Jan Gulliksen Morton Borup Harning
Philippe Palanque Gerrit C. van der Veer
Janet Wesson (Eds.)

Engineering
Interactive Systems

EIS 2007 Joint Working Conferences
EHCI 2007, DSV-IS 2007, HCSE 2007
Salamanca, Spain, March 2007, Selected Papers

/ 19
e

Ifip

LNCS 4940

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4940

Jan Gulliksen Morton Borup Harning
Philippe Palanque Gerrit C. van der Veer
Janet Wesson (Eds.)

Engineering
Interactive Systems

EIS 2007 Joint Working Conferences
EHCI 2007, DSV-IS 2007, HCSE 2007
Salamanca, Spain, March 22-24, 2007
Selected Papers

@ Springer

Volume Editors

Jan Gulliksen
Uppsala University, Uppsala, Sweden
E-mail: jan.gulliksen @it.uu.se

Morton Borup Harning
Priway ApS, Lyngby, Denmark
E-mail: harning @se-hci.org

Philippe Palanque

Institute of Research in Informatics of Toulouse (IRIT)
University Paul Sabatier, Toulouse, France

E-mail: palanque @irit.fr

Gerrit C. van der Veer

School of Computer Science
Open Universiteit Nederland
Heerlen, The Netherlands
E-mail: gerrit.vanderVeer @ou.nl

Janet Wesson

Nelson Mandela Metropolitan University
Port Elizabeth, South Africa

E-mail: janet.wesson@nmmu.ac.za

Library of Congress Control Number: Applied for

CR Subject Classification (1998): H.5.2, H.5, D.2.2, D.3, E.3, 1.6, K.6
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-92697-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-92697-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© IFIP International Federation for Information Processing 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12592340 06/3180 543210

Preface

Engineering Interactive Systems 2007 is an IFIP working conference that brings
together researchers and practitioners interested in strengthening the scientific founda-
tions of user interface design, examining the relationship between software engineer-
ing (SE) and human—computer interaction (HCI) and on how user-centerd design
(UCD) could be strengthened as an essential part of the software engineering process.
Engineering Interactive Systems 2007 was created by merging three conferences:

e HCSE 2007 — Human-Centerd Software Engineering held for the first time. The
HCSE Working Conference is a multidisciplinary conference entirely dedicated
to advancing the basic science and theory of human-centerd software systems
engineering. It is organized by IFIP WG 13.2 on Methodologies for User-Centerd
Systems Design.

e EHCI 2007 — Engineering Human Computer Interaction was held for the tenth
time. EHCI aims to investigate the nature, concepts, and construction of user
interfaces for software systems. It is organized by IFIP WG 13.4/2.7 on User
Interface Engineering.

e DSV-IS 2007 — Design, Specification and Verification of Interactive Systems
was held for the 13th time. DSV-IS provides a forum where researchers work-
ing on model-based techniques and tools for the design and development of in-
teractive systems can come together with practitioners and with those working
on HCI models and theories.

Almost half of the software in systems being developed today and 37%-50% of the
efforts throughout the software lifecycle are related to the system's user interface. For
this reason problems and methods from the field of HCI affect the overall process of
SE tremendously, and vice versa. Yet despite these powerful reasons to practice and
apply effective SE and HCI methods, major gaps of understanding still exist, both
between the suggested practice, provided through methods, tools and models, and how
software is actually being developed in industry (between theory and practice), and
between the best practices of each of the fields.

The standard curricula for each field make little (if any) reference to the other field
and certainly do not teach how to interact with the other field. There are major gaps of
communication between the HCI and SE fields: the architectures, processes, methods,
and vocabulary being used in each community are often foreign to the other commu-
nity. As a result, product quality is not as high as it could be, and otherwise possibly
avoidable re-work is frequently necessary.

SE technology used in building tomorrow's interactive systems must place a greater
emphasis on designing usable systems that meet the needs of the users. HCI, SE,
computer science, psychology as well as many other researchers from other related
disciplines have developed, sometimes independently from the engineering lifecycle,
various tools and techniques for achieving these goals. Unfortunately, even if big

VI Preface

software development organizations as well as a few enlightened practitioners have
recognized their importance and/or have considered them when developing their
products, these techniques are still relatively unknown, under used, difficult to master,
and most fundamentally they are not well integrated in SE practices.

Despite all the knowledge on usability and user-centerd systems design, most com-
puter systems today are developed with a minimum of user involvement hence result-
ing in systems that do not fit the users’ needs and expectations sufficiently. Similarly
the scientific fields of SE (dealing with the processes by which systems are being
developed) and HCI (dealing with the user’s use of the system) rarely meet. There is a
growing awareness that these two scientific fields need to meet on equal terms to dis-
cuss and resolve the potential conflicts in the approaches proposed by the two per-
spectives. This is the main reasons for our efforts to arrange a venue for these different
fields to meet, interact, and share our knowledge and experiences, to increase the
focus on users and usability in the SE processes, methods and tools, and to provide a
deepened understanding among HCI researchers and practitioners of the emerging
need to relate to the processes and practices of SE professionals.

The list of topics for the conference was compiled from the list of topics tradition-
ally included for each of the three conferences, but with the added aim of creating a
list of topics that would foster a fruitful discussion helping to bring SE issues and user
interface design concerns as well UCD issues closer together.

Integration of SE and UCD

e Towards a theory for human-centerd systems engineering

e Incorporating guidelines and principles for designing usable products into the
development processes

e Usability through the requirements specification

e Representations for design in the development process

e Working with usability with commercial development processes such as Ra-
tional Unified Process (RUP), Dynamic Systems Development Method
(DSDM), eXtreme Programming (XP), Agile processes, etc.

e Social and organizational aspects of software development in a lifecycle
perspective

SE aspects of user interfaces

Software architecture

Formal methods in HCI

HCI models and model-driven engineering
Impact of distribution on user interfaces
Portability, consistency, integration
Development processes

Case studies

User interface tools and techniques

e Adaptive and customizable systems
o Interfaces for restricted environments

Preface A1

e Interfaces for multiple devices
e Web-based systems
e Evaluation of user interfaces: technologies and tools

Engineering aspects of innovative user interfaces

Interfaces for mobile devices

Wearable computing

New interface technologies

Information visualization and navigation
Multimodal user interfaces

Interfaces for groupware

Virtual reality, augmented reality
Games

A total of 37 papers were selected for presentation forming sessions on analysis and
verification, task and engineering models, design for use in context, architecture,
models for reasoning, and finally patters and guidelines.

Following the EHCI working conference tradition, the proceedings include tran-
scripts of paper discussions.

Jan Gulliksen
Morten Borup Harning

Table of Contents

Performance Analysis of an Adaptive User Interface System Based on
Mobile AGENES . . o v vttt
Nikola Mitrovié, Jose A. Royo, and Eduardo Mena

Combining Human Error Verification and Timing Analysis
Rimvydas Ruksénas, Paul Curzon, Ann Blandford, and
Jonathan Back

Formal Testing of Multimodal Interactive Systems
Jullien Bouchet, Laya Madani, Laurence Nigay,
Catherine Oriat, and loannis Parissis

Knowledge Representation Environments: An Investigation of the
CASSMs between Creators, Composers and Consumers
Ann Blandford, Thomas R.G. Green, Iain Connell, and Tony Rose

Consistency between Task Models and Use Cases
Daniel Sinnig, Patrice Chalin, and Ferhat Khendek

Task-Based Design and Runtime Support for Multimodal User Interface
Distributiono
Tim Clerckxz, Chris Vandervelpen, and Karin Coninz

A Comprehensive Model of Usability
Sebastian Winter, Stefan Wagner, and Florian Deissenboeck

Suitability of Software Engineering Models for the Production of Usable
SOTEWATE . . o
Karsten Nebe and Dirk Zimmermann

A Model-Driven Engineering Approach for the Usability of Plastic User

Interfaces
Jean-Sébastien Sottet, Gaélle Calvary, Joélle Coutaz, and
Jean-Marie Favre

Model-Driven Prototyping for Corporate Software Specification
Thomas Memmel, Carsten Bock, and Harald Reiterer

Getting SW Engineers on Board: Task Modelling with Activity
Diagrams
Jens Briining, Anke Dittmar, Peter Forbrig, and Daniel Reichart

Considering Context and Users in Interactive Systems Analysis
José Creissac Campos and Michael D. Harrison

18

36

93

71

89

X Table of Contents

XSED — XML-Based Description of Status—Event Components and
SYSEEINS .« .ot
Alan Dizx, Jair Leite, and Adrian Friday

Identifying Phenotypes and Genotypes: A Case Study Evaluating an
In-Car Navigation Systemo ..
Georgios Papatzanis, Paul Curzon, and Ann Blandford

Factoring User Experience into the Design of Ambient and Mobile
SYSEEINS .« ot
Michael D. Harrison, Christian Kray, Zhiyu Sun, and Hugiv Zhang

Visualisation of Personal Communication Patterns Using Mobile
Phones
Bradley van Tonder and Janet Wesson

Integration of Distributed User Input to Extend Interaction Possibilities
with Local Applications.
Kay Kadner and Stephan Mueller

Reverse Engineering Cross-Modal User Interfaces for Ubiquitous
Environments e
Renata Bandelloni, Fabio Paterno, and Carmen Santoro

Intelligent Support for End-User Web Interface Customization
José A. Macias and Fabio Paterno

Improving Modularity of Interactive Software with the MDPC
Architecture. o
Stéphane Conversy, Eric Barboni, David Navarre, and
Philippe Palanque

Toward Quality-Centered Design of Groupware Architectures..........
James Wu and T.C. Nicholas Graham

Programs = Data + Algorithms + Architecture: Consequences for
Interactive Software Engineering i
Stéphane Chatty

Towards an Extended Model of User Interface Adaptation: The ISATINE

Frameworko
Victor Lopez-Jaquero, Jean Vanderdonckt, Francisco Montero, and
Pascual Gonzilez

Towards a Universal Toolkit Model for Structures
Prasun Dewan

Exploring Human Factors in Formal Diagram Usage..................
Andrew Fish, Babak Khazaei, and Chris Roast

Table of Contents XI

‘Aware of What?’ A Formal Model of Awareness Systems That Extends
the Focus-Nimbus Model 429
Georgios Metazas and Panos Markopoulos

Service-Interaction Descriptions: Augmenting Services with User

Interface Models 447
Jo Vermeulen, Yves Vandriessche, Tim Clerckz, Kris Luyten, and
Karin Coninz

A Design-Oriented Information-Flow Refinement of the ASUR
Interaction Model 465
Emmanuel Dubois and Philip Gray

On the Process of Software Design: Sources of Complexity and Reasons
for Muddling through 483
Morten Hertzum

Applying Graph Theory to Interaction Design 501
Harold Thimbleby and Jeremy Gow

Mathematical Mathematical User Interfaces 520
Harold Thimbleby and Will Thimbleby

Coupling Interaction Resources in Ambient Spaces: There Is More
Than Meets the Eyel 537
Nicolas Barralon and Joélle Coutaz

Building and Evaluating a Pattern Collection for the Domain of
Workflow Modeling Tools 555
Kirstin Kohler and Daniel Kerkow

Do We Practise What We Preach in Formulating Our Design and
Development Methods? 567
Paula Kotzé and Karen Renaud

Engaging Patterns: Challenges and Means Shown by an Example 586
Sabine Niebuhr, Kirstin Kohler, and Christian Graf

Organizing User Interface Patterns for e-Government Applications 601
Florence Pontico, Marco Winckler, and Quentin Limbourg

Including Heterogeneous Web Accessibility Guidelines in the
Development Process 620
Muyriam Arrue, Markel Vigo, and Julio Abascal

Author Index 639

Performance Analysis of an Adaptive User Interface
System Based on Mobile Agents

Nikola Mitrovi¢, Jose A. Royo, and Eduardo Mena

IIS Department, University of Zaragoza, Maria de Luna 1, 50018 Zaragoza, Spain
mitrovic@prometeo.cps.unizar.es, joalroyo@unizar.es,
emena@unizar.es
http://www.cps.unizar.es/~mitrovic
http://www.cps.unizar.es/~jaroyo
http://www.cps.unizar.es/~mena

Abstract. Adapting graphical user interfaces for various user devices is one of
the most interesting topics in today's mobile computation. In this paper we pre-
sent a system based on mobile agents that transparently adapts user interface
specifications to the user device' capabilities and monitors user interaction.
Specialized agents manage GUI specification according to the specific context
and user preferences. We show how the user behavior can be monitored at run-
time in a transparent way and how learning methods are applied to anticipate
future user actions and to adapt the user interface accordingly. The feasibility
and performance of our approach are shown by applying our approach to a non-
trivial application and by performing tests with real users.

1 Introduction

Adapting graphical user interfaces (GUIs) to different devices and user preferences is
one of the most challenging questions in mobile computing and GUI design. User
devices have different capabilities, from small text-based screens and limited process-
ing capabilities to laptops and high-end workstations. Another important challenge is
to adapt user interfaces to user preferences, context, and GUI actions to be performed.
Some of these parameters, user preferences, depends on the specific user while others,
user’s context or actions, do not. However all these parameters vary over time which
makes them more difficult to manage.

Mobile environments are particularly challenging: mobile devices require applica-
tions with small footprints, written for specific proprietary platform that can execute
on devices with very limited capabilities and resources. Mobile devices connect to
other devices by using wireless networks which are more expensive', unreliable, and
slower, than their wired counterparts. Handling these problems is very difficult and
applications are frequently written to accommodate specific devices and environment.
Developing such applications requires a significant effort and expertise therefore
portability across different user devices is a must.

"' In the case of wireless WAN’s.

J. Gulliksen et al. (Eds.): EIS 2007, LNCS 4940, pp. lﬂ 2008.
© IFIP International Federation for Information Processing 2008

2 N. Mitrovié, J.A. Royo, and E. Mena

To create user interfaces that can adapt to different devices and situations research-
ers use abstract user interface definition languages as a common ground. The abstract
definition (usually specified in XML-based notation) is later rendered into a concrete
(physical) user interface. Many abstract GUI definition languages exist: XUL [30],
UIML [1], XIML [34], XForms [32], usiXML [31], just to name few. To adapt an ab-
stract GUI definition to a real GUI researchers use client-server architectures [8],
specialized tools to create separate GUIs for different platforms [22], and other take
advantage of agent technology [18, 14].

Current GUI design methods lead to the re-design and re-implementation of appli-
cations for different devices. In addition, direct generation of user interfaces do not
allow the system to monitor the user interaction which can be useful for adaptive
systems. Our proposal to generate and manage adaptive GUIs is ADUS (ADaptive
User Interface System) [18] which is based on an abstract graphical user interface
definition language and a mobile agent architecture. Thus, while abstract a GUI defi-
nition language gives flexibility when describing a user interface, mobile agents allow
flexible rendering of such a GUI definition and provide abstraction from other appli-
cation layers (e.g., platform, connectivity problems, etc). Thus we adopt this approach
as it enables the creation of flexible user interfaces that are able to adapt and move
through the network. The ADUS system also enables adaptation to user preferences,
context, and actions by monitoring and analyzing the user behavior [21]; such a
collected knowledge is reused in future program executions to anticipate the user’s
actions.

In this paper we present the advantages of using ADUS in mobile computing ap-
plications, specifically, we show how learning from user actions on the generated
GUI improves the performance of the system. For this task, we describe how ADUS
has been used in a software retrieval service and the results of testing both versions
(with and without ADUS) with real users.

The rest of this paper is as follows. In Section 2 we describe the main features of
ADUS. Section 3 describes how ADUS learns from the user behavior and anticipates
future user actions. In Section 4 we apply ADUS to a non-trivial sample application.
Performance and usability evaluations of such a system are presented in Section 5.
Section 6 gives an overview of the state of the art and the related work. Finally, con-
clusions and future work are presented in Section 7.

2 ADUS: Adaptive User Interface System

The ADaptive User interface System (ADUS) is an approach based on mobile agents
that generates user interfaces adapted for different devices at run-time [18]. To
provide this functionality, agents manage abstract descriptions of graphical user inter-
faces to be deployed. While abstract UI definition languages give flexibility in de-
scribing user interface, mobile agents allow flexible rendering of the Ul definition and
provide abstraction of other application layers (e.g., platform, connectivity problems,
etc). We adopt this approach as it enables the creation of a flexible user inter-
face capable of adapting and moving through the network. ADUS is part of the
ANTARCTICA system [15] that provides users with different wireless data services
aiming to enhance the capabilities of their mobile devices.

Performance Analysis of an Adaptive User Interface System Based on Mobile Agents 3

As GUI definition language we use XUL (eXtensible User interface definition
Language) [30]. The GUI is specified in XUL and then transformed on the fly by
mobile agents to a concrete user interface. Some of the GUI properties, such as win-
dow size, colors, and widgets used, are adapted on the fly. In addition, GUI sections
and elements can be modified by mobile agents at the run time (see Section 3.4). The
developed prototype can adapt such user interface descriptions to Java AWT, Java
Swing, HTML, and WML clients, and supports limited plasticity [29]. GUI widgets
are mapped to the concrete Ul using CC/PP [4] and different transformation engines;
further plasticity improvements are planned as future work.

The mobile agent technology eases automatic system adaptation to its execution
environment. A mobile agent is a program that executes autonomously on a set of
network hosts on behalf of an individual or organization [16, 17]. Mobile agents can
bring computation wherever needed and minimize the network traffic, especially in
wireless networks (expensive, slow, and unstable), without decreasing the perform-
ance of the system [33]. In our context, mobile agents are able to arrive at the user
device and show their GUIs to the user in order to interact with her/him [18]. The
deployment of mobile agents is automatic and has little performance overheads [33].
In our prototype we use the mobile agent system Voyager [9]; however any other
mobile agent system could be used to implement our approach.

Our system uses indirect user interface generation [21] which is a method where
several agents collaborate in order to transparently produce user interfaces adapted to
users and devices. The main steps are (see Figure 1):

3
USER DEVICE <—>@
-
ADUS
@

gent -]I E
PROXY

©®

.
o

L Visitor Agent) Wireless Network

Fig. 1. Indirect generation of GUIs

. A visitor agent arrives at the user device to interact with the user.

. The visitor agent, instead of generating a GUI directly, generates a XUL [30] speci-
fication of the needed GUI, which is sent to the user agent who applies user-
specific information to the GUI specification. This modification is based on user’s
preferences, context, or collected knowledge. For example, the user agent could
use data from previous executions to automatically assign the values that were en-
tered by the user to past visitor agents requesting the same information [15, 21]

. The user agent creates an ADUS agent initialized with the new GUI specification.

4. The ADUS agent generates the GUI which will include the specific features for

that user and for that user device.

5. The user interacts with the GUL.

DN =

W

4 N. Mitrovié, J.A. Royo, and E. Mena

6. The ADUS agent handles and propagates the GUI events to 1) the visitor agent,
who should react to such events, and 2) the user agent, which in this way monitors
and learns from such user actions.

The additional benefit of such a transparent user interface generation is the simplic-
ity of software development — using our approach only one version of user interface
and application code is developed (in XUL) but the corresponding GUIs are auto-
matically generated for very different user devices without user or software developer
intervention.

3 User Interaction Monitoring and Application: The Learning
Process

One of the key features of our prototype is the ability to monitor and collect user
interaction information at the run time [21]. The prototype monitors both GUI interac-
tion and interaction between the visitor agent and the user using the indirect user
interface generation model, as explained before. Such data can be used to examine
user’s behavior and apply the collected knowledge on the subsequently generated user
interfaces. The monitoring mechanism does not depend on the type of application or
platform. It is important to notice that, as the monitoring mechanism is based on mo-
bile agents, it is distributed, mobile, and can be extended with security frameworks
for mobile agents [20].

Our prototype uses data mining techniques to anticipate user’s actions. In addition,
our prototype utilizes task models as training data for data mining techniques. In the
following paragraphs we present the techniques used in our prototype.

3.1 Predicting User Behavior

Predicting the user behavior is a difficult task: a common methodology to predict
users’ behavior is predictive statistical models. These models are based on linear
models, TFIDF (Term Frequency Inverse Document Frequency), Markov Models,
Neural Methods, Classification, Rule Induction, or Bayesian Networks [35]. Evalua-
tion of predictive statistical models is difficult -some perform better than other in
specific contexts but are weaker in other contexts [35].

We advocate using Markov-based models as they behave better for our goal while
retain satisfying prediction rates [24, 6, 19]. Specifically, in our prototype we use the
Longest Repeating Subsequence (LRS) method [24]. A longest repeating subsequence
is the longest repeating sequence of items (e.g. user tasks) where the number of con-
secutive items repeats more than some threshold T (T usually equals one).

3.2 Task Models

Statistical models such as LRS can be beneficial for predicting user actions. However,
there are two major drawbacks to such models: 1) in order to predict next actions,
training data must be supplied before the first use, and 2) poor quality training data
can potentially divert users from using preferred application paths.

Contrary to statistical models which are created at run-time, task models are cre-
ated during the design phase of an application. Task models are often defined as a
description of an interactive task to be performed by the user of an application

Performance Analysis of an Adaptive User Interface System Based on Mobile Agents 5

through the user interface of the application [13]. A task model represents the static
information on users and application tasks and their relationships.

Many different approaches to defining task models have been developed [13]: Hi-
erarchical Task Analysis (HTA) [26], ConcurTaskTrees (CTT) [23], Diane+ [2],
MUSE [12], to name few. We use CTT, developed by Patterno [23], as it provides well
developed tools for defining concurrent task trees.

Task models successfully describe static, pre-designed interaction with the users.
However, it is very difficult (if not impossible) to describe with sufficient accuracy
(for user behavior predictions) user-application interaction in case application tasks
change dynamically. For example, if the application changes its tasks dynamically
based on the information downloaded from the Internet, the task model of such an
application would be a high-level description; task models would not be able to model
precisely the dynamic tasks created as per downloaded information. This is because
information used to create tasks from the Internet is not known to the software devel-
oper at the design time, and some generic task or interaction description would have
to be used in the task model.

In our prototype we use specially crafted CTT models as pre-loaded training data
to statistical learning modules. CTT models used are very basic and do not follow
closely CTT standard notation; models are specifically customized for our use.

3.3 Learning Models in ADUS

Behavior analysis and learning in our system are provided by two separate knowledge
modules. The first module treats user preferences and simple patterns (e.g. modifying
the menus or font size). The second module is specialized in LRS-based behavior
analysis. Both knowledge modules help the user agent make the necessary decisions
that are later reflected on the user interface [21].

To improve LRS predictions we have developed a specialized converter utility that
can convert specifically crafted CTT definition into LRS paths database. The con-
verter utility is very basic — the CTT diagrams must be specifically prepared to
accommodate our converter tool which involves supplying object tags as per our
specification and designing trees with LRS in mind. In the current version of the pro-
totype CTT diagrams are very basic and do not follow closely CTT task types. Previ-
ously prepared information from CTT can be then loaded into the LRS module as the
default knowledge with a configurable weight (i.e. path preference). This has been
designed to: 1) ensure existence of the initial training data (before the first use), and
2) to ensure that the paths supplied by the GUI designer have certain initial priority
(weight) over dynamically collected paths. Such measures could improve overall user
experience and could improve quality of dynamically collected data.

However, the learning mechanism implemented in ADUS is agnostic - different
learning techniques can be implemented at the same time. Learning process is not
limited to tasks, but can be extended (with different learning techniques) to any other
type of learning.

3.4 Applications of Learning Features to the User Interface

Gathered knowledge (e.g., default values, color preferences, or previous actions and
selections) is applied by the user agent to the GUI specification. The LRS method
is more closely linked to tasks and user interaction paths and has been visually

6 N. Mitrovié, J.A. Royo, and E. Mena

implemented as a predictive toolbar (see Section 4.3 and Figure 4). The user agent
automatically inserts this toolbar in the application window (unless otherwise speci-
fied) and it shows a configurable number of next-most-probable actions [19].

In cases when software developers anticipate that predictive toolbar would not be use-
ful for the user (e.g. applications where the toolbar would not be visible, or where tasks are
not executed through buttons), the LRS module could be used by the visitor agent through
the user agent. Section 4.3 presents in detail usage modalities of the LRS module.

4 Using ADUS in a Sample Application

To show the benefits of learning techniques to GUI and complex GUI transformations
we have applied the ADUS approach to a multi-agent application —the Software Re-
trieval Service (SRS) [15]. The Software Retrieval Service tries to solve one of the
most frequent tasks for an average computer user: to search, download, and install
new software.

In the following we briefly introduce the agents that participate in the SRS and
then we describe how the ADUS approach is applied. The resulting system is tested
by real users in Section 5.

4.1 The Software Retrieval Service (SRS)

The Software Retrieval Service [15] is an application that helps naive users to find,
download, and install new software on their devices. The SRS is distributed between

PROXY

SOFTWARE PLACE

Software
Manager

i

Catalog
N Updater

12

i

|] -

! /;T Static agent : (

d | Salesman,/

& ‘ ’

| Mobile agent !

L,,,,,,,,,,,,,,J \f k
10 S

77777777777777777777 Catalog Brow\s\e\r\ 14 Trader

, . ! Updater ADUS

, == (Creation i 2

i 7 =

! ———= Communication ' 3 ot I

! i Alfred

R = el 1 USER PLACE

1 I

Fig. 2. Main architecture for the Software Retrieval Service

USER COMPUTER

Performance Analysis of an Adaptive User Interface System Based on Mobile Agents 7

the user’s device (also known as user place) and a proxy location (known as software
place), as illustrated in Figure 2.

In the following paragraphs we briefly describe the main agents of the SRS (more
details about this system can be found in [15]):

1. The Alfred agent. It is a user agent that serves the user and is in charge of storing as
much information about the user equipment, preferences, and context as possible.
Mobile agent technology allows that mobile agents can learn (e.g. using informa-
tion from the Web) about previously unknown contexts.

2. The Software Manager agent. It creates and provides the Browser agent with a
catalog of the available software, according to the requirements supplied by Alfred
(on behalf of the user, step 1 in Figure 2), i.e., it is capable to obtain customized
metadata about the underlying software.

3. The Browser agent. It travels to the user device (step 4) with aim to interact with the
user (see Figure 3) in order to help her/him browse the software catalog (step 5).

Working in this way — without ADUS — the Browser agent directly generates its
GUI on the user device without knowing user preferences and user device capabilities.

4.2 Using ADUS with the Software Retrieval Service

When applying the ADUS approach to the SRS application, Alfred plays the role of
user agent and the Browser agent behaves as a visitor agent that arrives to the user
device with the purpose of creating a GUI. An ADUS agent will be required to facili-
tate indirect user interface generation. The ADUS agent interacts with the SRS agents
as follows:

1. The Browser agent (as depicted in Figure 2) sends the XUL specification of the
GUI to Alfred.

2. Alfred amends the XUL specification according to the user preferences, context,
and device capabilities. In this example, size and location of “split panes™ are set
by Alfred.

Fig. 3. Java Swing Browser GUI created indirectly on a PDA

8 N. Mitrovié, J.A. Royo, and E. Mena

3. Alfred delegates the generation of the GUI to an ADUS agent, who renders the
GUI, interacts with the user, and feeds interaction data to Alfred (the user agent)
and the Browser (the visitor agent). Figure 3 shows the Java GUI generated by the
ADUS agent for a Pocket PC PDA.

4. GUI events and data received by the ADUS agent are communicated to Alfred and
the Browser agent for further processing. Alfred stores and analyses such data to
predict future user actions, and the Browser agent reacts to the selections or data
entered by the user by generating new or updating the existing GUI.

The above process is repeated until the Browser (the visitor agent) finishes its tasks
on the user device.

4.3 The Learning Process in the SRS

As described earlier, behavior analysis and learning are provided by the user agent
(Alfred in the case of the SRS), which treats user preferences and predicts the user
behavior following the stored patterns.

Once users start using the application, Alfred collects the necessary data by monitor-
ing user-executed actions in an effort to predict the next task. In the current version of
our prototype, the user agent Alfred monitors task execution only through button wid-
gets. As the SRS Browser agent uses a customized interaction model, the visitor agent
(the Browser agent in the example) can use the LRS module via the user agent (Alfred)
to benefit from the learning features of the system (as described in Section 3.4).

The Browser agent uses the LRS module described earlier via Alfred to automati-
cally expand or collapse browsing nodes (see Figure 3). The user agent will then ex-
pan% the nodes that are identified as the next most probable nodes to be opened by the
user- .

In addition to the SRS Browser agent GUI, Alfred has its own GUI that is designed
for configuration of user preferences, service options, and execution of other services.
This GUI features the predictive toolbar automatically generated by Alfred as de-
scribed in Section 3.4 and depicted in Figure 4. To improve the quality of training
data, and to provide initial training data to the LRS module in Alfred’s GUI, we have
developed a CTT task model (see Figure 5). The task paths are extracted from the
model using a converter utility and path weight is assigned to the paths.

[Tl
=

Services User Preferences Options

User Preferences |
fUser Device: susel: 9901
G5M: susel: 8900

Fig. 4. Alfred’s GUI — predictive toolbar

% The main task of the Browser agent is to help the user the user to browse a software catalogue
to find a certain software.

Performance Analysis of an Adaptive User Interface System Based on Mobile Agents 9

5 Performance Evaluation

In this Section we present results of the performance tests and analyze differences in
performance between using SRS with and without ADUS approach.

Alfred

< 0 o)
&
LauncpéRS e
: B .
/ /[ﬁ&JED pragrarm Setﬂpédicti ptions
=] e Sery]
§1 — == — k-(Launch User Preferenc /
“¥]

Selectkeywaords Open Nodes e}
g LS -
E—(" Select ORE Select ZloiwpPalette Select Pri

Select Platform
B

Select Font Size Save Prefergptes

§)=f

g*Preferences g E):T

Set Predictive Level
Set Predictive Gtatus

Launch Eenice Preferences

he

I==
Select Preferred Layout Select Preffered Device Type

Fig. 5. CTT model for Alfred’s GUI

In our test, users’ were asked to retrieve several pieces of software using the SRS
application. The first half of the participating users used the SRS application without
the ADUS architecture (direct GUI generation). The second half used the SRS appli-
cation with ADUS (indirect generation of GUIs). 50 users with mixed levels of skill
participated in this test.

In the first test we compare how the learning features of ADUS improve the system
from the point of view of time-consuming tasks. Measured times have been divided
into three categories:

— Data transfer: this is the time spent by the system 1) to send the different software
catalogs to the user device, 2) to move an agent across the network, and 3) to in-
voke remote procedure calls®.

— Reading catalog: this category represents the time spent by the user to read/browse
the software catalog shown on the device screen; this time includes to open/close a
catalog node to read its information.

— Ul operations: This measure quantifies the time spent by the system on GUI gen-
eration (and monitoring, when ADUS is used).

In [21] we showed that just using ADUS (without any prediction) improved the
performance of the SRS despite the small overhead due to the indirect GUI generation
and monitoring. From Figures 7 and 8 we can observe that the use of the LRS method
reduce the total time spent by users to find the software and even the time spent by the
system to generate GUIs: when estimations of user behavior are correct, users save

3 The authors would like to express their gratitude to all persons participating in this study.
* Intelligent (mobile) agents in the SRS decide between whether to use remote procedure call or
movement approach depending on the execution environment.

10 N. Mitrovié, J.A. Royo, and E. Mena

‘ 0O Data Transfer @ Reading Catalog @ Ul Operations

A Y L X X
P R R I IV N
RO R S
()
> N & & O 5 X &
& & <
N S
<2 ®
°

Fig. 6. Time-consuming tasks for SRS without ADUS

several GUI interactions (and the system saves the corresponding (indirect) GUI gen-
erations). Figure 6 depicts times spent on the SRS application without ADUS.

When the predictive features are used ADUS utilizes the data obtained from moni-
toring interaction between the user and the Browser agent to predict the users’ next
most probable action (see Section 3). The SRS application then expands and collapses
browsing nodes according to the next most probable action. This way, the user inter-
face is generated fewer times: multiple nodes are expanded or collapsed at the same
time with only one processing of Ul In the previous version, without predictive
features, nodes are expanded by the user manually which triggered additional UI
operations.

The second test gives indication of whether predictive features were used and if
they were useful. In Figure 9 we present usage of predictive features and the ratio of
correct predictions. “Right” represents the percentage of correct predictions that have
been followed by users. “Wrong” represents misleading predictions that have not
been followed by users. “Ignored” represents percentage of correct predictions that
were ignored by the users (they follow a non-optimal path).

Figure 9 shows that the predictive features had a good ratio of successful predic-
tions (on average 90.25%). The average percentage of wrong predictions was 9.74%.
69.74% (on average) of requests followed the correct prediction which implies that
predictive features have been seen as useful by most of the users. A certain percentage
of requests (20.51%) however did not see the features as useful or felt that the predic-
tions are erroneous.

In the next test we can observe that due to the predictive features the SRS Browser
agent loads a better sample of data leading to lower network utilization (cost saving if
wireless networks are used) which also results in better processing of the information
from the network as more relevant data are downloaded.

Performance Analysis of an Adaptive User Interface System Based on Mobile Agents

OData Transer B Reading Catalog U Cperations

Fig. 7. Time-consuming tasks for SRS + ADUS without predictive features

O Data Transfer B Reading Catalog Ul Operations

18

11

16

14

L >

[T EYY———————————.- >

A A < S N s+ 3 @
& & F e & S
& R R 0 & N 0\0‘ ¥ @Q}\ & &
N S S N
& RO & X¢ E o
(5\9* &
o

Fig. 8. Time-consuming tasks for SRS + ADUS with predictive features

12 N. Mitrovié, J.A. Royo, and E. Mena

‘ o Ignored @ Wrong O Right

o
<]
*
|
[T T T 1T

]

o
7

L.

%. |

476‘

%,

%

% L[]
4

%

S,
% | LT
%

o L[]

& & ¥ N O Yt
&"& & 5 F & & ((zz'"\o && Q@& 3
> (o) \0@ éoo‘\ \é) P’ %’\0 OQ\
$ <
& &
o

Fig. 9. Usage of Predictive Features

\ @ SRS w ithout ADUS 0 SRS with ADUS

Fig. 10. Browser (agent) intelligence with and without predictive features

This measurement is defined as Browser (agent) intelligence [15] and represents ef-
ficiency in refining software catalogs shown to the user.

Figure 10 shows a comparison among two versions of the Browser agent intelli-
gence; the higher percentage, the better network and processing usage. On average the
improvement due to ADUS with predictive features ranged from -2% to 23%
(average of averages was 7%). To conclude, time to find the requested application

Performance Analysis of an Adaptive User Interface System Based on Mobile Agents 13

using the SRS application with ADUS and predictive features has been improved
through lower UI operations, network consumption and information processing due to
correct predictions made by the system.

In addition to the measurable indicators we asked users to express the usefulness of
the predictive features in the SRS application. Usability was measured in a relative way;
users were asked to compare the SRS application without ADUS to the SRS application
with ADUS with predictive features and the usability of predictive features in compari-
son with the original SRS without ADUS: scores range from O (not useful) to 10 (very
useful). The score above 5 signifies that the ADUS versions of program are more pre-
ferred. Figure 11 shows the usability of 1) SRS with and without ADUS predictive
features and 2) usability of predictive features alone in SRS with ADUS in comparison
to the SRS without ADUS. The usability rating was surveyed for every task in order to
understand better usability of predictive features relating to a particular task.

‘DAppIication usability m Predictive features usability ‘

3,7
2 1|
1
0,7
& & « @ ¢ » o & o & ¢
& © & > & .@7& A Q\OO c‘}‘é\ &3@ & vz,‘:‘79
APV S S S S G A
O o © EA® A
*6@ <@ QO
\(é% o‘b
O

Fig. 11. Average usability of two SRS versions and predictive features

On average, the SRS version with ADUS and predictive features was seen as more
usable than the version of SRS without ADUS. Similar results were obtained for the
usability of predictive features. However, in some cases usability of predictive fea-
tures has a much lower score than the application usability — this was typically a result
of an erroneous prediction that confused users. In total, both the improved application
and predictive features scored almost 3 points above the old system versions which
shows that the improvements to the system have been seen as usable.

Results Summary

Tests were conducted with 50 users to demonstrate quantifiable difference between two
versions of the SRS application: without and with ADUS and predictive features. It has
been demonstrated that, although general GUI processing is increased when following
ADUS approach, the actual processing time decreases due to the application of predic-
tive features. In addition, information processing and network operations are reduced,
which lowers the operational and usage cost of mobile applications on wireless networks.

14 N. Mitrovié, J.A. Royo, and E. Mena

Tests were also designed to measure usability of the system improvements through
time to download, usage ratio of predictive features and number of correct predictions
by the system. All tests concluded that improvements to the original application were
made; a good percentage of predictions were correct and the predictive features have
been used by the testers.

Furthermore we have examined some subjective factors: relative usability of two
applications and relative usability of predictive features. The survey showed that both
the improved application and predictive features were seen more usable than the
original versions.

6 State of the Art and Related Work

In this section we present several approaches related to the work presented in this
paper. Various approaches to adapting user interfaces to different devices are present.
The approaches can be grouped into two categories: web applications and classic
applications. While the first category [5, 8] treats only web content and transforma-
tions of web content in order to be usable on other (mostly mobile) devices, the sec-
ond category treats the problems of universally defining the user interface, so it can be
later reproduced by various program implementations [1, 27, 11, 32, 22] —or middle-
ware— on various platforms. Solutions are usually designed as client-server and are
developed for specific platforms.

Some researchers use software agents (or software entities) [14, 7, 25] which should
not be confused for mobile agents. Software agents are software programs that rarely
offer any interoperability or mobility and are frequently specifically written for a
particular case or application. Lumiere [7] system gives user behavior anticipation
through the use of Bayesian models but does not offer any mobility and can be used
only in Microsoft Office applications and with use of user profiles. Seo et al. [25]
investigate software entities that are standalone, desktop applications. Such entities
monitor use of the particular web browser application and provide some anticipation
of interaction. The Eager system [28] anticipates user actions but does not offer any
mobility and is written for specific operating system/application set. Execution of
such system relies on generation of macro scripts within the used application set.

Improving user interface usability is a complex area and many approaches to improv-
ing usability exist. We will focus on three main approaches to improve user interface
usability: user interface metrics, data mining — user behavior prediction, and task models.
The basic concept is to collect user interface metrics for a web site [10]. Usually, col-
lected data are used to perform traffic-based analysis (e.g., pages-per-visitor, visitors-per-
page), time-based analysis (e.g., page view durations, click paths) or number of links and
graphics on the web pages. These methods fail to give prediction of user behavior, and
results can be influenced by many factors. In addition, such analysis is usually used dur-
ing the Ul design (and not in run-time) to improve existing or create new interfaces.

Many models that treat to predict user behavior are based on Markov chains [6].
Predictions are made based on the data from usage logs. More advanced models, like
Longest Repeating Subsequence (LRS) [24] or Information Scent [3] perform data
mining seeking to analyze navigation path based on server logs, similarity of pages,
linking structure and user goals. These models incorporate parts of Markov models in
order to give better results. Our prototype uses LRS model as described in Section 3.

Performance Analysis of an Adaptive User Interface System Based on Mobile Agents 15

Task models are often defined as a description of an interactive task to be per-
formed by the user of an application through the application’s user interface [13]. Task
model is defined during the application design and gives information on user and
application tasks and their relationships. Many different approaches to defining task
models have been developed [13]: Hierarchical Task Analysis (HTA) [26], Concur-
TaskTrees (CTT) [23], Diane+ [2], MUSE [12], to name few. Task models are typi-
cally used to help define and design user interface, and sometimes also to help create
user interfaces during the design. In our prototype we use task models as source of
training information for user interaction analysis.

7 Conclusions and Future Work

This paper presents results of performance and usability studies on ADUS, our
proposal for adaptive user interface generation, which is based on mobile agents. In
addition, it allows the user behavior monitoring due to its indirect user interface
generation method. As summary, the main advantages of our approach are:

— Transparent adaptation of abstract user interface definition to concrete platforms, in an
indirect way. GUIs supplied by visitor agents are generated correctly (according to the
user preferences and device capabilities) if they are specified in XUL by visitor agents.

— Visitor agents do not need to know how to generate GUIs in different devices. Also
the direct generation of GUIs by visitor agents can be easily avoided; direct GUI
generation could undermine platform’s efforts to improve user’s experience and al-
low uncontrolled malicious behaviors such as phishing.

— User interfaces are adapted to meet the specific user’s context and preferences
without user or developer intervention.

— Any user interaction can be monitored by the system in order to help the user to
interact with future invocations of services.

— The system learns from the user behavior to anticipate future user actions, with the
goal of improving the performance and usability. The user behavior is analyzed
and next most probable action is advertised. The prediction rate of the proposed al-
gorithm used in our prototype is satisfactory. However, any other predictive algo-
rithm or model could be used in ADUS.

Finally we have presented some performance and usability tests of the system. The
performance results demonstrate that there are no significant processing overheads of
the proposed architecture and that some performance benefits could be drawn by
reducing GUI, network, and information processing operations through predicting
future states of user interaction. The results of the usability survey show that users
perceive a system more useful when it follows the ADUS architecture.

As future work we are considering some options for improving the exploitation of
user interaction data stored by user agents and expanding user agents’ ability to auto-
matically recognize tasks from a wider range of GUI widgets.

Acknowledgements

This work was supported by the CICYT project TIN2004-07999-C02-02.

16

N. Mitrovié, J.A. Royo, and E. Mena

References

11.

12.

13.

14.

15.

16.
17.

18.

19.

. Abrams, M., Phanouriou, C., Batongbacal, A.L., William, S.M., Shuster, J.E.: Uiml: An

appliance-independent XML user interface language. WWWS8 / Computer Net-
works 31(11-16), 1695-1708 (1999)

Barthet, M.F., Tarby, J.C.: The diane+ method. In: Computer-aided design of user inter-
faces. Namur, Belgium, p. 95120 (1996)

. Chi, E.H., Pirolli, P., Pitkow, J.: The scent of a site: A system for analyzing and predicting

information scent, usage, and usability of a web site. In: ACM CHI 2000 Conference on
Human Factors in Computing Systems (2000)

WWW Consortium, http://www.w3.org/Mobile/CCPP/

Microsoft Corp. Creating mobile web applications with mobile web forms in visual studio
.net (2001), http://msdn.microsoft.com/vstudio/technical/articles/
mobilewebforms.asp

Deshpande, M., Karypis, G.: Selective markov models for predicting web-page accesses.
Technical report, University of Minnesota Tech. Report 00-056 (2000)

Horvitz, E., Breese, J., Heckerman, D., Hovel, D., Rommelse, K.: The lumiere project:
Bayesian user modeling for inferring the goals and needs of software users. In: Proceed-
ings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, Madison, WI,
pp- 256-265 (July 1998)

IBM. Ibm websphere transcoding publisher (2001),
http://www3.ibm.com/software/webservers/transcoding/

Recursion Software Inc. (2006), http: //www.recursionsw.com/voyager .htm
Ivory, M.Y., Sinha, R.R., Hearst, M.A.: Empirically validated web page design metrics. In:
SIGCHI (2001)

Coninx, K., Lyten, K.: An XML runtime user interface description language for mobile
computing devices. In: Johnson, C. (ed.) DSV-IS 2001. LNCS, vol. 2220. Springer, Hei-
delberg (2001)

Lim, K.Y., Long, J.: The muse method for usability engineering. Cambridge University
Press, Cambridge (1994)

Limbourg, Q., Vanderdonckt, J.: Comparing Task Models for User Interface Design. Law-
rence Erlbaum Associates, Mahwah (2003)

Liu, H., Lieberman, H., Selker, T.: A model of textual affect sensing using real-world
knowledge. In: 2003 Int. Conference on Intelligent UIs (January 2003)

Mena, E., Illarramendi, A., Royo, J.A., Goni, A.: A software retrieval service based on
adaptive knowledge-driven agents for wireless environments. Transactions on Autono-
mous and Adaptive Systems (TAAS) 1(1) (September 2006)

Milojicic, D.: Mobile agent applications. IEEE Concurrency 7(3), 80-90 (1999)

Milojicic, D., Breugst, M., Busse, 1., Campbell, J., Covaci, S., Friedman, B., Kosaka, K.,
Lange, D., Ono, K., Oshima, M., Tham, C., Virdhagriswaran, S., White, J.: MASIF: The
OMG mobile agent system interoperability facility. In: Rothermel, K., Hohl, F. (eds.) MA
1998. LNCS (LNAI), vol. 1477. Springer, Heidelberg (1998)

Mitrovic, N., Mena, E.: Adaptive user interface for mobile devices. In: Forbrig, P., Lim-
bourg, Q., Urban, B., Vanderdonckt, J. (eds.) DSV-IS 2002. LNCS, vol. 2545, pp. 29-43.
Springer, Heidelberg (2002)

Mitrovic, N., Mena, E.: Improving user interface usability using mobile agents. In: Jorge,
J.A., Jardim Nunes, N., Falcdo e Cunha, J. (eds.) DSV-IS 2003. LNCS, vol. 2844, pp. 273—
287. Springer, Heidelberg (2003)

Performance Analysis of an Adaptive User Interface System Based on Mobile Agents 17

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Mitrovic, N., Royo, J.A., Mena, E.: Adus: Indirect generation of user interfaces on wireless
devices. In: 15th Int. Workshop on Database and Expert Systems Applications (DEXA
2004), 7th Int. Workshop Mobility in Databases and Distributed Systems (MDDS 2004).
IEEE Computer Society, Los Alamitos (2004)

Mitrovic, N., Royo, J.A., Mena, E.: Adaptive user interfaces based on mobile agents:
Monitoring the behavior of users in a wireless environment. In: I Symposium on Ubiqui-
tous Computing and Ambient Intelligence, Spain, Thomson-Paraninfo (2005)

Molina, J.P., Melia, S., Pastor, O.: Just-ui: A user interface specification model. In: 4th In-
ternational Conference on Computer-Aided Design of User Interfaces CADUI 2002. Klu-
wer, Dordrecht (2002)

Paterno, F., Santoro, C.: One model, many interfaces. In: Fourth International Conference
on Computer-Aided Design of User Interfaces (CADUI 2002). Kluwer Academics,
Dordrecht (2002)

Pitkow, J., Pirolli, P.: Mining longest repeatable subsequences to predict world wide web
surfing. In: 2nd Usenix Symposium on Internet Technologies and Systems (USITS) (1999)
Seo, Y.-W., Zhang, B.-T.: Learning user’s preferences by analyzing web-browsing behav-
iors. In: Int. Conf. on Autonomous Agents 2000 (2000)

Shepherd, A., Diaper, D.: Analysis and training in information technology tasks, Chicester.
In: Task analysis for human-computer interaction (1989)

Stottner, H.: A platform-independent user interface description language, Technical Report
16, Institute for Practical Computer Science, Johannes Kepler University Linz (2001)
Eager system (1993),
http://www.acypher.com/wwid/Chapters/09Eager.html

Thevenin, D., Coutaz, J.: Plasticity of user interfaces: Frame-work and research agenda. In:
Proc. of IFIP TC 13 Int. Conf. on Human-Computer Interaction INTERACT 1999, Edin-
burgh (August 1999)

30. XUL Tutorial (2002), http://www.xulplanet.com/tutorials/xultu/

31. usiXML (2004), http://www.usixml .org/

32. W3C. Xforms (2000), http://www.xforms.org/

33. Wang, A., Srensen, C.-F., Indal, E.: A mobile agent architecture for heterogeneous de-
vices. In: Proc. of the Third IASTED International Conference on Wireless and Optical
Communications (WOC 2003) (2003)

34, XIML (November 1999), http://www.ximl.org/

35. Zukerman, L., Albrecht, D.: Predictive statistical models for user modeling. In: Kobsa, A.
(ed.) User Modeling and User Adapted Interaction (UMUAI) -The Journal of Personaliza-
tion Research, volume Ten Aniversary Special Issue. Kluwer Academic Publishers,
Dordrecht (2000)

Questions

Jose Campos:
Question: When you change from laptop to PDA you might need to change dialogue
control, not only the screen layout. Are your agents capable of this?

Answer: This is an open problem and future work.

Combining Human Error Verification and Timing
Analysis

Rimvydas Rukéénas', Paul Curzon', Ann Blandfordz, and Jonathan Back?

! Department of Computer Science, Queen Mary, University of London
{rimvydas,pc}@dcs.gmul.ac.uk
% University College London Interaction Centre
{a.blandford, j.back}@ucl.ac.uk

Abstract. Designs can often be unacceptable on performance grounds. In this
work, we integrate a GOMS-like ability to predict execution times into the ge-
neric cognitive architecture developed for the formal verification of human
error related correctness properties. As a result, formal verification and GOMS-
like timing analysis are combined within a unified framework. This allows one
to judge whether a formally correct design is also acceptable on performance
grounds, and vice versa. We illustrate our approach with an example based on a
KLM style timing analysis.

Keywords: Human error, formal verification, execution time, GOMS, cognitive
architecture, model checking, SAL.

1 Introduction

The correctness of interactive systems depends on the behaviour of both human and
computer actors. Human behaviour cannot be fully captured by a formal model. How-
ever, it is a reasonable, and useful, approximation to assume that humans behave “ra-
tionally”: entering interactions with goals and domain knowledge likely to help them
achieve their goals. If problems are discovered resulting from rational behaviour then
such problems are liable to be systematic and deserve attention in the design. Whole
classes of persistent, systematic user errors may occur due to modelable cognitive
causes [1, 2]. Often opportunities for making such errors can be reduced with good
design [3]. A methodology for detecting designs that allow users, when behaving in a
rational way, to make systematic errors will improve such systems. In the case of
safety-critical interactive systems, it is crucial that some tasks are performed within
the limits of specified time intervals. A design can be judged as incorrect, if it does
not satisfy such requirements. Even for everyday systems and devices, the time and/or
the number of steps taken to achieve a task goal can be an indication of the usability
or otherwise of a particular design.

We previously [4, 5] developed a generic formal user model from abstract cogni-
tive principles, such as entering an interaction with knowledge of the task and its

J. Gulliksen et al. (Eds.): EIS 2007, LNCS 4940, pp. 18135] 2008.
© IFIP International Federation for Information Processing 2008

Combining Human Error Verification and Timing Analysis 19

subsidiary goals, showing its utility for detecting some systematic user error. So far
we have concentrated on the verification of functional correctness (user achieving a
task goal) and usability properties (the absence of post-completion errors). Also, the
cognitive architecture was recently used to verify some security properties — detecting
confidentiality leaks due to cognitive causes [6]. However, none of this work ad-
dressed the timing aspects of user interaction. For example, a successful verification
that a task goal is achieved only meant that it is eventually achieved at some unspeci-
fied point in the future. This is obviously insufficient, if the goal of verification is to
give evidence that a system satisfies specific timing requirements.

Timing analysis is one of the core concerns in the well-established GOMS meth-
odology [7]. A GOMS model predicts the trace of operators and task completion time.
However, since GOMS models are deterministic, this prediction assumes and applies
to a single, usually considered as expert or optimal, sequence of operators. Such as-
sumptions may be invalid for everyday interactive systems whose average users do
not necessarily know or are trained to follow optimal procedures, or they simply
might choose a less cognitively demanding method. Moreover, under pressure, even
the operators (expert users) of safety-critical systems may choose sub-optimal and
less likely plans of action. This suggests that a timing analysis of interactive systems
should include a broader set of cognitively plausible behaviours.

The main goal of this paper is to add into our verification methodology, based on a
generic cognitive architecture, a GOMS-like ability to predict execution times. For
this, we intend to use timing data provided by HCI models such GOMS. It should be
noted of course that such timings are only estimates so “proofs” based on such tim-
ings are not formal guarantees of a particular performance level. They are not proofs
of any real use, just proofs that the GOMS execution times are values within a par-
ticular range. Provided that distinction is remembered they can still be of use.

Using the SAL verification tools [8], we combine this ability to prove properties of
GOMS timings with the verification of human error related correctness properties
based on the traversal of all cognitively plausible behaviours as defined by our user
model. This way, rather than considering a single GOMS “run,” a whole series of runs
are analyzed together, automatically generating a range of timings depending on the
path taken. Such a setting allows one to do error (correctness) analysis first and then,
once an error free design is created, do a broad timing analysis within a single inte-
grated system. An advantage of doing so is that the GOMS timings can be used to ar-
gue that a systematically possible choice is “erroneous” on course performance
grounds: the user model does achieve the goal but very inefficiently. If one potential
method for achieving a goal was significantly slower, whilst the task completion
would be proved, this might suggest design changes to either disable the possibility of
choosing that method or change the design so that if it was taken then it would be eas-
ier to accomplish the goal. Similarly, a design chosen on performance grounds to
eliminate a poor path might be rejected by our GOMS-like analysis due to its poten-
tial for systematic error discovered by the integrated human error analysis.

Many GOMS models support an explicit hierarchy of goals and subgoals. Our pre-
vious cognitive architecture was “flat” allowing only atomic user goals and actions.
This meant that any hierarchy in user behaviour (task or goal structures) could be

20 R. Ruksénas et al.

specified only implicitly. In this work, we take a step towards supporting hierarchical
specifications of user goals. When needed (e.g., to capture an expert behaviour within
a complex interactive system), these can be structured in an appropriate way. Note
however that this extension to our cognitive architecture does not necessarily impose
hierarchical goal structures on specific user models. To represent unstructured goals,
one can simply choose a “flat” hierarchy, as is done in this paper.

One indication of cognitively plausible behaviour is choosing options that are rele-
vant to the task goals when there are several alternatives available. Currently our cog-
nitive architecture is fully non-deterministic in the sense that any user goal or action
that is possible according to the principles of cognition, and/or prompted by the inter-
face might be selected for execution. Here we introduce a facility for correlating, in
such situations, user choices and task goals, thus ensuring that the user model ignores
available but irrelevant alternatives.

Summarising, the main goal and contribution of the work presented in this paper is
the integration of user-centred timing analysis with formal verification approach orig-
inally developed for reasoning about human error. Our aim here is to demonstrate
how this can be done and to indicate the potential of combining the approaches in this
complementary way to analyse the behaviour of the interactive system in terms of
timing and timing-related errors. More specifically:

— It provides a way of creating GOMS-like cognitively plausible variations of meth-
ods of performing a task that emerge from a formal model of behaviour.

— It provides a way of detecting methods that have potential for systematic human er-
ror occurring using the same initial GOMS-like specification.

— The GOMS-like predictions of timings open the possibility of detecting some
(though not all) classes of specific errors that could occur due to those timings,
whilst still doing in parallel time-free error analysis based on the verification of
various correctness properties.

— It allows our concept of systematic error to be extended in an analysis to include
“erroneous” choices in the sense of choosing an alternative that, whilst eventually
achieving the result, is predicted to be slower than acceptable.

— It introduces into our cognitive architecture a correlation between task goals and
user choices thus refining the notion of cognitive plausibility captured by the for-
mal user model.

1.1 Related Work

There is a large body of work on the formal verification of interactive systems. Spe-
cific aims and focus vary. Here we concentrate on the work most directly linked to
our work in this paper.

Whilst GOMS assume error-free performance, this does not preclude them from
being used in a limited way to analyse erroneous performance. As noted by John and
Kieras [9], GOMS can be used for example to give performance predictions for error
recovery times. To do this one simply specifies GOMS models for the task of recover-
ing from error rather than the original task, perhaps comparing predictions for differ-
ent recovery mechanisms or determining whether recovery can be achieved with

Combining Human Error Verification and Timing Analysis 21

minimal effort. With these approaches the analysis does not identify the potential for
human error: the specific errors considered must be decided in advance by the
analyst.

Beckert and Beuster [10] present a verification environment with a similar archi-
tecture to our user model — connecting a device specification, a user assumption mod-
ule and a user action module. They use CMN-GOMS as the user action module. The
selection rules of the GOMS model are driven by the assumption model and the ac-
tions drive the device model. This gives a way of exploring the effect of errors made
by the user (incorrect selection decisions as specified in the user assumption module).
However, the assumption module has no specific structure, so the decision of what
kind of errors could be made is not systematic or formalized but left to the designers
of the system. This differs from our approach where we use a cognitive model com-
bined with aspects of a GOMS model. This allows us to reason about systematic error
in a way that is based on formalised principles of cognition. They also have not spe-
cifically focused on predicting performance times using GOMS, but rather are using it
as a formal hierarchical task model.

Bowman and Faconti [11] formally specify a cognitive architecture using the proc-
ess calculus LOTOS, and then apply a temporal interval logic to analyse constraints,
including timing ones, on the information flow and transformation between the differ-
ent cognitive subsystems. Their approach is more detailed than ours, which abstracts
from those cognitive processes.

In the area of safety-critical systems, Rushby er al [12] focus on mode errors and
the ability of pilots to track mode changes. They formalize plausible mental models of
systems and analyse them using the Mur¢ verification tool. The mental models
though are essentially abstracted system models; they do not rely upon structure pro-
vided by cognitive principles. Neither do they attempt timing analysis. Also using
Mur¢, Fields [13] explicitly models observable manifestations of erroneous behav-
iour, analysing error patterns. A problem of this approach is the lack of discrimination
between random and systematic errors. It also implicitly assumes there is a correct
plan, from which deviations are errors.

Temporal aspects of usability have also been investigated in work based on the
task models of user behaviour [14, 15]. Fields et al [14] focus on the analysis of situa-
tions where there are deadlines for completing some actions and where the user may
have to perform several simultaneous actions. Their approach is based on Hierarchical
Task Analysis and uses the CSP formalism to specify both tasks and system con-
straints. Lazace et al [15] add quantitative temporal elements to the ICO formalism
and use this extension for performance analysis. Both these approaches consider spe-
cific interaction scenarios which contrasts to our verification technique supporting the
analysis of all cognitively plausible behaviours. The efficiency of interaction, albeit
not in terms of timing, is also explored by Thimbleby [16]. Using Mathematica and
probabilistic distributions of usage of menu functions, he analyses interface complex-
ity. The latter is measured as the number of actions needed to reach desired menu
options.

22 R. Ruksénas et al.

2 HUM-GOMS Architecture

Our cognitive architecture is a higher-order logic formalisation of abstract principles
of cognition and specifies a form of cognitively plausible behaviour [17]. The archi-
tecture specifies possible user behaviour (traces of actions) that can be justified in
terms of specific results from the cognitive sciences. Real users can act outside this
behaviour of course, about which the architecture says nothing. However, behaviour
defined by the architecture can be regarded as potentially systematic, and so errone-
ous behaviour is similarly systematic in the design. The predictive power of the archi-
tecture is bounded by the situations where people act according to the principles
specified. The architecture allows one to investigate what happens if a person acts in
such plausible ways. The behaviour defined is neither “correct” nor “incorrect.” It
could be either depending on the environment and task in question. We do not attempt
to model the underlying neural architecture nor the higher-level cognitive architecture
such as information processing. Instead our model is an abstract specification, in-
tended for ease of reasoning.

2.1 Cognitive Principles

In the formal user model, we rely upon abstract cognitive principles that give a know-
ledge level description in the terms of Newell [18]. Their focus is on the internal goals
and knowledge of a user. These principles are briefly discussed below.

Non-determinism. In any situation, any one of several cognitively plausible behav-
iours might be taken. It cannot be assumed that any specific plausible behaviour will
be the one that a person will follow where there are alternatives.

Relevance. Presented with several options, a person chooses one that seems relevant
to the task goals. For example, if the user goal is to get cash from an ATM, it would
be cognitively implausible to choose the option allowing one to change a PIN. A per-
son could of course press the wrong button by accident. Such classes of error are be-
yond the scope of our approach, focussing as it does on systematic slips.

Mental versus physical actions. There is a delay between the moment a person men-
tally commits to taking an action (either due to the internal goals or as a response to
the interface prompts) and the moment when the corresponding physical action is tak-
en. To capture the consequences of this delay, each physical action modelled is asso-
ciated with an internal mental action that commits to taking it. Once a signal has been
sent from the brain to the motor system to take an action, it cannot be revoked after a
certain point even if the person becomes aware that it is wrong before the action is
taken. To reflect this, we assume that a physical action immediately follows the com-
mitting action.

Pre-determined goals. A user enters an interaction with knowledge of the task and, in
particular, task dependent sub-goals that must be discharged. These sub-goals might
concern information that must be communicated to the device or items (such as
bank cards) that must be inserted into the device. Given the opportunity, people may

Combining Human Error Verification and Timing Analysis 23

attempt to discharge such goals, even when the device is prompting for a different
action. Such pre-determined goals represent a partial plan that has arisen from
knowledge of the task in hand, independent of the environment in which that task is
performed. No fixed order other than a goal hierarchy is assumed over how pre-
determined goals will be discharged.

Reactive behaviour. Users may react to an external stimulus, doing the action sug-
gested by the stimulus. For example, if a flashing light comes on a user might, if the
light is noticed, react by inserting coins in an adjacent slot.

Goal based task completion. Users intermittently, but persistently, terminate interac-
tions as soon as their main goal has been achieved [3], even if subsidiary tasks gener-
ated in achieving the main goal have not been completed. A cash-point example is a
person walking away with the cash but leaving the card.

No-option based task termination. If there is no apparent action that a person can take
that will help to complete the task then the person may terminate the interaction. For
example, if, on a ticket machine, the user wishes to buy a weekly season ticket, but
the options presented include nothing about season tickets, then the person might give
up, assuming the goal is not achievable.

2.2 Cognitive Architecture in SAL

We have formalised the cognitive principles within the SAL environment [8]. It pro-
vides a higher-order specification language and tools for analysing state machines
specified as parametrised modules and composed either synchronously or asynchro-
nously. The SAL notation we use here is given in Table 1. We also use the usual
notation for the conjunction, disjunction and set membership operators. A slightly
simplified version of the SAL specification of a transition relation that defines our
user model is given in Fig. 1, where predicates in italic are shorthands explained later
on. Below, whilst explaining this specification (SAL module User), we also discuss
how it reflects our cognitive principles.

Table 1. A fragment of the SAL language

Notation Meaning

x:T x has type T

AMx:T) :e a function of x with the value e

X' =e an update: the new value of x is that of the expression e
{x:T|p(x)} a subset of T such that the predicate p (x) holds

ali] the i-th element of the array a

r.x the field x of the record r

r WITH .x:=e the record r with the field x replaced by the value of e
g — upd if g is true then update according to upd

c [l d non-deterministic choice between c and d

0(i:T): c; non-deterministic choice between the c; with i in range T

24 R. Ruksénas et al.

Guarded commands. SAL specifications are transition systems. Non-determinism is
represented by the non-deterministic choice, [, between the named guarded com-
mands (i.e. transitions). For example, CommitAction in Fig. 1 is the name of a family
of transitions indexed by g. Each guarded command in the specification describes an
action that a user could plausibly take. The pairs CommitAction — PerformAction of
the corresponding transitions reflect the connection between the physical and mental
actions. The first of the pair models committing to a goal, the second actually taking
the corresponding action (see below).

Goals structure. The main concepts in our cognitive architecture are those of user
goals and aims. A user aim is a predicate that partially specifies model states that the
user intends to achieve by executing some goal. User goals are organised as a hierar-
chical (tree like) goal-subgoals structure. The nodes of this tree are either compound
or atomic:

Atomic. Goals at the bottom of the structure (tree leaves) are atomic: they consist of
(map to) an action, for example, a device action.
Compound. All other goals are compound: they are modelled as a set of task subgoals.

In this paper, we consider an essentially flat goal structure with the top goal consisting
of atomic subgoals only. We will explore the potential for using hierarchical goal
structures in subsequent work.

In SAL, user goals and aims are modelled as arrays, respectively, Goals and
Aims, which are parameters of the User module. Each element in Goals is a record
with the following fields:

Guard. A predicate, denoted grd, that specifies when the goal is enabled, for exam-
ple, due to the relevant device prompts.

Choice. A predicate (choice strategy), denoted choice, that models a high-level or-
dering of goals by specifying when a goal can be chosen. An example of the
choice strategy is: “choose only if this goal has not been chosen before.”

Aims. A set of records consisting of two fields, denoted aims, that essentially mod-
els the principle of relevance. The first one, state, is a reference to an aim
(predicate) in the array Aims. The conjunction of all the predicates referred to in
the set aims, defined by the predicate Achieved (g) for a goal g, fully specifies
the model states the user intends to achieve by executing this goal. For the top
goal, denoted TopGoal, this conjunction coincides with the main task goal. The
second field, ignore, specifies a set of goals that are irrelevant to the aim speci-
fied by the corresponding field state. Note that the same effect could be
achieved by providing a set of “promising” actions. However, since in our ap-
proach the relevance of a goal is generally interpreted in a very wide sense, we ex-
pect that the “ignore” set will be a more concise way of specifying the same thing.

Subgoals. A data structure, denoted subgoals, that specifies the subgoals of the
goal. It takes the form comp (gls) when the goal consists of a set of subgoals
gls. If the goal is atomic, its subgoals are represented by a reference, denoted
atom(act) to an action in the array Actions (see below).

Combining Human Error Verification and Timing Analysis 25

TRANSITION

[(g:GoalRange, p:AimRange) : CommitAction :
NOT (comm) A

finished =notf A commit' [act (Goals[g] .subgoals)]

atom? (Goals[g] .subgoals) A = committed;
Goals[g] .grd(in,mem, env) A t' = t + CogOverhead;
Goals[g] .choice(status,g) A status' = status
. WITH .trace[g] := TRUE
ExitGoal A Relevant(g,
(g (9.p) WITH .length :=status.length+1
g = ExitGoal A MayExit)
0
0 (a:ActionRange) : PerformAction:
. B . commit'[a] = ready;
commit[a] = committed - Transition(a)
0
ExitTask:
Achieved (TopGoal) (in,mem) A
NOT (comm) A — finished' =0k
finished =notf
0
Abort:
NOT (EnabledRelevant (in,mem, env)) A finished' =
NOT (Achieved (TopGoal) (in,mem)) A N IF Wait (in,mem)

THEN notf

NOT (comm) A
ELSE abort ENDIF

finished = notf

0
Idle :
finished =notf —

Fig. 1. User model in SAL (simplified)

Goal execution. To see how the execution of an atomic goal is modelled in SAL con-
sider the guarded command PerformAction for doing a user action that has been pre-
viously committed to:

commit’ [a] = ready;

commit[al] = committed — Transition(a)

The left-hand side of — is the guard of this command. It says that the rule will on-
ly activate if the associated action has already been committed to, as indicated by the
element a of the local variable array commit holding value commi t ted. If the rule
is then non-deterministically chosen to fire, this value is changed to ready to indi-
cate there are now no commitments to physical actions outstanding and the user
model can select another goal. Finally, Transition(a) represents the state updates as-
sociated with this particular action a.

The state space of the user model consists of three parts: input variable in, output
variable out, and global variable (memory) mem; the environment is modelled by a
global variable, env. All of these are specified using type variables and are instanti-
ated for each concrete interactive system. The state updates associated with an atomic
goal are specified as an action. The latter is modelled as a record with the fields
tout, tmem, tenv and time; the array Actions is a collection of all user actions.

26 R. Ruksénas et al.

The time field gives the time value associated with this action (see Section 2.3). The
remaining fields are relations from old to new states that describe how two compo-
nents of the user model state (outputs out and memory mem) and environment env
are updated by executing this action. These relations, provided when the generic user
model is instantiated, are used to specify Transition(a) as follows:

t' = t + Actions[a].time;

out’ € {x:0ut | Actions[a].tout (in,out,mem) (x)};

mem’ € {x:Memory | Actions[a].tmem(in,mem,out’) (x) };

env’ € {x:Env | Actions[al.tenv(in, mem, env) (x) A possessions}

Since we are modelling the cognitive aspects of user actions, all three state updates
depend on the initial values of inputs (perceptions) and memory. In addition, each up-
date depends on the old value of the component updated. The memory update also
depends on the new value (out ') of the outputs, since we usually assume the user
remembers the actions just taken. The update of env must also satisfy a generic rela-
tion, possessions. It specifies universal physical constraints on possessions and their
value, linking the events of taking and giving up a possession item with the corre-
sponding increase or decrease in the number (counter) of items possessed. For exam-
ple, it specifies that if an item is not given up then the user still has it. The counters of
possession items are modelled as environment components.

PerformAction is enabled by executing the guarded command for selecting an
atomic goal, CommitAction, which switches the commit flag for some action a to
committed thus committing to this action (enabling PerformAction). The fact that a
goal g is atomic is denoted atom? (Goals[g].subgoals). An atomic goal g
may be selected only when its guard is enabled and the choice strategy for g is true.
For the reactive actions (goals), their choice strategy is a predicate that is always true.
In the case of pre-determined goals, we will frequently use the strategy “choose only
if this goal has not been chosen before.” When the user model discharges such a goal,
it will not do the related action again without an additional reason such as a device
prompt.

The last conjunct in the guard of CommitAction distinguishes the cases when the
selected goal is ExitGoal or not. ExitGoal (given as a parameter of the User
module) represents such options as “cancel” or “exit,” available in some form in most
of interactive systems. Thus, a goal g that is not ExitGoal may be selected only if
there exists a relevant aim p in the set Goals [g] .aims, denoted Relevant(g, p).
We omit here the formal definition of the relevance condition. On the other hand, if g
is ExitGoal then it can be selected only when either the task goal has been achieved
(user does not intend to finish interaction before achieving main goal), or there are no
enabled relevant goals (the user will try relevant options if such are available). Again,
we omit the formal definition of these conditions here just denoting them MayEXxit.

When an atomic goal g is selected, the user model commits to the corresponding
action act (Goals[g] .subgoals). The time variable t is increased by the value
associated with “cognitive overhead” (see Section 2.3). The record status keeps
track of a history of selected goals. Thus, the element g of the array status. trace
is set to true to indicate that the goal g has been selected, and the counter of selected
goals, status. length, is increased. In addition to time-based analysis, this coun-
ter provides another way of analysing the behaviour of the user model.

Combining Human Error Verification and Timing Analysis 27

Task completion. There are essentially two cases when the user model terminates an
interaction: (i) goal based completion when the user terminates upon achieving the
task goal, and (ii) no-option based termination when the user terminates since there
are no enabled relevant goals to continue. Goal based completion (£inished is set
to ok) is achieved by simply “going away” from the interactive device (see the Exiz-
Task command). No-option based termination (finished is set to abort) models
random user behaviour (see the Abort command).

The guarded command ExitTask states that the user may complete the interaction
once the predicate Achieved (TopGoal) becomes true and there are no commit-
ments to actions. This action may still not be taken because the choice between en-
abled guarded commands is non-deterministic. The value of £inished being notf
means that the execution of the task continues.

In the guarded command Abort, the no-option condition is expressed as the nega-
tion of the predicate EnabledRelevant. Note that, in such a case, a possible ac-
tion that a person could take is to wait. However, they will only do so given some
cognitively plausible reason such as a displayed “please wait” message. The waiting
conditions are represented in the specification by predicate parameter Wait. If Wait
is false, finished is set to abort to model a user giving up and terminating the
task.

2.3 Timing Aspects

Following GOMS models, we extend our cognitive architecture with timing informa-
tion concerning user actions. On an abstract level, three GOMS models, KLM, CMN-
GOMS and NGOMSL, are similar in their treatment of execution time [7]. The main
difference is that NGOMSL adds, for each user action, a fixed “cognitive overhead”
associated with the production-rule cycling. In our model, this corresponds to the goal
selection commands (CommitAction). Hence, the time variable is increased by the
value CogOverhead which is a parameter of our user model. For KLM or CMN-
GOMS-like analysis, this parameter can be set to 0. In this case, the time variable is
increased (PerformAction command) only by the value associated with the actual exe-
cution of action and specified as Actions[a] .time. All three GOMS models dif-
fer in the way they distribute “mental time” among user actions, but this need only be
considered when our cognitive architecture is instantiated to concrete user models. In
general, any of the three approaches (or even their combination) can be chosen at this
point. In this paper, we will give an example of KLM like timing analysis.

3 An Example

To illustrate how the extended cognitive architecture could be used for the analysis of
execution time, we consider interaction with a cash machine.

3.1 Cash Machine

For simplicity of presentation, we assume a simple design of cash machine. After in-
serting a bank card, its user can select one of the two options: withdraw cash or

28 R. Ruksénas et al.

CashTaken

Card 1
., ExitSelected p \ y \
Removed (" ExIT J= 0 Cot CWITHDRAW RELEASE) - CAsH
4 . ’ P CardRemoved
Exit Amount
SB|BE::51 ¢ Selected Selected .
M Withdraw ' ' '
Py ReleaseCard Selected AmountMessage . ReleaseCard CashLight
. RESET | =~ CARD ~_PIN ExitOption CWAIT N 0
. Card PinEntered ’) TimeTick
) Inserted Card
X Balance Aemoved
\ Selected)
CardLight ! - . ! b
PlnMess.a_qe WithdrawOption (.EIALANCE PleaseWait RECEIPT
ExitOption BalanceOption . 4
ExitOption
!I .
ReleaseCard GiveReceipt
ReceiptTaken

Fig. 2. A specification of the cash machine

checkz balance (see Fig. 2). If the balance option is selected, the machine releases the
card and, once the card has been removed and after some delay, prints a receipt with
the balance information. If the withdraw option is selected, the user can select the de-
sired amount. Again, after some delay, the machine releases the card and, once it has
been removed, provides cash. Note that users are allowed to cancel an interaction with
our machine before entering the PIN, and selecting the withdraw option, balance op-
tion, or amount, i.e., while the machine is in the CARD, PIN, or WITHDRAW state. If
they choose to do so, their card is released.

3.2 User Model

Next, we instantiate our cognitive architecture to model cash machine users.

User aims. We assume there are two aims, denoted CashAim and BalanceAim,
which might compel a person to use this cash machine. These predicates provide val-
ues for the array Aims. As an example, the predicate BalanceAim is as follows:

A(in,mem, env) : env.Receipts 21 Vv mem.BalanceRead

It states that the balance is checked when either the user has at least one receipt (these
are modelled as possession items), or they read the balance on the display and have
recorded this fact in their memory.

User goals. Taking account of the aims specified, we assume that the machine users,
based on the previous experience, have the following pre-determined goals: Insert-—
CardGoal, SelectBalanceGoal, SelectWithdrawGoal, and SelectA-
mountGoal. As an example, SelectBalanceGoal is the following record (the
others are similar):

Combining Human Error Verification and Timing Analysis 29

grd := A(in,mem,env) : in.OptionBalance
choice := NotYetDischarged

aims := {}

subgoals := atom(SelectBalance)

Thus, this goal may be selected only when a balance option is provided by the in-
terface. The choice strategy NotYetDischarged is a pre-defined predicate that al-
lows one to choose a goal only when it has not been chosen before. Since this is an
atomic goal, the set aims is empty, whereas its subgoal is the actual action (an opera-
tor in GOMS terms) of selecting the balance option (see below).

In response to machine signals, the user may form the following reactive goals:
EnterPinGoal, TakeReceiptGoal, ReadBalanceGoal, RemoveCardGoal,
TakeCashGoal, and SelectExitGoal. Their definitions are similar to those of the
pre-determined goals, except that, in this case, the choice strategy always permits their
selection.

User actions. To fulfil these goals, users will perform an action referred to in the cor-
responding goal definition. Thus, we have to specify an action for each of the above
user goals. As an example, the output update tout of the SelectBalance action
is the following relation:

A(in,out0,mem) :A(out) : out = Def WITH .BalanceSelected:=TRUE

where Def is a record with all its fields set to false thus asserting that nothing else is
done. The memory and environment updates are simply default relations. Finally, the
timing of this action (field t ime) is discussed below.

Task goals. So far we have introduced all the basic goals and actions of a cash ma-
chine user. Now we explain how tasks that can be performed with this cash machine
are specified as a suitable TopGoal. Here we consider essentially flat goal structures,
thus a top goal directly includes all the atomic goals as its subgoals. For the task
“check balance and withdraw cash,” TopGoal is specified as the following record:

grd := True
choice := NotYetDischarged
aims := { (# state := CashAim,
ignore := {SelectBalanceGoal, ReadBalanceGoal} #),
(# state := BalanceAim,
ignore := {SelectAmountGoal} #)}
subgoals := comp({InsertCardGoal, EnterPinGoal, ...})

The interesting part of this specification is the attribute aims. It specifies that,
while performing this task, the user model will have two aims (partial goals) defined
by the predicates CashAim and BalanceAim. Furthermore, when the aim is to
check the balance, the user model will ignore the options for selecting the amount as
irrelevant to this aim (similarly the balance option and reading balance will be ignored
when the aim is to withdraw cash). Of course, this is not the only task that can be per-
formed with this machine. A simpler task, “check balance” (or “withdraw cash”)
alone, is also possible. For such a task, the specification of TopGoal is the same as
above, except that the set aims now only includes the first (or second) record.

30 R. Ruksénas et al.

Note that in this way we have developed an essentially generic user model for our
cash machine. Three (or more) different tasks can be specified just by providing ap-
propriate attributes (parameters) aims.

3.3 KLM Timing

In this paper, we use KLM timings to illustrate our approach. For the cash machine
example, we consider three types of the original KLM operators: K to press a key or
button, H to home hands on the keyboard, and M to mentally prepare for an action or
a series of closely related primitive actions. The duration associated with these types
of operators is denoted, respectively, by the constants K, H and M. The duration values
we use are taken from Hudson et al [19]. These can be easily altered, if research sug-
gests more accurate times as they are just constants defined in the model.

Since our user model is more abstract, the user actions are actually sequences of
the K and H operators, preceded by the M operator. As a consequence, the timing of
actions is an appropriate accumulation of K, H and M operators. For example, In-
sertCard involves moving a hand (H operator) and inserting a card (we consider
this as a K operator), preceded by mental preparation (M operator). The time attribute
for this action is thus specified as M+H+K. We also use the same timing for the actions
RemoveCard, TakeReceipt and TakeCash. On the other hand, SelectBal-
ance involves only pressing a button, since the hand is already on the keyboard.
Thus its timing is M+K (similarly for SelectWithdraw, SelectAmount and
SelectExit). EnterPin involves pressing a key four times (four digits of PIN),
thus its timing is M+H+4*XK. Finally, ReadBalance is a purely mental action, giv-
ing the timing M.

In addition to the operators discussed, original KLLM also includes an operator, R,
to represent the system response time during which the user has to wait. Since an ex-
plicit device specification is included into our verification approach, there is no need
to introduce into the user model time values corresponding to the duration of R. Sys-
tem delays are explicitly specified as a part of a device model. For example, in our
ATM specification, we assumed that system delays occur after a user selects the de-
sired amount of cash and before the device prints a receipt (the WAIT state in Fig. 2).

4 Verification and Timing Analysis

So far we have formally developed both a machine specification and a (parametric)
model of its user. Our approach also requires two additional models: those of user in-
terpretation of interface signals and effect of user actions on the machine (see [5]),
connecting the state spaces of the user model and the machine specification. In this
example, these connectors are trivial — they simply rename appropriate variables. Fi-
nally, the environment specification simply initialises variables that define user pos-
sessions as well as the time variable. Thus, the whole system to analyse is the parallel
composition of these five SAL modules. Next we discuss what properties of this sys-
tem can be verified and analysed, and show how this is done. First we consider the
verification of correctness properties.

Combining Human Error Verification and Timing Analysis 31

4.1 Error Analysis

In our previous work [4, 5], we mainly dealt with two kinds of correctness properties.
The first one (functional correctness) aimed to ensure that, in any possible system be-
haviour, the user's main goal of interaction (as they perceive it) is eventually
achieved. Given our model's state space, this is written in SAL as the following LTL
assertion:

F (Perceived(in,mem)) (D

Here F means “eventually,” and Perceived is the conjunction of all the predicates
from the set Goals [TopGoal] .aims as explained earlier.

The second property aimed to catch post-completion errors — a situation when sub-
sidiary tasks are left unfinished once the main task goal has been achieved. In SAL,
this condition is written as follows:

G (Perceived(in,mem) = F(Secondary (in,mem,env))) 2)

Here G means “always,” and Secondary represents the subsidiary tasks. In our ex-
ample, Secondary is a predicate stating that the total value of user possessions (ac-
count balance plus withdrawn cash) in a state is no less than that in the initial state.

Both these properties can be verified by SAL model checkers. With the cash ma-
chine design from Fig. 2, the verification of both succeeds for each of the three tasks
we specified. Note, however, that both properties only guarantee that the main and
subsidiary tasks are eventually finished at some unspecified point in the future. In
many situations, especially in the case of various critical systems, designs can be
judged as “incorrect” on the grounds of poor performance. Next we show how effi-
ciency analysis is supported by our approach by considering execution times.

4.2 Timing Analysis

Model checkers give binary results — a property is either true or false. Because of this,
they are not naturally suited for a detailed GOMS-like analysis of execution times.
Still, if one is content with timing analysis that produces upper and/or lower limits,
model checking is a good option. For example, if it suffices to know that both the
main and the subsidiary tasks are finished between times T, and T, ,, one can verify
the condition

high’

G (Perceived(in,mem) = 3)

F(Secondary(in,mem,env) A T, < time A time<T_))

The validity of both (1) and (3) predicts that T, , is an upper limit for the user model,
and thus for any person behaving according to the cognitive principles specified, to
properly finish a task. If expert knowledge is needed for such performance, SAL
would produce a counter-example (a specific sequence of actions and intermediate
states) for property (3). This can be used to determine design features requiring expert
knowledge.

As an example, consider the task “check balance and withdraw cash.” Let the thre-
shold for slow execution times be 17 seconds (i.e. 17 000 milliseconds). The verifica-
tion of property (3) with T,. equal to 17000 fails. The counter-example shows that

high

32 R. Ruksénas et al.

the execution time is slow since the user model goes through the whole interaction
cycle (inserting a card, entering a PIN, etc.) twice. A design allowing the task to be
performed in a single cycle would improve the execution times. In the next section,
we consider such a design.

By verifying property (3) for different T, , and T, values, the estimates of the
upper and lower time limits for a task execution can be determined. However, execu-
tion times given by counter-examples provide no clue as to how likely they are, in
other words, whether there are many methods of task execution yielding these particu-
lar times. Neither do they give the duration of other execution methods. To gather
precise timing information for possible execution methods, we use an interactive tool
provided by the SAL environment, a simulator. It is possible to instruct the latter to
run an interactive system so that the system states defined by some predicate (for ex-
ample, Perceived) are reached. In general, different system states are reached by
different execution methods. Thus, one can determine the precise timing of a particu-
lar method simply by checking the variable t ime in the corresponding state. A more
sophisticated analysis and comparison of timing information can be automated, since
the SAL simulator is a Lisp-like environment that allows programming functions for
suitable filtering of required information. We will explore this in future work.

5 Modified Design

An obvious “improvement” on the previous design is to free users from an early se-
lection of a task. Instead, while in the WITHDRAW state, the machine now displays the
balance in addition to the amount choices (see Fig. 3). The user can read it and then
choose an amount option as needed, thus achieving both task goals in one run. To
check whether our expectations are valid, we run the simulator to reach system states
where both predicates Perceived and Secondary are true. Checking execution
time in these states indicates an improvement. To find out whether execution times
improved for all possible paths reaching the above goal states, we model check prop-
erty (3) for the same T, . However, this verification fails again. SAL produces a
counter-example where the user model chooses an amount option without first read-
ing the displayed balance and, to achieve both aims, is forced to restart interaction.

CashTaken

Card

. ExitSelected p . .
Remaved (" EXIT e ol CWITHDRAW RELEASE) =~ CASH
4 4 P CardRemoved
Exit d gn}w{“d g
Selected : N Fece)
7'7 [} L '
'y ReleaseCard DisplayBalance Y . ReleaseCard CashLight
. RESET) | CARD AmountMessage CWAIT) TimeTick
Card T PinEntered ExitOption imetie
Inserted
1 . N I
CardLight PinMessage FleaseWait
ExitOption

Fig. 3. A specification of the modified design

Combining Human Error Verification and Timing Analysis 33

Furthermore, while the new design is potentially more efficient, it can also lead to
systematic user errors, as indicated by a failed verification of property (2). The SAL
counter-example shows that the user model, after reading the displayed balance,
chooses the exit option, thus forgetting the card. This failure illustrates the close in-
terdependence between correctness and timing properties and the usefulness of our
combined approach to the analysis of interactive systems.

In a traditional GOMS analysis this new design is apparently fine as expert non-
erroneous behaviour is assumed. However the HUM-GOMS analysis highlights two
potentially systematic problems: an attention error and a post-completion error. The
expert assumption is thus in a sense required here. Whilst it might be argued that an
expert who has chosen that method for obtaining balance and cash would not make
the mistake of failing to notice the balance when it was displayed, experimental data
suggests that even experts find it hard to eliminate post-completion error in similar
situations. Amongst non-expert users both errors are liable to be systematic. The
HUM-GOMS analysis has thus identified two design flaws that if fixed would be sig-
nificant improvements on the design.

A simple fix for both detected flaws is a cash machine similar to our second de-
sign, but which, instead of displaying the balance, prints this information and releases
the receipt in the same slot and at the same time as the banknotes.

6 Conclusion

We have added support for timing analysis into our usability verification approach
based on the analysis of correctness properties. This allows both timing analysis and
human error analysis to be performed in a single verification environment from a sin-
gle set of specifications. For this, our cognitive architecture was extended with timing
information, as in GOMS models. Our approach uses the existing SAL tools, both the
automatic model checkers and the interactive simulator environment, to explore the
efficiency of an interactive system based on the models provided. As in our earlier
work the cognitive architecture is generic: principles of cognition are specified once
and instantiated for a particular design under consideration. This differs from other
approaches where a tailored user model has to be created from scratch for each device
to be analysed. The generic nature of our architecture is naturally represented using
higher-order formalisms. SAL's support for higher-order specifications is the primary
reason for developing our verification approach within the SAL environment.

The example we presented aimed to illustrate how our approach can be used for a
KLM style prediction of execution times (our SAL specifications are available at
http://www.dcs.qmul.ac.uk/~rimvydas/usermodel/dsvis07.zip). A difference in our
approach is that, if the goal is achieved, the user model may terminate early. Also, if
several rules are enabled, the choice between them is non-deterministic. The actual
execution time is then potentially a range, depending on the order — there is a maxi-
mum and a minimum prediction. These are not real max/min in the sense of saying
this is the longest or shortest time it will take, however, just a range of GOMS-like
predictions for the different possible paths. In effect, it corresponds to a series of
KLM analyses using different procedural rules, but incorporated in HUM-GOMS into
a single automated analysis.

34 R. Ruksénas et al.

Similarly as CCT models [20] and unlike pure GOMS, we have an explicit device
specification that has its own timings for each machine response. It is likely that most
are essentially instantaneous (below the millisecond timing level) and so approxi-
mated to zero time. However, where there are explicit R operators in KLM, the corre-
sponding times can be assigned to the device specification.

Even though we illustrated our approach by doing a KLM style analysis, our exten-
sion of the cognitive architecture is also capable of supporting CMN-GOMS and
NGOMSL approaches to timing predictions. We intend to explore this topic in future
work, developing at the same time a hierarchical goal structure.

Another topic of further investigation is timing-related usability errors. We have al-
ready demonstrated the capability of our approach to detect potential user errors
resulting from the device delays or indirect interface changes without any sort of feed-
back [4]. The presented extension opens a way to deal with real-time issues (e.g.,
when system time-outs are too short, or system delays are too long). We also intend to
investigate “race condition” errors when two closely fired intentions to action come
out in the wrong order [21]. We expect that the inherent non-determinism of our cog-
nitive architecture can generate such erroneous behaviour in appropriate circum-
stances. Finally, since tool support allows experimentation be done more easily, we
believe that our approach can address the scale-up issue and facilitate the analysis of
trade-offs between the efficiency of multiple tasks.

Acknowledgements. This research is funded by EPSRC grants GR/S67494/01 and
GR/S67500/01.

References

1. Reason, J.: Human Error. Cambridge University Press, Cambridge (1990)

2. Gray, W.: The nature and processing of errors in interactive behavior. Cognitive Sci-
ence 24(2), 205-248 (2000)

3. Byrne, M.D., Bovair, S.: A working memory model of a common procedural error. Cogni-
tive Science 21(1), 31-61 (1997)

4. Curzon, P., Blandford, A.E.: Detecting multiple classes of user errors. In: Nigay, L., Little,
M.R. (eds.) EHCI 2001. LNCS, vol. 2254, pp. 57-71. Springer, Heidelberg (2001)

5. Ruksénas, R., Curzon, P., Back, J., Blandford, A.: Formal modelling of cognitive interpre-
tation. In: Doherty, G., Blandford, A. (eds.) DSVIS 2006. LNCS, vol. 4323, pp. 123-136.
Springer, Heidelberg (2007)

6. Ruksénas, R., Curzon, P., Blandford, A.: Detecting cognitive causes of confidentiality
leaks. In: Proc. Ist Int. Workshop on Formal Methods for Interactive Systems (FMIS
2006). UNU-IIST Report No. 347, pp. 19-37 (2006)

7. John, B.E., Kieras, D.E.: The GOMS family of user interface analysis techniques: Com-
parison and contrast. ACM Trans. CHI 3(4), 320-351 (1996)

8. de Moura, L., Owre, S., Ruess, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.: SAL 2.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 496-500. Springer, Hei-
delberg (2004)

9. John, B.E., Kieras, D.E.: Using GOMS for user interface design and evaluation: which
technique? ACM Trans. CHI 3(4), 287-319 (1996)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Combining Human Error Verification and Timing Analysis 35

Beckert, B., Beuster, G.: A method for formalizing, analyzing, and verifying secure user
interfaces. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 55-73. Springer,
Heidelberg (2006)

Bowman, H., Faconti, G.: Analysing cognitive behaviour using LOTOS and Mexitl. For-
mal Aspects of Computing 11, 132—-159 (1999)

Rushby, J.: Analyzing cockpit interfaces using formal methods. Electronic Notes in Theo-
retical Computer Science 43 (2001)

Fields, R.E.: Analysis of erroneous actions in the design of critical systems. Tech. Rep.
YCST 20001/09, Univ. of York, Dept. of Comp. Science, D. Phil Thesis (2001)

Fields, B., Wright, P., Harrison, M.: Time, tasks and errors. ACM SIGCHI Bull. 28(2),
53-56 (1996)

Lacaze, X., Palanque, P., Navarre, D., Bastide, R.: Performance evaluation as a tool for
quantitative assessment of complexity of interactive systems. In: Forbrig, P., Limbourg,
Q., Urban, B., Vanderdonckt, J. (eds.) DSV-IS 2002. LNCS, vol. 2545, pp. 208-222.
Springer, Heidelberg (2002)

Thimbleby, H.: Analysis and simulation of user interfaces. In: Proc. BCS HCI, vol. XIV,
pp. 221-237 (2000)

Butterworth, R.J., Blandford, A.E., Duke, D.J.: Demonstrating the cognitive plausibility of
interactive systems. Formal Aspects of Computing 12, 237-259 (2000)

Newell, A.: Unified Theories of Cognition. Harvard University Press (1990)

Hudson, S.E., John, B.E., Knudsen, K., Byrne, M.D.: A tool for creating predictive per-
formance models from user interface demonstrations. In: Proc. 12th Ann. ACM Symp. on
User Interface Software and Technology, pp. 93—-102. ACM Press, New York (1999)
Kieras, D.E., Polson, P.G.: An approach to the formal analysis of user complexity. Int. J.
Man-Mach. Stud. 22, 365-394 (1985)

Dix, A., Brewster, S.: Causing trouble with buttons. In: Auxiliary. Proc. HCI 1994 (1994)

Questions

Helmut Stiegler:
Question: From where is your human-error model derived which you consider in
your specification? Usually, one comes across error processes only during practical

use.

Answer: We are not interested in all kinds of errors, but in errors which are systematic
due to design decisions and can be eliminated by modifying them.

Paula Kotzé:
Question: Can you define the term “cognitive overload” which you defined but set to
a value of zero?

Answer: None recorded.

Formal Testing of Multimodal Interactive Systems

Jullien Bouchet, Laya Madani, Laurence Nigay, Catherine Oriat, and Ioannis Parissis

Laboratoire d’Informatique de Grenoble (LIG)
BP 53 38041 Grenoble Cedex 9, France

Forename.Name@imag. fr

Abstract. This paper presents a method for automatically testing inter-
active multimodal systems. The method is based on the Lutess testing
environment, originally dedicated to synchronous software specified us-
ing the Lustre language. The behaviour of synchronous systems, con-
sisting of cycles starting by reading an external input and ending by
issuing an output, is to a certain extent similar to the one of interactive
systems. Under this hypothesis, the paper presents our method for
automatically testing interactive multimodal systems using the Lutess
environment. In particular, we show that automatic test data generation
based on different strategies can be carried out. Furthermore, we show
how multimodality-related properties can be specified in Lustre and in-
tegrated in test oracles.

1 Introduction

A multimodal system supports communication with the user through different modali-
ties such as voice and gesture. Multimodal systems have been developed for a wide
range of domains (medical, military, ...) [5]. In such systems, modalities may be used
sequentially or concurrently, and independently or combined synergistically. The
seminal "Put that there" demonstrator [4] that combines speech and gesture illustrates
a case of a synergistic usage of two modalities. The design space described in [25],
based on the five Allen relationships, capture this variety of possible usages of several
modalities. Moreover, the versatility of multimodal systems is further exacerbated by
the huge variety of innovative input modalities, such as the phicons (physical icons)
[14]. This versatility results in an increased complexity of the design, development
and verification of multimodal systems.

Approaches based on formal specifications automating the development and the
validation activities can help in dealing with this complexity. Several approaches have
been proposed. As a rule, they consist of adapting existing formalisms in the particu-
lar context of interactive systems. Examples of such approaches are the Formal
System Modelling (FSM) analysis [10], the Lotos Interactor Model (LIM) [23] or the
Interactive Cooperative Objects (ICO), based on Petri Nets [21]. The synchronous
approach has also been proposed as an alternative to modelling and verifying by
model-checking of some properties of interactive systems [8]. Similarly to the previ-
ous approaches, the latter requires formal description of the interactive systems such
as Lustre [13] programs on which properties, also described as Lustre programs, are

J. Gulliksen et al. (Eds.): EIS 2007, LNCS 4940, pp. 36 2008.
© IFIP International Federation for Information Processing 2008

Formal Testing of Multimodal Interactive Systems 37

checked. However, its applicability is limited to small pieces of software, since it
seems very hard to fully specify systems in this language.

As opposed to the above approaches used for the design and verification, this paper
proposes to use the synchronous approach as a framework for testing interactive mul-
timodal systems. The described method therefore focuses on testing a partial or com-
plete implementation. It consists of automatically generating test data from enhanced
Lustre formal specifications. Unlike the above presented methods, it does not require
the entire system to be formally specified. In particular, the actual implementation is
not supposed to be made in a specific formal language. Only a partial specification of
the system environment and of the desired properties is needed.

The described testing method is based on Lutess [9, 22], a testing environment
handling specifications written in the Lustre language [13]. Lutess has been designed
to deal with synchronous specifications and has been successfully used to test
specifications of telecommunication services [12]. Lutess requires a non-deterministic
Lustre specification of the user behaviour. It then automatically builds a test data gen-
erator that will feed with inputs the software under test (i.e., the multimodal user in-
terface). The test generation may be purely random but can also take into account
additional specifications such as operational profiles or behavioural patterns. Opera-
tional profiles make it possible to test the system under realistic usage conditions.
Moreover, they could be a means of assessing usability as has been shown in [24]
where Markov models are used to represent various user behaviours. Behavioural
patterns express classes of execution scenarios that should be executed during testing.

A major interest of synchronous programming is that modelling, and hence verify-
ing, software is simpler [13] than in asynchronous formalisms. The objective of this
work is to establish that automated testing based on such an approach can be per-
formed in an efficient and meaningful way for interactive and multimodal systems. To
do so, it is assumed, according to theoretical results [1], that interactive systems can,
to some extent, be assimilated with synchronous programs. On the other hand, multi-
modality is taken into account through the type of properties to be checked: we espe-
cially focus on the CARE (Complementarity, Assignment, Redundancy, Equivalence)
[7, 18] properties as well as on temporal properties related to the use over time of
multiple modalities.

The structure of the paper is as follows: first, we present the CARE and temporal
properties that are specific to multimodal interaction. We then explain the testing ap-
proach based on the Lutess testing environment and finally illustrate the application
of the approach on a multimodal system developed in our laboratory, Memo.

2 Multimodal Interaction: The CARE Properties

Each modality can be used independently within a multimodal system, but the avail-
ability of several modalities naturally raises the issue of their combined usage. Com-
bining modalities opens a vastly augmented world of possibilities in multimodal user
interface design, studied in light of the four CARE properties in [7, 18]. These proper-
ties characterize input and output multimodal interaction. In this paper we focus on
input multimodality only. In addition to the combined usage of input modalities, mul-
timodal interaction is characterized by the use over time of a set of modalities.

38 J. Bouchet et al.

The CARE properties (Equivalence, Assignment, Redundancy, and Complemen-
tarity of modalities) form an interesting set of relations relevant to characterization
of multimodal systems. As shown in Fig. 1, while Equivalence and Assignment ex-
press the availability and respective absence of choice between multiple modalities
for a given task, Complementarity and Redundancy describe relationships between
modalities.

e Assignment implies that the user has no choice in performing a task: a modality is
then assigned to a given task. For example, the user must click on a dedicated but-
ton using the mouse (modality = direct manipulation) for closing a window.

e Equivalence of modalities implies that the user can perform a task using a modality
chosen amongst a set of modalities. These modalities are then equivalent for per-
forming a given task. For example, to empty the desktop trash, the user can choose
between direct manipulation (e.g. shift-click on the trash) and speech (e.g. the
voice command "empty trash"). Equivalence augments flexibility and also en-
hances robustness. For example, in a noisy environment, a mobile user can switch
from speech to direct manipulation using the stylus on a PDA. In critical systems,
equivalence of modalities may also be required to overcome device breakdowns.

e Complementarity denotes several modalities that convey complementary chunks of
information. Deictic expressions, characterised by cross-modality references, are
examples of complementarity. For example, the user issues the voice command
"delete this file" while clicking on an icon. In order to specify the complete
command (i.e. elementary task) the user must use the two modalities in a comple-
mentary way. Complementarity may increase the naturalness and efficiency of
interaction but may also provoke cognitive overload and extra articulatory syn-
chronization problems.

e Redundancy indicates that the same piece of information is conveyed by several
modalities. For example, in order to reformat a disk (a critical task) the user must
use two modalities in a redundant way such as speech and direct manipulation. Re-
dundancy augments robustness but as in complementary usage may imply cogni-
tive overload and synchronization problems.

Modalities Tasks
()

Subset of modalities

Several modalities are:

= Equivalent
= Complementary
= Redundant

;OA given task t;

~—

Fig. 1. The CARE relationships between modalities and tasks

® A modality yd
is assigned to

Formal Testing of Multimodal Interactive Systems 39

Orthogonal to the CARE relationships, a temporal relationship characterises the use
over time of a set of modalities. The use of these modalities may occur simultaneously
or in sequence within a temporal window Tw, that is, a time interval. Parallel and se-
quential usages of modalities within a temporal window are formally defined in [7].
The key point is that the corresponding events from different modalities occur within a
temporal window to be interpreted as temporally related: the temporal window thus
expresses a constraint on the pace of the interaction. Temporal relationships are often
used by fusion software mechanisms [18] to detect complementarity and redundancy
cases assuming that users' events that are close in time are related. Nevertheless, dis-
tinct events produced within the same temporal window through different modalities
are not necessarily complementary or redundant. This is the case for example when the
user is performing several independent tasks in parallel, also called concurrent usage of
modalities [18]. This is another source of complexity for the software.

The CARE and temporal relationships characterise the use of a set of modalities.
They highlight all the diversity of possible input event sequences specified by the user
and therefore the complexity of the software responsible for defining the tasks from
the captured users' actions. Facing this complexity, we propose a formal approach for
testing the software of a multimodal system that handles the input event sequences. In
[7], we study the compatibility between what we call system-CARE as defined above
and user-CARE properties for usability assessment based on cognitive models such as
PUM [3] or ICS [2]. In our formal approach for testing, we focus on system-CARE
properties.

3 Formal Approach for Testing Multimodal Systems

Our approach is based on the Lutess testing environment. In this section, we first pre-
sent Lutess and then explain how it can be used for testing multimodal systems. In
[16] we presented a preliminary study showing the feasibility of our approach and a
first definition of the CARE properties that we simplify here. Moreover in [17], we
presented in the context of a case study, one way to generate test data, namely the
operational profile strategy. In this section, we present the complete approach with
three different ways of generating test data.

3.1 Lutess: A Testing Environment for Synchronous Programs

Lutess [9, 22] is a testing environment initially designed for functional testing of syn-
chronous software with boolean inputs and outputs. Lutess supports the automatic
generation of input sequences for a program with respect to environment constraints.
The latter are assumptions on the possible behaviours of the program environment.
Input data are dynamically computed (i.e. while the software under test is executed) to
take into account the inputs and outputs that have already been produced.

Lutess automatically transforms the environment constraints into a test data gen-
erator and a test harness. The latter:

o links the generator, the software under test and the properties to be checked (i.e. the
oracle), and

e coordinates the test execution and records the sequences of input/output values and
the associated oracle verdicts (see Fig. 2).

40 J. Bouchet et al.

Test data Software
generator [P under test
based on the [

description

of the
environment
AA 4 Y
Oracle Verdic'tI Trace
collector

Fig. 2. The Lutess environment

The test is operated on a single action-reaction cycle. The generator randomly se-
lects an input vector and sends it to the software under test. The latter reacts with an
output vector and feeds back the generator with it. The generator proceeds by produc-
ing a new input vector and the cycle is repeated.

In addition to the random generation, several strategies, explained in Section 3.2.4,
are supported by Lutess for guiding the generation of test data. In particular, opera-
tional profiles can be specified as well as behavioural patterns. The test oracle ob-
serves the inputs and the outputs of the software under examination, and determines
whether the software properties are violated. Finally the collector stores the input,
output and oracle values that are all boolean values.

The software under examination is assumed to be synchronous, and the environ-
ment constraints must be written in Lustre [13], a language designed for programming
reactive synchronous systems. A synchronous program, at instant t, reads inputs i,
computes and issues outputs o,, assuming the time is divided in discrete instants de-
fined by a global clock. The synchrony hypothesis states that the computation of o, is
made instantaneously at instant t. In practice, this hypothesis holds if the program
computes the outputs within a time interval that is short enough to take into account
every evolution of the program environment.

A Lustre program is structured into nodes. A Lustre node consists of a set of equa-
tions defining outputs as functions of inputs and local variables. A Lustre expression
is made up of constants, variables as well as logical, arithmetic and Lustre-specific
operators. There are two Lustre-specific temporal operators: "pre" and "->". "pre"
makes it possible to use the last value an expression has taken (at the last tick of the
clock). "->", also called "followed by", is used to assign initial values (at t = 0) to ex-
pressions. For instance, the following program returns a “true” value everytime its
input variable passes from "false" to "true" (rising edge).

node RisingEdge(in:bool;) returns(risingEdge:bool) ;
let

risingEdge = false -> in and not pre in;
tel

An interesting feature of the Lustre language is that it can be used as a temporal
logic (of the past). Indeed, basic logical and/or temporal operators expressing invari-
ants or properties can be implemented in Lustre. For example, OnceFromTo(A, B, C)
specifies that property A must hold at least once between the instants where events B
and C occur. Hence, Lustre can be used as both a programming and a specification
language.

Formal Testing of Multimodal Interactive Systems 41

3.2 Using Lutess for Testing Multimodal Systems

3.2.1 Hypotheses and Motivations

The main hypothesis of this work is that, although Lutess is dedicated to synchronous
software, it can be used for testing interactive systems. Indeed, as explained above,
the synchrony hypothesis states that outputs are computed instantaneously but, in
practice, this hypothesis holds when the software is able to take into account any evo-
lution of its external environment (the theoretical foundations of the transformation of
asynchronous to synchronous programs are provided in [1]). Hence, a multimodal
interactive system can be viewed as a synchronous program as long as all the users'
actions and external stimuli are caught. In a different domain than Human-Computer
Interaction, Lutess has been already successfully used under the same assumption of
testing telephony services specifications [12].

To define a method for testing multimodal input interaction we focus on the part of
the interactive system that handles input events along multiple modalities. Consider-
ing the multimodal system as the software under test, the aim of the test is therefore to
check that a sequence of input events along multiple modalities represented are cor-
rectly processed to obtain appropriate outputs such as a complete task. To do so with
Lutess, one must provide:

1. The interactive system as an executable program: no hypothesis is made on the
software implementation. Nevertheless, in order to identify levels of abstraction for
connecting Lutess with the interactive system, we will assume that the software ar-
chitecture of the interactive system is along the PAC-Amodeus software architec-
ture [18]. Communication between Lutess and the interactive system also requires
an event translator, translating input and output events to boolean vectors that
Lutess can handle. We have recently shown [15] that this translator can be semi-
automatically built assuming that the software architecture of the interactive
system is along PAC-Amodeus [18] and developed using the ICARE component-
based environment [5, 6]. In this study [15], we showed that the translator between
Lutess and an interactive system can be built semi-automatically having some
knowledge about the executable program and in our case the ICARE events ex-
changed between the ICARE components. Such a study can be done in the context
of another development environment: our approach for testing multimodal input in-
teraction is not dependent on a particular development environment (black box
testing), as opposed to the formal approach for testing that we described in [11],
where we relied on the internal ICARE component structure (white box testing).
Indeed in [11], our goal was to test the ICARE components corresponding to the
fusion mechanism.

2. The Lustre specification of the test oracle: this specification describes the proper-
ties to be checked. Properties may be related to functional or multimodal interac-
tion requirements. Functional requirements are expressed as properties independent
of the modalities. Multimodal interaction requirements are expressed as properties
on event sequences considering various modalities. We focus on the CARE and
temporal properties described in Section 2. For instance, a major issue is the fusion
mechanism [18], which combines input events along various modalities to deter-
mine the associated command. This mechanism relies on a temporal window (see

42 J. Bouchet et al.

Section 2) within which the users' events occur. For example, when two modalities
are used in a complementary or redundant way, the resulting events are combined
if they occur in the same temporal window; otherwise, the events are processed in-
dependently.

. The Lustre specification of the behaviour of the external environment of the system:
from this specification, test data as sequences of users' events are randomly gener-
ated. In the case of context-aware systems, in addition to a non-deterministic speci-
fication of the users' behaviour, elements specifying the variable physical context
can be included. Moreover, additional specifications (operational profiles, behav-
ioural patterns) make it possible to use different generation strategies.

In the following three sections, we further detail each of these three points, respec-

tively, the connection, the oracle and the test data generation based on the specifica-
tion of the environment.

3.2.2 Connection between Lutess and the Interactive Multimodal System

Testing a multimodal system requires connecting it to Lutess, as shown in Fig. 3. To
do so, the level of abstraction of the events exchanged between Lutess and the multi-
modal system must be defined. This level will depend on the application properties

that have to be checked and will determine which components of the multimodal sys-
tem will be connected to Lutess.

Test data Multimodal system under test
generator L
based on the A Dialog
. . ‘
descrlp tion I ‘(j’) Complete command Controller
_Ot the :“ \ (elementaly task)
environment X ___,____D
[l
: ‘| [Fusion mechanism J
V v [
\
. i Trace !
C,(A)}r;l]gle. d Verdict collector ll ‘|(2) Modality dependent event
an > clm==
1
temporal 1 . .
properties : Logical Functional
1 Interaction Core Adapter
]
]
]

(1) Device depefdent event

Lice== =
Physical Functional
Interaction Core

Fig. 3. Connection between Lutess and a multimodal system organized along the PAC-
Amodeus model: three solutions

In order to identify the levels of abstraction of the events exchanged between
Lutess and the multimodal system, we must make assumptions on the architecture of
the multimodal system being tested. We suppose that the latter is organized along the
PAC-Amodeus software architectural model. This model has been applied to the
software design of multimodal systems [18]. According to the PAC-Amodeus model,

Formal Testing of Multimodal Interactive Systems 43

the structure of a multimodal system is made of five main components (see Fig. 3)
and a fusion mechanism performing the fusion of events from multiple modalities.
The Functional Core implements domain specific concepts. The Functional Core
Adapter serves as a mediator between the Dialog Controller and the domain-specific
concepts implemented in the Functional Core. The Dialog Controller, the keystone of
the model, has the responsibility for task-level sequencing. At the other end of the
spectrum, the Logical Interaction Component acts as a mediator between the fusion
mechanism and the Physical Interaction Component. The latter supports the physical
interaction with the user and is then dependent on the physical devices. Since our
method focuses on testing multimodal input interaction, three PAC-Amodeus compo-
nents are concerned: the Physical and Logical Interaction Components as well as the
fusion mechanism. By considering the PAC-Amodeus components candidates to re-
ceive input events from Lutess, we identify three levels of abstraction of the generated
events:

1. Simulating the Physical Interaction Component: generated events should be sent to
the Logical Interaction Component. In this case, Lutess should send low-level de-
vice dependent event sequences to the multimodal system like selections of buttons
using the mouse or character strings for recognized spoken utterances.

2. Simulating the Physical and Logical Interaction Components: generated events
sent to the fusion mechanism should be modality dependent. Examples include
<mouse, empty trash> or <speech, empty trash>.

3. Simulating the fusion mechanism: generated events should correspond to complete
commands, independent of the modalities used to specify them, for instance
<empty trash>.

Since we aim at checking the CARE and temporal properties of multimodal inter-
action and the associated fusion mechanism, as explained in Section 2, the second
solution has been chosen: the test data generated by the Lutess test generator are mo-
dality dependent event sequences.

3.2.3 Specification of the Test Oracles

The test oracles consist of properties that must be checked. Properties may be related
to functional and multimodal interaction requirements. Examples of properties related
to functional requirements are provided in Section 4. In this section we focus on mul-
timodality-related requirements and consider the CARE and temporal properties de-
fined in Section 2: we show that they can be expressed as Lustre expressions and then
can be included in an automatic test oracle (see [16] for a preliminary study on this
point).

Equivalence:

Two modalities M; and M, are equivalent w.r.t. a set T of tasks, if every task t € T
can be activated by an expression along M; or M,. Let Exy; be an expression along
modality M; and let Exyp, be an expression along M. Eayy or Eanp can activate the
task t; € T. Therefore, equivalence can be expressed as follows:

OnceFromTo (Eam] or Eamp, not tj, t;)

44 J. Bouchet et al.

We recall (see Section 3.1) that OnceFromTo(A, B, C) specifies that property A
must hold at least once between the instants where events B and C occur. Therefore,
the above generic property holds if at least one of the expressions Eay Or Eanp has
been set before the action t; occurs.

Redundancy and Complementarity:

In order to define the two properties Redundancy and Complementarity that describe
combined usages of modalities, we need to consider the use over time of a set of mo-
dalities. For both Redundancy and Complementary, the use of the modalities may oc-
cur within a temporal window Tw, that is, a time interval. As Lustre does not provide
any notion of physical time, to specify the temporal window, we consider C to be the
duration of an execution cycle (time between reading an input and writing an output).
The temporal window is then specified as the number of discrete execution cycles:

N =Twdiv C.

Two modalities M; and M, are redundant w.r.t. a set T of tasks, if every taskte T
is activated by an expression E,y; along M; and an expression Eayp, along M,. The
two expressions must occur in the same temporal window Tw: abs(time(Eay;) -
time(Eamz) < Tw. Considering N = Tw div C, and the task t; € T, the Lustre expres-
sion of the redundancy property is the following one.

Implies (t;,
abs (lastOccurrence (Eam1) - lastOccurrence (Eazp))<= N
and atMostOneSince(t;, Exyn;) and atMostOneSince(t;, Ean))

where:

Implies(A, B) is the usual logic implication (not A or B).
lastOccurrence(A) returns the latest instant that A occurred.

e atMostOneSince(A, B) is true when at most one occurrence of A has been ob-
served since the last time that B has been true.

Two modalities are used in a complementary way w.r.t. a set T of tasks, if every
task t € T is activated by an expression E,yy along M and an expression Eayp, along
M,. The two expressions must occur in the same temporal window Tw. We therefore
get the same Lustre expression as for redundancy. Indeed Complementarity and Re-
dundancy correspond to the same use over time of modalities and the difference relies
on the semantic of the expressions along the modalities. While complementarity im-
plies expressions with complementary meaning for the task considered (e.g. speech
command "open" while clicking on an icon using the mouse), redundancy involves
expressions conveying the same meaning (e.g., speech command "open paper.doc"
while double-clicking on the icon of the file named paper.doc using the mouse). The
meaning of the conveyed expressions is defined by the Lutess user (i.e. tester). Con-
sequently, the same oracle is defined for redundancy and complementarity.

3.2.4 Strategies for Generating Test Data

The automatic test input generation is a key issue in software testing. In the particular
case of interactive systems, such a generation relies on the ability to model various
users' behaviours and to automatically derive test data compliant with the models.
Lutess provides several generation facilities and underlying models.

Formal Testing of Multimodal Interactive Systems 45

Constrained Random Generation:

The user is represented by a set of invariants specifying all its possible behaviours.
The latter are randomly generated on an equal probability basis. More precisely, at
every execution step, one of the input vectors satisfying the invariants will be fairly
chosen among all the possible vectors.

Operational profiles:

Although the random generation is operated in a fair way, the resulting behaviour is
seldom realistic. To cope with this problem, operational profiles can be defined by
means of occurrence probabilities associated with user actions [19]. Occurrence prob-
abilities can be conditional (that is, they will be taken into account during the test data
generation only when a user-specified condition holds) or unconditional. Random
generation is performed w.r.t. these probabilities.

An interesting feature of this generation mode is that it makes possible to issue
events in the same temporal window and, hence, to check the fusion capabilities of a
multimodal system. As we have shown in [19], one has to associate with the input
events a probability computed from the temporal window duration to ensure that
events will occur in the same temporal window. Let N be the number of discrete exe-
cution cycles corresponding to the full duration of the temporal window (computed as
in Section 3.2.3). For an input event to occur within the temporal window, its occur-
rence probability must be greater or equal to 1/N. For example, to specify that A and
B will both be issued in that order in the same temporal window, we can write:

proba (A, 1/N, after (B) and pre always_since (not A, B));

Indeed, this formula means that if at least a B event has occurred in the past and if
no A event occurred since the last B occurrence, then the A occurrence probability is
equal to 1/N. Since the temporal window starts at the last occurrence of B and lasts N
ticks, A will very probably occur at least once before the end of the window.

Behavioural patterns:

Behavioural patterns make possible to partially specify a sequence of user actions. As
opposed to the above operational profile-based generation mode, a behavioural pat-
tern involves several execution instants. Behavioural patterns enable the description
of executions that may not be easy to attained randomly and are hard to specify with
occurrence probabilities. The random test input generation takes into account this
partial specification of user actions.

4 Illustration: The Memo Multimodal System

Memo [4] is an input multimodal system aiming at annotating physical locations with
digital post it-like notes. Users can drop a note to a physical location. The note can
then be read/carried/removed by other mobile users.

A Memo user is equipped with a GPS and a magnetometer enabling the system to
compute her/his location and orientation. The memo user is also wearing a head
mounted display (HMD). Its semi-transparency enables the fusion of computer data
(the digital notes) with the real environment as shown in Fig. 4.

46 J. Bouchet et al.

Fig. 4. A sketched view through the HMD: The Memo mobile user is in front of the computer
science teaching building at the University of Grenoble and can see two digital notes

In [17], we fully illustrate our testing method by considering the test of Memo us-
ing an operational profile-based approach for generating the test data. In order to il-
lustrate all the strategies for generating test data, we consider here three tasks, namely
"get a post-it", "set a post-it" and “remove a post-it” with Memo. For the manipulation
of Memo notes, the mobile user can get a note that will then be carried by her/him
while moving and be no longer visible in the physical environment. The user can
carry one note at a time. As a consequence if s/he tries to get a note while already
carrying one note, the action will have no effect. S/he can set a carried note to appear
at a specific place. Issuing the set command without carrying a note has no effect. To
perform the three tasks "get", "set" and "remove", the user has the choice between
three equivalent modalities: issuing voice commands, pressing keys on the keyboard
or clicking on mouse buttons. A command "get" or “remove” specified using speech,
keyboard and mouse is applied to the notes that the user is looking at (i.e., the notes
close to her/him). Memo can also be set to support redundant usage of modalities.
Using Memo, speech, keyboard and mouse commands can be issued in a redundant
way. For example, the user can use two redundant modalities, voice and mouse com-
mands, for removing a note: the user issues the voice command "remove" while press-
ing the mouse button. Because the corresponding expressions are redundant and the
two actions (speaking and pressing) produced nearly in parallel or close in time, the
command will be executed and as a result the corresponding note will be deleted. If
the two "remove" actions were not produced close in time, there is no redundancy
detected and the remove command will therefore not be executed.

In the following sections and considering the three tasks "get", "set" and "remove",
we illustrate our method by first explaining the connection between Lutess and
Memo. We then define the test oracle for Memo and finally explain how we auto-
matically generate test data using different strategies.

4.1 Connection between Lutess and Memo

The connection between Memo and Lutess is made by a Java class, MemoLutess, in
charge of translating Lutess outputs into Memo inputs and vice-versa. As explained in
Section 3.2.1, we developed a method for semi-automatically generating this translator
that we describe in [15] as an extension of the ICARE platform. For Memo, the code has
been written manually without the ICARE platform. So the class MemoLutess has been

Formal Testing of Multimodal Interactive Systems 47

written by hand. This class includes a constructor, creating a new instance of a Memo
system. A main method creates a new instance of MemoLutess and links it to Lutess.
/* Main method */
static public main(String[] args) {
MemoLutess m = new MemoLutess() ;
m.connectLutess () ; }

The connectLutess method is made of an infinite loop which (1) reads a sequence
of inputs issued by the Lutess test data generator and (2) sends the corresponding
events to the Memo system; then, it (3) waits for Memo to execute the resultant com-
mands, (4) obtains the new Memo state (5) and sends the computed output vector to
the Lutess generator.

/* Main interaction loop */

void connectLutess () {
while (true) {
readInputs () ; // Read test inputs
memoApp . sendEvents () ; // Send corresponding events to Memo
wait (N) ; // wait N ms for Memo to react
memoApp .getState () ; // Get the new state of Memo
writeOutputs();}} // Write outputs

As explained in Section 3.2.2, the level of abstraction is set at the modality level.
Generated events are hence received by the fusion component of Memo. For the "get"
"set" and "remove" tasks, the following events are involved in the interaction:

e Localization is a boolean vector which indicates the user's movements along the
x, vy and z axes. For instance, Localization[xplus]=true means that the user's
x-coordinate increases. Similarly Orientation is a boolean vector, which indicates
the changes in the user's orientation. For instance, Orientation[pitchplus] indicates
that the user is bending one's head.

e Mouse, Keyboard and Speech are boolean vectors corresponding to a "get", "set" or
"remove" command specified using speech, keyboard or mouse. For instance,
Mouse[get] indicates that the user has pressed the mouse button corresponding to a
"get" command.

The state of the Memo system is observed through four boolean outputs:

e memoSeen, which is true when at least one note is visible and close enough to the
user to be manipulated,

e memoCarried, which is true when the user is carrying a note,

e memoTaken, which is true if the user has get a note during the previous action-
reaction cycle,

e memoSet, which is true if the user has set a carried note to appear at a specific
place during the previous cycle,

e memoRemoved, which is true if the user has removed a note during the previous
cycle.

4.2 Memo Test Oracle

The test oracle consists of the required Memo properties. First we consider functional
properties. For example the state of Memo cannot change except by means of suitable

48 J. Bouchet et al.

input events: between the instant the user is seeing a note and the instant there is no
note in her/his visual field, the user has moved or specified a "get" command.

once_from_to((move or cmdget) and pre memoSeen, memoSeen, not memoSeen)
Moreover we specify that notes are taken or set only with appropriate commands.

For example, after a note has been seen and before it has been taken, a "get" com-
mand has to occur at an instant when the note is seen.

once_from_to(cmdget and pre memoSeen, memoSeen, memoTaken)

Furthermore if a note is carried, then a "get" command has previously occurred.

once_from_to(cmdget and pre memoSeen, not memoCarried, memoCarried)

In addition to functional properties, multimodality-related properties are specified
in the test oracle, as explained in Section 3.2.3. For instance, to check that the task
memoTaken takes place only after the occurrence of the redundant expressions
Mouse [get] and Speech[get], we should write the following test oracle:

node MemoOracle(-- application inputs and outputs

)
returns (propertyOK:bool) ;

let
propertyOK =
Implies (memoTaken,
abs (lastOccurrence (Mouse[get]) -
lastOccurrence (Speech[get]))<= N
and
atMostOneSince (memoTaken ,, Mouse[get]) and
atMostOneSince (memoTaken, Speech[get]));
tel

The above node states that (1) memoTaken occurs only when (1) Mouse[get] and
Speech[get] occur in the same temporal window (of duration N) and that (2) in that
case memoTaken occurs only once.

4.3 Memo Test Input Generation

4.3.1 Modelling the Environment and the Users' Behaviour
Input data are generated by Lutess according to formulas defining assumptions about
the external environment of Memo, i.e. the users' behaviour. We here describe actions
that the user cannot perform. For example the user cannot move along an axis in both
directions at the same time. The corresponding formulas are:

not (Localization[xminus] and Localization[xplus]

)
not (Localization[yminus] and Localization[yplus])
not (Localization[zminus] and Localization[zplus])

Similarly, we also specify by three formulas that the user cannot turn around an
axis in both directions at the same time.

Moreover, Lutess sends data to Memo at the modality level. Since there is one ab-
straction process per modality, only one data along a given modality can therefore be
sent at a given time. The commands "get", "set" and "remove" can be performed using
speech, keyboard or mouse. We therefore get the following formulas':

AtMostOne (3,Mouse) ; AtMostOne (3,Keyboard); AtMostOne (3, Speech)

! Mouse is a boolean table of three elements indexed by "get", "set” and "remove": At-
MostOne(3, Mouse) means that at most one of the elements of the table is true.

Formal Testing of Multimodal Interactive Systems 49

4.3.2 Guiding the Test Data Generation

Random generation and operational profiles:

A random simulation of the users' actions results in sequences in which every input
event has the same probability to occur. This means, for instance, that Localiza-
tion[xminus] will occur as many times as Localization[xplus]. As a result, the users'
position will hardly change. To test Memo in a more realistic way, the data generation
can be guided by means of operational profiles (set of conditional or unconditional
probabilities definition). Unconditional probabilities are used to force the simulation
to correspond to a particular case, for example that the user is turning one's head to
the right:

proba((Orientation[yawminus], 0.80), (Orientation[yawplus], 0.01),
(Orientation[pitchminus], 0.01), (Orientation[pitchplus], 0.01),
(Orientation[rollminus], 0.01), (Orientation[rollplus, 0.01)).

Conditional probabilities are used, for instance, to specify that a "get" command has a
high probability to occur when the user has a note in her/his visual field (close enough
to be manipulated):

proba((Mousel[get], 0.8, pre memoSeen),

(Keyboard[get], 0.8, pre memoSeen), (Speech[get], 0.8, pre memoSeen))

The following expression states that, when there is no note visible, the user will
very probably move:

proba((Orientation[yawminus], 0.9, not pre memoSeen),..).

Behavioural patterns:

A pattern is a sequence of actions and conditions that should hold between two suc-
cessive actions. During the random test data generation, inputs matching the scenario
have a higher occurrence probability. Let us consider the scenario corresponding to
the sequence of commands presented in Fig. 5: the user performs twice the "get"
command, then a "set" command. The scenario also specifies that in between the first
two "get" commands, the user does not perform a "set" command and similarly be-
tween the two "get" and "set" commands, no "get" command.

cmdget cmdget cmdset
| | |
true | not cmdset | not cmdget | true

Fig. 5. An example of a scenario for guiding the generation of test data

This scenario can be described in Lutess as follows:

cond ((Mouse[get] or Keyboard[get] or Speech[get])
(Mouse[get] or Keyboard[get] or Speech[get])
(Mouse[set] or Keyboard[set] or Speech[set])
intercond (true,
not (Mouse[set] or Keyboard[set] or Speechl[set])
not (Mouse[get] or Keyboard[get] or Speech[get])
true) ;

,
,
)i

'
’

50 J. Bouchet et al.

Let us consider a second scenario. It describes a redundant usage of two modalities:
mouse and speech. The scenario starts in a state where notes are visible (pre
memoSeen). The user first takes one note in a redundant way, with mouse and speech
at the same instant. The user then removes a second note by using again mouse and
speech in a redundant way but at two different instants belonging to the same tempo-
ral window. The scenario is expressed as follows:

cond (pre memoSeen and (Speech[get] and Mouse[get]) and
not (Speech[remove] or Mouse[remove]),
Mouse[remove] and not Speech[remove],
Speech[remove] and not Mouse[removel]) ;
intercond(true,
not Speech[remove],
not Mouse[removel]) ;
[line 1] - - - - Se - - -
[line 2] mG - sG - Se Car Tak -
[line 3] - mR - - Se Car - -
[line 4] - - - sR Se Car - -
[line 5] - - - - - Car - Rem

Fig. 6. An excerpt from a Memo trace

Fig. 67 shows an extract of trace which matches this second scenario. In this trace,
the first line contains the event memoSeen (Se), implying that one or several notes are
close to the user. In the second line, the two simultaneous events Mouse[Get] and
Speech[Get] (mG and sG) cause one note to be taken (event Tak line 2). memoSeen is
still set, which means that another note is visible. Lines 3 and 4 contain the events
Mouse[remove] and Speech[remove] (mR and sR), which cause the visible note to be
removed (event Rem line 5) since the two events (mR and sR) belong to the same
temporal window.

5 Conclusion and Future Work

In this article, we have presented a method for automatically testing multimodal sys-
tems based on Lutess, a testing environment originally designed for synchronous
software. Multimodality is addressed through the software properties that are
checked: the CARE and temporal properties. Testing the satisfaction of the CARE
and temporal properties with Lutess requires (1) expressing the properties in Lustre to
build a test oracle and (2) generating adequate test input data. We have shown that the
expression of the CARE and temporal properties in Lustre is possible, since the lan-
guage is a temporal logic of the past and makes it possible to specify constraints on
event sequences. The test data generation relies on a users' model including invariants
and guiding directives (i.e. operational profiles, behavioural patterns). We have
shown that by specifying operational profiles it is possible to generate test data corre-
sponding to the combined usage of modalities, and that scenarios are also useful for
the expression of functional properties.

2 mG, mR, sG, SR stand for Mouse[get], Mouse[remove], Speech[get] and Speech[remove]
Se, Car, Tak, Rem stand for memoSeen, memoCarried, memoTaken, memoRemoved.

Formal Testing of Multimodal Interactive Systems 51

In future work, we will explore further the guide-types for generating the test data,
and in particular behavioural patterns that correspond to usability scenarios. To do so,
we plan to use information from the task analysis in order to define the behavioural
patterns. This work will be done in the context of our platform ICARE-Lutess that
supports a semi-automatic generation of the translators between Lutess and the multi-
modal system developed using ICARE. Since an ICARE diagram is defined for a given
task, we will first link our ICARE platform with a task analysis tool such as CTTE
[20]. We will then exploit the task tree for defining behavioural patterns used for guid-
ing the test. Extending our ICARE-Lutess platform in order to be connected to a task
analysis tool will lead us to define an integrated platform from task to concrete multi-
modal interaction for designing, developing and testing multimodal systems.

Acknowledgments

Many thanks to G. Serghiou for reviewing the paper. This work is partly funded by
the French National Research Agency project VERBATIM (RNRT) and by the Open-
Interface European FP6 STREP focusing on an open source platform for multimodal-
ity (FP6-035182).

References

1. Benveniste, A., Caillaud, B., Le Guernic, P.: From synchrony to asynchrony. In: Baeten,
J.CM., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 162-177. Springer,
Heidelberg (1999)

2. Barnard, P., May, J.: Cognitive Modelling for User Requirements. Computers, Communi-
cation and Usability: Design issues, research and methods for integrated services, pp. 101—
146. Elsevier, Amsterdam (1993)

3. Blandford, A., Young, R.: Developing runnable user models: Separating the problem solv-
ing techniques from the domain knowledge. In: Proc. of HCI 1993, People and Computers
VIII, pp. 111-122. Cambridge University Press, Cambridge (1993)

4. Bolt, R.: Put That There: Voice and Gesture at the Graphics Interface. In: Proc. of SIG-
GRAPH 1980, pp. 262-270. ACM Press, New York (1980)

5. Bouchet, J., Nigay, L., Ganille, T.: ICARE Software Components for Rapidly Developing
Multimodal Interfaces. In: Proc. of ICMI 2004, pp. 251-258. ACM Press, New York
(2004)

6. Bouchet, J., Nigay, L.: ICARE: A Component-Based Approach for the Design and Devel-
opment of Multimodal Interfaces. In: Proc. of CHI 2004 extended abstract, pp. 1325-1328.
ACM Press, New York (2004)

7. Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J., Young, R.: Four Easy Pieces for
Assessing the Usability of Multimodal Interaction: The CARE properties. In: Proc. Of IN-
TERACT 1995, pp. 115-120. Chapman et Hall, Boca Raton (1995)

8. d’Ausbourg, B.: Using Model Checking for the Automatic Validation of User Interfaces
Systems. In: Proc. of DSV-IS 1998, pp. 242-260. Springer, Heidelberg (1998)

9. du Bousquet, L., Ouabdesselam, F., Richier, J.-L., Zuanon, N.: Lutess: a Specification
Driven Testing Environment for Synchronous Software. In: Proc. of ICSE 1999, pp. 267-
276. ACM Press, New York (1999)

52

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

J. Bouchet et al.

Duke, D., Harrison, M.: Abstract Interaction Objects. In: Proc. of Eurographics 1993, pp.
25-36. North Holland, Amsterdam (1993)

Dupuy-Chessa, S., du Bousquet, L., Bouchet, J., Ledru, Y.: Test of the ICARE platform
fusion mechanism. In: Gilroy, S.W., Harrison, M.D. (eds.) DSV-IS 2005. LNCS,
vol. 3941, pp. 102-113. Springer, Heidelberg (2006)

Griffeth, N., Blumenthal, R., Gregoire, J.-C., Ohta, T.: Feature Interaction Detection Con-
test. In: Proc. of Feature Interactions in Telecommunications Systems V, pp. 327-359. I0S
Press, Amsterdam (1998)

Halbwachs, N.: Synchronous programming of reactive systems, a tutorial and commented
bibliography. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 1-16. Springer,
Heidelberg (1998)

Ishii, H., Ullmer, B.: Tangible Bits: Towards Seamless Interfaces between People, Bits and
Atoms. In: Proc. of CHI 1997, pp. 234-241. ACM Press, New York (1997)

Jourde, F., Nigay, L., Parissis, I.: Test formel de systémes interactifs multimodaux:
couplage ICARE — Lutess. In: Proc. of 19¢mes Journées Internationales du génie logiciel
(in french)

Madani, L., Parissis, I., Nigay, L.: Testing the CARE properties of multimodal applications
by means of a synchronous approach. In: IASTED Int’l Conference on Software Engineer-
ing, Innsbruck, Austria (February 2005)

Madani, L., Oriat, C., Parissis, 1., Bouchet, J., Nigay, L.: Synchronous Testing of Multi-
modal Systems: An Operational Profile-Based Approach. In: Proc. of Int’l Symposium on
Software Reliability Engineering (ISSRE 2005), pp. 325-334. IEEE Computer Society,
Los Alamitos (2005)

Nigay, L., Coutaz, J.: A Generic Platform for Addressing the Multimodal Challenge. In:
Proc. of CHI 1995, pp. 98-105. ACM Press, New York (1995)

Ouabdesselam, F., Parissis, I.: Constructing Operational Profiles for Synchronous Critical
Software. In: Proc. of Int’l Symposium on Software Reliability Engineering (ISSRE 1995),
pp- 286-293. IEEE Computer Society, Los Alamitos (1995)

Mori, G., Paterno, F., Santoro, C.: CTTE: Support for Developing and Analyzing Task
Models for Interactive System Design. In: IEEE Transactions on Software Engineering,
pp- 797-813 (August 2002)

Palanque, P., Bastide, R.: Verification of Interactive Software by Analysis of its Formal
Specification. In: Proc. of INTERACT 1995, pp. 191-197. Chapman et Hall, Boca Raton
(1995)

Parissis, 1., Ouabdesselam, F.: Specification-based Testing of Synchronous Software. In:
Proc. of ACM SIGSOFT, pp. 127-134. ACM Press, New York (1996)

Paterno, F., Faconti, G.: On the Use of LOTOS to Describe Graphical Interaction. In: Proc.
of HCI 1992, pp. 155-173. Cambridge University Press, Cambridge (1992)

Thimbleby, H., Cairns, P., Jones, M.: Usability Analysis with Markov Models. ACM
Transactions on Computer Human Interaction 8(2), 99-132 (2001)

Vernier, F., Nigay, L.: A Framework for the Combination and Characterization of Output
Modalities. In: Palanque, P., Paternd, F. (eds.) DSV-IS 2000. LNCS, vol. 1946, pp. 32-48.
Springer, Heidelberg (2001)

Knowledge Representation Environments: An
Investigation of the CASSMs between Creators,
Composers and Consumers

Ann Blandfordl, Thomas R.G. Greenz, Tain Connell, and Tony Rose®

"'UCL Interaction Centre, University College London, Remax House,
31-32 Alfred Place London WCI1E 7DP, U.K.
A.Blandford@ucl.ac.uk
http://www.uclic.ucl.ac.uk/annb/

2 University of Leeds, U.K.

3 System Concepts Ltd., U.K.

Abstract. Many systems form ‘chains’ whereby developers use one system (or
‘tool’) to create another system, for use by other people. For example, a web
development tool is created by one development team then used by others to
compose web pages for use by yet other people. Little work within Human—
Computer Interaction (HCI) has considered how usability considerations propa-
gate through such chains. In this paper, we discuss three-link chains involving
people that we term Creators (commonly referred to as designers), Composers
(users of the tool who compose artefacts for other users) and Consumers (end
users of artefacts). We focus on usability considerations and how Creators can
develop systems that are both usable themselves and also support Composers in
producing further systems that Consumers can work with easily. We show how
CASSM, an analytic evaluation method that focuses attention on conceptual
structures for interactive systems, supports reasoning about the propagation of
concepts through Creator—Composer—Consumer chains. We use as our example
a knowledge representation system called Tallis, which includes specific im-
plementations of these different perspectives. Tallis is promoting a development
culture within which individuals are empowered to take on different roles in or-
der to strengthen the ‘chain of comprehension’ between different user types.

Keywords: Usability evaluation methods, CASSM, design chains.

1 Introduction

It is widely recognised that there are many stakeholder groups in any design project,
typically including managers, purchasers, end users and developers. Approaches such
as Soft Systems Methodology [5] encourage an explicit consideration of these differ-
ent stakeholder groups in design. However, when it comes to considering usability,
the focus narrows immediately to the ‘end users’ of the system under consideration.
For example, most classic evaluation techniques, such as Heuristic Evaluation [13]
and Cognitive Walkthrough [16] focus on what the user will experience in terms of
their tasks and the feedback received from the system. Norman [15] discusses the

J. Gulliksen et al. (Eds.): EIS 2007, LNCS 4940, pp. 53 2008.
© IFIP International Federation for Information Processing 2008

54 A. Blandford et al.

relationship between designer and user in terms of the ‘designer’s conceptual model’
— an understanding of the system that has to be communicated from designer to end
user via the interface. In all these cases, the focus remains on a single ‘system’ that is
being designed. No work that we are aware of extends this perspective. This is per-
haps not surprising, since established usability-oriented analysis techniques focus
attention on user tasks and the procedures users need to follow to complete those
tasks. The users of different interfaces experience interactions with different proper-
ties that are not readily related to each other. In this paper, we explicitly consider
different systems within a development chain, focusing in particular on three groups
of stakeholders that we term Creators, Composer and Consumers (C’) — namely the
Creators of tools that can be used by Composers to construct products for Consumers
to use.

As an early example, consider the design of web pages using a web composition
tool such as Dreamweaver®. It is recognised good practice for all pictures on web
pages to be supplemented by “ALT” text that describes the content of the picture to
improve ease of use for users with limited vision. If the web composition tool makes
it easy for Composers to include ALT information, and makes it obvious at the time
of including a picture that ALT text should be added, then the resulting web page will
be more usable. The Creator of the web development tool can improve the likely
usability of web pages produced by a Composer if the Creator is aware of the poten-
tial needs of the Consumer.

We argue that a declarative approach to evaluation can yield a more insightful
evaluation of such chains than a procedural one, for reasons presented below. The
declarative approach we have adopted is CASSM [4], a technique for usability
evaluation that is based on identifying the concepts with which users are working and
those implemented within a system. This approach has helped to draw out relation-
ships between different systems within a ‘chain’ of products that have (typically)
different users and different interfaces. The approach is exemplified with a system,
Tallis, for representing clinical guidelines that makes explicit the fact that it has dif-
ferent classes of users who experience different interfaces.

1.1 Creators, Composers and Consumers

We do not consider ourselves to have invented C* chains; indeed, they are a wide-
spread phenomenon. Nevertheless, we are not aware of prior work that has discussed
such chains within the HCI literature, or considered usability in terms of chains.
Therefore, we start by briefly discussing some examples of C* chains — namely web-
site creation tools, programming development environments and online library build-
ing applications.

Website creation tools such as Dreamweaver® allow Composers to create, edit and
manipulate html and other mark-up language code prior to uploading finished website
code to a server. The role of Creators is not only to make the programming and edit-
ing environment easy to use but also to facilitate the creation of usable, acceptable
web sites (as illustrated with the ALT text example above). The role of Composers is
to create and test web pages or sites that are easy and pleasant for the end user to
work with. The role of Consumers is to browse, search or otherwise work with the
resulting web sites. Thus, the Creators have to understand not only what Composers

Knowledge Representation Environments: An Investigation of the CASSMs 55

will experience, and consider the usability of the composition environment, but also
make it easy for Composers to deliver web pages that are well laid out and easy for
Consumers to interact with.

The same roles are to be seen in the design and use of program development envi-
ronments such as NetBeans, an interactive Java environment [13]. The Creators of
NetBeans and similar environments provide a tool that will meet the needs of Com-
posers, i.e. Java programmers. Composers write Java programs that should be usable
by the Consumers — the people who work with those programs to get a job done. In
some cases the roles may become blurred: the same person may create the environ-
ment, use it to write programs, and then make use of those programs; nevertheless,
there are separate roles depending on which system is the current focus of use.

Chains may stretch further in both directions: a Java programming environment
may be written in another programming language, say C++, for which a compiler may
be written in some other language—stretching back through assembly code to the
instruction set recognised by the hardware. In the other direction, Java programs cre-
ated in NetBeans, etc, may be used as tools by people who are building other tools.
Chains may also branch; for example, web applications are viewed in browsers, and
there are often interactions between the application and the browser itself so that the
design of both influences the users’ experience. This is a factor in the design of Tallis
as discussed below, but we do not consider this branching further in this paper.

An example of a tool that extends the development chain is a digital library system,
where developers work with software development environments to create a further
layer of tools, such as Greenstone [17], with which librarians can create collections of
documents to be made available to end users. In a study evaluating the Greenstone
digital library software [2], one of the developers commented as follows:

“[There is a] difficulty with the way Greenstone is perceived by different
parties. [The developers] see Greenstone very much as a toolset which other
folks should 'finish off' to make a good collection. Their conception is that it
would be very hard to take Greenstone to a level where a librarian could
make a few choices on GUI [Graphical User Interface] and have a reasonable
(not to say actively excellent) interface for the library.”

In other words: in the view of the respondent, the Creators of the Greenstone tool-
set were not recognising their potential role in making it easy for Composers (who
typically have little HCI expertise) to construct usable digital libraries for Consumers.

The possibility that a development environment such as NetBeans might be used to
construct a digital library tool set like Greenstone, which would in turn be used to
develop digital libraries, illustrates the idea that the overall chain might involve more
than three groups of designers/users. Here, we only consider C° chains. Within a
longer chain, the decision as to which people fill the roles of Creator, Composer, and
Consumer would depend on where the focus of interest is. In the case of NetBeans, it
would be on the development environment and resulting systems, whereas for Green-
stone it would be on the development tools and resulting library collections.

Table 1 tabulates the distinction between Creators, Composers and Consumers for
these and other systems. In all these cases, there will typically be a development team
who create the tool; they may or may not have direct access to their immediate users,
the Composers of products. The end users (Consumers) of the product typically have
a role where interaction is relatively constrained, with limited scope for changing
structures within the product.

56 A. Blandford et al.

Table 1. Distinction between Creators, Composers and Consumers for different types of
interactive system

Creator of tool Composer of product Consumer of product

User Interface Development | Develop interfaces Use interfaces

Environment

Online library tool set (e.g. Create and manage library Retrieve and display search
Greenstone) collections items

Drawing tool Create and edit drawings View and interpret drawings
Website creation tool (e.g. Create and manipulate html Run website in a browser
Dreamweaver) and other code, run web pages

in a browser
Programming development Create and manipulate code, | Run programs

system (e.g. NetBeans) test programs, run programs

Music composition system Create and edit musical repre- | Read, interpret and play music
sentations

Word processing system Create and edit text Read and interpret text

Game engine Create new game software Play game

1.2 CASSM and Misfit Analysis

With this understanding of C’ systems, we turn to consider evaluation of these differ-
ent systems. Approaches to the evaluation of any interactive system, whether analytic
or empirical, based on prototype or working artefact, require from evaluators an in-
sight into the assumptions and expectations held by the intended users of that system.
CASSM (Concept based Analysis of Surface and Structural Misfits) is an analytic
method which aids the identification of designer-user misfits. Prior to this study, it
had only been used in the traditional way, of considering a single interactive system
and its users. This study extends the use of CASSM to consider C* chains.

In contrast to most evaluation approaches, CASSM does not focus on tasks, but on
entities and attributes, and the differences between the system and user models of how
entities and their attributes are represented and manipulated at the interface. Previ-
ously, we have described how CASSM can identify misfits in systems as diverse as
drawing tools and online music libraries [7] and ambulance dispatch [3]. In this pa-
per, we extend the application of CASSM to Tallis [8], a knowledge representation
system that exhibits an unusual degree of overlap between the C” roles. The CASSM
analysis of Tallis allows us to distinguish between the useful and less useful manifes-
tations of this overlap.

In a CASSM analysis, we make an explicit distinction between the representation
embodied within an interactive system and that understood by the users of that sys-
tem. Earlier papers [1,6] show how we characterise this distinction in terms of a tax-
onomy of User, Interface and System properties, where the various concepts (entities
and attributes) which result from the CASSM analysis are depicted as Present or Ab-
sent from the System models, and Present, Absent or Difficult to apprehend for the
User or via the Interface. (See [4] for tutorial and worked examples).

In its emphasis on objects rather than tasks, CASSM is distinct from other analytic
approaches which aim to illuminate the differences between system and user models.
Connell ef al [6] have contrasted CASSM with Cognitive Walkthrough, whose focus

Knowledge Representation Environments: An Investigation of the CASSMs 57

on goal support at each stage of a task has some similarities with Norman’s [15] the-
ory of action (which depicts system-user misfits in terms of the gulfs of execution and
evaluation). CASSM can be viewed as focusing more on the conceptual gulfs that
Norman [15] discusses between the designer and the user.

2 Tallis Composer and Enactor

As noted above, knowledge representation tools also exemplify the C* chain. Com-
posers create, manipulate and edit a rule-based set of choices and actions, presented to
Consumers via an interface. Tallis is a knowledge representation tool that is being
developed with a view to producing and disseminating guidelines for clinical practice.
It is typically used for modelling clinical diagnosis and treatment processes in the
domain of Oncology (the branch of medicine that deals with cancer).

Tallis comprises three interrelated systems: Composer, Tester and Engine. Tester
supports debugging, and is not considered in this study. Tallis Composer is a Graphi-
cal User interface (GUI) environment which supports the composition of guidelines to
aid clinicians in diagnosis and treatment. Guidelines, the output from the Composer,
are held in PROforma code [9]. Tallis Engine is the environment in which guidelines
are run (or enacted). Enactment takes place in a web browser via a Java virtual ma-
chine. In this section, we describe Tallis using an illustrative (non-clinical) guideline
for use of the London Underground ticket vending machines. Later sections present
the results of a CASSM analysis of Tallis.

This ticket vending machines domain was chosen for two reasons. First, in order to
gain experience of using Tallis, it was easier to create and test a guideline in a familiar
domain. Second, for the purposes of eliciting Consumer feedback on use of a Tallis
guideline, it was easier to recruit a user group who were familiar with the ticketing
domain than it would have been to recruit oncology specialists.

2.1 Tallis and PROforma

Tallis is a Java implementation of a knowledge representation language called PRO-
forma, which is designed to support the publication of clinical expertise [11]. Support
takes the form of an expert system which assists patient care through active decision
support and workflow management. Fox er al [10] describe PROforma as an “intelli-
gent agent” language and technology, where agent specification is done by composing
tasks into collections of prepared plans. Plans can be enacted sequentially, in parallel,
or in response to events.

The PROforma decision and plan model offers four classes of task, namely Plans,
Decisions, Actions and Enquiries. The root class of this structure is the Keystone, an
empty ‘placeholder’ task. Decisions, Actions and Enquiries may be combined to
make up Plans, which themselves consist of other tasks, including other Plans. A
combination of tasks so formed represents a PROforma guideline, encapsulating one
piece of clinical expertise, which may be published on a world wide web repository
such as the Open Clinical Knowledge Publishing Collaboratory [12].

Figure 1 shows an extract from the Tallis Composer representation for a sample
guideline to support use of London Underground ticket vending machines (TVMs).

58 A. Blandford et al.

File Edit Search View Run Repository Help

[s[efo]efe]:|u[a (o] [=]:[&] [DJololo/ul =
? O =

§ O TvMs choice and u” [assess_queves

@ O Choose FFM
@ O Choose MFM |*
@ O Assess queues| :
[Ticket wind :
<> Ask paymer| .
<> Assess que|
Q First choice| :
Q Accepting c|
[Nearest MFf -
O wait : Try MFM change
[Try MM chy :
O start :
@O TryFFM again | Start Assess queues . Asl payment First choice Accepting cards 7
@ O FFM_use ;
@ O MFM with card |
© O MFM with chan :

Blala] [=[+] (%] [s

Ticket window

Nearest MFM cards

Fig. 1. Extract from the Tallis Composer tool

The left-hand panel of Figure 1 shows part of the TVMs guideline task hierarchy,
and the large panel the structure of the task named Assess_queues. The middle part of
the toolbar above the panel offers the five PROforma tasks (Action O, Enquiry <,
Plan = Decision o and Keystone G), any of which can be inserted into As-
sess_queues (by drag-and-drop from the toolbar to the task window). Other panels
(not shown) allow configuration of the attributes of each task component.

Figure 2 shows the initial result of enacting the above guideline in a web browser
using Tallis Engine. The left-hand panel allows the guideline user to inspect certain
components of the guideline, including the PROforma itself, and to summarise the
enactment trail thus far. The guideline may also be restarted or aborted.

2.2 Tallis Users

In the Tallis context, Creators produce and design the Tallis Composer interface and
also the default Tallis Engine interface (Figures 1 and 2; sophisticated Tallis users
can tailor the Engine interface to suit the needs of their application). Creators also
prescribe how the PROforma code which results from a Composer session is to be
enacted. Composers make use of Tallis Composer to produce guidelines (or self-
contained guideline fragments) which are encoded in PROforma and run via the En-
gine. Composers may also publish guidelines in a Repository. Consumers download
published guidelines and run them in a web browser using the Engine.

Knowledge representation systems such as Tallis are interesting examples of C
systems because the assumptions made by the guideline Composer about Consumer
expectations and knowledge are critical to guideline usage, and it is the task of the
Creator to make it easy for the Composer to easily generate usable guidelines that
match the understanding of Consumers. As noted above, the Engine interface is tai-
lorable, so the challenge might be more appropriately stated as that of producing a
good general default that can be readily tailored to particular user groups.

Knowledge Representation Environments: An Investigation of the CASSMs 59

‘3 Tallis web interface - Microsoft Internet

ENRERY ¢ Assess queues
Ertar ar ameid Gataly a5 reguired

Haowr long are the queues at the open FFMs ?
© Long

0 Medium

© Short or none

Hovwe long are the queuss at the open ticket
window (=) ?

© Long
0 Medium
© Short or none

Fig. 2. Initial result of enacting a PROforma guideline (created using Tallis Composer) in a
web browser (using Tallis Engine). The task being run is Access_queues.

3 CASSM Analysis of Tallis Composer and Engine

This Section describes the result of applying the CASSM approach to Tallis Com-
poser and Engine, and setting out the results using a dedicated tool named Cassata
(available from [4]).

An important part of a CASSM analysis is the elicitation of user data. In the case
of Tallis, this took complementary forms as described below. In practice, the current
culture of working with Tallis meant that some participants spoke from more than one
perspective; thus, most of the clinical interviewees feature below in multiple sections.

3.1 Data Collection

One source of data was a detailed diary, kept by the lead researcher, of insights into
the experiences of learning Tallis over a period of several weeks. As discussed above,
the guideline that was developed represented knowledge about underground ticket
purchase. During this time, the researcher worked closely with Tallis Creators to
improve their awareness of novice user difficulties and to improve his understanding
of the system design.

One of the Creators (i.e. a core member of the Tallis development team) was inter-
viewed about his perceptions of the system. Another of the Creators was recorded
while Composing the first part of a guideline for the ticket vending machines. The
video protocol so obtained represents an expert view of guideline composition and
Tallis Composer use, as well as giving insights into the design philosophy for Tallis.
The comparison between his version of the TVMs guideline and the larger but less
efficient version initially produced by the researcher was used to probe the differences
between expert and novice Composers. Following this comparison, the TVMs guide-
line intended for Consumer use was re-composed.

60 A. Blandford et al.

Three further Tallis users were interviewed. One was an Oncology clinician who
worked closely with the Tallis developers and used Tallis to create and upload sample
guidelines to the CRUK repository; he was able to present the views of Creator, as
well as Composer and Consumer. The second was a professor of medical informatics
who had also made use of Tallis in teaching. The third was a lecturer in Health Infor-
matics who based some of his teaching and student course work around Tallis. All
three interviewees were asked about their views of using Tallis Composer and Engine
to produce guidelines; with two of them, it was possible to run through sample reposi-
tory guidelines. In one case the participant demonstrated how he had used Tallis to
compose guidelines. In the other, the participant acted as Consumer while running
the TVMs guideline, and then inspected the guideline components as Composer. The
second and third participants were asked about the wider context of decision support
systems, and specifically how Tallis compares with similar systems.

To obtain views of Consumers that were independent of the Composer perspective,
five postgraduate HCI students used the ticket vending machine guideline to complete
sample ticket-buying scenarios. They were asked about their perceptions of Tallis
Engine. Interviews were audio recorded and relevant issues extracted.

3.2 Analysis and Results

We present the results according to role; as outlined above, several of the study par-
ticipants discussed Tallis from multiple perspectives, which we have separated out
here. Because several of the interviewees had a clinical or medical informatics back-
ground, they were able to talk about their views as Consumers of Tallis enacted
guidelines as well as their views as Creators or Composers; therefore, we consider
two separate groups of Consumers: those of enacted clinical guidelines and those of
the enacted ticket machine guideline.

We have constructed CASSM descriptions of the Tallis Composer and Tallis En-
gine to highlight user—system misfits. These have been constructed by working
through interview transcripts and system descriptions to identify the core user and
system concepts. On the user side, contextual information from transcripts has been
used to determine whether those concepts are present in the user’s conceptual model
of the system, whether they pose user difficulties or whether they are absent from the
user’s conceptualisation. The user’s conceptualisation will typically include both
system (device) concepts and ones pertaining specifically to the domain in which they
are working. On the interface and system side, system descriptions have been used to
determine whether concepts are represented at the interface and in the underlying
system model. For every concept, where possible, further data has been used to de-
termine how easily actions can be performed to change the state of the concept (e.g.
creating new entities or changing attributes). Where this data has not been available,
we have entered ‘not sure’ in the CASSM table. More details of conducting a
CASSM analysis are available from [4].

3.2.1 Creators
One of the interviewees from Cancer Research UK described the system as follows:

“what we are looking [at] is how to provide decision support, which will be a
core of this project, over the treatment of the patient, from diagnosis until
follow-up treatment and everything, so basically this is ... there are a lot of

Knowledge Representation Environments: An Investigation of the CASSMs 61

other things apart from decision support, like, urm, automatic enactment of
other tasks, and lots of other things, but the core part of it is decision support
for clinicians, and it will also record all data, data entry.” [taken from transcript
of interview]

Another compared Tallis to a flow-chart representation of clinical care pathways:
the flow chart representation “has some of the same high-level goals and
‘spin’, and that is an approach that is very common. It’s an importantly dif-
ferent approach, because the guidelines are not enactable. They cannot be
created by clinicians and then enacted by others. There is no active decision
support.” [taken from handwritten notes of interview]

Thus, from a Creator perspective, Tallis is a system that supports the development
and use of clinical guidelines, with important features such as active support for deci-
sion making and integration with other clinical tasks within the overall patient care
pathway. One important feature, highlighted in the first of the above extracts, is that
Tallis provides the facility to generate an audit trail of clinical decisions in case of any
queries about the clinical decision making for a particular patient. Although the de-
velopers think of the system used within a clinical context, it is also possible to
implement guidelines for other decision making tasks — such as the ticket machine
example used within this study.

3.2.2 Composers

The following extracts from interviews highlight Composer perspectives on Tallis
Composer. These perspectives have formed the basis for the CASSM description
presented below. Key ideas built into the CASSM model are highlighted in yellow (or
greyscale) within the transcript.

“there are multiple plans and tasks, and each plan involves another task”
[1* interviewee]

“[the guideline] will support investigations ... actually this is not the latest
version [of Tallis], what have added is clinical evidence,” [1* interviewee]

“as an editing tool it’s very difficult to keep track of because you don’t have
global view.” [2™ interviewee]

The second interviewee also discussed the challenge of teaching students to work
with Tallis. In particular, he highlighted the idea that there are some standard ‘pat-
terns’ of structure within a knowledge representation (typical patterns of components
that represent common ways of reasoning) that can be reused when constructing large
guidelines, but that students have to construct them from first principles every time:

“Students are asked to consider how they might put a pathway through a set
of Tallis components [Plans, Actions, Enquiries, Decisions]. Getting more
than simple ‘asking for information and using that in next decision’ combina-
tions is difficult - we use a pattern for a Plan that is a query and choice de-
pending on the answer to that query” [2" interviewee]

62 A. Blandford et al.

The third interviewee talked about what Tallis is not as well what it is, but then re-
peated many of the concepts enumerated by the first interviewee:

“We don’t get support in Tallis for knowledge representation - Tallis doesn’t
have (modelling) tools with which we can build a model (of e.g. a patient)
from which statements can be taken. Tallis doesn’t allow you to represent the
underlying model of (e.g. a patient). Tallis is not object or entity oriented (but
is process or ‘task’ oriented) - you [the guideline creator] have to map
decision criteria onto the ‘objects’ provided by Tallis (which are plans,
enquiries, decisions, actions etc.).” [handwritten notes of 3" interview]

To construct the full CASSM description, we can also take information from a
simple system description (extracted from [9]), as follows:

“PROforma is a formal knowledge representation language capable of
capturing the structure and content of a clinical guideline in a form that can be
interpreted by a computer. The language forms the basis of a method and a
technology for developing and publishing executable clinical guidelines.
Applications built using PROforma software are designed to support the
management of medical procedures and clinical decision making at the point
of care.

In PROforma, a guideline application is modelled as a set of tasks and
data items. The notion of a task is central - the PROforma task model [...]
divides from the keystone (generic task) into four types: plans, decisions, ac-
tions and enquiries.

Plans are the basic building blocks of a guideline and may contain any
number of tasks of any type, including other plans. Decisions are taken at
points where options are presented, e.g. whether to treat a patient or carry
out further investigations. Actions are typically clinical procedures (such as
the administration of an injection) which need to be carried out. Enquiries are
typically requests for further information or data, required before the guideline
can proceed.

[...] networks of tasks can be composed that represent plans or procedures
carried out over time. In the editor, logical and temporal relationships between
tasks are captured naturally by linking them as required with arrows. Any
procedural and medical knowledge required by the guideline as a whole or by
an individual task is entered using templates attached to each task.”

These extracts do not define a full model, but are sufficient for an illustrative,
sketchy CASSM model, as shown in Table 2.

This CASSM description includes notes of superficial difficulties as highlighted in
the interviews: that it is difficult to get an overview of a guideline at the interface, that
components (and their linkages) are hard to change once created, and that the idea of
a ‘pattern’ of structure is important to some Composers, but is absent from the Tallis
Composer environment. This sketchy description does not account for difficulties
users might experience in constructing clinical guidelines using the PROforma lan-
guage — that would require a more thorough analysis than is appropriate for the pre-
sent purpose.

Knowledge Representation Environments: An Investigation of the CASSMs 63

Table 2. Entities and attributes for Tallis Composer as extracted from user data of Composers

Concept User Interface | System | Set / [Change [Notes
create / delete

E | guideline present | difficult | present | easy easy difficult to get an over-
view of the guideline

A | evidence present | present present | easy easy easy for composer, harder
for engine

A | investigation | present [present present | easy easy

E | task difficult | present present | easy hard Also called 'components'
and 'objects'.

E | a decision | present | difficult | notSure | notSure | notSure

pathway

E | dataitem present | present present | easy easy

E | pattern present | absent absent cant cant

E | plan notSure | present present | easy notSure

A | attributes notSure | present present | easy notSure

E | action notSure | present present | easy notSure

A | attributes notSure | present present | easy notSure

E | enquiry notSure | present present | easy notSure

A | attributes notSure | present present | easy notSure

E | decision notSure | present present | easy notSure

A | attributes notSure | present present | easy notSure | Includes options

3.2.3 Consumers: Clinicians

As noted above, most of the clinical interviewees discussed their experiences of Tallis
Engine (i.e. the Consumer interface). Their descriptions of Engine included the fol-
lowing from the first interviewee:

“this is - from a patient’s history, [...] of breast cancer, and this is examination
of imaging, of mammogram or ultrasound” [1 interviewee]

“this is the first screen which are some information about the demographics
about the patient. There is a, some more information, and whether the patient
has got a previous medical past, if you say yes, then [another part of the
dialogue becomes ungreyed out], otherwise it is greyed out; here we can see
that the patient is not pregnant and the patient has got some family history
[...] patient has got a lump which is 30 mm and which is not fixed
[1*interviewee]

“‘Interventions’ [in enacted guidelines] don’t mean anything to clinicians -
change to ‘candidates’, but names of decisions should be captions, not
technical names.” [1* interviewee]

The same interviewee commented on the experience of working with Engine:

“this process [...] forces the clinician to do a particular sequence of the task,
which in actual practice is not the case always. [...] But otherwise, for
different clinicians, if you take a novice candidate or a clinician who is very
junior, this probably is better because it guides the clinician [in] the normal
steps. But for a senior clinician, say for a consultant, it’s sometimes irritating,
like, he don’t want to go all the stages he already know, so he might go to a
particular task” [transcript of 1% interviewee]

64 A. Blandford et al.

“sometimes it might inhibit a clinician - the other thing is we cannot go back,
like if I enter some details here, and the patient came up with some other
details at a later stage, [or] if I forgot to enter the details [earlier], I can’t go
back” [transcript of 1% interviewee]

The second interviewee commented explicitly about the relationship between the
Composer and Engine environments; the following refers to the Engine window:

“Top level presentation is fine - the next level down needs to be ... if the
things aren’t boolean statements, and they are just pieces of evidence for and
against then it’s not too bad, [but] if they’re things like this, which is a long
expression [looking at the Interventions page, after the first pair of enquiry
windows] that’s not something I’d want my users - my end users - to see. 'm
perfectly happy for my knowledge engineer to see that, as part of the
debugging process ... but it doesn’t display boolean combinations well at this
point.” [2" interviewee]

Table 3. Entities and attributes for Tallis Engine as extracted from user data of clinical users

Concept User Interface | System | Set / [Change/ | Notes
Create Delete
E | guideline present | difficult | present | fixed fixed difficult to get an
overview of the whole
guideline
A | clinical present | present present | easy hard
evidence
A | investigation present | present present | easy hard
A | intervention difficult | present present | easy hard "should be called
'candidates'"
E | patient present | notSure notSure | easy easy
A ["model" present | absent absent cant cant
A | details present | present notSure | easy hard
A | history present | present present | easy hard
A | demographics | present | present present | easy hard
A | symptoms present | present present | easy hard
E | treatment present | present present | fixed fixed
E | care pathway | present | notSure notSure | notSure | notSure
E | plan difficult | present present | fixed fixed
E | task difficult | present present | fixed fixed
E | trigger difficult | present present | fixed fixed
E | PROforma difficult | present present | fixed fixed
E | evidence present | present present | easy notSure
A | representation [difficult | present present | fixed fixed
E | decision present | present present | notSure | notSure
process
E | decision present | present present | notSure | indirect
outcome
E | decision /data | notSure | difficult | present | indirect | cant
record

The third interviewee compared Tallis to flowchart descriptions of clinical guidelines:

“Flow-chart representations [of guidelines] might be better than a Tallis
representation (you just have to use your eyes to follow it). However,

Knowledge Representation Environments: An Investigation of the CASSMs 65

representations involving timelines (e.g. care pathways) might need the
additional complexity of systems such as Tallis.” [notes from 3" interview]

These extracts, together with reference to the Engine environment (as illustrated in
Figure 2), have been used to construct the CASSM description shown in Table 3. This
is not instantiated to a particular clinical problem (e.g. the diagnosis and treatment of
breast cancer), but is a general model of clinical guideline use.

This shows more substantial likely user difficulties than the Composer environ-
ment; users are expected to work with concepts (such as ‘intervention’, ‘plan’ or
‘PROforma’) that are unfamiliar, and of minimal obvious relevance to them in their
(clinical) decision making. In addition, while much information is easy to enter, it is
difficult to change later, due to the linear model of decision making implemented
within Tallis.

3.2.4 Consumers: TVMs

Many of the same issues emerge in the findings from the study of ticket machine
decision making. The data for the ticket machine Consumers is taken from the im-
plementation and user comments on the Engine guideline produced as part of this
study. Extracts from user comments are as follows. In all these cases the extracts are
taken from questionnaires completed after the interaction or from the analyst’s notes,
and numbers at the beginning indicate which user made the comment. The first set of
comments refer, as with the clinical users, to Tallis concepts that are independent of
the domain of ticket purchasing:

[1] “Don't need the 'Intervention' screen - it gives information that I already
know.”

[5] “Interventions screens look like programming language - had to
understand boolean logic to use it - seems like decision-making screen”

[1] “Don't feel in control - have to follow path, can't make choices that are not
offered.”

[5] “Summary [at end] are titles of tracks, not what I did. Does not remind you
of overall goal, nor the tracks you have done. Summary is textual way of
showing the process, not the overall goal.”

[1] “Can't use the summary [trail of previously used Tallis entities] to go back
to previous stages [in order to do alternative forward routes without having
to restart]”

[5] “Not sure if Print will reproduce the complete decision process [ie the
results of clicking on the + symbols under each decision, or just the decision
itself].”

Because these users were working with an implemented guideline instantiated to a
particular domain, they also referred to domain concepts including the following.

[3] “Adult/Child screen confusing, since 'multiple choice' option comes
later”

[3] “Can't see Family Ticket in ticket type selection”

[1] “Can't do tickets in advance [e.g. for specified day which is not today]”
[3] “Machines [or the simulation] don't tell you the cheaper route or choices,
etc. (the one offered may not be the most economical)”

66 A. Blandford et al.

[2] “Need clearer information on ticket prices on the [real] machines”
[3] “Tube map [on FFM] does not show where zones are, and zones [the
concept and the boundaries] are confusing until you learn”

The set of domain concepts users worked with also included several from the task
instruction sheet, and which any ticket purchaser works with (such as a ticket!), so
these are also included in the CASSM model shown in Figure 4.

Table 4. Entities and attributes for Tallis Engine (TVM users)

Concept User Interface | System | Set / [Change [Notes
Create /
Delete
E | guideline present | difficult | present | fixed fixed difficult to get an overview
of the guideline
A | evidence present | present present | easy hard
A | getting present | present present | easy hard
information
A | intervention | difficult | present present | easy hard "should be called
'candidates'"
E | ticket present | notSure | notSure | fixed fixed
buying
situation
A | details present | present notSure | easy hard
E | plan difficult | present present | fixed fixed
E | action difficult | present present | fixed fixed
E | trigger difficult | present present | fixed fixed
E | decision difficult | difficult | present | fixed fixed
process
E | decision present | present present | bySys hard
outcome
E | decision notSure | difficult | present | indirect | cant
/data record
E | ticket present | difficult | absent fixed fixed
A | type present | difficult | present | hard notSure
A | price present | difficult | present | easy notSure | finding cheapest ticket is
hard
A | validity date | present | present present | cant cant can only buy for today
E [train present | absent absent fixed fixed
E | queue present | present notSure | fixed fixed
E | payment / | present | present notSure | fixed fixed
money
E [zone present | difficult | present [hard hard

As in the case of the clinical Consumer, from the point of view of the end-user
(Consumer) of the enacted TVMs guideline, much of what is made available is absent
from the Consumer’s model (and cannot be switched off by the Consumer). In the
view of the Composers and Consumers who were interviewed, these are Composer’s
and not Consumer’s tools — a point made very explicitly by interviewee 2: “that’s not
something I’d want my users - my end users - to see”.

Knowledge Representation Environments: An Investigation of the CASSMs 67

3.3 Comparing the CASSM Models

Tables 2, 3 and 4 can be compared against each other to establish the differences in
models. A comparison of tables 3 and 4 supports understanding of how Tallis Engine
can be used in different domains (in this case, clinical decision making and TVM
use). More centrally to the theme of this paper, a comparison of tables 2 and 3 / 4
focuses attention on the C* chain, highlighting which concepts are transferred through
the chain and which are not.

First, we briefly consider the differences between Tables 3 and 4. Essentially, the
only difference between these tables is in the domain model. So patient information
(presented sketchily in Table 3) is replaced by ticket-buying information in Table 4.
The only other difference between these tables is the inclusion of the representation of
evidence in Table 3 — included there because it was mentioned by one of the clinical
interviewees but it did not emerge in any of the TVMs sessions.

More interesting is the difference between Table 2 and Tables 3/4. In this case, the
important features are as follows:

1. Both Composers and Consumers reported difficulty in getting an overview of the
guideline (although the role of an overview is different for the two user groups).

2. Consumers found it difficult to backtrack while running guidelines. This point did
not emerge from the Composers’ perspectives.

3. Domain information is absent from Table 2, because this is a generic decision
support environment (albeit motivated by the requirements of clinical decision
making). This has negative consequences for Consumers, who think in domain
terms (e.g. “patient models”) rather than decision processes.

4. Plans, Tasks, Triggers and PROforma are included in Tables 3 and 4, although this
information is difficult for most Consumers to work with. Similarly, the represen-
tation of evidence is noted in Table 3 as being difficult for Consumers.

5. The decision outcome was noted by Consumers as being important; from a Com-
poser perspective, this emerges through the interaction, and is therefore not an ex-
plicit concept.

The CASSM analysis of Tallis has highlighted both important differences and in-
appropriate overlaps between the Composer and Consumer models. Probably the two
most important themes are the inappropriate emphasis on inspection of guideline
components in the Engine (item 4 in the list above), and the focus on process rather
than patient models (item 3).

The inclusion of Composer-relevant information in the Consumer system (item 4)
suggests a conflation of the roles of Composers and Consumers, in that what is appro-
priate for the former has been assumed to also be of concern to the latter.

Conversely, the differences between the two user models is reflected in the differ-
ences of emphasis in the corresponding Cassata tables. In particular, a ‘patient
model’ was found to be important for Consumers, and several Consumers expressed
an interest in being able to backtrack through the decision process. A better under-
standing of Consumers’ requirements might lead the developers to consider how to
improve backtracking in the Engine environment, and whether to incorporate an ex-
plicit patient model within the Composer environment. Explicit inclusion of a patient
model would make it more difficult to develop non-clinical guidelines, but could
improve the ‘fit” between the tool and the target context of use.

68 A. Blandford et al.

This illustrates how, for Tallis as for other composition tools, Creators need to be
aware of both Composer and Consumer roles, while keeping them apart. In this par-
ticular case, in order to encourage clinicians who use guidelines to also create them,
there may be a need for specific add-ons or enabling features which ‘upgrade’ from
Consumer-level to Composer-level. However, this needs to be considered separately
from the basic challenge of making such guidelines usable by and useful to clinicians
in their every day work, without any expectation that all users will become guideline
Composers.

4 Discussion

We have shown how CASSM can be used to illuminate multiple classes of user
model which form part of the ‘chain’ from designer to end user, and that tabulating
results in the form demonstrated by Cassata enables the analyst to focus on the essen-
tial differences between these models. As discussed in the Introduction, the C* chain
is not specific to decision support or knowledge representation systems.

One role for CASSM in the development cycle is in pre-empting any conflation of
Composer and Consumer models. CASSM does not explicitly differentiate between
appropriate and inappropriate overlaps between models; a reasonable heuristic ap-
pears to be that Creators need to be more aware of the Consumer’s perspective, but
that Consumers should not generally be expected to assimilate non-essential informa-
tion about the Composer environment.

Elsewhere, we have compared the findings of CASSM analyses with those of pro-
cedurally based approaches such as Cognitive Walkthrough [6]. We have not con-
ducted such a comparative analysis in the work with Tallis because, as should be
evident from Figures 1 and 2, the procedures for working with the two interfaces are
completely different. The Composer interface demands complex planning by users
and an interaction based on a graphical drag-and-drop paradigm, whereas the Engine
interface requires users to engage in a sequence of selections that leads them carefully
through the decision process. The sequence embodied within the Engine interface is
defined by the ordering of elements within the corresponding Composer knowledge
representation, but is not reflected in the process that the Composer has to go through
to construct the knowledge representation. These differences make it impossible to
conduct a meaningful procedural comparison between the Composer and Engine
interfaces; this contrasts with the conceptual comparison that CASSM has supported
(section 3.3).

Tallis is an interesting example of the C° model because decisions made by a Con-
sumer at the early stages of an interaction session determine those aspects of the inter-
face which will be available later on. Even website development tools may not expect
this much premature commitment in the end product: at least with web sites one can
backtrack and go down some different path, whereas Tallis does not offer such flexi-
bility. However, Tallis may be unusual in having a ‘back-channel’ between Consum-
ers and Composers, in that the same clinicians who make use of guidelines are also
encouraged to compose them, and to upload them to the repository for others to con-
sume. In that sense, there may be a special benefit in the Consumer having a view of
the Creator’s world, in order to understand how the system has come to be.

Knowledge Representation Environments: An Investigation of the CASSMs 69

Of course, programming support environments also expect Composers to act
as Consumers when running, testing and debugging code, but it may be the special
and detailed support for the interrogation of user outcomes (Table 4) that makes
Tallis so prone to this kind of conflation. It is evident from the Consumer reports
(Sections 3.2.3 and 3.2.4) that so much emphasis on intervention and diagnosis, rather
than user control, can hinder rather than illuminate the support for outcomes.

CASSM can help to identify where in the ‘chain’ a particular tool is best used, be-
cause both Creators and Composers need comprehension of the other user models. In
particular, Creators need to know about Composers and Consumers, and Composers
need to know about Consumers. To what extent it is helpful for understanding to also
flow the other way — that Consumers should understand the perspectives of Creators
and Composers — remains an open question. Arguably, a ready-to-hand tool should
not impose on its user the requirement to understand how it was made, or why it is the
way it is. However, this is not the culture within which the Tallis development is
taking place. In the current development context, the communications between the
Creators, Composers and Consumers are perceived as being essential to the develop-
ment of a shared culture of guideline development and use. However, the very culture
that supports collaboration may also alienate potential Consumers who have no inter-
est in being Composers. Such socio-political considerations are outside the scope of
CASSM,; nevertheless, the use of CASSM within this development culture has high-
lighted important questions about how information is presented to and used by differ-
ent user populations.

Acknowledgements

We are very grateful to all the participants in this study, both experts and novices,
without whom this analysis would not have been possible, and to Paul Cairns for
constructive criticism of a draft of this paper. The work on CASSM was funded by
EPSRC (GR/R39108).

References

1. Blandford, A., Green, T., Connell, I.: Formalising an understanding of user—system mis-
fits. In: Bastide, R., Palanque, P., Roth, J. (eds.) DSV-IS 2004 and EHCI 2004. LNCS,
vol. 3425, pp. 253-270. Springer, Heidelberg (2005)

2. Blandford, A., Keith, S., Butterworth, R., Fields, B., Furniss, D.: Disrupting Digital Li-
brary Development with Scenario Informed Design. In: Interacting with Computers (in
press) (to appear)

3. Blandford, A.E., Wong, B.L.W., Connell, LW., Green, T.R.G.: Multiple viewpoints on
computer supported team work: a case study on ambulance dispatch. In: Faulkner, X.,
Finlay, J., Détienne, F. (eds.) People and Computers XVI. Proceedings of HCI 2002, Sep-
tember 2002, pp. 139-156. Springer, London (2002)

4. CASSM, Shrinkwrapped tutorial, Cassata tool and worked examples (2004),
http://www.uclic.ucl.ac.uk/annb/CASSM/

5. Checkland, P.B.: Systems Theory, Systems Practice. John Wiley, Chichester (1981)

70

10.

11.

12.

13.
14.

15.

16.

17.

A. Blandford et al.

Connell, I.W., Blandford, A.E., Green, T.R.G.: CASSM and Cognitive Walkthrough: us-
ability issues with ticket vending machines. Behaviour & Information Technology 23(5),
307-320 (2004)

Connell, .W., Green, T.R.G., Blandford, A.E.: Ontological Sketch Models: highlighting
user-system misfits. In: O’Neill, E., Palanque, P., Johnson, P. (eds.) People and Computers
XVII - Designing for Society. Proceedings of HCI 2003, Bath, September 2003, pp. 163—
178. Springer, London (2003)

. CRUK, Tallis system (2006a) Viewed 30/11/06,

http://www.acl.icnet.uk/lab/tallis/

CRUK, Tallis PROforma (2006b) Viewed 30/11/06,
http://www.openclinical.org/gmm_proforma.html

Fox, J., Beveridge, M., Glasspool, D.: Understanding intelligent agents: analysis and syn-
thesis. Al Communications 16, 139-152 (2003)

Fox, J., Johns, N., Rahmanzadeh, A.: Disseminating medical knowledge: the PROforma
approach. Artificial Intelligence in Medicine 14, 157181 (1998)

KPC, Open Clinical Knowledge Publishing Collaboratory (2006) Viewed 30/11/06,
http://www.openclinical.org/kpc/Introduction.page

NetBeans (no date) Viewed 12/02/07, http://www.netbeans.org/

Nielsen, J.: Heuristic Evaluation. In: Nielsen, J., Mack, R. (eds.) Usability Inspection
Methods, pp. 25-62. John Wiley, New York (1994)

Norman, D.A.: Cognitive engineering. In: Norman, D.A., Draper, S.W. (eds.) User Cen-
tred System Design, pp. 31-62. Lawrence Erlbaum Associates, Hillsdale (1986)

Wharton, C., Rieman, J., Lewis, C., Polson, P.: The cognitive walkthrough method: A
practitioner’s guide. In: Nielsen, J., Mack, R. (eds.) Usability inspection methods, pp. 105—
140. John Wiley, New York (1994)

Witten, I.LH., Bainbridge, D., Boddie, S.J.: Greenstone: Open-source digital library soft-
ware with end-user collection building. Online Information Review 25(5), 288-298 (2001)

Consistency between Task Models and Use Cases

Daniel Sinnigl, Patrice Chalinl, and Ferhat Khendek®

! Department of Software Engineering and Computer Science,
Concordia University, Montreal, Quebec, Canada
{d_sinnig,chalin}@encs.concordia.ca
2 Department of Electrical and Computer Engineering,
Concordia University, Montreal, Quebec, Canada
khendek@ece.concordia.ca

Abstract. Use cases are the notation of choice for functional requirements
documentation, whereas task models are used as a starting point for user inter-
face design. In this paper, we motivate the need for an integrated development
methodology in order to narrow the conceptual gap between software engineer-
ing and user interface design. This methodology rests upon a common semantic
framework for developing and handling use cases and task models. Based on
the intrinsic characteristic of both models we define a common formal seman-
tics and provide a formal definition of consistency between task models and use
cases. The semantic mapping and the application of the proposed consistency
definition are supported by an illustrative example.

Keywords: Use cases, task models, finite state machines, formal semantics,
consistency.

1 Introduction

Current methodologies and processes for functional requirements specification and UI
design are poorly integrated. The respective artifacts are created independently of
each other. A unique process allowing for UI design to follow as a logical progression
from functional requirements specification does not exist. Moreover, it has been noted
that most UI design methods are not well integrated with standard software engineer-
ing practices. In fact, UI design and the engineering of functional requirements are
often carried out by different teams using different processes [1].

There is a relatively large conceptual gap between software engineering and Ul devel-
opment. Both disciplines have and manipulate their own models and theories, and use
different lifecycles. The following issues result directly from this lack of integration:

e Developing Ul-related models and software engineering models independently
neglects existing overlaps, which may lead to redundancies and increase the main-
tenance overhead.

e Deriving the implementation from Ul-related models and software engineering
models towards the end of the lifecycle is problematic as both processes do not
have the same reference specification and thus may result in inconsistent designs.

J. Gulliksen et al. (Eds.): EIS 2007, LNCS 4940, pp. 71£88] 2008.
© IFIP International Federation for Information Processing 2008

72 D. Sinnig, P. Chalin, and F. Khendek

Use cases are the artifacts of choice for the purpose of functional requirements
documentation [2] while UI design typically starts with the identification of user
tasks, and context requirements [3]. Our primary research goal is to define an inte-
grated methodology for the development of use case and task model specifications,
where the latter follows as a logical progression from the former. Figure 1 illustrates
the main component of this initiative, which is the definition of a formal framework
for handling use cases and task models at the requirements and design levels. The
cornerstone for such a formal framework is a common semantic model for both nota-
tions. This semantic model will serve as a reference for tool support and will be the
basis for the definition of a consistency relation between a use case specification and
a task model specification. The latter is the focus of this paper.

Formal
Framework

Use Case Models

consistent with

Fig. 1. Relating Use Cases and Task Models within a Formal Framework

The structure of this paper is as follows. Section 2 reviews and compares key char-
acteristics of use cases and task models. Section 3 presents a formal mapping from
use cases and task models to (nondeterministic) state machines. Based on the intrinsic
characteristics of use cases and task models, we provide a formal definition of consis-
tency. Our definition is illustrated with an example as well as with a counterexample.
Finally in Section 4, we draw the conclusion and provide an outlook to future re-
search.

2 Background

In this section we remind the reader of the key characteristics of use cases and task
models. For each notation we provide definitions, an illustrative example as well as a

Consistency between Task Models and Use Cases 73

formal representation. Finally, both notations are compared and the main commonal-
ities and differences are contrasted.

2.1 Use Cases

A use case captures the interaction between actors and the system under development.
It is organized as a collection of related success and failure scenarios that are all
bound to the same goal of the primary actor [4]. Use cases are typically employed as a
specification technique for capturing functional requirements. They document the
majority of software and system requirements and as such, serve as a contract (of the
envisioned system behavior) between stakeholders [2]. In current practice, use cases
are promoted as structured textual constructs written in prose language. While the use
of narrative languages makes use case modeling an attractive tool to facilitate com-
munication among stakeholders, prose language is well known to be prone to ambi-
guities and leaves little room for advanced tool support.

As a concrete example, Figure 2 presents a sub-function level use case for a
“Login” function. We will be using the same example throughout this paper, and for
the sake of simplicity, have kept the complexity of the use case to a minimum. A use
case starts with a header section containing various properties of the use case. The
core part of a use case is its main success scenario, which follows immediately after
the header. It indicates the most common ways in which the primary actor can reach
his/her goal by using the system. The main success scenario consists of a set of steps
as well as (optional) control constructs such as choice points. We note that technically
and counter-intuitively to its name, the main success scenario does not specify a sin-
gle scenario but a set of scenarios. However, current practice in use case writing sug-
gests the annotation of the main success scenario with such control constructs [2].
Within our approach we acknowledge this “custom” by allowing control structures to
be included in the main success scenario.

A use case is completed by specifying the use case extensions. These extensions
constitute alternative scenarios which may or may not lead to the fulfillment of the
use case goal. They represent exceptional and alternative behavior (relative to the
main success scenario) and are indispensable to capturing full system behavior. Each
extension starts with a condition (relative to one or more steps of the main success
scenario), which makes the extension relevant and causes the main scenario to
“branch” to the alternative scenario. The condition is followed by a sequence of ac-
tion steps, which may lead to the fulfillment or the abandonment of the use case goal
and/or further extensions. From a requirements point of view, exhaustive modeling of
use case extensions is an effective requirements elicitation device.

As mentioned before use cases are typically presented as narrative, informal con-
structs. A formal mapping from their informal presentation syntax to a semantic
model is not possible. Hence, as a prerequisite, for the definition of formal semantics
and consistency, we require use cases to have a formal structure, which is independent
of any presentation. We have developed a XML Schema (depicted in Figure 3) which
acts as a meta model for use cases. As such, it identifies the most important use case
elements, defines associated mark-up and specifies existing containment relationships
among elements. We use XSLT stylesheets [S] to automatically generate a “readable”
use case representation (Figure 2) from the corresponding XML model.

74 D. Sinnig, P. Chalin, and F. Khendek

Use Case: Login

Goal: Customer logs into the program
Level: Sub-function

Primary Actor: Customer

Main scenario

1. Customer indicates that he/she wishes to log-in to the system. (step:interaction)
2. Customer performs the choice of the following: (stepChoice)
2.1a Customer provides the user name. (step:interaction)
2.1b Customer provides the password. (step:interaction)
OR
2.2a Customer provides the password. (step:interaction)
2.2b Customer provides the user name. (step:interaction
3. Customer confirms the provided data (step:interaction)
4. System authenticates customer. (step:internal))
5. System informs the customer that the Login was successful. (step:interaction)
6. System grants access to customer based on his/her access levels. (step:internal)
7. The use case ends. (stepEnd)

Extensions
4a. The provided username or/and password is/are invalid:

4al. The system informs the customer that the provided username and/or
password is/are invalid. (step:interaction)

4a2. The system denies access to the customer. (step:internal)

4a2. The use case ends unsuccessfully. (stepEnd)

Fig. 2. Textual Presentation of the “Login” Use Case

Most relevant for this paper is the definition of the stepGroup element as it cap-
tures the behavioral information of the use case. As depicted, the stepGroup element
consists of a sequence of one of the following sub elements:

e The step element denotes a use case step capturing the primary actor’s interactions
or system activities. It contains a textual description and may recursively nest an-
other stepGroup element. As implied by the annotations in Figure 2, we distinguish
between interaction steps and internal steps. The former are performed or are ob-
servable by the primary actor and require a user interface, whereas the latter are
unobservable by the primary actor.

e The stepEnd element denotes an empty use case step which has neither a successor
nor an extension.

e The stepChoice element denotes the alternative composition of two stepGroup
elements.

e The stepGoto element denotes an arbitrary branching to another step.

Consistency between Task Models and Use Cases 75

attributes

altributes

uccessScenario

Fig. 3. Use Case Meta Model

We note that the stepGroup element is part of the mainSuccessScenario as well as
the extension element. The latter additionally contains a condition and a reference to
one or many steps stating why and when the extension may occur.

2.2 Task Models

User task modeling is by now a well understood technique supporting user-centered
UI design [6]. In most UI development approaches, the task set is the primary input to
the UI design stage. Task models describe the tasks that users perform using the
application, as well as how the tasks are related to each other. Like use cases, task
models describe the user’s interaction with the system. The primary purpose of task
models is to systematically capture the way users achieve a goal when interacting
with the system [7]. Different presentations of task models exist, ranging from narra-
tive task descriptions, work flow diagrams, to formal hierarchical task descriptions.

Figure 4 shows a ConcurTaskTreesEnvironment (CTTE) [8] visualization of the
“Login” task model. CTTE is a tool for graphical modeling and analyzing of Concur-
TaskTrees (CTT) models [9]. The figure illustrates the hierarchical break down and
the temporal relationships between tasks involved in the “Login” functionality (de-
picted in the use case of Section 2.1). More precisely, the task model specifies how
the user makes use of the system to achieve his/her goal but also indicates how the
system supports the user tasks. An indication of task types is given by the used sym-
bol to represent tasks. Task models distinguish between externally visible system
tasks and interaction tasks. Internal system tasks (as they are captured in use cases)
are omitted in task models.

76 D. Sinnig, P. Chalin, and F. Khendek

stanV\

L * *
g

E ap es dhb

b L3 LS - —— &

Enter Username Enter Password Submit Display Success Message Display Failure Message

==

Fig. 4. “Login” Task Model

Formally a task model is organized as a directed graph. Tasks are hierarchically
decomposed into sub-tasks until an atomic level has been reached. Atomic tasks are
also called actions, since they are the tasks that are actually carried out by the user
or the system. The execution order of tasks is determined by temporal operators that
are defined between peer tasks. In CTT various temporal operators exist; examples
include: enabling (>>), choice ([]), iteration (*), and disabling ([>]. A complete list
of the CTT operators together with a definition of their interpretation can be found
in [9].

2.3 Use Cases vs. Task Models

In the previous two sections, the main characteristics of use cases and task models
were discussed. In this section, we compare both specifications and outline notewor-
thy differences and commonalities. In Section 3 the results of this comparison will be
used as guides for the definition of a proper consistency relation that fits the particu-
larities of both specifications.

Both use cases and task models belong to the family of scenario-based notations,
and as such capture sets of usage scenarios of the system. In theory, both notations
can be used to describe the same information. In practice however, use cases are
mainly employed to document functional requirements whereas task models are used
to describe Ul requirements/design details. Based on this assumption we identify
three main differences which are pertinent to their purpose of application:

1. Use cases capture requirements at a higher level of abstraction whereas task mod-
els are more detailed. Hence, the atomic actions of the task model are often lower
level UI details that are irrelevant (actually contraindicated [2]) in the context of a
use case. We note that due to its simplicity, within our example, this difference in
the level of abstraction is not explicitly visible.

2. Task models concentrate on aspects that are relevant for UI design and as such,
their usage scenarios are strictly depicted as input-output relations between the user
and the system. Internal system interactions (i.e. involvement of secondary actors
or internal computations) as specified in use cases are not captured.

Consistency between Task Models and Use Cases 77

3. If given the choice, a task model may only implement a subset of the scenarios
specified in the use case. Task models are geared to a particular user interface and
as such must obey to its limitations. E.g. a voice user interface will most likely
support less functionality than a fully-fledged graphical user interface. In the next
section we will address the question of which use case scenarios the task model
may specify and which scenarios the task model must specify.

3 Formal Definition of Consistency

In this section we first review related work and mathematical preliminaries. Next we
define the mapping from use cases and task models to the proposed semantic domain
of finite state machines. Finally we provide a formal notion of consistency between
use cases and task models.

3.1 Related Work

Consistency verification between two specifications has been investigated for decades
and definitions have been proposed for various models [10-14]. But to our knowledge
a formal notion of consistency has never been defined for use cases and task model
specification.

Brinksma points out that the central question to be addressed is “what is the class of
valid implementations for a given specification?” [15] To this effect various pre-orders
for labeled transition systems have been defined. Among others the most popular ones
are trace inclusion [16], reduction [15], and extension [12, 15, 17]. The former merely
requires that every trace of the implementation is also a valid trace according to the
specification. The reduction preorder defines an implementation as a proper reduction
of a specification if it results from the latter by resolving choices that were left open in
the specification [15]. In this case, the implementation may have less traces. In the case
of the extension preorder two specifications are compared for consistency by taking
into account that one specification may contain behavioral information which is not
present in the other specification. In the subsequent section we adopt (with a few modi-
fications) the extension preorder as the consistency relation between uses cases and
task models. A prerequisite for a formal comparison (in terms of consistency) of use
cases and task models is a common semantics.

In [18] Sinnig et al. propose a common formal semantics for use cases and task
models based on sets of partial order sets. Structural operational semantics for CTT
task models are defined in [19]. In particular Paterno defines a set of inference rules
to map CTT terms into labeled transition systems. In [20] Xu et al. suggest process
algebraic semantics for use case models, with the overall goal of formalizing use case
refactoring.

In [21, 22, 23] use case graphs have been proposed to formally represent the con-
trol flow within use cases. For example Koesters et al. define a use case graph as a
single rooted directed graph, where the nodes represent use case steps and the edges
represent the step ordering. Leaf nodes indicate the termination of the use case [21].

In our approach we define common semantics for use cases and task model based
on finite state machines. In the next section we lay the path for the subsequent sec-
tions by providing the reader with the necessary mathematical preliminaries.

78 D. Sinnig, P. Chalin, and F. Khendek

3.2 Mathematical Preliminaries

We start by reiterating the definition of (non-deterministic) finite state machines
(FSM) which is followed by the definitions of auxiliary functions needed by our con-
sistency definition.

Definition 1. A (nondeterministic) finite state machine is defined as the following
tuple: M = (Q, %, 6, qo, F), where

e Qs afinite set of states.

e Y is a finite set of symbols (the input alphabet), where each symbol represents
an event.

e (o is the initial state with qo € Q

e Fis the set of final (accepting) states with F — Q

e 3:Qx (ZuU {A}) — 2%is the transition function', which returns for a given state
and a given input symbol the set of (possible) states that can be reached.

In what follows we define a set of auxiliary functions which will be used later on for
the definition of consistency between two FSMs.

Definition 2. The extended transition function. 5*: Q x £° — 29 is defined in a
standard way as:

d*(q;, W) = Qj

where Qj is the set of possible states the Non-deterministic FSM may be in, having
started in state q; and after the sequence of inputs w. A formal recursive definition of
the extended transition function can be found in [24].

Definition 3. The function accept: Q — 2* denotes the set of possible symbols which
may be accepted in a given state.

accept (q) = {al6*(q, a)}
Note that ‘a’ ambiguously denotes either a symbol or the corresponding string of one

element.

Definition 4. The function failure: Q — 2* denotes the set of possible symbols which
may not be accepted (refused) in a given state. failure(p) is defined as the complement
of accept (p).

failure(p) = X \ accept (p)
Definition 5. The language L accepted by a FSM M = (Q, X, 3, qo, F) is the set of all
strings of event symbols for which the extended transition function yields at least one

final state (after having started in the initial state qo). Each element of L represents
one possible scenario of the FSM.

L (M) = {w3*(qy, w) N F# I}

'\ Represents the empty string. 2’ = {1A}.

Consistency between Task Models and Use Cases 79

Definition 6. The set of all traces generated by the NFSM M = (Q, X, §, qq, F) is the
set of all strings or sequences of events accepted by the extended transition function
in the initial state.

Traces (M) = {w | §*(qo, W)}

3.3 Mapping Use Cases to Finite State Machines

In this section we define a mapping from use cases to the domain of finite state ma-
chines. It is assumed that the use case specification complies with the structure out-
lined in Section 2.1.

The building blocks of a use case are the various use case steps. According to the
control information entailed in the use case, the various steps are gradually composed
into more complex steps until the composition eventually results in the entire use
case. We distinguish between sequential composition and choice composition. The
former is denoted by the relative ordering of steps within the use case specification or
the stepGoto construct, whereas the latter is denoted by the stepChoice element.

A use case step may have several outcomes (depending on the number of associ-
ated extensions). This has an implication on the composition of use case steps. In
particular the sequential composition of two use case steps is to be defined relative to
a given outcome of the preceding step. For example the steps of the main success
scenario are sequentially composed relative to their successful (and most common)
outcome. In contrast to this, the steps entailed in use case extensions are sequentially
composed relative to an alternative outcome of the corresponding “extended” steps.

Following this paradigm, we propose representing each use case step as a finite
state machine. Figure 5 depicts a blueprint of such a state machine representing an
atomic use case step. The FSM only consists of an initial state and multiple final
states. The transitions from the initial state to the final states are triggered by events.
Each event represents a different outcome of the step. In what follows we illustrate
how the sequential composition and choice composition of use case steps are seman-
tically mapped into the sequential composition and deterministic choice composition
of FSMs.

Fig. 5. FSM Blueprint for Atomic Use Case Steps

Figure 6 schematically depicts the sequential composition of two FSMs M; and M,
relative to state q,. The resulting FSM is composed by adding a transition from g,
(which is a final state in M) and the initial state (sy) of M,. As a result of the compo-
sition, both g, and s, lose their status as final or initial states, respectively. The choice

80 D. Sinnig, P. Chalin, and F. Khendek

composition of use case steps is semantically mapped into the deterministic choice
composition of the corresponding FSMs. As depicted on the left hand side of Table 1
(in Section 3.4) the main idea is to merge the initial states of the involved FSMs into
one common initial state of the resulting FSM.

Fig. 6. Sequential Composition of Two FSMs

Figure 7 depicts the FSM representing the “Login” use case from Section 2.1. It
can be easily seen how the FSM has been constructed from various FSMs represent-
ing the use case steps. Identical to the textual use case specification, the FSM speci-
fies the entry of the login coordinates (denoted by the events e,; and e,;) in any order.
Due to the associated extension, step 4 is specified as having different outcomes. One
outcome (denoted by event e4) will lead to a successful end of the use case whereas
the other outcome (denoted by event e,,) will lead to login failure.

Enter Coordinates Validate Succ. Notification = Grant Access
(Step 2) (Step 4) (Step 5) (Step 6)
Start Login Submit
(Step 1) o € (Step 3)
..=. e eS e Fail.. Notification Deny Access
(Step 4a1) (Step 4a2)
€22 €21

Fig. 7. FSM Representation of the “Login” Use Case

3.4 Mapping CTT Task Models to Finite State Machines

After we have demonstrated how use cases are mapped to FSM specifications, we
now demonstrate the mapping from CTT task models to the same semantic domain.
The building blocks of task models are the action tasks (i.e. tasks that are not further
decomposed into subtasks). In CTT, action tasks are composed to complex tasks us-
ing a variety of temporal operators. In what follows we will demonstrate how actions
tasks are mapped into FSMs and how CTT temporal operators are mapped into com-
positions of FSMs.

In contrast to use case steps, tasks do not have an alternative outcome and the exe-
cution of a task has only one result. Figure 8 depicts the FSM denoting an action task.
It consists of only one initial and one final state. The transition between the two states
is triggered by an event denoting the completion of task execution.

Consistency between Task Models and Use Cases 81

In what follows we demonstrate how CTT temporal operators (using the example
of enabling (>>) and choice ([])) are semantically mapped into compositions of
FSMs. The sequential execution of two tasks (denoted by the enabling operator) is
semantically mapped into the sequential composition of the corresponding state ma-
chines. As each FSM representing a task has only one final state, the sequential com-
position of two FSMs M; and M, is performed by simply defining a new lambda
transition from the final state of M, to the initial state of M,.

—0—()00

Fig. 8. FSM Representing an Action Task

The mapping of the CTT choice operator is less trivial. At this point it is important
to recall our assumption (see Section 2.3) that task models specify system behavior as
an input-output relation, where internal system events are omitted. Moreover the exe-
cution of a task can result only in one state. The specification of alternative outcomes
is not possible. Both observations have implications on the semantic mapping of
the choice operator. Depending on the task types of the operands we propose distin-
guishing between deterministic choices and non-deterministic choices. If the enabled
tasks of both operands are application tasks (e.g. “Display Success Message”, “Dis-
play Failure Message”, etc.) then (a) the non-deterministic choice is used to compose
the corresponding FSMs, otherwise (b) the deterministic choice composition is
employed.

The former (a) is justified by the fact that each application works in a deterministic
manner. Hence, the reason why the system performs either one task or the other is
because the internal states of the system are not the same. Depending on its internal
state, the system either performs the task specified by the first operand or the task
specified by the second operand. However, task models do not capture internal system
operations. As a result, from the task model specification, we do not know why the
system is in one state or the other and the choice between the states becomes non-
deterministic.

As for the latter case (b), the choice (e.g. between two interaction tasks) is inter-
preted as follows. In a given state of the system, the user has the exclusive choice
between carrying one or the other task. Clearly the system may only be in one possi-
ble state when the choice is made. Hence, the deterministic choice composition is
applicable.

Table 1 schematically depicts the difference between deterministic choice compo-
sition and non-deterministic choice composition of two FSMs. In contrast to determi-
nistic choice composition (discussed in the previous section) non-deterministic choice
composition does not merge the initial states of the involved FSMs, but introduces a
new initial state.

82 D. Sinnig, P. Chalin, and F. Khendek

Table 1. Choice Compositions of FSMs

Deterministic Choice Composition Non-deterministic Choice Composition

Enter Coordinates

Start Login Enter UN Enter PW Submit
F——p(
& ez ea S

Display F.
O (>0
=)

Fig. 9. FSM Representation of the “Login” Task Model

Figure 9 portrays the corresponding FSM for the “Login” task model. We note that
the non-deterministic choice composition has been employed to denote the CTT
choice between the system tasks “Display Success Message” and “Display Failure
Message”. After the execution of the “Submit” task the system non-deterministically
results in two different states. Depending on the state either the Failure or the Success
Message is displayed.

For the sake of completeness we now briefly sketch out how the remaining CTT
operators (besides enabling and choice) can be mapped into FSM compositions: In
CTT it is possible to declare tasks as iterative or optional. Iterative behavior can be
implemented by adding a transition from the final state to the initial state of the FSM
representing the task, whereas optional behavior may be implemented by adding a
lambda transition from the initial state to the final state. The remaining CTT operators
are more or less a short hand notation for more complex operations. As such they can
be rewritten using the standard operators. For example the order independency (t; |-l
ty) operator can be rewritten as the choice of either executing t; followed by t, or
executing t, followed by t;. Another example is the concurrency (t; lll t,) operator,

Consistency between Task Models and Use Cases 83

which can be rewritten as the choice between all possible interleavings of action tasks
entailed in t; and t,. Similar rewritings can be established for the operators disabling
and suspend/resume. Further details can be found in [18].

3.5 A Formal Definition of Consistency

In Section 2.3 we made the assumption and viewed task models as UI specific imple-
mentations of a use case specification. In this section we will tackle the question of
what is the class of valid task model implementations for a given use case specifica-
tion. To this effect we propose the following two consistency principles:

1. Every scenario in the task model is also a valid scenario in the use case specifica-
tion. That is, what the implementation (task model) does is allowed by the specifi-
cation (use case).

2. Task models do not capture internal operations, which are however specified in the
corresponding use case specification. In order to compensate for this allowed de-
gree of under-specification we require the task model to cater for all possibilities
that happen non-deterministically from the user’s perspective.

For example as specified by the “Login” use case the system notifies the primary
actor of the success or failure of his login request based on the outcome of the inter-
nal validation step. According to the second consistency principle we require every
task model that implements the “Login” use case specification to specify the choice
between a task representing the success notification and a task representing the failure
notification.

We note that the first consistency principle can be seen as a safety requirement, as
it enforces that nothing bad can happen (the task model must not specify an invalid
scenario with respect to the use case specification). The second consistency principle
can be seen as a liveness requirement as it ensures that the task model specification
does not “deadlock” due to an unforeseen system response.

In order to formalize the two consistency principles we adopt Brinksma’s exten-
sion relation [15], which tackles a related conformance problem for labeled transition
systems. Informally, a use case specification and a task model specification are con-
sistent, if and only if the later is an extension of the former. Our definition of consis-
tency between task models and use cases is as follows:

Definition 7 Consistency. Let M; = (Qy, Z, 81, qo1, F1) be the FSM representing the
use case U and M, = (Q,, X, 8,, qo2, F2) be the FSM representing the task model T.
Then T is consistent to the use case U iff the following two properties hold.

(1) Language inclusion (safety property)
L(M,) < L(My)
(2) Sufficient coverage: (liveness property)
Vte T with T = {Traces(M,) \ L(M,) }
a. Let Quu={p1, P2 .--» Pn} be 0*(qo1,t). That is, the p;’s are all and
only the states that can be reached from the initial state of M, after
having accepted t.

84 D. Sinnig, P. Chalin, and F. Khendek

b. Let Quo={qi, 2, ..., qm} be 6*(qoy,t). That is, the g;’s are all and
only the states that can be reached from the initial state of M, after
having accepted t.

c. Werequire that: Vp € Qy; 3q € Qup. failure (p) c failure (q).

The liveness property states that the task model FSM must refuse to accept an
event in a situation where the use case FSM may also refuse. If we translate this con-
dition back to the domain of use cases and task models, we demand the task model to
provide a task for every situation where the use case must execute a corresponding
step. The main difference to Brinksma’s original definition is that our definition is
defined over finite state machines instead of labeled transition systems. As a conse-
quence, we require that the language accepted by the task model FSM is included in
the language accepted by the use case FSM (safety property). Task models that only
implement partial scenarios of the use case specification are deemed inconsistent.

One precondition for the application of the definition is that both state machines
operate over the same alphabet. The mappings described in the previous sections do
not guarantee this property. Hence, in order to make the FSMs comparable, a set of
preliminary steps have to be performed and are described in the following:

1. Abstraction from internal events: Task models do not implement internal system
events. Hence, we require the alphabet of the use case FSM to be free of symbols
denoting internal events. This can be achieved by substituting every symbol denot-
ing an internal event by lambda (L)°.

2. Adaptation of abstraction level: Task model specifications are (typically) at a
lower level of abstraction than their use case counter parts. As such a use case step
may be refined by several tasks in the task model. Events representing the execu-
tion of these refining tasks will hence not be present in the use case FSM. We
therefore require that for every event ‘e’ of the task model FSM there exists a bi-
jection that relates ‘e’ to one corresponding event in the use case FSM. This can be
achieved by replacing intermediate lower level events in the task model FSM with
lambda events. Events denoting the completion of a refining task group are kept.

3. Symbol mapping: Finally, the alphabets of the two FSMs are unified by renaming
the events of the task model FSM to their corresponding counterparts in the use
case FSM.

In what follows we will apply our consistency definition to verify that the “Login”
task model is a valid implementation of the “Login” use case. Table 2 depicts the
FSMs for the “Login” use case (My) and the “Login” task model (Mr), after the unifi-
cation of their input alphabets. We start with the verification of the safety property
(language inclusion). With

L(My)={<e|,e11,62,€3,65>,<€1,€22,€21,€3,€5>,<€1,€21,€22,€3,E421>,<€1,€22,€21,€3,E421> }
L(Mp)={<ey, €21, €, €3, €5>,<€), €31, €22, €3, €4a1>)

we can easily see the L(Mr) < L(My). Hence the first property is fulfilled.

2 Lambda denotes the empty string and as such is not part of the language accepted by an ESM.

Consistency between Task Models and Use Cases 85

Table 2. Use Case FSM and Task Model FSM After the Unification of Their Alphabets

Unified Use Case FSM (My) Unified Task Model FSM (M)

We continue with the verification of the second property (liveness). The set T of all
partial runs of Mr is as follows:

T = {<e;>,<€1,621>,<€1,€21,€20>, <€1,€21,€22,€3>}

We verify for each trace t in T that the liveness property holds. Starting with t= <e;>
we obtain Qumu={q.}; Qur={u,} as the set of reachable states in My and My after
having accepted t. Next we verify that for every state in Qyy there exists a state in
Qur with an encompassing failure set. Since Qyu and Qyr only contain one element
we require that failure (qp) failure (uy). With failure(q,) = {ey, €3, €s, a4} and fail-
ure(u,) = {ey, e, €3, €5, 444} this property is clearly fulfilled. In a similar fashion we
prove that the liveness property holds for the traces: <eje;>,<ej,e,;,e.>. More
interesting is the case where t = <eje;,ex,e5>. We obtain Qmu={qs, q7. qi0};
Qur={us, us, ug} as the set of reachable states in My and My after having accepted t.
Next we have to find for each state in Qyy a state in Qyr with an “encompassing”
failure set. For qg (failure(ge)={e1, €21, €2, €3}) we identify us (failure(us)={ei, €1, €2,
e;}). For q; (failure(q;)={ey, €51, €, €3, €441 }) We identify ug (failure(ug)={e;, ,1, €2,
€3, €4a1}) and for qyo (failure (qi9)= {e1, €21, €2, €3, €5}) We identify ug (failure (ug) =
{e1, €1, ey, €3, es}). For each identified pair of p; and q; it can be easily seen that
failure (p;) C failure (q;), hence we conclude that the “Login” task model represented
by Mr is consistent to the “Login” use case represented by My q.e.d.

O—O—0O0—0OCO—(O—0
Uy Uz Uz Uy Us Ug

Fig. 10. FSM Representation of an Inconsistent “Login” Task Model

We conclude this chapter with a counter example, by presenting a “Login” task
model which is not a valid implementation of the “Login” use case. The FSM (Mr,)
portrayed by Figure 10 represents a task model which does not contain the choice
between “Display Failure Message” and “Display Success Message”. Instead, after
the “Submit” task (e3), “Success Message” (e5) is always displayed. It can be easily
seen that the safety property holds with L(Mp,) < L(My). The verification of the
liveness property however will lead to a contradiction. For this purpose, let us
consider the following trace of Mr,: t = <eq,e,1,€x,63>. We obtain Qymu={qs, 97, q10}
and Qur={us} as the set of all reachable states in My and M after having accepted t.

86 D. Sinnig, P. Chalin, and F. Khendek

In this case however, for q;o we cannot find a corresponding state in Qyr, (Which in
this case consists of a single element only) such that the failure set inclusion holds.
We obtain failure(q;g)={e;, €1, €2, €3, €5} and failure(us)={e;, €1, €, €3, €4a1}.
Clearly failure(q;o) is not a subset of failure(us). Hence the task model is not consis-
tent to the “Login” use case.

4 Conclusion

In this paper we proposed a formal definition of consistency between use cases and
task models based on a common formal semantics. The main motivation for our re-
search is the need for an integrated development methodology where task models are
developed as logical progressions from use case specifications. This methodology
rests upon a common semantic framework where we can formally validate whether a
task model is consistent with a given use case specification. With respect to the defi-
nition of the semantic framework, we reviewed and contrasted key characteristics of
use cases and task models. As a result we established that task model specifications
are at a lower level of abstraction than their use case counterparts. We also noted that
task models omit the specification of internal system behavior, which is present in use
cases.

These observations have been used as guides for both the mapping to finite state
machines and for the formal definition of consistency. The mapping is defined in a
compositional manner over the structure of use cases and task models. As for the
definition of consistency, we used an adaptation of Brinksma’s extension pre-order.
We found the extension relation appropriate because it acknowledges the fact that
under certain conditions two specifications remain consistent, even if one entails
additional behavioral information which is omitted in the second. Both the mapping
and the application of the proposed definition of consistency have been supported by
an illustrative example.

As future work, we will be tackling the question of how relationships defined
among use cases (i.e. extends and includes) can be semantically mapped into finite
state machines. This will allow us to apply the definition of consistency in a broader
context, which is not restricted to a single use case. Another issue deals with the defi-
nition of consistency among two use case specifications and in this vein also among
two task model specifications. For example, if a user-goal level use case is further
refined by a set of sub-function use cases it is important to verify that the sub-function
use cases do not contradict the specification of the user goal use case. Finally we note
that for the simple “Login” example consistency can be verified manually. However,
as the specifications become more complex, efficient consistency verification requires
supporting tools. We are currently investigating how our approach can be translated
into the specification languages of existing model checkers and theorem provers.

Acknowledgements

This work was funded in part by the National Sciences and Engineering Research
Council of Canada. We are grateful to Homa Javahery who meticulously reviewed
and revised our work.

Consistency between Task Models and Use Cases 87

References

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

. Seffah, A., Desmarais, M.C., Metzger, M.: Software and Usability Engineering: Prevalent

Myths, Obstacles and Integration Avenues. In: Human-Centered Software Engineering -
Integrating Usability in the Software Development Lifecycle. Springer, Heidelberg
Cockburn, A.: Writing effective use cases. Addison-Wesley, Boston (2001)

Pressman, R.S.: Software engineering: a practitioner’s approach. McGraw-Hill, Boston
(2005)

Larman, C.: Applying UML and patterns: an introduction to object-oriented analysis and
design and the unified process. Prentice Hall PTR, Upper Saddle River (2002)

XSLT, XSL Transformations Version 2.0 [Internet] (Accessed: December 2006) (Last Up-
date: November 2006), http: //www.w3 .0org/TR/xs1t20/

Paterno, F.: Towards a UML for Interactive Systems. In: Nigay, L., Little, M.R. (eds.)
EHCI 2001. LNCS, vol. 2254, pp. 7-18. Springer, Heidelberg (2001)

Souchon, N., Limbourg, Q., Vanderdonckt, J.: Task Modelling in Multiple contexts of
Use. In: Proceedings of Design, Specification and Verification of Interactive Systems,
Rostock, Germany, pp. 59-73 (2002)

Mori, G., Paterno, F., Santoro, C.: CTTE: Support for Developing and Analyzing Task
Models for Interactive System Design. IEEE Transactions on Software Engineering, 797—
813 (August 2002)

Paterno, F.: Model-Based Design and Evaluation of Interactive Applications. Springer,
Heidelberg (2000)

Bowman, H., Steen, M.W.A., Boiten, E.A., Derrick, J.: A Formal Framework for View-
point Consistency. Formal Methods in System Design, 111-166 (September 2002)
Ichikawa, H., Yamanaka, K., Kato, J.: Incremental specification in LOTOS. In: Proc. of
Protocol Specification, Testing and Verification X, Ottawa, Canada, pp. 183-196 (1990)
De Nicola, R.: Extensional Equivalences for Transition Systems. Acta Informatica 24,
211-237 (1987)

Butler, M.J.: A CSP Approach to Action Systems, PhD Thesis in Computing Laboratory.
Oxford University, Oxford (1992)

Khendek, F., Bourduas, S., Vincent, D.: Stepwise Design with Message Sequence Charts. In:
Proceedings of the 21st IFIP WG 6.1 International Conference on Formal Techniques for
Networked and Distributed Systems (FORTE), Cheju Island, Korea, August 28-31 (2001)
Brinksma, E., Scollo, G., Steenbergen, C.: LOTOS specifications, their implementations,
and their tests. In: Proceedings of IFIP Workshop Protocol Specification, Testing, and
Verification VI, pp. 349-360 (1987)

Bergstra, J.A.: Handbook of Process Algebra. Elsevier Science Inc., Amsterdam (2001)
Brookes, S.D., Hoare, C.A.R., Roscoe, A.D.: A Theory of Communicating Sequential
Processes. Journal of ACM 31(3), 560-599 (1984)

Sinnig, D., Chalin, P., Khendek, F.: Towards a Common Semantic Foundation for Use
Cases and Task Models. Electronic Notes in Theoretical Computer Science (ENTCS) (De-
cember 2006) (to appear)

Paterno, F., Santoro, C.: The ConcurTaskTrees Notation for Task Modelling, Technical
Report at CNUCE-C.N.R. (May 2001)

Xu, J., Yu, W., Rui, K., Butler, G.: Use Case Refactoring: A Tool and a Case Study. In:
Proceedings of APSEC 2004, Busan, Korea, pp. 484-491 (2004)

Kosters, G., Pagel, B., Winter, M.: Coupling Use Cases and Class Models. In: Proceedings
of the BCS-FACS/EROS workshop on Making Object Oriented Methods More Rigorous,
Imperial College, London, June 24th, 1997, pp. 27-30 (1997)

88 D. Sinnig, P. Chalin, and F. Khendek

22. Mizouni, R., Salah, A., Dssouli, R., Parreaux, B.: Integrating Scenarios with Explicit
Loops. In: Proceedings of NOTERE 2004, Essaidia Morocco (2004)

23. Nebut, C., Fleurey, F., Le Traon, Y., Jezequel, J.-M.: Automatic test generation: a use case
driven approach. IEEE Transactions on Software Engineering 32(3), 140-155 (2006)

24. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages,
and Computation, 3rd edn. Addison Wesley, Reading (2006)

Questions

Gerrit van de Veer:
Question: I agree that Ul requirements should be developed separately from functional
requirements. Indeed use case models are used to “document functionality”. I would
prefer to say “abused to document functionality”. Indeed task models are used to de-
scribe the dialog between user and system; I would say that CTT is “abused” to do this.
I disagree on continuing to mix concepts. We should not forget that Moran already
in 1981, followed by Tauber, Norman (the gulf of execution), Nielsen, van Welie and
van der Veer, all state that there are levels in the user’s task needs, through semantics
and the functionality needed, to the dialog and syntax of interaction with the system,
down to representation and ergonomics.
My plea:

e Task models describe what the users need; there is a step from task needs to
functionality (for example an ATM should provide safety of my account, and
I should be able to memorize any codes. This needs an analysis and a design
model.)

e A use case can be applied as an implementation model, from functionality to
dialog. This is engineering. (e.g. for ATM decide to either use a plastic card
and 4 digit code, or iris scan to identification)

Answer: Task models are often used for analysis, so I would not agree about the dis-
tinction in practice. Use cases are about requirements so it is necessary to keep them
as generic as possible.

Michael Harrison:
Question: Is the expressive power of CTT and use cases to be limited to regular ex-
pressions?

Answer: If we are going to make the analysis decidable then we have to. This limita-
tion is adequate for the types of descriptions that are required

Yves Vandriessche:

Comment: I agreed with Gerrit van de Veer that I would also see CTT used as a first
stage followed by device representation using use cases. You mentioned that Ul
changes at a later stage (adding a button for example) should not change the design
specification. I just wanted to mention that you can use CTT at arbitrary granularity;
you can keep to a more abstract level instead of going down to a level at which your
leaf task represents individual widgets. Two CTTs could be used: a more general one
used in the design and specification of the application and a more detailed CTT based
on the former for Ul design.

Task-Based Design and Runtime Support for
Multimodal User Interface Distribution

Tim Clerckx, Chris Vandervelpen, and Karin Coninx

Hasselt University, Expertise Centre for Digital Media,
and transnationale Universiteit Limburg
Wetenschapspark 2, BE-3590 Diepenbeek, Belgium
{tim.clerckx, chris.vandervelpen, karin.coninx}@uhasselt.be

Abstract. This paper describes an approach that uses task modelling for the
development of distributed and multimodal user interfaces. We propose to
enrich tasks with possible interaction modalities in order to allow the user to
perform these tasks using an appropriate modality. The information of the
augmented task model can then be used in a generic runtime architecture we
have extended to support runtime decisions for distributing the user interface
among several devices based on the specified interaction modalities. The
approach was tested in the implementation of several case studies. One of these
will be presented in this paper to clarify the approach.

Keywords: Task-based development, model-based user interface development,
distributed user interfaces, multimodal user interfaces.

1 Introduction

In the last decade users are increasingly eager to use mobile devices as an appliance to
perform tasks on the road. Together with the increase of wireless network capabilities,
connecting these mobile assistants to other computing devices becomes easier. As a
result we are at the dawn of the era of context aware computing. Context is a fuzzy
term without a consent definition. In this work we define context as the collection of
factors influencing the user's task in any way, as described by Dey [9]. Factors such as
available platforms, sensor-based environmental context, the user's personal
preferences, and setup of interaction devices appertain to this set. When we pick out
context factors such as available platforms and interaction devices, we are discussing
the area of Ubiquitous Computing [19] where users are in contact with several devices
in their vicinity.

In previous work we have been concentrating on model-based development of
context-aware interactive systems on mobile devices. We created a task-based design
process [5] and a runtime architecture [6] enabling the design, prototyping, testing,
and deployment of context-aware user interfaces. The focus in our previous work was
to create context-aware applications where context factors such as sensor-based
context information or information from a user model can be associated with a task
model in order to enable the generation of prototypes and to use a generic runtime
architecture. However, in our approach the user interface was always centralized on a

J. Gulliksen et al. (Eds.): EIS 2007, LNCS 4940, pp. 89 2008.
© IFIP International Federation for Information Processing 2008

90 T. Clerckx, C. Vandervelpen, and K. Coninx

mobile device. In this work we describe how we have extended our framework,
DynaMo-AID, in order to support the shift towards Ubiquitous Computing. We will
discuss how a task model can be enriched with properties that are used (1) at design
time to specify how tasks should be presented to the user according to the platform
and (2) at runtime to distribute the tasks among the available interaction resources
(definition 1). Devices may support several distinct interaction techniques. E.g. on the
one hand editing text on a PDA can be accomplished by using a stylus to manipulate a
software keyboard. On the other hand speech interaction can be used provided that the
PDA is equipped with a microphone. As a result, at runtime has to be decided which
interaction resources are at the user's disposal and a usable distribution among
interaction resources has to be chosen.

Runtime distribution requires meta data about the tasks in order to realize a usable
distributed user interface. This is in particular the case when we are considering
ubiquitous environments because at design time it is impossible to know what the
environment will look like regarding available interaction resources. E.g. the user
walks around with his/her mobile device and comes across a public display that can
be communicated with through a wireless connection. When this is the case decisions
regarding user interface distribution have to be taken at runtime to anticipate on the
current environment. Furthermore, a mapping of abstract information about the user
interface to more concrete information is required to construct the final user interface
due to the unknown nature of the target device(s).

The remainder of this paper is structured as follows. First we give a brief overview
of the DynaMo-AID development process (section 2.1). We focus on the parts
relevant for this paper. Next we elaborate on the changes we have applied to the
process to enable the support for modelling multimodal and distributed user interfaces
(section 2.2). Afterwards the ontology constructed to support the modelling of the
modalities and devices is discussed (section 2.3). Section 3 discusses the runtime
architecture: first an overview is presented (section 3.1), then we focus on the
rendering engine (section 3.2), finally we discuss the approach used to decide how to
distribute the tasks among the available devices. In the following section we will
discuss related work and compare it to our approach. Finally conclusions are drawn
and future work is discussed.

2 Opverview of the Extended DynaMo-AID Development Process

In this section we first introduce the DynaMo-AID development process for context-
aware user interfaces. We emphasize the changes we have made to support the
development of multimodal and distributed user interfaces. We focus on the part of
the design process where a task specification is enriched with interaction constraints.
Finally we elaborate on the environment ontology used for defining the interaction
constraints.

2.1 Developing Context-Aware User Interfaces

The DynaMo-AID development process (Fig. 1) is prototype-driven with the aim to
obtain a context-aware user interface. The process consists of the design of several

Task-Based Design and Runtime Support for Multimodal User Interface Distribution 91

abstract and concrete models. After the specification of these models, the supporting
tool generates a prototype taking into account the models. The prototype can then be
evaluated to seek for flaws in the models. Afterwards the models can be updated
accordingly and a new prototype is generated. These steps in the process can be
performed iteratively until the designer is satisfied with the resulting user interface.
Next the user interface can be deployed on the target platform.

DynaMo-AID
Design

5
Add Modality
Interaction
Constraints

3 Context Model Q

e Designer

|

S
Context-
1 Sensitive Task
Model

ﬂ

6 Presentation
Model

Designer

Designer

DynaMo-AID
Tool
Context-Specific
Task Models

2\

7
Context-Sensit
Interface Mod

. Context-

Dialog

N\

=

Specific
Models DynaMo-AID
Tool

4

Context-Sensitive
Dialog Model piggner
/)

ive
el

I

Update
Models ‘

%

DynaMo-AID

Runtime

|

—
V' \

N4

L<

Prototype
Evaluation

AR,

User Interface
on Target Platform

Fig. 1. Overview of the DynaMo-AID development process

The upper part of Fig.1 reveals an overview of the design process. First the
designer has to construct a context-sensitive task model (1). To accomplish this, the
designer makes use of the ConcurTaskTree notation [12] augmented with extra tasks
to introduce context-awareness at the task level [4]. Taking into account this
information, the tool extracts a set of dialog models (2) where each dialog model
is relevant for a particular context of use. Afterwards these dialog models are
connected at those points relevant to apply a context change (4), i.e. a switch from a
dialog model relevant in a certain context of use to another dialog model relevant in
another context of use. Furthermore the designer specifies the kind of context
information implying the context change (3). The fifth step (5) is an extension and
will be discussed in section 2.2. Next the concrete tasks are annotated with Abstract
Interaction Objects (AIOs) [17] providing an abstract description about the way the

92 T. Clerckx, C. Vandervelpen, and K. Coninx

task will have to be presented to the user (6). The aggregate of the models are
collected in the interface model (7) which is the input for the runtime architecture in
order to either generate a prototype or deploy the user interface on the target platform.

Important for the remainder of the paper is the fact that the dialog model is a State
Transition Network (STN). Each state in the STN is an enabled task set, a collection
of tasks enabled during the same period of time [12]. This means the tasks should be
presented to the user simultaneously, i.e. in the same dialog. The transitions of the
STN are labelled with the task(s) initiating the transition to another state. Using this
information, a dialog controller can keep track of the current state of the user interface
and invoke a switch to another dialog if appropriate (section 3).

Accordingly the dialog model provides the information necessary to decide which
tasks have to be deployed at a certain moment in time. When several devices and/or
interaction modalities are available to the user, the question arises where these tasks
have to be deployed.

Previous research already tackled the problem of deploying task sets on different
devices. Paternd and Santoro [13] for instance described that tasks or domain objects
related to a task can be assigned to a selection of platforms in order to decide at
runtime whether or not to deploy a task according to the current platform. Our
approach also supports this possibility at the task level where it is possible to assign
different tasks to different contexts of use (platform is one kind of context of use).

However, we argue the approach of enabling tasks for a certain platform and
disabling these same tasks for another platform might constrain the user in
accomplishing his/her goals. On the one side this can be desirable when the domain
objects supporting the performance of this task are constrained by the platform but on
the other side the user will not be able to perform all the tasks in the path to
accomplish his/her goals. This problem can be tackled by distributing the tasks among
different devices in the user's vicinity in a way that all the necessary tasks can be
presented to the user. In the next section we propose a method to assign interaction
constraints to the tasks in order to make the distribution of tasks among distinct
devices and/or interaction modalities possible at runtime.

2.2 Supporting the Design of Distributed and Multimodal User Interfaces

As we have explained in the previous section each state in the dialog model consists
of a set of tasks. When the user interface is deployed in a highly dynamic
environment with different interaction devices and/or modalities the system has to
decide which tasks are deployed on which interaction device supporting the
appropriate modalities. Some additional abstract information regarding task
deployment is necessary to make these decisions. Therefore we define the following
terms based on the definitions in [18]:

Definition 1. An Inferaction Resource (IR) is an atomic input or output channel
available to a user to interact with the system.

Definition 2. An Interaction Resource Class (IRC) is a class of Interaction Resources
sharing the same interaction modalities.

Definition 3. An Interaction Device (ID) is a computing device that aggregates
Interaction Resources associated with that particular computing device.

Task-Based Design and Runtime Support for Multimodal User Interface Distribution 93

Definition 4. An Interaction Group (IG) is a set of joined Interaction Devices
necessary for a user to perform his/her tasks.

An example of an ID is a traditional desktop computer that aggregates the IRs
keyboard, mouse and display screen. The QWERTY-keyboard attached to the desktop
computer is an Interaction Resource belonging to the Interaction Resource Class of
keyboards. An example of an IG is the collection of TV ID with a set-top box and a
PDA ID, where the PDA is used as a remote control to interact with the TV system.

The goal of the research described in this paper is to find a way to distributed tasks
among the available Interaction Resources, given the setup of an Interaction Group.
To accomplish this the designer will have to provide additional information for each
task about the types of Interaction Resources that can be used to perform the task.
Because a task might be performed by several distinct Interaction Resource Classes
(e.g. editing text can be done with a keyboard and/or speech) the designer will have to
specify how these IRCs relate to each other. This can be expressed using the CARE
properties introduced by Coutaz et al. [8]. The CARE properties express how a set of
modalities relate to each other:

— Complementarity: all the modalities have to be used to perform the task;

— Assignment: a single modality is assigned to the task in order to perform the
task;

— Redundancy: all the modalities have the same expressive power meaning the use
of a second modality to perform the task will not contribute anything to the
interaction;

— Equivalence: the task can be performed by using any one of the modalities.

The CARE properties are an instrument to reason about multimodal interactive
systems. We use the CARE properties in our approach to indicate how the different
modalities assigned to the same task relate to each other. Therefore we define:

Definition 5. A Modality Interaction Constraint (MIC) is a collection of modalities
related to each other through a CARE property.

@ m1: ScreenGUI
m2: VoicePseudoNaturalLanguage
Perform Presentation m3: TouchScreenDirectManipulation
\ mé4: ProjectorGUI
s o B
> w1
Chaose Presentation Give Presentation Quit Preséntation
/ \ / \ Alm3]
- 1 -
@ > F’ @ @

Show available presentations Select Presentation Navigate Slides Show Slide

A[r|n1] A[r|r|2] / / \\ E[ml,mﬂ

Select Pre vmus Slide Selec tN EM Selec tFlrsEM Select LastSlide

E[m2,m3] E[mZ m3] E[m2,m3] E[m2,m3]

Fig. 2. Example task model with interaction constraints appended to tasks

94 T. Clerckx, C. Vandervelpen, and K. Coninx

The information provided by the Modality Interaction Constraint associated with a
task can then be used at runtime to find an Interaction Resource belonging to an
Interaction Resource Class supporting the appropriate modalities. The relation
between modalities and IRCs will be explained in section 2.3.

Fig. 2 shows an example of a task model annotated with Modality Interaction
Constraints. The task model describes the task of performing a presentation. First the
presentation has to be selected. To accomplish this the available presentations are shown
to the user on a device supporting the ScreenGUI output modality. The task to select the
desired presentation is assigned to the VoicePseudoNaturalLanguage modality. This
implies the task can only be performed using speech input. Afterwards the presentation
can commence. The presenter can navigate through the slides by using a device
supporting VoicePseudoNaturalLanguage, TouchScreenDirect-Manipulation or both in
which case the user chooses the modality.Meanwhile the slide is shown on a device
using either a ProjectorGUI or a ScreenGUI.

The presentation can only be switched off using TouchScreenDirectManipulation
to prevent someone in the audience to end the presentation prematurely.

2.3 Interaction Environment Ontology

In order to make it easy for a designer to link modalities to tasks, we have constructed
an extensible interaction environment ontology describing different modalities,
Interaction Resource, and the way these two concepts are related to each other. The
ontology we have constructed is an extension of a general context ontology used in
the DynaMo-AID development process [14].

uchScreenDirectilanipulation

iceP seudoNaturallLan

(interactionLanguage) _ — =

———] — T _— seDirectManipulation
q Mnua\wcnr\zemr.@____—‘ - @/_,/’

 Wogaity)
o §,

- P
nterinputinteractionResaurce
& s N

B
(sereen b

B —
(Vlmeramnr\Er\v\rnr\meanmepg

1?Frmeclm)

Fig. 3. Structure of the Interaction Environment Ontology

Task-Based Design and Runtime Support for Multimodal User Interface Distribution 95

Fig. 3 shows the ontology consisting of two parts. The first part describes the interaction
environment using the classes InteractionDevice and InteractionResource. An Interaction
Device aggregates one or more interaction resources using the haslnteractionResource
property. An interaction resource can either be an OutputlnteractionResource or an
InputinteractionResource. Every class in the ontology has particular properties describing
the characteristics of individuals of that class. For example, a Desktop individual contains
hasInteractionResource properties pointing to individuals of the class CrtScreen, Keyboard
and Mouse. The Mouse individual on its turn has properties for describing the number of
buttons, the used technology...

The second part of the ontology describes the possible modalities based on
concepts described in [8]. In this work a modality is defined as the conjunction of an
interaction language (direct manipulation, pseudo natural language, gui...) and an
interaction device/resource (mouse, keyboard, speech synthesizer...). To model this,
we added the classes InteractionLanguage and Modality to our ontology. A Modality
individual can be an InputModality or an OutputModality. A concrete Modality
individual is defined by two properties. The usesInteractionLanguage property points
to an InteractionLanguage individual. At this time these are DirectManipulation-
Language, GuiLanguage or PseudoNaturalLanguage. It is possible for the designer to
add new InteractionLanguage individuals to the ontology. The second property of
Modality individuals is the usesDevice property. This property points to an
InteracionResource individual. In this way we created six predefined modali-
ties: MouseDirectManipulation, KeyboardDirectManipulation, VoicePseudoNatural-
Language, SpeechOutputPseudoNaturalLanguage, ScreenGui and ProjectorGui. A
designer can add new modalities to the ontology as she/he likes. To link a particular
Modality individual to an InteractionDevice individual the property supportsModality
is used. As shown in fig. 3 using the thick rectangles, an individual desktopPC1 of the
Desktop class could be linked to a MouseDirectManipulation modality using the
supportsModality property. The modality on its turn is related to a Mouse individual
using the usesDevice property and to the DirectManipulation interaction language
using the usesInteractionLanguage property. Notice that for this to work, the Mouse
individual has to be linked to desktopPC1 using the hasinteractionResource property.

£ add/Remove Interaction Constraints of task "Select Previous Shide" ﬂﬂ = Ellﬂ
b
CARE property|
Select Previous Slide
CARE Properties Select Modalities
Choose CARE Property Available Modalities (input) Selected Modalities
) Complementarity vicePseudoNaturalLanguage nicePseudoNaturall anguage
; TouchScreenDirectManipulation TouchScreenDirectManipulation
) Assignment . . .
MouseDirectManipulation fes
2 Redundancy KeyhoardDirectManipulation

@ Equivalence

<<

Fig. 4. Screenshot of the dialog box used to annotate a task with an interaction constraint

96 T. Clerckx, C. Vandervelpen, and K. Coninx

To enable designers to annotate Modality Interaction Constraints to the tasks, we
have extended the DynaMo-AID design tool [7]. Fig. 4 shows the dialog box in the
tool which inspects the type of task and queries the ontology in order to present the
available modalities to the designer. If the task is an interaction task, input modalities
will be shown to the designer, if the task is an application task, output modalities will
appear in the Available Modalilties part of the dialog box.

3 Runtime Support: Prototyping and Deployment of the User
Interface

In the previous section we have described how designers can add information to a
task model to describe which interaction modalities are appropriate to perform the
tasks. In this section we discuss how this information can be used at runtime in order
to enable runtime distribution of tasks among Interaction Devices.

3.1 Overview of the Runtime Architecture

To support distribution we have extended our existing generic runtime architecture
supporting model-based designed user interfaces influenced by context changes.

Data
Controller
Serialized Dlalog
Models Controller |

State (ETS) Performed Task
+ data + data

Distribution .
) Environm
Controller A
Q?//// 1
Partial ETS Partial ETS Partial ETS

& &
UIML Composer | | UIML Composer | | UIML Composer

v N

Layout Manager | Layout Manager | | Layout Manager

Fig. 5. Overview of the extensions of the runtime architecture

Task-Based Design and Runtime Support for Multimodal User Interface Distribution 97

Fig. 5 shows an overview of the extensions we have applied. The models described in
the previous section can be constructed in the design tool and can be serialized to an
XML-based format. These models are the input of the runtime architecture. The
Dialog Controller takes into account the dialog model to keep track of the current
state of the user interface. The current state implies which tasks are enabled at the
current time (section 2.1). The Data Controller keeps track of the data presented in
the user interface and takes care of the communication with the functional core of the
system.

When the user interface is started the environment is scanned for devices. The
Universal Plug and Play' standard is used to discover devices in the vicinity. Each
device broadcasts a device profile mentioning the available Interaction Resources
supported by the device. Taking this information into account an Environment Model
can be constructed. This environment model contains the whereabouts of the
Interaction Devices and the available Interaction Resources for each device. When the
environment model is constructed, the dialog controller will load the first state in
accordance with the starting state of the State Transition Network. The active state
thus corresponds to the tasks that are enabled when the system is started. This
information is passed on to the Distribution Controller along with the data related
to these tasks as provided by the data controller. The distribution controller will then
seek for each task an appropriate Interaction Device containing an Interaction
Resource that supports the interaction modalities related to the tasks. The distribution
controller will then group the tasks by Interaction Device, resulting in Partial Enabled
Task Sets (groups of tasks enabled during the same period of time and deployed on
the same Interaction Device). Afterwards the Abstract Interaction Objects related to
the tasks of the Partial Enabled Task Set are grouped and are transformed to a UIML?
document. Behaviour information is added to the UIML document to be able to
communicate with the renderer and an automatic layout manager will add layout
constraints that can be interpreted by the rendering engine.

3.2 Rendering Engine

Fig. 6 shows an overview of the rendering architecture consisting of three layers: the
Distribution Controller, the Presentation Manager (a servlet) and the clients.
Whenever the presentation of the user interface needs an update, e.g. when a new
state has be deployed or when a user interface update occurs, the Distribution
Controller sends a notifyClient message to one or multiple clients (depending on the
distribution plan, section 3.3) using the InteractionDevice Proxy that is connected to
the Client. As a response to this message, the client browsers are redirected to the
URL where the Presentation Manager servlet awaits client requests (A.1 and B.1,
HTTP). These requests can be of different types (according to the information in the
notifyClient message):

" http://www.upnp.org
2 http://www.uiml.org

98 T. Clerckx, C. Vandervelpen, and K. Coninx

Distribution
Controller X
InteractionDevice notifyClient R
Proxy
« A2 A1
A.3 | Presentation A4
Manager Client A
B B.2 Servlet B E
B.3 B4
InteractionDevice notifyClient >
Proxy
I Client B

Fig. 6. Overview of the rendering architecture

— requestUl: requests a newly available presentation for the interaction device.
After receiving the message, the Presentation Manager forwards the message to
the Distribution Controller (A.2 and B.2) which responds by sending the
UIML representation of the user interface and the data for this client to the
Presentation Manager (A3 and B3). The Presentation Manager servlet now builds
an internal PresentationStructure object for the user interface and stores the
object in the current session. Depending on the modalities that should be
supported, the presentation manager chooses the appropriate generator
servlet, XplusVGeneratorServlet or XHTMLGeneratorServlet, that generates the
concrete presentation and sends it as an HTTP response back to the client
(A4 and B.4). The task of the XplusVGenerator is to transform the
PresentationStrucure object to XHTML + VoiceXml (X+V?). X+V supports
multimodal (Speech + GUI) interfaces and can be interpreted by multimodal
browsers such as the ACCESS Systems’ NetFront Multimodal Browser’ The
XHTMLGeneratorServlet transforms the PresentationStructure object to XHTML
for interpretation by normal client browsers;

— requestDataUpdate: requests a data update for the current presentation. When
the Presentation Manager servlet receives this message from a client it is
forwarded to the Distribution Controller (A.2 and B.2) which sends the user
interface data as a response (A.3 and B.3). Now the Presentation Manager
updates the data in the PresentationStructure object available in the current
session and chooses the appropriate generator servlet to generate the concrete
user interface and to send it to the client browser (A.4 and B.4);

3 http://www.voicexml.org/specs/multimodal/x-+v/12/
* http://www-306.ibm.com/software/pervasive/multimodal/

Task-Based Design and Runtime Support for Multimodal User Interface Distribution 99

— taskPerformed: when a user interacts with the user interface, e.g. by clicking a
button, a taskPerformed message together with the request parameters are sent to
the Presentation Manager which forwards the message to the Distribution
Controller.

Notice that the system follows a Model-View-Controller architecture. The
Presentation Manager Servlet is the controller, the generator servlets are the views
and the PresentationStructure is the model.

Fig. 7 shows what happens when generating the user interface for the task model in
fig. 2. In (a), the user interface was deployed in an environment without an interaction
device that supports the modality ProjectorGUI. This implies, the Navigate Slides and
the Show Slide task are all deployed on a PDA using the X+V generator and a
multimodal browser that supports X+V. This means we can navigate slides using
voice by saying for example “Next Slide™ or “First Slide’, or we can use the stylus to
interact with the buttons. In (b) the user interface is distributed because we added a
laptop attached to a projector to the environment. In this case the Navigate Slides
tasks are still deployed on the PDA using the X+V generator. The Show Slide task
however is deployed on the laptop screen using the XHTML generator and an
XHTML browser.

/7 |NetFront v3.1 T dx 9:28 €I

http://192.168.0.102:8080/ || k¢ | |

| Quit presentation

Task-hased development of
Mullimodal User Inierfaces u

ibveny i
Task-based development of

1 . o __w side.
|| Multimodal User Interfaces s || wa]

universitei

| Nextside || Fistside | LEGVER ¥ o Wiefsitely,
=
.

File View Tools /2, & 18 2, =3 ﬁ|‘

File View Tools 2 5 $ % @ @EE|~

Fig. 7. Example of Fig.2 rendered on a single PDA (a) and in an environment with a PDA and a
desktop computer (b)

3.3 Constructing a Distribution Plan

In the two previous sections we talked about the structure of the runtime architecture
and the rendering engine. However the question how to divide an enabled task set into
a usable federation of partial enabled task sets has not yet been discussed. In this
section we discuss the first approach we have implemented and some observed
problems with this approach. Afterwards we propose a solution asking some extra
modelling from the designer.

100 T. Clerckx, C. Vandervelpen, and K. Coninx

Task-Device Mappings Using Query Transformations

In our first approach, we use a query language, SparQL’, to query the information
in the environment model which is a runtime instantiation of the Interaction
Environment Ontology (section 2.3). SparQL is a query language for RDF® and can
be used to pose queries at ontologies modelled using the OWL’ language.

PREFIX codamos: <http://edm.uhasselt.be/codamos#>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
SELECT ?interactiondevice
WHERE { ?interactiondevice codamos:supportsModality ?m1 .
?interactiondevice codamos:supportsModality ?m2 .
?m1 rdf:type codamos:ProjectorGUI .
?m2 rdf:type codamos:TouchScreenGUI

(a)

PREFIX codamos: <http://edm.uhasselt.be/codamos#> PREFIX codamos: <http://edm.uhasselt.be/codamos#>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
SELECT ?interactiondevice SELECT ?interactiondevice
WHERE { ?interactiondevice codamos:supportsModality ?m1 . WHERE { ?interactiondevice-codamos:supportsModality-2mi—

24 i i d pportsModality-2m2— ?interactiondevice codamos:supportsModality ?2m2 .

?m1 rdf:type codamos:ProjectorGUI . 2mtrdfty Proj :

22y T Ui ?m2 rdf:type codamos:TouchScreenGUI
} }

(b) (c)

Fig. 8. Queries deducted from the Modality Interaction Constraint related to the Show Slide task
of the example in Fig. 2. Query (a) searches for a device supporting all the modalities in the
equivalence relation. Queries (b) and (c) are reduced queries that are constructed if query (a)
did not return a result.

To map each task of the enabled task set to the appropriate Interaction Device, the
Modality Interaction Constraint related to task task will be transformed to a SparQL
query. Fig. 8 shows an example of the mapping of the Modality Interaction
Constraints attached to the Show Slide task of our previous example. This constraint
says that modality m, (ProjectorGUI) and modality m; (ScreenGUI) are equivalent for
this task. The more modalities in the equivalence relation are supported by the
interaction device, the better suited it will be for executing the task. This is what the
query in Fig. 8(a) tries to achieve. In this query, an interaction device which supports
both modalities is m4 and m; searched for and when it is found, the task is deployed on
the device. Now suppose we have a Desktop device in the environment attached to a
projector but not to a screen. This means the Desktop supports the ProjectorGUI
modality only. The query in Fig. 8(a) will return no interaction device. As a result the
system will reduce the query to find a device that supports only one specified
modality. In this case this is feasible because the constraint defines an equivalence
relation so the devices supporting only one (or more) of the required modalities will
also be able to handle the task. The first query that will be tried is the query in
Fig. 8(b) because the ProjectorGUI modality is defined first in the modality

> http://www.w3.org/TR/rdf-sparql-query/
® http://www.w3.org/RDF/
7 http://www.w3.org/TR/owl-features/

Task-Based Design and Runtime Support for Multimodal User Interface Distribution 101

constraint. Because we have a Desktop individual in the environment which supports
this modality, it will be returned and the task is deployed on the device. If such a
device is still not found, the system will try the query in Fig.8 (c) after which the task
is deployed on a device with a Screen attached.

Notice that the queries in Fig. 8 easily extend to support the other three CARE
properties by adding/removing rules such as the one presented in Fig. 9. The
ModalitySubClass in the query can be one of the leaf Modality subclasses. In case of
the Assignment relation this is easy because we want to select a device supporting
only one modality. Complementarity is analogue to the Equivalence relation.
However, here all the modalities in the relation should be supported by the interaction
device. In case of the Redundancy relation rules are added for each redundant
modality.

?interactioncluster codamos:supportsModality ?m .
?m rdf:type ModalitySubclass .

Fig. 9. Extension rule for generating SparQL queries from Modality Interaction Constraints

We can summarise our approach as the execution of queries searching for an
appropriate device supporting the modalities according to the CARE property relating
the modalities. Priority for the execution of the queries is given to the modality
specified first in the CARE relation (e.g. ProjectorGUI in the example of Fig. 8).

Partial Enabled Task Set Refinements

We now have presented a way to use de Modality Interaction Constraints to divide an
enable task sets into partial enabled task sets for a feasible distribution. However this
distribution is not always the best case scenario.

@*

Draw

isr/ \;

Choose Tool Draw in Canvas

Choose Selection Tool Choose Line Choose Rectangle Choose Circle Choose Color Use Tool Update Canvas

Fig. 10. Draw task of a drawing application

Consider the example in Fig. 10. This example shows the typical task in a drawing
application where the user can choose a tool and use this tool to draw on a canvas
using the direct manipulation paradigm. Suppose all the tasks are annotated with the
same Modality Interaction Constraint: E(MouseDirectManipulation, TouchScreen-
DirectManipulation). This means the use of the MouseDirect-Manipulation modality
is equivalent to the TouchScreenDirectManipulation modality. When we consider an

102 T. Clerckx, C. Vandervelpen, and K. Coninx

environment containing a desktop computer supporting the first modality and a PDA
supporting the second modality, and we apply the approach described above, all the
tasks will be assigned to the device supporting the first modality because neither
device supports both. However in some cases a user might prefer to have the user
interface distributed where the tasks concerning tool selection are deployed on the
PDA and the large canvas is displayed on a desktop computer.

Another possible scenario could be a media player where the operation buttons are
displayed on the user's cell phone and the actual media is playing on the user's PDA to
maximize screen space for displaying the media. In order to know whether the user
would prefer a maximal distribution of the tasks rather than a maximal combination of
the tasks on one particular device, the user has to specify this in his/her user profile.
In the latter case the approach discussed above where modalities are transformed to
queries can be applied. When a maximal distribution is desirable, some more meta-
information regarding the task composition should be necessary.

One way to solve this problem is to let the designer define Task Set Constraints
(TSC) in the task model. These constraints enable the designer to specify which tasks
are desirably grouped on the same Interaction Device, and which tasks are desirably
not grouped together on the same Interaction Device. Applied to the example in
Fig. 10 the designer can specify the subtasks of the Choose Tool tasks are desirably
grouped together and these same tasks are desirably not grouped with the sub tasks of
the Draw in Canvas task. Taking into account this information during the runtime, the
distribution controller can decide to prioritise the break-up of the enabled task set
even if deployment is possible on a single device according to the Modality
Interaction Constraint if the property of maximal distribution is chosen.

4 Related Work

In this section we will discuss work related to our approach.

Berti et al. [3] describe a framework supporting migration of user interfaces from
one platform to another. Unlike our goals they accentuate migratory interfaces where
it is important that a user who is performing a certain task on one device can continue
performing the same task on another device. In our approach we aim to distribute the
subtasks a user is currently performing among several devices in the user's vicinity to
exploit the available interaction resources. In their paper, they discuss three aspects to
allow usable interaction of migratory interfaces that are also applicable to our focus:

— adaptability to the device's available Interaction Resources (our approach uses an
ontology-based environment model);

— applying specified design criteria (allocation of devices is based on a designed
augmented task model);

— and insurance of continuity of the task performance (the environment model can
be updated and the allocation can be updated accordingly).

Furthermore they acknowledge the need for multimodal interaction to support
smooth task execution.

Bandelloni et al. [2] also use interface migration as a starting point, but they extend
their approach to support partial migration where only some parts of the user

Task-Based Design and Runtime Support for Multimodal User Interface Distribution 103

interfaces are migrated to another device. In this way user interface distribution is
accomplished. Migration and partial migration are executed by taking into account the
source user interface, performing runtime task analysis, and finally deploying the
updated concrete user interface on the target device(s). This is in contrast to our
approach where first the environment is examined to determine which interaction
resources are currently available, before mapping the abstract user interface
description onto a concrete one. In this way at each state of the user interface an
appropriate distribution among the interaction resources is achieved according to the
available interaction resources.

Florins et al. [10] describe rules for splitting user interfaces being aimed at graceful
degradation of user interfaces. Several algorithms are discussed to divide a complex
user interface developed for a platform with few constrains in order to degrade the
user interface with the purpose of presenting the interface in pieces to the user on a
more constrained platform (e.g. with a smaller screen space). Although nothing is said
about user interface distribution, these algorithms can be used in our approach
complementary to the distribution plan discussed in 3.3.

CAMELEON-RT [1] is a reference model constructed to define the problem space
of user interfaces released in ubiquitous computing environments. Their reference
model covers user interface distribution, migration and plasticity [16]. This is also the
problem domain of our approach. The work presents a conceptual middleware
whereupon context-aware interactive systems can be deployed. The architecture is
divided in several layers such as the platform layer, representing the hardware, the
middleware layer, representing the software deducting the adaptation, and the
interaction layer, where the interface is presented to the user in order to enable
interaction with the system.

5 Conclusions and Future Work

In this paper we have described a development process where some decisions
regarding user interface distribution and selection of modalities can be postponed to
the runtime of the system. In this way the user interface can adapt to volatile
environments because selection of devices and modalities accessible to the user's
vicinity are taken into account. At the moment we are still performing some tests
regarding the refinement of the division into partial enabled task sets. User tests are
planned to find out whether the proposed information is enough to obtain a usable
interface and whether more information regarding the user's preferences is needed.

In future work we will look at possibilities to extend the layout management. Since
we are using XHTML in the rendering engine, Cascading Style Sheets® can be used to
complement the layout management in obtaining a more visually attractive user
interface. However, at the moment we have implemented a basic flow layout
algorithm to align the graphical user interface components. We plan to use layout
patterns which are commonly used in model-based user interface development,
e.g. [15].

8 http://www.w3.org/Style/CSS/

104 T. Clerckx, C. Vandervelpen, and K. Coninx

Another research direction we plan to follow in the future is the generalisation of
the Modality Interaction Constraints to more general Interaction Constraints. The
querying mechanism used at runtime, based on SparQL, can also be used at design
time where designers can construct a more specific query than the one generated by
the runtime architecture. However we have to deliberate about the drawbacks:
constructing these queries is not straightforward thus a mediation tool has to be
implemented to let a designer postulate the requirements about user interface
distribution in a way a more complex query can be generated.

Acknowledgements

Part of the research at EDM is funded by EFRO (European Fund for Regional
Development), the Flemish Government and the Flemish Interdisciplinary institute for
Broadband Technology (IBBT). The CoDAMoS (Context-Driven Adaptation of
Mobile Services) project IWT 030320 is directly funded by the IWT (Flemish subsidy
organization).

References

1. Balme, L., Demeure, A., Barralon, N., Coutaz, J., Calvary, G.: Cameleon-rt: A software
architecture reference model for distributed, migratable, and plastic user interfaces. In:
Markopoulos, et al. (eds.) [11], pp. 291-302

2. Bandelloni, R., Paterno, F.: Flexible interface migration. In: IUI 2004: Proceedings of the
9th international conference on Intelligent user interface, pp. 148-155. ACM Press, New
York (2004)

3. Berti, S., Paterno, F.: Migratory multimodal interfaces in multidevice environments. In:
ICMI 2005: Proceedings of the 7th international conference on Multimodal interfaces, pp.
92-99. ACM Press, New York (2005)

4. Clerckx, T., Van den Bergh, J., Coninx, K.: Modeling multi-level context influence on the
user interface. In: PerCom Workshops, pp. 57-61. IEEE Computer Society, Los Alamitos
(2006)

5. Clerckx, T., Luyten, K., Coninx, K.: DynaMo-AID: A design process and a runtime
architecture for dynamic model-based user interface development. In: Bastide, R,
Palanque, P., Roth, J. (eds.) DSV-IS 2004 and EHCI 2004. LNCS, vol. 3425, pp. 77-95.
Springer, Heidelberg (2005)

6. Clerckx, T., Vandervelpen, C., Luyten, K., Coninx, K.: A task-driven user interface
architecture for ambient intelligent environments. In: IUI 2006: Proceedings of the 11th
international conference on Intelligent user interfaces, pp. 309-311. ACM Press, New
York (2006)

7. Clerckx, T., Winters, F., Coninx, K.: Tool Support for Designing Context-Sensitive User
Interfaces using a Model-Based Approach. In: Dix, A., Dittmar, A. (eds.) International
Workshop on Task Models and Diagrams for user interface design 2005 (TAMODIA
2005), Gdansk, Poland, September 26-27, 2005, pp. 11-18 (2005)

8. Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J., Young, R.M.: Four easy pieces
for assessing the usability of multimodal interaction: the care properties. In: Nordby, K.,
Helmersen, P.H., Gilmore, D.J., Arnesen, S.A. (eds.) INTERACT, IFIP Conference
Proceedings, pp. 115-120. Chapman & Hall, Boca Raton (1995)

Task-Based Design and Runtime Support for Multimodal User Interface Distribution 105

9. Dey, AK.: Providing Architectural Support for Building Context-Aware Applications.
PhD thesis, College of Computing, Georgia Institute of Technology (December 2000)

10. Florins, M., Simarro, F.M., Vanderdonckt, J., Michotte, B.: Splitting rules for graceful
degradation of user interfaces. In: AVI 2006: Proceedings of the working conference on
Advanced visual interfaces, pp. 59-66. ACM Press, New York (2006)

11. Markopoulos, P., Eggen, B., Aarts, E.H.L., Crowley, J.L.: EUSAI 2004. LNCS, vol. 3295.
Springer, Heidelberg (2004)

12. Paterno, F.: Model-Based Design and Evaluation of Interactive Applications. Springer,
Heidelberg (1999)

13. Paterno, F., Santoro, C.: One model, many interfaces. In: Kolski, C., Vanderdonckt, J.
(eds.) CADUI, pp. 143-154. Kluwer, Dordrecht (2002)

14. Preuveneers, D., Van den Bergh, J., Wagelaar, D., Georges, A., Rigole, P., Clerckx, T.,
Berbers, Y., Coninx, K., Jonckers, V., De Bosschere, K.: Towards an extensible context
ontology for ambient intelligence. In: Markopoulos, et al. (eds.) [11], pp. 148-159

15. Sinnig, D., Gaffar, A., Reichart, D., Seffah, A., Forbrig, P.: Patterns in model-based
engineering. In: Jacob, R.J.K., Limbourg, Q., Vanderdonckt, J. (eds.) CADUI 2004, pp.
195-208. Kluwer, Dordrecht (2004)

16. Thevenin, D., Coutaz, J.: Plasticity of user interfaces: Framework and research agenda. In:
Interact 1999, vol. 1, pp. 110-117. IFIP, I0S Press, Edinburgh (1999)

17. Vanderdonckt, J.M., Bodart, F.: Encapsulating knowledge for intelligent automatic
interaction objects selection. In: CHI 1993: Proceedings of the SIGCHI conference on
Human factors in computing systems, pp. 424-429. ACM Press, New York (1993)

18. Vandervelpen, C., Coninx, K.: Towards model-based design support for distributed user
interfaces. In: Proceedings of the third Nordic Conference on Human-Computer
Interaction, pp. 61-70. ACM Press, New York (2004)

19. Weiser, M.: The Computer for the 21st Century. Scientific American (1991)

Questions

Michael Harrison:

Question: You seem to have a static scheme. You do not deal with the possibility that
the ambient noise level might change and therefore cause a change in the
configuration. Would you not require a more procedural (task level) description to
describe what to do in these different situations?

Answer: It is a static technique. Extensions to CTT have been considered that relate
to similar features of ubiquitous systems and it would be interesting to see how there
could be an extension to deal with dynamic function allocation.

Laurence Nigay:

Question: We developed a tool called ICARE in Grenoble, describing ICARE
diagrams for each elementary task of a CTT. We found it difficult to see the link
between the task level and the ICARE description, the border is not so clean. Do you
have the same problem?

Answer: Depends on the granularity of the task model. When it is a rather abstract
task, you have a different situation than when it is concrete. This is a factor that
comes into play.

A Comprehensive Model of Usability

Sebastian Winter, Stefan Wagner, and Florian Deissenboeck

Institut fiir Informatik
Technische Universitiat Miinchen
Boltzmannstr. 3, 85748 Garching b. Miinchen, Germany
{winterse,wagnerst,deissenb}@in. tum.de

Abstract. Usability is a key quality attribute of successful software systems.
Unfortunately, there is no common understanding of the factors influencing
usability and their interrelations. Hence, the lack of a comprehensive basis for
designing, analyzing, and improving user interfaces. This paper proposes a
2-dimensional model of usability that associates system properties with the
activities carried out by the user. By separating activities and properties, sound
quality criteria can be identified, thus facilitating statements concerning their
interdependencies. This model is based on a tested quality meta-model that
fosters preciseness and completeness. A case study demonstrates the manner by
which such a model aids in revealing contradictions and omissions in existing
usability standards. Furthermore, the model serves as a central and structured
knowledge base for the entire quality assurance process, e.g. the automatic
generation of guideline documents.

Keywords: Usability, quality models, quality assessment.

1 Introduction

There is a variety of standards concerning the quality attribute usability or quality in
use [1, 2]. Although in general all these standards point in the same direction, due to
different intuitive understandings of usability, they render it difficult to analyze,
measure, and improve the usability of a system. A similar situation also exists for
other quality attributes, e.g. reliability or maintainability. One possibility to address
this problem is to build a comprehensive model of the quality attribute. Most models
take recourse to the decomposition of quality proposed by Boehm et al. [3]. However,
this decomposition is still too abstract and imprecise to be used concretely for analysis
and measurement.

More comprehensive models have been proposed for product quality in general [4]
or even usability [5]. However, these models have three problems: First, they do not
decompose the attributes and criteria to a level that is suitable for actually assessing
them for a system. Secondly, these models tend to omit rationale of the required
properties of the system. Thirdly, the dimensions used in these models are
heterogeneous, e.g. the criteria mix properties of the system with properties of the
user. The first problem constrains the use of these models as the basis for analyses.
The second one makes it difficult to describe impacts precisely and therefore to

J. Gulliksen et al. (Eds.): EIS 2007, LNCS 4940, pp. 106 2008.
© IFIP International Federation for Information Processing 2008

A Comprehensive Model of Usability 107

convince developers to use it. The third problem hampers the revelation of omissions
and inconsistencies in these models. The approach to quality modeling by Broy,
Deissenboeck, and Pizka [6] is one way to deal with these problems. Using an explicit
meta-model, it decomposes quality into system properties and their impact on
activities carried out by the user. This facilitates a more structured and uniform means
of modeling quality.

Problem. Although usability is a key quality attribute in modern software systems, the
general understanding of its governing factors is still not good enough for profound
analysis and improvement. Moreover, currently there are no comprehensive objective
criteria for evaluating usability.

Contribution. This paper proposes a comprehensive 2-dimensional model of usability
based on a quality meta-model that facilitates a structured decomposition of usability
and descriptions of the impacts of various facts of the system. This kind of model has
proven to be useful for the quality attribute maintainability [6]. Several benefits can
be derived by using this type of model:

1. The ability to reveal omissions and contradictions in current models and
guidelines.

2. The ability to generate guidelines for specific tasks automatically.

3. A basis for (automatic) analysis and measurement.

4. The provision of an interface with other quality models and quality attributes.

We demonstrate the applicability of the 2-dimensional model in a case study of the
ISO 15005 [7] which involves domain-specific refinements. By means of this model
we are able to identify several omissions in the standard and suggest improvements.

Consequences. Based on the fact that we can pinpoint omissions and inconsistencies
in existing quality models and guidelines, it seems advisable to use an explicit meta-
model for usability models, precisely to avoid the weaknesses of the other
approaches. Furthermore, it helps to identify homogeneous dimensions for the
usability modeling. We believe that our model of usability is a suitable basis for
domain- or company-specific models that must be structured and consistent.

Outline. In Sec. 2 we describe prior work in the area of quality models for usability
and the advances and shortcomings it represents. In Sec. 3, using an explicit meta-
model, we discuss the quality modeling approach. The 2-dimensional model of
usability that we constructed using this approach is presented in Sec. 4. This model is
refined to a specific model based on an ISO standard in the case study of Sec. 5. The
approach and the case study are discussed in Sec. 6. In Sec. 7 we present our final
conclusions.

2 Related Work

This section describes work in the area of quality models for usability. We discuss
general quality models, principles and guidelines, and first attempts to consolidate the
quality models.

108 S. Winter, S. Wagner, and F. Deissenboeck

2.1 Quality Models for Usability

Hierarchical structures as quality models which focus mainly on quality assurance
have been developed. A model first used by Boehm [3] and McCall et al. [8] consists
of three layers: factors, criteria, and metrics. Consequently, the approach is referred to
as the factor-criteria-metrics model (FCM model). The high-level factors model the
main quality goals. These factors are divided into criteria and sub-criteria. When a
criterion has not been divided, a metric is defined to measure the criteria. However,
this kind of decomposition is too abstract and imprecise to be used for analysis and
measurement. In addition, since usability is not a part of the main focus, this factor is
not discussed in detail.

In order to provide means for the operational measurement of usability several
attempts have been made in the domain human-computer interaction (HCI).
Prominent examples are the models from Shackel and Richardson [9] or Nielsen [10].
Nielsen, for example, understands usability as a property with several dimensions,
each consisting of different components. He uses five factors: learnability, efficiency,
memorability, errors, and satisfaction. Learnability expresses how well a novice user
can use the system, while the efficient use of the system by an expert is expressed by
efficiency. If the system is used occasionally the factor memorability is used. This
factor differentiates itself from learnability by the fact that the user has understood the
system previously. Nielsen also mentions that the different factors can conflict with
each other.

The ISO has published a number of standards which contain usability models for
the operational evaluation of usability. The ISO 9126-1 [11] model consists of two
parts. The first part models the internal as well as the external quality, the second part
the quality in use. The first part describes six characteristics which are further divided
into sub-characteristics. These measurable attributes can be observed during the use
of the product. The second part describes attributes for quality in use. These attributes
are influenced by all six product characteristics. Metrics are given for the assessment
of the sub-characteristics. It is important to note that the standard does not look
beyond the sub-characteristics intentionally.

The ISO 9241 describes human-factor requirements for the use of software systems
with user interface. The ISO 9241-11 [12] provides a framework for the evaluation of
a running software system. The framework includes the context of use and describes
three basic dimensions of usability: efficiency, effectiveness, and satisfaction.

2.2 Principles and Guidelines

In addition to the models which define usability operationally, a lot of design
principles have been developed. Usability principles are derived from knowledge of
the HCI domain and serve as a design aid for the designer. For example, the “eight
golden rules of dialogue design” from Shneiderman [13] propose rules that have a
positive effect on usability. One of the rules, namely strive for consistency, has been
criticized by Grudin [14] for its abstractness. Grudin shows that consistency can be
decomposed into three parts that also can be in conflict with each other. Although
Grudin does not offer an alternative model, he points out the limitations of the design
guidelines.

A Comprehensive Model of Usability 109

Dix et al. [15] argue as well that if principles are defined in an abstract and general
manner, they do not help the designer. In order to provide a structure for a
comprehensive catalogue of usability principles Dix etal. [15] divide the factors
which support the usability of a system into three categories: learnability, flexibility,
and robustness. Each category is further divided into sub-factors. The ISO 9241-
110 [16] takes a similar approach and describes seven high-level principles for the
design of dialogues: suitability for the task, self-descriptiveness, controllability,
conformity with user expectations, error tolerance, suitability for individualization,
and suitability for learning. These principles are not independent of each other and
some principles have an impact on other principles. For example self-descriptiveness
influences suitability for learning. Some principles have a part-of relation to other
principles. For example, suitability for individualization is a part of controllability.
The standard does not discuss the relations between the principles and gives little
information on how the principles are related to the overall framework given in [12].

2.3 Consolidated Quality Models for Usability

There are approaches which aim to consolidate the different models. Seffah et al. [5]
applied the FCM model to the quality attribute usability. The developed model
contains 10 factors which are subdivided into 26 criteria. For the measurement of the
criteria the model provides 127 metrics.

The motivation behind this model is the high abstraction and lack of aids for the
interpretation of metrics in the existing hierarchically-based models. Put somewhat
differently, the description of the relation between metrics and high-level factors
is missing. In addition, the relations between factors, e.g. learnability vs.
understandability, are not described in the existing models. Seffah et al. [5] also
criticize the difficulty in determining how factors relate to each other, if a project uses
different models. This complicates the selection of factors for defining high-level
management goals. Therefore, in [5] a consolidated model that is called quality in use
integrated measurement model (QUIM model) is developed.

Since the FCM decomposition doesn’t provide any means for precise structuring,
the factors used in the QUIM model are not independent. For example, learnability can
be expressed with the factors efficiency and effectiveness [12].

The same problem arises with the criteria in the level below the factors: They
contain attributes as well as principles, e.g. minimal memory load, which is a
principle, and consistency which is an attribute. They contain attributes about the user
(likeability) as well as attributes about the product (attractiveness). And lastly, they
contain attributes that are similar, e.g. appropriateness and consistency, both of which
are defined in the paper as capable of indicating whether visual metaphors are
meaningful or not.

To describe how the architecture of a software system influences usability, Folmer
and Bosch [17] developed a framework to model the quality attributes related to
usability. The framework is structured in four layers. The high-level layer contains
usability definitions, i.e. common factors like efficiency. The second layer describes
concrete measurable indicators which are related to the high-level factors. Examples
of indicators are time to learn, speed, or errors. The third layer consists of usability
properties which are higher level concepts derived from design principles like provide

110 S. Winter, S. Wagner, and F. Deissenboeck

feedback. The lowest layer describes the design knowledge in the community. Design
heuristics, e.g. the undo pattern, are mapped to the usability properties. Van
Welie [18] also approaches the problem by means of a layered model. The main
difficulty with layered models is the loss of the exact impact to the element on the
high-level layer at the general principle level when a design property is first mapped
to a general principle.

Based on Norman’s action model [19] Andre et al. developed the USER ACTION
FRAMEWORK [20]. This framework aims toward a structured knowledge base of
usability concepts which provides a means to classify, document, and report usability
problems. By contrast, our approach models system properties and their impact on
activities.

2.4 Summary

As pointed out, existing quality models generally suffer from one or more of the
following shortcomings:

1. Assessability. Most quality models contain a number of criteria that are too coarse-
grained to be assessed directly. An example is the attractiveness criterion defined
by the ISO 9126-1 [11]. Although there might be some intuitive understanding of
attractiveness, this model clearly lacks a precise definition and hence a means to
assess it.

2. Justification. Additionally, most existing quality models fail to give a detailed
account of the impact that specific criteria (or metrics) have on the user interaction.
Again the ISO standard cited above is a good example for this problem, since it
does not provide any explanation for the presented metrics. Although consolidated
models advance on this by providing a more detailed presentation of the relations
between criteria and factors, they still lack the desired degree of detail. An example
is the relationship between the criterion feedback and the factor universality
presented in [5]. Although these two items are certainly related, the precise nature
of the relation is unclear.

3. Homogeneity. Due to a lack of clear separation of different aspect of quality most
existing models exhibit inhomogeneous sets of quality criteria. An example is the
set of criteria presented in [5] as it mixes attributes like consistency with
mechanisms like feedback and principles like minimum memory load.

3 A 2-Dimensional Approach to Model Quality

To address the problems with those quality models described in the previous section
we developed the novel two-dimensional quality meta-model QMM. This meta-model
was originally based on our experience with modeling maintainability [6], but now
also serves as a formal specification for quality models covering different quality
attributes like usability and reliability. By using an explicit meta-model we ensure the
well-structuredness of these model instances and foster their preciseness as well as
completeness.

A Comprehensive Model of Usability 111

3.1 The 2-Dimensional Quality Meta-model

This model is based on the general idea of hierarchical models like FCM, i.e. the
breaking down of fuzzy criteria like learnability into sub-criteria that are tangible
enough to be assessed directly. In contrast to other models, it introduces a rigorous
separation of system properties and activities to be able to describe quality attributes
and their impact on the usage of a software product precisely.

This approach is based on the finding that numerous criteria typically associated
with usability, e.g. learnability, understandability, and of course usability itself, do
not actually describe the properties of a system but rather the activities performed on
(or with) the system. It might be objected that these activities are merely expressed in
the form of adjectives. We argue, by contrast, that this leads precisely to the most
prevalent difficulty of most existing quality models, namely to a dangerous mixture of
activities and actual system properties. A typical example of this problem can be
found in [5] where time behavior and navigability are presented as the same type of
criteria. Where navigability clearly refers to the navigation activity carried out by the
user of the system, time behavior is a property of the system and not an activity. One
can imagine that this distinction becomes crucial, if the usability of a system is to be
evaluated regarding different types of users: The way a user navigates is surely
influenced by the system, but is also determined by the individuality of the user. In
contrast, the response times of systems are absolutely independent of the user. A
simplified visualization of the system property and activity decompositions as well as
their interrelations is shown in Fig. 1. The activities are based on Norman’s action
model [19]. The whole model is described in detail in Sec. 4.

The final goal of usability engineering is to improve the usage of a system, i.e. to
create systems that support the activities that the user performs on the system.
Therefore, we claim that usability quality models must not only feature these
activities as first-class citizens, but also precisely describe how properties of the
system influence them and therewith ultimately determine the usability of the
system.

Interact

[Execute | | Evaluate |

Form Execute || Perceive || Evaluate
E‘ Intention|| Action State Outcome
E Input *
£ ~~{Output *
o
= Dialogue Mgmt. * * x x
= Input Data *x *
? Output Data x x
— Knowledge b _ 4 b 4
= Phys. Abilities x x

Fig. 1. Simplified quality model

112 S. Winter, S. Wagner, and F. Deissenboeck

3.2 Facts, Activities, Attributes, and Impacts

Our usability model does not only describe the product, i.e. the user interface, itself,
but also comprises all relevant information about the situation of use (incl. the user).
To render this description more precisely the model distinguishes between facts and
attributes. Facts serve as a means to describe the situation of use in a hierarchical
manner but do not contain quality criteria. For example, they merely model that the
fact user interface consists of the sub-facts visual interface and aural interface.

Attributes are used to equip the facts with desired or undesired low-level quality
criteria like consistency, ambiguousness, or even the simple attribute existence. Thus,
tuples of facts and attributes express system properties. An example is the tuple [Font
Face | CONSISTENCY] that describes the consistent usage of font faces throughout the
user interface. Please note, that for clarity’s sake the attributes are not shown in Fig. 1.

The other part of the model consists of a hierarchical decomposition of the
activities performed by a user as part of the interaction with the system. Accordingly,
the root node of this tree is the activity interact that is subdivided into activities like
execute and evaluate which in turn are broken down into more specific sub-activities.

Similar to facts, activities are equipped with attributes. This allows us to
distinguish between different properties of the activities and thereby fosters model
preciseness. Attributes typically used for activities are duration and probability of
error. The complete list of attributes is described in Sec. 4.

The combination of these three concepts enables us to pinpoint the impact that
properties of the user interface (plus further aspects of the situation of use) have on
the user interaction. Here impacts are always expressed as a relation between fact-
attribute-tuples and activity-attribute-tuples and qualified with the direction of the
impact (positive or negative):

[Fact f | ATTRIBUTE A;] — +/— [Activity a | ATTRIBUTE A,]
For example, one would use the following impact description
[Font Face | CONSISTENCY] — — [Reading | DURATION]

to express that the consistent usage of font faces has a positive impact on the time
needed to read the text. Similarly the impact

[Input Validity Checks | EXISTENCE] — — [Data Input | PROBABILITY OF ERROR]

is used to explain that the existence of validity checks for the input reduces the
likelihood of an error.

3.3 Tool Support

Our quality models are of substantial size (e.g. the current model for maintainability
has > 800 model elements) due to the high level of detail. We see this as a necessity
and not a problem, since these models describe very complex circumstances.
However, we are well aware that models of this size can only be managed with proper
tool support. We have therefore developed a graphical editor, based on the ECLIPSE
platform' that supports quality engineers in creating models and in adapting these

Uhttp://www.eclipse.org

A Comprehensive Model of Usability 113

models to changing quality needs by refactoring functionality”. Additionally, the
editor provides quality checks on the quality models themselves, e.g. it warns about
facts that do not have an impact on any activity.

For the distribution of quality models the editor provides an export mechanism that
facilitates exporting models (or parts thereof) to different target formats. Supported
formats are, e.g., simple graphs that illustrate the activity and system decomposition,
but also full-fledged quality guideline documents that serve as the basis for quality
reviews. This export functionality can be extended via a plug-in interface.

4 Usability Quality Model

Based on the critique of existing usability models described in Sec. 2 and using the
quality modeling approach based on the meta-model from Sec.3, we propose a
2-dimensional quality model for usability. The complete model is too large to be
described in total, but we will highlight specific core parts of the model to show the
main ideas.

Our approach to quality modeling includes high-level and specific models. The aim
of the high-level model is to define a basic set of facts, attributes, and activities that
are independent of specific processes and domains. It is simultaneously abstract and
general enough to be reusable in various companies and for various products. In order
to fit to specific projects and situations the high-level models are refined and tailored
into specific models.

4.1 Goals

In accordance with existing standards [21], we see four basic principles needed for
defining usability:

Efficiency. The utilization of resources.
Effectiveness. The sharing of successful tasks.
Satisfaction. The enjoyment of product use.
Safety. The assurance of non-harmful behavior.

Frgkjer, Hertzum, and Hornbak [22] support the importance of these aspects:
“Unless domain specific studies suggest otherwise, effectiveness, efficiency, and
satisfaction should be considered independent aspects of usability and all be included
in usability testing.” However, we do not use these principles directly for analysis, but
rather to define the usability goals of the system. The goals are split into several
attributes of the activities inside the model. For example, the effectiveness of the user
interface depends on the probability of error for all activities of usage. Therefore, all
impacts on the attribute probability of error of activities are impacts on the
effectiveness and efficiency. We describe more examples below after first presenting
the most important facts, activity trees, and attributes.

2 A beta version of the editor can be downloaded from http://www4.cs.tum.edu/~ccsm/qmm

114 S. Winter, S. Wagner, and F. Deissenboeck

4.2 The Activity Subtree “Interacting with the Product”

The activity tree in the usability model has the root node use that denotes any kind of
usage of the software-based system under consideration. It has two children, namely
execution of secondary tasks and interacting with the product. The former stands
for all additional tasks a user has that are not directly related to the software product.
The latter is more interesting in our context because it describes the interaction with
the software itself. We provide a more detailed explanation of this subtree in the
following.

Activities. The activity interacting with the product is further decomposed, based on
the seven stages of action from Norman [19] that we arranged in a tree structure
(Fig. 2). We believe that this decomposition is the key for a better understanding of
the relationships in usability engineering. Different system properties can have very
different influences on different aspects of the use of the system. Only if these
are clearly separated will we be able to derive well-founded analyses. The three
activities, forming the goal, executing, and evaluating, comprise the first layer of
decomposition. The first activity is the mental activity of deciding which goal the user
wants to achieve. The second activity refers to the actual action of planning and
realizing the task. Finally, the third activity stands for the gathering of information
about the world’s state and understanding the outcome.

Interacting with
the product
Executing Evaluating
Formina the goal Forming the Specifying an Executing the Perceiving the Interpreting the || Evaluating the
9theg intention action action state of the world | |state of the world outcome

Fig. 2. The subtree for “Interacting with the Product” (adapted from [19])

The executing node has again three children: First, the user forms his intention to
do a specific action. Secondly, the action is specified, i.e. it is determined what is to
be done. Thirdly, the action is executed. The evaluating node is decomposed into
three mental activities: The user perceives the state of the world that exists after
executing the action. This observation is then interpreted by the user and, based on
this, the outcome of the performed action is evaluated. Scholars often use and adapt
this model of action. For example, Sutcliffe [23] linked error types to the different
stages of action and Andre et al. [20] developed the USER ACTION FRAMEWORK based
on this model.

A Comprehensive Model of Usability 115

Attributes. To be able to define the relation of the facts and activities to the general
usability goals defined above, such as efficiency or effectiveness, we need to describe
additional properties of the activities. This is done by a simple set of attributes that is
associated with the activities:

— Frequency. The number of occurrences of a task.

— Duration. The amount of time a task requires.

— Physical stress. The amount of physical requirements necessary to perform a task.

— Cognitive load. The amount of mental requirements necessary to perform a task.

— Probability of error. The distribution of successful and erroneous performances of
a task.

As discussed in Sec. 4.1, these activity attributes can be used to analyze the
usability goals defined during requirements engineering. We already argued that the
effectiveness of a user interface is actually determined by the probability of error of
the user tasks. In our model, we can explicitly model which facts and situations have
an impact on that. The efficiency sets the frequency of an activity into relation to a
type of resources: time (duration), physical stress, or cognitive load. We can explicitly
model the impacts on the efficiency of these resources. Further attributes can be used
to assess other goals.

4.3 The Fact Subtree “Logical User Interface”

The fact tree in the usability model contains several areas that need to be considered
in usability engineering, such as the physical user interface or the usage context. By
means of the user component, important properties of the user can be described.
Together with the application it forms the context of use. The physical output devices
and the physical input devices are assumed to be part of the physical user interface.
However, we concentrate on a part we consider very important: the logical user
interface. The decomposition follows mainly the logical architecture of a user
interface as shown in Fig. 3.

Application-initiated messages

L Physical input I-» Input -
User devices || channels Dialogue Application
. management
Physical output Output
—| evices l«— channels |e— —]

Fig. 3. The user interface architecture

Facts. The logical user interface contains input channels, output channels, and
dialogue management. In addition to the architecture, we also add data that is sent via
the channels explicitly: input data and output data. The architecture in Fig. 3 also
contains a specialization of input data, application-initiated messages. These
messages, which are sent by the application, report interrupts of the environment or
the application itself to the dialogue management outside the normal response to
inputs.

116 S. Winter, S. Wagner, and F. Deissenboeck

Attributes. The attributes play an important role in the quality model because they
are the properties of the facts that can actually be assessed manually or automatically.
It is interesting to note that it is a rather small set of attributes that is capable of
describing the important properties of the facts. These attributes are also one main
building block that can be reused in company- or domain-specific usability models.
Moreover, we observe that the attributes used in the usability model differ only
slightly from the ones contained in the maintainability model of [6]. Hence, there
seems to be a common basic set of those attributes that is sufficient — in combination
with facts — for quality modeling.

— Existence. The most basic attribute that we use is whether a fact exists or not. The
pure existence of a fact can have a positive or negative impact on some activities.

— Relevance. When a fact is relevant, it means that it is appropriate and important in
the context in which it is described.

— Unambiguousness. An unambiguous fact is precise and clear. This is often
important for information or user interface elements that need to be clearly
interpreted.

— Simplicity. For various facts it is important that in some contexts they are simple.
This often means something similar to small and straightforward.

— Conformity. There are two kinds of conformity: conformity to existing standards
and guidelines, and conformity to the expectations of the user. In both cases the
fact conforms to something else, i.e. it respects and follows the rules or models that
exist.

— Consistency. There are also two kinds of consistency: internal consistency and
external consistency. The internal consistency means that the entire product
follows the same rules and logic. The external consistency aims at correspondence
with external facts, such as analogies, or a common understanding of things. In
both cases it describes a kind of homogeneous behavior.

— Controllability. A controllable fact is a fact which relates to behavior that can be
strongly influenced by the actions of the user. The user can control its behavior.

— Customizability. A customizable fact is similar to a controllable fact in the sense
that the user can change it. However, a customizable fact can be preset and fixed to
the needs and preferences of the user.

— Guardedness. In contrast to customizability and controllability, a guarded fact
cannot be adjusted by the user. This is a desirable property for some critical parts
of the system.

— Adaptability. An adaptive fact is able to adjust to the user’s needs or to its context
dependent on the context information. The main difference to customizability is
that an adaptive fact functions without the explicit input of the user.

4.4 Examples

The entire model is composed of the activities with attributes, the facts with the
corresponding attributes and the impacts between attributed facts and attributed
activities. The model with all these details is too large to be described in detail, but we
present some interesting examples: triplets of an attributed fact, an attributed activity,
and a corresponding impact. These examples aim to demonstrate the structuring that
can be achieved by using the quality meta-model as described in Sec. 3.

A Comprehensive Model of Usability 117

Consistent Dialogue Management. A central component in the logical user interface
concept proposed in Sec. 4.3 is the dialogue management. It controls the dynamic
exchange of information between the product and the user. In the activities tree, the
important activity is carried out by the user by interpreting the information given by
the user interface. One attribute of the dialogue management that has an impact on the
interpretation is its internal consistency. This means that its usage concepts are similar
in the entire dialogue management component. The corresponding impact description:

[Dialogue Management | INTERNAL CONSISTENCY] — — [Interpretation | PROB. OF ERROR]

Obviously, this is still too abstract to be easily assessed. This is the point where
company-specific usability models come in. This general relationship needs to be
refined for the specific context. For example, menus in a graphical user interface
should always open the same way.

Guarded Physical Interface. The usability model does not only contain the logical
user interface concept, but also the physical user interface. The physical interface
refers to all the hardware parts that the user interacts with in order to communicate
with the software-based system. One important attribute of such a physical interface is
guardedness. This means that the parts of the interface must be guarded against
unintentional activation. Hence, the guardedness of a physical interface has a positive
impact on the executing activity:

[Physical Interface | GUARDEDNESS] — — [Executing | PROBABILITY OF ERROR]

A physical interface that is not often guarded is the touchpad of a notebook
computer. Due to its nearness to the location of the hands while typing, the cursor
might move unintentionally. Therefore, a usability model of a notebook computer
should contain the triplet that describes the impact of whether the touchpad is guarded
against unintentional operation or not.

5 Case Study: Modeling the ISO 15005

To evaluate our usability modeling approach we refine the high-level model described
in Sec. 4 into a specific model based on the ISO 15005 [7]. This standard describes
ergonomic principles for the design of transport information and control systems
(TICS). Examples for TICS are driver information systems (e.g. navigation systems)
and driver assistance systems (e.g. cruise control). In particular, principles related to
dialogues are provided, since the design of TICS must take into consideration that a
TICS is used in addition to the driving activity itself.

The standard describes three main principles which are further subdivided into
eight sub-principles. Each sub-principle is motivated and consists of a number of
requirements and/or recommendations. For each requirement or recommendation a
number of examples are given.

For example, the main principle suitability for use while driving is decomposed
among others into the sub-principle simplicity, i.e. the need to limit the amount of
information to the task-dependent minimum. This sub-principle consists, among others,
of the recommendation to optimize the driver’s mental and physical effort. All in all the
standard consists of 13 requirements, 16 recommendations, and 80 examples.

118 S. Winter, S. Wagner, and F. Deissenboeck

5.1 Approach

We follow two goals when applying our method to the standard: First, we want to
prove that our high-level usability model can be refined to model such principles.
Secondly, we want to discover inconsistencies, ill-structuredness, and implicitness of
important information.

Our approach models every element of the standard (e.g. high-level principles,
requirements, etc.) by refinement of the high-level model. For this, the meta-model
elements (e.g. facts, attributes, impacts, etc.) are used. We develop the specific model
by means of the tool described in Sec. 3.3. The final specific model consists of
41 facts, 12 activities, 15 attributes, 48 attributed facts, and 51 impacts.

5.2 Examples

To illustrate how the elements of the standard are represented in our specific model,
we present the following examples.

Representation of Output Data. An element in the logical user interface concept
proposed in Sec. 4.3 is the output data, i.e. the information sent to the driver. A
central aspect is the representation of the data. One attribute of the representation that
has an impact on the interpretation of the state of the system is its unambiguousness,
i.e. that the representation is precise and clear. This is especially important so that the
driver can identify the exact priority of the data. For example, warning messages are
represented in a way that they are clearly distinguishable from status messages.

[Output Data | UNAMBIGUOUSNESS] — — [Interpretation | PROBABILITY OF ERROR]

Another attribute of the representation that has an impact on the interpretation is
the internal consistency. If the representations of the output data follow the same rules
and logic, it is easier for the driver to create a mental model of the system. The ease of
creating a mental model has a strong impact on the ease of interpreting the state of the
system:

[Output Data | INTERNAL CONSISTENCY] — — [Interpretation | DURATION]

One attribute of the representation that has an impact on the perception is
simplicity. It is important for the representation to be simple, since this makes it easier
for the driver to perceive the information:

[Output Data | StMpLICITY] — — [Perception | COGNITIVE LOAD]

Guarded Feature. A TICS consists of several features which must not be used while
driving the vehicle. This is determined by the manufacturer as well as by regulations.
One important attribute of such features is its guardedness. This means that the
feature is inoperable while the vehicle is moving. This protects the driver from
becoming distracted while using the feature. The guardedness of certain features has a
positive impact on the driving activity:

[Television | GUARDEDNESS] — — [Driving | PROBABILITY OF ERROR]

A Comprehensive Model of Usability 119

5.3 Observations and Improvements

As a result of the meta-model-based analysis, we found the following inconsistencies
and omissions:

Inconsistent Main Principles. One of the three main principles, namely suitability for
the driver, does not describe any activity. The other two principles use the activities to
define the high-level usability goals of the system. For example, one important high-
level goal is that the TICS dialogues do not interfere with the driving activity. Hence,
we suggest that every main principle should describe an activity and the high-level
goals of usability should be defined by means of the attributes of the user’s activities.

Mixed Sub-Principles. The aspects described by the sub-principles are mixed: Three
sub-principles describe activities without impacts, three describe facts without
impacts, and the remaining two describe impacts of attributes on activities. This mix-
up of the aspects described by the sub-principles must be resolved.

We believe that in order to make a design decision it is crucial for the software
engineer to know which high-level goals will be influenced by it. Sub-principles
which only describe attributes of system entities do not contribute toward design
decisions. The same holds true for sub-principles which only describe activities, since
they are not related to system entities. For this reason we suggest that all sub-
principles that only describe activities should be situated at the main principle level,
while those sub-principles that describe software entities should be situated at the
requirement level.

Requirements with Implicit Impacts. 9 out of 13 requirements do not explicitly
describe impacts on activities. Requirements serve to define the properties which the
system entities should fulfill. If a requirement does not explicitly describe its impacts
on activities, the impact could be misunderstood by the software engineer. Hence, we
suggest that requirements should be described by attributed facts and their impacts on
activities.

Incomplete Examples. 14 out of 80 examples only describe facts and their attributes,
leaving the impacts and activities implicit. To provide complete examples we suggest
that the examples should be described with explicit impacts and activities.

6 Discussion

The usability model acts as a central knowledge base for the usability-related
relationships in the product and process. It documents in a structured manner how the
properties of the system, team, and organization influence different usage activities.
Therefore, it is a well-suited basis for quality assurance (QA). It can be used in
several ways for constructive as well as analytical QA. Some of these have been
shown to be useful in an industrial context w.r.t. maintainability models.

Constructive QA. The knowledge documented in the quality model aids all developers
and designers in acquiring a common understanding of the domain, techniques, and
influences. This common understanding helps to avoid misunderstandings, and

120 S. Winter, S. Wagner, and F. Deissenboeck

improvements to the quality model become part of a continuous learning process for
all developers. For example, by describing the properties of the system artifacts, a
glossary or terminology is built and can be easily generated into a document. This
glossary is a living artifact of the development process, not only because it is a
materiality itself, but also because it is inside and part of a structured model. Hence,
by learning and improving the way developers work, it is possible to avoid the
introduction of usability defects into the product.

Analytical QA. The identified relationships in the usability model can also be used for
analytical QA. With our quality model we aim to break down the properties and
attributes to a level where we can measure them and, therefore, are easily able to give
concrete instructions in analytical QA. In particular, we are able to generate
guidelines and checklists for reviews from the model. The properties and attributes
are there and subsets can easily be selected and exported in different formats so that
developers and reviewers always have the appropriate guidelines at hand. Moreover,
we annotate the attributed properties in the model, whether they are automatically,
semi-automatically, or only manually assessable. Hence, we can identify quality
aspects that can be analyzed automatically straightforwardly. Thus, we are able to use
all potential benefits of automation.

Analyses and Predictions. Finally, more general analysis and predictions are possible
based on the quality model. One reason to organize the properties and activities in a
tree structure is to be able to aggregate analysis to higher levels. This is important to
get concise information about the quality of the system. To be able to do this, the
impacts of properties on activities must be quantified. For example, the usability
model is a suitable basis for cost/benefit analysis because the identified relationships
can be quantified and set into relation to costs similar to the model in [24]. In
summary, we are able to aid analytical QA in several ways by utilizing the knowledge
coded into the model.

7 Conclusion

Usability is a key criterion in the quality of software systems, especially for its user.

It can be decisive for its success on the market. However, the notion of usability
and its measurement and analysis are still not fully understood. Although there have
been interesting advances by consolidated models, e.g. [5], these models suffer from
various shortcomings, such as inconsistencies in the dimensions used. An approach
based on an explicit meta-model has proven to be useful for the quality attribute
maintainability. Hence, we propose a comprehensive usability model that is based on
the same meta-model.

Using the meta-model and constructing such a usability model allows us to
describe completely the usability of a system by its facts and their relationship with
(or impact on) the activities of the user. We support the consistent and unambiguous
compilation of the usability knowledge available. The general model still needs to be
refined for specific contexts that cannot be included in a general model. By utilizing a
specific usability model, we have several benefits, such as the ability to generate
guidelines and glossaries or to derive analyses and predictions.

A Comprehensive Model of Usability 121

The usefulness of this approach is demonstrated by a case study in which an ISO
standard is modeled and several omissions are identified. For example, the standard
contains three sub-principles which describe activities, but no impacts on them, as
well as nine requirements that have no described impacts. This hampers the
justification of the guideline: A rule that is not explicitly justified will not be
followed.

For future work we plan to improve further the general usability model and to carry
out more case studies in order to validate further the findings of our current research.
Furthermore, other quality attributes, e.g. reliability, will also be modeled by means
of the meta-model to investigate whether this approach works for all attributes. If this
be the case, the different models can be combined, since they are all based on a
common meta-model.

References

1. Bevan, N.: International standards for HCI and usability. Int. J. Hum.-Comput. Stud. 55,
533-552 (2001)
2. Seffah, A., Metzker, E.: The obstacles and myths of usability and software engineering.
Commun. ACM 47(12), 71-76 (2004)
3. Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., Macleod, G.J., Merrit, M.J.:
Characteristics of Software Quality. North-Holland, Amsterdam (1978)
4. Dromey, R.G.: A model for software product quality. IEEE Trans. Software Eng. 21(2),
146-162 (1995)
5. Seffah, A., Donyaee, M., Kline, R.B., Padda, H.K.: Usability measurement and metrics: A
consolidated model. Software Quality Control 14(2), 159-178 (2006)
6. Broy, M., Deissenboeck, F., Pizka, M.: Demystifying maintainability. In: Proc. 4th
Workshop on Software Quality (WoSQ 2006). ACM Press, New York (2006)
7. ISO 15005: Road vehicles — Ergonomic aspects of transport information and control
systems — Dialogue management principles and compliance procedures (2002)
8. Cavano, J.P., McCall, J.A.: A framework for the measurement of software quality. In:
Proc. Software quality assurance workshop on functional and performance issues, pp. 133—
139 (1978)
9. Shackel, B., Richardson, S. (eds.): Human Factors for Informatics Usability. Cambridge
University Press, Cambridge (1991)
10. Nielsen, J.: Usability Engineering. AP Professional (1993)
11. ISO 9126-1: Software engineering — Product quality — Part 1: Quality model (2001)
12. ISO 9241-11: Ergonomic requirements for office work with visual display terminals
(VDTs) — Part 11: Guidance on usability (1998)
13. Shneiderman, B.: Designing the User Interface: Strategies for Effective Human-Computer
Interaction, 3rd edn. Addison-Wesley, Reading (1998)
14. Grudin, J.: The case against user interface consistency. Commun. ACM 32(10), 1164—
1173 (1989)
15. Dix, A, Finley, J., Abowd, G., Beale, R.: Human-Computer Interaction, 2nd edn. Prentice-
Hall, Englewood Cliffs (1998)
16. ISO 9241-110: Ergonomics of human-system interaction — Part 110: Dialogue principles
(2006)
17. Folmer, E., Bosch, J.: Architecting for usability: A survey. The Journal of Systems and
Software 70, 61-78 (2004)

122 S. Winter, S. Wagner, and F. Deissenboeck

18. van Welie, M., van der Veer, G.C., Eliéns, A.: Breaking down usability. In: Proc.
International Conference on Human-Computer Interaction (INTERACT 1999), pp. 613—
620. IOS Press, Amsterdam (1999)

19. Norman, D.A.: Cognitive engineering. In: Norman, D.A., Draper, S.W. (eds.) User
Centered System Design: New Perspectives on Human-Computer Interaction, pp. 31-61.
Lawrence Erlbaum Associates, Mahwah (1986)

20. Andre, T.S., Hartson, H.R., Belz, S.M., McCreary, F.A.: The user action framework: A
reliable foundation for usability engineering support tools. Int. J. Hum.-Comput.
Stud. 54(1), 107-136 (2001)

21. ISO 9126-4: Software engineering — Product quality — Part 4: Quality in use metrics (2004)

22. Frgkjer, E., Hertzum, M., Hornbzk, K.: Measuring usability: Are effectiveness,
efficiency, and satisfaction really correlated? In: Proc. Conference on Human Factors in
Computing Systems (CHI 2000), pp. 345-352. ACM Press, New York (2000)

23. Sutcliffe, A.: User-Centered Requirements Engineering: Theory and Practice. Springer,
Heidelberg (2002)

24. Wagner, S.: A model and sensitivity analysis of the quality economics of defect-detection
techniques. In: Proc. International Symposium on Software Testing and Analysis (ISSTA
2006), pp. 73-83. ACM Press, New York (2006)

Questions

Laurence Nigay:

Question: You describe the product using two models but there are a lot of usability
models, why only the two? Task models can be used to describe properties such as
reachability.

Answer: Factors and activity can capture all this information in these models and then
relate it to activities.

Michael Harrison:

Question: Much is said at the moment about the need to consider the features of
complex systems that cannot be characterized by a decompositional approach — so-
called emergent properties. So for example a high reliability organization is one for
reasons that cannot easily be understood using the probing style techniques that you
have described. What is your opinion of this perspective and do you agree that there
is a need to explore alternatives to the style of analysis that you describe?

Answer: This technique is better than other techniques that exist and none of them
handle these emergent properties of complex systems.

Thomas Memmel:
Question: If you say you are building a model-based system to understand design
would you say that simulation is not also a good idea?

Answer: Of course both are required. I have described just one aid for the developer.

Suitability of Software Engineering Models for the
Production of Usable Software

Karsten Nebe' and Dirk Zimmermann?

! University of Paderborn, C-LAB, Fiirstenallee 11, 33098 Paderborn, Germany
2 T-Mobile Deutschland GmbH, Landgrabenweg 151,
53227 Bonn, Germany
Karsten.Nebe@c-lab.de, Dirk.Zimmermann@t-mobile.de

Abstract. Software Engineering (SE) and Usability Engineering (UE) both
provide a wide range of elaborated process models to create software solutions.
Today, many companies have understood that a systematic and structured ap-
proach to usability is as important as the process of software development itself.
However, theory and practice is still scarce how to incorporate UE methods into
development processes. With respect to the quality of software solutions, us-
ability needs to be an integral aspect of software development and therefore the
integration of these two processes is a logical and needed step. One challenge is
to identify integration points between the two disciplines that allow a close col-
laboration, with acceptable additional organizational and operational efforts.
This paper addresses the questions of where these integration points between
SE and UE exist, what kind of fundamental UE activities have to be integrated
in existing SE processes, and how this integration can be accomplished.

Keywords: Software Engineering, Usability Engineering, Standards, Models,
Processes, Integration.

1 Introduction

Software engineering is a discipline that adopts various engineering approaches to
address all phases of software production, from the early stages of system specifica-
tion up to the maintenance phase after the release of the system ([14],[17]). Software
engineering tries to provide a systematic and planable approach for software devel-
opment. To achieve this, it provides comprehensive, systematic and manageable pro-
cedures, in terms of software engineering process models (SE Models).

SE Models usually define detailed activities, the sequence in which these activities
have to be performed and the resulting deliverables. The goal in using SE Models is a
controlled, solid and repeatable process in which the project achievement do not de-
pend on individual efforts of particular people or fortunate circumstances [5]. Hence,
SE Models partially map to process properties and process elements, adding concrete
procedures.

Existing SE Models vary with regards to specific properties (such as type and
number of iterations, level of detail in the description or definition of procedures or
activities, etc.) and each model has specific advantages and disadvantages, concerning

J. Gulliksen et al. (Eds.): EIS 2007, LNCS 4940, pp. 123 2008.
© IFIP International Federation for Information Processing 2008

124 K. Nebe and D. Zimmermann

predictability, risk management, coverage of complexity, generation of fast deliver-
ables and outcomes, etc.

Examples of such SE Models are the Linear Sequential Model (also called Classic
Life Cycle Model or Waterfall Model) [15], Evolutionary Software Development
[12], the Spiral Model by Boehm [1], or the V-Model [9].

1.1 Linear Sequential Model

The Linear Sequential Model divides the process of software development into sev-
eral successive phases: System Requirements, Software Requirements, Analysis, Pro-
gram Design, Coding, Testing and Operations. On the transition from one phase to
the other it is assumed that the previous phase has been completed. Iterations between
neighboring phases are planned to react on problems or errors which are based on the
results of the previous phase. The Linear Sequential Model is document-driven. Thus,
the results of each phase are documents that serve as milestones to track the develop-
ment progress.

1.2 Evolutionary Development

In the Evolutionary Development the phases Software Specification, Development and
Validation are closely integrated. Evolutionary Development is especially well suited
for software projects where the requirements cannot be defined beforehand or in
which the requirements are likely to change during the development process. The
procedure is always a sequence of iterative development-cycles which results in an
improved version of a product on the end of each sequence. There is no explicit main-
tenance phase at the end of the lifecycle. Necessary changes after the product delivery
are solved in further iterations. Within Evolutionary Development the end users and
the customers are closely involved in the development process. The goal of Evolu-
tionary Development is “to avoid a single-pass sequential, document-driven, gated-
step approach® [10].

1.3 Spiral Model

The Spiral Model is a refinement of the Linear Sequential Model in which the single
phases are spirally run through. This cycle in the spiral is repeated four times, for
System Definition, Software Requirements, Conception (Architecture Design) and
Realisation (Detail Conception, Coding, Test, Integration and Installation). The na-
ture of the model is risk-driven. At the end of each cycle the current project progress
is being analyzed and the risk of project failure is evaluated. Depending on the
evaluation outcome the project goals are (re)defined and resources are (re)allocated or
— in the worst case - the development is being discontinued if necessary for the subse-
quent phases. Unlike the Linear Sequential Model, risks are identified throughout the
process which leads to a more control- and planable process. The failure of a project
can be significantly minimized.

1.4 V-Model

The V-Model represents the development process in a symmetric model in which the
validation is performed inversely to the system compilation, starting from module up

Suitability of Software Engineering Models for the Production of Usable Software 125

to the acceptance test [13]. The V-Model is based upon the Linear Sequential Model
but emphasis is laid on the assurance of quality (e.g. connections between basic con-
cepts and the resulting products). Inspections take place at multiple test phases testing
different levels of detail of the solution and not only at the end of development as
other models propose. Compared to the Linear Sequential Model or the Spiral Model,
the V-Model is more precise in its description of procedures and measures.

1.5 Standards in Software Engineering

Software engineering standards define a framework for SE Models on a higher
abstraction level. They define rules and guidelines as well as properties of process
elements as recommendations for the development of software. Thereby, standards
support consistency, compatibility and exchangeability, and cover the improvement of
quality and communication.

The ISO/IEC 12207 provides such a general process framework for the develop-
ment and management of software. “The framework covers the life cycle of software
from the conceptualization of ideas through retirement and consists of processes for
acquiring and supplying software products and services.” [7]. It defines processes,
activities and tasks and provides descriptions about how to perform these items on an
abstract level.

In order to fulfill the superordinate conditions of software engineering standards
(and the associated claim of ensuring quality) the SE Models should comply with
these conditions. In general, standards as well as SE Models can not be directly ap-
plied. They are adapted and/or tailored according to the corresponding organizational
conditions. The resulting instantiation of a SE Model, fitted to the organizational
aspects, is called software development process, which can then be used and put to
practice. Thus, the resulting Operational Process is an instance of the underlying SE
Model and the implementation of activities within the organization.

This creates a hierarchy of different levels of abstractions for software engineering:
Standards that define the overarching framework, process models that describe sys-
tematic and traceable approaches and the operational level in which the models are
tailored to fit the specifics of an organization (Figure 1).

@ _
[T}
(]
88
Q=
o

Procedure

Fig. 1. Hierarchy of standards, process models and operational processes in software engineering

126 K. Nebe and D. Zimmermann

1.6 Usability Engineering

Usability Engineering is a discipline that is concerned with the question of how to
design software that is easy to use (usable). Usability engineering is “an approach to
the development of software and systems which involves user participation from the
outset and guarantees the efficacy of the product through the use of a usability speci-
fication and metrics.” [4]

Usability engineering provides a wide range of methods and systematic approaches
for the support of development. These approaches are called Usability Engineering
Models (UE Models) or Usability Lifecycles, such as the Goal-Directed-Design [2],
the Usability Engineering Lifecycle [11] or the User-Centered Design-Process Model
of IBM [6]. All of them have much in common since they describe an idealized ap-
proach that ensures the development of usable software, but they differ their specifics,
in the applied methods and the general description of the procedure (e.g. phases, de-
pendencies, goals, responsibilities, etc.) [18]. UE Models usually define activities and
their resulting deliverables as well as the order in which specific tasks or activities
have to be performed. The goal of UE Models is to provide tools and methods for the
implementation of the user’s needs and to guarantee the efficiency, effectiveness and
users’ satisfaction of the solution.

Thus, usability engineering and software engineering address different needs in the
development of software. Software engineering aims at systematic, controllable and
manageable approaches to software development, whereas usability engineering fo-
cuses on the realization of usable and user-friendly solutions.

The consequence is that there are different views between the two disciplines dur-
ing system development, which sometimes can be competing, e.g. SE focuses on
system requirements and the implementation of system concepts and designs, whereas
UE focuses on the implementation of user requirements and interaction concepts and
designs. However, both views need to be considered in particular.

1.7 Standards in Usability Engineering

Usability Engineering provides standards similar to the way Software Engineering
does. They also serve as a framework to ensure consistency, compatibility, exchange-
ability, and quality which is in line with the idea of software engineering standards.
However, usability engineering standards lay the focus on the users and the construc-
tion of usable solutions. Examples for such standards are the DIN EN ISO 13407 [3]
and the ISO/PAS 18152 [8].

The DIN EN ISO 13407 introduces a process framework for the human-centered
design of interactive systems. Its’ overarching aim is to support the definition
and management of human-centered design activities, which share the following
characteristics:

1) the active involvement of users and a clear understanding of user and task
requirements (Context of use)

2) an appropriate allocation of function between users and technology (User
Requirements)

3) the iteration of design solutions (Produce Design Solutions)

4) multi-disciplinary design (Evaluation of Use)

Suitability of Software Engineering Models for the Production of Usable Software 127

These characteristics are reflected by the activities (named in brackets), which define
the process framework of the human centered design process, and have to be per-
formed iteratively.

The ISO/PAS 18152 is partly based on the DIN EN ISO 13407, and describes a
reference model to measure the maturity of an organization in performing processes
that make usable, healthy and safe systems. It describes processes and activities that
address human-system issues and the outcomes of these processes. It provides details
on the tasks and artifacts associated with the outcomes of each process and activity.

There is a sub-process called Human-centered design which describes the activities
that are commonly associated with a User Centered Design Process. These activities
are Context of use, User requirements, Produce design solutions and Evaluation of
use, which are in line with the DIN EN ISO 13407. However, by being more specific
in terms of defining lists of activities (so called Base Practices), that describe how the
purpose of each activity is achieved (e.g. what needs to be done to gather the user
requirements in the right way). The ISO/PAS 18152 enhances the DIN EN ISO 13407
in terms of the level of detail and contains more precise guidelines.

In order to ensure the claims of the overarching standards, UE Models need to ad-
here to the demands of the corresponding framework. Thus, a connection between the
standards and the UE Models exists which is similar to the one the authors described
for software engineering. There is a hierarchy of standards and subsequent process
models, too.

Additionally there are similarities on the level of operational processes. The se-
lected UE Model needs to be adjusted to the organizational guidelines. Therefore, a
similar hierarchy of the different abstraction levels exists for software engineering and
for usability engineering (Figure 2). Standards define the overarching framework,
models describe systematic and traceable approaches and on the operational level
these models are adjusted and put into practice.

Software Engineering Usability Engineering

DIN EN ISO
13407
ISO/PAS
18152

Ss
Ode/

PrOCe

m

Procedure

Procedure

Wl

Fig. 2. Similar hierarchies in the two disciplines software engineering and usability engineer-
ing: standards, process models and operational processes

128 K. Nebe and D. Zimmermann

2 Motivation

For development organizations SE Models are an instrument to plan and systemati-
cally structure the activities and tasks to be performed during software creation.

Software development organizations aim to fulfill specific goals when they plan to
develop a software solution. Such goals could be the rapid development of a new
software solution, to become the leader in the application area or to develop a very
stable and reliable solution e.g. because to enhance the organization’s prestige — and
of course, to generate revenue with it. Depending on their goals an organization will
chose one (or the combination of multiple ones) SE Model for the implementation
that will in their estimate fit best. However, these goals are connected with criteria
which can manifest themselves differently. These could be organization-specific
characteristics, such as the planability of the process or project, quality of the process,
size/volume of the project, organizational structures, types of qualification, etc. These
could also be product-specific characteristics, like security and reliability, verification
and validation, innovation, etc.

Thus depending on the goals of an organization the decision of selecting an appro-
priate SE Model for the implementation is influenced by the underlying criteria. As an
example, the Linear Sequential Model with its’ predefined results at the end of each
phase and its sequential flow of work certainly provides a good basis for a criterion
such as planability. On the other hand, the Evolutionary Development might not be a
good choice if the main focus of the solution is put on error-robustness because the
continuous assembling of the solution is known to cause problems in structure and the
maintenance of software code.

As usability engineering put the focus on the user and usability of products, which
is an important aspect of quality, usability is important for the development process.
Usability could take up both either product-specific characteristics (such as the effi-
ciency, effectiveness and satisfaction of using a product) or organizational-specific
characteristics (like legal restinctions or company guidelines such as producing usable
products to distinguish on the market). Thus, usability is also an important — even
crucial — criterion for organizations to choose a well-suited SE Model.

However, one problem remains — usability engineering activities are not an inher-
ent part of software engineering, respectively of SE Models. Indeed, many different
models for software engineering and usability engineering exist but there is a lack of
systematic and structured integration [16]. They often coexist as two separate proc-
esses in an organization and therefore need to be managed separately and in addition
need to be synchronized. However, as usability is an important quality aspect it needs
to be an integral part of software engineering and of SE Models. It seems reasonable
to extend the more extensive proceeding with the missing parts, which in this case
means to add usability engineering activities to the software engineering process
models, to integrate these two disciplines.

Beside the need for integration it is, however, important to consider both views, the
systematic, controllable and manageable approaches of SE and the realization of us-
able and user-friendly solutions of UE, respectively. It should not be tried to cover
one view with the other. The goal is to guarantee an efficient coexistence but to retain
the specific goals and approaches of each discipline.

Suitability of Software Engineering Models for the Production of Usable Software 129

According to the hierarchy of standards, process models and operational processes
an integration of the disciplines has to be performed on each level. This means that
for the level of standards needs to be proven that aspects of software engineering and
usability engineering can coexist and can be integrated. On the level of process mod-
els it has to be ensured that usability engineering aspects can be incorporated with SE
Models. And on the operational level activities a close collaboration needs to be
achieved, resulting in acceptable additional organizational and operational efforts.

3 Proceedings

In order to identify the integration points between software engineering and usability
engineering, the authors examined the three different levels, based on the hierarchies
of standards, process models and operational processes (Figure 2):

1. On the abstract overarching level of Standards in software engineering and us-
ability engineering, serving as a framework to ensure consistency, compatibility,
exchangeability, and quality within and beyond the organizational borders and to
cover the improvement of quality and communication.

2. On the level of Process Models for software engineering and usability engineer-
ing, to provide a procedural model and more refined approach that can serve as a
framework for an organization, providing specific advantages and disadvantages,
like predictability, risk management, coverage of complexity, generation of fast
deliverables and outcomes, etc.

3. On the Operational Process level which reflects the execution of activities and the
processing of information within the organization. It is an instance of the under-
lying model and the implementation of activities and information processing
within the organization.

The goal of analysis on the level of standards is to identify similarities in the descrip-
tion of standards between SE and UE. They could be found in definitions of activities,
tasks, goals, procedures or deliverables. With the focus on activities the authors will
create a framework of activities, representing SE and UE likewise. Such a framework
can be used to set limits for the following analysis, on the level of process models.

Based on the framework different SE Models are being analyzed in terms of how
they already support the implementation of activities from a usability point of view.
Criteria are being defined to measure the significance of UE activities within the
SE Models. Based on the results and identified gaps recommendations for the en-
hancements of SE Models are being derived. These enable the implementation of
activities on the level of models to ensure the development of user friendly solutions.

On the operational level the analysis is used to examine whether the recommenda-
tion meet the requirements of the practice. Measures regarding a specific SE Model in
practice are being derived, evaluated and analyzed. As a result statements about the
efficiency of the measures in making a contribution to the user-centeredness of the
operational process could be made.

In this paper the authors will show the proceedings and first results of the analysis
on the level of standards and of the level of process models. The derivation of rec-
ommendations, the refinement of the analysis methods and the analysis on the opera-
tional level are currently in progress and will be published by future work.

130 K. Nebe and D. Zimmermann

3.1 Analysis of Standards

To figure out whether software engineering and usability engineering have similari-
ties on the level of standards, the standards’ detailed descriptions of processes, activi-
ties and tasks, output artifacts, etc. have been analyzed and compared. For this the
software engineering standard ISO/IEC 12207 was chosen to be compared with the
usability engineering standard DIN EN ISO 13407.

The ISO/IEC 12207 defines the process of software development as a set of 11 ac-
tivities: Requirements Elicitation, System Requirements Analysis, Software Require-
ments Analysis, System Architecture Design, Software Design, Software Construction,
Software Integration, Software Testing, System Integration, System Testing and Soft-
ware Installation. It also defines specific development tasks and details on the gener-
ated output to provide guidance for the implementation of the process.

The DIN EN ISO 13407 defines four activities of human-centered design that
should take place during system development. These activities are the Context of use,
User Requirements, Produce Design Solutions und Evaluation of Use. The
DIN EN ISO 13407 also describes in detail the kind of output to be generated and
how to achieve it.

On a high level, when examining the descriptions of each activity, by relating tasks
and outputs with each other, similarities were found in terms of the characteristics, ob-
jectives and proceedings of activities. Based on these similarities single activities were
consolidated as groups of activities (so called, Common Activities). These common
activities are part of both disciplines software engineering and usability engineering on
the high level of standards. An example of such a common activity is the Requirement
Analysis. From a software engineering point of view (represented by the
ISO/IEC 12207) the underlying activity is the Requirement Elicitation. From the usabil-
ity engineering standpoint, specifically the DIN EN ISO 13407, the underlying activities
are the Context of Use and User Requirements, which are grouped together. Another
example is the Software Specification, which is represented by the two software engi-
neering activities System Requirements Analysis and Software Requirements Analysis,
as well as by Produce Design Solutions from a usability engineering perspective.

The result is a compilation of five common activities: Requirement Analysis,
Software Specification, Software Design and Implementation, Software Validation,
Evaluation that represent the process of development from both, a software engineer-
ing and a usability engineering point of view (Table 1).

These initial similarities between the two disciplines lead to the assumption of ex-
isting integration points on this overarching level of standards. Based on this, the
authors used these five common activities as a general framework for the next level in
the hierarchy, the level of process models.

However, the identification of these similar activities does not mean that one activ-
ity is performed in equal measure in SE and UE practice. They have same goals on
the abstract level of standards but they differ in the execution at least on the opera-
tional level. Thus, Requirement Analysis in SE focuses mainly on system based re-
quirements whereas UE requirements describe the users’ needs and workflows. The
activity of gathering requirements is equal but the view on the results is different.
Another example is the Evaluation. SE evaluation aims at correctness and correctness
of code whereas UE focuses on the completeness of users’ workflows and the fulfill-
ment of users’ needs.

Suitability of Software Engineering Models for the Production of Usable Software 131

Table 1. Comparison of software engineering and usability engineering activities on the level
of standards and the identified similarities (Common Activities)

ISO/IEC 12207 Common Activities |DIN EN ISO 13407
Sub- Process: Development

Requirements Elicitation Requirement Analysis Context of Use
User Requirements

System Requirements Analysis |Software Specification|Produce Design Solutions
Software Requirements Analysis

System Architecture Design Software Design n/a
Software Design and Implementation
Software Construction
Software Integration

Software Testing Software Validation |Evaluation of Use
System Integration

System Testing Evaluation Evaluation of Use
Software Installation

Consequently it is important to consider these different facets of SE and UE like-
wise. And as usability has become an important quality aspect in software engineer-
ing, the identified common activities have not only to be incorporated in SE Models
from a software engineering point of view, but also from the usability engineering
point of view. Some SE models might already adhere to this but obviously not all of
them. To identify whether usability engineering aspects of the common activities are
already implemented in SE Models (or not), the authors performed a gap-analysis
with selected SE Models. The overall goal of this was to identify integration points on
the level of process models.

Therefore, the authors first needed a deep understanding about the selected
SE Models and second, needed an accurate specification of the requirements that put
demands on the SE Models from the usability engineering perspective, on which the
SE Models then could be evaluated.

3.2 Analyzed SE Models

For the analysis of SE Models four commonly used models were selected: the Linear
Sequential Model, the Evolutionary Development, the Spiral Model and the V-Model.
They were examined and classified, in particular regards to their structural character-
istics (e.g. classification of activities, proceedings, etc.), their specifics (e.g. abilities,
disabilities, etc.) and their individual strengths and weaknesses.

The descriptions of the SE Models in literature served as the basis of the analysis.
Improvements or extensions based on expert knowledge or practical experiences were
not taken into account to retain the generality of statements. A sample of the results is
represented in the following table (Table 2).

The gap-analysis surfaced particular characteristics of the considered models.
Based on the identified strengths and weaknesses first indicators were derived that are
in the authors eyes crucial for the model selection on the operational level. For exam-
ple, the Evolutionary Development could be a good choice if the organization wants

132

K. Nebe and D. Zimmermann

to get results fast because of its ability to produce solution design successively and its
ability to deal with unspecific requirements. A disadvantage of Evolutionary design is
however, that due to the continuous changes and adjustments, the software quality
and structure can suffer. However for the development of safety-relevant products,

Table 2. Strength/Weaknesses-Profiles of software engineering models

Basic properties Specifics Strength Weakness
Linear - division of the - document- - controllable -lack of assistance
Sequential development process into | driven management with imprecise or
Model sequent phases - phase-oriented |- controlling the incorrect product
- completeness of previous complexity by definitions
phase requirement for the using encapsulation | - problems with
next phase supplementary
- successive development error identification
- iterations between and experiences
contiguous phases from development
- deliverables define
project’s improvement
Evolutionary |- intertwined specification, |- successive - compilation of - problems in
Development | development and solution design | "quick solutions" software quality
evaluation phases - ability to deal |- ability to react to and structure
-no distinct phases with unspecific | changing caused by
- successive requirement requirements requirements continuous changes
processing (and - avoids single- | -small changes lead | and adoptions
elicitation, if applicable) | pass sequential, | to measurable - maintainability
- sequence of development | document- improvements - maintenance and
cycles driven, gated- |- user-oriented quality of the
- version increment at the step approaches | - early identification | documentation
end of every cycle of problems and - difficulties in
- no explicit but implicit shortcomings measuring the
maintenance phase project progress
- high customer and user - precondition is a
involvement flexible system
Spiral Model | - enhancement of the phase | - successive -risk management | - high effort on
model solution design |- simultaneous management and
- phases are distributed in a | - risk-driven control of budget planning
spiral-shaped form and deliverables
- development within four - independent
cycles planning and
- evaluation, decision budgeting of the
making, goal definition & single spiral cycles
planning of resources at - flexible, pure risk
end of each cycle oriented but
controlled response
to current status
V-Model - based on the Linear - continuous - measures for - initial planning
Sequential Model evaluation continuous efforts
- enhancement regarding | - quality evaluation of the - basically for large
quality assurance assurance quality assurance projects
- symmetric process - verification and
- evaluation reverse to evaluation on all
system development levels of detail
- evaluation on different
levels of detail

Suitability of Software Engineering Models for the Production of Usable Software 133

which need to adhere to a detailed specification, the Linear Sequential Model could
be a good choice because of its stepwise and disciplined process. For developing new,
complex and expensive software solutions the Spiral Model could be