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Preface

This volume contains the papers presented at ICLA 2009: Third Indian Confer-
ence on Logic and Its Applications (ICLA) held at the Institute of Mathematical
Sciences, Chennai, Januay 7–11, 2009.

The ICLA series aims to bring together researchers from a wide variety of
fields that formal logic plays a significant role in, along with mathematicians,
philosophers, computer scientists and logicians studying foundations of formal
logic in itself. A special feature of this conference are studies in systems of logic
in the Indian tradition, and historical research on logic. The biennial conference
is organized by the Association for Logic in India.

The papers in the volume span a wide range of themes. We have contributions
to algebraic logic and set theory, combinatorics and philosophical logic. Modal
logics, with applications in computer science and game theory, are discussed. Not
only do we have papers discussing connections between ancient logical systems
with modern ones, but also those offering computational tools for experimenting
with such systems. It is hoped that ICLA will act as a platform for such dialogues
arising from many disciplines, using formal logic as its common language.

Like the previous conferences (IIT-Bombay; January 2005 and 2007) and
(Jadavpur University, Kolkata; January 2007), the third conference also mani-
fested this confluence of several disciplines. As in the previous years, we were
fortunate to have a number of highly eminent researchers giving plenary talks. It
gives us great pleasure to thank Johan van Benthem, Rajeev Goré, Joel Hamkins,
Johann Makowsky, Rohit Parikh, Esko Turunen and Moshe Vardi for agreeing
to give invited talks and for contributing to this volume.

The Programme Committee, with help from many external reviewers, put in
a great deal of hard work to select papers from the submissions. We express our
gratitude to all members for doing an excellent job and thank all the reviewers
for their invaluable help.

ICLA 2009 included two pre-conference workshops: one on Algebraic Logic
coordinated by Mohua Banerjee (IIT Kanpur) and Mai Gehrke (Radboud Uni-
versiteit, Nijmegen), and another on Logics for Social Interaction coordinated by
Sujata Ghosh (ISI Kolkata), Eric Pacuit (Stanford University) and R. Ramanujam
(IMSc Chennai). We thank the organizers as well as the speakers in the workshops
for contributing so significantly to the programme.

The conference was held at the Institute of Mathematical Sciences (IMSc),
Chennai. We thank IMSc and the Organizing Committee for taking on the re-
sponsibility. Special thanks are due to Sunil Simon (IMSc) for help in preparation
of this volume. The Easychair system needs special mention, for its tremendous
versatility.

We also thank the Editorial Board of the FoLLI series and Springer for pub-
lishing this volume.

October 2008 R. Ramanujam
Sundar Sarukkai
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Decisions, Actions, and Games:
A Logical Perspective

Johan van Benthem

Amsterdam & Stanford
http://staff.science.uva.nl/∼johan

1 Introduction: Logic and Games

Over the past decades, logicians interested in rational agency and intelligent
interaction studied major components of these phenomena, such as knowledge,
belief, and preference. In recent years, standard ‘static’ logics describing informa-
tion states of agents have been generalized to dynamic logics describing actions
and events that produce information, revise beliefs, or change preferences, as
explicit parts of the logical system. [22], [1], [12] are up-to-date accounts of this
dynamic trend (the present paper follows Chapter 9 of the latter book). But in
reality, concrete rational agency contains all these dynamic processes entangled.
A concrete setting for this entanglement are games – and this paper is a survey
of their interfaces with logic, both static and dynamic. Games are intriguing
also since their analysis brings together two major streams, or tribal communi-
ties: ‘hard’ mathematical logics of computation, and ‘soft’ philosophical logics
of propositional attitudes. Of course, this hard/soft distinction is spurious, and
there is no natural border line between the two sources: it is their congenial
mixture that makes current theories of agency so lively.

We will discuss both statics, viewing games as fixed structures representing
all possible runs of some process, and the dynamics that arises when we make
things happen on such a ‘stage’. We start with a few examples showing what we
are interested in. Then we move to a series of standard logics describing static
game structure, from moves to preferences and epistemic uncertainty. Next, we
introduce dynamic logics, and see what they add in scenarios with information
update and belief revision where given games can change as new information
arrives. This paper is meant to make a connection. It is not a full treatment of
logical perspectives on games, for which we refer to [13].

2 Decisions, Practical Reasoning, and ‘Solving’ Games

Action and Preference. Even the simplest scenarios of practical reasoning
about agents involve a number of notions at the same time:

Example 1 (One single decision). An agent has two alternative courses of action,
but prefers one outcome to the other:

R. Ramanujam and S. Sarukkai (Eds.): ICLA 2009, LNAI 5378, pp. 1–22, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 J. van Benthem

x y

a b

≤
A proto-typical form of reasoning here would be the ‘Practical Syllogism’:

1. the agent can do both a and b,
2. the agent prefers the result of a over the result of b, and therefore,
3. the agent will do (or maybe: should do?) b.

This predictive inference, or maybe requirement, is in fact the basic notion of
rationality for agents throughout a vast literature in philosophy, economics, and
many other fields. It can be used to predict behaviour beforehand, or rationalize
observed behaviour afterwards.

Adding Beliefs. In decision scenarios, preference crucially occurs intertwined
with action, and a reasonable way of taking the conclusion is, not as knowledge
ruling out courses of action, but as supporting a belief that the agent will take
action b: the latter event is now more plausible than the world where she takes
action a. Thus, modeling even very simple decision scenarios involves logics of
different kinds. Beliefs come in even more strongly when one models uncertainty
about possible states of nature, and one is told to choose the action with the
highest expected value, a probabilistically weighted sum of utility values for the
various outcomes. The probability distribution over states of nature represents
beliefs we have about the world, or the behaviour of an opponent. Here is a yet
simpler scenario:

Example 2 (Deciding with an external influence). Nature has two moves c, d,
and the agent must now consider combined moves:

x y z u

a, c a, d b, c b, d

Now, the agent might already have good reasons to think that Nature’s move
c is more plausible than move d. This turns the outcomes into a ‘epistemic-
doxastic model’ [7]: the epistemic range has 4 worlds, but the most plausible
ones are just: x, z, while an agent’s preference might now just refer to the latter
area.

Multi-agent Decision: ‘Solving’ Games by Backward Induction. In a
multi-agent setting, behaviour is locked in place by mutual expectations. This re-
quires an interactive decision dynamics, and standard game solution procedures
like Backward Induction do exactly that:
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Example 3 (Reasoning about interaction). In the following game tree, players’
preferences are encoded in the utility values, as pairs ‘(value of A, value for E)’.
Backward Induction tells player E to turn left when she can, just like in our
single decision case, which gives A the belief that this would happen, and so,
based on this belief about his counter-player, A should turn left at the start:

A

1, 0

E

0, 100 99, 99

Why should players act this way? The reasoning is again a mixture of all
notions so far. A turns left since she believes that E will turn left, and then
her preference is for grabbing the value 1. Thus, practical reasoning intertwines
action, preference, and belief.

Here is the rule which drives all this, at least when preferences are encoded
numerically:

Definition 1 (Backward Induction algorithm). Starting from the leaves,
one assigns values for each player to each node, using the rule:

Suppose E is to move at a node, and all values for daughters are known.
The E-value is the maximum of all the E-values on the daughters, the
A-value is the minimum of the A-values at all E-best daughters. The
dual calculation for A’s turns is completely analogous.

This rule is so obvious that it never raises objections when taught, and it is easy
to apply, telling us what players’ best course of action would be [27]. And yet, it
is packed with various assumptions. We will perform a ‘logical deconstruction’ of
the underlying reasoning later on, but for now, just note the following features:

1. the rule assumes that the situation is viewed in the same way by both players:
since the calculations are totally similar,

2. the rule assumes worst-case behaviour on the part of one’s opponents, since
we take a minimum of values in case it is not our turn,

3. the rule changes its interpretation of the values: at leaves they encode plain
utilities, while higher up in the game tree, they represent expected utilities.

Thus, despite its numerical trappings, Backward Induction is an inductive
mechanism for generating a plausibility order among histories, and hence, it
relates all notions that we are interested in. There has been a lot of work on
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‘justifying’ this solution method. Personally, I am not committed to this partic-
ular style of solving games, but understanding what Backward Induction does
is a logically rich subject, which can be pursued in many ways.

But for now, we step back, and look at what ‘logic of games’ would involve ab
initio, even without considering any preferences at all. So, let us first consider
pure action structure, because even that has a good deal of logic to it, which can
be brought out as such. We will add further preferential and epistemic structure
toward more realistic games in due course.

3 Games and Process Equivalence

One can view extensive games as multi-agent processes that can be studied just
like any process in logic and computer science, given the right logical language.
Technically, such structures are models for a poly-modal logic in the following
straightforward sense:

Definition 2 (Extensive games). An extensive game form is defined to be
a tree M = (NODES,MOVES, turn, end,V) which is a modal model with
binary transition relations taken from the set MOVES pointing from parent to
daughter nodes. Also, intermediate nodes have unary proposition letters turni
indicating the unique player whose turn it is, while end marks end nodes without
further moves. The valuation V for proposition letters may also interpret other
relevant predicates at nodes, such as utility values for players or more external
properties of game states.

But do we really just want to jump on board of this analogy, comfortable as it
is to a modal logician? Consider the following fundamental issue of invariance
in process theories. At which level do we want to operate in the logical study of
games, or in Clintonesque terms:

When are two games are the same?

Example 4 (The same game, or not?). As a simple example that is easy to
remember, consider the following two games:

A

p

E

q r

L R

L R

E

A A

p q p r

L R

L R L R



Decisions, Actions, and Games: A Logical Perspective 5

Are these the same? As with general processes in computer science, the answer
crucially depends on our level of interest in the details of what is going on:

1. If we focus on turns and moves, then the two games are not equivalent.
For they differ in ‘protocol’ (who gets to play first) and in choice structure.

For instance, the first game, but not the second has a stage where it is up
to E to determine whether the outcome is q or r.

This is indeed a natural level for looking at game, involving local actions
and choices, as encoded in modal bisimulations – and the appropriate lan-
guage will be a standard modal one. But one might also want to call these
games equivalent in another sense: looking at achievable outcomes only, and
players powers for controlling these:

2. If we focus on outcome powers only, then the two games are equivalent.
The reason is that, regardless of protocol and local choices, players can

force the same sets of eventual outcomes across these games, using strategies
that are available to them:

A can force the outcome to fall in the sets {p}, {q, r},
E can force the outcome to fall in the sets {p, q}, {p, r}.

In the left-hand tree, A has 2 strategies, and so does E, yielding the listed
sets. In the right-hand tree, E has 2 strategies, while A has 4: LL, LR, RL
and RR. Of these, LL yields the outcome set {p}, and RR yields {q, r}. But
LR, RL guarantee only supersets {p, r}, {q, p} of {p}: i.e., weaker powers.
Thus the same ’control’ results in both games.

We will continue on extensive games, but the coarser power level is natural, too.
It is like ‘strategic forms’ in game theory, and it fits well with ‘logic games’ [8]:

Remark 1 (Game equivalence as logical equivalence). In an obvious sense, the
two games in the preceding example represent the two sides of the following
valid logical law

p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) Distribution

Just read conjunction and disjunction as choices for different players. In a
global input-output view on games, Distribution switches scheduling order with-
out affecting players’ powers.

4 Basic Modal Action Logic of Extensive Games

Basic Modal Logic. On extensive game trees, a standard modal language
works as follows:

Definition 3 (Modal game language and semantics). Modal formulas are
interpreted at nodes s in game trees M . Labeled modalities 〈a〉ϕ express that
some move a is available leading to a next node in the game tree satisfying ϕ.
Proposition letters true at nodes may include special-purpose constants for typical
game structure, such as markings for turns and end-points, but also arbitrary
local properties.
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In particular, modal operator combinations now describe potential interaction:

Example 5 (Modal operators and strategic powers). Consider a simple 2-step
game like the following, between two players A, E:

A

E E

1 2
p

3
p

4

a b

c d c d

Player E clearly has a strategy making sure that a state is reached where p
holds. And this feature of the game is directly expressed by the modal formula
[a]〈d〉p ∧ [b]〈c〉p.

Letting move be the union of all moves available to players, a modal operator
combination [moveA]〈moveE〉ϕ says that, at the current node, player E has a
strategy for responding to A’s initial move which ensures that the property
expressed by ϕ results after two steps.1

Excluded Middle and Determinacy. Extending this observation to extensive
games up to some finite depth k, and using alternations ���� · · · of modal
operators up to length k, we can express the existence of winning strategies in
fixed finite games. Indeed, given this connection, with finite depth, standard
logical laws have immediate game-theoretic import. In particular, consider the
valid law of excluded middle in the following modal form

���� · · ·ϕ ∨ ¬���� · · ·ϕ

or after some logical equivalences, pushing the negation inside:

���� · · ·ϕ ∨���� · · · ¬ϕ,

where the dots indicate the depth of the tree. Here is its game-theoretic import:

Fact 4. Modal excluded middle expresses the determinacy of finite games.

Determinacy is the key property that one of the two players has a winning
strategy. This need not be true in infinite games (players cannot both have one,
but maybe neither has).

1 One can also express existence of ‘winning strategies’, ‘losing strategies’, and so on.
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Zermelo’s Theorem. This brings us to perhaps the oldest game-theoretic
result proved in mathematics, even predating Backward Induction, proved by
Ernst Zermelo in 1913:

Theorem 5. Every finite zero-sum 2-player game is determined.

Proof. Here is a simple algorithm determining the player having the winning
strategy at any given node of a game tree of this finite sort. It works bottom-up
through the game tree. First, colour those end nodes black that are wins for
player A, and colour the other end nodes white, being the wins for E. Then
extend this colouring stepwise as follows:

If all children of node s have been coloured already, do one of the fol-
lowing:

1. if player A is to move, and at least one child is black: colour s black ;
if all children are white, colour s white

2. if player E is to move, and at least one child is white: colour s white;
if all children are black, colour s black

This procedure eventually colours all nodes black where player A has a winning
strategy, making those where E can win white. The reason for its correctness is
easy to see.

Zermelo’s Theorem is widely applicable. Consider the following Teaching Game:

Example 6 (Teaching, the grim realities). A Student located at position S in the
next diagram wants to reach the escape E below, while the Teacher wants to
prevent him from getting there. Each line segment is a path that can be traveled.
In each round of the game, the Teacher cuts one connection, anywhere, while the
Student can, and must travel one link still open to him at his current position:

S

X

Y

E

Education games like this arise on any graph with single or multiple lines.

We now have an explanation why Student or Teacher has a winning strategy:
the game is two-player zero sum and of finite depth – though it need not have
an effective solution. Zermelo’s Theorem implies that in Chess, one player has a
winning strategy, or the other a non-losing one, but a century later, we do not
know which: the game tree is too large.
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5 Fixed-Point Languages for Equilibrium Concepts

A good test for logics is their expressive power in representing proofs of significant
results. Now our modal language cannot express the generic character of the
Zermelo solution. Here is what the colouring algorithm really says. Starting
from atomic predicates wini at end nodes indicating which player has won, we
inductively defined predicates WINi (‘player i has a winning strategy at the
current node’) through the following recursion:

WINi ↔ (end ∧ wini) ∨ (turni ∧ 〈E〉WINi) ∨ (turnj ∧ [A]WINi)

Here E is the union of all available moves for player i, and A that of all
moves for the counter-player j. This schema is an inductive definition for the
predicate WINi, which we can also write as a smallest fixed-point expression in
an extended modal language:

Fact 6. The Zermelo solution is definable as follows in the modal µ-calculus:

WINi = µp[(end ∧ wini) ∨ (turni ∧ 〈E〉p) ∨ (turnj ∧ [A]p)]2

Here the formula on the right-hand side belongs to the modal µ-calculus, an
extension of the basic modal language with operators for smallest (and greatest)
fixed-points defining inductive notions. This system was originally invented to
increase the power of modal logic as a process theory. We refer to the literature
for details, cf. [20]. Fixed-points fit well with strategic equilibria, and the µ-
calculus has further uses in games.

Definition 7 (Forcing modalities). Forcing modalities are interpreted as fol-
lows in extensive game models as defined earlier: M, s |= {i}ϕ iff player i has a
strategy for the sub-game starting at s which guarantees that only nodes will be
visited where ϕ holds, whatever the other player does.

Forcing talk is widespread in games, and it is an obvious target for logical for-
malization:3

Fact 8. The modal µ-calculus can define forcing modalities.

Proof. The formula {i}ϕ = µp[(ϕ∧end)∨(turni∧〈E〉p)∨(turnj ∧ [A]p))] defines
the existence of a strategy for i ensuring that proposition ϕ holds, whatever the
other plays.

2 Note that the defining schema only has syntactically positive occurrences of the
predicate p.

3 Note that {i}ϕ talks about intermediate nodes, not just the end nodes of a game.
The existence of a winning strategy for player i can then be formulated by restricting
to endpoints: {i}(end → wini).
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But many other notions are definable. For instance, the recursion

COOPϕ↔ µp[(end ∧ ϕ) ∨ (turni ∧ 〈E〉p) ∨ (turnj ∧ 〈A〉p)]

defines the existence of a cooperative outcome ϕ, just by shifting modalities.4

Digression: From Smallest to Greatest Fixed-Points. The above modal
fixed-point definitions reflect the equilibrium character of basic game-theoretic
notions [27], reached through some process of iteration. In this general setting,
which includes infinite games, we would switch from smallest to greatest fixed-
points, as in the formula

{i}ϕ = νq[(ϕ ∧ (turni ∧ 〈movei〉q) ∨ (turnj ∧ [movej ]q))].

This is also more in line with our intuitive view of strategies. The point is not
that they are built up from below, but that they can be used as needed, and
then remain at our service as pristine as ever the next time - the way we think
of doctors. This is the modern perspective of co-algebra [29]. More generally,
greatest fixed-points seem the best logical analogue to the standard equilibrium
theorems from analysis that are used in game theory.

But Why Logic? This may be a good place to ask what is the point of logi-
cal definitions of game-theoretic notions? I feel that logic has the same virtues
for games as elsewhere. Formalization of a practice reveals what makes its key
notions tick, and we also get a feel for new notions, as the logical language has
myriads of possible definitions. Also, the theory of expressive power, complete-
ness, and complexity of our logics can be used for model checking, proof search,
and other activities not normally found in game theory.

But there is also another link. Basic notions of logic themselves have a game
character, such as argumentation, model checking, or model comparison. Thus,
logic does not just describe games, it also embodies games. Pursuing the interface
in this dual manner, the true grip of the logic and games connection becomes
clear: cf. [13].

6 Dynamic Logics of Strategies

Strategies, rather than single moves, are protagonists in games, Moving them in
focus requires an extension of modal logic to propositional dynamic logic (PDL)
which describes structure and effects of imperative programs with operations of
(a) sequential composition ;, (b) guarded choice IF · · ·THEN · · ·ELSE · · · , and
(c) guarded iterations WHILE · · ·DO · · · :
4 This fixed point can still be defined in propositional dynamic logic, using the formula
〈(((turni)?; E) ∪ ((turnj)?; A))∗〉(end ∧ ϕ), – but we will only use the latter system
later in the game setting.
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Definition 9 (Propositional dynamic logic). The language of PDL defines
formulas and programs in a mutual recursion, with formulas denoting sets of
worlds (‘local conditions’ on ‘states’ of the process), while programs denote binary
transition relations between worlds, recording pairs of input and output states for
their successful terminating computations. Programs are created from

atomic actions (‘moves’) a, b, . . . and tests ?φ for arbitrary formulas φ,
using the three operations of ; (interpreted as sequential composition), ∪
(non-deterministic choice) and ∗ (non-deterministic finite iteration).

Formulas are as in our basic modal language, but with modalities [π]φ saying
that φ is true after every successful execution of the program π starting at the
current world.

The logic PDL is decidable, and it has a transparent complete set of axioms
for validity. This formalism can say a lot more about our preceding games. For
instance, the move relation in our discussion of our first extensive game was
really a union of atomic transition relations, and the pattern that we discussed
for the winning strategy was as follows:

[a ∪ b]〈c ∪ d〉p.

Strategies as Transition Relations. Game-theoretic strategies are partial
transition functions defined on players’ turns, given via a bunch of conditional in-
structions of the form “if she plays this, then I play that.” More generally, strate-
gies may be viewed as binary transition relations, allowing for non-determinism,
i.e., more than one ‘best move’, like plans that agents have in interactive settings.
A plan can be useful, even when it merely constrains my future moves. Thus,
on top of the ‘hard-wired’ moves in a game, we get defined relations for players’
strategies, and these definitions can often be given explicitly in a PDL-format.

In particular, in finite games, we can define an explicit version of the ear-
lier forcing modality, indicating the strategy involved – without recourse to the
modal µ-calculus:

Fact 10. For any game program expression σ, PDL can define an explicit forc-
ing modality {σ, i}ϕ stating that σ is a strategy for player i forcing the game,
against any play of the others, to pass only through states satisfying ϕ.

The precise definition is an easy exercise (cf. [5]). Also, given strategies for both
players, we should get to a unique history of a game, and here is how:

Fact 11. Outcomes of running joint strategies σ, τ can be defined in PDL.

Proof. The formula [((?turnE ;σ) ∪ (?turnA; τ))∗](end→ p) does the job.5

Also ‘locally’, PDL can define specific strategies. Take any finite game M with
strategy σ for player i. As a relation, σ is a finite set of ordered pairs (s, t). Thus,
5 Dropping the antecedent ‘end →’ here will describe effects of strategies at interme-

diate nodes.
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it can be defined by a program union, if we first define these ordered pairs. To do
so, assume we have an ‘expressive’ model M , where states s are definable in our
modal language by formulas defs.6 Then we define transitions (s, t) by formulas
defs; a; deft, with a being the relevant move:

Fact 12. In expressive finite extensive games, all strategies are PDL-definable.

Dynamic logic can also define strategies running over only part of a game, and
their combination. The following modal operator describes the effect of such a
partial strategy σ for player E running until the first game states where it is no
longer defined:

{σ,E}ϕ = [(?turnE ;σ) ∪ (?turnA;moveA)∗]ϕ7

7 Preference Logic and Defining Backward Induction

Real games go beyond game forms by adding preferences for players over outcome
states, or numerical utilities beyond ‘win’ and ‘lose’. In this area, defining the
Backward Induction procedure for solving extensive games, rather than comput-
ing binary Zermelo winning positions, has become a benchmark for game logics
– and many solutions exist:

Fact 13. The Backward Induction path is definable in modal preference logic.

Solutions have been published by many logicians and game-theorists in recent
years, cf. [21,25]. We do not state an explicit PDL-style solution here, but we
give one version involving a modal preference language with this operator:

〈prefi〉ϕ : player i prefers some node where ϕ holds to the current one.

The following result from [18] defines the backward induction path as a unique
relation σ: not by means of any specific modal formula in game models M , but
rather via the following frame correspondence on finite structures:

Fact 14. The BI strategy is definable as the unique relation σ satisfying the fol-
lowing axiom for all propositions P – viewed as sets of nodes –, for all players i:

(turni ∧ 〈σ∗〉(end ∧ P ))→ [movei]〈σ∗〉(end ∧ 〈prefi〉P ).

Proof. The axiom expresses a form of rationality: at the current node, no alter-
native move for a player guarantees outcomes that are all strictly better than
those ensuing from playing the current backward induction move. The proof is
by induction on the game tree.
6 This expressive power can be achieved: e.g., using temporal past modalities involving

converse moves which can describe the total history leading up to s.
7 Stronger modal logics of strategies? The modal µ-calculus is a natural extension of

PDL, but it lacks explicit programs or strategies, as its formulas merely define prop-
erties of states. Is there a version of the µ-calculus that extends PDL in defining
more transition relations? Say, a simple strategy ‘keep playing a’ guarantees infi-
nite a-branches for greatest fixed point formulas like νp(〈a〉p). [16] looks at richer
fragments than PDL with explicit programs as solutions to fixed-point equations of
special forms, guaranteeing uniform convergence by stage ω.
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8 Epistemic Logic of Games with Imperfect Information

The next level of static game structure gives up the presupposition of perfect in-
formation. Consider extensive games with imperfect information, whose players
need not know where they are in a tree. This happens in card games, electronic
communication, through bounds on memory or observation. Such games have
‘information sets’: equivalence classes of relations ∼i between nodes which play-
ers i cannot distinguish. [4] shows how these games model an epistemic modal
language including knowledge operators Kiϕ interpreted in the usual manner as
“ϕ is true at all nodes ∼i-related to the current one”.

Example 7 (Partial observation in games). In this imperfect information game,
the dotted line indicates player E’s uncertainty about her position when her
turn comes. Thus, she does not know the move played by player A:8

A

E E

1 2
p

3
p

4

c d

a b a b

Structures like this are game models of the earlier kind with added epistemic un-
certainty relations ∼i for each player. Thus, they interpret a combined dynamic-
epistemic language. For instance, after A plays move c in the root, in both middle
states, E knows that playing a or b will give her p - as the disjunction 〈a〉p∨〈b〉p
is true at both middle states:

KE(〈a〉p ∨ 〈b〉p)
On the other hand, there is no specific move of which E knows at this stage

that it will guarantee a p-outcome – and this shows in the truth of the formula

¬KE〈a〉p ∧ ¬KE〈b〉p
Thus, E knows de dicto that she has a strategy which guarantees p, but she

does not know, de re, of any specific strategy that it guarantees p. Such finer
distinctions are typical for a modal language with both actions and knowledge
for agents.9

We can analyze imperfect information games studying properties of players
by modal frame correspondences. An example is the analysis of Perfect Recall
for a player i:
8 Maybe A put his move in an envelope, or E was otherwise prevented from observing.
9 You may know that the ideal partner for you is around on the streets, but tragi-

cally, you might never convert this K∃ combination into ∃K knowledge that some
particular person is right for you.
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Fact 15. The axiom Ki[a]ϕ → [a]Kiϕ holds for player i w.r.t. any proposition
ϕ iff M satisfies Confluence: ∀xyz : ((xRay ∧ y ∼i z)→ ∃u : ((x ∼i u ∧ uRaz).
Similar frame analyses work for memory bounds, and observational powers. For
instance, agents satisfy ‘No Miracles’ when epistemic uncertainty relations can
only disappear by observing subsequent events they can distinguish. The pre-
ceding game has Perfect Recall, but it violates No Miracles: E suddenly knows
where she is after she played her move.

Uniform Strategies. Another striking aspect of our game is non-determinacy.
E’s playing ‘the opposite direction from that of player A’ was a strategy guar-
anteeing outcome p in the matching game with perfect information – but it is
unusable now. For, E cannot tell if the condition holds! Game theorists only
accept uniform strategies here, prescribing the same move at indistinguishable
nodes. But then no player has a winning strategy, with p as ‘E wins’ (and ¬p as
a win for player A). A did not have one to begin with, E loses hers.10

As for explicit strategies, we can again use PDL-style programs, but with a
twist. We need the ’knowledge programs’ of [23], whose only test conditions are
knowledge statements. In such programs, actions can only be guarded by condi-
tions that the agent knows to be true or false. It is easy to see that knowledge
programs can only define uniform strategies. A converse also holds, modulo some
mild assumptions on expressiveness of the game language defining nodes in the
game tree [4]:

Fact 16. On expressive finite games of imperfect information, the uniform strate-
gies are precisely those definable by knowledge programs in epistemic PDL.

9 From Statics to Dynamics: DEL-Representable Games

Now we make a switch. Our approach so far was static, using modal-preferential-
epistemic logics to describe properties of fixed games. But it also makes sense to
look at dynamic scenarios, where games can change. As an intermediate step, we
analyze how a static game model might have come about by some dynamic pro-
cess – the way we see a dormant volcano but can also imagine the tectonic forces
that shaped it originally. We provide two illustrations, linking games of imper-
fect information first to dynamic-epistemic logic DEL, and then to epistemic-
temporal logics ETL [28] (cf. [15] on connections). Our sketch will make most
sense to readers already familiar with these logics of short-term and long-term
epistemic dynamics.

Imperfect Information Games and Dynamic-Epistemic Logic. Dynamic-
epistemic logic describes how uncertainty is created systematically as initial uncer-
tainty in an agent modelM combines with effects of partially observed eventsE to
create product models M × E. Which imperfect information games ‘make sense’
10 The game does have probabilistic solutions in random strategies: like Matching

Pennies.
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with concrete sequences of update steps – as opposed to being just arbitrary
placements of uncertainty links over game forms?

Theorem 17. An extensive game is isomorphic to a repeated product update
model Tree(M,E) for some sequence of epistemic event models E iff it satis-
fies, for all players: (a) Perfect Recall, (b) No Miracles, and (c) Bisimulation
Invariance for the domains of all the move relations.11

Here Perfect Recall is essentially the earlier commutation between moves and
uncertainty. We do not prove the Theorem here: cf. [17]. Here is an illustration:

Example 8 (Updates during play: propagating ignorance along a game tree).

Game tree

A

E E E

a b c

d e e f f

Event model

a · · ·E · · · b c precondition: turnA
d · · ·A · · · e f precondition: turnE

Here are the successive updates that create the right uncertainty links:

stage 3

stage 2

stage 1

A E

E

10 Future Uncertainty, Procedural Information, and
Branching Temporal Logic

A second logical perspective on games notes that ‘imperfect information’ has
two senses. One is observation uncertainty: players may not have seen all events
so far, and so they do not know where they are in the game. This is the ‘past-
oriented’ view of DEL. But there is also ‘future-oriented’ expectation uncertainty:
even in perfect information games players who know where they are may not
11 This says that two epistemically bisimilar nodes in the game tree make the same

moves executable.
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know what others, or they themselves, are going to do. The positive side is
this. In general, players have some procedural information about what is going
to happen. Whether viewed negatively or positively, the latter future-oriented
kind of knowledge and ignorance need not be reducible to the earlier uncertainty
between local nodes. Instead, it naturally suggests current uncertainty between
whole future histories, or between players’ strategies (i.e., whole ways in which
the game might evolve).

Branching Epistemic Temporal Models. The following structure is com-
mon to many fields. In tree models for branching time, ‘legal histories’ h represent
possible evolutions of some process. At each stage of the game, players are in
a node s on some actual history whose past they know, either completely or
partially, but whose future is yet to be fully revealed:

s

h′
h

This can be described in an action language with knowledge, belief, and added
temporal operators. We first describe games of perfect information (about the
past, that is):

– M,h, s |= Faϕ iff s∧ < a > lies on h and M,h, s∧ < a >|= ϕ
– M,h, s |= Paϕ iff s = s′∧ < a >, and M,h, s′ |= ϕ
– M,h, s |= �iϕ iff M,h′, s |= ϕ for some h′ equal for i to h up to stage s.

Now, as moves are played publicly, players make public observations of them:

Fact 18. The following valid principle is the ETL equivalent of the key DEL
recursion axiom for public announcement: Fa�ϕ↔ (Fa
 ∧�Faϕ).

Trading Future for Current Uncertainty. Again, there is a ‘dynamic re-
construction’ closer to local DEL dynamics. Intuitively, each move by a player
is a public announcement that changes the current game model. Here is a folk-
lore observation [6,11] converting ‘global’ future uncertainty into ‘local’ present
uncertainty:

Fact 19. Trees with future uncertainty are isomorphic to trees with current un-
certainties plus subsequent public announcements.

11 Intermezzo: Three Levels of Logical Game Analysis

At this point, it may be useful to distinguish three natural levels at which games
have given rise to models for logics. All three come with their own intuitions,
both static and dynamic.
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Level One takes extensive game trees themselves as models for modal logics,
with nodes as worlds, and accessibility relations over these for actions, pref-
erences, and uncertainty. Level Two looks at extensive games as branching tree
models, with nodes and complete histories, supporting richer epistemic-temporal
(-preferential) languages. The difference with Level One seems slight in finite
games, where histories may be marked by end-points. But the intuitive step
seems clear, and also, Level Two does not reduce in this manner when game
trees are infinite. But even this is not enough for some purposes!

Consider ‘higher’ hypotheses about the future, involving procedural informa-
tion about other players’ strategies. I may know that I am playing against either
a ‘simple automaton’, or a ‘sophisticated learner’. Modeling this may go beyond
epistemic-temporal models:

Example 9 (Strategic uncertainty). In the following simple game, let A know
that E will play the same move throughout:

A

E E

Then all four histories are still possible. But A only considers two future trees
possible, viz.

A

E E

A

E E

In longer games, this difference in modeling can be highly important, because
observing only one move by E will tell A exactly what E’s strategy will be in
the whole game.

To model these richer settings, one needs Level Three epistemic game models.

Definition 20 (Epistemic game models). Epistemic game models for an
extensive game G are epistemic models M = (W,∼i, V ) whose worlds are ab-
stract indices including local (factual) information about all nodes in G, plus
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whole strategy profiles for players, i.e., total specifications of everyone’s behaviour
throughout the game. Players’ global information about game structure and pro-
cedure is encoded by uncertainty relations ∼i between worlds of the model.

The above uncertainty between two strategies of my opponent would be naturally
encoded in constraints on the set of strategy profiles represented in such a model.
And observing some moves of yours in the game telling me which strategy you
are actually following then corresponds to dynamic update of the initial model,
in the sense of our earlier chapters.

Level-Three models are a natural limit for games and other scenarios of inter-
active agency. Our policy is always to discuss issues at the simplest model level
where they make sense.

12 Game Change: Public Announcements, Promises and
Solving Games

Now look at actual transformations that change games, and triggers for them.

Promises and Intentions. Following [10], one can break the impasse of a bad
Backward Induction solution by changing the game through making promises.

Example 10 (Promises and game change). In this earlier game, the ‘bad Nash
equilibrium’ (1, 0) can be avoided by E’s promise that she will not go left, by
public announcement that some histories will not occur (we may make this
binding, e.g., by attaching a huge fine to infractions) – and the new equilibrium
(99, 99) results, making both players better off by restricting the freedom of one
of them!

A

1, 0

E

0, 100 99, 99

A

1, 0

E

99, 99

But one can also add moves to a game,12 or give additional information about
players’ preferences.

Theorem 21. The modal logic of games plus public announcement is completely
axiomatized by the modal game logic chosen, the recursion axioms of PAL for
atoms and Booleans, plus the following law for the move modality:

〈!P 〉〈a〉φ↔ (P ∧ 〈a〉(P ∧ 〈!P 〉φ).
12 Yes, in this way, one could code up all such game changes beforehand in one grand

initial ‘Super Game’ – but that would lose all the flavour of understanding what
happens in a stepwise manner.
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Using PDL again for strategies, this leads to a logic PDL+PAL with public
announcements [!P ]. It is easy to show that PDL is closed under relativization
to definable sub-models, both in its propositional and its program parts, and
this underlies the following result:

Theorem 22. PDL+ PAL is axiomatized by merging their separate laws, while
adding the following reduction axiom:

[!P ]{σ}ϕ↔ (P → {σ \ P}[!P ]ϕ).

But of course, we also want to know about versions with epistemic preference
languages – and hence there are many further questions following up on these
initial observations.

Solving Games by Announcements of Rationality. Another type of public
announcement in games iterates various assertions expressing that players are
rational, as a sort of ‘public reminders’. [9] has this result for extensive games:

Theorem 23. The Backward Induction solution for extensive games is obtained
through repeated announcement of the temporal preferential assertion “no player
chooses a move all of whose further histories end worse than all histories after
some other available move”.

Proof. This can be proved by a simple induction on finite game trees. The prin-
ciple will be clear by seeing how the announcement procedure works for a ‘Cen-
tipede game’, with three turns as indicated, branches indicated by name, and
pay-offs given for A, E in that order:

A E A
u

5, 5

x
1, 0

y
0, 5

z
6, 4

Stage 0 of the announcement procedure rules out branch u, Stage 1 then rules
out z, while Stage 2 finally rules out y.

This iterated announcement procedure for extensive games ends in largest sub-
models in which players have common belief of rationality, or other doxastic-
epistemic properties.

Alternatives. Of course, a logical language provides many other assertions to
be announced, such as history-oriented alternatives, where players steer future
actions by reminding themselves of legitimate rights of other players, because of
‘past favours received’.

The same ideas work in strategic games, using assertions of Weak Rationality
(“no player chooses a move which she knows to be worse than some other avail-
able one”) and Strong Rationality (“each player chooses a move she thinks may
be the best possible one”):
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Theorem 24. The result of iterated announcement of WR is the usual solution
concept of Iterated Removal of Strictly Dominated Strategies; and it is defin-
able inside M by means of a formula of a modal µ-calculus with inflationary
fixed-points. The same for iterated announcement of SR and game-theoretic Ra-
tionalizability.13

13 Belief, Update and Revision in Extensive Games

So far, we studied players’ knowledge. We merely indicate how one can also study
their equally important beliefs. For a start, one can use Level-One game models
with relations of relative plausibility between nodes inside epistemic equivalence
classes. Players’ beliefs then hold in the most plausible epistemically accessible
worlds, and conditional beliefs can be defined as an obvious generalization. But
perhaps more vivid is a Level-Two view of branching trees with belief structure.
Recall the earlier ETL models, and add binary relations ≤I,s of state-dependent
relative plausibility between histories:

Definition 25 (Absolute and conditional belief). We set M,h, s |= 〈B, i〉ϕ
iff M,h′, s |= ϕ for some history h′ coinciding with h up to stage s and most
plausible for i according to the given relation ≤I,s. As an extension, M,h, s |=
〈B, i〉ψϕ iff M,h′, s |= ϕ for some history h′ most plausible for i according to
the given ≤I,s among all histories coinciding with h up to stage s and satisfying
M,h′, s |= ψ.

Now, belief revision happens as follows. Suppose we are at node s in the game,
and move a is played which is publicly observed. At the earlier-mentioned purely
epistemic level, this event just eliminates some histories from the current set. But
there is now also belief revision, as we move to a new plausibility relation ≤I,s∧a
describing the updated beliefs.

Hard Belief Update. First, assume that plausibility relations are not node-
dependent, making them global. In that case, we have belief revision under hard
information, eliminating histories. The new plausibility relation is the old one,
restricted to a smaller set of histories. Here is the characteristic recursion law
that governs this process. A temporal operator Faφ says a is the next event on
the current branch, and that φ is true immediately after:

Fact 26. The following temporal principles hold for hard revision along a tree:

– Fa〈B, i〉ϕ↔ (Fa
 ∧ 〈B, i〉(Fa
, Faϕ))
– Fa〈B, i〉ψϕ↔ (Fa
 ∧ 〈B, i〉(Faψ, Faϕ))14

13 If the iterated assertion A has ‘existential-positive’ syntactic form (for instance, SR
does), the relevant definition can be formulated in a standard epistemic µ-calculus.

14 Similar ‘coherence’ laws occur in [19], which formalizes games using AGM theory.
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Soft Update. But belief dynamics is often driven by events of soft information,
which do not eliminate worlds, but merely rearrange their plausibility ordering
[7], as happens in the familiar model-theoretic ‘Grove sphere semantics’ of belief
revision theory. In the above, we already cast Backward Induction in this manner,
as a way of creating plausibility relations in a game tree – but beyond such an
‘off-line’ preprocessing phase of a given game, there can also be dynamic ‘on-
line’ events that might change players’ beliefs and expectations in the course
of an actual play of the game. With doxastic-temporal models adapted to this
setting, we get representation theorems [14] that say which doxastic-temporal
models are produced by plausibility update in the style of [2]. Also, [3] provide
a striking new dynamic alternative to Aumann-style characterization theorems
for Backward Induction.

Further Entanglements: Dynamics of Rationalization. In all our sce-
narios and logics, knowledge and belief have been entangled notions – and this
entanglement even extends to players’ preferences [24,26]. But there are many
other dynamic scenarios. For instance, [10] discusses rationalization of observed
behaviour in games, adapting preferences, beliefs, or both, to make observed
behaviour rational.

14 Conclusion

We have shown how games naturally involve static and dynamic logics of action,
knowledge, belief, and preference. We gave pilot studies rather than grand theory,
and we found more open problems than final results. It would be easy to pile up
further topics (cf. [12]), pursuing issues of procedural knowledge, soft update and
genuine belief revision in games, agent diversity and bounded rationality, infinite
games, or connections to explicit automata-theoretic models of agents (as urged
by Ram Ramanujam in his 2008 invited lecture at the Workshop on ‘Logics of
Intelligent Interaction’, ESSLLI Hamburg). True. But even at the current level
of detail, we hope to have shown that logic and games is an exciting area for
research with both formal structure and intuitive appeal.
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Abstract. Modern proof-assistants are now mature enough to formalise
many aspects of mathematics. I outline some work we have done using
the proof-assistant Isabelle to machine-check aspects of proof theory in
general, and specifically the proof theory of provability logic GL.

1 Motivation

Proof theory, broadly construed, is the study of derivations as first-class objects.
Typically, we study a proof-calculus which captures the notion that a particular
formula A is deducible from a given finite collection Γ of assumption formulae in
some given logic L: usually written as Γ �L A. Typical such calculi are Gentzen’s
Sequent Calculi, Natural Deduction Calculi or Hilbert Calculi.

But proof theory is error prone. There are numerous examples of published
“proofs” in proof theory which have turned out to be incorrect at a later date.
These errors often lie undiscovered for years, usually until some diligent Phd
student actually tries to work through the proofs in detail and discovers a bug.
I give a concrete example later.

Part of the problem is that conferences and journals typically enforce page
limits, so that authors are forced to elide full details. Another cause is that
proof-theoretical proofs typically contain many similar cases, and humans are
notoriously bad at carrying out repetitive tasks with precision. Thus authors
often resort to words like “the other cases are similar”. But sometimes the errors
are very subtle, and are not just a matter of routine checking.

Proof-theoretic proofs often proceed by induction since derivations are usually
structured objects like lists, trees or graphs.

Proof assistants are computer programs which allow a user to encode and
check proofs written using a special syntax and interface. They have a long
history going back to the early 1970s, are usually based upon an encoding of
higher-order logic into some extension of Church’s typed λ-calculus, and are
now an exciting and mature area of research. Indeed, there is now a strong
movement to “formalise mathematics” using computers as exemplified by Tom
Hales’ project to formally verify his “proof” of the Kepler Conjecture http://
code.google.com/p/flyspeck/.
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Most modern proof-assistants allow us to define infinite sets using inductive
definitions. Most also automatically generate powerful induction principles for
proving arbitrary properties of such sets.

Given that proof-theory is error-prone and that it typically utilises proofs by
induction, can we use modern proof-assistants to help us machine-check proof
theory?

An Oath: I have only a limited amount of time and I need to cover a lot of
background material. I also want to show you some actual code that we have
developed, but I wish to simplify it to hide unimportant details. So here is an
oath: I will tell the truth, I may not tell the whole truth, but I won’t lie. So
complain immediately if you see something blatantly incorrect!

2 Proof Theory: Purely Syntactic Calculi for L-Deduction

To begin with the basics, I just want to talk briefly about the proof-calculi we
typically study.

We typically work with judgements of the form Γ �L ∆ where Γ and ∆ are
“collections” of formulae. I deliberately want to leave vague the exact definition
of “collection” for now: think of it as some sort of data-structure for storing
information.

From these judgements, we usually define rules, and form a calculus by as-
sembling a finite collection of such rules.

A rule typically has a rule name, a (finite) number of premises, a side-condition
and a conclusion as shown below:

Γ1 �L ∆1 · · · Γn �L ∆nRuleName Condition
Γ0 �L ∆0

We read the rules top-down as statements of the form “if premises hold then
conclusion holds”, again deliberately using the imprecision of “holds” rather
than something more exact.

A derivation of the judgement Γ �L ∆ is typically a finite tree of judgements
with root Γ �L ∆ where parents are obtained from children by “applying a
rule”. From now on, I will usually omit L to reduce clutter.

Figure 1 shows some typical rules from the literature:

Gentzen’s LK: in some formulations uses rules built from multisets, but it can
also be easily turned into a calculus which uses sets. LK has a particularly
pleasing property in that in all its rules, the components of the premises like
A and B are subformulae of the components of the conclusion like A→ B;

Gentzen’s LJ: uses sequents built from multisets, with an added condition
that the right hand side must consist of at most one formula. The particular
formulation shown also carries its principal formula A→ B from the conclu-
sion into one of its premises, which can be used to show that the contraction
rule is redundant;
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Calculus Example Rule Collection

LK
Γ, B � ∆ Γ � A,∆

(→ L)
Γ, A → B � ∆

sets of formulae

LJ
Γ, A → B � A Γ, B � C

(→ L)
Γ, A → B � C

multisets + SOR

ND
Γ � K Γ, K � M

({.}.I)
Γ � {M}K

multisets + SOR

NL
∆ � A Γ [B] � C

(\L)
Γ [(∆,A \ B)] � C

trees with holes

DL X � A B � Y(→ L)
A → B � (∗X) ◦ Y

complex trees

Fig. 1. Example of Rules of Some Existing Calculi

ND for Security Protocols: Natural deduction calculi have been used to rea-
son about security protocols. This rule captures the idea that the ability to
decode the key K and the ability to decode a message M using that key,
allows us to decode M even when it is encrypted with key K;

NL: The non-associative Lambek calculus uses sequents built from trees con-
taining “holes”. The rule allows us to replace the formula B in a hole inside
the tree Γ , with a more complex subtree built from the tree ∆ and the
formula A \B;

Display Logic: Belnap’s display logic uses sequents built from complex struc-
tural connectives like ∗ and ◦ so that its sequents are akin to complex trees.

Thus there are many different notions of “sequent”. Our hope is to encode
the proofs about such sequents in a modern proof-assistant, specifically Isabelle.

3 Applying a Rule: Example Derivation in Gentzen’s LK

In almost all cases, we build derivations in a top-down manner, starting from
leaves which are instances of Γ, p � p,∆ by “applying” a rule. Rule applica-
tion typically proceeds using pattern-matching as exemplified by the following
derivation from Gentzen’s LK.

Example 1. Here, Γ,A means “Γ multiset-union A”.

Γ,A,B � ∆
(∧ �)

Γ,A ∧B � ∆
Γ � A,∆ Γ,B � ∆

(→�)
Γ,A→ B � ∆

p0 � p0, q0 p0, q0 � q0 (→�)
p0, (p0 → q0) � q0 (∧ �)
p0 ∧ (p0 → q0) � q0
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The first rule instance (→�) utilises the substitutions Γ := {p0}, A := p0,
B := q0 and ∆ := {q0}.

The second rule instance (∧ �) utilises the substitutions Γ := ∅, A := p0,
B := p0 → q0 and ∆ := {q0}.
The example also illustrates the use of sequent calculi as “backward chaining”
decision procedures where we can find a derivation starting from p0 ∧ (p0 →
q0) � q0 and applying the rules in a systematic way “backwards” towards the
leaves.

For propositional LK, decidability follows almost immediately by observing
that in every such “backward” rule application, at least one formula disappears
from the sequents, and is replaced by strictly smaller formulae only. Thus, every
branch of rule applications must terminate.

More generally, we typically find some numerical measure which strictly de-
creases when “reducing” a conclusions to its premises. Indeed, the International
Conference on Automated Reasoning with Analytic Tableaux and Related Meth-
ods, to be held next in Oslo, is dedicated to research aimed at automating rea-
soning in various non-classical logics using this technique. Some of us have even
made a career out of this endeavour!

Notice that the structure of “collections” is significant. For example, the struc-
tural rule of contraction shown below at left using multisets is well-defined, with
a typical instance shown below at right:

Γ,A,A � ∆
(Ctr)

Γ,A � ∆
p0, p0 � q0 (Ctr)
p0 � q0

Similarly, the following contraction lemma is well-defined:

If Γ,A,A � ∆ is derivable then so is Γ,A � ∆.

But neither makes sense in a setting where sequents are built from sets since
the rule instance shown below at left collapses to identity.

p0, p0 � q0 (Ctr)
p0 � q0

{p0} � {q0} identity{p0} � {q0}
Similarly, the contraction lemma is meaningless since Γ ∪ {A} ∪ {A} � ∆ is

the same as Γ ∪ {A} � ∆.
Although automated reasoning is an important application of sequent cal-

culi, most uses of proof theory are meta-theoretic. For example, proof theory is
typically used to answer questions like the following:

Consistency: ∅ �L A and ∅ �L ¬A are not both derivable;
Disjunction Property: If ∅ �Int A ∨B then ∅ �Int A or ∅ �Int B;
Craig Interpolation: If Γ �L ∆ holds then so do Γ �L A and A �L ∆ for some

formula A with Vars(A) ⊆ Vars(Γ ) ∩Vars(∆);
Normal Forms: Is there a (unique) normal form for derivations ?
Curry-Howard: Do normal derivations correspond to well-typed terms of some

λ-calculus ?
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Equality: When are two derivations of Γ �L A equivalent ?
Relative Strengths: Every derivation in �1 can be simulated polynomially by a

derivation in �2

The methods used usually involve reasoning about derivations rather than
finding derivations, as exemplified by the following lemmas:

Identity: The judgement A � A is derivable for all A.
Monotonicity: If Γ � ∆ is derivable then so is Γ,Σ � ∆.
Exchange: If Γ,A,B � ∆ is derivable then so is Γ,B,A � ∆.
Contraction: If Γ,A,A � ∆ is derivable then so is Γ,A � ∆.
Inversion: If the conclusion of a rule instance is derivable then so are the corre-

sponding premise instances.
Cut-elimination/-admissibility: If Γ � A,∆ is (cut-free) derivable and Γ,A � ∆

is (cut-free) derivable then so is Γ � ∆, where the cut rule is:

Γ � A,∆ Γ,A � ∆
(cut)

Γ � ∆
Weak/Strong Normalisation: Algorithm to transform a derivation into a normal

form by eliminating topmost/nested cuts ?
Cost: How much bigger is the transformed derivation?

4 Proof Theory Is Error-Prone: Provability Logic GL

To illustrate the fact that proof-theory is error-prone, I would like to describe
the history of the cut-elimination theorem for a propositional modal logic called
GL, after Gödel-Löb.

The logic GL has an Hilbert axiomatisation which extends the standard ax-
iomatisation for modal logic K by adding Löb’s axiom �(�A → A) → �A. It
rose to prominence when Solovay showed that �A could be interpreted as “A is
provable in Peano Arithmetic” [7]. An initial proof-theoretic account was given
by Leivant in 1981 when he “proved” cut-elimination for a set-based sequent
calculus for GL [3]. But Valentini in 1983 found a simple counter-example and
gave a new cut-elimination proof [8]. The issue seemed to have been settled, but
in 2001, Moen [5] claimed that Valentini’s transformations don’t terminate if the
sequents Γ � ∆ are based on multisets. There is of course no a priori reason
why a proof based on sets should not carry over with some modification to a
proof based on multisets, so this set the cat amongst the pigeons.

In response, Negri [6] in 2005 gave a new cut-elimination proof using sequents
built from labelled formulae w : A, which captures that the traditional formula
A is true at the possible world w. But this is not satisfactory as it brings the
underlying (Kripke) semantics of modal logic into the proof theory. Mints in
2005 announced a new proof using traditional methods [4].

But the question of Moen versus Valentini remained unresolved. Finally, Goré
and Ramanayake [2] in 2008 showed that Moen is incorrect, and that Valentini’s
proof using multisets is mostly okay.

Many such examples exist in the literature.
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5 Interactive Proof Assistants

Interactive proof-assistants are now a mature technology for “formalising math-
ematics”. They come in many different flavours as indicated by the names
of some of the most popular ones Mizar, HOL, Coq, LEGO, NuPrl, NqThm,
Isabelle, λ-Prolog, HOL-Lite, LF, ELF, Twelf · · · with apologies to those
whose favourite proof-assistant I have omitted.

Most of the modern proof-assistants are implemented using a modern func-
tional programming language like ML, which was specifically designed for the
implementation of such proof-assistants.

The lowest levels typically implement a typed lambda-calculus with hooks
provided to allow the encoding of further logical notions like equality of terms on
top of this base implementation. The base implementation is usually very small,
comprising of a few hundred lines of code, so that this code can be scrutinised
by experts to ensure its correctness.

Almost all aspects of proof-checking eventually compile down to a type-
checking problem using this small core, so that trust rests on strong typing
and a well-scrutinised small core of (ML) code.

Most proof-assistants also allow the user to create a proof-transcript which
can be cross-checked using other proof-assistants to guarantee correctness.

I don’t want to go into details, but one type of proof-assistant, called a logical
framework, allows the user to manage a proof using the “backward chaining”
idea which we saw in use earlier to find derivations using sequent calculi.

Figure 2 shows how these logical frameworks typically work. Thus given some
goal β and an inference step which claims that α is implied by β1 up to βn, we
pattern-match α and β to find their most general unifier θ, and then reduce the
original goal β to the n subgoals β1θ · · ·βnθ.

The pattern matching required is usually (associative-commutative) higher
order unification.

The important point is that the logical framework keeps track of sub-goals
and the current proof state.

The syntax of the “basic propositions” like α, β is defined via an “object
logic”, which is a parameter. Different “object logics” can be invoked using the
same logical-framework for the task at hand.

The logical properties of “;” like associativity or commutativity, and properties
of the “=⇒” like classicality or linearity are determined by the “meta-logic”,
which is usually fixed for the logical framework in question.

[β1 ; β2 ; · · · ; βn] =⇒ α β

θ = match(β, α) β1θ ; β2θ ; · · · ; βnθ

Fig. 2. Backward Chaining in Logical Frameworks
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For example, the meta-logic of Isabelle is higher-order intuitionistic logic.
Higher order simply means that functions can accept other functions as argu-
ments and can produce functions as results.

6 Isabelle’s LK Object Logic: A Shallow Embedding of
Sequent Calculus

We begin with what is called a “shallow embedding” of sequents. The meaning
of this term will become apparent as we proceed.

The “propositions” of Isabelle’s sequent object logic are sequents built from
sequences of formulae as defined in the grammar below:

prop = sequence |- sequence
sequence = elem (, elem)∗ | empty
elem = $id | $var | formula
formula = ∼ formula | formula & formula | · · ·

Thus sequents are built from “collections” which are sequences of formulae.
A sequent rule built from premise sequents β1, · · · , βn with conclusion sequent
α is encoded directly as the meta-logical expression:

[β1 ; · · · ; βn] =⇒ α

Example 2. For example, the (cut) rule shown below is encoded as the meta-
logical expression shown below it:

Γ � ∆,P Γ, P � ∆
(cut)

Γ � ∆
[| $G |- $D,P ; $G,P |- $D |] ==> $G |- $D

Thus we encode the horizontal bar separating the premises from the conclusion
directly using the meta-logical implication =⇒.

The advantage is that we can immediately create and check derivations using
the proof assistant to manage the backward chaining involved. That is, we use
the proof-assistant to find derivations by applying the rules in a backward way.
There is thus a perfect match between the backward chaining involved in finding
derivations and the backward chaining involved in the subgoaling provided by
the proof-assistant.

The disadvantage is that there is no explicit encoding of a derivation. The
derivation is kept implicitly by the proof-assistant and we cannot manipulate
its structure. Nor is it possible to encode statements like the identity lemma:
the sequent A � A is derivable for all formulae A. It is possible to show that
particular instances of this sequent like P&Q � P&Q are derivable, but we
cannot actually encode the inductive nature of the proof which would require
us to show that it held for A being atomic, and that an inductive step would
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take us from the case for formulae of length n to formulae of length n + 1. In
particular, there is no way to state the final step of the induction which allows
us to state that the lemma holds for all finite formulae.

7 A Deeper Embedding: Change Object Logic

Recall that the meta-logic provides us with a method for backward chaining via
expressions of the form:

β1 ; · · · ; βn =⇒ α

The usual method for obtaining the power for reasoning about sequent deriva-
tions is to use the full power of higher-order classical logic (HOL) to build the
basic propositions βi.

Isabelle’s incarnation of HOL provides the usual connectives of logic like con-
junction, disjunction, implication, negation and the higher order quantifiers. But
it also provides many powerful facilities allowing us to define new types, define
functions which accept and return other functions as arguments, and even define
infinite sets using inductive definitions.

For example, the following HOL expressions capture the usual inductive def-
inition of the natural numbers by encoding the facts that “zero is a natural
number, and if n is a natural number then so is its successor s(n)”:

0 ∈ nat
n ∈ nat =⇒ s(n) ∈ nat

Most proof-assistants will automatically generate an induction principle from
a given inductive definition. For example, Isabelle will automatically generate
the usual induction principle which states that we can prove a property P holds
of all natural numbers if we can show that P (0) holds and we can show that
P (n) implies P (s(n)). An implicit assumption which facilitates such induction
principles is that the inductive definitions are the only way to construct its
members. Thus, if n is a natural number, then it is either 0, or is of the form
s(m) for some natural number m.

To encode sequent calculus into HOL we first encode the grammar for recog-
nising formulae as below:

datatype fml = FC string (fml list) (* fml connective *)
| FV string (* fml variable *)
| PP string (* prim prop *)

There are three type constructors FC, FV and PP which encode formula con-
nectives, formula variables, and atomic formulae (primitive propositions). Each
of them takes one string argument which is simply the string we want to use
for that construction. The formula connective constructor also accepts a list of
formulae, which constitute its subformulae.

For example, FC "&" [FV "A", PP "q"] encodes A & q. Since we want to
encode modal provability logic GL, we require only the classical connectives,
plus two unary modalities FC "Box" [.] for �. and FC "Dia" [.] for ♦..
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Isabelle’s HOL allows us to form sets and multisets of objects of an arbitrary
type, so the HOL expressions fml set and fml multiset capture the types of
formula sets and formula multisets.

Using these types we can build a sequent type using an infix constructor �
via:

datatype seq = fml multiset � fml multiset

Isabelle’s HOL allows us to form lists of objects of an arbitrary but fixed type,
so we define the type of a rule as a pair with the first component being a list of
sequent premises and the second component being the conclusion sequent:

datatype inf = (seq list , seq)

Finally, we use the HOL type declaration rli :: inf set to declare that rli
is a set of inferences, each a pair of the form (seq list , seq), and inductively
define the set rli by giving a finite collection of rule instances which belong to
this set. For example, the traditional rule (& �) for introducing a conjunction
into the left hand side of a sequent as shown below is given by the encoding
below it:

Γ � A,∆ Γ � B,∆
(� &)

Γ � A&B,∆

( [ G � {A}+ D , G � {B}+ D ], G � {A&B}+ D ) ∈ rli

The encoding uses HOL’s notation “+” for multiset union, and a slightly
inaccurate description of encoding singleton multisets as {A}. Thus each element
of rli is a pair whose first component is a list of its premises, and whose second
component is its conclusion.

We are now in a position to encode the set derrec of “recursively derivable
sequents” given an initial set pms of premise sequents and an initial set rli of
inference rules. The set derrec is defined inductively as shown below:

1 derrec :: (seq list, seq) set ⇒ seq set ⇒ seq set
2 c ∈ pms =⇒ c ∈ derrec rli pms
3 [ (ps, c) ∈ rli ;
4 ∀ p. p ∈ (set ps) =⇒ p ∈ derrec rli pms ]
5 =⇒ c ∈ derrec rli pms

The explanation is as below:

1: A type declaration which tells the proof-assistant that derrec accepts a set
of inference rules and a set of sequents, and produces a set of sequents;

2: The base case of the inductive definition of derrec captures that “each
premise is itself (vacuously) derivable from the premises using the rules”.
Note that there is an implicit outermost universal quantifier which is not
shown explicitly, but which binds free variables like c, ps, rli, pms.

3: The first conjunct of an inductive clause stating that ps/c is a rule instance;
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4: The second conjunct of the inductive clause which captures that “each
premise p in the set obtained from sequent list ps is derivable from the
premises pms using the rules rli”. Here we use a function set to convert a
list into the set of its members;

5: The “then” part of the inductive clause which concludes that sequent “c is
derivable from pms using rli”.

8 Inductive Proofs via Automated Inductive Principles

Induction principles are generated automatically by Isabelle from the inductive
definition of derrec. A heavily simplified version for proving an arbitrary prop-
erty P is shown below:

1 ∀x.∀P.
2 [ x ∈ derrec rli pms ;
3 ∀c.c ∈ pms =⇒ P(c) ;
4 ∀c.∀ps.[ (ps, c) ∈ rli ; ∀y ∈ (set ps). P(y) =⇒ P(c) ]
5 ] =⇒ P(x)

An explanation is:

1: for all sequents x and all properties P
2 : if x is derivable from premises pms using rules rli, and
3 : P holds for every premise c in pms, and
4 : for each rule, if P of its premises implies P of its conclusion,
5 : then P holds of x

If you look closely, you will see that this is an induction principle which we use
often in proof-theory: prove that some property holds of the leaves of a derivation,
and prove that the property is preserved from the premises to the conclusion of
each rule. For example, consider the standard translation from sequents of LK to
formulae given by τ(A1, · · · , An � B1, · · · , Bm) = A1 ∧· · ·∧An → B1 ∨· · ·∨Bm.
We typically use this translation to argue that all derivable sequents are valid
in the semantics of first-order logic. The proof proceeds by showing that the
translation of the leaves of a derivation are all valid, and showing that if the
translations of the premises are valid then the translations of the conclusion are
valid, for every rule.

Using these inductive principles we proved the following lemma about deriv-
ability using Isabelle, where the question marks indicate free-variables which are
implicitly universally quantified:

Lemma 1

?ps ⊆ derrec ?rli ?pms ; ?c ∈ derrec ?rli ?ps =⇒ ?c ∈ derrec ?rli ?pms

If each premise in ps is derivable from premises pms using rules rli, and c is
derivable from ps using rli, then c is derivable from pms using rli.
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9 An Even Deeper Embedding: Derivation Trees as
Objects

The main advantage of the method outlined in the previous section was that
there was no concrete representation of a derivation. That is, we relied on the
proof-assistant to perform pattern-matching and rule instantiations in an appro-
priate way, so that all we needed was to capture the idea that derivations began
with premises and ended with a single sequent.

If we are to reason about cut-elimination, then we are required to perform
transformations on explicit derivations. We therefore need a representation of
such trees inside our encoding.

In previous work [1], we described such an encoding using the following
datatype:

datatype seq dertree = Der seq (seq dertree list)
| Unf seq

The declaration states that a derivation tree can either be an Unfinished
leaf sequent built using the constructor Unf, or it can be a pair consisting of a
conclusion sequent and a list of sub-derivation-trees bound together using the
constructor Der.

In that work, we described how we maintained substitutions as lists of pairs
of the form (x, t) representing the substitution x := t. We also described how we
manipulated substitutions and instantiation directly to obtain rule instances.

We required such low-level aspects to be made explicit so that we could reason
about display logic which required us to check conditions on rules like “a rule is
closed under substitution of arbitrary structures for variables”.

Our use of dertee can be seen as an even deeper embedding of proof-theory
into Isabelle/HOL since we utilise the proof-assistant only to maintain the cur-
rent and further goals.

Omitting details now, suppose we define valid rli dt to hold when deriva-
tion tree dt uses rules from rli only and has no Unfinished leaves. We proved:

Lemma 2

valid ?rli ?dt =⇒ (conclDT ?dt) ∈ derrec ?rls {}

If derivation tree dt is valid wrt the rules rli then its conclusion is derivable
from the empty set of premises using rli.

Lemma 3

?c ∈ derrec ?rli {} =⇒ EX dt. valid ?rli dt & conclDT dt = ?c

If the sequent c is derivable from the empty set of premises using rules rli then
there exists a derivation tree dt which is valid wrt rli and whose conclusion is
exactly c.
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Thus we now know that our “deep embedding” of derivability using derrec
can be faithfully captured using the “even deeper” embedding using explicit
derivation trees. Indeed, the lemmas allow us to move freely between the two
embeddings at will to omit or include details as required by the lemma we wish
to prove.

10 Mix Admissibility for Provability Logic

We finally come to the crux of our work. Below is the traditional formulation of
the mix-rule for sequents built from multisets where ΠA is formed from Π by
deleting all occurrences of A:

Γ � ∆ Π � Σ(mix)
Γ,ΠA � ∆A, Σ

A ∈ ∆ & A ∈ Π

The rule can be expressed as a lemma rather than a rule using the embeddings
we have developed so far as shown below where we now explicitly use the name
glss for the fixed but inductively defined set of rule instances for provability
logic GL:

(?G � ?D) ∈ derrec glss {} ; (?P � ?S) ∈ derrec glss {}
=⇒

((?G + (ms delete {?A} ?P) � (ms delete {?A} ?D) + ?S))
∈ derrec glss {}

Here we defined a function ms_delete which deletes all occurrences of its first
argument from its second argument. Our main result, which we intend to report
in a proper paper, is that this lemma can be proved using our embeddings and
Isabelle.

11 Objections and Impediments

A frequent objection to the idea of machine-checking anything is that the errors
could also have been found by a good Phd student working with pencil and
paper. But even diligent Phd students are apt to fall for errors which lie within
sentences marked by “clearly ...” or the “other cases are similar”. The beauty of
proof-assistants lies in their absolutely pedantic insistence that nothing is proved
until it passes through the type-checking procedure of the proof-assistant.

Another objection is that this is not research but is just high level program-
ming since you have to have the proof first. To some extent this is true since the
current prototypical example is usually the verification of a given proof from a
paper or a book. But many researchers now build the proof interactively. Indeed,
better user-interfaces make this very possible.

The main impediment in my opinion is the sheer effort required to become
familiar with proof-assistants before productive work can be started. It takes
at least three months of full-time work to learn how to use an interactive proof
assistant well. But as I hope I have shown you, it is worth it!
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Abstract. This article surveys two recent developments in set theory
sharing an essential second-order nature, namely, the modal logic of forc-
ing, oriented upward from the universe of set theory to its forcing exten-
sions; and set-theoretic geology, oriented downward from the universe to
the inner models over which it arises by forcing. The research is a mixture
of ideas from several parts of logic, including, of course, set theory and
forcing, but also modal logic, finite combinatorics and the philosophy
of mathematics, for it invites a mathematical engagement with various
philosophical views on the nature of mathematical existence.

1 Introduction

I would like in this article to discuss two emerging developments in set theory
focusing on second-order features of the set-theoretic universe, and focusing par-
ticularly on the relation of the universe of sets in a general context to other more
arbitrary models. The first of the these developments, the modal logic of forcing,
has an upward-oriented focus, looking upwards from a model of set theory to its
extensions and investigating the relationship of the model to these extensions
and their subsequent relation to further extensions. The second development,
set-theoretic geology, has a downward-oriented focus, looking from a model of
set theory down to the models of which it is an extension, and investigating the
resulting structure of this collection of models. These two perspectives are unified
by and find motivation in a multiverse view of set theory, the philosophical view
that there are many set-theoretic worlds. Indeed, such a philosophical view has
perhaps guided the mathematical research in this area by suggesting what have
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turned out to be very interesting questions and also what have turned out to be
productive avenues for research. The work I shall discuss can be taken as the ini-
tial footsteps in what I hope will become a thorough mathematical exploration
of this philosophical view. This brief survey is intended to introduce the area by
describing the principal concepts and preliminary results, mostly adapted from
[3], [4] and [1], but with the main proofs only sketched here. I shall call particular
attention to the many interesting and fundamental questions that remain open,
and I invite researchers to the topic.

2 Looking Upward: The Modal Logic of Forcing

Although many set-theorists affirm the Platonic view that there is just one uni-
verse of set theory, nevertheless the most powerful set-theoretic tools developed
over the past half century are actually methods of constructing alternative uni-
verses. With both the method of forcing and the method of ultrapowers—and
these two methods can be viewed as two facets of the single method of Boolean
ultrapowers1—a set theorist begins with a model of set theory V and constructs
another model W by forcing or by ultrapowers (for example, via large cardinal
embeddings), making set-theoretic progress by means of a detailed investigation
of the often close connection between V and W . And of course set theorists,
ever tempted by the transfinite, perform very long iterations of these methods,
sometimes intertwining them in combination, to gain even greater understanding
and construct additional models of set theory.

Forcing, introduced by Paul Cohen in 1963, is a method for constructing a
larger model of set theory extending a given model. Cohen used the method to
settle the independence of the Continuum Hypothesis CH from the other axioms
of ZFC, by showing that every model of set theory has a forcing extension in
which CH fails. In a subsequent explosion of applications, set theorists have
constructed an enormous variety of models of set theory, often built to exhibit
certain precise, exacting features, and we have come thereby to see the rich
diversity of mathematical possibility.

With forcing, one begins with a ground model V |= ZFC and a partial order
or forcing notion P in V . The forcing extension V [G], a model of ZFC, is built
by adjoining an ideal generic element G, a V -generic filter G ⊆ P, in a manner
akin to a field extension. In particular, the ground model has names for every
element of the forcing extension V [G], and every object of V [G] is constructible
algebraically from these names in the ground model and the new object G. Much
of the power of forcing flows from the surprising degree of access the ground
model V has to the objects and the truths of the extension V [G]. The overall
effect is that the forcing extension V [G] is closely related to the ground model
V , but exhibits new truths in a way that can be carefully controlled.

So let us consider a model of set theory V and its relation to all its forcing
extensions V [G], considering at first only extensions by set forcing. It seems
very natural to introduce the idea that a statement ϕ in the language of set
1 This idea is fully explored in the forthcoming [6].
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theory is forceable or possible if there is some forcing extension V [G] in which
ϕ is true. This is, of course, a modal possibility notion, so we will write ♦ϕ for
the assertion that ϕ is forceable. The natural dual notion is that ϕ is necessary,
written �ϕ, when ϕ holds in all forcing extensions V [G]. There is, of course, a
natural Kripke model lurking here, whose possible worlds are the models of set
theory and whose accessibility relation is the relation of a model to its forcing
extensions. Many set theorists habitually operate within this Kripke model, even
if they would not describe their activities this way, for whenever it is convenient
and for whatever purpose they say, “let G ⊆ P be V -generic,” and make the
move to the forcing extension V [G]. This amounts to traveling about in this
Kripke model.

The modal assertions ♦ϕ and �ϕ are expressible, of course, in the language
of set theory.

♦ϕ ⇐⇒ ∃P ∃p ∈ P p �P ϕ

�ϕ ⇐⇒ ∀P ∀p ∈ P p �P ϕ

The forcing relation p �P ϕ means that whenever G ⊆ P is a V -generic filter
and p ∈ G, then the resulting forcing extension V [G] satisfies ϕ. Two of the
most fundamental facts about forcing, central to the entire forcing enterprise,
are expressed by the Forcing Lemmas, which assert, first, that every statement ϕ
true in a forcing extension V [G] is forced by some condition p ∈ G, and second,
that for ϕ of fixed complexity, the forcing relation p �P ϕ is definable from
parameters in the ground model. These lemmas express precisely the sense in
which the ground model has access to the truths of the forcing extension. It
follows now that both ♦ϕ and �ϕ are expressible in the language of set theory.
And while ♦ and � are therefore eliminable, we nevertheless retain them, for we
are interested in what principles these operators must obey.

Many common elementary modal assertions, it is easy to see, are valid under
this forcing interpretation. To be precise, let me define that a modal assertion
ϕ(p0, . . . , pn), in the language of propositional modal logic, is a valid principle
of forcing if for any set-theoretic assertions ψ0, . . . , ψn the corresponding sub-
stitution instance ϕ(ψ0, . . . , ψn) holds. For example, it is easy to see that the
following elementary modal assertions are valid principles of forcing.

K �(ϕ =⇒ ψ) =⇒ (�ϕ =⇒ �ψ)
Dual �¬ϕ ⇐⇒ ¬♦ϕ

S �ϕ =⇒ ϕ
4 �ϕ =⇒ ��ϕ
.2 ♦�ϕ =⇒ �♦ϕ

Since these assertions axiomatize the modal theory known as S4.2, it follows
that:

Theorem 1. Every S4.2 modal assertion is a valid principle of forcing.

The fundamental question is:

Question 2. What are the valid principles of forcing?
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An answer will be provided by Theorem 3. As a tentative first step, let me
mention that it is an enjoyable elementary exercise in forcing, which I encourage
the reader to undertake, to show that none of the following modal assertions is
a valid principle of forcing in every model of set theory.

5 ♦�ϕ =⇒ ϕ
M � ♦ϕ =⇒ ♦�ϕ

W5 ♦�ϕ =⇒ (ϕ =⇒ �ϕ)
.3 ♦ϕ ∧ ♦ψ =⇒ (♦(ϕ ∧ ♦ψ) ∨ ♦(ϕ ∧ ψ) ∨ ♦(ψ ∧ ♦ϕ))

Dm �(�(ϕ =⇒ �ϕ) =⇒ ϕ) =⇒ (♦�ϕ =⇒ ϕ)
Grz �(�(ϕ =⇒ �ϕ) =⇒ ϕ) =⇒ ϕ
Löb �(�ϕ =⇒ ϕ) =⇒ �ϕ

H ϕ =⇒ �(♦ϕ =⇒ ϕ)

As a hint for this exercise, let me mention that several of the assertions above
are invalid in every model of set theory, with ϕ = CH (or its negation) being
a counterexample. The others are invalid in L (and other models), with coun-
terexamples built from such assertions as V �= L, ωL1 < ω1, CH, or Boolean
combinations of these. The axioms above correspond to a hierarchy of modal
theories:

Some Common Modal Theories

S5 = S4 + 5
S4W5 = S4 + W5
S4.3 = S4 + .3

S4.2.1 = S4 + .2 + M
S4.2 = S4 + .2
S4.1 = S4 + M

S4 = K4 + S
Dm.2 = S4.2 + Dm

Dm = S4 + Dm
Grz = K + Grz = S4 + Grz
GL = K4 + Löb

K4H = K4 + H
K4 = K + 4
K = K + Dual

S5

S4W5

�

S4.2.1 S4.3

�
Dm.2

�
Grz

K4H

GL S4.1

�
S4.2

���
Dm

��

S4

���

K4

���

K

�

The forcing interpretation of the modal operators �ϕ and ♦ϕ was introduced
in [3], in connection with the forcing axiom called the Maximality Principle MP,
which was fruitfully cast in these modal terms.2 Specifically, having the concept
of a set theoretical assertion ϕ being forceable or being necessary, we define
that ϕ is forceably necessary if it is forceable that ϕ is necessary, that is, if we
can force ϕ in such a way that it remains true in all further forcing extensions.
The Maximality Principle is the scheme asserting that every forceably necessary
statement is already true. In our modal notation, this is simply the assertion
♦�ϕ =⇒ ϕ, which happens to be the modal axiom known as S5. Thus, the
2 See [10] for an earlier independent account, without the modal interpretation, of a

version of MP.
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Maximality Principle is simply the assertion that S5 is a valid principle of forcing.
Elementary modal reasoning shows that MP is equivalent, as a scheme, to the
scheme asserting that every forceably necessary statement is not only true, but
also necessary, expressed by ♦�ϕ =⇒ �ϕ. In [3], it was proved that if there is
a model of ZFC, then there is a model of ZFC+MP. Although this was a forcing
argument, it involved a certain interesting non-forcing hiccup in the choice of
ground model, and it is not true that every model of ZFC has a forcing extension
that is a model of MP. Indeed, if ZFC is consistent, then there is a model of ZFC
having no extension of any kind with the same ordinals that is a model of MP.
The original forcing axioms, from Martin’s Axiom onwards, have often been cast
and were originally conceived (according to my conversations with Tony Martin)
as asserting that a lot of forcing has already occurred. The Maximality Principle
makes this idea universal, by asserting that any statement that could be forced
necessary is already necessary.

But of course, the Maximality Principle does not hold in all models of set
theory, so the question remains: What are the valid principles of forcing? The
following theorem, the main theorem of [4], provides an answer.

Theorem 3 (Hamkins, Löwe [4]). If ZFC is consistent, then the ZFC-provably
valid principles of forcing are exactly those in the modal theory S4.2.

Let me mention a few concepts from the proof. We have already observed above
that S4.2 is valid for forcing. The difficult part of the theorem, of course, is to
show that there are no other validities. In other words, given S4.2 �� ϕ, we must
provide set-theoretic assertions ψi such that ϕ(ψ0, . . . , ψn) fails in some model
of set theory. To accomplish this, two attractively simple concepts turn out to
be key. Specifically, we define that a statement ϕ of set theory is a switch if
both ϕ and ¬ϕ are necessarily possible. Thus, a switch is a statement ϕ whose
truth value can always be turned on or off by further forcing. In contrast, ϕ is
a button if ϕ is (necessarily) possibly necessary. These are the statements that
can be forced true in such a way that they remain true in all further forcing
extensions. The idea here is that once you push a button, you cannot unpush it.
The Maximality Principle, for example, is equivalent to the assertion that every
button has already been pushed. Although buttons and switches may appear
at first to be very special kinds of statements, it is nevertheless the case in set
theory that every statement is either a button, a switch, or the negation of a
button. (After all, if you can’t always switch ϕ on and off, then it will either
get stuck on or stuck off, and product forcing shows these possibilities to be
mutually exclusive.) A family of buttons and switches is independent, if the
buttons are not yet pushed and (necessarily) each of the buttons and switches
can be controlled without affecting the others. Under V = L, there is an infinite
independent family of buttons and switches, namely, bn = “ωLn is collapsed” and
sm = “GCH holds at ℵω+m” (for n,m > 0), since the truth of these statements
can be controlled independently by forcing.

The proof of Theorem 3 rests in part on a detailed understanding of the modal
logic S4.2 and its complete sets of Kripke frames. A Kripke model is a collection
of propositional worlds (essentially a truth table row, assigning propositional
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variables to true and false), with an underlying accessibility relation called the
frame. A statement is possible or necessary at a world, accordingly as it is true
in some or all accessible worlds, respectively. Every Kripke model built on a
frame that is a directed partial pre-order will satisfy the S4.2 axioms of modal
logic, and in fact the finite directed partial pre-orders are complete for S4.2 in
the sense that the statements true in all Kripke models built on such frames are
exactly the statements provable from S4.2. An improved version of this, proved
in [4], is that the finite pre-lattices, and even the finite pre-Boolean algebras, are
complete for S4.2. The following lemma, a central technical claim of [4], shows
that any model of set theory with an independent family of buttons and switches
is able to simulate any given Kripke model built on a finite pre-lattice frame.

Lemma 4. If W |= ZFC has sufficient independent buttons and switches, then
for any Kripke model M on a finite pre-lattice frame, any w ∈ M , there is a
translation of the propositional variables pi �→ ψi to set-theoretic assertions ψi,
such that for any modal assertion ϕ(p1, . . . , pn):

(M,w) |= ϕ(p1, . . . , pn) ⇐⇒ W |= ϕ(ψ1, . . . , ψn).

Each ψi is a Boolean combination of the buttons and switches.

Consequently, if S4.2 �� ϕ, then since we proved that there is a Kripke model M
built on a finite pre-lattice frame in which ϕ fails, it follows that in any model
of set theory W having independent buttons and switches, which we proved
exist, the corresponding assertion ϕ(ψ1, . . . , ψn) fails. This exactly shows that
ϕ is not a provably valid principle of forcing, as desired to prove Theorem 3.
The proof is effective in the sense that if S4.2 �� ϕ, then we are able explicitly to
provide a model W |= ZFC and the particular set-theoretic substitution instance
ϕ(ψ1, . . . , ψn) which fails in W .

Although Theorem 3 tells us what are the ZFC-provably valid principles of
forcing, it does not tell us that all models of ZFC exhibit only those validities.
Indeed, we know that this isn’t the case, because we know there are models of
the Maximality Principle, for which the modal theory S5 is valid, and this is
strictly stronger. So different models of set theory may exhibit different valid
principles of forcing. For any W |= ZFC, consider the family ForceW of modal
assertions ϕ that are valid for forcing over W . The proof of Theorem 3 can be
adapted to show that

Theorem 5 (Hamkins, Löwe [4]). If W |= ZFC, then S4.2 ⊆ ForceW ⊆ S5.

Furthermore, both of these endpoints occur, and so the theorem is optimal.
Specifically, if W is a model of V = L, then ForceW = S4.2, and if W satisfies
the Maximality Principle, then ForceW = S5.

Questions 6

1. Is there a model of ZFC whose valid principles of forcing form a theory other
than S4.2 or S5?
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2. If ϕ is valid in W , is it valid in all extensions of W?
3. Equivalently, is ForceW normal?
4. Can a model of ZFC have an unpushed button, but not two independent

buttons?

The validity for forcing of many modal axioms can be re-cast in purely set-
theoretic terms, in the button-and-switch manner. For example, a model W |=
ZFC has no unpushed buttons if and only if ForceW = S5, and W has indepen-
dent buttons and switches if and only if ForceW = S4.2. Moving beyond this,
if W has two semi-independent buttons (meaning that the first can be pushed
without pushing the second), then W5 invalid in W ; If W has two independent
buttons, then .3 is invalid in W ; If W has an independent button and switch,
then Dm is invalid in W ; And if W has long volume controls (sequences of but-
tons, such that each can be pushed without pushing the next and pushing any
of them necessarily pushes all earlier buttons—so the volume only gets louder),
then ForceW ⊆ S4.3.

When parameters are allowed into the scheme, large cardinals make a surpris-
ing entrance.

Theorem 7. The following are equiconsistent:

1. S5(R) is valid.
2. S4W5(R) is valid for forcing.
3. Dm(R) is valid for forcing.
4. There is a stationary proper class of inaccessible cardinals.

Theorem 8.

1. (Welch,Woodin) If S5(R) is valid in all forcing extensions (using the R of
the extension), then ADL(R).

2. (Woodin) If ADR + Θ is regular, then it is consistent with ZFC that S5(R)
is valid in all forcing extensions.

There are many directions for future work in this area. In addition to the ques-
tions above, it is natural to restrict the class of forcing to ccc forcing, or proper
forcing or any other natural class of forcing.

Questions 9. What are the valid modal principles of ccc forcing? Of proper
forcing? Of class forcing? Of arbitrary extensions?

Class forcing and arbitrary extensions involve the meta-mathematical complica-
tion that the corresponding possibility and necessitation operators are no longer
first-order expressible. The work on Question 9 has been surprisingly difficult,
even for what we expected would be the easier cases, and has led to some inter-
esting, subtle questions in forcing combinatorics. For example, the question of
whether there must be switches in the modal logic of collapse forcing (the class
of all forcing Coll(ω, δ) to collapse a cardinal δ to ω using finite conditions, and
more generally also the Lévy collapse Coll(ω,<δ)) leads directly to the following
question:
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Question 10. Can there be a model of set theory V that is elementarily equiv-
alent to V [G], whenever G is V -generic for the collapse of a cardinal δ to ω?

Such a model of set theory would be an extreme counterexample in having no
switches at all for the class of collapse forcing, and would have valid principles
of collapse forcing that are beyond S5, a hard upper bound for the other natural
classes of forcing. Mitchell and Welch have given lower bounds with large values
of o(κ), but for the upper bound, an early suggestion of Mitchell to perform
Radin forcing over a model of o(κ) = κ+ has reportedly not worked out as
hoped.

3 Looking Downward: Set-Theoretic Geology

Let me turn now to a second topic, a collection of problems and results we
have called set-theoretic geology. Forcing is ordinarily viewed as a method of
constructing outer as opposed to inner models of set theory, for with forcing, as I
explained above, one usually begins with a ground model V and builds the forcing
extension V [G] by adjoining G and constructing relative to V . Nevertheless, a
simple switch in perspective allows us to use forcing to describe inner models as
well. The idea is simply to consider forcing from the perspective of the forcing
extension rather than the ground model and to look downward from the universe
V for how it may have arisen by forcing. Given the set-theoretic universe V , we
search for the possible ground models W ⊆ V such that there is a W -generic
filter G ⊆ P ∈ W such that V = W [G]. Such a perspective quickly leads one to
look for deeper and deeper grounds, burrowing down to what we call bedrock
models and deeper still, to what we call the mantle and the outer core. In this
way, one arrives at set-theoretic geology. The topic is introduced in [1], which
gives the initial results and numerous open questions, and the material here is
adapted from that article.

The topic rests fundamentally on the following theorem, a shockingly recent
result, considering the fundamental nature of the question it answers. Laver’s
proof of this theorem builds on work of mine [2] concerning the approximation
and covering properties.

Theorem 11 (Laver [7], independently Woodin [11]). Every model of set
theory V |= ZFC is a definable class in all of its set forcing extensions V [G],
using parameters in V .

This theorem led Jonas Reitz and me to introduce the following hypothesis,
which we take to be the beginning of set-theoretic geology.

Definition 12 (Hamkins, Reitz). The Ground Axiom GA is the assertion
that the universe is not obtained by nontrivial set forcing over any inner model.

Although this assertion may appear at first to be second order, because of the
quantification over ground models, in fact the Ground Axiom is expressible by
a first order statement in the language of set theory.



44 J.D. Hamkins

Theorem 13 (Reitz [8,9]). The Ground Axiom is first order expressible in set
theory.

The Ground Axiom holds in many canonical models of set theory, such as L,
L[0�], L[µ] and many instances of K. Since these models all exhibit many highly
regular structural features, it is very natural to inquire: To what extent are
these regularity features consequences of the Ground Axiom? The answer, which
Reitz provided in his dissertation, is that every model of ZFC has a class forcing
extension, preserving any desired initial segment Vα (and mild in the sense that
every new set is generic for set forcing), which is a model of the Ground Axiom.
Thus, the Ground Axiom does not imply any of the usual combinatorial set-
theoretic regularity features ♦, GCH and so on. Reitz’s method obtained the
Ground Axiom by forcing very strong versions of V = HOD, and so his analysis
did not settle the question of whether GA =⇒ V = HOD. In a three-generation
collaboration, we settled that question with the following:

Theorem 14 (Hamkins, Reitz, Woodin [5]). Every model of set theory has
an extension which is a model of GA plus V �= HOD.

After some preparatory forcing, we use a class Silver iteration adding a Cohen
subset to every regular cardinal. The argument is flexible and robust, and leads
us to expect the Ground Axiom after most any Easton support progressively
closed class iteration.

Let me set some terminology. A transitive class W is a ground of V if W |=
ZFC and V = W [G] is a forcing extension of W by set forcing G ⊆ P ∈W . The
model W is a bedrock of V if it is a ground of V and there is no deeper ground
inside W . Equivalently, W is a bedrock of V if it is a ground of V and satisfies
the Ground Axiom.

Theorem 15 (Reitz [8]). If there is a model of ZFC, then there is a model of
ZFC having no bedrock.

We don’t know if a model can have more than one bedrock model.

Question 16. Is the bedrock unique when it exists?

The principal new concept is the following:

Definition 17. The Mantle M of V is the intersection of all grounds of V .

The Mantle is a first-order parameter-free definable transitive class containing
all ordinals. Much of this is easy to see, once one realizes that there is a broad
uniformity in the definition of the ground model in its forcing extensions. The
basic situation is described by the following.

Theorem 18. There is a parameterized family {Wr | r ∈ V } of transitive classes
such that

1. Every Wr is a ground of V and r ∈Wr.
2. Every ground of V is Wr for some r.
3. The relation “x ∈ Wr” is first order.
4. The relation “V = Wr[G] by Wr-generic filter G ⊆ P ∈Wr” is first order in

the variables (r,G,P).
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5. The definition is somewhat absolute.
i. If Wr ⊆ U ⊆ V , then Wr = WU

r .
ii. If V ⊆ V [G], then ∀r∃sWr = Ws = W

V [G]
s .

The parameterized family {Wr | r ∈ V } of grounds in Theorem 18 reduces sec-
ond order properties about grounds to first order properties about their parame-
ters in this family. For example, the Ground Axiom holds if and only if ∀rWr =
V . The model Wr is a bedrock if and only if ∀s (Ws ⊆Wr =⇒ Ws = Wr). The
Mantle is defined by M = { x | ∀r (x ∈Wr) }. Because of Theorem 18, each of
these assertions is first order expressible in the language of set theory. The proof
of Theorem 18 relies, of course, on the proof of Theorem 11, and I would like to
mention a few of the ideas. Laver’s proof of Theorem 11 relied on the following
definitions and lemmas.

Definition 19 (Hamkins [2])

1. W ⊆ V has the δ covering property if every A ⊆W with A ∈ V and |A|V < δ
is covered A ⊆ B by some B ∈W with |B|W < δ.

2. W ⊆ V has the δ approximation property if every A ⊆ W with A ∈ V and
all small approximations A ∩B in W , whenever |B|W < δ, is already in the
ground model A ∈W .

Lemma 20 (Hamkins [2]). If V ⊆ V [G] and G ⊆ P ∗ Q̇ is V -generic for
forcing with P nontrivial and � Q̇ is ≤ |P|-strategically closed, then V [G] has the
δ cover and approximation properties for δ = |P|+.

Lemma 21 (Laver [7], Hamkins). If W,W ′ ⊆ V have the δ approximation
and covering properties, P (δ)W = P (δ)W

′
and (δ+)W = (δ+)W

′
= (δ+)V , then

W = W ′.

Laver had first proved Lemma 21 for small forcing, that is, replacing the δ
approximation and covering properties with the assumption that the forcing
had size less then δ (which by Lemma 20 is a special case), and I extended it to
the approximation and covering properties. Lemma 21 essentially provides the
definition of W inside the forcing extension W [G], using the parameter P (δ)W .

When looking downward at the various grounds, it is very natural to inquire
whether one can fruitfully intersect them. Let us define that the grounds are
downward directed if for every r and s there is t such that Wt ⊆ Wr ∩Ws. The
grounds are locally downward directed if for every B and every r, s there is t
with Wt ∩B ⊆Wr ∩Ws. The question of whether there can be distinct bedrock
models in the universe is of course related to the question of whether there is a
ground in their intersection:

Question 22. Are the grounds downward directed?

Generalizing beyond finite intersections, let us define that the grounds are down-
ward set-directed if for every A there is t with Wt ⊆

⋂
r∈AWr. The grounds are

locally downward set-directed if for every A,B there is t with Wt∩B ⊆
⋂
r∈AWr.
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Question 23. Are the grounds downward set directed?

In every model for which we can determine the answer to this question, the
answer is yes. The importance of the question is that in the situations where the
answwer is yes, the Mantle is well behaved.

Theorem 24

1. If the grounds are downward directed, then the Mantle is constant across the
grounds, and M |= ZF.

2. If the grounds are downward set-directed, then M |= ZFC.

The hypothesis in (2) can be weakened to require only that the grounds are
downward directed and locally downward set-directed. The general fact under-
lying Theorem 24 is the following, where we define that a family W of transitive
models of ZFC is locally realized if for every y ∈ ∩W there is W ∈ W with
P (y)∩W = P (y)W . That is, for any y in all the models, there is a particular
model W ∈ W that computes P (y) the same as ∩W does. This is actually
equivalent to requiring for every ordinal α that there is some W ∈ W such that
VWα = V ∩W

α .

Theorem 25. If W is a collection of transitive models of ZFC, all with same
ordinals, and ∩W is a class in each W ∈ W, then:

1. ∩W |= ZF.
2. If W is locally realized, then ∩W |= ZFC.

Are the grounds locally realized? It is not difficult to see that the grounds are
locally realized if and only if they are locally downward set-directed. We are
somewhat embarrassed not to know the answer to the following question.

Question 26. Does the Mantle always satisfy ZF? ZFC?

It is natural, of course, to consider how the Mantle is affected by forcing. Since
every ground model of V is a ground model of any forcing extension V [G], it
follows that the Mantle of V [G] is contained within the Mantle of V . That is,
the Mantle gets smaller (or at least no larger) as you perform more and more
forcing. In the limit of this process, we arrive at:

Definition 27. The generic mantle of a model of set theory V is the intersection
of all ground models of all set forcing extensions of V .

We will use the notation M to denote the Mantle and gM to denote the generic
Mantle. The generic Mantle has proved in several ways to be a more robust
version of the Mantle (although in truth we do not know them to differ). For
example, for any model of ZFC, the generic Mantle is always a model at least
of ZF, without any need for a directedness hypothesis. If the generic grounds,
the ground models of the forcing extensions of V , are downward directed, then
in fact the Mantle and the generic Mantle are the same. If the generic grounds
are downward set directed, then the generic Mantle is a model of ZFC.
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Question 28. Can the mantle and the limit mantle differ?

One might hope to prove even that every model V of ZFC is the generic mantle
of a model W of the Ground Axiom, so that the mantle of W is W . This would
provide a very attractive answer to Question 28.

Set-theoretic geology is naturally carried out in a context that includes all the
forcing extensions of a model of set theory, all the grounds of these extensions,
all forcing extensions of these resulting grounds and so on. The generic multi-
verse of a model of set theory, introduced by Woodin [11], is the smallest family
of models of set theory containing that model and closed under both forcing
extensions and grounds. There are numerous philosophical motivations to study
to the generic multiverse. Indeed, Woodin introduced it specifically in order to
criticize a certain multiverse view of truth, namely, truth as true in every model
of the generic multiverse. Although I do not hold such a view of truth, neverthe-
less I want to investigate the fundamental features of the generic multiverse, a
task I place at the foundation of any deep understanding of forcing. Surely the
generic multiverse is the most natural and illuminating background context for
the project of set-theoretic geology.

The generic Mantle gM is a parameter-free uniformly definable class, invariant
by forcing, containing all ordinals and gM |= ZF. Because it is invariant by
forcing, it follows that the generic Mantle gM is constant across the multiverse,
and in fact, it follows that the generic Mantle gM is the intersection of the generic
multiverse. On this view, the generic Mantle is a canonical, fundamental feature
of the generic multiverse, deserving of intense study.

The class HOD is the class of hereditarily ordinal definable sets, the sets that
are definable using ordinal parameters, and all their members are definable using
ordinal parameters, and so on. Introduced classically, HOD is intensely studied,
and known to be a transitive inner model of ZFC, containing all ordinals. Let
me now define the generic HOD to be the intersection of all HODs of all the
forcing extensions.

gHOD =
⋂
G

HODV [G]

The generic HOD was originally introduced by Fuchs in an attempt to identify
a very large canonical forcing-invariant class.

Theorem 29

1. gHOD is constant across the generic multiverse.
2. The HODs of all forcing extensions are downward set-directed.
3. Consequently, gHOD is locally realized and gHOD |= ZFC.
4. The following inclusions hold.

HOD

∪
gHOD ⊆ gM ⊆ M
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Question 30. To what extent can we control and separate these classes?

For the remainder of this article, I will sketch several answers to this question.
First, we can control the classes to keep them all low.

Theorem 31 (Fuchs, Hamkins, Reitz). If V |= ZFC, then there is a class
extension V [G] in which

V = MV [G] = gMV [G] = gHODV [G] = HODV [G]

In particular, as mentioned earlier, every model of ZFC is the mantle and generic
mantle of another model of ZFC. It follows that we cannot expect to prove any
regularity features about the mantle or the generic mantle, beyond what can be
proved about an arbitrary model of ZFC. It also follows that the mantle of V
is not necessarily a ground model of V , even when it is a model of ZFC. One
can therefore iteratively take the mantle of the mantle and so on, and we have
proved that this process can strictly continue. Indeed, by iteratively computing
the Mantle of the Mantle and so on, what we call the inner Mantles, we might
eventually arrive at a model of ZFC plus the Ground Axiom, where the process
would naturally terminate. If this should occur, then we call this termination
model the outer core of the original model. Generalizing the theorem above,
Fuchs, Reitz and I have conjectured that every model of ZFC is the αth inner
Mantle of another model of ZFC, for arbitrary ordinals α (or even α = ORD or
beyond).

There is an interesting philosophical view related to and perhaps refuted by
this conjecture, namely, the philosophical view holding that there is a highly
regular core underlying the universe of set theory, an inner model obscured over
the eons by the accumulating layers of debris heaped up by innumerable forcing
constructions since the beginning of time. If only we could sweep this accumu-
lated material away, the view holds, then we should find an ancient paradise. The
Mantle, of course, wipes away an entire strata of forcing, and the iterated inner
Mantles sweep away additional layers. So the philosophical view would lead us
to believe that in this way we would be getting close to a highly regular core.
If the conjecture is correct, however, then what we should expect to find after
sweeping such layers away even ORD many times is, not a highly regular ancient
paradise, but rather something ordinary: an arbitrary model of set theory.

Let me sketch a few ideas from the proof of Theorem 31. The initial idea goes
back to McAloon (1971), who explained how to make sets definable by forcing.
For an easy warm-up case, consider an arbitrary real x ⊆ ω. This real may not
happen to be definable in V , but it is an elementary exercise in product forcing
to force the GCH to hold at ℵn exactly when x(n) = 1. In the resulting forcing
extension V [G], therefore, the original real x is definable, without parameters.
In a similar way, any set whatsoever can become definable in a forcing extension.
For the main theorem, we start in V |= ZFC, and seek a class forcing extension
V [G] with V = MV [G] = gMV [G] = gHODV [G] = HODV [G]. Let Qα generically
decide whether to force GCH or ¬GCH at ℵα (the actual proof is somewhat
more complicated than this), and let P = ΠαQα be the class sized product, with
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set support. The desired model will be the class forcing extension V [G], where
G ⊆ P is V -generic. First, every set in V becomes coded unboundedly into the
continuum function of V [G], because it is dense that the generic filter will opt
to code it into the GCH pattern. Therefore, every set in V becomes definable
in V [G] and all set forcing extensions of V [G]. This establishes V ⊆ gHOD
and consequently V ⊆ gHOD ⊆ gM ⊆ M and V ⊆ HOD. Next, observe that
every tail segment V [Gα], using only the part of the forcing beyond α, is a
ground of V [G]. By mutual genericity of the forcing up to α with the forcing
at stages after α, it follows that ∩αV [Gα] = V . This implies that M ⊆ V

and consequently V = gHOD = gM = M. Finally, HODV [G] ⊆ HODV [Gα], since
P � α is densely almost homogeneous. It follows that HODV [G] ⊆ V . In summary,
V = MV [G] = gMV [G] = gHODV [G] = HODV [G], as desired.

Let me now turn to a second answer to Question 30, where we keep the
Mantles low, while allowing HOD to inflate.

Theorem 32 (Fuchs, Hamkins, Reitz). If V |= ZFC, then there is a class
extension V [G] in which

V = MV [G] = gMV [G] = gHODV [G] but HODV [G] = V [G]

For this theorem, our strategy is to balance the forces on M, gM, gHOD and
HOD. We perform proper class forcing to V [G] in such a way that every set in
V will be coded unboundedly into the GCH pattern, and we also ensure that G
itself is definable, but not so robustly, so that the gHOD will fall back down to V .
Specifically, the proof uses many instances of self-encoding forcing, the set-sized
forcing which first adds a Cohen subset A ⊆ κ, and then codes this new set A
into the GCH pattern above κ, and then codes the resulting new sets into the
next block of the GCH pattern, and then those sets, and so on. By the next Beth
fixed point above κ, we find an extension V [G(κ)] in which G(κ) is definable. To
prove the theorem, one takes a class-sized product of such self-encoding forcing,
which operate on non-interfering intervals of cardinals. The result is a class
forcing extension V [G] in which the Mantle and the generic Mantle and the
generic HOD are V , but the HOD is V [G]. The reason the generic HOD falls
back down to V is that with subsequent collapse forcing, one can in effect erase
the coding of any given G(α), and so the generic HOD of V [G], and indeed the
generic Mantle and Mantle, is once again contained in the intersection of the tail
forcing extensions.

Next, we keep the HODs low, while allowing the Mantle to inflate, seeking
V [G] with V = HODV [G] = gHODV [G] but MV [G] = V [G]. Such a model V [G]
will of course be a model of the Ground Axiom plus V �= HOD. Recall Theorem 3,
which says that every V |= ZFC has a class forcing extension V [G] |= GA+V �=
HOD. By modifying the argument, we are able to obtain:

Theorem 33 (Fuchs, Hamkins, Reitz). If V |= ZFC, then there is a class
extension V [G] in which

V = HODV [G] = gHODV [G] but MV [G] = V [G]
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We have not yet been able to compute the generic Mantle of this model. Our
last combination is to push both the Mantles and the HODs high.

Theorem 34 (Fuchs, Hamkins, Reitz). If V |= ZFC, then there is a class
forcing extension V [G] in which

V [G] = HODV [G] = gHODV [G] = MV [G] = gMV [G]

This theorem is proved by Reitz’s method of forcing every set to be coded into
the GCH pattern. I would like to emphasize that in none of our theorems have
we managed to separate the generic Mantle from either the Mantle or the generic
HOD. We know that gHOD ⊆ gM ⊆M, and we have separated the generic HOD
from the Mantle in Theorem 32, so the model of this theorem does perform at
least one of the desired separations, but as we have not been able to compute
the generic Mantle of that model, we don’t know which separation has occurred.
Thus, I reiterate Question 28 in part, in the dual formulation.

Question 35. Is the generic Mantle the same as the Mantle? Is the generic
Mantle the same as the generic HOD?

Of course, not both answers can be yes, and we expect that both answers are no.
Let me close the article by inviting all researchers to attack this open question
and the others I have mentioned. The research topics here are young and ripe
for progress.
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Abstract. Connection matrices of graph parameters were first intro-
duced by M. Freedman, L. Lovász and A. Schrijver (2007) to study the
question which graph parameters can be represented as counting func-
tions of weighted homomorphisms. The rows and columns of a connection
matrix M(f, �) of a graph parameter f and a binary operation � are
indexed by all finite (labeled) graphs Gi and the entry at (Gi, Gj) is
given by the value of f(Gi�Gj). Connection matrices turned out to be
a very powerful tool for studying graph parameters in general.

B. Godlin, T. Kotek and J.A. Makowsky (2008) noticed that connec-
tion matrices can be defined for general relational structures and binary
operations between them, and for general structural parameters. They
proved that for structural parameters f definable in Monadic Second Or-
der Logic, (MSOL) and binary operations compatible with MSOL, the
connection matrix M(f, �) has always finite rank. In this talk we discuss
several applications of this Finite Rank Theorem, and outline ideas for
further research.

1 Introduction

Graph Parameters and Graph Polynomials. A graph parameter (also
called a numeric graph invariant) f is a function from the class of all finite
graphs G to some numeric domain which is an ordered commutative ring R or
an ordered field F with 0 and 1, usually the integers Z, the rational numbers Q
or the reals R. Graph properties are the special case where the values of f are 0
or 1. In the case of graph properties the ring can be taken to be the two-element
boolean algebra, or, alternatively the field Z2. We shall use the latter, to make
our use of linear algebra uniform.

Graph polynomials are functions p from G into a polynomial ring, usually
Z[X̄ ], where X̄ is a fixed finite set of indeterminates. Graph polynomials are a
way to encode infinitely many graph parameters. Every evaluation of the polyno-
mial p(G; X̄) at some point X̄ = x̄0 is a graph parameter. So are the coefficients
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of p(G; X̄), the total degree or the degree of monomials where the coefficient
satisfies certain properties, and the zeros of p(G; X̄).

Instead of graphs one can also consider hypergraphs or relational structures
over some fixed finite vocabulary τ , a set consisting of relation symbols and
constants. In this case we speak of structural invariants for τ-structures, or just
of τ-invariants and τ-polynomials. We include here the empty τ -structure, which
we denote by ∅τ .
Connection Matrices. Let � be a binary operation on τ -structures (which
respects τ -isomorphisms. A τ -structure I is �-neutral if for every τ -structure A
we have A�I � I�A. For the disjoint union of τ -structures, denoted by �, the
empty structure is �-neutral. For the cartesian product of τ -structures, denoted
by ×, the one-element structure with full relations is ×-neutral.

Let f be a τ -invariant and � be a binary operation on τ -structures which
respects τ -isomorphisms. Let {Ai : i ∈ N} be an enumeration of all finite τ -
structures (up to isomorphisms). We define the infinite matrix

M(f,�) = (mi,j(f,�))

by mi,j(f,�) = f(Ai�Aj). M(f,�) is called the connection matrix of f and �.
We denote by rR(f,�) the rank over R of the matrix M(f,�). We usually omit
the subscript in rR(f,�), when no confusion arises.

Multiplicative τ -invariants. A τ -invariant f is called �-multiplicative if it
satisfies f(A�B) = f(A)·f(B) for all finite τ -structures A and B. With respect to
the disjoint union, �, typical examples of �-multiplicative graph parameters are
χ(G, k), the number of proper vertex colorings with k colors, pm(G), the number
of perfect matchings, or the number of acyclic orientations. With respect to the
join of graphs, denoted by ��, counting the number of covers by independent sets
is ��-multiplicative.

In [FLS07] the following characterization of graph parameters, which are mul-
tiplicative with respect to the disjoint union, was given. We state it here in the
general context. The proof is verbatim the same.

Proposition 1. Let f be a τ-invariant with values in an ordered field R, and
which is not identically 0, and let � be a binary operation on τ-structures, with
I being a unique �-neutral structure. Then f is �-multiplicative if and only if
f(I) = 1, and the matrix M(f,�) has rank 1 and is positive semi-definite.

Connection matrices for various operations on labeled graphs are studied in
[FLS07, Sze07, Lov07, Sch08]. In these papers they are used to characterize
graph invariants arising from various vertex-coloring and edge-coloring models.
In [GKM08] connection matrices are used to study definability properties of
graph parameters and graph polynomials.

Outline of the Talk. In this talk we summarize the results from [FLS07]
and [GKM08] and discuss further applications and open problems. In Section 2
we introduce connection matrices of τ -invariants and their rank. We illustrate
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their uses in the case of graph parameters. This paraphrases the main results
of [FLS07], and explains the Freedman-Lovász-Schrijver Theorem which gives a
characterization of graph parameters arising from counting weighted homomor-
phisms. In Section 3 we show how one can use a Feferman-Vaught-style Theorem
from [Mak04] for τ -invariants definable in Monadic Second Order Logic MSOL
to show that the rank of many connection matrices has to be finite. The exact
statement of this is the Finite Rank Theorem (Theorem 9). In Section 4 we
give applications of the Finite Rank Theorem, mostly taken from [GKM08]. We
conclude with a list of open problems for further investigations.

2 Properties of Connection Matrices of τ -Invariants

The Rank of Connection Matrices. Besides multiplicative τ -invariants we
consider also τ -invariants f with the following properties:

(i) f is �-additive if f(G1�G2) = f(G1) + f(G2).
(ii) f is �-maximizing, respectively �-minimizing if there exist infinite se-

quences of graphs (Gi)i∈N, (Hi)i∈N such that for all (i, j) ∈ N2 we have

f(Gi�Hj) = max{f(Gi), f(Hj)},
respectively

f(Gi�Hj) = min{f(Gi), f(Hj)}.
Furthermore, for all i ∈ N the sequence f(i)j = f(Gi�Hj) is strictly mono-
tone increasing. If the two sequences consist of all τ -structures, we say f is
strictly �-maximizing, respectively strictly �-minimizing.

(iii) A τ -invariant f is weakly (�, γ)-multiplicative, if there exists a finite set
of graph parameters fi : i ≤ γ with i, γ ∈ N with f = f0, and a matrix
N ∈ Rγ×γ , such that f0(A1�A2) =

∑
i,j fi(A1)Nijfj(A2).

In other words, f(A1�A2) is given by a quadratic form defined by Ni,j
of rank at most γ.

Typical examples1 of �-additive parameters are the cardinality of the vertex
set, the cardinality of the edge-set, k(G), b(G), number of connected components
and number of blocks (doubly connected components), respectively. Examples of
��-additive graph parameter are χ(G) and ω(G). Among the �-maximizing graph
parameters we have: the chromatic number χ(G), the edge chromatic number
χe(G), and the total coloring number χt(G), the size of a maximal clique ω(G),
the maximal degree Δ(G), the tree-width tw(G), and the clique-width cw(G).

Proposition 2. Let f be a τ-invariant.

(i) If f is �-multiplicative, r(f,�) = 1.
(ii) If f is �-additive, r(f,�) = 2, unless M(f,�) is the zero matrix.
1 Almost all graph parameters discussed are taken from [Die96]. One exception is the

clique-width, which was introduced in [CO00], and, in connection to graph polyno-
mials, in [Mak04].



54 J. Makowsky

(iii) If f is �-maximizing or �-minimizing, r(f,�) is infinite.
(iv) Let f be a graph parameter which is weakly (�, γ)-multiplicative.

Then r(f,�) ≤ γ.

Proof. (i) was already stated in Proposition 1. (ii), (iii) and (iv) are easy to
verify.

Counting Weighted Homomorphisms of Graphs. A k-graph is a graph
G = (V (G), E(G)) with k distinct vertices labeled with 0, 1, . . . , k−1. We denote
by Gk the class of finite k-graphs. G0 = G the set of all finite graphs without
labels.

Given two k-graphs G1, G2 we define the k-sum G1�kG2 as the disjoint union
of G1 and G2 where we identify correspondingly labeled vertices. In [FLS07]
the connection matrices M(f,�k) on Gk are used to characterize those graph
parameters f which can be represented as counting functions of weighted homo-
morphisms. The setup is as follows:

Let H = (V (H), E(H)) ∈ G be a fixed graph, possibly with loops. Let α :
V (H) → R+ and β : E(H) → R be weight functions of vertices and edges
respectively, and let h : G→ H be a homomorphism. We define weights of h by

αh =
∏

u∈V (G)

α(h(u)) and βh =
∏

u,v∈E(G)

β(h(u), h(v))

Finally, we sum over all homomorphisms

ZH,α,β(G) =
∑

h:G→H

αh · βh.

ZH,α,β(G) is often called a partition function or a vertex coloring model.

Observation 1. Partition functions are �-multiplicative.

Example 1. The following are simple partition functions:

(i) For H = Km, a clique with m vertices,

ZKm,1,1(G) = χ(G,m)

which counts the number of proper m-colorings.
(ii) For H = L1, an isolated loop, α = λ, β = μ,

ZL1,λ,μ(G) = λ|V (G)| · μ|E(G)|

(iii) For H = Lm consisting of m isolated loops, α = λ, β = μ,

ZLm,λ,μ(G) = mk(G) · λ|V (G)| · μ|E(G)|

(iv) For H = K1 �� L1 with vertices v, � respectively, and α(v) = X,α(�) = 1,
β = 1 we get

ZK1�	L1,α,β(G) =
∑
i

indi(G) ·X i

where indi(G) is the number of independents sets of size i in G.
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In [FLS07] it is proved that the connection matrices M(f,�k) for f = ZH,α,β(G)
have the following properties:

Proposition 3 (M. Freedman, L. Lovász and A. Schrijver, 2007)

(i) For every weighted graph (H,α, β) we have

r(ZH,α,β(G),�k) ≤ |V (H)|k

(ii) If (H,α, β) has no automorphisms and no twins, then

r(ZH,α,β(G),�k) = |V (H)|k

Automorphisms here are weight preserving. Two vertices u, v∈V (H) of (H,α, β)
are twins if for every w ∈ V (H) we have that β(u,w) = β(v, w). Being twins
does not depend on α.

Proposition 4 (M. Freedman, L. Lovász and A. Schrijver, 2007)

For every weighted graph (H,α, β) the matrix M(ZH,α,β(G),�k) is positive semi-
definite.

Example 2. (i) Let pm(G) denote the number of perfect matchings ofG. pm(G)
is �-multiplicative and r(pm,�k) = 2k, butM(pm,�1) is not positive definite.

(ii) For χ(−, λ), λ ∈ Z we have: M(χ(−, λ),�k) is positive-semi-definite, and
r(χ(−, λ),�k) is finite, but exponentially bounded only for λ ∈ Z+, otherwise
it grows superexponentially.

The Freedman-Lovász-Schreijver Theorem. We say that a numeric graph
invariant is hom-presentable if there is a weighted graph (H,α, β) such that for
everyG f(G) = ZH,α,β(G). We have seen in Example 1 that 2|V (G)|, 2|E(G)|, 2k(G)

are hom-presentable, but by Proposition 2 and 3, |V (G)|, |E(G)|, k(G) are not
hom-presentable, as their connection matrices have infinite rank. χ(−, λ) is hom-
representable for every λ ∈ Z+, but the choice of (H,α, β) depends on λ.

Theorem 5 (M. Freedman, L. Lovász and A. Schrijver, 2007)
Let f be a real-valued graph parameter. f is hom-presentable iff for every k ∈ N

(i) M(f,�k) is positive semi-definite, and
(ii) r(f,�k) ≤ qk for some q ∈ N+.

There are various generalizations of Theorem 5. B. Szegedy [Sze07] considers
edge coloring models and connection matrices S(f, k) based on identification of
k unfinished edges. A. Schrijver [Sch08] unifies the proofs of [FLS07] and [Sze07]
using further variations of connection matrices defined also for hyper-graphs and
directed graphs.
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3 Enter Logic

Monadic Second Order Logic. A vocabulary is a finite set of relation and
constant symbols. We define the logic MSOL for τ -structures inductively. We
have first order variables xi : i ∈ N which range over elements of A, the universe
of a τ -structure, and (monadic) second order variables Ui : i ∈ N, which range
over subsets of A. Terms t, t′, . . . are either first order variables or constant
symbols from τ . Atomic formulas are of the form t = t′, R(t̄), where R is a
relation symbol of τ Ui(t) and have the natural interpretation. Formulas are
built inductively using the connectives ∨,∧,→,↔,¬, and the quantifiers ∀xi,
∃xi, ∀Ui, ∃Ui with their natural interpretation. The quantifier rank of an MSOL-
formula φ is defined as usual and denoted by qr(φ) and for the rank we do not
distinguish between first order and second variables.

MSOL-definable τ -Polynomials in Normal Form. A MSOL-definable poly-
nomial in indeterminates X1, . . . , X
 in normal form has the form

∑
U1:Φ1(U1)

∑
U2:Φ2(U2)

. . .
∑

U�1 :Φ�1(U�1 )

⎛⎝ ∏
x̄1:φ1(x̄1)

X1

∏
x̄2:φ2(x̄2)

X2 . . .
∏

x̄�:φ�(x̄�)

X


⎞⎠
where all the formulas Φi and φi are MSOL-formulas with the iteration variables
(for summation and products) indicated. There may be additional parameters
in the formulas. However, Φi may not contain the variables Uj for j > i, and
φi may not contain x̄j for j > i. Both Φi and φi are referred to as iteration
formulas.

Looking at the partition function

ZH,α,β(G) =
∑

h:G→H

αh · βh. (1)

we can rewrite it as follows: Let G = (V (G), E(G)), H = (V (H), G(H)) and
V (H) = {v0, . . . , vn−1}. We introduce, for each vi : i ≤ n− 1 a set variable Ui.
Let φhom(H)(U0, . . . , Un−1) be the formula U0, . . . , Un−1 is a partition of V (G)
and that for all x, y ∈ V (G), if (x, y) ∈ E(G) then there is a (vi, vj) ∈ E(H)
such that x ∈ Ui and y ∈ Uj . The formula φhom(H)(U0, . . . , Un−1) is a first order
formula over the relation symbols for E(G) and U0, . . . , Un−1. It can also be
viewed as a formula in Monadic Second Order Logic MSOL over the vocabulary
consisting only of the binary relation symbol for E(G).

Now the expression (1) can be, using Ū = (U0, U1, . . . Un−1), written as

ZH,α,β(G) =
∑

Ū :φhom(H)

⎛⎝(
n−1∏
i=0

∏
x∈Ui

α(x))

) ⎛⎝ ∏
(j,k)∈E(H)

∏
(y∈Uj∧z∈Uk)

β(y, z))

⎞⎠⎞⎠
(2)

If we consider all the α(vi) and β(vj , vk) as indeterminates, the left hand side of
the expression (2) is a typical instance of a MSOL-definable graph polynomial
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introduced in [Mak04]. For fixed values of α(vi) and β(vj , vk) this gives an MSOL-
definable graph parameter, and, more generally, if we replace graphs by relational
structures, of MSOL-definable τ -invariants. Hence we have shown:

Proposition 6. For every α, β the graph parameter ZH,α,β(G) is an MSOL-
definable τ1-invariant with τ1 = {E}.
Using Finite Rank to Compute Partition Functions. Let TW (k) and
CW (k) denote the class of graphs of tree-width and clique-width at most k, re-
spectively. It was shown in [CO00] that TW (k) ⊆ CW (2k+1+1). Using the main
results of [CMR01, Mak04] combined with [Oum05] we get from Proposition 6
the following complexity result.

Proposition 7. On the class CW (k) of graphs of clique-width at most k the
graph invariants ZH,α,β(G) can be computed in polynomial time, and are fixed
parameter tractable, i.e., the exponent of the polynomial is independent of k,
but the estimates obtained for the upper bounds for the constants are simply
exponential in the case of TW (k), but doubly exponential in k in the case of
CW (k).

For graphs in TW (k) this was already observed in [Lov07]. To get the better
bound on the constants in the case of TW (k), we can use Proposition 3 in the
dynamic programming algorithm underlying the proofs in [CMR01, Mak04].

MSOL-compatible Operations on τ -structures. Two τ -structures A,B,
are said to be k-equivalent for MSOL, if they satisfy the same MSOL-sentences
of quantifier rank k. We denote this equivalence relation by A ≡k B.

A binary operation � on τ -structures is called MSOL-k-compatible if for k ∈ N
we have that A ≡m+k A′ and B ≡m+k B′ implies that

A�B ≡m A′�B′.

The operation � is called MSOL-compatible if there is some k ∈ N such that �
is MSOL-k-compatible.

In [Mak04] the case of k = 0 is called MSOL-smooth. The disjoint union
of τ -structures is MSOL-smooth. So are the operations �k on k-graphs. The
cartesian product × is not MSOL-compatible. However, the notion of MSOL-
compatible operation is sensitive to the choice of the representation of, say,
graphs as τ -structures. If we represent graphsG = (V (G), E(G)) as τ1-structures
with τ1 = {E}, which have universe V (G) and a binary relation E(G), the join
operation G1 �� G2 is MSOL-smooth. This is so, because it can be obtained from
the disjoint union by the application of a quantifierfree transduction. If, however,
we represent graphs as a two-sorted {R} τ2-structures, with τ2 = {PV , PE , R},
with sorts PV = V (G) and PE = E(G), and a binary incidence relation R(G) ⊂
V (G) × E(G), then G1 �� G2 contains the cartesian product V (G1) × V (G2)
in E(G1 �� G2) and behaves more like a cartesian product, which is not even
MSOL-compatible. It is important to note that the operations �k are MSOL-
smooth for graphs as τ1-structures and as τ2-structures.
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The following theorem is proven in [Mak04, Theorem 6.4]:

Theorem 8. Let f be a graph parameter which is the evaluation f(G)=p(G, x̄0)
of an MSOL-definable τ-polynomial p(G, X̄). Furthermore, let � be a binary
operation on τ-structures which is MSOL-k-compatible. Then f is weakly (�, γ))-
multiplicative for some γ ∈ N which depend on τ , the polynomial p, k, but not
on x̄0.

The Finite Rank Theorem. As in [GKM08], we get immediately, using
Proposition 2 and Theorem 8 the following Theorem.

Theorem 9 (Finite Rank Theorem). Let p(G, X̄) be an MSOL-definable τ-
polynomial with values in R[X̄] with m indeterminates, and let � be a binary
operation on τ-structures which is MSOL-k-compatible. There is γτ,�(p) ∈ N
depending on τ , the polynomial p, and k only, such that for all x̄0 ∈ Rm, we
have r(p(G, x̄0),�) ≤ γτ,�(p).

The upper bound on the rank obtained in Theorem 9 again is very large. In the
case of partition functions this bound is computed precisely in Proposition 3.

4 Applications of the Finite Rank Theorem

4.1 Non-definability in MSOL

Counting hamiltonian circuits. We shall look at the graph parameter hc(G)
which counts the number of hamiltonian circuits of a graph G, and the graph
property HAM , which consists of all graphs which do have a hamiltonian circuit.
If we represent graphs G = (V (G), E(G)) as τ1-structures with τ1 = {E}, which
have universe V (G) and a binary relation E(G), it is well known, cf. [dR84],
that HAM is not MSOL-definable. If, however, we represent graphs as a two-
sorted {R} τ2-structures, with τ2 = {PV , PE , R}, with sorts PV = V (G) and
PE = E(G), and a binary incidence relation R(G) ⊂ V (G) × E(G), HAM is
MSOL-definable.

Let Em be the graph with m vertices and no edges. It is easy to see that
Em �� En contains exactly one hamiltonian circuit if and only if m = n. There-
fore, M(hc, ��) and M(HAM , ��) both contain the infinite unit matrix as a sub-
matrix, and r(hc, ��) is infinite over Q, whereas r(HAM , ��) is infinite over Z2.
We conclude that, HAM is not an MSOL-definable property of τ1-structures,
and that hc is not an evaluation of an τ1-polynomial.

The subtle point is, that the join of two graphs is MSOL-smooth only for
graphs as τ1-structures. In the presentation as τ2-structures, the sort E(G1 ��
G2) grows quadratically in the size of V (G1) and V (G2), and is not even MSOL-
compatible.

Graph colorings with no large monochromatic components. The same
happens with the chromatic polynomial, and its relatives, the polynomials
mcct (G, k) for t ∈ N − {0}. Following [LMST07], we denote by mcct(G, k) the
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number of functions f : V (G) → [k] such that for each i ≤ k, the set f−1(i)
induces a graph which consist of connected components of size at most t. Clearly,
we have χ(G, k) = mcc1(G, k). It follows from results in [KMZ08] that for each
t ∈ N the counting function mcct(G, k) is a polynomial in k.

Proposition 10 (T. Kotek). For each t ∈ N − {0} the rank r(mcct(G, k), ��)
tends to infinity with k.

Corollary 11. The polynomial mcct(G, k) is not a τ1-polynomial.

But for connected graphs, we have χ(G, k) = T (G; 1 − k, 0), where T (G,X, Y )
is the Tutte polynomial, which is MSOL-definable over the vocabulary τ3 =
τ2 ∪ {<E}, where <E is a linear ordering of E(G).

4.2 Evaluations of Well Known Graph Polynomials

A particular graph polynomial is considered interesting if it encodes many useful
graph parameters. Let G = (V (G), E(G)) be a graph. The characteristic polyno-
mial P (G,X) of a graph is defined as the characteristic polynomial (in the sense
of linear algebra) of the adjacency matrix AG of G. The coefficients of P (G,X)
are defined by

det(X · 1−AG) =
n∑
i=0

ci(G) ·X i.

It is well known that n = |V (G)|, −c2(G) = |E(G)|, and −c3(G) equals twice
the number of triangles of G. The second largest zero λ2(G) of P (G;X) gives a
lower bound to the conductivity of G, cf. [GR01].

The Tutte polynomial of G is defined as

T (G;X,Y ) =
∑

F⊆E(G)

(X − 1)r〈E〉−r〈F 〉(Y − 1)n〈F 〉 (3)

where k〈F 〉 is the number of connected components of the spanning subgraph
defined by F , r〈F 〉 = |V | − k〈F 〉 is its rank and n〈F 〉 = |F | − |V | + k〈F 〉 is its
nullity.

The Tutte polynomial T (G;X,Y ) has remarkable evaluations which count
certain configurations of the graph G, cf. [Wel93].

(i) T (G; 1, 1) is the number of spanning trees of G,
(ii) T (G; 1, 2) is the number of connected spanning subgraphs of G,
(iii) T (G; 2, 1) is the number of spanning forest of G,
(iv) T (G; 2, 2) = 2|E| is the number of spanning subgraphs of G,
(v) For connected graphs, T (G; 1 − k, 0) is the number of proper k-vertex col-

orings of G,
(vi) For connected graphs, T (G; 2, 0) is the number of acyclic orientations of G,
(vii) T (G; 0,−2) is the number of Eulerian orientations of G.
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All these are also graph parameters which take values in N. More sophisticated
evaluations of the Tutte polynomial can be found in [Goo06, Goo08].

For now it suffices to know that the Tutte polynomial, the matching poly-
nomial, the characteristic polynomial, all discussed in [GR01, Mak07], and the
interlace polynomial, defined in [ABS04, Cou], and virtually all the prominent
graph polynomials in the literature, are MSOL-definable τ3-polynomials, inde-
pendently of the order<E . Furthermore, the operations �k are all MSOL-smooth
on τ3-structures for order-invariant sentences.

The following is a consequence of the Finite Rank Theorem (Theorem 9):

Theorem 12 ([GKM08]). Let f be a τ-invariant and � be an MSOL-compatible
operation on τ-structures. If r(f,�) is infinite, then f is not an evaluation of an
MSOL-definable τ-polynomial.

In [GKM08] many examples are given for graph parameters. This includes all
�-maximizing (minimizing) graph parameters, such as the clique number ω(G),
the chromatic number χ(G). An example with infinite rank for � which is not
�-maximizinga is the average degree of a graph. There one notes that the con-
nection matrix contains a Cauchy matrix as a submatrix.

4.3 More Graph Polynomials Which Are Not MSOL-Definable

Harmonious and complete colorings. Complete colorings, also called achro-
matic colorings, were introduced in [HHP67]. Harmonious colorings were intro-
duced in [HK83]. For surveys, cf. [Edw97, HM97].

Definition 1. (i) A proper vertex coloring is harmonious, if each pair of colors
appears at most once along an edge. We denote by χharm(G) the least k such
that G has a harmonious proper k-coloring.

(ii) A proper vertex coloring is complete, if each pair of colors appears at least
once along an edge. We denote by χcomp(G) the largest k such that G has
a complete proper k-coloring.

(iii) Let χharm(G; k) and χcomp(G; k) denote the number of harmonious, respec-
tively complete proper k-colorings of G.

Proposition 13. (i) χharm(G; k) is a polynomial in k.
(ii) χcomp(G; k) is not a polynomial in k.

Proof. (i) follows from [MZ06], but it is not difficult to prove it directly.
(ii) χcomp(G; k) = 0 for large enough k. �
Theorem 14. χharm(G) and χcomp(G) are graph parameters which are not
evaluations of order invariant MSOL-definable graph polynomials over tau3.

Proof. χcomp(G) is maximizing, so we can apply Proposition 2.
For χharm(G) we observe that, for stars Sn, a set of n edges which meet all

in one single vertex, we have

χharm(Sn � Sm) = max{χharm(Sm), χharm(Sn)} + 1.

Now the argument proceeds like in the case of a maximizing graph parameter.
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Theorem 15. χharm(G; k) is not an order invariant MSOL-definable graph
polynomial over τ3.

Proof. Let Li denote the graph which consists of i vertex disjoint edges. We
look at M(χharm(G, k),�) restricted to the graphs Li, i ∈ N, which we denote
by ML(k) and its rank by rL(k). We note that χharm(Li�Lj) = 0 iff i+j >

(
k
2

)
.

Therefore, rL(k) =
(
k
2

)
which is not bounded, contradicting Theorem 9.

Remark 1. It is shown in [EM95], that computing χharm(G) is NP-complete
already for trees. This, together with the fact, proven in [Mak05], that evalu-
ations of invariantly CMSOL-definable graph polynomials are polynomial time
for graphs of tree-width at most k, shows that χharm(G;X) is not invariantly
CMSOL-definable, unless P = NP. Our proof above eliminates the complexity
theoretic hypothesis P = NP.

Convex colorings. A vertex coloring of a graph G = (V,E) with k colors
(k ∈ N) is a function f : V → [k]. f is convex if for every i ∈ [k] the colorclass
f−1(i) induces a connected subgraph. For a partial function f0 : V → [k] we say
that f0 is convex if there a is a total function f extending f0 which is convex.
In this case we also say that f is a convex extension of f0. Convex extensions
of partial colorings of trees have been introduced in the context of phylogenetic
trees by S. Moran and S. Snir [MS07].

The existence problem of convex colorings for an arbitrary graph G is easily
solved by trying to color every connected component by one color, and only
depends on the number of colors available and the number of connected compo-
nents of G. It follows from [MZ06, KMZ08] that the number of convex colorings
of a graph G is a polynomial in k, which we denote by conv(G, k). For k = 1
we have conv(G, 1) = 1, if G is connected, and conv(G, 1) = 0 otherwise. It has
been shown by S. Noble and A. Goodall2 that computing conv(G, 2) is �P-hard.
It follows, using a similar argument as in [Lin86], that computing conv(G, k) is
�P-hard for every k ∈ N − {0, 1}. On the graphs En convex colorings have to
color every vertex with a different color. It follows again that r(conv (G, k),�)
tends to infinity with k, and we get

Proposition 16. The graph polynomial conv(G, k) is not MSOL-definable.

5 Open Problems

We have discussed various aspects of connection matrices of graph parameters
introduced in [FLS07], and have generalized them for τ -invariants and various
binary operations between τ -structures. We have shown that the rank of con-
nection matrices is finite for MSOL-definable τ -invariants and MSOL-compatible
binary operations between τ -structures. We used this to show that various graph
parameters and graph polynomials are not MSOL-definable.

2 Personal communication.
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In the case of partition functions knowing the exact rank r(f,�k) allows us to
compute f on graphs of tree-width at most k in polynomial time with improved
constants on the running time. Can this be generalized?

This leads us the the following questions about τ -invariants in general, al-
though we formulate them for graphs..

Open Problem 1. Assume M(f,�) has rank r and an (r × r)-submatrix Mr

of maximal rank is given. Under what conditions on � can we compute all the
entries of M(f,�) from Mr and the computability of �? What is the complexity
of computing the entry f(Gi�Gj) of M(f,�)?

Open Problem 2. Under what conditions on the graph parameter f and on �
can we compute the rank r(f,�) precisely, or at least give reasonable lower and
upper bounds?

Open Problem 3. Let f be a graph parameter on k-graphs and let r(f,�j) be
finite for every j ≤ k. Is it true that f can be computed in polynomial time on
graphs of tree-width at most k.

Open Problem 4. In case the Open Problem 3 has a positive answer, is there
an analogue for clique-width?

I am pretty convinced that the answer are positive. In order to attack the Open
Problems above it may be useful to look at connection matrices restricted to a
graph property Φ and an operation � such that

(i) � preserves Φ, i.e., if G1 ∈ Φ and G2 ∈ Φ then also G1�G2 ∈ Φ, and
(ii) the size of G1�G2 is bigger than the size of G1 and G2, for example

|V (G1�G2)| ≥ |V (G1)| + |V (G2)|
(iii) For every graph G ∈ Φ we can effectively find non-trivial G1 and G2 such

that G = G1�G2.

Examples for Φ and � satisfying these conditions are trees with root a with an
additional distinguished node b and �1 identifying a from one tree with b from
the other. Another example are the cliques with the join operation ��, or graphs
with no edges and the disjoint union �.
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Knowledge, Games and Tales from the East

Rohit Parikh

Brooklyn College of CUNY and CUNY Graduate Center

Abstract. We introduce some basic concepts from Game Theory and
related areas and show how various insights for which we thank game
theory have already occurred in the past in some tales from ancient
literature, both Indian and otherwise.

1 Games

We shall usually talk about two player games. The players are typically called
Row and Column, but more catchy names may arise in specific contexts.

In so called normal form games, each player has a finite set of strategies, call
them S1 and S2, and each can choose a particular strategy from their own set.
Once the players have chosen their strategies, there are payoffs which depend on
both the strategies. So suppose that player Row chooses strategy a and Column
chooses strategy b, then the payoffs would be pr(a, b) and pc(a, b). We may also
refer to Row and Column as players 1 and 2 respectively.

Suppose Row has chosen a and Column has chosen b, then (a, b) constitutes
a Nash equilibrium if, given that column is playing b, Row has nothing better
than a, and given that Row is playing a, Column has nothing better than b. In
other words pr(a, b) ≥ pr(a′, b) for all a′ and pc(a, b) ≥ pc(a, b′) for all b′.

Given two strategies a, a′ for Row, we say that a is dominated by a′ if
regardless of what Column plays, a′ always gives a better outcome for Row.
Thus pr(a, b) ≤ pr(a′, b) for all b and pr(a, b) < pr(a′, b) for at least one b.
Sinilarly for dominance of a Column strategy b by b′. It is normally accepted
that a player would never play a dominated strategy, and the opponent may
then make his plans based on this fact.

We now give examples of various games in the literature.

1.1 Battle of the Sexes

In this game, the wife (Row) wants to go to the Opera and the husband (Column)
wants to watch football. But each would rather go together than watch their
favourite thing by themselves. So here are the payoffs. Row’s payoffs in each box
are listed first.

Opera Footb
Opera 2, 1 0, 0
Footb 0, 0 1, 2

R. Ramanujam and S. Sarukkai (Eds.): ICLA 2009, LNAI 5378, pp. 65–76, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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If they go to different events, they are not happy so the payoffs are zero for
both. If they go to the same event, then both have positive payoffs, but the
wife’s is higher if they go to the Opera and the husband’s is higher if they go to
football. There are two Nash equilibria, the NW one which is (2,1), and the SE
one which is (1,2).

The fact that (1,2) is a Nash equilibrium can be seen geometrically. Row can
change the row, but if she does her payoff will move from 1 to 0, and she will be
worse off. Similarly, Column can change the column, but if he does, his payoff
will change from 2 to 0, and he will be worse off.

1.2 Chicken

In this rather dangerous game, two cars race towards each other. If one goes
straight and the other swerves, then the one who swerves has shown fear, and is
called chicken. He is embarrassed while the other crows. If neither swerves then
there is an accident which they both regret – if they survive.

Swerve Straight
Swerve 4, 4 2, 7

Straight 7, 2 −10,−10

There are two Nash equilibria, the NE one which is (2,7), with Row being the
‘chicken’ and the SW one which is (7,2) wth Column in that role.

1.3 Matching Pennies

In this game, Row is the matcher and Column is the mismatcher. Both parties
exhibit a penny and if both pennies match (are both showing heads or both
showing tails) then Row wins. If one is showing heads and the other tails (mis-
match), then Column wins. There are no Nash equilibria in this game (there is
a mixed strategy equilibrium, but we shall not consider those here).

Heads Tails
Heads 1,−1 −1, 1
Tails −1, 1 1,−1

1.4 Prisoner’s Dilemma

In this game, two men are arrested and invited to testify against each other. If
neither testifies, then there is a small penalty since there is no real evidence. But
if one defects (testifies) and the other does not, then the defecter goes free and
the other gets a large sentence. If both defect they both get medium sentences.
Jointly they are better off (The payoffs are 2 each) if neither defects, but for
both of them, defecting is the dominant strategy and they end up with (1,1)
which is worse.

Coop Def
Coop 2, 2 0, 3

Def 3, 0 1, 1
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There is a unique, rather bad Nash equilibrium at SE with (1,1), while the
(2,2) solution on NW, though better for both, is not a Nash equilibrium.

We now discuss the first one of our folk examples. We start with an actual
example from the Economics literature and then relate it to a story from Indian
history.

2 Tales from the East

2.1 Tragedy of the Commons

From “The Tragedy of the Commons” by Garrett Hardin, 1968.

The tragedy of the commons develops in this way. Picture a pasture open to all.
It is to be expected that each herdsman will try to keep as many cattle as possible
on the commons. Such an arrangement may work reasonably satisfactorily for
centuries because tribal wars, poaching, and disease keep the numbers of both man
and beast well below the carrying capacity of the land. Finally, however, comes
the day of reckoning, that is, the day when the long-desired goal of social stability
becomes a reality. At this point, the inherent logic of the commons remorselessly
generates tragedy.

As a rational being, each herdsman seeks to maximize his gain. Explicitly
or implicitly, more or less consciously, he asks, “What is the utility to me of
adding one more animal to my herd?” This utility has one negative and one
positive component.

1. The positive component is a function of the increment of one animal. Since
the herdsman receives all the proceeds from the sale of the additional animal, the
positive utility is nearly +1.

2. The negative component is a function of the additional overgrazing created
by one more animal. Since, however, the effects of overgrazing are shared by all
the herdsmen, the negative utility for any particular decisionmaking herdsman is
only a fraction of -1.

Adding together the component partial utilities, the rational herdsman con-
cludes that the only sensible course for him to pursue is to add another animal
to his herd. And another.... But this is the conclusion reached by each and ev-
ery rational herdsman sharing a commons. Therein is the tragedy. Each man is
locked into a system that compels him to increase his herd without limit – in a
world that is limited. Ruin is the destination toward which all men rush, each
pursuing his own best interest in a society that believes in the freedom of the
commons. Freedom in a commons brings ruin to all.

From “The Tragedy of the Commons” by Garrett Hardin, [4]. But Hardin was
anticipated in India by four hundred years! The following is from the famous
Akbar Birbal collection of stories. Akbar was the third Mughal emperor and
the grandfather of Shah Jehan who built the Taj Mahal as a monument (and
mausoleum) for his wife. Birbal was one of his ministers and well known (at
least in stories) for his wit and intelligence. Both lived in the second half of the
sixteenth century.
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2.2 Birbal Story

One day Akbar Badshah said something to Birbal and asked for an answer.
Birbal gave the very same reply that was in the king’s own mind. Hearing this,
the king said, This is just what I was thinking also. Birbal said, Lord and Guide,
this is a case of a hundred wise men, one opinion (in Hindi, sau siyane ek mat).
The king said, This proverb is indeed well-known. Then Birbal petitioned, Refuge
of the World, if you are so inclined, please test this matter. The king replied,
Very good. The moment he heard this, Birbal sent for a hundred wise men from
the city. And the men came into the king’s presence that night. Showing them
an empty well, Birbal said, His Majesty orders that at once every man will bring
one bucket full of milk and pour it in this well. The moment they heard the royal
order, every one reflected that where there were ninety-nine buckets of milk, how
could one bucket of water be detected? Each one brought only water and poured
it in. Birbal showed it to the king. The king said to them all, What were you
thinking, to disobey my order? Tell the truth, or I’ll treat you harshly! Every
one of them said with folded hands, Refuge of the World, whether you kill us or
spare us, the thought came into this slave’s mind that where there were ninety-
nine buckets of milk, how could one bucket of water be detected? Hearing this
from the lips of all of them, the king said to Birbal, What I’d heard with my
ears, I’ve now seen before my eyes: a hundred wise men, one opinion!

Birbal lived from 1528 to 1586, and died in the battle of Malandari Pass, in
Northwest India.

http://en.wikipedia.org/wiki/Akbar the Great
http://en.wikipedia.org/wiki/Birbal

Analysis: What is common between the example which Hardin gives and the
Akbar-Birbal story? In each case, the individual benefits at the cost of the group.
In the Hardin case, the herdsman benefits by having one more animal. In the
Birbal case, the “wise man” benefits by saving one pot of milk. In each case the
group is harmed. In the case of the herdsmen, the common is overgrazed and
the grass dies. In the Akbar-Birbal case, there is a danger that if the cheating is
discovered, all hundred men face the threat of prison or even execution. Akbar
was a benign king,1 but not entirely immune to anger. Also, in each case, cheating
is a dominant strategy. If most of the others are cheating, it does no extra harm
if you cheat too. And if most of the others are not cheating, then again it does
no extra harm if you are one of the rare cheaters. But if everyone practices their
dominant strategy and cheats, then there can be disaster for the whole group.

2.3 Can We Always Believe What Others Tell Us?
Solomon Story

The following story is from the Old Testament, first book of Kings, chapter 3.
Then came there two women, that were harlots, unto the king, and stood before
1 Akbar, though a Muslim, worked hard to create amity between Hindus and Muslims,

even marrying a Hindu wife, and having endless discussions on religion with Hindus,
Christians and Jains.
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him. And the one woman said, O my lord, I and this woman dwell in one house;
and I was delivered of a child with her in the house. And it came to pass the third
day after that I was delivered, that this woman was delivered also: and we were
together; there was no stranger with us in the house, save we two in the house.
And this woman’s child died in the night; because she overlaid it. And she arose
at midnight, and took my son from beside me, while thine handmaid slept, and
laid it in her bosom, and laid her dead child in my bosom.

And when I rose in the morning to give my child suck, behold, it was dead:
but when I had considered it in the morning, behold, it was not my son, which I
did bear. And the other woman said, Nay; but the living is my son, and the dead
is thy son. And this said, No; but the dead is thy son, and the living is my son.
Thus they spake before the king.

Then said the king, The one saith, This is my son that liveth, and thy son is
the dead: and the other saith, Nay; but thy son is the dead, and my son is the
living.

And the king said, Bring me a sword. And they brought a sword before the
king.

And the king said, Divide the living child in two, and give half to the one,
and half to the other. Then spake the woman whose the living child was unto
the king, for her bowels yearned upon her son, and she said, O my lord, give her
the living child, and in no wise slay it. But the other said, Let it be neither mine
nor thine, but divide it.

Then the king answered and said, Give her the living child, and in no wise
slay it: she is the mother thereof.

Analysis: Let M stand for “I get the child”, O stand for “The other woman
gets the child”, and K stand for “The child is killed.

Both women prefer M to O. However, Solomon relies on the fact that the
real mother prefers O to K whereas the non-mother prefers K to O. Thus the
orderings are: M > O > K for the real mother and M > K > O for the
non-mother. Asked to choose between O and K, the real mother chooses O and
the non-mother chooses K. This enables Solomon to discover the real mother.
Solomon is trying to implement what is called the revelation principle according
to which people reveal their real opinions by how they act. However, Solomon’s
strategy has a bug. If the non-mother knows what his plans are, all she has to
do is to say, “Oh, I too would rather the other woman took the child than have
it killed.” And then Solomon would be in a quandary.

Such a behavior would be an example of what is called strategizing [3,7,8],
where you express a preference different from your actual one in order to get a
better result. There is, however, a solution which depends on money, or let us
say, public service. Suppose the real mother is willing to do three months public
service to get the child, but the non-mother is only willing to do one month.
Solomon of course does not know which is which but he can use this information
and the following procedure to discover who is the real mother. Thus here is the
plan. Suppose the two women are Anna and Beth. Solomon first asks Anna, Is
the child yours? If Anna says no, Beth gets the child and that ends the matter.
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If Anna says, It is my child , then Beth is asked Is the child yours? If Beth
says no, Anna gets the child and that ends the matter.

If Beth also says, It is my child , then Beth gets the child, and does two months
public service. Anna also does one week’s public service.

It is easy to see that only the real mother will say, It is my child , and no
public service needs to be performed.

For suppose that Anna is the real mother. She can safely say, It i s my child
because when Beth is asked next, she does not want to do two months service
to get the child. Anna will get the child without any problem. I leave it to you
to work out what happens if Beth is the real mother. For a recent paper on such
problems, see

http://ideas.repec.org/p/pra/mprapa/8801.html

It might have struck the reader that while the outcome is fair to both women,
the algorithm is not symmetric. But there do exist symmetric algorithms based
on the idea of the Vickrey auction [5], and the one in the paper cited just above
is an example.

2.4 Cheap Talk

The following examples are slightly adapted from [2].
Laxmi is applying to Rayco for a job, and Rayco asks if her ability is high or

low.
Will Laxmi speak the truth, and can Rayco trust her?

Rayco
High Low

Laxmi

High

Low (0,0)

(3,3) (0,0)

(2,2)

Fig. 1.

In the scenario above, Figure 1, Rayco prefers to hire Laxmi for the high
position if she has high ability and the low position if her ability is low. If
they ask her about her ability, Laxmi has nothing to gain by lying about her
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qualifications and Rayco can trust her. In particular, if her ability is low and she
lies that it is high, Rayco would give her the higher position and she would be
frustrated so that the higher salary would not be an advantage.

But suppose instead (Figure 2) that Laxmi feels she can get away with having
a better job even with worse ability. Perhaps she feels she can ‘wing it’, or pass
on her more difficult work to others. If Laxmi’s ability is low, she still prefers
the higher paying job so she would like to entice Rayco (which chooses the job
she is offered) into the bottom left box. But if Rayco knows her payoffs, they
will be careful not to believe her bare statement that she has high ability.

Rayco
High Low

Laxmi

High

Low (3,0)

(3,3) (0,0)

(2,2)

Fig. 2.

In this scenario, Laxmi can profit from having a high job even if her ability
is low, her payoff is 3 in any case. So Laxmi has nothing to lose by lying about
her qualifications and Rayco cannot trust her.

The moral is, as we all know, If someone tells us something, then before be-
lieving it, ask if they could gain by lying. There is a bit more to cheap talk than
this but we shall not go into details.

2.5 The Mahabharata

The Kurukshetra War forms an essential component of the Hindu epic Mahab-
harata. According to Mahabharata, a dynastic struggle between sibling clans of
Kauravas and the Pandavas for the throne of Hastinapura resulted in a battle
in which a number of ancient kingdoms participated as allies of the rival clans.
The location of the battle was Kurukshetra in the modern state of Haryana in
India. Mahabharata states that the war lasted eighteen days during which vast
armies from all over ancient India fought alongside the two rivals. Despite only
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referring to these eighteen days, the war narrative forms more than a quarter of
the book, suggesting its relative importance within the book.

http://en.wikipedia.org/wiki/Kurukshetra War

During the war, Drona, who was the teacher of both Pandavas and Kauravas,
and an expert bowman, is fighting on the side of the Kauravas and the Pandavas
are desperate as they do not know what to do! Luckily, Drona’s son is called
Ashwathama as is an elephant owned by the Pandavas.

Yudhisthira was the oldest of the five Pandava brothers, and had a reputation
for honesty. His role in what happens is crucial. On the 15th day of the war.
Krishna asked Yudhisthira to proclaim that Drona’s son Ashwathama has died,
so that the invincible and destructive Kuru commander would give up his arms
and thus could be killed. Bhima proceeds to kill an elephant named Ashwathama,
and loudly proclaims that Ashwathama is dead.

Drona knows that only Yudhisthira, with his firm adherence to the truth,
could tell him for sure if his son had died. When Drona approaches Yudhisthira
to seek to confirm this, Yudhisthira tells him that Ashwathama is dead..., then,
..the elephant, but this last part is drowned out by the sound of trumpets and
conchshells being sounded as if in triumph, on Krishna’s instruction. Yudhisthira
cannot make himself tell a lie, despite the fact that if Drona continued to fight,
the Pandavas and the cause of dharma itself would lose. When he speaks his half-
lie, Yudhisthira’s feet and chariot descend to the ground momentarily. Drona is
disheartened, and lays down his weapons. He is then killed by Dhristadyumna.

It is said that Drona’s soul, by meditation had already left his body before
Dhristadyumna could strike. His death greatly saddens Arjuna, who had hoped
to capture him alive.

http://en.wikipedia.org/wiki/Drona

Clearly the Pandavas had an incentive to lie (as Laxmi does in our second
example with Rayco), but Drona assumed that in the case of Yudhisthira, the
loyalty to truth would override his self-interest. It so turned out that Drona was
only partly right.

2.6 The Two Horsemen

Suppose we want to find out which of two horses is faster. This is easy, we race
them against each other. The horse which reaches the goal first is the faster
horse. And surely this method should also tell us which horse is slower, it is the
other one. However, there is a complication which will be instructive.

Two horsemen are on a forest path chatting about something. A passerby
M , the mischief maker, comes along and having plenty of time and a desire for
amusement, suggests that they race against each other to a tree a short distance
away and he will give a prize of $100. However, there is an interesting twist. He
will give the $100 to the owner of the slower horse. Let us call the two horsemen
Bill and Joe. Joe’s horse can go at 35 miles per hour, whereas Bill’s horse can
only go 30 miles per hour. Since Bill has the slower horse, he should get the
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$100. The two horsemen start, but soon realize that there is a problem. Each
one is trying to go slower than the other and it is obvious that the race is not
going to finish. There is a broad smile on the canny passerby’s face as he sees
that he is having some amusement at no cost.

Figure 3, below, explains the difficulty. Here Bill is the row player and Joe
is the column player. Each horseman can make his horse go at any speed upto
its maximum. But he has no reason to use the maximum. And in figure 3, the
left columns are dominant (yield a better payoff) for Joe and the top rows are
dominant for Bill. Thus they end up in the top left hand corner, with both horses
going at 0 miles per hour.

0, 0

0, 0

0, 0

0, 0

0, 100

0, 100

0, 100

0, 100

0, 1000, 100

100, 0

100, 0

100, 0

100, 0

100, 0

100, 0

100, 0

100, 0

100, 0

30

20

10

0

0 10 20 30 35

100, 0

Fig. 3.

However, along comes another passerby, let us call her S, the problem solver,
and the situation is explained to her. She turns out to have a clever solution.
She advises the two men to switch horses. Now each man has an incentive to go
fast, because by making his competitor’s horse go faster, he is helping his own
horse to ‘win’ ! Figure 4 shows how the dominant strategies have changed. Now
Joe (playing row) is better off to the bottom, and Bill playing column is better
off to the right – they are both urging the horse they are riding (their opponent’s
horse) as fast as the horse can go. Thus they end up in the bottom right corner
of figure 4. Joe’s horse, ridden by Bill comes first and Bill gets the $100 as he
should.

Of course, if the first passerby had really only wanted to reward the slower
horse (or its owner) he could have done this without the horses being switched
and for a little extra money. He could have kept quiet about the $100 and offered
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0, 0

0, 0

0, 0

0, 0

100, 0

100, 0

100, 0

100, 0

100, 0100, 0

0, 100

0, 100

0, 100

0, 100

0, 100

0, 100

0, 100

0, 100

0, 100

30

20

10

0

0 10 20 30 35

0, 100

Fig. 4.

a prize of $10 to the owner of the faster horse. Then when the race was over,
he would hand over the $10 to Joe and $100 to Bill. Here the effect would be
achieved by hiding from the two horsemen what their best strategy was, and
to fool them into thinking that some other action was in fact better. While the
problem of finding the faster horse, and that of finding the slower, are equivalent
algorithmically, they are not equivalent game theoretically when the men ride
their own horses. The equivalence is restored when the two men switch horses.
For a practical analogue of the two horses example, consider the issue of grades
and letters of recommendation. Suppose that Prof. Meyer is writing a letter
of recommendation for his student Maria and Prof. Shankar is writing one for
his student Peter. Both believe that their respective students are good, but
only good. Not very good, not excellent, just good. Both also know that only
one student can get the job or scholarship. Under this circumstance, it is clear
that both of the advisers are best off writing letters saying that their respective
student is excellent. This is strategic behaviour in a domain familiar to all of us.

Sometimes employers will try to counter this by appealing to third parties
for an evaluation, but the close knowledge that the two advisers have of their
advisees cannot be discovered very easily.

In Figure 5 above, J represents job and NJ represents no job for the student.
Then Meyer’s lower strategies dominate his upper ones. And for Shankar, his
rightward strategies dominate the strategies to the left. Hence, with each playing
his dominant strategies, they end up in the lower right hand corner with neither
student getting the job.

We do assume that in case of a tie neither student is hired. This of course need
not be true in reality – perhaps one would be chosen at random. But if one of
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Shankar’s choices

Meyer’s

choices

NJ , NJ

NJ , NJ

NJ , NJ

NJ , J

NJ , J

NJ , J

J , NJ

J , NJJ , NJE

VG

G

G VG E

Fig. 5.

the students is actually superior, that information cannot be elicited by asking
their advisers. Sometimes the National Science Foundation, giving out grants,
tends to ask people to reveal their connections with various referees. Then some
semblance of neutrality can be achieved.

2.7 A Bankruptcy Problem

This problem has been studied by Aumann and Maschler [1]. A man dies leaving
debts d1, ..., dn totalling more than his estateE. How should the estate be divided
among the creditors?

Here are some solutions from the Babylonian Talmud. In all cases, n = 3, d1 =
100, d2 = 200, d3 = 300. Let the amounts actually awarded be x1, x2, x3.

E = 100.
The amounts awarded are xi = 33.3 for i = 1, 2, 3

E = 200. x1 = 50, x2 = 75, x3 = 75
E = 300. x1 = 50, x2 = 100, x3 = 150.

What explains these numbers?

The Contested Garment Principle: Suppose two people A,B are claiming
50 and 90 respectively from a debtor whose total worth is 100. Then A has
conceded 50 and B has conceded 10. Then B gets the 50 conceded by A and A
gets the 10 conceded by B. That leaves 40 which is equally divided. Thus A gets
30 and B gets 70.
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Similarly, if E is a garment, A claims half of it and B claims all, then A ends
up with .25 and B with .75 of the garment.

Note that under the contested garment principle the results are monotonic in
the claims and also in the total amount available for division.

Definition 2.1. A bankrupcy problem is defined as a pair E; d where d =
(d1, ..., dn), 0 ≤ d1 ≤ d2 ≤ ... ≤ dn and 0 ≤ E ≤ d1 + ...dn. A solution to such
a problem is an n-tuple x = (x1, ..., xn) of real numbers with

x1 + x2 + ...+ xn = E

A solution is called CG-consistent if for all i �= j, the division of xi + xj pre-
scribed by the contested garment principle for claims di, dj is (xi, xj).

Theorem 2.2. (Aumann, Maschler) Each bankrupcy problem has a unique con-
sistent solution.

Proof. (uniqueness) Suppose that x, y are different solutions. Then there must
be i, j such that i receives more in the second case and j receives less. Assume
wlog that xi+xj ≤ yi+ yj. Thus we have xi < yi, xj > yj and xi+xj ≤ yi+ yj.
But the monotonicity principle says that since yi + yj is more, j should receive
more in the y case. contradiction.
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Abstract. The root of this work is in Belnap’s four valued para con-
sistent logic [2]. Based on a related study of Perny and Tsoukias [11],
we introduce para consistent Pavelka style fuzzy sentential logic. Re-
stricted to Lukasiewicz t–norm, our approach and the approach in [11]
partly overlap; the main difference lies in the interpretation of the log-
ical connectives implication and negation. The essential mathematical
tool proved in this paper is a one–one correspondence between evidence
couples and evidence matrices that holds in all injective MV–algebras.
Evidence couples associate to each formula α two values a and b that
can be interpreted as the degrees of pros and cons for α, respectively.
Four values t, f, k, u, interpreted as the degrees of truth, falsehood, con-
tradiction and unknowness of α, respectively, can be calculated. In such
an approach truth and falsehood are not each others complements. This
paper can be seen as a solution to some open problems presented in [11].

Keywords: Mathematical fuzzy logic, para consistent sentential logic,
MV –algebra.

1 Introduction

Four possible values associated with a formula α in Belnap’s first order para
consistent logic [2] are true, false, contradictory and unknown: if there is
evidence for α and no evidence against α, then α obtains the value true and if
there is no evidence for α and evidence against α, then α obtains the value false.
A value contradictory corresponds to a situation where there is simultaneously
evidence for α and against α and, finally, α is labeled by value unknown if there is
no evidence for α nor evidence against α. More formally, the values are associated
with ordered couples 〈1, 0〉, 〈0, 1〉, 〈1, 1〉 and 〈0, 0〉, respectively.

In [12] Tsoukias introduced an extension of Belnap’s logic (named DDT)
most importantly because the corresponding algebra of Belnap’s original logic
is not a Boolean algebra, while the extension is. Indeed, in that paper it was
introduced and defined the missing connectives in order to obtain a Boolean
algebra. Moreove, it was explained why we get such a structure. Among others
it was shown that negation, which was reintroduced in [12] in order to recover
some well known tautologies in reasoning, is not a complementation.

In [11] and [14], a continuous valued extension of DDT logic is studied. The
authors impose reasonable conditions this continuous valued extension should

R. Ramanujam and S. Sarukkai (Eds.): ICLA 2009, LNAI 5378, pp. 77–88, 2009.
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obey and, after a careful analysis, they come to the conclusion that the graded
values are to be computed via

t(α) = min{B(α), 1−B(¬α)}, (1)
k(α) = max{B(α) +B(¬α) − 1, 0}, (2)
u(α) = max{1−B(α) −B(¬α), 0}, (3)

f(α) = min{1−B(α), B(¬α)}. (4)

where an ordered couple 〈B(α), B(¬α)〉 is given. The intuitive meaning of B(α)
and B(¬α) is the degree of evidence for α and against α, respectively. Moreover,
the set of 2× 2 matrices of a form[

f(α) k(α)
u(α) t(α)

]
is denoted by M. In [11] it is shown how such a fuzzy version of Belnap’s logic
can be applied in preference modeling, however, the following open problems is
posed:

– the experimentation of different families of De Morgan triples;
– a complete truth calculus for logics conceived as fuzzy extensions of four

valued para consistent logics;
– a more thorough investigation of valued sets and valued relations (when

the valuation domain is M) and their potential use in the context of preference
modeling.

In this paper we accept the challenge to answer some of these problems. Our
basic observation is that the algebraic operations in (1) – (4) are expressible by
the Lukasiewicz t–norm and the corresponding residuum, i.e. in the Lukasiewicz
structure, which is an example of an injective MV–algebra. In [13] it is proved
that Pavelka style fuzzy sentential logic is a complete logic in a sense that if the
truth value set L forms an injective MV–algebra, then the set of a–tautologies
and the set of a–provable formulae coincide for all a ∈ L. We therefore consider
the problem that, given a truth value set which is an injective MV–algebra, is
it possible to transfer an injective MV–structure to the set M, too. The answer
turns out to be affirmative, consequently, the corresponding para consistent sen-
tential logic is essentially Pavelka style fuzzy logic. Thus, a rich semantics and
syntax is available. For example, Lukasiewicz tautologies as well as Intuitionistic
tautologies can be expressed in the framework of this logic. This follows by the
fact that we have two sorts of logical connectives conjunction, disjunction, impli-
cation and negation interpreted either by the monoidal operations

⊙
,
⊕
,−→,∗

or by the lattice operations ∧,∨,⇒,�, respectively (however, neither � nor ∗ is
a lattice complementation). Besides, there are many other logical connectives
available.

Arieli and Avron [1] developed a logical system based on a class of bilattices
(cf. [5]), called logical bilattices, and provided a Gentzen–style calculus for it.
This logic is essentially an extension of Belnaps four–valued logic to the standard



A Para Consistent Fuzzy Logic 79

language of bilattices, but differs from it for some interesting properties. How-
ever, our approach differs from that of Arieli and Avron [1].

Quite recently Dubois [4] published a critical philosophy of science orientated
study on Belnap’s approach. According to Dubois, the main difficulty lies in the
confusion between truth–values and information states. We study para consistent
logic from a purely formal point of view without any philosophical contentions.
Possible applications of our approach are discussed at the end of the paper.

2 Algebraic Preliminaries

We start by recalling some basic definitions and properties of MV–algebras; all
detail can be found in [9, 13]. We also prove some new results that we will
utilize later. An MV-algebra L = 〈L,⊕,∗ ,0〉 is a structure such that 〈L,⊕,0〉 is
a commutative monoid, i.e.,

x⊕ y = y ⊕ x, (5)
x⊕ (y ⊕ z) = (x ⊕ y)⊕ z, (6)

x⊕ 0 = x (7)

holds for all elements x, y, z ∈ L and, moreover,

x∗∗ = x, (8)
x⊕ 0∗ = 0∗, (9)

(x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x. (10)

Denote x � y = (x∗ ⊕ y∗)∗ and 1 = 0∗. Then 〈L,�,1〉 is another commutative
monoid and hence

x� y = y � x, (11)
x� (y � z) = (x � y)� z, (12)

x� 1 = x (13)

holds for all elements x, y, z ∈ L. It is obvious that x ⊕ y = (x∗ � y∗)∗, thus
the triple 〈⊕,∗ ,�〉 satisfies De Morgan laws. A partial order on the set L is
introduced by

x ≤ y iff x∗ ⊕ y = 1 iff x� y∗ = 0. (14)

By setting

x ∨ y = (x∗ ⊕ y)∗ ⊕ y, (15)
x ∧ y = (x∗ ∨ y∗)∗[= (x∗ � y)∗ � y] (16)

for all x, y, z ∈ L the structure 〈L,∧,∨〉 is a lattice. Moreover, x∨y = (x∗∧y∗)∗
holds and therefore the triple 〈∧,∗ ,∨〉, too, satisfies De Morgan laws. However,
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the unary operation ∗ called complementation is not a lattice complementation.
By stipulating

x→ y = x∗ ⊕ y (17)

the structure 〈L,≤ ∧,∨,�,→,0,1〉 is a residuated lattice with the bottom and
top elements 0,1, respectively. In particular, a Galois connection

x� y ≤ z iff x ≤ y → z (18)

holds for all x, y, z ∈ L. The couple 〈�,→〉 is an adjoint couple. Lattice opera-
tions on L can now be expressed via

x ∨ y = (x→ y)→ y, (19)
x ∧ y = x� (x→ y). (20)

A standard example of an MV–algebra is the Lukasiewicz structure L: the un-
derlying set is the real unit interval [0, 1] equipped with the usual order and, for
each x, y ∈ [0, 1],

x⊕ y = min{x+ y, 1}, (21)
x∗ = 1− x. (22)

Moreover,

x� y = max{0, x+ y − 1}, (23)
x ∨ y = max{x, y}, (24)
x ∧ y = min{x, y}, (25)

x→ y = min{1, 1− x+ y}, (26)
x� y∗ = max{x− y, 0}. (27)

For any natural number m ≥ 2, a finite chain 0 < 1
m < · · · < m−1

m < 1 can
be viewed as an MV–algebra where n

m ⊕ k
m = min{n+k

m , 1} and ( nm )∗ = m−n
m .

Finally, a structure L ∩ Q with the Lukasiewicz operations is an example of a
countable MV–algebra called rational Lukasiewicz structure. All these examples
are linear MV–algebras, i.e. the corresponding order is a total order. Moreover,
they are MV–subalgebras of the structure L. A Boolean algebra is an MV-algebra
such that the monoidal operations ⊕, � and the lattice operations ∨, ∧ coincide,
respectively.

An MV–algebra L is called complete if
∨{ai| i ∈ Γ}, ∧{ai| i ∈ Γ} ∈ L for

any subset {ai : i ∈ Γ} ⊆ L. Complete MV–algebras are completely distributive,
that is, they satisfy

x ∧
∨
i∈Γ

yi =
∨
i∈Γ

(x ∧ yi), x ∨
∧
i∈Γ

yi =
∧
i∈Γ

(x ∨ yi), (28)

for any x ∈ L, {yi| i ∈ Γ} ⊆ L. Thus, in a complete MV–algebra we can define
another adjoint couple 〈∧,⇒〉, where the operation ⇒ is defined via

x⇒ y =
∨
{z| x ∧ z ≤ y}. (29)
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In particular, x� = x ⇒ 0 defines another complementation (called weak com-
plementation) in complete MV–algebras. However, weak complementation needs
not to be lattice complementation. A Heyting algebra H is a bounded lattice such
that for all a, b ∈ H there is a greatest element x in H such that a∧x ≤ b. Thus,
to any complete MV–algebra 〈L,⊕,∗ ,0〉 there is an associated Heyting algebra
〈L,∧,� ,0,1〉 with an adjoint couple 〈∧,⇒〉. The Lukasiewicz structure and all
finite MV–algebras are complete as well as the direct product of complete MV–
algebras is a complete MV–algebra. However, the rational Lukasiewicz structure
is not complete.

A fundamental fact proved by C. C. Chang (cf. [3]) is that any MV–algebra
is a subdirect product of Lukasiewicz structures (in the same sense than any
Boolean algebra is a direct product of two elements Boolean algebras). This
representation theorem implies that, to prove that an equation holds in all MV–
algebras it is enough to show that it holds in L. This fact is used in proving the
following three propositions.

Proposition 1. In an MV–algebra L the following holds for all x, y ∈ L

(x� y) ∧ (x∗ � y∗) = 0, (30)
(x∗ ∧ y)⊕ (x� y)⊕ (x∗ � y∗)⊕ (x ∧ y∗) = 1. (31)

Proposition 2. Assume x, y, a, b are elements of an MV–algebra L such that
the following system of equations holds

(A)

⎧⎪⎪⎨⎪⎪⎩
x∗ ∧ y = a∗ ∧ b,
x� y = a� b,
x∗ � y∗ = a∗ � b∗,
x ∧ y∗ = a ∧ b∗.

Then x = a and y = b.

Proposition 3. Assume x, y are elements of an MV–algebra L such that

(B)

⎧⎪⎪⎨⎪⎪⎩
x∗ ∧ y = f,
x� y = k,
x∗ � y∗ = u,
x ∧ y∗ = t.

Then (C) x = t⊕ k, y = f ⊕ k and (D) x = (f ⊕ u)∗, y = (t⊕ u)∗.

Propositions 2 and 3 put ordered couples 〈x, y〉 and values f, k, u, t defined by
(B) into a one–one correspondence.

Definition 1. A complete MV-algebra L is injective (cf. [6]) if, for any a ∈ L
and any natural number n, there is an element b ∈ L, called the n–divisor of a,
such that nb = b⊕ · · · ⊕ b︸ ︷︷ ︸

n times

= a and (a∗ ⊕ (n− 1)b)∗ = b.

All n–divisors are unique (cf. [8]). The Lukasiewicz structure L and all finite
Lukasiewicz chains are injective MV–algebras (cf. [13]).
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3 Evidence Couples and Evidence Matrices

Let L = 〈L,⊕,∗ ,0〉 be an MV–algebra. The product set L× L can be equipped
with an MV–structure by setting

〈a, b〉 ⊗ 〈c, d〉 = 〈a⊕ c, b� d〉, (32)
〈a, b〉⊥ = 〈a∗, b∗〉, (33)

0 = 〈0,1〉 (34)

for each ordered couple 〈a, b〉, 〈c, d〉 ∈ L × L. Indeed, the axioms (5)–(9) hold
trivially and, to prove that the axiom (10) holds, it is enough to realize that

(〈a, b〉⊥ ⊗ 〈c, d〉)⊥ ⊗ 〈c, d〉 = 〈a ∨ c, b ∧ d〉 = 〈c ∨ a, d ∧ b〉
= (〈c, d〉⊥ ⊗ 〈a, b〉)⊥ ⊗ 〈a, b〉.

It is routine to verify that the order on L× L is defined via

〈a, b〉 ≤ 〈c, d〉 if and only if a ≤ x, y ≤ b, (35)

the lattice operation by

〈a, b〉 ∨ 〈c, d〉 = 〈a ∨ c, b ∧ d〉, (36)
〈a, b〉 ∧ 〈c, d〉 = 〈a ∧ c, b ∨ d〉, (37)

and an adjoin couple 〈�, �→〉 by

〈a, b〉 � 〈c, d〉 = 〈a� c, b⊕ d〉, (38)
〈a, b〉 �→ 〈c, d〉 = 〈a→ c, (d→ b)∗〉. (39)

Notice that a→ c = a∗ ⊕ c and (d→ b)∗ = (d∗ ⊕ b)∗ = d� b∗ = b∗ � d.

Definition 2. Given an MV-algebra L, denote the structure described via (32)
- (39) by LEC and call it the MV–algebra of evidence couples induced by L.

Definition 3. Given an MV-algebra L, denote

M =
{[

a∗ ∧ b a� b
a∗ � b∗ a ∧ b∗

]
|〈a, b〉 ∈ L× L

}
and call it the set of evidence matrices induced by evidence couples.

By Proposition 2 we have

Theorem 1. There is a one–to–one correspondence between L × L and M: if
A,B ∈ M are two evidence matrices induced by evidence couples 〈a, b〉 and
〈x, y〉, respectively, then A = B if and only if a = x and b = y.

The MV–structure descends from LEC to M in a natural way: if A,B ∈ M are
two evidence matrices induced by evidence couples 〈a, b〉 and 〈x, y〉, respectively,
then the evidence couple 〈a⊕ x, b� y〉 induces an evidence matrix
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C =
[

(a⊕ x)∗ ∧ (b� y) (a⊕ x)� (b � y)
(a⊕ x)∗ � (b� y)∗ (a⊕ x) ∧ (b � y)∗

]
.

Thus, we may define a binary operation
⊕

on M by[
a∗ ∧ b a� b
a∗ � b∗ a ∧ b∗

]⊕[x∗ ∧ y x� y
x∗ � y∗ x ∧ y∗

]
= C.

Similarly, if A ∈ M is an evidence matrix induced by an evidence couple 〈a, b〉,
then the evidence couple 〈a∗, b∗〉 induces an evidence matrix

A⊥ =
[
a ∧ b∗ a∗ � b∗

a� b a∗ ∧ b
]
.

In particular, the evidence couple 〈0,1〉 induces the following evidence matrix

F =
[
0∗ ∧ 1 0� 1
0∗ � 1∗ 0 ∧ 1∗

]
=
[
1 0
0 0

]
.

Theorem 2. Let L be an MV–algebra. The structure M = 〈M,
⊕
,⊥ , F 〉 as

defined above is an MV-algebra (called the MV–algebra of evidence matrices).

Assume A =
[
a∗ ∧ b a� b
a∗ � b∗ a ∧ b∗

]
, B =
[
x∗ ∧ y x� y
x∗ � y∗ x ∧ y∗

]
∈M

Then it is obvious that the lattice operations ∧, ∨, the monoidal operation
⊙

and the residual operation −→ are defined via

A ∧B =
[
(a ∧ x)∗ ∧ (b ∨ y) (a ∧ x)� (b ∨ y)
(a ∧ x)∗ � (b ∨ y)∗ (a ∧ x) ∧ (b ∨ y)∗

]
,

A ∨B =
[
(a ∨ x)∗ ∧ (b ∧ y) (a ∨ x)� (b ∧ y)
(a ∨ x)∗ � (b ∧ y)∗ (a ∨ x) ∧ (b ∧ y)∗

]
,

A
⊙

B =
[

(a� x)∗ ∧ (b⊕ y) (a� x)� (b ⊕ y)
(a� x)∗ � (b⊕ y)∗ (a� x) ∧ (b ⊕ y)∗

]
,

A −→ B =
[
(a→ x)∗ ∧ (y → b)∗ (a→ x)� (y → b)∗

(a→ x)∗ � (y → b) (a→ x) ∧ (y → b)

]
.

If the original MV–algebra L is complete, then the structure M is a complete
MV–algebra, too, and supremes and infimas are defined by evidence couples∨

i∈Γ {〈ai, bi〉} = 〈∨i∈Γ ai,∧i∈Γ bi〉}, ∧i∈Γ {〈ai, bi〉} = 〈∧i∈Γ ai,∨i∈Γ bi〉}.
Thus, we may define another residual operation ⇒ on M via

A⇒ B =
[

(a⇒ x)∗ ∧ (b∗ ⇒ y∗)∗ (a⇒ x)� (b∗ ⇒ y∗)∗

(a⇒ x)∗ � (b∗ ⇒ y∗) (a⇒ x) ∧ (b∗ ⇒ y∗)

]
.

To verify this last claim, assume 〈a, b〉∧〈x, y〉 ≤ 〈c, d〉 in LEC , which is equivalent
to

a ∧ x ≤ c and d ≤ b ∨ y, that is,

a ≤ x⇒ c and (b ∨ y)∗ = b∗ ∧ y∗ ≤ d∗, i.e.,
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a ≤ x⇒ c and b∗ ≤ y∗ ⇒ d∗, or equivalently,

a ≤ x⇒ c and (y∗ ⇒ d∗)∗ ≤ b, i.e.,

〈a, b〉 ≤ 〈x ⇒ c, (y∗ ⇒ d∗)∗〉 in LEC . Therefore, if A is induced by 〈a, b〉 and B
is induced by 〈x, y〉 then the evidence matrix A⇒ B is induced by the evidence
couple 〈a⇒ x, (b∗ ⇒ y∗)∗〉. In particular, the weak complementation � on M is
defined via A� = A⇒ F and induced by

〈1,0〉 if a = 0, b = 1, then A� = T ,
〈0,0〉 if a > 0, b = 1, then A� = U ,
〈1,1〉 if a = 0, b < 1, then A� = K,
〈0,1〉 if a > 0, b < 1, then A� = F .

The matrices F, T,K,U correspond to Belnap’s original values false, true, con-
tradictory, unknown, respectively.

Theorem 3. L is an injective MV–algebra if, and only if the corresponding
MV–algebra of evidence matrices M is an injective MV–algebra.

4 Para Consistent Pavelka Style Fuzzy Logic

4.1 Pavelka Style Fuzzy Logic

A standard approach in mathematical sentential logic is the following. After in-
troducing atomic formulae, logical connectives and the set of well–formed formu-
lae, these formulae are semantically interpreted in suitable algebraic structures.
In Classical logic these structures are Boolean algebras, in Hájek’s Basic fuzzy
logic [7], for example, the suitable structures are BL–algebras. Tautologies of
a logic are those formulae that obtain the top value 1 in all interpretations in
all suitable algebraic structures; for this reason tautologies are sometimes called
1-tautologies. For example, tautologies in Basic fuzzy logic are exactly the for-
mulae that obtain value 1 in all interpretations in all BL–algebras. The standard
next step in mathematical sentential logic is to fix the axiom scheme and the
rules of inference: a well–formed formula is a theorem if it is either an axiom or
obtained recursively from axioms by using finite many times rules of inference.
Completeness of the logic means that tautologies and theorems coincide; Clas-
sical sentential logic and Basic fuzzy sentential logic, for example, are complete
logics.

In Pavelka style fuzzy sentential logic [10] the situation is somewhat different.
We start by fixing a set of truth values, in fact an algebraic structure – in
Pavelka’s own approach this structure in the Lukasiewicz structure L on the real
unit interval while in [13] the structure is a more general (but fixed!) injective
MV–algebra L. In this brief review we follow [13].

Consider a zero order language F with a set of infinite many propositional
variables p, q, r, · · · , and a set of inner truth values {a | a ∈ L} corresponding
to elements in the set L. Proved in [7], if the set of truth values is the whole
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real interval [0, 1] then it is enough to include inner truth values corresponding
to rationals ∈ [0, 1]. In two–valued logic inner truth values correspond to the
truth constants ⊥ and 
. These two sets of objects constitute the set Fa of
atomic formulae. The elementary logical connectives are implication ’imp’ and
conjunction ’and’. The set of all well formed formulae (wffs) is obtained in the
natural way: atomic formulae are wffs and if α, β are wffs, then ’α imp β’, ’α
and β’ are wffs.

As shown in [13], we can introduce many other logical connectives by abbre-
viations, e.g. disjunction ’or’, negation ’non’, equivalence ’equiv’ and exclusive
or ’xor’ are possible. Also the connectives weak implication ’imp’, weak conjunc-
tion ’and’, weak disjunction ’or’, weak negation ’non’, weak equivalence ’equiv’
and weak exclusive or ’xor’ are available in this logic. We call the logical con-
nectives without bar Lukasiewicz connectives, those with bar are Intuitionistic
connectives.

Semantics in Pavelka style fuzzy sentential logic is introduced in the following
way: any mapping v : Fa �→ L such that v(a) = a for all inner truth values a can
be extended recursively into the whole F by setting v(α imp β) = v(α) → v(β)
and v(α and β) = v(α)�v(β). Such mappings v are called valuations. The degree
of tautology of a wff α is the infimum of all values v(α), that is

Csem(α) =
∧{v(α)| v is a valuation }.

We may also fix some set T ⊆ F of wffs and consider valuations v such that
T (α) ≤ v(α) for all wffs α. If such a valuation exists, the T is called satisfiable.
We say that T is a fuzzy theory and formulae α such that T (α) �= 0 are the
non–logical axioms of the fuzzy theory T . Then we consider values

Csem(T )(α) =
∧{v(α)| v is a valuation, T satisfies v}.

The set of logical axioms, denoted by A, is composed by the eleven forms of
formulae listed on page 88 in [13]. A fuzzy rule of inference is a scheme

α1, · · · , αn , a1, · · · , an
rsyn(α1, · · · , αn) rsem(α1, · · · , αn),

where the wffs α1, · · · , αn are premises and the wff rsyn(α1, · · · , αn) is the con-
clusion. The values a1, · · · , an and rsem(α1, · · · , αn) ∈ L are the corresponding
truth values. The mappings Ln �→ L are semi–continuous, i.e.

rsem(α1, · · · ,
∨
j∈Γ akj , · · · , αn) =

∨
j∈Γ r

sem(α1, · · · , akj , · · · , αn)

holds for all 1 ≤ k ≤ n. Moreover, the fuzzy rules are required to be sound in a
sense that

rsem(v(α1), · · · , v(αn)) ≤ v(rsyn(α1, · · · , αn))
holds for all valuations v.

The following are examples of fuzzy rules of inference, denoted by a set R:
Generalized Modus Ponens:

α, α imp β , a, b

β a� b
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a–Consistency testing rules :

a , b
0 c

where a is an inner truth value and c = 0 if b ≤ a and c = 1 elsewhere.
a–Lifting rules :

α , b
a imp α a→ b

where a is an inner truth value.
Rule of Bold Conjunction:

α, β , A,B
α and β A�B

A meta proof w of a wff α in a fuzzy theory T is a finite sequence

α1 , a1
...

...
αm , am

where
(i) αm = α,
(ii) for each i, 1 ≤ i ≤ m, αi is a logical axiom, or is a non–logical axiom, or there
is a fuzzy rule of inference in R and wff formulae αi1 , · · · , αin with i1, · · · , in < i
such that αi = rsyn(αi1 , · · · , αin),
(iii) for each i, 1 ≤ i ≤ m, the value ai ∈ L is given by

ai =

⎧⎪⎪⎨⎪⎪⎩
a if αi is the axiom a
1 if αi is some other logical axiom in the set A
T (αi) if αi is a non–logical axiom
rsem(ai1 , · · · , ain) if αi = rsyn(αi1 , · · · , αin)

The value am is called the degree of the meta proof w. Since a wff α may have
various meta proofs with different degrees, we define the degree of deduction of
a formula α to be the supremum of all such values, i.e.,

Csyn(T )(α) =
∨{am| w is a meta proof for α in the fuzzy theory T }.

A fuzzy theory T is consistent if Csem(T )(a) = a for all inner truth values a. By
Proposition 94 in [13], any satisfiable fuzzy theory is consistent. Theorem 25 in
[13] now states the completeness of Pavelka style sentential logic:

If a fuzzy theory T is consistent, then Csem(T )(α) = Csyn(T )(α) for any wff α.

Thus, in Pavelka style fuzzy sentential logic we may talk about tautologies of a
degree a and theorems of a degree a for all truth values a ∈ L, and these concepts
coincide. This completeness result remains valid if we extend the language to
contain Intuitionistic connectives ’and’ or ’or’. However, it does not hold if the
language is extended by the Intuitionistic connectives ’imp’ or ’non’.
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4.2 Para Consistent Pavelka Logic

The above construction can be carried out in any injective MV–algebra thus, in
particular, in the injective MV–algebra M of evidence matrices induced by an
injective MV–algebra L. Indeed, semantics is introduced by associating to each
atomic formula p an evidence couple 〈pro, con〉 or simply 〈a, b〉 ∈ LEC . The
evidence couple 〈a, b〉 induces a unique evidence matrix A ∈ M and therefore
valuations are mappings v such that v(p) = A for propositional variables and
v(I) = I for inner truth values (∈M). A valuation v is then extended recursively
to whole F via

v(α imp β) = v(α) −→ v(β), v(α and β) = v(α)
⊙

v(β). (40)

Similar to the procedure in [13], Chapter 3.1, we can show that

v(α or β) = v(α)
⊕

v(β), v(non−α) = [v(α)]⊥, (41)

v(α equiv β) = [v(α) −→ v(β)] ∧ [v(β) −→ v(α)], (42)

v(α xor β) = [v(α)
⊕

v(β)] ∧ [v(β) −→ v(α)⊥] ∧ [v(α) −→ v(β)⊥], (43)

v(α and β) = v(α) ∧ v(β), v(α or β) = v(α) ∨ v(β), (44)
v(α imp β) = v(α) ⇒ v(β), v(non−α) = v(α)�, (45)

v(α equiv β) = [v(α) ⇒ v(β)] ∧ [v(β) ⇒ v(α)]. (46)

The obtained continuous valued para consistent logic is a complete logic in
the Pavelka sense. The logical axioms and the rules of inference are those defined
in [13], Chapter 3. Thus, we have a solid syntax available and e.g. all the many–
valued extensions of classical rules of inference are available; 25 such rules are
listed in [13].

If the MV–algebra L is the Lukasiewicz structure, then the evidence couples
coincide with the ordered pairs 〈B(α), B(¬α)〉 discussed in [11]. Moreover, the
evidence matrices coincide with the matrices

v(α) =
[
f(α) k(α)
u(α) t(α)

]
,

where t(α), k(α), u(α), f(α) are defined via equations (1) – (4) (equations (38)
– (41) in [11]). In particular, the computation of values v(α ∧ β) and v(α ∨ β)
(Proposition 3.3. in [11]) coincide with our equations (44)).
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Abstract. One of the surprising developments in the area of program
verification is how ideas introduced by logicians in the early part of the
20th Century ended up yielding by the 21 Century industrial-standard
property-specification languages. This development was enabled by the
equally unlikely transformation of the mathematical machinery of au-
tomata on infinite words, introduced in the early 1960s for second-order
logic, into effective algorithms for model-checking tools. This paper at-
tempts to trace the tangled threads of this development.

1 Thread I: Classical Logic of Time

1.1 Monadic Logic

In 1902, Russell send a letter to Frege in which he pointed out that Frege’s log-
ical system was inconsistent. This inconsistency has become known as Russell’s
Paradox. Russell, together with Whitehead, published Principia Mathematica in
an attempt to resolve the inconsistency, but the monumental effort did not con-
vince mathematicians that mathematics is indeed free of contradictions. This has
become know as the “Foundational Crisis.” In response to that Hilbert launched
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matic. In 1928, Hilbert and Ackermann published “Principles of Mathematical
Logic”, in which they posed the question of the Decision Problem for first-order
logic. This problem was shown to be unsolvable by Church and Turing, inde-
pendently, in 1936; see [2]. In response to that, logicians started the project of
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ability result for such a fragment is for the Monadic Class, which is the fragment
of first-order predicate logic where all predicates, with the exception of the equal-
ity predicate, are required to be monadic. This fragment can express the classical
sylogisms. For example the formula

((∀x)(H(x) →M(x)) ∧ (∀x)(G(x) → H(x))) → (∀x)(G(x) →M(x))
� A earlier version of this paper, under the title “From Church and Prior to PSL”,

appeared in the Proc. 2006 Workshop on 25 Years of Model Checking, Lecture Notes
in Computer Science, Springer.

�� Supported in part by NSF grants CCR-9988322, CCR-0124077, CCR-0311326, and
ANI-0216467, by BSF grant 9800096, and by a gift from the Intel Corporation.

R. Ramanujam and S. Sarukkai (Eds.): ICLA 2009, LNAI 5378, pp. 89–115, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.cs.rice.edu/~vardi


90 M.Y. Vardi

expresses the inference of: “if all humans are mortal and all Greeks are human,
then all Greeks are mortal.”

In 1915 Löwenheim showed that the Monadic Class is decidable [4]. His proof
technique was based on the bounded-model property, proving that a monadic
sentence is satisfiable if it is satisfiable in a model of bounded size. This enables
the reduction of satisfiability testing to searching for a model of bounded size.
L”owenheim’s tecchnique was extended by Skolem in 1919 to Monadic Second
Order Logic, in which one can also quantify over monadic predicates, in addition
to quantifying over domain elements [5]. Skolem also used the bounded-model
property. To prove this property, he introduced the technique of quantifier elim-
ination, which is a key technique in mathematical logic [2].

Recall, that the only binary predicate in Skolem’s monadic second-order logic
is the equality predicate. One may wonder what happens if we also allow in-
equality predicates. Such an extension is the subject of the next section.

1.2 Logic and Automata

Classical logic views logic as a declarative formalism, aimed at the specification
of properties of mathematical objects. For example, the sentence

(∀x, y, x)(mult(x, y, z)↔ mult(y, x, z))

expressed the commutativity of multiplication. Starting in the 1930s, a differ-
ent branch of logic focused on formalisms for describing computations, starting
with the introduction of Turing machines in the 1930s, and continuing with the
development of the theory of finite-state machines in the 1950s. A surprising,
intimate, connection between these two paradigms of logic emerged in the late
1950s.

A nondeterministic finite automaton on words (NFW) A = (Σ,S, S0, ρ, F )
consists of a finite input alphabet Σ, a finite state set S, an initial state set
S0 ⊆ S, a transition relation ρ ⊆ S ×Σ × S, and an accepting state set F ⊆ S.
An NFW runs over an finite input word w = a0, . . . , an−1 ∈ Σ∗. A run of A
on w is a finite sequence r = s0, . . . , sn of states in S such that s0 ∈ S0, and
(si, ai, si+1) ∈ ρ, for 0 ≤ i < n. The run r is accepting if sn ∈ F . The word w is
accepted by A if A has an accepting run on w. The language of A, denoted L(A),
is the set of words accepted byA. The class of languages accepted by NFWs forms
the class of regular languages, which are defined in terms of regular expressions.
This class is extremely robust and has numerous equivalent representations [6].

Example 1. We describe graphically below an NFW that accepts all words over
the alphabet {0, 1} that end with an occurrence of 1. The arrow on the left
designates the initial state, and the circle on the right designates an accepting
state.

We now view a finite word w = a0, . . . , an−1 over an alphabet Σ as a relational
structure Mw, with the domain of 0, . . . , n− 1 ordered by the binary relation <,
and the unary relations {Pa : a ∈ Σ}, with the interpretation that Pa(i) holds
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precisely when ai = a. We refer to such structures as word structures. We now
use first-order logic (FO) to talk about such words. For example, the sentence

(∃x)((∀y)(¬(x < y)) ∧ Pa(x))

says that the last letter of the word is a. We say that such a sentence is over the
alphabet Σ.

Going beyond FO, we obtain monadic second-order logic (MSO), in which we
can have monadic second-order quantifiers of the form ∃Q, ranging over subsets
of the domain, and giving rise to new atomic formulas of the form Q(x). Given
a sentence ϕ in MSO, its set of models models(ϕ) is a set of words. Note that
this logic extends Skolem’s logic with the addition of the linear order <.

The fundamental connection between logic and automata is now given by the
following theorem, discovered independently by Büchi, Elgot, and Trakhtenbrot.

Theorem 1. [7,8,9,10,11,12] Given an MSO sentence ϕ over alphabet Σ, one
can construct an NFW Aϕ with alphabet Σ such that a word w in Σ∗ is accepted
by Aϕ iff ϕ holds in the word structure Mw. Conversely, given an NFW A with
alphabet Σ, one can construct an MSO sentence ϕA over Σ such that ϕA holds
in a word structure Mw iff w is accepted by A.

Thus, the class of languages defined by MSO sentences is precisely the class of
regular languages.

To decide whether a sentence ϕ is satisfiable, that is, whether models(ϕ) �= ∅,
we need to check that L(Aϕ) �= ∅. This turns out to be an easy problem. Let
A = (Σ,S, S0, ρ, F ) be an NFW. Construct a directed graph GA = (S,EA),
with S as the set of nodes, and EA = {(s, t) : (s, a, t) ∈ ρ for some a ∈ Σ}. The
following lemma is implicit in [7,8,9,10] and more explicit in [13].

Lemma 1. L(A) �= ∅ iff there are states s0 ∈ S0 and t ∈ F such that in GA
there is a path from s0 to t.

We thus obtain an algorithm for the Satisfiability problem of MSO over word
structures: given an MSO sentence ϕ, construct the NFW Aϕ and check whether
L(A) �= ∅ by finding a path from an initial state to an accepting state. This ap-
proach to satisfiability checking is referred to as the automata-theoretic approach,
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since the decision procedure proceeds by first going from logic to automata, and
then searching for a path in the constructed automaton.

There was little interest in the 1950s in analyzing the computational complex-
ity of the Satisfiability problem. That had to wait until 1974. Define the func-
tion exp(k, n) inductively as follows: exp(0, n) = n and exp(k+1, n) = 2exp(k,n).
We say that a problem is nonelementary if it can not be solved by an algorithm
whose running time is bounded by exp(k, n) for some fixed k ≥ 0; that is, the
running time cannot be bounded by a tower of exponentials of a fixed height.
It is not too difficult to observe that the construction of the automaton Aϕ in
[7,8,9,10] involves a blow-up of exp(n, n), where n is the length of the MSO sen-
tence being decided. It was shown in [14,15] that the Satisfiability problem for
MSO is nonelementary. In fact, the problem is already nonelementary for FO [15].

1.3 Reasoning about Sequential Circuits

The field of hardware verification seems to have been started in a little known
1957 paper by Church, in which he described the use of logic to specify sequential
circuits [16]. A sequential circuit is a switching circuit whose output depends not
only upon its input, but also on what its input has been in the past. A sequential
circuit is a particular type of finite-state machine, which became a subject of
study in mathematical logic and computer science in the 1950s.

Formally, a sequential circuit C = (I,O,R, f, g, r0) consists of a finite set I of
Boolean input signals, a finite set O of Boolean output signals, a finite set R of
Boolean sequential elements, a transition function f : 2I × 2R → 2R, an output
function g : 2R → 2O, and an initial state r0 ∈ 2R. (We refer to elements of I ∪
O∪R as circuit elements, and assume that I, O, and R are disjoint.) Intuitively,
a state of the circuit is a Boolean assignment to the sequential elements. The
initial state is r0. In a state r ∈ 2R, the Boolean assignment to the output signals
is g(r). When the circuit is in state r ∈ 2R and it reads an input assignment
i ∈ 2I , it changes its state to f(i, r).

A trace over a set V of Boolean variables is an infinite word over the alphabet
2V , i.e., an element of (2V )ω. A trace of the sequential circuit C is a trace over
I ∪O ∪R that satisfies some conditions. Specifically, a sequence τ = (i0, r0,o0),
(i1, r1,o1), . . ., where ij ∈ 2I , oj ∈ 2O, and rj ∈ 2R, is a trace of C if rj+1 =
f(ij, rj) and oj = g(rj), for j ≥ 0. Thus, in modern terminology, Church was
following the linear-time approach [17] (see discussion in Section 2.1). The set
of traces of C is denoted by traces(C).

We saw earlier how to associate relational structures with words. We can
similarly associate with an infinite word w = a0, a1, . . . over an alphabet 2V , a
relational structure Mw = (IN,≤, V ), with the naturals IN as the domain, ordered
by <, and extended by the set V of unary predicates, where j ∈ p, for p ∈ V ,
precisely when p holds (i.e., is assigned 1) in ai.1 We refer to such structures as
infinite word structures. When we refer to the vocabulary of such a structure, we
refer explicitly only to V , taking < for granted.

1 We overload notation here and treat p as both a Boolean variable and a predicate.
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We can now specify traces using First-Order Logic (FO) sentences constructed
from atomic formulas of the form x = y, x < y, and p(x) for p ∈ V = I ∪R∪O.2

For example, the FO sentence

(∀x)(∃y)(x < y ∧ p(y))
says that p holds infinitely often in the trace. In a follow-up paper in 1963
[18], Church considered also specifying traces using monadic second-order logic
(MSO), where in addition to first-order quantifiers, which range over the ele-
ments of IN, we allow also monadic second-order quantifiers, ranging over subsets
of IN, and atomic formulas of the form Q(x), where Q is a monadic predicate
variable. (This logic is also called S1S, the “second-order theory of one successor
function”.) For example, the MSO sentence,

(∃P )(∀x)(∀y)((((P (x) ∧ y = x+ 1)→ (¬P (y)))∧
(((¬P (x)) ∧ y = x+ 1)→ P (y)))∧
(x = 0 → P (x)) ∧ (P (x) → q(x))),

where x = 0 is an abbrevaition for (¬(∃z)(z < x)) and y = x+ 1 is an abbrevia-
tion for (y > x∧¬(∃z)(x < z ∧ z < y)), says that q holds at every even point on
the trace. In effect, Church was proposing to use classical logic (FO or MSO) as
a logic of time, by focusing on infinite word structures. The set of infinite models
of an FO or MSO sentence ϕ is denoted by modelsω(ϕ).

Church posed two problems related to sequential circuits [16]:

– The Decision problem: Given circuit C and a sentence ϕ, does ϕ hold in
all traces of C? That is, does traces(C) ⊆ models(ϕ) hold?

– The Synthesis problem: Given sets I and O of input and output signals,
and a sentence ϕ over the vocabulary I∪O, construct, if possible, a sequential
circuit C with input signals I and output signals O such that ϕ holds in all
traces of C. That is, construct C such that traces(C) ⊆ models(ϕ) holds.

In modern terminology, Church’s Decision problem is the model-checking

problem in the linear-time approach (see Section 2.2). This problem did not
receive much attention after [16,18], until the introduction of model checking in
the early 1980s. In contrast, the Synthesis problem has remained a subject of
ongoing research; see [19,20,21,22,23]. One reason that the Decision problem did
not remain a subject of study, is the easy observation in [18] that the Decision

problem can be reduced to the validity problem in the underlying logic (FO
or MSO). Given a sequential circuit C, we can easily generate an FO sentence
αC that holds in precisely all structures associated with traces of C. Intuitively,
the sentence αC simply has to encode the transition and output functions of
C, which are Boolean functions. Then ϕ holds in all traces of C precisely when
αC → ϕ holds in all word structures (of the appropriate vocabulary). Thus, to
solve the Decision problem we need to solve the Validity problem over word
structures. As we see next, this problem was solved in 1962.
2 We overload notation here and treat p as both a circuit element and a predicate

symbol.
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1.4 Reasoning about Infinite Words

Church’s Decision problem was essentially solved in 1962 by Büchi who showed
that the Validity problem over infinite word structures is decidable [24]. Ac-
tually, Büchi showed the decidability of the dual problem, which is the Sat-

isfiability problem for MSO over infinite word structures. Büchi’s approach
consisted of extending the automata-theoretic approach, see Theorem 1, which
was introduced a few years earlier for word structures, to infinite word struc-
tures. To that end, Büchi extended automata theory to automata on infinite
words.

A nondeterministic Büchi automaton on words (NBW) A = (Σ,S, S0, ρ, F )
consists of a finite input alphabet Σ, a finite state set S, an initial state set S0 ⊆
S, a transition relation ρ ⊆ S×Σ×S, and an accepting state set F ⊆ S. An NBW
runs over an infinite input word w = a0, a1, . . . ∈ Σω. A run of A on w is an infi-
nite sequence r = s0, s1, . . . of states in S such that s0 ∈ S0, and (si, ai, si+1) ∈ ρ,
for i ≥ 0. The run r is accepting if F is visited by r infinitely often; that is, si ∈ F
for infinitely many i’s. The word w is accepted by A if A has an accepting run
on w. The infinitary language of A, denoted Lω(A), is the set of infinite words
accepted by A. The class of languages accepted by NBWs forms the class of ω-
regular languages, which are defined in terms of regular expressions augmented
with the ω-power operator (eω denotes an infinitary iteration of e) [24].

Example 2. We describe graphically an NBW that accepts all words over the
alphabet {0, 1} that contain infinitely many occurrences of 1. The arrow on the
left designates the initial state, and the circle on the right designates an accept-
ing state. Note that this NBW looks exactly like the NFW in Example 1. The
only difference is that in Example 1 we considered finite input words and here
we are considering infinite input words.

0

1
1

0

As we saw earlier, the paradigmatic idea of the automata-theoretic approach is
that we can compile high-level logical specifications into an equivalent low-level
finite-state formalism.

Theorem 2. [24] Given an MSO sentence ϕ with vocabulary V , one can con-
struct an NBW Aϕ with alphabet 2V such that a word w in (2V )ω is accepted
by Aϕ iff ϕ holds in the word structure Mw. Conversely, given an NBW A with
alphabet 2V , one can construct an MSO sentence ϕA with vocabulary V such
that ϕA holds in an infinite word structure Mw iff w is accepted by A.
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Thus, the class of languages defined by MSO sentences is precisely the class of
ω-regular languages.

To decide whether sentence ϕ is satisfiable over infinite words, that is, whether
modelsω(ϕ) �= ∅, we need to check that Lω(Aϕ) �= ∅. Let A = (Σ,S, S0, ρ, F ) be
an NBW. As with NFWs, construct a directed graph GA = (S,EA), with S as
the set of nodes, and EA = {(s, t) : (s, a, t) ∈ ρ for some a ∈ Σ}. The following
lemma is implicit in [24] and more explicit in [25].

Lemma 2. Lω(A) �= ∅ iff there are states s0 ∈ S0 and t ∈ F such that in GA
there is a path from s0 to t and a path from t to itself.

We thus obtain an algorithm for the Satisfiability problem of MSO over infi-
nite word structures: given an MSO sentence ϕ, construct the NBW Aϕ and check
whether Lω(A) �= ∅ by finding a path from an initial state to an accepting state
and a cycle through that accepting state. Since the Decision problem can be re-
duced to the Satisfiability problem, this also solves the Decision problem.

Neither Büchi nor Church analyzed the complexity of the Decision prob-
lem. The non-elementary lower bound mentioned earlier for MSO over words
can be easily extended to infinite words. The upper bound here is a bit more
subtle. For both finite and infinite words, the construction of Aϕ proceeds by
induction on the structure of ϕ, with complementation being the difficult step.
For NFW, complementation uses the subset construction, which involves a blow-
up of 2n [13,26]. Complementation for NBW is significantly more involved, see
[27]. The blow-up of complementation is 2Θ(n logn), but there is still a gap be-
tween the known upper and lower bounds. At any rate, this yields a blow-up of
exp(n, n logn) for the translation from MSO to NBW.

2 Thread II: Temporal Logic

2.1 From Aristotle to Kamp

The history of time in logic goes back to ancient times.3 Aristotle pondered
how to interpret sentences such as “Tomorrow there will be a sea fight,” or
“Tomorrow there will not be a sea fight.” Medieval philosophers also pondered
the issue of time.4 By the Renaissance period, philosophical interest in the logic
3 For a detailed history of temporal logic from ancient times to the modern period,

see [28].
4 For example, William of Ockham, 1288–1348, wrote (rather obscurely for the modern

reader): “Wherefore the difference between present tense propositions and past and
future tense propositions is that the predicate in a present tense proposition stands
in the same way as the subject, unless something added to it stops this; but in a past
tense and a future tense proposition it varies, for the predicate does not merely stand
for those things concerning which it is truly predicated in the past and future tense
propositions, because in order for such a proposition to be true, it is not sufficient
that that thing of which the predicate is truly predicated (whether by a verb in the
present tense or in the future tense) is that which the subject denotes, although it is
required that the very same predicate is truly predicated of that which the subject
denotes, by means of what is asserted by such a proposition.”
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of time seems to have waned. There were some stirrings of interest in the 19th
century, by Boole and Peirce. Peirce wrote:

“Time has usually been considered by logicians to be what is called ‘extra-
logical’ matter. I have never shared this opinion. But I have thought that
logic had not yet reached the state of development at which the introduc-
tion of temporal modifications of its forms would not result in great con-
fusion; and I am much of that way of thinking yet.”

There were also some stirrings of interest in the first half of the 20th century,
but the birth of modern temporal logic is unquestionably credited to Prior. Prior
was a philosopher, who was interested in theological and ethical issues. His own
religious path was somewhat convoluted; he was born a Methodist, converted
to Presbytarianism, became an atheist, and ended up an agnostic. In 1949, he
published a book titled “Logic and The Basis of Ethics”. He was particularly
interested in the conflict between the assumption of free will (“the future is to
some extent, even if it is only a very small extent, something we can make for
ourselves”), foredestination (“of what will be, it has now been the case that it
will be”), and foreknowledge (“there is a deity who infallibly knows the entire
future”). He was also interested in modal logic [29]. This confluence of interests
led Prior to the development of temporal logic. 5 His wife, Mary Prior, recalled
after his death:

“I remember his waking me one night [in 1953], coming and sitting on
my bed, . . ., and saying he thought one could make a formalised tense
logic.”

Prior lectured on his new work when he was the John Locke Lecturer at the
University of Oxford in 1955–6, and published his book “Time and Modality” in
1957 [31].6 In this book, he presented a temporal logic that is propositional logic
extended with two temporal connectives, F and P , corresponding to “sometime
in the future” and “sometime in the past”. A crucial feature of this logic is that
it has an implicit notion of “now”, which is treated as an indexical, that is, it
depends on the context of utterance for its meaning. Both future and past are
defined with respect to this implicit “now”.

It is interesting to note that the linear vs. branching time dichotomy, which
has been a subject of some controversy in the computer science literature since
1980 (see [32]), has been present from the very beginning of temporal-logic de-
velopment. In Prior’s early work on temporal logic, he assumed that time was
linear. In 1958, he received a letter from Kripke,7 who wrote
5 An earlier term was tense logic; the term temporal logic was introduced in [30]. The

technical distinction between the two terms seems fuzzy.
6 Due to the arcane infix notation of the time, the book may not be too ac-

cessible to modern readers, who may have difficulties parsing formulas such as
CKMpMqAMKpMqMKqMp.

7 Kripke was a high-school student, not quite 18, in Omaha, Nebraska. Kripke’s inter-
est in modal logic was inspired by a paper by Prior on this subject [33]. Prior turned
out to be the referee of Kripke’s first paper [34].
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“In an indetermined system, we perhaps should not regard time as a
linear series, as you have done. Given the present moment, there are
several possibilities for what the next moment may be like – and for each
possible next moment, there are several possibilities for the moment after
that. Thus the situation takes the form, not of a linear sequence, but of
a ‘tree’.”

Prior immediately saw the merit of Kripke’s suggestion: “the determinist sees
time as a line, and the indeterminist sees times as a system of forking paths.” He
went on to develop two theories of branching time, which he called “Ockhamist”
and “Peircean”. (Prior did not use path quantifiers; those were introduced later,
in the 1980s. See Section 3.2.)

While the introduction of branching time seems quite reasonable in the con-
text of trying to formalize free will, it is far from being simple philosophically.
Prior argued that the nature of the course of time is branching, while the nature
of a course of events is linear [35]. In contrast, it was argued in [30] that the
nature of time is linear, but the nature of the course of events is branching: “We
have ‘branching in time,’ not ‘branching of time’.”8

During the 1960s, the development of temporal logic continued through both
the linear-time approach and the branching-time approach. There was little con-
nection, however, between research on temporal logic and research on classical
logics, as described in Section 1. That changed in 1968, when Kamp tied together
the two threads in his doctoral dissertation.

Theorem 3. [36] Linear temporal logic with past and binary temporal connec-
tives (“strict until” and “strict since”) has precisely the expressive power of FO
over the ordered naturals (with monadic vocabularies).

It should be noted that Kamp’s Theorem is actually more general and asserts
expressive equivalence of FO and temporal logic over all “Dedekind-closed or-
ders”. The introduction of binary temporal connectives by Kamp was necessary
for reaching the expressive power of FO; unary linear temporal logic, which has
only unary temporal connectives, is weaker than FO [37]. The theorem refers
to FO formulas with one free variable, which are satisfied at an element of a
structure, analogously to temporal logic formulas, which are satisfied at a point
of time.

It should be noted that one direction of Kamp’s Theorem, the translation from
temporal logic to FO, is quite straightforward; the hard direction is the trans-
lation from FO to temporal logic. Both directions are algorithmically effective;
translating from temporal logic to FO involves a linear blowup, but translation
in the other direction involves a nonelementary blowup.

If we focus on FO sentences rather than FO formulas, then they define
sets of traces (a sentence ϕ defines models(ϕ)). A characterization of of the

8 One is reminded of St. Augustin, who said in his Confessions: “What, then, is time?
If no one asks me, I know; but if I wish to explain it to some who should ask me, I
do not know.”
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expressiveness of FO sentences over the naturals, in terms of their ability to
define sets of traces, was obtained in 1979.

Theorem 4. [38] FO sentences over naturals have the expressive power of ∗-free
ω-regular expressions.

Recall that MSO defines the class of ω-regular languages. It was already shown
in [39] that FO over the naturals is weaker expressively than MSO over the
naturals. Theorem 4 was inspired by an analogous theorem in [40] for finite
words.

2.2 The Temporal Logic of Programs

There were some early observations that temporal logic can be applied to pro-
grams. Prior stated: “There are practical gains to be had from this study too, for
example, in the representation of time-delay in computer circuits” [35]. Also, a
discussion of the application of temporal logic to processes, which are defined as
“programmed sequences of states, deterministic or stochastic” appeared in [30].

The “big bang” for the application of temporal logic to program correctness
occurred with Pnueli’s 1977 paper [41]. In this paper, Pnueli, inspired by [30],
advocated using future linear temporal logic (LTL) as a logic for the specification
of non-terminating programs; see overview in [42].

LTL is a temporal logic with two temporal connectives, “next” and “until”.9 In
LTL, formulas are constructed from a set Prop of atomic propositions using the
usual Boolean connectives as well as the unary temporal connective X (“next”),
and the binary temporal connective U (“until”). Additional unary temporal
connectives F (“eventually”), and G (“always”) can be defined in terms of U .
Note that all temporal connectives refer to the future here, in contrast to Kamp’s
“strict since” operator, which refers to the past. Thus, LTL is a future temporal
logic. For extensions with past temporal connectives, see [43,44,45].

LTL is interpreted over traces over the set Prop of atomic propositions. For
a trace τ and a point i ∈ IN, the notation τ, i |= ϕ indicates that the formula ϕ
holds at the point i of the trace τ . Thus, the point i is the implicit “now” with
respect to which the formula is interpreted. We have that

– τ, i |= p if p holds at τ(i),
– τ, i |= Xϕ if τ, i+ 1 |= ϕ, and
– τ, i |= ϕUψ if for some j ≥ i, we have τ, j |= ψ and for all k, i ≤ k < j, we

have τ, k |= ϕ.

The temporal connectives F and G can be defined in terms of the temporal
connective U ; Fϕ is defined as true Uϕ, and Gϕ is defined as ¬F¬ϕ. We say
that τ satisfies a formula ϕ, denoted τ |= ϕ, iff τ, 0 |= ϕ. We denote by models(ϕ)
the set of traces satisfying ϕ.
9 Unlike Kamp’s “strict until” (“p strict until q” requires q to hold in the strict future),

Pnueli’s “until” is not strict (“p until q” can be satisfied by q holding now), which
is why the “next” connective is required.
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As an example, the LTL formula G(request → F grant), which refers to
the atomic propositions request and grant, is true in a trace precisely when
every state in the trace in which request holds is followed by some state in the
(non-strict) future in which grant holds. Also, the LTL formula G(request →
(request U grant)) is true in a trace precisely if, whenever request holds in a
state of the trace, it holds until a state in which grant holds is reached.

The focus on satisfaction at 0, called initial semantics, is motivated by the
desire to specify computations at their starting point. It enables an alternative
version of Kamp’s Theorem, which does not require past temporal connectives,
but focuses on initial semantics.

Theorem 5. [46] LTL has precisely the expressive power of FO over the ordered
naturals (with monadic vocabularies) with respect to initial semantics.

As we saw earlier, FO has the expressive power of star-free ω-regular expressions
over the naturals. Thus, LTL has the expressive power of star-free ω-regular
expressions (see [47]), and is strictly weaker than MSO. An interesting outcome
of the above theorem is that it lead to the following assertion regarding LTL
[48]: “The corollary due to Meyer – I have to get in my controversial remark – is
that that [Theorem 5] makes it theoretically uninteresting.” Developments since
1980 have proven this assertion to be overly pessimistic on the merits of LTL.

Pnueli also discussed the analog of Church’s Decision problem: given a finite-
state program P and an LTL formula ϕ, decide if ϕ holds in all traces of P . Just
like Church, Pnueli observed that this problem can be solved by reduction to
MSO. Rather than focus on sequential circuits, Pnueli focused on programs, mod-
eled as (labeled) transition systems [49]. A transition system M = (W,W0, R, V )
consists of a set W of states that the system can be in, a set W0 ⊆W of initial
states, a transition relation R ⊆ W 2 that indicates the allowable state transi-
tions of the system, and an assignment V : W → 2Prop of truth values to the
atomic propositions in each state of the system. (A transition system is essen-
tially a Kripke structure [50].) A path in M that starts at u is a possible infinite
behavior of the system starting at u, i.e., it is an infinite sequence u0, u1 . . . of
states in W such that u0 = u, and (ui, ui+1) ∈ R for all i ≥ 0. The sequence
V (u0), V (u1) . . . is a trace of M that starts at u. It is the sequence of truth
assignments visited by the path. The language of M , denoted L(M), consists
of all traces of M that start at a state in W0. Note that L(M) is a language
of infinite words over the alphabet 2Prop. The language L(M) can be viewed as
an abstract description of the system M , describing all possible traces. We say
that M satisfies an LTL formula ϕ if all traces in L(M) satisfy ϕ, that is, if
L(M) ⊆ models(ϕ). When W is finite, we have a finite-state system, and can
apply algorithmic techniques.

What about the complexity of LTL reasoning? Recall from Section 1 that
satisfiability of FO over trace structures is nonelementary. In contrast, it was
shown in [51,52,53,54,55,56,57] that LTL Satisfiability is elementary; in fact,
it is PSPACE-complete. It was also shown that the Decision problem for LTL
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with respect to finite transition systems is PSPACE-complete [53,54,55]. The
basic technique for proving these elementary upper bounds is the tableau tech-
nique, which was adapted from dynamic logics [58] (see Section 3.1). Thus, even
though FO and LTL are expressively equivalent, they have dramatically different
computational properties, as LTL reasoning is in PSPACE, while FO reasoning
is nonelementary.

The second “big bang” in the application of temporal logic to program cor-
rectness was the introduction of model checking by Clarke and Emerson [59] and
by Queille and Sifakis [60]. The two papers used two different branching-time
logics. Clarke and Emerson used CTL (inspired by the branching-time logic UB
of [61]), which extends LTL with existential and universal path quantifiers E and
A. Queille and Sifakis used a logic introduced by Leslie Lamport [17], which ex-
tends propositional logic with the temporal connectives POT (which corresponds
to the CTL operator EF ) and INEV (which corresponds to the CTL opera-
tor AF ). The focus in both papers was on model checking, which is essentially
what Church called the Decision problem: does a given finite-state program,
viewed as a finite transition system, satisfy its given temporal specification. In
particular, Clarke and Emerson showed that model checking transition systems
of size m with respect to formulas of size n can be done in time polynomial
in m and n. This was refined later to O(mn) (even in the presence of fairness
constraints, which restrict attention to certain infinite paths in the underlying
transition system) [62,63]. We drop the term “Decision problem” from now on,
and replace it with the term “Model-Checking problem”.10

It should be noted that the linear complexity of model checking refers to the
size of the transition system, rather than the size of the program that gave rise to
that system. For sequential circuits, transition-system size is essentially exponen-
tial in the size of the description of the circuit (say, in some Hardware Description
Language). This is referred to as the “state-explosion problem” [65]. In spite of
the state-explosion problem, in the first few years after the publication of the
first model-checking papers in 1981-2, Clarke and his students demonstrated that
model checking is a highly successful technique for automated program verifica-
tion [66,67]. By the late 1980s, automated verification had become a recognized
research area. Also by the late 1980s, symbolic model checking was developed
[68,69], and the SMV tool, developed at CMU by McMillan [70], was starting to
have an industrial impact. See [71] for more details.

The detailed complexity analysis in [62] inspired a similar detailed analysis of
linear time model checking. It was shown in [72] that model checking transition
systems of size m with respect to LTL formulas of size n can be done in time
m2O(n). (This again was shown using a tableau-based technique.) While the
bound here is exponential in n, the argument was that n is typically rather
small, and therefore an exponential bound is acceptable.

10 The model-checking problem is analogous to database query evaluation, where we
check the truth of a logical formula, representing a query, with respect to a database,
viewed as a finite relational structure. Interestingly, the study of the complexity of
database query evaluation started about the same time as that of model checking [64].
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2.3 Back to Automata

Since LTL can be translated to FO, and FO can be translated to NBW, it is
clear that LTL can be translated to NBW. Going through FO, however, would
incur, in general, a nonelementary blowup. In 1983, Wolper, Sistla, and I showed
that this nonelementary blowup can be avoided.

Theorem 6. [73,74] Given anLTL formulaϕ of sizen, one can construct an NBW
Aϕ of size 2O(n) such that a trace σ satisfies ϕ if and only if σ is accepted by Aϕ.

It now follows that we can obtain a PSPACE algorithm for LTL Satisfiability:
given an LTL formula ϕ, we constructAϕ and check that Aϕ �= ∅ using the graph-
theoretic approach described earlier. We can avoid using exponential space, by
constructing the automaton on the fly [73,74].

What about model checking? We know that a transition system M satisfies
an LTL formula ϕ if L(M) ⊆ models(ϕ). It was then observed in [75] that the
following are equivalent:

– M satisfies ϕ
– L(M) ⊆ models(ϕ)
– L(M) ⊆ L(Aϕ)
– L(M) ∩ ((2Prop)ω − L(Aϕ)) = ∅
– L(M) ∩ L(A¬ϕ) = ∅
– L(M ×A¬ϕ) = ∅

Thus, rather than complementing Aϕ using an exponential complementation
construction [24,76,77], we complement the LTL property using logical negation.
It is easy to see that we can now get the same bound as in [72]: model checking
programs of size m with respect to LTL formulas of size n can be done in time
m2O(n). Thus, the optimal bounds for LTL satisfiability and model checking can
be obtained without resorting to ad-hoc tableau-based techniques; the key is the
exponential translation of LTL to NBW.

One may wonder whether this theory is practical. Reduction to practice took
over a decade of further research, which saw the development of

– an optimized search algorithm for explicit-state model checking [78,79],
– a symbolic, BDD-based11 algorithm for NBW nonemptiness [68,69,81],
– symbolic algorithms for LTL to NBW translation [68,69,82], and
– an optimized explicit algorithm for LTL to NBW translation [83].

By 1995, there were two model-checking tools that implemented LTL model
checking via the automata-theoretic approach: Spin [84] is an explicit-state LTL
model checker, and Cadence’s SMV is a symbolic LTL model checker.12 See [85]
for a description of algorithmic developments since the mid 1990s. Additional
tools today are VIS [86], NuSMV [87], and SPOT [88].
11 To be precise, one should use the acronym ROBDD, for Reduced Ordered Binary

Decision Diagrams [80].
12 Cadence’s SMV is also a CTL model checker. See

www.cadence.com/webforms/cbl software/index.aspx.

www.cadence.com/webforms/cbl_software/index.aspx
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It should be noted that Kurshan developed the automata-theoretic approach
independently, also going back to the 1980s [89,90,91]. In his approach (as also
in [92,74]), one uses automata to represent both the system and its specification
[93].13 The first implementation of COSPAN, a model-checking tool that is based
on this approach [94], also goes back to the 1980s; see [95].

2.4 Enhancing Expressiveness

Can the development of LTL model checking [72,75] be viewed as a satisfactory so-
lution to Church’sDecision problem? Almost, but not quite, since, as we observed
earlier, LTL is not as expressive as MSO, which means that LTL is expressively
weaker than NBW. Why do we need the expressive power of NBWs? First, note
that once we add fairness to transitions systems (sse [62,63]), they can be viewed
as variants ofNBWs. Second, there are good reasons to expect the specification lan-
guage to be as expressive as the underlying model of programs [96]. Thus, achieving
the expressive power of NBWs, which we refer to asω-regularity, is a desirable goal.
This motivated efforts since the early 1980s to extend LTL.

The first attempt along this line was made by Wolper [56,57], who defined ETL
(for Extended Temporal Logic), which is LTL extended with grammar operators.
He showed that ETL is more expressive than LTL, while its Satisfiability

problem can still be solved in exponential time (and even PSPACE [53,54,55]).
Then, Sistla, Wolper and I showed how to extend LTL with automata connec-
tives, reaching ω-regularity, without losing the PSPACE upper bound for the
Satisfiability problem [73,74]. Actually, three syntactical variations, denoted
ETLf , ETLl, and ETLr were shown to be expressively equivalent and have these
properties [73,74].

Two other ways to achieve ω-regularity were discovered in the 1980s. The
first is to enhance LTL with monadic second-order quantifiers as in MSO, which
yields a logic, QPTL, with a nonelementary Satisfiability problem [97,77].
The second is to enhance LTL with least and greatest fixpoints [98,99], which
yields a logic, µLTL, that achieves ω-regularity, and has a PSPACE upper bound
on its Satisfiability and Model-Checking problems [99]. For example, the
(not too readable) formula

(νP )(µQ)(P ∧X(p ∨Q)),

where ν and µ denote greatest and least fixpoint operators, respectively, is equiv-
alent to the LTL formula GFp, which says that p holds infinitely often.

3 Thread III: Dynamic and Branching-Time Logics

3.1 Dynamic Logics

In 1976, a year before Pnueli proposed using LTL to specify programs, Pratt
proposed using dynamic logic, an extension of modal logic, to specify programs
13 The connection to automata is somewhat difficult to discern in the early papers

[89,90].
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[100].14 In modal logic �ϕ means that ϕ holds in all worlds that are possible with
respect to the current world [50]. Thus, �ϕ can be taken to mean that ϕ holds af-
ter an execution of a program step, taking the transition relation of the program
to be the possibility relation of a Kripke structure. Pratt proposed the addition
of dynamic modalities [e]ϕ, where e is a program, which asserts that ϕ holds in
all states reachable by an execution of the program e. Dynamic logic can then be
viewed as an extension of Hoare logic, since ψ → [e]ϕ corresponds to the Hoare
triple {ψ}e{ϕ} (see [106]). See [105] for an extensive coverage of dynamic logic.

In 1977, a propositional version of Pratt’s dynamic logic, called PDL, was pro-
posed, in which programs are regular expressions over atomic programs [107,108].
It was shown there that the Satisfiability problem for PDL is in NEXPTIME
and EXPTIME-hard. Pratt then proved an EXPTIME upper bound, adapting
tableau techniques from modal logic [58,109]. (We saw earlier that Wolper then
adapted these techniques to linear-time logic.)

Pratt’s dynamic logic was designed for terminating programs, while Pnueli was
interested in nonterminating programs. This motivated various extensions of dy-
namic logic to nonterminating programs [110,111,112,113]. Nevertheless, these
logics are much less natural for the specification of ongoing behavior than tem-
poral logic. They inspired, however, the introduction of the (modal) µ-calculus
by Kozen [114,115]. The µ-calculus is an extension of modal logic with least and
greatest fixpoints. It subsumes expressively essentially all dynamic and temporal
logics [116]. Kozen’s paper was inspired by previous papers that showed the use-
fulness of fixpoints in characterizing correctness properties of programs [117,118]
(see also [119]). In turn, the µ-calculus inspired the introduction of µLTL, men-
tioned earlier. The µ-calculus also played an important role in the development
of symbolic model checking [68,69,81].

3.2 Branching-Time Logics

Dynamic logic provided a branching-time approach to reasoning about programs,
in contrast to Pnueli’s linear-time approach. Lamport was the first to study the
dichotomy between linear and branching time in the context of program cor-
rectness [17]. This was followed by the introduction of the branching-time logic
UB, which extends unary LTL (LTL without the temporal connective “until”)
with the existential and universal path quantifiers, E and A [61]. Path quan-
tifiers enable us to quantify over different future behavior of the system. By
adapting Pratt’s tableau-based method for PDL to UB, it was shown that its
Satisfiability problem is in EXPTIME [61]. Clarke and Emerson then added
the temporal conncetive “until” to UB and obtained CTL [59]. (They did not
focus on the Satisfiability problem for CTL, but, as we saw earlier, on its
Model-Checking problem; the Satisfiability problem was shown later to
be solvable in EXPTIME [120].) Finally, it was shown that LTL and CTL have
incomparable expressive power, leading to the introduction of the branching-time
logic CTL∗, which unifies LTL and CTL [121,122].
14 See discussion of precursor and related developments, such as [101,102,103,104], in

[105].



104 M.Y. Vardi

The key feature of branching-time logics in the 1980s was the introduction
of explicit path quantifiers in [61]. This was an idea that was not discovered by
Prior and his followers in the 1960s and 1970s. Most likely, Prior would have
found CTL∗ satisfactory for his philosophical applications and would have seen
no need to introduce the “Ockhamist” and “Peircean” approaches.

3.3 Combining Dynamic and Temporal Logics

By the early 1980s it became clear that temporal logics and dynamic logics provide
two distinct perspectives for specifying programs: the first is state based, while the
second is action based. Various efforts have been made to combine the two ap-
proaches. These include the introduction of Process Logic [123] (branching time),
Yet Another Process Logic [124] (branching time), Regular Process Logic [125] (lin-
ear time), Dynamic LTL [126] (linear time), and RCTL [127] (branching time),
which ultimately evolved into Sugar [128]. RCTL/Sugar is unique among these
logics in that it did not attempt to borrow the action-based part of dynamic logic.
It is a state-based branching-time logic with no notion of actions. Rather, what
it borrowed from dynamic logic was the use of regular-expression-based dynamic
modalities. Unlike dynamic logic, which uses regular expressions over program
statements, RCTL/Sugar uses regular expressions over state predicates, analo-
gously to the automata of ETL [73,74], which run over sequences of formulas.

4 Thread IV: From LTL to ForSpec, PSL, and SVA

In the late 1990s and early 2000s, model checking was having an increasing
industrial impact. That led to the development of three industrial temporal
logics based on LTL: ForSpec, developed by Intel, and PSL and SVA, developed
by industrial standards committees.

4.1 From LTL to ForSpec

Intel’s involvement with model checking started in 1990, when Kurshan, spend-
ing a sabbatical year in Israel, conducted a successful feasibility study at the
Intel Design Center (IDC) in Haifa, using COSPAN, which at that point was
a prototype tool; see [95]. In 1992, IDC started a pilot project using SMV. By
1995, model checking was used by several design projects at Intel, using an inter-
nally developed model checker based on SMV. Intel users have found CTL to be
lacking in expressive power and the Design Technology group at Intel developed
its own specification language, FSL. The FSL language was a linear-time logic,
and it was model checked using the automata-theoretic approach, but its design
was rather ad-hoc, and its expressive power was unclear; see [129].

In 1997, Intel’s Design Technology group at IDC embarked on the development
of a second-generation model-checking technology. The goal was to develop a
model-checking engine from scratch, as well as a new specification language. A
BDD-based model checker was released in 1999 [130], and a SAT-based model
checker was released in 2000 [131].
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I got involved in the design of the second-generation specification language in
1997. That language, ForSpec, was released in 2000 [132]. The first issue to be
decided was whether the language should be linear or branching. This led to an
in-depth examination of this issue [32], and the decision was to pursue a linear-
time language. An obvious candidate was LTL; we saw that by the mid 1990s
there were both explicit-state and symbolic model checkers for LTL, so there was
no question of feasibility. I had numerous conversations with L. Fix, M. Hadash,
Y. Kesten, and M. Sananes on this issue. The conclusion was that LTL is not
expressive enough for industrial usage. In particular, many properties that are
expressible in FSL are not expressible in LTL. Thus, it turned out that the
theoretical considerations regarding the expressiveness of LTL, i.e., its lack of ω-
regularity, had practical significance. I offered two extensions of LTL; as we saw
earlier both ETL and µLTL achieve ω-regularity and have the same complexity
as LTL. Neither of these proposals was accepted, due to the perceived difficulty
of usage of such logics by Intel validation engineers, who typically have only
basic familiarity with automata theory and logic.

These conversations continued in 1998, now with A. Landver. Avner also
argued that Intel validation engineers would not be receptive to the automata-
based formalism of ETL. Being familiar with RCTL/Sugar and its dynamic
modalities [128,127], he asked me about regular expressions, and my answer
was that regular expressions are equivalent to automata [6], so the automata
of ETLf , which extends LTL with automata on finite words, can be replaced
by regular expressions over state predicates. This lead to the development of
RELTL, which is LTL augmented by the dynamic regular modalities of dynamic
logic (interpreted linearly, as in ETL). Instead of the dynamic-logic notation
[e]ϕ, ForSpec uses the more readable (to engineers) (e triggers ϕ), where e is a
regular expression over state predicates (e.g., (p∨q)∗, (p∧q)), and ϕ is a formula.
Semantically, τ, i |= (e triggers ϕ) if, for all j ≥ i, if τ [i, j] (that is, the finite
word τ(i), . . . , τ(j)) “matches” e (in the intuitive formal sense), then τ, j |= ϕ;
see [133]. Using the ω-regularity of ETLf , it is now easy to show that RELTL
also achieves ω-regularity [132].

While the addition of dynamic modalities to LTL is sufficient to achieve ω-
regularity, we decided to also offer direct support to two specification modes
often used by verification engineers at Intel: clocks and resets. Both clocks and
resets are features that are needed to address the fact that modern semiconductor
designs consist of interacting parallel modules. While clocks and resets have a
simple underlying intuition, defining their semantics formally is quite nontrivial.
ForSpec is essentially RELTL, augmented with features corresponding to clocks
and resets, as we now explain.

Today’s semiconductor designs are still dominated by synchronous circuits.
In synchronous circuits, clock signals synchronize the sequential logic, providing
the designer with a simple operational model. While the asynchronous approach
holds the promise of greater speed (see [134]), designing asynchronous circuits is
significantly harder than designing synchronous circuits. Current design method-
ology attempts to strike a compromise between the two approaches by using
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multiple clocks. This results in architectures that are globally asynchronous but
locally synchronous. The temporal-logic literature mostly ignores the issue of
explicitly supporting clocks. ForSpec supports multiple clocks via the notion of
current clock. Specifically, ForSpec has a construct change on c ϕ, which states
that the temporal formula ϕ is to be evaluated with respect to the clock c; that
is, the formula ϕ is to be evaluated in the trace defined by the high phases of
the clock c. The key feature of clocks in ForSpec is that each subformula may
advance according to a different clock [132].

Another feature of modern designs’ consisting of interacting parallel modules
is the fact that a process running on one module can be reset by a signal coming
from another module. As noted in [135], reset control has long been a critical
aspect of embedded control design. ForSpec directly supports reset signals. The
formula accept on a ϕ states that the property ϕ should be checked only un-
til the arrival of the reset signal a, at which point the check is considered to
have succeeded. In contrast, reject on r ϕ states that the property ϕ should
be checked only until the arrival of the reset signal r, at which point the check
is considered to have failed. The key feature of resets in ForSpec is that each
subformula may be reset (positively or negatively) by a different reset signal; for
a longer discussion see [132].

ForSpec is an industrial property-specification language that supports
hardware-oriented constructs as well as uniform semantics for formal and dynamic
validation, while at the same time it has a well understood expressiveness (ω-
regularity) and computational complexity (Satisfiability and Model-

Checking problems have the same complexity for ForSpec as for LTL) [132]. The
design effort strove to find an acceptable compromise, with trade-offs clarified by
theory, between conflicting demands, such as expressiveness, usability, and imple-
mentability. Clocks and resets, both important to hardware designers, have a clear
intuitive semantics, but formalizing this semantics is nontrivial. The rigorous se-
mantics, however, not only enabled mechanical verification of various theorems
about the language, but also served as a reference document for the implemen-
tors. The implementation of model checking for ForSpec followed the automata-
theoretic approach, using alternating automata as advocated in [136] (see [137]).

4.2 From ForSpec to PSL and SVA

In 2000, the Electronic Design Automation Association instituted a standardiza-
tion body called Accellera.15 Accellera’s mission is to drive worldwide develop-
ment and use of standards required by systems, semiconductor and design tools
companies. Accellera decided that the development of a standard specification
language is a requirement for formal verification to become an industrial reality
(see [95]). Since the focus was on specifying properties of designs rather than de-
signs themselves, the chosen term was “property specification language” (PSL).
The PSL standard committee solicited industrial contributions and received four
language contributions: CBV, from Motorola, ForSpec, from Intel, Temporal e,
from Verisity [138], and Sugar, from IBM.
15 See http://www.accellera.org/

http://www.accellera.org/
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The committee’s discussions were quite fierce.16 Ultimately, it became clear
that while technical considerations play an important role, industrial committees’
decisions are ultimately made for business considerations. In that contention,
IBM had the upper hand, and Accellera chose Sugar as the base language for
PSL in 2003. At the same time, the technical merits of ForSpec were accepted
and PSL adopted all the main features of ForSpec. In essence, PSL (the current
version 1.1) is LTL, extended with dynamic modalities (referred to as the regu-
lar layer), clocks, and resets (called aborts). PSL did inherit the syntax of Sugar,
and does include a branching-time extension as an acknowledgment to Sugar.17

There was some evolution of PSL with respect to ForSpec. After some debate
on the proper way to define resets [140], ForSpec’s approach was essentially ac-
cepted after some reformulation [141]. ForSpec’s fundamental approach to clocks,
which is semantic, was accepted, but modified in some important details [142].
In addition to the dynamic modalities, borrowed from dynamic logic, PSL also
has weak dynamic modalities [143], which are reminiscent of “looping” modali-
ties in dynamic logic [110,144]. Today PSL 1.1 is an IEEE Standard 1850–2005,
and continues to be refined by the IEEE P1850 PSL Working Group.18

Practical use of ForSpec and PSL has shown that the regular layer (that is,
the dynamic modalities), is highly popular with verification engineers. Another
standardized property specification language, called SVA (for SystemVerilog As-
sertions), is based, in essence, on that regular layer [145].

5 Contemplation

This evolution of ideas, from Löwenheim and Skolem to PSL and SVA, seems
to me to be an amazing development. It reminds me of the medieval period,
when building a cathedral spanned more than a mason’s lifetime. Many masons
spend their whole lives working on a cathedral, never seeing it to completion. We
are fortunate to see the completion of this particular “cathedral”. Just like the
medieval masons, our contributions are often smaller than we’d like to consider
them, but even small contributions can have a major impact. Unlike the medieval
cathedrals, the scientific cathedral has no architect; the construction is driven
by a complex process, whose outcome is unpredictable. Much that has been
discovered is forgotten and has to be rediscovered. It is hard to fathom what our
particular “cathedral” will look like in 50 years.
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Abstract. We analyse two basic approaches of extending classical log-
ics with quantifiers interpreted via games: Propositional Game Logic of
Parikh and Alternating-Time Temporal Logic of Alur, Henzinger, and
Kupferman. Although the two approaches are historically remote and
they incorporate operationally orthogonal paradigms, we trace the for-
malisms back to common foundations and argue that they share remark-
able similarities in terms of expressive power.

1 Introduction

The metaphor of games is at the basis of a rich and intuitive language for reason-
ing about interaction. Over the past three decades, substantial efforts have been
made to integrate the elements of this language into logical formalisms (see [20]
for a comprehensive survey).

We discuss two basic approaches towards formal reasoning about games: the
Propositional Logic of Games introduced by Parikh [16] in 1983, which is the first
formalism to incorporate games into a logic of computation, and the framework
of Alternating-Time Temporal Logics of Alur, Henzinger, and Kupferman [2]
introduced 15 years later, which is arguably the most influential game-based
formalism in Computer-Science applications by today.

Both formalisms emerged from well-established logics for reasoning about
the dynamics of computation. Parikh’s Game Logic GL extends the Program
Dynamic Logic (PDL) of Fischer and Ladner [9] by adding a dualisation oper-
ation that turns the description of a program into one of an interactive pro-
tocol.1 The main representative of Alternating-Time Logics, ATL∗, generalises
the Computation-Tree Logic CTL∗ of Emerson and Halpern [8] to speak about
the course of events in a multi-agent system. The two formalisms at the out-
set represent different specification paradigms: PDL captures an internal view
on the execution of a program whereas CTL∗ reflects an external view on the
dynamics of a computation. Accordingly, PDL quantifies over relations between
program states, whereas CTL∗ quantifies over computation traces. Nevertheless,
when viewed as extensions of the basic monomodal logic K with recursion mech-
anisms [19], the two formalisms turn out to have similar expressive power: they
� This research was supported by the Deutsche Forschungsgemeinschaft (DFG), the Eu-

ropean COMBEST project, and the Indo-French research network Timed-DISCOVERI.
1 The term Game Logic with the abbreviation GL has also been used in [2] to denote

a formalism that is unrelated to Parikh’s Game Logic.
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can both be embedded into the second alternation level and into the two-variable
fragment of the µ-calculus; moreover, PDL with an additional loop-operator sub-
sumes CTL∗.

The casting of PDL and CTL∗ into logics of interaction occurs at two levels. At
a local level, the basic modal quantifier which ranges over possible outcomes of a
computation step is replaced in GL and ATL∗ with atomic-game operators asso-
ciated to the outcome of an interactive event. However, atomic games a priori do
not feature utilities; these arise only at a global level as winning conditions over
plays, i.e., sequences of interactive events. To build rules for forming plays and
winning conditions, GL and ATL∗ use logical constructs which largely preserve
their meaning from the underlying logics of computation: Boolean and linear-
time connectives, choice and iteration operators, and higher-order quantifiers
over sequences of events.

On a first view, GL and ATL∗ may be seen as formalisms for reasoning about
complex games composed from atomic ones. However, the analysis of rational
behaviour in a game embedded within another game is notoriously difficult, if
not hopeless. (Most of the questions raised 1971 in the seminal work of Howard
on metagames [13] have remained unsolved so far.) In fact, the logics we consider
do not pursue this aim; as the atomic games to which their semantics refer lack
utilities, they are not games in the strict sense, but rather game forms, that
is, descriptions of outcome functions. Essentially, both GL and ATL∗ lead a cut
between two basic elements of game-oriented reasoning: the local outcome of an
interactive event which is represented in the model, and the global utility drawn
from a sequence of events which is determined by the formula. This separation
between interdependent action and interactive decision-making reflects in the
fundamental semantic constructs of the two formalisms. In Game Logic, the du-
alisation operation corresponds to a swap of capabilities, rather than utilities,
between the players. In Alternating-Time Logics, atomic-game events are per-
formed by (coalitions of) agents that are not equipped with subjective utility
functions. The formal interpretation of these constructs sometimes contradicts
the game-theoretic intuition delivered by the natural-language description of the
logics. For a critical discussion on such aspects and recent approaches towards
defining more natural semantics for ATL∗, see [1] and [5].

Nevertheless, there is a sense in which GL and ATL∗ recover the proposition of
compositional game-based reasoning: the semantic games of these logics do arise
as compositions of atomic game forms via logical formulae. Semantic games, also
called model-checking games, are zero-sum games associated to the question of
whether a formula holds in a model or not [12]. Typically, there are two players,
a Verifier who performs existential choices (e.g., decomposition of disjunctions,
assignment of existentially quantified variables) and a Falsifier who performs
universal choices (e.g., decomposition of conjunction, assignment of universally
quantified variables); the Verifier can ensure to win if, and only if, the formula
holds in the model. The correspondence between logics of computation and their
semantic games is usually mediated via a specific automata model. For a general
background on model-checking via games and automata see [11].
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In this paper, we discuss terminological and technical challenges arising from
the combination of interactive and compositional reasoning. We put forward
the thesis that the formalisms of Game Logic and Alternating-Time Logics are
effectively confined to the scope of determined two-player games with perfect
information composed from atomic game forms. Game-theoretic concepts beyond
this scope, e.g., those inherent to non-zero-sum games, imperfect information,
or to games with more than two players essentially cannot be captured.2 To
substantiate this claim, we argue that the model-checking games for GL and
ATL∗ —which characterise their semantics— are determined two-player games
with perfect information.

The first part of the paper, Section 2, details the concept of an atomic game
which is at the basis of the semantics of the two logics. We introduce distinct
terms for notions that tend to be confounded in the literature. We maintain that
a partial description of a game which lacks a utility function shall be called a
game form. Likewise, an actor who can choose an action but who is not equipped
with a utility function shall rather be called agent than player. We introduce the
notion of an untyped game to denote abstract descriptions of interactive situation
where actions are not yet assigned to the players. This representation subsumes
the notions of effectivity function and that of concurrent game which underlie
the semantics of Game Logic and Alterntating-Time Logics, respectively.

The definition of GL and ATL∗ is deliberately postponed until the termino-
logical issues are settled. Originally, the semantics of the two logics is defined on
different kinds of models: neighbourhood structures, or Montague-Scott models,
and concurrent game structures. We introduce a common interpretation domain
of extensive game structures based on untyped game forms, which generalise
both neighbourhood and concurrent game structures. In Section 3, we present
the semantics of GL and ATL∗. To relate their expressive power, we show that
ATL∗ is invariant under replacing atomic game forms while preserving the ef-
fectivity. As a consequence, it follows that the meaning of a ATL∗-formula is
determined by its meaning over neighbourhood models, that is, over the inter-
pretation domain of GL-formulae. This invariance result relies on the notion of
sequentialisation of an untyped game form which represents the only scenarios
where choices are made and communicated to the other agents in a certain order.

Finally in Section 4, we introduce an automata-theoretic formalism that sub-
sumes both GL and ATL∗ to describe how the recursion mechanisms of GL and

2 This statement may seem to contradict the purpose of Alternating-Time Logics
which is motivated as a formalism for speaking about (concurrent) games with sev-
eral players. The contradiction can be traced back to a common terminological in-
accuracy. A player incorporates different functions in a game: he is an agent with
the capacity to perform actions, and, at the same time, he is a rational decision
maker able to choose which action to perform. When we have game models of com-
putational systems in mind, there are good reasons to distinguish between the two
functions. The range of actions available to a player is typically determined by the
design of the system whereas rational decisions on which actions to choose depend on
the system specification. In light of this, the players invoked in the original definition
of Alternating-Time Logics should be understood as non-deliberate agents [7].
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ATL∗ are reflected through structural properties of automata, thus explaining
limitations of their expressive power. The translation of GL and ATL∗ into au-
tomata, implicitly defines a notion of model-checking games for the two logics.

2 Atomic Games

As outlined in the introduction, at the core of our analysis are games that in-
volve two players; we will call them Ego and Alter. The basic model is that of
zero-sum games with two possible utility values -1 and 1, representing a win
or a loss, respectively. Such a game is represented in normal form by a tuple
(SE , SA, Z, π, uE), where SE and SA are the sets of strategies or actions avail-
able to Ego and Alter, respectively, Z is the set of possible outcomes determined
by the play function π : SA×SE → Z, and uE : Z → {−1, 1} is a utility function
associating to every outcome a winning or losing value for Ego. We sometimes
write ŝt to denote π(s, t).

We investigate different ways in which (descriptions of) games are composed
out of (descriptions of) their parts. This section fixes our terminology for speak-
ing about parts that are atomic in the sense that they involve only one round
of interaction. The central notion is that of a game form, – a partial representa-
tion of a game which omits utilities. With effectivity functions and agent forms,
we introduce two particular representations of game forms that will be used to
define Game Logic and Alternating-Time Logics.

Game Forms, Types. At the most abstract level, an untyped game form is
a tuple Γ = (S,Z, π) specifying a set of strategies that is not associated to
any particular player, a set of possible outcomes, and a (partial) play function
π : S × S → Z. A game type α identifies a subset Sα ⊆ S of strategies in an
untyped game form. The purpose of a game type, or simply type, is to designate
the strategies available to the players for playing their part in a game. For each
concrete modelling domain, a collection Act of types is fixed beforehand. Types
come in pairs: for every type α ∈ Act there is a dual type −α ∈ Act, the dual
of which is again α. The instantiation of an untyped game form Γ with a type α
yields the (typed) game form Γα := (SEα , S

A
−α, Z, π). While the play function π

might be only partially defined in Γ , we require it to be complete in every game
form Γα with α ∈ Act.

For instance, a matrix p : [m] × [n] → Z can be viewed as an untyped game
form Γ = (S,Z, p) where the set of strategies consists of all row and column
indices, S = [max{m,n}]. (We denote by [n] the set [1, . . . , n].) There are two
natural types Act = {row, col} with col = −row, which associate the sets of
rows and columns to the two players. The game form Γrow = ([m]E , [n]A, Z, p)
represents the scenario in which Ego chooses a row and Alter, simultaneously,
chooses a column whereas the dual Γcol = ([n]E , [m]A, Z, p) represents the sce-
nario where Ego chooses a column and Alter chooses a row. By associating a
utility u : Z → {−1, 1} for Ego to matrix entries, we obtain the games (Γrow, u)
and (Γcol, u). Notice that these two games are in general different.
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Our notion of game type is not standard in Game Theory; it is related to the
established notion of a player type in games with incomplete information only
in the loose sense that it makes an abstract description of a game more con-
crete. Intuitively, untyped game forms allow us to specify actions by abstracting
from concrete players or agents who may perform them. Our example illustrates
two uses of types, the motivations for which are bother rather particular to
Computer-Science applications. On the one hand, different types can be applied
to an untyped game form to define several games on the basis of a single descrip-
tion. On the other hand, types provide us with a way to separate the concept
of a player from that of an agent: we may, e.g., first describe which actions are
available to be performed by an agent and later use a type to specify whether it
is Ego or Alter who can choose an action of this agent.

Agent Forms. We view descriptions of interactive events performed by several
agents as a class of game forms with a particular representation. Let us fix a
number n of agents. We refer to a list of elements x = (xi)i∈[n], one for each
agent, as a profile. A coalition is a set of agents C ⊆ [n]; the complementary
coalition is −C := [n] \ C. For a profile x and a coalition C, we write xC to
denote the list (xi)i∈C . Then, an agent form is a tuple (S1 . . . Sn, Z, π) where
Si is the set of actions available to agent i, Z is the set of possible outcomes,
and π : ×ni=1Si → Z is a partial play function. For each coalition C ⊆ [n],
we derive the set SC := { sC | s ∈ ×ni=1Si } of joint actions available to C.
The agent form represents the untyped game form Γ = (S,Z, π) over the set
of strategies S := {SC | C ⊆ [n] }. Types on the domain of n-agent forms
correspond to coalitions of agents, hence, Act = 2[n]. Every coalition C ⊆ [n]
induces a type that is associated to the set SC ; the dual type is associated
to S−C . Accordingly, the typed game form ΓC describes the scenario in which
player Ego acts in the capacity of the coalition C whereas Alter acts in the
capacity of the complementary coalition. Thus, agent forms can be understood
as a representation artifice to describe 2n different game forms by one structure.

Effectivity Functions and Neighbourhood Forms. The concept of effec-
tivity function introduced by Moulin and Peleg [15] describes the power that a
player has to force the outcome of a game within a target set. We assume the
perspective of Ego when we refer to the effectivity of a game form. The effectivity
f(Γ ) of a game form Γ = (SE , SA, Z, π) (for Ego) is defined by

f(Γ ) := {X ⊆ Z | (∃s ∈ SE) (∀t ∈ SA) ŝt ∈ X }.
Clearly, the effectivity of a game is upwards closed in the sense that, with every
set X ∈ f(Γ ), the closure "X# := { Y | X ⊆ Y ⊆ Z } is included in f(Γ ).

When an untyped game form Γ is fixed, we write f(α) to denote the effectivity
of Γα. Consider for example the game form described by the matrix in the left of
Figure 1. For the two types selecting rows and columns, respectively, we obtain
f(row) = "{ {p, q}, {p, r} }# and f(col) = "{ {p}, {q, r} }#. We may also view
the matrix as a description of an agent form with, say, agent 1 in charge of
selecting rows and agent 2 in charge of selecting columns. Then, there are four
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different types, one for each coalition C ⊆ {1, 2}. Besides f({1}) and f({2})
which coincide with f(row) and f(col), we obtain f({1, 2}) = "{{p}, {q}, {r}}#
and f(∅) = {{p, q, r}}.

Effectivity functions correspond to a particularly simple kind of game forms
which we call neighbourhood forms. For a set Z of outcomes, a neighbourhood
form is given by a set F ⊆ 2Z . It describes the sequential scenario where Ego
first chooses a set X ∈ F , then Alter chooses an element x ∈ X which then
constitutes the outcome of the game. For a fixed set Act of types, we define
untyped neighbourhood forms as the disjoint union of the typed neighbourhood
forms over all types in Act.

3 Logics and Models

The game forms discussed in Section 2 are concerned with the immediate out-
come of interactive events. There is little to say, in logical terms, about such
events in isolation. The challenge is to describe the dynamics of systems driven
by sequences of interactive decisions. We focus on discrete systems that switch
between states via transitions arising from the interplay of two competing play-
ers. In this section, we introduce extensive game structures as a generic model
of such systems. After briefly describing syntax and semantics of Game Logic
and Alternating Time Logics, we proceed to comparing the two logics. The key
step is to show that GL and ATL∗ are both invariant under an equivalence which
relates game structures of the same effectivity.

Extensive Game Structures. Extensive game structures generalise Kripke
structures by replacing the accessibility relation with transition relations associ-
ated to effectivity functions. (Our model is close to the one proposed in [10] for
plain ATL.)

Let Act be a set of atomic game types closed under dual and let Prop be a
set of atomic propositions. An extensive game structure for Act and Prop is a
structure G = (V, Γ, (Vp)p∈Prop) where V is a set of positions, Γ is a function that
associates to every position v an untyped game form Γ (v) for the domain Act

with outcomes in V , and Vp designates those positions where p holds. We will
usually consider rooted structures with a designated initial position. Intuitively,
taking a transition of type α ∈ Act in state v of G amounts to switching into the
state resulting as an outcome of an (atomic) play between Ego and Alter in the
typed game form Γ (v)α. By taking a sequence of such transitions, the players
Ego and Alter form a path of infinite length to which we refer as a global play.

3.1 Parikh’s Game Logic

The Propositional Logic of Games GL, introduced by Parikh in 1983 ([16,17]),
was the first logical formalism dedicated to reasoning about games. It proposes
a way of describing the dynamics of interaction in a way similar to the one in
which PDL describes the dynamics of program execution.
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The syntax of GL allows to compose interactive scenarios for two players.
Starting from a set Prop of atomic propositions and a set Act of atomic game
types (or action names), the expressions of GL are of two sorts, formulae and
game expressions. Formulae ϕ are constructed from Prop by Boolean operations
and modalities 〈γ〉ϕ associated to game expressions γ that are generated by the
grammar: γ := a | ϕ? | γ; γ | γ ∪ γ | γ∗ | γd, for a ∈ Act.

Informally, game expressions specify a schedule for a game between the two
players Ego and Alter. The sequential composition γ1; γ2 means: play γ1 first,
then γ2. The nondeterministic choice operator γ1 ∪ γ2 lets the player in turn
decide which of γ1 or γ2 to play. The iteration operator γ∗ allows to play γ
repeatedly, for a finite number of times, whereby the player in turn can decide
before each round whether a new round is to be played. Finally, the test operator
(ϕ?) invokes a referee to verify whether ϕ holds; if so, the play just continues,
otherwise it breaks and the player in turn loses. Within atomic game forms, the
plays proceed sequentially: first, the player in turn chooses his part of the action,
and then the other player responds with his part. At the beginning of a play,
Ego is in turn to move.

The game-specific essence of Game Logic resides in the dualisation operator.
Informally, this operator corresponds to a player-swapping rule which reverses
the order of play and the set of strategies available to a player. At the atomic
level, it thus corresponds to dualising the type of a game form.

The semantics of GL-expressions is defined on neighbourhood structures, i.e.,
extensive game structures where the game forms Γ (v) are given by untyped
neighbourhood forms. Statements about the models are constructed by associ-
ating these game expressions with modalities. A typical statement 〈γ〉ϕ expresses
that, at the current state, Ego has a strategy to play according to γ in such a
way that either ϕ is true when the play ends, or Alter breaks a rule and loses.
For a formal definition we refer the reader to [18].

3.2 Alternating-Time Logics

The framework of temporal logics, founded in the work of Pnueli and Manna [14]
represents a way of adding recursion mechanisms to basic modal logic that is
conceptually different from dynamic logics such as PDL and GL. While the latter
assume an internal perspective, referring to the execution of a program or a
protocol, temporal logics are geared towards analysing the behaviour of systems
in the flow of time, referring to sequences of states in a run by isolating them
from their originating context.

The formalisms of Alternating-Time Logics proposed by Alur, Henzinger, and
Kupferman [2] adapts the temporal quantification pattern for the purpose of
analysing interactive systems, typically multi-agent systems. The main repre-
sentative of this logic ATL∗ is defined as an extension of branching-time logic
CTL∗ by adding a game quantifier which allows to refer to a play formed by two
strictly competing players in an underlying game structure.

The native models of Alternating-Time Logics are concurrent game structures,
i.e., extensive game structures where the transitions are given by agent forms.
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For a set of atomic propositions Prop and a number n of agents, the formulae
of ATL∗ are of two sorts, state formulae ϕ and path formulae η, generated by
the following grammars:

ϕ := ⊥ | p | ϕ ∨ ϕ | ¬ϕ | 〈〈C〉〉η and η := ϕ | η ∨ η | ¬η | Xη | ηUη

where p ∈ Prop, C ⊆ [n].
Plain ATL is the fragment of ATL∗ obtained by restricting the application

of the operator 〈〈C〉〉 to path formulae of type Xη and ηUη. While not very
expressive, this fragment is relevant because it is computationally tractable.

The meaning of ATL∗-formulae in a extensive game structure G is defined by
mutual induction over path and state formulae. Path formulae are interpreted
over traces of plays in G according to the rules for linear temporal logic LTL
with the constructors Xη and ηUη corresponding to the LTL-operators next and
until, respectively. The quantifier 〈〈C〉〉 transforms any path formula η into a
state formula 〈〈C〉〉η which holds at those positions v from which, player Ego
acting in capacity of coalition C has a strategy to force an infinite play which
satisfies η.

It is important to remark that strategies of Ego are functions that associate to
every initial segment π of a play, an action in the game form of type C reached in
the play. In the extensive game over G with η describing the winning outcomes,
Ego can force a win if, and only if, he can force a win while playing such that in
every atomic game form, he moves first and makes his choice visible to Alter.

3.3 Comparing GL and ATL∗

A priori, GL and ATL∗ are interpreted on different kinds of extensive game struc-
tures. To relate the two logics, we need to establish a correspondence between
concurrent game structures and neighbourhood structures that is compatible
with the logic. Minimal requirements on such a model correspondence would be
(1) to relate two formulae ϕ ∈ ATL∗ and ϕ′ ∈ GL if, for all concurrent game
structures G and all corresponding neighbourhood structures G′, we have G |= ϕ

if and only if G̃′ |= ϕ′, and (2) to respect the Boolean and modal operators
common to the two logics.

In the following, we characterise a much stronger model correspondence. To-
wards this, we introduce an equivalence between general extensive game struc-
tures under which both GL and ATL∗ are invariant, and we show that each class
of equivalent extensive structures has a representative among neighbourhood
structures.

The idea is to identify each concurrent game structure G = (V, Γ, (Vp)p∈Prop)
for n agents with the neighbourhood structure G̃ obtained by replacing every
(untyped atomic) game form Γ (v) with the neighbourhood form corresponding
to the effectivity of Γ (v). We justify this identification by showing that ATL∗-
formulae cannot distinguish between G and G̃. This allows us to reduce the
interpretation domain of ATL∗ without loss to neighbourhood domains —the in-
terpretation domain of GL— over the set of types Act = 2[n] corresponding to
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coalitions of agents. Over this restricted domain, we can compare the expressive-
ness of ATL∗ speaking about coalitions of n agents with the expressiveness of GL∗

speaking about a set of 2n atomic game actions associated to agent coalitions.
The difficulty consists in defining the effectivity of an untyped game form

(where it is not yet known which actions belong to a player) in such a way that
the meaning of all its typed instantiations (where actions are readily assigned
to players) are preserved. Our approach involves the notion of sequentialisation
of a game form, which captures the situation where the players perform their
choice in a given order.

Sequentialisation. Any game form Γ naturally gives rise to two sequential
game forms ΓE and ΓA. The game form ΓE correspond to the scenario where
Ego chooses his action first, and then Alter chooses his action being informed
about Ego’s choice. Conversely, in ΓA, Alter chooses first and then Ego follows.
We are interested, more generally, in the set of all sequential scenarios that may
arise from an untyped game form Γ = (S,Z, π), where strategies are not yet
associated to a particular player. To capture the flow of information from the
(yet unknown) first to the second mover we extend the set of available strategies
to include all perfect-information strategies over choices from S. Formally, we
consider the untyped game form Γ̂ = (Ŝ, Z, π̂) with strategies Ŝ = S∪SS , where
SS denotes all functions from S onto S. The play function π̂ is derived from π
by setting π̂(s, t) to π(s, t(s)) if (s, t) ∈ S×SS, or to π(s(t), t) if (s, t) ∈ SS ×S;
otherwise the value is left undefined. Each type α for Γ induces two types for
the new game form, E :α and A :α, which correspond to the scenarios in which
Ego or Alter moves first, respectively. Thus, the new types assign to Ego the
strategy sets ŜE :α := Sα and ŜA :α := (Sα)S−α, respectively. We will call these
types sequential types, and refer to Γ̂E :α and Γ̂A :α, simply denoted ΓE :α and
ΓA :α, as sequentialisations of Γ . Observe that the dual of a sequential type E :α
is A :−α which swaps both the sets of available actions and the play order of
Ego and Alter.

By definition, effectivity functions do not distinguish between a game form Γα
and its sequentialisation ΓE :α with Ego as first mover, that is, f(E :α) = f(α).
Moreover, the effectivity of sequential types exhibits the following duality.

Lemma 1. For any game form Γ and every appropriate type α,

f(−E :α) = f(A :−α) = {X ⊆ Z | (∀t ∈ SAα )(∃s ∈ SE−α) s t̂ ∈ X }
= {Z \X | X �∈ f(E :α) }.

Consequently, the set of sequentialisations of an untyped game form is charac-
terised by the effectivities of the scenarios where Ego moves first.

Neighbourhood Representation. In Section 2 we illustrated that effectivity
functions correspond to (typed) sequential game forms. Conversely, Lemma 1
points out that sequential game forms can be represented by a set of effectivity
functions. In the following, we introduce untyped game forms that embed such
a set of effectivity functions into one representation.
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For an untyped game form Γ over a set of types Act, let us consider the graph
Gα representing the sequential form associated to the effectivity of Γα where we
label all arcs emanating from the root by α and the remaining arcs by −α. Now,
we merge all the graphs Gα for α ∈ Act, by joining their roots and the terminal
nodes that correspond to the same outcome. The resulting graph can again be
viewed as an untyped sequential game form Γ̃ , which we call the neighbourhood
representation of Γ . The meaning of types for Γ̃ is determined by the arc labels;
every type α corresponds to the set of strategies that select an α-successor for
each node. The play function π̃(sE , sA) for Γ̃α returns the terminal node reached
by moving first to the α-successor selected by sE and then to the (−α)-successor
selected by sA. The construction is illustrated in Figure 1.

As the following lemma points out, the neighbourhood representation Γ̃ pre-
serves the effectivity of all types for the original game form Γ .

Lemma 2. Let Γ be an untyped game form and let Γ̃ be its neighbourhood rep-
resentation. Then, f(Γα) = f(Γ̃α) for all types α.
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Fig. 1. A game form and its neighbourhood representation (only minimal effectivity
sets are shown and the trivial types ∅ and {1, 2} are omitted)

Effectivity Equivalence. Lemma 2 suggests a canonical representation of
game forms in terms of neighbourhood forms. To make this idea precise, let us
fix a modelling domain with a set Act of types. We say that two games forms Γ
and Γ ′ with the same set of outcomes are effectivity-equivalent if their effectiv-
ities f(Γ ) and f(Γ ′) coincide. Likewise, two untyped game forms Γ and Γ ′ are
effectivity equivalent if the game forms Γα and Γ ′

α are so, for all types α ∈ Act.
Due to the fact that effectivity functions preserve the duality of sequential

types A :α and E :−α, it follows that the effectivity equivalence between untyped
game forms extends to their sequentialisations.

Lemma 3. If two untyped game forms Γ and Γ ′ are effectivity equivalent, then
so are their sequentialisations i.e., f(Γi :α) = f(Γ ′

i :α), for every type α ∈ Act

and each player i ∈ {E,A}.
In particular it follows that, no matter whether a sequentialisation is applied
to a game form or to its neighbourhood representation, the resulting sequential
forms are equivalent.

Finally, we lift the notion of effectivity-equivalence to extensive game struc-
tures. We say that two extensive game structures G = (V, Γ, (Vp)p∈Prop) and
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G = (V, Γ ′, (Vp)p∈Prop) over the same sets of positions V and with the same
valuations Vp are effectivity-equivalent, if for any state v the game forms Γ (v)
and Γ ′(v) are effectivity equivalent. Notice that this is the same as requiring
that G and G′ have the same neighbourhood representation.

Theorem 4. The logics GL and ATL∗ are invariant under effectivity equiva-
lence: For any pair of effectivity-equivalent extensive game structures G and G′,
we have G |= ϕ iff G′ |= ϕ, for any formula ϕ of GL or ATL∗.

Proof. The proof is by induction over the structure of formulae. The critical case
regards the modal next-step operators 〈〈C〉〉X and γ of ATL∗ and GL, respectively.
(When speaking about modal operators of ATL∗, we tacitly mean the modal
operators of the Alternating-Time µ-Calculus in which ATL∗ is embedded [2].)

Towards an operational characterisation of effectivity equivalence, we define
simulation relations that capture the ability of a player to transfer his strategy
from one game to another one in a way that maintains the same outcome on
both sides. We say that, for Ego, the game form Γ = (SE , SA, Z, π) is simulated
by the game form Γ ′ = (S′E , S′A, Z, π′), and we write Γ �E Γ ′, if for every
s ∈ SE there exists s′ ∈ S′E such that for every t′ ∈ S′A there exists t ∈ SA for
which ŝt = s′̂t′. We write Γ ∼E Γ ′, if Γ �E Γ ′ and Γ ′ �E Γ . For Alter, the
notions are defined analogously.

Then, for any pair Γ , Γ ′ of untyped game forms over the same set of types
Act and with the same sets of outcomes, we have:

(i) For any type α, the forms Γα and Γ ′
α are effectivity-equivalent if, and only

if, Γα ∼E Γ ′
α.

(ii) As untyped game forms, Γ and Γ ′ are effectivity-equivalent if, and only if,
Γα ∼E Γ ′

α and Γα ∼A Γ ′
α, for all types α.

Accordingly, if two extensive game structures G and G′ over the same set of
positions V are effectivity-equivalent, the simulation relation between atomic
games Γ (v) and Γ ′(v), for all v ∈ V extends naturally to a simulation relation
between the structures. Essentially, every game composed via operators of ATL∗

or GL can be played on G in the same way as it can be played on G′. $�
Since every game structure is effectivity-equivalent to its neighbourhood repre-
sentation, we obtain the following corollary.

Corollary 5. A formula of GL or ATL∗ holds in an extensive game structure
if, and only if, it holds in its neighbourhood representation.

We can associate to any concurrent game structure G its neighbourhood represen-
tation G̃ to define an appropriate correspondence � between formulae ϕ ∈ ATL∗

and ψ ∈ GL by setting ϕ � ψ whenever G |= ϕ iff G̃ |= ψ. Beyond respect-
ing Boolean operations, this correspondence has the property that ϕ � ψ and
ϕ′ � ψ implies ϕ ≡ ϕ′. This allows us to extend the interpretation of Game
Logic to concurrent game structures G by assigning to any formula ϕ ∈ GL its
meaning over the neighbourhood representation G̃ which will finally enable us
to compare the two logics.
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4 Recursion Mechanisms

In this last part of the paper, we sketch a direction for investigating the equiv-
alence between formulae of GL and ATL∗ in terms of automata. In the previous
section, we have seen that the basic modal operators of ATL and GL are essen-
tially equivalent on extensive game structures with a set of types that are ade-
quate for agent forms. To analyse the recursion mechanisms of GL and ATL∗ we
now translate both logics into automata that run over extensive game structures.
We call these game automata, because they operate with transitions determined
by atomic game forms.

Game Automata. A game automaton for a set Prop of propositions and a
set Act of types is a tuple

A = (Q := QE ∪̇ QA,Prop,Act, qI, δ, Ω),

where Q is a finite state set with partitions QE and QA controlled by Ego and
Alter, respectively, qI ∈ Q is an initial state, δ : Q× 2Prop → Q×Q ∪Act×Q
is a transition function, and Ω : Q → N is a priority function describing a
parity acceptance condition. Intuitively, the run of the automaton on an input
structure G corresponds to a play of possibly infinite duration between Ego and
Alter, starting from state qI and the initial position v0 of G. From a state q
and a position v, a transition δ(q, P ) is enabled if the predicates in P ⊆ Prop

match those that hold at v; the player who controls the current state is in charge
of the transition: if δ(q, P ) = (q′, q′′), he has to choose between switching the
automaton into state q′ or into state q′′; otherwise, if δ(q, P ) = (α, q′), the player
who controls q first performs an action of type α in the game form Γ (v), and
then the other player performs an action of the dual type −α. The outcome of
this local play determines the new position in G, while the automaton is switched
into q′. Finally, the game structure G is accepted, if Ego has a strategy to ensure
that the sequence of states visited during the play satisfies the following parity
property: the least priority occurring infinitely often is even.

Formally, acceptance is defined in terms of a graph game between Ego and
Alter on the synchronised product between A and G. The only non-standard
element of this definition regards the intermediary configuration reached after
an α-action has been executed by one player (and before the dual action is
executed by the opponent) which does not correspond to any state-position pair.
This intermediary state can be represented, by the set of all possible outcomes
of the action (of type −α) that the second mover has to take. The acceptance
game is thus a classical graph game [11].

From Game Logic to Automata. To translate a GL-formula into a game
automaton, we first first transform it into a pure game expression 〈γ〉true from
which we also eliminate all non-atomic test operations; next, we put the game
expression into a normal form in which every operation is associated explicitly
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to a player i ∈ {Ego,Alter} (see [3] for details). Notice that these operations
only amount to relabellings on the syntax graph of the original formula which
leaves its structure essentially unchanged.

Now, we build an automaton A(γ) inductively as illustrated in Figure 2; the
states drawn in dotted frames are coalesced. Note that each component in this
construction has a single entry (marked •) and a single exit (marked ◦). Entry
states are assigned to the player i in control of the corresponding subexpres-
sion. Significant priorities are assigned to states corresponding to �-iteration
operators. According to whether the iteration is controlled by Ego or Alter, the
priority is even or odd, respectively, and the priority of a �-expression is lower
than that of all its subexpressions.

A(ai) A(γ1; γ2) A(γ1 ∪i γ2) A(γ�i

)

•i
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��
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Fig. 2. Translating Game Logic into automata

The construction shows that GL-formulae translate into game automata where
each component has a single entry and a single exit. In terms of programming-
language theory, the interactive program constructions featured in GL are well
structured. It is easy to show that every automaton with a transition graph that
is well structured can be conversely translated into GL.

Proposition 6. A class of extensive-form game models can be defined in Game
Logic if, and only if, it can be described by a game automaton with a single-entry
single-exit transition graph.

To summarise, the higher-level quantification pattern of Game Logic corresponds
to well-structured transition graphs. This structural restriction witnesses an ex-
pressive weakness of GL. It shows, for instance, that it is impossible to describe
in GL extensive game models that embed a clique of size at least 3 ([4]). Thus,
Game Logic is less expressive than the Alternating-Time µ-calculus.

From ATL to Automata. To translate a typical ATL∗-formula 〈〈C〉〉η into a
game automaton, we construct first the automata Aϕ corresponding to the di-
rect state subformulae ϕ of η. Next, we substitute all these state subformulae in
η with fresh propositional variables Xϕ as placeholders. The formula η′ obtained
in this way can be regarded as a linear-time expression over these variables; now,
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we consider a deterministic word automaton Aη recognising the language of η′.
This automaton we transform into a game automaton, by replacing each forward
transition on the word model with an atomic modality corresponding to a game
form of type C. Finally, we replace the tests for variables Xϕ with a transition
into the corresponding automaton Aϕ.

Analysing the structure of the automata obtained when translating plain ATL,
the restricted variant of ATL where path formulae cannot be nested, it turns out
that one obtains single-entry single-exit transition graphs. As a consequence of
this translation and of Proposition 6, it thus follows that GL subsumes ATL.

Corollary 7. Every formula ϕ of plain Alternating-Time Logic ATL can be
translated into an equivalent Game Logic formula of size O(|ϕ|).
The translation makes several expressive restrictions of ATL∗ apparent. For in-
stance, every strongly connected component of the automaton obtained for an
ATL∗ refers only to one kind of atomic types. Thus, one cannot express for in-
stance, that agent 1 has a strategy to reach a state with property p in a play
where he may form coalitions either with agent 2 or with agent 3, which is
expressible in GL by 〈((1, 2) ∪ (1, 3))∗〉p.

On the other hand, we conjecture that GL cannot express all properties ex-
pressible in ATL∗. A promising source of inspiration towards settling this issue
is the research on non-ambiguous regular expressions (see, e.g. [6]). Intuitively,
a regular expression is non-ambiguous if every word can be matched in at most
one way to expression symbols while it is read. An example of an inherently
ambiguous property over the set set of predicates {0, 1, 2} is that infinitely of-
ten the symbol 2 is seen 2 steps before the symbol 0 occurred. Whether Ego is
able to enforce a path with this property seems unlikely to be expressible in GL,
whereas it is clearly expressible in ATL∗.

5 Conclusion

We set out to compare two prominent formalisms for reasoning about games
that are historically remote and emerged from different operational paradigms.
Parikh’s Game Logic purports an internal perspective on the execution of an in-
teractive program, whereas the family of Alternating Time Logic of Alur, Hen-
zinger, and Kupferman reflect an external perspective on computations in a
concurrent multi-agent systems.

By rephrasing the semantics of the two formalisms in unified framework, we
point out that they show remarkable similarities: at the atomic level, the dif-
ferences are limited to representation aspects, whereas at the global level, both
formalisms have limitations due to recursion mechanisms which can be explained
in terms of structural properties of game automata. Through our analysis, we
reduce the question about how the two logics differ in their expressive power to
questions about automata with a restricted transition structure.
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Extensive Questions
From Research Agendas to Interrogative Strategies

Emmanuel J. Genot

Université Charles-de-Gaulle Lille III – UMR 8163 STL

Abstract. Olsson and his collaborators have proposed an extension of
Belief Revision Theory where an epistemic state is modeled as a triple
S = 〈K, E, A〉, where A is a research agenda, i.e. a set of research ques-
tions. Contraction and expansion apply to states, and affect the agenda.
We propose an alternative characterization of the problem of agenda
updating, where research questions are viewed as blueprints for research
strategies. We offer a unified solution to this problem, and prove it equiv-
alent to Olsson’s own. We conclude arguing that: (i) our solution makes
the idea of ‘minimal change’ in questions and agendas clearer; (ii) can be
extended in ways the original theory was not, and may help better realize
the aims this theory was proposed for; (iii) unveils some limitations of
the initial approach, yet opening a way to overcome them.

1 Introduction: An Overview of Olsson’s Theory

In [1] and [2], Erik Olsson and his collaborators propose to extend Belief Re-
vision Theory (brt) and model the epistemic state of an agent as a triple
S = 〈KS , ES ,AS〉, rather than as a pair 〈KS , ES〉, where KS is a (closed) set
of sentences (corpus), and ES an entrenchment relation defined over KS . The
additional component AS is a research agenda, i.e. a set of questions, satisfying
certain corpus-relative conditions, the agent would like to have answers to. This
extension of the brt framework, according to Olsson, could make brt able to
model some features of theory change which would extend the range of its in-
tended applications.1 Expansion (denoted ‘+’) and contraction (denoted ‘÷’) are
taken to apply to state S, having thus an impact on the agenda. It is in particular
assumed that the Levi Identity extends to states, i.e. that S ∗ a = (S ÷¬a) + a,
where ‘∗’ denotes revision.

A question Q ∈ AS is a set Q of sentences, named potential answers to
Q, which are jointly exhaustive, pairwise exclusive, and non-redundant given S.
These preconditions induce a partition of the maximally consistent expansions

1 As an example, the acceptance of ad hoc hypotheses, or ceteris paribus laws, accom-
panied by a commitment to investigate exceptionless hypotheses, can be represented
as expansion of the corpus on the one hand, and addition of a question on the agenda
on the other hand. However, one of the initial motivations, i.e. to treat the problem
of expanding into inconsistency, while inscribing on the agenda some question the
answer to which would restore consistency, cannot be addressed (see n. 4).

R. Ramanujam and S. Sarukkai (Eds.): ICLA 2009, LNAI 5378, pp. 131–145, 2009.
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of KS (or simply S) by subsets of Q.2 Formally: (i) �Q ∈ Cn(K) (where �Q
denotes the exclusive disjunction of elements of Q); and: (ii) there is no Q′ ⊂ Q
such that ∨Q′ ∈ Cn(K). Since K is closed, K = Cn(K) and we will use simply K.
Let QK denote the set of questions satisfying the preconditions w.r.t. K. Olsson
and Westlund refer to those questions as K-questions. If Q ∩ K �= ∅, then Q is
K-settled (we will drop the prefix when no ambiguity ensues). It follows from
those definitions that if Q ∈ QK and Q ∩K �= ∅, then Q is a singleton.3

Let us introduce some further distinctions. A question which satisfies ∨Q ∈ K
and condition (ii) is K-genuine, while a question which which satisfies ∨Q ∈ K
and fails to satisfy (ii) will be said K-rhetorical. K-questions are, of course,
special cases of K-genuine questions. Following Hintikka, we call ∨Q the presup-
position of Q.We also say that an answer to Q is partial if it makes Q rhetorical,
and complete if it settles Q. Notice that, under this definition, complete answers
are a special case of partial answers when some answers are incompatible.

At state S, there is no constraint for a question Q to be eligible to figure
in AS other than satisfying the above preconditions, which translates in the
first postulate offered to characterize agendas: the only qualification for being a
K-agenda is that AS ⊆ QKS

, and we have:

If S = 〈K, E,A〉 is an epistemic state, then A is a K-agenda. (1)

However, the content of the agenda AS◦a (where ◦ ∈ {+,÷}) should be de-
termined by AS , and a. Contraction cannot solve questions, but can weaken
preconditions (loosing exhaustiveness, exclusiveness, or both). Expansion can
make some questions rhetorical.4

Observation 1. Neither QK+a ⊆ QK nor QK ⊆ QK÷a hold in general.

A consequence of Observation 1 is that it excludes two tentative continuity
principles, namely:

AS+a ⊆ AS (2a)
AS ⊆ AS÷a (2b)

2 Take Q = {a1, . . . , an}, and form the set K+Q of possible expansions of K by subsets
of Q. Given that if A is a finite set of sentences, K+A = Cn(K∪A)=Cn(K∪∧A)=K+
∧A, K+Q is defined: K+Q={K+∧M : M ∈ ℘(Q)}. K+∧M is a maximally consistent
expansion of K by elements of Q iff M ∈ K+Q and there is no M ′ ∈ K+Q, M ⊂ M ′

such that K+∧M ′ is consistent (i.e. no M ′ such that K∧M ′ �= K⊥, where K⊥ is the
inconsistent belief set). Let K+

�⊥Q denote the subset of K+Q of maximally consistent
expansions of K by subsets of Q. The kind of questions Olsson and his collaborators
consider are those where: K+

�⊥Q={K + ai : ai ∈ Q}.
3 Olsson and Westlund remark that “[an] adequate model should keep track not only

of questions in need of answers but also of beliefs that answer questions”. Hence, it
is important to record singleton questions on the agenda. Obviously, this allows also
to define operations on questions to ‘re-open’ potential answers.

4 Notice that because of the definition of a K-agenda, there is only one possible agenda
corresponding to the inconsistent belief set K⊥, i.e. A⊥ = ∅. Hence, agenda is in no
help in the problem of expansion into inconsistency, since according to (1), such an
expansion erases all questions from the agenda.
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Neither can be imposed as postulate for the agenda-part of, resp., state expansion
and state contraction: (2a) would exclude from AS+a every question in AS made
rhetorical (by expansion with a), be is settled or not; while (2b) would have the
following effect: contraction by a (when a ∈ KS) followed by expansion by a
would erase some questions (those having lost their precondition following the
contraction), which would not be recovered even if the contraction operator
satisfies recovery.

In [1] and [2], Olsson et al. consider the task of preserving the continuity of
agendas as a problem of transformation of questions, formally:

Problem 1 (Updating Questions I). Given S = 〈KS , ES ,AS〉 and Q ∈ AS , and
some a, specify two functions f+ and f÷, from QKS

to QKS◦a
(◦ ∈ {+,÷}), such

that if Q ∈ AS , f◦(Q) ∈ AS◦a, preserving some continuity.

A construction for f+ is given in [1], and solutions are proposed in [3] and [2] for
f÷. We propose an alternative formulation of the problem of updating agendas,
using a simple game-theoretic setting. We will return to the solutions proposed
by Olsson et al. to show their equivalence with our solution. The importance of
this problem is that the possibility to offer postulates for state expansion and
state contraction depends on it.

2 A Simple Game

Olsson and Enqvist insist that the problem of state contraction can be studied
first applying contraction to a belief set, then identifying the effect on the agenda.
We give in this section a game-theoretic formulation of this idea.

Consider the following two-player game: Given a knowledge state S, charac-
terized by a database KS , and a research agenda AS (in all respect analogous to
elements of an epistemic state), we have two players, A and B. Player A manages
KS . It is assumed that KS is structured by an entrenchment relation.5 Player
B manages AS . B has then to choose some method to obtain AS◦a from AS ,
depending on A’s actions and altering AS as little as possible to obtain AS◦a.
Since KS is logically closed, A’s actions are simply responses to incoming infor-
mation.6 A’s actions include adding to or erasing from KS some sentences, and
other ‘structural’ changes, such as reorganizations of priority, rankings, entrench-
ments, etc., and agm postulates are taken to embody ‘rationality principles’ for
epistemic change, i.e. as constraints on admissible choices for A.7

5 A has to choose some method to rearrange the entrenchment, but we leave this
problem aside, since it does not affect agendas management.

6 If KS is not closed, A could have other actions to perform, and AS would be deter-
mined on the basis of the surface information available from KS at a given time.

7 This assumption is lifted in [4], where expansion and contraction are performed at
the level of an interrogative game of the kind defined by Hintikka in [5], yielding
representation results for the three operations in Hintikka’s Extended Interrogative
Logic.
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On her turn, B will have to modify AS . Assume furthermore that B knows
what the incoming information is, and has witnessed A’s actions. Now, consider
that B’s task, instead of altering questions, is to select sequences of questions for
‘interrogative games’ (inquiries) possibly conduced by another player C. Those
games, at first, can be viewed as simple ‘deduction games’: inferential moves of C
(from premises in KS and possibly answers to some questions) and interrogative
moves, followed by ‘reply’ from a source S.8 However, we assume that deductive
moves are preferred to interrogative moves whenever possible. Notice that this
assumption corresponds to the disallowance of rhetorical questions in agendas.

Intuitively, B’s task can be characterized as follows. Associated to a set Q of
rival hypotheses – which induces a partition of maximally consistent expansions
of KS by subsets of Q, thus analogous to KS-questions (see n. 2) – there is a list
of (sequences of) questions to be put to sources (or an ‘interrogative strategy’).
Once the answers to those instrumental questions collected, one (and only one)
of the hypotheses in Q will remain. Following the transition from KS to in KS ◦a,
B has to alter the list in such a way that the new strategy also induces a partition
of KS ◦a (by combinations of answers to the questions in the list). The change in
strategy will thus determine the new set of rival hypotheses Q∗. In this setting,
Problem 1 can be reformulated as follows:

Problem 2 (Updating Questions II). Given S = 〈KS , ES ,AS〉, let Σ(KS ,QKS
)

the set of possible strategies in interrogative games to answer KS-questions. Spec-
ify two functions g+ and g÷ from Σ(K,QKS

) to Σ(KS◦a,QKS◦a
) (◦ ∈ {+,÷}),

so that if Q /∈ AS◦a, g
◦(σ(KS , Q)) adds (or removes) any necessary (unneces-

sary) step from the interrogative strategy σ(KS , Q) ∈ Σ(KS ,QKS
) to obtain

σ(KS◦a, Q
∗) where Q∗ ∈ QK◦a is wholly determined by g◦.

Several examples of the kind of update performed by B will be given in the next
section, in which we will also specify which idealizations are in force, and how
they simplify the representation of B’s task.

3 Updating Questioning Strategies

A simple representation of the kind of games B chooses strategy for is a tree
(like the familiar semantic trees). Such a tree represents an ideal interrogative
game in extensive form, i.e. where successive moves are explicitly displayed.9 In
8 We will give a tree-form representation of these games in the next section, but will

avoid any unnecessary technical discussion. These games are very close to those
studied in [5]. For some applications in epistemology, see [6]. For an early proposal
to combine brt and interrogative games, see [3], which contains a slightly different
treatment of the topics developed in the present paper.

9 By contrast, the strategic or normal form of the game displays one-shot choices of
players, using a game-matrix. Extensive games are useful to represent a player’s
knowledge – several states (nodes) being indiscernible for a player in games with im-
perfect information – or to display asymmetric dependencies of moves (see [7], chap.
6). Imperfect information and sensitivity to order are ruled out by our idealizations,
yet of capital interest for a more realistic modeling of inquiry.
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such a game, C can play either deductive or interrogative moves. The aim of the
game is to obtain an answer to some ‘principal’ question Q.

Let G(K, Q) denote the game ‘about’ Q given background K. The game is
represented by a tree.10 Each branch of the tree displays a possible course of the
game (if the source answers the questions). A maximal branch (including the
root and a leaf) is often referred to as a maximal history of the game.

At the root is K. B can add (or: plan for C) a deductive move, noted: ‘C:!{a}’
as soon as a follows from K together with other formulae on the preceding
nodes (interrogative moves are not formulae). Two branches diverge whenever
a question is asked. An interrogative move, represented as: ‘C:?{. . . }’ is legal
at a node as soon as the presupposition of the question follows from K and the
preceding nodes. A node displaying an interrogative move has as many successors
as there are potential answers to the question asked. Since questions are assumed
to have finitely many answers, the tree is finitely generated.11

[K]
C:?{a1, . . . , an}

S:a1
C:!{a1}

∅

S:a2
C:!{a2}

∅

. . . S:an

C:!{an}
∅

[K ÷ b]
C:?{an+1,¬an+1}

S:an+1
C:!{an+1}

∅

S:¬an+1
C:!{¬an+1}

C:?{a1, . . . , an}

S:a1
C:!{a1}

∅

S:a2
C:!{a2}

∅

. . . S:an

C:!{an}
∅

Fig. 1.

Update performed by B can be illustrated by abstract examples: Fig. 1 shows
a ‘strategy’ with question Q = {a1, . . . , an}, if ∨Q ∈ K (left) and how the game
can be updated if Q is weakened, when some additional (exclusive) answer an+1
(right) is needed. Fig. 2 shows an update when some answers a1 and a2 become
compatible. Notice that, in both cases, {a1, . . . , an} is still the content of an
interrogative move, though it fails to satisfy the preconditions relative to the
corpus which is at the root of the tree. Fig. 3 displays the effect of expansion –
partial answer to Q (left) and complete (right). In contrast with the preceding
examples, {a1, . . . , an} is not anymore the content of any interrogative move.

10 A tree is a pair 〈T , <〉, where T is a set of nodes, and < a strict partial order; a < b
reads: “a is the predecessor of b” (“b is the successor of a”). a is the immediate
predecessor of b iff a < b and there is no a′ such that a < a′ < b. The root of the tree
is the a ∈ T such that for all a′ ∈ T , a′ �= a, a < a′, and a′ is a terminal node, or
leaf, if there is no a′′ s.t. a < a′′. A branch β is any sequence 〈ai, . . . , am〉 such that
ai, . . . , am ∈ T and the nth term of β is the immediate predecessor of the n + 1th;
β is maximal if there is no a′ ∈ T s.t. a′ < ai or am < a′.

11 This assumption obviously cannot be made with first-order questions.
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[K ÷ ¬(a1 ∧ a2)]
C:?{a1, . . . , an}

S:a1
C:!{a1}

C:?{a2,¬a2}

S:a2
C:!{a2}

∅

S:¬a2
C:!{¬a2}

∅

S:a2
C:!{a2}

C:?{a1,¬a1}

S:a2
C:!{a1}

∅

S:¬a2
C:!{¬a1}

∅

. . . S:an

C:!{an}
∅

Fig. 2.

[K + ¬a2]
C:?{a1, . . . , an} \ {a2}

S:a1
C:!{a1}

∅

S:a3
C:!{a3}

∅

. . . S:an

C:!{an}
∅

[K + ai]

C:!{ai}
∅

Fig. 3.

4 Yes-or-No Questions and Strategies

The strategies to be introduced make special use of ‘yes-no’ questions, i.e. any
two-element set {a,¬a}. It is K-open if {a,¬a}∩K = ∅, and K-settled otherwise.
Let |YN -K| be the set of K-open ‘yes-no’ questions, and |YN -Q| denote the set of
‘yes-no’ questions ‘about’ elements of Q.12 For any question Q, we say that an
answer ±ai ∈ {ai,¬ai} is positive if ±ai ∈ Q∩{ai,¬ai}, and negative otherwise.

Observation 2. (1) For every K and a, {a,¬a} is an open K-question or is
K-settled. (2) If Q is a K-question and Q′ ∈ |YN-Q|, any positive answer to Q′,
following from K + b, K + b-settles Q, and any negative answer to Q′ ∈ |YN-Q|
makes Q K + b-rhetorical.

(Notice that for strictly K-genuine questions a positive answer to some Q′ from
K + b may not suffice to know all there is to know: another Q′′ ∈ |YN -Q| may
receive a positive answer, though K+b does not entail it.) It follows immediately
from Observation 2 (by contraposition of (2)) that:

If Q ∈ QK, then |YN -Q| ⊆ QK (3)

Observation 2 is of special importance given the following result (reformulated
for brt):
12 In practice, there is no reason to restrict analysis of a question Q to |YN -Q|, since some

potential answers to Q may be boolean compounds, which could be decomposed by
asking more ‘yes-no’ questions. But |YN -Q| will be sufficient to the present discussion.
However, it will not allows to recover one of the solutions offered by Enqvist and
Olsson to the problem of ‘interrogative contraction’ (see sec. 6).
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Theorem 3 (Yes-No Theorem from [5, p. 55]). For any corpus K, and any
K-agenda A, if some conclusion follows from K together with some answer to
some Q ∈ A, then it follows from K together with answers to ‘yes-no’ questions
only.13

Now, let’s say that a strategy σ(K, Q) (in a game G(K, Q)) is precondition free
iff it uses only ∅-questions (i.e. K-questions for K = ∅) as interrogative moves
regardless of the preconditions of Q itself. Observation 2 and Theorem 3 yield:

Proposition 1. For any question Q, there is a precondition-free interrogative
strategy using only ‘yes-no’ questions for answering Q.

[K]
C:?{a1,¬a1}

S:a1
C:!{a1}

∅

S:¬a1
C:?{a2,¬a2}

S:a2
C:!{a2}

∅

S:¬a2

...
C:?{an−1,¬an−1}

S:an−1
C:!{an−1}

∅

S:¬an−1
C:!{an}

∅

Fig. 4.

For Q = {a1, . . . , an}, Fig. 4 illustrates a precondition-free strategy for Q ∈ QK
(the inferential steps to partial answers to Q are omitted). Notice that Q itself
does not appear at any node in the tree, yet the strategy leads to have a com-
plete answer to Q at each terminal node, and the game is indeed G(K, Q). Let us
conclude with these useful properties relating ‘yes-no’ questions and contraction:

|YN -K| ⊆ |YN -K÷ b| for all b (4a)
If |YN -Q| ⊆ QK, then |YN -Q| ⊆ QK÷b for all b (4b)

And their counterpart for expansion:

|YN -K + b| ⊆ |YN -K| for all b (5a)
If |YN -Q| ⊆ QK+b, then |YN -Q| ⊆ QK for all b (5b)

All properties are straightforward consequences of postulates for expansion and
contraction and Observation 2. Together with Proposition 1, they suggest the
following:
13 The theorem holding for belief sets and agendas is a consequence of the representa-

tion results proved in [4], once agendas are added.
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Proposition 2. Let Q be a K-question, and σ(K, Q) be a precondition-free
interrogative strategy in a game G(K, Q). Then for any b, if Q fails to be a
K ◦ b-question, there must be a solution to Problem 2 simply removing from or
adding to σ(K, Q) ‘yes-no’ questions.

5 A Systematic Method for Constructing Strategies

Establishing Propositon 2 takes three steps: the first step deals with loss of exclu-
siveness ; the second, with loss of exhaustiveness; and the third with partial and
complete answers. All three steps will use the same tree-construction method,
which will be presented first. This construction is used to prove a general lemma
about strategies. Given a question Q, we say that a strategy exhausts Q if col-
lecting the answers to interrogative moves dictated by the strategy σ(K, Q), the
possible courses of the game (maximal branches) induce a partition (of maxi-
mally consistent expansions of K with subsets of Q, with no unnecessary inter-
rogative moves) equivalent to the partition generated by Q . The lemma itself
states:

Lemma 1 (Exhausting Strategy). For any question Q, there is a pre-
condition-free exhausting strategy in G(K, Q).

Notice that no restriction is put on Q (apart from its being a finite set): if Q
is rhetorical or genuine, the strategy will take care of it, using deductive moves
in the first case, or interrogative moves in the second. Hence Lemma 1 is not
restricted to K-questions, hence its use for strategy updating.

Proof. Order |YN -Q| in any way, say {a1,¬a1},. . . , {an,¬an}. Since these are all
K-questions (by Observation 2), they can be asked any time at C’s turn if they
are open, or their answer can be inferred if they are settled. For some branch β,
let β∧ denote the conjunction of formulae in β.14

1. Write: ‘C:?{a1,¬a1}’ as first move, then separate the initial branch in two
sub-branches and add as first node of each, respectively, the two possible
successors ‘S:a1’ and ‘S:¬a1’. This completes the first step.

2. Assume that the ith step has been carried out. Then check the leftmost
branch βn.
(a) If {ai+1,¬ai+1}∩K+β∧

n = ∅, write as the next node ‘C:?{ai+1,¬ai+1}’,
followed by a separation of βn in two sub-branches β1 and β2, with and
its two possible successors ‘S:ai+1’ and ‘S:¬ai+1’ (resp.) as first node.

(b) If {ai+1,¬ai+1} ∩K + β∧
n �= ∅, write as next node ‘C:!{ai+1}’ if ai+1 ∈

K + β∧
n , and ‘C:!{¬ai+1}’ otherwise.

(c) Go to the branch right to β, and perform the same test.
14 Since the order of questions is not important as long as the strategy is precondition-

free and the source is insensitive to it, we can treat branches as sets, rather
than sequences, and expand with the conjunction of its member, defining for-
mally β∧ as follows: β∧ = {(ai ∧ · · · ∧ ak) : C:!{aj} or S:aj occurs in β (i ≤ j ≤
k) and β is maximal}.
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Iterate (a)-(c) until reaching the rightmost branch.15 This concludes the
i+ 1th step.

3. Proceed until reaching {an,¬an}.
The construction generates all combinations of elements of Q (and their nega-

tions) compatible with K. Moreover, expanding with the conjunction of the ‘S’-
moves of one maximal branch excludes the possibility of expanding with another
maximal branch (since they can only differ from one another by the answer to
a ‘yes-no’ question). Hence it induces the desired partition. $�
Let pfes abbreviate precondition-free exhausting strategy. Lemma 1 can be used
to update a strategy σ(K, Q) into a strategy for a game G(K ◦ a,Q∗) when Q
is not a K ◦ a question. The three following corollaries correspond to the three
above-mentioned steps. The following is immediate, from Lemma 1.

Corollary 1. If Q and K are such that K entails the presupposition of Q, and
Q is not K-rhetorical, then there is a pfes in the interrogative game G(K, Q).

Corollary 2. If Q is such that K does not entail the presupposition of Q, then,
there is a set {b1, . . . , bm} such that there is a pfes in the game G(K, Q ∪
{b1, . . . , bm}), extending any precondition free strategy in the game G(K, Q).

Proof. Let Q = {a1, . . . , an} and ∨Q /∈ K. Hence C may receive ‘S:¬ai’ to
any interrogative move ‘C:?{ai,¬ai}’. Hence, adding as terminal node of the
rightmost branch: ‘C:!{(¬a1∧. . .∧¬an)}’ after ‘S:¬an’, yields a pfes in G(K, Q):
in this case, m = 1 and b1 = (¬a1 ∧ . . . ∧ ¬a2). If some {b1, . . . , bm} is known
such that ∨Q ∪ {b1, . . . , bm} ∈ K , apply the procedure of Lemma 1 to Q ∪
{b1, . . . , bm}.16 $�
Corollary 3. If Q is any K-rhetorical question, there is a pfes (without un-
necessary interrogative moves) in the game G(K, Q).

Proof. Immediate from Lemma 1: any rhetorical question {ai,¬ai} ∈ |YN -Q| will
generate a deductive move: ‘C:!{±ai}’, as a result of (2b). $�

6 The Extensive Transformation Theorem

It is now possible to prove Propositon 2. We do it proving the following Extensive
Transformation Theorem, which is equivalent to it, and uses the Lemma 1.17 It
15 The tree is finitely generated, since only interrogative moves generate branches.

Using ‘yes-no’ questions guarantees that the maximum number of branches at step
k is 2k. Since Q has only finitely many potential answer, this number remains finite.
However, the complexity of the procedure makes it very clumsy, since each step
requires an attempt to prove that ±aj ∈ K + β∧

n .
16 Obviously, if ∨Q ∪ {b1, . . . , bm} /∈ K, then one can still add as terminal node of the

rightmost branch: ‘C:!{(¬a1 ∧ · · · ∧ ¬bm)}’ after ‘S:¬bm’.
17 We formulate it with K-questions, though it is not necessary, in the light of the

generality of Lemma 1, and the identity between the partition induced by exhausting
strategies, and by K-questions.
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is followed by three equivalence results, connecting the update method it gives
rise to with former and parallel attempts by Olsson and his collaborators.

Theorem 4 (Extensive Transformation Theorem). If Q is a K-question,
but fails to be a K ◦ b question (◦ ∈ {+,÷}) for some b, then: (i) there is a
pfes σ(K, Q) in the game G(K, Q); and: (ii) there is a question Q∗ and a pfes

σ(K ◦ b,Q∗) in the game G(K ◦ b,Q∗), where Q∗ is a K ◦ b-question, and can be
obtained simply adding or deleting interrogative moves to σ(K, Q).

The proof below does not show how to obtain Q∗: this is left for the equivalence
results. It is indeed necessary only if one is interested in solving Problem 1,
since what is needed to solve Problem 2 is only to show that the new strategy is
exhausting with respect to K ◦ b, and (as already noticed) Q∗ need not appear
anywhere on the tree (since we work with precondition-free strategies).

Proof. (i) follows directly from Lemma 1. For (ii), there are two cases.

Case 1: K ◦ b = K ÷ b. Under the conditions stated, Q must have lost one
or both of its preconditions. Apply to σ(K, Q), first (if needed) the procedure
of Corollary. 2 to restore (the counterpart of) exhaustiveness; and second (if
needed) the procedure described in Corollary. 1 how to restore (the counterpart
of) exclusiveness. From these corollaries, it follows that the transformed strategy
is a pfes in a game G(K ÷ b,Q∗) for some Q∗, as desired.
Case 2: K ◦ b = K + b. Under the conditions stated, Q must have become
K + b-rhetorical. Apply to σ(K, Q), the procedure of Corollary. 3 to eliminate
unnecessary interrogative moves. It follows immediately that the transformed
strategy is a pfes in a game G(K÷ b,Q∗) for some Q∗, as desired. $�
The next three observations connect Theorem 4 with former attempts to solve
the problem of question updating as expressed in Problem 1. Construction of
an updating function following expansion was the first part of the problem.
Corollary. 3 is the ‘extensive’ counterpart of this solution, based on the operation
of question truncation. Following [1, p. 172] let Q/Ka, the K-truncation of Q by a,
be defined: Q/Ka = {b ∈ Q : ¬b /∈ Cn(K∪{a})}. (It is immediate thatQ/Ka �= Q
iff K + a partially answers Q.) Truncation is instrumental to the definition of
agenda updating upon expansion as shown in the following postulate for State
Expansion:

S + a = 〈KS + a,E′,A′〉 where A′ = {Q′ : Q′ = Q/KS
a for some Q ∈ AS} (6)

The equivalence of our updating method is given by the following observation:

Observation 5. If Q is a K-question, but that for some ai ∈ Q, ¬ai ∈ K+b for
some b, one updates the pfes σ(K, Q) using the method of Theorem 4, Case 2,
then one obtains the same result as substituting Q/Kb to Q in the agenda, and
subsequently devising a pfes in the game G(K + b,Q/Kb). Moreover, Q/Kb can
be ‘read off’ the updated strategy.

According to the setting described in sec. 2, B will update the strategy σK, Q
in a way which is identical (up to a reordering of interrogative moves, as usual)
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to substituting Q/KS
b to Q, and σ(K + b,Q/KS

b) to σK, Q. Th proof of this
observation shows what ‘reading off’ the question is: Q/Kb can be constructed
out of the tree, i.e one needs not determine the updated question before the
update of the strategy. Simply put, a solution to Problem 1 can be obtained
from solving Problem 2, and not the other way around. The same holds for the
other observations.

Updating of question following contraction has been addressed in three ways,
or in the terms of Olsson and Enqvist (see [2]), following three strategies. We
present an equivalence with two of them. The third method will be briefly dis-
cussed at the end of this section. Olsson and Enqvist give the following principle,
of Agenda Preservation, as a first postulate for constructing AS÷b out of AS and
KS÷b (=KS ÷ b):

If Q ∈ AS ∩QKS÷d then Q ∈ AS÷d (7)

Satisfying (7) poses no specific problem. The second postulate is as follows:

If Q = {a1, . . . , an}, Q ∈ AS and Q /∈ QS÷b but for all ai, aj ∈ Q, (8)
¬(ai ∧ aj) then Q ∪ {(¬a1 ∧ · · · ∧ ¬an)} ∈ AS÷b

Olsson and Enqvist call the resulting question an ‘Ersatz question’, and denote
it Simp(Q). The following observation makes the connection between Theorem
4 and (8).

Observation 6. If Q is a K-question, but has its exhaustiveness precondition of
Q lost after contraction of K by b, one updates the pfes σ(K, Q) using the method
of Theorem 4, Case 1, then if no more specific information is known, one obtains
the same result as substituting Simp(Q) to Q in the agenda, and subsequently
devising a pfes in the game G(K ÷ b,Simp(Q)). Moreover, Simp(Q) can be
‘read off’ the updated strategy.

The Second method, or State Description Strategy, treats both exclusiveness
and exhaustiveness of a K-question Q using the notion of state description of
Q. If Q = {a1, . . . , an}, then a state description of Q is any b such that: d =
±a1 ∧ · · · ∧ ±an. The third principle proposed is:

If Q = {a1, . . . , an}, Q ∈ AS and Q /∈ QS÷b then (9)
{d : d = (±a1 ∧ · · · ∧ ±an) and (KS÷b) + d �= K⊥} ∈ AS÷b

Let SdK÷b(Q) denote the result of forming a question satisfying the condition
in (9) (since KS÷b = KS ÷ b).

Observation 7. If Q is a K-question, but not a K÷ b-question, and if one up-
dates the pfes σ(K, Q) using the method of Theorem 4, Case 1, then one obtains
the same result as substituting SdK÷b(Q) to Q in the agenda, and subsequently
devising a pfes in the game G(K ÷ b,SdK÷b(Q)). Moreover, SdK÷b(Q) can be
‘read off’ the updated strategy.

In the case of state description, specifically, our method is more economic than
the method proposed by Olsson and Enqvist, in a perfectly natural sense: one
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could devise a pfes for G(K÷ b,SdK÷b(Q)) using |YN -SdK÷b(Q)|, but this would
lead to the construction of a ‘new’ strategy, since |YN -Q| ∩ |YN -SdK÷b(Q)| = ∅,
or rather a strategy with different interrogative moves (the two strategies would
anyway be equivalent, in that they would generate the same partition of max-
imally consistent expansions). On the other hand, our procedure preserves ‘as
much as possible’ σ(K, Q) in order to devise what is, in all effect, a pfes in
G(K÷ b,SdK÷b(Q)).

Observation 5 shows that our method comply with Postulate (6). Observation
6 and 7 shows that it satisfies also (8) and (9). Solution to Problem 1 and 2 can
now be unified, as well as the two ‘postulates’ (8) and (9): since g◦ can be used to
generate an updated question Q∗ = f◦(Q), one can propose a tentative postulate
for State Contraction:

S ÷ a = 〈KS ÷ a,E′,A′〉
where A′ ⊆ {Q′ : |YN -Q| ⊆ |YN -Q′| for some Q ∈ AS} (10)

Moreover, since (as displayed in Fig. 2 and 1) use of pfes is not necessary,
function g◦ can be defined (with some additional work) to apply to questions
in their original form, without gong through the resource-consuming process of
using exclusively ‘yes-no’ questions.

7 Conclusion

The update method presented, though equivalent to those proposed by Olsson
and his collaborators has some conceptual advantages. First, it presents a unified
construction method. Rather than several operations, a unique tree-construction
method is used, and can be used to reduce the different operations on questions
as special cases. Second, the requirement of minimal change in enforced in an
intuitive way: strategies are ‘contracted’ by expansion and ‘expanded’ by con-
traction, in such a way that each branch contains exactly those interrogative
moves needed to induce a partition of the maximally consistent expansions of
the corpus at the root with the set of (immediate) inferences from S’s answers.

Finally, though not mandatory (see Fig. 1 and Fig. 2), the use of precon-
dition free interrogative moves yields a continuous representation of updated
questions: every interrogative move leaves a trace, since it is either maintained,
or substituted with a deductive move, which permits re-insertion of the origi-
nal interrogative move if the initial question has to be ‘recovered’. In Olsson’s
original theory, only ‘singleton’ questions resulting from successive truncations
remain on an agenda, while in our representation, for any question Q, every
Q ∈ |YN -Q| leaves a trace update after update.

As a consequence, the framework we propose can be viewed as a generalization
(or an extension) of Olsson’s original one. Moreover, this extension offers better
tools to apply the theory to its intended models. The original theory, though
conceived of as a dynamic representation of an agent’s research interest, the
agenda AS ‘tags along’ with a corpus KS , and the changes it undergoes can be
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studied entirely without specifying parameters of ‘field’ inquiry. The ‘extensive’
approach combining brt cum agendas with interrogative games offer the possi-
bility to study the dynamics of inquiry.18 It is however more closely related to the
approach favoring belief bases (non-closed sets since Hansson’s pioneering work
in [8]), and handles changes through ‘interrogative games’ (combining deductive
moves with interrogative moves, and means to retract some answers or premises
at a given point, in such a way that it is possible to generate contractions and
revisions).

Given the complexity of the agenda updating procedure,19 and given the fact
that changes in agendas are largely independent of the method used for contrac-
tion, it is unlikely that Agendas, in Interrogative brt, may provide solutions to
traditional problems in brt, nor a less ‘idealized’ theory of belief states. Its in-
terest lies rather in the way it allows to connect the formal theory to some issues
in epistemology, and philosophy of science. However, an interrogative treatment
of the belief set change is likely to offer some insights into these problems.20 The
real advance of Interrogative brt may eventually prove not to be the additional
structure it provides for belief states, but rather the novel perspective on belief
sets and bases and operations performed on them, as being question-driven, and
amenable to a treatment through some interrogative logic.
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Appendix: Detailed Proofs

Auxliary Results

Proof (of Observation 2). (1) By classical logic, (a � ¬a) ∈ K whenever K is
consistent. (If K = K⊥ = L, then {a,¬a} ∩ K �= ∅ and {a,¬a} is trivially K-
settled.) If a ∈ K, then {a,¬a} is not a K-question since {a} ⊂ {a,¬a}, but then
it is K-settled. The same holds with ¬a. (2) Let Q = {a1, . . . , an}, Q ∈ QK , and
±ai ∈ K+b for some ai ∈ Q: (i) ±ai = ai, K+b∩Q=K+b∩{ai,¬ai}={ai} iff the
answer to {ai,¬ai} is positive andQ is settled ; (ii) ±ai = ¬ai, ¬ai ∈ Cn(K+b) iff
the answer to {ai,¬ai} is negative and (by Disjunctive Syllogism, and definition
of a K + b-question) Q is K + b-rhetorical. $�
Proof (of Proposition 1). For a given question Q, the set of ‘yes-no’ -questions
|YN -Q|, if asked until a positive answer to one of them is obtained, will provide
an answer to Q. By Observation 2, this strategy is precondition-free. $�
Proof (of (4) and (5)). (4a): we prove the contrapositive. Assume that, for
arbitrary K, b and a, {a,¬a} ∩ K ÷ b �= ∅. If a ∈ K ÷ a, then a ∈ K, since by
Inclusion postulate for Contraction, K÷b ⊆ K, and likewise if ¬a ∈ K÷b. Hence,
if {a,¬a} /∈ QK÷b, then {a,¬a} /∈ QK. Since K, {a,¬a} and b were arbitrary,
it follows that it holds for arbitrary K ÷ b-settled ‘yes-no’ question. Hence, by
contraposition and Observation 2, |YN -K| ⊆ |YN -K ÷ b| for all b, as desired. (5a):
Similar to (4a), since K ⊆ K + b (left to the reader). (4b) and (5b): from (4a)
and (5a) respectively, and Observation 2, using (3). $�

Equivalence Results

Proof (of Observation 5). Devising a pfes strategy for Q/KS
b amounts to apply

the procedure of Lemma 1 using |YN -Q/KS
b|, that is |YN -Q| ∩ QK+b (this follows

from (5a)). Hence, for any ai ∈ Q, ¬ai ∈ KS + b, no interrogative move is used,
but for any aj ∈ Q∩Q/KS

b (save for the last question in the ordering), the move
‘C:?{aj ,¬aj}’ is used.

On the other hand, applying the update procedure of Corollary. 3 as in the
proof of Theorem 4, Case 2, the interrogative move ‘C:?{ai,¬ai}’ will not appear
in updated pfes for G(K + b,Q∗), being substituted with ‘C:!{¬ai}’. Otherwise,
the pfesinduced tree will include every interrogative move ‘C:?|YN -aj |’ for aj ∈ Q,
hence being identical with the above tree (up to a reordering of interrogative
moves). $�
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Proof (of Observation 6 ). Devising a pfes for G(K ÷ b,Simp(Q)) amounts to
apply the procedure of Lemma 1 using |YN -Simp(Q)|, that is:

|YN -Q| ∪ {{(¬a1 ∧ · · · ∧ ¬an),¬(¬a1 ∧ · · · ∧ ¬an)}}

This is identical to the application of Corollary. 2 withm = 1. On the other hand,
Theorem 4 requires precisely the application of the same corollary to update
σ(K, Q) if Q looses some preconditions. Since ex hypothesis exhaustiveness is the
only precondition lost, the result is identical (up to a reordering of interrogative
moves). $�
Proof (of Observation 7). Devising a pfes for the game G(K÷b,SdK÷b(Q)) can
be done using |YN -SdK÷b(Q)|. But any pfes σ(K÷b,SdK÷b(Q)) will do: it suffice
that the tree induced by the strategy be such that: (i) interrogative moves are
only ‘yes-no’ questions; and (ii) for any maximal branch β, (K÷b)+β∧ answers
SdK÷b(Q). In particular, using the procedure of Theorem 4, Case 1, it is easily
checked that:

{β∧ : β is a maximal branch in σ(K÷ b,Q∗)} = SdK÷b(Q)

Hence, substituting the strategy constructed out of σ(K, Q), one obtains a pfes

for the game G(K÷ b,SdK÷b(Q)). $�
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Abstract. We present a modular approach to the logic of aggregated
group preferences based on hybrid modal logic. The modularity of the
system is twofold: 1) lifting preference relations between states to com-
plex relations between propositions and 2) lifting individual preferences
to group preferences. The preferences may be doxastic or proairetic, gen-
erating a logic of aggregated belief or aggregated desire, respectively,
using a specific aggregation policy known as ‘lexicographic re-ordering’.
Each agent and each group of agents has an associated modal operator
representing their preferences between states. The addition of the exis-
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ence using a Gentzen-style sequent calculus, in which the role of each
operator is revealed.
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The paper is divided in four sections. After motivating lexicographic aggregation
in Section 1, we give the basic language and axiomatization in Section 2. Sec-
tion 3 summarises the background theory of the sequent calculus and its claim
to provide an ‘analytic’ theory of proofs. This is then applied in Section 4 to a
sequent calculus for the logic of aggregation.

1 Lexicographic Preference Aggregation

A common approach to analyzing desires and beliefs logically is by reducing
them to preference and plausibility orders respectively (as in [4]) or a mixture
of the two (as in [10]). In the case of desires, one starts with a preference order
between objects, worlds, or more neutrally, states, and analyzes desires at the
most preferable states: ϕ is desired if and only if it is true in all the most
preferable states.1 Likewise with beliefs based on plausibility orders, ϕ is said to
be believed if it is true in the most plausible states.2 Here we will use the term
‘preference’ in a way that is neutral between the proairetic (desirability) and

1 The most preferable states are those compared to which no other state is preferred.
The preference need not be total for there to be such states.

2 This is the case, for instance, in doxastic dynamic logic based on Grove models, such
as [12].
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doxastic (plausibility) reading, and represent it as a binary relation R between
states that is required to be both reflexive and transitive (a preorder), with uRv
interpreted to mean that v is no less preferable than u. It is also convenient to
refer to the corresponding strict preorder defined as uR<v iff uRv and not vRu.
These relations are describes using a standard modal language LP with two
diamonds, ♦ and ♦<, together with the existential modality E, which described
the universal relation, and which plays an important role in lifting preference
for states to preference for and between propositions.3

By associating diamonds 〈a〉 and 〈a〉< with each agent a, the approach mi-
grates well to a multi-agent setting. Yet more is required to talk about prefer-
ences. For this we need to add modalities for groups of agents and analyze the
relationship between the associated group preference relation and those of the
group members. This is the problem of aggregation. Even with just two agents a
and b, the language LP cannot describe those preferences that they share. For it
to do so, there would have to be a modal operator O definable in LP such that
the relation described by O is the intersection of the relations described by 〈a〉
and 〈b〉, and this cannot be done.4 Our solution to this problem is quite simple:
we add nominals, the naming devices of hybrid logic, using which the intersection
of relations is known to be definable.5 The addition of nominals therefore allows
us to perform the second kind of lift, from individual to group preferences.6

In moving from individuals to groups one needs to follow a policy, known as
an aggregation procedure. To motivate the specific aggregation policy we adopt,
consider the following example. Three friends go to a restaurant and order a
meal that they will then share. If the group does not contain deviant dietary
agents, it may be sufficient for them to require unanimous agreement or perhaps
a majority vote. But if one of the agents is vegetarian, these generally equitable
procedures might not yield a desirable result: if the two meat-eaters go for their
preferred feast of flesh, the vegetarian will starve. The obvious solution is to
prioritize the preferences of the more vulnerable group member, the vegetarian,
at least in vetoing meat and assuming that the carnivores have fall-back options
in the realm of vegetables. Clearly no one prioritization will suit all situations,
so we require a flexible mechanism for representing various ways of arranging
group members according to priority.

This class of aggregation procedures, known as lexicographic re-orderings, were
studied extensively in [1]. Given a particular hierarchy over a set of agents,
aggregation is computed by giving priority to the agents further up the hierarchy
in a compensating way: the group follows shared preferences, if it can, or follows
the most influential agents, in case of disagreement. For example, suppose that

3 Our approach to defining preference between propositions follows [18] and [17].
4 A standard bisimulation argument proves this.
5 See, for example, [2].
6 A similar logic for preference aggregation is presented in [9]. The version contained

in the present paper is a cleaner and a simplified version of the latter, with a new
axiomatization. The Gentzen sequent calculus contained in the final section is an
innovation of the present paper.
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a has priority over b and c but not over d. To decide whether the group prefers
state v to state u, we ask first whether a and d both take v to be no less preferable
than u. If, in addition a has a strict preference for v over u then the group is
taken to prefer v to u. If not, we check that b and c both take v to be no less
preferable to u and if either b, c or d have a strict preference for v over u then
the group does also. Lexicographic re-ordering (for any given way of prioritizing
the members of the group) was shown by [1] (Section 3) to have the following
attractive properties:

(I) Independence of irrelevant alternatives: adding a new state to
those being compared does not change the group’s preferences
with respect to the old states.

(B) Based on preferences only: the group’s preference relation is
functionally determined by the preference relations of the group
members.

(U) Unanimous with abstention: if a nonempty subset of the group’s
members are unanimous (i.e., they have identical preferences)
regarding u and v and the remaining members are neutral, taking
u and v to be equally preferable, then the group’s preferences
coincide with those of the unanimous subset.

(T) Preserves transitivity: the group’s preference relation is guaran-
teed to be transitive if the individual members preference rela-
tions are transitive.7

Given the obvious existence of (many) lexicographic re-orderings, this establishes
the consistency of these properties in contrast to the notorious impossibility the-
orem of Arrow in [3]. Moreover, every lexicographic re-ordering has the property
of being ‘non-dictorial’, meaning that there is no agent whose preference ordering
is guaranteed to be the same as the group’s.8 These are result of maximal gen-
erality because [1] also shows that any aggregation procedure that satisfies the
IBUT conditions can be construed as a lexicographic re-ordering with respect to
some way of prioritizing the members of the group.9

Also developed in [1] is the means of expressing any given aggregation pro-
cedure satisfying IBUT as a composition of two fundamental operations. The
preferences of any two agents can be combined in a way that requires agreement
or the subordination of one agent to the other. By composing these operations,
it is possible to define any lexicographic re-ordering of a group’s preferences,

7 We only consider preference relations that are preorders (reflexive and transitive) so
this condition merely requires that the group’s preference relation is transitive. The
reflexivity of the group’s preference relation is derivable from the other conditions
([1], p. 23.)

8 When a potential dictator abstains on the comparison between u and v and the rest
of the group unanimously agree that v is better than u, the lexicographic aggregated
preference will be a strict preference for v over u.

9 Theorem 8 in [1].
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and thereby any aggregation procedure satisfying IBUT.10 We build a logic of
aggregation based on these two operations and so construct a way of reasoning
about group preference which does not fall pray to the overarching impossibility
result of Arrow.11

2 Hybrid Modal Logic for Lexicographic Aggregation

We start with a system of terms for aggregated groups of agents, using the op-
erations of agreement and subordination. The individual agents are denoted by
symbols a ∈ agent. Terms are then constructed using the operations t1 ‖ t2 for
the group formed from t1 and t2 by a policy of agreement, and t1/t2 for the group
formed by taking t2 to be subordinate to t1. Each group term t is associated with
a modal preference operator 〈t〉 and its strict version 〈t〉<. The language is then
built using these operators from propositional variables p ∈ prop and nomi-
nals i ∈ nom, together with the standard Boolean operators, taking negation
and disjunction as primitive. We also have the existential modal operator E. In
other words, the hybrid modal language of lexicographic aggregation, LAG , is
defined by

ϕ := p | i | ¬ϕ | ϕ ∨ ϕ | 〈t〉ϕ | 〈t〉<ϕ | Eϕ
t := a | t ‖ t | t/t

A frame for LAG is a pair 〈W, I〉 consisting of a set W of states and a function I
assigning a binary relations I(t) and I<(t) on W to each term t. It is a preference
frame if each of these relations is a preorder (reflexive and transitive) and I<(t) is
the strict subrelation of I(t), i.e., 〈u, v〉 ∈ I<(t) iff 〈u, v〉 ∈ I(t) and 〈v, u〉 �∈ I(t).
It is an aggregation frame if, in addition, the following conditions are met:

I(t1 ‖ t2) = I(t1) ∩ I(t2)
I(t1/t2) = (I(t1) ∩ I(t2)) ∪ (I(t1)<)

Thus, in an aggregation frame, u is at least as good as v according to t1 ‖ t2 just
in case t1 and t2 agree about this, and u is at least as good as v according to
t1/t2 if either t1 and t2 agree or t1 has a strict preference for v over u. A model
M is a triple 〈W, I, V 〉 consisting of a frame 〈W, I〉 and a valuation function
V : prop ∪ nom → PW such that V (i) is a singleton for each i ∈ nom. M is a
preference/aggregation model if 〈W, I〉 is a preference/aggregation frame.

The semantics for LAG is given in Figure 1. As usual, we say that ϕ is valid
in a model M iff M, u |= ϕ for all u ∈W and is valid in a frame iff it is valid in
every model over that frame. The logic of aggregation is the set of all formulas
ϕ in the language LAG that are valid in every aggregation frame.

10 Corollary 14 in [1], in which the agreement operator is called ‘but’ and the subordi-
nation operator is called ‘on the other hand’.

11 Of course, the price to pay for such a logic is that agents do not have equal votes, but
as we saw in the example of the vegetarian at dinner, this is sometimes desirable.
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Semantics of LAG

M, u |= p iff u ∈ V (p)

M, u |= i iff {u} = V (i)

M, u |= ¬ϕ iff M, u �|= ϕ

M, u |= ϕ ∨ ψ iff M, u |= ϕ or M, u |= ψ

M, u |= 〈t〉ϕ iff uI(t)v and M, v |= ψ for some v ∈ W

M, u |= 〈t〉<ϕ iff uI<(t)v and M, v |= ψ for some v ∈ W

M, u |= Eϕ iff M, v |= ψ for some v ∈ W

Fig. 1. Semantics for aggregation logic

LAG can define various notions of group preference, as shown in Figure 2.12

Depending on the interpretation of ‘preference’ as proairetic or doxastic, these
correspond to concepts of desire or belief. A group t’s preference for state v
over u is represented as u <t v, meaning that the group desires v more than u
(proairetic) or takes v to be more plausible than u (doxastic). Absolute preference
for proposition ϕ is represented by P tϕ, meaning that the group desires ϕ to
be the case (proairetic) or believes ϕ to be the case (doxastic), and this can be
conditionalised as P t(ϕ|ψ). That proposition ψ is preferred to proposition ϕ,
meaning that the group desires ψ to be the case more than ϕ (proairetic) or
finds ψ to be more plausible than ϕ (doxastic), splits into a number of logically
distinct concepts, two of which are represented here as ϕ <t∃∃ ψ and ϕ <t∀∃ ψ.13

Group preference

Preference between states u <t v E(u ∧ 〈t〉<v)

Preference for propositions P tϕ U(¬〈t〉<� → ϕ)

Conditional preference for propositions P t(ϕ|ψ) U((ψ ∧ ¬〈t〉<ψ) → ϕ)

Preference between propositions ( ∃∃) ϕ <t
∃∃ ψ E(ϕ ∧ 〈t〉<ψ)

Preference between propositions (∀∃) ϕ <t
∀∃ ψ U(ϕ → 〈t〉<ψ)

Fig. 2. Defining concepts of preference in LAG

The axiomatization of aggregation logic is given in Figure 3. We present the
logic in building blocks. The first two tables give an axiomatization for the
modal logic with two diamonds 〈t〉ϕ and 〈t〉<ϕ and the existential modality E
interpreted over the class of all frames. Along with the axioms of the third table,
this is sufficient to axiomatize the hybrid logic H(E) of [15] (Table 5.3). The
12 We make free use of the definability of other operators such as � (tautology), →

(implication), ∧ (conjunction), U (universal modality ¬E¬), etc.
13 The different combinations of quantifiers are discussed in [17]. Note that all of the

listed concepts have weak versions, in which 〈t〉< is replaced by 〈t〉.
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Propositional Logic

1. � ϕ (ϕ a tautology)

2. � ϕ & � ϕ → ψ ⇒ � ψ

Modal Logic

3. � M(ϕ ∨ ψ) → (Mϕ ∨ Mψ)

4. � (ϕ ∨ EEϕ ∨ Mϕ) → Eϕ

5. � E¬Eϕ → ¬ϕ

6. � ϕ ⇒ � ¬M¬ϕ

Hybrid Logic

7. � i → ϕ ⇒ � ϕ (i not in ϕ)

8. � E(i ∧ Mj) → E(j ∧ ϕ) ⇒ � E(i ∧ ¬M¬ϕ) (i �= j and j not in ϕ)

9. � Ei

10. � E(i ∧ ¬p) → ¬E(i ∧ p)

Preference axioms

11. � i → Mi

12. � MMi → Mi

13. � i → (〈t〉<ϕ ↔ 〈t〉(ϕ ∧ ¬〈t〉i))
Aggregation axioms

14. � 〈t1 ‖ t2〉i ↔ 〈t1〉i ∧ 〈t2〉i
15. � i → (〈t1/t2〉j ↔ ((〈t1〉j ∧ 〈t2〉j) ∨ 〈t1〉(j ∧ ¬〈t1〉i)))

Fig. 3. Axiomatization of aggregation logic in building blocks, with M ranging over
each of the modal operators, E, 〈t〉 and 〈t〉< for each term t

fourth table adds axioms characterizing the class of preference frames: 11 and
12 for preorders and 13 for the relation between strict and weak preference. The
last table adds the axioms that characterize the class of aggregation frames. To
establish completeness for these various systems, we start with a known result
([15] Corollary 5.4.1):

Theorem 1. The Axioms and rules 1-10 are sound and complete with respect
to the hybrid logic H(E).

The completeness of the axiomatizations of the classes of preference frames and
aggregation frames follows directly from the fact their axioms are all ‘pure for-
mulas’, which is to say that they contain no propositional variables, and that
the axioms characterize the corresponding classes of frames, by another stan-
dard result in hybrid logic (e.g., Corollary 5.4.1 in [15]). Thus, it only remains
to observe that the preference axioms are valid in a frame iff it is a preference
frame and the aggregation axioms are valid in a preference frame iff it is an
aggregation frame. This is all fairly trivial because the axioms directly mirror
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the frame conditions. One point to observe is the role of nominals. It is only by
using an antecedent nominal i and reference back to i later in Axioms 11, 13 and
15 that conditions such as reflexivity, strictness subordination can be captured.
This cannot be done in ordinary modal logic. Hence we have:

Theorem 2. (1) The axioms and rules 1-13 are sound and complete with respect
to the class of preference frames, and (2) the axioms and rules 1-15 are sound
and complete with respect to the class of aggregation frames.

We therefore have an adequate logic of group preferences, at least from a theoret-
ical perspective. For the remainder of the paper, we develop a more systematic
and modular proof system using a Gentzen-style sequent calculus.

3 Analytic Proof Theory

Among its many virtues, Gentzen’s sequent calculus provides a systematic anal-
ysis of the inferential role of logical operators.14 If we define the inferential
meaning of formula to be the set of valid argument forms that contain it as
either a premise or conclusion, then the rules of Gentzen’s calculus show how
the inferential meaning of each formula is determined by the inferential meaning
of its parts, and so conform to Frege’s principle of the compositionality of mean-
ing.15 The inferential meaning of (ϕ∨ψ), for example, is determined entirely by
the inferential meanings of ϕ and ψ, and Gentzen’s rules show precisely how. In
doing so, the definition of a valid argument form has to be stretched (in classical
logic, at least) to allow for more than one conclusion. Gentzen’s rules apply to
sequents, which are expressions of the form Γ −→ ∆, where Γ and ∆ are finite
sequences of formulas, usually written separated by commas. Such a sequent is
valid if there is no appropriate interpretation in which the formulas in Γ , known
as premises, are all true and the formulas in ∆, known as conclusions, are all
false. The more usual definition of a valid argument is obtained as a special case,
in which there is only one conclusion.

The calculus, displayed in Figure 4, consists of a complete set of rules for
generating the valid sequents of first-order predicate logic, based only on the
principle logical operators of the formulas contained in the sequent. Those rules
that apply to conclusions are called right rules (marked r) and those that apply
to premises are called left rules (marked l). In addition to the logical rules, there
are two structural rules: the rule of Identity (I), which says that a sequent is valid
if the same formula occurs as both premise and conclusion, and the rule of Sets
(S), which says that validity of sequents is invariant with respect the equivalence
14 [8] is the classical reference for Gentzen’s calculus, [16] a text-book level introduction,

and [13] develops the present method for devising a sequent calculus for modal and
hybrid logics.

15 Frege’s principle, that the sense of an expression depends only on the sense of its
parts (and their mode of composition) is usually applied within semantic theories of
meaning, although some philosophers such as Dummett [6] and Brandom [5] have
applied it to theories of meaning based on inferential role.



An Analytic Logic of Aggregation 153

Structural Rules

I ⇒ ϕ, Γ −→ ∆, ϕ.

S Γ −→ ∆ ⇒ Γ ′ −→ ∆′ if Γ ≈ Γ ′ and ∆ ≈ ∆′.

Logical Rules

¬l Γ −→ ∆, ϕ ⇒ ¬ϕ, Γ −→ ∆.

¬r ϕ, Γ −→ ∆ ⇒ Γ −→ ∆,¬ϕ.

∨l ϕ, Γ −→ ∆; ψ, Γ −→ ∆ ⇒ (ϕ ∨ ψ), Γ −→ ∆

∨r Γ −→ ∆, ϕ, ψ ⇒ Γ −→ ∆, (ϕ ∨ ψ)

∃l ϕ[xa], Γ −→ ∆ ⇒ ∃x ϕ, Γ −→ ∆ if a does not occur in ϕ, Γ, ∆.

∃r Γ −→ ∆,∃x ϕ, ϕ[xt ] ⇒ Γ −→ ∆, ∃x ϕ

=l1 s = t, Γ [as ] −→ ∆[as ] ⇒ s = t, Γ [at ] −→ ∆[at ].

=l2 s = t, Γ [at ] −→ ∆[at ] ⇒ s = t, Γ [as ] −→ ∆[as ].

=r ⇒ Γ −→ ∆, t = t

Fig. 4. The sequent calculus G for predicate logic

relation ≈ which holds between sequences of formulas just in case they contain
the same set of formulas. In other words, the order and number of copies of each
formula are logically irrelevant.16

A proof in the calculus G is a deduction tree, of the familiar kind, with the
sequent to be proved as root and with branches written

P1 . . . Pn
R

C

for which C and P1, . . . , Pn are sequents and P1, . . . , Pn ⇒ C is a substitu-
tion instance of rule R. Leaves of the tree are formed by the unconditional rules I
and =r. Although the justification of validity runs down the tree from leaves to
root, we think of the tree as growing up from the root, with each rule applying
to sequent C to yield branches P1, . . . , Pn. Each of the logical rules apply only to
one formula in C, known as the principal formula of the rule, which may be on
the left or right side. The remaining formulas, are known as the context. Most of
the rules are context-independent, depending on and altering only the principal
formula. There are two exceptions. The rule ∃l is context-sensitive because of
the condition that the parameter does not occur in the context, and the rule = l

is context-altering because the context of the branches may be different from the
context of the root. Aside from the context and the principal formula, all other
formulas involved in a rule application are subformulas of the principal formula.
This simple observation leads directly to an important result:
16 Gentzen split the rule of Sets into the two rules of Permutation and Contraction,

which capture invariance under the operations of permuting and deleting copies of
premises (or conclusions). Subsequently there has been much interest in ‘substruc-
tural’ logics, in which some of the structural rules do not hold in full generality. (See,
for example, [11].)
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Subformula Property. Every formula occurring in a G proof is a subformula of
a formula occurring at the root.17

Conspicuous by their absence are the structural rules of Weakening (W) and
Cut (C):

W Γ −→ ∆ ⇒ Γ, Γ ′ −→ ∆,∆′

C Γ −→ ∆,ϕ ϕ, Γ ′ −→ ∆′ ⇒ Γ, Γ ′ −→ ∆,∆′

Weakening allows redundant premises (or conclusions) in the root to be discarded
from the branches and Cut allow us to use a formula that does not occur in the
root as an intermediate stage, or lemma, in the argument. The left branch of an
application of Cut proves the cut formula as a conclusion; the right branch uses
it as a premise. These two rules are not included in the system G because they
are admissible: adding them would not allow any more sequents to be proved.
The proof of the admissibility of Weakening is straightforward: if π is a proof
of Γ −→ ∆ in G, then we can get a proof of Γ, Γ ′ −→ ∆,∆′ by replacing each
sequent Γ ′′ −→ ∆′′ that occurs in π by Γ ′′, Γ ′ −→ ∆′′, ∆′ and checking that
each branch is still an instance of the associated rule.18

The proof of the admissibility of Cut is Gentzen’s famous Haupstatz, also
known as ‘Cut-elimination’.19 The proof method depends on only two properties
of the system, which will now be explained. Any application of Cut in a proof
has the following form:

π1

P1 . . .

πn

Pn
R1

Γ −→ ∆,ϕ

π′
1

P ′
1 . . .

π′
m

P ′
m
R2

ϕ, Γ ′ −→ ∆′
C

Γ, Γ ′ −→ ∆,∆′

If, in addition, we assume that the proofs above (π1, . . . , πn, π
′
1, . . . , π

′
m) are Cut-

free, i.e., that they use only the rules of G then we can express the two crucial
properties as follows:

Cut Reduction. If the cut formula ϕ is the principal formula of both R1 and R2
then the proof of sequent Γ, Γ ′ −→ ∆,∆′ can be replaced by one whose only
applications of Cut have cut formulas that are strictly less complex than ϕ.20

Permutation with Cut. If the cut formula ϕ is not the principal formula of R1
then the order of application of R1 and Cut can be swapped, so that there is a
17 The definition of ‘subformula’ is the obvious one: ϕ is a subformula of ¬ϕ, both ϕ

and ψ are subformulas of (ϕ ∨ ψ) and ϕ[xt ] is a subformula of ∃x ϕ for each term t.
Note that proofs in G require a countably infinite supply of new constant symbols,
called parameters, which are included as terms, to serve in the application of ∃l.

18 We also have to perform some substitutions of terms to deal with the quantifier
rules, but these do not effect the structure of the proof.

19 A full treatment of the basic hybrid logic we will be using is given in [13].
20 The definition of the complexity of formulas is tailored to ensure that Cut reduction

is possible. For predicate logic, the number of logical operators in the formula is a
suitable measure of complexity.
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proof of Γ, Γ ′ −→ ∆,∆′ in which the application of Cut is closer to the leaves
of the tree on the left side. Similarly, R2 can be swapped with Cut if ϕ is not
the principal formula of R2.

Cut reduction and permutation with Cut allow applications of the Cut rule
to be pushed up to the leaves of the proof tree and reduced in logical complexity
until an application of the Identity rule on either the left or the right side is
reached, at which point they can be removed completely.

The proof of Cut reduction relies on a balance between the left and right
rules for each logical operator. The appropriate negation rules transformation,
for example, is the following:

π1

ϕ, Γ −→ ∆ ¬r
Γ −→ ∆,¬ϕ

π2

Γ ′ −→ ∆′, ϕ ¬l¬ϕ, Γ ′ −→ ∆′
C

Γ, Γ ′ −→ ∆,∆′

�

π2

Γ ′ −→ ∆′, ϕ

π1

ϕ, Γ −→ ∆
C

Γ ′, Γ −→ ∆′, ∆
S

Γ, Γ ′ −→ ∆,∆′

Note that the only application of Cut after the transformation has cut formula
ϕ, which is less complex that the cut formula ¬ϕ before the transformation.
Similar transformations establish cut reduction for all pairs of rules. The proof
of permutation with Cut is straightforward for context-independent rules and is
effected by a simple swap. Negation, again, provides a simple example:

π1

ϕ, Γ −→ ∆,ψ ¬r
Γ −→ ∆,¬ϕ, ψ

π2

ψ, Γ ′ −→ ∆′
C

Γ, Γ ′ −→ ∆,¬ϕ,∆′

�

π1

ϕ, Γ −→ ∆,ψ

π2

ψ, Γ ′ −→ ∆′
C

ϕ, Γ, Γ ′ −→ ∆,∆′
¬r

Γ, Γ ′ −→ ∆,∆′,¬ϕ
Note that the height of the right branch of the Cut after the transformation is one
less than the height of the right branch of the Cut before the transformation, and
the two left branches are unchanged. For context-sensitive and context-altering
rules, a little more work is required, but the transformations involved are similar.

The admissibility of Cut has important consequences for the relationship be-
tween the sequent calculus and axiomatic systems. Suppose that we have an
axiomatic system of deduction with a set A of logical axioms and a set R of
inference rules, then for any set T of formulas, the set of theorems of T can be
defined in the usual way. Then the axiomatic system can be simulated within
the sequent calculus under the conditions of the following way:

Axioms to Rules Method. Given a set A of logical axioms, each of which is
derivable in G + CW, and a set R of inference rules, each of which is derivable
in G+ CW, and a set T of formulas, if ϕ is a theorem of T then there is a finite
subset Γ of T such that Γ −→ ϕ is provable in G.21

21 To say that an inference rule ϕ1, . . . , ϕn is derivable in G means that if we add as
new sequent rules the assertion of sequents −→ ϕ1, . . . ,−→ ϕn−1 (at the leaves of a
proof tree), then we can construct a proof of the sequent −→ ϕn. The derivability
of axioms is a special case in which no additional sequent rules are required. We will
give an example below.
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The proof of this result is straightforward, given the admissibility of Cut. One
merely reconstructs a deduction in the axiomatic system as a proof in G together
with additional rules allowing the assertion of sequents −→ ϕ (at the leaves of
the tree) for each ϕ in T . Then, in any given proof of −→ ψ for theorem ψ, take
Γ to be the set of ϕ in T that occur in the proof, and add Γ to every sequent
that occurs in the proof, so converting the assertions of −→ ϕ at the leaves
into sequents Γ −→ ϕ, which are applications of the Identity rule. The resulting
proof is in G + CW and so can be converted into one in G by the elimination
of Cut and Weakening. Typically, Cut is essential for showing the derivability of
the rules of the axiomatic system.

The Axioms to Rules Method enables a completeness theorem for an axiomatic
presentation of the logic to be transferred to the sequent calculus.22 All that
is required is to demonstrate that the rules of the sequent calculus have the
two properties required for Cut-elimination, and that the axioms and rules of a
complete axiomatic system are derivable. This can easily be done for G, using
any one of a number of axiomatic systems for predicate logic.

Completeness of a sequent calculus provides more information than complete-
ness of an axiomatic system because it extends to fragments. Given any restric-
tion of the language of predicate logic to a subset of its logical symbols, the
corresponding restriction of G is also complete, thanks to the Subformula Prop-
erty. The decidability of some fragments, such as the quantifier-free fragment, is
also a simple corollary of completeness and the observation that each formula in
the fragment has only a finite number of subformulas.23

A final observation about the sequent calculus for predicate logic is needed
before we consider modal logic and the logic of aggregation, in particular. The
permutation of rules with Cut has already been explained but, in fact, the order
of application of any two context-independent rules can be swapped if their
principle formulas do not interact. The rules only effect their respective principal
formulas and so their order of application can be reversed without difficulty.
This ensure that these rules are reversible: any sequent that contains a formula
ϕ (on the left or the right) has a proof in which the last rule applied is the
corresponding left or right rule for the main connective of ϕ. The result extends
to the remaining rules ∃l and = l because their principal formulas are not
removed when the rule is applied. Moreover, each of the rules has the property
that the only logical operator mentioned in the rule occurs in the principal
formula, so that the inferential role of the operator is completely captured by
the rule. For example, the inferential meaning of a disjunction (ϕ ∨ ψ) is given
by the set S of valid sequents of the form (ϕ∨ψ), Γ −→ ∆ or Γ −→ ∆, (ϕ∨ψ).
But the reversibility of rules and the specific form of the disjunction rules show
that S is the union of the set of sequents (ϕ∨ψ), Γ −→ ∆ such that ϕ, Γ −→ ∆

22 [13] introduces a different approach to proving completeness of sequent systems
directly, based on the formalisation of the semantic theory, which could also be used
for the present system.

23 Quantified formulas have an infinite number of subformulas, so the argument does
not extend to predicate logic.
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and ψ, Γ −→ ∆ are valid and set of sequents Γ −→ ∆, (ϕ ∨ ψ) such that
Γ −→ ∆, ϕ, ψ is valid. The inferential meaning of (ϕ ∨ ψ) is therefore entirely
determined by the inferential meaning of ϕ and ψ in the manner shown by the
rules of G, as promised earlier, thus justifying the claim that the sequent calculus
G is an analytic calculus for predicate logic.24

4 A Sequent Calculus for Aggregation

Our formulation of a sequent calculus for the logic of aggregation uses labelled
formulas. These are expressions of the form k:ϕ, where ϕ is a formula in our
languageLAG and k is a nominal. A sequent calculus for these expressions is given
in Figure 5. The structural rules and the rules for the operators of propositional
logic track those of G, with the labels playing no role at all. The rules for modal
and hybrid operators use the labels in a way that mirrors the truth conditions
for these operators in their semantic theory.25

Additional rules for the modal operators respect their interpretation as pref-
erence operators, ensuring that the accessibility relation of 〈t〉 is a preorder and
that of 〈t〉< is the corresponding strict preorder. Finally, the rules for aggregation
again track the semantic conditions for the two aggregation operators.

To prove Cut-elimination, it is sufficient to show both Cut reduction and the
permutation of all rules with Cut. For the latter, we note that the only non-
context-independent rules are 〈t〉l and El, which are context-sensitive, and : l,
which is context-altering. But these are sufficiently similar to the rules ∃l and
= l from predicate logic to be treated in the same way. Cut reduction must be
considered for each pair of rules with matching left and right principal formulas.
Here we give one examples of the required transformations.

π1

Γ −→ ∆, k: 〈t1〉i
π2

Γ −→ ∆, k: 〈t2〉i ‖r
Γ −→ ∆, k: 〈t1 ‖ t2〉i

π3

k: 〈t1〉i, k: 〈t2〉i, Γ ′ −→ ∆′
‖l

k: 〈t1 ‖ t2〉i, Γ ′ −→ ∆′
C

Γ, Γ ′ −→ ∆,∆′

�
π2

Γ −→ ∆, k: 〈t2〉i

π1

Γ −→ k: 〈t2〉i
π3

k: 〈t1〉i, k: 〈t2〉i, Γ ′ −→ ∆′
C

k: 〈t2〉i, Γ, Γ ′ −→ ∆,∆′
C

Γ, Γ ′ −→ ∆,∆′

This is sufficient to establish Cut-elimination, using the argument described in
Section 3.

24 The term ‘analytic proof theory’ was coined by Smullyan in [14].
25 Up to this point, the calculus is identical to a similar labelled calculus in [13]. The

labels can be removed by adding the satisfaction operator @ to the language and
performing additional steps of internalization.
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Structural Rules

I ⇒ k: ϕ, Γ −→ ∆, k: ϕ.

S Γ −→ ∆ ⇒ Γ ′ −→ ∆′ if Γ ≈ Γ ′ and ∆ ≈ ∆′.

Propositional Rules

¬l Γ −→ ∆, k: ϕ ⇒ k:¬ϕ, Γ −→ ∆.

¬r k: ϕ, Γ −→ ∆ ⇒ Γ −→ ∆,¬k: ϕ.

∨l k: ϕ, Γ −→ ∆; k: ψ, Γ −→ ∆ ⇒ k: (ϕ ∨ ψ), Γ −→ ∆.

∨r Γ −→ ∆, k: ϕ, k: ψ ⇒ Γ −→ ∆, k: (ϕ ∨ ψ).

Modal Rules

〈t〉l i: ϕ, k: Mi, Γ −→ ∆ ⇒ k: Mϕ, Γ −→ ∆ if i does not occur in k, ϕ, Γ, ∆.

〈t〉r Γ −→ ∆, k: Mϕ, k: Mi; Γ −→ ∆, k: Mϕ, i: ϕ ⇒ Γ −→ ∆, k: Mϕ.

El i: ϕ, Γ −→ ∆ ⇒ k: Eϕ, Γ −→ ∆ if i does not occur in k, ϕ, Γ, ∆.

Er Γ −→ ∆, k: Eϕ, i: ϕ ⇒ Γ −→ ∆, k: Eϕ.

Hybrid Rules

: l1 k: i, Γ [jk] −→ ∆[jk] ⇒ k: i, Γ [ji ] −→ ∆[ji ].

: l2 k: i, Γ [ji ] −→ ∆[ji ] ⇒ k: i, Γ [jk] −→ ∆[jk].

:r ⇒ Γ −→ ∆, k: k .

Preference Rules

Re ⇒ Γ −→ ∆, k: 〈t〉k .

Tr Γ −→ ∆, k: 〈t〉i; Γ −→ ∆, i: 〈t〉j ⇒ Γ −→ ∆, k: 〈t〉j.
<l k: 〈t〉i, Γ −→ ∆, i: 〈t〉k ⇒ k: 〈t〉<i, Γ −→ ∆.

<r Γ −→ ∆, k: 〈t〉i; i: 〈t〉k, Γ −→ ∆ ⇒ Γ −→ ∆, k: 〈t〉<i.

Aggregation Rules

‖l k: 〈t1〉i, k: 〈t2〉i, Γ −→ ∆ ⇒ k: 〈t1 ‖ t2〉i, Γ −→ ∆.

‖r Γ −→ ∆, k: 〈t1〉i; Γ −→ ∆, k: 〈t2〉i ⇒ Γ −→ ∆, k: 〈t1 ‖ t3〉i.
/l k: 〈t1〉i, k: 〈t2〉i, Γ −→ ∆; k: 〈t1〉i, Γ −→ ∆, i: 〈t1〉k

⇒ k: 〈t1/t2〉i, Γ −→ ∆.

/r Γ −→ ∆, k: 〈t1〉i; i: 〈t1〉k, Γ −→ ∆, k: 〈t2〉i ⇒ Γ −→ ∆, k: 〈t1/t2〉i.

Fig. 5. A labelled sequent calculus AG for the logic of aggregation, with M ranging
over 〈t〉 and 〈t〉< for each term t

Theorem 3. Cut and Weakening are admissible in AG.

We note that AG has the Subformula Property, given a suitable definition of
‘subformula’ according to which the subformulas of 〈t〉ϕ are ϕ and 〈t〉u for each
nominal u; those of 〈t〉<ϕ are the same, with the addition of 〈t〉<v for each v;
those of 〈t1 ‖ t2〉ϕ and 〈t1/t2〉ϕ are again the same as for all formulas formed
using a modal operator, with in addition 〈t1〉ϕ and 〈t2〉ϕ. Eϕ has subformulas
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ϕ and each nominal. The rules are all reversible and so the calculus is fully
analytic, in the sense explained in Section 3.

By saying that AG is sound, we mean that if k is a nominal that does not occur
in the LAG sequent Γ −→ ∆ and k:Γ −→ k:∆ is provable in AG then Γ −→ ∆
is valid. This can be established by inspection of the rules, in the usual way. To
show the converse, completeness, by the Axioms to Rules Method, it is enough
to show that the axioms and rules of the system in Figure 3 are derivable with
the help of Weakening and Cut, which is a routine exercise. As a quick example,
the following shows the derivability of rule 7, � i → ϕ ⇒ � ϕ (assuming i
not in ϕ):

: r
−→ k: k

Er

−→ k:Ek

: r
−→ k: k

−→ k: (¬i ∨ ϕ)

I
k: i −→ k: i, k:ϕ

¬l

k:¬i, k: i −→ k:ϕ
I

k:ϕ, k: i −→ k:ϕ
∨l

k: (¬i ∨ ϕ), k: i −→ k:ϕ
C

k: i −→ k:ϕ
W

i: k, k: i −→ k:ϕ
: l1

i: k, k: k −→ k:ϕ
C

i: k −→ k:ϕ
El

k:Ek −→ k:ϕ
C

−→ k:ϕ

A couple of features of derivations like this one are worthy of comment. First,
note that we re-write i→ ϕ as (¬i∨ϕ). This is necessary only because we limited
the Boolean part of our sequent calculus to rules for negation and disjunction.
With the standard definitions of the other connectives, their standard sequent
calculus rules for them are all derivable, and so could be used here. This is a
trivial point. Second, and more significantly, the derivation of rule 7 uses the
existential modality, E, so providing a further insight into why E is needed in
the axiomatic system. Without E, or something similar, hybrid logic is hard to
axiomatize.26 But when translated into the sequent calculus AG, we see how the
occurrences of E disappear with Cut-elimination: by the subformula property of
AG, the proof of any sequent not containing E will also not contain E.

Theorem 4. If k is a nominal that does not occur in the LAG sequent Γ −→ ∆
then k:Γ −→ k:∆ is provable in AG iff Γ −→ ∆ is valid.

The structure of AG allows us to generalise Theorem 4 considerably. By the
subformula property of AG, any sequent in a fragment of LAG restricted to a
subset of the logical operators will have a proof in the sequent calculus obtained
by restricting AG to the rules that mention those operators, which will therefore
be complete for the fragment. For example, if we simply drop the rules for E,

26 An approach, using infinite (non-schematic) sets of axioms was given in [7].
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we obtain a calculus for the E-free fragment, something that is very difficult to
axiomatize, as noted above.

In conclusion, we have shown that a simple extension of LP , the basic logic
of preference for individuals, with nominals gives a complete logic for the lexi-
cographic re-ordering of preferences given in [1]. We have shown two approaches
to the proof theory of aggregation logic, one using a Hilbert-style axiomatiza-
tion and the other using a Gentzen-style sequent calculus. For the former, our
completeness result relies on the presence of the existential modality. For the
latter, our rules mirror the inductive definition of terms found inside the modal
operators and so there is no need for the existential modality. The Gentzen-style
calculus yields an explicit analysis of group modalities into individual modalities.

Our logic is well suited for lexicographic re-ordering of preference relations,
but it is quite clear that a similar approach could be taken with other aggre-
gation operators. For instance, one might define an aggregation operator which
follows the choices of subordinate agents when their boss abstains from voting.
Lexicographic re-ordering fails to yields a result in such cases. Several questions
arise: which properties, analogical to IBUT , does this operator satisfy? And
what class of aggregation operators can be modeled using our approach?
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Abstract. We show that under the assumptions of Spectrum Exchange-
ability and Language Invariance the so called Only Rule, a principle of
instantial relevance previously know for unary (i.e. classical) Carnapian
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1 Introduction

In this paper we are interested in the following question: Given that we make
a rational or logical assignment of probabilities to sentences according to the
dictates of Inductive Logic under what conditions on sentences θ and φ must the
probability of θ be at least that of φ?

In order to formalize this problem more precisely we first need to introduce
some notation and notions from Inductive Logic. Let L be a first order language
containing finitely many relation symbols P1, P2, . . . , Pq with arities r1, r2, . . . , rq
respectively, countably many constants a1, a2, a3, . . . (the implicit intention be-
ing that these exhaust the universe) and no function symbols nor equality. Let
SL, QFSL, respectively, denote the sentences and quantifier free sentences of
L. Throughout we shall use b1, b2, . . . and b′1, b

′
2, . . . to denote distinct constants

ai from L.
A function w : SL→ [0, 1] is a probability function on L if it satisfies that for

all θ, φ, ∃xψ(x) ∈ SL :

(P1) If � θ then w(θ) = 1.
(P2) If � ¬(θ ∧ φ) then w(θ ∨ φ) = w(θ) + w(φ).
(P3) w(∃xψ(x)) = limn→∞w(

∨n
i=1 ψ(ai)).

From this (P1-3) all the expected properties (see for example [15, page 10])
of ‘probability’ follow, for example
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(P4) If |= ¬θ then w(θ) = 0,

(P5) If φ |= θ then w(φ) ≤ w(θ).

(P5) would appear to give a partial answer to the question we asked at the
start, indeed it is easy to show that the converse holds too, namely, w(θ) ≥ w(φ)
for all probability functions on L if and only if φ |= θ.

This however is far from the end of the matter. For in Inductive Logic we
are not interested in all probability functions on L but only those probability
functions which are ‘rational’ or ‘logical’, which in this context is identified with
satisfying certain principles which we intuitively feel a rational agent should
abide by when assigning probabilities, see for example [1], [2], [3], [8]. There are
now a number of such principles (in addition to the above see for example [6],
[15], [16]) but as far as this paper is concerned we shall be interested in just two
of them, Spectrum Exchangeability, Sx, and Language Invariance, LI. In order
to explain these we need to develop a little more notation.

By a theorem of Gaifman (see [4]) any probability function defined on QFSL
(i.e. satisfying (P1) and (P2) for θ, φ ∈ QFSL) extends uniquely to a probability
function on L. Hence we can limit our considerations to probability functions
defined just on QFSL. By the Disjunctive Normal Form Theorem it then follows
that w is determined simply by its values on the state descriptions, that is
sentences of the form Θ(b1, b2, . . . , bm) where

Θ(b1, b2, . . . , bm) =
q∧
s=1

∧
i1,i2,...,irs∈{1,...,m}

±Ps(bi1 , bi2 , . . . , birs
) (1)

and ±P stands for one of P or ¬P in each case.
Given a state description Θ(b1, . . . , bm), we define an equivalence ∼Θ on

{1, 2, . . . ,m} as follows:1

i ∼Θ j if whenever Θ′(b1, b2, . . . , bm) is obtained from Θ(b1, b2, . . . , bm) by
replacing some of the occurrences of bi by bj and/or some of the occurrences
bj by bi then Θ′(b1, b2, . . . , bm) is consistent with Θ(b1, b2, . . . , bm). Putting it
another way i ∼Θ j if

Θ(b1, . . . , bm) ∧ bi = bj

is consistent with the axioms of equality (for the language L with = added).
Clearly ∼Θ is an equivalence relation. Let the sizes of the equivalence classes

of ∼Θ be n1, n2, . . . , nr in decreasing order of size. We define the Spectrum S(Θ)
of this state description θ(b1, . . . , bm) to be the vector 〈n1, n2, . . . , nr〉.

We are now ready to state:

The Spectrum Exchangeability Principle (Sx)
If Θ(b1, b2, . . . , bm), Φ(b′1, b

′
2, . . . , b

′
m) are state descriptions and S(Θ) = S(Φ)

then
w(Θ(b1, b2, . . . , bm)) = w(Φ(b′1, b

′
2, . . . , b

′
m)).

1 This definition depends on the order b1, . . . , bm we give to the constants. However
this dependence will become irrelevant when we come to defining Spectrum Ex-
changeability, Sx.
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This means that w of a state description Θ(b1, b2, . . . , bm) depends only on the
spectrum S(Θ), not on any other specific property of Θ nor on the particular
constants b1, b2, . . . , bm. In short, one justification for this principle as a reflection
of rationality is that knowing nothing about the individual relations the only
reason we might have for giving different probabilities to the state descriptions
Θ(b1, b2, . . . , bm), Φ(b′1, b

′
2, . . . , b

′
m) is because they have different spectra. [The

original, and in fact different, justification for Sx is given in [14].]
As a principle it generalizes a number of other ‘rationality principles’ for

example Constant Exchangeability, Ex, and Atom Exchangeability (a principle
in the original Carnapian, or unary, Inductive Logic, see [15] for example). It
has a number of nice consequences, for short surveys see [9], [10], [14].

A second principle that we might feel it is natural to impose is that adding a
further finitely many relations to the language L to give L+ should not have any
effect as far as probabilities of sentences in SL are concerned. After all there is
no reason why L should from the start contain all the relations there could ever
be. Given the aforementioned desirability of Sx this leads to the requirement
that w satisfy:

Language Invariance, LI, (with Sx)
The probability function w on L satisfies LI if there is a family of probability
functions wL′ on languages L′ (as above) satisfying Sx such that w = wL and
whenever L′′ extends L′ then wL′′ agrees with wL′ on SL′.

We are now almost ready to state the main result of this paper, an answer to our
initial problem in the case w satisfies2 Sx + LI and θ, φ are state descriptions
of the same length, i.e. for the same number of constants. First though we need
to define an ordering on spectra.

Given spectra n = 〈n1, n2, . . . , nr〉 and m = 〈m1,m2, . . . ,mt〉 with
∑r

i=1 ni =∑t
i=1mi we define

m ' n ⇐⇒
∑
i≤j

mi ≤
∑
i≤j

ni for all j = 1, 2, . . . ,max{r, t}

where we take ni = 0 for r < i ≤ max{r, t} and mi = 0 for t < i ≤ max{r, t}.
So for example 〈5, 3, 2, 1〉 ' 〈5, 5, 1〉 since 5 ≤ 5, 5 + 3 ≤ 5 + 5, 5 + 3 + 2 ≤

5 + 5 + 1, 5 + 3 + 2 + 1 ≤ 5 + 5 + 1 + 0.

Theorem 1. Let Θ(b1, . . . , bm), Φ(b′1, b
′
2, . . . , b

′
m) be state descriptions (for L).

Then w(Φ) ≤ w(Θ) for all probability functions w on L satisfying Sx + LI if
and only if S(Φ) ' S(Θ).

Proof. We first need to define a particular family of probability functions sat-
isfying Sx + LI which are in some sense the building blocks for all probability
functions satisfying these principles.

2 Of course the Sx is really redundant here because it is included in our definition
of LI.
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Let

B =

{
〈x0, x1, x2, . . .〉 |x1 ≥ x2 ≥ . . . ≥ 0, x0 ≥ 0,

∞∑
i=0

xi = 1

}

and endow B with the standard weak product topology inherited from [0, 1]∞.
Let

p = 〈p0, p1, p2, . . .〉 ∈ B.

We shall be thinking of pi as the probability of picking ‘colour’ i (from some
urn, with replacement).

For a state description Θ(b1, b2, . . . , bm) and a sequence of colours

c = 〈c1, c2, . . . , cm〉 ∈ {0, 1, 2, . . .}m

(where 0 stands for the special colour black) we define probabilities

jp(Θ(b1, b2, . . . , bm), c)

inductively as follows:
Set jp(
, ∅) = 1. Suppose that at stage m we have defined the probability

jp(Θ(b1, b2, . . . , bm), c). Pick colour cm+1 from 0, 1, 2, . . . according to the prob-
abilities p0, p1, p2, . . . and let

c+ = 〈c1, . . . , , cm, cm+1〉.

If cm+1 is the same as an earlier colour, cj say, with cj �=0 extendΘ(b1, b2, . . . , bm)
to the unique state description Θ+(b1, b2, . . . , bm, bm+1) for which bj ∼Θ+ bm+1.
(Notice this means that the equivalence classes mod Θ+ are the same as those
mod Θ except that m+1 is added to the class containing j.) On the other hand
if cm+1 is 0 or a previously unchosen colour then randomly choose Θ+(b1, b2, . . . ,
bm, bm+1) extending Θ(b1, b2, . . . , bm) so that when i, j ≤ q are such that ci =
cj �= 0 then bi ∼Θ+ bj (where ’randomly’ means that we take all possibilities
with equal probability). Finally let jp(Θ+, c+) be jp(Θ, c) times the probability
as described of going from Θ, c to Θ+, c+.

Having defined these jp(Θ, c) now set

up(Θ) =
∑

c

jp(Θ, c).

By a straightforward generalization of the result in [14] (where just two colours
were considered) up satisfies Sx (and hence also Ex) and by results in [12] up

satisfies LI. Notice that an important consequence of up satisfying Sx is that
when considering up(Θ(b1, b2, . . . , bm)) for Θ(b1, b2, . . . , bm) a state description
we can assume that the equivalence classes with respect to ∼Θ are consecutive
blocks 1, . . . , n1, n1 +1, . . . , n1 +n2, . . . from 1, 2, . . . ,m, which will be a help in
visualizing the forthcoming expansion of up(Θ) as a sum of products.
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It now follows that when µ is a probability measure on B and we define

w(Θ) =
∫

B

up(Θ)dµ(p) (2)

then w is a probability function on SL satisfying Sx + LI. Somewhat less obvi-
ously the converse is also true, namely any probability function w on L satisfying
Sx + LI is of this form for some measure µ on B.

This result is the main Theorem 8 of [11]. Its importance to us here is that
it is enough to show Theorem 1 in the case where w = up, the general (right
to left) implication following by then taking an integral over B with respect to
some measure µ. In fact we will first show that it is even sufficient to show it
in the case where p0 = 0 in p, in other words when there is zero probability of
picking black.

To see this consider a sequence of colours c = 〈c1, c2, . . . , cm〉 leading to a con-
tribution jp(Θ, c) to up(Θ). Let N be large and let q be the vector resulting from
p by replacing the colour black by N shades of grey, each assigned probability
p0/N . In other words q0 = 0 and the qi for i > 0 are just the same proba-
bilities p1, p2, p3, . . . of the old non-black colours together with N probabilities
p0/N, p0/N, . . . , p0/N for these new greys. Then

jp(Θ, c) =
∑

k

jq(Θ,k) (3)

where the k are all choices of colours which agree with c’s colours (and prob-
abilities) when not black and allow any choice of a grey (each with probability
p0/N) when c picks black, and j is defined like j except that when the colour
is a gray we just pick the extending state description at random irrespective
of whether that grey had actually already been chosen. In other words j treats
these greys just the same way j treated the black.

Now consider ∣∣∣∣∣∑
k

jq(Θ,k)−
∑

k

jq(Θ,k)

∣∣∣∣∣ .
The summands which appear in one of these but not the other are those in the
first sum for which the same grey colour was chosen (at least) twice, say as ki, kj
but i �Θ j. However, even if we ignore that second condition the probability as
we pick k1, k2, . . . , km of ever picking any one of the N greys at least twice is at
most N × (1/N)2 × mC2 ≤ m2/2N . It follows then that

lim
N→∞

uq(Θ) = up(Θ).

From this it follows that in order to prove our theorem it is enough to prove it
for a up with p0 = 0.

So assume that p0 = 0 and for the right to left direction of the theorem let

S(Θ(b1, b2, . . . , bm)) = 〈n1, n2, . . . , nr〉 = n
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and
S(Φ(b′1, b

′
2, . . . , b

′
m)) = 〈m1,m2, . . . ,mr〉 = m,

where if necessary we have appended zero’s to make both vectors the same length,
and suppose that m ' n. In this case, for this special p, up(Θ(b1, b2, . . . , bm)
equals ∑

k>0

∑
X⊂N+
|X|=k

∑
S1∪...∪Sr=X

Si∩Sj=∅, 1≤i<j≤r

Gr,m

r∏
j=1

⎛⎝∑
i∈Sj

pi

⎞⎠�nj

, (4)

where the � in (
∑
i∈Sj

pi)�nj etc. indicates that in the expansion of this power

we only count those terms which have a non-zero power of pi for each i ∈ Sj ,
etc., and Gr,m is a probability factor corresponding to the random choices of
sub-state descriptions with each new colour seen and depends only on k and r
(and L).

Hence to show that up(Φ) ≤ up(Θ) it is enough, by choosing a particular k
and X and employing (4) for both Φ and Θ to show that

∑
S1∪...∪Sr=X

Si∩Sj=∅, 1≤i<j≤r

r∏
j=1

⎛⎝∑
i∈Sj

pi

⎞⎠�mj

≤
∑

S1∪...∪Sr=X

Si∩Sj=∅, 1≤i<j≤r

r∏
j=1

⎛⎝∑
i∈Sj

pi

⎞⎠�nj

. (5)

This half of the proof can now be completed by noting that a proof of (5) is
given in [17].

To show the other direction suppose that Θ(b1, b2, . . . , bm), Φ(b′1, b
′
2, . . . , b

′
m)

are such that

〈m1,m2, . . . ,mt〉 = S(Φ) � S(Θ) = 〈n1, n2, . . . , nr〉,
with mt > 0, and let j ≤ t be such that

M =
∑
i≤j

mi >
∑
i≤j

ni = N.

Let p be such that p0 = 0 = pi for i > t, pi = (1−ε)/j for i ≤ j, and pi = ε/(s−j)
for j < i ≤ s, where ε > 0 is small and s = max{t, r}. Then it is straightforward
to see that

up(Φ(b′1, b
′
2, . . . , b

′
m)) ≥ dεm−M

for some d > 0 and

up(Θ(b1, b2, . . . , bm)) = O(εm−N ),

which, since m − M < m − N through choosing ε sufficiently small, gives as
required that

up(Φ(b′1, b
′
2, . . . , b

′
m)) � up(Θ(b1, b2, . . . , bm)).

Theorem 1 answers our question, under what conditions on sentences θ and φ
must the probability of θ be at least that of φ? in the case when the probability
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function is also required to satisfy Sx + LI and θ, φ are state descriptions of
the same length. Whilst this might seem somewhat restrictive the result, and
method of proof, actually allow some improvements, for example to deciding the
situation between state descriptions Θ(b1, b2, . . . , bm) and Φ(b′1, b

′
2, . . . , b

′
k) when

m �= k and in some cases for disjunctions of state descriptions. The completely
general case (for w satisfying Sx + LI) however looks difficult and at the end of
the day possibly not very illuminating.

2 Conclusion

Theorem 1 is an example of ‘Instantial Relevance’ in that it is one way of cap-
turing the idea that the more you have seen something in the past the more likely
you should expect to see it in the future. There are a number of other possible
formulations here, in particular one proposed by Carnap for unary Inductive
Logic is usually taken to be the bearer of this name Principle of Instantial Rel-
evance, see [1, Chapter VI ]. It was a pleasing discovery by Gaifman (see [4],
or [7] for a subsequent somewhat simpler proof) that this principle for unary
Inductive Logic followed from Constant Exchangeability, the mild assumption
that w should be invariant under permutations of constants, itself an immediate
consequence of Sx.

This original version of Instantial Relevance for unary languages does not
seem to easily generalize to Polyadic Inductive Logic because it supposes that a
state description involving an ai fixes all there is to know about ai, which is no
longer true once we allow non-unary relations. The result for unary Inductive
Logic which accurately corresponds to the formulation of Instantial Relevance
considered in this paper was proved in [18], this version of Theorem 1 being
there referred to as the ‘Only Rule’ because, as here, it was shown in that paper
to be the only rule of that kind which holds, in that case for w satisfying Atom
Exchangeability, the equivalent of Sx for unary languages.

As already implied however the above are but two ways of capturing the
intuition that ‘the more you have seen something in the past the more likely
you should expect to see it in the future’. Generally however the situation, even
for the purely unary case, remains puzzling. For example in [18] it is shown
that certain seemingly innocuous variants of Carnap’s Instantial Relevance do
not hold in general, or, as shown in [13], may lead to somewhat unacceptable
conclusions. It seems that we still have much to understand about ‘relevance’.
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Abstract. In this paper, we study lattice-valued logic and lattice-valued
modal logic from an algebraic viewpoint. First, we give an algebraic ax-
iomatization of L-valued logic for a finite distributive lattice L. Then
we define the notion of prime L-filters and prove an L-valued version of
prime filter theorem for Boolean algebras, by which we show a Stone-style
representation theorem for algebras of L-valued logic and the complete-
ness with respect to L-valued semantics. By the representation theorem,
we can show that a strong duality holds for algebras of L-valued logic and
that the variety generated by L coincides with the quasi-variety gener-
ated by L. Second, we give an algebraic axiomatization of L-valued modal
logic and establish the completeness with respect to L-valued Kripke se-
mantics. Moreover, it is shown that L-valued modal logic enjoys finite
model property and that L-valued intuitionistic logic is embedded into
L-valued modal logic of S4-type via Gödel-style translation.

1 Introduction

In 1991, Fitting [10] introduced L-valued logic and L-valued modal logics for a
finite distributive lattice L. In a series of papers ([10], [11], [12]), Fitting studied
those logics from a proof-theoretic viewpoint and did not consider the algebraic
aspects of them. We remark that all the elements of L are encoded as truth con-
stants in the languages of the Fitting’s logics. Based on Fitting’s work, some
authors revealed several model-theoretic properties of L-valued modal logics
([5],[13],[14],[15]). But none of them give algebraic axiomatizations of L-valued
logic or L-valued modal logics. This paper is a first step in obtaining them.

In this paper, we study Fitting’s L-valued logic and L-valued modal logic
modified by removing fuzzy truth constants (other than 0, 1) and adding new
unary connectives Ta(-)’s for all a ∈ L. Ta(x) intuitively means that the truth
value of x is exactly a.

Some of the motivations for the above modifications are as follows. The exis-
tence of a truth constant a ∈ L with a �= 0, 1 philosophically means that there is
a propositon x such that the truth value of x is “always exactly” a, which con-
tradicts our intuition, since the truth value of a fuzzy proposition may vary from
one person to another, from one time to another or from one possible world to
another. Hence we remove fuzzy truth constants (other than 0, 1). Unlike fuzzy
truth constants, Ta’s do not have such ontological commitment and only refer

R. Ramanujam and S. Sarukkai (Eds.): ICLA 2009, LNAI 5378, pp. 170–184, 2009.
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to the truth values of propositions. It seems that there may be a expression
having similar meaning to Ta(x) in our natural languages, though there may
be no expression having similar meaning to fuzzy truth constants (other than
0, 1) in them. Thus, Ta’s seem to be natural connectives and therefore it should
be significant to investigate the properties of Ta’s from the viewpoint of mathe-
matical logic. In fact, operations like Ta(-) are also considered in the context of
Post algebras (for example, see [6]). Finally, it must be stressed that the above
modifications have some technical advantages as is shown in this paper (for a
duality result obtained from the modifications, see Remark 1).

In addition to several algebraic axiomatizations with completeness, we will
show: (i) L-valued versions of prime filter theorem and Stone’s representation
theorem for Boolean algebras; (ii) the finite model property of L-valued modal
logic and a Gödel-Tarski-McKinsey style theorem between L-valued modal logic
of S4-type and L-valued intuitionistic logic. By the representation theorem and
natural duality theory ([3]), we can obtain a strong duality for algebras of L-
valued logic (for another duality, see Section 4).

Note that our definition of primeness (Definition 5) is different from the or-
dinary one (i.e., x ∨ y ∈ P implies x ∈ P or y ∈ P ), which does not work well
for (i) above, but our definition actually does.

2 Lattice-Valued Logic L-VL

Throughout this paper L denotes a finite distributive lattice. Then, L is a finite
Heyting algebra. For a, b ∈ L, a →L b denotes the relative pseudo-complement
of a with respect to b, where the subscript L is often dropped.

Definition 1. We endow L with the unary operations Ta(-)’s for all a ∈ L,
which are defined by, for b ∈ L,

Ta(b) =

{
1 (if b = a)
0 (if b �= a)

We define L-valued logic L-VL from a semantical point of view. The logical
connectives of L-VL are ∧, ∨, →, 0, 1 and Ta for each a ∈ L, where every Ta is
a unary connective, 0 and 1 are nullary connectives, and the others are binary
connectives. PV denotes the set of propositional variables. Then, the formulas
of L-VL are recursively defined in a usual way. We denote by Form the set of
formulas of L-VL.

Definition 2. v is an L-valuation iff v is a function from Form to L and
satisfies the following properties:

v(Ta(x)) = Ta(v(x));
v(x ∧ y) = inf(v(x), v(y));
v(x ∨ y) = sup(v(x), v(y));
v(x→ y) = v(x) →L v(y);

v(a) = a for a = 0, 1.
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Then, x (∈ Form) is called a valid formula of L-VL iff v(x) = 1 for all L-
valuations v. If L is the two-element Boolean algebra, the valid formulas of L-
VL coincide with the ordinary tautologies of classical propositional logic (T1(x)
(resp. T0(x)) is equivalent to x (resp. ¬x)).

Given the definition of validity, we can see that L-VL is an algebraically
determined logic. The naturally associated classes of algebras are the variety
V(L) generated by L and the quasi-variety Q(L) generated by L, and from
universal algebra ([2],[3],[4]) we have the following:

Proposition 1. Let x, y ∈ Form. The following are equivalent:

(i) x = y holds in every algebra in V(L);
(ii) x = y holds in every algebra in Q(L);
(iii) v(x) = v(y) for every L-valuation v;
(iv) x = y holds in L.

In particular, x ∈ Form is valid iff the equation x = 1 holds in L.

Since L is finite, it is decidable whether or not a formula is valid in L-VL.

2.1 An Algebraic Axiomatization of L-VL

It is well known that every (quasi-)variety is axiomatizable by a collection of
(quasi-)equations. The main result in this section is a finite such axiomatization
of V(L), which actually coincides with Q(L) (see Theorem 3). In the process,
we identify an internal description of homomorphisms into L as prime L-filters
(see Definitions 5 and 6, and Proposition 5), thus generalizing the representation
theory for Boolean algebras (see Theorem 2 and Remark 1). Note that A ∈ Q(L)
iff the homomorphisms from A to L separate the points of A.

Now we give an algebraic axiomatization of L-VL. x ≤ y denotes x ∧ y = x.
x↔ y is the abbreviation of (x→ y) ∧ (y → x).

Definition 3. (A,∧,∨,→,Ta(a ∈ L), 0, 1) is an L-VL-algebra iff it satisfies
the following axioms:

(i) (A,∧,∨,→, 0, 1) forms a Heyting algebra;
(ii) Ta(x) ∧ Tb(y) ≤ Ta→b(x→ y) ∧ Ta∧b(x ∧ y) ∧ Ta∨b(x ∨ y),

Tb(x) ≤ TTa(b)(Ta(x));
(iii) T0(0) = 1, Ta(0) = 0 (for a �= 0), T1(1) = 1, Ta(1) = 0 (for a �= 1);
(iv)
∨{Ta(x) ; a ∈ L} = 1, Ta(x) ∨ (Ta(x) → 0) = 1,
Ta(x) ∧Tb(x) = 0 (for a �= b);

(v) T1(Ta(x)) = Ta(x), T0(Ta(x)) = Ta(x) → 0, Tb(Ta(x)) = 0 (for b �= 0, 1);
(vi) T1(x) ≤ x, T1(x ∧ y) = T1(x) ∧ T1(y);
(vii)
∧
a∈L(Ta(x) ↔ Ta(y)) ≤ x↔ y.

The inequality Ta(x)∧Tb(y) ≤ Ta→b(x→ y) intuitively means that if the truth
value of x is a and the truth value of y is b then the truth value of x → y is
a→ b. The other inequalities following from (ii) can be explained similarly.

Note that T1 is order-preserving by the axiom T1(x ∧ y) = T1(x) ∧ T1(y).
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By the axiom (i), we have: x↔ y = 1 iff x = y.
We call the axiom

∨{Ta(x) ; a ∈ L} = 1 the L-valued excluded middle, since
the two-valued excluded middle coincides with the ordinary excluded middle,
which is shown in the proof of the following proposition.

Proposition 2. Let L be the two-element Boolean algebra. Then, L-VL-
algebras coincide with Boolean algebras.

Proof. We claim that T1(x) = x and T0(x) = T1(x) → 0. Since T1(x)∧T0(x) ≤
0 by the axiom Ta(x) ∧ Tb(x) = 0, we have the inequality T0(x) ≤ T1(x) → 0.
Assume that T1(x) ∧ y ≤ 0. Then, by the axiom

∨{Ta(x) ; a ∈ L} = 1, we have
y∧(T1(x)∨T0(x)) = y. Thus, y∧T0(x) = y, i.e., y ≤ T0(x). Therefore, T0(x) =
T1(x) → 0. Thus we have T0(T1(x)) = T1(T1(x)) → 0 = T1(x) → 0 = T0(x).
Moreover, we have T1(T1(x)) = T1(x). Therefore, by using the axiom (vii), we
can conclude that T1(x) = x. Hence, the L-valued excluded middle coincide with
the excluded middle. The remaining part of the proof is trivial.

We consider the various concepts of filters, which are essentially used when
proving a representation theorem and completeness theorems.

Definition 4. Let A be an L-VL-algebra and F a non-empty proper subset of
A. Then, F is an L-filter (or L-valued filter) of A iff the following hold:

(i) if x ∈ F and x ≤ y then y ∈ F ;
(ii) if x, y ∈ F then x ∧ y ∈ F ;
(iii) if x ∈ F then T1(x) ∈ F .

Definition 5. Let P be an L-filter of an L-VL-algebra A.

(i) P is a prime L-filter of A iff, for any c ∈ L, Tc(x ∨ y) ∈ P implies that
there exist a, b ∈ L with a ∨ b = c such that Ta(x) ∈ P and Tb(y) ∈ P .

(ii) P is an ultra L-filter of A iff ∀x ∈ A ∃a ∈ L Ta(x) ∈ P .
(iii) P is a maximal L-filter iff P is maximal by inclusion.

If L is the two-element Booelan algebra, then L-filters, prime L-filters, and ultra
L-filters coincide with filters, prime filters, and ultrafilters for Boolean algebras
respectively, which are easily shown by the facts T1(x) = x and T0(x) = x→ 0
in the two-valued case.

Lemma 1. Let P be an L-filter of an L-VL-algebra A. Then, P is a prime
L-filter iff P is an ultra L-filter.

Proof. Let P be a prime L-filter and x ∈ A. By 1 ∈ P ,
∨{Ta(x) ; a ∈ L} ∈ P.

Thus, T1(
∨{Ta(x) ; a ∈ L}) ∈ P. Suppose L = {a1, ..., an}. Since P is prime,

there exist b1, ..., bn ∈ L such that

b1 ∨ ... ∨ bn = 1 and Tbk
(Tak

(x)) ∈ P for k = 1, ..., n.

By the axiom Ta(Tb(x)) = 0 (for a �= 0, 1), all bk’s are equal to 0 or 1. Thus, by
b1 ∨ ... ∨ bn = 1, some bk is equal to 1, which implies T1(Tak

(x)) ∈ P. By the
axiom T1(x) ≤ x, we have Tak

(x) ∈ P. Hence, P is an ultra L-filter.
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Let P be an ultra L-filter and Tc(x ∨ y) ∈ P . There is a, b ∈ L such that

Ta(x) ∈ P and Tb(y) ∈ P.
By Ta(x) ∧Tb(y) ≤ Ta∨b(x ∨ y), we have Ta∨b(x ∨ y) ∈ P . Since Tc(x ∨ y) ∈ P
and since Ta(x) ∧Tb(x) = 0 (for a �= b), we can conclude that a ∨ b = c. Hence,
P is a prime L-filter.

Lemma 2. Let P be an L-filter of an L-VL-algebra A. Then, P is a maximal
L-filter iff P is an ultra L-filter.

Proof. Let P be a maximal L-filter and x ∈ A. Suppose for contradiction that
Ta(x) /∈ P for all a ∈ L. Fix a ∈ L. Since P is maximal, there exists a term
ϕ ∈ A such that

ϕ = 0 and ϕ is constructed from ∧,T1,Ta(x) and the elements of P.

Let ψ = T1(ϕ). Note that ψ = 0. From T1(T1(x)) = T1(x) and T1(x ∧ y) =
T1(x) ∧T1(y), it follows that

ψ = T1(ra ∧ Ta(x)) for some ra ∈ P.
Hence, for all a ∈ L there exists ra ∈ P such that

T1(ra ∧ Ta(x)) = 0.

From T1(Ta(x)) = Ta(x), it follows that

T1(ra ∧Ta(x)) = T1(ra) ∧ Ta(x) = 0 for all a ∈ L.
Therefore, we have

(
∧
{T1(ra) ; a ∈ L}) ∧ Ta(x) = 0,

whence the following holds:

(
∧
{T1(ra) ; a ∈ L}) ∧ (

∨
{Ta(x) ; a ∈ L}) = 0.

Thus, we have
∧{T1(ra) ; a ∈ L} = 0. Since ra ∈ P ,

∧{T1(ra) ; a ∈ L} ∈ P.
Thus, 0 ∈ P , which is a contradiction. Hence, P is an ultra L-filter.

Let P be an ultra L-filter and F an L-filter with P ⊂ F . Assume x ∈ F .
Then, T1(x) ∈ F . Since there exists a ∈ L with Ta(x) ∈ P , we have Ta(x) ∈ F .
Thus, we have T1(x) ∧Ta(x) ∈ F. If a �= 1, then 0 = T1(x) ∧Ta(x) ∈ F. Hence,
a = 1 and we have T1(x) ∈ P , which implies x ∈ P . Therefore, P is a maximal
L-filter.

We obtain the next proposition from Lemma 1 and Lemma 2.

Proposition 3. The following are equivalent.

(i) P is a prime L-filter.
(ii) P is an ultra L-filter.
(iii) P is a maximal L-filter.
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We can show an L-valued version of prime filter theorem for Boolean algebras.
If L is the two-element Boolean algebra, the following theorem coincide with
prime filter theorem for Boolean algebras.

Theorem 1. Let A be an L-VL-algebra. Assume x �= y for x, y ∈ A. Then,
there exist a ∈ L and a prime L-filter P of A such that Ta(x) ∈ P and Ta(y) /∈ P .

Proof. By the assumption, x↔ y �= 1. By the axiom “
∧
a∈L(Ta(x) ↔ Ta(y)) ≤

x ↔ y”, we have
∧
a∈L(Ta(x) ↔ Ta(y)) �= 1, which implies that there is a ∈

L such that Ta(x) ↔ Ta(y) �= 1, i.e., Ta(x) �= Ta(y). We may assume that
¬(Ta(x) ≤ Ta(y)). Let

F0 = {z ∈ A ; Ta(x) ≤ z}.
Note that Ta(y) /∈ F0. Since T1(Ta(x)) = Ta(x) and since T1 is order-preserving,
F0 is an L-filter. Define X as the set of L-filters F such that Ta(x) ∈ F and
Ta(y) /∈ F . Since F0 ∈ X , X is not empty. It is easily shown that every chain of
X has an upper bound. Thus, by Zorn’s lemma, X contains a maximal element
P . Clearly, Ta(x) ∈ P and Ta(y) /∈ P .

We claim that P is an ultra L-filter. If not, there is z ∈ A such that ∀c ∈ L
Tc(z) /∈ P . Fix c ∈ L. Since P is maximal, there is a term ϕ ∈ A such that

ϕ ≤ Ta(y) and ϕ is constructed from ∧,T1,Tc(z) and the elements of P.

Let ψ be T1(ϕ). Then, ψ ≤ T1(Ta(y)) = Ta(y), which leads to a contradiction
by arguing as in the first paragraph of the proof of Lemma 2. Thus P is an ultra
L-filter, whence P is a prime L-filter.

We can construct an L-valuation vP from a prime L-filter P as follows.

Definition 6. Let P be a prime L-filter of an L-VL-algebra A. Then, we define
vP : A→ L by

vP (x) = a⇔ Ta(x) ∈ P.
We show that vP is well-defined. Let x ∈ A. Since P is prime and since the
L-valued excluded middle holds, there exists a ∈ L with Ta(x) ∈ P . If a �= b
then Ta(x) ∧Tb(x) = 0. Hence, if Ta(x) ∈ P and Tb(x) ∈ P , then a = b.

Proposition 4. Let P be a prime L-filter of an L-VL-algebra A. Then, vP is
a homomorphism from A to L.

Proof. By T1(1) = 1, vP (1) = 1. By T0(0) = 1, vP (0) = 0.
We show that vP (Ta(x)) = Ta(vP (x)). Let b be vP (x). Then, Tb(x) ∈ P . By

the axiom Tb(x) ≤ TTa(b)(Ta(x)), we have TTa(b)(Ta(x)) ∈ P , which implies
vP (Ta(x)) = Ta(vP (x)).

Next, we show that vP (x → y) = vP (x) → vP (y). Let a and b be vP (x) and
vP (y) respectively. Then, Ta(x) ∈ P and Tb(y) ∈ P . Thus, Ta(x) ∧ Tb(y) ∈ P .
Since Ta(x) ∧ Tb(y) ≤ Ta→b(x→ y), we have Ta→b(x→ y) ∈ P , which implies
vP (x→ y) = vP (x) → vP (y).

In similar ways, we can prove that vP (x∧y) = vP (x)∧vP (y) and that vP (x∨
y) = vP (x) ∨ vP (y).



176 Y. Maruyama

Definition 7. Let A be an L-VL-algebra. SpecL(A) is defined as the set of all
prime L-filters of A.

As a Boolean algebra is embedded into a powerset algebra (Stone’s represen-
tation theorem), an L-VL-algebra can be embedded into an L-valued powerset
algebra LS for a set S, where LS is the set of all functions from S to L and
the operations of LS are defined pointwise (for example, f ∧ g is defined by
(f ∧ g)(x) = f(x) ∧ g(x) for f, g ∈ LS and x ∈ S):

Theorem 2. Let A be an L-VL-algebra and S = SpecL(A). Define Φ : A →
LS by

Φ(x) = (vP (x))P∈S .

Then, Φ is an embedding, i.e., an injective homomorphism.

Proof. By Proposition 4, vP is a homomorphism. Since the operations of LS are
defined pointwise, Φ is a homomorphism. Let x, y ∈ A with x �= y. By Theorem
1, there exists a prime L-filter P such that Ta(x) ∈ P and Ta(y) /∈ P for some
a ∈ L. Thus, vP (x) �= vP (y), which implies Φ(x) �= Φ(y). Hence, Φ is injective.

Theorem 3. V(L) coincides with the class of all L-VL-algebras. Moreover,
Q(L) coincides with the class of all L-VL-algebras. Hence V(L) = Q(L).

Proof. Let A be an L-VL-algebra. Then, by Theorem 2, we have A ∈ Q(L) and
therefore A ∈ V(L) by Q(L) ⊂ V(L).

Conversely, let A ∈ V(L). Since the validity of equations is preserved under
taking homomorphic images, subalgebras and products and since L satisfies the
axioms in Definition 3, A also satisfies the axioms and therefore A is an L-VL-
algebra. Thus, by Q(L) ⊂ V(L), if A ∈ Q(L) then A is an L-VL-algebra. This
completes the proof.

Proposition 5. Define f : SpecL(A) → Hom(A,L) by

f(P ) = vP .

Then, f is a bijection.

Proof. By Proposition 4, vP is a homomorphism. It is easy to show that f is
injective. To show that f is surjective, assume v ∈ Hom(A,L). Clearly, v−1({1})
is a prime L-filter. Let P be v−1({1}). We claim that f(P ) = v, i.e., vP (x) = v(x)
for all x ∈ A. Since v(Tv(x)(x)) = Tv(x)(v(x)) = 1, we have Tv(x)(x) ∈ v−1({1}),
whence vP (x) = v(x).

Thus, we can see SpecL(A) as the set of all L-valuations on A.

Remark 1. By using Ta’s, it is easily verified that L forms a semi-primal algebra,
where note that if L is additionally endowed with all truth constants then L forms
a primal algebra (for the definitions, see [3]). Thus, by Theorem 3, Proposition
5 and [3, Theorem 3.3.14], we can obtain a strong duality for L-VL-algebras,
which implies that, for an L-VL-algebra A, the embedding Φ : A→ LS gives a
Boolean product representation of A (for the definition, see [2]), where SpecL(A)
is equipped with the topology generated by {v ∈ SpecL(A) ; v(a) = 1} for a ∈ A.
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By Theorem 2 and Theorem 3, we obtain the following theorem, which contains
the completeness with respect to L-valued semantics.

Theorem 4. Let x, y ∈ Form. The following are equivalent:

(i) x = y holds in any L-VL-algebras;
(ii) v(x) = v(y) for any L-valuation v;
(iii) x = y holds in L.

By Theorem 4, it is decidable whether x = y holds in any L-VL-algebras.
Finally, we remark that the logic determined by L-VL-algebras (i.e., the free

L-VL-algebra generated by the propositional variables) is not strictly the same
as Fitting’s L-valued logic, but they are closely related through completeness.

2.2 Basic Properties of Ua and Da

We define unary connectives Ua and Da as follows.

Definition 8. For a ∈ L, we define Ua and Da by:

Ua(x) =
∨
{Tb(x) ; a ≤ b};

Da(x) =
∨
{Tb(x) ; a ≥ b}.

Ua(x) (resp. Da(x)) intuitively states that the truth value of x is more than (resp.
less than) or equal to a. Actually, we can easily verify the next proposition.

Proposition 6. Let v be an L-valuation. Then, the following hold:

(i) Ua(b) = 1 (if a ≤ b) and Ua(b) = 0 (otherwise);
(ii) v(Ua(x)) = 1 (if a ≤ v(x)) and v(Ua(x)) = 0 (otherwise);
(iii) Da(b) = 1 (if a ≥ b) and Da(b) = 0 (otherwise);
(iv) v(Da(x)) = 1 (if a ≥ v(x)) and v(Da(x)) = 0 (otherwise).

The next proposition shows that Ua’s are inter-definable with Ta’s and that Da’s
are inter-definable with Ta’s.

Proposition 7. Let a ∈ L. Then, the following hold:

(i) Ta(x) = Ua(x) ∧ (
∧{Ub(x) → 0 ; a < b}) holds in any L-VL-algebras;

(ii) Ta(x) = Da(x) ∧ (
∧{Db(x) → 0 ; a > b}) holds in any L-VL-algebras.

Proof. We show (i). By Theorem 4, it suffices to show that the above equation
holds in L. Assume x ∈ L. If x = a, then Ua(x) = 1 and Ub(x) → 0 = 1 for b ∈ L
with a < b, whence the equation holds. If x > a, then

∧{Ub(x) → 0 ; a < b} = 0
by Ux(x) → 0 = 0, whence the equation holds. If x � a, then Ua(x) = 0, whence
the equation holds. (ii) is proved in a similar way.

Remark 2. By replacing Ta(-) with Ua(-)∧ (
∧{Ub(-)→ 0 ; a < b}) in Definition

3, we can obtain an algebraic axiomatization of L-VL using Ua’s as primitives
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instead of Ta’s. In a similar way, we can obtain an axiomatization using Da’s as
primitives instead of Ta’s.

It seems that our axiomatization using Ta’s is simpler than that using Ua’s (or
Da’s). For this reason, we first axiomatized L-VL using Ta’s rather than Ua’s
(or Da’s). However, using Ua’s (or Da’s) also has some advantages (see Section
4 below).

In the remaining part of this paper, we do not consider Da’s, and consider only
Ua’s, though similar results as for Ua’s hold also for Da’s.

Proposition 8. The following equations hold in any L-VL-algebra:

(i) U1(x) = T1(x), Ta(x) ≤ Ua(x);
(ii) Ua(0) = 0 (for a �= 0), U0(x) = 1, Ua(1) = 1;
(iii) Ub(Ua(x)) = Ua(x) (for b �= 0), Ua(x) ≤ Ub(x) (for b ≤ a);
(iv) Ua(x ∧ y) = Ua(x) ∧Ua(y).

Proof. We prove only (iv), since the others can be shown in similar ways. By
Theorem 4, it suffices to show that Ua(x∧y) = Ua(x)∧Ua(y) holds in L. Assume
x, y ∈ L. If Ua(x ∧ y) = 1, then a ≤ x ∧ y, which implies a ≤ x and a ≤ y. If
Ua(x ∧ y) = 0, then a � x ∧ y, which implies either a � x or a � y. Thus,
Ua(x ∧ y) = Ua(x) ∧Ua(y).

Note that Ua is not distributive over ∨ in general, though Ua(x) ∨ Ua(y) ≤
Ua(x ∨ y) holds in general. If L is totally ordered, Ua is distributive over ∨.

We can give a different description of vP by exploiting Ua.

Proposition 9. Let P be a prime L-filter of an L-VL-algebra A. Then, the
following holds: vP (x) =

∨{a ; Ua(x) ∈ P} for x ∈ A.
Proof. It suffices to show that Ua(x) ∈ P is equivalent to a ≤ vP (x). Now,
a ≤ vP (x) is equivalent to ∃b ≥ a Tb(x) ∈ P , which is equivalent to Ua(x) ∈ P
by Tb(x) ≤ Ub(x) and Ub(x) ≤ Ua(x) for a ≤ b.

3 Lattice-Valued Modal Logic L-ML

We define L-valued modal logic L-ML from a semantical point of view. The
connectives of L-ML are a unary connective � and the connectives of L-VL.
PV denotes the set of propositional variables. Then, the formulas of L-ML are
recursively defined in a usual way. Form� denotes the set of formulas of L-ML.

Definition 9. Let (M,R) be a Kripke frame. Then, v is a Kripke L-valuation
on (M,R) iff v is a function from M × Form� to L and satisfies the following
properties for each w ∈M :

v(w,�x) =
∧
{v(w′, x) ; wRw′};

v(w,Ta(x)) = Ta(v(w, x));
v(w, x ∧ y) = inf(v(w, x), v(w, y));
v(w, x ∨ y) = sup(v(w, x), v(w, y));
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v(w, x→ y) = v(w, x) →L v(w, y);
v(a) = a for a = 0, 1.

Then, we call (M,R, v) an L-valued (modal) Kripke model.

A formula x is called a valid formula of L-ML iff v(w, x) = 1 in any L-valued
Kripke model (M,R, v) and any w ∈M . If L is the two-element Boolean algebra,
the valid formulas of L-ML coincide with those of classical modal logic.

3.1 An Algebraic Axiomatization of L-ML

We give an algebraic axiomatization of L-ML as follows.

Definition 10. (A,∧,∨,→,Ta(a ∈ L),�, 0, 1) is an L-ML-algebra iff it satis-
fies the following axioms:

(i) (A,∧,∨,→,Ta(a ∈ L), 0, 1) forms an L-VL-algebra;
(ii) �(x ∧ y) = �x ∧�y, �1 = 1;
(iii) �Ua(x) = Ua(�x) (for all a ∈ L).

To show the completeness, we define the notion of an L-valued canonical model,
which is a generalization of a canonical model of (classical) modal logic.

Definition 11. Let A be an L-ML-algebra. For p ∈ SpecL(A) and a ∈ L, let

pa = {Ua(x) ; Ua(�x) ∈ p}.
Define a binary relation R� on SpecL(A) by

pR�q ⇔ ∀a ∈ L pa ⊂ q.

Define v : SpecL(A) × Form→ L by

v(p, x) = vp(x),

where vp is defined in Definition 6. Then, (SpecL(A), R�, v) is called the L-
valued canonical model of A.

Lemma 3. Under the notation of Definition 11, pa is closed under ∧.

Proof. Assume that Ua(x) ∈ pa and Ua(y) ∈ pa. Then, it is easy to verify that
Ua(�x) ∈ p and Ua(�y) ∈ p. Thus, Ua(�x) ∧ Ua(�y) ∈ p. From Ua(�x) ∧
Ua(�y) = Ua(�(x ∧ y)), it follows that Ua(x ∧ y) ∈ pa. Since Ua(x ∧ y) =
Ua(x) ∧Ua(y), we can conclude that pa is closed under ∧.

The next lemma is the most important part of our completeness proof.

Lemma 4. Let A be an L-ML-algebra, p ∈ SpecL(A) and a ∈ L. Then, for
x ∈ A, the following are equivalent:

(i) Ua(�x) ∈ p;
(ii) ∀q ∈ SpecL(A) (pR�q implies Ua(x) ∈ q).
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Proof. We show that (ii) implies (i). To prove the contrapositive, assume that
Ua(�x) /∈ p. We show that there exists q ∈ SpecL(A) such that pR�q and
Ua(x) /∈ q. Let F be the L-filter generated by

⋃{pb ; b ∈ L}.
We claim that Ua(x) /∈ F . Suppose for contradiction that Ua(x) ∈ F . Then,

there exists ϕ ∈ A such that ϕ ≤ Ua(x) and ϕ is constructed from ∧, T1 and
the elements of

⋃{pb ; b ∈ L}. Since T1(Ub(x)) = Ub(x) holds in general and
since pb is closed under ∧ by Lemma 3.1, we may assume that

ϕ =
∧
{Ub(xb) ; b ∈ L},

where Ub(xb) is an element of pb for each b ∈ L. By ϕ ≤ Ua(x), we have
�ϕ ≤ �Ua(x). Now,

�ϕ =
∧
{Ub(�xb) ; b ∈ L}.

Since Ub(�xb) ∈ p, we have �Ua(x) ∈ p, which is a contradiction. Thus, we can
conclude that Ua(x) /∈ F .

Let X be the set of L-filters G such that Ua(x) /∈ G and F ⊂ G. Note that
F ∈ X . By Zorn’s lemma, X has a maximal element q. Arguing as in the second
paragraph of the proof of Theorem 1, we can show that q is an ultra L-filter,
whence q ∈ SpecL(A). Clearly, Ua(x) /∈ q. By pb ⊂ F for each b, we have pR�q.

It is straightforward to show that (i) implies (ii).

By the above lemma, we can show that an L-valued canonical model is actually
an L-valued Kripke model:

Proposition 10. Let A be an L-ML-algebra. Then, the L-valued canonical
model (SpecL(A), R�, v) is an L-valued Kripke model.

Proof. We show that v is a Kripke L-valuation on (SpecL(A), R�). Fix p ∈
SpecL(A). By Proposition 4, vp preserves the conncectives of L-VL. Thus, it
suffices to show that vp(�x) =

∧{vq(x) ; pR�q}. Let c (∈ L) be such that
Tc(�x) ∈ p (i.e., vp(�x) = c). Since Uc(�x) ∈ p, it follows from Lemma 4 that
c ≤ ∧{vq(x) ; pR�q}. If c < a, then Ua(�x) /∈ p and therefore, by Lemma 4,∧{vq(x) ; pR�q} < a. Hence, we have vp(�x) = c =

∧{vq(x) ; pR�q}.

By using the above facts, we obtain the following completeness theorem.

Theorem 5. Let x, y ∈ Form�. Then, the following are equivalent:

(i) x = y holds in any L-ML-algebras;
(ii) v(w, x) = v(w, y) in any L-valued Kripke model (M,R, v) and any w ∈M .

Proof. By straightforward computation, we can verify that (i) implies (ii). We
show that (ii) implies (i). To prove the contrapositive, assume that x �= y in some
L-ML-algebra A. Consider the L-valued canonical model (SpecL(A), R�, v),
which is an L-valued Kripke model by Proposition 10. By Theorem 2, there
exists p ∈ SpecL(A) such that vp(x) �= vp(y), i.e., v(p, x) �= v(p, y).
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3.2 Finite Model Property

By an L-valued version of the well known filtration method, we can prove the
finite model property of L-ML.

Theorem 6. For x, y ∈ Form�, the following are equivalent:

(i) x = y holds in any L-ML-algebras;
(ii) v(w, x) = v(w, y) in any finite L-valued Kripke model (M,R, v) and any

w ∈M .

Proof. It is enough to show that (ii) implies (i). To prove the contrapositive,
assume that x �= y in some L-ML-algebra A. Consider (SpecL(A), R�, v). Let
X (resp. Y ) be the set of all subformulas of x (resp. y). Define an equivalence
relation ∼ on SpecL(A) by

p ∼ q ⇔ ∀z ∈ X ∪ Y v(p, z) = v(q, z).

Since L is finite and since X and Y are finite, SpecL(A)/ ∼ is a finite set. We
denote by [p] the set {q ∈ SpecL(A) ; p ∼ q}. Let

p′a = {Ua(z) ; Ua(�z) ∈ p and �z ∈ X ∪ Y }.
Define a binary relation S on SpecL(A)/ ∼ by

[p]S[q]⇔ ∀a ∈ L p′a ⊂ q.

We can consider a Kripke L-valuation v′ on (SpecL(A)/ ∼ , S) such that
v′([p], z) = v(p, z) for all z ∈ PV ∩ (X ∪ Y ) and all p ∈ SpecL(A). By induction
on the formulas X ∪ Y , we show the fact that

v′([p], z) = v(p, z) for all z ∈ X ∪ Y and all p ∈ SpecL(A).

We show only the case that z has the form �z′, since the other cases are easily
verfied. It suffices to show that, for any a ∈ L,

v′([p],�z′) ≥ a iff v(p,�z′) ≥ a.

If v′([p],�z′) ≥ a, then, by the induction hypothesis, we have
∧{v(q, z′); [p]S[q]}

≥ a and therefore
∧{v(q, z′) ; pR�q} ≥ a, since pR�q implies [p]S[q]. If

v(p,�z′) ≥ a, then v(q, z′) ≥ a for any q with [p]S[q] by the definition of S
and therefore v′([q], z′) ≥ a for any [q] with [p]S[q].

By Theorem 2, there exists p ∈ SpecL(A) such that v(p, x) �= v(p, y), whence
we have v′([p], x) �= v′([p], y) by the above fact.

By Theorem 6, it is decidable whether x = y holds in any L-ML-algebras.

3.3 L-Valued Modal Logic of S4 Type

L-valued S4-type modal logic L-S4 is naturally defined as follows.
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Definition 12. An L-valued (modal) Kripke model (M,R, v) is an L-S4 Kripke
model iff R is reflexive and transitive. Then, x is a valid formula of L-S4 iff
v(w, x) = 1 in any L-S4 Kripke model (M,R, v) and any w ∈M .

We define the class of L-S4-algebras, which is actually the algebraic counterpart
of L-S4 by Theorem 7 below.

Definition 13. An L-S4-algebra is defined as an L-ML-algebra with the addi-
tional axioms �x ≤ x and �x ≤ ��x.

Lemma 5. Let A be an L-S4-algebra and (SpecL(A), R�, v) the L-valued
canonical model. Then, the following holds: pR�q iff ∀a ∈ L pa ⊂ qa. Hence,
R� is reflexive and transitive.

Proof. Assume pR�q. Let a ∈ L and Ua(x) ∈ pa. Then, it is easily verified
that Ua(�x) ∈ p. Since Ua(�x) = Ua(��x), we have Ua(�x) ∈ pa, whence
Ua(�x) ∈ q by the assumption and then we have Ua(x) ∈ qa

Assume that ∀a ∈ L pa ⊂ qa. Let a ∈ L and Ua(x) ∈ pa. Then, by the
assumption, Ua(x) ∈ qa and therefore Ua(�x) ∈ qa by �x ≤ x, whence we have
Ua(x) ∈ qa.
By the above lemma, we can prove the following completeness theorem.

Theorem 7. Let x, y ∈ Form�. Then, the following are equivalent:

(i) x = y holds in any L-S4-algebras;
(ii) v(w, x) = v(w, y) in any L-S4 Kripke model (M,R, v) and any w ∈M .

Proof. It is straightforward to verify that (i) implies (ii). We show that (ii)
implies (i). To prove the contrapositive, assume that x �= y in some L-S4-
algebra A. Let (SpecL(A), R�, v) be the L-valued canonical model of A. Then,
by Lemma 5, (SpecL(A), R�, v) is an L-S4 Kripke model. The remaining part
of the proof is the same as Theorem 5.

We define L-valued intuitionistic logic L-IL from a semantical point of view.
The formulas of L-IL are the same as those of L-VL.

Definition 14. Let (M,R) be a preorder set. Then, u is an intuitionistic Kripke
L-valuation on (M,R) iff u is a function from M ×Form to L and satisfies the
following properties for each w ∈M :

u(w, p) ≤ u(w′, p) (for wRw′);

u(w, x→ y) =
∧
{u(w′, x) →L u(w′, y) ; wRw′};

u(w,Ta(x)) = Ta(u(w, x));
u(w, x ∧ y) = inf(u(w, x), u(w, y));
u(w, x ∨ y) = sup(u(w, x), u(w, y));

u(a) = a for a = 0, 1.

Then we call (M,R, u) an L-valued intuitionistic Kripke model.
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Then x is a valid formula of L-IL iff u(w, x) = 1 in any L-valued intuitionistic
Kripke model (M,R, u) and any w ∈M . If L is the two-element Boolean algebra,
the valid formulas of L-IL coincide with those of intuitionistic logic.

Definition 15. Gödel translation G from L-IL to L-S4 is the function from
Form to Form� satisfying the following properties:

G(p) = �p for p ∈ PV;
G(x→ y) = �(G(x) → G(y));
G(Ta(x)) = Ta(G(x));
G(x ∧ y) = G(x) ∧G(y);
G(x ∨ y) = G(x) ∨G(y);

G(a) = a for a = 0, 1.

A Gödel-Tarski-McKinsey style theorem holds between L-IL and L-S4:

Theorem 8. Let x ∈ Form. Then, the following are equivalent:

(i) x is a valid formula of L-IL;
(ii) G(x) is a valid formula of L-S4.

Proof. We show that (i) implies (ii). To prove the contrapositive, suppose that
v(w,G(x)) �= 1 in some L-S4 Kripke model (M,R, v) and some w ∈ M . Con-
sider the L-valued intuitionistic Kripke model (M,R, u) defined by u(w, p) =
v(w,�p) for p ∈ PV. Since R is a preorder, wRw′ implies u(w, p) ≤ u(w′, p)
for p ∈ PV. By induction on formulas, we prove the fact that u(w, x) =
v(w,G(x)) for all x ∈ Form. If p ∈ PV, then u(w, p) = v(w,�p) = v(w,G(p)).
If x has the form y → z, then we proceed as follows:

u(w, y → z) =
∧
{u(w′, y)→ u(w′, z) ; wRw′}

=
∧
{v(w′, G(y))→ v(w′, G(z)) ; wRw′}

=
∧
{v(w′, G(y)→ G(z)) ; wRw′}

= v(w,�(G(y) → G(z))).

The other cases are easily verified. It follows from the above fact that u(w, x) =
v(w,G(x)) �= 1 in (M,R, u). Hence, x is not a valid formula of L-IL.

We show that (ii) implies (i). To prove the contrapositive, suppose that
u(w, x) �= 1 in some L-valued intuitionistic Kripke model (M,R, u) and some w ∈
M . Consider the L-S4 Kripke model (M,R, v) defined by v(w, p) = u(w, p) for
p ∈ PV. By induction on formulas, we prove that

v(w,G(x)) = u(w, x) for all x ∈ Form.

If p ∈ PV, then we have u(w, p) =
∧{u(w′, p); wRw′} = v(w,�p) = v(w,G(p)),

since R is a preorder and since if wRw′ then u(w, p) ≤ u(w′, p). The other cases
are easy to check. Therefore, v(w,G(x)) = u(w, x) �= 1 in (M,R, v). Hence, G(x)
is not a valid formula of L-S4.

The above proof holds even if L is an infinite complete Heyting algebra.
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4 Future Work

The Jónsson-Tarski duality ([1]) is one of the most important results for (classi-
cal) modal logic. Our future work will be to obtain a Jónsson-Tarski style duality
for L-VL and L-ML. We conjecture that we can apply the theory of canoni-
cal extensions ([7],[8],[9]) to obtain such a duality, since we have the following
facts: (i) These logics can be axiomatized using Ua’s instead of Ta’s (2.2 Remark
2); (ii) Ua’s preserve finite meets by Proposition 8, though Ta’s do not in gen-
eral; (iii) the class of L-VL-algebras axiomatized using Ua’s is finitely generated
by Theorem 3 and therefore is closed under canonical extensions by (ii) and
[7, Corollary 6.9].

Acknowledgements. The author would like to thank the anonymous referees
for their invaluable comments and suggestions, especially those on the future
work and related facts. The author is also grateful to Prof. Takashi Sakuragawa,
Kentaro Sato and Katsuhiko Sano for their helpful advices.
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Abstract. It is well-known that if we assume a large class of sets of reals
to be determined then we may conclude that all sets in this class have
certain regularity properties: we say that determinacy implies regularity
properties classwise. In [Lö05] the pointwise relation between determi-
nacy and certain regularity properties (namely the Marczewski-Burstin
algebra of arboreal forcing notions and a corresponding weak version)
was examined.

An open question was how this result extends to topological forcing
notions whose natural measurability algebra is the class of sets having
the Baire property. We study the relationship between the two cases, and
using a definition which adequately generalizes both the Marczewski-
Burstin algebra of measurability and the Baire property, prove results
similar to [Lö05].

We also show how this can be further generalized for the purpose of
comparing algebras of measurability of various forcing notions.

1 Introduction

The classical theorems due to Mycielski-Swierczkowski, Banach-Mazur and Mor-
ton Davis respectively state that under the Axiom of Determinacy all sets of reals
are Lebesgue measurable, have the Baire property and the perfect set property
(see, e.g., [Ka94, pp 373–377]). In fact, these proofs give classwise implications,
i.e., if Γ is a boldface pointclass (closed under continuous preimages and inter-
sections with basic open sets) such that all sets in Γ are determined, then all sets
in Γ have the corresponding regularity property. The proofs do not, however,
show that from the assumption “A is determined” one can conclude “A is reg-
ular”, i.e., they do not give us pointwise implications. So a natural question is:
what is the strength of the statement “A is determined”, and which properties
of A follow from that statement?

That the strength of determinacy is in classwise rather than pointwise conse-
quences is not unexpected—after all, it is easy to construct sets that are deter-
mined for trivial reasons. Still, if the regularity properties themselves are “weak”
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in a certain sense, the relationship is not as clear. In [Lö05], where the point-
wise relationship between determinacy and Marczewski-Burstin measurability
algebras (connected to so-called arboreal forcing notions) was first analyzed, we
indeed have the expected result for the algebras themselves but more interesting
ones if we consider their “weak” or “local” counterparts.

This investigation started with the question whether the results of [Lö05]
can be transferred to the more difficult scenario of topological forcing notions
whose natural algebra of measurability is not the Marczewski-Burstin algebra
but the Baire property in the corresponding topology. In the process of studying
this question, however, certain basic properties of arboreal forcings and their
measurability algebras came to light, which forced us to adapt the definitions
as well as the actual question. Partly motivated by recent work of Daisuke
Ikegami [Ik08], we are adapting a different definition of arboreal forcings, and
giving a new definition of a measurability notion. Using these new definitions we
are able to generalize and improve [Lö05] while covering both the non-topological
and the new topological cases. Our two main results here are Theorem 4.3 and
Theorem 5.5.

In the last section we also show how the methods can be generalized for the
purpose of comparing algebras of measurability of various forcing notions.

We should note that Definition 2.2 below gives far less freedom than [Lö05,
Section 2.1], but there are good reasons for adopting it: firstly, Fact 2.3 could
not be proved without it, secondly, one would be able to construct some very
simple sets (e.g., closed in the standard topology) that are non-measurable. In
short, the new definition eliminates “pathological cases” and makes sure that
our forcing notions are somewhat reasonable. This, of course, also eliminates
most of the crucial examples considered in [Lö05, Sections 5 and 6]. As a result,
our conclusions differ from [Lö05] on certain points, but we feel that the new
analysis is more intuitively satisfying and has more practical relevance because
it is immune to artificial counterexamples.

2 Definitions and Preliminaries

We start by fixing some simple concepts about descriptive-theoretic trees:

Definition 2.1. Let T ⊆ ω<ω or 2<ω be a tree.

1. For t ∈ T we write SuccT (t) := {s ∈ T | ∃n(s = t�〈n〉)} to denote the set
of immediate successors of t.

2. A node t ∈ T is called
– splitting if |SuccT (t)| > 1 and non-splitting otherwise.
– ω-splitting if |SuccT (t)| = ω and n-splitting if |SuccT (t)| = n < ω.
– totally splitting if ∀n (t�〈n〉 ∈ T ).

3. The stem of T , notation stem(T ), is the largest s ∈ T such that all t ⊆ s are
non-splitting.

4. [T ] denotes the set of branches through T , i.e., {x | ∀n (x�n ∈ T )}.
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Although we try to keep the notions T and [T ] separated, occasionally we will use
the two objects interchangeably, since it makes arguments simpler and can cause
no harm. Finally, we note that all trees considered in this paper are assumed to
be pruned, i.e., every node has at least one successor.

We are ready to define arboreal forcing notions:

Definition 2.2. A forcing partial order (P,≤) is called arboreal if it is a collec-
tion of perfect trees on ωω (or 2ω), ordered by inclusion, with the extra condition
that

∀P ∈ P ∀t ∈ P ∃Q ≤ P (t ⊆ stem(Q)).

It is called topological if the set of conditions {[P ] | P ∈ P} forms a topology
base for some topology on the set ωω (resp. 2ω), and non-topological otherwise.

Examples of standard non-topological arboreal forcings include Sacks forcing,
Miller forcing, Laver forcing, Silver forcing and many more (for a definition see
e.g. [BaJu95, Je86].) Examples of standard topological forcings are Cohen forc-
ing, Hechler forcing, eventually different forcing and Matthias forcing. Cohen
forcing generates the standard topology, while Hechler and eventually different
forcing generate the dominating topology and the eventually different topology,
respectively. Matthias forcing generates the Ellentuck topology (due to Erik El-
lentuck [El74]).

The following fact is a straightforward consequence of our definition.

Lemma 2.3. If P is an arboreal forcing notion, then P is separative. Moreover,
we have for all P,Q ∈ P, if P �≤ Q then ∃R ≤ P s.t. [R] ∩ [Q] = ∅ (we say P is
strongly separative.)

Proof. Suppose P �≤ Q. Then there is t ∈ P \Q, so by definition there must be
an R ≤ P with t ⊆ stem(R). But then [R] ∩ [Q] = ∅. $�
Since this paper is about consequences of determinacy, let us also give that
definition. There are a number of equivalent formulations of determinacy but for
our purposes the most convenient is to use the following:

Definition 2.4.

1. A tree σ is called a strategy for player I if all nodes of odd length are totally
splitting and all nodes of even length are non-splitting.

2. A tree τ is called a strategy for player II if all nodes of even length are totally
splitting and all nodes of odd length are non-splitting.

3. A set A ⊆ ωω is called determined if there is either a strategy σ for player
I such that [σ] ⊆ A or a strategy τ for player II such that [τ ] ⊆ Ac.

Since by [So70] it is consistent with ZF that all sets of reals have the regularity
properties, the only way to prove a non-trivial pointwise connection between
determinacy and these properties is by using AC. The way one would typically
prove that there are sets that are, e.g., non-Lebesgue measurable, don’t have the
Baire property, the perfect set property etc. is by a diagonalization procedure
called the Bernstein construction. In the most general setting this is the following
fact:
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Theorem 2.5 (General Bernstein Theorem). Let {Xα | α < 2ℵ0} be a collection
of 2ℵ0 sets of reals, such that |Xα| = 2ℵ0 for all α. Then there are disjoint sets
A, B ⊆ ⋃α<2ℵ0 Xα, called the Bernstein components, such that for all α < 2ℵ0 ,
Xα ∩A �= ∅ and Xα ∩B �= ∅.

3 Marczewski-Burstin Algebras, the Baire Property and
Measurability

It is natural to connect each arboreal forcing notion P to a corresponding regular-
ity property, or a so-called algebra of measurability. For example, random forcing
(considered as the collection of perfect trees with non-null Lebesgue measure) is
naturally connected to Lebesgue-measurability, and Cohen forcing to the Baire
property in the standard topology on ωω. In analogy with the latter case, Hech-
ler and eventually different forcing are connected to the Baire properties in the
dominating and eventually different topologies on ωω, respectively.

For the non-topological arboreal forcings, the regularity property usually con-
sidered has been the Marczewski-Burstin algebra.

Definition 3.1. Let P be arboreal and A ⊆ ωω.

1. A is called P-Marczewski-Burstin-measurable if ∀P ∈ P ∃Q ≤ P ([Q] ⊆
A ∨ [Q] ⊆ Ac).

2. A is called P-null if ∀P ∈ P ∃Q ≤ P [Q] ⊆ Ac.
3. A is called P-meager if it is a countable union of P-null sets.

We denote the class of P-Marczewski-Burstin-measurable sets by MB(P), the
ideal of P-null sets by NP and the σ-ideal of P-meager sets by IP. Note that
when P is topological then P-null is the same as being nowhere dense in the
P-topology and P-meager is exactly the topological concept of being meager (or
of first category).

For the standard non-topological forcings P, a fusion argument like in [Je86,
p 15 ff] shows that MB(P) is a σ-algebra. The same holds for Matthias forcing,
although the proof is technically more involved (see [El74]). However, for Cohen,
Hechler or eventually different forcing, this is not the case: if we let P be any one
of these three forcings, then, for instance, A := {x | ∀∞n (x(n) is even)} is not
in MB(P). To see this, note that for all P ∈ P there exists an x ∈ [P ] which is
eventually even and a y which is not eventually even, so [P ] �⊆ A and [P ] �⊆ Ac.
On the other hand, we can write A =

⋃
N AN where AN := {x | ∀n ≥ N (x(n)

is even)}, which is easily seen to be P-null. So then MB(P) is not a σ-algebra, it
doesn’t contain Fσ sets, and is in general not a regularity property at all.

It is then not at all surprising that in the topological cases, rather than MB(P)
one usually considers the algebra consisting of those sets having the Baire prop-
erty in the P-topology, which we shall denote by BP(P). The definition below
should shed some light on the precise reason for this dichotomy and the relation-
ship between MB(P) and BP(P). It is close to that of the Marczewski-Burstin
algebra but is more natural and well-behaved. For example, Ikegami in [Ik08]
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uses it to prove general theorems about the strength of projective measurability
statements. We shall refer to this property simply by P-measurability.

Definition 3.2. Let P be a topological arboreal forcing. For sets A,B we write
A ⊆∗ B if A \B ∈ IP. Then a set A is called P-measurable if

∀P ∈ P ∃Q ≤ P ([Q] ⊆∗ A or [Q] ⊆∗ Ac).

We shall denote the class of P-measurable sets by Meas(P).

The following are simple but important properties:

Lemma 3.3. Let P be arboreal.

1. For all P ∈ P, [P ] is not P-meager,
2. MB(P) ⊆ Meas(P), and
3. Meas(P) = MB(P) iff NP = IP.

Proof.

1. Suppose towards contradiction that [P ] =
⋃
nMn with Mn ∈ NP. By induc-

tion, let P0 ≤ P s.t. [P0]∩M0 = ∅. Using the definition of arboreal forcings,
let P ′

0 ≤ P0 be anything with a strictly longer stem. Then let P1 ≤ P ′
0 be

s.t. [P1] ∩M1 = ∅, etc. Then we get a sequence

P ≥ P0 ≥ P1 ≥ P2 ≥ . . .

of trees with strictly increasing stems, hence there is a real x :=
⋃
n stem(Pn).

Moreover, by the general property of trees it is easy to see that
⋂
n[Pn] = {x}.

So x ∈ [P ] but x /∈ ⋃nMn: contradiction.
2. Obvious.
3. Suppose IP = NP. If A ∈ Meas(P) then for P ∈ P there is Q ≤ P s.t.

[Q] ∩ A ∈ IP = NP or [Q] \ A ∈ IP = NP. So then there is R ≤ Q s.t.
[R] ∩ ([Q] ∩A)) = ∅ resp. [R] ⊆ ([Q] ∩A)).

Conversely, let A ∈ IP. Since this means that A ∈ Meas(P) = MB(P), for
all P there is Q ≤ P such that [Q] ⊆ A or [Q] ∩ A = ∅. But the former is
impossible by (1). $�

Here, (1) is an analogue of the classical Baire Category Theorem. Results of [Ik08]
show that Meas(P) is always a σ-algebra, and moreover that Meas(P) = BP(P)
for topological P. Hence, the difference between the original two properties—
MB(P) and BP(P)—is exactly the difference between “meager” and “nowhere
dense”. Since from a topological point of view these concepts usually do not
coincide, this explains why MB(P) usually fails to be a good regularity property
for topological forcings. (Incidentally, the Ellentuck topology is a well-known
example of a topology where “meager” and “nowhere dense” do coincide. Hence,
if P is Matthias forcing then BP(P) = MB(P), and the latter is precisely the
collection of completely Ramsey sets, cf. [El74]).
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In [Lö05] the Marczewski-Burstin algebra for non-topological forcing notions
(and later it’s weak variant) played the crucial role. We shall do the same thing
for Meas(P). Since the new property is either the same or larger than those
previously considered, any statement of the kind “there is a determined set
which is not P-measurable” immediately implies the same statement with “P-
measurable” replaced by “P-Marcewski-Burstin-measurable” or by “having the
Baire property in the P-topology”. Thus, our results are a natural generalization
of [Lö05].

4 Determinacy and Measurability

Are there determined sets which are not in Meas(P)? We get the expected answer:
yes. The main ingredient is, as in [Lö05], Bernstein’s theorem, but we need a
technical argument before we can apply it.

Lemma 4.1. Let P be an arboreal forcing notion. If P ∈ P and C ⊆ [P ] is
P-comeager in [P ], then there exists a perfect tree T with [T ] ⊆ C.

Proof. Let [P ] \ C :=
⋃
nMn with each Mn ∈ NP. Let Cn := [P ] \Mn, so that

C =
⋂
n Cn. By induction we shall construct a collection of Pu ∈ P indexed by

u ∈ 2<ω, while taking care that [Pu] ⊆ C|u| for all u.

– Since M0 ∈ NP, pick P∅ ≤ P such that P∅ ∩M0 = ∅, i.e., [P∅] ⊆ C0.
– Suppose we have u ∈ 2<ω with |u| = n, and [Pu] ⊆ Cn. Since Pu is perfect we

can extend its stem t to two incompatible stems t′ and t′′. Since P is arboreal,
there are P ′

u and P ′′
u such that t′ ⊆ stem(P ′

u) and t′′ ⊆ stem(P ′′
u ). Now, since

Mn+1 ∈ NP, there are [Pu�〈0〉] ⊆ [P ′
u] \Mn+1 and [Pu�〈1〉] ⊆ [P ′′

u ] \Mn+1.

Let T be the tree generated by {stem(Pu) | u ∈ 2<ω}. By our construction, this
is clearly a perfect tree, so it just remains to prove that [T ] ⊆ C. But, for every
x ∈ [T ] there is a y ∈ 2ω such that x =

⋃
n stem(Py�n). Moreover, it is easy to

see that
⋂
n[Py�n] = {x}. Therefore, for all n we have x ∈ [Py�n] ⊆ Cn, hence

x ∈ C. $�
Corollary 4.2. Let P be arboreal and A ⊆ ωω P-measurable. Then

∀P ∈ P ∃T ⊆ P (T is a perfect tree and [T ] ⊆ A or [T ] ⊆ Ac).

Proof. Let A ∈ Meas(P) and P ∈ P. We know that there is a P ′ ∈ P with
P ′ ≤ P such that [P ′] \ A is meager or [P ′] ∩ A is meager. In the former case
C := A ∩ [P ′] is comeager so there is a perfect tree in A, and in the latter case
[P ′] \A is comeager so there is a perfect tree in Ac. $�
The corollary is sufficient to construct a counterexample using a Bernstein di-
agonalization procedure:

Theorem 4.3. Determinacy does not imply P-measurability pointwise.

Proof. Fix any P ∈ P with |stem(P )| ≥ 2. Then fix any strategy σ such that
[P ] ∩ [σ] = ∅, which is always possible just by letting the beginning of σ be
different from the stem of P . Then let

〈
Tα | α < 2ℵ0

〉
be an enumeration of all
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perfect trees in [P ]. By the general Bernstein theorem 2.5 there are disjoint sets
A,B ⊆ ⋃α<2ℵ0 [Tα] ⊆ [P ], both of which intersect every Tα. Let A′ := A ∪ [σ].
Then, by the contraposition of Corollary 4.2, neither A′ nor A′c is in Meas(P),
but clearly either A′ or A′c is determined (the former if σ was a strategy for
player I and the latter if it was for player II). $�

5 Determinacy and Weak Measurability

In [Lö05], the question became more interesting when instead of full measura-
bility one considered a weak, or local version.

Definition 5.1. Let P be arboreal, and let A ⊆ ωω. Then

1. A is weakly P-Marczewski-Burstin-measurable if ∃P ∈ P s.t. [P ] ⊆ A or
[P ] ⊆ Ac,

2. A is weakly P-measurable if ∃P ∈ P s.t. [P ] ⊆∗ A or [P ] ⊆∗ Ac.

We denote the class of weakly P-Marczewski-Burstin-measurable sets by wMB(P)
and the class of weakly P-measurable sets by wMeas(P). An important reason for
introducing this property is that it is classwise equivalent to full measurability.
By [BrLö99, Lemma 2.1] MB(P) and wMB(P) are classwise equivalent for all
standard P and all topologically reasonable pointclasses. We will prove the same
for Meas(P) and wMeas(P), plus, we will make precise which condition on P is
required for this equivalence to hold.

Definition 5.2. Let P be an arboreal forcing. We say that P is topologically
homogeneous if for every P ∈ P there is a homeomorphism fP : ωω ∼−→ [P ], in
the sense of the standard topology, such that for every tree T we have T ∈ P iff
the tree of fP [T ] is in P.

It can be shown that all the standard examples of arboreal forcing notions P are
topologically homogeneous.

Lemma 5.3. Let P be topologically homogeneous and P ∈ P. Then A is P-
meager iff fP [A] is P-meager.

Proof. Since fP is a bijection, it is sufficient to prove the claim for P-meager
replaced by P-null. We show that if A is P-null then fP [A] is P-null—for the
converse direction, use f−1

P . Let Q ∈ P be arbitrary. We must show that there is
an R ≤ Q s.t. [R] ∩ fP [A] = ∅. Since P is strongly separative, we may assume
w.l.o.g. that Q ≤ P . Then the tree of f−1

P [Q] is a member of P, so by assumption
there exists an R′ ≤ f−1

P [Q] s.t. [R′] ∩A = ∅. Then let R := the tree of fP [R′],
so R ≤ Q and [R] ∩ fP [A] = ∅. $�
Theorem 5.4. Let P be a topologically homogeneous arboreal forcing notion and
let Γ be a pointclass closed under continuous preimages and intersections with
closed sets. Then Γ ⊆Meas(P) iff Γ ⊆ wMeas(P).

Proof. The forward direction is obvious. For the backward direction, let A ∈ Γ .
Fix a P ∈ P, and we must show that there is a Q ≤ P such that [Q] ⊆∗ A
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or [Q] ⊆∗ Ac. By the assumption on Γ , we know that A ∩ [P ] ∈ Γ and hence
A′ := f−1

P ([A] ∩ P ) ∈ Γ . By assumption, there exists a Q′ ∈ P s.t. [Q′] ⊆∗ A′

or [Q′] ⊆∗ A′c. Let Q be the tree of fP [Q′]. Then Q ≤ P and by Lemma 5.3
[Q] ⊆∗ A or [Q] ⊆∗ Ac. $�
In [Lö05], the arboreal forcings P were classified into three groups, in such a
way that in the first case determinacy implied wMB(P) pointwise, in the second
case it did not, and in the third there were examples either way. As we noted in
the introduction, we are adopting a stricter definition of arboreal forcing notions
which eliminates the pathological examples from [Lö05]. As a result, we are now
able to give an exhaustive characterization.

First, we fix an arboreal forcing P. Then we split the situation into two cases:

– Case 1: For every strategy σ there exists P ∈ P s.t. P ⊆ σ.
– Case 2: For some strategy σ, the set [σ] is P-null.

Let us immediately check why this case distinction is exhaustive: suppose Case 1
doesn’t hold, so there exists a σ s.t. there is no P ⊆ σ. But then, for every P ∈ P
there is a t ∈ P \ σ and consequently Q ≤ P with t ⊆ stem(Q). So [Q]∩ [σ] = ∅
and we are in Case 2. Conversely, if [σ] is P-null then σ clearly cannot contain
any P ∈ P.

Theorem 5.5. In Case 1, Determinacy implies wMeas(P) pointwise. In Case 2,
Determinacy does not imply wMeas(P) pointwise.

Proof. Case 1. Suppose A is determined. Then there is a strategy σ s.t. [σ] ⊆ A
or [σ] ⊆ Ac. It follows immediately that there is a P ∈ P s.t. [P ] ⊆ A or [P ] ⊆ Ac,
so A is certainly in wMeas(P).

Case 2. Fix a strategy σ which is P-null. Let T¬σ be the collection of perfect
trees disjoint from [σ].

Claim. For everyA ∈ wMeas(P) there is T ∈ T¬σ such that [T ] ⊆ A or [T ] ⊆ Ac.

Proof. First, suppose there is a P ∈ P such that [P ] ⊆∗ Ac, i.e., [P ] ∩ A ∈ IP.
Since [σ] is P-null, there is a Q ≤ P such that [Q] ∩ [σ] = ∅. Then C := [Q] \A
is P-comeager in [Q] and disjoint from [σ]. So by Lemma 4.1 there is a perfect
tree [T ] ⊆ C. Then [T ] ⊆ Ac and T is disjoint from [σ], so T ∈ T¬σ. Now, the
case where [P ] ⊆∗ A is analogous. � (Claim)

Since T¬σ is a collection of 2ℵ0 sets of size 2ℵ0 , we can use the general Bernstein
theorem 2.5 to find disjoint sets A and B intersecting every member of T¬σ. Note
that by construction, both A and B are disjoint from [σ]. Now let A′ := A∪ [σ].
Then, by the contraposition of the Claim, neither A′ nor A′c is in wMeas(P)
but clearly either A′ or A′c is determined (again depending on whether σ was a
strategy of player I or player II). $�
This gives a complete characterization of the pointwise relationship between
determinacy and wMeas(P). From the standard forcing notions, Sacks and Miller
forcing belong to Case 1 while the other forcing notions belong to Case 2.
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Note that since wMB(P) ⊆ wMeas(P) for all P, and moreover in Case 1 we
have actually proved the stronger result that if A is determined then it is in
wMB(P), we also have a proof of the following:

– In Case 1, Determinacy implies wMB(P) pointwise.
– In Case 2, Determinacy does not imply wMB(P) pointwise.

The reason for the discrepancy with [Lö05] is, as we noted, due to the different
definition of arboreal forcings. In [Lö05, p 1243] the author asked “it would be
interesting to ask . . . whether we can find a natural property of forcings (that all
forcings used in applications share) that implies [that all forcing notions P fall
under Case 1 or Case 2]”. Thus, our definition of “arboreal forcings” (Definition
2.2) gives a solution to this question.

6 Generalizations to P vs. Q

Although the original problem, and the conceptual question behind it, was
whether determinacy has any pointwise consequences, after proving the above
results it became clear that the same methods can be applied, with minimal
changes, to the general situation of comparing the measurability algebras of two
arboreal forcing notions P and Q. The generalization of Section 4 is completely
straightforward:

Theorem 6.1. Let P and Q be arboreal. Then

1. wMB(P) �⊆ Meas(Q),
2. wMeas(P) �⊆Meas(Q),
3. wMB(P) �⊆ MB(Q),
4. wMeas(P) �⊆MB(Q).

Proof. Note that by definition of arboreal forcings, it is always possible to find
P ∈ P and Q ∈ Q such that [P ] ∩ [Q] = ∅. So fix such P and Q and repeat
the construction in Theorem 4.3, with [σ] replaced by [P ]. Then the Bernstein
component A (and B) constructed in that proof is not in Meas(Q) but it is
disjoint from [P ], hence it is in wMB(P), which proves 1. Points 2, 3 and 4 follow
immediately from 1. $�
Note that this includes the case that P = Q, since we never needed them to be dif-
ferent in the argument. In particular, then, this shows that weak P-measurability
is strictly larger than P-measurability, and similarly with the Marczewski-Burstin
algebras.

Slightly less trivial is the generalization of Section 5. Here, the following notion
is of central importance:

Definition 6.2. Let P and Q be arboreal. We say that P is thinner than Q if
for every Q ∈ Q there exists a P ∈ P s.t. P ⊆ Q.

In practice, it is always easy to see whether a given P is thinner than Q: for
example, Miller forcing is thinner than Laver forcing but not vice versa, Hechler
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forcing is thinner than Cohen forcing but not vice versa, Sacks forcing is thinner
than every arboreal forcing etc.

Theorem 6.3. If Q is thinner than P then wMB(P) ⊆ wMB(Q) ⊆ wMeas(Q).
Otherwise, wMB(P) �⊆ wMeas(Q) and wMB(P) �⊆ wMB(Q).

Proof. If Q is thinner than P, the result follows directly. If not, then by the same
argument as we have used in Section 5 to prove that Case 1 and Case 2 were
exhaustive, it follows that there is a P ∈ P such that [P ] is Q-null. Then we
repeat the construction for Case 2 from Theorem 5.5 with [σ] replaced by [P ]
and get a Bernstein component A such that A is disjoint from [P ] and hence in
wMB(P) but A /∈ wMeas(Q), and hence not in wMB(Q) either. $�
Of course, it would be nicer to have a full characterization, in the same vein as
above, of wMeas(P) ⊆ wMeas(Q). But this would involve comparing the null-
ideals NP with NQ, and the results of [Br95] suggest that there is no general
method for doing this.

The only other case that remains, is Meas(P) ⊆ Meas(Q). Again, [Br95] sug-
gests that there is no general method, but we can at least say the following:

Theorem 6.4. If P is not thinner than Q, then Meas(P) �⊆Meas(Q) (and even:
NP �⊆Meas(Q)).

Proof. If P is not thinner than Q then, by the argument that we have already
seen twice, there exists some Q ∈ Q such that [Q] is P-null. Choose this Q,
enumerate all perfect trees within [Q] and, as in the proof of Theorem 4.3 find
Bernstein components A and B. Then A /∈ Meas(Q) by the contraposition of
Corollary 4.2 but A ⊆ [Q] ∈ NP, so in particular A ∈Meas(P). $�
For example, since Cohen forcing is not thinner than Hechler forcing, there is a
set which is nowhere dense in the standard topology but does not have the Baire
property in the dominating topology.
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Abstract. Logics of space typically involve two sorts of entities, points
and sets, and so are amenable for investigation using hybrid modal lan-
guages with nominals for both sorts. As Hilbert systems for these logics
are quite complicated, Gentzen systems are used in this paper, first for
the basic two-dimensional hybrid logic and then for the logic of subset
spaces, which needs additional rules. This provides a foothold from which
to consider extensions to neighborhood and topological logics, and also
application fields such as epistemic and doxastic logics.

Keywords: hybrid logic, two-sorted hybrid language, logic of subset
spaces, Gentzen system for hybrid logic.

A policewoman measures the speed of a car traveling on a highway with a 120
kph speed limit. The speed of the car is 121 kph and this is also the reading
on her velocity radar gun but she does not know whether the car is speeding
because the accuracy of the radar is ±2 kph. She would have known this if the
reading had been 122 kph or if she had been using one of the newer models with
an accuracy of ±1 kph.

It is natural to model the policewoman’s knowledge about the car’s speed as
the set of speeds that are compatible with the information she has, which in this
case is the interval (119, 123) kph. Her lack of knowledge as to whether the car
was speeding is entailed by the existence of speeds within this range that exceed
the speed limit and other speeds which do not. If the reading on her radar had
been 122 kph, her knowledge would be represented by the interval (120, 124)
and she would know that the car was speeding. If she was using the newer model
radar, her knowledge would be represented by the interval (120, 122) and again
she would know that the car was speeding.

The latter case is interesting because it is an example of how knowledge can be
improved by epistemic effort. A more searching investigation, with better tools,
can increase one’s knowledge. The concept of epistemic effort was introduced
and discussed by works in the traditions of topologic, originally [1], with a
recent survey in [2]. The basic idea is to extend traditional epistemic logic with
an operator that quantifies over improvements in the knowledge of the agent,
modeling the knowledge as an open set within a topological space, or some
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generalization thereof. This coincides with the traditional epistemic logic (Cf.
[3]), where knowledge is defined in terms of accessibility relations.

[1] and [4] gave an appealing sound and complete two-dimensional logic in
which two modal operators K and � represent relations between points and
sets. Kϕ means that ϕ holds at every point in the current set and �ϕ means
that ϕ holds in every subset of the current set that contains the current point.
On the epistemic interpretation, Kϕ means that ϕ is known and �ϕ means that
ϕ holds in every refinement of the current epistemic state. Thus, we can express
the policewoman’s situation as

♦K(Speeding)∧ ¬K¬♦K¬(Speeding).

The consideration of the various hypothetical cases is difficult to represent in
this limited language. There is no mechanism for moving the set representing
the agent’s knowledge state to another set that is not a subset, to represent the
possibility of a different reading on the radar. And even if we introduced a new
modal operator to do this, it would not enable us to reason about specific states.
Likewise, to reason about the result of using the newer model radar, we would
need a way of referring to a specific refinement rather than merely saying that
there is one. Both cases can be covered by allowing names, which seems is the
approach adopted here.

Hybrid logic (Cf., say, [5] and [6]) is the result of adding names and other
referential mechanisms to modal logic and so is the obvious tool to use to extend
the expressive power of topologic. It has a more systematic proof theory than
modal logic while retaining the latter’s intuitive elegance. Yet some work is
required to develop hybrid logic in a two-dimensional setting as well as to capture
the relationship between the two dimensions—that of set-membership. In this
paper, I will consider two sorts of names, for points and sets respectively, and a
two-dimensional satisfaction operator, @.

In the above scenario, the claims about the two hypothetical states (of the old
radar reading 122 kph and of the new radar reading 121kpm) can represented
as

@±2
122K(Speeding) ∧@±1

121K(Speeding),

the right disjunct of which witnesses ♦K(Speeding) but is more specific. We can
also use

@±2
110�K¬(Speeding)

to express something like “driving at the speed of 110 kph cannot lead to being
suspected of speeding,” which seems a better choice for the driver unless he is
pursuing the policewoman.

Other hybrid operators such as a two-dimensional version of the “here-and-
now” operator, ↓, can also be considered. With this, we can represent the same
facts as

↓curr setcurr pnt.(@
curr set
122 K(Speeding) ∧@±1

curr pntK(Speeding)).

Even more can be done with these extensions to the language. Suppose a
policeman brings a radar with the accuracy of ±1 kph and it happens that he
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has also recorded the speed to be 119.5 kph. It may be frustrating that the two
of them still cannot make a judgment as to whether the car was speeding, but at
least their results are compatible with one another, and this can be represented as

@±2
121¬K¬♦↓Xx .@±1

119.5¬K¬♦(x ∧X).

The increased expressive power can also be obtained in other ways. For example,
[7] used a difference modality, [�=], to express various topological properties of
the space such as “density-in-itself” and “T1-space,” and it is easy to show that
these can also be defined using ↓. In fact, [�=]ϕ itself can be defined by the hybrid
formula

[�=]ϕ := ↓s.(s ∨ ϕ).

This paper will mainly focus on a basic logic of space, called “subset space”
logic, in which there is little structure on the sets of points. After an introduc-
tion to the languages and semantics, a hybrid system will be presented. Issues
arising, including the restriction to topological semantics and the generalization
to neighborhood semantics, will be discussed in the final section.

1 The Languages and Semantics

We will consider two sorts of nominals, pntnom and setnom, which name
points and (open) sets respectively.1 Lower case letters a, b, c, . . . will be used
to stand for members of pntnom, while upper case letters A,B,C, . . . will be
used for setnom. To introduce the hybrid binder ↓, there are also corresponding
variables: pntvar and setvar. x and X will be used for members of pntnom∪
pntvar and setnom ∪ setvar respectively. These various sorts of symbols are
grouped together as follows:

nom = pntnom ∪ setnom svar = pntvar ∪ setvar

pnt = pntnom ∪ pntvar set = setnom ∪ setvar

at = prop ∪ nom ∪ svar, prop for propositional variables.

As a summary of this notation for nominals:

New Atoms nom svar

pnt pntnom pntvar

set setnom setvar

Now we can introduce our languages.

Definition 1 (Two-sorted hybrid languages). The language H2(@, ↓) is
given by the following rule:

ϕ ::= 
 | p | x | X | ¬ϕ | ϕ ∧ ψ | ♦· ϕ | ♦ϕ | @X
x ϕ | ↓Ss .ϕ

1 To call the sets “open” is suggestive of topology, although subset spaces lack the
distinctive features of topological spaces, such as closure under unions and finite
intersections.
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where p ∈ prop, x ∈ pnt, X ∈ set, s ∈ pntvar, S ∈ setvar. Other connec-
tives or constants, such as ∨,↔,⊥ are defined as usual. Languages H2 (without
@ and ↓) and H2(@) (without ↓) will also be used.

A subset space is a structure (S,Σ) where S is a non-empty domain filled with
points and Σ ⊆ ℘S. A topological space is a subset space (T, τ) such that ∅, T ∈ τ
and τ is closed under finite intersection and arbitrary union.

Definition 2 (Topological and subset models). A structure (S,Σ, V ) is a
subset model ( topological model) if (S,Σ) is a subset space (topological space)
and V : prop ∪ nom → S ∪ ℘S is a valuation such that V (p) ∈ ℘S, V (a) ∈ S
and V (A) ∈ Σ.

Note that a subset model can be taken as a neighborhood model with the neigh-
borhood function N achieving its value at some point in the domain (the current
state is always a witness of the existence). The focus of this paper will be on
subset spaces but some further remarks on neighborhood models and topological
models will be made in the final section.

The meaning of nominals will be clearer after the following definition of sat-
isfaction.

Definition 3 (Satisfaction). Given a subset model S = 〈S,Σ, V 〉, assign-
ments g0 : pntvar → S and g1 : setvar → Σ. For any t ∈ S and any U ∈ Σ
such that t ∈ U ,2

S, g0, g1, t, U |= 
 Always
S, g0, g1, t, U |= p iff. t ∈ V (p)
S, g0, g1, t, U |= a iff. t = V (a)
S, g0, g1, t, U |= A iff. U = V (A)
S, g0, g1, t, U |= s iff. t = g0(s)
S, g0, g1, t, U |= S iff. U = g1(S)
S, g0, g1, t, U |= ¬ϕ iff. t ∈ U & S, g0, g1, t, U �|= ϕ
S, g0, g1, t, U |= ϕ ∧ ψ iff. S, g0, g1, t, U |= ϕ & S, g0, g1, t, U |= ψ
S, g0, g1, t, U |= ♦· ϕ iff. ∃t′ ∈ U. S, g0, g1, t

′, U |= ϕ
S, g0, g1, t, U |= ♦ϕ iff. ∃U ′ ∈ Σ. (t ∈ U ′ ⊆ U & T, g0, g1, t, U

′ |= ϕ)
S, g0, g1, t, U |= @X

x ϕ iff. S, g0, g1, x
S,g0 , XS,g1 |= ϕ

S, g0, g1, t, U |= ↓Ss .ϕ iff. S, g0[ts], g1[
U
S ], t, U |= ϕ,

where p ∈ prop, a ∈ pntnom, A ∈ setnom, s ∈ pntvar, S ∈ setvar, x ∈
pnt, X ∈ set.

♦· and ♦ are diamond counterparts of K,�, mentioned above,3 the former al-
lowing us to go from our current point to a neighbor (in the current set) and
2 This membership is essential here. We have already assumed t ∈ U by writing

S, g0, g1, t, U |= ϕ. Therefore, only “S, g0, g1, t, U �|= ϕ” is not enough when inter-
preting “S, g0, g1, t, U |= ¬ϕ”.

3 I am not going to follow the epistemically motivated notation of [4], preferring dif-
ferently marked box, 	, to “K”, if it appears somewhere.
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the latter allowing us to shrink our current set to one that contains the current
point. @X

x and ↓Ss are the natural extensions of the standard hybrid operators
@ and ↓ to the two-dimensional case.

Note that assignments are only relevant to the satisfaction of sentences (for-
mulas with no free variables) if the sentences contain ↓. When evaluating the
sentences of H2(@) they will be omitted.

Now we are ready to talk about the logical systems.

2 Hybrid System GH2(@,↓)

Hilbert systems for hybrid logic are quite complicated, especially for the two-
dimensional semantics with interaction between the dimensions, as we have in the
present case. For this reason, I prefer a simpler, though paper-wasting, sequent
calculus. The system GH2(@,↓) is given in Table 1, where the basic part Bsc is
adapted from [8] with the difference that @ and ↓ are now binary.

We take GH2(@) to be the logical system with language H2(@) given by all
rules of GH2(@,↓) except @↓l and @↓r.

Neighborhood rules Nbhd characterize familiar semantic properties of points
and sets, as their names partly have shown. Pairs of @prop, @pnt, @set, @♦· ′ and
@♦′ are all basic facts that hold on subset models.

@pnt shows that the equivalence of points is not affected by sets, while @prop

declares that the values of propositional variables only depend on points. @set

claims that the equivalence of sets is based on points they contain. These three all
demonstrate a “bias” towards the dimension of points. In a perspective of logic
of cognition, @♦· ′ allows an agent’s perception of the current point to another
point in her perception range, and @♦′ reveals an agent’s effort to shrink the
range, as we have expected.

Rules of Weakening (W) and Contraction (C) are admissible as usual. Also
as usual, cut elimination attracts much of our attention.

Theorem 1. Cut is admissible in GH2(@,↓).

Proof. Bsc is not much more than the basic hybrid system. The difference is
that nominals are now in two sorts, which does not affect the cut elimination
results — cut can be eliminated in a similar way to that used in [8].

I will show the most “involved” case here as an example. This is the case
of Seligman-style @=pnt-rules4 (@=pntl0, @=pntl1, @=pntr) in which the cut
formula is not the prime formula of the @=pnt-rule but is prime in the other
rule:

P

@X
x y, Γ [xz ] −→ ∆[xz ], ϕ[xz ] @=pntl0

@X
x y, Γ [yz ] −→ ∆[yz ], ϕ[yz ]

Q

ϕ[yz ], Γ
′ −→ ∆′

Cut
@X
x y, Γ [yz ], Γ

′ −→ ∆[yz ], ∆
′

�

4 Comments towards these rules can be found in [9].
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Table 1. System GH2(@,↓)

Basic Rules Bsc

(Ax)
ϕ, Γ −→ ∆, ϕ

(@=pntr)
Γ −→ ∆, @Xx �
Γ −→ ∆, @Xx x

(@=pntl0)
@Xx y, Γ [xz ] −→ ∆[xz ]
@Xx y, Γ [yz ] −→ ∆[yz ]

(@=pntl1)
@Xx y, Γ [yz ] −→ ∆[yz ]
@Xx y, Γ [xz ] −→ ∆[xz ]

(@¬l)
Γ −→ ∆, @Xx ϕ

@Xx ¬ϕ, Γ −→ ∆
(@¬r)

@Xx ϕ, Γ −→ ∆

Γ −→ ∆, @Xx ¬ϕ

(@∧l)
@Xx ϕ, @Xx ψ,Γ −→ ∆

@Xx (ϕ ∧ ψ), Γ −→ ∆
(@∧r)

Γ −→ ∆, @Xx ϕ Γ −→ ∆, @Xx ψ

Γ −→ ∆, @Xx (ϕ ∧ ψ)

(@♦· l)∗� @Xx ♦· y,@Xy ϕ, Γ −→ ∆

@Xx ♦· ϕ, Γ −→ ∆
(@♦· r)∗ Γ −→ ∆, @Xy ϕ Γ −→ ∆, @Xx ♦· y

Γ −→ ∆, @Xx ♦· ϕ
(@♦l)†‡ @Xx ♦Y, @Yx ϕ, Γ −→ ∆

@Xx ♦ϕ, Γ −→ ∆
(@♦r)† Γ −→ ∆, @Yx ϕ Γ −→ ∆, @Xx ♦Y

Γ −→ ∆, @Xx ♦ϕ

(@@l)
@Xx �, @Yy ϕ, Γ −→ ∆

@Xx @Yy ϕ, Γ −→ ∆
(@@r)

Γ −→ ∆, @Yy ϕ Γ −→ ∆, @Xx �
Γ −→ ∆, @Xx @Yy ϕ

(@↓l) @Xx ϕ[xsXS ], Γ −→ ∆

@Xx ↓Ss .ϕ, Γ −→ ∆
(@↓r)

Γ −→ ∆, @Xx ϕ[xsXS ]
Γ −→ ∆, @Xx ↓Ss .ϕ

Neighborhood Rules Nbhd

(@propl0)
@Xx �, Γ −→ ∆

@Xx p, Γ −→ ∆
(@propl1)

Γ −→ ∆, @Yx � @Yx p, Γ −→ ∆

@Xx p, Γ −→ ∆

(@propr)‡ @Yx �, Γ −→ ∆, @Yx p Γ −→ ∆, @Xx �
Γ −→ ∆, @Xx p

(@pntl0)
@Xx �, Γ −→ ∆

@Xx y, Γ −→ ∆
(@pntl1)

Γ −→ ∆, @Yx � @Yx y, Γ −→ ∆

@Xx y, Γ −→ ∆

(@pntr)‡ @Yx �, Γ −→ ∆, @Yx y Γ −→ ∆, @Xx �
Γ −→ ∆, @Xx y

(@setl0)
@Xx �, Γ −→ ∆

@Xx Y, Γ −→ ∆
(@setl1)

Γ −→ ∆, @Xy � @Yy �, Γ −→ ∆

@Xx Y, Γ −→ ∆

(@setl2)
Γ −→ ∆, @Yy � @Xy �, Γ −→ ∆

@Xx Y, Γ −→ ∆

(@setr)�
Γ −→ ∆, @Xx � @Xy �, Γ −→ ∆, @Yy � @Yy �, Γ −→ ∆, @Xy �

Γ −→ ∆, @Xx Y

(@♦· ′l) @Xx �, @Xy �, Γ −→ ∆

@Xx ♦· y, Γ −→ ∆
(@♦· ′r)

Γ −→ ∆, @Xx � Γ −→ ∆, @Xy �
Γ −→ ∆, @Xx ♦· y

(@♦′
l)

@Yx �, Γ −→ ∆, @Yy � @Yx �, @Xy �, Γ −→ ∆

@Xx ♦Y, Γ −→ ∆

(@♦′
r)�

Γ −→ ∆, @Yx � @Yy �, Γ −→ ∆, @Xy �
Γ −→ ∆, @Xx ♦Y

∗ ϕ /∈ pnt; � y is new; † ϕ /∈ set; ‡ Y is new.
p ∈ prop, x, y, z ∈ pnt, X, Y, Z ∈ set, s ∈ pntvar, S ∈ setvar.
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�

P[xy ]

@X
x x, Γ [xz ][xy ] −→ ∆[xz ][xy ], ϕ[xz ][xy ]

Q[xy ]

ϕ[yz ][xy ], Γ ′[xy ] −→ ∆′[xy ]
Cut

@X
x x, Γ [xz ][

x
y ], Γ

′[xy ] −→ ∆[xz ][
x
y ], ∆

′[xy ]
Wl

@X
x y,@

X
x x, Γ [xz ][

x
y ], Γ

′[xy ] −→ ∆[xz ][
x
y ], ∆

′[xy ]
@=pntl0

@X
x y,@X

x y, Γ [yz ], Γ ′ −→ ∆[yz ], ∆′
Cl

@X
x y, Γ [yz ], Γ

′ −→ ∆[yz ], ∆
′

The lengths of P and Q are not changed after substitution, and Cut can be
moved up since ϕ[xz ][

x
y ] is the same as ϕ[yz ][

x
y ].

As for Nbhd rules, first note that each pair matches with themselves, and
only @pnt-rules interact with @=pnt-rules. Cut still can be moved up in this
case. Here I show cut elimination for (@pntl1, @=pntr):

P

Γ −→ ∆, @X
x �

@=pntr

Γ −→ ∆, @X
x x

Q0

Γ ′ −→ ∆′, @Y
x �

Q1

@Y
x x,Γ ′ −→ ∆′

@pntl1
@X

x x, Γ ′ −→ ∆′
Cut

Γ, Γ ′ −→ ∆, ∆′

�

Q0

Γ ′ −→ ∆′, @Y
x �

@=pntr

Γ ′ −→ ∆′, @Y
x x

Q1

@Y
x x, Γ ′ −→ ∆′

Cut
Γ, Γ ′ −→ ∆, ∆′

Cut is moved up along Q1, and P is not necessary any more. $�
The calculus GH2(@,↓) has the so-called Quasi-Subformula Property. Namely,
every formula in premises has only new nominals occurring, or is a genuine
subformula of some formula in the conclusion. Some remarks on this issue can
be found in [10], although the basis there is natural deduction systems.

Now we are going to show the soundness and completeness of GH2(@,↓) (or
more exactly, GH2(@)) with respect to all subset models. First is soundness, and
completeness will be proved in the next section.

Theorem 2 (Soundness). All rules of GH2(@) preserve validity in subset
models.

Proof. This is straightforward, given the above discussion of neighborhood rules.
As an example I will show that @♦′

r preserves validity.
For any subset model S = (S,Σ, V ), a point t ∈ S and a set U ∈ Σ, as-

sume S, t, U satisfies both premises of @♦′
r. If S, t, U �|= Γ −→ ∆,@X

x ♦Y , then
S, t, U |= Γ and S, t, U �|= ∆,@X

x ♦Y .5 Since S, t, U |= @Y
x
 and ∀y ∈ pnt :

(S, t, U |= @Y
y 
 ⇒ S, t, U |= @X

y 
) hold, according to the two premises, it forces
S, V (x), V (Y ) |= 
 and ∀y ∈ pnt. (S, V (y), V (Y ) |= 
 ⇒ S, V (y), V (X) |= 
),

5 For convenience, here I use S, t, U �|= ∆, @X
x ♦Y to mean that every formula in

∆ ∪ {@X
x ♦Y } is false at t, U in S.
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which means V (x) ∈ V (Y ) and V (Y ) ⊆ V (X). Thus S, t, U |= @X
x ♦Y holds,

and a contradiction will be reached. $�

3 Completeness of GH2(@) for All Subset Models

3.1 Basic Ideas

First consider the @-prefixed sublanguage of H2(@), denoted here by @H2(@).
Formally,

@H2(@) := {@X
x ϕ | ϕ ∈ H2(@), x ∈ pnt, X ∈ set}.

I will use the Henkin’s method to show that GH2(@) is strongly complete
with respect to all subset models in the language @H2(@). Namely, for every
ϕ ∈ @H2(@) and Φ ⊆ @H2(@),

Φ �GH2(@)
ϕ iff. Φ |=subset ϕ.

And this result can be easily adapted to the language H2(@): For every ϕ ∈
H2(@), Φ ⊆ H2(@),

@X
x Φ �GH2(@)

@X
x ϕ iff. Φ �G′

H2(@)
ϕ,

where x,X are new nonimals, @X
x Φ is a set of @-prefixed formulas, and G′

H2(@)
is a system with new rules shifting between prefixed and non-prefixed formulas.

3.2 Detailed Proof

We are talking about formulas in the @-prefixed language @H2(@) in this sub-
section if not mentioned explicitly.

Six sorts of formulas of the following forms:

@X
x ♦· ϕ, @X

x ♦ψ, @X
x p ,@

X
x y, @X

x Y, @X
x ♦Y (ϕ /∈ pnt, ψ /∈ set)

need witnesses. Let us assume we have already had six enumerations of all those
sorts of formulas respectively.

For every consistent set Φ of formulas, we extend it to Φ+ which contains
witnesses for formulas in the above enumerations. Let

αn = @Xn
xn

(@Xn
xn

♦· ϕn → @Xn
xn

♦· zn ∧@Xn
zn
ϕn),

βn = @Xn
xn

(@Xn
xn

♦ψn → @Xn
xn

♦Zn ∧@Zn
xn
ψn),

γn = @Xn
xn

(@Xn
xn

 ∧ (@Zn

xn

 → @Zn

xn
pn) → @Xn

xn
pn),

δn = @Xn
xn

(@Xn
xn

 ∧ (@Zn

xn

 → @Zn

xn
yn) → @Xn

xn
yn),

εn = @Xn
xn

(@Xn
xn

 ∧ (@Xn

zn

 → @Yn

zn

) ∧ (@Yn

zn

 → @Xn

zn

)→ @Xn

xn
Yn)

ζn = @Xn
xn

(@Yn
xn

 ∧ (@Yn

zn

 → @Xn

zn

)→ @Xn

xn
♦Yn)
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for every n ∈ N, such that zn and Zn are both new in each case.6 And then
define Φ+ inductively as follows:

Φ0 = Φ
Φn+1 = Φn ∪ {αn, βn, γn, δn, εn, ζn}
Φ+ =
⋃
n∈N Φn.

Lemma 1. Every consistent set of formulas can be extended to a consistent set
of formulas that contains witnesses.

Proof. All we need is to show that the consistency of Φn leads to the consistency
of Φn+1. Suppose, for a contradiction, that Φn+1 is inconsistent. Then there exists
Γ ⊆ Φn, such that at least one of

Γ ∪ {αn}, Γ ∪ {βn}, Γ ∪ {γn}, Γ ∪ {δn}, Γ ∪ {εn} or Γ ∪ {ζn}

is inconsistent. (Those witnesses themselves are consistent.) I will take the second
case for example to show that is not going to be possible,7 and omit the subscript
n in every occurrence for convenience.

For every ϕ, given

Γ,@Y
y (@Y

y ♦ψ → @Y
y ♦Z ∧@Z

y ψ) −→ ϕ (1)

we can get
Γ −→ ϕ,@Y

y @Y
y ♦ψ (2)

and
@Y
y (@Y

y ♦Z ∧@Z
y ψ), Γ −→ ϕ. (3)

This is because

Ax
@Y

y @Y
y ♦ψ, (2), @Y

y (@Y
y ♦Z ∧ @Z

y ψ)
@→r

(2), @Y
y (@Y

y ♦ψ → @Y
y ♦Z ∧ @Z

y ψ)

(1)
Wr

@Y
y (@Y

y ♦ψ → @Y
y ♦Z ∧ @Z

y ψ), (2)
Cut

(2)

and it is similar for (3). But then

6 Here we are facing the problem of language expansion. We are using an expanded
language each time after adding witnesses, but then new formulas which also need
witnesses occur. We expand languages and add new witnesses again and again, and
finally the union set of formulas contains witnesses in the union language. (This is
fine in an infinite language, as we are using.) I prefer not elaborating this process.

7 The first case is very similar to the second. All other cases are a bit different because
their witnesses are on the left side (as those for universal quantifiers in the first-
order predicate logic), but this will not affect us using the same method, because all
related rules in GH2(@) have both sides.
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(2)

(Easy to prove with @∧r, @@r)

@Y
y ♦Z, @Z

y ψ −→ @Y
y (@Y

y ♦Z ∧ @Z
y ψ) (3)

Cut
@Y

y ♦Z, @Z
y ψ, Γ −→ ϕ

@♦l, Z new
@Y

y @Y
y ♦ψ, Γ −→ ϕ

Cut
Γ −→ ϕ

A contradiction is reached. $�
Then we extend Φ+ to a maximal consistent set Φ∗. Let @X0

x0
ϕ0,@X1

x1
ϕ1, . . . be

a list of formulas in Φ+. Note that we do not add @Xn
xn
¬ϕn to Ψn in the case

that Ψn ∪ {@Xn
xn
ϕn} is not consistent. This is because there are cases that both

@Xn
xn
ϕn and @Xn

xn
¬ϕn do not hold. Actually we have

Proposition 1. If Φ is consistent, then for every formula @X
x ϕ, one and only

one of the three holds:

(1) Φ � @X
x ϕ, (2) Φ � @X

x ¬ϕ, (3) Φ � @X
x ⊥.

Therefore, Φ∗ is achieved through the following process:

Ψ0 = Φ+,

Ψn+1 =

⎧⎨⎩
Ψn ∪ {@Xn

xn
ϕn}, if it is GH2(@)-consistent

Ψn ∪ {@Xn
xn
¬ϕn}, if it is GH2(@)-consistent

Ψn ∪ {@Xn
xn
⊥}, otherwise

Φ∗ =
⋃
n∈N Ψn.

To prove that Φ∗ is a maximal consistent set is not much more than a proof
of the ordinary Lindenbaum’s Lemma (in a countable case here), and Φ∗ still
contains witnesses since all witnesses are already in Φ+. Therefore I only state
the result as follows while omitting the proof.

Lemma 2. Every consistent set of formulas can be extended to a maximal con-
sistent set which contains witnesses. $�
Now we define a relation ∼ on pnt such that

x ∼ y : iff. ∀X ∈ set. (Φ � @X
x 
 ⇒ Φ � @X

x y).

Lemma 3. ∼ is an equivalence relation.

Proof. The reflexivity, symmetry and transitivity of ∼ are guaranteed by rules
@ =pntl0, @ =pntl1, and @ =pntr. $�
For every point nominal x, let x be the equivalence class of it, and for every set
nominal X , we define

X� := {x : Φ � @X
x 
}.

Let S = (S,Σ, V ) be a structure such that

– S is the set of equivalence classes of all points,
– Σ = {X� : X ∈ set},
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– V is a valuation such that

Vc(p) = {x ∈ S | ∀X ∈ set. (Φ � @X
x 
 ⇒ Φ � @X

x p)}
Vc(x) = x
Vc(X) = X�,

where p ∈ prop, x ∈ pnt, X ∈ set. Clearly S is a subset model.

We now prove a Henkin’s lemma:

Lemma 4. For every maximal consistent set Φ of formulas that contains wit-
nesses, every formula ϕ,

S, z, Z� |= ϕ iff. Φ � ϕ,
where z ∈ S,Z� ∈ Σ.

Proof. We prove the lemma by induction.

(1) Basic cases (@X
x p, @X

x y, @X
x Y , leaving out the former two cases):

ϕ = @X
x Y : S, z, Z� |= @X

x Y iff. S, x,X� |= Y
iff. X� = Vc(Y ) = Y � & x ∈ X�

iff. ∀y. (y ∈ X� ⇒ y ∈ Y �) & ∀z. (z ∈ Y � ⇒ z ∈ X�) & x ∈ X�

iff. ∀y.(Φ � @X
y 
 ⇒ Φ � @Y

y 
) & ∀z.(Φ � @Y
z 
 ⇒ Φ � @X

z 
) & Φ � @X
x 


iff. Φ � @X
x Y (⇓ : Φ containing witnesses; ⇑ : @setl,Cut)

(2) Cases for ¬,∧,♦· ,♦,@ (leaving out cases for ∧,♦· ,@):

ϕ = @X
x ¬ψ : S, z, Z� |= @X

x ¬ψ iff. S, x,X� |= ¬ψ
iff. x ∈ X� & S, x,X� �|= ψ
iff. Φ � @X

x 
 & Φ � @X
x ψ (Induction Hypothesis (IH))

iff. Φ � @X
x ¬ψ (Φ maximal consistent)

ϕ = @X
x ♦ψ : SΦ, z, Z� |= @X

x ♦ψ iff. SΦ, x,X� |= ♦ψ
iff. ∃Y � ∈ Σc. (x ∈ Y � ⊆ X� & SΦ, x, Y � |= ψ)
iff. ∃Y ∈ set. (Φ � @Y

x
 & (∀y ∈ pnt. Φ � @Y
y 
 ⇒ Φ � @X

y 
) &
& Φ � @Y

x ψ) (Defs of X�, Y �, IH)
iff. ∃Y ∈ set. (Φ � @X

x ♦Y & Φ � @Y
x ψ) (⇓ : Witness; ⇑ : @♦′

l,Cut)
iff. Φ � @X

x ♦ψ (⇓ : @♦r; ⇑ : Φ containing witnesses) $�
Lemma 4 shows that S is exactly the model which we need.

Theorem 3 (Strong completeness). GH2(@) for the language @H2(@) is
strongly complete with respect to all subset models. That is, for every Φ and ϕ:

If Φ |=subset ϕ then Φ �GH2(@)
ϕ.

Proof. The proof follows the routine of Henkin’s method after the above lemmas
have been shown. $�
As is clear, all formulas in @H2(@) are prefixed with @s, which is not very
elegant. Some tweaks in [8] cover non-prefixed formulas, in which nominals play
an important role, and these will be discussed in the next section.
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4 Discussions

4.1 Shifting among Prefixed and Non-prefixed Formulas

A simple idea for making the calculus cover non-prefixed formulas is to add
labels to every formula, do all inferences with labels in the calculus, and drop
the added labels only at the end.

The rule:

(Name)
@X
x Γ −→ @X

x ∆
Γ −→ ∆

x,X new

allows every formula being prefixed with a new @X
x (viewed from bottom up),

and then the Gentzen system GH2(@) can be used for deduction.
The Name rule brings in non-prefixed theorem to the system (viewed from

top down), but those theorems are merely non-prefixed counterparts, and will
not actually express more. This can be made clear by the following theorem.

Theorem 4. GH2(@)+(Name) is sound and strongly complete with respect to
all subset models.

Proof. Soundness can be easily verified by checking the validity-preserving of
the new rule. As to the completeness, every semantic consequence Φ |= ϕ can be
isomorphically changed to

@X
x Φ |= @X

x ϕ,

where x,X are new. Then by the completeness in the prefixed language, we get

@X
x Φ � @X

x ϕ.

And finally we have Φ � ϕ, as we want, by the rule Name. $�
Adding Name only reaches halfway of the idea given in the beginning of this
section. [8] has several new rules to cover direct deduction among non-prefixed
formulas, in whose case all non-prefixed rules can be derived. We can also in-
troduce those rules into our system. However, this will not be elaborated in this
paper.

4.2 Binary Hybrid Operators vs. Two Sorts of Unary Hybrid
Operators

An alternative is to use two unary hybrid satisfaction operators, say @x and
@X , instead of one binary operator. By doing this, many rules are easier to
read, especially those that have nothing to do with one kind of nominals, e.g.
@ =pnt,@♦· and @♦· ′.

Clearly, every binary operator can be reduced to two unary ones between
different sorts without affecting the expressive power of the system, and vice
versa, under current interpretation.
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Using two sorts of unary @s, are we able to make the “syntactical membership”
@X
x 
 into the context as it does in the semantics?
Permutation of @s between different sorts currently is not a problem. This is ba-

sically because we are using a restricted version of two-dimensions: interpretations
of propositional variables only depend on points. This makes @x@Xp ≡ @X@xp
true everywhere. But the case without this restriction can also be interesting.

These matters deserve further investigation.

4.3 Generalizations

We are now at a crossroads! In one direction (down), we can think about neigh-
borhood semantics. A structure (W,N, V ) is a neighborhood model if the follow-
ing hold:

1. W �= ∅
2. N : W → ℘℘W
3. V : prop∪nom→W ∪℘W , where V (p) ∈ ℘W, V (a) ∈W and there exists

a w ∈W such that V (A) ∈ N(w).

A difference between neighborhood models and subset models is that: arbitrary
families of sets are considered in the former, without the requirement that the
current point is a member of the current set. But then, we need other facilities
to link points and sets. We achieve this by replacing the membership relation ∈
with another binary relation R, where RwU ⇔ U ∈ N(w). Then the semantics
for modalities are given as follows:

Let M = (W,N, V ) be a neighborhood model, w ∈ W and RwU ,

M, w, U |= 
ϕ iff. RwϕM

M, w, U |= ♦· ϕ iff. ∃v ∈W. (RvU & M, v, U |= ϕ)
M, w, U |= ♦ϕ iff. ∃V ⊆ U. (RwV & M, w, V |= ϕ)

Note that 
 behaves like the ordinary one-dimensional diamond with respect to
neighborhood semantics when RwU holds. ♦· again allows us to jump from one
point to another in the same neighborhood, and ♦ still behaves like a refinement
of possible situations. Surely the subset space interpretation can be seen as a
special case here, if we take R as ∈.

To go in the opposite direction (up) from subset spaces to topological spaces
seems harder because of the difficulty of expressing the properties of finite in-
tersection and arbitrary union. Adding corresponding mechanism to construct
“intersection nominals” or “union nominals” seems a good way to solve the
problem. However, that will not be pursued here.

In another direction (sideways?), we can investigate a more abstract account
of multi-dimensional hybrid logic. As mentioned in 4.2, restrictions on sets can be
removed. set can be taken as another collection of points, and the membership
relation replaced by an arbitrary relation between the two domains. This is
characterized precisely by the basic system Bsc. Abstract multi-dimensional
logics with three or even more domains can be considered similarly.



A Two-Dimensional Hybrid Logic of Subset Spaces 209

It surely makes sense to go in a fourth direction towards applications in episte-
mology for which we need a system much weaker than the usual one-dimensional
topologic, for which � has to be reinterpreted to talk about belief, or for which
new modalities have to be added. This is the main motivation of this paper as
mentioned in the beginning, although few of these have been actually concerned
here.

The hybrid binder ↓ has not been investigated yet! Much can be done to take
it into account.

It is in the above senses that I mean the system in this paper to be taken as
foothold, as claimed in the abstract.
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Abstract. We propose in this article a unified framework for certificate
and compilation for QBF. We provide a search-based algorithm to com-
pute a certificate for the validity of a QBF and a search-based algorithm
to compile a valid QBF in our unified framework.

1 Introduction

The quantified Boolean formula (QBF) validity problem is a generalisation of the
Boolean formulae satisfiability problem. While the complexity of Boolean satis-
fiability problem is NP-complete, it is PSPACE-complete for the QBF validity
problem. This is the price for a more concise representation of many classes of
formulae. Many important problems in several research fields have polynomial-
time translations to the QBF validity problem : AI planning [1,24], Bounded
Model Construction [1], Formal Verification (see [5] for a survey).

Most of the recent decision procedures for QBF validity [11,18,19,28] are ex-
tensions of the search-based Davis-Putnam procedure [15] for Boolean satisfi-
ability. A search-based procedure for QBF chooses one Boolean variable, tries
to solve two simpler subproblems and combines the results according to the
semantics of the quantifier associated to the variable. Some other decision pro-
cedures are based on resolution principle (as Q-resolution [9] which extends the
resolution principle for Boolean formulae to QBF or Quantor [6] which combines
efficiently Q-resolution and expansion), quantifier-elimination algorithms [23,22],
or skolemization and SAT solvers [2].

Every finite two-player game can be modeled in QBF [17]. In this kind of
applications, a decision procedure (the formula is valid or not) is not sufficient
since a solution is needed. A solution of a QBF (a QBF model) is a set of
Boolean functions [10]. One possibility to represent them is to build a tree-
shape representation (called policy [13] or strategy [7]) but it is exponential in
worst case and unfortunately also in usual ones. With a search-based procedure,
it is very easy to build a solution of a QBF from the solutions of its two simpler
subproblems [7,13].

When a QBF solver returns valid or non-valid, there is no way to check if
the answer is correct while in propositional logic the associated result to the
decision (a model) is easy to check. A certificate for a valid QBF is any piece of
information that provides self-supporting evidence of validity for that QBF [5].

R. Ramanujam and S. Sarukkai (Eds.): ICLA 2009, LNAI 5378, pp. 210–223, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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A sat-certificate [3,4] is a representation of a sequence of Boolean functions for
a QBF that certifies its validity. This approach seems to us promising since the
generated certificate is not linked to the representation of the input QBF but
only to its semantics. The computation of a sat-certificate is described in [2] in
the framework of sKizzo as a reconstruction from a trace. To the best of our
knowledge, there is no result of how to build a sat-certificate of a QBF from the
sat-certificates of its two simpler subproblems. It is an important issue since most
of the QBF solvers are search-based procedures. Our first contribution is double
(Section 4): we define an operator for sat-certificates in order to be able to build a
sat-certificate of a QBF from the sat-certificates of its two simpler subproblems
and we describe an algorithm which extends any search-based algorithm to build
a sat-certificate for a valid QBF during the decision process and not a posteriori
from a trace.

In general, a knowledge base is compiled off-line into a target language which
is then used on-line to answer some queries. In QBF case, seen as a two-player
game, one of the most useful query for the existential player is : what should I
play to still be sure to win? Our second contribution is a unified framework for
certificate and compilation of QBF (Section 3): the literal base representation
which is an extension of the sat-certificate representation. In order to extend
any search-based procedure to a QBF compiler, an important issue is how to
compute the compilation of a QBF from the result of the compilation of its two
simpler subproblems. Our third contribution is also double (Section 5): we define
an operator for literal bases in order to be able to compute the compilation of
a QBF from the literal bases of its two simpler subproblems and we describe an
algorithm which extends any search-based algorithm to compile a valid QBF.

Finally we discusse related work (Section 6) and we draw a conclusion
(Section 7).

2 Preliminaries

2.1 Propositional Logic

The set of propositional variables is denoted by V . Symbols ⊥ and 
 are the
propositional constants (
 = ⊥ and ⊥ = 
). Symbol ∧ stands for conjunction,
∨ for disjunction, ¬ for negation, → for implication and ↔ for bi-implication.
A literal is a propositional variable or the negation of a propositional variable.
A formula is in conjunctive normal form (CNF) if it is a conjunction of dis-
junctions of literals. Definitions of the language of propositional formula PROP
and semantics of all the Boolean symbols are defined in standard way. A sub-
stitution is a function from propositional variables to PROP. This definition
is extended as usual to a function from PROP to PROP: [x ← F ](G) is the
formula obtained from G by replacing occurrences of the propositional variable
x by the formula F . This definition is also extended as usual for the substitution
of a formula by another formula. An interpretation v is a function from V to
{true, false} ; the extension to PROP is denoted v∗. To an interpretation v
is associated a set in the standard way. Propositional satisfaction is denoted |=
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(v |= F means v∗(F ) = true, the propositional formula F is satisfied by v and v
is a model of F ). Logical equivalence is denoted ≡. To a Boolean function f (i.e.
a function from {true, false}n to {true, false}) is associated a propositional
formula ψf on the variables {x1, . . . , xn} such that v∗(ψf ) = true if and only if
f(v(x1), . . . , v(xn)) = true for any interpretation v.

2.2 Quantified Boolean Formulae

The symbol ∃ stands for the existential quantifier and ∀ stands for the universal
quantifier(q stands for any quantifier). A binder Q is a string q1x1 . . . qnxn with
x1, . . . , xn distinct propositional variables and q1 . . . qn quantifiers. It is assumed
that distinct quantifiers bind occurrences of distinct propositional variables. The
empty string is denoted by ε. A (prenex) quantified Boolean formula (QBF) is
constituted of a binder and a propositional formula called the matrix (only closed
formulae are considered: each variable in the matrix is also in the binder). A QBF
is in conjunctive normal form if its matrix is in conjunctive normal form. The
semantics of QBF is defined as follows: for every propositional variable y and
every QBF QM

∃yQM = (Q[y ← 
](M)∨Q[y ← ⊥](M))

and
∀yQM = (Q[y ← 
](M)∧Q[y ← ⊥](M)).

A QBF F is valid if F ≡ 
. If y is an existentially quantified variable pre-
ceded by the universally quantified variables x1, . . . , xn we denote ŷx1...xn its
Skolem function from {true, false}n to {true, false}. A model for a valid QBF
QM is a sequence ψŷ1 ; . . . ;ψŷp such that [y1 ← ψŷ1 ] . . . [yp ← ψŷp ](M) is
a tautology [10] (y1, . . . , yp the existentially quantified variables of QM). For
example, the QBF ∃a∃b∀c((a∨b)↔c) is not valid (since ∃a∃b∀c((a∨b)↔c) ≡
∃a∃b(((a∨b)↔
)∧((a∨b)↔⊥)) ≡ ⊥) but the QBF ∀c∃a∃b((a∨b)↔c) is valid and
one of its possible model is ψâ;ψb̂ with ψâ = c and ψb̂ = ⊥ (since [a← ψâ][b←
ψb̂]((b∨a)↔c) = ((⊥∨c)↔c) is a tautology). A (Boolean) model of an unquan-
tified Boolean formula corresponds exactly to a (QBF) model of its existential
closure. A QBF is valid if and only if there exists a model. An interpretation v is
said to be in a model ψŷ1 ; . . . ;ψŷp if for every i, 1 ≤ i ≤ n, v∗(ψŷi) = v(yi); for
example the interpretation v = {c, a,¬b} is in the above model since v∗(ψâ) =
true = v(a) and v∗(ψb̂) = false = v(b) but v′ = {¬c, a,¬b} is not in it since
v′∗(ψâ) = false �= v′(a). Model-equivalence for QBF is defined in [25] as follows :
Two QBF F and F ′ are model-equivalent (denoted F ∼= F ′) if every model of F
is a model of F ′ and conversely; this equivalence is about preservation of models
and not only preservation of validity; for example, ∀c∃a∃b((a∨b)↔c) ≡ 
 but
∀c∃a∃b((a∨b)↔c) �∼= 
.

2.3 sat-certificate

A sat-certificate [3] for a QBF F , with y1, . . . , yp its existentially quantified
variables, is a sequence of pairs of formulae (φ1, ν1); . . . ; (φp, νp), φi and νi de-
fined over the universally quantified variables of F preceding the variable yi,
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1 ≤ i ≤ p. It is defined in [3] only for CNF QBF with sequences of pairs
of binary decision diagrams (BDD) [8]. A sat-certificate is consistent if for
every i, 1 ≤ i ≤ p, (φi∧νi) ≡ ⊥. To certify the validity of a CNF QBF
QM with a sat-certificate (φ1, ν1); . . . ; (φp, νp) we have to check if [¬x1 ←
ν1][x1 ← φ1] . . . [¬xp ← νp][xp ← φp](M) is a tautology. If the verification
fails either the QBF is non valid or the sat-certificate is not correct; con-
versely, if the verification succeeds then the QBF is valid and the sat-certificate
encodes a model [3]. For example, from [3], the sequence of pairs of formu-
lae (φc, νc); (φe, νe); (φf , νf ) with φc = ¬a, νc = a, φe = (a∧b∧d)∨(¬a∧¬d),
νe = (¬a∧d)∨(a∧¬d), φf = (a∧b∧¬d)∨(¬a∧b∧d) and νf = (¬a∧¬d) is a sat-
certificate for the CNF QBF

ξ = ∀a∀b∃c∀d∃e∃fµ (1)

with

µ = [(¬b∨e∨f)∧(a∨c∨f)∧(a∨d∨e)∧(¬a∨¬b∨¬d∨e)∧(¬a∨b∨¬c)
∧(¬a∨¬c∨¬f)∧(a∨¬d∨¬e)∧(¬a∨d∨¬e)∧(a∨¬e∨¬f)].

This sat-certificate certifies the validity of this CNF QBF since [¬c← νc][c←
φc][¬e ← νe] [e ← φe][¬f ← νf ][f ← φf ](M) is a tautology. One can remark
that this sat-certificate is consistent and that

φc;φe;φf = ¬a; (a∧b∧d)∨(¬a∧¬d); (a∧b∧¬d)∨(¬a∧b∧d) (2)

and ¬νc;¬νe;¬νf = ¬a;¬(¬a∧d)∨(a∧¬d);¬(¬a∧¬d) are a two different models
for the QBF ξ.

3 Literal Base

In this section we present formally our proposal for a unified framework for
certificate and compilation for QBF: the literal base representation. This repre-
sentation extends the sat-certificate representation of [3].

Definition 1 (Literal base). A literal base is a pair (Q,G) constituted

– either of Q = ε and G = 
 or G = ⊥ ;
– either of a binder Q = q1x1 . . . qnxn, n > 0, and a sequence of pairs of

formulae G = (P1, N1); . . . ; (Pn, Nn) such that the formulae Pk and Nk,
called guards, are only built on the variables {x1, . . . , xk−1} (or 
 or ⊥
when k = 1).

We denote BQ the set of the literal bases for a binder Q, LB =
⋃
Q BQ the

literal base language and define the function grds such that grds((Q,G)) = G.

A literal base is an explicit representation in the order of the binder of the
dependencies that have to exist between an existentially quantified variable and
the variables preceding it.
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By the latter definition:

– if Q = ε then Bε = {(ε,
), (ε,⊥)} ;
– if Q = qx then Bqx = {(qx, (
,
)), (qx, (
,⊥)), (qx, (⊥,
)), (qx, (⊥,⊥))}

If n is the number of variables of a binder Q then the size of BQ is 22...2︸ ︷︷ ︸
n+1

.

We interpret a literal base language as a representation for a subset of the
QBF language.

Definition 2 (Interpretation of a literal base). The interpretation function
is a function from LB to QBF denoted (.)∗ and is defined as follows :

– if lb = (ε,G) then lb∗ = G ;
– if lb = (q1x1 . . . qnxn, (P1, N1); . . . ; (Pn, Nn)), n > 0, then

lb∗ = q1x1 . . . qnxn
∧
k≤n

((¬xk∨Pk)∧(xk∨Nk))

If X is a subset of BL then X∗ denotes {lb∗|lb ∈ X}. From here non valid
denotes a literal base whose interpretation is non valid and we extend the latter
definition by non valid∗ = ⊥.

Clearly enough from Definition 2, if a literal base (Q, (P1, N1); . . . ; (Pn, Nn)) is
such that its interpretation is valid then necessarily for every universally quanti-
fied variable xi, Pi and Ni can be replaced in the literal base by 
. The following
literal base

β = (∀a∀b∃c∀d∃e∃f, (
,
); (
,
); (Pc, Nc); (
,
); (Pe, Ne); (Pf , Nf)) (3)

with Pc = ¬a, Nc = a, Pe = (¬d∧c∧¬a)∨(d∧¬c∧a),

Ne = (d∧c∧¬a)∨(¬c∧¬b∧a)∨(¬d∧¬c∧a),

Pf = (¬e∧d∧c∧¬a)∨(¬e∧¬c∧¬b∧a)∨
(d∧¬c∧¬b∧a)∨(¬e∧¬d∧¬c∧a)∨(e∧d∧¬c∧a)

and
Nf = (¬e∧d∧c∧¬b∧¬a)∨(e∧¬d∧c∧¬a)∨
(¬e∧¬c∧¬b∧a)∨(d∧¬c∧¬b∧a)∨(e∧d∧¬c∧a),

is such that its interpretation is model-equivalent to (1) (i.e. β∗ ∼= ξ).
The following theorem establishes that for every QBF there exists a literal

base such that its interpretation is model-equivalent to the QBF. By this theorem
the literal base language may be considered as a target compilation language for
QBF.

Theorem 1 (Completeness of LB). Let QM be a QBF. Then there exists a
literal base lb ∈ BQ such that lb∗ ∼= QM .
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A sat-certificate for a QBF is easily extended to a literal base: we add the
binder of the QBF and in the sequence of the sat-certificate for each universally
quantified variable we add a couple (
,
). Hence, the interpretation of the sat-
certificate considered as a literal base has only one model which is the model of
the QBF. In a sat-certificate (φ1, ν1); . . . ; (φp, νp) formulae φi and νi, 1 ≤ i ≤ p,
only depend on the preceding universally quantified variables while in a literal
base (Q, (P1, N1); . . . ; (Pn, Nn)) formulae Pi and Ni, 1 ≤ i ≤ n, may depend on
all the preceding variables.

The propositional fragment in which the propositional formulae of the lit-
eral bases are defined needs only to be complete and may be chosen w.r.t. its
succinctness (see [14] for a survey on properties of propositional fragments).

When a QBF is considered to model a finite two-player game, the validity
of the QBF means that the “existential” player is sure to win if he follows the
moves obtained from the (sequence of formulae of the) model. We are interested
in the following question: since until now I have followed a (sequence of formulae
of a) model, can I change my mind for the next move? We call this problem the
“next move choice problem” and we define it formally.

Definition 3 (Next move choice problem for a subset X of QBF).

– Instance : A formula q1x1 . . . qnxnM from a subset X of QBF, a sequence of
substitutions [x1 ← C1] . . . [xi ← Ci] obtained from a (sequence of formulae
of a) model for q1x1 . . . qnxnM with qi = ∃ and C1, . . . , Ci ∈ {
,⊥}.

– Query: Does there exist a model for
qi+1 . . . qnxn[x1 ← C1] . . . [xi−1 ← Ci−1][xi ← Ci](M).

Clearly enough, the next move choice problem is still PSPACE-complete if we
consider X = QBF .

Considering again the QBF (1) and one of its model (2), we know that
∀d∃e∃f [a ← 
][b ← 
][c ← ⊥](µ) is valid (since [a ← 
][b ← 
](φc) ≡ ⊥)
but is ∀d∃e∃f [a← 
][b← 
][c← 
](µ) also valid?

We introduce a new property, called “optimality”, for literal bases in order
to exhibit a QBF fragment in which the next move choice problem is polytime
w.r.t the size of the literal base.

Definition 4 (Optimality of a literal base). Let lb be a literal base such
that lb = (q1x1 . . . qnxn, (P1, N1); . . . ; (Pn, Nn)) and lb∗ = q1x1 . . . qnxnM . The
literal base lb is optimal if the following holds. For all i, 1 ≤ i ≤ n, let [x1 ←
C1] . . . [xi−1 ← Ci−1] be an interpretation such that for all k, 1 ≤ k < i if
Ck = 
 then |= [x1 ← C1] . . . [xk−1 ← Ck−1](Pk) else |= [x1 ← C1] . . . [xk−1 ←
Ck−1](Nk).

Then

|= [x1 ← C1] . . . [xi−1 ← Ci−1](Pi)
if and only if there exists a model for
qi+1xi+1 . . . qnxn[x1 ← C1] . . . [xi−1 ← Ci−1][xi ← 
](M)
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and
|= [x1 ← C1] . . . [xi−1 ← Ci−1](Ni)
if and only if there exists a model for
qi+1xi+1 . . . qnxn[x1 ← C1] . . . [xi−1 ← Ci−1][xi ← ⊥](M).

We denote by OBL the set of optimal literal bases.
Considering again (3), β is an optimal literal base. Since the interpretation of

β is model-equivalent to (1) (i.e. ∀a∀b∃c∀d∃e∃fµ) and [a← 
][b← 
](Nc) ≡ ⊥
the QBF ∀d∃e∃f [a← 
][b← 
][c← 
](µ) is not valid.

The most important property of optimal literal bases is that the next move
choice problem is polytime and no more PSPACE-complete.

Theorem 2. The next move choice problem for OBL∗ is polytime w.r.t. the
size of the literal base.

If a QBF modeling a finite two-player game is compiled off-line in an optimal
literal base, the computation of any sequence of moves leading to victory is
polytime. An optimal literal base may be seen as a dynamic decision tree. The
property of optimality of a literal base is linked with the property of minimality
of a QBF which expresses that the QBF matrix contains only the models needed
by the (QBF) models.

Definition 5 (Minimality of a QBF). A QBF is minimal if all the (propo-
sitional) models of the matrix are (at least) in one of its (QBF) model.

For example, the QBF ∃a∀b((a∧b)∨(a∧¬b)∨(¬a∧b)) is not minimal since the
(Boolean) model {¬a, b} of the matrix is not in the only one model ψâ = 
.

Theorem 3. Let lb be an optimal literal base. Then lb∗ is a minimal QBF.

The converse of Theorem 3 is false: The literal base (∃a∀b, (
,
), (a, a)) is not
optimal (since there is no model with ψâ = ⊥) but its interpretation is minimal.

4 Literal Base and sat-certificate for Search-Based
Algorithms

In this section we are interested in the following problem: how to extend a
search-based procedure in order to compute directly the sat-certificate and not
a posteriori from a trace. To do this we define an operator for literal bases in
order to be able to build a sat-certificate from the sat-certificates of its two
simpler subproblems.

Definition 6. The operator ◦x : BQ × BQ → B∀xQ is defined as follows :

(Q, (P1, N1); . . . ; (Pn, Nn)) ◦x (Q, (P ′
1, N

′
1); . . . ; (P ′

n, N
′
n))

= ( ∀xQ, (
,
);
(((¬x∨P1)∧(x∨P ′

1)), ((¬x∨N1)∧(x∨N ′
1))); . . . ;

(((¬x∨Pn)∧(x∨P ′
n)), ((¬x∨Nn)∧(x∨N ′

n))))
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In this definition, if x is interpreted to true (resp. false) then for all i, 1 ≤ i ≤ n,
((¬x∨Pi)∧(x∨P ′

i )) ≡ Pi (resp. P ′
i ) and ((¬x∨Ni)∧(x∨N ′

i)) ≡ Ni (resp. N ′
i).

If (Q, (P1, N1); . . . ; (Pn, Nn)) and (Q, (P ′
1, N

′
1); . . . ; (P ′

n, N
′
n)) are sat-certificates

and Q = q1x1 . . . qnxn with qi = ∀ then clearly enough ((¬x∨Pi)∧(x∨P ′
i )) ≡


 ≡ ((¬x∨Ni)∧(x∨N ′
i)).

We establish by the following theorem that the ◦ operator composes two sat-
certificates in a new sat-certificate.
Theorem 4. Let ∀xQM be a QBF. If lb� is a sat-certificate for Q[x← 
](M)
and lb⊥ is a sat-certificate for Q[x← ⊥](M) then (lb�◦x lb⊥) is a sat-certificate
for ∀xQM .

Algorithm 1. search certif qbf

In: Q : a binder of a QBF
In: M : a matrix of a QBF
Out: a sat-certificate or non valid

if Q = qx then
if q = ∃ then
switch M do
case � : return (∃x, (�,⊥))
case ⊥ : return non valid
case x : return (∃x, (�,⊥))
case ¬x : return (∃x, (⊥,�))

end switch
else
if M ≡ � then return (∀x, (�,�)) else return non valid end if

end if
else
Q = qxQ′

lb+ := search certif qbf(Q′, M [x ← �])
if lb+ = non valid then
if q = ∃ then
lb− := search certif qbf(Q′, M [x ← ⊥])
if lb− = non valid then return non valid
else return ((Q, (⊥,�) ; grds(lb−)) end if

else
return non valid

end if
else
if q = ∃ then
return (Q, (�,⊥) ; grds(lb+))

else
lb− := search certif qbf(Q′, M [x ← ⊥])
if lb− = non valid then return non valid else return (lb+ ◦x lb−) end if

end if
end if

end if
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We are now able to present the search-based algorithm search certif qbf which
computes a sat-certificate for a QBF. The search certif qbf algorithm checks
first if the binder is reduced to a single quantifier with its variable. In this case, if
it is an existential quantifier four cases are possible, corresponding, in the order
of the algorithm, to : ∃x
 ≡ ∃xx1, ∃x⊥ ≡ ⊥, ∃xx ∼= ∃x((¬x∨
)∧(x∨⊥)) and
∃x¬x ∼= ∃x((¬x∨⊥)∧(x∨
)). If the quantifier is universal then if M ≡ 
 then
∀xM ≡ 
 else ∀xx ≡ ∀x¬x ≡ ∀x⊥ ≡ ⊥. If there are some quantifiers, since the
algorithm is a search-based one, the most external quantifier is considered. If this
quantifier is existential then if one of the recursive calls for the substitution by 

(resp. ⊥) for the variable x is different to non valid the returned sat-certificate is
(Q, (
,⊥); grds(lb+)) (resp. (Q, (⊥,
); grds(lb−))) which expresses that x must
be true (resp. false). If the quantifier is universal then if at least one recursive
call for the substitution by 
 or by ⊥ for the variable x returns non valid then
non valid is returned otherwise the Skolem functions of the two sat-certificates
have to be combined to integrate the new argument x by (lb+ ◦x lb−) before this
new sat-certificate is returned.

Theorem 5 (Correctness of search certif qbf). Let QM be a QBF.
search certif qbf(Q,M) returns a sat-certificate for QM if the QBF is valid
and non valid otherwise.

In case of search-based algorithms for CNF QBF, unit propagation and monotone
literal propagation [11] may be easily added to the search certif qbf algorithm.

5 Literal Bases and QBF Compilation for Search-Based
Algorithms

Since Theorem 1 establishes the completeness of the literal base language, LB
may be considered as a target language for the compilation of a QBF. In this
section we are interested in the following problem: how to extend a search-based
procedure in order to compile a QBF in an optimal literal base. To do this we
define an operator for literal bases which compile a QBF by the combination of
the results of the compilation of its two simpler subproblems.

Definition 7. Let Q′ = q2x2 . . . qnxn and Q = q1x1Q
′ be two binders and

lb, lb′ ∈ BQ. The operator ⊕ : BQ × BQ → BQ is defined as follows :
If Q = ε then (lb⊕ lb′) = (lb∗∨lb′∗) else

(Q, (P1, N1); . . . ; (Pn, Nn))⊕ (Q, (P ′
1, N

′
1); . . . ; (P

′
n, N

′
n))

= (Q, ((P1∨P ′
1), (N1∨N ′

1));
(P2∧(P ′

2∨X )∧(P2∨X ′), N2∧(N ′
2∨X )∧(N2∨X ′)); . . . ;

(Pn∧(P ′
n∨X )∧(Pn∨X ′), Nn∧(N ′

n∨X )∧(Nn∨X ′)))

with X = ((¬x1∨P1)∧(x1∨N1)), X ′ = ((¬x1∨P ′
1)∧(x1∨N ′

1)) and the recursive
call:

(Q′, (P2,N2); . . . ; (Pn,Nn)) =
(Q′, (P2, N2); . . . ; (Pn, Nn))⊕ (Q′, (P ′

2, N
′
2); . . . ; (P

′
n, N

′
n))

1 Since we need one solution, we privilege the interpretation of x to true.
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This operator is the counterpart of the disjunction for the QBF. In the previous
definition when n = 1,

(q1x1, (P1, N1))⊕ (q1x1, (P ′
1, N

′
1)) = (q1x1, ((P1∨P ′

1), (N1∨N ′
1)))

which defines the base case of recursivity of ⊕. We develop for the case n = 2 the
disjunction of the matrices of the interpretation of two literal bases and show
how we can find back Definition 7: Since (q2x2, (P2, N2)) ⊕ (q2x2, (P ′

2, N
′
2)) =

(q2x2, ((P2∨P ′
2), (N2∨N ′

2))), P2 = (P2∨P ′
2) and N2 = (N2∨N ′

2) then

((¬x1∨P1)∧(x1∨N1))∧((¬x2∨P2)∧(x2∨N2))∨
((¬x1∨P ′

1)∧(x1∨N ′
1))∧((¬x2∨P ′

2)∧(x2∨N ′
2))

≡ (¬x1∨(P1∨P ′
1))∧(x1∨(N1∨N ′

1))∧
(¬x2∨((P2∨P ′

2)∧(P ′
2∨((¬x1∨P1)∧(x1∨N1)))∧(P2∨((¬x1∨P ′

1)∧(x1∨N ′
1)))))∧

(¬x2∨((N2∨N ′
2)∧(N ′

2∨((¬x1∨P1)∧(x1∨N1)))∧(N2∨((¬x1∨P ′
1)∧(x1∨N ′

1)))))
≡ (¬x1∨(P1∨P ′

1))∧(x1∨(N1∨N ′
1))∧

(¬x2∨(P2∧(P ′
2∨X )∧(P2∨X ′)))∧(¬x2∨(N2∧(N ′

2∨X )∧(N2∨X ′)))

Definition 7 may be improved with no cost by applying, as simplification
rules, some usual logical equivalences: (x∧x) ≡ x, (x∨x) ≡ x, (x∧¬x) ≡ ⊥
and (x∨¬x) ≡ 
 with x a propositional variable; (H∧
) ≡ H , (H∧⊥) ≡ ⊥,
(H∨
) ≡ 
 and (H∨⊥) ≡ H with H a propositional formula.

Theorem 6. Let Q be a binder and lb, lb′ ∈ BQ such that lb∗ = QM and
lb′∗ = QM ′. Then (lb⊕ lb′)∗ = QM⊕ with M⊕ ≡ (M∨M ′).

We are now able to present the search-based algorithm search comp qbf which
compiles a QBF into an optimal literal base. The search comp qbf algorithm
checks first if the binder is reduced to a single quantifier with its variable. If
it is the case and if M ≡ 
, conversely to search certif qbf algorithm, (
,
)
is returned (since ∃x
 ∼= ∃x((¬x∨
)∧(x∨
))) in order to compose the two
possibilities. If there are some quantifiers, since the algorithm is a search-based
one, the first one is considered. Following semantics of QBF, if there is no model
for one (resp. both) recursive call then there is no model for the QBF if the
quantifier is universal (resp. existential) ; if there are models for both recursive
calls then, for both quantifiers, (Q, (
,⊥) ; grds(lb+)) ⊕ (Q, (⊥,
) ; grds(lb−)
is returned.

Literal bases generated by the search comp qbf compilation algorithm may
be in worst case of exponential size.

Theorem 7 (Correctness of search comp qbf). Let QM be a QBF.
search comp qbf(Q,M) returns a literal base lb such that lb∗ ∼= QM if QM
is valid and returns non valid otherwise.

We can now establish that the literal base generated by the search comp qbf
algorithm is optimal.

Theorem 8 (Optimality of search comp qbf). Let QM be a valid QBF.
Then search comp qbf(Q,M) is optimal.

In case of search-based algorithms for CNF QBF, unit propagation may be
easily added ; but, conversely to search certif qbf algorithm, monotone literal
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Algorithm 2. search comp qbf
In: Q : a binder of a QBF
In: M : a matrix of a QBF
Out: an optimal literal base or non valid

if Q = qx then
if q = ∃ then
switch M do
case � : return (∃x, (�,�))
case ⊥ : return non valid
case x : return (∃x, (�,⊥))
case ¬x : return (∃x, (⊥,�))

end switch
else
if M = � then return (∀x, (�,�)) else return non valid end if

end if
else
Q = qxQ′

lb+ := search comp qbf(Q′, M [x ← �])
lb− := search comp qbf(Q′, M [x ← ⊥])
if q = ∃ then
if lb+ = non valid and lb− = non valid then return non valid end if
if lb+ = non valid then return (Q, (⊥,�) ; grds(lb−)) end if
if lb− = non valid then return (Q, (�,⊥) ; grds(lb+)) end if
return (Q, (�,⊥) ; grds(lb+)) ⊕ (Q, (⊥,�) ; grds(lb−))

else
if lb+ = non valid or lb− = non valid then
return non valid

else
return (Q, (�,⊥) ; grds(lb+)) ⊕ (Q, (⊥,�) ; grds(lb−))

end if
end if

end if

propagation can not be applied to the search comp qbf algorithm since it does
not preserve all the models.

6 Related Work

QBF Certificates. To the best of our knowledge, there exist only two suggestions
for QBF certificates and methods to generate them2. The first approach [20] is
a method to generate a list of pairs of the form (v, fv) where fv are the Skolem
functions for fresh variables v from the classical extension rule for propositional

2 The approach proposed in [27] is a method to generate a subset of the clauses of a
QBF formula in prenex normal form which is non-valid from traces of search-based
solvers. Since this approach is focused on non-validity, it is out of the scope of this
paper which is focused on validity.
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logic [26]. The second approach proposed in [3,4] introduces the sat-certificate. It
is described independently of any algorithm, but with binary decision diagrams
(BDD) [8] and only for formulae in CNF. The computation of a sat-certificate
is described in [2] in the framework of sKizzo as a reconstruction from a trace:
the “inference log”. An external certifier application (ozziKs) is charged with
interpreting the content of the log in order to construct certificates [4]. Since
the solver can choose between five different inference strategies there are many
different kinds of instructions in the inference logs. It results in the need for a
heavyweight proof checker. This approach is based on a trace of what the solver
is doing and it probably does not scale well because of the growth of this trace.
It can take more time to generate the sat-certificate from the trace than it took
to generate the model [4].

QBF Compilation. Knowledge compilation with a subset of the propositional
language as a target language has been widely study (see [14] for a “knowledge
compilation map”), but it is not the case for QBF compilation: [16] focuses on
selected propositional fragments and quantifier elimination while [12] focuses
on complexity of QBF built on the same selected propositional fragments. The
compiler for CNF QBF proposed in [25] extends a quantifier-elimination deci-
sion procedure [22] as follows: for a CNF QBF q1x1 . . . qn−1xn−1qnxnM , we
compute the formulae Mn, Pn and Nn defined on {x1, . . . , xn−1} such that
M ≡ (Mn∧((¬xn∨Pn)∧(xn∨Nn))); if qn = ∃ then the process is recursively
called on q1x1 . . . qn−1xn−1(Mn∧(Pn∨Nn)) otherwise the process is recursively
called on q1x1 . . . qn−1xn−1(Mn∧(Pn∧Nn)). The target language of this approach
is similar to the literal base language: (q1x1 . . . qnxn, (P1, N1); . . . ; (Pn, Nn)) is a
literal base. Since (Pn∨Nn) is not CNF, the expansion of the existential quan-
tifier for CNF is involved with a quadratic size increase of the formula [21].
Clearly enough the literal base generated by this quantifier-elimination com-
piler is optimal and it is usually smaller than the literal base generated by the
search comp qbf with out simplifications.

7 Concluding Remarks

We have described in this article a unified framework for sat-certificate and
compilation of QBF. We have proposed a search-based procedure to compute
sat-certificates which is very useful since most QBF solvers are search-based
decision procedures.

Literal bases generated by the search comp qbf compilation algorithm may
be in worst case of exponential size what complies with complexity results [13].
Anyway, we think that compilation is useful since all the solutions are kept and
decision over existentially quantified variables may be not fully described in the
QBF. In that case, for each existentially quantified variable, the two different
possibilities are computed in polynomial time thanks to optimality and if both
substitutions take part of a solution, the choice is left to the user, following its
preferences.
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Abstract. The equation XZ = ZY is called the conjugacy equation.
Here X, Y and Z are languages over a finite alphabet. Given two sets
X and Y , we can ask “Does there exist a Z which makes the conjugacy
equation true?”. We answer this question partially in the case when one
of them is a two element set and the other is a three element set.

1 Introduction

The notion of a word is central to computer science and its importance can’t
be overemphasized. Computer scientists have studied words using an automata
theoretic approach. In this approach, the emphasis is more on the properties of a
set of words or language and automata for recognizing the languages. Descriptive
complexity theorists have studied individual words. Chaitin’s Ω[1], Kolakoski
word [2][3] and Thue-Morse word [4][5] are examples of some words that have
merited an individual study.

In 1977 G. S. Makanin [6] proved that it is decidable whether a word equa-
tion has a solution. This algorithm was extremely complex to program [7] and
had an impractical running time [8]. Recently in 1999 Plandowski [9] gave a
much simpler algorithm and also showed that the problem belongs to PSPACE.
Although satisfiability of equations over words is decidable, when it comes to
equations over languages hardly anything is known. Solutions of even some sim-
ple equations are not fully understood. We present here our attempts at one
such equation.

We study the problem of Conjugacy of Languages. Two sets X and Y are
called conjugates of each other if there exists a set Z such that XZ = ZY .
The previous best result in this regard is by Cassaigne et al. [10] [11] and they
characterize all sets which are conjugated via a two-element biprefix set Z, two
element sets which are conjugates, and for all biprefix codes. We have obtained
some partial characterizations in the next higher case namely when one set is a
pair and the other is a triple.

This rest of this paper is organized as follows. Section 2 gives the prelimi-
nary definitions and proves some basic facts which will be used in the remaining
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sections. Section 3 gives the main result of this paper, namely the partial char-
acterization of two-three conjugacy. The last section discusses some possible
extensions of this work.

2 Preliminaries

Let Σ be a finite alphabet and let Σ+ denote the free semigroup generated
by Σ. Σ∗ denotes the free monoid generated by Σ. Concatenation is the basic
operation on words and it can be easily extended to sets of words or languages as
they are called. We will use lowercase letters u, v, w, x, y, z with superscripts and
subscripts to denote words over Σ∗. 1 stands for the empty string. Uppercase
letters denote languages. We shall use a, b and c when we need to differentiate
between variables and constants. If w is a word then |w| denotes the length of
w. A language X having the property that every word in it is of equal length is
called a uniform language.

Definition 1. Let x, y, z ∈ Σ∗. We say that x and y are conjugates of each
other if there exists a z such that xz = zy.

Proposition 1. Let x, y and z be words. The following statements are then
equivalent.

(i) xz = zy.
(ii) There exists u, v and α ≥ 0 such that x = (uv), y = (vu) and z = (uv)αu .

x z

z y

w

|x| < |z|

z y

x z

v

|x| > |z|

Fig. 1. x and y being conjugates via z

Proof. (ii)⇒(i ) is straightforward.
(i)⇒(ii ) If |x| = |z| then x = z = y and so we can see that the claim is

obviously true. If |x| > |z| we can see from rhs of Figure 1 that z = u, x = uv
and y = vu satisfies (ii). If |x| < |z| then from lhs of Figure 1, there is a smaller
word w such that xw = z = wy and thus makes x and y conjugates. By induction
on the length of z, we can now conclude that x = (uv), w = (uv)ku for some
k ≥ 0 and y = vu which makes z = (uv)k+1u. Q.E.D.

Definition 2. Let x and y be words over Σ . We say that x and y commute iff
xy = yx.

By using Proposition 1 and by induction on the length of x we can show that
two words commute iff they are powers of the same word. In fact, it is a simple
exercise to show that two words commute iff they satisfy a non-trivial equation.
We state it as a proposition.
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Proposition 2. Let x and y be words. The following statements are then
equivalent.

(i) xy = yx
(ii) x = pr1 , y = pr2 , where r1, r2 ≥ 0
(iii) x and y satisfy a non-trivial equation in x and y.

Definition 3. A non empty word w ∈ Σ+ is called primitive if w = uk implies
that k = 1.

Notice that any word w can be written as pα in a unique way. Also if w′ is
a conjugate of w then w′ = qα where q is a conjugate of p. Primitive words
are crucial in the study of many word properties. The following proposition
characterizes primitive words.

Proposition 3. Let p ∈ Σ+ be a primitive word. and let p2 = xpy where x and
y are words. Then either x = 1 or y = 1. In other words a primitive word cannot
be a non-trivial factor of its square.

p p

p

w x y z

Fig. 2. Primitive word occurring non-trivially

Proof. We will show that the situation as shown in Figure 2 doesn’t arise. As-
sume that the above situation does occur. Length and position consideration
forces y to be equal to w and z to be x. Now looking at the first p in p2 and the
p which occurs non trivially, we have wx = xw. In other words w and x commute.
Thus w and x are powers of the same word. Hence p is also the power of the
same word which makes p is a non-primitive word. Thus we have a contradiction.
Q.E.D.

Note that using the above characterization, a word is primitive if and only if
ww doesn’t contain w in a non trivial fashion. This in conjunction with the
Knuth-Morris-Pratt algorithm [12] provides a linear time algorithm for checking
primitiveness of any word.

Proposition 4. Let X and Y be languages that are conjugates via Z. Then the
number of elements in X and Y of minimal length must be equal.

Proof. Let X ′, Y ′ and Z ′ be the set of minimal length elements in the sets X ,
Y and Z respectively. Since the product of X ′ (resp. Y ′) and Z ′ are the minimal
length elements in XZ (resp ZY ), it must be that X ′Z ′= Z ′Y ′. Let |X ′| = n1,
|Y ′| = n2 and |Z ′| = n. Since all elements of X ′ are Y ′ are of minimal length
(and hence the of the same length) they are biprefix codes. Hence every element
obtained by a product of a word in X ′ and a word in Z ′ is unique. Thus X ′Z ′

has exactly n1.n elements. Similarly, Z ′Y ′ has n.n2 elements. Since they must
be equal, we have n1 = n2. Q.E.D.
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Proposition 5. Let X and Y be two languages that are conjugates via Z. Then
the elements of X commute if and only if the elements of Y commute. In par-
ticular, the elements of X are powers of a primitive word and the elements in Y
are the powers of a conjugate word.

Proof. Without loss of generality, lets assume that the elements of X commute.
Hence using Proposition 2, we know that all words of X are of the form wri

where w is a primitive word. Hence there is a minimal length element in X . Let
it be x1 and of the form wr for a primitive word w. Using proposition 4, we know
that Y also has a minimal length element. Since the minimal length elements
have to conjugates of each other we may assume that the smallest element in
Y be y1 and is of the form w′r1 such that w′ is a conjugate of w. Note that
whenever XZ = ZY , we have XnZ = Xn−1ZY = · · · = XZY n−1 = ZY n i.e.
whenever two sets are conjugates, their powers are also conjugates. Let yi be
any word in Y . Since XnZ = ZY n, we have

zy1yiy
n
1 = xi1 . . . xin+2z

′

But since all the elements of X commute we can write the rhs as wn
′
z′. Similarly

from

zyiy
n+1
1 = xi1 . . . xin+2z

′′

we can write the rhs as wn
′′
z′′. Since by choice of n, we can make n and n′ arbi-

trarily large, the rhs of both the above equations can be made to have matching
prefixes. Hence the lhs must also have matching prefixes and hence zyiy1 and
zy1yi being prefixes of the lhs and by virtue of being equal in length must be
equal as strings. Cancelling z, we see that y1 and yi commute. Thus using Propo-
sition 2 we see that yi is also a power of w′. Since yi was an arbitrary word in
Y , we can now say that all words in Y are powers of w′. Thus all the elements
in Y commute with each other. Q.E.D.

3 Partial Characterization of Two-Three Conjugacy

We will give a partial characterization of two-three conjugacy in this section.
The techniques used are combinatorial in nature and are similar to the ones
used in Cassaigne et al. [10]. Without loss of generality we may assume that
X = {x1, x2} is the two element set and Y = {y1, y2, y3} is the three element
set. We may also assume that |x1| ≤ |x2| and |y1| ≤ |y2| ≤ |y3|. Given two
such sets X and Y , we try to answer the question does there exist Z such that
XZ = ZY . We do a case by case analysis. Note that for such a Z to exist, it
must be the case that |x1| = |y1|. Otherwise the smallest element of XZ will be
of a different size from the smallest element in ZY .

An exhaustive list of various cases under the above assumptions is listed here.

1. |x1| = |x2|
2. |x1| < |x2|

i) |x2| > |y3|
ii) |x2| < |y2|
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iii) |y2| < |x2| < |y3|
iv) |y2| < |x2| = |y3|
v) |y2| = |x2| ≤ |y3|

We give full characterizations of two-three conjugacy for all the above cases
except 2(iv) and 2(v). Note that solving these cases will provide us with a decision
procedure for two-three conjugacy, that is given any two sets X and Y , one being
of size two and the other of size three, we will be able to tell whether these sets
are conjugates.

3.1 Characterization Theorems

We provide the characterization by a series of propositions.

Deciding Conjugacy When |x1| = |x2|
Proposition 6. Let X = {x1, x2} and Y = {y1, y2, y3} be subsets of Σ∗ such
that XZ = ZY for some Z ⊆ Σ∗. Also let |x1| = |x2|. Then the following
conditions hold true.

(i) |y1| = |y2|
(ii) (X = {pu, pv} and Y = {up, vp, (up+ vp)l1}) or

(X = {up, vp} and Y = {pu, pv, (pu+ pv)l2}) for some l1 or l2.

By (up+ vp)l, we mean any word made up of up’s and vp’s, l of them in all.

Proof. Let Z1 and Y1 be words of Z and Y respectively having minimal lengths.

(i) From Proposition 4, we have that the minimal length elements X and Y
must be of equal number. Since there are two elements in X of minimal
length, there must be two such in Y also. Thus proved.

(ii) From above we have |x1| = |x2| = |y1| = |y2|. Also considering the minimal
length elements in XZ and ZY , we know that X and Y1 are conjugates.
Let Z(i) be the set of words from Z having length i. Note Z(i)Y1 is a
subset of XZ. Further, since Xand Y1 are uniform languages of equal size,
Z(i)Y1 must be equal to XZ(i). Since Z is a disjoint union of Z(i)’s we have
XZ = ZY1. Therefore, now we have two element sets X and Y1 which are
conjugates via Z. Thus, from3 Cassaigne et al. [10], we know there exist
words p, u, v and a set I ⊆ N such that |u| = |v| and one of the following
conditions hold true.
(a) X = {pu, pv}, Y1 = {up, vp} and Z =

⋃
i∈I
{pu, pv}ip

(b) X = {up, vp}, Y1 = {pu, pv} and Z =
⋃
i∈I
{up, vp}i{u, v}

3 Interested reader may consult Lemma 4.5 from the paper referred to.
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What remains to be shown is that y3 is of the form (up+uv)l or (pu+pv)l

i.e. y3 ∈ {y1, y2}∗. We will show this for case (a). The other situation can
be argued on similar lines. Let |x1| be n and |p| be m. For any z ∈ Z
we have |z| = k × n + m for some non negative k. Consider the equation
zy3 = xiz

′. Taking length on both sides and simplifying yields |y3| = k′n
for some positive k′. Also we have xiz′ to be of the form (pu+pv)ip. Taking
into consideration the length of y3 and the fact that y3 is a suffix of xiz′,
we have y3 = (up+ vp)k

′
Q.E.D.

Observe that when the shapes of X and Y as described in the proposition,one
can easily construct Z which makes X and Y conjugates. Hence the proposition
gives a characterization for the case when |x1| = |x2|.
Deciding Conjugacy When |x1| < |x2|
Proposition 7. Let X = {x1, x2} and Y = {y1, y2, y3} be sets such that |x1| <
|x2| x2| > |y3| and XZ = ZY for some Z. Then, there exists conjugate words w
and w′ such that all elements in X are the powers of w and all words in Y are
powers of w′.

Proof. Let z1 be a smallest word in Z. Since ZY n+1 = Xn+1Z for any n, We
have z1y3yn1 = xi1 . . . xin+1z

′ for some z′ ∈ Z . Since the lengths of both the sides
are equal we have |z1|+ |y3|+n|y1| = |xi1 |+ . . .+ |xin+1 |+ |z′|. If any of the xij
were x2, since |x2| > |y3| then all the xj put together have length greater than
all the yj put together forcing z′ to be smaller than z which is a contradiction.
So all xi’s are x1 and thus

z1y3y1y
n−1
1 = xn+1

1 z′

Using a similar argument we can show that

z1y1y3y
n−1
1 = xn+1

1 z′′

Looking at the prefixes of both the rhs, we know that they can be made to match
for arbitrary length by choosing n appropriately. But since z1y1y3 and z1y3y1 are
prefixes of the lhs and since they are of equal length, they must now be equal.
Thus y1 and y3 commute. Also since |x2| > |y3| we also have |x2| > |y2|. Using
y2 instead of y3 in the above argument we get that y2 also commutes with y1.
Thus elements of Y commute. Now, using Proposition 5 it is easy to see that
proposition is true. Q.E.D.

Proposition 8. Let X = {x1, x2} and Y = {y1, y2, y3} be sets such that |x1| <
|x2|, |y2| > |x2| and XZ = ZY for some Z. Then, there exists conjugate words
w and w′ such that all elements in X are the powers of w and all words in Y
are powers of w′.

We skip the detailed proof of this because this proof is exactly similar in spirit to
that of Proposition 7. We take a suitable word in XnZ and use this to show that
X commutes and hence Y too commutes. Observe that in the previous proof
we were using the fact that elements of Y commuteto prove that elements of X
must also commute.
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Proposition 9. Let X = {x1, x2} and Y = {y1, y2, y3} be sets such that |x1| <
|x2|, |y2| < |x2| < |y3| and XZ = ZY for some Z. Then, there exist conjugate
words w and w′ such that all elements in X are the powers of w and all words
in Y are powers of w′.

Proof. By arguments similar to the ones in the proofs above, we can show that
since |y2| < |x2|, |y2| and |y1| must commute. Let z1 be the smallest word in Z.
Take the words w1 = xn−1

1 x2x1z1 and w2 = xn1x2z1. They both must be of the
shape z′yi1 . . . yin+1 . Since x2 is smaller than y3 by length, none of the yi’s are y3.
But since y1 and y2 commute they must be the powers of the same word. That
will make w1 and w2 to have the same suffix. Hence elements of X commute.
Since elements of X commute so must elements of Y . Q.E.D.

In the conditions given by Propositions 7, 8 and 9 we obtain a necessary condi-
tion for conjugacy. But note that these are sufficient conditions as well because
under these conditions, the elements in X are powers of a primitive word of the
form ab and elements in Y are powers of ba. We also know that the minimal ele-
ments in these sets of of same length. Any two such sets can be made conjugates
via Z = (ab)∗a.

We combine the Propositions 7, 8, 9 and 6 to present the main theorem.

Theorem 1. Let X = {x1, x2} and Y = {y1, y2, y3} be two subsets of Σ∗. If
the elements in X are of equal length, X and Y are conjugates if and only if
they are of the form given by equation (1) or (2). When they are not of equal
length, if any of the conditions given by (3), (4) and (5) are satisfied,X and Y
are conjugates if and only if there exists conjugate words w and w′ such that
words in X are powers of w and words in Y are powers of w′.

|y1| = |y2|, X = {pu, pv} and Y = {up, vp, (up+ vp)l1} (1)
|y1| = |y2|, (X = {pu, pv} and Y = {up, vp, (up+ vp)l1} (2)

|x2| > |y3| (3)
|y2| > |x2| (4)

|y2| < |x2| < |y3| (5)

Proof. For the ‘only if’ case when |x1| = |x2| follows from Proposition 6. The
other part follows from Proposition 7, 8 and 9. The ‘if’ direction is easy to verify
and has been mentioned along with the corresponding propositions for the ‘only
if’ direction. Q.E.D.

4 Conclusion

Although two-three conjugacy appears to be a simple case of an easily stated
word problem, its full characterization doesn’t seem very straightforward. Also
this seems to suggest that as the number of elements in X and Y increase, the
corresponding conjugacy problems will get correspondingly harder. The charac-
terization given here can easily be seen to be polynomial time algorithm. The
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decidability of the general conjugacy problem is still open and does not seem to
be amenable to the techniques used here. But we do believe that using techniques
described here will be sufficient to characterize two-three conjugacy fully.
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Abstract. Indian logic based approach of knowledge representation fundamen-
tally classifies the world knowledge into concepts, and relations, both enriched 
with special qualities. To be more precise, Nyaya Sastra recommends a special 
categorization of world knowledge which is supposed to be elaborate in tapping 
the minute details in the defined knowledge units. Nyaya logics are a mecha-
nism which defines the concept and relation elements of ontology based on the 
epistemology of Nyaya-Vaisheshika school of Indian logic. We have already 
proposed an ontology reference model based on Nyaya logic, known as NORM. 
To develop an ontology using Nyaya logics, one should be aware of the syntax 
and semantics of NORM rdf. To overcome the difficulty involved in creating 
NORM based ontology, in this paper, we propose Gautama, a tool for editing 
the ontology based on Nyaya logics. We also discuss the steps for building the 
ontology for a sample from ‘Birds’ domain. 

Keywords: Indian logic, Nyaya Sastra, NORM, Ontology. 

1   Introduction 

The Nyaya-Vaisheshika is a self-contained system of philosophy. It proposes a unique 
categorisation of world knowledge elements [6,9]. Through the epistemological defini-
tions of Nyaya-Vaisheshika system, the treatment of world knowledge elements was 
very special which contributed to the uniqueness of ontological categorization. The 
methodology of categorization was inaugurated by Gautama-Akshapada, which consists 
in enumeration and classification of world knowledge entities into specific categories 
which were recommended, argued and analysed by the followers of Gautama [6,9]. 

NORM is the Nyaya based Ontology Reference Model, which defines the standards 
for constructing ontology, based on the recommendations of the epistemology defini-
tions of Nyaya-Vaisheshika school of Indian philosophy. NORM is organized as a two-
layer ontology [8], where the upper layer represents the abstract fundamental knowledge 
and the lower layer represents the domain knowledge. According to NORM, a node in 
the ontology is composed of an enriched concept which is related implicitly to its mem-
ber qualities and explicitly to other peer concepts, by means of relations [11]. 

A node of Nyaya-Vaisheshika [5,10] based ontology has the following structure 
(refer Fig. 1). Every concept of the world knowledge shall be thoroughly classified as 
per NORM structure. The abstract and domain concepts form a strict classification 
hierarchy. The traits of the top-level concepts are applicable down the hierarchy.  
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(a) (b) (c) 

Fig. 1. NORM model for cognitive knowledge representation (a) ontology with concepts as 
nodes and external relations as edges (b) a concept with qualities as nodes, internal relations as 
thin edges, tangential relations as dotted edges (c) a quality with values as nodes, grouping 
relations as edges [8] 

Every concept in the NORM model has links to other concepts by external rela-
tions (Fig. 1a). A concept is made of qualities or gunas [5,10]. In addition, the quali-
ties are bounded to the concept by internal relations. The qualities may also be related 
to each other, which is depicted as dotted edges (refer Fig. 1.b). Every quality has a 
set of values. Every value is the substratum of the quality to which it is associated 
[5,10]. The values are bounded to the qualities by grouping relations (refer Fig. 1c). 
This model (Fig. 1) is inspired by the various recommendations of classifications of 
world knowledge according to Nyaya-Vaisheshika. The following section discusses 
the system of classification of Nyaya Sastra. 

2   Nyaya-Vaisheshika System of Classification 

According to Nyaya Sastra [4,5,10], every concept is classified into seven categories: 
substance, quality, action, generality, particularity, inherence and negation. Among these, 
the substance is of nine kinds: earth, water, light, air, ether, time, space, soul and mind. 
Every substance is threefold: body, organ and object. The object of light is fourfold: 
earthly, heavenly, gastric and mineral. Every substance is said to possess some quality. 
The quality is of twenty-four varieties which in turn possess values (refer Fig. 2).  

The permissible action associated with the substance is of five types: upward motion, 
downward motion, contraction, expansion, and motion. Generality is either more com-
prehensive or less comprehensive. Particularities are innumerable [4,5,10]. Negation is 
of four varieties: antecedent negation (or prior negation, destructive negation (or poste-
rior negation, [1]), absolute negation and mutual negation. Out of the nine substances, 
odour persists only in earth and is inherent. Earth exists in all the seven colors. Air has 
no color; water is pale-white in color and light is bright-white in color. Air has touch. 
Water has cold-touch and light has hot-touch. Dimension (or magnitude), distinctness, 
conjunction and disjunction are present in all the nine substances. Remoteness and Prox-
imity is found in earth, water, light, air and mind. Heaviness or Weight is only in earth 
and water. Viscidity is present only in the substance, Water [4,5,10].  

The detailed structure of a node in Nyaya-Vaisheshika ontology is shown in Fig. 3. 
The structure incorporates almost all the recommendations of Nyaya-Vaisheshika 
school along with the detailed definitions of relations at every level, between con-
cepts, between concept and member qualities, between qualities, and between quality 
and member values. The following section describes the ontology editor, Gautama for 
editing the world knowledge in the form of Indian logic ontologies. 
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Fig. 2. Ontological Classification of Nyaya-Vaisheshika Qualities  

 

Fig. 3. The node ontology architecture of NORM 
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3   Gautama – Ontology Editor for Indian Logic  

We have developed an ontology editor (refer Fig. 4) known as ‘Gautama’ for impart-
ing the knowledge in the form of Indian logic. The editor has icons and toolboxes to 
create / edit the knowledgebase defined under the Nyaya-Vaisheshika system of clas-
sification [4,5,10].  

 
 

 

Fig. 4. Gautama – NORM based Ontology editor 
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The ontology editor has various panes for editing the concepts, qualities and relations, 
both graphically and through entry forms. Each one of those panes are described as follows: 

ILO Visualisation Pane: This pane contains icons to save and print the ontology 
visualisation created in the top left pane of the editor. In addition, drawing icons have 
also been provided. 

Concepts Visualisation Pane: This pane is similar to ILO Visualisation Pane, ex-
cept that, here, only the concept hierarchy in the ontology is visualised. 

Nodes Entry Pane: This pane provides controls for entering information about the 
nodes that are yet to be created to become part of the ontology. C-C denotes concept-
concept; V-V denotes value-value and Q-Q denotes quality-quality. There are enough 
command buttons to add concepts, qualities and values. Using these, the concept 
definitions shall be created. The ‘Generate RDF’ button helps in generation of Re-
source description format of the underlying ontology. 

Relations Entry Pane: The purpose of this pane is identical to Nodes entry Pane. 
Here, ‘roles’ shall be created as part of the ontology. NORM recommends various 
relations (refer Fig.1), therefore, this pane has provisions for creating relations at all 
levels. To the extreme right, is the command buttons for ‘deletion’ services. Using 
these buttons, concept / quality / value shall be deleted from the ontology. Alterna-
tively, one can also load a pre-existing RDF through ‘load rdf’ button to have the 
ontology loaded into the memory at once. 

Concepts list Pane: This pane lists all the concepts available in the ontology with 
specialised concepts first displayed, followed by the generalised concepts. (Please 
note from Fig. 4.4. that, ‘penguin’ and ‘pigeon’ are displayed before ‘bird’. There are 
two concepts list pane, primary and secondary.  

Quality List Pane: This pane lists all the qualities available for the selected concept 
in the adjacent left pane. This is divided into primary and secondary panes. 

Value list pane: This pane lists all the values available for the selected quality in 
the adjacent left quality list pane. This is divided into Primary and secondary panes.  

If two concepts are related to each other, one concept and its member qualities, 
member values shall be seen in the primary pane. Simultaneously, the other concept 
and its member qualities, member values shall be seen in the secondary pane. To 
facilitate the recording of knowledge in RDF (resource description format), appropri-
ate tags have been defined, with a start tag and corresponding end tag with the item 
described in between. The following are the various tags defined for the RDF of In-
dian logic ontology generated by Gautama. 

• <rdf:concept> - This tag is used to declare a concept prior and after its definition. 
• <rdf:name> - This tag is used to declare the name of a concept / quality / relation. 
• <rdf:desc> - This tag is used to create descriptions or definitions for a particular 

concept. 
• <rdf:axiom> - This tag is used to create concept axioms. 
• <rdf:quality> - This tag is used to create member qualities for a given concept. 
• <rdf:type> - This tag is used to declare the type of a concept / quality / relation. 
• <rdf:role> - This tag is used to declare the role of a concept / quality. 
• <rdf:category> - This tag is used to declare the category of relation like external, 

internal, tangential or grouping. 
• <rdf:operator> - This tag is used to declare the logical operators like and, or while 

creating the concept axioms of the ontology. 
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The sample RDF generated for a simple ontology for ‘birds’ domain is given in 
Fig. 5. The facilities for interacting with the knowledgebase are generally done 
through knowledge representation languages. NORM model for knowledge represen-
tation involves Nyaya Description language (NDL), the set of commands used for 
defining the units of knowledge base. 

 

 

Fig. 5. NORM RDF– ‘penguin’ and ‘pigeon’ example 
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Fig. 5. (continued) 

The knowledge representation language [1,7], is classified into concept/relationship 
definition language (CRDL), concept/relation manipulation language (CRML) and a 
set of editing commands and a query language. This knowledge representation lan-
guage can be further used to define, manipulate and query the various levels of 
knowledge. CN refers to Concept name, QN refers to Quality Name, V – Quality 
value (Ex: color – Indigo: quality: color, value: Indigo) RN refers to Role name, I 
refer to Instance and Rdesc refers to Role descriptions. The CRDL constitutes the 
commands for defining the concepts, instances and relationships. Top and Bottom 
concepts are assumed by the system as default. The concept definitions have been 
recognized and the knowledge hierarchy is built. Therefore, using CRDL, the user can 
build the knowledge base right from scratch. Concepts can be linked to one another 
through relations where relations can be is-a, owns, part-of and uses. Relations and 
actions can also be defined between concept and quality. Instances of concepts can 
also be defined using CRDL. Following the above norms of definition of knowledge 
representation languages (as description logic commands), here, we define the sample 
Nyaya logic commands which are listed in Table 1.  
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Table 1. Commands for querying with Gautama 

CRDL 

define-concept<CN, Level> 
define-concept-axiom<CN,Cdesc> 
disjoint-concept<C1,C2> 
define-role-axiom<RN, Rdesc> 
disjoint-role<R1,R2> 
define-concept-role<RN,C1,C2> 
define-concept-qualities<CN, 
(QM,Qman.List) / (QO,Qopt.List) / 
(QE,Qexceptional.List) / 
(QX,Qexclusive.List)>  
define-quality-
values<CN,QN,V1….Vn> 
define-role-quality <RN,CN, 
Qreflexive.List / Qsymmetric.List / 
Qassymmetric.List /  
Qantisymmetric.List /  
Qtransitive.List / Qdirect.List /  
Qindirect.List / Qexclusive.List> 
define-quality-role<RNreflexive.List  
/  RNasymmetric.List /  
RNsymmetric.List /   
RNantisymmetric.List /  
RNtransitive.List /  RNdirect.List / 
RNindirect.List / RNexclusive.List, 
CN,QN> 

CRML 
insert-quality<QN> 
delete-quality<QN> 
insert-values<QN,V1….Vn> 
delete-values<QN,V1….Vn> 
delete-concept<CN> 
delete-instance<I> 
update-instance<I,Cnold,Cnnew> 
delete-role-filler<I1,I2,RN> 
update-role-filler<I1,I2,Rnold,Rnnew> 
delete-role<RN> 
insert-role<RN> 
delete-concept-quality<CN,QN> 
delete-quality-
value<CN,QN,VInvariableConcomitance.List  
/ VExclusive.List / 
VInvariableConcomitance.List / VDirect.List  
> 
insert-quality-
value<CN,QN,VInvariableConcomitance .List  
/ VExclusive.List /  
VInvariableConcomitance.List / VDirect.List> 
update-quality-value<CN,QN,Vold,Vnew> 

Query language 

concept-satisfiable<CN> 
concept-subsumes<C1,C2> 
concept-disjoint<C1,C2> 
chk-concept<CN> 
concept-atomic<CN> 
concept-ancestors<CN> 
concept-descendants<CN> 
super-concept<CN> 
sub-concept<CN> 
chk-concept-related<C1,C2> 
chk-concept-related<C1,C2,RN> 
chk-concept-
related<C1,C2,RNreflexive.List / 
RNasymmetric.List /  
RNsymmetric.List /  
RNantisymmetric.List /  
RNtransitive.List / RNdirect.List,  
RNindirect.List / RNexclusive.List > 
chk-quality<QN> 
chk-concept-quality<CN,QN> 
all-qualities 

Query language 

retrieve-direct-concepts<I> 
retrieve-indirect-concepts<I> 
retrieve-concept-fillers<RN,C1> 
all-concepts<I> 
retrieve-qualities<CN> 
retrieve-quality-
value<CN,QInvariableConcomitance /  
QExclusive / QExceptional> 
retrieve-quality-value<CN,QDirect> 
chk-instance<I> 
chk-instance-type<I,CN> 
chk-instance-related<I1,I2> 
retrieve-direct-instances<I> 
retrieve-indirect-instances<I> 
retrieve-instance-fillers<RN,I1> 
all-instances<CN> 
retrieve-related-instances<RN> 
*retrieve-quality-value<I,QN> 
chk-role<RN> 
all-roles  
role-descendants<CN> 
role-ancestors<CN> 
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The CRML provides necessary commands for deleting and updating of concepts 
and associated relations in the knowledge hierarchy. The query language supports 
querying the classification hierarchy and to summarize the results of queries. The 
TAML commands have been utilized for the management of Tbox and Abox. The 
system shell is managed by create and use taxonomy which are used primarily for 
mounting and dismounting the Tbox and Aboxes. Upon commit, the information 
contained in the classification hierarchy is stored in a separate file, which also records 
every inferencing performed by the system. In addition the system provides concept 
and instance dictionary files, which summarises the total number of knowledge units 
present in the classification hierarchy. Using CRML, the ontology shall be updated or 
modified. The concepts and the relation between concepts can be manipulated using 
the commands of CRML. 

The CRDL and CRML commands are used only during the creation of ontology by 
end users. To be more user-friendly, ‘Gautama’, the ontology editor provides built-in 
facilities for ontology creation and updation services. The query language shall be 
used with the RDF generated by Gautama, to query about various parts of the ontol-
ogy. Here, we discuss few commands of the query services. 

• Concept-satisfiable – This takes a concept name as the parameter and checks 
whether the addition of the concept will not violate the ontology definitions that 
exist prior to the execution of this command. 

• Concept-subsumes – This takes two concepts as input, and checks whether the first 
concept subsumes the second concept. This is one of the famous reasoning service 
provided by any ontology-based reasoner. 

• Concept ancestors and Concept-descendants – These commands list the ancestral / 
descending concepts in the ontology hierarchy. Role-ancestors and Role-
descendants also have similar purpose. 

• Sub-concept, Super-concept – These commands retrieve the child nodes or parent 
nodes of the parametric concept from the ontology hierarchy. 

• Chk-concept-related – This command has three variations. It either checks whether 
a concept is related to another concept, through a particular relation name or 
through a particular set of relation categories. 

• Chk-quality – This command checks the entire ontology hierarchy to check if the 
required quality is available in the ontology. 

• Chk-concept-quality – This command checks the entire ontology hierarchy to 
check if the particular concept has the required quality. 

• All-concepts, all-qualities, all-roles, all-instances – These commands just lists all 
the concepts, qualities, roles or instances available in the ontology. 

• Retrieve-direct-concepts, retrieve-indirect-concepts – The first commands take an 
instance as input, and retrieve all the directly related concepts to those instances; The 
second command take the instance as input and retrieves all the second and higher de-
gree concepts related to those instances. For example, if ‘TooToo’ is an instance of 
penguin, the first command may retrieve ‘penguin’ as the result; the second command 
will retrieve all the ancestors of penguin which are conceptually related to penguin. 
Retrieve-direct-instances, retrieve-indirect-instances also serve the same purpose. 
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4   Related Work 

This paper proposed the ontology editor based on Indian logic based knowledge rep-
resentation system. Using this editor, one can carefully handcraft the ontology based 
on Indian logic in the required domain. However, there are other noteworthy projects 
existing in the knowledge representation arena. Cyc, WordNet, Concept-Net and 
Mind-Net are to name a few.  

Cyc is an artificial intelligence project [3] that attempts to assemble a comprehen-
sive ontology and database of everyday common sense knowledge, with the goal of 
enabling AI applications to perform human-like reasoning. The Cyc system is made 
up of three distinct components, all of which are crucial to the machine learning proc-
ess: the knowledge base (KB), the inference engine, and the natural language system. 
The Cyc inference engine is responsible for using information in the KB to determine 
the truth of a sentence and, if necessary, find provably correct variable bindings. The 
natural language component of the system consists of a lexicon, and parsing and gen-
eration subsystems. The lexicon is a component of the knowledge base that maps 
words and phrases to Cyc concepts. 

WordNet is a large lexical database [2] of English, where, Nouns, verbs, adjectives 
and adverbs are grouped into sets of cognitive synonyms (synsets), each expressing a 
distinct concept. Synsets are interlinked by means of conceptual-semantic and lexical 
relations. The resulting network of meaningfully related words and concepts can be 
navigated with the browser. WordNet's structure makes it a useful tool for computa-
tional linguistics and natural language processing. Its design is inspired by current 
psycholinguistic and computational theories of human lexical memory. 

ConceptNet is a freely available [13] commonsense knowledge base and natural-
language-processing toolkit built at MIT. The ConceptNet knowledge base is a 
semantic network of commonsense knowledge encompassing the spatial, physical, 
social, temporal, and psychological aspects of everyday life. Whereas similar large-
scale semantic knowledgebases like Cyc and WordNet are carefully handcrafted, 
ConceptNet is generated automatically from World Wide Web. 

ConceptNet is a unique resource in that it captures a wide range of commonsense 
concepts and relations, yet this knowledge is structured as a simple, easy-to-use se-
mantic network, like WordNet. While ConceptNet still supports query expansion and 
determining semantic similarity, its focus on concepts-rather-than-words, its more 
diverse relational ontology, and its emphasis on informal conceptual-connectedness 
over formal linguistic-rigor allow it to go beyond WordNet to make practical, context-
oriented, commonsense inferences over real-world texts. 

A MindNet is a collection of semantic relations that is automatically extracted from 
text data using a broad coverage parser [12]. MindNets are produced by a fully auto-
matic process that takes the input text, sentence-breaks it, parses each sentence to 
build a semantic dependency graph (Logical Form), aggregates these individual 
graphs into a single large graph, and then assigns probabilistic weights to subgraphs 
based on their frequency in the corpus as a whole. The project also encompasses a 
number of mechanisms for searching, sorting, and measuring the similarity of paths in 
a MindNet. 

‘Gautama’ proposed in this paper is not automatic, i.e. it does not harvest ontologi-
cal entities automatically from the text corpora or web, instead, it is a first step in the 
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design of an ontology editor based on Indian logic, and therefore, presently it is only 
handcrafted to serve the purpose. In future, adapting more ideas of building the ontol-
ogy from Indian philosophy would strengthen the outcome of the ontology editor. 

5   Conclusion 

This paper proposed the overview of Gautama, a tool for editing the world knowledge 
elements into ontology based on Indian logic. The ontology followed the guidelines of 
NORM (Nyaya Ontology reference model) based ontological standards which is built 
on the epistemological recommendations of Nyaya-Vaisheshika school of Indian 
philosophy, for defining the knowledge units of the ontology. We hope, this tool, 
facilitates easy creation of Indian logic based ontologies and thereby promotes the 
wide study of Indian logic in the ever green field of ontological and philosophical 
research. 
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Abstract. Reason fallacies are fallacious reasons presented in arguments during 
argumentative discussions. The fallacious reasons do not support the claim of 
argument and therefore, the argument gets defeated. Defect exploration is the 
process of analysing argument inconsistencies due to the presence of fallacious 
reasons. The context of argument exchange is a knowledge base represented in 
the form of Indian logic based ontology, and defect exploration actually entails 
analyzing the ontological elements of submitted arguments, during the ‘tarka’ 
style of argumentation. The process of defect exploration exploits the Navya-
Nyaya methodology for identifying defects by exploring the presence or absence of 
invariable concomitance relation between elements of submitted arguments and 
populates them into a defect set. The defect set can then be utilized by the par-
ticipant for designing appropriate defeat strategies, which help in generation of 
associated counter-arguments. In this paper, we propose the formal definitions 
of reason fallacies in terms of elements of arguments recommended by Nyaya 
logics, so that, the arguments are thoroughly analysed in a ‘tarka’ based argu-
mentation setting. 

Keywords: Indian logic, Nyaya Sastra, Reason fallacies, Defect, Argumentation. 

1   Introduction 

The basis of ‘tarka’ based argumentation for knowledge sharing, also referred to as 
argument gaming, is the use of game theoretic framework for rational exchange of 
arguments between two participating knowledge-sharing entities. Inferring valid in-
formation through argumentation procedures and assigning rewards for such infer-
ences plays important role in allowing game theory to fit into the argument gaming 
scenario. Fallacies are logical errors, which are to be avoided in any discussion. A 
fallacy is an object of knowledge that obstructs an inference [13]. Presence of falla-
cies in an argument makes the argument defective [1]. Overcoming these fallacies or 
defects is called “removing the holes” from the submitted argument [14].  A fallacy is 
a component of an argument [4] which, being demonstrably flawed in its logic or 
form renders the argument invalid in whole.  

The syllogistic method of argument formation as cited in Nyaya philosophy [14] states 
the possibility of fallacies or defects that are found identifiable in stated arguments, 
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through which any argument can be challenged for justification and existence. (Fallacies 
can also be present with the manner in which the argument is proposed. Such fallacies are 
called Argument Fallacies [7], which is not our scope of discussion).  

Indian philosophy proposes various fallacies which inhibit the existence or proof of 
an argument. Those fallacies are called reason fallacies [14]. Reason fallacies origi-
nate from the reason (or) probans of the submitted argument [13]. Reason is some-
thing which is stated to support or prove the existence of object to be inferred over the 
context subject. Fallacies present in the reasons may dilute or weaken the argument, 
or, in other words, they may fail in proving the object of inference. Therefore, reason 
and its relation with other elements of argument are of prime importance in argumen-
tative discussions. 

Indian philosophy classifies the structure of argument into three parts: Subject, the 
object to be inferred or probandum, and the reason or probans [3]. During scholarly 
debates, the opponent always attempts to find any flaws related to the argument fo-
cusing the probans element [5]. We refer to the flaws as defects or holes of the argu-
ment [8]. These defects may be well within the statement of probans or the relation of 
probans with other elements of arguments. The process of attempting to identify the 
nature and type of defects is called defect exploration. [8]. In the attempt to identify 
the defect present in the argument, there may be more than one defect detected which 
is populated into the defect set of that particular argument. 

Any defect identified with the submitted argument qualifies the argument for at-
tack or refutation. Refutation can be defined as pointing out the defects or fallacies in 
the statements of the opponent, which causes defeat to the argumentator [6]. There 
may be more than one refutation due to the presence of more number of defects in the 
submitted arguments. The best refutation [10] qualifies to be a counter-argument. This 
best describes the argument gaming scenario. 

2   Related Work 

Fallacies are something that weakens the argument. To make the argument more logi-
cal or stronger, these fallacies should be avoided while constructing the argument. 
Fallacies can be formal or informal. P. Ikuenobe [12], in his work on nature of falla-
cies argues like this: 

An argument involves the formal and informal processes or methods of prov-
ing or establishing for ourselves or others that a proposition or belief as the 
conclusion of an argument has adequate and relevant evidential basis for its 
acceptance. The vague epistemic foundation of adequacy in justification, as a 
plausible basis for unifying fallacies, implies that there are different degrees, 
varieties, and guises of the epistemic failure of proof [12, page 194]. 

Formal fallacies deal with the manner in which the argument is proposed or the 
structure of the argument; and informal fallacies deal with the content of the argu-
ment. There are different types of formal and informal fallacies. To identify the type 
of the fallacy, the nature of fallacies should be clearly understood. Several literatures 
exist in the arena which makes critical discussion about the understanding of argu-
ment fallacies as formal or informal [11]. A large part of such study of fallacies can 
be seen in the works of Walton [16] and Woods and Walton [17].  
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A different approach to understanding and classifying fallacies is provided by ar-
gumentation theory [2]. In this approach, an argument is regarded as an interactive 
protocol between individuals which attempts to resolve a disagreement. The protocol 
is regulated by certain rules of interaction, and violations of these rules are fallacies.  

Walton [16] defines a fallacy as follows: 

A fallacy is (1) an argument (or at least something that purports to be an ar-
gument); (2) that falls short of some standard of correctness; (3) as used in a 
context of dialogue; (4) but that, for various reasons, has a semblance of cor-
rectness about it in context; and (5) poses a serious obstacle to the realization 
of the goal of a dialogue (p. 255). 

For Walton, a fallacy is fundamentally negative; it involves a lapse, error, failure, 
and deception. According to Walton [16], it is exactly how such failures [in fulfilling 
a burden of proof] occurs, by what means, that determines which fallacy occurred or 
whether a fallacy occurred (16, p. 10). Some of the elements of a fallacy are that it 
involves the use of a systematic deceptive technique in the context of a dialogue. The 
use prevents one from achieving the desired goals of various forms of dialogue: the 
goal depends on whether the dialogue is a negotiation, persuasion, critical discussion, 
deliberation, or inquiry. 

All the above literatures on argumentation dialogues involved some or the other 
way of identification of fallacies present in the arguments. However, Indian philoso-
phy takes a different perspective of approaching the definition of fallacies present in 
the arguments. i.e. while all the above literatures examined the argument fallacies 
(both formal and informal), Indian philosophy attempted to explore more on the pro-
bans because probans or reason is the most supportive part of proof of the argument. 
Hence, fallacies of arguments in Indian philosophy are termed as ‘reason fallacies’ 
[3, 14]. Attempting to interpret an argument with a defective reason will result in 
fallacious reasoning of that argument. The following section describes the utilization 
of defects in argument gaming. 

3   Defects in Argument Gaming 

Indian philosophy defines several types and sub-types of reason fallacies [14] which 
can be utilized in the process of defect exploration [8] in argument gaming. Defects or 
reason fallacies, when identified from an argument, and when exploited to generate 
the next immediate counter-argument, will contribute greatly in interpretation of the 
submitted argument. Therefore, generation of defects is the driving force behind rea-
soning from arguments. Generation of defects could be appropriate if and only if the 
submitted argument is interpreted in the right sense. In argument gaming, we interpret 
arguments using ‘Nyaya logics’. Nyaya logics are a mechanism for defining argu-
ments according to Indian philosophical view point [9]. According to Nyaya logics, 
every argument is realized in terms of subject, object of inference and reason with 
internal relations between them. Arguments, when analysed with Nyaya logics, reveal 
the presence of defects in the elements of arguments. The constituent elements of argu-
ments are compared with the knowledge base of the arguing authority to reveal the 
exact number and nature of defects, as connected to the enriched concept and relation 
elements of the Indian logic based ontology. Evaluation of defect observations result in 
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assignment of argument rewards. To maximize rewards, effective inferences have to be 
performed at every argument exchange, which demand complete observations of defects 
from the submitted argument.  

The prime factor beside argument defect exploration is the nature of a special rela-
tion, invariable concomitance [15]. The defect exploration algorithm exploits the 
Navya-Nyaya methodology for identifying defects by exploring the presence or ab-
sence of invariable concomitance relation between elements of submitted arguments 
and populates them into a defect set. The defect set can then be utilized by the partici-
pant for designing appropriate defeat strategies, which help in generation of associ-
ated counter-arguments. As we have already described (refer Section - Introduction) 
continuous repeated argument process of defect exploration, defeat strategy determi-
nation and counter-argument generation in a game theoretic framework will eventu-
ally result in knowledge sharing between the participating entities. The core concept 
behind defect analysis is invariable concomitance, which shall be described in the 
context of Nyaya based ontology. In the following section, we record invariable con-
comitance from the viewpoint of defect analysis and go on to show how invariable 
concomitance contributes to argument gaming model for knowledge sharing. 

4   Invariable Concomitance – The Theory Behind Defect Analysis 

Invariable concomitance relation is one of the shared conceptualization of Nyaya, which 
aids primarily in the proof of object of inference over the given subject [15]. Generally, 
relations exist between a concept pair and/or between a concept and its member quali-
ties. The types of relations play a major role in determining the type of defects. Presence 
of invariable nature of relation between concepts overrides any other relation that is said 
to exist between them. Various deviations such as the absence of a relation where it 
needs to exist, presence of prohibited concept/relation elements, absence of necessary 
concept/relation elements, conditional presence or absence of necessary elements etc. 
contribute to projecting holes or defects out of the submitted argument.  

The identified holes are categorized into defect categories based primarily on 
whether the element is basically a concept or a relation. Other sub-categorical infor-
mation under concept/relation category like direct/indirect presence of relations, in-
variable nature of relation etc. are also used. In knowledge sharing by procedural 
arguments, the presence or absence of invariable concomitance relation and its type 
are recorded implicitly during argument analysis. The defects present in the argu-
ments are accumulated into a hole set or defect set. By the above approach, indirect 
inference of world knowledge embedded in the argument is captured and stored in the 
form of conceptual ontology. The following section presents a detailed overview of 
defects as per Nyaya Sastra. 

5   Defects  

5.1   Overview of Defects 

An argument, according to Nyaya, consists of two major components, viz., concept and 
relation. Concept can be further sub-divided as subject, reason or object of inference. 
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Relation can be further sub-divided into relation between subject and reason, relation 
between reason and object of inference, and relation between subject and object of in-
ference. According to Nyaya, defective reason is classified into five types, depending on 
which component of the argument contributes to the defect. They are viz. (1) the erratic 
or uncertain or straying (2) the contradictory or adverse (3) the counterbalanced or 
antithetical (4) the unproved or inconclusive or unestablished (5) the incompatible or 
stultified [13, p. 38]. The defects involved in the above reasons are respectively the 
following: (1) the erraticalness or uncertainty (2) contradiction (3) counterbalance (4) 
absence of proof or inclusiveness, and (5) incompatibility. 

5.1.1   The Erratic Reason 
The erratic or Straying, is a reason or middle term in which abides a character, the 
possession of which causes that presence of two alternatives which produces doubt in 
the probandum or the major term. This defective reason is further subdivided into (1) 
that which is too general, referred to as Straying:common, (2) that which is non-
general or not general enough, referred to as Straying: uncommon, and (3) that which 
is non-exclusive, also known as non-conclusive. 

5.1.2   The Contradictory Reason 
The contradictory or adverse is a reason which is the counter-part of that non-
existence which constantly accompanies the major term. In other words, it can be 
defined as a reason which is constantly accompanied by the absence of the proban-
dum, the major term. 

5.1.3   The Counter-Balanced Reason 
If, at the time of consideration of a reason which seeks to establish the existence of 
the probandum or major term, there occurs the consideration of another reason which 
seeks to establish the non-existence of that term, then, both the reasons are said to be 
counter-balancing each other. i.e. the inference from one reason being of as much 
force as that from the other reason, the two inference neutralise each other. The 
counter-balanced reason is also known as antithetical reason. 

5.1.4   The Unproved Reason 
The unproved reason is also known as unestablished reason. It is of three kinds: (1) 
unproved on the part of its locus or the subject, also known as unestablished to sub-
ject, (2) unproved with regard to its own nature, or unestablished to itself, and (3) 
unproved in respect of accompaniment, or unestablished to concomitance. 

5.1.5   The Incompatible Reason 
An incompatible reason or stultified reason occurs when there is the knowledge that 
the major term, which is assigned to the minor term, does not really abide in it. 

5.2   Classification of Defects 

Fallacies are serviceable as they point out inefficiency. A fallacy when exposed is a 
good reply to an opponent, whose argument is thus pointed out to be inefficient. 
However, in order to analyse defects in terms of presence and absence of elements of 
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arguments, we propose here, a two-dimensional classification table, called as defect 
table, adapted based on the above five defect categories, defined traditionally in Nyaya 
Sastra. To build the defect table, the classification of defects is proposed, which is based 
on the component of argument that contributes to that particular defect.  

Concept and relation are the two major broader classes of elements of arguments. 
Therefore, we tend to classify the above-mentioned five defects and their internal 
categories as, concept-based defects, and relation-based defects (refer Fig. 1).  

 

Fig. 1. Categorisation of Defects 

The non-existence of concept is tabulated under concept-based defects. Non-
existence is assumed to be absolute non-existence [V. Swaminathan, 2001]. The pres-
ence or absence of relations are analysed under relation based defect categories. The 
relation present may be of type exclusive, exceptional, direct or invariable; Absence 
of relation may be direct absence or invariable absence. Table 1 illustrates the nature 
of concepts and relations in their defective form, as they occur in any argument. The 
operator ‘!’ indicates non-existence and ‘~’ indicates negation supported by a proof. 
The prefixes I, D, X, Xp stands for Invariableness, Direct, Exclusive and Exceptional 
type of relations.  

The defect table in Table 1. maps the traditional defect types with our proposed de-
fect categories in Fig. 1. In this context, we go on to explain the interpretation of 
defect table. As discussed earlier (refer introduction), a clear analysis of argument 
concepts and their relations will generate a defect summary for every argument at 
hand. By adapting the traditional definition of defect types, the entries in the defect 
table can now be interpreted as follows. If the relation existing between concept: 
reason and the non-existing concept: object of inference is invariable, then there ex-
ists a defect Adverse with the relation element of argument; if the relation is of type 
direct, then it is said to fall under Straying-Common. Presence of exclusive or excep-
tional type of relation from concept: reason with concept: subject is said to count for 
defect, Straying-Uncommon. 
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Table 1. Defects per Hole Category in terms of Elements of Arguments 
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HC1 !COI   !COI  !CS   ~COI 

HC2     COI,   
!COI 

   COI, 
~COI 

HC3  X-RR-S        

HC4  Xp-RR-S        

HC5 RR-!OI  RR-

{S} 
 

RR1-OI 

RR2-!OI 
   RR1-OI 

HC6    I-RR-!OI      

HC7       !RR-S   

HC8        !I-RR-OI  

If a direct relation is present from concept: reason with every concept: subject of 
the ontology leaving no subject behind for comparison, then the defect Straying: non-
conclusive is said to exist. When both the existence and non-existence of the concept: 
object of inference is allowed in the ontology, with one concept: reason supporting 
for the existence and another equally qualifying concept: reason supporting for the 
non-existence, then the defect Antithetical is said to exist with such type of reasons. A 
little variant of this is the defect Stultified. For this defect to exist, the existence and 
negation of concept: object of inference, both are allowed, but the negation of con-
cept: object of inference should be supported by a proof with respect to the ontology. 
In such a situation, the presence of direct relation between the concept: reason with 
that of the concept: object of inference is said to qualify for defect Stultified. Absence 
of invariable relation between the concept: reason with the concept: object of infer-
ence, is said to fall under the hole category, Unestablished to invariable.  

Above all, there should exist a relation existing from the concept: reason to the 
concept: subject upon which the existence of concept: object of inference needs to be 
analysed, which is the fundamental notion of defect exploration. If that relation be-
tween the concept: reason with the concept: subject does not exist, then there is no 
room for proving the existence of object over the subject. In other words, the middle 
term, the concept: reason has no connection with the concept: subject and hence, the 
defect Unestablished to itself is said to occur in the argument. All the above defects 
referred deal with only the relation element of concept: reason with other concepts of 
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the argument. There is another defect, which is only concept-based. That is, the ab-
sence of concept: subject upon which the entire defect exploration is carried over 
from every other perspective generates a defect Unestablished to itself because such a 
concept: subject never exists. The following section provides a more formal definition 
of defect and defect types. 

5.3   Formal Definition of Defects 

Definition 1 (Defect). According to Nyaya school of Indian logic, a fallacy is an object 
of knowledge which obstructs an inference, and is known as defective reason [13]. In 
general, these defects are a simple combination of concept and/or relation elements of 
the argument. From this perspective, we have categorised the defects into two major 
divisions: concept-originating, relation-originating. The relation-originating defects may 
be arising either due to the presence of recommended relation at a wrong place or 
absence of a required relation at places where it is required. The defect exploration 
algorithm looks for existence of concepts and the nature of relations between concepts 
to identify the class and type of defects existing in the submitted arguments. In addition, 
the attributes of concepts and relations are also analyzed for occurrence of defects.  

Defective reasons are basically of five types [13]. They are adverse, straying, anti-
thetical, unestablished and stultified. Each of these defects are defined as follows: 

Definition 2 (Adverse Defect). An input argument A is said to have Adverse defect 

iff c1 ⊧ c2 for every c1 ∈ CR, c2 ∈ COI , COI ⊄ε . 
If the relation existing between concept: reason and the non-existing concept: ob-

ject of inference is invariable, then there exists a defect Adverse with the relation 
element of argument. (Note: ε  is the knowledge base) 

Definition 3 (Straying:Common Defect). An input argument A is said to have Stray-

ing:Common defect iff c1 r c2 for every c1 ∈CR, c2 ∈ COI , COI ⊄ε . 
If the relation existing between concept: reason and the non-existing concept: ob-

ject of inference is direct, then it is said to fall under Straying-Common.  

Definition 4 (Straying:UnCommon Defect). An input argument A is said to have 

Straying:UnCommon defect iff c1 r c2 for every c1 ∈CR, c2 ∈ CS , r ∈{⊰ ,⋞} . 
Presence of exclusive or exceptional type of relation from concept: reason with 

concept: subject is said to count for defect, Straying-Uncommon. 

Definition 5 (Straying:Non conclusive Defect). An input argument A is said to have 

Straying:Non conclusive defect iff c1 r c2 for every c1 ∈ CR, c2 ∈ {{CS }⊆ OT}. 
If a direct relation is present from concept: reason with every concept: subject of 

the ontology leaving no subject behind for comparison, then the defect Straying: non-
conclusive is said to exist. (Note: OT is the total concepts in the ontology which repre-
sents the knowledge base). 

Definition 6 (Antithetical Defect). An input argument A is said to have Antithetical 

defect iff c1 r c2 and c3 r ¬ c2 for every c1, c3 ∈ CR, c2 ∈ COI . 
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When one concept: reason supporting for the existence and another equally quali-
fying concept: reason supporting for the non-existence, then the defect Antithetical is 
said to exist with such type of reasons. 

A little variant of this is the defect Stultified. For this defect to exist, the existence 
and negation of concept: object of inference, both are allowed, but there is the pres-
ence of direct relation between the concept: reason with that of the concept: object of 
inference is said to qualify for defect Stultified.  

Definition 7 (Stultified Defect). An input argument A is said to have Stultified defect 

iff c1 r c2 for every c1 ∈ CR, c2 ∈ COI , { COI , ~COI } ⊆ε . 

Definition 8 (Unestablished to Invariable Defect). An input argument A is said to 

have the defect unestablished to invariable iff c1 ⊧ c2 for every c1 ∈ CR, c2 ∈ COI. 

(Note: ⊧ should be read as ‘not invariably related to’). 
Absence of invariable relation between the concept: reason with the concept: ob-

ject of inference, is said to fall under the hole category, Unestablished to invariable.  
Above all, there should exist a relation existing from the concept: reason to the 

concept: subject upon which the existence of concept: object of inference needs to be 
analysed, which is the fundamental notion of defect exploration. If that relation be-
tween the concept: reason with the concept: subject does not exist, then there is no 
room for proving the existence of object over the subject. In other words, the middle 
term, the concept: reason has no connection with the concept: subject and hence, the 
defect Unestablished to itself is said to occur in the argument.  
 
Definition 9 (Unestablished to itself Defect). An input argument A is said to have 

the defect unestablished to itself iff c1 r c2 for every c1 ∈ CR, c2 ∈ CS. (Note: r  
should be read as ‘not related to’). 

All the above defects referred dealt with only the relation element of concept: rea-
son with other concepts of the argument. There is another defect, which is normally 
concept-based. That is, the absence of concept: subject upon which the entire defect 
exploration is carried over from every other perspective generates a defect Unestab-
lished to subject because such a concept: subject never exists. Alternatively, the con-
cept: subject which is referred to in the argument, may be present with the knowledge 
base but, the relation of concept: subject to concept: reason referred in the argument 
may not actually exist or may be negated for that concept: subject.  In such cases too, 
it can be said that the submitted argument has the defect, Unestablished to subject 
with respect to the knowledge base.  

 

Definition 10 (Unestablished to subject Defect). An input argument A is said to have 

the defect unestablished to subject iff c1 r c2 for every c1 ∈ CR, c2 ∉ {{CS}⊆ OT}.  
The definition of defects (which maps both traditional defect classification and our 

proposed defect categorization) is formally supplied in the form of defect table. The 
defect exploration algorithm utilizes the defect table to decide on the class and cate-
gory of the identified defect from the submitted argument. The following section 
unveils the technique of defect exploration from procedural arguments in a more 
detailed manner. 
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6   Defect Exploration 

The process of exploration of defects has three phases: Defect Exploration, Defect 
classification and Defect Identification. Defect exploration [8] consists of initially 
analyzing a given input argument and later highlighting the argument’s defects or 
holes in terms of elements of arguments. As the defects are explored, the class and 
category to which every defect belongs to, is identified and tabulated. The algorithm 
initially splits the submitted argument in terms of its constituent elements of argu-
ments. After argument analysis the defect exploration algorithm looks for existence of 
concepts and the nature of relations between concepts to identify the class and type of 
defects out of the submitted arguments. The quality of relation is also analyzed for 
occurrence of defects. The elements of input argument are tabulated (by referring to 
Table 1) across various defect categories. From this detailed representation, every 
argument is analyzed for presence of defects. 

The algorithm primarily looks for the existence of concepts, reason and subject, in 
order to identify concept-related defects. Otherwise, the input argument is said to 
undergo a thorough screening for the checking of relations between the concepts 
present and the type and nature of relations that exist between them. Every defect 
capture lists the defect type(s) and defect name within the element of argument. After 
defect exploration, the results are summarized into a hole set or defect set.  

Let us assume, the arguer proposes an argument which is expected to contain, gen-
erally, the subject, reason and the object to be inferred along with the relations exist-
ing between them. Presence of reason is a mandatory thing for an argument to be 
considered for discussion, because, the reason is said to provide a support for proving 
the existence of object of inference over the referred subject. If the input argument has 
no reason component, then, there is no purpose in arguing for or against that argu-
ment, because the argument itself is incomplete.  

If the knowledgebase of the counter-arguer does not contain the subject component 
listed in the argument of the arguer or proposer, then there is the defect unestablished to 
subject. If the reason and subject components of arguments have no relation with each 
other according to the counter-arguer’s perspective, then there exists the defect, unestab-
lished to itself within the proposed argument. In a similar case, if the reason and subject 
component of the proposed argument are actually exclusively or exceptionally related to 
each other, and the proposer has not utilized those or violated the definitions of exclusive 
or exceptional relations while proposing the argument, then, we say, the argument is very 
uncertain with a special case. The defect is known as straying-uncommon. 

If the reason is related to more than one subject, and, if those subjects to which the 
reason relates to, are members of a set, which share atleast a commonality between 
one another, then, the existence of object of inference over a particular subject shall 
not be realized because, the proposed reason argues the presence of object of infer-
ence, not to a subject, but to a class of subjects. The proposed argument is still uncer-
tain and the defect is referred as straying-nonconclusive. 

If the object to be inferred stated in the proposed argument has a reversible pres-
ence in the knowledge base of the counter-arguer, i.e., if the argument proposes the 
existence of object of inference over the subject, by supporting it with a reason, and, 
if that object of inference is already proved to be non-existing in the knowledge base 
of the counter-arguer, then, we say, the defect stultified is present in the proposed 
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argument. Because, at this point, the counter-arguer is unable to decide which state of 
existence (presence or absence) of object of inference is valid. 

If the argument supplies a reason (reason1) for the existence of object of inference, 
and the counter-arguer has another reason (reason2) recorded in its own knowledge 
base which supports the non-existence of object of inference over the subject, and, if 
both the reasons are directly related to the respective state of object of inferences, 
then, we say, the defect antithetical is said to exist. In other words, if there are two 
different reasons, one which directly supports the existence of object of inference as 
mentioned in the submitted argument, and the other, which directly supports the non-
existence of object of inference according to the counter-arguer’s opinion, then, both 
the reasons said to counter-balance each other. Therefore, this defect is known as 
counter-balanced or antithetical. 

If the argument states the existence of object of inference by supporting with a rea-
son, and in the counter-arguer’s perspective, that reason and object of inference have 
no direct relation with each other, then the argument loses its strength. The support 
provided by the arguer is a weak support. The argument has to be rejected blindly 
from discussion. If the reason stated in the argument as a support for object of infer-
ence, is invariably related to the object of inference, then, the proposed argument shall 
be accepted beyond a formal proof, because of the invariable presence of reason with 
object of inference. As discussed earlier, in section 1, the presence of invariableness is 
a special mechanism utilized for proving arguments in discussions. 

If the arguer proposes only a single reason for the support of object of inference, 
thinking that the invariableness between both would prove the entire argument and if 
there is no invariable connection between the reason and object of inference, accord-
ing to the knowledge perspective of the counter-arguer, then, here comes a difference 
of opinion with respect to the invariable relation between arguer and counter-arguer. 
Both agree that they knew about every other information related to the proposed ar-
gument but does not agree with respect to invariable concomitance. Therefore, from 
the viewpoint of counter-arguer, the argument is said to have the defect, unestablised 
to invariable concomitance. 

If the argument supports the existence of object of inference with a valid reason, and 
if the same reason is supporting only the non-existence of the same object of inference, 
according to the counter-arguer’s knowledge base, then, there is a conflict between the 
arguer and counter-arguer. The situation is very uncertain, as to whose knowledge is 
valid. This is a very common situation where we see people objecting to other’s opin-
ions. Therefore, the counter-arguer may refer to the defect as straying-common. 

If the argument supports the existence of object of inference with a valid reason, 
and if the same reason is invariably related to the non-existence of object of inference, 
according to counter-arguer, then, both of them are said to contradict each other’s 
opinion. We refer to this defect as adverse.   

The following section provides a case study for revealing defects from sample ar-
guments used in argument gaming. 

7   Case Study 

We formulated 9 sample arguments over which the defect analysis is performed and 
the results are tabulated (refer Tables 2 and 3). These arguments are not specialised in 



254 G.S. Mahalakshmi and T.V. Geetha 

any domain and carry simple statements which revolve around world knowledge of 
any arguing entity. If the information is not found in the knowledgebase the maxi-
mum weight of a concept / relation in the knowledge base is given as a defect value. 
From implementation statistics, we shall conclude that, defect value is max. when the 
knowledge base is refreshed (and a defect is found) on a larger scale. 

Table 2. Splitting of Argument Elements in sample arguments 

 
Arg. 
Id Argument  Subject 

object of 
inference reason 

1 sky_lotus has fragrance sky_lotus fragrance Nil 

2 artificial-rose has fragrance artificial-rose fragrance Nil 

3 lily has fragrance lily fragrance Nil 

4 mountain has fire due_to smoke mountain fire smoke 

5 penguin fly because it is-a bird penguin fly Bird 

6 
bats are viviparous because they are 
mammal 

bat viviparous mammal 

7 
Falls does not have fire when there 
is smoke 

falls fire smoke 

8 
Falls does not have fire when there 
is smoke 

falls fire smoke 

Table 3. Argument Defects 

 
Arg. Id 

Status in KB Defect Category & Type Status in KB 
 
1 concept doesn't exists 

HC1 
Unestablished to subject concept doesn't exists 

2 concept exists, fragrance as a 
quality(negation) 

HC7 
Unestablished to itself

concept exists, fragrance as 
a quality(negation) 

3 concept and quality exists No Defect concept and quality exists 

4 Fire, smoke exists as con-
cepts. No invariable relation

HC8 
Unestablished to invariance

Fire, smoke exists as 
concepts. No invariable 

5 
Penguin and bird exists as 
concept. Exclusive quality: 
fly in negation 

HC4 
Straying Uncommon 

Penguin and bird exists as 
concept. Exclusive quality: 
fly in negation 

6 
Bat, mammal and bird exist 
as concept. Mammal-
viviparous, bird-~viviparous 

HC2, HC5 
Antithetical  

Bat, mammal and bird exist 
as concept. Mammal-
viviparous, bird-~viviparous 

7 

Falls and smoke exist as 
concept. Absence of fire as 
concept. Direct relation 
between fire and smoke 

HC1, HC5 
Straying Common  

Falls and smoke exist as 
concept. Absence of fire as 
concept. Direct relation 
between fire and smoke 

8 

Falls and smoke exist as 
concept. Absence of fire as 
concept. Invariable relation 
between fire and smoke 

HC1, HC6 
Adverse 

Falls and smoke exist as 
concept. Absence of fire as 
concept. Invariable relation 
between fire and smoke 
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Fig. 2. Defect Analysis - Results 

Argument Defect Analysis - Statistics
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Fig. 3. Ontology Statistics of Argument Defect Analysis 

Therefore, besides identifying the defects [8], the defect exploration algorithm [8] 
also classifies the identified defects into various defect types according to the element 
of argument from which the defect has originated. Figure 3 depicts the quantity of 
concepts and relations refreshed during argument analysis and Figure 2 depicts the 
harvested defect values. The levels of knowledge refreshed in the knowledge base 
also contribute to the analysis of defects in arguments.  

8   Conclusion 

The aim of this paper is to obtain a formal definition for reason fallacies present in 
the arguments. The formal definitions were inspired by Indian logic approach of 
interpreting arguments during ‘tarka’ methodology of argumentative discussions. 
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The objective is to utilize the presence of fallacies in the reason or probans of the 
submitted argument for further generation of counter-arguments. In future, intro-
ducing argument fallacies from the western philosophy, identifying the conceptual 
connection of western and Indian methodology of fallacies of argumentation and 
arriving at a hybrid argument gaming model is of our interest. 
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Abstract. In his excellent paper, Nāgārjuna as anti-realist, Siderits
showed that it makes sense to perform a connection between the po-
sition of the Buddhist Nāgārjuna and contemporary anti realist theses
such as Dummett’s one. The point of this talk is to argue that this con-
nection is an important one to perform for one’s correct understanding
of what Nāgārjuna is doing when he criticizes the contemporary Indian
theories of knowledge and assertion, first section, but as soon as the the-
ories of argumentation are involved, this connection can be implemented
in a better way from an other anti realist perspective, namely the one of
Dialogical logic (Erlangen school), in which the signification is given in
terms of rules in a language game.

The philosophical issues are to hold an interpretation of the type
of assertion performed by Nāgārjuna. We here aim at making a rational
reconstruction of his chief claim ‘I do not assert any proposition’ in which
a proposition is considered as the set of its strategies of justification.

As for the last section, the point will be to apply these analyses to
Buddhist practice. We will in this section consider the conventional char-
acter of human activities as the fact that any speech act is performed
within a dialogue under ad-hoc restrictions; and the question of one’s
progress in the soteriological path to liberation will be asked1.

1 Nāgārjuna on Theories of Knowledge

1.1 The Dependent Origination: An All-Inclusive Version of
Causation

Nāgārjuna, one of the most influential thinkers of Buddhism and the founder
of the mādhyamika school, the school of the Way of the Middle, developed
in the second century AC a criticism of the contemporary Indian theories of
knowledge and assertion. The key-concept of these criticisms is the concept of
‘dependent origination’ (prat̄ıtya-samutpāda) as taught in the sūtras of the

1 I would like to keenly thanks all members of the referee, which have helped me a lot
throughout this reconstruction of Nāgārjuna’s thought.

R. Ramanujam and S. Sarukkai (Eds.): ICLA 2009, LNAI 5378, pp. 257–268, 2009.
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prajñā-pāramitā, the ‘Perfection of Wisdom’. The dependent origination is a
technical Buddhist expression involving particular definitions of the notions of
causality and contingency: there is not a chain but a web of causation such that
the existence of a thing is contingent upon the existence of every other thing.
For example, the existence of a tree is dependent upon the existence of a seed
and upon the existence of wind, water, ground, and so on. In turn, the existence
of the seed itself is also dependent upon the existence of the tree from which it
comes and upon the existence of wind, water, ground, and so on. The list of the
causes and conditions of existence of a thing can never be ended. Now, this tree
is, in Nāgārjuna’s perspective, nothing but the set of its conditions of existence.
Thinking that there is an independent tree is thinking that there is a closed set
of such conditions of existence, which is misleading. The Buddhists tell us that
we have to think of reality as a generalized web of such dependencies and that
the task of enunciating them is a never-ending task.

1.2 The Epistemic Level

The question therefore arises concerning everyday life practice: how is it that
we do talk about the world and that we do have knowledge that governs our
practice? The Buddhist answer amounts to saying that there is a decision from
the knowing subject to carve out in the generalized web of interdependencies
that she will call ‘an object’. Therefore, she is always engaged within the choices
she has made when she perceived. From this, her own conceptions are always
engaged when she knows a fact of the world. In other words, the facts of the
world and the knowledge I have of them can in no way be independent from
each other. As Jay Garfield2 puts it:

To say that an object lacks essence, the Madhyamika philosopher will
explain, is to say, as the Tibetans like to put it, that it does not exist
“from its own side” [...] that its existence depends upon us as well.

Now, one of the great consequences of the fact that my knowledge depends
on the context in which it has been gained is that there is no such context as
the universal one, in which the proposition at stake could have been firmly es-
tablished. In other words, every proposition can be questionable from a different
perspective. This is the main observation that is pointed out in the chief work of
Nāgārjuna, namely, the Mūla-madhyamaka-kārika, the ‘Fundamental Stances of
the Middle Way’. In this work, he shows for each universally alleged knowledge
statement of an other Indian school of thought that it is questionable.

We immediately understand that the statement saying that ‘every proposition
can be disputable from an other perspective’ is itself disputable. This is essentially
in order to avoid this type of criticisms that Nāgārjuna wrote the Vigraha-
vyāvartan̄ı, the ‘Treatise to Prevent from Vain Discussions’. But in these lines,
he supplies with an answer to these criticisms far much interesting than the
classical problem of self reference. We here aim at a rational reconstruction of
the strategy of Nāgārjuna in this work.

2 In [[4�p. 220]].
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2 Nāgārjuna on Theories of Assertion

In the Vigraha-vyāvartan̄ı, Nāgārjuna does not implement his ideas directly with
regard to the process of acquisition of knowledge, but to the process of assertion
and negation of a given thesis within a debate. The link between the two could
easily be reformulated in the following way: the justification of an assertion in a
philosophical debate is but the demonstration of the fact that what is asserted
is rationally guaranteed, that is to say that it is the subject of knowledge.

2.1 The Art of Making No Assertion

A New Approach to Knowledge Statements. First of all, let us exam-
ine again the dependency between my beliefs and the facts of the world. In
order to have a better idea of what is at stake, let us focus on current theories
that deal with similar conceptions, notably the anti realist position. Anti realist
philosophers claim that, since there is no transcendent state of affairs, being
epistemically guaranteed can not amount to being in adequacy with reality. The
same important consequence has to be drawn from the Nāgārjunian conception,
according to which I can not know something that exists independently of my
knowledge of it. From this, Nāgārjuna is committed to the position that it is
possible to give an account for the process of acquisition of knowledge that is
different from the account in terms of adequacy with reality. And this precisely
because we can never be sure of what is reality per se.

At a second stage, anti realist philosophers developed a new conception of
knowledge according to which being epistemically guaranteed amounts to being
justifiable. Here, the justification of knowledge is a conventional matter, it is a
coherentist and not a foundationalist process and allows for a plurality of justified
types of knowledge. In terms of assertion, this means that ‘ϕ is true’ means ‘ϕ
is justifiable’. And the semantic anti realist position is leading to the recognition
of a plurality of ways in which an assertion can be said to be ‘justifiable’.

Our claim is that Nāgārjuna speaks in terms of justification too. Notably
because Nāgārjuna is in line with the Indian tradition of argumentation:

– First of all, the structure itself of the Vigraha-vyāvartan̄ı is argumentative.
More precisely, no position is put forward without its set of justifications.
What is more, these justifications consist in the answer to all potential at-
tacks of a conceivable opponent.

– Moreover, within the classical Indian tradition, something is admitted as
knowledge if and only if it has been gained by means of a pramān. a, a ‘crite-
rion for justified knowledge’. As argued, successfully in my view, by Siderits
in [[9]] and by Waldo in [[11]], Nāgārjuna does not in the Vigraha-vyāvartan̄ı
call into question the possibility but the uniqueness of the pramān. a account.
Actually, Nāgārjuna is himself using pramān. a. What is interesting for our
subject is that this theory of pramān. a has its roots within a theory of con-

sensus. More precisely, the Naiyāyikas, who are the main interlocutors of
Nāgārjuna in the Vigraha-vyāvartan̄ı, consider that the right process to dis-
criminate between beliefs that are knowledge and beliefs that are not is a
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consensus, whose task is to find an equilibrium between the beliefs one has
about the world and successful practice. And, as I said, Nāgārjuna is happy
with it, he is not denying this approach but he is indicating that it is in
nature coherentist, on-coming from the decision of a scientific community,
and not foundational, on-coming from the structure of the world itself.

Therefore, the kind of semantic anti realism we are advocating here is more in
line with Brandom’s inferentialism, as outlined in [[2]], than in line with Dum-
mett’s approach, advocated in [[3]]. The main difference between the two is that
Brandom performs what could be called a ‘social turn’. According to Brandom,
the nature of assertion consists in the fact that in asserting, the speaker achieves
the following institutional effect: she undertakes the responsibility of justify-
ing her assertion. Following the lines of Brandom3, the important point here is
therefore to analyse assertion as commitment. We claim that what Nāgārjuna
is saying, though different in nature, is governed by the same rules that govern
Brandom’s inferentialism, namely:

– The fact that the signification of a proposition cannot be specified indepen-
dently from the subject who enunciates this proposition ; and a switch from a
referentialist semantics to a semantics in terms of conditions of assertability.
This is a consequence of Nāgārjuna’s position that nothing is independent.

– A conception of the act of assertion in which ‘to assert ϕ’ means ‘to commit
oneself to give justifications for ϕ’. Here, the notion of justification becomes
basic. This reading follows from the fact that no position in the Vigraha-
vyāvartan̄ı is advocated without the set of all the strategies one could need
to defend it. In other words, any position advocated in this work is present
along with the set of all the strategies needed to make the point in a given
discussion. Notice here that strategies are not the same depending on the
identity of the opponent at stake4.

The Dialogical Approach. In order to advocate this, we are going to make use
of a formalism, namely Dialogical Logic, whose format is very likely to express
Nāgārjuna’s approach. This formalism is very straightforward, first because of
its dialogical presentation ; and secondly for its anti realist motivations. Other
conclusive connections will be stressed in the course of this section. The approach
of dialogical logic developped by Rahman, as shown by [[8]], is a modified version
of the constructivist approach of Lorenz and Lorenzen (Erlangen school), [[7]]
enhanced with a pragmatist orientation. It deals with the features of semantic
anti realism just mentioned and measures the signification of a sentence by means
of its conditions of assertability, that is to say by means of the set of all the
possible strategies when discussing the proposition expressed by the sentence in
question.
3 In [[2]], Chapter 6: ‘Objectivity and the Normative Fine structure of Rationality’.
4 For example, reductio ad absurdum arguments are used in the Mūla-madhyamaka-

kārika against an Abhidharmika opponent, while petitio principii arguments are the
tool in the Vigraha-vyāvartan̄ı, where they are adressed to a Naiyāyika opponent.
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More precisely, what is at stake in this approach by means of a formal proof
is to establish the validity of a sentence (which content is a proposition). Non-
formally speaking, a formal proof is a game between two players, respectively
called the Proponent and the Opponent, that ends when all the justifications of
the sentence at issue are given or when no further move is allowed. The mark
of the validity of a sentence is the presence of a winning strategy. There is a
winning strategy when the Proponent wins the dialogue whatever the choices of
the Opponent may be.

We can already see that a very important feature of this dialogical approach of
logic is the asymmetry between the Proponent and the Opponent. Here, only the
Proponent is performing genuine assertions. This is due to the ‘formal restriction
rule’ according to which only the Opponent can assert atomic formulas or, to
put it in a different way, can assert elementary justifications. It is important
to keep in mind here that atomic formulas are the parts of a formula that is
not analysable through logical tools. We therefore are unable to prove them
logically. Yet, asserting them by presupposing them would be but justifying a
proposition within a particular case and, once more, we here deal with validity
and the dialogues are formal dialogues. The Dialogical proposal is therefore to
allow the use of such an elementary justification if and only if the Opponent
has conceded it.

Now, as the Opponent’s role is to defeat the Proponent’s assertion, he will
perform as few concessions as he can and will introduce the minimal set of atomic
formulas. Testing the formal justification of a proposition within this type of
dialogue is thus like convincing the most acute interlocutor. Hence, when the
Proponent wins, the set of plays of the Opponent represent but the construction
of the minimal set of presuppositions needed in order to prove the validity of the
sentence (in order to assert that a given proposition holds in all situations); they
do not represent the moves of a ‘real’ player. Let us remark here that the builder
of the minimal set of conditions of assertability is itself by definition asserting
without restriction at all. This is why he is therefore not to be considered as to
be performing assertions.

What we will recall of this Dialogical approach for our purpose are the fol-
lowing features:

– A formal proof is put in the form of a dialogue, that is to say of a linguistic
interaction. This is part of the pragmatist sensitivity.

– By means of the moves of the pseudo-player Opponent in a dialogical play,
asserting a proposition amounts to asserting only the set of its justifications,
that is to say, the set of its conditions of assertability. This is a consequence
of the constructivist anti realist approach.
From this, propositions are the forms of an achieved dialogue5. Hence, as-
serting a proposition amounts to asserting the entire dialogue that was used
to assert it. As Keiff [[6]] put it:

5 This conception is shared by linear logic and ludic logic as developed by Girard and
associates (see for example [[5]]). The study of these frameworks could also be very
fruitful to our understanding of Nāgārjuna’s position.
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The fundamental idea of Dialogical semantics could be enunciated through
the following principle:

”The signification of an assertion which has its type entirely given by the
form of the dialogue in which it has been asserted by a speaker, provides,

for a critical interlocutor, with all the necessary justifications to succeed in
his assertion”

Interpreting Nāgārjuna. These features of the Dialogical approach lead us
to conceive it as a really adapted tool for one who wants to discuss Nāgārjuna’s
position on theories of assertion. Indeed, if a proposition is a dialogue brought to
fruition, then any dialogue whose initial thesis is defective does not contain

any proposition in that very sense
6 because:

To assert is to commit oneself to provide with justifications

And in a formal game, this means to provide with justifications in any situation.
In the Indian context, we deal with such a formal game when we speak about the
process of the justification of an inference because an inference is a tool to get
assured knowledge, that is to say unquestionable knowledge. This universality
seems to be exactly what Nāgārjuna refutes when he says:

������� ���	�
 ���
���� 
��
�	�
 ������	�� �

mad̄ıyam-api vacanam prat̄ıtya-samutpannatvān nih. svabhāvam.

[VV, v.22]
(Nāgārjuna’s self commentary on the verse 22.)

My speech, because it is dependent on conditions, is contextual (literally ‘is
without a self-sufficient nature’)7.

Nāgārjuna is saying that the validity of any speech act does always depend on
the chosen focus within which I assert. And from this, to prevent oneself from an
illusory universal assertion amounts to be aware of the fact that such a formal
dialogue can never be finished and, therefore, that there are no proposition in
that very sense. And this provides us with a means to understand the famous:

��� �	�� ����	 ��	��� �� �� �� ������� �
�	��� � �� ����	 �

6 Notice here that the Sanskrit expression for ‘thesis’ is ‘siddha-anta’, ‘what is estab-
lished at the end’.

7 In this talk, each quotation of Nāgārjuna is from my own translation, taken from my
Master Dissertation, Nāgārjuna et le pluralisme logique, at the University of Lille in
September 2004. I had for this translation mainly worked with the edition of E.H.
Johnston and A. Kunst, published in 1978 with the excellent translation of Professor
Bhattacharya, see [[1]].
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yadi kācana pratijñā syān me tata es.a me bhaved dos.ah. |
nāsti ca mama pratijñā ||

[VV, v.29]

If I had asserted any proposition, this fault (consisting in the paradox of
self-reference) would be mine,

but I do not assert any proposition.

We are therefore able to say that when Nāgārjuna says that he does not make
any assertion, he is not saying that he says nothing, he is very likely to say that
he will not commit himself in the formal process of justification of his positions.
The reasons of this refusal are that such a formal proof with a universal claim
is vain. A formal proof can in no way be complete. Nāgārjuna’s sentence ‘I do
not assert any proposition’ can therefore be understood this way ‘No sentence
is ‘valid’ in the sense of ‘universal’ ’. We can speak together and understand
what a given language conveys but we have to keep in mind that this is the
conventional level, that at every moment things can be discussed and that the
one who wants to reach an indisputable claim whatsoever will be defeated.

At the verse 24, Nāgārjuna is performing a terminological switch from pratijña
(proposition) to vāda. Traditionally, the term vāda refers to the philosophical
debate or to a claim in a discussion. Now, he have shown that in these lines,
Nāgārjuna is performing a speech act that is not fully justifiable. We therefore
propose to render this act by the term ‘position’ in the sense that it is something
that depends on hypothesis, something that is still disputable.

We are going to follow the same line in our understanding of Nāgārjuna’s
treatment of negation.

2.2 The Art of Making No Negation

A Constructivist Negation... If the negation of a proposition is the assertion
of the negated proposition, then this problem also affects the act of negating:
the negation of a proposition is always questionable. The problem here is that
Nāgārjuna can not firmly establish his criticisms if they are in the negative form.

In verses 61 to 63, Nāgārjuna explains that negating a thing involves the
propositional attitude he wants to get rid of because the act of negating is but
the act of asserting the negated thesis. Hence, he has to say:

�������	�� �	 	�
 �
�������	��
���!� �� 
��	 �"��� �

pratis.edhayāmi nāham. |
pratis.edhayāsi ity adhilaya es̄a tvayā kriyate ||

[VV, v.63]

I do not negate anything,
You foolishly calumniate me when you say ‘you negate’.
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Now the question remains: what sort of speech act is he performing then?

#$ �	���� �	%����� �� ��� ��� �

atra jñāpayate vāg asad iti tan na pratihanti ||

[VV, v.64]

Here, the speech makes it known as false, it does not negate.

In other words, the attack of a given thesis does not lead to the assertion of the
negated thesis, but leads to show that the assertion of the thesis is faulty. What
Nāgārjuna performs here is an other type of speech act which does not imply a
propositional attitude as the assertion does. We will call this act a denegation.
Characterizing this act is the goal of the following section.

...and the Operator of Denegation. In the Dialogical approach of logic as
introduced above, Keiff developed in [[6]] a negation which encodes a very similar
process.

First of all, what is at stake is to understand a type of negative speech act as
the indication of the failure of an act of assertion. As such, this is a constructivist-
like negation according to which ‘non A’ is to be read ‘there is no correct proof of
A’ and not ‘there is a correct proof of non A’. What is more, unhappy with the
standard way to encode this reading in a formal proof, that is to say unhappy
with the interpretation of ‘non A’ as ‘A entails a contradiction’, Keiff makes a
step that will help us here8. More precisely, he develops another reading in which
‘non A’ behaves like an operator of denegation and has to be read ‘if you
assert A, I will show you that your formal proof of A is not sufficient’.

Now, it is evident that this sticks to what is at stake in Nāgārjuna’s approach
on theory of assertion when he points out the fact that the signification of an as-
sertion is never unchallenging data. Here, it is worth mentioning that Nāgārjuna
makes use of reductio ad absurdum arguments, but never uses them in order
to establish the opposed thesis. He always uses them in order to show that the
attacked thesis is no a justified thesis and that it does not hold. Moreover he
does not, in the Mūla-madhyamaka-kārika, develop a whole meta theory about
the fact that every thesis can be questionable, but he takes one by one every
metaphysical thesis in order to show how they can each be disputed.

3 Nāgārjuna and Buddhist Practice

3.1 Dialogical Conclusions and the Everyday Life Strategies

To summarize, Nāgārjuna is saying that we are performing only unfulfilled as-
sertions (respectively negations). Speech acts are never assertions (negations) in

8 His motivations were different,since he aimed at introducing a notion of relevance
that could not be encoded within this standard interpretation.
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the strict sense but positions (denegations). The reason for it is that to assert
a proposition in a philosophical discussion is to commit oneself to give the jus-
tifications for this proposition in such a manner that it will be unquestionable
whoever the interlocutor may be while we have to be aware of the fact that
the signification and validity of any sentence have their roots in a net of condi-
tions that cannot be entirely enumerated: an assertion (negation) is always still
dependent on a hypothesis that is not justified.

Hence, my claim is to say that Nāgārjuna does not call into question the fact
that a set of statements expressing epistemically guaranteed beliefs can possibly
be considered as a set of statements expressing ‘knowledge’ (which would have
been a skeptical position). What he does question is rather the origin of this
guarantee. According to him, the epistemic guarantee is not the agreement be-
tween my set of beliefs and reality, but the agreement between my set of beliefs
and the successful practice of a community (which is more like an anti realist
position in line with Brandom’s inferentialism).

In this reading, the Dialogical approach is useful because (in addition to its
dialogical frame directly able to express Nāgārjuna’s position) it considers a
content of knowledge as the practice of an epistemic agent. This is the idea
captured by the fact that ‘a proposition is the form of an achieved dialogue’
or, in other words, by the fact that ‘a proposition is the set of its conditions
of assertability by a speaker’. Moreover, the Dialogical approach provides with
technical tools to express this conception of a proposition, and to express the
fact that if the agreement is to be between my set of beliefs and the successful
practice of a community, then there can be several distinct types of agreement.
And this is what we are going to develop in this section.

First of all, from the Dialogical perspective, Nāgārjuna’s claim amounts to the
following claim: ‘Everything is falsifiable’. Which is not the same claim as
‘everything is false’. It is important to keep in mind the asymmetry between the
two players of a linguistic game as captured by a Dialogical game. More precisely,
the position of Nāgārjuna could be reformulated in this frame by saying that the
Proponent can never have a winning strategy, whether she asserts or denies
something. Only the Opponent can have a winning strategy and he always has.
There is no achieved dialogue, no more is there a proposition because there is no
form of an achieved proof. More formally, let us consider a consequence relation
|= (extension to a syntactic derivability relation is straightforward). To say that
|= is trivial usually amounts to say that for any well formed formula ϕ and ψ,
ϕ |= ψ9. But one could also define a dual concept of triviality, namely that for
any ϕ and ψ, ϕ �|= ψ.

If one is to take seriously Nāgārjuna’s claim that no assertion is possible,
then one cannot escape the conclusion that the logic he advocates is trivial in
the second sense, i.e. nothing can successfully be defended against all possible
criticisms, not even logical truths for there is not any.

While the whole logic does not seem to allow for a lot of fruitful developments,
a fragment of it, namely the fragment in which the Opponent choses to play

9 Equivalently, if ϕ is T (‘top’), this means that any ψ is valid.
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within a sub class of models (a focus), will do. More precisely, we here deal with
a sub system in which there are validities. One can even play within classical
rules10. The only restriction here is that there are no ultimate validity, that is
to say, there are no validity against an Opponent that plays the best possible
moves. In other words, the Proponent can never have a winning strategy against
an Opponent who plays the best possible moves. But he can perfectly win against
a not acute or comprehensive one. This is why we do learn and communicate
in everyday life (vyavahāra). The Proponent can win, but he will manage to do
so only against an Opponent that grants him concessions. These restrictions are
ad-hoc (conventional) and they do define a certain type of Opponent. Nāgārjuna
does not develop this, but the Jainas will do in their naya-vāda, their ‘theory on
perspectives’, in which each set of restrictions of the Opponent will represent a
given Indian school of thought.

3.2 The Art of Making Indications

We have been until now explaining Nāgārjuna’s position, but we have not yet
come to the defense he performed against the ones who argue that the position
that everything is disputable is itself disputable. In order to have another ap-
proach to this criticism, I would like to come back to the asymmetry between
the Proponent and the Opponent in the Dialogical approach. The Proponent is
the only one to have commitments when asserting a proposition. Everything
‘asserted’ by the Opponent, is ‘asserted’ at the meta theoretical level. More
precisely, the status of his pseudo-assertions and pseudo-commitments is noth-
ing else that the indication of what the Proponent needs to justify what he is
asserting.

Nevertheless, Nāgārjuna is ‘protected’ from asserting just as long as he is not
trying to defend as a thesis the positions he has in his Vigraha-vyāvartan̄ı be-
cause it is evident that the paradox is present whenever what we are performing
at the meta theoretical level is played within the propositional level. Nāgārjuna’s
‘I do not assert any proposition’ is precisely the recognition of the fact that if
he had put his meta theoretical positions within a discussion for getting justifi-
cations, they would have been challenged. Hence, he is not playing them within
a philosophical disputation, but he is taking the only means he has, namely
practice. Through this practice, he can show for any thesis in a discussion, that
this thesis cannot successfully be defended against all possible criticisms, which
is the task of the Mūla-madhyamaka-kārika. But this is important to keep in
mind that doing so Nāgārjuna is playing at the ‘object language level’ in a very
poor sense: he only takes the pseudo-interlocutor role of the Opponent and, in
each situation, shows how to falsify a sentence (which is certainly not the same
thing as trying to establish a negative sentence!). I said ‘in a very poor sense’
because this role is but the indication of a metalanguage position. The same way,
in his Vigraha-vyāvartan̄ı, Nāgārjuna stays at the level of the metalanguage to

10 This is a counterargument to the thesis according to which Nāgārjuna holds para
consistent thesis.
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indicate that he will not go at the level of the language object for any (positive
or negative) sentence11.

3.3 Buddhist Soteriology

The question is therefore the following: how powerful is the act of Nāgārjuna
when he is pseudo-asserting? To answer this, it is useful to keep in mind the
deep thesis of John Woods, in [[12]], according to which a ‘fallacy’ is not a fault
of reasoning. This is rather a reasoning such that there is no best reasoning for
men, that is for rational agents with limited capacities.

This thesis takes on a new meaning in this Indian theory. Here, the speech
act fails to be an assertion. It is but a position in a debate and holding such a
position is not considered as a fault of reasoning: it is the right and fruitful way
to conduct a reasoning. Speech acts are useful even if they are not propositions.
More precisely, language is useful for one to posit himself or somebody else within
another web of conditions, within another perspective from which she will be able
to notice and signify other things. Language as a mere conventional activity is
useful to posit the interlocutor within a perspective in which she will be able to
experience useful things for her emancipation. In this argument, Nāgārjuna uses
the parable of an artificial man:

����&��	�	� �'	 ��$�	� �$���
 (
�
 #�)	 �
 �
����&��� ��� ��	�
 ������
 ��� ����
 ���
 �

nirmitakāyām. yathā striyām. str̄ıyam ity a-sad-grāham |
nirmitakah. pratihanyāt kasyacid evam. bhaved etat ||

[VV, v.27]
(Nāgārjuna’s self commentary of the verse 27.)

<What I am doing with my speech> is as if an artificial man would prevent
from the wrong perception of a man <who would believed> ‘this is a woman’

where there is an artificial woman

Now, the fault occurring at the semantic level is present at the practical
level too : if the assured character of an assertion is something debatable in the
object language and if the metalanguage can be put and played within the object
language, then it is the target of the same objections and we can not know with
certitude this metatheoretical fact, for example, that we are progressing in our
knowledge.

Our proposal here is to say that this is precisely why we have to practice.
More precisely, we can not assert in a propositional way that we are progressing,
and it is important not to do so, but we can experience it.

That is why Nāgārjuna do not go further in its theory of assertion. Following
the example of the Buddha, remaining silent on metaphysical questions is a
11 Here we can think about Tarski’s work in which he explains that the object language

is strictly included within the metalanguage precisely because of such situations, [[10]].
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crucial step for him to undergo12. In conclusion, our claim is that even if it is not
developed, the technical and philosophical consequences of such a position are:

– A theory of assertion as act of commitment ; and a theory of the forces of
the assertion (assertion versus position, and negation versus denegation).

– To redefine the role attributed to logic. More precisely, it seems that what
is at stake is the transition:
• From a vision of inference (inductive and deductive) as what legitimates

the fact that a proposition is considered as an assured knowledge
• To a vision in which argumentation has the pragmatic function to vali-

date some inferences in relation to a given perspective.
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