
J. Gulliksen et al. (Eds.): EIS 2007, LNCS 4940, pp. 36–52, 2008.

Formal Testing of Multimodal Interactive Systems

Jullien Bouchet, Laya Madani, Laurence Nigay, Catherine Oriat, and Ioannis Parissis

Laboratoire d’Informatique de Grenoble (LIG)
BP 53 38041 Grenoble Cedex 9, France

Forename.Name@imag.fr

Abstract. This paper presents a method for automatically testing inter-
active multimodal systems. The method is based on the Lutess testing
environment, originally dedicated to synchronous software specified us-
ing the Lustre language. The behaviour of synchronous systems, con-
sisting of cycles starting by reading an external input and ending by
issuing an output, is to a certain extent similar to the one of interactive
systems. Under this hypothesis, the paper presents our method for
automatically testing interactive multimodal systems using the Lutess
environment. In particular, we show that automatic test data generation
based on different strategies can be carried out. Furthermore, we show
how multimodality-related properties can be specified in Lustre and in-
tegrated in test oracles.

1 Introduction

A multimodal system supports communication with the user through different modali-
ties such as voice and gesture. Multimodal systems have been developed for a wide
range of domains (medical, military, …) [5]. In such systems, modalities may be used
sequentially or concurrently, and independently or combined synergistically. The
seminal "Put that there" demonstrator [4] that combines speech and gesture illustrates
a case of a synergistic usage of two modalities. The design space described in [25],
based on the five Allen relationships, capture this variety of possible usages of several
modalities. Moreover, the versatility of multimodal systems is further exacerbated by
the huge variety of innovative input modalities, such as the phicons (physical icons)
[14]. This versatility results in an increased complexity of the design, development
and verification of multimodal systems.

Approaches based on formal specifications automating the development and the
validation activities can help in dealing with this complexity. Several approaches have
been proposed. As a rule, they consist of adapting existing formalisms in the particu-
lar context of interactive systems. Examples of such approaches are the Formal
System Modelling (FSM) analysis [10], the Lotos Interactor Model (LIM) [23] or the
Interactive Cooperative Objects (ICO), based on Petri Nets [21]. The synchronous
approach has also been proposed as an alternative to modelling and verifying by
model-checking of some properties of interactive systems [8]. Similarly to the previ-
ous approaches, the latter requires formal description of the interactive systems such
as Lustre [13] programs on which properties, also described as Lustre programs, are

© Springer-Verlag Berlin Heidelberg 2008

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-540-92698-6_37

http://dx.doi.org/10.1007/978-3-540-92698-6_37

 Formal Testing of Multimodal Interactive Systems 37

checked. However, its applicability is limited to small pieces of software, since it
seems very hard to fully specify systems in this language.

As opposed to the above approaches used for the design and verification, this paper
proposes to use the synchronous approach as a framework for testing interactive mul-
timodal systems. The described method therefore focuses on testing a partial or com-
plete implementation. It consists of automatically generating test data from enhanced
Lustre formal specifications. Unlike the above presented methods, it does not require
the entire system to be formally specified. In particular, the actual implementation is
not supposed to be made in a specific formal language. Only a partial specification of
the system environment and of the desired properties is needed.

The described testing method is based on Lutess [9, 22], a testing environment
handling specifications written in the Lustre language [13]. Lutess has been designed
to deal with synchronous specifications and has been successfully used to test
specifications of telecommunication services [12]. Lutess requires a non-deterministic
Lustre specification of the user behaviour. It then automatically builds a test data gen-
erator that will feed with inputs the software under test (i.e., the multimodal user in-
terface). The test generation may be purely random but can also take into account
additional specifications such as operational profiles or behavioural patterns. Opera-
tional profiles make it possible to test the system under realistic usage conditions.
Moreover, they could be a means of assessing usability as has been shown in [24]
where Markov models are used to represent various user behaviours. Behavioural
patterns express classes of execution scenarios that should be executed during testing.

A major interest of synchronous programming is that modelling, and hence verify-
ing, software is simpler [13] than in asynchronous formalisms. The objective of this
work is to establish that automated testing based on such an approach can be per-
formed in an efficient and meaningful way for interactive and multimodal systems. To
do so, it is assumed, according to theoretical results [1], that interactive systems can,
to some extent, be assimilated with synchronous programs. On the other hand, multi-
modality is taken into account through the type of properties to be checked: we espe-
cially focus on the CARE (Complementarity, Assignment, Redundancy, Equivalence)
[7, 18] properties as well as on temporal properties related to the use over time of
multiple modalities.

The structure of the paper is as follows: first, we present the CARE and temporal
properties that are specific to multimodal interaction. We then explain the testing ap-
proach based on the Lutess testing environment and finally illustrate the application
of the approach on a multimodal system developed in our laboratory, Memo.

2 Multimodal Interaction: The CARE Properties

Each modality can be used independently within a multimodal system, but the avail-
ability of several modalities naturally raises the issue of their combined usage. Com-
bining modalities opens a vastly augmented world of possibilities in multimodal user
interface design, studied in light of the four CARE properties in [7, 18]. These proper-
ties characterize input and output multimodal interaction. In this paper we focus on
input multimodality only. In addition to the combined usage of input modalities, mul-
timodal interaction is characterized by the use over time of a set of modalities.

38 J. Bouchet et al.

The CARE properties (Equivalence, Assignment, Redundancy, and Complemen-
tarity of modalities) form an interesting set of relations relevant to characterization
of multimodal systems. As shown in Fig. 1, while Equivalence and Assignment ex-
press the availability and respective absence of choice between multiple modalities
for a given task, Complementarity and Redundancy describe relationships between
modalities.

• Assignment implies that the user has no choice in performing a task: a modality is
then assigned to a given task. For example, the user must click on a dedicated but-
ton using the mouse (modality = direct manipulation) for closing a window.

• Equivalence of modalities implies that the user can perform a task using a modality
chosen amongst a set of modalities. These modalities are then equivalent for per-
forming a given task. For example, to empty the desktop trash, the user can choose
between direct manipulation (e.g. shift-click on the trash) and speech (e.g. the
voice command "empty trash"). Equivalence augments flexibility and also en-
hances robustness. For example, in a noisy environment, a mobile user can switch
from speech to direct manipulation using the stylus on a PDA. In critical systems,
equivalence of modalities may also be required to overcome device breakdowns.

• Complementarity denotes several modalities that convey complementary chunks of
information. Deictic expressions, characterised by cross-modality references, are
examples of complementarity. For example, the user issues the voice command
"delete this file" while clicking on an icon. In order to specify the complete
command (i.e. elementary task) the user must use the two modalities in a comple-
mentary way. Complementarity may increase the naturalness and efficiency of
interaction but may also provoke cognitive overload and extra articulatory syn-
chronization problems.

• Redundancy indicates that the same piece of information is conveyed by several
modalities. For example, in order to reformat a disk (a critical task) the user must
use two modalities in a redundant way such as speech and direct manipulation. Re-
dundancy augments robustness but as in complementary usage may imply cogni-
tive overload and synchronization problems.

 Modalities

 Several modalities are:
� Equivalent
� Complementary
� Redundant

for

Tasks

A given task ti

Subset of modalities

A modality
is assigned to

Fig. 1. The CARE relationships between modalities and tasks

 Formal Testing of Multimodal Interactive Systems 39

Orthogonal to the CARE relationships, a temporal relationship characterises the use
over time of a set of modalities. The use of these modalities may occur simultaneously
or in sequence within a temporal window Tw, that is, a time interval. Parallel and se-
quential usages of modalities within a temporal window are formally defined in [7].
The key point is that the corresponding events from different modalities occur within a
temporal window to be interpreted as temporally related: the temporal window thus
expresses a constraint on the pace of the interaction. Temporal relationships are often
used by fusion software mechanisms [18] to detect complementarity and redundancy
cases assuming that users' events that are close in time are related. Nevertheless, dis-
tinct events produced within the same temporal window through different modalities
are not necessarily complementary or redundant. This is the case for example when the
user is performing several independent tasks in parallel, also called concurrent usage of
modalities [18]. This is another source of complexity for the software.

The CARE and temporal relationships characterise the use of a set of modalities.
They highlight all the diversity of possible input event sequences specified by the user
and therefore the complexity of the software responsible for defining the tasks from
the captured users' actions. Facing this complexity, we propose a formal approach for
testing the software of a multimodal system that handles the input event sequences. In
[7], we study the compatibility between what we call system-CARE as defined above
and user-CARE properties for usability assessment based on cognitive models such as
PUM [3] or ICS [2]. In our formal approach for testing, we focus on system-CARE
properties.

3 Formal Approach for Testing Multimodal Systems

Our approach is based on the Lutess testing environment. In this section, we first pre-
sent Lutess and then explain how it can be used for testing multimodal systems. In
[16] we presented a preliminary study showing the feasibility of our approach and a
first definition of the CARE properties that we simplify here. Moreover in [17], we
presented in the context of a case study, one way to generate test data, namely the
operational profile strategy. In this section, we present the complete approach with
three different ways of generating test data.

3.1 Lutess: A Testing Environment for Synchronous Programs

Lutess [9, 22] is a testing environment initially designed for functional testing of syn-
chronous software with boolean inputs and outputs. Lutess supports the automatic
generation of input sequences for a program with respect to environment constraints.
The latter are assumptions on the possible behaviours of the program environment.
Input data are dynamically computed (i.e. while the software under test is executed) to
take into account the inputs and outputs that have already been produced.

Lutess automatically transforms the environment constraints into a test data gen-
erator and a test harness. The latter:

• links the generator, the software under test and the properties to be checked (i.e. the
oracle), and

• coordinates the test execution and records the sequences of input/output values and
the associated oracle verdicts (see Fig. 2).

40 J. Bouchet et al.

 Software
under test

Test data
generator

based on the
description

of the
environment

Oracle Verdict Trace
collector

Fig. 2. The Lutess environment

The test is operated on a single action-reaction cycle. The generator randomly se-
lects an input vector and sends it to the software under test. The latter reacts with an
output vector and feeds back the generator with it. The generator proceeds by produc-
ing a new input vector and the cycle is repeated.

In addition to the random generation, several strategies, explained in Section 3.2.4,
are supported by Lutess for guiding the generation of test data. In particular, opera-
tional profiles can be specified as well as behavioural patterns. The test oracle ob-
serves the inputs and the outputs of the software under examination, and determines
whether the software properties are violated. Finally the collector stores the input,
output and oracle values that are all boolean values.

The software under examination is assumed to be synchronous, and the environ-
ment constraints must be written in Lustre [13], a language designed for programming
reactive synchronous systems. A synchronous program, at instant t, reads inputs it,
computes and issues outputs ot, assuming the time is divided in discrete instants de-
fined by a global clock. The synchrony hypothesis states that the computation of ot is
made instantaneously at instant t. In practice, this hypothesis holds if the program
computes the outputs within a time interval that is short enough to take into account
every evolution of the program environment.

A Lustre program is structured into nodes. A Lustre node consists of a set of equa-
tions defining outputs as functions of inputs and local variables. A Lustre expression
is made up of constants, variables as well as logical, arithmetic and Lustre-specific
operators. There are two Lustre-specific temporal operators: "pre" and "->". "pre"
makes it possible to use the last value an expression has taken (at the last tick of the
clock). "->", also called "followed by", is used to assign initial values (at t = 0) to ex-
pressions. For instance, the following program returns a “true” value everytime its
input variable passes from "false" to "true" (rising edge).

node RisingEdge(in:bool;) returns(risingEdge:bool);
let

risingEdge = false -> in and not pre in;
tel

An interesting feature of the Lustre language is that it can be used as a temporal
logic (of the past). Indeed, basic logical and/or temporal operators expressing invari-
ants or properties can be implemented in Lustre. For example, OnceFromTo(A, B, C)
specifies that property A must hold at least once between the instants where events B
and C occur. Hence, Lustre can be used as both a programming and a specification
language.

 Formal Testing of Multimodal Interactive Systems 41

3.2 Using Lutess for Testing Multimodal Systems

3.2.1 Hypotheses and Motivations
The main hypothesis of this work is that, although Lutess is dedicated to synchronous
software, it can be used for testing interactive systems. Indeed, as explained above,
the synchrony hypothesis states that outputs are computed instantaneously but, in
practice, this hypothesis holds when the software is able to take into account any evo-
lution of its external environment (the theoretical foundations of the transformation of
asynchronous to synchronous programs are provided in [1]). Hence, a multimodal
interactive system can be viewed as a synchronous program as long as all the users'
actions and external stimuli are caught. In a different domain than Human-Computer
Interaction, Lutess has been already successfully used under the same assumption of
testing telephony services specifications [12].

To define a method for testing multimodal input interaction we focus on the part of
the interactive system that handles input events along multiple modalities. Consider-
ing the multimodal system as the software under test, the aim of the test is therefore to
check that a sequence of input events along multiple modalities represented are cor-
rectly processed to obtain appropriate outputs such as a complete task. To do so with
Lutess, one must provide:

1. The interactive system as an executable program: no hypothesis is made on the
software implementation. Nevertheless, in order to identify levels of abstraction for
connecting Lutess with the interactive system, we will assume that the software ar-
chitecture of the interactive system is along the PAC-Amodeus software architec-
ture [18]. Communication between Lutess and the interactive system also requires
an event translator, translating input and output events to boolean vectors that
Lutess can handle. We have recently shown [15] that this translator can be semi-
automatically built assuming that the software architecture of the interactive
system is along PAC-Amodeus [18] and developed using the ICARE component-
based environment [5, 6]. In this study [15], we showed that the translator between
Lutess and an interactive system can be built semi-automatically having some
knowledge about the executable program and in our case the ICARE events ex-
changed between the ICARE components. Such a study can be done in the context
of another development environment: our approach for testing multimodal input in-
teraction is not dependent on a particular development environment (black box
testing), as opposed to the formal approach for testing that we described in [11],
where we relied on the internal ICARE component structure (white box testing).
Indeed in [11], our goal was to test the ICARE components corresponding to the
fusion mechanism.

2. The Lustre specification of the test oracle: this specification describes the proper-
ties to be checked. Properties may be related to functional or multimodal interac-
tion requirements. Functional requirements are expressed as properties independent
of the modalities. Multimodal interaction requirements are expressed as properties
on event sequences considering various modalities. We focus on the CARE and
temporal properties described in Section 2. For instance, a major issue is the fusion
mechanism [18], which combines input events along various modalities to deter-
mine the associated command. This mechanism relies on a temporal window (see

42 J. Bouchet et al.

Section 2) within which the users' events occur. For example, when two modalities
are used in a complementary or redundant way, the resulting events are combined
if they occur in the same temporal window; otherwise, the events are processed in-
dependently.

3. The Lustre specification of the behaviour of the external environment of the system:
from this specification, test data as sequences of users' events are randomly gener-
ated. In the case of context-aware systems, in addition to a non-deterministic speci-
fication of the users' behaviour, elements specifying the variable physical context
can be included. Moreover, additional specifications (operational profiles, behav-
ioural patterns) make it possible to use different generation strategies.

In the following three sections, we further detail each of these three points, respec-
tively, the connection, the oracle and the test data generation based on the specifica-
tion of the environment.

3.2.2 Connection between Lutess and the Interactive Multimodal System
Testing a multimodal system requires connecting it to Lutess, as shown in Fig. 3. To
do so, the level of abstraction of the events exchanged between Lutess and the multi-
modal system must be defined. This level will depend on the application properties
that have to be checked and will determine which components of the multimodal sys-
tem will be connected to Lutess.

Verdict

Multimodal system under test Test data
generator

based on the
description

of the
environment

Oracle:
CARE and
temporal
properties

Trace
collector

(1) Device dependent event

(2) Modality dependent event

(3) Complete command
(elementary task)

Dialog
Controller

Physical
Interaction

Fusion mechanism

Functional
Core Adapter

Functional
Core

Logical
Interaction

Fig. 3. Connection between Lutess and a multimodal system organized along the PAC-
Amodeus model: three solutions

In order to identify the levels of abstraction of the events exchanged between
Lutess and the multimodal system, we must make assumptions on the architecture of
the multimodal system being tested. We suppose that the latter is organized along the
PAC-Amodeus software architectural model. This model has been applied to the
software design of multimodal systems [18]. According to the PAC-Amodeus model,

 Formal Testing of Multimodal Interactive Systems 43

the structure of a multimodal system is made of five main components (see Fig. 3)
and a fusion mechanism performing the fusion of events from multiple modalities.
The Functional Core implements domain specific concepts. The Functional Core
Adapter serves as a mediator between the Dialog Controller and the domain-specific
concepts implemented in the Functional Core. The Dialog Controller, the keystone of
the model, has the responsibility for task-level sequencing. At the other end of the
spectrum, the Logical Interaction Component acts as a mediator between the fusion
mechanism and the Physical Interaction Component. The latter supports the physical
interaction with the user and is then dependent on the physical devices. Since our
method focuses on testing multimodal input interaction, three PAC-Amodeus compo-
nents are concerned: the Physical and Logical Interaction Components as well as the
fusion mechanism. By considering the PAC-Amodeus components candidates to re-
ceive input events from Lutess, we identify three levels of abstraction of the generated
events:

1. Simulating the Physical Interaction Component: generated events should be sent to
the Logical Interaction Component. In this case, Lutess should send low-level de-
vice dependent event sequences to the multimodal system like selections of buttons
using the mouse or character strings for recognized spoken utterances.

2. Simulating the Physical and Logical Interaction Components: generated events
sent to the fusion mechanism should be modality dependent. Examples include
<mouse, empty trash> or <speech, empty trash>.

3. Simulating the fusion mechanism: generated events should correspond to complete
commands, independent of the modalities used to specify them, for instance
<empty trash>.

Since we aim at checking the CARE and temporal properties of multimodal inter-
action and the associated fusion mechanism, as explained in Section 2, the second
solution has been chosen: the test data generated by the Lutess test generator are mo-
dality dependent event sequences.

3.2.3 Specification of the Test Oracles
The test oracles consist of properties that must be checked. Properties may be related
to functional and multimodal interaction requirements. Examples of properties related
to functional requirements are provided in Section 4. In this section we focus on mul-
timodality-related requirements and consider the CARE and temporal properties de-
fined in Section 2: we show that they can be expressed as Lustre expressions and then
can be included in an automatic test oracle (see [16] for a preliminary study on this
point).

Equivalence:
Two modalities M1 and M2 are equivalent w.r.t. a set T of tasks, if every task t ∈ T
can be activated by an expression along M1 or M2. Let EAM1 be an expression along
modality M1 and let EAM2 be an expression along M2. EAM1 or EAM2 can activate the
task ti ∈ T. Therefore, equivalence can be expressed as follows:

OnceFromTo (EAM1 or EAM2, not ti, ti)

44 J. Bouchet et al.

We recall (see Section 3.1) that OnceFromTo(A, B, C) specifies that property A
must hold at least once between the instants where events B and C occur. Therefore,
the above generic property holds if at least one of the expressions EAM1 or EAM2 has
been set before the action ti occurs.

Redundancy and Complementarity:
In order to define the two properties Redundancy and Complementarity that describe
combined usages of modalities, we need to consider the use over time of a set of mo-
dalities. For both Redundancy and Complementary, the use of the modalities may oc-
cur within a temporal window Tw, that is, a time interval. As Lustre does not provide
any notion of physical time, to specify the temporal window, we consider C to be the
duration of an execution cycle (time between reading an input and writing an output).
The temporal window is then specified as the number of discrete execution cycles:

N = Tw div C.

Two modalities M1 and M2 are redundant w.r.t. a set T of tasks, if every task t ∈ T
is activated by an expression EAM1 along M1 and an expression EAM2 along M2. The
two expressions must occur in the same temporal window Tw: abs(time(EAM1) -
time(EAM2) < Tw. Considering N = Tw div C, and the task ti ∈ T, the Lustre expres-
sion of the redundancy property is the following one.

Implies (ti,

abs(lastOccurrence(EAM1)- lastOccurrence(EAM2))<= N

and atMostOneSince(ti, EAM1) and atMostOneSince(ti, EAM2))

where:

• Implies(A, B) is the usual logic implication (not A or B).
• lastOccurrence(A) returns the latest instant that A occurred.
• atMostOneSince(A, B) is true when at most one occurrence of A has been ob-

served since the last time that B has been true.

Two modalities are used in a complementary way w.r.t. a set T of tasks, if every
task t ∈ T is activated by an expression EAM1 along M1 and an expression EAM2 along
M2. The two expressions must occur in the same temporal window Tw. We therefore
get the same Lustre expression as for redundancy. Indeed Complementarity and Re-
dundancy correspond to the same use over time of modalities and the difference relies
on the semantic of the expressions along the modalities. While complementarity im-
plies expressions with complementary meaning for the task considered (e.g. speech
command "open" while clicking on an icon using the mouse), redundancy involves
expressions conveying the same meaning (e.g., speech command "open paper.doc"
while double-clicking on the icon of the file named paper.doc using the mouse). The
meaning of the conveyed expressions is defined by the Lutess user (i.e. tester). Con-
sequently, the same oracle is defined for redundancy and complementarity.

3.2.4 Strategies for Generating Test Data
The automatic test input generation is a key issue in software testing. In the particular
case of interactive systems, such a generation relies on the ability to model various
users' behaviours and to automatically derive test data compliant with the models.
Lutess provides several generation facilities and underlying models.

 Formal Testing of Multimodal Interactive Systems 45

Constrained Random Generation:
The user is represented by a set of invariants specifying all its possible behaviours.
The latter are randomly generated on an equal probability basis. More precisely, at
every execution step, one of the input vectors satisfying the invariants will be fairly
chosen among all the possible vectors.

Operational profiles:
Although the random generation is operated in a fair way, the resulting behaviour is
seldom realistic. To cope with this problem, operational profiles can be defined by
means of occurrence probabilities associated with user actions [19]. Occurrence prob-
abilities can be conditional (that is, they will be taken into account during the test data
generation only when a user-specified condition holds) or unconditional. Random
generation is performed w.r.t. these probabilities.

An interesting feature of this generation mode is that it makes possible to issue
events in the same temporal window and, hence, to check the fusion capabilities of a
multimodal system. As we have shown in [19], one has to associate with the input
events a probability computed from the temporal window duration to ensure that
events will occur in the same temporal window. Let N be the number of discrete exe-
cution cycles corresponding to the full duration of the temporal window (computed as
in Section 3.2.3). For an input event to occur within the temporal window, its occur-
rence probability must be greater or equal to 1/N. For example, to specify that A and
B will both be issued in that order in the same temporal window, we can write:

proba(A, 1/N, after(B) and pre always_since(not A, B));

Indeed, this formula means that if at least a B event has occurred in the past and if
no A event occurred since the last B occurrence, then the A occurrence probability is
equal to 1/N. Since the temporal window starts at the last occurrence of B and lasts N
ticks, A will very probably occur at least once before the end of the window.

Behavioural patterns:
Behavioural patterns make possible to partially specify a sequence of user actions. As
opposed to the above operational profile-based generation mode, a behavioural pat-
tern involves several execution instants. Behavioural patterns enable the description
of executions that may not be easy to attained randomly and are hard to specify with
occurrence probabilities. The random test input generation takes into account this
partial specification of user actions.

4 Illustration: The Memo Multimodal System

Memo [4] is an input multimodal system aiming at annotating physical locations with
digital post it-like notes. Users can drop a note to a physical location. The note can
then be read/carried/removed by other mobile users.

A Memo user is equipped with a GPS and a magnetometer enabling the system to
compute her/his location and orientation. The memo user is also wearing a head
mounted display (HMD). Its semi-transparency enables the fusion of computer data
(the digital notes) with the real environment as shown in Fig. 4.

46 J. Bouchet et al.

Two digital notes

Fig. 4. A sketched view through the HMD: The Memo mobile user is in front of the computer
science teaching building at the University of Grenoble and can see two digital notes

In [17], we fully illustrate our testing method by considering the test of Memo us-
ing an operational profile-based approach for generating the test data. In order to il-
lustrate all the strategies for generating test data, we consider here three tasks, namely
"get a post-it", "set a post-it" and “remove a post-it” with Memo. For the manipulation
of Memo notes, the mobile user can get a note that will then be carried by her/him
while moving and be no longer visible in the physical environment. The user can
carry one note at a time. As a consequence if s/he tries to get a note while already
carrying one note, the action will have no effect. S/he can set a carried note to appear
at a specific place. Issuing the set command without carrying a note has no effect. To
perform the three tasks "get", "set" and "remove", the user has the choice between
three equivalent modalities: issuing voice commands, pressing keys on the keyboard
or clicking on mouse buttons. A command "get" or “remove” specified using speech,
keyboard and mouse is applied to the notes that the user is looking at (i.e., the notes
close to her/him). Memo can also be set to support redundant usage of modalities.
Using Memo, speech, keyboard and mouse commands can be issued in a redundant
way. For example, the user can use two redundant modalities, voice and mouse com-
mands, for removing a note: the user issues the voice command "remove" while press-
ing the mouse button. Because the corresponding expressions are redundant and the
two actions (speaking and pressing) produced nearly in parallel or close in time, the
command will be executed and as a result the corresponding note will be deleted. If
the two "remove" actions were not produced close in time, there is no redundancy
detected and the remove command will therefore not be executed.

In the following sections and considering the three tasks "get", "set" and "remove",
we illustrate our method by first explaining the connection between Lutess and
Memo. We then define the test oracle for Memo and finally explain how we auto-
matically generate test data using different strategies.

4.1 Connection between Lutess and Memo

The connection between Memo and Lutess is made by a Java class, MemoLutess, in
charge of translating Lutess outputs into Memo inputs and vice-versa. As explained in
Section 3.2.1, we developed a method for semi-automatically generating this translator
that we describe in [15] as an extension of the ICARE platform. For Memo, the code has
been written manually without the ICARE platform. So the class MemoLutess has been

 Formal Testing of Multimodal Interactive Systems 47

written by hand. This class includes a constructor, creating a new instance of a Memo
system. A main method creates a new instance of MemoLutess and links it to Lutess.

/* Main method */
static public main(String[] args) {
 MemoLutess m = new MemoLutess();
 m.connectLutess(); }

The connectLutess method is made of an infinite loop which (1) reads a sequence
of inputs issued by the Lutess test data generator and (2) sends the corresponding
events to the Memo system; then, it (3) waits for Memo to execute the resultant com-
mands, (4) obtains the new Memo state (5) and sends the computed output vector to
the Lutess generator.

/* Main interaction loop */
void connectLutess() {
 while (true) {
 readInputs(); // Read test inputs
 memoApp.sendEvents() ; // Send corresponding events to Memo
 wait(N); // wait N ms for Memo to react
 memoApp.getState() ; // Get the new state of Memo
 writeOutputs();}} // Write outputs

As explained in Section 3.2.2, the level of abstraction is set at the modality level.
Generated events are hence received by the fusion component of Memo. For the "get"
"set" and "remove" tasks, the following events are involved in the interaction:

• Localization is a boolean vector which indicates the user's movements along the
x, y and z axes. For instance, Localization[xplus]=true means that the user's
x-coordinate increases. Similarly Orientation is a boolean vector, which indicates
the changes in the user's orientation. For instance, Orientation[pitchplus] indicates
that the user is bending one's head.

• Mouse, Keyboard and Speech are boolean vectors corresponding to a "get", "set" or
"remove" command specified using speech, keyboard or mouse. For instance,
Mouse[get] indicates that the user has pressed the mouse button corresponding to a
"get" command.

The state of the Memo system is observed through four boolean outputs:

• memoSeen, which is true when at least one note is visible and close enough to the
user to be manipulated,

• memoCarried, which is true when the user is carrying a note,
• memoTaken, which is true if the user has get a note during the previous action-

reaction cycle,
• memoSet, which is true if the user has set a carried note to appear at a specific

place during the previous cycle,
• memoRemoved, which is true if the user has removed a note during the previous

cycle.

4.2 Memo Test Oracle

The test oracle consists of the required Memo properties. First we consider functional
properties. For example the state of Memo cannot change except by means of suitable

48 J. Bouchet et al.

input events: between the instant the user is seeing a note and the instant there is no
note in her/his visual field, the user has moved or specified a "get" command.
once_from_to((move or cmdget) and pre memoSeen, memoSeen, not memoSeen)

Moreover we specify that notes are taken or set only with appropriate commands.
For example, after a note has been seen and before it has been taken, a "get" com-
mand has to occur at an instant when the note is seen.

once_from_to(cmdget and pre memoSeen, memoSeen, memoTaken)

Furthermore if a note is carried, then a "get" command has previously occurred.
once_from_to(cmdget and pre memoSeen, not memoCarried, memoCarried)

In addition to functional properties, multimodality-related properties are specified
in the test oracle, as explained in Section 3.2.3. For instance, to check that the task
memoTaken takes place only after the occurrence of the redundant expressions
Mouse[get] and Speech[get], we should write the following test oracle:
node MemoOracle(-- application inputs and outputs

)
returns(propertyOK:bool);

let
propertyOK =

Implies (memoTaken,
 abs(lastOccurrence(Mouse[get])-
 lastOccurrence(Speech[get]))<= N
 and
 atMostOneSince(memoTaken i, Mouse[get]) and
 atMostOneSince(memoTaken, Speech[get]));

tel

The above node states that (1) memoTaken occurs only when (1) Mouse[get] and
Speech[get] occur in the same temporal window (of duration N) and that (2) in that
case memoTaken occurs only once.

4.3 Memo Test Input Generation

4.3.1 Modelling the Environment and the Users' Behaviour
Input data are generated by Lutess according to formulas defining assumptions about
the external environment of Memo, i.e. the users' behaviour. We here describe actions
that the user cannot perform. For example the user cannot move along an axis in both
directions at the same time. The corresponding formulas are:
 not (Localization[xminus] and Localization[xplus])
 not (Localization[yminus] and Localization[yplus])
 not (Localization[zminus] and Localization[zplus])

Similarly, we also specify by three formulas that the user cannot turn around an
axis in both directions at the same time.

Moreover, Lutess sends data to Memo at the modality level. Since there is one ab-
straction process per modality, only one data along a given modality can therefore be
sent at a given time. The commands "get", "set" and "remove" can be performed using
speech, keyboard or mouse. We therefore get the following formulas1:

AtMostOne(3,Mouse); AtMostOne(3,Keyboard); AtMostOne(3,Speech)

1 Mouse is a boolean table of three elements indexed by "get", "set" and "remove": At-

MostOne(3, Mouse) means that at most one of the elements of the table is true.

 Formal Testing of Multimodal Interactive Systems 49

4.3.2 Guiding the Test Data Generation
Random generation and operational profiles:
A random simulation of the users' actions results in sequences in which every input
event has the same probability to occur. This means, for instance, that Localiza-
tion[xminus] will occur as many times as Localization[xplus]. As a result, the users'
position will hardly change. To test Memo in a more realistic way, the data generation
can be guided by means of operational profiles (set of conditional or unconditional
probabilities definition). Unconditional probabilities are used to force the simulation
to correspond to a particular case, for example that the user is turning one's head to
the right:

proba((Orientation[yawminus], 0.80), (Orientation[yawplus], 0.01),
(Orientation[pitchminus], 0.01), (Orientation[pitchplus], 0.01),

 (Orientation[rollminus], 0.01), (Orientation[rollplus, 0.01)).

Conditional probabilities are used, for instance, to specify that a "get" command has a
high probability to occur when the user has a note in her/his visual field (close enough
to be manipulated):

proba((Mouse[get], 0.8, pre memoSeen),

 (Keyboard[get], 0.8, pre memoSeen), (Speech[get], 0.8, pre memoSeen))

The following expression states that, when there is no note visible, the user will
very probably move:

proba((Orientation[yawminus], 0.9, not pre memoSeen),…).

Behavioural patterns:
A pattern is a sequence of actions and conditions that should hold between two suc-
cessive actions. During the random test data generation, inputs matching the scenario
have a higher occurrence probability. Let us consider the scenario corresponding to
the sequence of commands presented in Fig. 5: the user performs twice the "get"
command, then a "set" command. The scenario also specifies that in between the first
two "get" commands, the user does not perform a "set" command and similarly be-
tween the two "get" and "set" commands, no "get" command.

true

cmdget cmdget cmdset

true not cmdset not cmdget

Fig. 5. An example of a scenario for guiding the generation of test data

This scenario can be described in Lutess as follows:

cond((Mouse[get] or Keyboard[get] or Speech[get]),

 (Mouse[get] or Keyboard[get] or Speech[get]),
 (Mouse[set] or Keyboard[set] or Speech[set]));
 intercond(true,
 not(Mouse[set] or Keyboard[set] or Speech[set]),
 not(Mouse[get] or Keyboard[get] or Speech[get]),
 true);

50 J. Bouchet et al.

Let us consider a second scenario. It describes a redundant usage of two modalities:
mouse and speech. The scenario starts in a state where notes are visible (pre
memoSeen). The user first takes one note in a redundant way, with mouse and speech
at the same instant. The user then removes a second note by using again mouse and
speech in a redundant way but at two different instants belonging to the same tempo-
ral window. The scenario is expressed as follows:

cond(pre memoSeen and (Speech[get] and Mouse[get]) and
 not (Speech[remove] or Mouse[remove]),
 Mouse[remove] and not Speech[remove],
 Speech[remove] and not Mouse[remove]);
intercond(true,
 not Speech[remove],
 not Mouse[remove]);

[line 1] - - - - Se - - -
[line 2] mG - sG - Se Car Tak -
[line 3] - mR - - Se Car - -
[line 4] - - - sR Se Car - -
[line 5] - - - - - Car - Rem

Fig. 6. An excerpt from a Memo trace

Fig. 62 shows an extract of trace which matches this second scenario. In this trace,
the first line contains the event memoSeen (Se), implying that one or several notes are
close to the user. In the second line, the two simultaneous events Mouse[Get] and
Speech[Get] (mG and sG) cause one note to be taken (event Tak line 2). memoSeen is
still set, which means that another note is visible. Lines 3 and 4 contain the events
Mouse[remove] and Speech[remove] (mR and sR), which cause the visible note to be
removed (event Rem line 5) since the two events (mR and sR) belong to the same
temporal window.

5 Conclusion and Future Work

In this article, we have presented a method for automatically testing multimodal sys-
tems based on Lutess, a testing environment originally designed for synchronous
software. Multimodality is addressed through the software properties that are
checked: the CARE and temporal properties. Testing the satisfaction of the CARE
and temporal properties with Lutess requires (1) expressing the properties in Lustre to
build a test oracle and (2) generating adequate test input data. We have shown that the
expression of the CARE and temporal properties in Lustre is possible, since the lan-
guage is a temporal logic of the past and makes it possible to specify constraints on
event sequences. The test data generation relies on a users' model including invariants
and guiding directives (i.e. operational profiles, behavioural patterns). We have
shown that by specifying operational profiles it is possible to generate test data corre-
sponding to the combined usage of modalities, and that scenarios are also useful for
the expression of functional properties.

2 mG, mR, sG, SR stand for Mouse[get], Mouse[remove], Speech[get] and Speech[remove]

Se, Car, Tak, Rem stand for memoSeen, memoCarried, memoTaken, memoRemoved.

 Formal Testing of Multimodal Interactive Systems 51

In future work, we will explore further the guide-types for generating the test data,
and in particular behavioural patterns that correspond to usability scenarios. To do so,
we plan to use information from the task analysis in order to define the behavioural
patterns. This work will be done in the context of our platform ICARE-Lutess that
supports a semi-automatic generation of the translators between Lutess and the multi-
modal system developed using ICARE. Since an ICARE diagram is defined for a given
task, we will first link our ICARE platform with a task analysis tool such as CTTE
[20]. We will then exploit the task tree for defining behavioural patterns used for guid-
ing the test. Extending our ICARE-Lutess platform in order to be connected to a task
analysis tool will lead us to define an integrated platform from task to concrete multi-
modal interaction for designing, developing and testing multimodal systems.

Acknowledgments

Many thanks to G. Serghiou for reviewing the paper. This work is partly funded by
the French National Research Agency project VERBATIM (RNRT) and by the Open-
Interface European FP6 STREP focusing on an open source platform for multimodal-
ity (FP6-035182).

References

1. Benveniste, A., Caillaud, B., Le Guernic, P.: From synchrony to asynchrony. In: Baeten,
J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 162–177. Springer,
Heidelberg (1999)

2. Barnard, P., May, J.: Cognitive Modelling for User Requirements. Computers, Communi-
cation and Usability: Design issues, research and methods for integrated services, pp. 101–
146. Elsevier, Amsterdam (1993)

3. Blandford, A., Young, R.: Developing runnable user models: Separating the problem solv-
ing techniques from the domain knowledge. In: Proc. of HCI 1993, People and Computers
VIII, pp. 111–122. Cambridge University Press, Cambridge (1993)

4. Bolt, R.: Put That There: Voice and Gesture at the Graphics Interface. In: Proc. of SIG-
GRAPH 1980, pp. 262–270. ACM Press, New York (1980)

5. Bouchet, J., Nigay, L., Ganille, T.: ICARE Software Components for Rapidly Developing
Multimodal Interfaces. In: Proc. of ICMI 2004, pp. 251–258. ACM Press, New York
(2004)

6. Bouchet, J., Nigay, L.: ICARE: A Component-Based Approach for the Design and Devel-
opment of Multimodal Interfaces. In: Proc. of CHI 2004 extended abstract, pp. 1325–1328.
ACM Press, New York (2004)

7. Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J., Young, R.: Four Easy Pieces for
Assessing the Usability of Multimodal Interaction: The CARE properties. In: Proc. Of IN-
TERACT 1995, pp. 115–120. Chapman et Hall, Boca Raton (1995)

8. d’Ausbourg, B.: Using Model Checking for the Automatic Validation of User Interfaces
Systems. In: Proc. of DSV-IS 1998, pp. 242–260. Springer, Heidelberg (1998)

9. du Bousquet, L., Ouabdesselam, F., Richier, J.-L., Zuanon, N.: Lutess: a Specification
Driven Testing Environment for Synchronous Software. In: Proc. of ICSE 1999, pp. 267–
276. ACM Press, New York (1999)

52 J. Bouchet et al.

10. Duke, D., Harrison, M.: Abstract Interaction Objects. In: Proc. of Eurographics 1993, pp.
25–36. North Holland, Amsterdam (1993)

11. Dupuy-Chessa, S., du Bousquet, L., Bouchet, J., Ledru, Y.: Test of the ICARE platform
fusion mechanism. In: Gilroy, S.W., Harrison, M.D. (eds.) DSV-IS 2005. LNCS,
vol. 3941, pp. 102–113. Springer, Heidelberg (2006)

12. Griffeth, N., Blumenthal, R., Gregoire, J.-C., Ohta, T.: Feature Interaction Detection Con-
test. In: Proc. of Feature Interactions in Telecommunications Systems V, pp. 327–359. IOS
Press, Amsterdam (1998)

13. Halbwachs, N.: Synchronous programming of reactive systems, a tutorial and commented
bibliography. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 1–16. Springer,
Heidelberg (1998)

14. Ishii, H., Ullmer, B.: Tangible Bits: Towards Seamless Interfaces between People, Bits and
Atoms. In: Proc. of CHI 1997, pp. 234–241. ACM Press, New York (1997)

15. Jourde, F., Nigay, L., Parissis, I.: Test formel de systèmes interactifs multimodaux:
couplage ICARE – Lutess. In: Proc. of 19èmes Journées Internationales du génie logiciel
(in french)

16. Madani, L., Parissis, I., Nigay, L.: Testing the CARE properties of multimodal applications
by means of a synchronous approach. In: IASTED Int’l Conference on Software Engineer-
ing, Innsbruck, Austria (February 2005)

17. Madani, L., Oriat, C., Parissis, I., Bouchet, J., Nigay, L.: Synchronous Testing of Multi-
modal Systems: An Operational Profile-Based Approach. In: Proc. of Int’l Symposium on
Software Reliability Engineering (ISSRE 2005), pp. 325–334. IEEE Computer Society,
Los Alamitos (2005)

18. Nigay, L., Coutaz, J.: A Generic Platform for Addressing the Multimodal Challenge. In:
Proc. of CHI 1995, pp. 98–105. ACM Press, New York (1995)

19. Ouabdesselam, F., Parissis, I.: Constructing Operational Profiles for Synchronous Critical
Software. In: Proc. of Int’l Symposium on Software Reliability Engineering (ISSRE 1995),
pp. 286–293. IEEE Computer Society, Los Alamitos (1995)

20. Mori, G., Paterno, F., Santoro, C.: CTTE: Support for Developing and Analyzing Task
Models for Interactive System Design. In: IEEE Transactions on Software Engineering,
pp. 797–813 (August 2002)

21. Palanque, P., Bastide, R.: Verification of Interactive Software by Analysis of its Formal
Specification. In: Proc. of INTERACT 1995, pp. 191–197. Chapman et Hall, Boca Raton
(1995)

22. Parissis, I., Ouabdesselam, F.: Specification-based Testing of Synchronous Software. In:
Proc. of ACM SIGSOFT, pp. 127–134. ACM Press, New York (1996)

23. Paterno, F., Faconti, G.: On the Use of LOTOS to Describe Graphical Interaction. In: Proc.
of HCI 1992, pp. 155–173. Cambridge University Press, Cambridge (1992)

24. Thimbleby, H., Cairns, P., Jones, M.: Usability Analysis with Markov Models. ACM
Transactions on Computer Human Interaction 8(2), 99–132 (2001)

25. Vernier, F., Nigay, L.: A Framework for the Combination and Characterization of Output
Modalities. In: Palanque, P., Paternó, F. (eds.) DSV-IS 2000. LNCS, vol. 1946, pp. 32–48.
Springer, Heidelberg (2001)

	Formal Testing of Multimodal Interactive Systems
	Introduction
	Multimodal Interaction: The CARE Properties
	Formal Approach for Testing Multimodal Systems
	Lutess: A Testing Environment for Synchronous Programs
	Using Lutess for Testing Multimodal Systems

	Illustration: The Memo Multimodal System
	Connection between Lutess and Memo
	Memo Test Oracle
	Memo Test Input Generation

	Conclusion and Future Work
	References

