
J. Gulliksen et al. (Eds.): EIS 2007, LNCS 4940, pp. 356–373, 2008.

Programs = Data + Algorithms + Architecture:
Consequences for Interactive Software Engineering

Stéphane Chatty

ENAC, Laboratoire Informatique et Interaction,
7 avenue Edouard Belin, 31055 Toulouse Cedex, France

and
IntuiLab, Prologue 1, La Pyrénéenne, 31672 Labège Cedex, France

http://recherche.enac.fr/~chatty

Abstract. This article analyses the relationships between software architecture,
programming languages and interactive systems. It proposes to consider that
languages, like user interface tools, implement architecture styles or patterns
aimed at particular stakeholders and scenarios. It lists architecture issues in in-
teractive software that would be best resolved at the language level, in that con-
flicting patterns are currently proposed by languages and user interface tools,
because of differences in target scenarios. Among these issues are the contra-
variance of reuse and control, new scenarios of software reuse, the architecture-
induced concurrency, and the multiplicity of hierarchies. The article then
proposes a research agenda to address that problem, including a requirement-
and scenario-oriented deconstruction of programming languages to understand
which of the original requirements still hold and which are not fully adapted to
interactive systems.

1 Introduction

Niklaus Wirth, renowned computer science teacher and programming language de-
signer, wrote in 1975 a reference book entitled “Algorithms + Data structures = Pro-
grams” [1] that has influenced thousands of programmers. It may be that his equation
was incomplete though. Software architecture, that is the way of organising software
into interconnected parts, has progressively become recognized as a central issue in
programming and software engineering, to the point where students now spend more
time learning about patterns and frameworks than data and algorithms. Yet, software
architecture is still mostly considered a separate issue from programming languages.
We contend that this is a serious issue for the software engineering of interactive
systems. Short of being able to write "Programs = data + algorithms + architecture"
and addressing architecture issues at the language level, the architecture of interactive
software may be doomed to inconsistency and complexity.

The architecture of interactive software has been heavily studied and many influen-
tial results in software architecture were obtained by researchers with a background in
interactive software, or derived from their work. Compare for example the authors
and topics in the following list of publications: [2-10]. Still, very few actors of the

© Springer-Verlag Berlin Heidelberg 2008

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-540-92698-6_37

http://dx.doi.org/10.1007/978-3-540-92698-6_37

 Programs = Data + Algorithms + Architecture 357

domain consider that the situation of interactive software architecture is satisfactory:
teaching these issues is still awkward, and programming interactive software remains
complex as soon as one does not stick to common WIMP interfaces. The author's
personal experience in selling interactive software design and solutions was a very
instructive field study of that problem: most potential customers of interactive soft-
ware technology are put off by perceived incompatibilities between the processes of
user interface design and traditional software engineering, or even more explicitly by
software incompatibilities [11]. For instance, customers had to renounce implement-
ing the chosen design when finding that implementing it with Java Swing would cost
four times the cost of a WIMP interface, just because of architecture mismatches.

In this article, we propose an analysis of the relationships between software archi-
tecture, programming languages and interactive software, based on the principles of
requirements and usage scenarios. We highlight a strong coupling between languages
and architecture, and propose that languages can be studied using the same methods.
We then use this analysis to identify some requirements and scenarios where current
programming languages and interactive software conflict and thus favour inconsistent
or costly architecture solutions. User interface toolkits act as architectural patches to
languages, but the result is not always consistent. Finally, we propose a research
agenda for addressing that issue, considering that user interface development brings at
the same time new problems and techniques for addressing them. Architecture issues
can be addressed by identifying the underlying usage scenarios more explicitly before
applying the body of knowledge created for programming languages. Doing so, in
addition to helping to understand interaction architecture, could help improve pro-
gramming languages.

2 Of Programming Tools, Scenarios and Architecture

The software engineering and the user interface design communities have come up
with similar models of requirements engineering and design for software products.
With some differences in vocabulary, they share the concepts of stakeholders, exter-
nal requirements or goals, technological choices or constraints, scenario-or usecase-
based design, task or process analysis, and iterative design [12,13]. These design
models have proven effective over the years for designing tools and (in many cases)
improving the efficiency of the final users.

These models can be applied to the design of a special category of tools: the tools
made for software builders themselves. Programming languages are tools for pro-
grammers; development environments are tools for programmers and project manag-
ers; user interface toolkits are tools for programmers and interface designers; some
specialized languages are aimed at non-professional programmers, and so on. Some of
these tools are developed with a focus on a given technology and aimed at specific
tasks, for instance logic programming for knowledge management. Some have to take
into account constraints such as the performance of compilers or computers. But all of
them were designed, explicitly or not, with stakeholders and usage scenarios in mind.
That is, they take into account all the persons that are concerned with the product
because they build, manage, or use it and they try to capture the multiple activities
around the product through concrete stories called scenarios or use cases. Many

358 S. Chatty

language designers used themselves as the target users, made their own scenarios
mentally, and performed initial iterations by testing the candidate designs against their
mental scenarios. Others, such as the designer of Perl, used the whole user community
for a vast participatory design process. In all cases, understanding the underlying
scenarios and requirements provides a powerful means for analysing architectures,
languages and other tools.

In the following sections, we identify the types of stakeholders and scenarios that
underlie the state of the art in software architecture, programming languages and
interactive software architectures. We will later use that analysis to detect some plau-
sible causes of the problem of interactive software architecture.

2.1 Software Architecture

One definition of software architecture is “the structure of the components of a pro-
gram/system, their interrelationships, and principles and guidelines governing their
evolution over time” [14] or in other words, how to split programs in smaller parts and
glue them together. In their seminal paper on software architecture, Garlan and Shaw
analyse architectural styles by focusing on the nature of components and the glue that
links them [15]. Software architectures are not tools for building software, but rather
rules, guidelines, or patterns for the same purpose. Nonetheless, the above reasoning
on scenarios applies, in that an architecture style is a design aimed at supporting some
scenarios of software building for stakeholders of the software industry. Programming
tools are complete and implemented designs, whereas architectures styles are partial
designs. Some architecture styles come with supporting tools. Others are more theo-
retical and let their users choose how to implement them, either because they address
issues orthogonal to those addressed by available tools, or because they conflict with
them (see the section on Interactive software architecture below for examples).

Architectures, like tools, are aimed at sparing their users from some design choices
by providing a good solution adapted to their goals. For instance, a “pipes and filters”
architecture like that of the Unix shell focuses on the needs of three types of stake-
holders involved in the production of data analysis software: the programmers of basic
analysis algorithms, who are encouraged to isolate their algorithms in separate pro-
grams, thus avoiding the details about how their algorithms will be used; the shell
programmers, who are encouraged to implement a simple interface for connecting
program inputs and outputs, and know that their shell will be usable in various situa-
tions; and finally power users who can build custom analysis chains at a very low cost.

The role of scenarios is recognized by the software architecture community [16].
Admittedly, no architecture style is well adapted to all situations. The identified stake-
holders include the end user, framework programmers, administrators, and maintainers.
Scenarios include development, debugging, parameterising, all sorts of software reuse,
and even off-shoring. It is recognised that the type of application (databases, interaction,
AI, etc) is an important aspect of scenarios too [15]. It is interesting to note, however,
that most of the literature on software architecture focuses on scenarios and techniques
beyond a certain granularity of code. Most proposed definitions of software architecture
suggest that it deals with medium and large-scale software components. Garlan and
Shaw present software architecture as the third level of a scale where the first two levels
are high-level programming languages and abstract data types.

 Programs = Data + Algorithms + Architecture 359

2.2 Programming Languages and Hardware Design

It is also interesting to analyse languages and even computers through the looking
glass of scenarios and architecture. Actually, many constructs in programming lan-
guage are aimed at software architecture rather than algorithms or data structure. Most
literature shows that all programming languages and even computing hardware en-
force certain architecture styles and were built with certain stakeholders and scenarios
in mind. It also hints that expressions in programmer lore such as “clean”, “elegant”
or “orthogonal” are actually scenario-based architecture quality statements.

In the prehistory of computing, Jacquard looms were machines that executed pro-
grams coded on punch cards. The system was split into two components (machines
and cards) so as to support a standard scenario involving two actors: the same ma-
chine built by a maker could afterward be used by an operator to produce different
weaving patterns by changing cards. That architecture style where the central engine
is fixed and smaller parts of the execution process can be changed at will was very
influential on Ada Lovelace. She built upon the idea to propose that Babbage's ana-
lytical engine could be used to tabulate different mathematical functions by using
different cards. She also used it to suggest that functions could be computed several
times with different data [17]. Later Turing invoked similar computing scenarios to
propose splitting the sequence of operations executed by the Automatic Computing
Engine into “subsidiary operations” [18]. He also proposed instructions named BURY
and UNBURY and a stack structure to support that architecture, thus laying out the
foundations of the call stack. Support for implementing it was soon built into com-
puters and since then has been present in the microcode of most processors.

Just like computing hardware, programming languages have been deeply influ-
enced by these historical scenarios: a fixed engine executing interchangeable compu-
tations, or programmers splitting their code into several sequences so as to call the
same sequence several times. The concept of function, procedure or subroutine borne
from these scenarios is present in most languages. The design rationales written by
language designers are dense with references to such scenarios. For instance
Stroustrup [19] mentions “communication between designers and programmers” (p.
114) as a goal, states that “the issue of how separately compiled program fragments
are linked together is critical” (p. 34), and that “C with Classes was explicitly de-
signed to allow better program organisation; computation was considered a problem
solved by C” (p. 28). Actually, languages such as Pascal, C++ or Java abound with
features aimed at facilitating the splitting of programs into reusable parts: functions,
name scoping, namespaces, typing, classes, etc. These features implement a style that
is strongly suggested to programmers: split your programs in functions so that you
can reuse them at will. Hence we claim that languages support the “Programs = data +
algorithms + architecture” equation, and we observe that most languages are still
based on the historical computation scenario.

True enough, the evolution of mainstream languages has been focused on support-
ing more and more complex software engineering scenarios. First it was observed that
the functions paradigm could be used to support such uses as documenting, reading
and maintaining code, or detecting errors. Then came more complex scenarios: a first
programmer develops a library of functions that other programmers will reuse in their
programs; or a programmer builds a computation engine in which other programmers

360 S. Chatty

later insert their own computation functions; or a programmer builds a specialisation
of a library and inserts it into a computation engine, etc. These scenarios are sup-
ported by features such as separate compilation, late binding, interfaces or exceptions.
This evolution was possible because clever engineers always found how to extend the
basic paradigm to support these scenarios: they were compatible with the historical
architecture.

Alternate programming paradigms have been proposed: functional, logical, reactive
or parallel programming. But usually the proposed justifications were about the expres-
sive power of languages for a given programmer, not about architecture or scenarios
involving multiple stakeholders. If some of these paradigms induce architecture styles
that diverge from the historical style, this is apparently just a side effect. For instance,
when Backus criticised “von Neumann languages” and proposed the functional style
[20], he did it at the level of programming instructions, not at the level of combining
larger parts of programs. Some of his arguments used architectural concepts (“language
framework versus changeable parts”), but his concern was at a very fine grain and that
did not lead him to challenge the functions paradigm. And the truth is that the ability of
this paradigm to be applied to all situations is apparently unlimited.

2.3 Interactive Software Architecture

Nevertheless, after nearly 30 years of research history, interactive software does not
seem to be part of that success story:

The user interface research community periodically debates about the reasons why
so little of its successful research makes it to commercial products, and software is-
sues are among the proposed explanations;

Programming rich user interfaces is still considered a highly complex task, and
teachers still look for solutions to make their students able to create working interac-
tive components during their courses;

Researchers working on new interaction styles often express frustration at current
tools or build their own;

Many works have been devoted to software architecture, models and patterns for
interactive software, which confirms that there are stills problems that need solving;
the fact that research in the domain has considerably decreased is most likely not due
to a sense of successful achievement;

Very few results have been integrated into programming languages, unlike with
other software engineering works;

Industries in the defence, aerospace, automotive, or home automation industries are
still looking for technologies that combine the results of user interface research and
their current development tools;

The implementation of many interactive systems uses some sort of middleware,
which frees architects from the constraints of languages by creating their own lan-
guage (the middleware protocol) to glue components; the fast evolution of Web user
interfaces is probably an example of this.

We propose to analyse causes of this situation by comparing the architecture styles
induced by languages and those proposed for interactive software. We first try to
identify the software engineering scenarios behind the proposed interactive software
architectures, before identifying some conflicts in a later section.

 Programs = Data + Algorithms + Architecture 361

One of the most cited reference is the Seeheim architecture model, proposed at a
time when the problem at hand was retrofitting existing software with new graphical
user interfaces [21]. This scenario was new because it required to organise software
along two dimensions. The first axis was as usual a split into one fixed and one inter-
changeable parts: the functional core and the user interface. The second axis dealt
with the varying location of execution control, which depends on the nature of the
user interface: control is split between the functional core and the user interface for
text user interfaces, and it resides within the user interface when it is graphical. These
requirements led to propose a four-tier architecture pattern. However that was done at
a very high level of abstraction, not explaining how that was related to programming
constructs, probably because there was no obvious solution for that. When the See-
heim model was refined later into the Arch model, new tiers were added to accommo-
date more complex reuse scenarios including multiview user interfaces, but once
again no relationship with programming languages was set forth [22]. This means that
programmers are free to implement the architecture as they wish. But this freedom
comes at a high cost, just as if programmers of classical programs had kept on coding
in assembly language. More detailed architecture styles have been proposed. PAC
[23] had the same aims as the Seeheim and Arch model, but with more concrete han-
dling of concerns such as the hierarchical organisation of components. However it
was no more based on programming language constructs.

In contrast with these architecture styles aimed at changing user interfaces, a series
of architecture styles or patterns have been proposed and implemented as toolkits or
frameworks to address more programmer-oriented needs [24]. The “Inversion of Con-
trol” (IoC) or “Dependency Injection” pattern recently gained popularity [26]; it cap-
tures the fact that containers are usually coded before the objects they contain even
though they pass control to them at execution time. Earlier, a series of graphical tool-
kits have used the callback pattern or the late binding technique provided by object-
oriented languages [4,5,25]. The MVC (Model-View-Controller) pattern focused on
graphical rendering and input handling, relying on constructs of Smalltalk, a rare
language built with user interaction scenarios in mind [9,27]. Some authors proposed
to connect program components through one-way constraints [28] or dataflow con-
nections [29] so as to support program readability and interchangeability of compo-
nents, or even adaptation to execution platforms, in the context of direct manipulation
and animation. With similar use scenarios in mind, but with a focus on graphical
rendering, others have proposed to isolate graphical computations in components
linked together by a hierarchical glue named a scene graph [30]. Others have pro-
posed to isolate states and reactions to events in components based on finite state
machines, Statecharts or Petri nets [31]. Others have noticed that architecture styles
proposed by alternative programming styles matched some scenarios of interactive
software development: tools were developed using the functional programming [32],
the reactive programming [33], or the parallel programming paradigms. Some even
tried to merge user interface programming deeply into the syntax of existing lan-
guages to try and force the compatibility of user interfaces and programming
languages, see for instance the Ubit toolkit that makes heavy use of the operator over-
loading feature of C++ [34].

The theoretical architecture styles such as Seeheim, Arch or PAC could not fail:
they represent real concerns and do not face “implementation details”. The more

362 S. Chatty

implementation-oriented solutions were not as successful, even though most of them
strike by their elegance. Apart from MVC and the Smalltalk environment, they all fall
into one of these two categories:

The general purpose tools, which are widely used but considered as yielding com-
plex architectures and limiting the evolution of user interfaces;

And the more specialized tools, which are not widely used, probably because the
local help they provide conflicts with the requirements of the other parts of the soft-
ware or the architecture style of the underlying language. In the rest of this paper we
attempt to analyse the reasons behind this mixture of success and failure, and we
propose a research agenda to address them.

3 A Multi-level View of Software Architecture

We observe that all the tools and architecture styles mentioned in the previous section
are concerned with architecture at different levels of granularity. All levels propose to
split applications into components in a way that efficiently supports scenarios where
parts of the software are created at different times by different persons, but they deal
with components of different sizes.

3.1 Four Levels of Architecture

Architecture can be considered at four levels with growing component sizes:

1. The lowest level is that of programming instructions: how can they be grouped
and reused, for instance in iterations? We are used to juxtaposing instructions, but
Turing identified that as a design choice: “A simple form of logical control would
be a list of operations to be carried out in the order in which they are given” [18]
Lisp or Occam do not rely on that implicit semantics of grouping. As for control
structures, patterns are proposed that favour different reuse scenarios (using an as-
signment in a test, for instance). This level of architecture is handled by languages
and processors: they define a data model, a set of instructions, and ways of organ-
ising them. All underlying usage scenarios have one stakeholder: a programmer
who writes, reads, and debugs a small piece of code, usually at the scale of one
page.

2. The next level deals with structuring chunks of programs: how do I split my code
in sequences that are at most one page long and that can be reused at several
places? That level deals with the needs of programmers or groups of programmers
working on the same part of a program. It deals with scenarios such as document-
ing code, communicating about it, optimising or debugging it. Most languages
handle it through functions or classes, or through alternate constructions such as
continuations.

3. Then comes the level of software reuse, customisation and extension by different
actors. Common stakeholders are groups of programmers that either split work and
integrate it later or reuse libraries and frameworks built earlier. Others are project
managers, maintenance managers and technical writers. Recently, engineers who
deploy and parameterise software, or even users, have become stakeholders at that
level. For classical software, that level has been handled by tools like preproces-

 Programs = Data + Algorithms + Architecture 363

sors and linkers, then by languages, then more recently by architecture patterns
and systems of plug-ins. For interactive software, it has been the focus of user in-
terface management systems, toolkits or frameworks. Interactive software has been
a great provider of research on that level, and the works listed previously are solu-
tions pending for consideration. For instance, events were recently included in C#
[35].

4. The highest level is software planning, concerned with reusing whole applications or
groups of applications. It deals with stakeholders such as information directorates in
companies, computer providers, software houses and scenarios such as product line
management, deployment, etc. Expressions such as “software urbanism” [36] have
been coined for this level, which we do not address here.

Taking the perspective of tool design, the first two levels are aimed at single users
(the programmers), and the third level is more about groupware design (development
teams). These levels cannot be handled independently.

3.2 Managing Compatibility

All levels cannot be addressed by a single tool. For instance it was decided to handle
in operating systems issues that were best not handled in languages. However, a lot of
research has been aimed at handling more and more of the higher levels in languages.
The step from level 1 to level 2 was made very early; the step from level 2 to level 3
has started with FORTRAN II (the introduction of separate compilation) and is
probably not over. Two probable reasons for that tendency are:

� A wish to minimise the number of concepts or patterns manipulated by program-
mers; once they are in a programming language or a processor, they can be used at
all levels with no additional cost;

� Once a pattern has proved its value and compatibility with the language, a desire to
encourage programmers to use that pattern rather than invent others which might
prove incompatible and dangerous.

Compatible patterns. These two points highlight the importance of having compati-
ble patterns throughout the four levels and especially within a given level. Patterns are
compatible when they can be combined so that all scenarios they support individually
are supported by the combination, without adding complexity. For instance, functions
and object-oriented programming can be made compatible by deciding that object
methods are functions. This allows to combine components written with either pat-
tern. If compatibility is not retained programmers are led to creating code that has not
the expected behaviour because the programmer had wrong expectations. At best this
necessitates special documentation and training for programmers; at worst, program-
mers may try to introduce new concepts or syntaxes, succeeding only in masking the
problems. For instance, message passing and functions can appear similar for archi-
tecture purposes but are based on different synchronisation models; mixing them is
dangerous because the programmer's code may be executed in an unexpected way.
Consequently, an architecture level should only use a subset of the connectors pro-
vided by the lower level (or compatible connectors), and its component types should
be refinements of component types of the lower level. When incompatible patterns are
identified at different levels, one can build middleware that adapts connectors: a RPC

364 S. Chatty

library or a message bus, for instance. The additional cost is acceptable between lev-
els 2 and 3, or 3 and 4, but not within level 2 or 3.

Pattern lifecycle. Another consequence of the two points above is the lifecycle of
architecture patterns that they describe. Solutions are first proposed to programmers in
tools that act as additions or modifications (“patches”) to the underlying language.
When an addition or modification proves safe and beneficial to a large audience, it ends
up being part of a new language. Most user interface toolkits or frameworks provide
both additions and modifications. The additions are interactive objects and algorithms:
graphics, interaction management, gesture recognition, etc. The modifications are new
level 3 or even level 2 architecture patterns: data-flow, scene graph, continuations, etc.
The same holds for operating systems. Consider for instance the select call of Unix or
the message queues of Windows: they provide mechanisms that are not native to the C
(resp. C++) language and that allow asynchronous communication.

In the above lifecycle, additions usually stay out of the language. As for modifica-
tions, three states are possible:

Compatible modifications waiting for inclusion in a language, if someone can de-
vise a clever way of including them;

Modifications that have been identified as incompatible and either force the use of
a middleware layer or limit the usefulness of the toolkit.

Modifications that have not been identified as incompatible, and make the toolkit
difficult or even dangerous to use.

Compatibility as a goal. Ideally of course, one would be able to design compatible
architecture patterns that answer all known software engineering scenarios of a given
domain, and thus ultimately build a language that supports that domain. That language
would offer a component model and a linking mechanism that would hold at all levels
and allow to build “fractal” software where the architecture patterns would be the same
at all levels of hierarchy of the software. That would, among other things, make
middleware useless. That would also allow the implementation of multilanguage
solutions at level 3, such as Microsoft's .Net which allows the use of different languages
for addressing different application parts. But it seems that the current situation today is
that most proposed solutions for interactive systems are in the second or third state
above. As stated before, this makes programming interactive systems more difficult and
error-prone than necessary. This also has dire consequences on project management and
user interface quality, encouraging to develop user interfaces at the end of projects when
constraining architectures are already in place.

An exception to this situation would be the Smalltalk environment, which was ex-
plicitely designed along the lines of architecture consistency: “Smalltalk's design —
and existence— is due to the insight that everything we can describe can be repre-
sented by the recursive composition of a single kind of behavioral building block (...)”
[37] Even then, the limited industrial success of Smalltalk suggests that some key
scenarios where not taken into account, the foremost being probably the interconnec-
tion with non-interactive software. C++ took the opposite stance, making it harder to
develop interactive software. That shows how much understanding the possible archi-
tecture mismatches is important.

 Programs = Data + Algorithms + Architecture 365

4 Understanding Mismatches

We now propose a few reasons why architecture patterns proposed at level 3 for in-
teractive software display incompatibilities with those offered by most programming
languages. Most reasons listed below stem from the same cause: interactive software
involves new stakeholders and generates new engineering scenarios. If we except
project managers, maintenance managers or technical writers, most scenarios de-
scribed earlier in this article involved programmers who build their own programs
by including components written by others, or insert their components into existing
computation engines. User interface design and development multiplies the roles: it
introduces interaction designers, graphical designers, developers of low fidelity proto-
types, developer of the final application, framework developer, developers of device
drivers, interactive component developers, users setting parameters of their applica-
tion, etc. All these stakeholders have different backgrounds and use different tools,
and they generate complex development scenarios. The complexity is similar to that
of very large systems, even though a single program is produced. This partly comes
from a new step of software engineering: it focused on programmers, then on soft-
ware engineering groups, and now needs to focus on multidisciplinary software engi-
neering groups [38].

4.1 New Reuse Patterns

Software reuse defines a partial order relation between components: to reuse a com-
ponent, a programmer must know how to address it, and uses that in the newly written
component. This relation fostered many constructs in programming languages: names
given to functions or variables, typing, encapsulation to hide details, name rewrite to
provide growing levels of abstraction, etc. This binary relation is well adapted to
scenarios where programmers add layers upon layers of code. It is not to scenarios
involving other types of stakeholders, because in that case there are more than one
reuse relations. That challenges many mechanisms, starting with encapsulation:

An interface designer or a user who changes a font in an application accesses a
property name defined by the programmer of a text field; that name is not accessible
to other programmers; consequently, components should have several interfaces de-
pending on the type of stakeholders: developers of new interaction modalities, inter-
active component developers, application programmers, graphical designers, users;

Even among programmers, the order relation may vary; for established concepts,
the language and its core library reuse and encapsulate the operating system (see for
instance the standard input in C); but with innovative user interfaces the application
programmer is often also a device driver programmer, who for instance configures a
wireless remote control to behave as a mouse; this requires framework developers to
provide extension mechanisms for all operating systems, and breaks the traditional
encapsulation hierarchy;

Encapsulation usually supposes that the reused component is complete, whereas in-
terface skinning or the multidisciplinary development of components leads to splitting
components in halves that are managed independently: a programmer will develop the
behaviour and a graphical designer the looks, for instance. This lessens the added
value of class derivation.

366 S. Chatty

4.2 Contra-Variance of Reuse and Control

One of the most common reuse scenarios in interactive software is that of event
sources: picking a target in graphics scenes or interpreting speech is hard enough that
one prefers to reuse existing libraries. Reusing these components has led to event-
driven programming and to the progressive replacement of graphical libraries by
programming framworks. This reuse pattern is fundamentally different from the his-
torical reuse scenarios. Consider the partial order relation introduced in the previous
section (reuse relation) and compare it with another partial order relation: that which
relates two components when one transfers control to another one (control relation).
In the historical reuse scenarios, the two relations are covariant: the caller knows the
callee, because the main program is written after the libraries or at least linked later.
With interactive software, the main program is still written last but initiative always
comes from external sources: timers, network peers, or input devices. The two rela-
tions are thus contra-variant.

This contra-variance has been accounted for in diverse ways: event-driven dia-
logue, main loops, callbacks, programming frameworks, IoC pattern, are all toolkit-
level solutions for supporting it. However, we believe that it should be handled at a
more basic level, because it is characterises the most important reuse pattern in inter-
active software. Apart from their initialisation, there are few situations where compo-
nents are in a “covariant reuse” situation; actually, it is possible to describe fairly rich
user interfaces without the concept of function, whereas it is impossible without a
solution for the “contra-variant reuse”.

Apart from the additional cost and complexity induced by this inversion of priori-
ties between languages and interactive software, it causes several problems:

Event emission is a good basis for encapsulating components: a button emits
either press or release, a dialogue box with two buttons only emits ok or can-
cel, and so on; managing it outside of languages deprives programmers from that
encapsulation;

There are solutions for providing both dataflow and event emission with a unified
model; having function calls as the predominant paradigm in programs makes it diffi-
cult to implement, in particular because of diverging semantics as for sequencing;

Using the functions paradigm creates a misunderstanding with functional core pro-
grammers: it does not help them to detect that user interfaces cannot be programmed
as mere function calls, and pushes many teams to restrain to interface components
that can be used with the functions paradigm;

And finally it plays a role in the “inversion of calendar” problem that strikes many
large projects: when a user interface design is chosen towards the end of a project,
managers realise that the architecture chosen years before does not allow it. Indeed, it
is logical to choose an architecture early enough: at the beginning, the interface is still
in the iterative design phase and there are other developments to start. But with no
knowledge of the interaction styles that will be chosen one can only resort to the
common denominator, which currently appears to be the function call, whereas the
only certain thing is that it will not be the function call. It is therefore necessary to
promote a basic pattern that accommodates the contra-variant reuse pattern, and if
possible the covariant one for the commodity of functional core development.

 Programs = Data + Algorithms + Architecture 367

4.3 Locality of State and Computations

When reading software or locating errors, locality of behaviours is an important
feature: having one page per algorithm makes it easier to use a divide-and-conquer
approach. Functions are fit for that purpose when programs mostly consist of algo-
rithms: each function implements a computation, which in addition makes computa-
tions reusable. However, computations and algorithms play a more minor part in
interactive software. Most behaviours consist in managing a state, its modifications
upon events, and the associated actions. For instance, leaving the graphical objects
aside, a visual button is essentially made of a state (disabled, idle, pushed, etc) and
ways of changing it. In computation-oriented programs functions are essential and
data can be hidden in the call stack, and that led to functional programming. With
interaction, state is essential in behaviours and the locality principle would require
that all code that changes it is grouped. That pushed researchers to propose program-
ming patterns based on finite state machines, Statecharts or Petri nets, but:

When using a computation-oriented language, the transitions are implemented as
functions or methods and the principle of locality is not met;

Functions and transitions are not as easy to match as functions and methods: all
uses of function arguments do not easily transpose to transitions, and the expected
sequencing properties are not always the same;

In the same way as functions can be combined in complex ways, many develop-
ment scenarios involve the combination of several behaviours; for instance, a blinking
icon has two orthogonal behaviours: the blinking, and the ability to be dragged across
the screen; state management should allow to separate and combine states at will, just
like for functions;

States and behaviours are an important part of reuse scenarios and thus should be
part of the reuse patterns: with interactive systems, programmers do not reuse compo-
nents by adding functions to them; they add event reactions or animations as much as
they would change the graphical looks;

In addition to be combined or reused, behaviours sometimes need to be structured
hierarchically: levels in a game or steps in a wizard are high level states that influence
lower level behaviours such as the speed of targets or the enabling/disabling of but-
tons; hierarchical state machines are a local solution that mixes badly with the soft-
ware reuse scenarios;

Finally, not all behaviours have the same focus on state transitions; some, often
represented by dataflows, are made of successive computations that alter quantitative
states. Animation, for example, relies on combining algorithms to compute the posi-
tions of graphical objects. This creates a continuum between computations, dataflows,
and state-transitions that would require a uniform organisation pattern.

4.4 Architecture-Related Concurrency

Interactive systems require concurrency in few situations only. When reading large docu-
ments, the user should be able to interact with the system even when the program is busy
loading the file. For most other situations, one only needs to rely on the interleaving of
external events which all occur asynchronously. However, software engineering scenarios
and architecture induce some form of concurrency that needs to be handled properly.

368 S. Chatty

Consider a program that emits events when the user clicks on an icon. Classical in-
teractive software engineering scenarios lead to providing that component in a library,
so that programmers can reuse it and bind their code to events it emits. It may happen
that several components are connected to this event source. For instance, an applica-
tion programmer can bind both the modification of a text field and the opening of a
dialogue box, both obtained from two widget programmers. Suppose the box emits a
sound then an animated feedback when opening, and the text changes with an
animation. Then for all purposes, these two widget programmers are in a concurrent
situation: neither knows about the actions coded by the other, and nevertheless the
application programmer may want to ensure a sequencing order: sound first then
animations, for instance. That requires that the programming environment allows to
express sequencing constraints on the actions triggered by events. This requirement is
rarely fulfilled, and many commercial programs exhibit strange behaviours with that
regard.

As usual, one may be tempted to handle this requirement with the concepts or the
syntax of the underlying language. For instance, the author used an animation library
that encapsulated sequencing in a functional programming style. It was very elegant
to use, except that it had to be implemented through nested event loops, and when
sequencing more than two animations, the first animation might get stuck and the
program continued its execution with two nested mainloops. Trying to hide the con-
currency only made it bite programmers later. The safe solution is to use a concurrent
language or a system of threads and semaphores, which forces user interface pro-
grammers to absorb complex concepts and does not make it easy to explicit sequenc-
ing properties of their code.

4.5 Multiple Hierarchies

Programming languages manage two hierarchies in programs. First, they give an
important role to the lexical hierarchy of code to manage components. Most names
are visible only within a given lexical scope, which plays an important role in defin-
ing reusable functions and components. Languages like C++ associate the lifecycle of
objects to their lexical scope. Some languages, like Occam, even use lexical scopes to
define the concurrent or sequential execution of instructions. Second, most languages
introduce a hierarchy or types or classes that is often used to represent a hierarchy of
domain concepts. Interactive systems require that other hierarchies are managed by
the language or toolkit, and can rely very little on syntax. When a component is made
of sub-components, these can:

� Be created in a given lexical scope and use the names defined in that scope;
� Be derived from another type of components, using the class hierarchy proposed

by object-oriented languages;
� Belong to a given modality (graphics, speech, etc) and occupy a certain position in

a modality-specific hierarchy (scene graph or widget containment for instance);
that is the hierarchy seen by the specialist of that modality;

� Influence the execution of their parent and sibling components, for instance be-
cause their sizes is used by the layout algorithm, because their current state influ-
ences the behaviour of another component, or because their mere presence changes
the nature of the user interface: consider for instance a graphics layer that removes

 Programs = Data + Algorithms + Architecture 369

all colours from the interface whenever a modal dialogue box is displayed. There
are multiple independent behaviour hierarchies, relatively independent from each
other. For all these hierarchies, it is tempting for programmers either to map them
to the existing hierarchies in languages, or to build one's own set of graphs. The
first option often yields conflicts. For instance, it is tempting to use a class hiearchy
to represent the nature of components: a hierarchy of graphical object classes, a hi-
erarchy of speech object classes, etc. This potentially leads to very complex class
hierarchies when containers are present: can graphical groups contain speech ob-
jects? can windows contain animation trajectories? The latter option creates less
complexity but forces programmers to build their own hierarchy management sys-
tem, which cannot benefit from services provided by the language for its own
hierarchies, such as renaming and encapsulation.

Furthermore, language hierarchies are limited to the scope of programs. They do
not scale up to applications built as several programs. To do so, one needs to use
middleware such as Corba, which provides a multi-program class hierarchy but at a
very high cost. Ideally, a language should provide a hierarchy management that sup-
ports the hierarchies found in interactive systems, and valid at all levels of granularity,
thus enabling to handle programs like components.

5 Related Work and Research Agenda

This is not, by far, the first attempt at analysing the nature of programming languages
and their issues. To begin with, all language designers appear to have carried out a
critical analysis of existing languages. As already discussed in this paper, most did it
with programmers in mind. Examples include Backus on functional programming
[20], Kay on Smalltalk [37] or Stroustrup on C++ [19]. Prominent software engineer-
ing essayists often carry out the same type of analysis, based on their experience of
industrial development; see Graham for a recent example [39]. Some researchers have
tackled the issue of dealing with more complex software engineering scenarios. As-
pect programming [40] and the meta-object protocol [41] are examples of that ap-
proach. Software architecture specialists have identified the problem of architecture
mismatch [14] and analysed their causes and consequences, at a generic level. Several
researchers from the interactive software community worked on resolving some mis-
matches posed by interactive software. For instance, Prospero is aimed at solving
issues between different levels of tools in CSCW software development [42]. Wegner
even goes further and challenges the very fact that algorithms should be central in
programming, proposing interaction as the key construction [43].

Our approach focuses on architecture and relies on the conviction that user inter-
face development brings both problems and techniques for addressing them. A first
list of problems has been presented in this article. The techniques are those of user
interface design: requirements engineering and design techniques for usercentred
design. We are convinced that an explicit use of these techniques, often used implic-
itly by language designers, can help understand the needs of interactive software
stakeholders, the solutions proposed, and how to match them. Our experience with the
user-centred design of the graphics module of a user interface environment [38]
strengthens that conviction. We therefore propose a research agenda that could help

370 S. Chatty

understand to what extent solutions currently proposed by programming languages
can be used for or adapted to the efficient development of interactive systems, or how
they could be modified to support the expected development scenarios without forfeit-
ing their other qualities. This agenda includes:

Reviews of the software engineering and programming language literature to iden-
tify all stakeholders and scenarios taken into account in these domains;

Identification of stakeholders and scenarios with modern and/or future interactive
software;

Measurements of how these scenarios are handled in current software;
Identification and classification of requirements and properties expected from in-

teractive software development tools and languages;
Deconstruction of programming languages and theories to identify the supported

architecture patterns and the underlying scenarios;
Identification of the patterns in traditional or alternative languages that support the

desired scenarios, and those that potentially conflict with them; this may lead us to
discover that some works in interactive software architecture have exact equivalent in
programming language research;

Research of compatible patterns that support the scenarios from interactive soft-
ware; in other words, re-application of the working methods of the language and
software engineering communities once the deconstruction has been performed, in-
cluding formal methods;

Construction of a set of basic instructions and patterns adapted to interactive soft-
ware, so as to build the equivalent of Microsoft .Net for developing interactive soft-
ware with languages adapted to each part (graphical interface, functional core, speech
interface, dialogue, etc).

6 Conclusion

In this paper, we have proposed to analyse programming languages and interactive
software in terms of software architecture and in terms of stakeholders and scenarios
supported by architectures. We have suggested that software architecture is present at
several levels of granularity, the finest grain being handled by programming lan-
guages. We have described user interface toolkits as providing modifications to the
architectures proposed by languages. We have listed several issues where languages
and interactive software bring conflicting patterns, causing complexity that must be
managed by programmers and that impedes innovation in user interaction. Finally, we
have proposed a research agenda based on the identification of stakeholders, scenarios
and architecture patterns that involves the application of language design techniques
to interactive software tools or even interactive software languages. User interface
design teaches us that humans are able to adapt to various designs, sometimes accept-
ing systems that make them relatively inefficient. How much of this coadaptation is at
work when we build user interface tools based on languages? So far, the user interface
community has mostly focused on “getting the job done with the tools provided”, that
is producing the expected user interfaces and taking the rest of software tools as im-
mutable. Maybe we need some usability experts for ourselves!

 Programs = Data + Algorithms + Architecture 371

Acknowledgements. This article finds its roots in a long conversation with M.
Beaudouin-Lafon in Palos Verdes, CA in 1994. Some ideas came from there or my
later work with P. Palanque and J. Accot at CENA. The rest came from an extreme
experience at IntuiLab in 2002-2004: trying to apply to ourselves participatory design
as taught by W. Mackay in the design of IntuiKit. Finally, marketing work with D.
Figarol helped me articulate the arguments. S. Conversy, P. Dragicevic and M.
Beaudouin-Lafon helped to improve the paper.

References

1. Wirth, N.: Data structures + algorithms = programs. Prentice Hall, Englewood Cliffs
(1975)

2. Kruchten, P., Sotirovski, D.: Implementing dialogue independence. IEEE Software 12(6),
61–70 (1995)

3. Kruchten, P.: The Rational Unified Process — an Introduction. Addison-Wesley-Longman
(1999)

4. Linton, M.A., Vlissides, J.M.: The design and implementation of InterViews. In: Proceed-
ings of the USENIX C++ Workshop (1987)

5. Weinand, A., Gamma, E., Marty, R.: ET++ -an object-oriented application framework in
C++. In: OOPSLA 1988 Proceedings (1988)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1995)

7. Bass, L., Coutaz, J.: Developing software for the user interface. The SEI Series in Soft-
ware Engineering. Addison Wesley, Reading (1991)

8. Bass, L., Clements, P., Kazman, R.: Software architecture in practice. Addison-Wesley,
Reading (1998)

9. Krasner, G., Pope, S.: A cookbook for using the Model-View-Controller user interface
paradigm in Smalltalk 1980. Journal of Object-oriented programming 1(3), 26–49 (1988)

10. Barrett, R., Delany, S.J.: OpenMVC: a non-proprietary component-based framework for
web applications. In: Proceedings of the 13th international WWW conference (2004)

11. Chatty, S., Sire, S., Lemort, A.: Vers des outils pour les équipes de conception d’interfaces
post-WIMP. In: Actes d’IHM 2004, pp. 45–52. ACM Press, New York (2004)

12. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: ICSE 2000: Pro-
ceedings of the Conference on The Future of Software Engineering, pp. 35–46. ACM
Press, New York (2000)

13. Muller, M.J., Kuhn, S.: Participatory design. Commun. ACM 36(6), 24–28 (1993)
14. Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch: Why reuse is so hard. IEEE

Software 12(6), 17–26 (1995)
15. Garlan, D., Shaw, M.: An introduction to software architecture. In: Ambriola, V., Tortora,

G. (eds.) Advances in Software Engineering and Knowledge Engineering. Series on Soft-
ware Engineering and Knowledge Engineering, vol. 2, pp. 1–39. World Scientific Publish-
ing Company, Singapore (1993)

16. Kazman, R., Abowd, G., Bass, L., Clements, P.: Scenario-based analysis of software archi-
tecture. IEEE Software 13(6), 47–55 (1996)

17. King, B., Lovelace, A.: Notes by the translator of the Sketch of the Analytical Engine in-
vented by Charles Babbage, by L.F. Menabrea. Scientific Memoirs 3, 666––731 (1843)

18. Turing, A.M.: Proposals for the development in the mathematics division of an Automatic
Computing Engine (ACE). Technical Report E882, Executive Committee, NPL (1946)

372 S. Chatty

19. Stroustrup, B.: The Design and Evolution of C++. Addison-Wesley, Reading (1994)
20. Backus, J.: Can programming be liberated from the von Neumann style? A functional style

and its algebra of programs. Communications of the ACM 21(8) (1978)
21. Pfaff, G.E. (ed.): User Interface Management Systems. Eurographics Seminars. Springer,

Heidelberg (1985)
22. Bass, L., Pellegrino, R., Reed, S., Seacord, R., Sheppard, R., Szezur, M.R.: The Arch

model: Seeheim revisited. In: CHI 1991 User Interface Developers Workshop (1991)
23. Coutaz, J.: PAC, an implementation model for dialog design. In: Proceedings of the Inter-

act 1987 Conference, pp. 431–436. North Holland, Amsterdam (1987)
24. Myers, B.A.: A brief history of human-computer interaction technology. Interactions 5(2),

44–54 (1998)
25. Beaudouin-Lafon, M., Berteaud, Y., Chatty, S.: Creating direct manipulation interfaces

with XTV. In: Proceedings of EX 1990, London, pp. 148–155 (1990)
26. Martin, R.C.: Agile Software Development: Principles, Patterns and Practices. Pearson

Education, London (2002)
27. Goldberg, A.: SMALLTALK 1980, the Interactive Programming Environment. Addison-

Wesley, Reading (1984)
28. Myers, B.A.: Creating user interfaces using programming by example, visual program-

ming and constraints. ACM Transactions on Programming Languages and Systems 12(2),
143–177 (1990)

29. Chatty, S.: Defining the behaviour of animated interfaces. In: Proceedings of the IFIP WG
2.7 working conference, pp. 95–109. North-Holland, Amsterdam (1992)

30. Strauss, P.S.: Iris inventor, a 3d graphics toolkit. In: OOPSLA 1993: Proceedings of the
eighth annual conference on Object-oriented programming systems, languages, and appli-
cations, pp. 192–200. ACM Press, New York (1993)

31. Palanque, P., Bastide, R.: Petri net based design of user-driven interfaces using the interac-
tive cooperative object formalism. In: Proceedings of the DSV-IS 1994 workshop, pp.
383–401. Springer, Heidelberg (1994)

32. Dannenberg, R.B.: Arctic: A functional language for real-time control. In: Proceedings of
the ACM Conference on Lisp and Functional Languages, pp. 96–103 (1984)

33. Clement, D., Incerpi, J.: Programming the behavior of graphical objects using Esterel. In:
Díaz, J., Orejas, F. (eds.) TAPSOFT 1989 and CCIPL 1989. LNCS, vol. 352. Springer,
Heidelberg (1989)

34. Lecolinet, E.: A molecular architecture for creating advanced GUIs. In: Proceedings of the
ACM UIST, pp. 135–144 (2003)

35. Venners, B., Eckel, B.: The C# design process. a conversation with Anders Hejlsberg
(2003), http://www.artima.com/intv/csdes.html

36. Desreumaux, M., Oudrhiri, R.: Information and software systems: from architecture to ur-
banism. In: Proceedings of the 1st IFIP Working Conference on Software Architecture.
Chapman & Hall, Boca Raton (1998)

37. Kay, A.C.: The early history of Smalltalk. ACM SIGPLAN (3), 69–75 (1993)
38. Chatty, S., Sire, S., Vinot, J., Lecoanet, P., Mertz, C., Lemort, A.: Revisiting visual inter-

face programming: Creating GUI tools for designers and programmers. In: Proceedings of
the ACM UIST. Addison-Wesley, Reading (2004)

39. Graham, P.: Hackers and Painters: Big Ideas from the Computer Age. O’Reilly Media, Se-
bastopol (2004)

40. Kiczales, G.: Aspect-oriented programming. ACM Computing Surveys 28(4) (1996)
41. Kiczales, G., des Rivières, J., Bobrow, D.G.: The art of the meta-object protocol. MIT

Press, Cambridge (1991)

 Programs = Data + Algorithms + Architecture 373

42. Dourish, P.: Using metalevel techniques in a flexible toolkit for CSCW applications. ACM
Transactions on Computer-Human Interaction 5(2), 109–155 (1998)

43. Wegner, P.: Why interaction is more powerful than algorithms. Communications of the
ACM 40(5) (1997)

Questions

Prasun Dewan:
Question: Regarding the influence of programming languages, all programming
languages are Turing complete. Just because you find a language difficult to use
could mean you don’t know how to use the language.

Answer: I have lots of examples, but indeed it is really hard to prove it.

Helmut Stiegler:
Answer: The language related notion of a control stack goes beyond a data-driven
way of a processing model according to “last-in-first-out”. The notion is based on a
“processing context” of a unit of processing (usually called a “procedure”) being
automatically handled by an implicit mechanism and being independent from data
visibly accessed by the unit of processing. This kind of control stack was introduced
by Bauer and Samualtou in the Algre language, and a patent was granted to them.

	Programs = Data + Algorithms + Architecture: Consequences for Interactive Software Engineering
	Introduction
	Of Programming Tools, Scenarios and Architecture
	Software Architecture
	Programming Languages and Hardware Design
	Interactive Software Architecture

	A Multi-level View of Software Architecture
	Four Levels of Architecture
	Managing Compatibility

	Understanding Mismatches
	New Reuse Patterns
	Contra-Variance of Reuse and Control
	Locality of State and Computations
	Architecture-Related Concurrency
	Multiple Hierarchies

	Related Work and Research Agenda
	Conclusion
	References

