
Chapter 1
To Better Respond to the Robustness Concern in
Decision Aiding: Four Proposals Based on a
Twofold Observation

Bernard Roy

Abstract After reviewing what the adjective “robust” means in decision aiding 1

(DA) and explaining why it is important to be concerned about robustness in DA, I
present a twofold observation (section 1.2), which leads me to make four proposals
in order to better respond to robustness concern in decision aiding. With the first
two proposals (sections 1.3 and 1.4), I show that, in many cases, the vague approxi-
mations and the zones of ignorance against which robustness helps to prevent, must
be considered in terms of substituting the concept of version for the usual concept
of scenario and focusing on the diverse processing procedures that must be used
to study the decision aiding problem as it was formulated. Next, I show (section
1.5) that the traditional responses formulated in terms of “robust solutions” limit
the meaning of this concept. I briefly describe a certain number of avenues for re-
search that could be explored further, not only in order to otherwise conceive the
solutions that could be qualified as robust in another way, but also to better inter-
act with decision-makers to make them aware that the adjective “robust” can be
subjective. Finally, the fourth proposal is related to forms of responses that lead to
stating “robust conclusions”, which do not necessarily refer to solutions character-
ized as robust. After defining what I mean by robust conclusions and giving some
examples, I mention the rare approaches that have been proposed for obtaining such
conclusions.

1.1 The Robustness Concern in Decision Aiding

Robustness in decision aiding (DA) is a subject that has given rise to many pub-
lications over the last several years (see, [3, 4, 11, 12]). After reviewing what the
adjective “robust” means in terms of decision aiding and explaining why it is im-
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portant to be concerned about robustness in DA, I present a twofold observation,
which leads me to make four proposals designed to facilitate a better response to the
robustness concern in decision aiding.

When proposing solutions and making recommendations to a decision-maker,
the analyst must base these solutions and recommendations on models. However,
the inevitable presence of vague approximations and zones of ignorance (explained
in more detail later on) affect the modeling. The models must try to take into account
these vague approximations and zones of ignorance so that the solutions and the
recommendations based on the modeling do not risk ending up in results that are
far worse than was anticipated when they will be implemented. Paying attention to
robustness means taking robustness concern into account throughout the decision
aiding activity (see [15]).

I have proposed (see [38, 39]) that, by definition, paying attention to robustness
in decision aiding means seeking to be able to withstand “vague approximations”
and “zones of ignorance”, in order to prevent undesirable impacts, such as goals
attained that are much worse than those anticipated or degradation of some of the
properties to be maintained.

With respect to the decisions in question, the presence of vague approximations
and zones of ignorance intervene at two levels of the decision aiding process:

1. the model on which the decision aiding is based may not conform exactly to the
context in which the decisions will be implemented; and

2. the value system used to conceive and process the model may not conform ex-
actly with the value system that will be used to judge these decisions.

These are two clear-cut facts which are the source of the inevitable gaps that exist
between what I called the formal representation and the real-life context (see [40]):

• formal representation (RF): the model and the processing procedures that are
applied to highlight the results on which decision aiding is based);

• real-life context (RLC): the context in which decisions will be made, executed
and judged. 2

Assuming that FR conforms exactly to RLC may lead the analyst to make recom-
mendations that are likely to have extremely undesirable impacts. I will refer here
only to one example in the field of linear programming. Believing that this con-
formity, without being perfect, could be judged excellent would justify the analyst
recommending that the decision-maker adopt the optimal solution. In this type of
model, it is the extreme point of a polyhedron that characterizes the optimal solu-
tion. An extreme point corresponds to a point on the boundary that separates that
which has been judged acceptable from that which has been judged unacceptable for
each of the constraints that define the extreme point. If only one of these boundary
constraints has been poorly apprehended, the recommended solution may be quite

2 State of nature could be used instead of real-life context, but because the latter expression refers
to real life, it is, in my opinion, more appropriate to decision aiding than the former, which refers
to nature.
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different from the solution that would really be optimal, and may even be unfea-
sible. The optimization criterion is often defined as a synthesis of the elementary
partial criteria. If these criteria are taken into account in a way that differs from the
way that they are taken into account in the RLC, the recommended solution could
be much worse than was expected.

In a given decision-making context, the analyst must thus seek to identify the
vague approximations and zones of ignorance because they can engender a lack
of conformity between FR and RLC. If the analyst ignores them, it could lead to
proposing solutions and/or to making recommendations that would not protect the
decision-maker from the impacts judged undesirable.

These brief considerations3 are sufficient to make understand that the analyst
who is concerned about robustness must formulate and process the problem in a
way that responds appropriately to the following two requirements:

• Requirement 1: Inventory carefully what I have proposed calling frailty points
and appropriately take these points into account in FR (see [39]).
By definition, these frailty points are the place in the FR where the vague ap-
proximations and zones of ignorance are situated. I will give further examples
later in the text. For the moment, I just want to draw attention on the fact that
these frailty points are not only located in the model; they can also affect the
processing procedures.

• Requirement 2: Develop forms of responses that are capable of helping decision-
makers protect him/herself from the undesirable impacts that can result from the
presence of vague approximations and zones of ignorance.
These forms of responses must take into account what the decision-maker ex-
pects from this protection: are there levels of impact that he/she is willing to
tolerate in certain circumstances and others that he/she judges unacceptable with
respect to what he/she wants to be protected from, regardless of what happens
and regardless of the cost? Depending on the RLC, the solution adopted by the
decision-maker could, due to the presence of vague approximations and zones of
ignorance in FR, reconcile relatively well the desire for protection and the hope
to optimize the performance criterion/criteria that serve to evaluate this solution.
The forms of responses elaborated will be really useful to the decision-maker
only if these forms give him/her enough information to be able, given his/her
own subjectivity, to decide between two conflicting risks: being poorly protected
with regard to very poor performances that could result from undesirable impacts
and/or abandoning all hope of good, even very good, performances.

The two above requirements above are the starting point for the twofold obser-
vation presented below.

3 For more details, see the references cited above, as well as Roy [35] and Roy and Bouyssou [41].
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1.2 A Twofold Observation

In the literature (see the enclosed references, particularly the bibliographies in these
references), I have observed that many researchers who study the robustness concern
perceive the two requirements stated above in a way that leads them to concentrate
their research in two “special channels”. By referring to these channels, I do not
mean to minimize the importance of this research. I simply want to emphasize the
following point: if, at this point in time, most researchers conduct their research
exclusively on these two favored channels, other paths risk being ignored, despite
the fact that they are equally fruitful on both the theoretical and practical levels.

• First observation (first channel): The frailty points generally taken into account
concern solely the data whose purpose is to bring the RLC aspect qualified as
uncertainty into play in the FR. This conception leads to defining a set of sce-
narios that are supposed to describe all the realities likely to occur, which the
robustness concern requires be taken into account.
Although appropriate for responding to the first of the two requirements pre-
sented above, this conception may, in some cases, prove insufficient for iden-
tifying all the frailty points. I will show in the following two sections that this
conception may lead to ignoring some vague approximations and zones of igno-
rance that should be taken into consideration.

• Second observation (second channel) : Most researchers focus on only one par-
ticular form of response, which makes the concept of robust solution play a
central role. To qualify a solution as robust, these researchers assign a privileged
role to the solution’s performance in the worst scenario(s).In addition, this per-
formance is modeled in the FR with a single criterion.
This form of response leads to proposing to the decision-maker one or more
solutions, which, depending on the vague approximations and zones of ignorance
taken into account, optimize the most undesirable impact that the decision-maker
faces. This impact can be understood either in terms of absolute performance or
in terms of regret with respect to the optimal solution in the scenario that will be
implemented. Such a solution can very well not correspond to what the decision-
maker means by robust solution. In any case, in order to adopt such a solution,
the decision-maker may need more information, particularly about what could
happen if the scenario that occurs is not the worst case. These brief considerations
show that the second of the two requirements presented above may not be taken
into account in a satisfactory manner by this form of response. In sections 1.5
and 1.6, I will show that the robustness of a solution can be defined otherwise,
not only by referring to a single performance criterion, and that, more generally,
other forms of responses deserve to be studied.
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1.3 First Proposal: Move Beyond the Scenario Concept

In some cases, the concept of scenario can be too reductive to allow an appropriate
response to the first requirement (see section 1.1). This can lead to the desire to
move beyond this concept. This reductive nature is due to two reasons:

The first reason is semantic. For a decision-maker, “scenario” stands for a de-
scription of a potential future (sometimes present) situation. It is thus this meaning
of the term that the decision-maker will understand when the analyst employs “sce-
nario” when speaking of the robustness concern. Therefore, the analyst must be
aware of the risk of misunderstanding.

The second reason is related to the fact that “scenario” is generally associated
with the notion of uncertainty. This uncertainty can lead to a belief that, some-
where, certainty exists. This implicit belief can lead to thinking that there is an
objective state of reality that needs to be reproduced as closely as possible, either
in qualitative or quantitative terms, in order to make the FR conform as closely as
possible to the RLC.

It is thus with the aspects of reality said to be “first order”4,which by defini-
tion are linked to objectively significant physical properties of things. By nature,
such aspects give rise to repeated experimental verifications. Thus, speaking of ap-
proximation, either in qualitative or quantitative terms, in relation to such aspects
of reality makes sense. For example, this is the case with the length of a path in
kilometers, the quantity of CO2 emitted by a motor, or the price of goods available
today on the market.

However, in decision aiding, aspects of reality that are not of this nature are
also present. These aspects of reality are said to be “second order”. By definition,
these aspects of reality involve a connotation, the essentially subjective value that
is assigned to the content of this reality. They can thus not give rise to repeated ex-
perimental verifications to reach an agreement on the way that they should be taken
into account. It does not seem to me very appropriate to speak of uncertainty, and
even less of approximation, when describing them. This is the case when speak-
ing of, for example, objectives, standards, attitudes towards risk, preferences and
understanding of a future situation.

It is thus not only uncertainty that leads to being concerned about robustness.
More generally, it is the presence of vague approximations and zones of ignorance.
Some of them cannot stem from the presence of uncertainties, as is shown in the
following examples.

Vague approximations stemming from a part of arbitrariness in the modeling: It
can come from the presence of a form of simplification that can be envisioned in
two or three different ways, or from the introduction of two or three probability dis-
tributions representing a random phenomenon with the choice of these distributions
being highly dependent on the ease of calculation.

Vague approximations stemming from the way that qualitative information is
coded: : Consideration of such information (notably when modeling preferences)

4 I borrow this terminology from Watzlawick [49].
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can lead to several possible interpretations: several techniques, particularly normal-
ization, can be envisioned to quantitatively process data that, in the form in which
they are gathered, are not really quantitative.

Zones of ignorance stemming from imperfect knowledge about a complex phe-
nomenon: This imperfect knowledge can lead to introducing different variants to
describe the phenomenon.

Zones of ignorance stemming from the subjective nature of certain constraints:
The boundary between possible and impossible or acceptable and unacceptable can
remain very poorly defined and thus can lead to a set of options, which can be
defined either as the set of all the real values that a parameter in a given interval can
have or as a list of all the possible values in such an interval.

Zones of ignorance stemming from the need to differentiate the role that the crite-
ria must play in a multicriteria aggregation model: This differentiation is most often
made by means of parameters that are called, depending on the case, importance co-
efficients, scaling constants, substitution rates or weights, for example. Frequently,
these parameters have no real existence in the mind of the decision-maker, who may
even have a very superficial comprehension of the role that these parameters play
in the model’s functioning. Depending on the available information, the model’s
aggregation logic and the desired objectives, several not necessarily discrete set of
values may be appropriate for assigning a value to these parameters.

Chosen among many others, these examples show that the notion of uncertainty
covers rather imperfectly all the vague approximations and zones of ignorance that
can cause frailty points. Consequently, using uncertainty to inventory these frailty
points can lead to ignoring some that should be taken into account by the robustness
concern.

It is important not to underestimate the impact of vocabulary. The words used
often play a decisive role in the direction that research takes, as well as in the way
that applications are conducted. In order to reduce the risk of decision-maker misun-
derstandings, and especially to avoid the often unconscious restrictive influence that
vocabulary choices have on thought processes, at the 56th meeting of the European
work group “Multiple Criteria Decision Aiding” in 2002 (see [36]), I proposed to
replace the term “scenario”, with the more general term version, The term “version”
does not emphasize the notion of uncertainty. In addition, this term is more clearly
associated than “scenario” with a decision aiding problem formulation (DAPF). A
DAPF version is characterized by the selection of a specific option for each iden-
tified frailty point. This option is one of the items in the (finite or infinite) set of
possible options associated with the frailty points under consideration. As the ex-
amples given above show, the objective of this option is different according to the
nature of the vague approximations and zones of ignorance that have caused a given
frailty point. This option can consist of, for example, setting the numerical value
assigned to a parameter, determining the analytic form retained for a probability
distribution or a utility function, choosing the coding technique, selecting the model
variant adopted to describe a complex phenomenon or defining the way a trend is
described.
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In a given decisional context, the analyst must define a DAPF version set V̂ that
is likely to be appropriate for responding to the robustness concern. To do so, this
analyst must carefully inventory the frailty points connected to both the way the
decision aiding problem was formulated and the way the problem was modeled.
Questions about how this inventory can be completed and how V̂ can be defined so
that it can be taken into account effectively without being so reduced that it no longer
responds to robustness concern are not within the scope of this article. The interested
reader can find some paths that can be considered to answer these questions in Roy
[37, 38, 39]. Their level of difficulty is fairly similar regardless of whether version
or scenario is used.

1.4 Second Proposal: Take the Way That the Different Versions
are Processed Explicitly into Account

Whether the goal is finding robust solutions or developing other forms of responses
related to the robustness concern, it is necessary to apply at least one processing
procedure to each of the versions in V̂ . It is also possible to apply several pro-
cedures that may, or may not, be part of the same method. Before explaining my
second proposal, I need to explain briefly my meaning for the terms “procedures”
and “methods”. (For more details, please consult Roy [37, 39].)

A procedure P designates a set of execution instructions for handling a problem
that will produce a R(P,V ) result when applied to a version V of a DAPF. Depending
on the case, this result takes diverse forms. It can be a solution (e.g., an optimal
solution) or a bundle of solutions (e.g., all non-dominated solutions). It can also be a
statement: “there is no feasible solution”, “according to the criterion g, the deviation
from the optimal solution x is bounded by such-and-such value”, or “action a is
outranked by all the other actions, with the exception of the following, . . . ”.

A method M designates a family P̂ of similar procedures that satisfy the follow-
ing two requirements:

• the procedures in the family have enough similar features (e.g., structures, group
of concepts, axiomatic corpus, types of approach) that considering them as be-
longing to the same class is justified; and

• the procedures in the family can only be differentiated by the options chosen
with regard to certain frailty points in the method (e.g., concordance levels or
cut thresholds in the ELECTRE methods, thresholds that make some inequal-
ities strict in mathematical programming, the various parameters involved in a
metaheuristic method, individual subjectivity in a process that calls for expert
intervention at certain steps).

Wanting to apply one single processing procedure P to each of the versions in
V̂ can, in many cases, prove to be insufficient for correctly understanding the links
between FR and RLC. This is the case when distinct procedures warrant being taken
into account. Even if a single procedure P may appear sufficiently appropriate, it is
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actually quite rare that this procedure will not have any frailty points at all. It can be
the value assigned to a purely technical parameter or related to a second-order real-
ity, the arbitrariness involved in the way certain arbitrages are conducted, especially
between really similar solutions, the manner that some syntheses are conducted,
particularly for taking into account the solutions that are close to the optimum in the
case of a “flat” optimum.

Whatever the procedure P considered, it is necessary to inventory its frailty points
and to identify the one that could significantly affect the result R(P,V ), For such
frailty points, several options must be introduced. This leads to a multiplication of
the procedures. Here again, it is important to choose wisely in order to not retain
too many procedures, which would lead to processing times that are too long to
adequately respond to the robustness concern.

In the following, P̂ designates the set of procedures retained. These procedures
may, or may not, be part of a same method. Each one can be applied to each of the
versions in V̂ . It may also be that certain procedures will appear inappropriate for
processing a specific version in V̂ . In general, this leads to defining the set S of pairs
(procedure P, version V ) judged compatible: S⊆ P̂× V̂ .

As the above observations show, basing the response on a single version set
alone, or even more, on a scenario set, can in many cases not be enough to ade-
quately respond to the robustness concern. I propose a larger conception that begins
by defining the three sets - V̂ , P̂ and S - which leads to basing the responses to ro-
bustness concern on the set of results: R(P,V), ∀(P,V ) ∈ S. Nevertheless, basing the
responses on a subset Ŝ⊂ S is sometimes enough.

Before examining the different possible forms of response to the robustness con-
cern (see sections 1.5 and 1.6), I need to make one thing clear. There are frailty
points for which it is possible to wonder if the points are due to the way the problem
was modeled or to certain characteristics of the processing procedures considered.
This is the case, for example, with the parameters that define the role the different
criteria must play in preference modeling. The way that this question is treated mod-
ifies the definition of the sets P̂ and V̂ . The set of results R(P,V ) remains invariant
facing such modifications. This comes from that the answer brought to the question
does not modify the definition of S. Every element s ∈ S is defined by a particular
option retained for each of the frailty points, regardless of whether a given frailty
point is assigned to procedures or to versions. To refer to this sequence of options
that defines an element s ∈ S, I will use the term variable setting.

1.5 Third Proposal: Look for “Other” Definitions for Robust
Solutions

In this section, I focus exclusively on the forms of response used to propose to
the decision-maker one or more solutions qualified as robust. In these conditions,
abandoning the second channel (see section 1.2) consists of proposing definitions
for robust solutions that, one way or another, go beyond the usual schema to which
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most researchers currently conform. This schema seems to me to be characterized
by the following three features:

Characteristic feature #1: In the FR model, preference is modeled using a single
performance criterion (e.g., gain, cost); the robustness concern is not taken into
account in any way in this single criterion.

Characteristic feature #2: A single robustness measure is defined to give meaning
to the statements “solution x is at least as robust as solution y”. This measure is the
only criterion used to define robust solutions.

Characteristic feature #3: The single robustness measure assigns a preponderant
role to the performance of the solution in the worst case(s), for example, the worst
scenarios or the worst pairs (P,V ) in S.

The basic and innovative work of Kouvelis and Yu [27] has probably contributed
the most to the fact that research is mainly conducted within the framework of the
above schema. A robust solution is a solution x that, by definition, optimizes a single
robustness measure r(x), which is one of the three measures on which Kouvelis and
Yu primarily focused. Below, I remind the reader of their definitions.

These three measures insure that the optimization criterion v comes into play in
a given FR model (Characteristic feature #1). This criterion assigns a value v s(x) to
x in scenario s, assuming that “optimum” means “maximum”.

Absolute robustness. The robustness measure that must be maximized is defined
by the value of the solution in the worst scenario:r(x) = min s vs(x).

Absolute deviation. The robustness measure that must be minimized is defined by
the value of the absolute regret in the worst scenario, due to the fact that the solution
differs from that which would be optimal in this scenario:r(x) = max s[v∗s − vs(x)],
where v∗s is the value taken by the optimal solution in scenario s.

Relative deviation. The robustness measure that must be minimized is defined by
the value of the relative regret in the worst scenario, due to the fact that the solution
is not optimal in this scenario:

r(x) = max
s

v∗x− vs(x)
v∗x

When, further on, I need to refer to these measures, I will speak of the “three
measures of Kouvelis and Yu”. I remind the reader that these measures correspond
to the classic Wald and Savage criteria in decision under uncertainty.

In the sub-sections below, without any pretentions of exhaustivity, I evoke the di-
rections that have begun to be explored but that I think deserve to be more explored.
All aim to more or less free themselves from the schema that I have described above
with its three characteristic features. This exploration should lead to new definitions
of ”robust solutions”, which because they abandon the second channel (see section
1.2) will permit, at least in certain cases, to better respond to the robustness concern.
To accomplish this aim, these new definitions must consider a double goal:

• take into account other conceptions of robustness than those taken into account
in the schema described above;
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• be appropriate for organizing a discussion with the decision-maker to help
him/her understand the subjective aspect of robustness.

1.5.1 Abandoning the Third Characteristic Feature Without
Necessarily Abandoning the First Two

Three directions at least seem to deserve more exploration:

a) Involve the neighborhood of the worst case

Once one of the three robustness measures of Kouvelis and Yu is chosen, it is possi-
ble to consider as robust not only the solutions that optimize this measure, but also
all those that are in the neighborhood of the optimum. This neighborhood can be
defined in several ways.

For example, let us assume that the measure r(x) chosen is the absolute robust-
ness of Kouvelis and Yu. It is then possible to qualify as robust every solution x
that verifies r(x) ≥ w, where w is a value defined a priori by the decision-maker.
When the criterion v represents a gain, the value w is interpreted as the minimum
gain that the decision-maker wants to guarantee. The neighborhood of the optimum
thus taken into account does not allow the robust solutions to be highlighted unless
w≤ w∗ = maxx∈X r(x).

Among others, Aubry [6] and Rossi [33] have focused on this way of qualifying
a robust solution. Clearly, the greater the difference w∗−w the greater the number of
solutions qualified as robust. Limiting the definition of the neighborhood is possible
and allows a solution to be qualified as robust by retaining only the solutions that
maximize the number or the proportion of scenarios that permit an objective b to be
reached. This objective can be defined either in terms of absolute gain, or in terms
of absolute regret, or even in terms of relative regret (again, with the meaning of the
three criteria of Kouvelis and Yu). It was precisely this way of defining that led me
to define three new measures: (b,w)-absolute robustness, (b,w)-absolute deviation,
(b,w)-relative deviation (see [38, 40]). In these articles, I particularly emphasized
the role that the analyst could assign to parameters b and w to help the decision
maker determine the precise meaning that he/she wants to give to robust solutions.
The choice of the values that he/she assigns to these parameters determines the
compromise between guaranteed gain and the hope to reach a goal.

It is also possible to propose to qualify as robust the solutions that verify:

r(x)≥
(

1− p
100

)
max
x∈X

r(x),

where r(x) denotes absolute robustness and p, a percentage of deviation to the worst
case that the decision-maker gives a priori. This is the p-robustness (see [1]; [45]).
By proceeding in this manner, regardless of the value of the percentage p, the set of
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solutions qualified as robust is never empty. Diverse variants have been proposed to
limit the set of solutions thus qualified as robust.

It is possible to propose similar definitions for robust solutions by adopting, for
r(x), the absolute regret or the relative regret of Kouvelis and Yu. However, it is not
certain that such definitions would be so easily interpreted by the decision-maker.

b) Design a robustness measure that, while assigning a role to the worst case,
weakens its influence

With the exception of research limited to very specific concrete cases, only one
proposal seems to have been made in this direction: “lexicographic α-robustness”
(see [5, 25]). This proposal is based on any of the three robustness measures of
Kouvelis and Yu, and it assumes that a finite set S of scenarios has been defined. It
takes into account all the gains or regrets lexicographically, from the worst case to
the best case. This lexicographic ranking brings into play a reference point and an
indifference threshold α , which according to the authors is supposed to reflect “the
subjective dimension of robustness”. The set A(α) of the solutions thus qualified as
robust is such that α ′ > α⇒ A(α)⊆ A(α ′). With the values of α , A(α) = ∅ can be
obtained. The conditions for solution x belonging to, or not belonging to, A(α) are
highly complex. Thus, it seems to me that it would be difficult to make a decision-
maker understand the general meaning of “lexicographic α-robustness”. Still, as the
authors have underlined, this approach can also be seen as a source for developing
robust conclusions (see section 1.6).

c) Limit the option combinations appropriate for defining a worst case

Exploring this direction consists of seeking to benefit from the following empirical
judgments. Let us assume that, for certain “critical” frailty points, the identity of the
option that would most negatively affect the performance v(x) of a solution x can
be identified. In general, these options are “extreme”. A scenario, or more generally
a variable setting (in the sense given at the end of section 1.4), which combines
a very large number or a very large proportion of such options, reflects a real-life
context that could be judged highly unrealistic. Under these conditions, it can seem
justifiable either to totally eliminate from S the scenarios or variable settings that are
not very meaningful for defining the robustness r(x) of a solution or to assign them
a separate role that will lessen their impact.

To characterize the elements s(S) judged not very meaningful, many different
ways are possible. For example, each of the critical frailty points can be associated
to a particular option, called “reference option”, that must have a central position
or must appear to be the most realistic. Then, it is possible to consider as not very
meaningful the element s(S) in which the number or proportion of options that dif-
fer from the reference option for which the critical frailty points, exceed a certain
threshold. If, for each critical frailty point, a measure of the gap between a given
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option and the reference option can be defined, and if the aggregation of such a
measure has meaning, the result of this aggregation can be used to define the rela-
tive meaningfulness of an element s not very meaningful.

The work of Bertsimas and Sim [8, 9] related to linear programming FR models
goes in this direction, as does the work of Ben-Tal and Nemirovski [7], Chinneck
and Ramadan [14], Gabrel and Murat [20], and Minoux [30].

These three directions are certainly not the only ones. Other directions have al-
ready begun to be explored. A non-exhaustive list would include the research of
Lamboray [28], Liesiö et al. [29], Perny et al. [31], Salazar and Rocco [44], and
Spanjaard [47]. The proposal of Aissi and Roy [3, 4] (sub-section 3.4) also goes in
this direction. This proposal leads to (almost) ignoring the role played by the worst
case. It takes into account only the position of solution x in each of the rankings
defined by the decreasing performance of v s(x), ∀s ∈ S.The values assigned to the
two parameters that fix two types of thresholds should help the decision-maker to
find a good compromise between the performance desired and the risk tolerated.

1.5.2 Abandoning the Last Two Characteristic Features Without
Necessarily Abandoning the Third

Here again, the case in which the preference has been modeled (in the FR model)
by a single performance criterion that does not take robustness concern into account
is considered. In such conditions, several criteria can be brought into play in order
to qualify a solution as robust. Two possibilities can be considered.

a) Take only a single robustness measure into account

Along with the criterion defined by a single robustness measure, one or more other
criteria can be used to define the precise conditions in which a solution warrants
being qualified as robust. The role of this/these complementary criterion/criteria,
which are not based on a robustness measure, is to provide additional information,
essentially about performance, in order to help the decision-maker determine what
“robust” means to him/her.

For example, a complementary criterion w(x) can be defined in one of the two
following ways:

• w(x) is the median performance vs(x), ∀s ∈ S (if S is probalilized, the median
can be replaced by the expected value); and

• w(x) = vs0(x) , where s0 is a reference scenario or a reference variable setting
defined by retaining, for each frailty point, the option that the decision-maker
thinks is the most realistic.

Once a robustness measure r(x) has been chosen (not necessarily one of the ones
proposed by Kouvelis and Yu), let us denote by Ω the set of solutions that verifies:
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r(x)≥
(

1− p
100

)
max
s∈S

r(x) if r(x) must be maximized,

r(x)≤
(

1+
p

100

)
min
s∈S

r(x) if r(x) must be minimized,

where p is a percentage introduced to set the boundaries of the neighborhood Ω
of the optimum; outside of this neighborhood, the solutions cannot be considered
robust. This leads to associating each solution x ∈Ω to its robustness measure r(x)
and the value corresponding to the performance indicator w(x). Let:

wρ = min
x∈Ω ,r(x)=ρ

w(x)

Showing the decision-maker the curve (efficient frontier) representing the way
that the performance indicator wρ varies in relation to the robustness measure ρ
can be very useful. This curve can help the decision-maker select the solutions that,
in his/her eyes, achieve a suitable compromise between the acceptable risk and the
expected performance.

The following are examples of publications that take this approach: Chen et al.
[13], Ehrgott and Ryan [16], Kennington et al. [26], and Salazar and Rocco [44].
Interested readers can consult the brief analysis of these publications in Aissi and
Roy [3, 4] (section 3.2).They will also find in this article (at the end of section 1.5.2)
a proposal dealing with linear programming models in which only the coefficients
of the constraint matrix are imperfectly known (the set S that allows the imperfect
knowledge to be modeled being assumed finite). In addition, this proposal assumes
that the decision-maker can tolerate a robust solution that does not verify all the
constraints, if this is true only for a small number of elements s(S) and leads to a
low cost solution. It also assumes that a solution that is mathematically infeasible
is preferable to a solution that satisfies all the constraints but costs a lot more. This
proposal brings into play a robustness measure and a cost criterion. In fact, three
possible measures are proposed. Consequently, this approach helps the decision-
maker to find a compromise between the solution’s performance (here, the cost) and
the gaps that reflect the imperfect satisfaction of the constraints.

b) Take several robustness measures into account

It is clear that robustness can be apprehended from various perspectives. The un-
desirable impacts from which the decision-maker wants to protect him/herself can
also vary, including for example objectives that remain unattained or properties that
are not maintained. One robustness measure can be associated to each of these ob-
jectives and/or to each of these properties.

Let R = {r1(x), . . . ,rk(x)} be a set of k measures judged appropriate for appre-
hending robustness. To qualify a solution as robust, it is possible to use a multi-
criteria approach based on these k measures. They should, as much as possible, be
uncorrelated. It is thus a question of generalizing, for k robustness measures, what
can be done with only one measure. Two possibilities can be envisaged. The first
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consists of bringing into play only the way robustness is measured for qualifying a
solution as robust as described in section 1.5.1. The second consists of bringing into
play, along with the k criteria of R, one or more other complementary criteria that
provide additional information destined to help the decision-maker determine what
“robustness” means to him/her, as described in section 1.5.2a).

The interesting attempt of Hites et al. [23] takes the direction of the first possibil-
ity. Assuming the set S of scenarios or variable settings to be finite, the authors con-
sider that for each s∈ S, vs(x) provides information that will be pertinent for evaluat-
ing the relative robustness of solution x. This leads them to state R = {v s(x)/s ∈ S}.
They point out the limitations of the traditional multicriteria decision-aiding tools
for defining, based on R, the solutions that warrant being qualified as robust. How-
ever, they also emphasize that a solution can only be qualified as robust if it is
non-dominated by the criteria set R.

I know of only one article that goes in the direction of the second possibility
stated above. Jia and Ierapetritou [24] focus on the design phase of a process for
synthesizing chemical products in small or intermediate quantities. Interested read-
ers can consult a brief description by Aissi and Roy [3, 4] (section 4.3). They will
also find at the end of section 4.3 a general proposal for the case in which S is finite.
This proposal is based on using two robustness measures, completed by a perfor-
mance indicator w(x) of the same type as the one introduced in section 1.5.2a).

1.5.3 Abandoning the First of the Three Characteristic Features

One way to break away from feature #1is not to introduce an initial performance
preference in the FR model but rather, from the beginning, to seek to apprehend the
preferences in terms of robustness. This assumes that the FR model brings into play
a family of several criteria (the case of one single criterion can, it seems to me, be
left aside), each of these criteria translating one perspective of robustness. I do not
know any work using this approach, other than the one in which I participated (see
[32]), which concerned the regulation of dense traffic on a rail network (timetable
elaboration and local network improvements). Interested readers can consult section
4.2 of the article by Aissi and Roy [3] for a brief description.

Another probably more natural way to break away from feature #1 leads to fo-
cusing on the cases in which the FR preference model is based on a family F of
n(≥ 2) criteria. Each criterion vi models one component of the multidimensional
performance of a solution x, evaluated without taking the robustness concern into
account. Let vis(x) be this performance when the real-life context is assumed to con-
form to the scenario or variable setting s ∈ S. Depending on whether one or several
robustness measures are used to give meaning to the qualifier “robust”, two cases
can be distinguished.
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a) With a single robustness measure

This single robustness measure must synthesize, for a single dimension characteriz-
ing the robustness of a solution x, the totality of the performances v is(x), not only
∀s ∈ S as in section 1.5.1, but also for i = 1, ..,n. I know of no publication that has
proposed such a general measure. It is obviously possible to begin by aggregating
the n criteria into a single criterion, which bring us back to the cases mentioned in
section 1.5.1. I limit myself below to presenting only a brief description of a differ-
ent path already presented in sub-section 3.3 of the article by Aissi and Roy [3, 4].

First, a specific robustness measure (see 1.5.1) is associated to each of the n
criteria. Second, a way to aggregate the n measures is sought. If these measures
are expressed on a common scale, the min or max can be used as a definition of
the synthesis measure. If the role played by the different robustness measures needs
to be differentiated according to the criterion to which they are associated, such
operators as the Ordered Weighed Average (OWA) or Choquet’s integral can, with
certain precautions, be used.

b) With several robustness measures

The set R of robustness measures that can be brought into play may be conceived
in two ways. The first consists of apprehending the robustness of a solution from
various points of view, as in sub-section 1.5.2b). The second consists of associating
a specific robustness measure to each of the n criteria, as in sub-section 1.5.3a).
Like monocriterion preference models, multicriteria preference models do not seem
to have been considered in the works that examine the robustness of a solution from
a multicriteria perspective. Aissi and Roy [3, 4] (subsection 4.4) have described the
only two studies I know of: Bescharati and Azarm [10] and Fernàndez et al. [17].

1.6 Fourth Proposal: Seek to Construct “Robust Conclusions”

Stating a robust conclusion constitutes a form of response to the robustness concern,
which generalizes those presented in the previous section. After reviewing several
definitions, I present diverse examples of robust conclusions and end this section by
evoking some of the approaches that allow this kind of conclusions to be obtained.

1.6.1 Definitions

A conclusion is an assertion that take the results R(P,V) into account, either for all
pairs (P,V ) = s ∈ S, or only for the elements Ŝ ⊂ S. These assertions must help the
decision-maker to frame, mark out or restrict his/her range of reflection and action.
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A robust conclusion is a conclusion that contains in its statement a set of con-
ditions in which its validity has been established. This means that the robustness of
a conclusion is contingent on both the validity range Ŝ ⊂ S to which it belongs and
the way that the validity conditions are formulated. Focusing only on the case of
Ŝ = S would lead to restricting the diversity and the importance of robust conclu-
sion to no useful purpose. It would be the same for requirements that the set Ŝ be
rigorously defined and that the conditions of validity contain no ambiguities. These
considerations led me (see [34, 35]) to distinguish three types of robust conclusions:

A conclusion is qualified as perfectly robust when its validity is rigorously
established ∀s ∈ Ŝ, Ŝ subset of S perfectly identified.

A conclusion is qualified as approximately robust when it has been established
without ambiguity for “almost” all s∈ Ŝ, Ŝ subset of S perfectly identified. “Almost”
means that the exceptions are related to pairs (P,V ) that are not necessarily perfectly
identified but which can be neglected because they are not very realistic or are al-
most totally without interest.

A conclusion is qualified as pseudo robust when the conditions that establish
its validity contain a degree of ambiguity, and this validity is only established for the
elements of a subset of Ŝ, which is not necessarily perfectly identified but is judged
representative of Ŝ.

Any perfectly robust conclusion is a fortiori approximately robust, and any ap-
proximately robust conclusion is a fortiori pseudo robust.

1.6.2 Examples

The following assertion constitutes the most common example of a robust conclu-
sion: “in S, x∗ is the only solution that optimizes the robustness measure r(x)”. More
generally, since Π defines a set of properties that a solution x must have to be qual-
ified as robust, the assertion “x∗ is a robust solution because the properties Π are
validated without ambiguity for all S” is a robust conclusion.

The concept of robust conclusion would have little interest if it was only applied
to assertions that affirm the robustness of a solution on all S in a perfectly well-
defined manner. The analyst may be brought to formulate highly interesting robust
conclusions for the decision-maker who does not explicitly refer to a definition of
a robust solution. In addition, as the following examples show, the analyst may, be-
cause he/she lacks time or does not have sufficiently rigorous algorithms available,
be led to propose assertions whose validity range is not necessarily all of S and/or
which potentially tolerate exceptions.

a) Other examples of perfectly robust conclusions

i) “Ŝ being a perfectly identified subset of S, ∀s ∈ Ŝ, x is a solution whose deviation
from the optimum according to criterion g never exceeds ε .
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ii) “The following solutions... are feasible solutions for all the variable settings of
S with the exception of the following...” (the range of validity of this perfectly
robust conclusion is S, without the excepted variable settings).

iii) “Solution x dominates solution y, ∀s ∈ S, except perhaps for the variable settings
s1, ...,sq” (the range of validity of this perfectly robust conclusion is S, without
the variable settings s1, ...,sq).

iv) “The variable settings of Ŝ (perfectly identified subset of S) prove the incompati-
bility of the following objectives ...” (example of objectives: attain a performance
at least equal to bi according to criterion gi for i = 1, ...,k).

v) “Ŝ being a perfectly identified subset of S, x is a solution that, ∀s ∈ Ŝ, has the
property P and, ∀s � Ŝ, has the property Q” (for example, with a finite solution
set, property P: x is always among the α best solutions; property Q: x is never
among the β worst solutions).

b) Examples of approximately robust conclusions

i) “Ŝ being a perfectly identified subset of S, ∀s ∈ Ŝ, x is a solution whose deviation
from the optimum according to criterion g only exceeds ε for certain variable
settings that, because they correspond to option combinations that are not very
realistic, can be neglected.

ii) “A probability distribution having been defined on S, x is a feasible solution with
a probability at least equal to 1− ε” (as long as the risk ε of non-feasibility
of a solution is judged negligible, this type of conclusion can be considered as
approximately robust).

iii) “Solution x dominates solution y, ∀s ∈ Ŝ, Ŝ only differing from S by the variable
settings that correspond to combinations of procedures and versions that can be
judged as not easily compatible.”

iv) “Ŝ being a perfectly identified subset of S, x is a solution that, for almost all
variable settings s ∈ Ŝ , has the property P, where almost means that the variable
settings for which it could be considered otherwise are judged negligible.”

v) “Solution x is non dominated, ∀s ∈ S, except for certain variable settings that,
because they are too different from a reference variable setting, can be neglected.”

c) Examples of pseudo robust conclusions

i) “The performance of the solution x according to the criterion g can be consid-
ered as always being at least equal to W because a simulation using a very large
number of random drawings of variable settings of S has shown that g(x) ≥W
was always verified.”

ii) “A systematic but non-exhaustive exploration of S showed that the following
solutions ... were always feasible solutions.”

iii) “Solution x dominates (or almost dominates) solution y, ∀s ∈ Ŝ (perfectly de-
fined subset of S), where dominates (or almost dominates) means that when the
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dominance is violated, it is only violated for one or two criteria, with slight devi-
ations.”

iv) “Ŝ beings a subset of S that was constructed in order to serve as a representative
sub-set of the variable settings making up S, the assertions validated on Ŝ can be
judged valid on S.”

v) “The assignment of xi to the category C j can, ∀s ∈ S, be considered as robust,
given the meaning of this term, although it is not completely without ambiguity.”

Interested readers will find concrete illustrations of some of the previous exam-
ples in works by Pomerol et al. [32], Roy [34, 35], Roy and Bouyssou [41] (chapter
8), Roy and Hugonnard [42, 2], and Roy et al. [43].

1.6.3 How Can Robust Conclusions be Obtained?

The examples in the previous section show that extremely varied forms of robust
conclusions warrant consideration. They can encourage thinking that it should be
possible to conceive a list of typical statements that are particularly worthy of in-
terest for each of the three types of robust conclusions. However, the statements on
such a list would be of interest only for those robust conclusions to which an ap-
proach allowing their validation can be associated. This approach would obviously
depend on:

• the formal representation (FR): mono or multicriteria models with solutions char-
acterized by a set of variables subjected to constraints or by a set of numbered
actions;

• the way that S was conceived: finite or infinite set, nature of the frailty points
concerned for V̂ as well as P̂ (see sections 1.3 and 1.4).

Rather than begin by establishing a list of typical conclusions and then wondering
about the context (FR, S) in which they could be validated, it is perhaps preferable
to proceed in the opposite manner. This is what seems to have been done by the
rare authors who sought to respond to the robustness concern by validating more
elaborate robust conclusions than those that are limited to affirming than such a
solution is robust according to very precise definitions. I will end this section with a
brief presentation of the context in which are situated the three approaches of which
I am currently aware. All three focus on cases in which:

• the decision-making possibilities are defined by a finite list of what are called
actions rather than solutions;

• the preference model is multicriteria;
• the problematic can be one of choice, of sorting or of ranking.

a) J. Figueira, S. Greco, V. Mousseau and R. Slowinski have focused on the follow-
ing context (see [18, 19, 21, 22]):
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The FR preference model is an additive value function that aggregates several
partial monotonic non-decreasing functions. S takes into account a set P̂ of proce-
dures: the procedures of P̂ are all those that allow an additive value function to be
built that is compatible with the preference data that the decision-maker provides
about a reference set of actions.

There are two types of robust conclusions:

• those that are validated by all the procedures of P̂ that are qualified as necessary;
• those that are validated by at least one procedure of P̂ that are qualified as possi-

ble.

b) T. Tervonen, J. Figueira, R. Lahdelma, P. Salminen and have focused on the
following context (see [48]):

• the FR preference model is a relational outranking system of the ELECTRE type,
which takes several pseudo criteria into account; and

• the variable setting that define S are related to the possible options in terms of
weights, veto thresholds and discrimination thresholds.

The robust conclusions (stated in S) are those that can be validated for a subset
Ŝ of S built by simulation, which brings into play the probability distributions of all
the possible options for each of the frailty points considered. The interested reader
can consult Sörensen [46] for another approach to the robustness concern using the
Monte Carlo method.

c) H. Aissi and I have focused on the following context (see [3, 4], subsection 5.3):

• the FR preference model is a relational outranking system of the ELECTRE type
that uses pseudo criteria; and

• .S, based on two previously defined sets Ŝ and V̂ , is finite

The robust conclusions are obtained at the end of a three-step procedure. The
first step constructs a subset Ŝ of S, which must be the result of a compromise be-
tween two relatively conflicting requirements, calculability and representativeness.
The second step highlights two categories of frailty points: those that can greatly
influence the results, and those whose influence on the results is negligible. On this
basis, we proposed replacing Ŝ by a set Ŝ′ that is at least as representative and, as
far as possible, much more limited. The third step, based on a careful analysis of the
results R(P,V ), ∀(P,V ) ∈ Ŝ′, must allow robust conclusions pertinent to the problem
under study to be obtained. This approach generalizes and extends the insufficiently
formalized approach that was used to obtain robust conclusions in two concrete
cases (see [41], chapter 8; [42, 2].

The types of statements of robust conclusions that each of the three approaches
above can validate warrant a more detailed explanation. There are many other con-
texts (FR, S) than those mentioned above (especially in relation to mathematical
programming); it should thus be possible to propose approaches specifically de-
signed to obtain robust conclusions.
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1.7 Conclusion

Most publications that propose ways to respond to robustness concern (as defined in
section 1.1) remain limited to the two special channels described in section 1.2. This
is the two-fold observation that led me to formulate the four proposals presented
above. The first two proposals (see sections 1.3 and 1.4) should help the analyst
not to overlook frailty points in what I call the formal representation (see section
1.1). If these frailty points are ignored, the analyst could propose solutions or make
recommendations that could, when implemented, lead to results much worse than
those expected. The last two proposals (see sections 1.5 and 1.6), in conjunction
with the first two, present research directions that, even though some have already
begun to be explored, should, it seems to me, help to develop new forms of responses
to robustness concern.

Using more general definitions of the concept of robust solution or even forms
of responses conceived in terms of robust conclusions, it should be possible to take
into account a greater variety of decision-makers’ expectations, to provide them
with a better understanding of the subjectivity of the robustness concern, to help
them choose better compromises between the risk of being poorly protected against
very bad performances and the abandoning of hope for good, even very good, per-
formances. The research directions that have been outlined above should not only
allow a better understanding of the robustness concern in applications, but also stim-
ulate interesting research on more theoretical levels.
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