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Abstract. Plastic User Interfaces (UI) are able to adapt to their context of use 
while preserving usability. Research efforts have focused so far, on the 
functional aspect of UI adaptation, while neglecting the usability dimension. 
This paper investigates how the notion of mapping as promoted by Model 
Driven Engineering (MDE), can be exploited to control UI adaptation according 
to explicit usability criteria. In our approach, a run-time UI is a graph of models 
related by mappings. Each model (e.g., the task model, the Abstract UI, the 
Concrete UI, and the final UI) describes the UI from a specific perspective from 
high-level design decisions (conveyed by the task model) to low-level 
executable code (i.e. the final UI). A mapping between source and target 
models specifies the usability properties that are preserved when transforming 
source models into target models. This article presents a meta-model for the 
notion of mapping and shows how it is applied to plastic UIs. 

Keywords: Adaptation, Context of use, Mapping, Meta-model, Model, Model 
transformation, Plasticity, Usability. 

1   Introduction 

In Human-Computer Interaction (HCI), plasticity refers to the ability of User 
Interfaces (UI) to withstand variations of context of use while preserving usability 
[36]. Context of use refers to a set of observables that characterize the conditions in 
which a particular system is running. It covers three information spaces: the user 
model, the platform model, and the physical and social environment model. UI 
adaptation has been addressed using many approaches over the years, including 
Machine Learning [21], Model-Driven Engineering (MDE) [8,17,18,32,33], and 
Component-oriented services [30]. Regardless of the approach, the tendency has been 
to focus on the functional aspects of adaptation. Usability has generally been regarded 
as a natural by-product of whatever approach was being used. In this article, we 
propose to promote usability as a first class entity using a model-based approach. 

This article is structured in the following way. Section 2 introduces the concepts of 
MDE followed in Section 3, by the instantiation of the MDE principles when applied 
to the problem of UI plasticity. Section 4 presents HHCS (Home Heating Control 
System), a simple case study used as a running example to illustrate the principles. 
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The rest of the paper is dedicated to the notion of mappings. First, in Section 5, we 
show how different UIs can be produced for HHCS using different mappings. Then 
we switch to a more abstract discussion with the definition of a meta-model for 
mappings (Section 6). 

2   Motivations for an MDE Approach 

Although promising, the model-based approach to the development of UIs has not met 
wide acceptance: developers have to learn a new specification language, the connection 
between the specification and the resulting code is hard to understand and control, and 
the kinds of UI’s that can be built are constrained by the underlying conventional toolkit 
[19]. However, this early work has established the foundations for transforming high-
level specifications into executable code. In particular, the following steps now serve as 
references for designing and developing UIs: from the domain-dependent Concepts and 
Task models, an Abstract UI (AUI) is derived which in turn is transformed into a 
Concrete UI (CUI), followed by the Final UI (Figure 1) [36].  
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Fig. 1. A model-based framework [7] for UI plasticity 

 

As discussed in [7], transformations can be combined and applied to any of these 
models to support UI adaptation. For example, VAQUITA [5] and WebRevEnge [23] 
reverse engineer HTML source files into more abstract descriptions (respectively AUI 
and task levels), and from there, depending on the tool, either retarget and generate 
the UI or are combined with retargeting and/or forward engineering tools (Figure 1). 
This means that developers can produce the models they are familiar with – including 
source code for fine-tuned elegant UIs, and then use the tools that support the 
appropriate transformations to retarget the UI to a different context of use. 
Transformations and models are at the heart of MDE. 

The motivation for MDE is the integration of very different know-how and software 
techniques. Over the years, the field of software engineering has evolved into the 
development of many paradigms and application domains leading to the emergence of 
multiple Technological Spaces (TS). "A technological space is a working context with a 
set of associated concepts, body of knowledge, tools, required skills, and possibilities" 
[14]. Examples of technological spaces include documentware concerned with digital 
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documents using XML as the fundamental language to express specific solutions, 
dataware related to data base systems, ontologyware, etc. In HCI, a java-based control 
panel running on a PDA can be used to control a web-based application running on a PC. 
Today, technological spaces can no longer evolve in autarky. Most of them share 
challenges of increasing complexity, such as adaptation, to which they can only offer 
partial solutions. Thus, we are in a situation where concepts, approaches, skills, and 
solutions, need to be combined to address common problems. MDE aims at achieving 
integration by defining gateways between technological spaces. The hypothesis is that 
models, meta-models, model transformations, and mappings, offer the appropriate 
means. 

A model is a representation of a thing (e.g., a system), with a specific purpose. It is 
“able to answer specific questions in place of the actual thing under study” [4]. Thus, 
a model, built to address one specific aspect of a problem, is by definition a 
simplification of the actual thing. For example, a task model is a simplified 
representation of some human activities (the actual thing under study), but it provides 
answers about how “representative users” proceed to reach specific goals. Things and 
models are systems. Model is a role of representation that a system plays for another 
one. Models form oriented graphs (µ graphs) whose edges denote the µ relation “is 
represented by” (Figure 2). Models may be contemplative (they cannot be processed 
automatically by computers) or productive (they can be processed by computers). 
Typically, scenarios developed in HCI [27] are contemplative models of human 
experience in a specified setting. On the other hand, the task model exploited in 
TERESA [3] is productive. 

In order to be processed (by humans, and/or by computers), a model must comply 
with some shared syntactic and semantic conventions: it must be a well-formed 
expression of a language. This is true both for productive and contemplative models: 
most contemplative models developed in HCI use a mix of drawings and natural 
language. A TERESA [3] task model is compliant with CTT [25]. A language is the 
set of all well-formed expressions that comply with a grammar (along with a 
semantics). In turn, a grammar is a model from which one can produce well-formed 
expressions (or models). Because a grammar is a model of a set of models (ε relation 
“is part of” on Figure 2), it is called a meta-model. CTT [25] is a meta-model for 
expressing specific task models. 

A meta-model is a model of a set of models that comply with it. It sets the rules for 
producing models. It does not represent models. Models and meta-models form a χ tree: 
a model complies to a single meta-model, whereas a meta-model may have multiple 
compliant models. In the same way, a meta-meta-model is a model of a set of meta-
models that are compliant with it. It does not represent meta-models, but sets the rules 
for producing distinct meta-models. The OMG Model-Driven Architecture (MDA) 
initiative has introduced a four-layer modeling stack as a way to express the integration 
of a large diversity of standards using MOF (Meta Object Facility) as the unique meta-
meta-model. This top level is called M3, giving rise to meta-models, models and 
instances (respectively called M2, M1 and M0 levels). MDA is a specific MDE 
deployment effort around industrial standards including MOF, UML, CWM, QVT, etc. 
The µ and χ relations, however, do not tell how models are produced within a 
technological space, nor how they relate to each other across distinct technological 
spaces. The notions of transformation and mapping is the MDE answer to these issues. 
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Fig. 2. Basic concepts and relations in MDE 

In the context of MDE, a transformation is the production of a set of target models 
from a set of source models, according to a transformation definition. A 
transformation definition is a set of transformation rules that together describe how 
source models are transformed into target models [16]. Source and target models are 
related by the τ relation “is transformed into”. Note that a set of transformation rules 
is a model (a transformation model) that complies with a transformation meta-model. 
τ expresses an overall dependency between source and target models. However, 
experience shows that finer grain of correspondence needs to be expressed. Typically, 
the incremental modification of one source element should be propagated easily into 
the corresponding target element(s) and vice versa. The need for traceability between 
source and target models is expressed as mappings between source and target 
elements of these models. For example, each task of a task model and the concepts 
involved to achieve the task, are rendered as a set of interactors in the CUI model. 
Rendering is a transformation where tasks and their concepts are mapped into 
workspaces which, in turn, are mapped into windows populated with widgets in case 
of graphical UIs. The correspondence between the source task (and concepts) and its 
target workspace, window and widgets, is maintained as mappings. Mappings will be 
illustrated in Section 5 for the purpose of UI plasticity and meta-modeled in Section 6. 

Transformations can be characterized within a four-dimension space: The 
transformation may be automated (it can be performed by a computer autonomously), it 
may be semi-automated (requiring some human intervention), or it may be manually 
performed by a human. A transformation is vertical when the source and target models 
reside at different levels of abstraction (Figure 1). Traditional UI generation is a vertical 
top down transformation from high-level descriptions (such as a task model) to code 
generation. Reverse engineering is also a vertical transformation, but it proceeds bottom 
up, typically from executable code to some high-level representation by the way of 
abstraction. A transformation is horizontal when the source and target models reside at 
the same level of abstraction (Figure 1). For example, translating a Java source code into 
C code preserves the original level of abstraction. Transformations are endogenous 
when the source and target models are expressed in the same language (i.e., are 
compliant to the same meta-model). Transformations are exogenous when sources and 
targets are expressed in different languages while belonging to the same technological 
space. When crossing technological spaces (e.g., transforming a Java source code into a 
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JavaML document), then additional tools (called exporters and importers) are needed to 
bridge the gap between the spaces. Inter-technological transformations are key to 
knowledge and technical integration. 

As discussed next, our approach to the problem of plastic UI is to fully exploit the 
MDE theoretic framework opening the way to the explicit expression of usability to 
drive the adaptation process. 

3   MDE for UI Plasticity 

Early work in the automatic generation of UIs [32] as well as more recent work in UI 
adaptation adhere only partially to the MDE principles. Our approach differs from 
previous work [8,17,18,32] according to the following four principles. 

Principle#1: An interactive system is a graph of M1-level models. This graph 
expresses and maintains multiple perspectives on the system both at design-time and 
run-time (Fig. 3). As opposed to previous work, an interactive system is not limited to 
a set of linked pieces of code. The models developed at design-time, which convey 
high-level design decision, are still available at run-time. A UI may include a task 
model, a concept model, a workspace (i.e. an AUI) model, and an interactor (i.e. a 
CUI) model linked by mappings. In turn, the UI components are mapped to items of 
the Functional Core of the interactive system, whereas the CUI elements (the 
interactors) are mapped to input and output (I/O) devices of the platform. Mappings 
between interactors and I/O devices support the explicit expression of centralized 
versus distributed UIs. The whole graph (Fig. 3) forms an ecosystem: a set of entities 
that interact to form an organized and self-regulated unit until some threshold is 
reached. When the threshold is reached, Principle #3 comes into play. 

Principle #2: Transformations and mappings are models. In the conventional model-
driven approach to UI generation, transformation rules are diluted within the tool. 
Consequently, “the connection between specification and final result can be quite 
difficult to control and to understand” [19]. In our approach, transformations are 
promoted as models. As any model, they can be modified both at design-time and 
run-time at different degrees of automation. The same holds for mappings. In 
particular, mappings are decorated with properties to convey usability requirements. 
As motivated in Section 6, the usability framework used for mappings is left opened. 
This aspect will be discussed in detail in Sections 5 and 6. 

Principle #3: Design-time tools are run-time services. The idea of creating UIs by 
dynamically linking software components was first proposed in the mid-eighties for 
the Andrew Toolkit [24], followed by OpenDoc, Active X, and Java Beans. However, 
these technical solutions suffer from three limitations: they are code centric, the 
assembly of components is specified by the programmer, and the components are 
supposed to belong to the same technological space. In our approach, any piece of 
code is “encapsulated” as a service. Some of them implement portions of the UI. We 
call them UI services. Others, the UI transformers, interpret the models that constitute 
the interactive system. In other words, the model interpreters used at design-time are 
also services at run-time. As a result, if no UI service can be found to satisfy a new 
context of use, a new one can be produced on the fly by UI transformers. In particular,  
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Fig. 3. A UI is a graph of models. Mappings define both the rationale of each UI element and 
the UI deployment on the functional core and the context of use. 

 

the availability of a task model at run-time makes it possible to perform deep UI 
adaptation based on high-level abstractions. 

Principle #4: Humans are kept in the loop. HCI design methods produce a large body 
of contemplative models such as scenarios, drawings, storyboards, and mock-ups. 
These models are useful reference material during the design process. On the other 
hand, because they are contemplative, they can only be transformed manually into 
productive models. Manual transformation supports creative inspiration, but is prone 
to wrong interpretation and to loss of key information. On the other hand, experience 
shows that automatic generation is limited to very conventional UIs. To address this 
problem, we accept to support a mix of automated, semi-automated, and manually 
performed transformations. For example, given our current level of knowledge, the 
transformation of a “value-centered model” [9] into a “usability model” such as that 
of [2], can only be performed manually by designers. Semi-automation allows 
designers (or end-users) to adjust the target models that result from transformations. 
For example, a designer may decide to map a subset of an AUI with UI services 
developed with the latest post-WIMP toolkit. The only constraint is that the hand-
coded executable piece is modeled according to an explicit meta-model and is 
encapsulated as a service. This service can then be dynamically retrieved and linked 
to the models of the interactive system by the way of mappings. With productive 
models at multiple levels of abstraction, the system can reason at run-time about its 
own design. In a nutshell, the components of a particular system at run-time can be a 
mix of generated and hand-coded highly tuned pieces of UI. By the way of a meta-UI 
[11], end-users can dynamically inform the adaptation process of their preferences. 

To summarize, our approach to the problem of UI plasticity brings together MDE 
(Model Driven Engineering) and SOA (Service Oriented Approach) within a unified 
framework that covers both the development stage and the run-time phase of 
interactive systems. In this paper, we investigate how usability can be described and 
controlled by the way of mappings given that an interactive system is a graph of 
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models. We use HHCS as an illustrative example before going into a more formal 
definition of the notion of mapping and its relation with that of transformation. 

4   The Home Heating Control System: Overall Description 

Our Home Heating Control System (HHCS) makes it possible for users to control the 
temperature of their home using different devices. Examples include a dedicated wall-
mounted display, a Web browser running on a PDA, or a Java-enabled watch. As shown 
in Fig. 4, many UI variants are made possible, depending on the device screen size, as 
well as on the set of usability properties that HCI designers have elicited as key: 

• From a functional perspective, the four UI’s of Fig. 4 are equivalent: they 
support the same set of tasks, with the same set of rooms (the living room, 
the cellar and the kitchen) whose temperature may be set between 15°C and 
18°C; 

• From a non-functional perspective, these UI’s do not satisfy the same set of 
usability properties. In particular, according to C. Bastien and D. Scapin’s 
usability framework [2], prompting (a factor for guidance), prevention 
against errors (a factor for error management), and minimal actions (a factor 
for workload) are not equally supported by the four UI solutions. In Fig. 4-a), 
the unit of measure (i.e. Celsius versus Fahrenheit) is not displayed. The 
same holds for the room temperature whose range of values is not made 
observable. As a result, prompting is not fully supported. In Fig. 4-b), the 
lack of prompting is repaired but the user is still not prevented from entering 
wrong values. Solutions in Fig. 4-c) and Fig. 4-d) satisfy the prompting 
criteria as well as prevention against error. Moreover, Fig. 4-d) improves the 
minimal actions recommendation (a factor for workload) by eliminating the 
“Select room” navigation (also called articulatory) task. The UIs of Fig. 4-a 
to 4-c satisfy homogeneity-consistency because the same type of interactor 
(i.e. a web link) is used to choose a room. 

(a) 
temperature values are not observable

(b) The unit of measure and the validThe unit of measure and the valid
temperature values are both observable

(c) The user is prevented from making errors (d) The user is prevented from navigation tasks

 

Fig. 4. Four functionally-equivalent UIs that differ from the set of usability criteria used to 
produce them 
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Fig. 5. A subset of the graph of M1-models for HHCS. Each model is compliant to a meta-
model (M2-level). Each M1-level model of this figure is related to another M1-level model by 
the way of some mapping to form a sub-graph of Fig.1. 

 

The purpose of this paper is not to define new meta-models but to show how 
mappings are appropriate for conveying usability properties. Whatever the UI is 
(Fig.4-a, b, c or d), HHCS is a graph of models, each of them depicting a specific 
perspective. Each model (M1-level) is compliant to a meta-model (M2-level). Fig. 5  
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Fig. 6. An early meta-UI making it possible for the user to redistribute the UI by changing the 
mappings between tasks and platforms 

 

shows a subset of the HHCS graph of models corresponding to Fig. 4a. The 
deployment on the functional core and the context of use is not depicted. Here, we use 
UML as meta-meta-model (M3-level model). 

• The task meta-model (M2) defines a task as a goal that can be reached by the 
execution of a set of subtasks related by binary operators (e.g., enabling). A 
task may be decorated with unary operators (e.g. optional, iterative). Managing 
temperature at home is a goal that can iteratively be achieved by first selecting 
a room and then specifying the desired temperature (M1-level). The relations 
between the tasks and the domain concepts (e.g., select a room) are mappings 
that make explicit the roles that the concepts play in the tasks (input and/or 
output, centrality, etc.). 

• A domain concept is a concept that is relevant to users to accomplish tasks in a 
particular domain (e.g., home, room, temperature). Concepts are classes that 
are linked together by the way of associations (e.g., home is made of a set of 
rooms). 

• A workspace is an abstract structuring unit that supports a set of logically 
connected tasks. To support a task, a workspace is linked to the set of domain 
concepts involved within that task. A workspace may recursively be 
decomposed into workspaces whose relations (should) express the semantics 
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of tasks operators (e.g., gives access to for the enabling operator). In Fig. 4a-b-
c, there are three workspaces: one per task. 

• An interactor is the basic construct for CUIs (e.g., window, panel, group box, 
link, text field, button). It is a computational abstraction that allows the 
rendering and manipulation of entities that require interaction resources (e.g., 
input/output devices). Each interactor is aware of the task and domain 
concepts it represents, and the workspace in which it takes place. 

Fig. 6 shows a basic meta-UI that allows the user (either the designer and/or the end-
user) to observe and manipulate a sub-graph of the M1-level models of HHCS. In this 
early prototype, the meta-UI is limited to the task and platform models. By selecting a 
task of the task model, then selecting the platform(s) onto which the user would like 
to execute the task, the user can dynamically redefine the redistribution of the UI over 
the resources currently available. The UI is re-computed and redistributed on the fly, 
thus ensuring UI consistency. On Fig. 6, two platforms are available (a PC HTML and 
a PC XUL-enabled). End-users can map the tasks “Select room” and “Set room 
temperature” respectively, to the PDA-HTML platform and to the PC-XUL platform, 
resulting in the Final UI shown in Fig.6. 

This toy meta-UI shows only the mappings. The properties that these mappings 
convey are neither observable nor controllable. This is the next implementation step 
for fully demonstrating the conceptual advances that we present next. Section 5 is 
about the mappings used in HHCS whereas Section 6 goes one step further with the 
definition of a meta-model for mappings. 

5   Mappings in HHCS 

In HHCS, we have used Bastien-Scapin’s recommendations as our usability 
framework1. Due to lack of space, we limit our analysis to four of the eight criteria of 
this framework: 

• Task compatibility; 
• Guidance in terms of Prompting and Grouping/Distinction of items; 
• Error Management in terms of Error prevention; 
• Workload in terms of Minimal actions. 

In model-driven UI generation, usability criteria motivate the way abstract models 
are vertically transformed into more concrete models. Typically, Grouping/Distinction 
of items motivates the decomposition of UIs in terms of workspaces so that the concepts 
manipulated within a task are grouped together. By doing so, the distinction between the 
tasks that users can accomplish, is made salient. In our approach, we use usability 
criteria not only to motivate a particular design, but also to support plasticity at run-
time. A mapping between elements of source and target models, is specified either 
manually in a semi-formal way by the designer, or is created automatically by the 
system as the result of a transformation function. The choice of the appropriate 
transformation function is performed, either by the system, or specified by users (the  
 
                                                           
1 As discussed in Section 6, other frameworks are valid as well. 
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(a)

(b)

 

Fig. 7. Examples of mappings in HHCS resulting in different UIs depending on usability 
properties 

 

designer or end-users if conveniently presented in a well-thought meta-UI). Fig. 7 
shows the mappings defined for HHCS between the task model, the concept model and 
the CUI. These mappings are generated by the system, but the choice of the 
transformation functions is specified by the designer. In the current implementation, 
transformations are expressed in ATL. They are executed by an ATL interpreter 
encapsulated as an OSGi service. 

Fig. 7-a corresponds to the UI shown in Fig.4-c. Here, four properties have been 
elicited as key: Compatibility (property P1), Grouping/Distinction of items (property 
P2), Prompting (property P3) and Protection against error (property P4). P1 and P2  
 



 A Model-Driven Engineering Approach for the Usability of Plastic User Interfaces 151 

are attached to the mappings that result from the transformation function between tasks 
and workspaces. As shown in Fig. 7-a, this transformation function has generated one 
workspace per task (a workspace for selecting a room, and a workspace to set room 
temperature). These workspaces are spatially close to each other (they correspond to 
tasks that share the same parent task), and each workspace makes observable the 
concepts manipulated by the corresponding task.  As a result, the CUI fully supports 
user’s tasks and is well-structured. Property P3 (Prompting) and Property P4 
(Protection against errors) influences the way concepts and tasks are represented in 
terms of interactors. Because of Property P3, the unit of measure as well as the min and 
max values for a room temperature are made observable. Because of Property P4, the 
possible values for a room temperature are rendered as a pull-down menu. 

Fig. 7-b) shows a very different CUI for the same set of tasks and concepts, but 
using a different set of properties. In particular, the Minimal actions Property aims at 
eliminating navigation tasks. As a result, because the screen real estate is sufficient, 
there is one workspace per room, and the task “Select a room” is performed implicitly 
by setting the temperature directly in the appropriate workspace. 

Next section presents our meta-model for mappings. This meta-model is general, 
applicable to HCI for reasoning on usability-driven transformations. 

6   Formal Definition of Mapping 

In mathematics, a mapping is “a rule of correspondence established between two sets 
that associates each member of the first set with a single member of the second” [The 
American Heritage Dictionary of the English Language, 1970, p. 797]. In MDE, the 
term “mapping” is related to the notion of “transformation function”, but the overall 
picture is far from being clear. First, we clarify the notion of transformation as 
exploited in MDE. Then, we use this notion to propose a meta-model for mappings. 

Fig. 8 introduces three terms: transformation model, transformation function and 
transformation instance. They are illustrated on the mathematical domain. “f(x)=x+2” is 
a transformation model that is compliant to a mathematical meta-model. A 
transformation model describes (µ relation) a transformation function in a predictive 
way: here the set {(1,3),(2,4),(3,5)…} for the function “f” when applied to integers. A 
transformation function is the set of all the transformation instances inside the domain 
variation (here, the integers). Transformation instances are subsets (ε relation) of the 
transformation function. They are the execution trace of the function (here, “f”). 

In Fig. 8, the µ relation is refined into µp and µd. These relations respectively stand 
for predictive and descriptive representations. Predictive means that there is no 
ambiguity: the transformation model (e.g., “f(x)=x+2”) fully specifies the 
transformation function. Descriptive refers to a qualifier (e.g., “growing”). It does not 
specify the transformation function, but provides additional information. In Fig. 8, 
two examples are provided: “growing” and “f(x)>x”. They respectively deal with 
transformation instances and model. In the first case, the description is made a 
posteriori whilst it is made a priori in the second one. A posteriori descriptions are 
subject to incompleteness and/or errors due to too few samples. 
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Fig. 8. Clarification of the notions of transformation model, transformation function and 
transformation instance 

Transformations are key for specifying mappings. The mapping meta-model 
provided in Fig. 9 is a general purpose mapping meta-model. The core entity is the 
Mapping class. A mapping links together entities that are compliant to Meta-models 
(e.g., Task and Interactor). A mapping may explicit the corresponding Transformation 
functions. The transformation model can be done by patterns (e.g., to the task pattern 
Select a room, apply the pattern: one hypertext link per room, the name of the link 
being the name of the room). A Pattern is a transformation model that links together 
source and target elements (ModelElement) to provide a predictive description of the 
transformation function. Patterns are powerful for ensuring the UI’s homogeneity-
consistency. In addition, a mapping may describe the execution trace of the 
transformation function. The trace is a set of Links between Instances of 
ModelElements (e.g., the hypertext link Kitchen and the task Select a room when 
applied to the concept of kitchen). 

A mapping conveys a set of Properties (e.g., “Guidance-Prompting”). A property 
is described according to a given reference framework (Referential) (e.g., 
Bastien&Scapin [2]). Because moving to an unfamiliar set of tools would impose a 
high threshold on HCI and software designers, we promote an open approach that 
consists in choosing the appropriate usability framework, then generating and 
evaluating UIs according to this framework. General frameworks are available such 
as Shackel [29], Abowd et al., [1], Dix et al. [12], Nielsen [20], Preece [26], IFIP 
Properties [13], Schneiderman [31], Constantine and Lockwood [10], Van Welie et al. 
[39], as well as Seffah et al. [28] who propose QUIM, a unifying roadmap to 
reconcile existing frameworks. More specific frameworks are proposed for web 
engineering (Montero et al. [17]), or for specific domains (for instance, military 
applications). Closely related to UI plasticity, Lopez-Jacquero et al.’s propose a 
refinement of Bastien and Scapin’s framework, as a usability guide for UI adaptation 
[15]. Whatever the framework is, the properties are descriptive. They qualify either 
the global set of mappings or one specific element: a mapping, a pattern or a link. 
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Fig. 9. A mapping meta-model for general purpose. The composition between Mapping and 
Meta-model is due to the Eclipse Modeling Framework. 

Associated transformations (see the UML association between the classes Mapping 
and TransformationFunction in Fig. 9) are in charge of maintaining the consistency of 
the graph of models by propagating modifications that have an impact on other 
elements. For instance, if replacing an interactor with another one decreases the UI’s 
homogeneity-consistency, then the same substitution should be applied to the other 
interactors of the same type. This is the job of the associated functions which perform 
this adaptation locally. 

Our mapping meta-model is general. The HCI specificity comes from the nature of 
both the meta-models (Metamodel) and the framework (Referential). Currently in 
HCI, effort is put on meta-modeling (see UsiXML [38] for instance) but the mapping 
meta-model remains a key issue. Further work is needed to measure the extent to 
which traditional usability frameworks are still appropriate for reasoning on UI’s 
plasticity. Should new criteria such as continuity [37] be introduced? Whatever the 
criteria are, we need metrics to make it possible for the system to self-evaluate when 
the context of use changes. Next section elaborates on perspectives for both HCI and 
MDE communities. 

7   Conclusion and Perspectives 

In 2000, B. Myers stated that model-based approaches had not found a wide 
acceptance in HCI. They were traditionally used for automatic generation and 
appeared as disappointing because of a too poor quality of the produced UIs. He 
envisioned a second life for models in HCI empowered by the need of device 
independence. In our work, we promote the use, the description and the capitalization 
of elementary transformations that target a specific issue. 
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A UI is described as a graph of models and mappings both at design time and run-
time. At design time, mappings convey properties that help the designer in selecting 
the most appropriate transformation functions. Either the target element of the 
mapping is generated according to the transformation function that has been selected, 
or the link is made by the designer who then describes the mapping using a 
transformation model. We envision adviser tools for making the designer aware of the 
properties he/she is satisfying or neglecting. 

At run-time, mappings are key for reasoning on usability. However, it is not easy 
as (1) there is not a unique consensual reference framework; (2) ergonomic criteria 
may be inconsistent and, as a result, require difficult tradeoffs. Thus, (1) the meta-
model will have to be refined according to these frameworks; (2) a meta-UI (i.e., the 
UI of the adaptation process) may be relevant for negotiating tradeoffs with the end-
user. 

Beyond HCI, this work provides a general contribution to MDE. It defines a 
mapping meta-model and clarifies the notions of mapping and transformation. 
Mappings are more than a simple traceability link. They can be either predictive 
(transformation specifications) or descriptive (the properties that are conveyed), as a 
result covering both the automatic generation and the hand-made linking. Moreover 
mapping models can embed transformation in order to manage models consistency. 
This is new in MDE as most of the approaches currently focus on direct 
transformation. Our mapping meta-model will be stored in the international Zoo of 
meta-models: the ZOOOMM project [40]. 
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Questions 

Yves Vandriessche: 
Question:  How are you handling the layouts, should there be a model? 

Answer: The layout model is in the transformation but we should really do that in 
another model.  
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Question: There is no problem adding more models?  

Answer: No problems, this is what the Zoom project is about. 
 

Nick Graham: 
Question:  Tell me about your platform model? 

Answer:  It is very simple, work by Dennis Wagelaar is interesting and I would like a 
more complex model. 

 

Jan Gulliksen: 
Question:  What about the end-user as designer, how difficult is it? 

Answer: I am interested in end-user programming. I would like to achieve that and 
this is what we would like to do in the future. 

Phil Gray: 
Question: Single task single user, what about multiple user multiple task? 

Answer: Yes we have multiple users. How the task is described – we are talking about 
a Petri net model as a means of describing this. For some users some models are 
better than others, an evolution model is something we are working on in the team. 

 
Jo Vermeulen: 
Comment: An interesting paper around a meta user interface editors is "User 
Interface Façades" which was presented at UIST last year. End-users are able to 
create new dialogs combining a couple of widgets from an existing dialog, or 
transform widgets (e.g. switch from a group of radio buttons to a combo box). This 
might be useful for your work if you want to look at extending it to enable user 
interface adaptation by end-user. 
The exact details of the paper: 
W. Stuerzlinger, O. Chapuis, D. Phillips and N. Roussel. User Interface Façades: 
Towards Fully Adaptable User Interfaces. In Proceedings of UIST'06, the 19th ACM 
Symposium on User Interface Software and Technology, pages 309-318, October 
2006. ACM Press. URL: http://insitu.lri.fr/metisse/facades/ PDF: http://insitu.lri.fr/~ 
roussel/publications/UIST06-facades.pdf 
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