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Abstract. Adapting graphical user interfaces for various user devices is one of 
the most interesting topics in today's mobile computation. In this paper we pre-
sent a system based on mobile agents that transparently adapts user interface 
specifications to the user device' capabilities and monitors user interaction. 
Specialized agents manage GUI specification according to the specific context 
and user preferences. We show how the user behavior can be monitored at run-
time in a transparent way and how learning methods are applied to anticipate 
future user actions and to adapt the user interface accordingly. The feasibility 
and performance of our approach are shown by applying our approach to a non-
trivial application and by performing tests with real users. 

1   Introduction 

Adapting graphical user interfaces (GUIs) to different devices and user preferences is 
one of the most challenging questions in mobile computing and GUI design. User 
devices have different capabilities, from small text-based screens and limited process-
ing capabilities to laptops and high-end workstations. Another important challenge is 
to adapt user interfaces to user preferences, context, and GUI actions to be performed. 
Some of these parameters, user preferences, depends on the specific user while others, 
user’s context or actions, do not. However all these parameters vary over time which 
makes them more difficult to manage.  

Mobile environments are particularly challenging: mobile devices require applica-
tions with small footprints, written for specific proprietary platform that can execute 
on devices with very limited capabilities and resources. Mobile devices connect to 
other devices by using wireless networks which are more expensive1, unreliable, and 
slower, than their wired counterparts. Handling these problems is very difficult and 
applications are frequently written to accommodate specific devices and environment. 
Developing such applications requires a significant effort and expertise therefore 
portability across different user devices is a must.  

1 In the case of wireless WAN’s. 
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To create user interfaces that can adapt to different devices and situations research-
ers use abstract user interface definition languages as a common ground. The abstract 
definition (usually specified in XML-based notation) is later rendered into a concrete 
(physical) user interface. Many abstract GUI definition languages exist: XUL [30], 
UIML [1], XIML [34], XForms [32], usiXML [31], just to name few. To adapt an ab-
stract GUI definition to a real GUI researchers use client-server architectures [8], 
specialized tools to create separate GUIs for different platforms [22], and other take 
advantage of agent technology [18, 14].  

Current GUI design methods lead to the re-design and re-implementation of appli-
cations for different devices. In addition, direct generation of user interfaces do not 
allow the system to monitor the user interaction which can be useful for adaptive 
systems. Our proposal to generate and manage adaptive GUIs is ADUS (ADaptive 
User Interface System) [18] which is based on an abstract graphical user interface 
definition language and a mobile agent architecture. Thus, while abstract a GUI defi-
nition language gives flexibility when describing a user interface, mobile agents allow 
flexible rendering of such a GUI definition and provide abstraction from other appli-
cation layers (e.g., platform, connectivity problems, etc). Thus we adopt this approach 
as it enables the creation of flexible user interfaces that are able to adapt and move 
through the network. The ADUS system also enables adaptation to user preferences, 
context, and actions by monitoring and analyzing the user behavior [21]; such a  
collected knowledge is reused in future program executions to anticipate the user’s 
actions.  

In this paper we present the advantages of using ADUS in mobile computing ap-
plications, specifically, we show how learning from user actions on the generated 
GUI improves the performance of the system. For this task, we describe how ADUS 
has been used in a software retrieval service and the results of testing both versions 
(with and without ADUS) with real users.  

The rest of this paper is as follows. In Section 2 we describe the main features of 
ADUS. Section 3 describes how ADUS learns from the user behavior and anticipates 
future user actions. In Section 4 we apply ADUS to a non-trivial sample application. 
Performance and usability evaluations of such a system are presented in Section 5. 
Section 6 gives an overview of the state of the art and the related work. Finally, con-
clusions and future work are presented in Section 7.  

2   ADUS: Adaptive User Interface System 

The ADaptive User interface System (ADUS) is an approach based on mobile agents 
that generates user interfaces adapted for different devices at run-time [18]. To  
provide this functionality, agents manage abstract descriptions of graphical user inter-
faces to be deployed. While abstract UI definition languages give flexibility in de-
scribing user interface, mobile agents allow flexible rendering of the UI definition and 
provide abstraction of other application layers (e.g., platform, connectivity problems, 
etc). We adopt this approach as it enables the creation of a flexible user inter- 
face capable of adapting and moving through the network. ADUS is part of the  
ANTARCTICA system [15] that provides users with different wireless data services 
aiming to enhance the capabilities of their mobile devices.  
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As GUI definition language we use XUL (eXtensible User interface definition 
Language) [30]. The GUI is specified in XUL and then transformed on the fly by 
mobile agents to a concrete user interface. Some of the GUI properties, such as win-
dow size, colors, and widgets used, are adapted on the fly. In addition, GUI sections 
and elements can be modified by mobile agents at the run time (see Section 3.4). The 
developed prototype can adapt such user interface descriptions to Java AWT, Java 
Swing, HTML, and WML clients, and supports limited plasticity [29]. GUI widgets 
are mapped to the concrete UI using CC/PP [4] and different transformation engines; 
further plasticity improvements are planned as future work.  

The mobile agent technology eases automatic system adaptation to its execution 
environment. A mobile agent is a program that executes autonomously on a set of 
network hosts on behalf of an individual or organization [16, 17]. Mobile agents can 
bring computation wherever needed and minimize the network traffic, especially in 
wireless networks (expensive, slow, and unstable), without decreasing the perform-
ance of the system [33]. In our context, mobile agents are able to arrive at the user 
device and show their GUIs to the user in order to interact with her/him [18]. The 
deployment of mobile agents is automatic and has little performance overheads [33]. 
In our prototype we use the mobile agent system Voyager [9]; however any other 
mobile agent system could be used to implement our approach.  

Our system uses indirect user interface generation [21] which is a method where 
several agents collaborate in order to transparently produce user interfaces adapted to 
users and devices. The main steps are (see Figure 1):  

 

Fig. 1. Indirect generation of GUIs 

1. A visitor agent arrives at the user device to interact with the user.  
2. The visitor agent, instead of generating a GUI directly, generates a XUL [30] speci-

fication of the needed GUI, which is sent to the user agent who applies user-
specific information to the GUI specification. This modification is based on user’s 
preferences, context, or collected knowledge. For example, the user agent could 
use data from previous executions to automatically assign the values that were en-
tered by the user to past visitor agents requesting the same information [15, 21]  

3. The user agent creates an ADUS agent initialized with the new GUI specification.  
4. The ADUS agent generates the GUI which will include the specific features for 

that user and for that user device.  
5. The user interacts with the GUI.  
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6. The ADUS agent handles and propagates the GUI events to 1) the visitor agent, 
who should react to such events, and 2) the user agent, which in this way monitors 
and learns from such user actions.  

The additional benefit of such a transparent user interface generation is the simplic-
ity of software development – using our approach only one version of user interface 
and application code is developed (in XUL) but the corresponding GUIs are auto-
matically generated for very different user devices without user or software developer 
intervention.  

3   User Interaction Monitoring and Application: The Learning 
Process 

One of the key features of our prototype is the ability to monitor and collect user 
interaction information at the run time [21]. The prototype monitors both GUI interac-
tion and interaction between the visitor agent and the user using the indirect user 
interface generation model, as explained before. Such data can be used to examine 
user’s behavior and apply the collected knowledge on the subsequently generated user 
interfaces. The monitoring mechanism does not depend on the type of application or 
platform. It is important to notice that, as the monitoring mechanism is based on mo-
bile agents, it is distributed, mobile, and can be extended with security frameworks 
for mobile agents [20].  

Our prototype uses data mining techniques to anticipate user’s actions. In addition, 
our prototype utilizes task models as training data for data mining techniques. In the 
following paragraphs we present the techniques used in our prototype.  

3.1   Predicting User Behavior 

Predicting the user behavior is a difficult task: a common methodology to predict 
users’ behavior is predictive statistical models. These models are based on linear 
models, TFIDF (Term Frequency Inverse Document Frequency), Markov Models, 
Neural Methods, Classification, Rule Induction, or Bayesian Networks [35]. Evalua-
tion of predictive statistical models is difficult -some perform better than other in 
specific contexts but are weaker in other contexts [35].  

We advocate using Markov-based models as they behave better for our goal while 
retain satisfying prediction rates [24, 6, 19]. Specifically, in our prototype we use the 
Longest Repeating Subsequence (LRS) method [24]. A longest repeating subsequence 
is the longest repeating sequence of items (e.g. user tasks) where the number of con-
secutive items repeats more than some threshold T (T usually equals one).  

3.2   Task Models 

Statistical models such as LRS can be beneficial for predicting user actions. However, 
there are two major drawbacks to such models: 1) in order to predict next actions, 
training data must be supplied before the first use, and 2) poor quality training data 
can potentially divert users from using preferred application paths.  

Contrary to statistical models which are created at run-time, task models are cre-
ated during the design phase of an application. Task models are often defined as a 
description of an interactive task to be performed by the user of an application 
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through the user interface of the application [13]. A task model represents the static 
information on users and application tasks and their relationships.  

Many different approaches to defining task models have been developed [13]: Hi-
erarchical Task Analysis (HTA) [26], ConcurTaskTrees (CTT) [23], Diane+ [2], 
MUSE [12], to name few. We use CTT, developed by Patterno [23], as it provides well 
developed tools for defining concurrent task trees.  

Task models successfully describe static, pre-designed interaction with the users. 
However, it is very difficult (if not impossible) to describe with sufficient accuracy 
(for user behavior predictions) user-application interaction in case application tasks 
change dynamically. For example, if the application changes its tasks dynamically 
based on the information downloaded from the Internet, the task model of such an 
application would be a high-level description; task models would not be able to model 
precisely the dynamic tasks created as per downloaded information. This is because 
information used to create tasks from the Internet is not known to the software devel-
oper at the design time, and some generic task or interaction description would have 
to be used in the task model.  

In our prototype we use specially crafted CTT models as pre-loaded training data 
to statistical learning modules. CTT models used are very basic and do not follow 
closely CTT standard notation; models are specifically customized for our use.  

3.3   Learning Models in ADUS 

Behavior analysis and learning in our system are provided by two separate knowledge 
modules. The first module treats user preferences and simple patterns (e.g. modifying 
the menus or font size). The second module is specialized in LRS-based behavior 
analysis. Both knowledge modules help the user agent make the necessary decisions 
that are later reflected on the user interface [21].  

To improve LRS predictions we have developed a specialized converter utility that 
can convert specifically crafted CTT definition into LRS paths database. The con-
verter utility is very basic – the CTT diagrams must be specifically prepared to  
accommodate our converter tool which involves supplying object tags as per our 
specification and designing trees with LRS in mind. In the current version of the pro-
totype CTT diagrams are very basic and do not follow closely CTT task types. Previ-
ously prepared information from CTT can be then loaded into the LRS module as the 
default knowledge with a configurable weight (i.e. path preference). This has been 
designed to: 1) ensure existence of the initial training data (before the first use), and 
2) to ensure that the paths supplied by the GUI designer have certain initial priority 
(weight) over dynamically collected paths. Such measures could improve overall user 
experience and could improve quality of dynamically collected data.  

However, the learning mechanism implemented in ADUS is agnostic - different 
learning techniques can be implemented at the same time. Learning process is not 
limited to tasks, but can be extended (with different learning techniques) to any other 
type of learning.  

3.4   Applications of Learning Features to the User Interface 

Gathered knowledge (e.g., default values, color preferences, or previous actions and 
selections) is applied by the user agent to the GUI specification. The LRS method  
is more closely linked to tasks and user interaction paths and has been visually  
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implemented as a predictive toolbar (see Section 4.3 and Figure 4). The user agent 
automatically inserts this toolbar in the application window (unless otherwise speci-
fied) and it shows a configurable number of next-most-probable actions [19].  

In cases when software developers anticipate that predictive toolbar would not be use-
ful for the user (e.g. applications where the toolbar would not be visible, or where tasks are 
not executed through buttons), the LRS module could be used by the visitor agent through 
the user agent. Section 4.3 presents in detail usage modalities of the LRS module. 

4   Using ADUS in a Sample Application 

To show the benefits of learning techniques to GUI and complex GUI transformations 
we have applied the ADUS approach to a multi-agent application –the Software Re-
trieval Service (SRS) [15]. The Software Retrieval Service tries to solve one of the 
most frequent tasks for an average computer user: to search, download, and install 
new software.  

In the following we briefly introduce the agents that participate in the SRS and 
then we describe how the ADUS approach is applied. The resulting system is tested 
by real users in Section 5.  

4.1   The Software Retrieval Service (SRS)  

The Software Retrieval Service [15] is an application that helps naive users to find, 
download, and install new software on their devices. The SRS is distributed between  
 

 

Fig. 2. Main architecture for the Software Retrieval Service 
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the user’s device (also known as user place) and a proxy location (known as software 
place), as illustrated in Figure 2.  

In the following paragraphs we briefly describe the main agents of the SRS (more 
details about this system can be found in [15]):  

1. The Alfred agent. It is a user agent that serves the user and is in charge of storing as 
much information about the user equipment, preferences, and context as possible. 
Mobile agent technology allows that mobile agents can learn (e.g. using informa-
tion from the Web) about previously unknown contexts.  

2. The Software Manager agent. It creates and provides the Browser agent with a 
catalog of the available software, according to the requirements supplied by Alfred 
(on behalf of the user, step 1 in Figure 2), i.e., it is capable to obtain customized 
metadata about the underlying software.  

3. The Browser agent. It travels to the user device (step 4) with aim to interact with the 
user (see Figure 3) in order to help her/him browse the software catalog (step 5).  

Working in this way – without ADUS – the Browser agent directly generates its 
GUI on the user device without knowing user preferences and user device capabilities.  

4.2   Using ADUS with the Software Retrieval Service  

When applying the ADUS approach to the SRS application, Alfred plays the role of 
user agent and the Browser agent behaves as a visitor agent that arrives to the user 
device with the purpose of creating a GUI. An ADUS agent will be required to facili-
tate indirect user interface generation. The ADUS agent interacts with the SRS agents 
as follows:  

1. The Browser agent (as depicted in Figure 2) sends the XUL specification of the 
GUI to Alfred.  

2. Alfred amends the XUL specification according to the user preferences, context, 
and device capabilities. In this example, size and location of “split panes” are set 
by Alfred.  

 

Fig. 3. Java Swing Browser GUI created indirectly on a PDA 
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3. Alfred delegates the generation of the GUI to an ADUS agent, who renders the 
GUI, interacts with the user, and feeds interaction data to Alfred (the user agent) 
and the Browser (the visitor agent). Figure 3 shows the Java GUI generated by the 
ADUS agent for a Pocket PC PDA. 

4. GUI events and data received by the ADUS agent are communicated to Alfred and 
the Browser agent for further processing. Alfred stores and analyses such data to 
predict future user actions, and the Browser agent reacts to the selections or data 
entered by the user by generating new or updating the existing GUI.  

The above process is repeated until the Browser (the visitor agent) finishes its tasks 
on the user device.  

4.3   The Learning Process in the SRS  

As described earlier, behavior analysis and learning are provided by the user agent 
(Alfred in the case of the SRS), which treats user preferences and predicts the user 
behavior following the stored patterns.  

Once users start using the application, Alfred collects the necessary data by monitor-
ing user-executed actions in an effort to predict the next task. In the current version of 
our prototype, the user agent Alfred monitors task execution only through button wid-
gets. As the SRS Browser agent uses a customized interaction model, the visitor agent 
(the Browser agent in the example) can use the LRS module via the user agent (Alfred) 
to benefit from the learning features of the system (as described in Section 3.4).  

The Browser agent uses the LRS module described earlier via Alfred to automati-
cally expand or collapse browsing nodes (see Figure 3). The user agent will then ex-
pand the nodes that are identified as the next most probable nodes to be opened by the 
user2 .  

In addition to the SRS Browser agent GUI, Alfred has its own GUI that is designed 
for configuration of user preferences, service options, and execution of other services. 
This GUI features the predictive toolbar automatically generated by Alfred as de-
scribed in Section 3.4 and depicted in Figure 4. To improve the quality of training 
data, and to provide initial training data to the LRS module in Alfred’s GUI, we have 
developed a CTT task model (see Figure 5). The task paths are extracted from the 
model using a converter utility and path weight is assigned to the paths.  

 

Fig. 4. Alfred’s GUI – predictive toolbar 

                                                           
2 The main task of the Browser agent is to help the user the user to browse a software catalogue 

to find a certain software. 
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5   Performance Evaluation  

In this Section we present results of the performance tests and analyze differences in 
performance between using SRS with and without ADUS approach.  

 

Fig. 5. CTT model for Alfred’s GUI 

In our test, users3 were asked to retrieve several pieces of software using the SRS 
application. The first half of the participating users used the SRS application without 
the ADUS architecture (direct GUI generation). The second half used the SRS appli-
cation with ADUS (indirect generation of GUIs). 50 users with mixed levels of skill 
participated in this test.  

In the first test we compare how the learning features of ADUS improve the system 
from the point of view of time-consuming tasks. Measured times have been divided 
into three categories:  

− Data transfer: this is the time spent by the system 1) to send the different software 
catalogs to the user device, 2) to move an agent across the network, and 3) to in-
voke remote procedure calls4 .  

− Reading catalog: this category represents the time spent by the user to read/browse 
the software catalog shown on the device screen; this time includes to open/close a 
catalog node to read its information.  

− UI operations: This measure quantifies the time spent by the system on GUI gen-
eration (and monitoring, when ADUS is used).  

In [21] we showed that just using ADUS (without any prediction) improved the 
performance of the SRS despite the small overhead due to the indirect GUI generation 
and monitoring. From Figures 7 and 8 we can observe that the use of the LRS method 
reduce the total time spent by users to find the software and even the time spent by the 
system to generate GUIs: when estimations of user behavior are correct, users save  
 

                                                           
3 The authors would like to express their gratitude to all persons participating in this study. 
4 Intelligent (mobile) agents in the SRS decide between whether to use remote procedure call or 

movement approach depending on the execution environment. 
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Fig. 6. Time-consuming tasks for SRS without ADUS 

several GUI interactions (and the system saves the corresponding (indirect) GUI gen-
erations). Figure 6 depicts times spent on the SRS application without ADUS.  

When the predictive features are used ADUS utilizes the data obtained from moni-
toring interaction between the user and the Browser agent to predict the users’ next 
most probable action (see Section 3). The SRS application then expands and collapses 
browsing nodes according to the next most probable action. This way, the user inter-
face is generated fewer times: multiple nodes are expanded or collapsed at the same 
time with only one processing of UI. In the previous version, without predictive  
features, nodes are expanded by the user manually which triggered additional UI 
operations.  

The second test gives indication of whether predictive features were used and if 
they were useful. In Figure 9 we present usage of predictive features and the ratio of 
correct predictions. “Right” represents the percentage of correct predictions that have 
been followed by users. “Wrong” represents misleading predictions that have not 
been followed by users. “Ignored” represents percentage of correct predictions that 
were ignored by the users (they follow a non-optimal path).  

Figure 9 shows that the predictive features had a good ratio of successful predic-
tions (on average 90.25%). The average percentage of wrong predictions was 9.74%. 
69.74% (on average) of requests followed the correct prediction which implies that 
predictive features have been seen as useful by most of the users. A certain percentage 
of requests (20.51%) however did not see the features as useful or felt that the predic-
tions are erroneous.  

In the next test we can observe that due to the predictive features the SRS Browser 
agent loads a better sample of data leading to lower network utilization (cost saving if 
wireless networks are used) which also results in better processing of the information 
from the network as more relevant data are downloaded.  
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Fig. 7. Time-consuming tasks for SRS + ADUS without predictive features 

0

2

4

6

8

10

12

14

16

18

au
di

o 
m

ixe
r

Divx
 p

lay
er

Sol
ar

 sy
ste

m
 si

m
ula

to
r

DBM
S

G
am

eb
oy

 e
m

ula
to

r

fir
ew

al
l

IC
Q

 fo
r l

in
ux

CAD to
ol

e-
m

ail
 c

lie
nt

Sto
ck

 q
uo

te
s

PDF/P
S re

ad
er

Data Transfer Reading Catalog UI Operations

 

Fig. 8. Time-consuming tasks for SRS + ADUS with predictive features 
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Fig. 9. Usage of Predictive Features 
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Fig. 10. Browser (agent) intelligence with and without predictive features 

This measurement is defined as Browser (agent) intelligence [15] and represents ef-
ficiency in refining software catalogs shown to the user.  

Figure 10 shows a comparison among two versions of the Browser agent intelli-
gence; the higher percentage, the better network and processing usage. On average the 
improvement due to ADUS with predictive features ranged from -2% to 23%  
(average of averages was 7%). To conclude, time to find the requested application 
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using the SRS application with ADUS and predictive features has been improved 
through lower UI operations, network consumption and information processing due to 
correct predictions made by the system.  

In addition to the measurable indicators we asked users to express the usefulness of 
the predictive features in the SRS application. Usability was measured in a relative way; 
users were asked to compare the SRS application without ADUS to the SRS application 
with ADUS with predictive features and the usability of predictive features in compari-
son with the original SRS without ADUS: scores range from 0 (not useful) to 10 (very 
useful). The score above 5 signifies that the ADUS versions of program are more pre-
ferred. Figure 11 shows the usability of 1) SRS with and without ADUS predictive 
features and 2) usability of predictive features alone in SRS with ADUS in comparison 
to the SRS without ADUS. The usability rating was surveyed for every task in order to 
understand better usability of predictive features relating to a particular task.  
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Fig. 11. Average usability of two SRS versions and predictive features 

On average, the SRS version with ADUS and predictive features was seen as more 
usable than the version of SRS without ADUS. Similar results were obtained for the 
usability of predictive features. However, in some cases usability of predictive fea-
tures has a much lower score than the application usability – this was typically a result 
of an erroneous prediction that confused users. In total, both the improved application 
and predictive features scored almost 3 points above the old system versions which 
shows that the improvements to the system have been seen as usable.  

Results Summary  
Tests were conducted with 50 users to demonstrate quantifiable difference between two 
versions of the SRS application: without and with ADUS and predictive features. It has 
been demonstrated that, although general GUI processing is increased when following 
ADUS approach, the actual processing time decreases due to the application of predic-
tive features. In addition, information processing and network operations are reduced, 
which lowers the operational and usage cost of mobile applications on wireless networks.  
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Tests were also designed to measure usability of the system improvements through 
time to download, usage ratio of predictive features and number of correct predictions 
by the system. All tests concluded that improvements to the original application were 
made; a good percentage of predictions were correct and the predictive features have 
been used by the testers.  

Furthermore we have examined some subjective factors: relative usability of two 
applications and relative usability of predictive features. The survey showed that both 
the improved application and predictive features were seen more usable than the 
original versions.  

6   State of the Art and Related Work 

In this section we present several approaches related to the work presented in this 
paper. Various approaches to adapting user interfaces to different devices are present. 
The approaches can be grouped into two categories: web applications and classic 
applications. While the first category [5, 8] treats only web content and transforma-
tions of web content in order to be usable on other (mostly mobile) devices, the sec-
ond category treats the problems of universally defining the user interface, so it can be 
later reproduced by various program implementations [1, 27, 11, 32, 22] —or middle-
ware— on various platforms. Solutions are usually designed as client-server and are 
developed for specific platforms.  

Some researchers use software agents (or software entities) [14, 7, 25] which should 
not be confused for mobile agents. Software agents are software programs that rarely 
offer any interoperability or mobility and are frequently specifically written for a 
particular case or application. Lumiere [7] system gives user behavior anticipation 
through the use of Bayesian models but does not offer any mobility and can be used 
only in Microsoft Office applications and with use of user profiles. Seo et al. [25] 
investigate software entities that are standalone, desktop applications. Such entities 
monitor use of the particular web browser application and provide some anticipation 
of interaction. The Eager system [28] anticipates user actions but does not offer any 
mobility and is written for specific operating system/application set. Execution of 
such system relies on generation of macro scripts within the used application set.  

Improving user interface usability is a complex area and many approaches to improv-
ing usability exist. We will focus on three main approaches to improve user interface 
usability: user interface metrics, data mining – user behavior prediction, and task models. 
The basic concept is to collect user interface metrics for a web site [10]. Usually, col-
lected data are used to perform traffic-based analysis (e.g., pages-per-visitor, visitors-per-
page), time-based analysis (e.g., page view durations, click paths) or number of links and 
graphics on the web pages. These methods fail to give prediction of user behavior, and 
results can be influenced by many factors. In addition, such analysis is usually used dur-
ing the UI design (and not in run-time) to improve existing or create new interfaces.  

Many models that treat to predict user behavior are based on Markov chains [6]. 
Predictions are made based on the data from usage logs. More advanced models, like 
Longest Repeating Subsequence (LRS) [24] or Information Scent [3] perform data 
mining seeking to analyze navigation path based on server logs, similarity of pages, 
linking structure and user goals. These models incorporate parts of Markov models in 
order to give better results. Our prototype uses LRS model as described in Section 3.  
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Task models are often defined as a description of an interactive task to be per-
formed by the user of an application through the application’s user interface [13]. Task 
model is defined during the application design and gives information on user and 
application tasks and their relationships. Many different approaches to defining task 
models have been developed [13]: Hierarchical Task Analysis (HTA) [26], Concur-
TaskTrees (CTT) [23], Diane+ [2], MUSE [12], to name few. Task models are typi-
cally used to help define and design user interface, and sometimes also to help create 
user interfaces during the design. In our prototype we use task models as source of 
training information for user interaction analysis.  

7   Conclusions and Future Work  

This paper presents results of performance and usability studies on ADUS, our  
proposal for adaptive user interface generation, which is based on mobile agents. In 
addition, it allows the user behavior monitoring due to its indirect user interface  
generation method. As summary, the main advantages of our approach are:  

− Transparent adaptation of abstract user interface definition to concrete platforms, in an 
indirect way. GUIs supplied by visitor agents are generated correctly (according to the 
user preferences and device capabilities) if they are specified in XUL by visitor agents.  

− Visitor agents do not need to know how to generate GUIs in different devices. Also 
the direct generation of GUIs by visitor agents can be easily avoided; direct GUI 
generation could undermine platform’s efforts to improve user’s experience and al-
low uncontrolled malicious behaviors such as phishing.  

− User interfaces are adapted to meet the specific user’s context and preferences 
without user or developer intervention.  

− Any user interaction can be monitored by the system in order to help the user to 
interact with future invocations of services.  

− The system learns from the user behavior to anticipate future user actions, with the 
goal of improving the performance and usability. The user behavior is analyzed 
and next most probable action is advertised. The prediction rate of the proposed al-
gorithm used in our prototype is satisfactory. However, any other predictive algo-
rithm or model could be used in ADUS.  

Finally we have presented some performance and usability tests of the system. The 
performance results demonstrate that there are no significant processing overheads of 
the proposed architecture and that some performance benefits could be drawn by 
reducing GUI, network, and information processing operations through predicting 
future states of user interaction. The results of the usability survey show that users 
perceive a system more useful when it follows the ADUS architecture.  

As future work we are considering some options for improving the exploitation of 
user interaction data stored by user agents and expanding user agents’ ability to auto-
matically recognize tasks from a wider range of GUI widgets.  
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Questions 

Jose Campos: 
Question: When you change from laptop to PDA you might need to change dialogue 
control, not only the screen layout. Are your agents capable of this? 

Answer: This is an open problem and future work. 
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