
R. Ramanujam and S. Sarukkai (Eds.): ICLA 2009, LNAI 5378, pp. 232–242, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Gautama – Ontology Editor Based on Nyaya Logic

G.S. Mahalakshmi, T.V. Geetha, Arun Kumar, Dinesh Kumar, and S. Manikandan

Department of Computer Science and Engineering,
Anna University, Chennai, Tamil Nadu, India

{mahalakshmi,tvgeedir}@cs.annauniv.edu,
{arunk.frau2004,dd.jack,write2manikandan}@gmail.com

Abstract. Indian logic based approach of knowledge representation fundamen-
tally classifies the world knowledge into concepts, and relations, both enriched
with special qualities. To be more precise, Nyaya Sastra recommends a special
categorization of world knowledge which is supposed to be elaborate in tapping
the minute details in the defined knowledge units. Nyaya logics are a mecha-
nism which defines the concept and relation elements of ontology based on the
epistemology of Nyaya-Vaisheshika school of Indian logic. We have already
proposed an ontology reference model based on Nyaya logic, known as NORM.
To develop an ontology using Nyaya logics, one should be aware of the syntax
and semantics of NORM rdf. To overcome the difficulty involved in creating
NORM based ontology, in this paper, we propose Gautama, a tool for editing
the ontology based on Nyaya logics. We also discuss the steps for building the
ontology for a sample from ‘Birds’ domain.

Keywords: Indian logic, Nyaya Sastra, NORM, Ontology.

1 Introduction

The Nyaya-Vaisheshika is a self-contained system of philosophy. It proposes a unique
categorisation of world knowledge elements [6,9]. Through the epistemological defini-
tions of Nyaya-Vaisheshika system, the treatment of world knowledge elements was
very special which contributed to the uniqueness of ontological categorization. The
methodology of categorization was inaugurated by Gautama-Akshapada, which consists
in enumeration and classification of world knowledge entities into specific categories
which were recommended, argued and analysed by the followers of Gautama [6,9].

NORM is the Nyaya based Ontology Reference Model, which defines the standards
for constructing ontology, based on the recommendations of the epistemology defini-
tions of Nyaya-Vaisheshika school of Indian philosophy. NORM is organized as a two-
layer ontology [8], where the upper layer represents the abstract fundamental knowledge
and the lower layer represents the domain knowledge. According to NORM, a node in
the ontology is composed of an enriched concept which is related implicitly to its mem-
ber qualities and explicitly to other peer concepts, by means of relations [11].

A node of Nyaya-Vaisheshika [5,10] based ontology has the following structure
(refer Fig. 1). Every concept of the world knowledge shall be thoroughly classified as
per NORM structure. The abstract and domain concepts form a strict classification
hierarchy. The traits of the top-level concepts are applicable down the hierarchy.

 Gautama – Ontology Editor Based on Nyaya Logic 233

(a) (b) (c)

Fig. 1. NORM model for cognitive knowledge representation (a) ontology with concepts as
nodes and external relations as edges (b) a concept with qualities as nodes, internal relations as
thin edges, tangential relations as dotted edges (c) a quality with values as nodes, grouping
relations as edges [8]

Every concept in the NORM model has links to other concepts by external rela-
tions (Fig. 1a). A concept is made of qualities or gunas [5,10]. In addition, the quali-
ties are bounded to the concept by internal relations. The qualities may also be related
to each other, which is depicted as dotted edges (refer Fig. 1.b). Every quality has a
set of values. Every value is the substratum of the quality to which it is associated
[5,10]. The values are bounded to the qualities by grouping relations (refer Fig. 1c).
This model (Fig. 1) is inspired by the various recommendations of classifications of
world knowledge according to Nyaya-Vaisheshika. The following section discusses
the system of classification of Nyaya Sastra.

2 Nyaya-Vaisheshika System of Classification

According to Nyaya Sastra [4,5,10], every concept is classified into seven categories:
substance, quality, action, generality, particularity, inherence and negation. Among these,
the substance is of nine kinds: earth, water, light, air, ether, time, space, soul and mind.
Every substance is threefold: body, organ and object. The object of light is fourfold:
earthly, heavenly, gastric and mineral. Every substance is said to possess some quality.
The quality is of twenty-four varieties which in turn possess values (refer Fig. 2).

The permissible action associated with the substance is of five types: upward motion,
downward motion, contraction, expansion, and motion. Generality is either more com-
prehensive or less comprehensive. Particularities are innumerable [4,5,10]. Negation is
of four varieties: antecedent negation (or prior negation, destructive negation (or poste-
rior negation, [1]), absolute negation and mutual negation. Out of the nine substances,
odour persists only in earth and is inherent. Earth exists in all the seven colors. Air has
no color; water is pale-white in color and light is bright-white in color. Air has touch.
Water has cold-touch and light has hot-touch. Dimension (or magnitude), distinctness,
conjunction and disjunction are present in all the nine substances. Remoteness and Prox-
imity is found in earth, water, light, air and mind. Heaviness or Weight is only in earth
and water. Viscidity is present only in the substance, Water [4,5,10].

The detailed structure of a node in Nyaya-Vaisheshika ontology is shown in Fig. 3.
The structure incorporates almost all the recommendations of Nyaya-Vaisheshika
school along with the detailed definitions of relations at every level, between con-
cepts, between concept and member qualities, between qualities, and between quality
and member values. The following section describes the ontology editor, Gautama for
editing the world knowledge in the form of Indian logic ontologies.

234 G.S. Mahalakshmi et al.

Fig. 2. Ontological Classification of Nyaya-Vaisheshika Qualities

Fig. 3. The node ontology architecture of NORM

 Gautama – Ontology Editor Based on Nyaya Logic 235

3 Gautama – Ontology Editor for Indian Logic

We have developed an ontology editor (refer Fig. 4) known as ‘Gautama’ for impart-
ing the knowledge in the form of Indian logic. The editor has icons and toolboxes to
create / edit the knowledgebase defined under the Nyaya-Vaisheshika system of clas-
sification [4,5,10].

Fig. 4. Gautama – NORM based Ontology editor

Pane
1

Pane
2

Pane
4

Pane
6

Pane
7

Pane
9

Pane
8

Pane
10

Pan
e 5

Pane
3

236 G.S. Mahalakshmi et al.

The ontology editor has various panes for editing the concepts, qualities and relations,
both graphically and through entry forms. Each one of those panes are described as follows:

ILO Visualisation Pane: This pane contains icons to save and print the ontology
visualisation created in the top left pane of the editor. In addition, drawing icons have
also been provided.

Concepts Visualisation Pane: This pane is similar to ILO Visualisation Pane, ex-
cept that, here, only the concept hierarchy in the ontology is visualised.

Nodes Entry Pane: This pane provides controls for entering information about the
nodes that are yet to be created to become part of the ontology. C-C denotes concept-
concept; V-V denotes value-value and Q-Q denotes quality-quality. There are enough
command buttons to add concepts, qualities and values. Using these, the concept
definitions shall be created. The ‘Generate RDF’ button helps in generation of Re-
source description format of the underlying ontology.

Relations Entry Pane: The purpose of this pane is identical to Nodes entry Pane.
Here, ‘roles’ shall be created as part of the ontology. NORM recommends various
relations (refer Fig.1), therefore, this pane has provisions for creating relations at all
levels. To the extreme right, is the command buttons for ‘deletion’ services. Using
these buttons, concept / quality / value shall be deleted from the ontology. Alterna-
tively, one can also load a pre-existing RDF through ‘load rdf’ button to have the
ontology loaded into the memory at once.

Concepts list Pane: This pane lists all the concepts available in the ontology with
specialised concepts first displayed, followed by the generalised concepts. (Please
note from Fig. 4.4. that, ‘penguin’ and ‘pigeon’ are displayed before ‘bird’. There are
two concepts list pane, primary and secondary.

Quality List Pane: This pane lists all the qualities available for the selected concept
in the adjacent left pane. This is divided into primary and secondary panes.

Value list pane: This pane lists all the values available for the selected quality in
the adjacent left quality list pane. This is divided into Primary and secondary panes.

If two concepts are related to each other, one concept and its member qualities,
member values shall be seen in the primary pane. Simultaneously, the other concept
and its member qualities, member values shall be seen in the secondary pane. To
facilitate the recording of knowledge in RDF (resource description format), appropri-
ate tags have been defined, with a start tag and corresponding end tag with the item
described in between. The following are the various tags defined for the RDF of In-
dian logic ontology generated by Gautama.

• <rdf:concept> - This tag is used to declare a concept prior and after its definition.
• <rdf:name> - This tag is used to declare the name of a concept / quality / relation.
• <rdf:desc> - This tag is used to create descriptions or definitions for a particular

concept.
• <rdf:axiom> - This tag is used to create concept axioms.
• <rdf:quality> - This tag is used to create member qualities for a given concept.
• <rdf:type> - This tag is used to declare the type of a concept / quality / relation.
• <rdf:role> - This tag is used to declare the role of a concept / quality.
• <rdf:category> - This tag is used to declare the category of relation like external,

internal, tangential or grouping.
• <rdf:operator> - This tag is used to declare the logical operators like and, or while

creating the concept axioms of the ontology.

 Gautama – Ontology Editor Based on Nyaya Logic 237

The sample RDF generated for a simple ontology for ‘birds’ domain is given in
Fig. 5. The facilities for interacting with the knowledgebase are generally done
through knowledge representation languages. NORM model for knowledge represen-
tation involves Nyaya Description language (NDL), the set of commands used for
defining the units of knowledge base.

Fig. 5. NORM RDF– ‘penguin’ and ‘pigeon’ example

238 G.S. Mahalakshmi et al.

Fig. 5. (continued)

The knowledge representation language [1,7], is classified into concept/relationship
definition language (CRDL), concept/relation manipulation language (CRML) and a
set of editing commands and a query language. This knowledge representation lan-
guage can be further used to define, manipulate and query the various levels of
knowledge. CN refers to Concept name, QN refers to Quality Name, V – Quality
value (Ex: color – Indigo: quality: color, value: Indigo) RN refers to Role name, I
refer to Instance and Rdesc refers to Role descriptions. The CRDL constitutes the
commands for defining the concepts, instances and relationships. Top and Bottom
concepts are assumed by the system as default. The concept definitions have been
recognized and the knowledge hierarchy is built. Therefore, using CRDL, the user can
build the knowledge base right from scratch. Concepts can be linked to one another
through relations where relations can be is-a, owns, part-of and uses. Relations and
actions can also be defined between concept and quality. Instances of concepts can
also be defined using CRDL. Following the above norms of definition of knowledge
representation languages (as description logic commands), here, we define the sample
Nyaya logic commands which are listed in Table 1.

 Gautama – Ontology Editor Based on Nyaya Logic 239

Table 1. Commands for querying with Gautama

CRDL

define-concept<CN, Level>
define-concept-axiom<CN,Cdesc>
disjoint-concept<C1,C2>
define-role-axiom<RN, Rdesc>
disjoint-role<R1,R2>
define-concept-role<RN,C1,C2>
define-concept-qualities<CN,
(QM,Qman.List) / (QO,Qopt.List) /
(QE,Qexceptional.List) /
(QX,Qexclusive.List)>
define-quality-
values<CN,QN,V1….Vn>
define-role-quality <RN,CN,
Qreflexive.List / Qsymmetric.List /
Qassymmetric.List /
Qantisymmetric.List /
Qtransitive.List / Qdirect.List /
Qindirect.List / Qexclusive.List>
define-quality-role<RNreflexive.List
/ RNasymmetric.List /
RNsymmetric.List /
RNantisymmetric.List /
RNtransitive.List / RNdirect.List /
RNindirect.List / RNexclusive.List,
CN,QN>

CRML
insert-quality<QN>
delete-quality<QN>
insert-values<QN,V1….Vn>
delete-values<QN,V1….Vn>
delete-concept<CN>
delete-instance<I>
update-instance<I,Cnold,Cnnew>
delete-role-filler<I1,I2,RN>
update-role-filler<I1,I2,Rnold,Rnnew>
delete-role<RN>
insert-role<RN>
delete-concept-quality<CN,QN>
delete-quality-
value<CN,QN,VInvariableConcomitance.List
/ VExclusive.List /
VInvariableConcomitance.List / VDirect.List
>
insert-quality-
value<CN,QN,VInvariableConcomitance .List
/ VExclusive.List /
VInvariableConcomitance.List / VDirect.List>
update-quality-value<CN,QN,Vold,Vnew>

Query language

concept-satisfiable<CN>
concept-subsumes<C1,C2>
concept-disjoint<C1,C2>
chk-concept<CN>
concept-atomic<CN>
concept-ancestors<CN>
concept-descendants<CN>
super-concept<CN>
sub-concept<CN>
chk-concept-related<C1,C2>
chk-concept-related<C1,C2,RN>
chk-concept-
related<C1,C2,RNreflexive.List /
RNasymmetric.List /
RNsymmetric.List /
RNantisymmetric.List /
RNtransitive.List / RNdirect.List,
RNindirect.List / RNexclusive.List >
chk-quality<QN>
chk-concept-quality<CN,QN>
all-qualities

Query language

retrieve-direct-concepts<I>
retrieve-indirect-concepts<I>
retrieve-concept-fillers<RN,C1>
all-concepts<I>
retrieve-qualities<CN>
retrieve-quality-
value<CN,QInvariableConcomitance /
QExclusive / QExceptional>
retrieve-quality-value<CN,QDirect>
chk-instance<I>
chk-instance-type<I,CN>
chk-instance-related<I1,I2>
retrieve-direct-instances<I>
retrieve-indirect-instances<I>
retrieve-instance-fillers<RN,I1>
all-instances<CN>
retrieve-related-instances<RN>
*retrieve-quality-value<I,QN>
chk-role<RN>
all-roles
role-descendants<CN>
role-ancestors<CN>

240 G.S. Mahalakshmi et al.

The CRML provides necessary commands for deleting and updating of concepts
and associated relations in the knowledge hierarchy. The query language supports
querying the classification hierarchy and to summarize the results of queries. The
TAML commands have been utilized for the management of Tbox and Abox. The
system shell is managed by create and use taxonomy which are used primarily for
mounting and dismounting the Tbox and Aboxes. Upon commit, the information
contained in the classification hierarchy is stored in a separate file, which also records
every inferencing performed by the system. In addition the system provides concept
and instance dictionary files, which summarises the total number of knowledge units
present in the classification hierarchy. Using CRML, the ontology shall be updated or
modified. The concepts and the relation between concepts can be manipulated using
the commands of CRML.

The CRDL and CRML commands are used only during the creation of ontology by
end users. To be more user-friendly, ‘Gautama’, the ontology editor provides built-in
facilities for ontology creation and updation services. The query language shall be
used with the RDF generated by Gautama, to query about various parts of the ontol-
ogy. Here, we discuss few commands of the query services.

• Concept-satisfiable – This takes a concept name as the parameter and checks
whether the addition of the concept will not violate the ontology definitions that
exist prior to the execution of this command.

• Concept-subsumes – This takes two concepts as input, and checks whether the first
concept subsumes the second concept. This is one of the famous reasoning service
provided by any ontology-based reasoner.

• Concept ancestors and Concept-descendants – These commands list the ancestral /
descending concepts in the ontology hierarchy. Role-ancestors and Role-
descendants also have similar purpose.

• Sub-concept, Super-concept – These commands retrieve the child nodes or parent
nodes of the parametric concept from the ontology hierarchy.

• Chk-concept-related – This command has three variations. It either checks whether
a concept is related to another concept, through a particular relation name or
through a particular set of relation categories.

• Chk-quality – This command checks the entire ontology hierarchy to check if the
required quality is available in the ontology.

• Chk-concept-quality – This command checks the entire ontology hierarchy to
check if the particular concept has the required quality.

• All-concepts, all-qualities, all-roles, all-instances – These commands just lists all
the concepts, qualities, roles or instances available in the ontology.

• Retrieve-direct-concepts, retrieve-indirect-concepts – The first commands take an
instance as input, and retrieve all the directly related concepts to those instances; The
second command take the instance as input and retrieves all the second and higher de-
gree concepts related to those instances. For example, if ‘TooToo’ is an instance of
penguin, the first command may retrieve ‘penguin’ as the result; the second command
will retrieve all the ancestors of penguin which are conceptually related to penguin.
Retrieve-direct-instances, retrieve-indirect-instances also serve the same purpose.

 Gautama – Ontology Editor Based on Nyaya Logic 241

4 Related Work

This paper proposed the ontology editor based on Indian logic based knowledge rep-
resentation system. Using this editor, one can carefully handcraft the ontology based
on Indian logic in the required domain. However, there are other noteworthy projects
existing in the knowledge representation arena. Cyc, WordNet, Concept-Net and
Mind-Net are to name a few.

Cyc is an artificial intelligence project [3] that attempts to assemble a comprehen-
sive ontology and database of everyday common sense knowledge, with the goal of
enabling AI applications to perform human-like reasoning. The Cyc system is made
up of three distinct components, all of which are crucial to the machine learning proc-
ess: the knowledge base (KB), the inference engine, and the natural language system.
The Cyc inference engine is responsible for using information in the KB to determine
the truth of a sentence and, if necessary, find provably correct variable bindings. The
natural language component of the system consists of a lexicon, and parsing and gen-
eration subsystems. The lexicon is a component of the knowledge base that maps
words and phrases to Cyc concepts.

WordNet is a large lexical database [2] of English, where, Nouns, verbs, adjectives
and adverbs are grouped into sets of cognitive synonyms (synsets), each expressing a
distinct concept. Synsets are interlinked by means of conceptual-semantic and lexical
relations. The resulting network of meaningfully related words and concepts can be
navigated with the browser. WordNet's structure makes it a useful tool for computa-
tional linguistics and natural language processing. Its design is inspired by current
psycholinguistic and computational theories of human lexical memory.

ConceptNet is a freely available [13] commonsense knowledge base and natural-
language-processing toolkit built at MIT. The ConceptNet knowledge base is a
semantic network of commonsense knowledge encompassing the spatial, physical,
social, temporal, and psychological aspects of everyday life. Whereas similar large-
scale semantic knowledgebases like Cyc and WordNet are carefully handcrafted,
ConceptNet is generated automatically from World Wide Web.

ConceptNet is a unique resource in that it captures a wide range of commonsense
concepts and relations, yet this knowledge is structured as a simple, easy-to-use se-
mantic network, like WordNet. While ConceptNet still supports query expansion and
determining semantic similarity, its focus on concepts-rather-than-words, its more
diverse relational ontology, and its emphasis on informal conceptual-connectedness
over formal linguistic-rigor allow it to go beyond WordNet to make practical, context-
oriented, commonsense inferences over real-world texts.

A MindNet is a collection of semantic relations that is automatically extracted from
text data using a broad coverage parser [12]. MindNets are produced by a fully auto-
matic process that takes the input text, sentence-breaks it, parses each sentence to
build a semantic dependency graph (Logical Form), aggregates these individual
graphs into a single large graph, and then assigns probabilistic weights to subgraphs
based on their frequency in the corpus as a whole. The project also encompasses a
number of mechanisms for searching, sorting, and measuring the similarity of paths in
a MindNet.

‘Gautama’ proposed in this paper is not automatic, i.e. it does not harvest ontologi-
cal entities automatically from the text corpora or web, instead, it is a first step in the

242 G.S. Mahalakshmi et al.

design of an ontology editor based on Indian logic, and therefore, presently it is only
handcrafted to serve the purpose. In future, adapting more ideas of building the ontol-
ogy from Indian philosophy would strengthen the outcome of the ontology editor.

5 Conclusion

This paper proposed the overview of Gautama, a tool for editing the world knowledge
elements into ontology based on Indian logic. The ontology followed the guidelines of
NORM (Nyaya Ontology reference model) based ontological standards which is built
on the epistemological recommendations of Nyaya-Vaisheshika school of Indian
philosophy, for defining the knowledge units of the ontology. We hope, this tool,
facilitates easy creation of Indian logic based ontologies and thereby promotes the
wide study of Indian logic in the ever green field of ontological and philosophical
research.

References

1. Aghila, G., Mahalakshmi, G.S., Geetha, T.V.: KRIL – A Knowledge Representation Sys-
tem based on Nyaya Shastra using Extended Description Logics. VIVEK journal 15(3), 3–
18 (2003)

2. Fellbaum, C.: WordNet - An Electronic Lexical Database, with a preface by George Miller
(May 1998)

3. Matuszek, C., Witbrock, M., Kahlert, R.C., Cabral, J., Schneider, D., Shah, P., Lenat, D.:
Searching for Common Sense: Populating Cyc from the Web. In: Proceedings of the
Twentieth National Conference on Artificial Intelligence, Pittsburgh, Pennsylvania (July
2005)

4. Vidyabhusana, S.C.: Gautama, The Nyaya Sutras. In: Sinha, N.L. (ed.) Sacred Book of the
Hindus, Allahabad (1930); Reprinted in Motilal Banarsidass, Delhi (1990)

5. Ballantyne, J.R.: Lectures on Nyaya Philosophy-Embracing the text of Tarka Samgraha.
Presbyterian Mission Press, Allahabad (1849), http://books.google.com

6. Ganeri, J.: Indian Logic: A Reader. Routledge (2001)
7. Mahalakshmi, G.S., Anupama, N., Chitra, R., Geetha, T.V.: Deepika – A Non-Monotonic

Reasoning System Based On Indian Logic. In: International Conference on Soft Comput-
ing techniques in engineering, SOFTECH – 2007, Avinashilingam University for Women,
Coimbatore, India, pp. 470–476 (January 2007)

8. Mahalakshmi, G.S., Geetha, T.V.: Reasoning and Evolution of consistent ontologies using
NORM. In: IJAI, Indian Society for Development and Environment Research (ISDER),
vol. 2(S09), pp. 77–94 (Spring, 2009); ISSN 0974-0635

9. Vidyabhusana, S.C.: A History of Indian Logic – Ancient, Medieaeval and Modern
Schools, p. 84. Motilal Banarsidass Publishers Private Ltd., Delhi (1988); ISBN:81-208-
0565-8

10. Swami Virupakshananda, Tarka Samgraha, Sri Ramakrishna Math, Madras (1994)
11. Wada, T.: Invariable Concomitance in Navya-Nyaya, Sri Garib Dass Oriental Series No.

101. Indological and Oriental Publishers, New Delhi (1990)
12. Vanderwende, L., Kacmarcik, G., Suzuki, H., Menezes, A.: MindNet: An Automatically-

Created Lexical Resource. In: Proceedings of HLT/EMNLP 2005 Interactive Demonstra-
tions, Vancouver, British Columbia, Canada (October 2005)

13. Concept Net, http://www.conceptnet.org

	Gautama – Ontology Editor Based on Nyaya Logic
	Introduction
	Nyaya-Vaisheshika System of Classification
	Gautama – Ontology Editor for Indian Logic
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

