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Preface

This volume contains the papers presented at ICLA 2009: Third Indian Confer-
ence on Logic and Its Applications (ICLA) held at the Institute of Mathematical
Sciences, Chennai, Januay 7-11, 2009.

The ICLA series aims to bring together researchers from a wide variety of
fields that formal logic plays a significant role in, along with mathematicians,
philosophers, computer scientists and logicians studying foundations of formal
logic in itself. A special feature of this conference are studies in systems of logic
in the Indian tradition, and historical research on logic. The biennial conference
is organized by the Association for Logic in India.

The papers in the volume span a wide range of themes. We have contributions
to algebraic logic and set theory, combinatorics and philosophical logic. Modal
logics, with applications in computer science and game theory, are discussed. Not
only do we have papers discussing connections between ancient logical systems
with modern ones, but also those offering computational tools for experimenting
with such systems. It is hoped that ICLA will act as a platform for such dialogues
arising from many disciplines, using formal logic as its common language.

Like the previous conferences (IIT-Bombay; January 2005 and 2007) and
(Jadavpur University, Kolkata; January 2007), the third conference also mani-
fested this confluence of several disciplines. As in the previous years, we were
fortunate to have a number of highly eminent researchers giving plenary talks. It
gives us great pleasure to thank Johan van Benthem, Rajeev Goré, Joel Hamkins,
Johann Makowsky, Rohit Parikh, Esko Turunen and Moshe Vardi for agreeing
to give invited talks and for contributing to this volume.

The Programme Committee, with help from many external reviewers, put in
a great deal of hard work to select papers from the submissions. We express our
gratitude to all members for doing an excellent job and thank all the reviewers
for their invaluable help.

ICLA 2009 included two pre-conference workshops: one on Algebraic Logic
coordinated by Mohua Banerjee (IIT Kanpur) and Mai Gehrke (Radboud Uni-
versiteit, Nijmegen), and another on Logics for Social Interaction coordinated by
Sujata Ghosh (ISI Kolkata), Eric Pacuit (Stanford University) and R. Ramanujam
(IMSc Chennai). We thank the organizers as well as the speakers in the workshops
for contributing so significantly to the programme.

The conference was held at the Institute of Mathematical Sciences (IMSc),
Chennai. We thank IMSc and the Organizing Committee for taking on the re-
sponsibility. Special thanks are due to Sunil Simon (IMSc) for help in preparation
of this volume. The Easychair system needs special mention, for its tremendous
versatility.

We also thank the Editorial Board of the FoLLI series and Springer for pub-
lishing this volume.

October 2008 R. Ramanujam
Sundar Sarukkai
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Decisions, Actions, and Games:
A Logical Perspective

Johan van Benthem

Amsterdam & Stanford
http://staff.science.uva.nl/~johan

1 Introduction: Logic and Games

Over the past decades, logicians interested in rational agency and intelligent
interaction studied major components of these phenomena, such as knowledge,
belief, and preference. In recent years, standard ‘static’ logics describing informa-
tion states of agents have been generalized to dynamic logics describing actions
and events that produce information, revise beliefs, or change preferences, as
explicit parts of the logical system. [22], [I], [12] are up-to-date accounts of this
dynamic trend (the present paper follows Chapter 9 of the latter book). But in
reality, concrete rational agency contains all these dynamic processes entangled.
A concrete setting for this entanglement are games — and this paper is a survey
of their interfaces with logic, both static and dynamic. Games are intriguing
also since their analysis brings together two major streams, or tribal communi-
ties: ‘hard’ mathematical logics of computation, and ‘soft’ philosophical logics
of propositional attitudes. Of course, this hard/soft distinction is spurious, and
there is no natural border line between the two sources: it is their congenial
mixture that makes current theories of agency so lively.

We will discuss both statics, viewing games as fixed structures representing
all possible runs of some process, and the dynamics that arises when we make
things happen on such a ‘stage’. We start with a few examples showing what we
are interested in. Then we move to a series of standard logics describing static
game structure, from moves to preferences and epistemic uncertainty. Next, we
introduce dynamic logics, and see what they add in scenarios with information
update and belief revision where given games can change as new information
arrives. This paper is meant to make a connection. It is not a full treatment of
logical perspectives on games, for which we refer to [13].

2 Decisions, Practical Reasoning, and ‘Solving’ Games

Action and Preference. Even the simplest scenarios of practical reasoning
about agents involve a number of notions at the same time:

Ezample 1 (One single decision). An agent has two alternative courses of action,
but prefers one outcome to the other:

R. Ramanujam and S. Sarukkai (Eds.): ICLA 2009, LNAT 5378, pp. 1[22]2009.
© Springer-Verlag Berlin Heidelberg 2009



2 J. van Benthem

a/\b
FAPBN
A proto-typical form of reasoning here would be the ‘Practical Syllogism’:
1. the agent can do both a and b,

2. the agent prefers the result of a over the result of b, and therefore,
3. the agent will do (or maybe: should do?) b.

This predictive inference, or maybe requirement, is in fact the basic notion of
rationality for agents throughout a vast literature in philosophy, economics, and
many other fields. It can be used to predict behaviour beforehand, or rationalize
observed behaviour afterwards.

Adding Beliefs. In decision scenarios, preference crucially occurs intertwined
with action, and a reasonable way of taking the conclusion is, not as knowledge
ruling out courses of action, but as supporting a belief that the agent will take
action b: the latter event is now more plausible than the world where she takes
action a. Thus, modeling even very simple decision scenarios involves logics of
different kinds. Beliefs come in even more strongly when one models uncertainty
about possible states of nature, and one is told to choose the action with the
highest expected value, a probabilistically weighted sum of utility values for the
various outcomes. The probability distribution over states of nature represents
beliefs we have about the world, or the behaviour of an opponent. Here is a yet
simpler scenario:

Ezxample 2 (Deciding with an external influence). Nature has two moves ¢, d,
and the agent must now consider combined moves:

/,C a,d b,c b,d
x Y z U

Now, the agent might already have good reasons to think that Nature’s move
¢ is more plausible than move d. This turns the outcomes into a ‘epistemic-
doxastic model’ [7]: the epistemic range has 4 worlds, but the most plausible
ones are just: x, z, while an agent’s preference might now just refer to the latter
area.

Multi-agent Decision: ‘Solving’ Games by Backward Induction. In a
multi-agent setting, behaviour is locked in place by mutual expectations. This re-
quires an interactive decision dynamics, and standard game solution procedures
like Backward Induction do exactly that:
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Ezample 38 (Reasoning about interaction). In the following game tree, players’
preferences are encoded in the utility values, as pairs ‘(value of A, value for E)’.
Backward Induction tells player E to turn left when she can, just like in our
single decision case, which gives A the belief that this would happen, and so,
based on this belief about his counter-player, A should turn left at the start:

A

1,0

0,100 99,99

Why should players act this way? The reasoning is again a mixture of all
notions so far. A turns left since she believes that E will turn left, and then
her preference is for grabbing the value 1. Thus, practical reasoning intertwines
action, preference, and belief.

Here is the rule which drives all this, at least when preferences are encoded
numerically:

Definition 1 (Backward Induction algorithm). Starting from the leaves,
one assigns values for each player to each node, using the rule:

Suppose E is to move at a node, and all values for daughters are known.
The E-value is the maximum of all the E-values on the daughters, the
A-value is the minimum of the A-values at all E-best daughters. The
dual calculation for A’s turns is completely analogous.

This rule is so obvious that it never raises objections when taught, and it is easy
to apply, telling us what players’ best course of action would be [27]. And yet, it
is packed with various assumptions. We will perform a ‘logical deconstruction’ of
the underlying reasoning later on, but for now, just note the following features:

1. the rule assumes that the situation is viewed in the same way by both players:
since the calculations are totally similar,

2. the rule assumes worst-case behaviour on the part of one’s opponents, since
we take a minimum of values in case it is not our turn,

3. the rule changes its interpretation of the values: at leaves they encode plain
utilities, while higher up in the game tree, they represent expected utilities.

Thus, despite its numerical trappings, Backward Induction is an inductive
mechanism for generating a plausibility order among histories, and hence, it
relates all notions that we are interested in. There has been a lot of work on
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‘justifying’ this solution method. Personally, I am not committed to this partic-
ular style of solving games, but understanding what Backward Induction does
is a logically rich subject, which can be pursued in many ways.

But for now, we step back, and look at what ‘logic of games’ would involve ab
initio, even without considering any preferences at all. So, let us first consider
pure action structure, because even that has a good deal of logic to it, which can
be brought out as such. We will add further preferential and epistemic structure
toward more realistic games in due course.

3 Games and Process Equivalence

One can view extensive games as multi-agent processes that can be studied just
like any process in logic and computer science, given the right logical language.
Technically, such structures are models for a poly-modal logic in the following
straightforward sense:

Definition 2 (Extensive games). An extensive game form is defined to be
a tree M = (NODES, MOVES, turn, end, V) which is a modal model with
binary transition relations taken from the set MOVES pointing from parent to
daughter nodes. Also, intermediate nodes have unary proposition letters turn;
indicating the unique player whose turn it is, while end marks end nodes without
further moves. The valuation V for proposition letters may also interpret other
relevant predicates at nodes, such as utility values for players or more external
properties of game states.

But do we really just want to jump on board of this analogy, comfortable as it
is to a modal logician? Consider the following fundamental issue of invariance
in process theories. At which level do we want to operate in the logical study of
games, or in Clintonesque terms:

When are two games are the same?

Ezxample 4 (The same game, or not?). As a simple example that is easy to
remember, consider the following two games:

A E

L/\R L/\R
R AN

VA

»-Q.\h
~o
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Are these the same? As with general processes in computer science, the answer
crucially depends on our level of interest in the details of what is going on:

1. If we focus on turns and moves, then the two games are not equivalent.

For they differ in ‘protocol’ (who gets to play first) and in choice structure.
For instance, the first game, but not the second has a stage where it is up
to E to determine whether the outcome is q or r.

This is indeed a natural level for looking at game, involving local actions
and choices, as encoded in modal bisimulations — and the appropriate lan-
guage will be a standard modal one. But one might also want to call these
games equivalent in another sense: looking at achievable outcomes only, and
players powers for controlling these:

2. If we focus on outcome powers only, then the two games are equivalent.

The reason is that, regardless of protocol and local choices, players can
force the same sets of eventual outcomes across these games, using strategies
that are available to them:

A can force the outcome to fall in the sets {p}, {q,r},
E can force the outcome to fall in the sets {p, ¢}, {p,r}.

In the left-hand tree, A has 2 strategies, and so does F, yielding the listed
sets. In the right-hand tree, E has 2 strategies, while A has 4: LL, LR, RL
and RR. Of these, LL yields the outcome set {p}, and RR yields {q,r}. But
LR, RL guarantee only supersets {p,r},{q,p} of {p}: i.e., weaker powers.
Thus the same ’control’ results in both games.

We will continue on extensive games, but the coarser power level is natural, too.
Tt is like ‘strategic forms’ in game theory, and it fits well with ‘logic games’ [8]:

Remark 1 (Game equivalence as logical equivalence). In an obvious sense, the
two games in the preceding example represent the two sides of the following
valid logical law

pA(gVr)— (pAqgV(pAT) Distribution

Just read conjunction and disjunction as choices for different players. In a
global input-output view on games, Distribution switches scheduling order with-
out affecting players’ powers.

4 Basic Modal Action Logic of Extensive Games

Basic Modal Logic. On extensive game trees, a standard modal language
works as follows:

Definition 3 (Modal game language and semantics). Modal formulas are
interpreted at nodes s in game trees M. Labeled modalities {(a)¢ express that
some move a is available leading to a next node in the game tree satisfying .
Proposition letters true at nodes may include special-purpose constants for typical
game structure, such as markings for turns and end-points, but also arbitrary
local properties.
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In particular, modal operator combinations now describe potential interaction:

Ezxample 5 (Modal operators and strategic powers). Consider a simple 2-step
game like the following, between two players A, E:

A

a
E E

C

d c d
10'/ \52 3;,/ \04

Player FE clearly has a strategy making sure that a state is reached where p
holds. And this feature of the game is directly expressed by the modal formula

[al(d)p A [b)(c)p-

Letting move be the union of all moves available to players, a modal operator
combination [moves|{moveg)y says that, at the current node, player E has a
strategy for responding to A’s initial move which ensures that the property
expressed by ¢ results after two steps

Excluded Middle and Determinacy. Extending this observation to extensive
games up to some finite depth k, and using alternations 0GOS - -+ of modal
operators up to length k, we can express the existence of winning strategies in
fixed finite games. Indeed, given this connection, with finite depth, standard
logical laws have immediate game-theoretic import. In particular, consider the
valid law of excluded middle in the following modal form

acad .-V 0008 -+
or after some logical equivalences, pushing the negation inside:
goOo v oOod. - - mp,
where the dots indicate the depth of the tree. Here is its game-theoretic import:
Fact 4. Modal excluded middle expresses the determinacy of finite games.
Determinacy is the key property that one of the two players has a winning
strategy. This need not be true in infinite games (players cannot both have one,

but maybe neither has).

1 One can also express existence of ‘winning strategies’, ‘losing strategies’, and so on.
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Zermelo’s Theorem. This brings us to perhaps the oldest game-theoretic
result proved in mathematics, even predating Backward Induction, proved by
Ernst Zermelo in 1913:

Theorem 5. FEvery finite zero-sum 2-player game is determined.

Proof. Here is a simple algorithm determining the player having the winning
strategy at any given node of a game tree of this finite sort. It works bottom-up
through the game tree. First, colour those end nodes black that are wins for
player A, and colour the other end nodes white, being the wins for E. Then
extend this colouring stepwise as follows:

If all children of node s have been coloured already, do one of the fol-
lowing:

1. if player A is to move, and at least one child is black: colour s black;
if all children are white, colour s white

2. if player F is to move, and at least one child is white: colour s white;
if all children are black, colour s black

This procedure eventually colours all nodes black where player A has a winning
strategy, making those where F can win white. The reason for its correctness is
easy to see.

Zermelo’s Theorem is widely applicable. Consider the following Teaching Game:

Ezample 6 (Teaching, the grim realities). A Student located at position S in the
next diagram wants to reach the escape E below, while the Teacher wants to
prevent him from getting there. Each line segment is a path that can be traveled.
In each round of the game, the Teacher cuts one connection, anywhere, while the
Student can, and must travel one link still open to him at his current position:

S Y

X E
Education games like this arise on any graph with single or multiple lines.

We now have an explanation why Student or Teacher has a winning strategy:
the game is two-player zero sum and of finite depth — though it need not have
an effective solution. Zermelo’s Theorem implies that in Chess, one player has a
winning strategy, or the other a non-losing one, but a century later, we do not
know which: the game tree is too large.
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5 Fixed-Point Languages for Equilibrium Concepts

A good test for logics is their expressive power in representing proofs of significant
results. Now our modal language cannot express the generic character of the
Zermelo solution. Here is what the colouring algorithm really says. Starting
from atomic predicates win; at end nodes indicating which player has won, we
inductively defined predicates WIN; (‘player ¢ has a winning strategy at the
current node’) through the following recursion:

WIN; < (end A wing) V (turn; A (E) WIN;) V (turn; A [A] WIN;)

Here F is the union of all available moves for player i, and A that of all
moves for the counter-player j. This schema is an inductive definition for the
predicate WIN;, which we can also write as a smallest fixed-point expression in
an extended modal language:

Fact 6. The Zermelo solution is definable as follows in the modal pi-calculus:
WIN; = pp[(end A wing) V (turn; A (E)p) V (turn; A [A]p)]

Here the formula on the right-hand side belongs to the modal p-calculus, an
extension of the basic modal language with operators for smallest (and greatest)
fixed-points defining inductive notions. This system was originally invented to
increase the power of modal logic as a process theory. We refer to the literature
for details, cf. [20]. Fixed-points fit well with strategic equilibria, and the pu-
calculus has further uses in games.

Definition 7 (Forcing modalities). Forcing modalities are interpreted as fol-
lows in extensive game models as defined earlier: M, s = {i}o iff player i has a
strategy for the sub-game starting at s which guarantees that only nodes will be
visited where @ holds, whatever the other player does.

Forcing talk is widespread in games, and it is an obvious target for logical for-
malization

Fact 8. The modal p-calculus can define forcing modalities.

Proof. The formula {i}¢ = up[(¢ A end) V (turn; A (E)p) V (turn; A [A]p))] defines
the existence of a strategy for ¢ ensuring that proposition ¢ holds, whatever the
other plays.

2 Note that the defining schema only has syntactically positive occurrences of the
predicate p.

3 Note that {i}¢ talks about intermediate nodes, not just the end nodes of a game.
The existence of a winning strategy for player ¢ can then be formulated by restricting
to endpoints: {i}(end — win;).
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But many other notions are definable. For instance, the recursion
COOPyp — ppl(end A @) V (turn; A (E)p) V (turn; A (A)p)]
defines the existence of a cooperative outcome @, just by shifting modalities [

Digression: From Smallest to Greatest Fixed-Points. The above modal
fixed-point definitions reflect the equilibrium character of basic game-theoretic
notions [27], reached through some process of iteration. In this general setting,
which includes infinite games, we would switch from smallest to greatest fixed-
points, as in the formula

{i}o = vq[(¢ A (turn; A (move;)q) V (turn; A [move;]q))].

This is also more in line with our intuitive view of strategies. The point is not
that they are built up from below, but that they can be used as needed, and
then remain at our service as pristine as ever the next time - the way we think
of doctors. This is the modern perspective of co-algebra [29]. More generally,
greatest fixed-points seem the best logical analogue to the standard equilibrium
theorems from analysis that are used in game theory.

But Why Logic? This may be a good place to ask what is the point of logi-
cal definitions of game-theoretic notions? I feel that logic has the same virtues
for games as elsewhere. Formalization of a practice reveals what makes its key
notions tick, and we also get a feel for new notions, as the logical language has
myriads of possible definitions. Also, the theory of expressive power, complete-
ness, and complexity of our logics can be used for model checking, proof search,
and other activities not normally found in game theory.

But there is also another link. Basic notions of logic themselves have a game
character, such as argumentation, model checking, or model comparison. Thus,
logic does not just describe games, it also embodies games. Pursuing the interface
in this dual manner, the true grip of the logic and games connection becomes
clear: cf. [13].

6 Dynamic Logics of Strategies

Strategies, rather than single moves, are protagonists in games, Moving them in
focus requires an extension of modal logic to propositional dynamic logic (PDL)
which describes structure and effects of imperative programs with operations of
(a) sequential composition ;, (b) guarded choice IF--- THEN--- ELSE- - -, and
(c) guarded iterations WHILE--- DO---:

4 This fixed point can still be defined in propositional dynamic logic, using the formula
((((turng)?; E) U ((turng)?; A))*Y(end A @), — but we will only use the latter system
later in the game setting.
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Definition 9 (Propositional dynamic logic). The language of PDL defines
formulas and programs in a mutual recursion, with formulas denoting sets of
worlds (‘local conditions’ on ‘states’ of the process), while programs denote binary
transition relations between worlds, recording pairs of input and output states for
their successful terminating computations. Programs are created from

atomic actions (‘moves’) a,b, ... and tests 7¢ for arbitrary formulas ¢,
using the three operations of ; (interpreted as sequential composition), U
(non-deterministic choice) and * (non-deterministic finite iteration).

Formulas are as in our basic modal language, but with modalities [r]¢ saying
that ¢ is true after every successful execution of the program m starting at the
current world.

The logic PDL is decidable, and it has a transparent complete set of axioms
for validity. This formalism can say a lot more about our preceding games. For
instance, the mowve relation in our discussion of our first extensive game was
really a union of atomic transition relations, and the pattern that we discussed
for the winning strategy was as follows:

[a Ubl{cUd)p.

Strategies as Transition Relations. Game-theoretic strategies are partial
transition functions defined on players’ turns, given via a bunch of conditional in-
structions of the form “if she plays this, then I play that.” More generally, strate-
gies may be viewed as binary transition relations, allowing for non-determinism,
i.e., more than one ‘best move’, like plans that agents have in interactive settings.
A plan can be useful, even when it merely constrains my future moves. Thus,
on top of the ‘hard-wired’ moves in a game, we get defined relations for players’
strategies, and these definitions can often be given explicitly in a PDL-format.

In particular, in finite games, we can define an explicit version of the ear-
lier forcing modality, indicating the strategy involved — without recourse to the
modal p-calculus:

Fact 10. For any game program expression o, PDL can define an explicit forc-
ing modality {o,i}p stating that o is a strategy for player i forcing the game,
against any play of the others, to pass only through states satisfying .

The precise definition is an easy exercise (cf. [5]). Also, given strategies for both
players, we should get to a unique history of a game, and here is how:

Fact 11. QOutcomes of running joint strategies o, T can be defined in PDL.
Proof. The formula [((Tturng; o) U (?turna;7))*](end — p) does the job A

Also ‘locally’, PDL can define specific strategies. Take any finite game M with
strategy o for player ¢. As a relation, o is a finite set of ordered pairs (s, t). Thus,

5 Dropping the antecedent ‘end —’ here will describe effects of strategies at interme-
diate nodes.
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it can be defined by a program union, if we first define these ordered pairs. To do
so, assume we have an ‘expressive’ model M, where states s are definable in our
modal language by formulas defsﬁ Then we define transitions (s, t) by formulas
def,; a; def,, with a being the relevant move:

Fact 12. In expressive finite extensive games, all strategies are PDL-definable.

Dynamic logic can also define strategies running over only part of a game, and
their combination. The following modal operator describes the effect of such a
partial strategy o for player F running until the first game states where it is no
longer defined:

{0, E}p = [(Tturng; o) U (Tturna; moveA)*]ﬂ

7 Preference Logic and Defining Backward Induction

Real games go beyond game forms by adding preferences for players over outcome
states, or numerical utilities beyond ‘win’ and ‘lose’. In this area, defining the
Backward Induction procedure for solving extensive games, rather than comput-
ing binary Zermelo winning positions, has become a benchmark for game logics
— and many solutions exist:

Fact 13. The Backward Induction path is definable in modal preference logic.

Solutions have been published by many logicians and game-theorists in recent
years, cf. [21I25]. We do not state an explicit PDL-style solution here, but we
give one version involving a modal preference language with this operator:

(pref; )¢ : player i prefers some node where ¢ holds to the current one.

The following result from [18] defines the backward induction path as a unique
relation o: not by means of any specific modal formula in game models M, but
rather via the following frame correspondence on finite structures:

Fact 14. The BI strategy is definable as the unique relation o satisfying the fol-
lowing azxiom for all propositions P — viewed as sets of nodes —, for all players i:

(turn; A (o*)(end A P)) — [move;){c™)(end A (pref;)P).

Proof. The axiom expresses a form of rationality: at the current node, no alter-
native move for a player guarantees outcomes that are all strictly better than
those ensuing from playing the current backward induction move. The proof is
by induction on the game tree.

5 This expressive power can be achieved: e.g., using temporal past modalities involving
converse moves which can describe the total history leading up to s.

Stronger modal logics of strategies? The modal p-calculus is a natural extension of
PDL, but it lacks explicit programs or strategies, as its formulas merely define prop-
erties of states. Is there a version of the p-calculus that extends PDL in defining
more transition relations? Say, a simple strategy ‘keep playing a’ guarantees infi-
nite a-branches for greatest fixed point formulas like vp({a)p). [I6] looks at richer
fragments than PDL with explicit programs as solutions to fixed-point equations of
special forms, guaranteeing uniform convergence by stage w.

7



12 J. van Benthem

8 Epistemic Logic of Games with Imperfect Information

The next level of static game structure gives up the presupposition of perfect in-
formation. Consider extensive games with imperfect information, whose players
need not know where they are in a tree. This happens in card games, electronic
communication, through bounds on memory or observation. Such games have
‘information sets’: equivalence classes of relations ~; between nodes which play-
ers ¢ cannot distinguish. [4] shows how these games model an epistemic modal
language including knowledge operators K, interpreted in the usual manner as
“p is true at all nodes ~;-related to the current one”.

Ezample 7 (Partial observation in games). In this imperfect information game,
the dotted line indicates player E’s uncertainty about her position when her
turn comes. Thus, she does not know the move played by player Af

10,/ \‘;2 3;'/ \4

Structures like this are game models of the earlier kind with added epistemic un-
certainty relations ~; for each player. Thus, they interpret a combined dynamic-
epistemic language. For instance, after A plays move c in the root, in both middle
states, F knows that playing a or b will give her p - as the disjunction {(a)pV (b)p
is true at both middle states:

Kg({(a)pV (b)p)

On the other hand, there is no specific move of which E knows at this stage
that it will guarantee a p-outcome — and this shows in the truth of the formula

—Kg{a)p AN ~Kg(b)p

Thus, E knows de dicto that she has a strategy which guarantees p, but she
does not know, de re, of any specific strategy that it guarantees p. Such finer
distinctions are typical for a modal language with both actions and knowledge
for agents

We can analyze imperfect information games studying properties of players
by modal frame correspondences. An example is the analysis of Perfect Recall
for a player i:

8 Maybe A put his move in an envelope, or E was otherwise prevented from observing.

9 You may know that the ideal partner for you is around on the streets, but tragi-
cally, you might never convert this K3 combination into 3K knowledge that some
particular person is right for you.
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Fact 15. The aziom K;[a]o — [a]K;p holds for player i w.r.t. any proposition
 iff M satisfies Confluence: Vayz : (xRay ANy ~; z) — Ju: ((x ~; u AuRgz).

Similar frame analyses work for memory bounds, and observational powers. For
instance, agents satisfy ‘No Miracles’ when epistemic uncertainty relations can
only disappear by observing subsequent events they can distinguish. The pre-
ceding game has Perfect Recall, but it violates No Miracles: F suddenly knows
where she is after she played her move.

Uniform Strategies. Another striking aspect of our game is non-determinacy.
E’s playing ‘the opposite direction from that of player A’ was a strategy guar-
anteeing outcome p in the matching game with perfect information — but it is
unusable now. For, F cannot tell if the condition holds! Game theorists only
accept uniform strategies here, prescribing the same move at indistinguishable
nodes. But then no player has a winning strategy, with p as ‘E winséand —p as
a win for player A). A did not have one to begin with, F loses hers

As for explicit strategies, we can again use PDL-style programs, but with a
twist. We need the knowledge programs’ of [23], whose only test conditions are
knowledge statements. In such programs, actions can only be guarded by condi-
tions that the agent knows to be true or false. It is easy to see that knowledge
programs can only define uniform strategies. A converse also holds, modulo some
mild assumptions on expressiveness of the game language defining nodes in the
game tree [4]:

Fact 16. On expressive finite games of imperfect information, the uniform strate-
gies are precisely those definable by knowledge programs in epistemic PDL.

9 From Statics to Dynamics: DEL-Representable Games

Now we make a switch. Our approach so far was static, using modal-preferential-
epistemic logics to describe properties of fixed games. But it also makes sense to
look at dynamic scenarios, where games can change. As an intermediate step, we
analyze how a static game model might have come about by some dynamic pro-
cess — the way we see a dormant volcano but can also imagine the tectonic forces
that shaped it originally. We provide two illustrations, linking games of imper-
fect information first to dynamic-epistemic logic DEL, and then to epistemic-
temporal logics ETL [2§] (cf. [I5] on connections). Our sketch will make most
sense to readers already familiar with these logics of short-term and long-term
epistemic dynamics.

Imperfect Information Games and Dynamic-Epistemic Logic. Dynamic-
epistemic logic describes how uncertainty is created systematically as initial uncer-
tainty in an agent model M combines with effects of partially observed events E to
create product models M x E. Which imperfect information games ‘make sense’

10 The game does have probabilistic solutions in random strategies: like Matching
Pennies.
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with concrete sequences of update steps — as opposed to being just arbitrary
placements of uncertainty links over game forms?

Theorem 17. An extensive game is isomorphic to a repeated product update
model Tree(M, E) for some sequence of epistemic event models E iff it satis-
fies, for all players: (a) Perfect Recall, (b) No Miracles, and (¢) Bisimulation
Invariance for the domains of all the move relations[H]

Here Perfect Recall is essentially the earlier commutation between moves and
uncertainty. We do not prove the Theorem here: cf. [I7]. Here is an illustration:

Ezample 8 (Updates during play: propagating ignorance along a game tree).

Game tree Event model
A a---E---b c precondition: turna
M\ d---A---e f precondition: turng
a b [

d e\“ .'/e f
Here are the successive updates that create the right uncertainty links:
stage 1 @

stage 2 @ @ °

stage 3 @ A @ B @ ° °

10 Future Uncertainty, Procedural Information, and
Branching Temporal Logic

A second logical perspective on games notes that ‘imperfect information’ has
two senses. One is observation uncertainty: players may not have seen all events
so far, and so they do not know where they are in the game. This is the ‘past-
oriented’ view of DEL. But there is also ‘future-oriented’ expectation uncertainty:
even in perfect information games players who know where they are may not

1 This says that two epistemically bisimilar nodes in the game tree make the same
moves executable.
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know what others, or they themselves, are going to do. The positive side is
this. In general, players have some procedural information about what is going
to happen. Whether viewed negatively or positively, the latter future-oriented
kind of knowledge and ignorance need not be reducible to the earlier uncertainty
between local nodes. Instead, it naturally suggests current uncertainty between
whole future histories, or between players’ strategies (i.e., whole ways in which
the game might evolve).

Branching Epistemic Temporal Models. The following structure is com-
mon to many fields. In tree models for branching time, ‘legal histories’ h represent
possible evolutions of some process. At each stage of the game, players are in
a node s on some actual history whose past they know, either completely or
partially, but whose future is yet to be fully revealed:

This can be described in an action language with knowledge, belief, and added
temporal operators. We first describe games of perfect information (about the
past, that is):

— M,h,s = Fyp iff sA <a>lieson h and M, h,sN <a > ¢
— M,h,sEPypiff s=s'A<a>, and M, h,s" =¢
— M, h,s =i iff MR, s = ¢ for some h' equal for i to h up to stage s.

Now, as moves are played publicly, players make public observations of them:

Fact 18. The following valid principle is the ETL equivalent of the key DEL
recursion axziom for public announcement: FoOp — (F, T A OFq).

Trading Future for Current Uncertainty. Again, there is a ‘dynamic re-
construction’ closer to local DEL dynamics. Intuitively, each move by a player
is a public announcement that changes the current game model. Here is a folk-
lore observation [6/I1] converting ‘global’ future uncertainty into ‘local’ present
uncertainty:

Fact 19. Trees with future uncertainty are isomorphic to trees with current un-
certainties plus subsequent public announcements.

11 Intermezzo: Three Levels of Logical Game Analysis

At this point, it may be useful to distinguish three natural levels at which games
have given rise to models for logics. All three come with their own intuitions,
both static and dynamic.



16 J. van Benthem

Level One takes extensive game trees themselves as models for modal logics,
with nodes as worlds, and accessibility relations over these for actions, pref-
erences, and uncertainty. Level Two looks at extensive games as branching tree
models, with nodes and complete histories, supporting richer epistemic-temporal
(-preferential) languages. The difference with Level One seems slight in finite
games, where histories may be marked by end-points. But the intuitive step
seems clear, and also, Level Two does not reduce in this manner when game
trees are infinite. But even this is not enough for some purposes!

Consider ‘higher’ hypotheses about the future, involving procedural informa-
tion about other players’ strategies. I may know that I am playing against either
a ‘simple automaton’, or a ‘sophisticated learner’. Modeling this may go beyond
epistemic-temporal models:

Ezample 9 (Strategic uncertainty). In the following simple game, let A know
that F will play the same move throughout:

A

Then all four histories are still possible. But A only considers two future trees
possible, viz.

e

In longer games, this difference in modeling can be highly important, because
observing only one move by E will tell A exactly what E’s strategy will be in
the whole game.

To model these richer settings, one needs Level Three epistemic game models.

Definition 20 (Epistemic game models). Epistemic game models for an
extensive game G are epistemic models M = (W, ~;, V) whose worlds are ab-
stract indices including local (factual) information about all nodes in G, plus
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whole strategy profiles for players, i.e., total specifications of everyone’s behaviour
throughout the game. Players’ global information about game structure and pro-
cedure is encoded by uncertainty relations ~; between worlds of the model.

The above uncertainty between two strategies of my opponent would be naturally
encoded in constraints on the set of strategy profiles represented in such a model.
And observing some moves of yours in the game telling me which strategy you
are actually following then corresponds to dynamic update of the initial model,
in the sense of our earlier chapters.

Level-Three models are a natural limit for games and other scenarios of inter-
active agency. Our policy is always to discuss issues at the simplest model level
where they make sense.

12 Game Change: Public Announcements, Promises and
Solving Games

Now look at actual transformations that change games, and triggers for them.

Promises and Intentions. Following [I0], one can break the impasse of a bad
Backward Induction solution by changing the game through making promises.

Ezxample 10 (Promises and game change). In this earlier game, the ‘bad Nash
equilibrium’ (1,0) can be avoided by E’s promise that she will not go left, by
public announcement that some histories will not occur (we may make this
binding, e.g., by attaching a huge fine to infractions) — and the new equilibrium
(99, 99) results, making both players better off by restricting the freedom of one
of them!

A A

[
0,100 99,99 99,99

But one can also add moves to a game or give additional information about
players’ preferences.

Theorem 21. The modal logic of games plus public announcement is completely
axiomatized by the modal game logic chosen, the recursion axioms of PAL for
atoms and Booleans, plus the following law for the move modality:

({P)(a)¢ = (P A (a)(P A (IP)p).

2 Yes, in this way, one could code up all such game changes beforehand in one grand
initial ‘Super Game’ — but that would lose all the flavour of understanding what
happens in a stepwise manner.
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Using PDL again for strategies, this leads to a logic PDL+PAL with public
announcements [!P]. It is easy to show that PDL is closed under relativization
to definable sub-models, both in its propositional and its program parts, and
this underlies the following result:

Theorem 22. PDL+ PAL is axiomatized by merging their separate laws, while
adding the following reduction axiom:

(Pl{o}p < (P — {o\ P}[Plp).

But of course, we also want to know about versions with epistemic preference
languages — and hence there are many further questions following up on these
initial observations.

Solving Games by Announcements of Rationality. Another type of public
announcement in games iterates various assertions expressing that players are
rational, as a sort of ‘public reminders’. [9] has this result for extensive games:

Theorem 23. The Backward Induction solution for extensive games is obtained
through repeated announcement of the temporal preferential assertion “no player
chooses a move all of whose further histories end worse than all histories after
some other available move”.

Proof. This can be proved by a simple induction on finite game trees. The prin-
ciple will be clear by seeing how the announcement procedure works for a ‘Cen-
tipede game’, with three turns as indicated, branches indicated by name, and
pay-offs given for A, F in that order:

A E A 5,9
o U

X Yy z
1,0 0,5 6,4

Stage 0 of the announcement procedure rules out branch u, Stage 1 then rules
out z, while Stage 2 finally rules out y.

This iterated announcement procedure for extensive games ends in largest sub-
models in which players have common belief of rationality, or other doxastic-
epistemic properties.

Alternatives. Of course, a logical language provides many other assertions to
be announced, such as history-oriented alternatives, where players steer future
actions by reminding themselves of legitimate rights of other players, because of
‘past favours received’.

The same ideas work in strategic games, using assertions of Weak Rationality
(“no player chooses a move which she knows to be worse than some other avail-
able one”) and Strong Rationality (“each player chooses a move she thinks may
be the best possible one”):
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Theorem 24. The result of iterated announcement of WR is the usual solution
concept of Iterated Remowval of Strictly Dominated Strategies; and it is defin-
able inside M by means of a formula of a modal p-calculus with inflationary
fized-points. The same for iterated announcement of SR and game-theoretic Ra-
tionalizability

13 Belief, Update and Revision in Extensive Games

So far, we studied players’ knowledge. We merely indicate how one can also study
their equally important beliefs. For a start, one can use Level-One game models
with relations of relative plausibility between nodes inside epistemic equivalence
classes. Players’ beliefs then hold in the most plausible epistemically accessible
worlds, and conditional beliefs can be defined as an obvious generalization. But
perhaps more vivid is a Level-Two view of branching trees with belief structure.
Recall the earlier ETL models, and add binary relations <; , of state-dependent
relative plausibility between histories:

Definition 25 (Absolute and conditional belief). We set M, h,s |= (B, i)y
iff MW s = ¢ for some history h' coinciding with h up to stage s and most
plausible for i according to the given relation <js. As an extension, M, h,s =
(B,i)Yp iff M,h',s |= @ for some history h' most plausible for i according to
the given <r s among all histories coinciding with h up to stage s and satisfying
M, s E .

Now, belief revision happens as follows. Suppose we are at node s in the game,
and move a is played which is publicly observed. At the earlier-mentioned purely
epistemic level, this event just eliminates some histories from the current set. But
there is now also belief revision, as we move to a new plausibility relation <j saq
describing the updated beliefs.

Hard Belief Update. First, assume that plausibility relations are not node-
dependent, making them global. In that case, we have belief revision under hard
information, eliminating histories. The new plausibility relation is the old one,
restricted to a smaller set of histories. Here is the characteristic recursion law
that governs this process. A temporal operator Fy¢ says a is the next event on
the current branch, and that ¢ is true immediately after:

Fact 26. The following temporal principles hold for hard revision along a tree:

— Fu(B,i)p = (Fa T A(B,i)(FuT, Fai))
— Fu(B,i)¥¢ — (FaT A (B, i)(Fath, Fap) [

13 If the iterated assertion A has ‘existential-positive’ syntactic form (for instance, SR
does), the relevant definition can be formulated in a standard epistemic p-calculus.
4 Similar ‘coherence’ laws occur in [I9], which formalizes games using AGM theory.
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Soft Update. But belief dynamics is often driven by events of soft information,
which do not eliminate worlds, but merely rearrange their plausibility ordering
[7], as happens in the familiar model-theoretic ‘Grove sphere semantics’ of belief
revision theory. In the above, we already cast Backward Induction in this manner,
as a way of creating plausibility relations in a game tree — but beyond such an
‘off-line’ preprocessing phase of a given game, there can also be dynamic ‘on-
line’ events that might change players’ beliefs and expectations in the course
of an actual play of the game. With doxastic-temporal models adapted to this
setting, we get representation theorems [I4] that say which doxastic-temporal
models are produced by plausibility update in the style of [2]. Also, [3] provide
a striking new dynamic alternative to Aumann-style characterization theorems
for Backward Induction.

Further Entanglements: Dynamics of Rationalization. In all our sce-
narios and logics, knowledge and belief have been entangled notions — and this
entanglement even extends to players’ preferences [24)26]. But there are many
other dynamic scenarios. For instance, [10] discusses rationalization of observed
behaviour in games, adapting preferences, beliefs, or both, to make observed
behaviour rational.

14 Conclusion

We have shown how games naturally involve static and dynamic logics of action,
knowledge, belief, and preference. We gave pilot studies rather than grand theory,
and we found more open problems than final results. It would be easy to pile up
further topics (cf. [12]), pursuing issues of procedural knowledge, soft update and
genuine belief revision in games, agent diversity and bounded rationality, infinite
games, or connections to explicit automata-theoretic models of agents (as urged
by Ram Ramanujam in his 2008 invited lecture at the Workshop on ‘Logics of
Intelligent Interaction’, ESSLLI Hamburg). True. But even at the current level
of detail, we hope to have shown that logic and games is an exciting area for
research with both formal structure and intuitive appeal.
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Abstract. Modern proof-assistants are now mature enough to formalise
many aspects of mathematics. I outline some work we have done using
the proof-assistant Isabelle to machine-check aspects of proof theory in
general, and specifically the proof theory of provability logic GL.

1 DMotivation

Proof theory, broadly construed, is the study of derivations as first-class objects.
Typically, we study a proof-calculus which captures the notion that a particular
formula A is deducible from a given finite collection I" of assumption formulae in
some given logic L: usually written as I -, A. Typical such calculi are Gentzen’s
Sequent Calculi, Natural Deduction Calculi or Hilbert Calculi.

But proof theory is error prone. There are numerous examples of published
“proofs” in proof theory which have turned out to be incorrect at a later date.
These errors often lie undiscovered for years, usually until some diligent Phd
student actually tries to work through the proofs in detail and discovers a bug.
I give a concrete example later.

Part of the problem is that conferences and journals typically enforce page
limits, so that authors are forced to elide full details. Another cause is that
proof-theoretical proofs typically contain many similar cases, and humans are
notoriously bad at carrying out repetitive tasks with precision. Thus authors
often resort to words like “the other cases are similar”. But sometimes the errors
are very subtle, and are not just a matter of routine checking.

Proof-theoretic proofs often proceed by induction since derivations are usually
structured objects like lists, trees or graphs.

Proof assistants are computer programs which allow a user to encode and
check proofs written using a special syntax and interface. They have a long
history going back to the early 1970s, are usually based upon an encoding of
higher-order logic into some extension of Church’s typed A-calculus, and are
now an exciting and mature area of research. Indeed, there is now a strong
movement to “formalise mathematics” using computers as exemplified by Tom
Hales’ project to formally verify his “proof” of the Kepler Conjecture http://
code.google.com/p/flyspeck/.

R. Ramanujam and S. Sarukkai (Eds.): ICLA 2009, LNAI 5378, pp. 23 2009.
© Springer-Verlag Berlin Heidelberg 2009
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Most modern proof-assistants allow us to define infinite sets using inductive
definitions. Most also automatically generate powerful induction principles for
proving arbitrary properties of such sets.

Given that proof-theory is error-prone and that it typically utilises proofs by
induction, can we use modern proof-assistants to help us machine-check proof
theory?

An Oath: 1 have only a limited amount of time and I need to cover a lot of
background material. I also want to show you some actual code that we have
developed, but I wish to simplify it to hide unimportant details. So here is an
oath: T will tell the truth, I may not tell the whole truth, but I won’t lie. So
complain immediately if you see something blatantly incorrect!

2 Proof Theory: Purely Syntactic Calculi for L-Deduction

To begin with the basics, I just want to talk briefly about the proof-calculi we
typically study.

We typically work with judgements of the form I' F;, A where I" and A are
“collections” of formulae. I deliberately want to leave vague the exact definition
of “collection” for now: think of it as some sort of data-structure for storing
information.

From these judgements, we usually define rules, and form a calculus by as-
sembling a finite collection of such rules.

A rule typically has a rule name, a (finite) number of premises, a side-condition
and a conclusion as shown below:

RuleName Fik A Iobr Ay Fubr A Condition

We read the rules top-down as statements of the form “if premises hold then
conclusion holds”, again deliberately using the imprecision of “holds” rather
than something more exact.

A derivation of the judgement I' F; A is typically a finite tree of judgements
with root I' F; A where parents are obtained from children by “applying a
rule”. From now on, I will usually omit L to reduce clutter.

Figure [[l shows some typical rules from the literature:

Gentzen’s LK: in some formulations uses rules built from multisets, but it can
also be easily turned into a calculus which uses sets. LK has a particularly
pleasing property in that in all its rules, the components of the premises like
A and B are subformulae of the components of the conclusion like A — B;

Gentzen’s LJ: uses sequents built from multisets, with an added condition
that the right hand side must consist of at most one formula. The particular
formulation shown also carries its principal formula A — B from the conclu-
sion into one of its premises, which can be used to show that the contraction
rule is redundant;
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Calculus Example Rule Collection
I'BF A I'-AA

LK (— L) FA—BFA sets of formulae
I'A—BFA IBFC _

LJ (— L) FA—BFC multisets + SOR
'K I''K+FM

ND (.0 ! multisets + SOR

I'-{M}x

A-A  T[B|FC

trees with holes
I'|(A,A\B)|FC

NL (\L)
XFHA BFY

— L
bL ( ) A— BF (xX)oY

complex trees

Fig. 1. Example of Rules of Some Existing Calculi

ND for Security Protocols: Natural deduction calculi have been used to rea-
son about security protocols. This rule captures the idea that the ability to
decode the key K and the ability to decode a message M using that key,
allows us to decode M even when it is encrypted with key K;

NL: The non-associative Lambek calculus uses sequents built from trees con-
taining “holes”. The rule allows us to replace the formula B in a hole inside
the tree I', with a more complex subtree built from the tree A and the
formula A\ B;

Display Logic: Belnap’s display logic uses sequents built from complex struc-
tural connectives like * and o so that its sequents are akin to complex trees.

Thus there are many different notions of “sequent”. Our hope is to encode
the proofs about such sequents in a modern proof-assistant, specifically Isabelle.

3 Applying a Rule: Example Derivation in Gentzen’s LK

In almost all cases, we build derivations in a top-down manner, starting from
leaves which are instances of I''p + p, A by “applying” a rule. Rule applica-
tion typically proceeds using pattern-matching as exemplified by the following
derivation from Gentzen’s LK.

Ezxample 1. Here, I'; A means “I" multiset-union A”.

IA,BF A
IAABF A

I'-AA T,BFA

(A F) IA—BFA

(—F)
po - po,qo Po,q0 - qo (=h)
Po, (Po — o) F qo (AH)

Po A (Po — qo) F qo
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The first rule instance (—F) utilises the substitutions I" := {po}, A := po,
B :=qp and A := {qo}.

The second rule instance (A F) utilises the substitutions I" := (), A := py,
B:=py— qo and A :={qo}.

The example also illustrates the use of sequent calculi as “backward chaining”
decision procedures where we can find a derivation starting from pg A (po —
qo) F qo and applying the rules in a systematic way “backwards” towards the
leaves.

For propositional LK, decidability follows almost immediately by observing
that in every such “backward” rule application, at least one formula disappears
from the sequents, and is replaced by strictly smaller formulae only. Thus, every
branch of rule applications must terminate.

More generally, we typically find some numerical measure which strictly de-
creases when “reducing” a conclusions to its premises. Indeed, the International
Conference on Automated Reasoning with Analytic Tableaux and Related Meth-
ods, to be held next in Oslo, is dedicated to research aimed at automating rea-
soning in various non-classical logics using this technique. Some of us have even
made a career out of this endeavour!

Notice that the structure of “collections” is significant. For example, the struc-
tural rule of contraction shown below at left using multisets is well-defined, with
a typical instance shown below at right:

FaA7A|_A p07p0|_q0

(Ctr) F,A}_A po"Qo

(Ctr)

Similarly, the following contraction lemma is well-defined:
If I A, A+ A is derivable then so is I A+ A.

But neither makes sense in a setting where sequents are built from sets since
the rule instance shown below at left collapses to identity.

Po,Po F qo {po} F{ao}
po - qo (Ctr) {po} F{qo}

Similarly, the contraction lemma is meaningless since I' U {A} U {A} - A is
the same as I' U {A} F A.

Although automated reasoning is an important application of sequent cal-
culi, most uses of proof theory are meta-theoretic. For example, proof theory is
typically used to answer questions like the following:

identity

Consistency: § -7, A and () k7, —A are not both derivable;

Disjunction Property: If @ 7, AV B then O 7,y A or § b B;

Craig Interpolation: If I" 5, A holds then so do I' - A and A k1 A for some
formula A with Vars(A) C Vars(I") N Vars(A);

Normal Forms: Is there a (unique) normal form for derivations ?

Curry-Howard: Do normal derivations correspond to well-typed terms of some
A-calculus ?
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Equality: When are two derivations of I - A equivalent ?
Relative Strengths: Every derivation in F; can be simulated polynomially by a
derivation in o

The methods used usually involve reasoning about derivations rather than
finding derivations, as exemplified by the following lemmas:

Identity: The judgement A F A is derivable for all A.

Monotonicity: If I'+ A is derivable then so is I, X - A.

Exchange: If I A, B+ A is derivable then so is I, B, A+ A.

Contraction: If Iy A, A+ A is derivable then so is I A - A.

Inversion: If the conclusion of a rule instance is derivable then so are the corre-
sponding premise instances.

Cut-elimination/-admissibility: If I' F A, A is (cut-free) derivable and I/ A - A
is (cut-free) derivable then so is I' F A, where the cut rule is:

I'AA INAEF A
A
Weak /Strong Normalisation: Algorithm to transform a derivation into a normal

form by eliminating topmost/nested cuts ?
Cost: How much bigger is the transformed derivation?

(cut)

4 Proof Theory Is Error-Prone: Provability Logic GL

To illustrate the fact that proof-theory is error-prone, I would like to describe
the history of the cut-elimination theorem for a propositional modal logic called
GL, after Godel-Lob.

The logic GL has an Hilbert axiomatisation which extends the standard ax-
iomatisation for modal logic K by adding Lob’s axiom (A — A) — OA. Tt
rose to prominence when Solovay showed that [JA could be interpreted as “A is
provable in Peano Arithmetic” [7]. An initial proof-theoretic account was given
by Leivant in 1981 when he “proved” cut-elimination for a set-based sequent
calculus for GL [3]. But Valentini in 1983 found a simple counter-example and
gave a new cut-elimination proof [8]. The issue seemed to have been settled, but
in 2001, Moen [5] claimed that Valentini’s transformations don’t terminate if the
sequents I' F A are based on multisets. There is of course no a priori reason
why a proof based on sets should not carry over with some modification to a
proof based on multisets, so this set the cat amongst the pigeons.

In response, Negri [6] in 2005 gave a new cut-elimination proof using sequents
built from labelled formulae w : A, which captures that the traditional formula
A is true at the possible world w. But this is not satisfactory as it brings the
underlying (Kripke) semantics of modal logic into the proof theory. Mints in
2005 announced a new proof using traditional methods [4].

But the question of Moen versus Valentini remained unresolved. Finally, Goré
and Ramanayake [2] in 2008 showed that Moen is incorrect, and that Valentini’s
proof using multisets is mostly okay.

Many such examples exist in the literature.
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5 Interactive Proof Assistants

Interactive proof-assistants are now a mature technology for “formalising math-
ematics”. They come in many different flavours as indicated by the names
of some of the most popular ones Mizar, HOL, Coq, LEGO, NuPrl, NqThm,
Isabelle, A-Prolog, HOL-Lite, LF, ELF, Twelf --- with apologies to those
whose favourite proof-assistant I have omitted.

Most of the modern proof-assistants are implemented using a modern func-
tional programming language like ML, which was specifically designed for the
implementation of such proof-assistants.

The lowest levels typically implement a typed lambda-calculus with hooks
provided to allow the encoding of further logical notions like equality of terms on
top of this base implementation. The base implementation is usually very small,
comprising of a few hundred lines of code, so that this code can be scrutinised
by experts to ensure its correctness.

Almost all aspects of proof-checking eventually compile down to a type-
checking problem using this small core, so that trust rests on strong typing
and a well-scrutinised small core of (ML) code.

Most proof-assistants also allow the user to create a proof-transcript which
can be cross-checked using other proof-assistants to guarantee correctness.

I don’t want to go into details, but one type of proof-assistant, called a logical
framework, allows the user to manage a proof using the “backward chaining”
idea which we saw in use earlier to find derivations using sequent calculi.

Figure[2 shows how these logical frameworks typically work. Thus given some
goal # and an inference step which claims that « is implied by £; up to 3, we
pattern-match « and 3 to find their most general unifier 8, and then reduce the
original goal 8 to the n subgoals 5,0 - - - 3,0.

The pattern matching required is usually (associative-commutative) higher
order unification.

The important point is that the logical framework keeps track of sub-goals
and the current proof state.

The syntax of the “basic propositions” like «, (§ is defined via an “object
logic”, which is a parameter. Different “object logics” can be invoked using the
same logical-framework for the task at hand.

The logical properties of “;” like associativity or commutativity, and properties
of the “=" like classicality or linearity are determined by the “meta-logic”,
which is usually fixed for the logical framework in question.

Bi; Be; -5 Ba]l =« B

0 = match(B, «) 510 B20 5 -+ 5 Bnlb

Fig. 2. Backward Chaining in Logical Frameworks
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For example, the meta-logic of Isabelle is higher-order intuitionistic logic.
Higher order simply means that functions can accept other functions as argu-
ments and can produce functions as results.

6 Isabelle’s LK Object Logic: A Shallow Embedding of
Sequent Calculus

We begin with what is called a “shallow embedding” of sequents. The meaning
of this term will become apparent as we proceed.

The “propositions” of Isabelle’s sequent object logic are sequents built from
sequences of formulae as defined in the grammar below:

prop = sequence |- sequence
sequence = elem (,elem)* | empty
elem = $id | Svar | formula

formula = ~ formula | formula & formula | ---

Thus sequents are built from “collections” which are sequences of formulae.
A sequent rule built from premise sequents (1, ---, 3, with conclusion sequent
« is encoded directly as the meta-logical expression:

Brs- 5 Bu]l =«

Ezample 2. For example, the (cut) rule shown below is encoded as the meta-
logical expression shown below it:

' AP ILPFA
I'A

[l $G |- $D,P ; $G,P |- $D |] ==> $G |- $D

(cut)

Thus we encode the horizontal bar separating the premises from the conclusion
directly using the meta-logical implication =—>.

The advantage is that we can immediately create and check derivations using
the proof assistant to manage the backward chaining involved. That is, we use
the proof-assistant to find derivations by applying the rules in a backward way.
There is thus a perfect match between the backward chaining involved in finding
derivations and the backward chaining involved in the subgoaling provided by
the proof-assistant.

The disadvantage is that there is no explicit encoding of a derivation. The
derivation is kept implicitly by the proof-assistant and we cannot manipulate
its structure. Nor is it possible to encode statements like the identity lemma:
the sequent A F A is derivable for all formulae A. It is possible to show that
particular instances of this sequent like P&Q + P&Q are derivable, but we
cannot actually encode the inductive nature of the proof which would require
us to show that it held for A being atomic, and that an inductive step would
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take us from the case for formulae of length n to formulae of length n + 1. In
particular, there is no way to state the final step of the induction which allows
us to state that the lemma holds for all finite formulae.

7 A Deeper Embedding: Change Object Logic

Recall that the meta-logic provides us with a method for backward chaining via
expressions of the form:
Prio- s Pn=

The usual method for obtaining the power for reasoning about sequent deriva-
tions is to use the full power of higher-order classical logic (HOL) to build the
basic propositions [;.

Isabelle’s incarnation of HOL provides the usual connectives of logic like con-
junction, disjunction, implication, negation and the higher order quantifiers. But
it also provides many powerful facilities allowing us to define new types, define
functions which accept and return other functions as arguments, and even define
infinite sets using inductive definitions.

For example, the following HOL expressions capture the usual inductive def-
inition of the natural numbers by encoding the facts that “zero is a natural
number, and if n is a natural number then so is its successor s(n)”:

0 € nat
n € nat = s(n) € nat

Most proof-assistants will automatically generate an induction principle from
a given inductive definition. For example, Isabelle will automatically generate
the usual induction principle which states that we can prove a property P holds
of all natural numbers if we can show that P(0) holds and we can show that
P(n) implies P(s(n)). An implicit assumption which facilitates such induction
principles is that the inductive definitions are the only way to construct its
members. Thus, if n is a natural number, then it is either 0, or is of the form
s(m) for some natural number m.

To encode sequent calculus into HOL we first encode the grammar for recog-
nising formulae as below:

datatype fml = FC string (fml list) (* fml connective *)
| FV string (* fml variable  *)
| PP string (* prim prop *)

There are three type constructors FC, FV and PP which encode formula con-
nectives, formula variables, and atomic formulae (primitive propositions). Each
of them takes one string argument which is simply the string we want to use
for that construction. The formula connective constructor also accepts a list of
formulae, which constitute its subformulae.

For example, FC "&" [FV "A", PP "q"] encodes A & q. Since we want to
encode modal provability logic GL, we require only the classical connectives,
plus two unary modalities FC "Box" [.] for 0. and FC "Dia" [.] for ¢..
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Isabelle’s HOL allows us to form sets and multisets of objects of an arbitrary
type, so the HOL expressions fml set and fml multiset capture the types of
formula sets and formula multisets.

Using these types we can build a sequent type using an infix constructor F
via:

datatype seq = fml multiset F fml multiset

Isabelle’s HOL allows us to form lists of objects of an arbitrary but fixed type,
so we define the type of a rule as a pair with the first component being a list of
sequent premises and the second component being the conclusion sequent:

datatype inf = (seq list, seq)

Finally, we use the HOL type declaration r1i :: inf set to declare that rli
is a set, of inferences, each a pair of the form (seq list , seq), and inductively
define the set rli by giving a finite collection of rule instances which belong to
this set. For example, the traditional rule (& +) for introducing a conjunction
into the left hand side of a sequent as shown below is given by the encoding

below it:
I'HA A I'+-B,A

(F&) I'F A%B, A

([GF{A}+D, GF{B}+D], GF{A&B}+D )€ rli

The encoding uses HOL’s notation “+” for multiset union, and a slightly
inaccurate description of encoding singleton multisets as {A}. Thus each element
of rli is a pair whose first component is a list of its premises, and whose second
component is its conclusion.

We are now in a position to encode the set derrec of “recursively derivable
sequents” given an initial set pms of premise sequents and an initial set r1i of
inference rules. The set derrec is defined inductively as shown below:

derrec :: (seqlist, seq) set = seq set = seq set
c € pms —> ¢ € derrec rli pms
[ (ps;c) €xli;
Vp.p€ (set ps) = p € derrecrli pms |
—> ¢ € derrecrli pms

T W N =

The explanation is as below:

1: A type declaration which tells the proof-assistant that derrec accepts a set
of inference rules and a set of sequents, and produces a set of sequents;

2: The base case of the inductive definition of derrec captures that “each
premise is itself (vacuously) derivable from the premises using the rules”.
Note that there is an implicit outermost universal quantifier which is not
shown explicitly, but which binds free variables like c, ps, rli, pms.

3: The first conjunct of an inductive clause stating that ps/c is a rule instance;
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4: The second conjunct of the inductive clause which captures that “each
premise p in the set obtained from sequent list ps is derivable from the
premises pms using the rules r1i”. Here we use a function set to convert a
list into the set of its members;

5: The “then” part of the inductive clause which concludes that sequent “c is
derivable from pms using r1i”.

8 Inductive Proofs via Automated Inductive Principles

Induction principles are generated automatically by Isabelle from the inductive
definition of derrec. A heavily simplified version for proving an arbitrary prop-
erty P is shown below:

Vx.VP.
[ x € derrecrli pms;

Vec.c € pms = P(c) ;

Ve.¥ps.[ (ps,c) € rli ; Vy € (set ps). P(y) = P(c) |
] = P(x)

T W N =

An explanation is:

: for all sequents x and all properties P
: if x is derivable from premises pms using rules rli, and
: P holds for every premise ¢ in pms, and
: for each rule, if P of its premises implies P of its conclusion,
: then P holds of x

Tk W N -

If you look closely, you will see that this is an induction principle which we use
often in proof-theory: prove that some property holds of the leaves of a derivation,
and prove that the property is preserved from the premises to the conclusion of
each rule. For example, consider the standard translation from sequents of LK to
formulae given by 7(A1,-+-, A, F B1, -, Bp) = A1 A---ANA, — B1 V-V By,.
We typically use this translation to argue that all derivable sequents are valid
in the semantics of first-order logic. The proof proceeds by showing that the
translation of the leaves of a derivation are all valid, and showing that if the
translations of the premises are valid then the translations of the conclusion are
valid, for every rule.

Using these inductive principles we proved the following lemma about deriv-
ability using Isabelle, where the question marks indicate free-variables which are
implicitly universally quantified:

Lemma 1
7ps C derrec 7rli ?pms ; 7c € derrec 7rli ?7ps = 7c € derrec 7rli 7pms

If each premise in ps is derivable from premises pms using rules rli, and c is
derivable from ps using rli, then c is derivable from pms using rli.
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9 An Even Deeper Embedding: Derivation Trees as
Objects

The main advantage of the method outlined in the previous section was that
there was no concrete representation of a derivation. That is, we relied on the
proof-assistant to perform pattern-matching and rule instantiations in an appro-
priate way, so that all we needed was to capture the idea that derivations began
with premises and ended with a single sequent.

If we are to reason about cut-elimination, then we are required to perform
transformations on explicit derivations. We therefore need a representation of
such trees inside our encoding.

In previous work [I], we described such an encoding using the following
datatype:

datatype seq dertree = Der seq (seq dertree list)
| Unf seq

The declaration states that a derivation tree can either be an Unfinished
leaf sequent built using the constructor Unf, or it can be a pair consisting of a
conclusion sequent and a list of sub-derivation-trees bound together using the
constructor Der.

In that work, we described how we maintained substitutions as lists of pairs
of the form (x,t) representing the substitution z := t. We also described how we
manipulated substitutions and instantiation directly to obtain rule instances.

We required such low-level aspects to be made explicit so that we could reason
about display logic which required us to check conditions on rules like “a rule is
closed under substitution of arbitrary structures for variables”.

Our use of dertee can be seen as an even deeper embedding of proof-theory
into Isabelle/HOL since we utilise the proof-assistant only to maintain the cur-
rent and further goals.

Omitting details now, suppose we define valid rli dt to hold when deriva-
tion tree dt uses rules from rli only and has no Unfinished leaves. We proved:

Lemma 2
valid ?rli 7dt = (conclDT ?dt) € derrec ?rls {}

If derivation tree dt is valid wrt the rules rli then its conclusion is derivable
from the empty set of premises using rli.

Lemma 3
?c € derrec 7rli {} = EX dt. valid ?rli dt & conclDT dt = 7c

If the sequent c is derivable from the empty set of premises using rules rli then
there exists a derivation tree dt which is valid wrt rli and whose conclusion is
exactly c.
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Thus we now know that our “deep embedding” of derivability using derrec
can be faithfully captured using the “even deeper” embedding using explicit
derivation trees. Indeed, the lemmas allow us to move freely between the two
embeddings at will to omit or include details as required by the lemma we wish
to prove.

10 Mix Admissibility for Provability Logic

We finally come to the crux of our work. Below is the traditional formulation of
the mix-rule for sequents built from multisets where IT, is formed from IT by
deleting all occurrences of A:

I'HA =X

P IIL - Ay S Ac A & Acll

(mix)

The rule can be expressed as a lemma rather than a rule using the embeddings

we have developed so far as shown below where we now explicitly use the name

glss for the fixed but inductively defined set of rule instances for provability
logic GL:

(?7G + 7D) € derrec glss {} ; (7P F 7S) € derrec glss {}
—
((?G + (ms delete {?A} 7P) - (ms delete {7A} ?D) + 78))

€ derrec glss {}

Here we defined a function ms_delete which deletes all occurrences of its first
argument from its second argument. Our main result, which we intend to report
in a proper paper, is that this lemma can be proved using our embeddings and
Isabelle.

11 Objections and Impediments

A frequent objection to the idea of machine-checking anything is that the errors
could also have been found by a good Phd student working with pencil and
paper. But even diligent Phd students are apt to fall for errors which lie within
sentences marked by “clearly ...” or the “other cases are similar”. The beauty of
proof-assistants lies in their absolutely pedantic insistence that nothing is proved
until it passes through the type-checking procedure of the proof-assistant.

Another objection is that this is not research but is just high level program-
ming since you have to have the proof first. To some extent this is true since the
current prototypical example is usually the verification of a given proof from a
paper or a book. But many researchers now build the proof interactively. Indeed,
better user-interfaces make this very possible.

The main impediment in my opinion is the sheer effort required to become
familiar with proof-assistants before productive work can be started. It takes
at least three months of full-time work to learn how to use an interactive proof
assistant well. But as I hope I have shown you, it is worth it!
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Abstract. This article surveys two recent developments in set theory
sharing an essential second-order nature, namely, the modal logic of forc-
ing, oriented upward from the universe of set theory to its forcing exten-
sions; and set-theoretic geology, oriented downward from the universe to
the inner models over which it arises by forcing. The research is a mixture
of ideas from several parts of logic, including, of course, set theory and
forcing, but also modal logic, finite combinatorics and the philosophy
of mathematics, for it invites a mathematical engagement with various
philosophical views on the nature of mathematical existence.

1 Introduction

I would like in this article to discuss two emerging developments in set theory
focusing on second-order features of the set-theoretic universe, and focusing par-
ticularly on the relation of the universe of sets in a general context to other more
arbitrary models. The first of the these developments, the modal logic of forcing,
has an upward-oriented focus, looking upwards from a model of set theory to its
extensions and investigating the relationship of the model to these extensions
and their subsequent relation to further extensions. The second development,
set-theoretic geology, has a downward-oriented focus, looking from a model of
set theory down to the models of which it is an extension, and investigating the
resulting structure of this collection of models. These two perspectives are unified
by and find motivation in a multiverse view of set theory, the philosophical view
that there are many set-theoretic worlds. Indeed, such a philosophical view has
perhaps guided the mathematical research in this area by suggesting what have

* My research has been supported in part by grants from the CUNY Research Foun-
dation and from the National Science Foundation, for which I am very grateful. This
article is the preliminary text version of a talk I expect to give for the Third Indian
Conference on Logic and its Applications (ICLA), sponsored by the Association for
Logic in India and held at the Institute of Mathematical Sciences in Chennai, India
Jaunary 7-11, 2009.
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turned out to be very interesting questions and also what have turned out to be
productive avenues for research. The work I shall discuss can be taken as the ini-
tial footsteps in what I hope will become a thorough mathematical exploration
of this philosophical view. This brief survey is intended to introduce the area by
describing the principal concepts and preliminary results, mostly adapted from
[3], 4] and [I], but with the main proofs only sketched here. I shall call particular
attention to the many interesting and fundamental questions that remain open,
and I invite researchers to the topic.

2 Looking Upward: The Modal Logic of Forcing

Although many set-theorists affirm the Platonic view that there is just one uni-
verse of set theory, nevertheless the most powerful set-theoretic tools developed
over the past half century are actually methods of constructing alternative uni-
verses. With both the method of forcing and the method of ultrapowers—and
these two methods can be viewed as two facets of the single method of Boolean
ultrapoweraEI—a set theorist begins with a model of set theory V' and constructs
another model W by forcing or by ultrapowers (for example, via large cardinal
embeddings), making set-theoretic progress by means of a detailed investigation
of the often close connection between V and W. And of course set theorists,
ever tempted by the transfinite, perform very long iterations of these methods,
sometimes intertwining them in combination, to gain even greater understanding
and construct additional models of set theory.

Forcing, introduced by Paul Cohen in 1963, is a method for constructing a
larger model of set theory extending a given model. Cohen used the method to
settle the independence of the Continuum Hypothesis CH from the other axioms
of ZFC, by showing that every model of set theory has a forcing extension in
which CH fails. In a subsequent explosion of applications, set theorists have
constructed an enormous variety of models of set theory, often built to exhibit
certain precise, exacting features, and we have come thereby to see the rich
diversity of mathematical possibility.

With forcing, one begins with a ground model V' = ZFC and a partial order
or forcing notion P in V. The forcing extension V|G|, a model of ZFC, is built
by adjoining an ideal generic element G, a V-generic filter G C P, in a manner
akin to a field extension. In particular, the ground model has names for every
element of the forcing extension V|G|, and every object of V[G] is constructible
algebraically from these names in the ground model and the new object G. Much
of the power of forcing flows from the surprising degree of access the ground
model V' has to the objects and the truths of the extension V[G]. The overall
effect is that the forcing extension V[G] is closely related to the ground model
V', but exhibits new truths in a way that can be carefully controlled.

So let us consider a model of set theory V' and its relation to all its forcing
extensions V[G], considering at first only extensions by set forcing. It seems
very natural to introduce the idea that a statement ¢ in the language of set

! This idea is fully explored in the forthcoming [6].
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theory is forceable or possible if there is some forcing extension V[G] in which
 is true. This is, of course, a modal possibility notion, so we will write ¢ ¢ for
the assertion that ¢ is forceable. The natural dual notion is that ¢ is necessary,
written [J¢, when ¢ holds in all forcing extensions V[G]. There is, of course, a
natural Kripke model lurking here, whose possible worlds are the models of set
theory and whose accessibility relation is the relation of a model to its forcing
extensions. Many set theorists habitually operate within this Kripke model, even
if they would not describe their activities this way, for whenever it is convenient
and for whatever purpose they say, “let G C P be V-generic,” and make the
move to the forcing extension V[G]. This amounts to traveling about in this
Kripke model.

The modal assertions ¢y ¢ and [J¢ are expressible, of course, in the language
of set theory.

O — dJPIp e Pplpp

O <= VPVpePplkp @

The forcing relation p IFp ¢ means that whenever G C P is a V-generic filter
and p € G, then the resulting forcing extension V[G] satisfies ¢. Two of the
most fundamental facts about forcing, central to the entire forcing enterprise,
are expressed by the Forcing Lemmas, which assert, first, that every statement ¢
true in a forcing extension V[G] is forced by some condition p € G, and second,
that for ¢ of fixed complexity, the forcing relation p IFp ¢ is definable from
parameters in the ground model. These lemmas express precisely the sense in
which the ground model has access to the truths of the forcing extension. It
follows now that both ¢ ¢ and [0 are expressible in the language of set theory.
And while ¢ and O are therefore eliminable, we nevertheless retain them, for we
are interested in what principles these operators must obey.

Many common elementary modal assertions, it is easy to see, are valid under
this forcing interpretation. To be precise, let me define that a modal assertion
©(po, - -, Pn), in the language of propositional modal logic, is a wvalid principle
of forcing if for any set-theoretic assertions )y, ..., 1, the corresponding sub-
stitution instance ¢(1, ..., %,) holds. For example, it is easy to see that the
following elementary modal assertions are valid principles of forcing.

K O = ¢) = Oy = 0OY)
Dual O-p <= -0y

S Op = ¢

4 Oy = OOy

.2 CO¢ = OO

Since these assertions axiomatize the modal theory known as S4.2; it follows
that:

Theorem 1. FEvery S4.2 modal assertion is a valid principle of forcing.
The fundamental question is:

Question 2. What are the valid principles of forcing?
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An answer will be provided by Theorem Bl As a tentative first step, let me
mention that it is an enjoyable elementary exercise in forcing, which I encourage
the reader to undertake, to show that none of the following modal assertions is
a valid principle of forcing in every model of set theory.

5 O0¢ = ¢
M O0e = 00¢
W5 O00¢ = (¢ = Ov)
3 QeNOY = (0N OY)VO(PAY) VO AOY))
Dm OO0y = O¢) = ¢) (©O¢e = 9
Grz 00 = Op) = o) ©
Léb O0p = ) = Oy
H o = 00y = )

=
—

As a hint for this exercise, let me mention that several of the assertions above
are invalid in every model of set theory, with ¢ = CH (or its negation) being
a counterexample. The others are invalid in L (and other models), with coun-
terexamples built from such assertions as V # L, w¥ < w;, CH, or Boolean
combinations of these. The axioms above correspond to a hierarchy of modal

theories:

Some Common Modal Theories S4WS5
S5 =S4+ 5
SAW5 = S4 + W5 v a
S4.3 = S4+ .3 S4.2.1 S4.3 Dm.2 Grz
S4.21 =S4+ .24+ M
S4.2 = S4+4 .2 KaH
S4.1 =S4+ M v v v
Sé=Ki+S 6L 4.1 “sa? om
Dm.2 = S4.2 4+ Dm ° .
Dm = S4 + Dm
Grz = K+ Grz = S4 + Grz
GL = K4 + Léb AN
K4H = K4 + H S4
Ké = K+ 4

K = K + Dual

The forcing interpretation of the modal operators (J ¢ and {) ¢ was introduced
in [3], in connection with the forcing axiom called the Maximality Principle MP,
which was fruitfully cast in these modal terms [ Specifically, having the concept
of a set theoretical assertion ¢ being forceable or being necessary, we define
that ¢ is forceably necessary if it is forceable that ¢ is necessary, that is, if we
can force ¢ in such a way that it remains true in all further forcing extensions.
The Maximality Principle is the scheme asserting that every forceably necessary
statement is already true. In our modal notation, this is simply the assertion
OO¢p = ¢, which happens to be the modal axiom known as S5. Thus, the

2 See [10] for an earlier independent account, without the modal interpretation, of a
version of MP.
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Maximality Principle is simply the assertion that S5 is a valid principle of forcing.
Elementary modal reasoning shows that MP is equivalent, as a scheme, to the
scheme asserting that every forceably necessary statement is not only true, but
also necessary, expressed by 0 Do = . In [3], it was proved that if there is
a model of ZFC, then there is a model of ZFC+ MP. Although this was a forcing
argument, it involved a certain interesting non-forcing hiccup in the choice of
ground model, and it is not true that every model of ZFC has a forcing extension
that is a model of MP. Indeed, if ZFC is consistent, then there is a model of ZFC
having no extension of any kind with the same ordinals that is a model of MP.
The original forcing axioms, from Martin’s Axiom onwards, have often been cast
and were originally conceived (according to my conversations with Tony Martin)
as asserting that a lot of forcing has already occurred. The Maximality Principle
makes this idea universal, by asserting that any statement that could be forced
necessary is already necessary.

But of course, the Maximality Principle does not hold in all models of set
theory, so the question remains: What are the valid principles of forcing? The
following theorem, the main theorem of [4], provides an answer.

Theorem 3 (Hamkins, Lowe [4]). IfZFC is consistent, then the ZFC-provably
valid principles of forcing are exactly those in the modal theory S4.2.

Let me mention a few concepts from the proof. We have already observed above
that S4.2 is valid for forcing. The difficult part of the theorem, of course, is to
show that there are no other validities. In other words, given S4.2 I/ ¢, we must
provide set-theoretic assertions 1; such that p(vyo,...,1,) fails in some model
of set theory. To accomplish this, two attractively simple concepts turn out to
be key. Specifically, we define that a statement ¢ of set theory is a switch if
both ¢ and —¢ are necessarily possible. Thus, a switch is a statement ¢ whose
truth value can always be turned on or off by further forcing. In contrast, ¢ is
a button if ¢ is (necessarily) possibly necessary. These are the statements that
can be forced true in such a way that they remain true in all further forcing
extensions. The idea here is that once you push a button, you cannot unpush it.
The Maximality Principle, for example, is equivalent to the assertion that every
button has already been pushed. Although buttons and switches may appear
at first to be very special kinds of statements, it is nevertheless the case in set
theory that every statement is either a button, a switch, or the negation of a
button. (After all, if you can’t always switch ¢ on and off, then it will either
get stuck on or stuck off, and product forcing shows these possibilities to be
mutually exclusive.) A family of buttons and switches is independent, if the
buttons are not yet pushed and (necessarily) each of the buttons and switches
can be controlled without affecting the others. Under V' = L, there is an infinite
independent family of buttons and switches, namely, b, = “w’ is collapsed” and
s$m = “GCH holds at R,,4,,” (for n,m > 0), since the truth of these statements
can be controlled independently by forcing.

The proof of Theorem [ rests in part on a detailed understanding of the modal
logic S4.2 and its complete sets of Kripke frames. A Kripke model is a collection
of propositional worlds (essentially a truth table row, assigning propositional
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variables to true and false), with an underlying accessibility relation called the
frame. A statement is possible or necessary at a world, accordingly as it is true
in some or all accessible worlds, respectively. Every Kripke model built on a
frame that is a directed partial pre-order will satisfy the S4.2 axioms of modal
logic, and in fact the finite directed partial pre-orders are complete for S4.2 in
the sense that the statements true in all Kripke models built on such frames are
exactly the statements provable from S4.2. An improved version of this, proved
in [], is that the finite pre-lattices, and even the finite pre-Boolean algebras, are
complete for S4.2. The following lemma, a central technical claim of [4], shows
that any model of set theory with an independent family of buttons and switches
is able to simulate any given Kripke model built on a finite pre-lattice frame.

Lemma 4. If W = ZFC has sufficient independent buttons and switches, then
for any Kripke model M on a finite pre-lattice frame, any w € M, there is a
translation of the propositional variables p; — 1; to set-theoretic assertions 1;,
such that for any modal assertion @(p1,...,pn):

(Maw))zgp(pla"'apn) Aand W':(P(wlaawn)

Each v; is a Boolean combination of the buttons and switches.

Consequently, if S4.2 I/ ¢, then since we proved that there is a Kripke model M
built on a finite pre-lattice frame in which ¢ fails, it follows that in any model
of set theory W having independent buttons and switches, which we proved
exist, the corresponding assertion (i1, ...,1,) fails. This exactly shows that
@ is not a provably valid principle of forcing, as desired to prove Theorem [3
The proof is effective in the sense that if S4.2 I/ ¢, then we are able explicitly to
provide a model W |= ZFC and the particular set-theoretic substitution instance
@1, ..., 1¥,) which fails in W.

Although Theorem [3 tells us what are the ZFC-provably valid principles of
forcing, it does not tell us that all models of ZFC exhibit only those validities.
Indeed, we know that this isn’t the case, because we know there are models of
the Maximality Principle, for which the modal theory S5 is valid, and this is
strictly stronger. So different models of set theory may exhibit different valid
principles of forcing. For any W |= ZFC, consider the family Force" of modal
assertions ¢ that are valid for forcing over W. The proof of Theorem ] can be
adapted to show that

Theorem 5 (Hamkins, Léwe [4]). If W = ZFC, then S4.2 C Force" C S5.

Furthermore, both of these endpoints occur, and so the theorem is optimal.
Specifically, if W is a model of V = L, then Force" = S4.2, and if W satisfies
the Maximality Principle, then Force" = S5.

Questions 6

1. Is there a model of ZFC whose valid principles of forcing form a theory other
than S4.2 or S5%
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2. If ¢ is valid in W, is it valid in all extensions of W ¢

3. Equivalently, is Force" normal?

4. Can a model of ZFC have an unpushed button, but not two independent
buttons?

The validity for forcing of many modal axioms can be re-cast in purely set-
theoretic terms, in the button-and-switch manner. For example, a model W |=
ZFC has no unpushed buttons if and only if Force" = S5, and W has indepen-
dent buttons and switches if and only if Force" = S4.2. Moving beyond this,
if W has two semi-independent buttons (meaning that the first can be pushed
without pushing the second), then W5 invalid in W; If W has two independent
buttons, then .3 is invalid in W; If W has an independent button and switch,
then Dm is invalid in W; And if W has long volume controls (sequences of but-
tons, such that each can be pushed without pushing the next and pushing any
of them necessarily pushes all earlier buttons—so the volume only gets louder),
then Force"” C S4.3.

When parameters are allowed into the scheme, large cardinals make a surpris-
ing entrance.

Theorem 7. The following are equiconsistent:

1. S5(R) is valid.

2. SAW5(R) is valid for forcing.

3. Dm(R) is valid for forcing.

4. There is a stationary proper class of inaccessible cardinals.

Theorem 8.

1. (Welch, Woodin) If S5(R) is valid in all forcing extensions (using the R of
the extension), then ADF®)

2. (Woodin) If ADgr + © is regular, then it is consistent with ZFC that S5(R)
is valid in all forcing extensions.

There are many directions for future work in this area. In addition to the ques-
tions above, it is natural to restrict the class of forcing to ccc forcing, or proper
forcing or any other natural class of forcing.

Questions 9. What are the wvalid modal principles of ccc forcing? Of proper
forcing? Of class forcing? Of arbitrary extensions?

Class forcing and arbitrary extensions involve the meta-mathematical complica-
tion that the corresponding possibility and necessitation operators are no longer
first-order expressible. The work on Question [0 has been surprisingly difficult,
even for what we expected would be the easier cases, and has led to some inter-
esting, subtle questions in forcing combinatorics. For example, the question of
whether there must be switches in the modal logic of collapse forcing (the class
of all forcing Coll(w, d) to collapse a cardinal ¢ to w using finite conditions, and
more generally also the Lévy collapse Coll(w, <d)) leads directly to the following
question:
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Question 10. Can there be a model of set theory V' that is elementarily equiv-
alent to V|G], whenever G is V -generic for the collapse of a cardinal § to w?

Such a model of set theory would be an extreme counterexample in having no
switches at all for the class of collapse forcing, and would have valid principles
of collapse forcing that are beyond S5, a hard upper bound for the other natural
classes of forcing. Mitchell and Welch have given lower bounds with large values
of o(k), but for the upper bound, an early suggestion of Mitchell to perform
Radin forcing over a model of o(k) = kT has reportedly not worked out as
hoped.

3 Looking Downward: Set-Theoretic Geology

Let me turn now to a second topic, a collection of problems and results we
have called set-theoretic geology. Forcing is ordinarily viewed as a method of
constructing outer as opposed to inner models of set theory, for with forcing, as I
explained above, one usually begins with a ground model V' and builds the forcing
extension V[G] by adjoining G and constructing relative to V. Nevertheless, a
simple switch in perspective allows us to use forcing to describe inner models as
well. The idea is simply to consider forcing from the perspective of the forcing
extension rather than the ground model and to look downward from the universe
V for how it may have arisen by forcing. Given the set-theoretic universe V', we
search for the possible ground models W C V such that there is a W-generic
filter G C P € W such that V' = W/[G]. Such a perspective quickly leads one to
look for deeper and deeper grounds, burrowing down to what we call bedrock
models and deeper still, to what we call the mantle and the outer core. In this
way, one arrives at set-theoretic geology. The topic is introduced in [I], which
gives the initial results and numerous open questions, and the material here is
adapted from that article.

The topic rests fundamentally on the following theorem, a shockingly recent
result, considering the fundamental nature of the question it answers. Laver’s
proof of this theorem builds on work of mine [2] concerning the approximation
and covering properties.

Theorem 11 (Laver [7], independently Woodin [11]). Every model of set
theory V = ZFC is a definable class in all of its set forcing extensions V[G],
using parameters in V.

This theorem led Jonas Reitz and me to introduce the following hypothesis,
which we take to be the beginning of set-theoretic geology.

Definition 12 (Hamkins, Reitz). The Ground Axiom GA is the assertion
that the universe is not obtained by nontrivial set forcing over any inner model.

Although this assertion may appear at first to be second order, because of the
quantification over ground models, in fact the Ground Axiom is expressible by
a first order statement in the language of set theory.
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Theorem 13 (Reitz [8)9]). The Ground Aziom is first order expressible in set
theory.

The Ground Axiom holds in many canonical models of set theory, such as L,
L[0%], L[] and many instances of K. Since these models all exhibit many highly
regular structural features, it is very natural to inquire: To what extent are
these regularity features consequences of the Ground Axiom? The answer, which
Reitz provided in his dissertation, is that every model of ZFC has a class forcing
extension, preserving any desired initial segment V;, (and mild in the sense that
every new set is generic for set forcing), which is a model of the Ground Axiom.
Thus, the Ground Axiom does not imply any of the usual combinatorial set-
theoretic regularity features ¢, GCH and so on. Reitz’s method obtained the
Ground Axiom by forcing very strong versions of V' = HOD, and so his analysis
did not settle the question of whether GA = V = HOD. In a three-generation
collaboration, we settled that question with the following:

Theorem 14 (Hamkins, Reitz, Woodin [5]). Every model of set theory has
an extension which is a model of GA plus V # HOD.

After some preparatory forcing, we use a class Silver iteration adding a Cohen
subset to every regular cardinal. The argument is flexible and robust, and leads
us to expect the Ground Axiom after most any Easton support progressively
closed class iteration.

Let me set some terminology. A transitive class W is a ground of V if W =
ZFC and V = WG] is a forcing extension of W by set forcing G C P € W. The
model W is a bedrock of V' if it is a ground of V' and there is no deeper ground
inside W. Equivalently, W is a bedrock of V' if it is a ground of V' and satisfies
the Ground Axiom.

Theorem 15 (Reitz [8]). If there is a model of ZFC, then there is a model of
ZFC having no bedrock.

We don’t know if a model can have more than one bedrock model.
Question 16. Is the bedrock unique when it exists?

The principal new concept is the following:

Definition 17. The Mantle M of V' is the intersection of all grounds of V.

The Mantle is a first-order parameter-free definable transitive class containing
all ordinals. Much of this is easy to see, once one realizes that there is a broad
uniformity in the definition of the ground model in its forcing extensions. The
basic situation is described by the following.

Theorem 18. Thereis a parameterized family { W, | r € V' } of transitive classes
such that

1. Every W, is a ground of V and r € W,..

2. Every ground of V is W, for some r.

3. The relation “x € W, ” is first order.

4. The relation “V = W,|G] by W,.-generic filter G CP € W,.” is first order in
the variables (r,G,P).
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5. The definition is somewhat absolute.
. IfW,CUCYV, thenWTZWTU
ii. If V .C V[G], then VrasW, = W, = w1,

The parameterized family { W,. | » € V' } of grounds in Theorem [[§ reduces sec-
ond order properties about grounds to first order properties about their parame-
ters in this family. For example, the Ground Axiom holds if and only if Vr W,. =
V. The model W, is a bedrock if and only if Vs (W, C W, = W, =W,.). The
Mantle is defined by M = {z | ¥r (x € W,.) }. Because of Theorem [I8 each of
these assertions is first order expressible in the language of set theory. The proof
of Theorem [I8 relies, of course, on the proof of Theorem [ and I would like to
mention a few of the ideas. Laver’s proof of Theorem [I1] relied on the following
definitions and lemmas.

Definition 19 (Hamkins [2])

1. W C V has the § covering property if every A C W with A € V and |A]Y < 6
is covered A C B by some B € W with |B|" < 4.

2. W C V has the ¢ approximation property if every A C W with A € V' and
all small approximations AN B in W, whenever |B|" < 4, is already in the
ground model A € W.

Lemma 20 (Hamkins [2]). If V C V[G] and G C P * Q is V-generic for
forcing with P nontrivial and IF Q is < |P|-strategically closed, then V[G] has the
§ cover and approximation properties for § = |P|T.

Lemma 21 (Laver [7], Hamkins). If W,W’ C V have the § approzimation
and covering properties, P(6)" = P(&)V" and (6)W = (6H)W" = (67)V, then
W=Ww.

Laver had first proved Lemma 2] for small forcing, that is, replacing the ¢
approximation and covering properties with the assumption that the forcing
had size less then ¢ (which by Lemma 20 is a special case), and I extended it to
the approximation and covering properties. Lemma [2]] essentially provides the
definition of W inside the forcing extension W[G], using the parameter P(§)"

When looking downward at the various grounds, it is very natural to inquire
whether one can fruitfully intersect them. Let us define that the grounds are
downward directed if for every r and s there is ¢t such that W; C W,. N W;. The
grounds are locally downward directed if for every B and every r,s there is ¢
with W, N B C W,.NW,. The question of whether there can be distinct bedrock
models in the universe is of course related to the question of whether there is a
ground in their intersection:

Question 22. Are the grounds downward directed?

Generalizing beyond finite intersections, let us define that the grounds are down-
ward set-directed if for every A there is t with Wy € (), .4, W;.. The grounds are

locally downward set-directed if for every A, B there is t with W;NB C (., W
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Question 23. Are the grounds downward set directed?

In every model for which we can determine the answer to this question, the
answer is yes. The importance of the question is that in the situations where the
answwer is yes, the Mantle is well behaved.

Theorem 24

1. If the grounds are downward directed, then the Mantle is constant across the
grounds, and M = ZF.
2. If the grounds are downward set-directed, then M = ZFC.

The hypothesis in (2) can be weakened to require only that the grounds are
downward directed and locally downward set-directed. The general fact under-
lying Theorem 24lis the following, where we define that a family W of transitive
models of ZFC is locally realized if for every y € NW there is W € W with
P(y)™ = P(y)". That is, for any y in all the models, there is a particular
model W € W that computes P(y) the same as NW does. This is actually
equivalent to requiring for every ordinal « that there is some W € W such that
VIV =yow,

Theorem 25. If W is a collection of transitive models of ZFC, all with same
ordinals, and "W s a class in each W € W, then:

1. AW = ZF.
2. If W is locally realized, then "W = ZFC.

Are the grounds locally realized? It is not difficult to see that the grounds are
locally realized if and only if they are locally downward set-directed. We are
somewhat embarrassed not to know the answer to the following question.

Question 26. Does the Mantle always satisfy ZF ¢ ZFC?

It is natural, of course, to consider how the Mantle is affected by forcing. Since
every ground model of V' is a ground model of any forcing extension V[G], it
follows that the Mantle of V[G] is contained within the Mantle of V. That is,
the Mantle gets smaller (or at least no larger) as you perform more and more
forcing. In the limit of this process, we arrive at:

Definition 27. The generic mantle of a model of set theory V is the intersection
of all ground models of all set forcing extensions of V.

We will use the notation M to denote the Mantle and gM to denote the generic
Mantle. The generic Mantle has proved in several ways to be a more robust
version of the Mantle (although in truth we do not know them to differ). For
example, for any model of ZFC, the generic Mantle is always a model at least
of ZF, without any need for a directedness hypothesis. If the generic grounds,
the ground models of the forcing extensions of V', are downward directed, then
in fact the Mantle and the generic Mantle are the same. If the generic grounds
are downward set directed, then the generic Mantle is a model of ZFC.
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Question 28. Can the mantle and the limit mantle differ?

One might hope to prove even that every model V' of ZFC is the generic mantle
of a model W of the Ground Axiom, so that the mantle of W is W. This would
provide a very attractive answer to Question

Set-theoretic geology is naturally carried out in a context that includes all the
forcing extensions of a model of set theory, all the grounds of these extensions,
all forcing extensions of these resulting grounds and so on. The generic multi-
verse of a model of set theory, introduced by Woodin [I1], is the smallest family
of models of set theory containing that model and closed under both forcing
extensions and grounds. There are numerous philosophical motivations to study
to the generic multiverse. Indeed, Woodin introduced it specifically in order to
criticize a certain multiverse view of truth, namely, truth as true in every model
of the generic multiverse. Although I do not hold such a view of truth, neverthe-
less I want to investigate the fundamental features of the generic multiverse, a
task I place at the foundation of any deep understanding of forcing. Surely the
generic multiverse is the most natural and illuminating background context for
the project of set-theoretic geology.

The generic Mantle gM is a parameter-free uniformly definable class, invariant
by forcing, containing all ordinals and gM | ZF. Because it is invariant by
forcing, it follows that the generic Mantle gM is constant across the multiverse,
and in fact, it follows that the generic Mantle gM is the intersection of the generic
multiverse. On this view, the generic Mantle is a canonical, fundamental feature
of the generic multiverse, deserving of intense study.

The class HOD is the class of hereditarily ordinal definable sets, the sets that
are definable using ordinal parameters, and all their members are definable using
ordinal parameters, and so on. Introduced classically, HOD is intensely studied,
and known to be a transitive inner model of ZFC, containing all ordinals. Let
me now define the generic HOD to be the intersection of all HODs of all the
forcing extensions.

gHOD = [JHOD"!]
G

The generic HOD was originally introduced by Fuchs in an attempt to identify
a very large canonical forcing-invariant class.

Theorem 29

1. gHOD is constant across the generic multiverse.
2. The HODs of all forcing extensions are downward set-directed.
3. Consequently, gHOD is locally realized and gHOD | ZFC.
4. The following inclusions hold.
HOD

U

gHOD C gM

N
=
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Question 30. To what extent can we control and separate these classes?

For the remainder of this article, I will sketch several answers to this question.
First, we can control the classes to keep them all low.

Theorem 31 (Fuchs, Hamkins, Reitz). If V = ZFC, then there is a class
extension V[G] in which

vV =M"I¢ = gMVIE = gHODVI®! = HODVI¢!

In particular, as mentioned earlier, every model of ZFC is the mantle and generic
mantle of another model of ZFC. It follows that we cannot expect to prove any
regularity features about the mantle or the generic mantle, beyond what can be
proved about an arbitrary model of ZFC. It also follows that the mantle of V'
is not necessarily a ground model of V', even when it is a model of ZFC. One
can therefore iteratively take the mantle of the mantle and so on, and we have
proved that this process can strictly continue. Indeed, by iteratively computing
the Mantle of the Mantle and so on, what we call the inner Mantles, we might
eventually arrive at a model of ZFC plus the Ground Axiom, where the process
would naturally terminate. If this should occur, then we call this termination
model the outer core of the original model. Generalizing the theorem above,
Fuchs, Reitz and I have conjectured that every model of ZFC is the a'" inner
Mantle of another model of ZFC, for arbitrary ordinals @ (or even = ORD or
beyond).

There is an interesting philosophical view related to and perhaps refuted by
this conjecture, namely, the philosophical view holding that there is a highly
regular core underlying the universe of set theory, an inner model obscured over
the eons by the accumulating layers of debris heaped up by innumerable forcing
constructions since the beginning of time. If only we could sweep this accumu-
lated material away, the view holds, then we should find an ancient paradise. The
Mantle, of course, wipes away an entire strata of forcing, and the iterated inner
Mantles sweep away additional layers. So the philosophical view would lead us
to believe that in this way we would be getting close to a highly regular core.
If the conjecture is correct, however, then what we should expect to find after
sweeping such layers away even ORD many times is, not a highly regular ancient
paradise, but rather something ordinary: an arbitrary model of set theory.

Let me sketch a few ideas from the proof of Theorem [31l The initial idea goes
back to McAloon (1971), who explained how to make sets definable by forcing.
For an easy warm-up case, consider an arbitrary real x C w. This real may not
happen to be definable in V| but it is an elementary exercise in product forcing
to force the GCH to hold at X,, exactly when z(n) = 1. In the resulting forcing
extension V[G], therefore, the original real x is definable, without parameters.
In a similar way, any set whatsoever can become definable in a forcing extension.
For the main theorem, we start in V' |= ZFC, and seek a class forcing extension
VI[G] with V = MV = gM" ¢ = gHODVI®! = HODV?). Let Q. generically
decide whether to force GCH or -GCH at X, (the actual proof is somewhat
more complicated than this), and let P = II1,,Q,, be the class sized product, with
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set support. The desired model will be the class forcing extension V[G], where
G C P is V-generic. First, every set in V' becomes coded unboundedly into the
continuum function of V[G], because it is dense that the generic filter will opt
to code it into the GCH pattern. Therefore, every set in V becomes definable
in V[G] and all set forcing extensions of V[G]. This establishes V' C gHOD
and consequently V' C gHOD C gM C M and V' C HOD. Next, observe that
every tail segment V[G®], using only the part of the forcing beyond «, is a
ground of V[G]. By mutual genericity of the forcing up to a with the forcing
at stages after «, it follows that N,V[G®] = V. This implies that M C V
and consequently V' = gHOD = gM = M. Finally, HODV!¢! ¢ HODVI? since
P | « is densely almost homogeneous. It follows that HOD ¢l C V. In summary,
V = MVIG = oMV = gHODVI®! = HODVI4!, as desired.

Let me now turn to a second answer to Question B0 where we keep the
Mantles low, while allowing HOD to inflate.

Theorem 32 (Fuchs, Hamkins, Reitz). If V = ZFC, then there is a class
extension V|G| in which

vV =MVICl = gMVI¢ = gHODVIC] but  HODVIE = v[q]

For this theorem, our strategy is to balance the forces on M, gM, gHOD and
HOD. We perform proper class forcing to V[G] in such a way that every set in
V will be coded unboundedly into the GCH pattern, and we also ensure that G
itself is definable, but not so robustly, so that the gHOD will fall back down to V.
Specifically, the proof uses many instances of self-encoding forcing, the set-sized
forcing which first adds a Cohen subset A C k, and then codes this new set A
into the GCH pattern above x, and then codes the resulting new sets into the
next block of the GCH pattern, and then those sets, and so on. By the next Beth
fixed point above x, we find an extension V[G(,)] in which G ) is definable. To
prove the theorem, one takes a class-sized product of such self-encoding forcing,
which operate on non-interfering intervals of cardinals. The result is a class
forcing extension V[G] in which the Mantle and the generic Mantle and the
generic HOD are V, but the HOD is V[G]. The reason the generic HOD falls
back down to V is that with subsequent collapse forcing, one can in effect erase
the coding of any given G4y, and so the generic HOD of V[G], and indeed the
generic Mantle and Mantle, is once again contained in the intersection of the tail
forcing extensions.

Next, we keep the HODs low, while allowing the Mantle to inflate, seeking
V[G] with V = HODVIE = gHODY [ but MVIC! = V[G]. Such a model V[G]
will of course be a model of the Ground Axiom plus V' # HOD. Recall Theorem [3]
which says that every V' |= ZFC has a class forcing extension V[G] E GA+V #
HOD. By modifying the argument, we are able to obtain:

Theorem 33 (Fuchs, Hamkins, Reitz). If V | ZFC, then there is a class
extension V[G] in which

vV =HOD" ¢ = gHODVI¢ but  MVIE = V(@]
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We have not yet been able to compute the generic Mantle of this model. Our
last combination is to push both the Mantles and the HODs high.

Theorem 34 (Fuchs, Hamkins, Reitz). If V | ZFC, then there is a class
forcing extension V[G] in which

V[G] = HODVIE = gHODVI¢ = MVICT = gMV(¢)

This theorem is proved by Reitz’s method of forcing every set to be coded into
the GCH pattern. I would like to emphasize that in none of our theorems have
we managed to separate the generic Mantle from either the Mantle or the generic
HOD. We know that gHOD C gM C M, and we have separated the generic HOD
from the Mantle in Theorem [32] so the model of this theorem does perform at
least one of the desired separations, but as we have not been able to compute
the generic Mantle of that model, we don’t know which separation has occurred.
Thus, I reiterate Question 28 in part, in the dual formulation.

Question 35. Is the generic Mantle the same as the Mantle? Is the gemeric
Mantle the same as the generic HOD ¢

Of course, not both answers can be yes, and we expect that both answers are no.
Let me close the article by inviting all researchers to attack this open question
and the others I have mentioned. The research topics here are young and ripe
for progress.
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Abstract. Connection matrices of graph parameters were first intro-
duced by M. Freedman, L. Lovdsz and A. Schrijver (2007) to study the
question which graph parameters can be represented as counting func-
tions of weighted homomorphisms. The rows and columns of a connection
matrix M (f,0) of a graph parameter f and a binary operation [J are
indexed by all finite (labeled) graphs G; and the entry at (Gi, Gj) is
given by the value of f(G;0G;). Connection matrices turned out to be
a very powerful tool for studying graph parameters in general.

B. Godlin, T. Kotek and J.A. Makowsky (2008) noticed that connec-
tion matrices can be defined for general relational structures and binary
operations between them, and for general structural parameters. They
proved that for structural parameters f definable in Monadic Second Or-
der Logic, (MSOL) and binary operations compatible with MSOL, the
connection matrix M (f,0) has always finite rank. In this talk we discuss
several applications of this Finite Rank Theorem, and outline ideas for
further research.

1 Introduction

Graph Parameters and Graph Polynomials. A graph parameter (also
called a numeric graph invariant) f is a function from the class of all finite
graphs G to some numeric domain which is an ordered commutative ring R or
an ordered field F with 0 and 1, usually the integers Z, the rational numbers Q
or the reals R. Graph properties are the special case where the values of f are 0
or 1. In the case of graph properties the ring can be taken to be the two-element
boolean algebra, or, alternatively the field Zs;. We shall use the latter, to make
our use of linear algebra uniform.

Graph polynomials are functions p from G into a polynomial ring, usually
Z[X], where X is a fixed finite set of indeterminates. Graph polynomials are a
way to encode infinitely many graph parameters. Every evaluation of the polyno-
mial p(G; X) at some point X = 7 is a graph parameter. So are the coefficients
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of p(G; X), the total degree or the degree of monomials where the coefficient
satisfies certain properties, and the zeros of p(G; X).

Instead of graphs one can also consider hypergraphs or relational structures
over some fixed finite vocabulary 7, a set consisting of relation symbols and
constants. In this case we speak of structural invariants for T-structures, or just
of T-invariants and T-polynomials. We include here the empty T-structure, which
we denote by 0.

Connection Matrices. Let [0 be a binary operation on 7-structures (which
respects T-isomorphisms. A 7-structure Z is O-neutral if for every 7-structure A
we have AZ ~ ZOA. For the disjoint union of 7-structures, denoted by L, the
empty structure is U-neutral. For the cartesian product of 7-structures, denoted
by X, the one-element structure with full relations is x-neutral.

Let f be a 7-invariant and [0 be a binary operation on 7-structures which
respects 7-isomorphisms. Let {A; : i € N} be an enumeration of all finite 7-
structures (up to isomorphisms). We define the infinite matrix

M(f,0) = (mi;(f,00))

by m; ;(f,0) = f(A:OA;). M(f,0) is called the connection matriz of f and O.
We denote by rg (f,0) the rank over R of the matrix M (f, ). We usually omit
the subscript in rz (f,0), when no confusion arises.

Multiplicative T-invariants. A 7-invariant f is called O-multiplicative if it
satisfies f(AOB) = f(A)-f(B) for all finite 7-structures .4 and B. With respect to
the disjoint union, L, typical examples of U-multiplicative graph parameters are
X(G, k), the number of proper vertex colorings with k colors, pm(G), the number
of perfect matchings, or the number of acyclic orientations. With respect to the
join of graphs, denoted by >, counting the number of covers by independent sets
is b<-multiplicative.

In [FLS07] the following characterization of graph parameters, which are mul-
tiplicative with respect to the disjoint union, was given. We state it here in the
general context. The proof is verbatim the same.

Proposition 1. Let f be a T-invariant with values in an ordered field R, and
which is not identically 0, and let O be a binary operation on T-structures, with
T being a unique O-neutral structure. Then f is O-multiplicative if and only if
f(Z) =1, and the matriz M (f,0) has rank 1 and is positive semi-definite.

Connection matrices for various operations on labeled graphs are studied in
[FLS07, [Sze07, Lov07, [Sch08]. In these papers they are used to characterize
graph invariants arising from various vertex-coloring and edge-coloring models.
In [GKMOS] connection matrices are used to study definability properties of
graph parameters and graph polynomials.

Outline of the Talk. In this talk we summarize the results from [FLS07]
and [GKMOS] and discuss further applications and open problems. In Section
we introduce connection matrices of 7-invariants and their rank. We illustrate
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their uses in the case of graph parameters. This paraphrases the main results
of [FLS07], and explains the Freedman-Lovéasz-Schrijver Theorem which gives a
characterization of graph parameters arising from counting weighted homomor-
phisms. In Section [ we show how one can use a Feferman-Vaught-style Theorem
from [Mak04] for 7-invariants definable in Monadic Second Order Logic MSOL
to show that the rank of many connection matrices has to be finite. The exact
statement of this is the Finite Rank Theorem (Theorem [@). In Section H we
give applications of the Finite Rank Theorem, mostly taken from [GKMOS|. We
conclude with a list of open problems for further investigations.

2 Properties of Connection Matrices of T-Invariants

The Rank of Connection Matrices. Besides multiplicative 7-invariants we
consider also 7-invariants f with the following properties:

(i) fis O-additive if f(G10G2) = f(G1) + f(G2).
(ii) f is O-mazimizing, respectively O-minimizing if there exist infinite se-
quences of graphs (G;)ien, (H;)ien such that for all (4, ) € N? we have

f(GiOH;) = max{f(G:), f(H;)},

respectively
f(GiOH;) = min{f(G;), f(H;)}.

Furthermore, for all ¢ € N the sequence f(i); = f(G;0H;) is strictly mono-
tone increasing. If the two sequences consist of all 7-structures, we say f is
strictly O-mazimizing, respectively strictly O-minimizing.

(iii) A 7-invariant f is weakly (O, y)-multiplicative, if there exists a finite set
of graph parameters f; : ¢ < v with 4,7 € N with f = fy, and a matrix
N e R’yX'y’ such that fo(.AlmAz) = Zi,j fz(Al)NUf](Az)

In other words, f(A410A4,) is given by a quadratic form defined by N; ;

of rank at most 7.

Typical example of L-additive parameters are the cardinality of the vertex
set, the cardinality of the edge-set, k(G), b(G), number of connected components
and number of blocks (doubly connected components), respectively. Examples of
>t-additive graph parameter are x(G) and w(G). Among the L-maximizing graph
parameters we have: the chromatic number x(G), the edge chromatic number
Xe(G), and the total coloring number x¢(G), the size of a maximal clique w(G),
the maximal degree A(G), the tree-width tw(G), and the clique-width cw(G).

Proposition 2. Let f be a T-invariant.

(i) If f is O-multiplicative, r(f,0) = 1.
(i) If f is O-additive, r(f,0) = 2, unless M(f,0) is the zero matriz.

! Almost all graph parameters discussed are taken from [Die96]. One exception is the
clique-width, which was introduced in [COQ0], and, in connection to graph polyno-
mials, in [Mak04].
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(iii) If [ is O-maximizing or O-minimizing, r(f,0) is infinite.
(iv) Let f be a graph parameter which is weakly (O, ~y)-multiplicative.

Then r(f,0) < 7.
Proof. (i) was already stated in Proposition [II (ii), (iii) and (iv) are easy to
verify.
Counting Weighted Homomorphisms of Graphs. A k-graph is a graph
G = (V(G), E(@)) with k distinct vertices labeled with 0, 1,..., k—1. We denote
by Gy the class of finite k-graphs. Gy = G the set of all finite graphs without
labels.

Given two k-graphs G, Gy we define the k-sum G1 L G2 as the disjoint union
of G1 and G5 where we identify correspondingly labeled vertices. In [FLS07]
the connection matrices M (f,g) on Gy are used to characterize those graph
parameters f which can be represented as counting functions of weighted homo-
morphisms. The setup is as follows:

Let H = (V(H),E(H)) € G be a fixed graph, possibly with loops. Let « :
V(H) — Rt and 3 : E(H) — R be weight functions of vertices and edges
respectively, and let h : G — H be a homomorphism. We define weights of h by

an=[[ a@) and s.= [ Bh(),h(v)
ueV(QG) u,veE(G)

Finally, we sum over all homomorphisms

Znap(G) = Y an B
h:G—H
ZH,0,3(G) is often called a partition function or a vertex coloring model.
Observation 1. Partition functions are U-multiplicative.

Example 1. The following are simple partition functions:

(i) For H = K,,, a clique with m vertices,
ZKn11(G) = x(G,m)

which counts the number of proper m-colorings.
(11) For H = Ly, an isolated loop, o = A, 3 = p,

Ziau(G) = AV(@)] ,MIE(G)|
(#ii) For H = Ly, consisting of m isolated loops, « = X\, § = u,
Z1, (@) = mFE@) AV 1B

(iv) For H = Ky > Ly with vertices v, ¢ respectively, and a(v) = X,a(f) = 1,
08 =1 we get

ZriaL,a,8(G) = Zindi(G) L X0

where ind;(G) is the number of independents sets of size i in G.
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In [FLS07] it is proved that the connection matrices M (f,Uy) for f = Zy 0. 5(G)
have the following properties:

Proposition 3 (M. Freedman, L. Lovasz and A. Schrijver, 2007)
(i) For every weighted graph (H,«, 3) we have
"(ZH,0,5(G), Ur) < |V (H)|*
(i) If (H,«, 3) has no automorphisms and no twins, then
"(ZH,0,5(G),Ux) = |V (H)|*

Automorphisms here are weight preserving. Two vertices u,v€V (H) of (H, «, 3)
are twins if for every w € V(H) we have that 8(u,w) = (v, w). Being twins
does not depend on a.

Proposition 4 (M. Freedman, L. Lovasz and A. Schrijver, 2007)

For every weighted graph (H, v, B) the matric M (Z g «,8(G), Ug) is positive semi-
definite.

Example 2. (i) Let pm(G) denote the number of perfect matchings of G. pm(G)
is LU-multiplicative and r(pm, Uy) = 2%, but M (pm, Ll1) is not positive definite.

(i) For x(—,A), A € Z we have: M (x(—,\),Ux) is positive-semi-definite, and
r(x(—, \),Uy) is finite, but exponentially bounded only for X € Z*, otherwise
it grows superexponentially.

The Freedman-Lovasz-Schreijver Theorem. We say that a numeric graph
invariant is hom-presentable if there is a weighted graph (H, «, 8) such that for
every G f(G) = Zg.,5(G). We have seen in Example[Tlthat 2/V (&)1 21E(@)] 2k (&)
are hom-presentable, but by Proposition @ and B |V(G)|, |E(G)|, k(G) are not
hom-presentable, as their connection matrices have infinite rank. x(—, \) is hom-
representable for every A € Z*, but the choice of (H,a, 3) depends on .

Theorem 5 (M. Freedman, L. Lovasz and A. Schrijver, 2007)
Let f be a real-valued graph parameter. f is hom-presentable iff for every k € N

(i) M(f,Ug) is positive semi-definite, and
(ii) v(f,Ur) < ¢~ for some q € N*.

There are various generalizations of Theorem Bl B. Szegedy [Sze07] considers
edge coloring models and connection matrices S(f, k) based on identification of
k unfinished edges. A. Schrijver [Sch08] unifies the proofs of [FLS07] and [Sze(Q7]
using further variations of connection matrices defined also for hyper-graphs and
directed graphs.
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3 Enter Logic

Monadic Second Order Logic. A vocabulary is a finite set of relation and
constant symbols. We define the logic MSOL for 7-structures inductively. We
have first order variables x; : ¢ € N which range over elements of A, the universe
of a T-structure, and (monadic) second order variables U; : i € N, which range
over subsets of A. Terms t,t’,... are either first order variables or constant
symbols from 7. Atomic formulas are of the form ¢ = t/, R(t), where R is a
relation symbol of 7 U;(t) and have the natural interpretation. Formulas are
built inductively using the connectives V, A, —, >, =, and the quantifiers Vz;,
dx;, VU;, AU; with their natural interpretation. The quantifier rank of an MSOL-
formula ¢ is defined as usual and denoted by ¢r(¢) and for the rank we do not
distinguish between first order and second variables.

MSOL-definable T-Polynomials in Normal Form. A MSOL-definable poly-

nomial in indeterminates X1, ..., Xy in normal form has the form
> Y oY [ w10~
Ur:®y(Ur) Uz:®2(Uz)  Ug :®g, (Upy) \Z1:01(Z1)  T2:d2(Z2) Tpie(Te)

where all the formulas ®; and ¢; are MSOL-formulas with the iteration variables
(for summation and products) indicated. There may be additional parameters
in the formulas. However, ¢; may not contain the variables U; for j > ¢, and
¢; may not contain z; for j > i. Both ¢; and ¢; are referred to as iteration
formulas.

Looking at the partition function

Z1,0,8(G) = Z an - Bh. (1)

h:G—H
we can rewrite it as follows: Let G = (V(G), E(G)), H = (V(H),G(H)) and
V(H) = {vo,...,0n—1}. We introduce, for each v; : i <n — 1 a set variable U;.

Let ¢nom ) (Uo, - .., Un—1) be the formula U, ...,U, 1 is a partition of V(G)
and that for all z,y € V(G), if (z,y) € E(G) then there is a (v;,v;) € E(H)
such that x € U; and y € U;. The formula ¢p,opm#)(Uo, - - ., Up—1) is a first order
formula over the relation symbols for E(G) and Uy,...,U,—1. It can also be
viewed as a formula in Monadic Second Order Logic MSOL over the vocabulary
consisting only of the binary relation symbol for E(G).

Now the expression () can be, using U = (U, Uy, ...U,_1), written as

ZiasG) = Y (ﬁna@») 0 I 6w

Tibnomem \ \i=0 2€U; (3.k) € B(H) (yEU; A=EU)
(2)

If we consider all the a(v;) and ((v;,vx) as indeterminates, the left hand side of
the expression () is a typical instance of a MSOL-definable graph polynomial
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introduced in [Mak04]. For fixed values of a(v;) and 8(v;, vg) this gives an MSOL-
definable graph parameter, and, more generally, if we replace graphs by relational
structures, of MSOL-definable T-invariants. Hence we have shown:

Proposition 6. For every o, the graph parameter Zp o (G) is an MSOL-
definable T -invariant with m = {E}.

Using Finite Rank to Compute Partition Functions. Let TW(k) and
CW (k) denote the class of graphs of tree-width and clique-width at most k, re-
spectively. It was shown in [CO00] that TW (k) € CW (2¥+1 +1). Using the main
results of [CMRO1, Mak04] combined with [Oum05] we get from Proposition
the following complexity result.

Proposition 7. On the class CW (k) of graphs of clique-width at most k the
graph invariants Zg o,g(G) can be computed in polynomial time, and are fized
parameter tractable, i.e., the erponent of the polynomial is independent of k,
but the estimates obtained for the upper bounds for the constants are simply
exponential in the case of TW(k), but doubly exponential in k in the case of
CW (k).

For graphs in TW (k) this was already observed in [Lov(07]. To get the better
bound on the constants in the case of TW (k), we can use Proposition [ in the
dynamic programming algorithm underlying the proofs in [CMRO1], Mak04].

MSOL-compatible Operations on T-structures. Two 7-structures A, B,
are said to be k-equivalent for MSOL, if they satisfy the same MSOL-sentences
of quantifier rank k. We denote this equivalence relation by A = B.

A binary operation J on 7-structures is called MSOL-k-compatible if for k € N
we have that A =,,,1x A’ and B =,,,1x B’ implies that

AOB =, A0B'.

The operation [ is called MSOL-compatible if there is some k € N such that [J
is MSOL-k-compatible.

In [Mak04] the case of k = 0 is called MSOL-smooth. The disjoint union
of 7-structures is MSOL-smooth. So are the operations L on k-graphs. The
cartesian product x is not MSOL-compatible. However, the notion of MSOL-
compatible operation is sensitive to the choice of the representation of, say,
graphs as T-structures. If we represent graphs G = (V(G), E(G)) as 1i-structures
with 71 = {E£'}, which have universe V(G) and a binary relation E(G), the join
operation G 1 G5 is MSOL-smooth. This is so, because it can be obtained from
the disjoint union by the application of a quantifierfree transduction. If, however,
we represent graphs as a two-sorted {R} 7e-structures, with 72 = {Py, Pg, R},
with sorts Py = V(G) and Pg = E(G), and a binary incidence relation R(G) C
V(G) x E(G), then G1 > G2 contains the cartesian product V(G1) x V(G2)
in E(G1 > G2) and behaves more like a cartesian product, which is not even
MSOL-compatible. It is important to note that the operations Uy are MSOL-
smooth for graphs as 7j-structures and as 7p-structures.
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The following theorem is proven in [Mak04, Theorem 6.4]:

Theorem 8. Let f be a graph parameter which is the evaluation f(G)=p(G, Zo)
of an MSOL-definable T-polynomial p(G, X). Furthermore, let O be a binary
operation on T-structures which is MSOL-k-compatible. Then f is weakly (O, ))-
multiplicative for some v € N which depend on T, the polynomial p, k, but not
on Ty.

The Finite Rank Theorem. As in [GKMO0S|, we get immediately, using
Proposition 2] and Theorem Bl the following Theorem.

Theorem 9 (Finite Rank Theorem). Let p(G, X) be an MSOL-definable 7-
polynomial with values in R[X] with m indeterminates, and let O be a binary
operation on T-structures which is MSOL-k-compatible. There is v, o(p) € N
depending on T, the polynomial p, and k only, such that for all Zo € R™, we

have T(p(Ga £0)7 D) < PYT,D(p)'

The upper bound on the rank obtained in Theorem [ again is very large. In the
case of partition functions this bound is computed precisely in Proposition [3l

4 Applications of the Finite Rank Theorem

4.1 Non-definability in MSOL

Counting hamiltonian circuits. We shall look at the graph parameter hc(G)
which counts the number of hamiltonian circuits of a graph G, and the graph
property HAM , which consists of all graphs which do have a hamiltonian circuit.
If we represent graphs G = (V(G), E(G)) as ri-structures with 7, = {E'}, which
have universe V(G) and a binary relation E(G), it is well known, cf. [dR84],
that HAM is not MSOL-definable. If, however, we represent graphs as a two-
sorted {R} Te-structures, with o = {Py, Pg, R}, with sorts Py = V(G) and
Pr = E(G), and a binary incidence relation R(G) C V(G) x E(G), HAM is
MSOL-definable.

Let E,, be the graph with m vertices and no edges. It is easy to see that
FE,, <1 E, contains exactly one hamiltonian circuit if and only if m = n. There-
fore, M (hc,>1) and M (HAM i) both contain the infinite unit matrix as a sub-
matrix, and r(hec,<) is infinite over Q, whereas r(HAM ) is infinite over Zs.
We conclude that, HAM is not an MSOL-definable property of 7-structures,
and that hc is not an evaluation of an 7;-polynomial.

The subtle point is, that the join of two graphs is MSOL-smooth only for
graphs as 7p-structures. In the presentation as 7o-structures, the sort E(G <
G2) grows quadratically in the size of V(G1) and V(G2), and is not even MSOL-
compatible.

Graph colorings with no large monochromatic components. The same
happens with the chromatic polynomial, and its relatives, the polynomials
meey (G, k) for t € N — {0}. Following [LMST07], we denote by mcci (G, k) the
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number of functions f : V(G) — [k] such that for each i < k, the set f~1(i)
induces a graph which consist of connected components of size at most ¢. Clearly,
we have x(G, k) = mcc1(G, k). Tt follows from results in [KMZ08] that for each
t € N the counting function mec (G, k) is a polynomial in k.

Proposition 10 (T. Kotek). For each t € N — {0} the rank r(mcci(G, k), )
tends to infinity with k.

Corollary 11. The polynomial mecei(G, k) is not a 11 -polynomial.

But for connected graphs, we have x(G, k) = T(G;1 — k,0), where T(G, X,Y)
is the Tutte polynomial, which is MSOL-definable over the vocabulary 75 =
T2 U{<g}, where <p is a linear ordering of F(G).

4.2 Evaluations of Well Known Graph Polynomials

A particular graph polynomial is considered interesting if it encodes many useful
graph parameters. Let G = (V(G), E(G)) be a graph. The characteristic polyno-
mial P(G, X) of a graph is defined as the characteristic polynomial (in the sense
of linear algebra) of the adjacency matrix Ag of G. The coefficients of P(G, X)
are defined by

det(X -1—Ag) = > ci(G
=0

It is well known that n = |[V(G)|, —c2(G) = |E(G)|, and —c3(G) equals twice
the number of triangles of G. The second largest zero A2 (G) of P(G; X) gives a
lower bound to the conductivity of G, cf. [GROI].

The Tutte polynomial of G is defined as

TGX,Y)= > (X =1 @Oy —no 3)
FCE(G)

where k(F) is the number of connected components of the spanning subgraph
defined by F, r(F) = |V| — k(F) is its rank and n(F) = |F| — |V | + k(F) is its
nullity.

The Tutte polynomial T(G; X,Y’) has remarkable evaluations which count
certain configurations of the graph G, cf. [Wel93].

G;1,1) is the number of spanning trees of G,

G;1,2) is the number of connected spanning subgraphs of G,

G;2,1) is the number of spanning forest of G,

G;2,2) = 2/l is the number of spanning subgraphs of G,

For connected graphs, T(G;1 — k,0) is the number of proper k-vertex col-
orings of G,

(vi) For connected graphs, T'(G;2,0) is the number of acyclic orientations of G,
(vii) T(G;0,—2) is the number of Eulerian orientations of G.
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All these are also graph parameters which take values in N. More sophisticated
evaluations of the Tutte polynomial can be found in [Goo06, [Goo0§].

For now it suffices to know that the Tutte polynomial, the matching poly-
nomial, the characteristic polynomial, all discussed in [GROI, [Mak07], and the
interlace polynomial, defined in [ABS04, [Cou], and virtually all the prominent
graph polynomials in the literature, are MSOL-definable T3-polynomials, inde-
pendently of the order < g. Furthermore, the operations U are all MSOL-smooth
on 73-structures for order-invariant sentences.

The following is a consequence of the Finite Rank Theorem (Theorem [):

Theorem 12 ([GKMOS8]). Let f be a T-invariant and 3 be an MSOL-compatible
operation on T-structures. If r( f,0) is infinite, then [ is not an evaluation of an
MSOL-definable T-polynomial.

In [GKMOS] many examples are given for graph parameters. This includes all
L-maximizing (minimizing) graph parameters, such as the clique number w(G),
the chromatic number x(G). An example with infinite rank for L which is not
Ll-maximizinga is the average degree of a graph. There one notes that the con-
nection matrix contains a Cauchy matrix as a submatrix.

4.3 More Graph Polynomials Which Are Not MSOL-Definable

Harmonious and complete colorings. Complete colorings, also called achro-
matic colorings, were introduced in [HHPGT]. Harmonious colorings were intro-
duced in [HK83]. For surveys, cf. [Edw97, [HM97].

Definition 1. (i) A proper vertex coloring is harmonious, if each pair of colors
appears at most once along an edge. We denote by Xnharm(G) the least k such
that G has a harmonious proper k-coloring.

(i) A proper vertex coloring is complete, if each pair of colors appears at least
once along an edge. We denote by Xcomp(G) the largest k such that G has
a complete proper k-coloring.

(111) Let Xnarm(G; k) and Xcomp(G; k) denote the number of harmonious, respec-
tively complete proper k-colorings of G.

Proposition 13. (i) Xnarm(G; k) is a polynomial in k.
(11) Xcomp(G; k) is not a polynomial in k.

Proof. (i) follows from [MZ06], but it is not difficult to prove it directly.
(i) Xcomp(G; k) = 0 for large enough k. O

Theorem 14. Xporm(G) and Xcomp(G) are graph parameters which are not
evaluations of order invariant MSOL-definable graph polynomials over taus.

Proof. Xcomp(G) is maximizing, so we can apply Proposition 21
For Xharm(G) we observe that, for stars S, a set of n edges which meet all
in one single vertex, we have

Xharm(sn U Sm) - maX{Xharm(Sm)a Xharm(sn)} + 1.

Now the argument proceeds like in the case of a maximizing graph parameter.
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Theorem 15. Xparm(G; k) is not an order invariant MSOL-definable graph
polynomial over T3.

Proof. Let L; denote the graph which consists of i vertex disjoint edges. We
look at M (Xharm(G, k), U) restricted to the graphs L;,7 € N, which we denote
by My (k) and its rank by 77, (k). We note that xperm(L;UL;) =0iff i+j5 > (]2“)
Therefore, (k) = (g) which is not bounded, contradicting Theorem

Remark 1. It is shown in [EM95]], that computing Xharm(G) is NP-complete
already for trees. This, together with the fact, proven in [Mak05)], that evalu-
ations of invariantly CMSOL-definable graph polynomials are polynomial time
for graphs of tree-width at most k, shows that Xnarm(G;X) is not invariantly
CMSOL-definable, unless P = NP. Our proof above eliminates the complezity
theoretic hypothesis P = NP.

Convex colorings. A vertex coloring of a graph G = (V, E) with k colors
(k € N) is a function f: V — [k]. f is convez if for every i € [k] the colorclass
f71(i) induces a connected subgraph. For a partial function fy : V — [k] we say
that fy is convex if there a is a total function f extending fy which is convex.
In this case we also say that f is a convexr extension of fy. Convex extensions
of partial colorings of trees have been introduced in the context of phylogenetic
trees by S. Moran and S. Snir [MS07].

The existence problem of convex colorings for an arbitrary graph G is easily
solved by trying to color every connected component by one color, and only
depends on the number of colors available and the number of connected compo-
nents of G. It follows from [MZ06, KMZ08] that the number of convex colorings
of a graph G is a polynomial in k, which we denote by conv(G, k). For k = 1
we have conv(G,1) = 1, if G is connected, and conv(G,1) = 0 otherwise. It has
been shown by S. Noble and A. Goodalf? that computing conv(G, 2) is fP-hard.
It follows, using a similar argument as in [Lin86], that computing conv(G, k) is
fP-hard for every k € N — {0,1}. On the graphs F,, convex colorings have to
color every vertex with a different color. It follows again that r(conv(G,k),U)
tends to infinity with &k, and we get

Proposition 16. The graph polynomial conv(G, k) is not MSOL-definable.

5 Open Problems

We have discussed various aspects of connection matrices of graph parameters
introduced in [FLS07], and have generalized them for 7-invariants and various
binary operations between 7-structures. We have shown that the rank of con-
nection matrices is finite for MSOL-definable 7-invariants and MSOL-compatible
binary operations between 7-structures. We used this to show that various graph
parameters and graph polynomials are not MSOL-definable.

2 Personal communication.
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In the case of partition functions knowing the exact rank r(f, Llx) allows us to
compute f on graphs of tree-width at most k£ in polynomial time with improved
constants on the running time. Can this be generalized?

This leads us the the following questions about 7-invariants in general, al-
though we formulate them for graphs..

Open Problem 1. Assume M(f,0) has rank r and an (r X r)-submatriz M,
of mazimal rank is given. Under what conditions on O can we compute all the
entries of M(f,0) from M, and the computability of 0% What is the complexity
of computing the entry f(G;,0G;) of M(f,0)?

Open Problem 2. Under what conditions on the graph parameter f and on [
can we compute the rank r(f,0) precisely, or at least give reasonable lower and
upper bounds?

Open Problem 3. Let f be a graph parameter on k-graphs and let r(f,L;) be
finite for every j < k. Is it true that f can be computed in polynomial time on
graphs of tree-width at most k.

Open Problem 4. In case the Open Problem[3 has a positive answer, is there
an analogue for clique-width?

I am pretty convinced that the answer are positive. In order to attack the Open
Problems above it may be useful to look at connection matrices restricted to a
graph property @ and an operation [J such that

(i) O preserves @, i.e., if G; € ® and G2 € P then also G10G2 € @, and
(ii) the size of G10G5 is bigger than the size of G; and Ge, for example

V(G1OG2)| > [V(G1)| + [V (Ga)]

(iii) For every graph G € @ we can effectively find non-trivial G; and Go such
that G = G10G5.

Examples for @ and [J satisfying these conditions are trees with root a with an
additional distinguished node b and Ll; identifying a from one tree with b from
the other. Another example are the cliques with the join operation |, or graphs
with no edges and the disjoint union L.
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Knowledge, Games and Tales from the East

Rohit Parikh

Brooklyn College of CUNY and CUNY Graduate Center

Abstract. We introduce some basic concepts from Game Theory and
related areas and show how various insights for which we thank game
theory have already occurred in the past in some tales from ancient
literature, both Indian and otherwise.

1 Games

We shall usually talk about two player games. The players are typically called
Row and Column, but more catchy names may arise in specific contexts.

In so called normal form games, each player has a finite set of strategies, call
them S; and S5, and each can choose a particular strategy from their own set.
Once the players have chosen their strategies, there are payoffs which depend on
both the strategies. So suppose that player Row chooses strategy a and Column
chooses strategy b, then the payoffs would be p,.(a,b) and p.(a,b). We may also
refer to Row and Column as players 1 and 2 respectively.

Suppose Row has chosen a and Column has chosen b, then (a,b) constitutes
a Nash equilibrium if, given that column is playing b, Row has nothing better
than a, and given that Row is playing a, Column has nothing better than b. In
other words p,(a,b) > pr(a’,b) for all o’ and p.(a,b) > pc(a,b’) for all V.

Given two strategies a,a’ for Row, we say that a is dominated by o' if
regardless of what Column plays, a’ always gives a better outcome for Row.
Thus p,(a,b) < p.(a’,b) for all b and p,(a,b) < p.(a’,b) for at least one b.
Sinilarly for dominance of a Column strategy b by b'. It is normally accepted
that a player would never play a dominated strategy, and the opponent may
then make his plans based on this fact.

We now give examples of various games in the literature.

1.1 Battle of the Sexes

In this game, the wife (Row) wants to go to the Opera and the husband (Column)
wants to watch football. But each would rather go together than watch their
favourite thing by themselves. So here are the payoffs. Row’s payoffs in each box
are listed first.

Opera Footb
Opera 2,1 0,0
Footb 0,0 1,2

R. Ramanujam and S. Sarukkai (Eds.): ICLA 2009, LNAI 5378, pp. 65[76] 2009.
© Springer-Verlag Berlin Heidelberg 2009
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If they go to different events, they are not happy so the payoffs are zero for
both. If they go to the same event, then both have positive payoffs, but the
wife’s is higher if they go to the Opera and the husband’s is higher if they go to
football. There are two Nash equilibria, the NW one which is (2,1), and the SE
one which is (1,2).

The fact that (1,2) is a Nash equilibrium can be seen geometrically. Row can
change the row, but if she does her payoff will move from 1 to 0, and she will be
worse off. Similarly, Column can change the column, but if he does, his payoff
will change from 2 to 0, and he will be worse off.

1.2 Chicken

In this rather dangerous game, two cars race towards each other. If one goes
straight and the other swerves, then the one who swerves has shown fear, and is
called chicken. He is embarrassed while the other crows. If neither swerves then
there is an accident which they both regret — if they survive.

Swerve Straight
Swerve 4,4 2,7
Straight 7,2 —10,-10

There are two Nash equilibria, the NE one which is (2,7), with Row being the
‘chicken’ and the SW one which is (7,2) wth Column in that role.

1.3 Matching Pennies

In this game, Row is the matcher and Column is the mismatcher. Both parties
exhibit a penny and if both pennies match (are both showing heads or both
showing tails) then Row wins. If one is showing heads and the other tails (mis-
match), then Column wins. There are no Nash equilibria in this game (there s
a mixed strategy equilibrium, but we shall not consider those here).

Heads Tails
Heads 1,—-1 —1,1
Tails —1,1 1,-1

1.4 Prisoner’s Dilemma

In this game, two men are arrested and invited to testify against each other. If
neither testifies, then there is a small penalty since there is no real evidence. But
if one defects (testifies) and the other does not, then the defecter goes free and
the other gets a large sentence. If both defect they both get medium sentences.
Jointly they are better off (The payoffs are 2 each) if neither defects, but for
both of them, defecting is the dominant strategy and they end up with (1,1)
which is worse.

Coop Def
Coop 2,2 0,3
Def 3,0 1,1
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There is a unique, rather bad Nash equilibrium at SE with (1,1), while the
(2,2) solution on NW, though better for both, is not a Nash equilibrium.

We now discuss the first one of our folk examples. We start with an actual
example from the Economics literature and then relate it to a story from Indian
history.

2 Tales from the East

2.1 Tragedy of the Commons
From “The Tragedy of the Commons” by Garrett Hardin, 1968.

The tragedy of the commons develops in this way. Picture a pasture open to all.
It is to be expected that each herdsman will try to keep as many cattle as possible
on the commons. Such an arrangement may work reasonably satisfactorily for
centuries because tribal wars, poaching, and disease keep the numbers of both man
and beast well below the carrying capacity of the land. Finally, however, comes
the day of reckoning, that is, the day when the long-desired goal of social stability
becomes a reality. At this point, the inherent logic of the commons remorselessly
generates tragedy.

As a rational being, each herdsman seeks to maximize his gain. Explicitly
or implicitly, more or less consciously, he asks, “What is the utility to me of
adding one more animal to my herd?” This utility has one negative and one
positive component.

1. The positive component is a function of the increment of one animal. Since
the herdsman receives all the proceeds from the sale of the additional animal, the
positive utility is nearly +1.

2. The negative component is a function of the additional overgrazing created
by one more animal. Since, however, the effects of overgrazing are shared by all
the herdsmen, the negative utility for any particular decisionmaking herdsman is
only a fraction of -1.

Adding together the component partial utilities, the rational herdsman con-
cludes that the only sensible course for him to pursue is to add another animal
to his herd. And another.... But this is the conclusion reached by each and ev-
ery rational herdsman sharing a commons. Therein is the tragedy. Each man is
locked into a system that compels him to increase his herd without limit — in a
world that is limited. Ruin is the destination toward which all men rush, each
pursuing his own best interest in a society that believes in the freedom of the
commons. Freedom in a commons brings ruin to all.

From “The Tragedy of the Commons” by Garrett Hardin, [4]. But Hardin was
anticipated in India by four hundred years! The following is from the famous
Akbar Birbal collection of stories. Akbar was the third Mughal emperor and
the grandfather of Shah Jehan who built the Taj Mahal as a monument (and
mausoleum) for his wife. Birbal was one of his ministers and well known (at
least in stories) for his wit and intelligence. Both lived in the second half of the
sixteenth century.
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2.2 Birbal Story

One day Akbar Badshah said something to Birbal and asked for an answer.
Birbal gave the very same reply that was in the king’s own mind. Hearing this,
the king said, This is just what I was thinking also. Birbal said, Lord and Guide,
this is a case of a hundred wise men, one opinion (in Hindi, sau siyane ek mat).
The king said, This proverb is indeed well-known. Then Birbal petitioned, Refuge
of the World, if you are so inclined, please test this matter. The king replied,
Very good. The moment he heard this, Birbal sent for a hundred wise men from
the city. And the men came into the king’s presence that night. Showing them
an empty well, Birbal said, His Majesty orders that at once every man will bring
one bucket full of milk and pour it in this well. The moment they heard the royal
order, every one reflected that where there were ninety-nine buckets of milk, how
could one bucket of water be detected? Each one brought only water and poured
it in. Birbal showed it to the king. The king said to them all, What were you
thinking, to disobey my order? Tell the truth, or I'll treat you harshly! Every
one of them said with folded hands, Refuge of the World, whether you kill us or
spare us, the thought came into this slave’s mind that where there were ninety-
nine buckets of milk, how could one bucket of water be detected? Hearing this
from the lips of all of them, the king said to Birbal, What I’d heard with my
ears, I've now seen before my eyes: a hundred wise men, one opinion!

Birbal lived from 1528 to 1586, and died in the battle of Malandari Pass, in
Northwest India.

http://en.wikipedia.org/wiki/Akbar the Great
http://en.wikipedia.org/wiki/Birbal

Analysis: What is common between the example which Hardin gives and the
Akbar-Birbal story? In each case, the individual benefits at the cost of the group.
In the Hardin case, the herdsman benefits by having one more animal. In the
Birbal case, the “wise man” benefits by saving one pot of milk. In each case the
group is harmed. In the case of the herdsmen, the common is overgrazed and
the grass dies. In the Akbar-Birbal case, there is a danger that if the cheating is
discovered, all hundred men face the threat of prison or even execution. Akbar
was a benign kingE but not entirely immune to anger. Also, in each case, cheating
is a dominant strategy. If most of the others are cheating, it does no extra harm
if you cheat too. And if most of the others are not cheating, then again it does
no extra harm if you are one of the rare cheaters. But if everyone practices their
dominant strategy and cheats, then there can be disaster for the whole group.

2.3 Can We Always Believe What Others Tell Us?
Solomon Story

The following story is from the Old Testament, first book of Kings, chapter 3.
Then came there two women, that were harlots, unto the king, and stood before

! Akbar, though a Muslim, worked hard to create amity between Hindus and Muslims,
even marrying a Hindu wife, and having endless discussions on religion with Hindus,
Christians and Jains.
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him. And the one woman said, O my lord, I and this woman dwell in one house;
and I was delivered of a child with her in the house. And it came to pass the third
day after that I was delivered, that this woman was delivered also: and we were
together; there was no stranger with us in the house, save we two in the house.
And this woman’s child died in the night; because she overlaid it. And she arose
at midnight, and took my son from beside me, while thine handmaid slept, and
laid it in her bosom, and laid her dead child in my bosom.

And when I rose in the morning to give my child suck, behold, it was dead:
but when I had considered it in the morning, behold, it was not my son, which I
did bear. And the other woman said, Nay; but the living is my son, and the dead
1s thy son. And this said, No; but the dead is thy son, and the living is my son.
Thus they spake before the king.

Then said the king, The one saith, This is my son that liveth, and thy son is
the dead: and the other saith, Nay; but thy son is the dead, and my son is the
living.

And the king said, Bring me a sword. And they brought a sword before the
king.

And the king said, Divide the living child in two, and give half to the one,
and half to the other. Then spake the woman whose the living child was unto
the king, for her bowels yearned upon her son, and she said, O my lord, give her
the living child, and in no wise slay it. But the other said, Let it be neither mine
nor thine, but divide it.

Then the king answered and said, Give her the living child, and in no wise
slay it: she is the mother thereof.

Analysis: Let M stand for “I get the child”, O stand for “The other woman
gets the child”, and K stand for “The child is killed.

Both women prefer M to O. However, Solomon relies on the fact that the
real mother prefers O to K whereas the non-mother prefers K to O. Thus the
orderings are: M > O > K for the real mother and M > K > O for the
non-mother. Asked to choose between O and K, the real mother chooses O and
the non-mother chooses K. This enables Solomon to discover the real mother.
Solomon is trying to implement what is called the revelation principle according
to which people reveal their real opinions by how they act. However, Solomon’s
strategy has a bug. If the non-mother knows what his plans are, all she has to
do is to say, “Oh, I too would rather the other woman took the child than have
it killed.” And then Solomon would be in a quandary.

Such a behavior would be an example of what is called strategizing [3[TU8],
where you express a preference different from your actual one in order to get a
better result. There is, however, a solution which depends on money, or let us
say, public service. Suppose the real mother is willing to do three months public
service to get the child, but the non-mother is only willing to do one month.
Solomon of course does not know which is which but he can use this information
and the following procedure to discover who is the real mother. Thus here is the
plan. Suppose the two women are Anna and Beth. Solomon first asks Anna, Is
the child yours? If Anna says no, Beth gets the child and that ends the matter.
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If Anna says, It is my child, then Beth is asked Is the child yours? If Beth
says no, Anna gets the child and that ends the matter.

If Beth also says, It is my child, then Beth gets the child, and does two months
public service. Anna also does one week’s public service.

It is easy to see that only the real mother will say, It is my child, and no
public service needs to be performed.

For suppose that Anna is the real mother. She can safely say, It i s my child
because when Beth is asked next, she does not want to do two months service
to get the child. Anna will get the child without any problem. I leave it to you
to work out what happens if Beth is the real mother. For a recent paper on such
problems, see

http://ideas.repec.org/p/pra/mprapa/8801.html

It might have struck the reader that while the outcome is fair to both women,
the algorithm is not symmetric. But there do exist symmetric algorithms based
on the idea of the Vickrey auction [5], and the one in the paper cited just above
is an example.

2.4  Cheap Talk

The following examples are slightly adapted from [2].

Lazmi is applying to Rayco for a job, and Rayco asks if her ability is high or
low.

Will Laxmi speak the truth, and can Rayco trust her?

Rayco
High Low
3,3 0,0
High (33) 00)
Laxmi
Low (0.0) (2.2)
Fig. 1.

In the scenario above, Figure [ Rayco prefers to hire Laxmi for the high
position if she has high ability and the low position if her ability is low. If
they ask her about her ability, Laxmi has nothing to gain by lying about her
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qualifications and Rayco can trust her. In particular, if her ability is low and she
lies that it is high, Rayco would give her the higher position and she would be
frustrated so that the higher salary would not be an advantage.

But suppose instead (Figure[2]) that Laxmi feels she can get away with having
a better job even with worse ability. Perhaps she feels she can ‘wing it’, or pass
on her more difficult work to others. If Laxmi’s ability is low, she still prefers
the higher paying job so she would like to entice Rayco (which chooses the job
she is offered) into the bottom left box. But if Rayco knows her payoffs, they
will be careful not to believe her bare statement that she has high ability.

Rayco
High Low
3,3 0,0
High (33) 00)
Laxmi
Low (3.0) (2.2)
Fig. 2.

In this scenario, Laxmi can profit from having a high job even if her ability
is low, her payoff is 3 in any case. So Laxmi has nothing to lose by lying about
her qualifications and Rayco cannot trust her.

The moral is, as we all know, If someone tells us something, then before be-
lieving it, ask if they could gain by lying. There is a bit more to cheap talk than
this but we shall not go into details.

2.5 The Mahabharata

The Kurukshetra War forms an essential component of the Hindu epic Mahab-
harata. According to Mahabharata, a dynastic struggle between sibling clans of
Kauravas and the Pandavas for the throne of Hastinapura resulted in a battle
in which a number of ancient kingdoms participated as allies of the rival clans.
The location of the battle was Kurukshetra in the modern state of Haryana in
India. Mahabharata states that the war lasted eighteen days during which vast
armies from all over ancient India fought alongside the two rivals. Despite only
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referring to these eighteen days, the war narrative forms more than a quarter of
the book, suggesting its relative importance within the book.

http://en.wikipedia.org/wiki/Kurukshetra War

During the war, Drona, who was the teacher of both Pandavas and Kauravas,
and an expert bowman, is fighting on the side of the Kauravas and the Pandavas
are desperate as they do not know what to do! Luckily, Drona’s son is called
Ashwathama as is an elephant owned by the Pandavas.

Yudhisthira was the oldest of the five Pandava brothers, and had a reputation
for honesty. His role in what happens is crucial. On the 15th day of the war.
Krishna asked Yudhisthira to proclaim that Drona’s son Ashwathama has died,
so that the invincible and destructive Kuru commander would give up his arms
and thus could be killed. Bhima proceeds to kill an elephant named Ashwathama,
and loudly proclaims that Ashwathama is dead.

Drona knows that only Yudhisthira, with his firm adherence to the truth,
could tell him for sure if his son had died. When Drona approaches Yudhisthira
to seek to confirm this, Yudhisthira tells him that Ashwathama is dead..., then,
..the elephant, but this last part is drowned out by the sound of trumpets and
conchshells being sounded as if in triumph, on Krishna’s instruction. Yudhisthira
cannot make himself tell a lie, despite the fact that if Drona continued to fight,
the Pandavas and the cause of dharma itself would lose. When he speaks his half-
lie, Yudhisthira’s feet and chariot descend to the ground momentarily. Drona is
disheartened, and lays down his weapons. He is then killed by Dhristadyumna.

It is said that Drona’s soul, by meditation had already left his body before
Dhristadyumna could strike. His death greatly saddens Arjuna, who had hoped
to capture him alive.

http://en.wikipedia.org/wiki/Drona

Clearly the Pandavas had an incentive to lie (as Laxmi does in our second
example with Rayco), but Drona assumed that in the case of Yudhisthira, the
loyalty to truth would override his self-interest. It so turned out that Drona was
only partly right.

2.6 The Two Horsemen

Suppose we want to find out which of two horses is faster. This is easy, we race
them against each other. The horse which reaches the goal first is the faster
horse. And surely this method should also tell us which horse is slower, it is the
other one. However, there is a complication which will be instructive.

Two horsemen are on a forest path chatting about something. A passerby
M, the mischief maker, comes along and having plenty of time and a desire for
amusement, suggests that they race against each other to a tree a short distance
away and he will give a prize of $100. However, there is an interesting twist. He
will give the $100 to the owner of the slower horse. Let us call the two horsemen
Bill and Joe. Joe’s horse can go at 35 miles per hour, whereas Bill’s horse can
only go 30 miles per hour. Since Bill has the slower horse, he should get the
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$100. The two horsemen start, but soon realize that there is a problem. Each
one is trying to go slower than the other and it is obvious that the race is not
going to finish. There is a broad smile on the canny passerby’s face as he sees
that he is having some amusement at no cost.

Figure Bl below, explains the difficulty. Here Bill is the row player and Joe
is the column player. Each horseman can make his horse go at any speed upto
its maximum. But he has no reason to use the maximum. And in figure [3] the
left columns are dominant (yield a better payoff) for Joe and the top rows are
dominant for Bill. Thus they end up in the top left hand corner, with both horses
going at 0 miles per hour.

0 10 20 30 35
0 0,0 100, 0 100, 0 100, 0 100, 0
10 0, 100 0,0 100, 0 100, 0 100, 0
20 0, 100 0, 100 0,0 100, 0 100, 0
30 0, 100 0, 100 0, 100 0,0 100, 0
Fig. 3.

However, along comes another passerby, let us call her S, the problem solver,
and the situation is explained to her. She turns out to have a clever solution.
She advises the two men to switch horses. Now each man has an incentive to go
fast, because by making his competitor’s horse go faster, he is helping his own
horse to ‘win’! Figure [4] shows how the dominant strategies have changed. Now
Joe (playing row) is better off to the bottom, and Bill playing column is better
off to the right — they are both urging the horse they are riding (their opponent’s
horse) as fast as the horse can go. Thus they end up in the bottom right corner
of figure @l Joe’s horse, ridden by Bill comes first and Bill gets the $100 as he
should.

Of course, if the first passerby had really only wanted to reward the slower
horse (or its owner) he could have done this without the horses being switched
and for a little extra money. He could have kept quiet about the $100 and offered
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0 10 20 30 35
0 0,0 0, 100 0, 100 0, 100 0, 100
10 100, 0 0,0 0, 100 0, 100 0, 100
20 100, 0 100, 0 0,0 0, 100 0, 100
30 100, 0 100, 0 100, 0 0,0 0, 100
Fig. 4.

a prize of $10 to the owner of the faster horse. Then when the race was over,
he would hand over the $10 to Joe and $100 to Bill. Here the effect would be
achieved by hiding from the two horsemen what their best strategy was, and
to fool them into thinking that some other action was in fact better. While the
problem of finding the faster horse, and that of finding the slower, are equivalent
algorithmically, they are not equivalent game theoretically when the men ride
their own horses. The equivalence is restored when the two men switch horses.
For a practical analogue of the two horses example, consider the issue of grades
and letters of recommendation. Suppose that Prof. Meyer is writing a letter
of recommendation for his student Maria and Prof. Shankar is writing one for
his student Peter. Both believe that their respective students are good, but
only good. Not very good, not excellent, just good. Both also know that only
one student can get the job or scholarship. Under this circumstance, it is clear
that both of the advisers are best off writing letters saying that their respective
student is excellent. This is strategic behaviour in a domain familiar to all of us.

Sometimes employers will try to counter this by appealing to third parties
for an evaluation, but the close knowledge that the two advisers have of their
advisees cannot be discovered very easily.

In Figure[Blabove, J represents job and NJ represents no job for the student.
Then Meyer’s lower strategies dominate his upper ones. And for Shankar, his
rightward strategies dominate the strategies to the left. Hence, with each playing
his dominant strategies, they end up in the lower right hand corner with neither
student getting the job.

We do assume that in case of a tie neither student is hired. This of course need
not be true in reality — perhaps one would be chosen at random. But if one of
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Shankar’s choices

G NJ,NJ NJ,J NJ, J
Meyer’s

choices

VG J, NJ NJ,NJ NJ,J

E J,NJ J,NJ NJ,NJ

Fig. 5.

the students is actually superior, that information cannot be elicited by asking
their advisers. Sometimes the National Science Foundation, giving out grants,
tends to ask people to reveal their connections with various referees. Then some
semblance of neutrality can be achieved.

2.7 A Bankruptcy Problem

This problem has been studied by Aumann and Maschler [I]. A man dies leaving
debts dy, ..., d, totalling more than his estate £. How should the estate be divided
among the creditors?

Here are some solutions from the Babylonian Talmud. In all cases, n = 3,d; =
100, d2 = 200, d3 = 300. Let the amounts actually awarded be 1, zs, x3.

E =100.

The amounts awarded are x; = 33.3 for i = 1,2, 3
E = 200. T = 50,.732 = 75,.733 =175
E =300. 1 = 50,22 = 100, x3 = 150.

What explains these numbers?

The Contested Garment Principle: Suppose two people A, B are claiming
50 and 90 respectively from a debtor whose total worth is 100. Then A has
conceded 50 and B has conceded 10. Then B gets the 50 conceded by A and A
gets the 10 conceded by B. That leaves 40 which is equally divided. Thus A gets
30 and B gets 70.
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Similarly, if £ is a garment, A claims half of it and B claims all, then A ends
up with .25 and B with .75 of the garment.

Note that under the contested garment principle the results are monotonic in
the claims and also in the total amount available for division.

Definition 2.1. A bankrupcy problem 1is defined as a pair E;d where d =
(diy.oydp), 0<dy <dy <..<d, and 0 < E <d; + ...d,. A solution to such
a problem is an n-tuple x = (1, ..., xy) of real numbers with

T+ T+ ...+, =F

A solution is called CG-consistent if for all i # j, the division of x; + x; pre-
scribed by the contested garment principle for claims d;, d; is (x;, ;).

Theorem 2.2. (Aumann, Maschler) Each bankrupcy problem has a unique con-
sistent solution.

Proof. (uniqueness) Suppose that x,y are different solutions. Then there must
be i, j such that i receives more in the second case and j receives less. Assume
wlog that x; +x; < y; +y;. Thus we have x; < y;, x; > y; and z; +x; < y; +y;.
But the monotonicity principle says that since y; + y; is more, j should receive
more in the y case. contradiction.
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A Para Consistent Fuzzy Logic

Esko Turunen

P.O. Box 553,
33101 Tampere, Finland

Abstract. The root of this work is in Belnap’s four valued para con-
sistent logic [2]. Based on a related study of Perny and Tsoukias [I1],
we introduce para consistent Pavelka style fuzzy sentential logic. Re-
stricted to Lukasiewicz t—norm, our approach and the approach in [I1]
partly overlap; the main difference lies in the interpretation of the log-
ical connectives implication and negation. The essential mathematical
tool proved in this paper is a one—one correspondence between evidence
couples and evidence matrices that holds in all injective MV-algebras.
Evidence couples associate to each formula o two values a and b that
can be interpreted as the degrees of pros and cons for «, respectively.
Four values t, f, k, u, interpreted as the degrees of truth, falsehood, con-
tradiction and unknowness of «, respectively, can be calculated. In such
an approach truth and falsehood are not each others complements. This
paper can be seen as a solution to some open problems presented in [IT].

Keywords: Mathematical fuzzy logic, para consistent sentential logic,
MYV —algebra.

1 Introduction

Four possible values associated with a formula « in Belnap’s first order para
consistent logic [2] are true, false, contradictory and unknown: if there is
evidence for a and no evidence against «, then « obtains the value true and if
there is no evidence for a and evidence against «;, then « obtains the value false.
A value contradictory corresponds to a situation where there is simultaneously
evidence for a and against « and, finally, « is labeled by value unknown if there is
no evidence for a nor evidence against av. More formally, the values are associated
with ordered couples (1,0), (0,1), (1,1) and (0, 0), respectively.

In [I2] Tsoukias introduced an extension of Belnap’s logic (named DDT)
most importantly because the corresponding algebra of Belnap’s original logic
is not a Boolean algebra, while the extension is. Indeed, in that paper it was
introduced and defined the missing connectives in order to obtain a Boolean
algebra. Moreove, it was explained why we get such a structure. Among others
it was shown that negation, which was reintroduced in [I2] in order to recover
some well known tautologies in reasoning, is not a complementation.

In [IT] and [14], a continuous valued extension of DDT logic is studied. The
authors impose reasonable conditions this continuous valued extension should

R. Ramanujam and S. Sarukkai (Eds.): ICLA 2009, LNAI 5378, pp. 77488 2009.
© Springer-Verlag Berlin Heidelberg 2009
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obey and, after a careful analysis, they come to the conclusion that the graded
values are to be computed via

t(a) = min{B(«),1 — B(—a)},
k(a) = max{B(«) + B(—a) — 1,0},
u(a) = max{1 — B(a) — B(—«),0},

f(a) = min{1 — B(«), B(—a)}.

~ o~~~
[\

=~
— = —

where an ordered couple (B(«), B(—a)) is given. The intuitive meaning of B(«)
and B(—a) is the degree of evidence for o and against «, respectively. Moreover,
the set of 2 x 2 matrices of a form

is denoted by M. In [I1] it is shown how such a fuzzy version of Belnap’s logic
can be applied in preference modeling, however, the following open problems is
posed:

— the experimentation of different families of De Morgan triples;

— a complete truth calculus for logics conceived as fuzzy extensions of four
valued para consistent logics;

— a more thorough investigation of valued sets and valued relations (when
the valuation domain is M) and their potential use in the context of preference
modeling.

In this paper we accept the challenge to answer some of these problems. Our
basic observation is that the algebraic operations in (Il) — () are expressible by
the Lukasiewicz t—norm and the corresponding residuum, i.e. in the Lukasiewicz
structure, which is an example of an injective MV-algebra. In [I3] it is proved
that Pavelka style fuzzy sentential logic is a complete logic in a sense that if the
truth value set L forms an injective MV-algebra, then the set of a—tautologies
and the set of a—provable formulae coincide for all a € L. We therefore consider
the problem that, given a truth value set which is an injective MV—-algebra, is
it possible to transfer an injective MV—structure to the set M, too. The answer
turns out to be affirmative, consequently, the corresponding para consistent sen-
tential logic is essentially Pavelka style fuzzy logic. Thus, a rich semantics and
syntax is available. For example, Lukasiewicz tautologies as well as Intuitionistic
tautologies can be expressed in the framework of this logic. This follows by the
fact that we have two sorts of logical connectives conjunction, disjunction, impli—
cation and negation interpreted either by the monoidal operations (O, @, —,
or by the lattice operations A, V,=>*, respectively (however, neither * nor * is
a lattice complementation). Besides, there are many other logical connectives
available.

Arieli and Avron [I] developed a logical system based on a class of bilattices
(cf. [B]), called logical bilattices, and provided a Gentzen—style calculus for it.
This logic is essentially an extension of Belnaps four—valued logic to the standard
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language of bilattices, but differs from it for some interesting properties. How-
ever, our approach differs from that of Arieli and Avron [I].

Quite recently Dubois [4] published a critical philosophy of science orientated
study on Belnap’s approach. According to Dubois, the main difficulty lies in the
confusion between truth—values and information states. We study para consistent
logic from a purely formal point of view without any philosophical contentions.
Possible applications of our approach are discussed at the end of the paper.

2 Algebraic Preliminaries

We start by recalling some basic definitions and properties of MV—-algebras; all
detail can be found in [9, [13]. We also prove some new results that we will
utilize later. An MV-algebra L = (L, ®,* ,0) is a structure such that (L, &, 0) is
a commutative monoid, i.e.,

T®y=yodur, (5)
r®Ydz)=(rDy) D2, (6)
r@0=2x (7)

holds for all elements z,y, z € L and, moreover,

=z, (8)
x@0* =0, 9)
@ oy) dy=>U oz) o (10)

Denote x ®@ y = (z* @ y*)* and 1 = 0*. Then (L, ®, 1) is another commutative
monoid and hence

TOY=y0Oux, (11)
rOWoOz)=(r0y) Oz, (12)
rOl==x (13)

holds for all elements x,y,z € L. It is obvious that x ® y = (z* ® y*)*, thus
the triple (®,*,®) satisfies De Morgan laws. A partial order on the set L is
introduced by

r<yifz*py=1if z©y* =0. (14)

By setting
zVy= (=" Dy) Dy, (15)
zhy = (" Vy)[= (=" 0y) oy (16)

for all z,y, z € L the structure (L, A, V) is a lattice. Moreover, zVy = (z* Ay*)*
holds and therefore the triple (A,* V), too, satisfies De Morgan laws. However,
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the unary operation * called complementation is not a lattice complementation.
By stipulating

r—y=z" Py (17)

the structure (L, < A,V,®,—,0,1) is a residuated lattice with the bottom and
top elements 0, 1, respectively. In particular, a Galois connection

roy<zifa<y—=z (18)

holds for all x,y, 2z € L. The couple (®,—) is an adjoint couple. Lattice opera-
tions on L can now be expressed via

zVy=(z—y) —y, (19)
rANy=z0(x—y). (20)
A standard example of an MV-algebra is the Lukasiewicz structure L: the un-

derlying set is the real unit interval [0, 1] equipped with the usual order and, for
each z,y € [0, 1],

@y = min{z +y,1}, (21)
¥ =1-u. (22)

Moreover,

@y =max{0,z+y — 1}, (23)
x Vy = max{z,y}, (24)

x Ay = min{z,y}, (25)

r —y=min{l,1 -z + y}, (26)
z Oy = max{z —y,0}. (27)

For any natural number m > 2, a finite chain 0 < Ti < e < mrgl < 1 can

be viewed as an MV-algebra where ” & ¥ = min{™"* 1} and (") = ™",
Finally, a structure £ N Q with the Lukasiewicz operations is an example of a
countable MV-algebra called rational Lukasiewicz structure. All these examples
are linear MV—-algebras, i.e. the corresponding order is a total order. Moreover,
they are MV—subalgebras of the structure £. A Boolean algebra is an MV-algebra
such that the monoidal operations @, ® and the lattice operations V, A coincide,
respectively.

An MV-algebra L is called complete if \/{a;| i € I'}, N{ai| i € I'} € L for
any subset {a; : i € I'} C L. Complete MV-algebras are completely distributive,
that is, they satisfy

i€r i€r ier i€l
for any x € L, {y;| i € I'} C L. Thus, in a complete MV-algebra we can define

another adjoint couple (A, =), where the operation = is defined via

x:>y:\/{z\x/\z§y}. (29)
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In particular, ¥ = x = 0 defines another complementation (called weak com-
plementation) in complete MV-algebras. However, weak complementation needs
not to be lattice complementation. A Heyting algebra H is a bounded lattice such
that for all a,b € H there is a greatest element = in H such that a Az < b. Thus,
to any complete MV—algebra (L, ®,*,0) there is an associated Heyting algebra
(L, A\,*,0,1) with an adjoint couple (A,=-). The Lukasiewicz structure and all
finite MV—algebras are complete as well as the direct product of complete MV—
algebras is a complete MV—algebra. However, the rational Lukasiewicz structure
is not complete.

A fundamental fact proved by C. C. Chang (cf. [3]) is that any MV-algebra
is a subdirect product of Lukasiewicz structures (in the same sense than any
Boolean algebra is a direct product of two elements Boolean algebras). This
representation theorem implies that, to prove that an equation holds in all MV—
algebras it is enough to show that it holds in £. This fact is used in proving the
following three propositions.

Proposition 1. In an MV-algebra L the following holds for all x,y € L

(oY) A (2" ©y*) =0, (30)
(Z*AY) B (x0y) (@ Oy D (xAy*) =1. (31)

Proposition 2. Assume x,y,a,b are elements of an MV-algebra L such that
the following system of equations holds

¥ ANy =a* Ab,
rOy =a®b,

x*@y*za*Gb*,
T AY* =aAb*.
Then x = a and y = b.

(4)

Proposition 3. Assume x,y are elements of an MV—-algebra L such that

ANy = [,
xOy =k,
(B) Oy —
xANy* =t.

Then (C)x=tdk,y=f®k and (D) x=(fDuw)*, y=({tDu)*.

Propositions 2] and B put ordered couples (z,y) and values f,k,u, t defined by
(B) into a one—one correspondence.

Definition 1. A complete MV-algebra L is injective (cf. [6]) if, for any a € L
and any natural number n, there is an element b € L, called the n—divisor of a,
such that nb=b& ---®b=a and (a*®(n—1)b)* =b.

~

n times

All n—divisors are unique (cf. [8]). The Lukasiewicz structure £ and all finite
Lukasiewicz chains are injective MV-algebras (cf. [13]).
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3 Evidence Couples and Evidence Matrices

Let L = (L, ®,*,0) be an MV-algebra. The product set L x L can be equipped
with an MV—structure by setting

(a,b) @ (¢,d) ={a ® c,bO d), (32)
(a,b)* = (a*,b"), (33)
0=1(0,1) (34)

for each ordered couple (a,b),{c,d) € L x L. Indeed, the axioms (E)—(@) hold
trivially and, to prove that the axiom (I0) holds, it is enough to realize that

((a,b) @ (c,d)t @ (c,d) = (aV e,bAd) = (cVa,d D)
= ((e;d)™ @ (a,b))" @ (a,b).
It is routine to verify that the order on L x L is defined via
{(a,b) < {c,d) if and only if a < x,y <, (35)
the lattice operation by
(a,b) V (e, dy = (aVc,bAd), (36)
(a,b) A{c,d) = {a Ac,bV dy, (37)
and an adjoin couple (x,—) by
(a,b) (c,d) = (a© c,bdd), (38)
(a,b) = (¢,d) = (a — ¢, (d — b)"). (39)
Notice that a — c=a* @ cand (d = b)* = (d*®b)* =dOb* =b* O d.

Definition 2. Given an MV-algebra L, denote the structure described via (33)
- (39) by Lgc and call it the MV-algebra of evidence couples induced by L.

Definition 3. Given an MV-algebra L, denote

a*ANb a®b
m={[a b oo o erxe}

and call it the set of evidence matrices induced by evidence couples.
By Proposition [2] we have

Theorem 1. There is a one—to—one correspondence between L X L and M: if
A,B € M are two evidence matrices induced by evidence couples (a,b) and
(x,y), respectively, then A = B if and only if a =z and b =y.

The MV-structure descends from Lgc to M in a natural way: if A, B € M are
two evidence matrices induced by evidence couples (a, b) and (z, y), respectively,
then the evidence couple {a & z,b ® y) induces an evidence matrix
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o [(a@x)*/\(b@y) (adz)® (boOy) }
(@@z)"© 0oy (adx)AbOYy)" ]

Thus, we may define a binary operation @ on M by
a*Nb a®b TNy zOy |
[a*@b* a/\b*] © L“*@y* x Ay* =C
Similarly, if A € M is an evidence matrix induced by an evidence couple (a, b},
then the evidence couple (a*,b*) induces an evidence matrix
qo_ [antraop
T la®b a*Ab

In particular, the evidence couple (0, 1) induces the following evidence matrix
r_ 0*Al 001 | |10
T 10*®@1*0A1*| T |00
Theorem 2. Let L be an MV-algebra. The structure M = (M, @,*, F) as
defined above is an MV-algebra (called the MV—algebra of evidence matrices).
a*Ab a@b} _[:E*/\y Oy

AssumeA:[a*G)b*a/\b* ANOR TR W Tl

]eM

Then it is obvious that the lattice operations A, V, the monoidal operation (-)
and the residual operation — are defined via

anp=[oraatn rnee ]
ava=[@Va6. Gvaean]
son=[E0T A ben wonotey |

T e At el S et

If the original MV—-algebra L is complete, then the structure M is a complete
MV-algebra, too, and supremes and infimas are defined by evidence couples

\/ieF{<ai7 bl>} = <\/ieF Qi /\ieF bl>}7 /\ieF{<aia bl)} = </\ieF Qg \/ieF bl>}
Thus, we may define another residual operation = on M via

(a=x)*ND*=y*)* (a=z)0 (b* = y*)*]

A= B= {(aéx)*@(b*éy*) (a = x) A (b* = y*)

To verify this last claim, assume (a, bYA{x,y) < (¢, d) in Lgc, which is equivalent
to

aNzx<candd<bVy, thatis,

a<z=cand (bVy) =b" Ay" <d ie,
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a<x=cand b" <y* = d*, or equivalently,

a<xz=cand (y* = d")* <b, ie

(a,b) < (z = ¢, (y* = d*)*) in Lgc. Therefore, if A is induced by (a,b) and B
is induced by (x,y) then the evidence matrix A = B is induced by the evidence
couple (a = z, (b* = y*)*). In particular, the weak complementation * on M is
defined via A* = A = F and induced by

(1,0)if a=0,b=1, then A* =T,
(0 7O)lfa>0,bzlﬂchenA*:U7
(1,1)ifa=0,b < 1, then A* = K,
(0,1)ifa>0,b<1,then A*=F.

The matrices F, T, K,U correspond to Belnap’s original values false, true, con-
tradictory, unknown, respectively.

Theorem 3. L is an injective MV—-algebra if, and only if the corresponding
MV—algebra of evidence matrices M is an injective MV—-algebra.

4 Para Consistent Pavelka Style Fuzzy Logic

4.1 Pavelka Style Fuzzy Logic

A standard approach in mathematical sentential logic is the following. After in-
troducing atomic formulae, logical connectives and the set of well-formed formu-
lae, these formulae are semantically interpreted in suitable algebraic structures.
In Classical logic these structures are Boolean algebras, in Hajek’s Basic fuzzy
logic [7], for example, the suitable structures are BL-algebras. Tautologies of
a logic are those formulae that obtain the top value 1 in all interpretations in
all suitable algebraic structures; for this reason tautologies are sometimes called
1-tautologies. For example, tautologies in Basic fuzzy logic are exactly the for-
mulae that obtain value 1 in all interpretations in all BL-algebras. The standard
next step in mathematical sentential logic is to fix the axiom scheme and the
rules of inference: a well-formed formula is a theorem if it is either an axiom or
obtained recursively from axioms by using finite many times rules of inference.
Completeness of the logic means that tautologies and theorems coincide; Clas-
sical sentential logic and Basic fuzzy sentential logic, for example, are complete
logics.

In Pavelka style fuzzy sentential logic [10] the situation is somewhat different.
We start by fixing a set of truth values, in fact an algebraic structure — in
Pavelka’s own approach this structure in the Lukasiewicz structure £ on the real
unit interval while in [I3] the structure is a more general (but fixed!) injective
MV-algebra L. In this brief review we follow [13].

Consider a zero order language F with a set of infinite many propositional
variables p,q,r,---, and a set of inner truth values {a | a € L} corresponding
to elements in the set L. Proved in [7], if the set of truth values is the whole
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real interval [0, 1] then it is enough to include inner truth values corresponding
to rationals € [0, 1]. In two—valued logic inner truth values correspond to the
truth constants 1| and T. These two sets of objects constitute the set F, of
atomic formulae. The elementary logical connectives are implication 'imp’ and
conjunction 'and’. The set of all well formed formulae (wffs) is obtained in the
natural way: atomic formulae are wffs and if «, § are wffs, then ’a imp 3’, ’«
and 3’ are wifs.

As shown in [I3], we can introduce many other logical connectives by abbre-
viations, e.g. disjunction ’or’, negation 'non’, equivalence ’equiv’ and exclusive
or ’xor’ are possible. Also the connectives weak implication ’imp’, weak conjunc-
tion ’and’; weak disjunction 'or’, weak negation 'non’, weak equivalence 'equiv’
and weak exclusive or ’xor’ are available in this logic. We call the logical con-
nectives without bar Lukasiewicz connectives, those with bar are Intuitionistic
connectives.

Semantics in Pavelka style fuzzy sentential logic is introduced in the following
way: any mapping v : F, — L such that v(a) = a for all inner truth values a can
be extended recursively into the whole F by setting v(a imp ) = v(a) — v(f)
and v(« and ) = v(a) ®v(F). Such mappings v are called valuations. The degree
of tautology of a wif « is the infimum of all values v(«), that is

C*™ (o) = N{v(«)| v is a valuation }.

We may also fix some set T" C F of wifs and consider valuations v such that
T (o) < v(a) for all wifs a. If such a valuation exists, the T is called satisfiable.
We say that T is a fuzzy theory and formulae « such that T(a) # 0 are the
non—logical axioms of the fuzzy theory T. Then we consider values

C**™(T)(a) = N{v(a)| v is a valuation, T satisfies v}.

The set of logical axioms, denoted by A, is composed by the eleven forms of
formulae listed on page 88 in [13]. A fuzzy rule of inference is a scheme

ap, - ,0p ) A1, ,0n
Tsyn(al7"' ,Oén) Tsem(al7"' ,Oén)7
where the wifs aq, - -, o, are premises and the wif r*7*(aq, -+, ) is the con-
clusion. The values aq,- -+ ,a, and r°*"(aq, -+ ,,) € L are the corresponding
truth values. The mappings L™ +— L are semi—continuous, i.e.
sem —_ sem
r (a17"'a\/jel“akja"'7an)_\/jeFT (alv"'aakj7"'aan)

holds for all 1 < k < n. Moreover, the fuzzy rules are required to be sound in a
sense that

Tsem(v(a1)7 - ,U(Oén)) < U(TSyn(Oél, s 7an))

holds for all valuations v.
The following are examples of fuzzy rules of inference, denoted by a set R:
Generalized Modus Ponens:
o, imp B, a,b
I6] a®b
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a—Consistency testing rules :

a,b
0 ¢

where a is an inner truth value and ¢ =0 if b < ¢ and ¢ = 1 elsewhere.
a—Lifting rules :

« , b
aimpa a—b

where a is an inner truth value.
Rule of Bold Conjunction:

a’ﬂ 9 A7B
aand § AGB

A meta proof w of a wif v in a fuzzy theory T is a finite sequence

o1, a1

Qm 5 Qm
where
(i) am = «,
(ii) for each i, 1 < ¢ < m, «; is a logical axiom, or is a non—logical axiom, or there
is a fuzzy rule of inference in R and wff formulae a;,, -+, a;, with iy,--- 4, <1
such that a; = r*™(ay,, -+ , @, ),

(iii) for each i, 1 < i < m, the value a; € L is given by

a if oy; is the axiom a
o — 1 if «; is some other logical axiom in the set A
! T (o) if o; is a non-logical axiom
PR, an,) i g = 10, a,)

The value a,, is called the degree of the meta proof w. Since a wiff @ may have
various meta proofs with different degrees, we define the degree of deduction of
a formula « to be the supremum of all such values, i.e.,

C¥™(T)(a) = V{am| w is a meta proof for « in the fuzzy theory T'}.

A fuzzy theory T is consistent if C**™(T")(a) = a for all inner truth values a. By
Proposition 94 in [I3], any satisfiable fuzzy theory is consistent. Theorem 25 in
[13] now states the completeness of Pavelka style sentential logic:

If a fuzzy theory T is consistent, then C**™(T")(«) = C*¥"(T)(«) for any wif «.

Thus, in Pavelka style fuzzy sentential logic we may talk about tautologies of a
degree a and theorems of a degree a for all truth values a € L, and these concepts
coincide. This completeness result remains valid if we extend the language to
contain Intuitionistic connectives ’and’ or ’or’. However, it does not hold if the
language is extended by the Intuitionistic connectives 'imp’ or 'non’.
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4.2 Para Consistent Pavelka Logic

The above construction can be carried out in any injective MV-algebra thus, in
particular, in the injective MV-algebra M of evidence matrices induced by an
injective MV-algebra L. Indeed, semantics is introduced by associating to each
atomic formula p an evidence couple (pro,con) or simply (a,b) € Lgc. The
evidence couple (a,b) induces a unique evidence matrix A € M and therefore
valuations are mappings v such that v(p) = A for propositional variables and
v(I) = I for inner truth values (€ M). A valuation v is then extended recursively
to whole F via

v(e imp §) = v(a) — (),  v(a and B) = v(a) () v(B). (40)

Similar to the procedure in [13], Chapter 3.1, we can show that

v or B) = v(@) @v(B),  v(mon—a) = [p()]*,

v(a equiv B) = (@) — v(B)] A [o(8) — v()],

vla xor B) = [v(@) @ v(B)] A (B) — v(@) ] A [o(a) — v(8)"]
v and §) = v(@) Av(B), vla or B) = v(a) V u(),

*

v(a imp §) = v(a) = v(B),  v(non—a) = v(a)",
v(a equiv §) = [v(a) = v(B)] A [v(B) = v(a)].

The obtained continuous valued para consistent logic is a complete logic in
the Pavelka sense. The logical axioms and the rules of inference are those defined
in [13], Chapter 3. Thus, we have a solid syntax available and e.g. all the many—
valued extensions of classical rules of inference are available; 25 such rules are
listed in [13].

If the MV-algebra L is the Lukasiewicz structure, then the evidence couples
coincide with the ordered pairs (B(a), B(—«a)) discussed in [I1]. Moreover, the
evidence matrices coincide with the matrices

w-[121)

41
42
43

44
45
46

(41)
(42)
, (43)
(44)
(45)
(46)

where t(a), k(a), u(a), f(a) are defined via equations (@) — (@) (equations (38)
— (41) in [II]). In particular, the computation of values v(a A ) and v(a V )
(Proposition 3.3. in [I1]) coincide with our equations ({@4)).
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Abstract. One of the surprising developments in the area of program
verification is how ideas introduced by logicians in the early part of the
20th Century ended up yielding by the 21 Century industrial-standard
property-specification languages. This development was enabled by the
equally unlikely transformation of the mathematical machinery of au-
tomata on infinite words, introduced in the early 1960s for second-order
logic, into effective algorithms for model-checking tools. This paper at-
tempts to trace the tangled threads of this development.

1 Thread I: Classical Logic of Time

1.1 Monadic Logic

In 1902, Russell send a letter to Frege in which he pointed out that Frege’s log-
ical system was inconsistent. This inconsistency has become known as Russell’s
Paradoz. Russell, together with Whitehead, published Principia Mathematica in
an attempt to resolve the inconsistency, but the monumental effort did not con-
vince mathematicians that mathematics is indeed free of contradictions. This has
become know as the “Foundational Crisis.” In response to that Hilbert launched
what has become known as “Hilbert’s Program.” (See [1].)

One of the main points in Hilbert’s program was the decidability of mathe-
matic. In 1928, Hilbert and Ackermann published “Principles of Mathematical
Logic”, in which they posed the question of the Decision Problem for first-order
logic. This problem was shown to be unsolvable by Church and Turing, inde-
pendently, in 1936; see [2]. In response to that, logicians started the project of
classifying the decidable fragments of first-order logic [2J3]. The earliest decid-
ability result for such a fragment is for the Monadic Class, which is the fragment
of first-order predicate logic where all predicates, with the exception of the equal-
ity predicate, are required to be monadic. This fragment can express the classical
sylogisms. For example the formula

((Va)(H(2) — M(x)) A (Vo)(G(x) — H(z))) = (V) (G(z) — M(z))
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expresses the inference of: “if all humans are mortal and all Greeks are human,
then all Greeks are mortal.”

In 1915 Lowenheim showed that the Monadic Class is decidable [4]. His proof
technique was based on the bounded-model property, proving that a monadic
sentence is satisfiable if it is satisfiable in a model of bounded size. This enables
the reduction of satisfiability testing to searching for a model of bounded size.
L”owenheim’s tecchnique was extended by Skolem in 1919 to Monadic Second
Order Logic, in which one can also quantify over monadic predicates, in addition
to quantifying over domain elements [5]. Skolem also used the bounded-model
property. To prove this property, he introduced the technique of quantifier elim-
ination, which is a key technique in mathematical logic [2].

Recall, that the only binary predicate in Skolem’s monadic second-order logic
is the equality predicate. One may wonder what happens if we also allow in-
equality predicates. Such an extension is the subject of the next section.

1.2 Logic and Automata

Classical logic views logic as a declarative formalism, aimed at the specification
of properties of mathematical objects. For example, the sentence

(Va,y, ) (mult(z, y, z) < mult(y, z, z))

expressed the commutativity of multiplication. Starting in the 1930s, a differ-
ent branch of logic focused on formalisms for describing computations, starting
with the introduction of Turing machines in the 1930s, and continuing with the
development of the theory of finite-state machines in the 1950s. A surprising,
intimate, connection between these two paradigms of logic emerged in the late
1950s.

A nondeterministic finite automaton on words (NFW) A = (X, S, So, p, F)
consists of a finite input alphabet Y, a finite state set S, an initial state set
So C S, a transition relation p C S x X' x S, and an accepting state set F' C S.
An NFW runs over an finite input word w = ag,...,an_1 € X*. A run of A
on w is a finite sequence r = sg,..., S, of states in S such that sy € Sp, and
(8i, i, Sit1) € p, for 0 < ¢ < n. The run r is accepting if s,, € F. The word w is
accepted by A if A has an accepting run on w. The language of A, denoted L(A),
is the set of words accepted by A. The class of languages accepted by NFWs forms
the class of regular languages, which are defined in terms of regular expressions.
This class is extremely robust and has numerous equivalent representations [6].

Ezxample 1. We describe graphically below an NFW that accepts all words over
the alphabet {0,1} that end with an occurrence of 1. The arrow on the left
designates the initial state, and the circle on the right designates an accepting
state.

We now view a finite word w = ag, ..., a,—1 over an alphabet X as a relational
structure M,,, with the domain of 0,...,n — 1 ordered by the binary relation <,
and the unary relations {P, : a € X'}, with the interpretation that P,(¢) holds
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precisely when a; = a. We refer to such structures as word structures. We now
use first-order logic (FO) to talk about such words. For example, the sentence

E)((vy)(=(z < y)) A Pa(x))

says that the last letter of the word is a. We say that such a sentence is over the
alphabet Y.

Going beyond FO, we obtain monadic second-order logic (MSO), in which we
can have monadic second-order quantifiers of the form 3Q, ranging over subsets
of the domain, and giving rise to new atomic formulas of the form Q(x). Given
a sentence ¢ in MSO, its set of models models(p) is a set of words. Note that
this logic extends Skolem’s logic with the addition of the linear order <.

The fundamental connection between logic and automata is now given by the
following theorem, discovered independently by Biichi, Elgot, and Trakhtenbrot.

Theorem 1. [7IRQITOITIT2] Given an MSO sentence ¢ over alphabet X, one
can construct an NFW A, with alphabet X' such that a word w in X* is accepted
by A, iff ¢ holds in the word structure M,,. Conversely, given an NFW A with
alphabet X, one can construct an MSO sentence w4 over X such that ¢4 holds
in a word structure M,, iff w is accepted by A.

Thus, the class of languages defined by MSO sentences is precisely the class of
regular languages.

To decide whether a sentence ¢ is satisfiable, that is, whether models(p) # 0,
we need to check that L(Ay,) # 0. This turns out to be an easy problem. Let
A = (X,5,50,p,F) be an NFW. Construct a directed graph G4 = (5, E4),
with S as the set of nodes, and E4 = {(s,t) : (s,a,t) € p for some a € X'}. The
following lemma is implicit in [7J8I9II0] and more explicit in [13].

Lemma 1. L(A) # 0 iff there are states so € So and t € F such that in G4
there is a path from sg to t.

We thus obtain an algorithm for the SATISFIABILITY problem of MSO over word
structures: given an MSO sentence ¢, construct the NFW A, and check whether
L(A) # 0 by finding a path from an initial state to an accepting state. This ap-
proach to satisfiability checking is referred to as the automata-theoretic approach,
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since the decision procedure proceeds by first going from logic to automata, and
then searching for a path in the constructed automaton.

There was little interest in the 1950s in analyzing the computational complex-
ity of the SATISFIABILITY problem. That had to wait until 1974. Define the func-
tion exp(k,n) inductively as follows: exp(0,n) = n and exp(k +1,n) = 262p(kn),
We say that a problem is nonelementary if it can not be solved by an algorithm
whose running time is bounded by exp(k,n) for some fixed k > 0; that is, the
running time cannot be bounded by a tower of exponentials of a fixed height.
It is not too difficult to observe that the construction of the automaton A, in
[7U8I9UTO] involves a blow-up of exp(n,n), where n is the length of the MSO sen-
tence being decided. It was shown in [I4/T5] that the SATISFIABILITY problem for
MSO is nonelementary. In fact, the problem is already nonelementary for FO [15].

1.3 Reasoning about Sequential Circuits

The field of hardware verification seems to have been started in a little known
1957 paper by Church, in which he described the use of logic to specify sequential
circuits [16]. A sequential circuit is a switching circuit whose output depends not
only upon its input, but also on what its input has been in the past. A sequential
circuit is a particular type of finite-state machine, which became a subject of
study in mathematical logic and computer science in the 1950s.

Formally, a sequential circuit C = (I,O, R, f, g,ro) consists of a finite set I of
Boolean input signals, a finite set O of Boolean output signals, a finite set R of
Boolean sequential elements, a transition function f : 27 x 28 — 2 an output
function g : 2% — 29 and an initial state rq € 2%. (We refer to elements of I U
OUR as circuit elements, and assume that I, O, and R are disjoint.) Intuitively,
a state of the circuit is a Boolean assignment to the sequential elements. The
initial state is ro. In a state r € 2, the Boolean assignment to the output signals
is g(r). When the circuit is in state r € 2% and it reads an input assignment
i € 27 it changes its state to f(i,r).

A trace over a set V of Boolean variables is an infinite word over the alphabet
2V i.e., an element of (2V)“. A trace of the sequential circuit C is a trace over
T UO U R that satisfies some conditions. Specifically, a sequence 7 = (ig, ro, 0p),
(i1,11,01),..., where i; € 27, 0; € 29, and r; € 2B, is a trace of C if rj41 =
f(ij,r;) and o; = g(r;), for j > 0. Thus, in modern terminology, Church was
following the linear-time approach [I7] (see discussion in Section 2I). The set
of traces of C' is denoted by traces(C).

We saw earlier how to associate relational structures with words. We can
similarly associate with an infinite word w = ag, a1, ... over an alphabet 2V, a
relational structure M, = (N, <, V), with the naturals N as the domain, ordered
by <, and extended by the set V' of unary predicates, where j € p, for p € V,
precisely when p holds (i.e., is assigned 1) in a; [ We refer to such structures as
infinite word structures. When we refer to the vocabulary of such a structure, we
refer explicitly only to V, taking < for granted.

1 'We overload notation here and treat p as both a Boolean variable and a predicate.
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We can now specify traces using First-Order Logic (FO) sentences constructed
from atomic formulas of the form x = y, z < y, and p(x) forpe V = TURUOH
For example, the FO sentence

(Vo) (Fy)(z <y Ap(y))

says that p holds infinitely often in the trace. In a follow-up paper in 1963
[18], Church considered also specifying traces using monadic second-order logic
(MSO), where in addition to first-order quantifiers, which range over the ele-
ments of N, we allow also monadic second-order quantifiers, ranging over subsets
of N, and atomic formulas of the form Q(z), where @ is a monadic predicate
variable. (This logic is also called S1S, the “second-order theory of one successor
function”.) For example, the MSO sentence,

BP)(Vz)(Vy)(((P(x) Ay =z + 1) = (=P(y)))A
(=P@) Ay =z +1) = P(y)))A
(x =0 — Px)) A (P(z) = (),

where z = 0 is an abbrevaition for (—(32)(z < z)) and y = x + 1 is an abbrevia-
tion for (y > z A—(3z)(x < 2 Az < y)), says that ¢ holds at every even point on
the trace. In effect, Church was proposing to use classical logic (FO or MSO) as
a logic of time, by focusing on infinite word structures. The set of infinite models
of an FO or MSO sentence ¢ is denoted by models,, (¢).

Church posed two problems related to sequential circuits [16]:

— The DECISION problem: Given circuit C' and a sentence ¢, does ¢ hold in
all traces of C'? That is, does traces(C) C models(y) hold?

— The SYNTHESIS problem: Given sets I and O of input and output signals,
and a sentence ¢ over the vocabulary TUO, construct, if possible, a sequential
circuit C with input signals I and output signals O such that ¢ holds in all
traces of C. That is, construct C such that traces(C') C models(p) holds.

In modern terminology, Church’s DECISION problem is the MODEL-CHECKING
problem in the linear-time approach (see Section 22]). This problem did not
receive much attention after [I6/18], until the introduction of model checking in
the early 1980s. In contrast, the SYNTHESIS problem has remained a subject of
ongoing research; see [T920J2T22123]. One reason that the DECISION problem did
not remain a subject of study, is the easy observation in [I8] that the DECISION
problem can be reduced to the VALIDITY problem in the underlying logic (FO
or MSO). Given a sequential circuit C, we can easily generate an FO sentence
ac that holds in precisely all structures associated with traces of C. Intuitively,
the sentence ac simply has to encode the transition and output functions of
C, which are Boolean functions. Then ¢ holds in all traces of C' precisely when
ac — o holds in all word structures (of the appropriate vocabulary). Thus, to
solve the DECISION problem we need to solve the VALIDITY problem over word
structures. As we see next, this problem was solved in 1962.

2 We overload notation here and treat p as both a circuit element and a predicate
symbol.
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1.4 Reasoning about Infinite Words

Church’s DECISION problem was essentially solved in 1962 by Biichi who showed
that the VALIDITY problem over infinite word structures is decidable [24]. Ac-
tually, Biichi showed the decidability of the dual problem, which is the SAT-
ISFIABILITY problem for MSO over infinite word structures. Biichi’s approach
consisted of extending the automata-theoretic approach, see Theorem [I which
was introduced a few years earlier for word structures, to infinite word struc-
tures. To that end, Biichi extended automata theory to automata on infinite
words.

A nondeterministic Biichi automaton on words (NBW) A = (X, S, Sy, p, F)
consists of a finite input alphabet X, a finite state set S, an initial state set Sy C
S, a transition relation p C Sx X' x S, and an accepting state set F' C .S. An NBW
runs over an infinite input word w = ag, a,... € X“. A run of A on w is an infi-
nite sequence r = sg, s1, ... of states in S such that so € So, and (s;, a;, si41) € p,
for ¢ > 0. The run r is accepting if F is visited by r infinitely often; that is, s; € F
for infinitely many i’s. The word w is accepted by A if A has an accepting run
on w. The infinitary language of A, denoted L, (A), is the set of infinite words
accepted by A. The class of languages accepted by NBWs forms the class of w-
reqular languages, which are defined in terms of regular expressions augmented
with the w-power operator (e¥ denotes an infinitary iteration of e) [24].

Ezxample 2. We describe graphically an NBW that accepts all words over the
alphabet {0, 1} that contain infinitely many occurrences of 1. The arrow on the
left designates the initial state, and the circle on the right designates an accept-
ing state. Note that this NBW looks exactly like the NFW in Example [[I The
only difference is that in Example [I] we considered finite input words and here
we are considering infinite input words.

As we saw earlier, the paradigmatic idea of the automata-theoretic approach is
that we can compile high-level logical specifications into an equivalent low-level
finite-state formalism.

Theorem 2. [24] Given an MSO sentence ¢ with vocabulary V', one can con-
struct an NBW A, with alphabet 2V such that a word w in (2V)* is accepted
by A, iff ¢ holds in the word structure M,,. Conversely, given an NBW A with
alphabet 2V, one can construct an MSO sentence pa with vocabulary V such
that 4 holds in an infinite word structure My, iff w is accepted by A.
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Thus, the class of languages defined by MSO sentences is precisely the class of
w-regular languages.

To decide whether sentence ¢ is satisfiable over infinite words, that is, whether
models,, () # (), we need to check that L, (A,) # 0. Let A= (X, 5, So,p, F) be
an NBW. As with NFWs, construct a directed graph Ga = (S, E4), with S as
the set of nodes, and E4 = {(s,t) : (s,a,t) € p for some a € X'}. The following
lemma is implicit in [24] and more explicit in [25].

Lemma 2. L, (A) # 0 iff there are states so € S° and t € F such that in G 4
there is a path from sg to t and a path from t to itself.

We thus obtain an algorithm for the SATISFIABILITY problem of MSO over infi-
nite word structures: given an MSO sentence ¢, construct the NBW A, and check
whether L, (A) # 0 by finding a path from an initial state to an accepting state
and a cycle through that accepting state. Since the DECISION problem can be re-
duced to the SATISFIABILITY problem, this also solves the DECISION problem.

Neither Biichi nor Church analyzed the complexity of the DECISION prob-
lem. The non-elementary lower bound mentioned earlier for MSO over words
can be easily extended to infinite words. The upper bound here is a bit more
subtle. For both finite and infinite words, the construction of A, proceeds by
induction on the structure of ¢, with complementation being the difficult step.
For NFW, complementation uses the subset construction, which involves a blow-
up of 2™ [13126]. Complementation for NBW is significantly more involved, see
[27]. The blow-up of complementation is 22198 hut there is still a gap be-
tween the known upper and lower bounds. At any rate, this yields a blow-up of
exp(n,nlogn) for the translation from MSO to NBW.

2 Thread 1II: Temporal Logic

2.1 From Aristotle to Kamp

The history of time in logic goes back to ancient timesH Aristotle pondered
how to interpret sentences such as “Tomorrow there will be a sea fight,” or
“Tomorrow there will not be a sea fight.” Medieval philosophers also pondered
the issue of time[] By the Renaissance period, philosophical interest in the logic

3 For a detailed history of temporal logic from ancient times to the modern period,
see [28].

For example, William of Ockham, 1288-1348, wrote (rather obscurely for the modern
reader): “Wherefore the difference between present tense propositions and past and
future tense propositions is that the predicate in a present tense proposition stands
in the same way as the subject, unless something added to it stops this; but in a past
tense and a future tense proposition it varies, for the predicate does not merely stand
for those things concerning which it is truly predicated in the past and future tense
propositions, because in order for such a proposition to be true, it is not sufficient
that that thing of which the predicate is truly predicated (whether by a verb in the
present tense or in the future tense) is that which the subject denotes, although it is
required that the very same predicate is truly predicated of that which the subject
denotes, by means of what is asserted by such a proposition.”

4
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of time seems to have waned. There were some stirrings of interest in the 19th
century, by Boole and Peirce. Peirce wrote:

“Time has usually been considered by logicians to be what is called ‘extra-
logical’ matter. I have never shared this opinion. But I have thought that
logic had not yet reached the state of development at which the introduc-
tion of temporal modifications of its forms would not result in great con-
fusion; and I am much of that way of thinking yet.”

There were also some stirrings of interest in the first half of the 20th century,
but the birth of modern temporal logic is unquestionably credited to Prior. Prior
was a philosopher, who was interested in theological and ethical issues. His own
religious path w