of evolutionary algo-
rithms for clustering problems in different domains, such as image processing, com-
puter security, and bioinformatics. It also provides a taxonomy that highlights some
very important aspects in the context of evolutionary data clustering, namely, fixed
or variable number of clusters, cluster-oriented or nonoriented operators, context-
sensitive or context-insensitive operators, guided or unguided operators, binary, in-
teger, or real encodings, centroid-based, medoid-based, label-based, tree-based, or
graph-based representations, among others. The paper ends by addressing some im-
portant issues and open questions that can be subject of future research.

Two very successful scientific disciplines using evolutionary algorithms are data
mining and machine learning. Data mining has emerged as a major research do-
main in the recent decades to extract implicit and useful knowledge. Initially, this
knowledge extraction was computed and evaluated manually using statistical tech-
niques. Subsequently, semi-automated data mining techniques emerged because of
the advancement in technology. Such advancement was also in the form of storage
which increased the demands for analysis. In such case, semi-automated techniques
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have become inefficient. Therefore, automated data mining techniques were intro-
duced to synthesis knowledge efficiently. A critical literature review, highlighting
the strengths and limitations of the automated techniques is given by Asghar and
Iqbal [2]. Machine learning is concerned with the design and development of algo-
rithms that allow computers to learn based on data. Therefore a research major focus
is to automatically learn to recognize complex patterns and make intelligent deci-
sions based on data. Machine learning is inherently multi-objective, since many of
the applications where it is used are multi-objective and involve solving hard prob-
lems. However, until recently either only one of the objectives was adopted as the
cost function or the multiple objectives were aggregated to a scalar cost function.
Recently, this has been changing, mainly due to the great success of MOEAs [53].
MOEAs are now being used within machine learning techniques in order to find
a number of non-dominated rule sets with respect to the several objectives, see for
example the reviews in [48, 32]. For a more detailed account of the existing research
on multi-objective learning, the reader is referred to [47].

10.5 Conclusions

This paper has presented a brief review of algorithms in the rapid growing area
of Multi-objective Evolutionary Algorithms (MOEAs), as well as, some of their
applications. Regarding the algorithms, their self robustness seems to be one of the
main issues, since the conditions under which the solutions have been obtained are
unlikely to be exactly the ones to be found during the implementation and usage of
the method. This may happen due to several reasons, namely: data noise, changes
in the design variables, environmental changes, quality measures or other changes
with time, etc. Therefore, it is clear that it is an important aspect to be considered
during optimization. However, it is rarely included in traditional algorithms.

Another important issue, that is still of major concern, is algorithmic efficiency.
Recent research is looking at parallel implementation as a possible solution. There-
fore, more in depth and detailed studies of the different aspects involved in paral-
lelization need to be performed.

A recent trend, that most likely will continue to grow further is the use of nature
inspired techniques, such as particle swarm optimization [10, 9, 65], differential evo-
lution [1, 3, 80], ant colony systems [22, 23, 33], electromagnetism [5, 18], amongst
others.

Reformulating some real problems, which are currently addressed as if they only
have a single objective is likely to be one of the probable future trends in MOEAs.
Thus, the research efforts should not only be put into the development of new algo-
rithms but also on the adaptation of existing algorithms to new applications.

The main idea we would like to leave the reader with is that Evolutionary Algo-
rithms are a viable alternative to solve difficult real-world problems in a reasonable
amount of time. Sometimes, they might even be the only alternative providing good
results. Given their heuristic nature there are no guarantees on the solution quality.
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However, there is an overwhelming evidence showing their effectiveness to address
complex real-world problems when compared to other heuristics, regardless of be-
ing deterministic or stochastic.
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