
Learning While Optimizing
an Unknown Fitness Surface�

Roberto Battiti, Mauro Brunato, and Paolo Campigotto

DISI - Dipartimento di Ingegneria e Scienza dell’Informazione,
Università di Trento, Italy
battiti@disi.unitn.it

Abstract. This paper is about Reinforcement Learning (RL) applied
to online parameter tuning in Stochastic Local Search (SLS) methods.
In particular a novel application of RL is considered in the Reactive
Tabu Search (RTS) method, where the appropriate amount of diversifi-
cation in prohibition-based (Tabu) local search is adapted in a fast online
manner to the characteristics of a task and of the local configuration.
We model the parameter-tuning policy as a Markov Decision Process
where the states summarize relevant information about the recent his-
tory of the search, and we determine a near-optimal policy by using the
Least Squares Policy Iteration (LSPI) method. Preliminary experiments
on Maximum Satisfiability (MAX-SAT) instances show very promising
results indicating that the learnt policy is competitive with previously
proposed reactive strategies.

1 Reinforcement Learning and Reactive Search

Reactive Search (RS) [1,2,3] advocates the integration of sub-symbolic machine
learning techniques into search heuristics for solving complex optimization prob-
lems. The word reactive hints at a ready response to events during the search
through an internal online feedback loop for the self-tuning of critical parame-
ters. When Reactive Search is applied to local search (Reactive Local Search or
RLS), its objective is to maximize a given function f(x) by analyzing the past
local search history (the trajectory of the tentative solution in the search space)
and by learning the appropriate balance of intensification and diversification.
In this manner the knowledge about the task and about the local properties of
the fitness surface surrounding the current tentative solution can influence the
future search steps to render them more effective.

Reinforcement Learning (RL) arises in the different context of machine learn-
ing, where there is no guiding teacher, but feedback signals from the environment
which are used by the learner to modify its future actions. Think about bicycle
riding: after some initial trials with positive or negative rewards, in the form of
admiring friends or injuries to biological tissues, the goal is accomplished. The

� Work supported by the project CASCADAS (IST-027807) funded by the FET Pro-
gram of the European Commission.

V. Maniezzo, R. Battiti, and J.-P. Watson (Eds.): LION 2007 II, LNCS 5313, pp. 25–40, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

26 R. Battiti, M. Brunato, and P. Campigotto

reinforcement learning context is more difficult than the one of supervised learn-
ing, where a teacher gives examples of correct outputs: in RL one has to make a
sequence of decisions (e.g., about steering wheel rotation). The outcome of each
decision is not fully predictable. In addition to an immediate reward, each action
causes a change in the system state and therefore a different context for the next
decisions. To complicate matters the reward is often delayed and one aims at
maximizing not the immediate reward, but some form of cumulative reward over
a sequence of decisions. This means that greedy policies do not always work. In
fact, it can be better to go for a smaller immediate reward if this action leads
to a state of the system where bigger rewards can be obtained in the future.
Goal-directed learning from interaction with an (unknown) environment with
trial-and-error search and delayed reward is the main feature of RL.

As it was suggested for example in [4], the issue of learning from an initially
unknown environment is therefore shared by RS and RL. A basic difference is
that RS optimizes a function and the environment is provided by a fitness surface
to be explored, while RL optimizes the long-term reward obtained by selecting
actions at the different states. The sequential decision problem and therefore
the non-greedy nature of choices is also common. For example, in Reactive Tabu
Search (the application of RS in the context of Tabu Search), steps leading to
worse configurations need in some cases to be performed to escape from a basin
of attraction around a local optimizer. It is therefore of interest to investigate the
relationship in more detail, to see whether specific techniques of Reinforcement
Learning can be profitably used in Reactive Search.

This paper is organized as follows. First the basics of RL learning and neuro-
dynamic programming are summarized. Then the relationship between RL and
RS are investigated, also with reference to existing work bridging the border
between optimization and RL. Finally, the novel proposal is presented, together
with the first obtained experimental results.

2 Reinforcement Learning and Neuro-dynamic
Programming Basics

In this section, Markov Decision Processes are formally defined and the standard
Dynamic Programming technique to determine the optimal policy is introduced
in Sec. 2.2. In many practical cases exact solutions must be abandoned in favor
of approximation strategies, which are the focus of Sec. 2.4.

2.1 Markov Decision Processes

A standard Markov process is given by a set of states S with transitions between
them described by probabilities p(i, j) (let us note the fundamental property of
Markov models: earlier states do not influence the transition probabilities to
the next state). Its evolution cannot be controlled, because it lacks the notion of
decisions, actions taken depending on the current state and leading to a different
state and to an immediate reward.

Learning While Optimizing an Unknown Fitness Surface 27

A Markov Decision Process (MDP) is an extension of the classical Markov
process designed to capture the problem of sequential decision making under
uncertainty, with states, decisions, unexpected results, and “long-term” goals to
be reached. A MDP can be defined as a quintuple (S, A, P, R, γ), where S is a
set of states, A a finite set of actions, P (s, a, s′) is the probability of transition
from state s ∈ S to state s′ ∈ S if action a ∈ A is taken, R(s, a, s′) is the
corresponding reward, and γ is the discount factor, in order to exponentially
decrease future rewards. This last parameter is fundamental in order to evaluate
the overall value of a choice when considering its consequences on an infinitely
long chain. In particular, given the following evolution of a MDP

s(0)
a(0)→ s(1)

a(1)→ s(2)
a(2)→ s(3)

a(3)→ . . . (1)

the cumulative reward obtained by the system is given by
∞∑

t=0

γtR(s(t), a(t), s(t + 1)).

Note that state transitions are not deterministic, nevertheless their distribu-
tion can be controlled by the action a. The goal is to control the system in order
to maximize the expected cumulative reward.

Given a MDP (S, A, P, R, γ), we define a policy as a probability distribution
π(·|s) : A → [0, 1], where π(a|s) is the probability of choosing action a when the
system is in state s. In other words, π maps states onto probability distributions
over A. Note that we are only considering stationary policies. If a policy is
deterministic, then we resort to the more compact notation a = π(s).

2.2 The Dynamic Programming Approach

The intelligent component goal is to select a policy that maximizes a measure
of the total reward accumulated during an infinite chain of decisions (infinite-
horizon). To achieve this goal, let us define the state-action value function
Qπ(s, a) of the policy π as the expected overall future reward for applying a
specified action a when the system is in state s, in the hypothesis that the ensu-
ing actions are taken according to policy π. A straightforward implementation
of the Bellman principle leads to the following definition:

Qπ(s, a) =
∑

s′∈S
P (s, a, s′)

(
R(s, a, s′) + γ

∑

a′∈A
π(a′|s′)Qπ(s′, a′)

)
. (2)

where the sum over S can be interpreted as an integral in case of a continuous
state set. The interpretation is that the value of selecting action a in state s is
given by the expected value of the immediate reward plus the value the future
rewards which one expects by following policy π from the new state. These have
to be discounted by γ (they are a step in the future w.r.t. starting immediately
from the new state) and properly weighted by transition probabilities and action-
selection probabilities given the stochasticity in the process.

28 R. Battiti, M. Brunato, and P. Campigotto

The expected reward of a state/action pair (s, a) ∈ S × A is

R(s, a) =
∑

s′∈S
P (s, a, s′)R(s, a, s′),

so that (2) can be rewritten as

Qπ(s, a) = R(s, a) + γ
∑

s′∈S

(
P (s, a, s′)

∑

a′∈A
π(a′|s′)Qπ(s′, a′)

)

or, in a more compact linear form,

Qπ = R + γPΠπQπ (3)

where R is the |S||A|-entry column vector corresponding to R(s, a), P is the
|S||A| × |S| matrix of P (s, a, s′) values having (s, a) as row index and s′ as
column, while Ππ is a |S| × |S||A| matrix whose entry (s, (s, a)) is π(a|s).

Equation (3) can be seen as a non-homogeneous linear problem with unknown
Qπ

(I − γPΠπ)Qπ = R (4)

or, alternatively, as a fixed-point problem

Qπ = T πQπ, (5)

where T π : x �→ R + γPΠπx is an affine functional.
If the state set S is finite, then (3-5) are matrix equations and the unknown

Qπ is a vector of size |S||A|.
In order to solve these equations explicitly, a model of the system is required,

i.e., full knowledge of functions P (s, a, s′) and R(s, a). When the system is too
large, or the model is not completely available, approximations in the form of
reinforcement learning come to the rescue. As an example, if a generative model
is available, i.e., a black box that takes state and action in input and produces the
reward and next state as output, one can estimate Qπ(s, a) through rollouts. In
each rollout, the generator is used to simulate action a followed by a sufficiently
long chain of actions dictated by policy π. The process is repeated several times
because of the inherent stochasticity, and averages are calculated.

The above described state-action value function Q, or its approximation, is
instrumental in the basic methods of dynamic programming and reinforcement
learning.

2.3 Policy Iteration

A method to obtain the optimal policy π∗ is to generate an improving sequence
(πi) of policies by building a policy πi+1 upon the value function associated to
policy πi:

πi+1(s) = arg max
a∈A

Qπi(s, a). (6)

Learning While Optimizing an Unknown Fitness Surface 29

Po
lic

y
im

pr
ov

em
en

t

(Approximate)
Policy

Value function
(Approximate)

Model

Critic Actor

Po
lic

y
ev

al
ua

tio
n

Fig. 1. The Policy Iteration (PI) mechanism

Policy πi+1 is never worse than πi, in the sense that Qπi+1 ≥ Qπi over all
state/action pairs.

In the following, we assume that the optimal policy π∗ exists in the sense
that for all states it attains the minimum of the right-hand side of Bellman’s
equation, see [5] for more details.

The Policy Iteration (PI) method consists on the alternate computation shown
in Fig. 1: given a policy πi, the policy evaluation procedure (also known as the
“Critic”) generates its state-action value function Qπi , or a suitable approxima-
tion. The second step is the policy improvement procedure (the “Actor”), which
computes a new policy by applying (6).

The two steps are repeated until the value function does not change after
iterating, or when the change between consecutive iterations is less than a given
threshold.

2.4 Approximations: Reinforcement Learning and LSPI

To carry out the above discussion by means of exact methods, in particular
using (4) as the Critic component, the system model has to be known in terms
of its transition probability P (s, a, s′) and reward R(s, a) functions. In many
cases this detailed information is not available but we have access to the system
itself or to a simulator. In both cases, we have a black box which given the
current state and the performed action determines the next state and reward. In
both cases, more conveniently with a simulator, several sample trajectories can
be generated, so that more and more information about the system behavior can
be extracted aiming at optimal control.

A brute force approach can be that of estimating the system model functions
R(·, ·, ·) and R(·, ·) by executing a very large series of simulations. The model-free
Reinforcement Learning methodology bypasses the system model and directly
learns the value function.

Assume that the system simulator (the “Model” box in Fig. 1) generates
quadruples in the form

(s, a, r, s′)

where s is the state of the system at a given step, a is the action taken by the
simulator, s′ is the state in which the system falls after the application of a, and

30 R. Battiti, M. Brunato, and P. Campigotto

Variable Scope Description
D In Set of sample vectors {(s, a, r, s′)}
k In Number of basis functions
Φ In Vector of k basis functions
γ In Discount factor
π In Policy
A Local k × k matrix
b Local k-entry column vector
wπ Out k-entry weight vector

1. function LSTDQ (D, k, Φ, γ, π)
2. A ← 0;
3. b ← 0;
4. for each (s, a, r, s′) ∈ D

5. A ← A + Φ(s, a)
(
Φ(s, a) − γΦ(s′, π(s′))

)T

6. b ← b + rΦ(s, a)
7. wπ ← A−1b

Fig. 2. The LSTDQ algorithm [6]

r is the reward received. In the setting described by this paper, the (s, a) pair is
generated by the simulator.

A viable method to obtain an approximation of the state-action value function
is to approximate it with respect to a functional linear subspace having basis
Φ = (φ1, . . . , φk). The approximation Q̂π ≈ Qπ is in the form

Q̂π = ΦT wπ.

The weights vector wπ is the solution of the linear system Awπ = b, where

A = ΦT (Φ − γPΠπΦ) b = ΦT R. (7)

An approximate version of (7) can be obtained if we assume that a finite set of
samples is provided by the “Model” box of Fig. 1:

D = {(s1, a1, r1, s
′
1), . . . , (sl, al, rl, s

′
l)}.

In this case, matrix A and vector b are “learned” as sums of rank-one elements,
each obtained by a sample tuple:

A =
∑

(s,a,r,s′)∈D
Φ(s, a)

(
Φ(s, a) − γΦ(s′, π(s′))

)T

, b =
∑

(s,a,r,s′)∈D
rΦ(s, a).

These approximations lead to the Least Squares Temporal Difference for Q
(LSTDQ) algorithm proposed in [6], and shown in Figure 2, where the functions
R(s, a) and P (s, a, s′) are supposed to be unknown and are replaced by a finite
sample set D.

Note that the LSTDQ algorithm returns the weight vector that best approx-
imates in the least-squares fixed-point sense (within the spanned subspace and

Learning While Optimizing an Unknown Fitness Surface 31

Variable Scope Description
D In Set of sample vectors {(s, a, r, s′)}
k In Number of basis functions
Φ In Vector of k basis functions
γ In Discount factor
ε In Weight vector tolerance
w0 In Initial value function weight vector
w′ Local Weight vectors in subsequent iterations
w Out Optimal weight vector

1. function LSPI (D, k, Φ, γ, ε, w0)
2. w′ ← w0;
3. do
4. w ← w′;
5. w′ ← LSTDQ (D, k, Φ, γ, w);
6. while ‖w − w′‖ > ε

Fig. 3. The LSPI algorithm [6]

according to the sample data) the value function of a given policy π. It therefore
acts as the “Critic” component of the Policy Iteration algorithm. The “Actor”
component is straightforward, because it is an application of (6). The policy does
not need to be explicitly represented: if the system is in state s and the current
value function is defined by weight vector w, the best action to take is

a = arg max
a∈A

ΦT w.

The complete LSPI algorithm is given in Fig. 3. Note that, because of the
identification between the weight vector w and the ensuing policy π, the code
assumes that the previously declared function LSTDQ() accepts its last parame-
ter, i.e., the policy π, in form of a weight vector w.

3 Reinforcement Learning for Optimization

Many are the intersections between optimization, Dynamic Programming and
Reinforcement Learning. Approximated versions of DP/RL contain challenging
optimization tasks, let’s mention the maximization operations in determining
the best action when an action value function is available, the optimal choice of
approximation architectures and parameters in neuro-dynamic programming, or
the optimal choice of algorithm details and parameters for a specific RL instance.

This paper, however, goes in the opposite direction: which techniques of RL
can be used to improve heuristic algorithms for a standard optimization task such
as minimizing a function? Interesting summaries of statistical machine learning
for large-scale optimization are present in [7].

An application of RL in the area of local search for solving maxx f(x) is
presented in [8]: the rewards from a local search method π starting from an

32 R. Battiti, M. Brunato, and P. Campigotto

initial configuration x are given by the size of improvements of the best-so-far
value fbest. In detail, the value function V π(x) of configuration x is given by
the expected best value of f seen on a trajectory starting from state x and
following the local search method π. The curse of dimensionality discourages
using directly x for state description: informative features extracted from x are
used to compress the state description to a shorter vector s(x), so that the value
function becomes V π(s(x)).

A second application of RL to local search is to supplement f with a “scor-
ing function” to help in determining the appropriate search option at every
step. For example, different basic moves or entire different neighborhoods can
be applied. RL can in principle make more systematic some of the heuristic ap-
proaches involved in designing appropriate “objective functions” to guide the
search process. An example is the RL approach to job-shop scheduling in [9,10],
where a neural-network based TD(λ) scheduler is demonstrated to outperform
a standard iterative repair (local search) algorithm.

Also, tree-search techniques can profit from ML. It is well known that vari-
able and value ordering heuristics (choosing the right order of variables or values)
can noticeably improve the efficiency of complete search techniques, e.g. for con-
straint satisfaction problems. For example, RLSAT [11] is a DPLL solver for the
Satisfiability (SAT) problem which uses experience from previous executions to
learn how to select appropriate branching heuristics from a library of predefined
possibilities, with the goal of minimizing the total size of the search tree, and
therefore the CPU time. Lagoudakis and Littman [12] extend algorithm selection
for recursive computation, which is formulated as a sequential decision problem.
According to the authors, their work demonstrates that “some degree of rea-
soning, learning, and decision making on top of traditional search algorithms
can improve performance beyond that possible with a fixed set of hand-built
branching rules.”

A different application is suggested in [5] in the context of constructive algo-
rithms, which build a complete solution by selecting value for a component at
a time. Let’s assume that K fixed construction algorithms are available for the
problem. The application consists of combining in the most appropriate manner
the information obtained by the set of construction algorithms in order to fix
the next index and value.

In the context of continuous function optimization, [13] uses RL for replac-
ing a priori defined adaptation rules for the step size in Evolution Strategies
with a reactive scheme which adapt step sizes automatically during the opti-
mization process. The states are characterized only by the success rate after a
fixed number of mutations, the three possible actions consists of increasing (by a
fixed multiplicative amount), decreasing or keeping the current step size. SARSA
learning with various reward functions is considered, including combinations of
the difference between the current function value and the one evaluated at the
last reward computation and the movement in parameter space (the distance
traveled in the last phase). On-the-fly parameter tuning, or on-line calibration

Learning While Optimizing an Unknown Fitness Surface 33

of parameters for evolutionary algorithms by reinforcement learning (crossover,
mutation, selection operators, population size) is suggested in [14].

4 Reinforcement Learning for Reactive Tabu Search

This paper investigates a novel application of Reinforcement Learning in the
framework of Reactive Tabu Search. An optimization algorithm operates a se-
quence of elementary actions (local moves, e.g., bit flips). The choice of the local
move is driven by many different factors, in particular, most algorithms are para-
metric: their behavior (and their efficiency) depends on the values attributed to
some free parameters, so that different instances of the same problem, and dif-
ferent configurations within the same instance, may require different parameter
values.

This Section describes the proposed application of the LSPI algorithm to
MAX-SAT: the Markov Decision Process (MDP) is described in Sec. 4.1, while
the design of the basis function is described in Sec.4.2.

4.1 The Markov Decision Process Definition

The effect of a parameter change on the algorithm’s behavior can only be evalu-
ated after a significant number of local moves. As a consequence, also for perfor-
mance reasons, algorithm parameters are not changed too often. We therefore
divide the algorithm’s trace into epochs, each composed of a suitable number of
local moves, and to allow parameter changes only between epochs.

If the “state” of the system at the end of an epoch describes the algorithm’s
behavior during the last epoch, and an “action” is the modification of the al-
gorithm’s parameters before it enters the next epoch, then a local search algo-
rithm can be modeled as a Markov Decision Process (MDP) and a Reinforce-
ment Learning method such as LSPI can be used to control the evolution of its
parameters.

The “state” should capture all criteria that we consider useful in order to
decide how to change parameters in a proper way. Given the subdivision of the
Local Search algorithm’s trace into a sequence of epochs (E1, E2, . . .), we define
the state at the end of epoch Ei as a collection of features extracted from the
algorithm’s execution up to that moment in form of a tuple: s(E1, . . . , Ei) ∈ R

d,
where d is the number of features that form the state. The features can be ad-
equately normalized for better stability of the system. The cardinality of the
action set A and the semantics of its elements changes according to the param-
eters required by the LS technique. Variable Neighborhood Search algorithms
can define one action for each implemented neighborhood, or define just two
actions (to be interpreted, e.g., as “widen” and “reduce”) if the neighborhood
set is ordered. Simulated Annealing, which basically depends on a continuous
parameter T , can define two actions (“increase T ” and “decrease T ”). Likewise,
a Tabu Search algorithm will increase or decrease the prohibition period T .

In this paper we consider a prohibition-based (Tabu) algorithm for the MAX-
SAT problem [15]. It takes in input a CNF SAT instance (i.e., a Boolean formula

34 R. Battiti, M. Brunato, and P. Campigotto

being the conjunction of disjunctive clauses) and each algorithm step simply
flips a variable. In particular, every variable is considered for flipping (i.e., non-
prohibited) only if it hasn’t been changed in the previous T iterations, T being
the prohibition parameter to be controlled. At each iteration, the non-prohibited
variable causing the largest increase in the number of satisfied clauses (or the
lowest decrease, if no increase is possible) is selected for flipping. Ties are broken
randomly. In this paper, T is assumed to take values over the interval [Tmin,Tmax].

The Reinforcement Learning approach is exploited to adjust the prohibition
parameter during the algorithm execution. Assume n and m the number of
variables and clauses of the input SAT instance, respectively. Let f(x) the score
function counting the number of unsatisfied clauses in the truth assignment x.

Each state of the MDP is created by observing the behavior of the Tabu
search algorithm over an epoch of 2 ∗ Tmax consecutive variable flips. As in a
prohibition mechanism with prohibition parameter T , during the first T steps,
the Hamming distance keeps increasing and only in the subsequent steps it may
decrease, an epoch is long enough to monitor the behavior of the algorithm also
in the case of the largest allowed T value.

In particular, let us define the following:

– xbsf is the “best-so-far” configuration before the current epoch;
– Tf is the current fractional prohibition value (the actual prohibition period

is

T = �nTf	 (8)

);
– f epoch is the average value of f during the epoch;
– Hepoch is the average Hamming distance during the current epoch from the

configuration at the beginning of the current epoch itself.

These variables have been chosen because of the Reactive Search paradigm’s
concern on the trade-off between diversification (the ability to explore new con-
figurations in the search space by moving away from local minima) and bias
(the preference for configurations with low objective function values), so that
changes in f and the Hamming distance are good representatives of the current
state. Many possible choices based on these considerations have been tested.
Furthermore, for the purpose of addressing uniformly SAT instances with differ-
ent number of variables, the fractional prohibition value Tf is used rather than
the prohibition value T . The compact state representation chosen to describe an
epoch is the following triplet:

s ≡
(

Δf,
Hepoch

n
, Tf

)
, where Δf =

fepoch − f(xbsf)
m

.

The first component is the mean change of f in the current epoch with respect
to the best value; all components of the state have been normalized.

Learning While Optimizing an Unknown Fitness Surface 35

The actions set is composed by two choices: A = {increase, decrease}, with
the following effects:

– if a = increase: Tf ← max{Tf · 1.1, Tf + 1/n};
– if a = decrease: Tf ← min{Tf/1.1, Tf − 1/n}.

Changes in Tf are designed in order to ensure variation of at least 1 in the actual
prohibition period T . In addition, Tf is bounded between a minimum and a
maximum value (0 and .2 in our experiments).

The reward signal is given by the normalized change of the best value achieved
in the observed epoch with respect to the “best so far” value before the epoch:
(f(xbsf) − f(xlocalBest))/m.

4.2 Basis Function Definition

Among the various tests that have been executed, in this paper we concentrate
on the following 13-function basis function set:

Φ(s, a) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Iincrease(a) Idecrease(a)
Iincrease(a) · Δf Idecrease(a) · Δf
Iincrease(a) · Hepoch Idecrease(a) · Hepoch

Iincrease(a) · Hepoch · Δf Idecrease(a) · Hepoch · Δf
Iincrease(a) · (Δf)2 Idecrease(a) · (Δf)2

Iincrease(a) · H
2
epoch Idecrease(a) · H

2
epoch

Tf + Iincrease(a)−Idecrease(a)
n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9)

where Iincrease and Idecrease are the indicator functions for the two actions (1
if the action is the indicated one, 0 otherwise), discerning the “state-action”
features for the two different actions considered.

5 Experimental Results

In order to test the performance of Reinforcement Learning for on-line parameter
tuning in Reactive Tabu Search (RTS), we have implemented C++ functions for
the Tabu Search method described in Sec. 4.1 and interfaced them to the Matlab
LSPI implementation found in [16].

The experimental work includes the generation of a training set of samples
discussed in Sec. 5.1, the generation of an optimal policy and in the preliminary
comparison with other relevant SLS heuristics for MAX-SAT in Sec. 5.2

5.1 Training Examples Generation

The training examples are created by running the Tabu search algorithm over
selected MAX-3-SAT random instances defined in [17]. In detail, we selected
two (n = 500, m = 5000) instances and 6 different initial prohibition periods
(Tf = .01, .02, .05, .1, .15, .2), and performed 2 runs of the algorithm for each

36 R. Battiti, M. Brunato, and P. Campigotto

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

-0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008

A
ve

ra
ge

 H
am

m
in

g
di

st
an

ce

Average function delta

Fig. 4. Distribution of training sample states

combination with different randomly chosen starting truth assignments. Every
run has been executed for 50 epochs to generate 50 training examples. The Tf
parameter has been bounded in [0, .2].

Each epoch is composed of 200 consecutive flips, as Tmax = 500 ·0.2 by Eq. 8.
Fig. 4 shows the distribution of examples states, projected onto the Δf and

the Hepoch state features.

5.2 Optimal Policy and Comparison

The LSPI algorithm has been applied to the training sample set, and with (9)
as approximate space basis. The resulting approximate value function Q̂(s, a)
is shown in Fig. 5 for the two actions, thus defining an approximation to the
optimal policy. Note that the action “increase” is suggested in cases where the
average Hamming distance between the configurations explored in the last epoch
and the last local minimum does not exceed a certain value, provided that the
current portion of landscape is not much worse than the previously explored
regions. This policy is consistent with intuition: a higher value of T causes a
larger differentiation of visited configurations (more different variables need to
be flipped), and this is desired when the algorithm needs to escape the neighbor-
hood of a local minimum; in this case, in fact, movement is limited because the
configuration is trapped at the “bottom of a valley”. On the other hand, when
the trajectory is not within the attraction basin of a minimum, a lower value of
T enables a better exploitation of the neighborhood.

To evaluate our novel MAX-SAT solver based on Reinforcement learning we
report here a comparison with some of the best and famous SLS algorithms for
MAX-SAT. In particular, the following SLS techniques are considered:

– GSAT/Tabu [18], which enriches the GSAT algorithm [19] via a prohibition-
based search criterion;

Learning While Optimizing an Unknown Fitness Surface 37

action = increase
action = decrease

-0.0004-0.0002 0 0.0002 0.0004 0.0006 0.0008 0.001
Average function increase 0

 0.02
 0.04

 0.06
 0.08

 0.1

Average Hamming distance

-0.0005
 0

 0.0005
 0.001

 0.0015
 0.002

 0.0025
 0.003

 0.0035
 0.004

Policy = Increase T

Policy = Decrease T

Fig. 5. Value function Q̂(s, a) for the two actions in the significant portion of the state
space

– WalkSAT/Tabu [20], that adopts the same score function and the same
variables selection mechanism of the WalkSAT/SKC algorithm [21], com-
plemented by Tabu search;

– AdaptNovelty+ [22], that exploits the concept of variable “age” and uses the
same scoring function of GSAT.

– RSAPS, a reactive version of the Scaling and Probabilistic Smoothing
(SAPS) [23] algorithm, on its turn, an accelerated version of the Exponenti-
ated Subgradient algorithm [24] based on dynamic penalties;

– H RTS ([25]), a prohibition-based algorithm that dynamically adjusts the
prohibition parameter by monitoring the Hamming distance along the search
trajectory.

While in this paper we base our comparisons on the solution quality after a
given number of iterations, we note that the CPU time required by the proposed
algorithm is analogous to that of the basic Tabu Search algorithm, with the
overhead of two floating-point 13-element vector (Eq. 9) products in order to
compute Q̂(s, a) for the two actions.

For each algorithm, 10 runs with different random seeds are performed for
each of the 50 instances taken from the benchmark set described in [17], for a
total of 500 tests. Fig. 6 shows the average results as a function of the number
of iterations (flips), in the case of (n = 500, m = 5000) instances. Among all the
possible values for the prohibition parameter of the WalkSAT/Tabu algorithm,
we plot the case Tf = .01, as with this setting we obtain the best performance
over the considered benchmark. The same for the GSAT/Tabu algorithm, whose
curve is drawn for the optimal Tf value 0.05 over our benchmark set. Fig. 6

38 R. Battiti, M. Brunato, and P. Campigotto

 155
 160
 165
 170
 175
 180
 185
 190
 195
 200
 205
 210
 215
 220
 225
 230
 235
 240
 245
 250

100 1000 10000 100000

M
ea

n
be

st
 s

o
fa

r

Iterations

rsaps
AdNov+

h_rts
WalkSAT_tabu(0.01)

LSPI for SAT

Fig. 6. Comparison among different algorithms

indicates that our RL-based approach is competitive with the other existing
SLS MAX-SAT solvers.

6 Conclusions

This paper described preliminary results on the application of Dynamic Pro-
gramming and Reinforcement Learning techniques to Reactive Search
algorithms. In particular, the dependence of the algorithm on the prohibition
parameter has been modeled as a Markov Decision Process and solved by means
of the LSPI technique, achieving results that are comparable to the best algo-
rithms in the literature.

Possible future improvements include the definition of alternative features
for state description and of different reward functions. The optimal policy is
currently learnt by means of the off-line generation of sample traces on a small
number of instances, and the robustness of the learnt policy with respect to
different problem instances has been tested. Another direction of research will
cover on-line training where the optimal policy is determined by learning while
the target optimization task is performed.

References

1. Battiti, R., Tecchiolli, G.: The reactive tabu search. ORSA Journal on Comput-
ing 6(2), 126–140 (1994)

2. Battiti, R., Brunato, M.: Reactive search: machine learning for memory-based
heuristics. In: Gonzalez, T.F. (ed.) Approximation Algorithms and Metaheuris-
tics, pp. 21–1 – 21–17. Taylor and Francis Books, CRC Press, Washington (2007)

Learning While Optimizing an Unknown Fitness Surface 39

3. Battiti, R., Brunato, M., Mascia, F.: Reactive Search and Intelligent Optimiza-
tion. In: Operations research/Computer Science Interfaces. Springer, Heidelberg
(in press, 2008)

4. Battiti, R.: Machine learning methods for parameter tuning in heuristics. In: 5th
DIMACS Challenge Workshop: Experimental Methodology Day, Rutgers Univer-
sity (October 1996)

5. Bertsekas, D., Tsitsiklis, J.: Neuro-Dynamic Programming. Athena Scientific
(1996)

6. Lagoudakis, M., Parr, R.: Least-Squares Policy Iteration. Journal of Machine
Learning Research 4(6), 1107–1149 (2004)

7. Baluja, S., Barto, A., Boese, K., Boyan, J., Buntine, W., Carson, T., Caruana, R.,
Cook, D., Davies, S., Dean, T., et al.: Statistical Machine Learning for Large-Scale
Optimization. Neural Computing Surveys 3, 1–58 (2000)

8. Boyan, J.A., Moore, A.W.: Learning evaluation functions for global optimization
and boolean satisfability. In: Press, A. (ed.) Proc. of 15th National Conf. on Arti-
ficial Intelligence (AAAI), pp. 3–10 (1998)

9. Zhang, W., Dietterich, T.: A reinforcement learning approach to job-shop schedul-
ing. In: Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, vol. 1114 (1995)

10. Zhang, W., Dietterich, T.: High-performance job-shop scheduling with a time-delay
TD (λ) network. Advances in Neural Information Processing Systems 8, 1024–1030
(1996)

11. Lagoudakis, M., Littman, M.: Learning to select branching rules in the DPLL
procedure for satisfiability. In: LICS 2001 Workshop on Theory and Applications
of Satisfiability Testing, SAT 2001 (2001)

12. Lagoudakis, M., Littman, M.: Algorithm selection using reinforcement learning.
In: Proceedings of the Seventeenth International Conference on Machine Learning,
pp. 511–518 (2000)

13. Muller, S., Schraudolph, N., Koumoutsakos, P.: Step size adaptation in evolution
strategies using reinforcementlearning. In: Proceedings of the 2002 Congress on
Evolutionary Computation, 2002. CEC 2002, vol. 1, pp. 151–156 (2002)

14. Eiben, A., Horvath, M., Kowalczyk, W., Schut, M.: Reinforcement learning for
online control of evolutionary algorithms. In: Brueckner, S.A., Hassas, S., Jelasity,
M., Yamins, D. (eds.) ESOA 2006. LNCS (LNAI), vol. 4335. Springer, Heidelberg
(2007)

15. Battiti, R., Protasi, M.: Approximate algorithms and heuristics for MAX-SAT. In:
Du, D., Pardalos, P. (eds.) Handbook of Combinatorial Optimization, vol. 1, pp.
77–148. Kluwer Academic Publishers, Dordrecht (1998)

16. Lagoudakis, M., Parr, R.: LSPI: Least-squares policy iteration (as of September 1,
2007),http://www.cs.duke.edu/research/AI/LSPI/

17. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of SAT prob-
lems. In: Proceedings of the Tenth National Conference on Artificial Intelligence
(AAAI 1992), San Jose, Ca, pp. 459–465 (July 1992)

18. Steinmann, O., Strohmaier, A., Stutzle, T.: Tabu search vs. random walk. In: KI
- Kunstliche Intelligenz, pp. 337–348 (1997)

19. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfi-
ability problems. In: Proceedings of the Tenth National Conference on Artificial
Intelligence (AAAI 1992), San Jose, Ca, pp. 440–446 (July 1992)

20. McAllester, D., Selman, B., Kautz, H.: Evidence for invariants in local search. In:
Proceedings of the national conference on artificial intelligence (14), pp. 321–326.
John Wiley & sons LTD., USA (1997)

http://www.cs.duke.edu/research/AI/LSPI/

40 R. Battiti, M. Brunato, and P. Campigotto

21. Selman, B., Kautz, H., Cohen, B.: Noise strategies for improving local search. In:
Proceedings of the national conference on artificial intelligence, vol. 12. John Wiley
& sons LTD., USA (1994)

22. Tompkins, D.A.D., Hoos, H.H.: Novelty+ and adaptive novelty+. SAT 2004 Com-
petition Booklet (solver description) (2004)

23. Tompkins, F.H.D., Hoos, H.: Scaling and probabilistic smoothing: Efficient dy-
namic local search for sat. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470,
p. 233. Springer, Heidelberg (2002)

24. Schuurmans, D., Southey, F., Holte, R.: The exponentiated subgradient algorithm
for heuristic boolean programming. In: Proceedings of the international joint con-
ference on artificial intelligence, vol. 17, pp. 334–341. Lawrence Erlbaum associates
LTD., USA (2001)

25. Battiti, R., Protasi, M.: Reactive search, a history-sensitive heuristic for MAX-
SAT. ACM Journal of Experimental Algorithmics 2 (ARTICLE 2) (1997),
http://www.jea.acm.org/

http://www.jea.acm.org/

	Learning While Optimizing an Unknown Fitness Surface
	Reinforcement Learning and Reactive Search
	Reinforcement Learning and Neuro-dynamic Programming Basics
	Markov Decision Processes
	The Dynamic Programming Approach
	Policy Iteration
	Approximations: Reinforcement Learning and LSPI

	Reinforcement Learning for Optimization
	Reinforcement Learning for Reactive Tabu Search
	The Markov Decision Process Definition
	Basis Function Definition

	Experimental Results
	Training Examples Generation
	Optimal Policy and Comparison

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

