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Preface 

This volume collects the accepted papers presented at the Learning and Intelligent 
OptimizatioN conference (LION 2007 II) held December 8–12, 2007, in Trento, Italy. 

The motivation for the meeting is related to the current explosion in the number 
and variety of heuristic algorithms for hard optimization problems, which raises nu-
merous interesting and challenging issues. Practitioners are confronted with the bur-
den of selecting the most appropriate method, in many cases through an expensive 
algorithm configuration and parameter-tuning process, and subject to a steep learning 
curve. Scientists seek theoretical insights and demand a sound experimental method-
ology for evaluating algorithms and assessing strengths and weaknesses. A necessary 
prerequisite for this effort is a clear separation between the algorithm and the experi-
menter, who, in too many cases, is "in the loop" as a crucial intelligent learning com-
ponent. Both issues are related to designing and engineering ways of "learning" about 
the performance of different techniques, and ways of using memory about algorithm 
behavior in the past to improve performance in the future. Intelligent learning schemes 
for mining the knowledge obtained from different runs or during a single run can im-
prove the algorithm development and design process and simplify the applications of 
high-performance optimization methods. Combinations of algorithms can further 
improve the robustness and performance of the individual components provided that 
sufficient knowledge of the relationship between problem instance characteristics and 
algorithm performance is obtained.  

This meeting aimed at exploring the boundaries and uncharted territories between 
machine learning, artificial intelligence, mathematical programming and algorithms 
for hard optimization problems. The main purpose of the event was to bring together 
experts from these areas to discuss new ideas and methods, challenges and opportuni-
ties in various application areas, general trends and specific developments.  

This second edition of LION received 48 submitted papers, with an approximate 
50% acceptance rate, and 50 participants from 18 different countries. Eighteen papers 
were selected for inclusion in the conference proceedings following a rigorous review 
process. 

The Conference Chair, Steering Committee and Local Chair, and the Technical 
Program Committee Chair wish to thank all the colleagues involved in the organiza-
tion for their precious and professional contribution, including the Technical Program 
Committee listed here, the Steering Committee members Holger Hoos and Mauro 
Brunato, the Tutorial Chair David Woodruff, the IEEE Computational Intelligence 
Society Liaison Andrea Bonarini, the Publicity Chair Kenneth Sorensen, the local 
organization team Alessandro Villani, Roberto Cascella, Elisa Cilia, Paolo Cam-
pigotto, the Web Chair Franco Mascia and, last but not least, the Publication Liaison 
Thomas Stützle. 

Technical Co-sponsorship was granted by the IEEE Computational Intelligence So-
ciety (local chapter) and by Associazione Italiana per l'Intelligenza Artificiale. 
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VI 

Financial support for this event was provided by our industrial sponsors, Eurotech 
Group S.p.A., which generously sponsored the two best papers awards, ESTECO, and 
Ars Logica IT Laboratories. 
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Nested Partitioning for the Minimum Energy
Broadcast Problem�

Sameh Al-Shihabi1, Peter Merz2, and Steffen Wolf 2

1 Industrial Engineering Department, University of Jordan, Amman 11942, Jordan
s.shihabi@ju.edu.jo

2 Distributed Algorithms Group, University of Kaiserslautern, Germany
{pmerz,wolf}@informatik.uni-kl.de

Abstract. The problem of finding the broadcast scheme with minimum
power consumption in a wireless ad-hoc network is NP-hard. This work
presents a new hybrid algorithm to solve this problem by combining
Nested Partitioning with Local Search and Linear Programming. The
algorithm is benchmarked by solving instances with 20 and 50 nodes
where results are compared to either optimum or best results found by
an IP solver. In these instances, the proposed algorithm was able to find
optimal and near optimal solutions.

1 Introduction

Wireless ad-hoc networks have become very popular, as they are easily set up
and do not need a wired backbone structure [1]. The nodes in such networks are
usually battery powered, so the wireless ad-hoc network is a good choice for a first
responders infrastructure, or even as the main communications infrastructure in
regions where installing a wired infrastructure would be too expensive or time
consuming.

Communication between the nodes in such ad-hoc networks can be performed
by either a single hop, or by relaying the messages over intermediate nodes. To
this end, each node is able to adjust its transmission power based on the dis-
tance to the receiver. Using omnidirectional antennas also brings the advantage
of simple local broadcasts, as all nodes within the transmission range can re-
ceive the message without additional cost at the sender. This property of the
wireless transmission is often referred to as the wireless multicast advantage.
Because of the limited battery power of each node, it is crucial to find ways of
communication that minimize the energy consumption.

One special kind of communication pattern is the one-to-all communication
pattern (broadcast). Here, one source node needs to distribute information to
all other nodes. Broadcast routing in wireless ad-hoc networks differs largely
from routing in wired networks. In wireless settings such a broadcast can be
achieved by simply adjusting the transmission power of the source to reach all
� Work was done while visiting the Distributed Algorithms Group at the University

of Kaiserslautern.
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nodes in the ad-hoc network in one hop. However, because of the physical laws
of the power consumption over the distance, the total energy consumption can
often be reduced by using intermediate nodes [2]. E. g., if the power consump-
tion is proportional to the squared distance (this is the case when there are no
obstacles), it is twice as expensive to send directly to the destination, instead of
sending to a node half the way between sender and destination and have it relay
the information to the final node.

In the case of a broadcast, we are looking for the broadcast tree that minimizes
the total energy consumption. This problem is known as the Minimum Energy
Broadcast problem (MEB) [3]. In this paper we present a new hybrid heuristic
for the MEB. The steering component of the proposed algorithm is the Nested
Partition (NP) algorithm [4]. NP is a global optimization algorithm that can be
used for both stochastic [5] and deterministic problems [6,7]. The method works
by successively partitioning regions expected to contain the best solution into
smaller ones, where more concentrated sampling takes place, until a singleton
is reached. The algorithm keeps a global view by aggregating the abandoned
regions and sampling them. It backtracks to a larger region of the sample space
if the abandoned regions are found to be better than the partitioned subregions.
This behavior allows the algorithm to converge to the optimal solution with a
positive probability.

This work presents a mixture of NP, Linear programming relaxation and a
local search heuristic. The LP relaxation is used to find a lower bound for each
subregion. If the global best solution is better than this bound, the corresponding
subregion will not be sampled. The quality of the samples is further improved
by a local search. It needs to be noted that the convergence of the algorithm
to the optimum solution depends on the correct selection of the most promising
subregion for further partitioning. This in turn depends on the quality of samples
generated and number of samples taken from each subregion.

The paper is structured as follows. In the remainder of this section we give
a formal definition of the MEB and summarize related work. In Section 2 we
present our heuristic, and then give results of experiments carried out with this
heuristic in Section 3. Section 4 summarizes our findings and gives an outline
for future research.

1.1 Minimum Energy Broadcast

The Minimum Energy Broadcast Problem (MEB) is an NP-hard optimization
problem [8,9]. It is also known under the name of Minimum Power Broadcast
(MPB) or Minimum Energy Consumption Broadcast Subgraph (MECBS). The
MEB can be defined as the problem of finding the broadcast tree T = (V, ET )
(a directed spanning tree) rooted at a source node s ∈ V in an ad-hoc wireless
network G = (V, E, d), that minimizes the necessary total transmission power
c(T ) to reach all nodes of the network:

c(T ) =
∑
i∈V

max
(i,j)∈ET

d(i, j)α︸ ︷︷ ︸
transmission power of node i
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Here, the distance function d : E → R
+ refers to the Euclidean distance and

the constant α is the distance-power gradient which may vary from 1 to more
than 6 depending on the environment [10]. Note that (i, j) ∈ ET does not imply
(j, i) ∈ ET , for T is a directed tree. Each node is required to send to the farthest
child, all other children are then implicitly covered by this transmission. The
leaves of the tree T do not send to other nodes and thus do not contribute to
the total cost.

1.2 Related Work

The first major work on the MEB problem was the Broadcast Incremental Power
algorithm (BIP) by Wieselthier et al . [3]. This heuristic builds the broadcast
tree in a way that resembles Prim’s algorithm for building Minimum Spanning
Trees (MST). While Prim’s algorithm does find the optimal MST, BIP does
not necessarily provide an optimal solution for the MEB. The MST itself can
also be used as a heuristic solution for the MEB, but the BIP explicitly exploits
the wireless multicast advantage and thus produces solutions with lower cost
than the corresponding MST solutions. The approximation ratio of MST is later
shown to be 6 for the case of α ≥ 2 [10], while for α < 2 the MST does not
provide a constant approximation ratio [8]. The approximation ratio of BIP for
α = 2 is shown to be between 13/3 and 6 [11].

The BIP heuristic can be further improved by a local search, e. g. r-shrink [12].
Here, the transmission power for one node is reduced by r steps, cutting off r
nodes. These nodes will be assigned to other nodes, which increases the latter
nodes’ transmission power. If the total cost is not reduced, this change is re-
jected, otherwise it is accepted and the local search is repeated. Experiments
showed that the initial BIP solutions could be improved considerably. Another
improving heuristic called Embedded Wireless Multicast Advantage (EWMA)
is presented in [9]. Here, the transmission power of a node is increased, such
that other nodes can be switched off completely. This can be thought of as the
opposite of the r-shrink heuristic. In [13], an Iterated Local Search heuristic is
presented. It is based on an edge exchange neighborhood perturbation and the
Largest Expanding Sweep Search local search (LESS, [14]), an improved local
search based on EWMA. Unfortunately, there are no established standard test
instances, so comparisons between the heuristics is difficult.

Several Mixed Integer Programming formulations (MIP) have been presented
to compute optimal solutions [15,16]. While both approaches are based on a
network flow model, the MIP from [16] uses an incremental mechanism over the
transmission power variables, and is claimed to give better linear relaxations.

Nested Partitioning algorithms (NP) have been used to solve a number of
problems such as the Traveling Salesman Problem [17], Product Design [6] and
Scheduling parallel machines with flexible resources [7]. Local search heuristics
can easily be implemented in NP such as using 2-exchange or 3-exchange local
search in case of the TSP [17]. NP can also be used in combination with a number
of meta-heuristic algorithms such as Genetic Algorithms [6] and Max-Min Ant
Systems [18].
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+ 1

+ 3 + 4

+ 2

Fig. 1. An example network of four nodes in the plane. The different transmission
ranges for source node 1 are shown. For α = 2 the areas of the circles also represent
the necessary transmission power.

2 Algorithm

The general structure for an NP algorithm is as follows. Starting with the whole
feasible solution space Θ at d = 1 where d stands for depth, the NP algorithm
partitions the feasible region into M(d) disjoint subregions where samples are
generated from each subregion. This process continues by partitioning the most
promising subregion σ(d) ∈ M(d) at each depth. To guarantee convergence, the
abandoned subregions at d > 1 are aggregated in a subregion commonly called
the surrounding region that is also sampled so the whole feasible solution space
Θ is covered but with different sampling intensities. If the surrounding region is
found to be more promising than the subregions forming σ(d−1), the algorithm
backtracks to a larger region. A simple example having four nodes, as shown in
Fig. 1, is used to explain the NP algorithm for the MEB problem. Here, node 1
is the source node, and the remaining nodes ordered by distance from the source
are 3, 4 and 2. The proposed algorithm consists of the following steps:

1. Partitioning
2. Finding Lower Bounds
3. Sampling
4. Calculating the Promising Index
5. Backtracking

2.1 Partitioning

In this work, we use a generic partitioning scheme [4]. The partitioning for our
example is shown in Fig. 2. At depth 1, the feasible region Θ is divided into
three subregions according to the different nodes the source node transmits to.
Assuming that subregion 2 where the solution has the 1 → 4 arc is found to be
the best subregion; at depth 2 the algorithm divides this subregion again into
three subregions: one subregion having the arc 3 → 4 as part of the solution,
a second having 3 → 2 and a third subregion where node 3 does not transmit
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Θ

1 → 41 → 3 1 → 2

1 → 4
3 → 2

1 → 4
3 → 4

1 → 4
3 → Null

Surrounding
Region

1 → 4
3 → Null
4 → 2

1 → 4
3 → Null
4 → 3

1 → 4
3 → Null
4 → Null

Surrounding
Region

Fig. 2. A simple example for the partitioning steps. The feasible solution space Θ
is divided in smaller regions by iteratively adding arcs to the model. Only the most
promising region is expanded, while all remaining regions form the surrounding region.

to any other node (denoted by 3 → Null). The arc 1 → 4 is imposed on all of
these subregions. The surrounding region at this depth is Θ \ {1 → 4}. It needs
to be noted, that subregion 3 → 4 is not sampled since it is guaranteed not to
be optimal due to the extra redundant cost of 3 → 4. To finish the example,
assuming that subregion 3 → Null is the best subregion, then this subregion is
partitioned into the subregions 4 → 3, 4 → 2, and 4 → Null. The abandoned
subregions are again aggregated and sampled. This process of partitioning the
regions is continued until a singleton, i. e. a region with a single solution, is
reached.

2.2 Finding Lower Bounds

Lower bounds for each subregion are found using the LP relaxation of the MIP
formulation from [16], where the integrality constraints are relaxed by having
0 ≤ yij ≤ 1. In this model, yij is a binary variable denoting that node i has
transmission power to reach node j. To generate the three subregions at d = 1,
a new constraint is added such that y13 = 1, y14 = 1, and y12 = 1 for each
respective subregion. The lower bounds are calculated using an LP solver, and
subregions having higher lower bounds than the global best solution S∗ are not
sampled. This reduces the number of subregions to be studied. The solution S∗

found at any stage of the algorithm is passed to the appropriate subregion in
the next depth or iteration of the algorithm.

2.3 Sampling

For subregions resulting from partitioning the most promising subregion, the
sampling step begins by forcing the arcs found up to depth d − 1 to be part
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while not all nodes are covered do
let sum = 0
for i = 1 . . . n do

for j = 1 . . . n do
if node i is covered and j is not then

let Pij =
1

Extra cost to reach j from i
let sum = sum + Pij

else
let Pij = 0

end if
end for

end for
generate random number u ∈ [0, 1]
if u < q then

select the arc(i, j) that has the highest Pij , i. e. the lowest extra cost
else

randomly select arc(i, j) with probability Pij/sum
end if

end while

Fig. 3. Pseudo code for the weighted sampling step

of the solution. For each subregion, the arc that distinguishes it from the other
subregions is also chosen to be part of the solution. The rest of the solution is
generated using a weighted sampling step [4]. The pseudo code for this algorithm
is shown in Fig. 3. Here, parameter q ∈ [0, 1] controls the degree of diversification.
With probability q the arc that increases the total energy consumption the least
is chosen in each step. All other arcs are chosen according to their individual
probability, which is again higher for arcs with less additional cost. For q = 1
this algorithm matches the BIP construction heuristic [3].

Sampling the surrounding region is done in a similar way but without imposing
any arc on the generated samples. A local search algorithm (r-shrink with r = 1
as in [12]) is then applied to all samples taking into account not to change any
of the arcs forced on the subregions. After the local search, the samples of the
surrounding region are checked again, and all samples that follow exactly the
chosen arcs up to depth d − 1 are disregarded since they effectively left the
surrounding region.

2.4 Calculating the Promising Index

The promising index of the algorithm is the best sample found at each subregion.
Again it needs to be noted that the solution S∗ is inherited along the different
depths. The most promising subregion is the one having the lowest feasible energy
broadcasting. This region is then partitioned as explained earlier.
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2.5 Backtracking

In case the surrounding region is found to be superior to the other subregions,
backtracking takes place. In this work, a simple backtracking scheme is used
where full backtracking takes place and the algorithm starts again with the whole
feasible region. Other backtracking schemes are possible, such as backtracking
step by step until the best region is not the surrounding region.

3 Results

A number of experiments have been conducted to check the quality of solutions
obtained using the suggested hybrid algorithm. Two sets of problems have been
generated where n nodes are randomly located in an area of 1000 × 1000 m2.
The Euclidean distance was used and the distance-power gradient was set to
α = 2. The first set has n = 20, while the second has n = 50. Each set contains
30 instances. The sets are available at http://dag.informatik.uni-kl.de/
research/meb/.

We used the commercial LP solver ILOG CPlex 10.1 to obtain optimal solu-
tions for the problem instances. Since the MEB is NP-hard, CPlex was only able
to provide optimal solutions for the 20 nodes problems and about half of the 50
nodes problems. For the remaining problems, we stopped CPlex after 24 hours.

In the experiments, we set the number of samples that are generated for each
subregion that passed the bounds test to 100. The value of q implemented in the
samples generation algorithm is chosen as 0.5. These settings have proven to be a
good choice in preliminary experiments. Again, CPlex 10.1 was used to calculate
the lower bounds at each step of the algorithm. Each experiment was repeated
30 times and average values were used for the following discussion. Calculation
times refer to the CPU time on a 3 GHz Pentium D running Linux 2.6; the
algorithm was implemented in C++.

The results for the first ten of the 20 nodes problems are shown in Table 1,
the NP algorithm shows the same behavior when applied to the other problems
of this set. The NP algorithm was able to find the optimum in almost every run.
Also, the non-optimal solutions are very close to the optimum, with average
excess of less than one percent. Comparing the results of the NP against the
results obtained by applying r-shrink to the BIP solution shows how much can
be gained by using NP. In some of the instances, BIP+r-shrink already finds the
optimal solution, but in general the BIP+r-shrink solution is 5 % to 33 % more
expensive than the optimum. The NP results are also better than the results of
the Iterated Local Search [13] (ILS), where an average excess of 1.1 % over the
optimum is given for a similar setting (n = 20 placed in an area of 1000×1000 m2,
α = 2, average over 1000 instances). However, a direct comparison is not possible,
because different problem instances were used.

Table 2 shows the results for the 50 nodes problems. Optima are known only
for about half of these instances. E. g., for problems p50.08 and p50.14, the NP
algorithm found the proven optimum in 27 and 22 out of 30 runs. Also, the
average excess in the remaining cases is quite low. Problem p50.02 is the hardest

http://dag.informatik.uni-kl.de/
research/meb/
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Table 1. Results for the 20 nodes problems. The NP results are compared to the
optimal solution and the solution found by BIP+r-shrink. Only the first ten instances
are shown, the results for the remaining instances are similar.

Instance Optimum NP BIP + Excess over #Optimum CPU time
r-shrink Optimum found

p20.0 407 250.81 407 250.81 467 919.92 0 % 30/30 0.30 s
p20.1 446 905.52 446 905.52 446 905.52 0 % 30/30 0.36 s
p20.2 335 102.42 335 102.42 335 102.42 0 % 30/30 0.41 s
p20.3 488 344.90 489 149.48 511 740.22 0.16 % 27/30 0.46 s
p20.4 516 117.75 516 117.75 615 991.07 0 % 30/30 0.43 s
p20.5 300 869.14 300 869.14 394 315.34 0 % 30/30 0.35 s
p20.6 250 553.15 250 553.15 332 998.09 0 % 30/30 0.18 s
p20.7 347 454.08 347 454.08 372 636.22 0 % 30/30 0.31 s
p20.8 390 795.34 390 795.34 390 795.34 0 % 30/30 0.46 s
p20.9 447 659.11 447 665.81 514 005.04 0 % 30/30 0.41 s

avg 0.06 % 28.7/30 0.33 s

problem in this set for the NP algorithm. Here, the optimum is not found, and
the average excess is 10.11 %.

For the instances of the 50 nodes problems where no optimal solution is known
we use the best solution found by CPlex within 24 hours as a comparison. We
have also observed that instances which are harder to solve for CPlex are also
harder for the NP algorithm. However, in some cases the NP algorithm still finds
the best known solutions (e. g. p50.06). For all other instances, the NP algorithm
finds solutions that are close to the best known solutions. The average excess
over all instances of this set is 4.03 %.

The NP algorithm is again competitive as comparisons to other heuristics
show. The BIP+r-shrink solutions are between 3 % and 37 % percent more ex-
pensive than the NP solutions. Comparison to ILS [13] for the 50 nodes problems
can only be achieved through the average gap to the BIP solution (without r-
shrink), which is about 19 % for ILS but 21 % for the NP. Here, a higher gap
means a better solution, since the BIP is worse than both NP and ILS. This
again shows the need for standard test instances.

In Fig. 4, we compare the optimal and the worst solution found by the NP
algorithm for problem p50.19. As can be seen, both solutions show many simi-
larities. Source node 3 sends to a majority of the nodes in both cases. A minor
difference is in the left part, where node 37 sends to node 38. The main difference
is in the bottom part, where the path from node 39 was not found and a path
from node 29 is used instead.

The CPU times for the different problem sizes match the expected average
time complexity of O(n4). In each depth 1 . . . n of the NP, n subregions are
sampled, where the weighted sampling step uses O(n2) time. However, when
backtracking takes place more often, the time complexity will increase.
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Table 2. Results for the 50 nodes problems. The NP results are compared to the
optimal solution or the best known solution found by CPlex, and the solution found
by BIP+r-shrink.

Instance Optimum NP BIP + Excess over #Best/Opt CPU time
r-shrink Best/Opt found

p50.00 399 074.64 423 894.57 440 640.28 6.22 % 0/30 11.4 s
p50.01 ≤ 373 565.15 387 316.68 475 102.25 3.68 % 0/30 7.1 s
p50.02 393 641.09 433 450.66 480 988.66 10.11 % 0/30 10.3 s
p50.03 316 801.09 337 165.59 386 205.59 6.43 % 0/30 6.1 s
p50.04 ≤ 325 774.22 342 784.91 381 304.56 5.22 % 0/30 7.5 s
p50.05 382 235.90 394 791.97 422 809.25 3.28 % 1/30 10.9 s
p50.06 ≤ 384 438.46 389 013.13 456 813.09 1.19 % 5/30 10.2 s
p50.07 ≤ 401 836.85 428 741.55 461 307.09 6.70 % 0/30 8.9 s
p50.08 334 418.45 334 749.92 384 384.31 0.10 % 27/30 4.6 s
p50.09 ≤ 346 732.05 378 630.95 399 725.84 9.20 % 0/30 12.9 s
p50.10 416 783.45 425 682.71 474 002.59 2.14 % 0/30 8.9 s
p50.11 ≤ 369 869.41 385 915.15 411 906.13 4.34 % 0/30 7.7 s
p50.12 ≤ 392 326.01 404 820.55 433 126.59 3.18 % 0/30 13.5 s
p50.13 ≤ 400 563.83 427 105.91 485 333.75 6.63 % 0/30 11.2 s
p50.14 388 714.91 389 006.86 532 971.81 0.08 % 22/30 6.6 s
p50.15 371 694.65 373 179.70 427 741.66 0.40 % 0/30 8.1 s
p50.16 ≤ 414 587.42 436 493.53 439 920.69 5.28 % 0/30 15.1 s
p50.17 355 937.07 363 652.32 387 976.03 2.17 % 1/30 11.9 s
p50.18 376 617.33 399 078.25 405 057.03 5.96 % 0/30 11.3 s
p50.19 335 059.72 342 670.93 451 377.38 2.27 % 5/30 9.8 s
p50.20 414 768.96 427 780.96 462 060.14 3.14 % 0/30 10.4 s
p50.21 ≤ 361 354.27 371 950.59 443 070.76 2.93 % 2/30 10.4 s
p50.22 329 043.51 329 043.51 413 037.47 0 % 30/30 7.2 s
p50.23 383 321.04 407 803.26 425 242.32 6.39 % 0/30 11.1 s
p50.24 404 855.92 427 875.82 452 893.25 5.69 % 0/30 10.0 s
p50.25 363 200.32 363 200.32 471 153.44 0 % 30/30 3.2 s
p50.26 406 631.51 445 632.46 458 168.22 9.59 % 0/30 11.5 s
p50.27 451 059.62 469 912.83 525 401.41 4.18 % 0/30 9.5 s
p50.28 ≤ 415 832.44 434 466.55 451 758.28 4.48 % 0/30 11.6 s
p50.29 380 492.77 380 492.77 452 424.68 0 % 30/30 5.9 s

avg 4.03 % 5.1/30 9.5 s
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Fig. 4. Optimal and sub-optimal solutions for problem p50.19. The source is node 3,
and transmitting nodes are highlighted.

4 Conclusion

We have presented a hybrid heuristic for the Minimum Energy Broadcast prob-
lem. The major part of this work is the Nested Partitioning, where a generic
partitioning scheme was implemented. LP relaxation was used as a probing op-
eration to check which subregions are worth sampling. The r-shrink local search
was also adjusted to fit the constraints imposed on the samples generated from
each subregion. The algorithm has shown to find optimal or near-optimal solu-
tions in short time.

Comparisons to other heuristics have shown that the proposed heuristic is
competitive, but also that there is a need for standard test instances. We hope
the instances provided in this paper can be used as such test instances.

A number of extensions are currently under study by the authors. The LP re-
laxations’ solutions can offer additional information that can be used to generate
better samples. Trying different local search heuristics in addition to improving
the quality of the surrounding region samples is also investigated. Advances in
exact solution techniques such as improving the bounds by using cutting planes
or other relaxation techniques can also be implemented.
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Abstract. We propose an iterative memory-based algorithm for solving
a class of combinatorial optimization problems. The algorithm generates
a sequence of gradually improving solutions by exploiting at each itera-
tion the knowledge gained in previous iterations. At each iteration, the
algorithm builds an enumerative tree and stores at each tree level a set of
promising partial solutions that will be used to drive the tree exploration
in the following iteration.

We tested the effectiveness of the proposed method on an hard combi-
natorial optimization problem arising in the design of telecommunication
networks, the Non Bifurcated Network Design Problem, and we report
computational results on a set of test problems simulating real life in-
stances.

1 Introduction

There is a vast class of combinatorial optimization problems exhibiting a reg-
ular substructure that can be decomposed into n smaller (and possibly easier)
subproblems which are linked together by a set of coupling constraints. These
problems can often be modeled by defining, for each subproblem k, a set Sk

containing all the feasible solutions for subproblem k and by reformulating the
coupling constraints so that the resulting problem consists in choosing, from
each set Sk, k = 1, ..., n, a single item sk

ik
∈ Sk in such a way that the selected

items X = {s1
i1

, ..., s̄n
in

} satisfy all the constraints. With each item sk
i ∈ Sk is

associated a cost ck
i and the cost c(X) of solution X is a function of the selected

items. The objective is to find a solution X of minimum cost. As an example,
consider the Multiple Choice Knapsack problem (MCKP). In the MCKP are
given n item sets Sk, k = 1, ..., n and a bin of size W . With each item sk

i ∈ Sk

is associated a weight wk
i . It is required to select exactly one item from each set

so that the sum of the item weights does not exceed W and the sum of the item
costs is minimized.

In this paper we describe an iterative heuristic algorithm, called F&B, that
tries to avoid being trapped in local minima by adopting a memory-based look
ahead strategy that exploits the knowledge gained in its past search history.
Algorithm F&B iterates a partial exploration of the solution space by generating
a sequence of enumerative trees of two types, called forward and backward trees.

V. Maniezzo, R. Battiti, and J.-P. Watson (Eds.): LION 2007 II, LNCS 5313, pp. 12–24, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Each node at level h of the trees represents a partial solution X ′ containing h
items. At each iteration t, the algorithm generates a forward tree, if t is odd,
or a backward tree if t is even. In generating a tree, each partial solution X ′

is extended to a feasible solution using the partial solutions generated at the
previous iteration and the cost of the resulting solution is used to guess the
quality of the best complete solution that can be obtain from X ′.

An obvious non exact way for solving combinatorial optimization problems is
using metaheuristcs, i.e., “master strategies that guide and modify other heuris-
tics to produce solutions beyond those that are normally generated in a quest for
local optimality” [6]. A vast body of literature exists describing metaheuristic
approaches for solving combinatorial optimization problems, and surely there
is no need to recap it here. The best known metaheuristics, like tabu search,
VNS or genetic algorithms, are quite different from our proposal, however some
other ones, such as the Pilot Method (C.Duin, S.Voss, 1999 [3]), the Filter&Fan
method (F.Glover, 1998 [5]; P.Greistorfer, C.Rego, 2006 [7]) and the ANTS meta-
heuristic (Maniezzo et al., 1999 [10], 2002 [11]) have some similarities with the
algorithm F&B described in this paper.

The Pilot Method consists in a partial enumeration strategy where the possi-
ble expansions of each partial solution are evaluated by means of a pilot heuristic
[3]. The Filter&Fan method starts with a feasible solution S and builds an enu-
merative tree where branches correspond to submoves in the neighborhood space
of S and each node corresponds to a solution obtained as a result of the sub-
move sequence associated with the root-node path. The initial candidate list of
moves is filtered at each level by evaluating each move in the list with respect to
all the solutions at that level. The best moves at each level are included in the
candidate list of the next level and the corresponding solutions are the nodes
of the successive level. The ANTS metaheuristic is a particular instance of the
ACO class, where ants are defined as computational agents which let iteratively
grow a partial solution into a complete one. At each step ants compute a set
of feasible expansions of the associated partial solution and choose one of these
expansions according to bounds and previous search history. Variant BE-ANT
[11] is particularely close to F&B, but is nondeterministic and lacks the forward
- backward construction interleave.

The proposed algorithm F&B, that uses an interleaved sequence of forward
and backward trees to evaluate the completion of partial solutions, is an alterna-
tive to the look-ahead strategies described above. F&B clearly is a metaheuristic,
according to the definition of Glover and Laguna [6] given above. The subordi-
nate heuristics is the partial enumeration method tht is embedded as a subrou-
tine, while the master strategy dictates the forward - backward periodicity at
the heart of search intensification. The remainder of this paper is organized as
follows. In section 2 we give a detailed description of the algorithm, in section
3 we introduce the Non Bifurcated Network Design Problem (NBP) and we de-
scribe how the proposed algorithm can be tailored to solve this problem. Finally,
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in section 4 we report computational results on a set of large NBP instances
simulating real life problems and we compare F&B against the commercial
package CPLEX 10.1 and two other heuristics. Concluding remarks follow in
section 5.

2 Algorithm F&B

A forward tree is an n-level tree where each level h = 1, ..., n is associated with
the item set Sh and each node at level h corresponds to a partial solution con-
taining one item of each set S1, S2, ..., Sh. Conversely, in a backward tree each
level h is associated with the set Sn−h+1, so that a node at level h, represents a
partial solution containing one item of each set Sn, Sn−1, ..., Sn−h+1. Associated
with each level h of a tree built at iteration t there is a list, called Listt(h), con-
taining ∆ nodes generated at level h, where ∆ is an a priori defined parameter.
Once the tree at iteration t has been completely expanded, the nodes in the lists
Listt(h), h = 1, ..., n, represent the algorithm memory of past iterations 1, ..., t
that will be used to guide the tree exploration in the following iteration t + 1.
In order to make the exposition simpler, in the following no distinction is made
between a node and the corresponding partial solution.

2.1 Evaluation of Partial Solutions

The key idea is to evaluate the completion cost of each partial solution gen-
erated at level h of the tree at iteration t, using the partial solutions stored in
Listt−1(n−h) at iteration t−1. Suppose we are building the forward tree associ-
ated with an odd iteration t. Let T (h), be the set of all partial solutions generated
at level h and consider two partial solutions X ∈ T (h) and X ∈ Listt−1(n − h).
Notice that, since t is odd, X contains one item of the sets S1, S2, ..., Sh while
X contains one item of each set Sn, Sn−1, ..., Sh+1. These two solutions can be
combined to obtain a (not necessarily feasible) complete solution X ∪ X of cost
c
(
X ∪ X

)
. Clearly, if the resulting solution X ∪ X satisfies all the coupling

constraints, the associated cost represents a valid upper bound. Then, at each
iteration t algorithm F&B builds the associated tree and computes, for each
node X ∈ T (h), a label β (X) which is computed as follows:

β (X) = min
X∈Listt−1(n−h)

{
c
(
X ∪ X

)
+ α

(
X ∪ X

)}
, (1)

where α(X ∪ X) is a (strongly problem specific) function whose value is related
to the degree of infeasibility of X ∪X and that is equal to 0 if X ∪X is a feasible
solution.

When building the first forward tree at iteration t = 1 we assume that the
lists List0(h) = ∅, h = 1, ..., n. Therefore, at iteration 1, expression (1) gives
β (X) = c (X), where c (X) is the cost of the partial solution (X).



An Adaptive Memory-Based Approach Based on Partial Enumeration 15

2.2 Description of Algorithm F&B

Let ∆ be an a priori defined parameter that controls the number of nodes ex-
panded at each level of both forward and backward trees. To expand level h
of a tree at iteration t, the algorithm computes the value β (X) for each node
X ∈ T (h) and builds the set Listt(h) ⊆ T (h) containing the ∆ nodes in T (h)
having the smallest label value β (X). For every X ∈ Listt(h) such that β(X)
represents the cost of a feasible solution, we update zbest = min {zbest, β(X)},
where zbest represents the cost of the best solution achieved by F&B and is ini-
tialized equal to ∞ at the beginning of the algorithm. Each node X included
in Listt(h) is expanded to create a new node X ∪ {s} for each item s of the
set Sh+1 associated with level h + 1. Notice that a feasibility test is required to
eliminate any new node X ∪ {s} that violates some constraint.

Algorithm F&B terminates after MAXT iterations (where MAXT is an a
priori defined parameter) or after two consecutive iterations where the value of
zbest does not improve.

Figure 1 shows an example of algorithm F&B at iteration t + 1 (even) ex-
panding ∆ = 2 nodes per level. The label value for each node X ∈ T (4) at level
4 of the backward tree associated with iteration t + 1 is computed using the
partial solutions stored in Listt(6) of the forward tree computed at the previous
iteration t. The ∆ nodes having the smallest label value are then included in
Listt+1(4) and further expanded.

Fig. 1. Example of algorithm F&B
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Algorithm 1. F&B
initialize t = 1, zbest = ∞ and flag = 0;
while t � MAXT do

flag = flag + 1;

[build the tree associated with iteration t]

let Listt(0) = {{∅}};
foreach level h = 1, ..., n do

set T (h) = {∅};
[generate the node set T (h) ]

if t is odd then
set k = h;

else
set k = n − h + 1;

end
foreach node X ∈ Listt(h − 1) do

foreach item s ∈ Sk do
let X ′ = X ∪ {s};
if X ′ does not violate any constraint then

set T (h) = T (h) ∪ X ′;
if h = n and c(X ′) < zbest then

set zbest = c(X ′) and flag = 0;
end

end
end

end

[ extract the subset Listt(h) ∈ T (h)]

foreach node X ∈ T (h) do
compute β(X) according to expression (1) and let X be the
partial solution of Listt−1(n − h) producing the minimum in
expression (1);
if X ∪ X is a feasible solution and c(X ∪ X) < zbest then

update zbest = c(X ∪ X) and set flag = 0;
end

end
if |T (h)| � ∆ then

set Listt(h) = T (h);
else

let Listt(h) be the set containing the ∆ partial
solutions of T (h) having the smallest label β (·);

end
end
if flag = 2 then

the upper bound zbest has not been improved in the last two
consecutive iterations: stop;

end
end
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3 An Application of Algorithm F&B

In this section we describe an application of algorithm F&B for solving an op-
timization problem arising in the design of telecommunication networks, called
Non Bifurcated Network Loading Problem (NBP), (see Barahona, 1996 [1]).

3.1 The Non-bifurcated Network Loading Problem

The NBP asks to connect a set of cities by a given network installing integer
multiples of a fixed base capacity on its edges in order to route a set of com-
modities. Each commodity consists of a flow that must be sent from an origin
node to a destination node through a single path along the network. The total
capacity installed between two nodes allows traffic on both directions and must
be greater than or equal to the total flow on each direction. A fixed cost must be
paid to install a base capacity on each link of the network and each commodity
must pay a routing cost to pass through any link. The objective is to install
sufficient capacity so that all the commodities can be routed, while minimizing
the sum of capacity and routing costs.

The NBP plays a fundamental role in the design of telecommunications net-
works running asynchronous transfer mode (ATM) protocol and production-
distribution with single sourcing and express package delivery and has been
studied in many variants with respect to network layout, capacity usage and
commodity routing options. The majority of methods proposed in the literature
for solving network design problems are restricted to the special case where a
single base capacity can be installed on each arc and where the flow of each
commodity can be split among different paths. For this variant see for example
Ghamlouche, Crainic and Gendreau (2003) [4] who propose a tabu search using
cycle-based neighborhood structures that take into account the impact on the
total cost of potential modifications to the flow distribution of several commodi-
ties simultaneously. The only heuristic method we found for the NBP is due to
Barahona (1996) [1] who solves the corresponding relaxation where commodity
flows can be split among different paths using a branch-and-cut algorithm and
then uses a heuristic procedure to obtain a solution where each commodity is
assigned to a single path.

3.2 Solving the NBP Using Algorithm F&B

Let G = (V, E) be a connected and undirected graph associated with the net-
work where V is the set of nodes representing the cities and E is the set of edges
representing the links. We denote by (ie, je) the endpoints of edge e ∈ E. Let−→
G = (V, A) be a directed graph associated with G where A is the set of arcs
obtained from E by replacing every edge e ∈ E with two arcs in opposite direc-
tions, i.e. A = {(ie, je), (je, ie) : e ∈ E}. The mapping e(i, j) gives the edge of E
corresponding to arc (i, j) ∈ A. It is given a set R of n commodities where each
commodity k = 1, ..., n specifies a flow dk that must be sent through a single
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path from an origin node sk ∈ V to a destination node tk ∈ V . Let rk
ij be the

cost for routing commodity k through arc (i, j) ∈ A. On each edge e ∈ E can be
installed integer multiples of a base capacity ue ∈ Z+ at unit cost ge. The total
capacity installed on edge e represents an upper bound for the flow on edge e
in each direction, so that the required capacity on each edge e is determined by
the maximum flow on the corresponding arcs (ie, je) and (je, ie).

The NBP can be modeled using, for each commodity k = 1, ..., n, a set Sk con-
taining all the simple paths in

−→
G from the origin node sk ∈ V to the destination

node tk ∈ V . Then, anNBP solution is representedby anordered list ofnpaths, one
path from each set Sk, k = 1, ..., n. Consider an enumerative tree where the nodes
at level h represent a set T (h) of partial solutions generated at level h involving
commodities 1, 2, ..., h. Each partial solution X ∈ T (h) is represented by an or-
dered list of h paths, i.e. X = (s1

j1
, ..., sk

jk
, ..., sh

jh
) where sk

jk
is the jk − th element

of the path set Sk, k = 1, ..., h. For each path sk
jk

∈ Sk of commodity k let
[
fij(sk

jk
)
]

be a (0− 1) matrix where fij(sk
jk

)is equal to one if path sk
jk

uses arc (i, j) ∈ A, zero
otherwise. For each partial solution X = (s1

j1
, ..., sk

jk
, ..., sh

jh
) let qij(X) and ye(X)

be, respectively, the total flow on each arc (i, j) ∈ A and the minimum number of
base capacities on each edge e ∈ E required by solution X . We have:

qij(X) =
h∑

k=1

dkfij(sk
jk

), ∀(i, j) ∈ A (2)

and

ye(X) = max
[⌈

qieje(X)
ue

⌉
,

⌈
qjeie((X)

ue

⌉]
∀e ∈ E. (3)

The cost c(X) of partial solution X is given by:

c(X) =
∑
e∈E

geye(X) +
h∑

k=1

∑
(i,j)∈A

rk
ijfij(sk

jk
). (4)

The problem is then to select a single path from each path set Sk, k = 1, ..., n,
to obtain a complete solution X = (s1

j1
, ..., sk

jk
, ..., sn

jn
) of minimum cost c(X).

Notice that, since there is no restriction on the maximum number of base
capacities ue that can be installed on each edge e ∈ E, at each iteration t of
algorithm F&B any two partial solutions X ∈ T (h) and X ∈ Listt−1(n − h),
always provide a feasible solution X ∪ X of cost c(X ∪ X). This means that
the label β(X) of any node X , computed by means of expression (1), always
represents a valid upper bound on the NBP. In order to use algorithm F&B
for solving the NBP it is necessary to compute the path sets Sk, k = 1, ..., n.
Since these sets are typically exponential in size we limit Sk, for each commodity
k = 1, ..., n, to contain the largest subset of the least cost paths in

−→
G , from sk

to tk, such that |Sk| � ρ, where ρ is an a-priori defined parameter. The paths
included in each set Sk are computed by associating with each arc (i, j) ∈ A

a cost ḡk
ij = ge(i,j)

⌈
dk

ue(i,j)

⌉
+ rk

ij . Notice that
⌈

dk

ue(i,j)

⌉
represents the minimum

number of links required to route commodity k through edge e ∈ E.
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4 Computational Experiments

Algorithm F&B has been coded in ANSI C and experimentally compared on
two classes of NBP instances with the the integer programming solver CPLEX
10.1, using an integer programming formulation of the NBP with two heuristic
algorithms, called PEM and TPH, described in Bartolini and Mingozzi (2006)
[2]. Algorithm TPH is a two phase heuristic that generates an initial feasible
NBP solution in phase 1 and iteratively improves it in the second phase using
a local search procedure. Algorithm PEM is a partial enumeration method that
uses a modified version of heuristic TPH to compute an upper bound for each
node of the enumerative tree. Algorith PEM can be viewed as a variation of the
Pilot Method described in C.Duin and S.Voss, (1999) [3].

Barahona (1996) [1] proposed a set of test instances corresponding to practical
problems arising in the design of telecommunication networks. Since the test
instances described in Barahona (1996) are not publicly available, we randomly
generated a set of test instances sharing the same network structure (i.e., the
underlaying network graphs correspond to complete graphs). In computing the
base capacity size and installation costs we used the information provided in
Kousik, Ghosh and Murthy, (1993) [8]. Moreover, since the model described
in Barahona (1996) does not take into account the commodity routing costs
we set all routing costs equal to 0. All the instances generated correspond to
complete undirected graphs with 30 nodes and one commodity for each edge.
The instances are partitioned in two classes, A and B, with respect to the method
used for computing the base capacity installation costs {ge}. For each class we
randomly generated 5 instances as follows:

• the node set V is randomly generated in a square [3000 × 3000];
• the edge capacity ue is set equal to 56 units for each edge e ∈ E, imitating

the link capacity of DS0 channels (see Kousik, Ghosh and Murthy, (1993) and
Magnanti, Mirchandani and Vachani, (1995) [9]);

• there is a commodity ke associated with each edge e ∈ E, having as origin
and destination nodes the endpoints of edge e (i.e. ske = ie and tke = je);

• the commodity demands are integers chosen from the set {8, 16, 24} with prob-
ability 70%, 20% and 10% respectively;

• all routing costs {rk
ij} are set equal to 0.

In computing the installation costs {ge} for class A instances, we used the
costs for the annual leasing of DS0 channels as reported in Kousik, Ghosh and
Murthy, (1993). Let ed(i, j) be the Euclidean distance between nodes i, j ∈ V ,
then the costs {ge} are computed as follows:

ge =

⎧⎪⎪⎨⎪⎪⎩
232 + 7.74 · ed(ie, je) if ed(ie, je) � 50,
435 + 3.68 · ed(ie, je) if 50 < ed(ie, je) � 100,
571 + 2.32 · ed(ie, je) if 100 < ed(ie, je) � 500,
1081.4 + 1.30 · ed(ie, je) if ed(ie, je) > 500.

(5)

For class B instances the costs {ge} are computed by setting:

ge = 572 + ed(ie, je). (6)
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We made several experiments to identify good parameter settings for our
algorithm F&B. As a result we decided to use the following set of parameters.

• parameter ρ was set equal to 100,
• parameter MAXT was set equal to 50,
• parameter ∆ ranges between 1 and 20, as no dominating value could be found,

as detailed below.

In our experiments we found that algorithm F&B is particularly sensitive to
the value of parameter ∆ that controls how many nodes are expanded at each
level of a tree. We found that in most cases the best results were obtained when
using small values of ∆, i.e. ∆ � 20. We noticed that by using larger values of
∆ the algorithm was able to obtain better results in the first iterations but it
was then unable to improve them significantly later on, given the time bound for
the runs and the increasing slowness of each iteration for increasing ∆ values.
As an example, figure 2 plots the best upper bound achieved by F&B on a class
B instance (problem p2-b), in one hour of CPU time, when ∆ ranges between
1 and 100 and shows that the best solutions are achieved when expanding a
small number of nodes at each level. This behavior was common for all the NBP
instances, showing that the computing time is better invested in performing more
iterations (thus refining the algorithm’s knowledge of the solution space) rather
than trying a wider exploration. This could be specially true at earlier iterations,
when the algorithm memory is largely ineffective in guiding the exploration
toward good solutions. Figure 3 shows the percentage distance of the obtained
solution costs, for increasing values of ∆, with respect to the best known values,
averaged over all class A instances. The general structure is the same as that of
figure 2, even though smoothed by the averaging.

Fig. 2. Problem p2-b: best results achieved for increasing values of the parameter ∆
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Fig. 3. Class A instances: percentage distance from the best result achieved for in-
creasing values of the parameter ∆

In the following tables 1 and 2 we report computational results obtained on
NBP instances of class A and B. We compare the results achieved within 1 hour
time limit by the integer programming solver CPLEX10.1 , by algorithm F&B
using different values of the parameter ∆ and by the heuristic algorithms PEM
and TPH. In CPLEX we activated both the Node heuristic and the RINS heuris-
tics, moreover, the final solution obtained by CPLEX within the imposed time
limit was further improved by allowing CPLEX to run the Solution Polishing
heuristic for an extra hour of computing time. All the computational tests were
run using an Intel Pentium D 3.2GHz. equipped with 3Gb of RAM.

Tables 1 and 2 report for each algorithm the following columns:

• zUB: cost of the best solution achieved by the algorithm within the time limit,
• Gap: percentage distance between the cost of the best known solution (zbest)

and the cost of the solution found by the algorithm (i.e. Gap = 100 × (zUB −
zbest)/zbest),

• Time: total computing time in seconds.

From the results reported in tables 1 and 2 it is clear that it is not possible to
choose a value of ∆ which gives the best results on all the instances, even though,
on average, the best results are obtained using ∆ = 10, for class B instances, and
∆ = 20, for class A instances. Note moreover, that the value of the parameter ∆
also impacts significantly on the total computing time so that smaller values of
∆ can provide a better trade off between solution quality and computing time.

Tables 1 and 2 show that algorithm F&B outperforms all other algorithms
on the NBP instances under consideration and achieves, within the 3600 sec.
time limit, much better solutions than CPLEX does in 7200 seconds. Moreover,
algorithm TPH produces in a few seconds better solutions than CPLEX using
two hours of computing time.
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5 Conclusions

This paper presents a new metaheuristic approach, named F&B for Forward -
Backward partial enumeration. The method is a general metaheuristic for combi-
natorial optimization problems, and can be directly applied to all problems that
can be decomposed into smaller subproblems which are linked together by a set
of coupling constraints. The essential trait of this new method is the guidance of a
partial enumeration search by means of alternate forward and backward visits of
the enumerative tree associated with the solution space, where each visit makes
use of the results of the previous one for estimating partial solution completion
costs. This corresponds to a memory-based look ahead strategy that exploits the
knowledge gained in previous iterations for escaping from local minima.

We tested the effectiveness of the proposedmethod solving a hard combinatorial
optimization problem arising in the design of telecommunication networks, called
Non Bifurcated Network Design Problem, and we report computational results on
a set of test problems simulating real life instances.Onall instances the newmethod
proved able to outperform competitive approaches, be they alternative heuristics
from the literature or an advanced usage of a commercial MIP solver.
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Università di Trento, Italy
battiti@disi.unitn.it

Abstract. This paper is about Reinforcement Learning (RL) applied
to online parameter tuning in Stochastic Local Search (SLS) methods.
In particular a novel application of RL is considered in the Reactive
Tabu Search (RTS) method, where the appropriate amount of diversifi-
cation in prohibition-based (Tabu) local search is adapted in a fast online
manner to the characteristics of a task and of the local configuration.
We model the parameter-tuning policy as a Markov Decision Process
where the states summarize relevant information about the recent his-
tory of the search, and we determine a near-optimal policy by using the
Least Squares Policy Iteration (LSPI) method. Preliminary experiments
on Maximum Satisfiability (MAX-SAT) instances show very promising
results indicating that the learnt policy is competitive with previously
proposed reactive strategies.

1 Reinforcement Learning and Reactive Search

Reactive Search (RS) [1,2,3] advocates the integration of sub-symbolic machine
learning techniques into search heuristics for solving complex optimization prob-
lems. The word reactive hints at a ready response to events during the search
through an internal online feedback loop for the self-tuning of critical parame-
ters. When Reactive Search is applied to local search (Reactive Local Search or
RLS), its objective is to maximize a given function f(x) by analyzing the past
local search history (the trajectory of the tentative solution in the search space)
and by learning the appropriate balance of intensification and diversification.
In this manner the knowledge about the task and about the local properties of
the fitness surface surrounding the current tentative solution can influence the
future search steps to render them more effective.

Reinforcement Learning (RL) arises in the different context of machine learn-
ing, where there is no guiding teacher, but feedback signals from the environment
which are used by the learner to modify its future actions. Think about bicycle
riding: after some initial trials with positive or negative rewards, in the form of
admiring friends or injuries to biological tissues, the goal is accomplished. The
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reinforcement learning context is more difficult than the one of supervised learn-
ing, where a teacher gives examples of correct outputs: in RL one has to make a
sequence of decisions (e.g., about steering wheel rotation). The outcome of each
decision is not fully predictable. In addition to an immediate reward, each action
causes a change in the system state and therefore a different context for the next
decisions. To complicate matters the reward is often delayed and one aims at
maximizing not the immediate reward, but some form of cumulative reward over
a sequence of decisions. This means that greedy policies do not always work. In
fact, it can be better to go for a smaller immediate reward if this action leads
to a state of the system where bigger rewards can be obtained in the future.
Goal-directed learning from interaction with an (unknown) environment with
trial-and-error search and delayed reward is the main feature of RL.

As it was suggested for example in [4], the issue of learning from an initially
unknown environment is therefore shared by RS and RL. A basic difference is
that RS optimizes a function and the environment is provided by a fitness surface
to be explored, while RL optimizes the long-term reward obtained by selecting
actions at the different states. The sequential decision problem and therefore
the non-greedy nature of choices is also common. For example, in Reactive Tabu
Search (the application of RS in the context of Tabu Search), steps leading to
worse configurations need in some cases to be performed to escape from a basin
of attraction around a local optimizer. It is therefore of interest to investigate the
relationship in more detail, to see whether specific techniques of Reinforcement
Learning can be profitably used in Reactive Search.

This paper is organized as follows. First the basics of RL learning and neuro-
dynamic programming are summarized. Then the relationship between RL and
RS are investigated, also with reference to existing work bridging the border
between optimization and RL. Finally, the novel proposal is presented, together
with the first obtained experimental results.

2 Reinforcement Learning and Neuro-dynamic
Programming Basics

In this section, Markov Decision Processes are formally defined and the standard
Dynamic Programming technique to determine the optimal policy is introduced
in Sec. 2.2. In many practical cases exact solutions must be abandoned in favor
of approximation strategies, which are the focus of Sec. 2.4.

2.1 Markov Decision Processes

A standard Markov process is given by a set of states S with transitions between
them described by probabilities p(i, j) (let us note the fundamental property of
Markov models: earlier states do not influence the transition probabilities to
the next state). Its evolution cannot be controlled, because it lacks the notion of
decisions, actions taken depending on the current state and leading to a different
state and to an immediate reward.
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A Markov Decision Process (MDP) is an extension of the classical Markov
process designed to capture the problem of sequential decision making under
uncertainty, with states, decisions, unexpected results, and “long-term” goals to
be reached. A MDP can be defined as a quintuple (S, A, P, R, γ), where S is a
set of states, A a finite set of actions, P (s, a, s′) is the probability of transition
from state s ∈ S to state s′ ∈ S if action a ∈ A is taken, R(s, a, s′) is the
corresponding reward, and γ is the discount factor, in order to exponentially
decrease future rewards. This last parameter is fundamental in order to evaluate
the overall value of a choice when considering its consequences on an infinitely
long chain. In particular, given the following evolution of a MDP

s(0)
a(0)→ s(1)

a(1)→ s(2)
a(2)→ s(3)

a(3)→ . . . (1)

the cumulative reward obtained by the system is given by
∞∑

t=0

γtR(s(t), a(t), s(t + 1)).

Note that state transitions are not deterministic, nevertheless their distribu-
tion can be controlled by the action a. The goal is to control the system in order
to maximize the expected cumulative reward.

Given a MDP (S, A, P, R, γ), we define a policy as a probability distribution
π(·|s) : A → [0, 1], where π(a|s) is the probability of choosing action a when the
system is in state s. In other words, π maps states onto probability distributions
over A. Note that we are only considering stationary policies. If a policy is
deterministic, then we resort to the more compact notation a = π(s).

2.2 The Dynamic Programming Approach

The intelligent component goal is to select a policy that maximizes a measure
of the total reward accumulated during an infinite chain of decisions (infinite-
horizon). To achieve this goal, let us define the state-action value function
Qπ(s, a) of the policy π as the expected overall future reward for applying a
specified action a when the system is in state s, in the hypothesis that the ensu-
ing actions are taken according to policy π. A straightforward implementation
of the Bellman principle leads to the following definition:

Qπ(s, a) =
∑
s′∈S

P (s, a, s′)
(

R(s, a, s′) + γ
∑
a′∈A

π(a′|s′)Qπ(s′, a′)
)

. (2)

where the sum over S can be interpreted as an integral in case of a continuous
state set. The interpretation is that the value of selecting action a in state s is
given by the expected value of the immediate reward plus the value the future
rewards which one expects by following policy π from the new state. These have
to be discounted by γ (they are a step in the future w.r.t. starting immediately
from the new state) and properly weighted by transition probabilities and action-
selection probabilities given the stochasticity in the process.
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The expected reward of a state/action pair (s, a) ∈ S × A is

R(s, a) =
∑
s′∈S

P (s, a, s′)R(s, a, s′),

so that (2) can be rewritten as

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

(
P (s, a, s′)

∑
a′∈A

π(a′|s′)Qπ(s′, a′)

)

or, in a more compact linear form,

Qπ = R + γPΠπQπ (3)

where R is the |S||A|-entry column vector corresponding to R(s, a), P is the
|S||A| × |S| matrix of P (s, a, s′) values having (s, a) as row index and s′ as
column, while Ππ is a |S| × |S||A| matrix whose entry (s, (s, a)) is π(a|s).

Equation (3) can be seen as a non-homogeneous linear problem with unknown
Qπ

(I − γPΠπ)Qπ = R (4)

or, alternatively, as a fixed-point problem

Qπ = T πQπ, (5)

where T π : x 
→ R + γPΠπx is an affine functional.
If the state set S is finite, then (3-5) are matrix equations and the unknown

Qπ is a vector of size |S||A|.
In order to solve these equations explicitly, a model of the system is required,

i.e., full knowledge of functions P (s, a, s′) and R(s, a). When the system is too
large, or the model is not completely available, approximations in the form of
reinforcement learning come to the rescue. As an example, if a generative model
is available, i.e., a black box that takes state and action in input and produces the
reward and next state as output, one can estimate Qπ(s, a) through rollouts. In
each rollout, the generator is used to simulate action a followed by a sufficiently
long chain of actions dictated by policy π. The process is repeated several times
because of the inherent stochasticity, and averages are calculated.

The above described state-action value function Q, or its approximation, is
instrumental in the basic methods of dynamic programming and reinforcement
learning.

2.3 Policy Iteration

A method to obtain the optimal policy π∗ is to generate an improving sequence
(πi) of policies by building a policy πi+1 upon the value function associated to
policy πi:

πi+1(s) = arg max
a∈A

Qπi(s, a). (6)
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Fig. 1. The Policy Iteration (PI) mechanism

Policy πi+1 is never worse than πi, in the sense that Qπi+1 ≥ Qπi over all
state/action pairs.

In the following, we assume that the optimal policy π∗ exists in the sense
that for all states it attains the minimum of the right-hand side of Bellman’s
equation, see [5] for more details.

The Policy Iteration (PI) method consists on the alternate computation shown
in Fig. 1: given a policy πi, the policy evaluation procedure (also known as the
“Critic”) generates its state-action value function Qπi , or a suitable approxima-
tion. The second step is the policy improvement procedure (the “Actor”), which
computes a new policy by applying (6).

The two steps are repeated until the value function does not change after
iterating, or when the change between consecutive iterations is less than a given
threshold.

2.4 Approximations: Reinforcement Learning and LSPI

To carry out the above discussion by means of exact methods, in particular
using (4) as the Critic component, the system model has to be known in terms
of its transition probability P (s, a, s′) and reward R(s, a) functions. In many
cases this detailed information is not available but we have access to the system
itself or to a simulator. In both cases, we have a black box which given the
current state and the performed action determines the next state and reward. In
both cases, more conveniently with a simulator, several sample trajectories can
be generated, so that more and more information about the system behavior can
be extracted aiming at optimal control.

A brute force approach can be that of estimating the system model functions
R(·, ·, ·) and R(·, ·) by executing a very large series of simulations. The model-free
Reinforcement Learning methodology bypasses the system model and directly
learns the value function.

Assume that the system simulator (the “Model” box in Fig. 1) generates
quadruples in the form

(s, a, r, s′)

where s is the state of the system at a given step, a is the action taken by the
simulator, s′ is the state in which the system falls after the application of a, and
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Variable Scope Description
D In Set of sample vectors {(s, a, r, s′)}
k In Number of basis functions
Φ In Vector of k basis functions
γ In Discount factor
π In Policy
A Local k × k matrix
b Local k-entry column vector
wπ Out k-entry weight vector

1. function LSTDQ ( D, k, Φ, γ, π)
2. A ← 0;
3. b ← 0;
4. for each (s, a, r, s′) ∈ D

5. A ← A + Φ(s, a)
(
Φ(s, a) − γΦ(s′, π(s′))

)T
6. b ← b + rΦ(s, a)
7. wπ ← A−1b

Fig. 2. The LSTDQ algorithm [6]

r is the reward received. In the setting described by this paper, the (s, a) pair is
generated by the simulator.

A viable method to obtain an approximation of the state-action value function
is to approximate it with respect to a functional linear subspace having basis
Φ = (φ1, . . . , φk). The approximation Q̂π ≈ Qπ is in the form

Q̂π = ΦT wπ.

The weights vector wπ is the solution of the linear system Awπ = b, where

A = ΦT (Φ − γPΠπΦ) b = ΦT R. (7)

An approximate version of (7) can be obtained if we assume that a finite set of
samples is provided by the “Model” box of Fig. 1:

D = {(s1, a1, r1, s
′
1), . . . , (sl, al, rl, s

′
l)}.

In this case, matrix A and vector b are “learned” as sums of rank-one elements,
each obtained by a sample tuple:

A =
∑

(s,a,r,s′)∈D
Φ(s, a)

(
Φ(s, a) − γΦ(s′, π(s′))

)T

, b =
∑

(s,a,r,s′)∈D
rΦ(s, a).

These approximations lead to the Least Squares Temporal Difference for Q
(LSTDQ) algorithm proposed in [6], and shown in Figure 2, where the functions
R(s, a) and P (s, a, s′) are supposed to be unknown and are replaced by a finite
sample set D.

Note that the LSTDQ algorithm returns the weight vector that best approx-
imates in the least-squares fixed-point sense (within the spanned subspace and
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Variable Scope Description
D In Set of sample vectors {(s, a, r, s′)}
k In Number of basis functions
Φ In Vector of k basis functions
γ In Discount factor
ε In Weight vector tolerance
w0 In Initial value function weight vector
w′ Local Weight vectors in subsequent iterations
w Out Optimal weight vector

1. function LSPI (D, k, Φ, γ, ε, w0)
2. w′ ← w0;
3. do
4. w ← w′;
5. w′ ← LSTDQ (D, k, Φ, γ, w);
6. while ‖w − w′‖ > ε

Fig. 3. The LSPI algorithm [6]

according to the sample data) the value function of a given policy π. It therefore
acts as the “Critic” component of the Policy Iteration algorithm. The “Actor”
component is straightforward, because it is an application of (6). The policy does
not need to be explicitly represented: if the system is in state s and the current
value function is defined by weight vector w, the best action to take is

a = arg max
a∈A

ΦT w.

The complete LSPI algorithm is given in Fig. 3. Note that, because of the
identification between the weight vector w and the ensuing policy π, the code
assumes that the previously declared function LSTDQ() accepts its last parame-
ter, i.e., the policy π, in form of a weight vector w.

3 Reinforcement Learning for Optimization

Many are the intersections between optimization, Dynamic Programming and
Reinforcement Learning. Approximated versions of DP/RL contain challenging
optimization tasks, let’s mention the maximization operations in determining
the best action when an action value function is available, the optimal choice of
approximation architectures and parameters in neuro-dynamic programming, or
the optimal choice of algorithm details and parameters for a specific RL instance.

This paper, however, goes in the opposite direction: which techniques of RL
can be used to improve heuristic algorithms for a standard optimization task such
as minimizing a function? Interesting summaries of statistical machine learning
for large-scale optimization are present in [7].

An application of RL in the area of local search for solving maxx f(x) is
presented in [8]: the rewards from a local search method π starting from an
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initial configuration x are given by the size of improvements of the best-so-far
value fbest. In detail, the value function V π(x) of configuration x is given by
the expected best value of f seen on a trajectory starting from state x and
following the local search method π. The curse of dimensionality discourages
using directly x for state description: informative features extracted from x are
used to compress the state description to a shorter vector s(x), so that the value
function becomes V π(s(x)).

A second application of RL to local search is to supplement f with a “scor-
ing function” to help in determining the appropriate search option at every
step. For example, different basic moves or entire different neighborhoods can
be applied. RL can in principle make more systematic some of the heuristic ap-
proaches involved in designing appropriate “objective functions” to guide the
search process. An example is the RL approach to job-shop scheduling in [9,10],
where a neural-network based TD(λ) scheduler is demonstrated to outperform
a standard iterative repair (local search) algorithm.

Also, tree-search techniques can profit from ML. It is well known that vari-
able and value ordering heuristics (choosing the right order of variables or values)
can noticeably improve the efficiency of complete search techniques, e.g. for con-
straint satisfaction problems. For example, RLSAT [11] is a DPLL solver for the
Satisfiability (SAT) problem which uses experience from previous executions to
learn how to select appropriate branching heuristics from a library of predefined
possibilities, with the goal of minimizing the total size of the search tree, and
therefore the CPU time. Lagoudakis and Littman [12] extend algorithm selection
for recursive computation, which is formulated as a sequential decision problem.
According to the authors, their work demonstrates that “some degree of rea-
soning, learning, and decision making on top of traditional search algorithms
can improve performance beyond that possible with a fixed set of hand-built
branching rules.”

A different application is suggested in [5] in the context of constructive algo-
rithms, which build a complete solution by selecting value for a component at
a time. Let’s assume that K fixed construction algorithms are available for the
problem. The application consists of combining in the most appropriate manner
the information obtained by the set of construction algorithms in order to fix
the next index and value.

In the context of continuous function optimization, [13] uses RL for replac-
ing a priori defined adaptation rules for the step size in Evolution Strategies
with a reactive scheme which adapt step sizes automatically during the opti-
mization process. The states are characterized only by the success rate after a
fixed number of mutations, the three possible actions consists of increasing (by a
fixed multiplicative amount), decreasing or keeping the current step size. SARSA
learning with various reward functions is considered, including combinations of
the difference between the current function value and the one evaluated at the
last reward computation and the movement in parameter space (the distance
traveled in the last phase). On-the-fly parameter tuning, or on-line calibration
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of parameters for evolutionary algorithms by reinforcement learning (crossover,
mutation, selection operators, population size) is suggested in [14].

4 Reinforcement Learning for Reactive Tabu Search

This paper investigates a novel application of Reinforcement Learning in the
framework of Reactive Tabu Search. An optimization algorithm operates a se-
quence of elementary actions (local moves, e.g., bit flips). The choice of the local
move is driven by many different factors, in particular, most algorithms are para-
metric: their behavior (and their efficiency) depends on the values attributed to
some free parameters, so that different instances of the same problem, and dif-
ferent configurations within the same instance, may require different parameter
values.

This Section describes the proposed application of the LSPI algorithm to
MAX-SAT: the Markov Decision Process (MDP) is described in Sec. 4.1, while
the design of the basis function is described in Sec.4.2.

4.1 The Markov Decision Process Definition

The effect of a parameter change on the algorithm’s behavior can only be evalu-
ated after a significant number of local moves. As a consequence, also for perfor-
mance reasons, algorithm parameters are not changed too often. We therefore
divide the algorithm’s trace into epochs, each composed of a suitable number of
local moves, and to allow parameter changes only between epochs.

If the “state” of the system at the end of an epoch describes the algorithm’s
behavior during the last epoch, and an “action” is the modification of the al-
gorithm’s parameters before it enters the next epoch, then a local search algo-
rithm can be modeled as a Markov Decision Process (MDP) and a Reinforce-
ment Learning method such as LSPI can be used to control the evolution of its
parameters.

The “state” should capture all criteria that we consider useful in order to
decide how to change parameters in a proper way. Given the subdivision of the
Local Search algorithm’s trace into a sequence of epochs (E1, E2, . . . ), we define
the state at the end of epoch Ei as a collection of features extracted from the
algorithm’s execution up to that moment in form of a tuple: s(E1, . . . , Ei) ∈ R

d,
where d is the number of features that form the state. The features can be ad-
equately normalized for better stability of the system. The cardinality of the
action set A and the semantics of its elements changes according to the param-
eters required by the LS technique. Variable Neighborhood Search algorithms
can define one action for each implemented neighborhood, or define just two
actions (to be interpreted, e.g., as “widen” and “reduce”) if the neighborhood
set is ordered. Simulated Annealing, which basically depends on a continuous
parameter T , can define two actions (“increase T ” and “decrease T ”). Likewise,
a Tabu Search algorithm will increase or decrease the prohibition period T .

In this paper we consider a prohibition-based (Tabu) algorithm for the MAX-
SAT problem [15]. It takes in input a CNF SAT instance (i.e., a Boolean formula
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being the conjunction of disjunctive clauses) and each algorithm step simply
flips a variable. In particular, every variable is considered for flipping (i.e., non-
prohibited) only if it hasn’t been changed in the previous T iterations, T being
the prohibition parameter to be controlled. At each iteration, the non-prohibited
variable causing the largest increase in the number of satisfied clauses (or the
lowest decrease, if no increase is possible) is selected for flipping. Ties are broken
randomly. In this paper, T is assumed to take values over the interval [Tmin,Tmax ].

The Reinforcement Learning approach is exploited to adjust the prohibition
parameter during the algorithm execution. Assume n and m the number of
variables and clauses of the input SAT instance, respectively. Let f(x) the score
function counting the number of unsatisfied clauses in the truth assignment x.

Each state of the MDP is created by observing the behavior of the Tabu
search algorithm over an epoch of 2 ∗ Tmax consecutive variable flips. As in a
prohibition mechanism with prohibition parameter T , during the first T steps,
the Hamming distance keeps increasing and only in the subsequent steps it may
decrease, an epoch is long enough to monitor the behavior of the algorithm also
in the case of the largest allowed T value.

In particular, let us define the following:

– xbsf is the “best-so-far” configuration before the current epoch;
– Tf is the current fractional prohibition value (the actual prohibition period

is

T = nTf� (8)

);
– f epoch is the average value of f during the epoch;
– Hepoch is the average Hamming distance during the current epoch from the

configuration at the beginning of the current epoch itself.

These variables have been chosen because of the Reactive Search paradigm’s
concern on the trade-off between diversification (the ability to explore new con-
figurations in the search space by moving away from local minima) and bias
(the preference for configurations with low objective function values), so that
changes in f and the Hamming distance are good representatives of the current
state. Many possible choices based on these considerations have been tested.
Furthermore, for the purpose of addressing uniformly SAT instances with differ-
ent number of variables, the fractional prohibition value Tf is used rather than
the prohibition value T . The compact state representation chosen to describe an
epoch is the following triplet:

s ≡
(

∆f,
Hepoch

n
, Tf

)
, where ∆f =

fepoch − f(xbsf)
m

.

The first component is the mean change of f in the current epoch with respect
to the best value; all components of the state have been normalized.
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The actions set is composed by two choices: A = {increase, decrease}, with
the following effects:

– if a = increase: Tf ← max{Tf · 1.1, Tf + 1/n};
– if a = decrease: Tf ← min{Tf/1.1, Tf − 1/n}.

Changes in Tf are designed in order to ensure variation of at least 1 in the actual
prohibition period T . In addition, Tf is bounded between a minimum and a
maximum value (0 and .2 in our experiments).

The reward signal is given by the normalized change of the best value achieved
in the observed epoch with respect to the “best so far” value before the epoch:
(f(xbsf) − f(xlocalBest))/m.

4.2 Basis Function Definition

Among the various tests that have been executed, in this paper we concentrate
on the following 13-function basis function set:

Φ(s, a) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Iincrease(a) Idecrease(a)
Iincrease(a) · ∆f Idecrease(a) · ∆f
Iincrease(a) · Hepoch Idecrease(a) · Hepoch

Iincrease(a) · Hepoch · ∆f Idecrease(a) · Hepoch · ∆f
Iincrease(a) · (∆f)2 Idecrease(a) · (∆f)2

Iincrease(a) · H
2
epoch Idecrease(a) · H

2
epoch

Tf + Iincrease(a)−Idecrease(a)
n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (9)

where Iincrease and Idecrease are the indicator functions for the two actions (1
if the action is the indicated one, 0 otherwise), discerning the “state-action”
features for the two different actions considered.

5 Experimental Results

In order to test the performance of Reinforcement Learning for on-line parameter
tuning in Reactive Tabu Search (RTS), we have implemented C++ functions for
the Tabu Search method described in Sec. 4.1 and interfaced them to the Matlab
LSPI implementation found in [16].

The experimental work includes the generation of a training set of samples
discussed in Sec. 5.1, the generation of an optimal policy and in the preliminary
comparison with other relevant SLS heuristics for MAX-SAT in Sec. 5.2

5.1 Training Examples Generation

The training examples are created by running the Tabu search algorithm over
selected MAX-3-SAT random instances defined in [17]. In detail, we selected
two (n = 500, m = 5000) instances and 6 different initial prohibition periods
(Tf = .01, .02, .05, .1, .15, .2), and performed 2 runs of the algorithm for each
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Fig. 4. Distribution of training sample states

combination with different randomly chosen starting truth assignments. Every
run has been executed for 50 epochs to generate 50 training examples. The Tf
parameter has been bounded in [0, .2].

Each epoch is composed of 200 consecutive flips, as Tmax = 500 ·0.2 by Eq. 8.
Fig. 4 shows the distribution of examples states, projected onto the ∆f and

the Hepoch state features.

5.2 Optimal Policy and Comparison

The LSPI algorithm has been applied to the training sample set, and with (9)
as approximate space basis. The resulting approximate value function Q̂(s, a)
is shown in Fig. 5 for the two actions, thus defining an approximation to the
optimal policy. Note that the action “increase” is suggested in cases where the
average Hamming distance between the configurations explored in the last epoch
and the last local minimum does not exceed a certain value, provided that the
current portion of landscape is not much worse than the previously explored
regions. This policy is consistent with intuition: a higher value of T causes a
larger differentiation of visited configurations (more different variables need to
be flipped), and this is desired when the algorithm needs to escape the neighbor-
hood of a local minimum; in this case, in fact, movement is limited because the
configuration is trapped at the “bottom of a valley”. On the other hand, when
the trajectory is not within the attraction basin of a minimum, a lower value of
T enables a better exploitation of the neighborhood.

To evaluate our novel MAX-SAT solver based on Reinforcement learning we
report here a comparison with some of the best and famous SLS algorithms for
MAX-SAT. In particular, the following SLS techniques are considered:

– GSAT/Tabu [18], which enriches the GSAT algorithm [19] via a prohibition-
based search criterion;
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– WalkSAT/Tabu [20], that adopts the same score function and the same
variables selection mechanism of the WalkSAT/SKC algorithm [21], com-
plemented by Tabu search;

– AdaptNovelty+ [22], that exploits the concept of variable “age” and uses the
same scoring function of GSAT.

– RSAPS, a reactive version of the Scaling and Probabilistic Smoothing
(SAPS) [23] algorithm, on its turn, an accelerated version of the Exponenti-
ated Subgradient algorithm [24] based on dynamic penalties;

– H RTS ([25]), a prohibition-based algorithm that dynamically adjusts the
prohibition parameter by monitoring the Hamming distance along the search
trajectory.

While in this paper we base our comparisons on the solution quality after a
given number of iterations, we note that the CPU time required by the proposed
algorithm is analogous to that of the basic Tabu Search algorithm, with the
overhead of two floating-point 13-element vector (Eq. 9) products in order to
compute Q̂(s, a) for the two actions.

For each algorithm, 10 runs with different random seeds are performed for
each of the 50 instances taken from the benchmark set described in [17], for a
total of 500 tests. Fig. 6 shows the average results as a function of the number
of iterations (flips), in the case of (n = 500, m = 5000) instances. Among all the
possible values for the prohibition parameter of the WalkSAT/Tabu algorithm,
we plot the case Tf = .01, as with this setting we obtain the best performance
over the considered benchmark. The same for the GSAT/Tabu algorithm, whose
curve is drawn for the optimal Tf value 0.05 over our benchmark set. Fig. 6
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indicates that our RL-based approach is competitive with the other existing
SLS MAX-SAT solvers.

6 Conclusions

This paper described preliminary results on the application of Dynamic Pro-
gramming and Reinforcement Learning techniques to Reactive Search
algorithms. In particular, the dependence of the algorithm on the prohibition
parameter has been modeled as a Markov Decision Process and solved by means
of the LSPI technique, achieving results that are comparable to the best algo-
rithms in the literature.

Possible future improvements include the definition of alternative features
for state description and of different reward functions. The optimal policy is
currently learnt by means of the off-line generation of sample traces on a small
number of instances, and the robustness of the learnt policy with respect to
different problem instances has been tested. Another direction of research will
cover on-line training where the optimal policy is determined by learning while
the target optimization task is performed.

References

1. Battiti, R., Tecchiolli, G.: The reactive tabu search. ORSA Journal on Comput-
ing 6(2), 126–140 (1994)

2. Battiti, R., Brunato, M.: Reactive search: machine learning for memory-based
heuristics. In: Gonzalez, T.F. (ed.) Approximation Algorithms and Metaheuris-
tics, pp. 21–1 – 21–17. Taylor and Francis Books, CRC Press, Washington (2007)



Learning While Optimizing an Unknown Fitness Surface 39

3. Battiti, R., Brunato, M., Mascia, F.: Reactive Search and Intelligent Optimiza-
tion. In: Operations research/Computer Science Interfaces. Springer, Heidelberg
(in press, 2008)

4. Battiti, R.: Machine learning methods for parameter tuning in heuristics. In: 5th
DIMACS Challenge Workshop: Experimental Methodology Day, Rutgers Univer-
sity (October 1996)

5. Bertsekas, D., Tsitsiklis, J.: Neuro-Dynamic Programming. Athena Scientific
(1996)

6. Lagoudakis, M., Parr, R.: Least-Squares Policy Iteration. Journal of Machine
Learning Research 4(6), 1107–1149 (2004)

7. Baluja, S., Barto, A., Boese, K., Boyan, J., Buntine, W., Carson, T., Caruana, R.,
Cook, D., Davies, S., Dean, T., et al.: Statistical Machine Learning for Large-Scale
Optimization. Neural Computing Surveys 3, 1–58 (2000)

8. Boyan, J.A., Moore, A.W.: Learning evaluation functions for global optimization
and boolean satisfability. In: Press, A. (ed.) Proc. of 15th National Conf. on Arti-
ficial Intelligence (AAAI), pp. 3–10 (1998)

9. Zhang, W., Dietterich, T.: A reinforcement learning approach to job-shop schedul-
ing. In: Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, vol. 1114 (1995)

10. Zhang, W., Dietterich, T.: High-performance job-shop scheduling with a time-delay
TD (λ) network. Advances in Neural Information Processing Systems 8, 1024–1030
(1996)

11. Lagoudakis, M., Littman, M.: Learning to select branching rules in the DPLL
procedure for satisfiability. In: LICS 2001 Workshop on Theory and Applications
of Satisfiability Testing, SAT 2001 (2001)

12. Lagoudakis, M., Littman, M.: Algorithm selection using reinforcement learning.
In: Proceedings of the Seventeenth International Conference on Machine Learning,
pp. 511–518 (2000)

13. Muller, S., Schraudolph, N., Koumoutsakos, P.: Step size adaptation in evolution
strategies using reinforcementlearning. In: Proceedings of the 2002 Congress on
Evolutionary Computation, 2002. CEC 2002, vol. 1, pp. 151–156 (2002)

14. Eiben, A., Horvath, M., Kowalczyk, W., Schut, M.: Reinforcement learning for
online control of evolutionary algorithms. In: Brueckner, S.A., Hassas, S., Jelasity,
M., Yamins, D. (eds.) ESOA 2006. LNCS (LNAI), vol. 4335. Springer, Heidelberg
(2007)

15. Battiti, R., Protasi, M.: Approximate algorithms and heuristics for MAX-SAT. In:
Du, D., Pardalos, P. (eds.) Handbook of Combinatorial Optimization, vol. 1, pp.
77–148. Kluwer Academic Publishers, Dordrecht (1998)

16. Lagoudakis, M., Parr, R.: LSPI: Least-squares policy iteration (as of September 1,
2007),http://www.cs.duke.edu/research/AI/LSPI/

17. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of SAT prob-
lems. In: Proceedings of the Tenth National Conference on Artificial Intelligence
(AAAI 1992), San Jose, Ca, pp. 459–465 (July 1992)

18. Steinmann, O., Strohmaier, A., Stutzle, T.: Tabu search vs. random walk. In: KI
- Kunstliche Intelligenz, pp. 337–348 (1997)

19. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfi-
ability problems. In: Proceedings of the Tenth National Conference on Artificial
Intelligence (AAAI 1992), San Jose, Ca, pp. 440–446 (July 1992)

20. McAllester, D., Selman, B., Kautz, H.: Evidence for invariants in local search. In:
Proceedings of the national conference on artificial intelligence (14), pp. 321–326.
John Wiley & sons LTD., USA (1997)

http://www.cs.duke.edu/research/AI/LSPI/


40 R. Battiti, M. Brunato, and P. Campigotto

21. Selman, B., Kautz, H., Cohen, B.: Noise strategies for improving local search. In:
Proceedings of the national conference on artificial intelligence, vol. 12. John Wiley
& sons LTD., USA (1994)

22. Tompkins, D.A.D., Hoos, H.H.: Novelty+ and adaptive novelty+. SAT 2004 Com-
petition Booklet (solver description) (2004)

23. Tompkins, F.H.D., Hoos, H.: Scaling and probabilistic smoothing: Efficient dy-
namic local search for sat. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470,
p. 233. Springer, Heidelberg (2002)

24. Schuurmans, D., Southey, F., Holte, R.: The exponentiated subgradient algorithm
for heuristic boolean programming. In: Proceedings of the international joint con-
ference on artificial intelligence, vol. 17, pp. 334–341. Lawrence Erlbaum associates
LTD., USA (2001)

25. Battiti, R., Protasi, M.: Reactive search, a history-sensitive heuristic for MAX-
SAT. ACM Journal of Experimental Algorithmics 2 (ARTICLE 2) (1997),
http://www.jea.acm.org/

http://www.jea.acm.org/


On Effectively Finding Maximal Quasi-cliques in
Graphs�

Mauro Brunato1, Holger H. Hoos2, and Roberto Battiti1

1 Dipartimento di Ingegneria e Scienza dell’Informazione,
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Abstract. The problem of finding a maximum clique in a graph is pro-
totypical for many clustering and similarity problems; however, in many
real-world scenarios, the classical problem of finding a complete sub-
graph needs to be relaxed to finding an almost complete subgraph, a
so-called quasi-clique. In this work, we demonstrate how two previously
existing definitions of quasi-cliques can be unified and how the resulting,
more general quasi-clique finding problem can be solved by extending
two state-of-the-art stochastic local search algorithms for the classical
maximum clique problem. Preliminary results for these algorithms ap-
plied to both, artificial and real-world problem instances demonstrate
the usefulness of the new quasi-clique definition and the effectiveness of
our algorithms.

1 Introduction

Finding maximum cliques, i.e., largest complete subgraphs, within a given graph
is a well-known NP-hard combinatorial problem that is particularly intractable
because of its non-approximability. However, state-of-the-art heuristic search
methods, in particular stochastic local search algorithms, are typically able to
find maximum or near-maximum cliques surprisingly effectively.

In real-world scenarios, relationships commonly represented by graphs are
often subject to noise, resulting in erroneously missing or added edges. This
motivates generalisations of the maximum clique problem in which the objective
is to find maximum size subgraphs that are almost fully connected — so-called
quasi-cliques.

Definition 1. Given an undirected graph (V, E), and two parameters λ and γ
with 0 ≤ λ ≤ γ ≤ 1, the subgraph induced by a subset of the node set V ′ ⊆ V is
a (λ, γ)-quasi-clique if, and only if, the following two conditions hold:
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∀v ∈ V ′ : degV ′(v) ≥ λ · (|V ′| − 1) (1)

|E′| ≥ γ ·
(

|V ′|
2

)
, (2)

where E′ = E∩(V ′×V ′) and degV ′(v) is the number of elements of V ′ connected
to v.

Note that for λ = γ = 1, classical cliques are obtained; consequently, the problem
of finding a maximum (λ, γ)-quasi-clique for arbitrary λ, γ is at least as hard as
the maximum clique problem.

Condition (1) enforces a lower bound on the degree of each node within the
quasi-clique, while condition (2) poses a lower bound on the overall number of
edges. While both constraints have been previously proposed in the literature,
to the best of our knowledge they have not previously been combined. In this
work we propose this combination and show that by using it, cluster detection
for noisy data (as motivated above) can be improved.

The remainder of this work is organised as follows: Section 2 discusses the
motivation of our research and places it in the context of related work; Section 3
outlines the two maximum clique finding techniques we chose to adapt to our new
problem formulation; Section 4 discusses the modifications that these algorithms
require to operate in the more difficult space of quasi cliques; and Section 5
presents an initial experimental study on graphs that have been constructed to
capture important characteristics of several real-world applications.

2 Context and Related Work

Relevant examples of quasi-clique applications and related clustering approaches
include classifying molecular sequences in genome projects by using a linkage
graph of their pairwise similarities [1], analysis of massive telecommunication
data sets [2], as well as various data mining and graph mining applications, such
as cross-market customer segmentation [3].

Different clustering techniques capable of identifying significant
interconnected sub-structures in the presence of random noise have been used
recently to analyze complex interconnected networks ranging from autonomous
systems in the Internet, protein-protein interaction networks, e-mail and web-of-
trust networks, co-authorship networks, and trade relationships among countries
[4,5,6,7]. In the area of data mining, Du et al. have recently studied techniques
to enumerate all maximal cliques in a complex network [8].

This contribution aims at extending the work done by the authors in efficient
clique algorithms, in particular Reactive Local Search (RLS) and Dynamic Local
Search for Maximum Clique (DLS-MC). Both algorithms are based on stochastic
local search methods. The DLS-MC algorithm for the maximum clique problem
is based on the idea of assigning penalties to nodes that are selected to be part of
a clique [9]. The RLS algorithm uses a reactive mechanism to control the amount
of diversification during the search process by means of prohibitions [10,11]. Both
algorithms are outlined in Sec. 3. The objectives of our work are as follows:
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– To develop efficient and effective heuristic algorithms for the problem of
finding maximum (λ, γ)-quasi-cliques.

– To understand which heuristic components are effective as a function of the
relevant graph parameters.

– To understand the effect of the problem parameters (average and minimum
connectivity requirements) on the empirical run-time of the algorithms and
on the quality of the results they produce.

– To assess the viability of the proposed techniques to discover a wide range
of maximal quasi-cliques. Discovering many comparable solutions is critical
when a quasi-clique detection module is only a first step towards a compact
description of a graph, or when additional requirements or constraints are
given by the user in a later phase to select from a large set of quasi-cliques.

3 Clique Finding Heuristics

This section outlines the two state-of-the-art stochastic local search algorithms
for the maximum clique problem whose extension to quasi-clique finding is de-
scribed later in this paper. A description of the data structures used by both
algorithms precedes their outlines.

3.1 Data Structures for Classical Clique Search

Both, DLS-MC and RLS use two data structures to efficiently compute local
search steps from a current clique, V ′ ⊆ V : the set of nodes Add(V ′) that can
be added to the current clique V ′ (i.e., of nodes in V \ V ′ that are connected
to all nodes in V ′) and the set Miss(V ′) of nodes in V that are connected to all
nodes but one in the current clique V ′, as shown in Fig. 1. Note that Add(V ′) is
called PossibleAdd in the original RLS description, and improving neighbour
set in the DLS-MC paper. The set Miss(V ′) is called OneMissing in RLS and
level neighbour set in DLS-MC. Based on these sets, the following types of search
steps can be efficiently implemented:

– Add one node: Once the node v ∈ Add(V ′) to be added has been chosen,
all elements of Miss(V ′) not connected to v are dropped; elements of Add(V ′)
not connected to v are moved to Miss(V ′).

– Remove one node: All nodes v ∈ V ′ are eligible for removal. Once a node
v to be removed has been chosen, it is added to Add(V ′); furthermore, all
nodes in Miss(V ′) that are not connected to v are promoted to Add(V ′).
The set of nodes from V \ (V ′ ∪Miss(V ′)∪Add(V ′)) that are not connected
to v is then scanned to identify nodes to be added to Miss(V ′).

– Plateau move: A node v ∈ Miss(V ′) is added to the current clique, followed
by the removal of the node v′ ∈ V ′ that is not connected to v; the sets
Add(V ′) and Miss(V ′) are incrementally updated similarly as in the case of
add and remove moves.

All three types of moves result in a clique.
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Miss(V’)

V’

Add(V’)

Fig. 1. Node sets involved in a classical clique search

3.2 Reactive Local Search (RLS)

Reactive Local Search (RLS) [10,11] operates by maintaining the current clique
V ′ and modifying it with two basic moves: node addition and node removal.
The basic diversification mechanism of RLS is based on Tabu Search [12,13]:
every time a node is added to or removed from the current clique, it cannot
be considered for removal or addition (it is prohibited) for the next T moves.
The basic Tabu Search heuristic is complemented by a memory-based reactive
scheme that automatically modifies the parameter T in order to adapt it to the
problem instance. Important details of RLS are as follows:

Choice of the Best Move. At every step, the algorithm looks for a node to
be added to the current clique V ′ among all non-prohibited nodes in Add(V ′). A
node v ∈ Add(V ′) with a maximal number of connections within Add(V ′) (i.e.,
one whose addition to the clique leaves as many candidates as possible in the
next step) is chosen, with ties broken randomly. If no nodes can be added, a non-
prohibited node v ∈ V ′ whose removal results in the largest set Add(V ′ \ {v})
(containing the candidates for addition to be considered in the following step)
is chosen for removal, with ties broken randomly. If all candidates for addition
and removal are prohibited, then a node is removed uniformly at random. In all
cases, the selected node is prohibited for the following T steps.
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Memory Reaction. Different graphs require different degrees of diversification,
so a reactive mechanism is used in RLS to adjust the value of T . All visited
cliques are mapped to the step of their last appearance as current cliques (using
a hash table for fast retrieval). If the current clique has been visited too recently,
the prohibition period T is increased. If a predefined number of steps occur
without any increase of T , meaning that no clique is repeated too early, then T
is decreased.

Restart Mechanism. If the algorithm performs a given number of steps with-
out improving the size of the maximum clique, the search is restarted by resetting
the current clique to an unused node of the graph that is chosen uniformly at
random. If all nodes have already been used at least once, then the random choice
is made from the set of all nodes. All other parameters and data structures are
reset to their initial values (T ← 1, the hash table is emptied).

3.3 Dynamic Local Search for Maximum Clique (DLS-MC)

Dynamic Local Search for Maximum Clique (DLS-MC) [9] uses two basic types
of search steps to modify the current clique V ′: node addition and plateau moves.

The basic diversification mechanism of DLS-MC is based on penalty values
associated with each node. At the beginning of the search process, the current
clique is set to a single node that is uniformly chosen at random and all node
penalties are set to zero. The algorithm then alternates between two search
phases:

– In the expansion phase, which continues as long as Add(V ′) is not empty,
a node from Add(V ′) with minimum penalty is selected (with ties broken
randomly) and added to the current clique;

– In the plateau phase, which continues as long as Add(V ′) is empty and
Miss(V ′) contains at least one node, a node in Miss(V ′) with minimum
penalty is selected for addition, and the node of V ′ not connected to it is
removed from the current clique. Moreover, at the beginning of the plateau
phase, the current clique is recorded (as V ′′), and the phase is terminated
when V ′ ∩ V ′′ = ∅.

In addition, a prohibition mechanism is used to prevent the plateau phase from
cycling through a small set of cliques: once a node is chosen for addition, it
becomes prohibited until the end of the current plateau phase. At the end of the
plateau phase, two actions are taken:

Penalty Update. The penalty values of all nodes in the current clique V ′ are
increased by 1. Additionally, every pd update cycles, all nonzero penalties are
decremented by 1, so that penalties are ‘forgotten’ over time.

Clique Perturbation. If pd = 1 (meaning that every increase in penalties is
immediately cancelled, so that penalties always remain equal to zero), a new
current clique is generated by adding a new node v ∈ V chosen uniformly at
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random and removing from the current clique V ′ all nodes that are not connected
to v. If, on the other hand, pd > 1 (penalties are used), then the current clique
is reduced to the last node that was added to it.

4 Supporting Data Structures for Quasi-clique Search

When adapting DLS-MC and RLS to the quasi-clique setting, more complex sets
of nodes must be maintained in order to support the basic search steps.

The number of edges is always an integer, therefore we can conveniently
rewrite constraints (1) and (2) in order to use integer variables to store clique
bounds:

∀v ∈ V ′ : degV ′(v) ≥ �λ · (|V ′| − 1)� (3)

|E′| ≥
⌈
γ ·
(

|V ′|
2

)⌉
(4)

4.1 Adding One Node

Let us define the set of critical nodes in a (λ, γ)-clique as those nodes whose
degree in V ′ is high enough to justify their presence, but would fail to satisfy
condition (3) if the clique size increased without adding an edge to them:

Crit(V ′) := {v ∈ V ′ : degV ′(v) < �λ · |V ′|�}.

Consider, for example, the case shown in Fig. 2, where V ′ = {1, 5, 6, 7}. It
is easy to verify that V ′ is a (λ, γ)-quasi-clique for λ = γ = 2/3. If, however, a
new node were added to V ′, the degree of nodes 1 and 7 would no longer satisfy
condition (3), unless edges are added to both of them; therefore, Crit(V ′) =
{1, 7}.

The addition of a node should also satisfy the global density constraint (4),
so any new node must contribute at least dV ′ edges to the clique, where

dV ′ :=
⌈
γ ·
(

|V ′| + 1
2

)⌉
− |E′|

is the minimum number of edges that must be added in order to maintain con-
straint (4). In the example from Fig. 2, a new node must contribute at least
d′V = 2 edges. Consequently, a node v ∈ V \ V ′ is eligible for addition to V ′ if
the three following conditions hold:

– v has an adequate degree in V ′ according to (3);
– v has enough edges to nodes in V ′ that as a result of adding it, the edge

density in V ′ ∪ {v} does not fall below threshold (4);
– all critical nodes in V ′ receive at least one more edge when adding v (i.e., v

is connected to all critical nodes).
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Fig. 2. A graph and a (2/3, 2/3)-quasi-clique (shaded nodes)

Based on these conditions, the set of nodes eligible for addition to V ′ is defined
as

Add(V ′) :=
{

v ∈ V \V ′ : degV ′(v) ≥ max{�λ·|V ′|�, dV ′} ∧ {v}×Crit(V ′) ⊆ E

}
.

In the example from Fig. 2, the only eligible node (connected to all critical nodes,
and contributing at least 2 edges) is node 2.

4.2 Removing One Node

To be eligible for removal from a (λ, γ)-clique, a node must not be connected by
an edge to any removal-critical node, where the set of removal-critical nodes is
defined as follows:

RCrit(V ′) := {v ∈ V ′ : degV ′(v) − 1 < �λ · (|V ′| − 2)�}.

By losing an edge, such nodes would no longer satisfy constraint (3) for the
resulting, smaller quasi-clique. In the example from Fig. 2, nodes 1 and 7 are
removal-critical, and therefore nodes connected to them, i.e., 5 and 6, cannot be
removed.

Secondly, if a node has sufficiently high degree in V ′, its removal would cause
the global edge density to fall below threshold (4). The maximum number of
edges that can be removed from quasi-clique V ′ without violating the global
density constraint is

eV ′ := |E′| −
⌈
γ ·
(

|V ′| − 1
2

)⌉
.
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In the example from Fig. 2, up to 3 edges can be removed.
Generally, the set of edges that are eligible for removal is therefore

Rem(V ′) :=
{

v ∈ V ′ :
(
{v} × RCrit(V ′)

)
∩ E = ∅ ∧ degV ′(v) ≤ eV ′

}
.

In the example, only nodes 1 and 7 can be removed, while removing node 5 or 6
would leave nodes 1 and 7 with too small a degree to remain within the clique.

4.3 Plateau Moves

In the classical clique case, a plateau move is a node removal followed by a node
addition, and the clique property is maintained throughout the process. Note
that removals do not maintain the (λ, γ)-clique property in the general case,
but the property could be restored after a node addition; therefore, a plateau
move in the quasi-clique domain must be regarded as atomic with respect to
the quasi-clique constraints. Despite this atomicity from the quasi-clique’s point
of view, the removal and addition operations must be performed sequentially in
one of the two possible orders. In this work, we only consider the “add, then
remove” option; however, the opposite is possible.

We allow a node v ∈ V \ V ′ to be added to the quasi-clique in the context of
a plateau move if, and only if, it is subsequently possible to identify at least one
node in V ′ whose removal would maintain or restore the quasi-clique property.
Considering that a node different from v should be removed, the nodes eligible
for addition only need to be sufficiently well-connected in V ′:

PAdd(V ′) := {v ∈ V \ V ′ : degV ′(v) ≥ λ · (|V ′| − 1)}.

The set of nodes eligible for removal depends on the added node. Note that, in
general, PAddV ′ ⊇ AddV ′ , and once w ∈ PAddV ′ is chosen, V ′ ∪ {w} is not
necessarily a (λ, γ)-clique. In order to select the node to be removed, we define
a plateau-critical set of nodes, depending on V ′ and on w:

PCrit(V ′, w) := {v ∈ V ′ ∪ {w} : degV ′(v) − 1 < λ · (|V ′| − 1) ∧ (v, w) �∈ E}.

This set contains the nodes that would not satisfy the quasi-clique property when
removing an edge, unless they receive an additional edge when node w is added.
Note that w itself may not belong to this set if its degree is not high enough.

When choosing a node to be removed, we must make sure that it is not
connected to a plateau-critical node, and that we don’t remove too many edges
from V ′∪{w}. The maximum number of edges we can afford to lose from V ′∪{w}
in order to guarantee its quasi-clique property is

rV ′,w := |E′| + degV ′(w) − γ ·
(

|V ′|
2

)
.

Considering this, the set of candidates for removal is defined as

PRem(V ′, w) :=
{

v∈V ′ : degV ′∪{w}(v) ≤ rV ′,w ∧ ({v}×PCrit(V ′, w))∩E =∅
}

,
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Fig. 3. Data structures used to support quasi-clique search, instantiated for the quasi-
clique from Fig. 2

and the only nodes that can actually be added to the quasi-clique in the plateau
step are those whose corresponding set of candidates for removal is not empty.

4.4 Support Set Implementation

The previously defined support sets can be maintained efficiently using the
array structures illustrated in Fig. 3. In particular, we make use of an ar-
ray sorted by clique degree, where nodes v ∈ V are sorted by increasing
degV ′(v). Everytime the clique is updated by adding or removing a node, the
V ′’-degree of some nodes will be increased or decreased, and the array must be
modified to reflect the new ordering. In order to perform these changes in time
O(degV ′(v)), where V ′ is the clique before updating and v is the node to be
added, we maintain three additional arrays:

rank in sorted list
the inverse of sorted by clique degree;

first in degree
whose i-th element contains the first index in sorted by clique degree
containing a node with the given degree in the current quasi-clique;

last in degree
whose i-th element contains the last index in sorted by clique degree con-
taining a node with the given degree in the current quasi-clique.

Note that we assume that all arrays are indexed starting from 1, with the ex-
ception of first in degree and last in degree, which are indexed by node
degrees and therefore start from zero.

In general, it is not possible to incrementally maintain Add(V ′) and Rem(V ′)
in the same way as for the classical maximum clique problem. For instance,
AddV ′ is monotonic for greedy clique constructions, while for (λ, γ)-cliques, this
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set can acquire or lose elements at every step. Using the previously mentioned
arrays, however, it is possible to restrict the search of eligible nodes to smaller
sets of candidate nodes. This is effective, since all conditions for node removal or
addition are defined on clique degree ranges; in particular, critical and removal-
critical nodes typically fall into a small range of degrees within the current
quasi-clique, usually just one or two.

5 Experimental Analysis

In the following we demonstrate how by using our new quasi-clique definition,
based on the combined constraint set (1)+(2) with proper non-zero settings of
the local and global density parameter, and our generalised versions of RLS
and DLS-MC, we can effectively find densely connected subgraphs that are not
accessible to classical clique finding approaches.

5.1 Identification of Overlapping Communities

Following the motivating considerations on quasi-clique usage for community
identification, a set of benchmark graphs has been designed and generated in or-
der to capture some fundamental features of communities. The generated graphs
depend on five parameters: the number of nodes N , number of communities G,
intra-community link probability Pin, inter-community link probability Pout and
fraction f of overlap between communities. The last parameter, f , controls the
overlap between communities as follows: If N is the number of nodes in our
graph and G divides N , we define G groups g0, . . . , gG−1 so that groups gi and
gi+1 share f · N/G nodes. To generate such a graph, a random permutation
π : {0, N − 1} 
→ {0, N − 1} is generated. For every node n ∈ {0, . . . , N − 1} and
every group index i ∈ {0, . . . , G − 1}, node n belongs to group gi if and only if

N

G
·
(

i − f

2

)
≤ π(n) <

N

G
·
(

i + 1 +
f

2

)
.

Note that if f = 0 the G groups form a partition of the node set, while if f > 1
overlapping regions extend to non-adjacent groups. Once assignments of nodes
to groups are computed, with the permutation function acting as a “scrambling
factor,” edges are assigned to each pair of nodes according to the number of
groups that they have in common. Let hij represent the number of groups in
common between nodes i and j, then:

Pr((i, j) ∈ E) =

{
Pout if hij = 0
1 − (1 − Pin)hij otherwise.

Figure 4 shows an example with N = 128 nodes, numbered from 1 to 128,
that are distributed in G = 4 communities with overlap factor f = 1/8 (groups
are formed by nodes 1–33, 30–65, 62–97, 94–128). The probability of edge (i, j)
to appear in the graph is Pin = 0.7 if i and j belong to the same community,
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Fig. 4. Adjacency plot of overlapping community graph with nodes sorted by order
of appearance in the identified quasi-cliques according to different values of (λ, γ);
from top left to bottom right: original ordering, (0, 0.4), (0.65, 0) and (0.65, 0.4). Black
crosses represent edges.

Pout = 0.1 otherwise. Node labels are then randomly permuted, so that there is
no longer a correlation between node labels and community membership.

The top left pane of Figure 4 shows the original adjacency matrix: because
of the random permutation, no structure is apparent. Next, we generated a
list of the largest maximal (0.4, 0.65)-quasi-cliques found by a short run of the
quasi-clique extension of RLS. When nodes are sorted in the order in which
they appear in this list (so that nodes contained in the largest quasi-clique are
grouped together, and so on), the resulting adjacency matrix (bottom right pane
of Fig. 4) shows a significant structure: nodes belonging to the same community
are grouped together. The adoption of constraint (2) alone (top right pane of
Fig.4) and of constraint (1) alone (bottom left pane) are not sufficient to correctly
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Fig. 5. Differences between maximum (λ, γ)-quasi-cliques in a noisy version of a co-
authorship graph and the maximum clique in the original graph (for details, see text)

identify the four clusters. We also note that communities cannot be directly
represented by classical cliques.

5.2 Cliques in Noisy Graphs

A second experiment considers noisy versions of graphs, in which edges are re-
moved uniformly at random with some small probability. For appropriate val-
ues of λ and γ, the maximum clique of the original graph should appear as a
(λ, γ)-quasi-clique in the noisy graph. In Figure 5, a co-authorship graph from a
scientific database [4] has been processed by removing each edge with 5% prob-
ability; subsequently, the DLS-MC algorithm for maximum quasi-clique finding
has been executed 10 times for each of many different values of λ and γ. As a
measure of similarity between the maximum quasi-clique found by the algorithm
and the maximum (classical) clique in the original graph, the maximum value
of the Jaccard index over all maximum quasi-cliques found in the 10 runs for
each (λ, γ) has been used. (The Jaccard index of two sets U and V is defined as
J(U, V ) := |U ∩ V |/|U ∪ V |.)

The results of this experiment, shown in Figure 5, indicate that when γ de-
creases, the maximum quasi-clique in the noisy graph becomes increasingly dif-
ferent from the maximum clique in the original graph. On the other hand, a
higher value of λ tends to keep the similarity value higher, while the global con-
straint alone (curve with λ = 0) seems to provide worse results. Note, however,
that the curve for λ = 0.2 is an exception, because it performs worse for lower
values of γ. This behavior is not fully understood yet.
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(a) γ = 0.9, λ = 0.9
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(b) γ = 0.9, λ = 0.5
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(c) γ = 0.9, λ = 0.2
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(d) γ = 0.5, λ = 0.5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100  1000  10000  100000

S
uc

ce
ss

fu
l r

un
s 

(%
)

Time (ms)

RLS
DLS

(e) γ = 0.5, λ = 0.2
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(f) γ = 0.2, λ = 0.2

Fig. 6. Performance comparison between RLS and DLS-MC: percentage of successful
runs vs run-time for finding putative maximum (λ, γ)-quasi-cliques. Notice that the
diagrams have different time scales to accommodate for large variations in performance.

5.3 RLS and DLS-MC Run-Time Comparison

To compare the performance of the previously discussed modifications of RLS
and DLS-MC, we ran both algorithms on a graph representing protein-protein
interaction data for S. cerevisiae (yeast). More specifically, we first determined
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putative maximum (λ, γ)-quasi-clique sizes for various values of λ and γ by per-
forming long (10-minute) runs of each algorithm. Next, we measured empirical
run-time distributions for reaching these target clique sizes based on 200 inde-
pendent runs per algorithm and quasi-clique parameter setting.

Figure 6 shows the resulting cumulative run-time distribution functions for
the two algorithms. As can be seen from these results, for high values of the λ and
γ, i.e., for dense quasi-cliques, DLS-MC appears to outperform RLS, while RLS
appears to perform better on sparse quasi-cliques. The weak performance of DLS-
MC for sparser quasi-cliques seems to be caused by a large number of plateau
moves executed by the algorithm, and is currently being further investigated.

6 Conclusions

In this work, a new definition for quasi-cliques has been introduced which com-
bines and generalises previously proposed quasi-clique definitions. In order to
generalise high-performance stochastic local search algorithms for the maximum
clique problem to the more general problem of finding maximum quasi-cliques,
we have introduced new data structures, using which basic local search steps
(node addition, removal and plateau moves) can be performed efficiently. Pre-
liminary experiments on artificial and real-world graphs have been presented in
order to motivate the adoption of this definition and to demonstrate the effec-
tiveness of our generalised algorithms and their supporting data structures.

In future work, we plan to investigate the effectiveness of our new quasi-
clique algorithms in more depth and for a wider range of graphs. It would also be
interesting to extend further high-performance stochastic local search algorithms
for the maximum clique problem, such as PLS [14], to (λ, γ)-quasi-cliques.
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6. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community
structure of complex networks in nature and society. Nature 435(7043), 814–818
(2005)

7. Everett, M., Borgatti, S.: Analyzing clique overlap. Connections 21(1), 49–61
(1998)

8. Du, N., Wu, B., Xu, L., Wang, B., Pei, X.: A Parallel Algorithm for Enumerating
All Maximal Cliques in Complex Network. In: Sixth IEEE International Conference
on Data Mining Workshops, ICDM Workshops 2006, pp. 320–324 (2006)

9. Pullan, W., Hoos, H.H.: Dynamic local search for the maximum clique problem.
Journal of Artificial Intelligence Research 25, 159–185 (2006)

10. Battiti, R., Protasi, M.: Reactive local search for the maximum clique problem.
Algorithmica 29(4), 610–637 (2001)

11. Battiti, R., Mascia, F.: Reactive local search for maximum clique: a new imple-
mentation. Technical Report DIT-07-018, University of Trento (2007)

12. Glover, F.: Tabu search - part i. ORSA Journal on Computing 1(3), 190–260 (1989)
13. Glover, F.: Tabu search - part ii. ORSA Journal on Computing 2(1), 4–32 (1990)
14. Pullan, W.: Phased local search for the maximum clique problem. Journal of Com-

binatorial Optimization 12(3), 303–323 (2006)



Improving the Exploration Strategy in Bandit
Algorithms

Olivier Caelen and Gianluca Bontempi

Machine Learning Group, Département d’Informatique,
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Bruxelles, Belgium

Abstract. The K-armed bandit problem is a formalization of the explo-
ration versus exploitation dilemma, a well-known issue in stochastic opti-
mization tasks. In a K-armed bandit problem, a player is confronted with
a gambling machine with K arms where each arm is associated to an un-
known gain distribution and the goal is to maximize the sum of the rewards
(or minimize the sum of losses). Several approaches have been proposed in
literature to deal with the K-armed bandit problem. Most of them com-
bine a greedy exploitation strategy with a random exploratory phase. This
paper focuses on the improvement of the exploration step by having re-
course to the notion of probability of correct selection (PCS), a well-known
notion in the simulation literature yet overlooked in the optimization do-
main. The rationale of our approach is to perform at each exploration step
the arm sampling which maximizes the probability of selecting the opti-
mal arm (i.e. the PCS) at the following step. This strategy is implemented
by a bandit algorithm, called ε-PCSgreedy, which integrates the PCS ex-
ploration approach with the classical ε-greedy schema. A set of numerical
experiments on artificial and real datasets shows that a more effective ex-
ploration may improve the performance of the entire bandit strategy.

1 Introduction

In many real world problems, a decision maker must take decisions in order
to maximize some cost function (e.g. the sum of a sequence of rewards). This
task is not trivial if the knowledge about the state of the environment is either
partial or uncertain. In this context it might be convenient to perform decisions
or actions whose goal is not to maximize the reward but rather to reduce the
degree of uncertainty.

An example of such a situation is the design of clinical trials [6] for comparing
a set of new medical treatments. Here, the goal is to determine the best treat-
ment while minimizing the patients’ nuisance. Another example is the economic
problem of selecting the best supplier on the basis of incomplete information [2].
The main issue in these two examples is how to trade immediate reward based on
the acquired knowledge (exploitation) with the probability of gaining additional
insight by performing a suboptimal action (exploration).

The K-armed bandit problem is an instance of this general problem in which
a casino player has to decide which arm of a K-slot machine to pull to maximize

V. Maniezzo, R. Battiti, and J.-P. Watson (Eds.): LION 2007 II, LNCS 5313, pp. 56–68, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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the total reward in a series of trials. The player has to define a sequential selec-
tion strategy to choose the arms that must be selected. If the player keeps an
updated estimate of the arms gains and at each step greedily choices the arm
which on average performed the best so far, then we say that the player adopts
a pure exploitation strategy. This means that she uses her current knowledge
for selecting the apparently best arms without reserving any time to explore
apparently inferior arms. A possible alternative to a pure exploitation strategy
consists in preserving a fraction of the time (e.g. quantified by a parameter ε) for
performing random uniform selection. This strategy is called ε-greedy [11] and
belongs to the family of semi-uniform strategies [13]. A semi-uniform strategy is
characterized by the alternation of two working modes, an exploration mode and
an exploitation mode. As far as the exploration is concerned, the semi-uniform
ε-greedy strategy relies on random choice. In this paper, we advocate that ran-
domly selecting an arm is suboptimal for the exploration. As an alternative we
propose to adopt the Probability of Correct Selection (PCS) measure to assess
the gain, in term of subsequent exploitation, that could derive from an explo-
ration action. The idea is that an effective exploration step should lead to the
largest increase of the probability PCS of correctly selecting the best arm. This
means that the exploration action should be the one that maximizes the proba-
bility of the consequent selection step. The notion of PCS has been proposed in
the Monte Carlo simulation literature in relation to the problem of comparing
alternatives by simulation [9,8]. In that case the issue is to decide how many
simulation trials should be conducted if we want to have a certain guarantee
that the correct selection will be accomplished. Here, we use the PCS notion as
a founding principle of a sequential strategy and as a measure of the effective-
ness of an exploration step. This paper proposes a formalization of the notion
of optimal exploration on the basis of PCS and an algorithm which uses it to
implement a semi-uniform strategy.

Note however that the computation of the PCS quantity requires the entire
knowledge of the probability distribution of the K arms and the computation of
a multivariate integral. Unlike the simulation literature where the PCS term is
analytically upper bounded, we propose here a data-driven strategy to estimate
the PCS term on the basis of the collected data. In particular our approach has
three main characteristics: (i) it makes an hypothesis of normal distributions
of the arm rewards, (ii) it adopts a plug-in approach where the mean vector
and the covariance matrix are replaced by their sampled counterparts, (iii) it
uses a numerical integration algorithm for deriving the PCS from the associated
multivariate normal distribution.

This paper is structured as follows: Section 2 formalizes the multi-armed ban-
dit problem. Section 3 presents some state-of-the-art algorithms which will be
used for benchmarking our technique. Section 4 introduces the PCS notion while
Section 5 presents the ε-PCS greedy algorithm which uses the notion of PCS to
enhance the exploration step. The experimental results on artificial and real
datasets are shown and discussed in Section 6. Possible extensions of the ap-
proach are suggested in Section 7.
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2 The K-Armed Bandit Problem

The K-armed bandit problem is defined by a set of K random variables z# =
{z1, z2, . . . , zK} whose distribution is unknown and where zk represents the ob-
served reward of the kth arm. Let µ# = {µ1, µ2, . . . , µK} be the (unknown)
mean vector where µ1 = maxµ# and σ# be the associated variance vector. Let
us consider a sequential setting where at the lth step (or round) we first decide
which variable to sample and then we collect the associated realization zl

k (or
reward). The objective is to maximize the sum of the collected rewards after H
rounds via a sequential strategy algorithm that chooses the next random variable
on the basis of the past rounds and the associated rewards.

An effective strategy is expected to solve the well-known exploration versus
exploitation trade-off [7]. On one hand, since the parameters of the distributions
in z# are unknown the strategy should perform a large number of tests on each
random variable (exploration) in order to improve the estimation of the rewards.
On the other hand, since the goal is to maximize the sum of the rewards, the
strategy should privilege the tests on the best observed variables (exploitation).

The bandit regret ρH
B of the strategy after H rounds is defined as the difference

between the sum of the rewards associated to an optimal strategy and the sum
of the collected rewards [13,1],

ρH
B = H · µ1 −

K∑
k=1

nH
k · µk (1)

where µ1 = maxk {µk} is the mean associated to the best r.v. and nH
k is the

number of tests made on zk after H rounds. Note that according to this for-
mulation the problem of maximizing the reward is transformed into the dual
problem of minimizing the regret.

A sequential strategy where the regret per round tends to zero for any bandit
problem and when the horizon tends to infinity

(
limH→∞

ρH
B

H = 0
)

is a zero-
regret strategy [13]. Intuitively, zero-regret strategies are guaranteed to converge
to an optimal (not necessarily unique) bandit strategy if enough rounds are
played.

3 State-of-the-Art Approaches

3.1 The ε-Greedy Algorithm

The ε-greedy algorithm [11] is probably the simplest yet the most used strategy
in bandit problems. At the lth step the algorithm either chooses a random arm
with probability ε ∈ [0, 1] or chooses the arm with the highest sample average µ̂l

k.
The parameter ε is set by the user and represents the exploration/exploitation
ratio. If ε is equal to 0, the algorithm will always play the estimated best arm.
On the other hand, if ε equals 1, the algorithm keeps on exploring the alternative
arms without taking the collected rewards into account. Note that this approach,
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Algorithm 1. The ε-greedy algorithm
1: z1,2

k ← play arm k twice; ∀k ∈ [1, K]
2: nk ← 2; ∀k ∈ [1, K]
3: for l = (2K + 1) to H do
4: e ← U [0, 1] uniform sampling
5: if e < ε then
6: k ← randomly select an arm
7: else
8: k ← arg maxk µ̂l

k

9: end if
10: nl+1

k ← nl
k + 1

11: nl+1
i ← nl

i ∀i ∈ [1, K]/k

12: z
nl+1

k
k ← play arm k

13: end for

though naive, is known to be hard to beat [13]. Also, because of the non zero ε
term, it is not a zero-regret strategy. A pseudo-code of the algorithm follows.

As far as the initialization is concerned (lines 1-2), we will assume that an
initialization matrix z containing two rewards for each arm is available. The
same initialization step will be applied to all the following algorithms. For the
remaining H − 2K steps, the algorithm samples in a uniform way e (line 4)
and decides the action accordingly. If e is smaller than ε, it tests randomly an
arm (line 6), otherwise it tests the current best arm (line 8).

3.2 The Interval Estimation Algorithm

The Interval Estimation algorithm was first proposed by Kaelbling et al. in [7].
This algorithm consists in (i) computing the upper-bound UB[µ̂l

k] of the 100(1−
Θ)% confidence interval of the estimate µ̂l

k, where Θ ∈ [0, 1] and (ii) selecting the
arm with the highest UB[µ̂l

k]. If we assume that zk follows a normal probability
distribution (mean µk and standard deviation σk unknown) then

UB[µ̂l
k] = µ̂l

k + t1−Θ/2
σ̂l

k√
nl

k

(2)

where t1−Θ/2 is the Student’s t-function at confidence level 1−Θ/2 with (nl
k −1)

degrees of freedom,

µ̂l
k =

1
nl

k

nl
k∑

i=1

zi
k, σ̂l

k =

√√√√ 1
nl

k − 1

nl
k∑

i=1

(
zi

k − µ̂l
k

)2
(3)

and the set
{
z1

k, . . . , znl
k

k

}
contains all the realizations of zk from step 1 to step l.
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Algorithm 2. The Interval Estimation algorithm
1: z1,2

k ← play arm k twice; ∀k ∈ [1, K]
2: nk ← 2; ∀k ∈ [1, K]
3: for l = (2K + 1) to H do
4: for k = 1 to K do
5: µ̂l

k ← average(zk)
6: σ̂l

k ← standard deviation(zk)
7: UB[µ̂l

k] ← µ̂l
k + σ̂l

k · t1−Θ/2√
nl

k

8: end for
9: k ← arg maxk UB[µ̂l

k]
10: nl+1

k ← nl
k + 1

11: nl+1
i ← nl

i ∀i ∈ [1, K]/k

12: z
nl+1

k
k ← play arm k

13: end for

The rationale of the Interval Estimation algorithm is that infrequently ob-
served arms will have an higher upper-bound and consequently an higher proba-
bility of being explored. At the same time, the more an arm is tested, the closer
its upper-bound will be to the true mean.

After the initialization phase, at each step the IE algorithm (i) uses (2) to asso-
ciate an upper-bound to each alternative (line 7) (ii) chooses the arm maximizing
UB[µ̂l

k] (line 9) and (iii) updates the set of observed statistics (line 10 to 12).

3.3 The Gittins Index Algorithm

Gittins [5] proposed to solve the bandit problem as a dynamic programming
problem [3]. If the rewards of the arms follow a normal probability distribution
(unknown mean and standard deviation) the solution of the dynamic program-
ming problem at the l step is the arm which maximizes the Gittins index

vk = µ̂l
k + σ̂l

k · vg

(
nl

k, D
)

(4)

where vg

(
nl

k, D
)

is the Gittins index for a standard zk (zero mean and unity
variance) and D (0 < D < 1) is a discount factor. The values of vg

(
nl

k, D
)

have
been tabulated by Gittins in his book [5] and can be derived numerically.

The Gittins algorithm returns the optimal solution in the case of an infinite
temporal discount factor problem. However, if we want to consider time finite
problems, a modification of the Gittins algorithm is required. In [10] the authors
proposed the following heuristic

D =
H − 1

H
(5)

to make the infinite time solution compliant with a finite time task. The rationale
is that, if a system with a discount factor D receives, at every step, a reward z,
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then the total reward will be z/(1 − D). Thus its total reward will be the same
as if there is no infinite temporal and it stops after 1/(1 − D) loops.

The Gittins algorithm pseudocode follows:

Algorithm 3. The Gittins index algorithm
1: z1,2

k ← play arm k twice; ∀k ∈ [1, K]
2: nk ← 2; ∀k ∈ [1, K]
3: for l = (2K + 1) to H do
4: for k = 1 to K do
5: µ̂l

k ← average(zk)
6: σ̂l

k ← standard deviation(zk)
7: vk ← µ̂l

k + σ̂l
k · vg

(
nl

k, D
)

8: end for
9: k ← arg maxk vk

10: nl+1
k ← nl

k + 1
11: nl+1

i ← nl
i ∀i ∈ [1, K]/k

12: z
nl+1

k
k ← play arm k

13: end for

After the initialization (lines 1 and 2), the algorithm computes the Gittins
index for each alternative arm (line 7) and then selects the one with the highest
value (line 9).

4 The Probability of Correct Selection

The probability of correct selection (PCS) [9,8] at the lth step is the probability
that a (ε = 0)-greedy algorithm will select the best arm (i.e. the arm one in our
notation)

PCSl = P

(
arg max

k∈[1...K]
{µk} = arg max

k∈[1...K]

{
µ̂l

k

})
(6)

= P
(

µ̂l
1 > µ̂l

2 , µ̂l
1 > µ̂l

3 , . . . , µ̂l
1 > µ̂l

K

)
(7)

= P
(

µ̂l
1 − µ̂l

2 > 0 , µ̂l
1 − µ̂l

3 > 0 , . . . , µ̂l
1 − µ̂l

K > 0
)

(8)

= P ( r̂2 > 0 , r̂3 > 0 , . . . , r̂K > 0 ) (9)

where r̂k = µ̂l
1 − µ̂l

k.
Under the assumption of Gaussianity the vector (r̂2, . . . , r̂K)T is a multivariate

normal random variable with mean vector Γ and covariance matrix Σ⎛⎜⎜⎜⎝
r̂2
r̂3
...

r̂K

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
µ̂l

1 − µ̂l
2

µ̂l
1 − µ̂l

3
...

µ̂l
1 − µ̂l

K

⎞⎟⎟⎟⎠ ∼ N [Γ, Σ] (10)
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where

Γ =

⎛⎜⎜⎜⎝
µ1 − µ2
µ1 − µ3

...
µ1 − µK

⎞⎟⎟⎟⎠ and Σ =

⎛⎜⎜⎜⎝
σr̂2,r̂2 σr̂2,r̂3 · · · σr̂2,r̂K

σr̂3,r̂2 σr̂3,r̂3 · · · σr̂3,r̂K

...
...

. . .
...

σr̂K ,r̂2 σr̂K ,r̂3 · · · σr̂K ,r̂K

⎞⎟⎟⎟⎠ (11)

and where since cov[µ̂l
i, µ̂

l
j ] = 0 for i �= j

σr̂j ,r̂j
= Var

(
µ̂l

1 − µ̂l
j

)
=

σ2
1

nl
1

+
σ2

j

nl
j

(12)

σr̂i,r̂j
= σr̂j ,r̂i

= cov
[
µ̂l

1 − µ̂l
i, µ̂

l
1 − µ̂l

j

]
= E

[
(µ̂l

1)
2
]

− µ2
1 =

σ2
1

nl
1

(13)

4.1 The PCS Exploration Strategy

Consider a set of K random variables where the means µk and the standard de-
viations σk are known and where the vector nl

# =
{
nl

1, n
l
2, . . . , n

l
K

}
contains the

number of tests done up to the lth step. We define the exploration PCSstrategy
as follows

Algorithm 4. PCSstrategy(µ#, σ#, n#, K)
1: for k = 1 to K do
2: nl+1

# =
{
nl

1, . . . , n
l
k + 1, . . . , nl

K

}
3: PCSl+1

k ← computePCS (µ#, σ#, nl+1
# , K)

4: end for
5: bestK = arg max PCSl+1

k

where the function computePCS computes the quantity (6). Several techniques
have been proposed in literature to compute a multivariate normal integral [12].
In our algorithm we adopt the numerical method proposed by Genz [4].

Note that, so far, we have assumed that the means in µ# and the standard
deviations in σ# are known. This is of course an unrealistic assumption that will
be relaxed in the following section.

The PCS exploration strategy simulates a sampling for each alternative zk

by increasing the number of tests nl
k made on this alternative (line 2) and then

computes the corresponding PCSl+1
k (line 3). This quantity returns a guess of

the probability of correct selection of a greedy strategy at the l + 1step if the
exploration step samples the kth arm. The best candidate for exploration is then
the arm which has the highest PCSl+1

k .
In the following we present a simplified version of the PCS strategy when K =

2, i.e. the set z# = {z1, z2} contains only two random variables. According to the
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Fig. 1. If K=2, the probability of correct selection (PCS) is the surface under the
Gaussian when the abscissa takes his value in the set [0, +∞]

PCSstrategy, the best candidate for exploration is the arm which maximizes
the quantity

PCSl+1 = P
(

µ̂l+1
1 > µ̂l+1

2

)
(14)

= P
(

µ̂l+1
1 − µ̂l+1

2 > 0
)

(15)

where, because of the Gaussian assumption

µ̂l+1
1 − µ̂l+1

2 ∼ N
(

µ1 − µ2,
σ2

1

nl+1
1

+
σ2

2

nl+1
2

)
(16)

The distribution of µ̂l+1
1 − µ̂l+1

2 is shown in Figure 1. This figure shows that in
order to maximize the probability of correct selection at the l + 1 step, we have
to minimize the variance of µ̂l+1

1 − µ̂l+1
2 .

Var
(
µ̂l+1

1 − µ̂l+1
2

)
=

σ2
1

nl+1
1

+
σ2

2

nl+1
2

(17)

Let VarT1
(
µ̂l+1

1 − µ̂l+1
2

)
be the variance at step (l + 1) if z1 is tested and

VarT2

(
µ̂l+1

1 − µ̂l+1
2

)
the variance at step (l + 1) if z2 is tested. Let us define

∆VarT as the difference between the two variances at step (l + 1).

∆VarT = VarT1

(
µ̂l+1

1 − µ̂l+1
2

)
− VarT2

(
µ̂l+1

1 − µ̂l+1
2

)
(18)

=
σ2

1

nl
1 + 1

+
σ2

2

nl
2

− σ2
1

nl
1

− σ2
2

nl
2 + 1

(19)

=
n∆

d∆
(20)
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where

n∆ = nl
2n

l
1
(
nl

2 + 1
)
σ2

1 +
(
nl

1 + 1
)
nl

1
(
nl

2 + 1
)
σ2

2 (21)

−
(
nl

1 + 1
)
nl

2
(
nl

2 + 1
)
σ2

1 −
(
nl

1 + 1
)
nl

2n
l
1σ

2
2 (22)

= nl
1
(
σ2

2 − σ2
1
) (

nl
1 + 1

)
+ σ2

1
(
nl

1 − nl
2
) (

nl
1 + nl

2 + 1
)

(23)

d∆ =
(
nl

1 + 1
)
nl

2n
l
1
(
nl

2 + 1
)

(24)

Since d∆ is positive and the goal of the PCSstrategy is to minimize the variance
at l + 1 the resulting strategy for the exploration step is⎧⎨⎩

if n∆ < 0 then explore z1
if n∆ > 0 then explore z2
if n∆ = 0 then explore either z1 or z2.

5 The ε-PCSgreedy Algorithm

This section introduces an ε-greedy bandit algorithm which integrates the
PCSstrategy (Algorithm 4) in order to perform the exploration step. An ε-
greedy algorithm randomly alternates an exploitation phase (selecting the cur-
rent best arm for the test) with an exploration phase (randomly selecting an arm
for the test). In the previous section we have shown that a better than random
exploration can be performed by adopting a PCSstrategy if the distribution
of each arm reward is known. Since, by definition, these distributions are un-
known we propose a plug-in strategy to perform a PCSstrategy in a real setting.
This means that the vectors µ# and σ# are replaced by their plug-in estimators
µ̂# and σ̂#. The resulting algorithm, called ε-PCSgreedy is described by the fol-
lowing pseudo-code Note how this algorithm differentiates from the conventional

Algorithm 5. The ε-PCSgreedy algorithm
1: z1,2

k ← play arm k twice; ∀k ∈ [1, K]
2: nk ← 2; ∀k ∈ [1, K]
3: for l = (2K + 1) to H do
4: e ← U [0, 1]
5: if e < ε then
6: for k = 1 to K do
7: µ̂l

k ← average(zk)
8: σ̂l

k ← standard deviation(zk)
9: end for

10: k ← PCSstrategy(µ̂l
#, σ̂l

#, nl
#, K)

11: else
12: k ← arg maxk(µ̂l

k)
13: end if
14: nl+1

k ← nl
k + 1

15: nl+1
i ← nl

i ∀i ∈ [1, K]/k

16: z
nl+1

k
k ← play arm k

17: end for
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ε-greedy only for what concerns the exploration step, while the exploitation step
is the same.

5.1 ε-PCSgreedy Is Not a Zero-Regret Strategy

A zero-regret strategy is a strategy where the regret per round tends to zero
when the horizon tends to infinity [13] :

ρH
B

H
−−−−→
H→∞

0 ⇔ (25)

H · µ1 −
∑K

k=1 nH
k · µk

H
−−−−→
H→∞

0 ⇔ (26)

µ1 − nH
1 · µ1

H
−
∑K

k=2 nH
k · µk

H
−−−−→
H→∞

0 (27)

⇒

⎧⎨⎩
nH

1
H −−−−→

H→∞
1

nH
k

H −−−−→
H→∞

0 ∀k ∈ [2, . . . , K]
(28)

A zero-regret strategy is thus a strategy which bounds the number of tests on
suboptimal arms asymptotically. A simple reasoning by contradiction shows that
ε-PCSgreedy is not a zero-regret strategy for a fixed ε. According to eq. (11), for
a given µ# and σ#, the PCS covariance matrix Σ is

Σ =

⎛⎜⎜⎜⎜⎜⎝
σ2
1

n1
+ σ2

2
n2

σ2
1

n1
· · · σ2

1
n1

σ2
1

n1

σ2
1

n1
+ σ2

3
n3

· · · σ2
1

n1
...

...
. . .

...
σ2
1

n1

σ2
1

n1
· · · σ2

1
n1

+ σ2
K

nK

⎞⎟⎟⎟⎟⎟⎠ (29)

If the number of tests on the best arm tends to infinity, the matrix Σ tends
to the diagonal matrix :

Σ −−−−→
n1→∞ Σ∞ =

⎛⎜⎜⎜⎜⎜⎝
σ2
2

n2
0 · · · 0

0 σ2
3

n3
· · · 0

...
...

. . .
...

0 0 · · · σ2
K

nK

⎞⎟⎟⎟⎟⎟⎠ (30)

Thus there exists an N such that ∀k ∈ [2, . . . , K] , PCSN
1 < PCSN

k . In this
situation, PCSstrategy will not select the best arm during the exploration step.

Notwithstanding, the strategy like the one proposed in [1] (ε goes to zero with
a certain rate εl =min

{
1, cK

d2l

}
, where c > 0 and 0 < d ≤ minj∈[2,...,K] {µ1 − µj})

could be employed to make PCSstrategy zero-regret.
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6 Bandit Experiments

This section assesses the performance of the ε-PCSgreedy algorithm by bench-
marking it against the state-of-the-art approaches discussed in Section 3. Six
bandit methods are tested : two ε-greedy instances (ε = 0.05 and ε = 0.10),
two ε-PCSgreedy instances (ε = 0.05 and ε = 0.10), the Gittins method and the
Interval Estimation (IE) (Θ = 0.05) method. We consider four test problems:
the first two are based on synthetically generated datasets, the others on a real
networking dataset.

The two synthetic benchmarks have an horizon H = 1000 and are called
10-armed tasks and 15-armed tasks, respectively. Each synthetic benchmark is
made of 1000 randomly generated K-armed bandit tasks obtained by uniformly
sampling the means (µk ∼ U [0, 1]) and the standard deviations (σk ∼ U [0, 2]).
For each task the rewards are normally distributed (zk ∼ N(µk, σk)). The per-
formance of a bandit algorithm on these tasks is obtained by averaging over the
ensemble of the tasks.

The two real benchmarks are based on a sequential task described in [13]. In
this task an agent wants to recover data through different network sources. At
each step, the agent selects one source and waits until the data is received. The
goal of the agent is to minimize the sum of the waiting time for the successive tests.
In order to simulate the delay, a dataset was built by accessing the home pages of
700 universities (every 10 minutes for about 10 days) and storing the time delay
(in milliseconds)1. If we interpret this task as a bandit problem, each university
home page plays the role of an arm and each delay the role of (negative) reward.
In our experiments in order to generate a sufficient number of problem instances,
we randomly selected 1000 times K = 10 or K = 20 universities and computed
the performance of the methods over an horizon of H = 500 tests. The resulting
bandit benchmarks are denoted 10-Univer tasks and 20-Univer tasks.

Table 1 and 2 report the regrets (to be minimized) obtained for the four
datasets by the six methods with different values of H . Table 1 refers to the
results in the synthetic tasks while Table 2 refers to the real networking task.

In both tables the first column indicates the horizon H while the other columns
indicate the average regret of the six considered methods. The last row, called
”mean”, reports the regret of the methods averaged over all the horizons. A
paired t-test is used to compare the average regret of the ε-greedy instances with
the respective ε PCS-greedy alternative having the same ε value. A boldface font
is used to denote the reward when the p-value of the t-test is smaller than 0.05.

The results show that the ε-PCSgreedy strategies significantly outperforms
their ε-greedy counterparts 9 times out of 20 in the synthetic tasks and 12 times
out of 20 in the real tasks, while the contrary never happens. As expected, the
improvement is more evident in the case of the largest ε since in this case the
enhanced exploration strategy has a bigger probability to show its added value.

As far as the other techniques are considered they appear to be largely less
effective than the ε-greedy approaches.

1 The dataset can be downloaded from http://sourceforge.net/projects/bandit

http://sourceforge.net/projects/bandit
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Table 1.

10-armed tasks
H ε-greedy.05 PCSgreedy.05 ε-greedy.1 PCSgreedy.1 Gittins IE.05
200 21.50 21.28 24.01 23.71 38.07 36.19
400 39.49 38.61 44.1 42.75 52.42 53.37
600 56.06 54.59 62.21 59.47 60.70 64.44
800 71.22 69.37 78.93 74.71 66.78 72.77
1000 85.20 83.16 94.59 89.14 71.69 79.44
mean 54.69 53.40 60.77 57.96 57.93 61.24

15-armed tasks
H ε-greedy.05 PCSgreedy.05 ε-greedy.1 PCSgreedy.1 Gittins IE.05
200 21.81 21.78 24.95 24.90 48.14 44.82
400 38.97 38.75 45.61 44.44 72.16 70.70
600 54.53 54.01 64.46 62.15 85.14 87.55
800 69.31 68.25 82.16 78.38 94.13 100.08
1000 83.47 81.64 98.9 93.53 100.79 109.71
mean 53.62 52.89 63.22 60.68 80.07 82.57

Table 2.

10-Univer tasks
H ε-greedy.05 PCSgreedy.05 ε-greedy.1 PCSgreedy.1 Gittins IE.05
100 7080 6781 9147 8298 20618 17892
200 15310 14424 20198 17852 27749 26700
300 22978 23124 31426 28289 33219 33660
400 30914 30642 42963 38300 38166 39164
500 38583 37220 53658 46551 43219 43747
mean 22973 22438 31479 27858 32594 32232

20-Univer tasks
H ε-greedy.05 PCSgreedy.05 ε-greedy.1 PCSgreedy.1 Gittins IE.05
100 5516 4763 7032 5977 31294 23675
200 12650 11107 17168 14806 43566 38457
300 20055 18472 27866 24485 51505 48273
400 27394 25832 38798 34019 58691 57063
500 34551 33280 49438 43300 65551 64581
mean 20033 18691 28060 24518 50122 46410

7 Conclusion and Future Works

The paper contribution is a new exploration strategy for ε-greedy algorithms to
solve the bandit problem. The approach is based on the notion of PCS, borrowed
from the Monte Carlo simulation literature on the best selection problem in a
stochastic environment. We used this notion to propose an improved version of
the classic ε-greedy algorithm where the uniform random exploration phase is
replaced by a PCS informed strategy. Future works will focus on three major
extensions of the approach: a non-parametric version of the PCS strategy to
remove the Gaussian assumption, the use of a confidence interval on the PCS
estimation to take into account the uncertainty related to the plug-in approach
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and the use of a PCS based criterion to tune the value of ε to the problem under
examination.
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Abstract. This paper presents a study conducted on the minimum
number of open stacks problem (MOSP) which occurs in various produc-
tion environments where an efficient simultaneous utilization of resources
(stacks) is needed to achieve a set of tasks. We investigate through this
problem how classical look-back reasonings based on explanations could
be used to prune the search space and design a new solving technique. Ex-
planations have often been used to design intelligent backtracking mecha-
nisms in Constraint Programming whereas their use in nogood recording
schemes has been less investigated. In this paper, we introduce a gener-
alized nogood (embedding explanation mechanisms) for the MOSP that
leads to a new solving technique and can provide explanations.

1 The Minimum Number of Open Stacks Problem

The Minimum number of Open Stacks Problem (MOSP) has been recently used
to support the IJCAI 2005 constraint modeling challenge [14]. This scheduling
problem involves a set of products and a set of customer’s orders. Each order
requires a specific subset of the products to be completed and sent to the cus-
tomer. Once an order is started (i.e. its first product is being made) a stack
is created for that order. At that time, the order is said to be open. When all
products that an order requires have been produced, the stack/order is closed.
Because of limited space in the production area, the maximum number of stacks
that are used simultaneously, i.e. the number of customer orders that are in
simultaneous production, should be minimized.

Therefore, a solution for the MOSP is a total ordering of the products describ-
ing the production sequence that minimizes the set of simultaneously opened
stacks. This problem is known to be NP-hard and is related to well known graph
problems such as the minimum path-width or the vertex separation problems.
Moreover, it arises in many real life problems as packing, cutting or VLSI design.
Table 1 gives an example instance of this problem.

V. Maniezzo, R. Battiti, and J.-P. Watson (Eds.): LION 2007 II, LNCS 5313, pp. 69–80, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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The explanations provided in this paper for the MOSP are related to the
removal explanations of Ginsberg which are the basis of dynamic backracking
[4]. It does not provide natural language explanations for a user but is intended
to improve the search by avoiding redundant computation. Indeed by carefully
explaining why a failure occur, one can avoid a number of other failures that
would occur for the same reason. It provides at the same time a justification
of optimality for an expert. In the case of the MOSP we propose to define an
explanation as a subset of products that would account for the minimal number
of open orders. As long as those products are processed, a planner knows that
there is no way to reduce the minimum number of simultaneous stacks needed.
In other words, it provides insights about the bottleneck in the optimal planning.

The following notations will be used throughout the paper:

Table 1. A 6×5 instance of MOSP with an optimal solution of value 3 – no more than
3 ones can be seen at the same time on the Stacks representation. The instance and
optimal ordering parts of the table are to be read as for example, product P3 has been
ordered by customers c1 and c2. The stacks part shows that for example the order of
custumer c3 is open from the production of product P1 to the production of product
P3 (in this part of the table, all 1s are consecutive representing the open nature of the
stack representing the order). Another example is to consider the order of customer c2

which remains open only during the production of product P2 as this order is composed
only with this product.

Instance Optimal ordering Stacks
P1P2P3P4P5P6 P1P2P6P4P3 P5 P1P2P6P4P3P5

c1 0 0 1 0 1 0 0 0 0 0 1 1 - - - - 1 1
c2 0 1 0 0 0 0 0 1 0 0 0 0 - 1 - - - -
c3 1 0 1 1 0 0 1 0 0 1 1 0 1 1 1 1 1 -
c4 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 - - -
c5 0 0 0 1 1 1 0 0 1 1 0 1 - - 1 1 1 1

– P : the set of m available products and C, the set of n orders.
– P (c) is the set of products required by order c. C(p) is the set of orders

requiring product p. A natural extension of this last notation is used for sets
of products (C(sP ) is the set of orders that requires at least one product in
sP ).

– OK(S) denotes the set of open orders implied by a subset S ⊆ K of products:
OK(S) = |C(S) ∩ C(K − S)|. O(S) is a short notation for OP (S). The open
orders therefore refer to a certain point in time where a set of products have
already been processed.

– f(S) is the minimum number of stacks needed to complete a set S and fA(S)
is the number of stacks needed to complete set S assuming a set A of initially
active (opened) orders.

– pj denotes the product assigned to position j in the production sequence and
openj expresses the number of open orders at time j. Those variables take
their value in a set called their original domain (Dorig(x) for variable x).
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This set is reduced to a singleton thanks to the solving process (using prop-
agation). The current domain is denoted D(x).

Using those notations, one can provide a mathematical model of the problem:

min( maxj<m openj) s.t.
∀j, 0 < j ≤ m, pj ∈ [1..m]
∀j, 0 < j ≤ m, openj ∈ [1..n]
alldifferent({p1, . . . , pm})
openj = |C({p1, . . . , pj}) ∩ C({pj , . . . , pm})|

2 First Insights in Solving the MOSP

We give a rapid review of the main results obtained for solving the MOSP during
the IJCAI 2005 challenge.

2.1 Search Techniques

A wide variety of approaches were proposed for solving this problem during
the IJCAI 2005 constraint modelling challenge [14]. One of the most efficient
has been identified by [3] and [2]. It is based on dynamic programming (DP):
consider a set S of products that have been placed chronologically up to time t
from the beginning of the sequence (|S| = t−1 and products from S are set from
slot 1 to slot t−1). Then, one can notice that fO(S)(P −S) remains the same for
any permutation of S. Indeed, problem P − S is only related to problem P by
the active set of orders at time t: O(S) which does not depend on any particular
order of S (an order c is indeed open if P (c)∩S �= ∅ and P (c)∩(P−S) �= ∅). This
fact gives a natural formulation of the problem in DP and the objective function
can be recursively1 written as: f(P ) = minj∈P (max(f(P − {j}), |O(P − {j})|).
The strong advantage of this approach is to switch from a search space of size
m! to one of size 2m because one only need to explore the subsets of P . From a
constraint programming point of view, if S is a nogood, i.e. a set of products
that has been proven as infeasible (according to the current upper bound), any
permutation of products of S will lead to an infeasible subproblem P −S. Storing
such nogoods during a chronological enumeration of the production sequence
leads to the same search space size of 2m.

2.2 Preprocessing and Lower Bounds

A useful preprocessing step can be applied by removing any product p such that
∃p′, C(p) ⊆ C(p′). This can even be done during search: if S is the current set
of already chronologically assigned products up to time t, then one can assign
immediately after S the products p such that C(p) ⊆ O(S).

Lower bounds are often based on the co-demand graph G which has been
defined in the literature in [1]. The nodes of G are associated to orders and an
1 We consider that if |P | = 1 with P = {p}, f({p}) = |C(p)|.
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Algorithm 1. NogoodRecMOSP({p1, . . . , pt−1})
1.If t − 1 �= m do
2. For each i ∈ D(pt) then
3. pt ← i; ∀k > t, remove i from D(pk);
4. S ← {p1, . . . , pt};
5. Try
6. filter(S,pt+1);
7. NogoodRecMOSP(S);
8. Catch (Contradiction c)
9. add nogood {p1, . . . , pt};
10. EndTryCatch;
11. EndFor
12.Else store new best solution, update ub;
13.throw new Contradiction();

edge (i, j) is added if and only if orders i and j share at least one product.
Several lower bounds can be defined from this graph, and we use the size of a
clique obtained as a minor of G [1] by edge contraction as it appeared the most
effective in our experimentation. These bounds may also be used during search
on the problem restricted to P − S by taking into account the current open
orders. We used the ones given in [3].

2.3 Our Solution

None of the proposed approaches during the IJCAI 05 Challenge involved look-
back techniques (intelligent backtrackers or explanation-based techniques). We
intend to show in this paper that the MOSP is a good candidate for these
approaches because it is a structured problem, and the optimal number of stacks
is often related to small kernels of products.

We will first introduce the simple nogood recording scheme and the main
ideas of look-back reasonings for the MOSP. Second, we will define formally the
generalized nogood and the two related backjumping algorithms. Experimental
results finally show that the proposed look-back techniques perform well on the
challenge instances.

3 Simple Nogood Recording

The nogood recording approach (see [11,7] for a general description of the nogood
recording technique) is simply based on the chronological enumeration of pi from
p1 to pm. Algorithm 1 takes as input a partial sequence of assigned products and
tries to extend it to a complete sequence. If the sequence has not been completed
yet (line 1), all remaining products for slot pt will be tried (line 2). A filtering step
is then performed and if no contradiction occurs, the algorithm goes on (recursive
call line 7). The filtering applied in line 6 is minimal and only prunes the next
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Algorithm 2. filter(S = {p1, . . . , pt}, pt+1)
1.For each i ∈ dom(pt+1) then
2. If |OP (S) ∪ C(i)| ≥ ub or S ∪ {i} is a nogood
3. remove i from D(pt+1);
4.EndFor

time-slot according to the current upper bound ub (i.e the value of the best
solution found so far) and the known nogoods (Algorithm 2). Once a sequence,
p1, . . . , pk is proved as infeasible (line 9), it is stored so that all permutations
will be forbidden in future search. [12] outlines this fact while finally choosing
another enumeration scheme. Line 13 is called to backtrack when the domain
of pt has been emptied by search or when a new solution is found (line 12) to
prove its optimality. Computation of lower bounds and the use of dominance
rules on including products should be included in line 6 and a heuristic to order
the products in line 2. This basic algorithm will be improved step by step in the
following.

4 Learning from Failures

Nogoods and explanations have long been used in various paradigms for im-
proving search [4,11,10,6]. In the MOSP, from a given nogood S, we can try to
generalize it and design a whole class of equivalent nogoods to speed up search.

4.1 Computing Smaller Nogoods

The idea is to answer the following question: once the fact that the minimum
number of stacks needed to complete the set of remaining products P − S to
schedule considering the open orders O(S) due to the sequence of products S is
greater that the current upper bound (in other words that fO(S)(P − S) ≥ ub
– line 9 of Algorithm 1), what are the conditions on S under which this proof
remains valid? In other words, what are the conditions (subsets) in the already
scheduled orders that makes this combination a not optimal one considering the
current upper bound?

As the optimal value fO(S)(P − S) depends on P − S and O(S), removing
a product from S that does not decrease O(S) provides another valid nogood.
Indeed adding the corresponding product to P−S can only increase fO(S)(P−S).
We can therefore compute some minimal subsets of S that keep O(S) by applying
the Xplain algorithm [13,5]. Table 2 gives an example.

4.2 Computing Equivalent Nogoods

The main question now becomes: once fO(S)(P − S) ≥ ub has been proven,
what are the conditions on P − S under which this proof remains valid? Can
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Table 2. Example of nogood reduction: we consider here a new instance. We only
consider here the first 5 products and give the open stacks (O(S) column (1 if the
order is still open, 0 otherwise) when considering the sequence S = {P1, P2, P3, P4, P5}.
Suppose that S is a nogood. It is quite obvious that we can remove production (they
will be produced later) the production of products P1, P2 and P3 without modifying
the open stacks at the end of sequence of the remaining products ({P4, P5}). Indeed,
for example for customer c1 the order will remain open as at least one of its products
has been produced, for customer c2 as the whole set of products is removed, the stack
will remain closed, etc. Therefore, here, {P4, P5} is also a nogood.

P1P2P3P4P5 O(S) ...
c1 1 0 0 1 0 1
c2 0 1 1 0 0 0
c3 0 0 1 0 1 1 ...
c4 1 1 0 0 0 0
c5 0 0 0 1 0 1
c6 0 0 0 0 1 1

we build from those conditions larger sets of nogoods? In other words, what are
the conditions (subsets) on the products remaining to schedule that makes the
current situation on not optimal one considering the current upper bound.

This problem relies on explanations. Instead of computing some conditions
S1 on S which can be seen as the decisions made so far, we compute some
conditions S2 on P −S which can be seen as original constraints of the problem.
A contradiction on S is therefore logically justified by S1 ∪ S2. Only S2 needs
really to be stored within the explanation because S1 can be computed from
scratch at each failure and is resolved by search.

Definition 1. Let S = p1, . . . , pj−1 be a sequence of products and S
′
= p1, . . . ,

pj a sequence that extends S with pj = i. An explanation for the removal of
a value i from pj, expl(pj �= i) is defined by a set E, E ⊆ P − S such that

|OS∪E(S) ∪ C(i)| ≥ ub or fO(S
′
)(E − {i}) ≥ ub (in other words, the remaining

problem reduced to E is infeasible).

All filtering mechanisms must now be explained. In the simple case of Algorithm
2, a value i can be removed from D(pj) if openj is incompatible with the current
upper bound ub. An explanation is therefore only a subset of the remaining
products that keep open the open orders at time j. If S = {p0, .., pj−1}, E =
expl(pj �= i) is in this case defined as :

|O(S∪E)(S) ∪ C(i)| ≥ ub

As openj−1 is compatible with ub, once S is proved infeasible (both by search
and pruning), expl(pj−1 �= k) =

⋃
v∈Dorig(pj) expl(pj �= v).

Example: Consider the first example in table 3. S = {P1, P2}, P − S =
{P3, P4, P5, P6, P7}, O(S) = {c2, c3, c4}. On step 1, the upper bound is currently
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Table 3. Example of explanation computation

Example 1 Example 2
Step 1 Step 2

P1P2 O(S) P3P4P5P6P7 P1P3 O(S) P2P4P5P6P7 P1P2P3 O(S) P4...
c1 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 c1 1 0 0 1 1
c2 0 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 c2 0 1 1 0 0
c3 1 0 1 1 1 0 0 0 1 1 1 0 1 0 0 0 c3 1 0 1 0 0 ...
c4 1 1 1 0 0 1 0 0 1 0 1 1 0 1 0 0 c4 0 1 0 1 0
c5 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 c5 0 0 1 1 1

4 and p2 �= P2 because fO(S)({P3, P4, P5, P6, P7}) ≥ 4. This is however also true
as long as O(S) is unchanged. It is the case with {P3, P5, P6} or {P4, P5, P6}.
All values v of p3 are removed by filtering and {P4, P5, P6} is recorded for each
expl(p3 �= v) so that expl(p2 �= P2) = {P4, P5, P6}. Going a step further, the
search tries p2 = P3 and an explanation such as {P4, P5, P6} or {P2, P5, P7} is
computed. The first set leads to expl(p2 �= {P2, P3}) = {P4, P5, P6} and the
process goes on.

For a filtering due to a nogood N , an explanation expl(N) has already been
recorded. A contradiction raised by the lower bound needs also to be explained.
Xplain can be again applied on the products of P − S to find a subset that
respects the needed property.

For each infeasible sequence S, by explaining the proof made on P − S, one
may first incriminate only a subset OP (S) that could be used to derive a more
accurate subset of S leading to the same contradiction (and a more relevant
point to backtrack). Second, it can be useful to generalize the nogood based on
the products that are not involved in the explanation. In the second example of
Table 3, P4 can be exchanged with {P1, P3} if P4 is not needed to prove that
{P1, P2, P3} is a nogood. Therefore, {P4, P2} is also a nogood. Equivalent sets to
S provided by explanations as well as subsets could therefore allow the pruning
of future paths of the search.

Explanations rely on the idea that independency and redundancy among P
can lead to small subsets of P having the same optimal value. Explanations
provide a way to take advantage of these structures.

5 Generalized Nogoods for the MOSP

A classical nogood, defined as a partial assignment that can not be extended to
a solution, becomes useless as soon as one of its subset becomes a nogood. This
is however not true for the nogoods presented above for the MOSP. The nogood
{P1, P3, P4} is a subset of {P1, P2, P3, P4} but does not forbid the sequence
{P1, P3, P2, P4}. A MOSP nogood is indeed a sequence of products that forbids
to start the production sequence by any of its permutations. With the subsets
of a set S denoted by P(S), the nogoods considered for our problem are defined
as follows:
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Definition 2. A generalized nogood N is defined by a pair of sets (R, T ) (root
and tail) which forbids to start the production sequence by any permutation of a
set belonging to {R ∪ Ti, Ti ∈ P(T )}.
This definition provides a way of factorizing information regarding a set of no-
goods (into the tail part). It is meant to capture a large number of identified
nogoods. The following proposition is used to characterize generalized nogoods
when confronted to infeasible sequences of products.

Proposition 1. If S is an infeasible sequence of products and expl(S) ⊆ P − S
an explanation of this fact then a pair (R, T ) such that,

– (R ∪ T ) ∩ expl(S) = ∅,
– OS∪expl(S)(S) ⊆ O(R),

is a valid generalized nogood.

Proof: As S is a nogood, fO(S)(P − S) ≥ ub. Moreover, expl(S) is a subset
of P − S such that, after assigning chronologically S, the remaining problem
restricted to expl(S) is infeasible. This leads to fOS∪expl(S)(S)(expl(S)) ≥ ub.
Due to OS∪expl(S)(S) ⊆ O(R) and R ∩ expl(S) = ∅ the previous inequality
becomes fO(R)(expl(S)) ≥ ub. This inequality shows that (R, S − R) is a valid
generalized nogood even if P − S is restricted to expl(S). Moreover, adding
products not included in expl(S) to the tail of (R, S −R) cannot decrease O(R).
Each order of O(R) is indeed active because of at least one of the product of
expl(S). So (R, T ) remains a valid nogood as long as T ∩ expl(S) = ∅. �
In practice, such nogoods are obtained by applying to S the reasonings presented
in the previous section. This leads to the algorithms detailed in the following.

5.1 Generalized Nogood Recording

To implement the above idea, lines 8-10 of Algorithm 1 are modified to introduce
the computation of the generalized nogood and the backjumping feature. The
following pseudo-code of algorithm 3 assumes that a contradiction c is labeled
by the level where it occurs (c.level in line 9a), in other words, infeasibility
of p1, . . . pk proved by the empty domain of pk+1 would raise a contradiction
labelled by k + 1 (throw new Contradiction(k+1)).

The function minimize(S, Op) computes S
′
, a subset of S, such that Op ⊆

O(S′) based on the Xplain technique. Moreover the order of S is used to guide the
generation of the subset of S. If S = p1, . . . pi, it ensures that argmaxk(pk ∈ S

′
)

is minimal2. Two nogoods, based on the roots R1 and R2, are recorded at each
contradiction. The purpose of R1 is to provide the best backjumping point (as
the latest product within R1 will be as early as possible) whereas R2 is the one
with the best chance of being minimal (as the contradiction may only involve
recent products, S is reversed to focus the subset on the last added products).
Backjumping is ensured in line 9h by raising immediately a contradiction if the
guilty level is not reached.
2 There is no subsequence of S with a product pj s.t j < k.
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Algorithm 3. Extends lines 8-10 of algorithm 1.
8. Catch (Contradiction c)
9a. If t < c.level
9b. R1 ← minimize(S, OP (S));
9c. R2 ← minimize({pt, pt−1, . . . , p1}, OP (S));
9d. ∀j ∈ {1, 2} ad nogood (Rj , S − Rj);
9e. newLevel ← argmaxk(pk ∈ R1)
9f. If newLevel < t
9g. throw new Contradiction(newLevel);
9h. Else if (t > c.level)
9i. throw new Contradiction(c.level);
10. EndTryCatch;

Algorithm 4. Filter(S = {p1, . . . , pt}, pt+1)
1.For each i ∈ D(pt+1) do
2. If |OP (S) ∪ C(i)| ≥ ub
4. remove i from pt+1;
5. expl(pt+1 �= i) ← E s.t |OS∪E(S) ∪ C(i)| ≥ ub;
6. Else If S ∪ {i} is a nogood N;
7. remove i from pt+1;
8. expl(pt+1 �= i) ← expl(N);
9.EndFor

5.2 Explanation-Based Generalized Nogood Recording

Let us go a step further to develop the above ideas. First, Algorithm 4 replaces
Algorithm 2 to explain the pruning due to ub and already known nogoods (whose
explanations are computed line 9j of Algorithm 5). We also assume that a con-
tradiction c is labeled by its explanation (c.exp).

Algorithm 1 is extended again when getting a contradiction to deal with
explanations leading to algorithm 5. A contradiction explanation is computed
in line 9b from the empty domain of pt+1. This explanation will be recorded to
explain the removal of the value i that has been tried for pt (refer to Algorithm
1 for i, pt and S) when the corresponding level is reached (lines 9n, 9o). Then, at
most 4 nogoods are recorded. R1, R2 are the same as previously except that S∪E
can be more precise than P for OS∪E(S) (lines 9c, 9d). However, this should
be very rare without more advanced filtering3 and the main improvements of
explanations are to further generalize the nogoods. This generalization occurs in
lines 9f, 9g and 9i when using E to build the roots R3,R4 and {E ∪ S} − Ri to
build the tail.

The generalized nogood of Definition 2 corresponds to an exponential number
of simple nogoods used in DP and it is impossible to store them all individually.
We use a simple form of a finite automaton called a TRIE [8] to store them

3 This may occur due to the lower bound for example.
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Algorithm 5. Extends lines 8-10 of algorithm 1.
8. Catch (Contradiction c)
9a. If t < c.level
9b. E ←

⋃
j∈Dorig(pt+1) expl(pt+1 �= j);

9c. R1 ← minimize(S, OS∪E(S));
9d. R2 ← minimize({pt, pt−1, . . . , p1}, OS∪E(S));
9e. E ← P − S − E;
9f. R3 ← minimize(R1 ∪ E, OS∪E(S));
9g. R4 ← minimize(R2 ∪ E, OS∪E(S));
9h. for each j ∈ {1, 2, 3, 4}
9i. add nogood Nj = (Rj , {E ∪ S} − Rj);
9j. expl(Nj) ← E;
9k. newLevel ← argmaxk(pk ∈ R1)
9l. If newLevel < t
9m. throw new Contradiction(newLevel, E);
9n. Else expl(pt �= i) ← E
9o. Else if (t = c.level) expl(pt �= i) ← c.exp;
9p. Else throw new Contradiction(c.level, c.exp);
10. EndTryCatch;

and perform the pruning. Storing and efficiently managing nogoods is always a
challenging problem. SAT solvers [9] provides interesting results in that matter
that are however difficult to apply in our case.

6 Experimental Results

Our experiments are performed on the challenge instances 4 on a laptop Mac-
Book, 2Ghz processor with 2Gb of RAM. The algorithms have been implemented
in Java.

We first analyze the accuracy of explanations by looking at the explanation
of optimality. It gives a subset of P such that the problem reduced to this
set will have the same optimal value as the original problem. For comparison
reasons, the problem was also iteratively solved within an Xplain scheme and
both approaches were tried. Xplain was able to derive shorter explanations with
35.1% of products removed on average against 21.1% for our explanation based
approach but is unpractical on larger instances. These rates can reach 51.8% and
40% on simonis20 20 benchmark for example demonstrating that some problems
can be very structured.

Secondly, results are given for the three approaches: NR (the existing sim-
ple nogood recording which is closely related to DP), GNR (Algorithm 3) and
EXP (Algorithm 5). All instances except the last SP2, SP3 and SP4 instances
are solved optimally, and smaller instances than 15 30 such as 20 20 ones are all

4 http://www.dcs.st-and.ac.uk/˜ipg/challenge/
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Table 4. Average and maximum results (time and backtracks) on hard benchmarks
from the challenge for NR, GNR and EXP. OptAvg represents the average of the
optimum.

Inst OptAvg TAvg (s) Tmax BkAvg BkMax
NR

simonis 30 30 28.32 1.5 14.5 67617.3 708845
wbo 30 30 22.56 2.1 16.2 99586.9 760602
wbop 30 30 23.84 2.3 18.9 109465.9 829886
wbp 30 30 24.46 2.7 35.5 125704.7 1618700

GNR
simonis 30 30 28.32 1.6 14.8 23246.3 196229

wbo 30 30 22.56 2.1 14.2 44181.0 283491
wbop 30 30 23.84 2.8 22.6 59874.1 402049
wbp 30 30 24.46 3.0 35.5 51621.3 504488

EXP
simonis 30 30 28.32 8.4 64.3 18126.0 167322

wbo 30 30 22.56 13.0 88.0 35818.9 238380
wbop 30 30 23.84 28.0 177.1 52267.2 361704
wbp 30 30 24.46 25.5 256.9 43836.2 431215

solved in less than one second in the worst case. Average and maximum measures
of time (in seconds) and search effort (backtracks) are indicated for the hardest
instances of the challenge in Table 4. The search space reduction implied by the
backjumping and the generalized nogood recording (GNR) is huge (on average
by 55, 5% and at most by 64%) with however similar time results. This clearly
shows the accuracy of the technique and time improvements could be obtained
by improving the nogoods computation and management which remain currently
quite naive. The use of explanations (EXP) is clearly more costly. The search
space is nevertheless reduced again confirming the accuracy of explanations ana-
lyzed on smaller problems. But this technique remains competitive with the best
pure constraint programming approaches while computing an explanation at the
same time. It is therefore able to highlight hard subsets of products responsible
for the minimum number of open stacks.

7 Conclusion: Beyond the MOSP

The main assumptions for the results given here on the MOSP are related to the
chronological enumeration and the nature of the objective function. We believe
that side constraints could be naturally added (e.g. precedences among orders)
and any propagation scheme could be performed as long as it is explained on
P − S.

We investigated on the MOSP, how classical look-back reasonings based on
explanations could be used to prune the search space. We focused our attention
on deriving a set of conditions which generalize a given failure to a whole class of
failures. The experimental results demonstrate the interest of such an approach
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for the MOSP even if no time improvements have been obtained yet. We believe
that the dynamic programming-based approaches could therefore be improved
by the ideas presented in the paper. There exist many ways to speed up GNR
and EXP which could eventually lead to a time gain. The current data structure
storing the nogoods is a critical component which could be vastly improved by
allowing incremental propagation. This remains to be done as we first inves-
tigate the accuracy of explanations for this problem. Moreover, many nogood
generation schemes could be designed.
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Abstract. Finding the optimal threshold(s) for an image with a multimodal his-
togram is described in classical literature as a problem of fitting a sum of Gaus-
sians to the histogram. The fitting problem has been shown experimentally to be 
a nonlinear minimization problem with local minima. In this paper, we propose 
to reduce the complexity of the method, by using a parameter-free particle 
swarm optimization algorithm, called TRIBES which avoids the initialization 
problem. It was proved efficient to solve nonlinear and continuous optimization 
problems. This algorithm is used as a “black-box” system and does not need 
any fitting, thus inducing time gain. 

1   Introduction 

The image segmentation process is defined as the extraction of the important objects 
from an input image. Image segmentation is considered by many authors to be an es-
sential component of any image analysis system, therefore many methods exist to 
solve this kind of problem. A survey of most segmentation methods may be found in 
[1]. Image thresholding is one of the most popular segmentation approaches to extract 
objects from images since it is straightforward to implement. It is based on the as-
sumption that the objects can be distinguished by their gray levels. The automatic fit-
ting of this threshold is one of the main challenges in image segmentation. As this  
image segmentation approach can be formulated as an optimization problem, many 
metaheuristics were used to solve it, for instance the segmentation problem  
was solved using simulated annealing [2] or using an hybrid PSO [3]. With all these 
methods the initialization problem is not solved. 

Particle Swarm Optimization (PSO) is a population-based optimization technique 
proposed by Kennedy and Eberhart in 1995 [4]. Like other “metaheuristics”, PSO 
shows the drawback of comprising many parameters which have to be defined. The 
problem is that it is difficult and time consuming to find the optimal combination of 
parameter values. One aim of researchers is to propose adaptive PSO algorithms of 
which parameters values change according to results found by the algorithm. The pa-
rameter-free algorithm acts as a “black-box” and the user has just to define his prob-
lem and the stopping criterion. Clerc has developed a parameter-free algorithm for 
PSO, called TRIBES [5]. The method incorporates rules defining how the structure of 
the swarm must be modified and also how a given particle must behave, according to 
the information gradually collected during the optimization process. 
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In Section 2, we present the global behavior of the Particle Swarm Optimization 
algorithm. TRIBES is described in Section 3. Section 4 is dedicated to the presenta-
tion of the image thresholding method. Experimental results are discussed in Section 
5. A conclusion is given in Section 6. 

2   Particle Swarm Optimization 

PSO is a simple algorithm that is easy to be coded and implemented. The simplicity 
of PSO implies that the algorithm is inexpensive in terms of memory requirement and 
CPU time [5]. All these characteristics have made the popularity of PSO in the field 
of metaheuristics. 

PSO is a population algorithm. It starts with a random initialization of a swarm of 
particles in the search space. Each particle is modeled by its position in the search 
space and its velocity. At each time step, all particles adjust their positions and veloci-
ties, thus their trajectories, according to their best locations and the location of the 
best particle of the swarm, in the global version of the algorithm, or of the neighbors, 
in the local version. Indeed, each individual is influenced not only by its own experi-
ence, but also by the experience of other particles. 

In a D-dimensional search space, the position and the velocity of the ith particle can 

be represented as ,1 ,2 ,, ,...,i i i i DX x x x⎡ ⎤= ⎣ ⎦
r

 and ,1 ,2 ,, ,...,i i i i DV v v v⎡ ⎤= ⎣ ⎦
r

 respectively. Each 

particle has its own best location ,1 ,2 ,, ,...,i i i i Dp p p p⎡ ⎤= ⎣ ⎦
r

, which corresponds to the 

best location reached by the ith particle at time t. The global best location is named 

[ ]1 2, ,..., Dg g g g=r
, which represents the best location reached by the entire swarm. 

From time t to time t+1, each velocity is updated using the following equation: 

[ ], , 1 1 , , 2 2 ,( 1) . ( ) . .( ( )) . .( ( )), 1:i j i j i j i j j i jv t w v t c r p x t c r g x t j D+ = + − + − ∈  (1) 

where w is a constant called inertia factor, c1 and c2 are constants called acceleration 
coefficients, r1 and r2 are two independent random numbers uniformly distributed in 
[0,1] and are sampled for each dimension. w controls the influence of the previous di-
rection of displacement. c1 controls the attitude of the particle of searching around its 
best location and c2 controls the influence of the swarm on the particle’s behavior. 
The combination of the values of w, c1 and c2 may either favor intensification or di-
versification. In the first PSO version, the value of each component in Vi was clamped 
in a range [-Vmax, Vmax] to control excessive moves of the particles outside the search 
space. 

The computation of the position at time t+1 is derived from (1) using: 

[ ], , ,( 1) ( ) ( 1), 1:i j i j i jx t x t v t j D+ = + + ∈  (2) 

In [6], Clerc and Kennedy show that the convergence of PSO may be insured by 
the use of a constriction factor. Using the constriction factor emancipates us to define 
Vmax but also insures a good balance between intensification and diversification. In 
this case, equation (1) becomes : 
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[ ], , 1 1 , , 2 2 ,( 1) ( ( ) . .( ( )) . .( ( ))), 1:i j i j i j i j j i jv t K v t r p x t r g x t j Dφ φ+ = + − + − ∈  (3) 

with: 

1 22

2
, 4

2 4.
K with φ φ φ φ

φ φ φ
= = + >

− + −
 (4) 

The convergence characteristic of the system can be controlled by φ. Namely, 
Clerc and al. [6] found that the system behavior can be controlled so that it has the 
following features: 

 

• the system does not diverge in a real value region and finally can converge, 
• the system can search different regions efficiently by avoiding premature conver-

gence. 
 

Unlike other evolutionary computation methods, PSO with constriction factor en-
sures the convergence of the search procedure based on the mathematical analysis. 
The convergence is ensured but it is not ensured that the algorithm converges to the 
global optimum. 

Standard PSO procedure can be summarized through Algorithm 1. 
 

_____________________________________________________________________ 

Initialize a population of particles with random posi-
tions and velocities. 

For each individual i, ip
r
 is initialized at iX

r
. 

Evaluate the objective function for each particle and 
compute g

r
. 

Do 

Update the velocities and the positions of the parti-
cles. 

Evaluate the objective function for each individual. 

Compute the new ip
r
 and g

r
. 

While the stopping criterion is not met 

_____________________________________________________________________ 

Algorithm 1. Original PSO procedure. 

Generally, the stopping criterion is either a predefined acceptable error or a maxi-
mum “reasonable” number of evaluations of the objective function. 
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3   TRIBES 

As it was said in the Introduction, this study deals with algorithms comprising a re-
duced number of “free” parameters, i.e. parameters to be fitted by the user. In such a 
framework, the word “parameter” may have two significations: 

 

• “parameter”: every component of the algorithm; generally numerical values, but it 
can also be probability distributions, a strategy, a topology of information links, 
etc. 

• “user-parameter”: every “parameter” of the algorithm the user can be led to 
modify, according to the treated problem. 
 

In all this paper, the word “parameter” is used in the sense “user-parameter”. 
This section briefly presents TRIBES. For more details, TRIBES is completely de-

scribed in Clerc’s book [5]. Numerical results of TRIBES on real-life problems can be 
found in [7], describing an application of TRIBES to the flow shop scheduling prob-
lem, in [8], describing an application of TRIBES to UMTS radio network modelling, 
or in [9], describing an application of TRIBES to image segmentation. 

3.1   Swarm’s Structure 

The swarm is structured in different “tribes” of variable size. The aim is to simultane-
ously explore several promising areas, generally local optima, and to exchange results 
between all the tribes in order to find the global optimum. This implies two different 
types of communication: intra-tribe communication and inter-tribes communication. 

Each tribe is composed by a variable number of particles. Relations between parti-
cles in a tribe are similar with that defined in basic PSO. It is to say that each particle 
of the tribe stores the best location it has met and knows the best (and the worst) par-
ticle of the tribe, i.e. the particle which has met the best (or the worst) location in the 
search space. This is intra-tribe communication. 

Even if each tribe is able to find a local optimum, a global decision must be taken 
to decide which of these optima is the best one. Each tribe is related to the others in 
order to take a global decision through its best particle. This is inter-tribes communi-
cation. 

The most time consuming part of PSO algorithm is the evaluation of the objective 
function. In order to have execution times of the algorithm as small as possible, it is 
interesting to carry out the least number of evaluations of the objective function. Con-
sequently, particles are removed of the swarm as soon as possible, in the hope of not 
affecting the final result. By the way, if a tribe has a good behavior, it is considered 
that the worst particle of the tribe is useless and, then, it is removed from the swarm. 
At the opposite, if some tribes have bad performances, new particles will be  
generated, forming a new tribe, and the “bad” tribes will try to use the information 
provided by these new particles to improve their performances. Details about the re-
moving and generating processes are available in [5]. 

To summarize, each particle is informed by itself (best position p), by all the parti-
cles of its tribe (internal informers) and, if the particle is a “shaman” (i.e. the best par-
ticle of a tribe), by the “shamans” of the other tribes (external informers). All these 
positions are called the “informers”. Then, the best informer of a particle is the  
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informer for which the value of the objective function is lower (resp. higher) in case 
of minimization (resp. maximization). So, the swarm is composed of a related net-
work of tribes which are themselves dense networks. Fig. 1 illustrates this idea.  
Arrows symbolize inter-tribes communications and lines symbolize intra-tribe com-
munication. Black particles symbolize the shamans of the different tribes. This struc-
ture must be generated and modified automatically, by means of creation, evolution, 
and removal of the particles. Adaptation rules are described in [5]. 

At the beginning, the swarm is composed of only one particle which represents a 
single tribe. If, at the first iteration, this particle does not improve its location, new 
ones are created, forming a second tribe. At the second iteration, the same process is 
applied and so on. 

The swarm’s size will grow up until promising areas are found. The more the 
swarm grows, the longer the time between two adaptations will be. By this way, the 
swarm’s exploratory capacity will grow up, but the adaptations will be more and more 
spaced in time. Then, the swarm has more and more chances to find a good solution 
between two adaptations. At the opposite, once a promising area is found, each tribe 
will gradually remove its worst particle, possibly until it disappears. Ideally, when 
convergence is confirmed, each tribe will be reduced to a single particle. 

 

 

Fig. 1. Intra-tribe and inter-tribes communication 

3.2   Swarm’s Behavior 

In the previous sections, the first way of adaptation of the algorithm was described. 
The second way in view of adapting the swarm to the results found by the particles is 
to choose the strategy of displacement of each particle according to its recent past. It 
will enable a particle with a good behavior to have an exploration of greater scope, 
with a special strategy for very good particles, which can be compared to a local 
search. According to this postulate, the algorithm will choose to call the best dis-
placement’s strategy in view of moving the particle to a better area of the search 
space. 

There are three possibilities of variation for a particle: deterioration, status quo and 
improvement, i.e. the current location of the particle is worse, equal or better than its 
last position. These three statuses are denoted by the following symbols: - for deterio-
ration, = for status quo and + for improvement. The history of a particle includes the 
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Table 1. Strategies of displacement 

History of 
the particle 
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two last variations of its performance. For example, an improvement followed by a 
deterioration is denoted by (+ -). There are nine possibilities of history. However, we 
will be satisfied by gathering them in three groups representative of the rule defined 
above. The three used strategies are defined in Table 1. Let us denote by p

r
 the best 

location of the particle, g
r

 the best position of the informers of the particle and f the 

objective function. 
alea(Hp) is a point uniformly chosen in the hyper-sphere of center p

r
 and radius 

p g−r r
 and alea(Hg) a point uniformly chosen in the hyper-sphere of center g

r
 and 

radius p g−r r
. aleanormal(gj-Xj, j jg X− ) is a point randomly chosen with a gaussian 

distribution of center gj-Xj and radius j jg X− . 

3.3   TRIBES Algorithm 

Algorithm 2 shows a pseudo-code which summarizes TRIBES process. gi is the best 
informer of the ith particle and the p’s are the best locations for each particle. NL is the 
number of information links at the last swarm’s adaptation and n is the number of it-
erations since the last swarm’s adaptation. 
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_____________________________________________________________________ 

Initialize a population of particles with random posi-
tions and velocities. 

For each individual i, ip
r
 is initialized at iX

r
. 

Evaluate the objective function for each particle and 
compute ig

r
. 

Do 

Choice of the displacement strategies 

Update the velocities and the positions of the parti-
cles. 

Evaluate the objective function for each particle. 

Compute the new ip
r
 and ig

r
. 

If n<NL 

Swarm’s adaptations (adding/removing particles, reor-
ganizing the information network) 

Computation of NL 

End if 

While the stopping criterion is not met 

_____________________________________________________________________ 

Algorithm 2. TRIBES algorithm 

4   Image Thresholding Method 

The image segmentation using the thresholding approach is based on the assumption 
that the valley between two modes of the image histogram corresponds to a transition 
between the background and one object. For instance, in the case of bi-level thresh-
olding, the image histogram is usually assumed to have one threshold. In our ap-
proach, the thresholding procedure consists in approximating the image histogram h 
by a sum of Gaussians. 

4.1   Gaussian Curve Fitting 

For the multimodal histogram H(x) of an image, where x is the gray level, we address 
the problem of finding the optimal thresholds to be used to separate the modes. We fit 
the histogram to a sum of d probability density functions (pdf's) [10]. The case where 
the Gaussian pdf's are used is defined by: 

2

2
1

( )
( ) exp

d
i

i
i i

x µ
PDF x P

σ=

⎡ ⎤−
= −⎢ ⎥

⎣ ⎦
∑  (7) 
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where Pi is the amplitude of Gaussian pdf on µi, µi is the mean and 2
iσ is the variance 

of mode i. 
The histogram is normalized by the following expression: 

1

0

( )
( )

( )
L

j

h i
normH i

h j
−

=

=
∑

 
(8) 

where h(i) is the number of the occurrences of gray-level i over a given image 
range [ ]0, 1L − , and L is the total number of gray-levels. 

Our goal is to find a set of parameters, Θ , that minimizes the following objective 
function J [11]: 

( ) ( , )

( )

i
i

i

normH i PDF x
J

normH i

− Θ
=
∑

∑
 (9) 

The set of parameters defining the Gaussian pdf's and the probabilities is given by: 

{ }, , ; 1, 2, ,i i iP µ i dσΘ = = K  (10) 

J is the objective function to be minimized with respect to Θ . The standard  
process of setting the partial derivatives to zero results in a set of non-linear coupled 
equations, the system usually being solved through numerical techniques. 

4.2   Overall Probability of Error Criterion 

We assume that the histogram is correctly fitted using the Gaussian curve fitting pro-
cedure. Then, the optimal threshold is determined by minimizing the overall probabil-
ity of error. For two successive Gaussian pdf’s, it is given by: 

[ ]1 1( ) ( ) ( ) , 1: 1
i

i

T

i i i i i

T

E T P p x dx P p x dx i d
+∞

+ +
−∞

= + ∈ −∫ ∫  (11) 

with respect to the threshold Ti, where pi(x) is the ith pdf [12]. 
The minimization of this error requires differentiating E(Ti) with respect to Ti (us-

ing the rule of Leibniz) and equalizing the result to 0. It gives: 

1 1( ) ( )i i i iP p T P p T+ +=  (12) 

Applying this result to our case (Gaussian density), the solution of the problem is 
reduced to solve the second order equation given by: 

2 0i iAT BT C+ + =  (13) 
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with: 
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A quadratic equation has two possible solutions, but only one of them is a feasible 
solution [12]. 

4.3   Thresholding Procedure 

The number of Gaussians (d) is supposed to be known a priori and is equal to the 
number of classes in the image (NC). As a consequence, NC-1 is the number of 
thresholds. The approximated histogram h’ is expressed by Equation (7). Then, the 
optimal thresholds are localized at the intersections of the different gaussians. 

We propose to solve this problem by TRIBES. The number of evaluations of the 
objective function is used as a stopping criterion. Looking at our experiments, the fit-
ness value does not decrease significantly after 10000xNC evaluations of the objec-
tive function. Then, we fixed the maximum number of evaluations of the objective 
function at 10000xNC. 

5   Experimental Results 

In this section, we present and discuss the experimental results of the proposed 
method through two examples of image segmentation. In the first example, the well 
known image Lena (Fig.2 (a)) is used, and in the second example the Screw (Fig.3 
(a)) image is used.  

Both images are of size 256x256 and L=256. The procedure of Gaussian curve fit-
ting is performed using TRIBES.  

The performances of TRIBES are compared to those provided by the Standard 
PSO 2006 (SPSO), a constricted PSO algorithm. The fitting of SPSO used in our ex-

periments is as follows: random neighbourhood search, ( ) 1
0.5 log 2w

−= , the number 

of particles is calculated by: 10 2S D⎢ ⎥= +⎣ ⎦ , where D is problem dimension, and 

1 2 0.5 log 2c c= = +  [13].  

The results obtained using TRIBES in the cases of Lena and Screw images, with 
NC=3, 4 and 5, are presented in Table 2 and Table 3, respectively. Those obtained us-
ing SPSO in the cases of Lena and Screw images, with NC=3, 4 and 5, are presented 
in Table 4 and Table 5, respectively.  

The obtained segmentation results, in the cases of 3 and 4 classes, show that 
TRIBES and SPSO provide similar results. However, TRIBES does not need any pa-
rameter fitting. In the case of 5 classes and more, the tow algorithms do not provide 
the same results, this is due to the increase of the problem dimension.  

In Fig.2 we illustrate the segmentation results for the Lena image through TRIBES 
in the cases of 3 and 4 classes. Fig. 2 (b) and (c) illustrate the results of the  
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Table 2. Experimental results for Lena image with TRIBES algorithm 

Number 
of classes 

Parameters of Gaussian curves Thresholds 
Final value 
of Fitness 

3 
P:(0.2624, 0.7685, 0.8153) 
µ:(198, 23, 100) 
σ:(14.0789, 8.3667, 66,4781) 

T:(41, 179) 2.0761 

4 
P:(0.3541, 0.2902, 0.7758, 0.7547) 
µ:(133,196, 94, 23) 
σ:(8.9784, 16.8357, 64.3285, 8.6236) 

T:(41, 119, 174) 1.2141 

5 
P:(0.3370, 0.2877, 0.7868, 0.3420,0.7536) 
µ:(65, 196, 23, 133, 98) 
σ:(4.7779, 16.3593, 9.3536, 8.5447, 63.0961) 

T:(42, 75, 120, 175) 0.7023 

Table 3. Experimental results for Screw image with TRIBES algorithm 

Number of 
classes 

Parameters of Gaussian curves Thresholds 
Final value 
of Fitness 

3 
P:(0.570, 0.036, 0.529) 
µ:(34, 98, 251) 
σ:(7.383, 100.0, 0.614) 

T:(55, 250) 0.3701 

4 
P:(0.035, 0.528, 0.845, 0.505) 
µ:(100, 251, 32,35) 
σ:(100.0, 0.616, 0.272, 7.866) 

T:(34, 57, 250) 0.1311 

5 
P:(0.038, 0.537, 0.018, 0.639, 0.506) 
µ:(79, 251, 216, 32, 34, 57) 
σ:(56.781, 0.552, 100.0, 0.189, 7.891) 

T:(34, 56, 170, 250) 0.1199 

Table 4. Experimental results for Lena image with SPSO algorithm 

Number of 
classes 

Parameters of Gaussian curves Thresholds 
Final value 
of Fitness 

3 
P:(0.262, 0.764, 0.815) 
µ:(198, 23, 100) 
σ:(14.078, 8.835, 66.480) 

T:(41, 179) 2.0761 

4 
P:(0.775, 0.754, 0.290, 0.354) 
µ:(94, 23, 196, 133) 
σ:(64.328, 8.623, 16.835, 8.978) 

T:(40, 119, 172) 1.2141 

5 
P:(0.337, 0.342, 0.786, 0.287, 0.753) 
µ:(65, 133, 23, 196, 98) 
σ:(4.777, 8.544, 9.353, 16.359, 63.095) 

T:(42, 75, 119, 174) 0.7023 

Table 5. Experimental results for Screw image with SPSO algorithm 

Number of 
classes 

Parameters of Gaussian curves Thresholds 
Final value of 

Fitness 

3 
P:(0.5707, 0.0366, 0.5294) 
µ:(34, 98, 251) 
σ:(7.38, 100.0, 0.6141) 

T:(54, 250) 0.3701 

4 
P:(0.5293, 0.0358, 0.5252, 0.5058) 
µ:(251, 101, 32, 35) 
σ:(0.6135, 100.0, 0.1752, 7.8581) 

T:(34, 57, 250) 0.1311 

5 
P:(0.5284, 0.0182, 0.5070, 0.0384, 0.7295) 
µ:(251, 214, 34, 79, 32,) 
σ:(0.5644, 100.0, 7.8907, 56.5071, 0.2354) 

T:(34, 56, 177, 250) 0.1199 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

Fig. 2. Image segmentation results for the Lena image, (a) original image, (b) original 
and fitted histograms with d=3, (c) original and fitted histograms with d=4, (d) seg-
mented image T:(41, 179) , (e) segmented image T:(41, 119, 174), (f) convergence 
curve for d=3. (g) convergence curve for d=4. Dashed and continuous lines correspond 
to original and fitted histograms. 
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(a) 

 
(b) 
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(e) 
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Fig. 3. Image segmentation results for Screw image, (a) original image, (b) original and 
fitted histograms with d=3, (c) original and fitted histograms with d=4, (d) segmented 
image T:(55, 250) , (e) segmented image T:( 34, 57, 250), (f) convergence curve for d=3. 
(g) convergence curve for d=4. Dashed and continuous lines correspond to original and 
fitted histograms.  
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approximation of the image histogram (Lena) through 3 and 4 Gaussians, respec-
tively. Fig2 (d) and (e) present the segmentation results on 3 and 4 classes. The seg-
mentation result in the case of 3 classes is not good enough, probably since the Lena 
image has more than 3 classes.  

The corresponding TRIBES convergence curves are presented in Fig. 2 (f) and (g) 
in the two cases, respectively. These figures represent the variations of the logarithm 
of the median error over the number of evaluations of the objective function. Looking 
at these figures, the used stopping criterion allows to have the optimal results. 

Fig. 3 presents the experimental results in the case of the Screw image. The goal of 
the segmentation in this case is to extract the Screws from the background. In Fig. 3 
(a) and (b) the approximations of the histogram for NC=3 and 4 are presented, respec-
tively.   

The corresponding segmented images are presented in Fig. 3 (d) for the segmenta-
tion in 3 classes and Fig. 3 (e) in the case of 4 classes. One can observe that the  
segmentation result in 3 classes allows to extract the two screws. The curves of con-
vergence of TRIBES are presented in Fig. 3 (f) and (g) for NC=3 and 4, respectively. 
The convergence curves confirm the efficiency of the stopping criterion. 

6   Conclusion 

In this paper, we proposed a new simple approach to find the optimal thresholds of an 
image, based on Gaussian curve fitting. The fitting problem was seen as an optimization 
problem and solved using TRIBES, a parameter-free Particle Swarm Optimization algo-
rithm. Experimental results show that the presented method leads to convincing segmen-
tations with competitive computational times and without any particular initialization. 
Our study in progress consists in adding other segmentation criteria to further improve 
the segmentation quality and accelerate the optimization. 
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Abstract. Cooperation as problem-solving and algorithm-design strat-
egy is widely used to build methods addressing complex discrete opti-
mization problems. In most cooperative-search algorithms, the explicit
cooperation scheme yields a dynamic process not deliberately controlled
by the algorithm design but inflecting the global behaviour of the co-
operative solution strategy. The paper presents an overview of explicit
cooperation mechanisms and describes issues related to the associated
dynamic processes and the emergent computation they often generate.
It also identifies a number of research directions into cooperation mech-
anisms, strategies for dynamic learning, automatic guidance, and self-
adjustment, and the associated emergent computation processes.

1 Introduction

Cooperation as problem-solving and algorithm-design strategy is widely used in
many fields, including but not restricted to ad hoc wireless networks, swarm
robotics, multi-agent systems, constraint programming, and exact and meta-
heuristic methods addressing complex discrete optimization problems. While
the cooperation paradigm may take different forms, they all share two features:
a set of highly autonomous programs (APs), each implementing a particular
solution method, and a cooperation scheme combining these APs into a single
problem-solving strategy. This strategy is different from the “cooperation” found
in distributed algorithms, which is predetermined by the decomposition of an
algorithm into concurrent processes. Cooperative-search algorithms combine in-
dependent problem-solving strategies, that is, each element of the cooperation
is a stand-alone method able, in most cases, to address, “solve”, the problem
instance considered. Consequently, cooperation mechanisms must be designed
explicitly, which constitutes the core of writing a cooperative algorithm.

In most cooperative-search algorithms, the explicit, deliberately designed, co-
operation scheme yields an associated stream of correlated interactions, i.e.,
reactive actions with a potential for emergent computation and, eventually,
cooperation. This dynamic process, active simultaneously with the deliberate,
optimization-oriented cooperative-search algorithm, is neither controlled by the
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algorithm design, nor spontaneously oriented toward the optimization of the
problem at hand, but contributes to determine the global behaviour of the co-
operative solution strategy.

Correlated and indirect interactions are similar to ripple (or side) effects in
computing systems, defined as coherent processing activities partly independent
of algorithmic rules. In distributed computation, for example, a delay to ex-
ecute some instructions (due to workload variations of shared resources such
as CPUs) can generate a ripple effect on the ordering of the execution of sev-
eral other concurrent operations. Distributed algorithms are, in fact, notori-
ously difficult to debug because ripple effects make faulty behaviour almost
impossible to reproduce. Ripple effects are a form of adaptive response of the
processing activities to events not explicitly accounted for in the algorithm
design.

In the context of cooperative-search methods, correlated asynchronous inter-
actions occur according to system conditions, as well as the internal state of the
cooperating APs and the information exchanged. Though they escape the direct
control of cooperation schemes, indirect interactions influence the subsequent
logical steps of the APs whether they interact with the computing environment
or with other search programs. Now the question is: could indirect interactions,
which are inevitable in cooperative search, be harnessed to yield a better per-
forming method? Under which conditions could this behaviour be obtained?
Could we understand and eventually “design” an implicit cooperation strategy
emerging out of these interactions?

We believe two important research issues stand out in this context: On the one
hand, the development of good cooperation mechanisms, including strategies for
dynamic learning, automatic guidance, and self-adjustment; On the other hand,
the study of the associated dynamic processes focusing on the possible emergence
of a second, implicit, layer of cooperation among the APs and on how to harness
it to obtain a “better” search method for the problem at hand.

The goal of this paper is to contribute to address these issues. We give an
overview of the main explicit cooperation mechanisms encountered in the litera-
ture and describe issues related to the associated dynamic processes and possible
emergent computation. We also identify a research agenda focused on these is-
sues that we believe important and timely given the current interest not only
in the parallelization of exact and meta-heuristic solution methods, but also in
novel algorithmic schemes (e.g., the so-called swarm methods).

The paper is organized as follows. Section 2 briefly recalls the main coopera-
tive parallel meta-heuristics mechanisms. Section 3 discusses the reactive compo-
nent of cooperative-search algorithms and its potential for emergent cooperation.
Section 4 revisits cooperative parallel meta-heuristics mechanisms focusing on
dynamic learning, automatic guidance, and self-adjustment strategies as a par-
tial response to emergent computation issues. Research avenues are summarized
in Section 5 and we conclude in Section 6.
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2 Explicit Cooperation Schemes in Meta-heuristics

Providing a full-length literature review of contributions to cooperation and
meta-heuristics is beyond the scope of this paper. Our objective is to synthesize
the state-of-knowledge of the field as we see it. The interested reader may consult
a number of survey papers on parallel meta-heuristics that dedicate (under var-
ious forms and names) significant space to cooperative methods, including two
recent books [1,30] that collect chapters on many issues in parallel computing
for combinatorial optimization and [7,8,14,17].

Parallelism in general, and cooperative strategies in particular, imply that
both the individual APs and the resulting global search proceed most of the
time with incomplete knowledge regarding the status of the search. The design
of the information exchange mechanisms is thus a key element to the good perfor-
mance of cooperative methods. Important cooperation design issues include its
content (what information to exchange), timing (when to exchange it), connec-
tivity (the logical inter-processor structure), mode (synchronous or asynchronous
communications), exploitation (what each AP does with the received informa-
tion), as well as its scope, that is whether new information and knowledge is to
be extracted from the exchanged data to guide the search.

The importance of these issues is reflected in most parallel meta-heuristic tax-
onomies. To illustrate, consider the classification of Crainic and Nourredine [13],
which generalizes that of [16,7]; [33,17] present classifications that proceed of
the same spirit), where two of the three dimensions relate to cooperation issues.
Thus, the Search Control Cardinality dimension examines how the global search
is controlled: either by a single process or collegially by several processes that may
collaborate or not. Cooperative methods belong to the second category denoted
p-control (pC). The Search Control and Communications dimension then ad-
dresses the issue of information exchanges according to four classes to reflect the
quantity and quality of the information shared, as well as the additional knowl-
edge derived from these exchanges (if any): Rigid (RS) and Knowledge Synchro-
nization (KS) and, symmetrically, Collegial (C) and Knowledge Collegial (KC).
As for the third dimension, Search Differentiation, it reflects the diversity of
the initial solutions and search strategies: SPSS, Same initial Point/Population,
Same search Strategy; SPDS, Same initial Point/Population, Different search
Strategies ; MPSS, Multiple initial Points/Populations, Same search Strategies;
MPDS, Multiple initial Points/Populations, Different search Strategies (where
“point” is used for neighbourhood-based methods).

The most crude form of cooperation involves (almost) no cooperation at all
and is identified as pC-RS with any of the previous search differentiation strate-
gies. Such independent multi-search methods start several processes, using the
same or different solution strategies, from different initial configurations. No at-
tempt is made to take advantage of the multiple APs running in parallel, other
than to identify the best overall solution once all processes stop. This paralleliza-
tion of the classic sequential multi-start heuristic is easy to implement and may
offer satisfactory results in terms of search acceleration.
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pC-KS strategies obtain cooperation by adopting the same general approach
as in the independent search case but taking advantage of the parallel exploration
by synchronizing the APs at pre-determined intervals. An information exchange
mechanism then determines the best current overall solution and the search is
restarted from that point. The mechanism may use a designated process to gather
information, extract the best solution, and broadcast it to all search processes.
Alternatively, each AP may be empowered to initiate synchronization (e.g., using
a broadcast) of all or a pre-specified subset of processes (e.g., processes that
run on neighbouring processors). Here, as in the more advanced cooperation
mechanisms indicated bellow, migration is the term used to identify information
exchanges in population-based parallel algorithms.

Synchronization was seen as a means to re-create a state of complete knowl-
edge to share among all participating individual methods, and it was hopped
that performances, in terms of computing efficiency and solution quality, would
be improved. This did not materialize, however. In fact, compared to inde-
pendent and most asynchronous strategies, synchronous cooperative methods
display larger computational overheads, appear less reactive to the evolution
of the global parallel search, and conduct to the premature convergence of
the associated dynamic process. It has been shown, for example, that frequent
broadcasting of new solutions that stop individual methods from continuing to
explore improving sequences leads to either a random search or premature con-
vergence.

Controlled, parsimonious, and timely exchanges of meaningful information
are thus characteristic of successful cooperative strategies. Asynchronous meth-
ods belong to this group and may be characterized according to the quantity
and quality of the information exchanged and, eventually, the “new” knowledge
inferred based on these exchanges. pC-C asynchronous cooperative methods ex-
change “good” solutions only or, when a memory mechanism exists, implement
simple strategies to extract solutions from memory to pass to APs. More ad-
vanced designs, denoted pC-KC, add procedures to create new information and
solutions based on the solutions exchanged, and implement guiding mechanisms
based on this information.

Search
i

Search
kSearch

j

Search
l

Search
h

Search
r

(a) Many-to-Many

Search
i

Search
k

Search
j

Search
l

Memory, Pool
Reference Set

Elite Set
Data Warehouse

(b) Memory Based

Fig. 1. Direct Communication Schemes
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Communications may be undertaken either directly or indirectly. Strategies
based on the evolutionary paradigm generally use direct communications. The
population is divided into subsets, each assigned to a processor (alternatively,
relatively small populations are generated for each processor), and a genetic al-
gorithm runs on each. An individual population and a genetic algorithm form
a so-called island. Each island may potentially communicate with any of the
other islands, as illustrated in Figure 1a. Then, according to an exchange proto-
col (e.g., on demand from an island with low population diversity), a migration
operator sends a “good” individual to another island. This parallel cooperative
strategy is known as coarse grained. Islands (processors) may also be allowed
to communicate with a limited number of other islands (processors) only, as
illustrated in Figure 2a. Such limitations are generally the result of particular
topologies of the processor network, e.g., the 2-D torus of Figure 2a. Communi-
cations then take place only among adjacent processors according to a so-called
diffusion mechanism. Notice that, islands tend to have very small populations
in this case and the strategy to be denoted fine grained. When populations are
down to single individuals, the genetic operators are applied to individuals on
adjacent islands.

Many cooperative developments outside the evolutionary community are
based on indirect communications and, currently, the largest number use some
form of memory for inter-process communications (the terms pool and solution
warehouse are also used; due to the role assigned to the elements it contains, the
terms “reference” and “elite set” are also sometimes used, while the artificial in-
telligence community uses a similar concept under the name “blackboard”). The
individual heuristic or exact methods are generally assigned each to a processor,
as illustrated in Figure 1b. In the literature, so-called adaptive-memory methods
[29] store partial elements of good solutions and combine them to create new
complete solutions that are then improved by the cooperating programs, while
central-memory approaches [15] exchange complete elite solutions that are then
used to steer the search and, eventually, create new information.

Cooperation is achieved through asynchronous exchanges of information
through the pool (which may share a processor with an AP or be assigned
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a particular one). Whenever a program desires to send out information (e.g.,
when a new local optimum is identified), it sends it to the pool. Similarly, when
a program needs to access outside information (e.g., to diversify the search), it
reaches out and takes it from the pool. Communications are initiated exclusively
by the APs, irrespective of their role as senders or receivers of information. No
broadcasting is taking place and there is no need for complex mechanisms to
select the programs that will receive or send information and to control the co-
operation. The pool is thus an efficient implementation device that allows for a
strict asynchronous mode of exchange, with no predetermined connection pat-
tern, where no process is interrupted by another for communication purposes,
but where any AP may access at all times the data previously sent out by any
other AP.

Multi-level cooperative search [32] offers a different pC-KC cooperation ap-
proach based on controlled diffusion of information principles (Figure 2b). Each
AP works at a different level of aggregation of the original problem (one AP
works on the original problem) and communicates exclusively with the APs
working on the immediate higher and lower aggregation levels. Improved solu-
tions are exchanged asynchronously at moments dynamically determined by each
AP according to its own logic, status, and search history. Received solutions are
used to modify the search at the receiving level. An incoming solution will not
be transmitted further until a number of iterations have been performed, thus
avoiding the uncontrolled diffusion of information.

Strict and knowledge-synchronous mechanisms yield a rather strict control
of the global search, the trajectory of each AP in the cooperation changing
according to the state of all other APs, resulting in no or little emergent be-
haviour being observed. On the other hand, however, these approaches have
been shown experimentally to generally yield inferior results to those of collegial
and knowledge-collegial strategies. The behaviour of APs in the latter contexts
depends on the information exchanged and, in the case of memory-based cooper-
ation, on the information stored and its management. Moreover, the evolution of
pC-KS cooperative systems creates new knowledge, new solutions, targets, and
statistics, based on the information stored in the memory structure and uses this
new knowledge to influence the trajectory of each AP in the cooperation and,
thus, the trajectory of the global search. The information propagation inher-
ent to these asynchronous cooperation mechanisms yields significant emergent
behaviour as discussed in the next section.

3 Emergent Computation and Cooperation

All cooperation search mechanisms presented in the previous section involve
explicit exchanges of information among the APs. These exchanges are defined
by the design of the cooperation scheme, which details exactly what and when
information is to be shared, as well as how this information is to be used. This
explicit design exists even when exchanges are performed asynchronously and
indirectly through a pool.
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The information collected and communicated through an explicit exchange
by one AP, the sender, generally modifies information available to, and thus the
search trajectory of, at least one other program: the receiver. For example, the
sender may communicate its newly improved best solution x and the receiver may
re-initialize its search from it. In other words, the control and behaviour of the
search performed by the receiver AP is modified by the search and information
sharing behaviour of the sender AP. This phenomenon is denoted direct (explicit)
AP interaction.

Explicit information exchanges are designed to improve the performance of
the global search performed by the APs involved in the cooperation compared
to their individual performances. This goal if often attained but not always or
not always at the level hoped for [31]. This is largely due to the fact that, in
most cooperative search systems, APs interact not only through explicit infor-
mation exchanges, but also indirectly through correlated cooperation actions.
Information among cooperating APs is thus also shared implicitly through a
propagation (or diffusion) process not explicitly defined by their design or that
of the cooperation mechanism.

Figure 3 describes a simple propagation process. AP1 sends information x to
AP2 via a direct interaction 1 x−→ 2. AP2 receives this information and uses it to
guide its exploration. Later, it sends information y = f2(x) to AP3 via a direct
interaction 2

y−→ 3. The notation indicates that the information sent by AP2 to
AP3, y, results, at least partially, from an interaction between AP1 and AP2,
which modified the trajectory executed by the search heuristic f2 of AP2. There
is implicit information propagation because the second interaction is triggered
by the modification to the search behaviour of AP2 following an interaction with
AP1. The second interaction is correlated to the occurrence of the first one.

Correlated interactions propagate control actions of one program onto other
programs. In the example of Figure 3, the search activities of AP1 modify the
search behaviour of AP3, as indicated by the arrow between the two APs. We
identify this control as indirect (implicit) AP interaction.

When direct interactions occur asynchronously according to the internal state
of the interacting APs, chains of correlated interactions build up spontaneously
among the APs. Sequences of bold arrows in Figure 4 illustrate such occur-
rences of correlated interactions under a 2-D torus interconnection network,

x f2(x)

f2(x)

AP1

y = 

AP

AP3

2AP2AP2

Fig. 3. Information Propagation Process
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while dashed arrows represent some of the associated indirect control activi-
ties. Figure 4(a) pictures a chain of correlated interactions generated by the
sequence of direct interactions 5 → 6, 6 → 10, 10 → 14, 14 → 15, 15 → 3, 3 → 4,
and 4 → 8, together with one of several associated indirect interactions: 5 → 8.
Figure 4(b) illustrates the case where two chains of correlated interactions de-
velop concurrently, while Figure 4(c) displays indirect interactions forming loops
inside a network of correlated interactions. These are only illustrative examples,
of course. Yet, they help getting a sense of the complexity of the control ac-
tivities associated to indirect interactions, the spontaneity of this control, the
inter-connectivity of the programs in a cooperative search, and the dependence of
the search performed by each AP on these emerging control structures that are
the correlated interactions. In a central memory-based systems, where chains
of correlated interactions are not restricted by the logical topology of the in-
terconnection network, this self-organization of the search through correlated
interactions is even more striking.
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Fig. 4. An Illustration of Indirect Information and Control Propagation

Chains of correlated interactions are the ripple effects of cooperative search
and constitute the means by which information propagates among APs, infor-
mation different from and in addition to that resulting from the interactions
specified by the cooperation scheme. It must be emphasized that, unlike explicit
information exchanges, the sharing of information through propagation is not
specified in the cooperation scheme. Nor are specified the search control activ-
ities that emerge spontaneously from these information-propagation processes.
Moreover, this spontaneous organization of the control activities plays a more
important role in the global exploration of the search space performed by co-
operation mechanisms implementing asynchronous pC-C and pC-KC strategies,
where the cooperation scheme is executed independently and asynchronously by
each cooperating AP.

Interesting questions arise from the realization that emergent control be-
haviour occurs in systems of cooperating APs and that the global exploration
of the search space performed by the cooperating APs is thus the result of the
interplay between the two types of AP interactions, the direct ones specified by
the design of the cooperation and the complex system of indirect interactions
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emerging from them. Could indirect interactions act similarly to direct ones and,
by modifying the search behaviour of the receiving AP improve its performance?
Could indirect interactions emerge as an implicit cooperation scheme, that is,
could indirect interactions support a global cooperative exploration of the search
space? Does or could this emergent control help improve the exploration of the
search space? In what circumstances could the answer to some of these questions
by “yes” ? Understanding how such global behaviour may emerge and how (if)
it could be harnessed to support the search for good solutions to the problem
in hand, could prove important in enhancing the performance of cooperating
search methods.

4 Advanced Cooperation Mechanisms and Learning

Studies on emergent cooperation issues have been performed within a number
of scientific fields (Section 5) but, with the notable exception of the multi-level
paradigm designed to control the indirect diffusion of information among co-
operating APs, few efforts were dedicated to these issues within the operations
research or parallel meta-heuristic communities. Most efforts were rather di-
rected toward improving the cooperative meta-heuristic mechanisms to enhance
their optimization capabilities. Learning was and continues to play a central role
in these processes, particularly for memory-based mechanisms.

Consider the adaptive-memory approach where the pool contains solution
components (e.g., tours) of good solutions identified by APs (e.g., multi-tours
for VRPTW found by tabu searches) that are ranked according to attribute
values, including the objective values of their respective solutions.. Each APs
then probabilistically selects components in the memory, constructs a new initial
solution (e.g., by solving a set-covering heuristic), improves it, and returns the
components of its best solution to the memory.. The learning mechanism of
adaptive-memory approaches is thus composed of the partial solutions kept in
the memory together with the continuously updated rank values, combined to a
new-solution creation feature.

Algorithms based on the central-memory approach keep full solutions and
attributes sent by the APs involved in cooperation. APs may construct new
solutions, execute a neighbourhood-based improving meta-heuristic, implement
a population-based meta-heuristic, or perform post-optimization procedures on
solutions in the pool. Improving meta-heuristics aggressively explore the search
space, while population-based methods (e.g., genetic algorithms [10,21] and path
relinking [9]) contribute toward increasing the diversity of solutions exchanged
among the co-operating methods. Exact solution methods may participate to
the cooperation either to build solutions or to seek out optimal ones (on re-
stricted versions of the problem, eventually). The information exchanged among
cooperating APs has to be meaningful, in the sense that it has to be useful
for the decision process of the receiving programs, the evolution of the shared
data, and thus the evolution of the global search, or both. Information indicative
of the current status of the global search or, at least, of some individual search
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program is, in this sense, meaningful. The basic mechanisms thus only implement
exchanges of local good solutions (local optima) together with ranking proce-
dures and probabilistic solution-extraction procedures in the central memory,
thus implementing the same learning mechanisms described previously.

More advanced mechanisms may involve exchanges of good solution together
with their respective context (e.g., memories recording recent behaviour of so-
lution attributes), or a comprehensive history search. Memories recording the
performance of individual solutions or solution components may be added to
the pool, as well as procedures to generate new solutions or to compute var-
ious statistics on solutions, solution components, individual AP performance,
and the trajectory of the global search. This information may then be used to
build guidance mechanisms or even to feed external learning programs, e.g.,
neural networks. Not all these ideas have been thoroughly developed and in-
cluded in the latest methods found in the literature. They constitute an active
field of research, however, as illustrated by the two following examples. First,
Le Bouthiller, Crainic, and Kropf proposed a dynamically-adaptive learning and
guidance mechanism based on atomic elements (e.g., the arcs present in the
routes of VRPTW solutions in the pool [22]). Patterns of arcs present in good
or bad solutions in the pool are built and are then sent to the individual APs
to intensify or diversify the global search. The particular pattern and guidance
directive depends upon the stage of the search as measured by the evolution of
the elite population in the pool. The mechanism is general in the sense that,
being based on atomic elements, it is independent of any particular problem
structure. Second, Crainic et al. have shown for the first time the capability of
memory-based cooperative search to handle complex, multi-characteristic prob-
lems [9]. Their study of the design of third-generation wireless networks aims to
optimize the number and configuration (location, power and number of anten-
nas, plus the orientation and tilt of each antenna) of base stations to guarantee
level of service and minimize the impact of the electromagnetic emissions of the
system on human health. The cooperative system involves several tabu search
APs to explore particular parts of the solution space where only a few of the
configuration parameters are allowed to vary. A genetic algorithm and a path
relinking method are then used to combine partial solutions into complete ones
and generate new solutions for the pool.

Many interesting research challenges may be identified in relation to these
issues. A first group continues the work in designing intelligent cooperation and
learning mechanisms to enhance the optimization capabilities of cooperative
meta-heuristics. Promising avenues include, but are not limited to, the inte-
gration of adaptive and central memory principles, the enhancement of atomic-
based guidance, the integration of memory and multi-level search concepts, and
the development of advanced learning mechanisms that 1) build a dynamic im-
age of the performance of each AP to, eventually, modify its search parameters
or principles, 2) combine statistics (memories) and artificial intelligence methods
(e.g., neural networks), and 3) integrate the distributed, i.e., the APs’, memories
to the global search knowledge and guidance. A second direction aims to build
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on the capabilities of such intelligent cooperation and learning mechanisms to
build characterizations of the solution space already visited and the dynamic
performance of the search. This could then be used to steer the global search
accordingly as well as to study the linkages between explicit cooperation and
emergent computation. Last but not least, it would be very interesting to de-
velop a theory of learning within the context of multi-AP cooperation. This
would provide the means to go beyond the limits of experimental settings in de-
signing effective parallel cooperation search methods for difficult problems. The
next section identifies some of these latter possibilities in more detail.

5 Research Directions in Emergent Computation and
Cooperative Search

We believe that research directions on the dynamics and emergent computation
behaviour of cooperative search should be inspired by research conducted in
other fields, as well as build on the learning mechanisms described in the previous
section and on experimental and empirical validation processes for particular
problems.

The programming of dynamics in computing systems could offer a first direc-
tion. As indicated earlier, the performance of the global exploration of the search
space by cooperating APs is obtained from the interplay of a complex system
of direct and indirect interactions. So far, however, the design of cooperative
algorithms has focused on the components of such systems, e.g., the APs, the
cooperation scheme, and the interconnection network, taken individually. Little
effort, if any, has been dedicated to developing design strategies of cooperative
algorithms by considering, “programming”, the system as a whole. This is a bit
surprising since dynamic interactions among autonomous computing elements
and their potential for emergent computation have been investigated for sev-
eral computing system contexts. Thus, recurrent neural networks with emergent
search behaviour are programmed as a whole by directly adjusting their parame-
ters (e.g., the logical interconnection network, the weights on the interconnection
links, and the transition functions on the nodes) based on learning algorithms
and adjustment procedures built from the problem optimization model. For co-
operative search, this translates into working directly on the logical intercon-
nection network, the cooperation mechanism, the APs, and the asynchronous
mode of information exchange, that is work directly on the optimization logic
of the cooperation. The methods to perform this global design are an important
research topic per se, which, for us, is strongly related to the learning issues
identified previously.

We thus turn to research areas such as multi-robot systems [2,3,6,23], reactive
multi-agent systems [5,27], artificial life [18,25,19] and ad hoc implementations of
cooperative algorithms in various computer science applications. Emergent coop-
eration behaviour has been synthesized in the field of behaviour-based robotics
[2,3,23] using a methodology denoted behaviour-Based AI, derived from theories
on the modular decomposition of intelligence [4,20]. Behaviour-decomposition
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methods are first used to analyze observed emergent cooperation behaviours
in natural social systems made up of individuals displaying relatively simple
behaviours (e.g., ants). Similar cooperative behaviours are then synthesized in
societies of robots [24]. For example, the foraging behaviour of ants has been
synthesized into an object-gathering behaviour in social robotics by combining
two basic forms of direct interactions among robots (APs), dispersion (interact
to diversify the exploration relative to the others) and homing (aim for the goal
by, for example, sharing the good solutions) [23]. These results could provide the
theoretical foundations for cooperation mechanisms that include more than one
form of information sharing strategy among APs which, hopefully, will display
global dynamics that adequately approximate the desired emergent problem-
solving strategy.

More ideas for research directions come from the field of computing systems
where ad hoc bottom-up and emergent computing strategies are increasingly
being proposed with significant success for various applications in telecommu-
nication network routing, reliability and power supply limitations in wireless
networks, access security to computer systems, and so on. For example, self-
assembly in nanothechonology, a bottom-up nano-fabrication process in which
components self-assemble based on shape complementarity, could provide the
basic strategies to specify which interactions are allowed to occur at run time
and, thus, to specify the logical interconnection networks. Similarly, the research
efforts in autonomic computing, which aims to be able to tell a system what to
do and let it to find how to do it, could maybe inspire a new definition of prob-
lem solving for cooperative meta-heuristics where it is the emergent behaviour
of the system that finds its way to how address a given problem.

Unlike cellular automata and artificial neural networks, logical interconnec-
tion network topologies in cooperative algorithms tend to vary widely. So far,
empirically, the best cooperative search results have been obtained through in-
terconnection networks that are configured dynamically at run time, e.g., the
memory-based approaches. This suggests adaptive approaches to program sys-
tem dynamics by adjusting dynamically the network topology of cooperative
algorithms to meet the desired attributes of global cooperation. Turning to the
learning mechanisms of the previous section, we believe that these or similar
learning schemes could be applied to system dynamics. Thus, for example, learn-
ing could be used to identify system attractors (regions of the search space to
which the search returns often) and the path ways leading to them. The mech-
anism could then be used to adjust dynamically the interconnection topology
by blocking these path ways, and thus prevent the occurrence of some chains
of correlated interactions that appear to attract the search is the same region
of the search space. Learning could also be used to develop interaction policies
that favor those that can lead to the emergence of cooperation and block those
that are harmful to it. Intelligent control of the system dynamics of coopera-
tive search through learning mechanisms is certainly one of the most promising
research avenues in the effort to obtain a cooperative exploration of the search
space through spontaneous interactions among APs.
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Research on self-organization often analyze natural systems with observed
self-organized behaviours to discover strategies for designing distributed systems
with particular globally emergent behaviours. However, it is well known that
computing systems yield spontaneous activities, e.g., the ripple effects described
earlier on. This raises the issue whether we should study the dynamic behaviour
of cooperative search systems per se, as a research object, similarly to biologi-
cal systems through comprehensive laboratory-based simulations. An associated
question is whether we should seek to understand the complex behaviour of co-
operative systems in order to sustain emergent cooperation or, rather, should we
seek to discover new search heuristics based on occasionally occurring coherent
search behaviour at the global level? A combination of these two methodologi-
cal approaches has proved to be successful. Thus, the study of locally emergent
cooperation has led to ideas to design a new cooperation mechanism, which
yielded the highly successful multi-level cooperative search method. The final
challenge, obviously, is to bring together the research on explicit and implicit
cooperation mechanisms and behaviours and apply the resulting methodology
within the context of various solution methods. Even though the research in this
area is still at the very beginning, this challenge has been met with some success,
producing new methods out of the study of cooperative search [28,12,26,11,22].

6 Conclusion

Cooperative algorithms as computerized problem-solving strategies are becom-
ing ubiquitous in several problem domains, in particular for addressing complex
discrete optimization problems. Cooperation has well-known advantages, short
development cycle through the re-utilization of existing exact or heuristic meth-
ods and high adaptability to different problems and problem characteristics, in
particular. Yet, these systems also generate series of indirect interactions that
may reduce their performance. We have described cooperation mechanisms, dis-
cussed the relations between direct and indirect interactions, and have identified
a number of challenges and interesting research directions for the development
of the next generation of cooperative search methods.
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Ruiz, D. (eds.) Euro-Par 1999. LNCS, vol. 1685, pp. 533–542. Springer, Heidelberg
(1999)

33. Verhoeven, M.G.A., Aarts, E.H.L.: Parallel Local Search. Journal of Heuris-
tics 1(1), 43–65 (1995)



Multiobjective Landscape Analysis and the
Generalized Assignment Problem

Deon Garrett and Dipankar Dasgupta

University of Memphis, Memphis, TN, 38122, USA
jdgarrtt@memphis.edu, dasgupta@memphis.edu

Abstract. The importance of tuning a search algorithm for the specific
features of the target search space has been known for quite some time.
However, when dealing with multiobjective problems, there are several
twists on the conventional notions of fitness landscapes. Multiobjective
optimization problems provide additional difficulties for those seeking
to study the properties of the search space. However, the requirement
of finding multiple candidate solutions to the problem also introduces
new potentially exploitable structure. This paper provides a somewhat
high-level overview of multiobjective search space and fitness landscape
analysis and examines the impact of these features on the multiobjective
generalized assignment problem.

1 Why Landscape Analysis

One of the foremost questions facing designers of metaheuristic algorithms for
any sort of problem is how the structure of the objective function will affect the
behavior of the search algorithm. It is known, and quite intuitive, that incorpo-
rating problem-specific knowledge into a search algorithm can often substantially
increase the performance of the algorithm. However, given multiple conflicting
options for building such algorithms, comparatively little is known concerning
the right choices, or even the right information necessary to make good decisions.

This work examines a set of tools developed to help gain insights into how var-
ious algorithms navigate complex multiobjective search spaces. Many of these
tools have previously been described in relation to conventional optimization
problems. In such cases, the implications of extending the tools into the multi-
objective realm are carefully examined. In this work, we propose some methods
by which such relevant information may be obtained and exploited, and we apply
these methods to a pair of classes of assignment problems exhibiting markedly
different types of structure.

2 Fitness Landscape Analysis

As more and more researchers have turned their attention to modeling search algo-
rithm performance, a number of techniques have been proposed to classify fitness
landscapes, generally corresponding to fundamental properties of a given search
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space. While most commonly defined in terms of classical single objective opti-
mization,manyof theseproperties have straightforwardgeneralizations to themul-
tiobjective domain. However, multiobjective optimization introduces additional
features which may be analyzed and exploited by search algorithms. By studying
these features, one should be able to design metaheuristic algorithms to better take
advantage of the peculiarities of multiobjective optimization of a given problem.

Often, multiobjective search algorithms are defined in terms of a simpler, sin-
gle objective algorithm. The n objectives of the original problem are scalarized
using a particular weight vector, and the resulting single objective problem is
attacked using the component search method. In these cases, the multiobjective
problem may be completely characterized, for the purpose of modeling the per-
formance of such an algorithm, by a family of related fitness landscapes. Each
landscape is a window on the problem as viewed through a specific weight vector.

Abstractly, one may thus consider the ruggedness of adjacent landscapes. In
fact, this notion of the similarity between nearby landscapes is what determines
in part the success of different types of multiobjective local search algorithms.
Following convention established by analysis of single objective landscapes, we
may characterize a multiobjective problem as “smooth” if small changes to the
underlying weight vector impose small changes on the fitness landscape. Con-
versely, a “rugged” multiobjective problem is one in which making a small change
to the weight vector drastically alters the resulting fitness landscape.

Given a single good solution to a multiobjective optimization problem, the diffi-
culty in finding other good solutions is largely determined by the smoothness of the
family of landscapes. It is somewhat intuitive that smoothness implies that a good
solution on a particular landscape should be nearby to good solutions on nearby
landscapes. This spatial locality makes algorithms which attempt to build from
one solution to a multiobjective problem to find many others more attractive. On
the other hand, as the family of landscapes becomes more rugged, the information
gained by finding one good solution becomes less useful in finding others.

The following sections describe a number of potentially useful metrics by which
fitness landscapes, both single and multiobjective, may be characterized. In gen-
eral, many of the tools in common use for analysis of single objective landscapes
have fairly straightforward generalizations to the multiobjective realm. In addi-
tion, multiobjective algorithms which consist entirely of a sequence of independent
runs of some underlying single objective optimization method may be directly
studied using the single objective tools. However, it is also true that multiobjec-
tive optimization provides additional opportunities to exploit problem knowledge,
and much of the goal of this work is to study these opportunities and apply the
resulting knowledge to the problem of designing more effective algorithms. The re-
mainder of this chapter is focused on defining a number of tools by which we may
obtain such useful information about a given multiobjective problem instance.

2.1 Distribution of Local and Pareto Optima

Intuitively, the number and distribution of local optima would seem to have
a profound impact on the performance of a general purpose search algorithm.
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A problem with but a single local optimum is by definition unimodal, and thus
easily solved by any number of simple algorithms. As the number of local optima
increase, the chances of becoming trapped in a local optimum are increased
correspondingly. However, the distribution of local optima throughout the space
is at least as important as the number of such optima. Classical notions such as
deception are rooted entirely in the notion of unfortunate distributions of local
optima.

One of the best-known examples of real-world problems with very different op-
tima distributions is the comparison between the traveling salesman problem
(TSP) and the quadratic assignment problem (QAP). In the TSP, problem in-
stances exhibit what is commonly known as a “Big Valley” structure [1]. This term
refers to the phenomena that almost all local optima are concentrated around a
line that approaches the global optima, with the tour lengths of points along that
line tending to increase as the distance to the global optimum increases.

In contrast, QAP instances tend to exhibit almost no structure when viewed
in this same manner. The local optima for a typical QAP instance are very
nearly uniformly distributed throughout the search space, with many, perhaps
most, of all local optima lying close to the maximum possible distance from the
global optimum. The difference in performance of a local search algorithm on
TSP versus QAP is therefore quite dramatic.

From a multiobjective standpoint, many Pareto optimal solutions are also
global optima of some single objective problem. Most commonly, given a Pareto
front which is globally convex, there exists a weight vector for each Pareto op-
timal solution, a scalarization of the problem by which would result in the solu-
tion being the globally optimal solution of the resulting single objective problem.
Thus, the distribution of local optima affects multiobjective problems just as it
does for their single objective counterparts. However, multiobjective landscapes
add an additional consideration, in that different Pareto optima are not generally
local optima of the same single objective slice of the landscape. Therefore, the
distribution of Pareto optima is in some sense a different aspect of the landscape
than is the distribution of local optima leading to a single point on the Pareto
front. In essense, you have to find both solutions, and the entire landscape can
and often does change underneath you as you try to switch from one to the
other.

2.2 Fitness Distance Correlation

Fitness distance correlation as a tool for modeling algorithm performance is
based on the notion that good local optima should be near to the global optimum
in terms of fitness as well. If this is the case, in principle there should be a clear
trail from any local optimum to the global optimum in which each step requires
only small changes to the current solution. If instead, large jumps are required
to move from a local optimum to a better solution nearer to the global optimum,
most search algorithms may be expected to suffer.

Primarily defined in terms of single-objective optimization, fitness distance
correlation is the correlation coefficient between the distance in objective space
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and the distance in parameter space between a set of randomly distributed local
optima and the respective nearest global optimum to each. The standard Pear-
son correlation coefficient may be used to describe the results, although some
useful information is not captured by this single summary statistic. Instead, scat-
ter plots of parameter space distance versus objective space distance are often
reported.

In the context of multiobjective optimization, the basic distinction is that the
set of global optima is taken to be the set of nondominated solutions. While
conceptually a simple extension, each Pareto optimal solution may or may not
be the optimum of some mono-objective problem associated with a particular set
of weights. The novelty in such a formulation is that, because each solution is,
in essence, the optimum of a different fitness function, the correlations between
nondominated solutions need bear no resemblance to the correlation between
different local optima of a single function. Thus, considering the correlation
between nondominated solutions can provide very useful information concerning
the relative difficulty of moving “along” the Pareto front.

There are possibly other, more useful, ways to generalize this concept to mul-
tiobjective landscapes. The basic restriction of FDC is that one needs to get a
single number indicating the distance to each optima. While one can certainly
treat the Euclidean distance between a fitness vectors as the requisite metric,
one may also consider, for example, the angle between vectors. If we treat dis-
tance as being defined by the angle between fitness vectors, then the nearest
optimum will be, in a sense, “aligned” with the solution, in that they will have
their component fitness values in the nearest proportion with one another. The
nearest Pareto optimum under this definition will be that which lies adjacent
on the Pareto front. The impact of these different choices on the resulting anal-
ysis is still an open question, but it is worthwhile to keep in mind the various
possibilities that arise when dealing with vector valued optimization.

2.3 Ruggedness

Ruggedness is a somewhat vague notion, and a number of attempts have been
made to formalize it [2]. However, intuitively, a landscape is rugged if there
are many local optima of highly varying fitness concentrated in any constrained
region of the space. Thus, it would seem that any definition of ruggedness, or
conversely, smoothness must take into account both the number and distribution
of local optima.

One straightforward measure of smoothness is to consider the correlation be-
tween adjacent points in the search space, where adjacency is dependent on the
specification of a suitable neighborhood operator [3]. This correlation function
value provides vital insights into the structure of a given search space under the
chosen operator. A high correlation coefficient implies that adjacent positions
in the search space tend to have very similar fitness values. In this case, a lo-
cal search algorithm might be expected to perform well, since it seems possible
to exploit information gained by prior fitness function evaluations to effectively
guide the choice of points to evaluate in the future.
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As computing the true correlation requires exhaustive knowledge, researchers
have often substituted autocorrelation instead. Autocorrelation typically arises
in signal processing applications, and roughly speaking, measures the degree
to which a time series is correlated with a time-shifted version of itself. In the
current context of landscape analysis, one may construct a time series by setting
out on a random walk and recording the fitness values at each point along the
walk [3]. An uninformed random walk provides information about the overall
ruggedness of the search space, which is certainly useful information for one
seeking to design an effective algorithm.

However, if one knows the location of the global optima, or even of a set of
high quality local optima, we can measure the autocorrelation of points along
a path leading to these desirable solutions. For example, suppose we know the
location of the global optimum for some problem. We can create a large number
of random initial solutions, then send each one on a walk toward the global
optimum. If the average autocorrelation is high, then we have reason to believe
that other similar problem instances may be successfully attacked using fairly
simple local improvement operators.

Multiobjective optimization provides another possible use for autocorrelation
analysis. One vital piece of information concerns the relative difficulty of using
previously located solutions to guide the search for additional Pareto optimal
solutions versus performing a random restart to begin searching for other points.
One way to attempt to answer this question is to look at the autocorrelation
of random walks between known Pareto optimal solutions. If the path between
Pareto optima is very rugged, it may be difficult for a two-phase algorithm to
navigate the minefield of local optima. As a result, it may actually be beneficial
to perform a restart to begin the search for additional Pareto optimal solutions.

2.4 Random Walk Analysis

Merz in [4] models crossover and mutation in hybrid evolutionary algorithms as
random walks initiated from local optima. A series of mutations is represented by
an undirected random walk starting from a local optimum. In contrast, crossover
is modeled as a random walk starting at one local optimum and ending at an-
other. Provided that the crossover operator is respectful [5,4], this random walk
between local optima explores the space in which offspring will be produced.

In [6], this method was extened to multiobjective optimization by considering
the impact of crossover and mutation operating on the current nondominated
frontier at various points during the evolutionary process. Using the mQAP as
an example, it was shown that the ability of crossover to generate points closer
to the Pareto front accounts for some of the success of a very good memetic
algorithm. On instances where crossover more closely resembled mutation, the
memetic algorithm could not outperform a simpler local search metaheuristic.

Modeling genetic operators is not the only valid use of random walks, how-
ever. In the context of local search operators, random walks can help to provide
estimates of many different properties of fitness landscapes. Watson et. al. [7,8]
used random walks to estimate the depth of each basin of attraction in job shop
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scheduling problems, and using the insights provided, developed an algorithm
called I-JAR (iterated jump and re-descend) which was competitive with highly
refined tabu search algorithms on JSP instances. I-JAR works by simply running
a local search algorithm to a local optimum, then taking a random walk of length
n, where n was empirically determined for the JSP, followed by an additional
local improvement stage. The result is a very efficient algorithm which finds a
local optimum, then “jumps” the minimum distance required to escape the basin
of attraction before continuing the local search.

In multiobjective optimization, the notion of depth in relation to a basin of
attraction is not so straightforward. Depending on both the location of the basin
itself, or more accurately, the local optimum at the extremum of the basin, and
the direction in which the search algorithm chooses to attempt its escape, the
depth may vary dramatically. In general, even true Pareto optimal points will
usually have a non-zero escape probability given an arbitrary direction of escape.
This makes the notion of a barrier or basin more complicated in multiobjective
landscapes, and further study is required to better understand the impact of
changing direction during the search.

3 The Generalized Assignment Problem

The generalized assignment problem (GAP) deals with a set of m agents and a
set of n tasks. Each task must be completed by exactly one agent. Each agent is
allocated a specific number of resource units, and each agent requires a particular
number of units to complete each task. Additionally, each agent incurs a specified
cost for each task. The resource requirements and costs for a given task may differ
between agents. The overall goal is to assign all tasks such that no agent violates
the capacity constraints and the total costs incurred are minimized.

Formally, we may introduce an m-dimensional vector B, with bj denoting
the total capacity alloted to agent j. We further introduce m × n matrices A
and C, denoting the resource matrix and the cost matrix respectively. Finally,
we introduce an m × n binary matrix X, with xij = 1 only if task i assigned
to agent j by a particular candidate solution. The goal is thus to find such a
solution so that

min
X

m∑
i=1

n∑
j=1

xijcij , (1)

subject to
m∑

i=1

xijaij ≤ bj ∀ j : 1 ≤ j ≤ n (2)

and
n∑

j=1

xij = 1 ∀ i : 1 ≤ i ≤ m. (3)

(2) are known as the capacity constraints, and (3) are called the semi-assignment
constraints.
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The GAP is known to be NP-hard [9], and exact algorithms have proven
tractable only for problems of a few hundred tasks or less [10]. Thus, for large
instances, heuristic and metaheuristic methods have received a great deal of
attention, including tabu search approaches [11,12], variable depth search [13,14],
ant colony optimization [15], evolutionary algorithms [16], and more recently,
path relinking algorithms [17,18,19,20].

Most experimental studies of the GAP have chosen a benchmark set of ran-
domly generated instances divided into five classes, imaginatively named A, B,
C, D, and E. The A and B-type instances are not considered challenging to
modern algorithms and are not considered in this work. The D and E-type in-
stances considered more difficult than the C-type due to the fact that the costs
are inversely related to the resource allocations in the former instances.

Type C: aij = U(5, 25)
cij = U(10, 50)
bi = 0.8

∑
j

aij

m

Type D: aij = U(1, 100)
cij = 111 − aij + U(−10, 10)
bi = 0.8

∑
j

aij

m

Type E: aij = 1 − 10 ln(U(0, 1])
cij = 1000

aij
− 10U[0, 1]

bi = 0.8
∑

j
aij

m

3.1 The Multiobjective GAP

Like many other combinatorial optimization problems, the GAP is often applica-
ble in situations calling for simultaneous optimization of more than one objective
function. We propose a straightforward extension of the GAP to a multiobjective
problem. The reasons for this are to provide an additional test for multiobjective
algorithms, but also because we feel that a multiobjective benchmark problem
featuring constraints and a quite different type of structure to the now well-
known mQAP should be added to the suite of widely available benchmarks. In
the remainder of this paper, the mGAP will be described and examined with
particular attention to the structure of the resulting search space and its impact
on MOGLS algorithm performance.

The most basic formulation of the mGAP is to augment the description in the
previous section with additional cost matrices. Each task must then be assigned
to a single agent in such a way as to minimize a vector of costs. Formally, the
optimization problem is thus to find a solution s such that

min
s∈Λ

M∑
i=1

Ck
si,i, (4)
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where Ck denotes the kth cost matrix and the min operation denotes vector
minimization, or Pareto optimization. The constraints are unchanged from the
single objective version of the problem.

Proceeding analogously to Knowles and Corne for the mQAP [21,22], the
correlation between cost matrices would seem to be an important indicator of
search algorithm performance. The analysis presented for the mQAP indicates
that in some situations, a MOSA-like strategy could be quite effective. In such an
algorithm, a single solution is optimized with respect to some weight vector. The
weights are then modified slightly and a new optimization pass is initialized from
the locally optimal solution found in the first stage. The process could continue
until some termination criteria is satisfied, at which point the algorithm could
terminate or choose to restart from a new randomly chosen starting point and
a new weight vector.

However, unlike the mQAP, the mGAP is constrained. In the mGAP, the ca-
pacity constraints make it unlikely that large numbers of neighboring solutions
are feasible. One may allow the search to visit infeasible regions of the space,
provided some appropriate method were in place to guide the search back toward
good feasible solutions. Alternately, the algorithm may be prohibited from explo-
ration outside the feasible region. In the latter case, “neighbors” along the Pareto
optimal front may be disconnected. This could have profound implications on
the ability of the two-phase local search algorithms to adequately explore the
Pareto optimal front.

A related issue in the description and formulation of the mGAP is the tightness
of the constraints. Intuitively, if the given capacity constraints for each agent
roughly equal the average resource usage times the average number of tasks
per agent, then the problem would seem to be quite difficult. Simply finding a
feasible solution may be very challenging.

Furthermore, the relationship between the resource usage and costs can also
impact the performance of search algorithms. If the costs are inversely related
to the resource usage, then the most cost effective solutions are likely to involve
mappings of tasks to agents that incur large resource usage, thus moving ever
nearer to the boundaries of the feasible regions of the space. This can be of
particular importance to neighborhood-based search algorithms such as those
considered in this work. Additionally, two of the three classes of random in-
stances involved cost matrices which are negatively correlated with the resource
matrices. As we have previously seen, correlation between cost matrices may
be relevant in determining search algorithm performance. If, for example, one
generates a mGAP instance with negatively correlated cost matrices, one of the
objectives will then be positively correlated with the resource matrix. It might
thus be worth exploring additional forms of random instances in the case of
multiobjective optimization.

However, in generalizing the GAP to include multiple objectives, additional
problems arise. Standard problem instances are designed to ensure that the fea-
sible region is somewhat tight and the type D and E instances are designed to be
more difficult by correlating their cost function with the resource requirements.
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Generating multiple cost matrices based on these definitions yields problem in-
stances in which essentially all Pareto optimal solutions lie in a very small feasible
region, as the high correlation (or anti-correlation) means that the resulting costs
matrices are very similar. Care must be taken in generating instances so that
the resulting problem is not degenerate in some form.

3.2 Local Search Algorithms for the GAP

The GAP, and by extension, the mGAP admits more than one possible type
of move in relation to a local search algorithm. Unlike the QAP, in which the
swap is essentially universally used as the basis of local search methods, local
search algorithms for the GAP tend to utilize both shifts and swaps. In a shift
operation, a single task is reassigned to a different agent. Shifts can be effective
when trying to move from an infeasible to a feasible solution, since they can take
free up resources from one agent without adding other resources in return. Of
course, if a solution is feasible, a shift may be unlikely to maintain feasibility for
exactly the same reason.

Unlike shifts, swaps cannot alter the number of tasks assigned to any agents.
This lack of explorative power would likely yield very poor performance. There-
fore, most local search approaches to the GAP rely on some combination of
shifts and swaps. In principle, the swap neighborhood is a strict subset of the
neighborhood imposed by two subsequent shifts, and therefore might be viewed
as extraneous. However, in practice, the ability to perform a true swap is useful
enough to warrant special support.

There exist different approaches to utilizing shifts and swaps in the GAP
neighborhood. Possibly the simplest effective method is to randomly select ei-
ther a shift or swap at each iteration. That approach will be adopted here, largely
for two reasons. First, a local search algorithm using such a neighborhood can be
reasonably effective. However, the major reason is one of convenience. In order
to gather information concerning the properties of the fitness landscape, it is
necessary to be able to compute the number of moves which separate any two
solutions. Using a full shift/swap neighborhood, it is relatively easy to compute
the number of moves required to transform a solution into any other feasible so-
lution. By contrast, in one of the most recent approaches [10], ejection chains are
used to search the GAP space. Ejection chains are formed by a series of n succes-
sive shift operations. Because the neighborhood size grows exponentially with n,
that work utilizes classical integer programming bounds to prune the neighbor-
hood to a manageable number of solutions. While providing high performance,
the highly dynamic neighborhoods prohibit the sort of analysis required by this
work.

To compute the distance between any two candidate solutions under the
shift/swap neighborhood, let us consider two candidate solutions A and B. Let
A be considered the reference solution, and we want to compute the minimum
number of moves necessary to reach A starting from B. Each locus of the two
solutions is compared, and where they assign a given task to different agents, a
move is deemed necesssary. To determine what type of move should be taken, a
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linear search of the remaining unexamined positions of B is performed, looking
for a task in B assigned to the agent assigned to the current task in A. If such
a task is found in B, then a swap of the two positions in B moves B two steps
closer to A and is thus taken. If no such element is found, then any swap in B
must by necessity move just one step closer, and thus is no more effective than
a shift. When B is equal to A, the number of moves taken denotes the distance
between the original two solutions.

3.3 Examining the mGAP Pareto Front

To gain some initial insights into the structure of mGAP instances, several sets
of randomly generated toy problems were considered. The problem sizes were
deliberately kept small so that the search spaces could be exhaustively searched
in reasonable periods of time. Each problem was then enumerated and all Pareto
optimal points recorded. Table 1 shows the number and types of instances ex-
amined along with some summary statistics on the resulting Pareto optimal
sets.

In Table 1, Cor refers to the coefficient of correlation between the two cost
matrices, |PF | to the number of Pareto optimal solutions, and r to the Pear-
son coefficient of fitness-distance correlation. Two important conclusions can be
drawn immediately from inspection of the Pareto fronts on these small prob-
lems. First, the FDC coefficient (denoted by r in the table) is much higher than
is observed in the mQAP, where it is typically very close to zero. This implies
that there should exhibit more structure among Pareto optimal solutions than
we typically see in mQAP instances. This is promising for algorithms which at-
tempt to utilize information from previously located efficient solutions to help
generate additional efficient solutions.

Secondly, E-type problems with uncorrelated cost matrices seem to admit
very few Pareto optimal solutions, often only one. Extrapolating to larger prob-
lems, the Pareto fronts for such problems would seem to be restricted to a very
small region of the search space. However, with respect to this property, such
extrapolation is fraught with danger. It seems equally likely that the underlying
cause of this behavior is an increase in the tightness of the constraints. If this
is true, then the trend toward small numbers of Pareto optimal solutions might
continue as the problem size was increased. However, the actual solutions might
be somewhat more distributed throughout the space, with large regions of infea-
sibility in between. More research is required to answer this question with any
certainty.

A consequence of the positive fitness distance correlation coefficient is that
there exist local optima at many different distances to the Pareto front. In
contrast, in mQAP instances, it is usually the case that all local optima are
fairly uniformly distributed with no two lying too close together. Although this
structure in mGAP instances can be usefully exploited by search algorithms at-
tempting to move along the Pareto front, the presence of constraints means that
not all solutions on a path between two efficient solutions need be feasible. If
these intermediate solutions lie deep within infeasible regions of the space, an



120 D. Garrett and D. Dasgupta

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  2  4  6  8  10  12  14  16

FDC 3x17x2-1C (r=-0.4)

 0

 50

 100

 150

 200

 250

 300

 350

 0  2  4  6  8  10  12  14  16

FDC 3x17x2-1D (r=-0.4)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  2  4  6  8  10  12  14  16

FDC 3x17x2-1E (r=-0.4)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  2  4  6  8  10  12  14  16

FDC 3x17x2-1C (r=0.0)

 0

 20

 40

 60

 80

 100

 120

 0  2  4  6  8  10  12  14  16

FDC 3x17x2-1D (r=0.0)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  2  4  6  8  10  12  14  16

FDC 3x17x2-1E (r=0.0)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  2  4  6  8  10  12  14  16

FDC 3x17x2-1C (r=0.4)

 0

 50

 100

 150

 200

 250

 300

 0  2  4  6  8  10  12  14  16

FDC 3x17x2-1D (r=0.4)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  2  4  6  8  10  12  14  16

FDC 3x17x2-1E (r=0.4)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  2  4  6  8  10  12  14  16

FDC 3x17x2-1C (r=-0.4)

 0

 50

 100

 150

 200

 250

 300

 350

 0  2  4  6  8  10  12  14  16

FDC 3x17x2-1D (r=-0.4)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  2  4  6  8  10  12  14  16

FDC 3x17x2-1E (r=-0.4)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  2  4  6  8  10  12  14  16

FDC 3x17x2-1C (r=-0.4)

 0

 50

 100

 150

 200

 250

 300

 350

 0  2  4  6  8  10  12  14  16

FDC 3x17x2-1D (r=-0.4)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  2  4  6  8  10  12  14  16

FDC 3x17x2-1E (r=-0.4)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  2  4  6  8  10  12  14  16

FDC 3x17x2-1C (r=-0.4)

 0

 50

 100

 150

 200

 250

 300

 350

 0  2  4  6  8  10  12  14  16

FDC 3x17x2-1D (r=-0.4)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  2  4  6  8  10  12  14  16

FDC 3x17x2-1E (r=-0.4)

Fig. 1. Fitness distance correlation plots for the various instances considered. Columns
left to right are r ={C, D, E} type instances. Row 1, 3x17 r = −0.4; Row 2, 3x17
r = 0.0; Row 3, 3x17 r = 0.4; Row 4, 5x12 r = −0.4; Row 5, 5x12 r = 0.0; Row 6,
5x12 r = 0.4.
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Table 1. Toy mGAP instances examined. For each problem type, number of objectives,
and correlation between cost matrices, the number of Pareto optimal solutions, the
fitness distance correlation coefficient, and the ratio of infeasible to feasible solutions
along each path to the front were recorded

Size Type Obj Cor |PF | Pearson’s r fracinfeas

3x17 C 2 -0.4 14.43±4.83 0.48±0.11 0.86
3x17 D 2 -0.4 13.67±4.56 0.45±0.12 0.86
3x17 E 2 -0.4 17.90±8.19 0.59±0.09 0.82
3x17 C 2 0.0 9.23±5.39 0.53±0.13 0.88
3x17 D 2 0.0 7.16±2.29 0.44±0.08 0.87
3x17 E 2 0.0 1.13±0.43 0.52±0.09 0.88
3x17 C 2 0.4 7.30±3.27 0.48±0.28 0.89
3x17 D 2 0.4 9.73±3.93 0.44±0.10 0.87
3x17 E 2 0.4 8.80±4.43 0.66±0.08 0.83
5x12 C 2 -0.4 14.30±7.05 0.44±0.15 0.89
5x12 D 2 -0.4 12.27±5.00 0.46±0.11 0.85
5x12 E 2 -0.4 16.53±6.13 0.46±0.11 0.82
5x12 C 2 0.0 9.37±4.12 0.51±0.15 0.91
5x12 D 2 0.0 5.50±2.21 0.40±0.09 0.91
5x12 E 2 0.0 1.20±0.41 0.41±0.18 0.92
5x12 C 2 0.4 6.17±2.57 0.56±0.12 0.91
5x12 D 2 0.4 9.13±2.71 0.46±0.11 0.87
5x12 E 2 0.4 7.73±3.04 0.52±0.12 0.83

algorithm might need to take special measures to allow large constraint viola-
tions to occur during the search.

To test the extent to which constraint violations occur between efficient solu-
tions, the number of infeasible solutions visited along the shortest path between
each local optima and the nearest efficient solution was recorded during the FDC
analysis described above. The percentage of the path to the nearest Pareto op-
timal solution is shown in Table 1 as fracinfeas. Across all types and sizes of
instances, this percentage remains reasonably stable between about 82 and 92
percent. Looking at the FDC scatter plots shown in Figure 1, it is clear that
while many of the local optima are a significant distance from the Pareto front,
there is a moderately strong positive correlation and reasonably significant struc-
ture in the landscape. Despite this structure, the high percentage of infeasible
solutions along the shortest path to the front implies that an algorithm seeking
to approach the Pareto front from a random local optimum may need to move
deep into the infeasible regions of the space.

In addition to the toy instances, a set of ten 20x100 bi-objective GAP instances
were also generated, and optimized using both a straightforward multiobjective
tabu search algorithm as well as a two-phase tabu search method. The structure
exhibited by the GAP would seem to provide the two-phase algorithm the ability
to better exploit its prior work than would the much more random structure
inherent in QAP instances, for example. Figure 2 shows the median empirical
attainment surfaces over 30 trials of the two algorithms applied to one of the
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Table 2. Performance of the MOTS and Two-Phase TS algorithms on a set of 20x100
mGAP instances, measured as the hypervolume mean and standard deviation. All
results are averaged over 30 trials.

Instance MOTS Two-Phase TS
1 1.5562e7 ± 2.26e5 1.6415e7 ± 1.91e5
2 1.3271e7 ± 1.71e5 1.3994e7 ± 1.70e5
3 1.5562e7 ± 2.26e5 1.6415e7 ± 1.91e5
4 1.3271e7 ± 1.71e5 1.3994e7 ± 1.70e5
5 1.5562e7 ± 2.26e5 1.6415e7 ± 1.91e5
6 1.5562e7 ± 2.26e5 1.6415e7 ± 1.91e5
7 1.3271e7 ± 1.71e5 1.3994e7 ± 1.70e5
8 1.5562e7 ± 2.26e5 1.6415e7 ± 1.91e5
9 1.3271e7 ± 1.71e5 1.3994e7 ± 1.70e5
10 1.5562e7 ± 2.26e5 1.6415e7 ± 1.91e5
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Fig. 2. Empirical attainment surfaces for a simple multiobjective tabu search and a
simple two-phase variant for a sample 20x100 bi-objective generalized assignment prob-
lem instance

larger instances. The results are consistent across the ten instances, with the two
phase algorithm showing a moderate, but consistent and statistically significant
increase in performance, as shown in Table 2.

However, as shown in Table 1, a high percentage of the points leading to a
new Pareto optimal solution are generally infeasible. This can adversely affect
the ability of a simple two-phase local search algorithm to move along the Pareto
front, once it has located a single solution. In multiobjective optimization, where
it is important to be able to move between good nondominated solutions dur-
ing the search, the effects of tight constraints are not yet well understood. An
algorithm that could selectively and dynamically adjust the degree to which it
allowed constraint violations might allow even greater improvements in multi-
objective optimization via these types of two-phase heuristics.
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4 Conclusions

It is known that no single algorithm is appropriate for all search and optimization
tasks. Taking advantage of domain specific knowledge and/or known structural
properties of a given search space is a must in designing a high-performance
algorithm. However, in the multiobjective realm, comparatively little attention
has been paid to the unique aspects of multiobjective landscapes. In particular,
not all multiobjective algorithms approach the Pareto front via a single synthe-
sized objective function which can be studied using existing landscape analysis
tools. Many multiobjective evolutionary algorithms in particular fit this descrip-
tion, instead relying on a type of coevolution to move the population as a whole
toward the Pareto front.

This paper has described some basic tools for examining the properties of mul-
tiobjective fitness landscapes. Many of these tools are straightforward generaliza-
tions of well-known ideas from the world of single-objective algorithms. However,
the unique requirements of multiobjective optimization mean that there are ad-
ditional types of information that may be exploited by effective algorithms, and
there can be subtle differences in the interpretation of familiar techniques. Only
by gaining a further understanding of multiobjective search spaces can we hope
to systematically design faster and more effective algorithms.
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Abstract. The practical utility of optimization technologies is often im-
pacted by factors that reflect how these tools are used in practice, includ-
ing whether various real-world constraints can be adequately modeled,
the sophistication of the analysts applying the optimizer, and related
environmental factors (e.g. whether a company is willing to trust pre-
dictions from computational models). Other features are less appreci-
ated, but of equal importance in terms of dictating the successful use
of optimization. These include the scale of problem instances, which in
practice drives the development of approximate solution techniques, and
constraints imposed by the target computing platforms. End-users often
lack state-of-the-art computers, and thus runtime and memory limita-
tions are often a significant, limiting factor in algorithm design. When
coupled with large problem scale, the result is a significant technologi-
cal challenge. We describe our experience developing and deploying both
exact and heuristic algorithms for placing sensors in water distribution
networks to mitigate against damage due intentional or accidental intro-
duction of contaminants. The target computing platforms for this ap-
plication have motivated limited-memory techniques that can optimize
large-scale sensor placement problems.

1 Introduction

Real-world optimization problems are often complicated by factors that make
them more challenging than problem formulations that are studied by academic
researchers. For example, industrial scheduling problems differ significantly from
academic scheduling models like job-shop and resource-constrained scheduling
problems because of large numbers of company-specific constraints. Most re-
searchers acknowledge the impact of such side constraints, but what is far less
appreciated is the degree to which factors like problem size and target com-
putational platform impact the practical solution of real-world optimization
problems. In this paper we present a real-world case study that highlights how
memory limitations impact a deployed solution technology.

This paper presents a case study that considers the protection of drinking water
distribution systems, found in municipalities throughout the world. Public water
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distribution systems are inherently vulnerable to accidental or intentional con-
tamination because of their distributed geography. The use of on-line, real-time
contaminant warning systems (CWSs) is a promising strategy for mitigating these
risks. The general goal of a CWS is to identify a low-probability, high-impact con-
tamination incident while allowing sufficient time for an appropriate response that
mitigates adverse impacts. A CWS may complement conventional routine moni-
toring by quickly providing information on unusual threats to a water supply.

A key element of the design of an effective CWS is the strategic placement
of sensors throughout the distribution network. We have recently demonstrated
that a canonical sensor placement formulation is equivalent to the well-known
p-median facility location problem. However, the p-median problems that arise
in real-world sensor placement applications are much larger than typical facility
location instances considered in the literature. For example, the largest p-median
instances commonly investigated are limited to approximately 10,000 facilities
and customers. In contrast, the p-median instances arising in real-world CWS
design can involve as many as 50,000 facilities and hundreds of thousands of cus-
tomers. The magnitude of these instances requires efficient computational tech-
niques to deal with the increase in solution difficulty. Further, these large-scale
instances have significant memory footprints that exceed the limits available in
the computing platforms of most water utilities.

The goal of this paper is to summarize how memory limitations have influenced
the development of sensor placement algorithms in the TEVA-SPOT Toolkit [1]
(SPOT). SPOT provides a sensor placement framework that facilitates research
in sensor placement optimization and enables the practical application of sensor
placement solvers to real-world CWS design applications. SPOT contains algo-
rithms for solving the integer programming formulation exactly (e.g., viaCPLEX),
heuristically via GRASP, and heuristically via Lagrangian relaxation. The details
of these techniques are documented in other papers, but current goal is to provide
an overview of how our focus on limited-memory techniques has led to algorithmic
challenges that are motivated by a real-world application. The United States En-
vironmental Protection Agency (USEPA) has funded the development of SPOT
to support the analysis of US water distribution networks in the USEPA TEVA
program [2]. SPOT’s support of limited-memory sensor placement techniques has
been crucial for the successful analysis of these large-scale networks.

This paper is organized as follows. We begin in Section 2 with a detailed
description of the CWS problem and the corresponding integer programming
formulation. We discuss limited-memory strategies for integer programming,
GRASP and Lagrangian relaxation in Sections 3, 4, and 5 respectively. We
conclude in Section 6 with a discussion of the implications of our results for
real-world problem solving.

2 Background

Contamination warning systems (CWSs) have been proposed as a promising
approach for detecting contamination incidents in drinking water distribution
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systems. The goal of a CWS is to detect contamination incidents early enough
to allow for effective public health and/or water utility intervention to limit
potential public health or economic impacts. There are many challenges to de-
tecting contaminants in drinking water systems: municipal distribution systems
are large, consisting of hundreds or thousands of miles of pipe; flow patterns are
driven by time-varying demands placed on the system by customers; and distri-
bution systems are looped, resulting in mixing and dilution of contaminants. The
drinking water community has proposed that CWSs be designed to maximize
the number of contaminants that can be detected in drinking water distribution
systems by combining online sensors with public health surveillance systems,
physical security monitoring, customer complaint surveillance, and routine sam-
pling programs [3].

For CWS design, the general goal of sensor placement optimization is to place
a limited number of sensors in a water distribution network such that the im-
pact to public health of contaminant injection is minimized. However, there is
no specific formulation of the problem that is widely accepted by the water re-
sources management community. There are a wide range of important design
objectives for sensor placements (e.g., minimizing the cost of sensor installation
and maintenance, the response time to a contamination incident, and the extent
of contamination), and researchers have developed different formulations when
studying these objectives. Further, researchers have developed a variety of tech-
nical approaches for solving sensor placement problems including mixed-integer
programming (MIP) models [4, 5, 6, 7, 8, 9], combinatorial heuristics [10, 11, 12],
and general-purpose metaheuristics (e.g., [12]).

A common feature of most sensor placement formulations is that they rely
either directly or indirectly on contaminant transport simulation models. Sim-
ulation tools, like EPANET [13], perform extended-period simulation of the
hydraulic and water quality behavior within pressurized pipe networks. These
models can be used to evaluate the expected flow in water distribution systems,
and they can model the transport of contaminants and related chemical inter-
actions. Thus, a water utility can assess risks to their distribution network by
considering simulations of an ensemble of contamination incidents, which reflect
the impact of contamination at different locations, times of the day, etc.

A key limitation of early sensor placement formulations is that they incor-
porate contamination transport simulation results indirectly. Consequently, the
optimized value of the final solution may not accurately approximate a risk
assessment performed with contaminant transport simulations. We have pro-
posed a mixed-integer programming (MIP) model that resolves this difficulty
by directly integrating contaminant transport simulation results [14, 4]. The
MIP objective exactly captures water utilities’ current risk metrics. Further-
more, this model can minimize a variety of different design objectives simply by
integrating different statistics from the simulation results. This model assumes
that a potentially large number of contamination incidents can be simulated,
but these simulations are preprocessing steps that can be done in advance of the
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optimization process. Thus, the time needed for simulation does not impact the
time spent performing sensor placement.

Our MIP formulation for sensor placement is:

(SP) minimize
∑
a∈A

αa

∑
i∈La

daixai

where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
i∈La

xai = 1 ∀a ∈ A
xai ≤ si ∀a ∈ A, i ∈ La∑

i∈L si ≤ p
si ∈ {0, 1} ∀i ∈ L
0 ≤ xai ≤ 1 ∀a ∈ A, i ∈ La

This MIP minimizes the expected impact of a set of contamination incidents
defined by A. For each incident a ∈ A, αa is the weight of incident a, frequently
a probability. The EPANET simulator reports contamination levels at a set of
locations, denoted by L, where a location refers to network junction. For each
incident a, La ⊆ L is the set of locations that can be contaminated by a. Thus
a sensor at a location i ∈ La can detect contamination from incident a at the
time contamination first arrives at location i. Each incident is witnessed by the
first sensor to see it. For each incident a ∈ A and location i ∈ La, dai defines
the impact of the contamination incident a if it is witnessed by location i. This
impact measure assumes that as soon as a sensor witnesses contamination, then
any further contamination impacts are mitigated (perhaps after a suitable delay
that accounts for the response time of the water utility). The si variables indicate
where sensors are placed in the network, subject to a budget p, and the xia

variables indicate whether incident a is witnessed by a sensor at location i.
We may not be able to witness all contamination incidents with a given set

of sensors. To account for this, L contains a dummy location. This dummy
location is in all subsets La. The impact for this location is the impact of the
contamination incident after the entire contaminant transport simulation has
finished, which corresponds to the impact that would occur without an online
CWS.

Remarkably, SP is identical to the well-known p-median facility location prob-
lem [15]. In the p-median problem, p facilities (e.g., central warehouses) are to be
located on m potential sites such that the sum of distances dai between each of
n customers (e.g., retail outlets) and the nearest facility i is minimized. In com-
paring SP and p-median problems, we observe equivalence between (1) sensors
and facilities, (2) contamination incidents and customers, and (3) contamina-
tion impacts and distances. While SP allows placement of at most p sensors,
p-median formulations generally enforce placement of all p facilities; in practice,
the distinction is irrelevant unless p approaches the number of possible locations.

The flexibility of this sensor placement formulation is illustrated by the TEVA-
SPOT Toolkit (SPOT) [1], which integrates a variety of sensor placement solvers
developed by Sandia National Laboratories and the Environmental Protection
Agency, along with many academic collaborators [5, 14, 4]. SPOT includes
general-purpose heuristic solvers, integer programming heuristics, exact solvers,
and linear-programming bounding techniques. SPOT can place sensors to
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minimize a variety of design objectives, including population-based public health
measures, time to detection, extent of pipe contamination, volume consumed,
and number of failed detections.

The size of the SP formulation is largely a function of the the total number
of impacts, D. This is the dominant term in the number of constraints, the
number of variables, and the number of nonzeros in the constraint matrix. We
can compute a lower bound on SP by relaxing the integrality constraints on the
variables and solving the resulting linear program (LP). Solving the LP involves
linear algebra. Dense methods would require space proportional to D2. Solvers
use sparse methods as much as possible. However, the space requirements are
generally superlinear in D. Because integer-programming solvers use LPs for
bounding subproblems, they require at least as much space as LP asymptotically.

Water distribution networks analyzed in the TEVA program have 1,000s to
10,000s of pipes and junctions. Due to memory limitations, contamination in-
cidents are typically restricted to a small number of times during a day (e.g.
morning, afternoon, evening and night incidents). The number of locations con-
taminated by an incident can be highly variable; although many incidents impact
a small number of locations, some large networks have many incidents that con-
taminate a large fraction of the network. Many of the SP analyses performed
in the TEVA program have had millions of impact values. Very large sensor
placement problems considered in the TEVA program have had over 40,000 po-
tential sensor placement locations, 20,000 contamination incidents and close to
30 million impact values. Furthermore, real-world analyses will ultimately re-
quire the consideration of many more contamination incidents, for example to
model changes in weekday vs. weekend demands, as well as seasonal changes in
demands.

3 Integer Programming

The SP MIP model provides a generic approach for performing sensor placement
with a variety of design objectives. However, the size of this MIP formulation
can quickly become prohibitively large, especially for 32-bit computers (yielding
a maximum of 4GB of RAM in the case of Unix systems, and in practice 3GB
of RAM in the case of Windows systems). As noted in the previous section, SP
can require millions of impact values for large water distribution systems.

In Berry et al. [16, 14], we note that for any given contamination incident
a, there are often many impacts dai that have the same value. If the contam-
inant reaches two junctions at approximately the same time, then the impact
for these two junctions would have the same impact values. For example, this
occurs frequently when we use a coarse reporting time-step for the water quality
simulation.

This observation led to a revised formulation that treats sensor placement
locations as equivalent if their corresponding contamination impacts are the
same for a given contamination incident. Let Lai be a maximal set of locations
in A that all have the same impact for incident a. Considering any witness in
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Lai equivalent reduces the set of effective witness “locations” to a new set L̂a.
The new MIP formulation is:

(waSP) minimize
∑
a∈A

αa

∑
i∈L̂a

daixai

where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
i∈L̂a

xai = 1 ∀a ∈ A
xai ≤

∑
j∈L̂ai

sj ∀a ∈ A, i ∈ L̂a∑
i∈L si ≤ p

si ∈ {0, 1} ∀i ∈ L

0 ≤ xai ≤ 1 ∀a ∈ A, i ∈ L̂a

This MIP selects both a group of sensors to witness an incident and an actual sen-
sor from the group. The fundamental structure of this formulation changes only
slightly from SP, but in practice this MIP often requires significantly less mem-
ory. Specifically a grouping of k equivalent locations removes k − 1 entries from
the the objective, k − 1 variables, and k − 1 constraints. Every feasible solution
for SP has a corresponding solution in waSP with the same sensor placement.
We can always map the selected observation variable to a real sensor with the
same impact. Because the impact for each incident is the same, the objective
value is the same, so we can use waSP to find optimal sensor placements.

The waSP model revises SP to exploit structure in SP that can make the MIP
formulation smaller. We have developed two extensions of this idea in Berry et
al. [16]: witness aggregation and incident aggregation. These aggregation strate-
gies attempt to consolidate the impact values to create smaller MIP formulations
for sensor placement that approximate SP.

3.1 Witness Aggregation

We can generalize the waSP formulation to consider location values as equivalent
if their impact values are approximately equal. For each incident a, consider a list
of locations in La sorted by impact. A superlocation is a contiguous sublist of this
sorted list. Generally, we group locations into a superlocation if the difference in
their impact values meets a given threshold. In Berry et al. [14], we describe two
ways for creating superlocations: (1) the ratio of largest to the smallest impact
in the superlocation is small, and (2) the difference between the largest and the
smallest impact is small. Note that the locations grouped in a superlocation
for an incident are not necessarily located physically close in the network even
though the contamination for incident a reaches them at approximately the same
time.

Let L̃ai ⊆ La be the locations in the ith superlocation for incident a. We
denote the set of superlocations for incident a by L̃a. Let d̃ai be the largest
impact value for incident a if witnessed by any location in L̃ai (that is, d̃ai =
maxi∈L̃ai

dai). And let xai be a binary variable that is 1 if incident a is witnessed
by some location in L̃ai. Then the MIP for general witness aggregation is the
waSP formulation where we replace dai by d̃ai, replace L̂ai by L̃ai, and replace
L̂ai by L̃ai.
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We have shown that the optimal solution to a problem with ratio aggrega-
tion is guaranteed to be an approximation for the original problem with quality
proportional to the ratio. However, it is hard for a user to determine a good
threshold without carefully exploring the data.

3.2 Incident Aggregation

In some cases, we can replace a pair or a group of contamination incidents with
a single new incident that is equivalent. In Berry et al. [14], we describe one such
strategy (called scenario aggregation in that paper for historical reasons). This
aggregation strategy combines two incidents that impact the same locations in
the same order, allowing for the possibility that one incident continues to impact
other locations. For example, two contamination incidents should travel in the
same pattern if they differ only in the nature of the contaminant, though one may
decay more quickly than the other. Aggregated incidents can be combined by
simply averaging the impacts that they observe and updating the corresponding
incident weight αa.

3.3 Impact

These aggregation techniques significantly improved our ability to apply MIP
solvers to real-world sensor placement applications. The use of the waSP for-
mulation is critical to solve large sensor placement problems, even on high-end
workstations with large memory. For example, in Berry et al. [14] we show that
aggregating witnesses with the same impacts can reduce the number of nonzeros
in the MIP model by a factor of two, and it reduces the total runtime by a
factor of four. Further, ratio witness aggregation and incident aggregation can
be combined to formulate an approximate sensor placement formulation that
reduces the number of nonzeros by a factor of 7 and the runtime by a factor of
200, while generating a solution that is within 5% of optimal.

4 The GRASP Heuristic

The MIP formulations described in the previous section cannot be solved to
optimality for very large networks, even on high-end workstations with a lot of
RAM. Thus, we have adapted heuristic algorithms for the p-median problem
to solve SP. The current state-of-the-art heuristic for the p-median problem is
the GRASP algorithm recently introduced by Resende and Werneck [17]. This
GRASP heuristic is a three-phase search procedure. In the first phase, a set of
high-quality solutions are generated using biased greedy construction techniques.
Steepest-descent hill-climbing is then used to transform each of the resulting
solutions into local optima. Finally, path relinking is used to further explore
the set of solutions lying at the intersection of the resulting local optima. For a
complete description of this heuristic, we refer the reader to [17].

On a series of wide-ranging tests, we observed that the GRASP heuristic was
able to locate solutions to very large p-median instances (with over 10,000 fa-
cilities and 50,000 customers) in approximately ten minutes of run-time on a
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modern workstation-class computer [18]. This is approximately 5-10 times faster
than CPLEX when solving the waSP MIP formulation introduced in Section 3.
Further, the solutions obtained by GRASP were often optimal (as verified by
comparison with exact solutions to the MIP formulation). The only drawback to
the GRASP heuristic involved the memory requirements, which reached 16GB
of RAM for the largest instance considered. This capacity is beyond the limits
of what is available in most end-user environments for which CWS design is tar-
geted; here, the typical platform is either a 32-bit workstation (with a maximum
capacity of 4GB of RAM) or a Windows workstation, which is limited to 8GB
of RAM even when running on 64-bit CPUs.

The GRASP heuristic creates a dense matrix of all customer-facility “dis-
tances”, as the cost of determining the decrease in “cost” during a local search
move is dictated by the lookup cost of specific dai impact values. The dense ma-
trix approach replicates information, but in doing so yields constant-time lookup
of the dai coefficients. An alternative “sparse” representation simply stores, for
each a ∈ A, a tree containing pairs (i, dai) for all i defined for the incident a.
The resulting representation yields logarithmic (in the number of defined daj for
a given a) lookup costs, necessarily slowing the execution of the GRASP heuris-
tic. However, in practice the slow-down is less than 50%, while the memory
requirements are reduced by a factor of four or more.

SPOT provides variants of the GRASP heuristic using the dense and sparse
storage schemes for the dai, and this optimizer has been widely used in the
USEPA TEVA program. However, even with the sparse representation the largest
networks considered in the USEPA TEVA program are still too large for 32-bit
workstations. Other avenues have been used to reduce the problem size further
for these problems, such as restricting the number of locations for sensors. These
strategies may preclude the optimal solution, but they provide a practical alter-
native for heuristic optimization.

5 Lagrangian Heuristic

In this section, we present a Lagrangian-based bounding procedure and approxi-
mation heuristic for sensor placement [19], which requires O(n+D) space, where
n is the number of sensor locations and D is the total number of impacts. This is
an asymptotically optimal memory requirement for an in-core implementation.
We use the Lagrangian-based lower-bounding method for the p-median problem
described by Avella, Sassano, and Vasil’ev [20]. They give a Lagrangian model
for which one can compute the optimal solution, given a set of Lagrangian mul-
tipliers, in linear space and near-linear time. Barahona and Chudak [21] give
a Lagrangian formulation for the related unconstrained facility location prob-
lem, where one balances a facility opening cost with the service costs rather
than limiting the number of facilities. Barahona and Chudak detail how to use
subgradient search, specifically Barahona and Anbil’s Volume algorithm [22], to
find Lagrangian multipliers that produce progressively higher lower bounds. We
adapted their method to the p-median problem. This search converges to a set of
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Lagrangian multipliers for which the optimal solution to our relaxed problem is
an optimal solution to the p-median LP relaxation. We then use our constrained
rounding algorithm [23] to randomly select p sensor locations biased by the LP
relaxation.

We now describe the Lagrangian relaxation model. As with all Lagrangian
relaxation, we remove some of the constraints, leaving behind a problem that is
easy to solve. We apply pressure to satisfy the constraints we have relaxed by
adding penalties to the objective function. These penalties are proportional to
the constraint violations. Thus there is no penalty if a constraint is met, a small
penalty for a small violation, and a larger penalty for a larger violation.

We relax the first set of constraints in the SP formulation, those that require
each incident is witnessed by some sensor; recall that this might be the dummy
sensor that indicates a failure to detect the incident. This constraint is written
as an equality, because that is a more efficient integer programming formulation.
However, the difficult part of the constraint is insuring that at least one sensor
witnesses each incident. The objective will prevent over-witnessing, so for the
sake of the Lagrangian relaxation, we consider these constraints to be inequal-
ities. For some incident a, this constraint is violated for a proposed setting of
the si and xai variables if

∑
i∈La

xai < 1, giving a violation of 1 −
∑

i∈La
xai.

We weight each such violation with its own Lagrangian multiplier λa, which
allows us to penalize some violations more than others. Adding a penalty term
λa − λa

∑
i∈La

xai to the objective for each incident a, the Lagrangian model
becomes:

(LAG) minimize
∑
a∈A

⎛⎝αa

∑
i∈L̂a

(dai − λa)xai

⎞⎠+
∑
a∈A

αaλa

where

⎧⎪⎪⎨⎪⎪⎩
xai ≤ si ∀a ∈ A, i ∈ L̂a∑

i∈L si ≤ p
si ∈ {0, 1} ∀i ∈ L

0 ≤ xai ≤ 1 ∀a ∈ A, i ∈ L̂a

For a fixed set of λa, we can compute the optimal value of LAG in linear
space and near-linear time using a slight variation on the method described by
Avella, Sassano, and Vasil’ev [20]. The optimal solution to LAG gives a valid
lower bound on the value of an optimal solution to the p-median (SP) problem.
This is because any feasible solution to the p-median problem is feasible for LAG.
It has a zero violation for each of the lifted constraints and a value equal to the
original p-median value.

Barahona and Chudak [21] describe the Volume subgradient method as ap-
plied to the unconstrained facility location problem. This method begins with
λa = 1 for all incidents a, solves the relaxed problem, then iteratively updates
the multipliers, increasing the multipliers in proportion to the violation. The
updates require space and time linear in the number of variables. We mod-
ified the Vol unconstrained facility location code, available in the COIN-OR
repository [24] for the p-median problem. This will converge to an optimal solu-
tion for the p-median problem.
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Given a fractional solution to the p-median LP, we can treat the fractional
values as probabilities and select sensors randomly according to this probability.
However, one is unlikely to get precisely p sensors this way. We use the method
of Berry and Phillips [23] for efficiently sampling over the “lucky” distribution
where we select precisely k sensors. If necessary, we then select the dummy
location.

In preliminary tests with a moderate1 sized problem, the Lagrangian method
required approximately 1/3 the space of the GRASP heuristic and usually found
a solution almost as good while running up to 2.5 times longer. For example, on
a problem with 3358 locations, 1621 incidents, and 5 sensors, considering four
different types of objectives, the Lagrangian solver required 45Mb of memory
while the GRASP heuristic required 154Mb of memory. The GRASP heuristic
found the optimal solution in all four cases as verified by the MIP. The La-
grangian heuristic was within .5% of this for three out of the four objectives.
Running times for GRASP ranged from 33.8 seconds to 44 seconds. The La-
grangian ran in less than 86 seconds for 3 out of 4 objectives. For the fourth
objective, Lagrangian ran for 105 seconds and had a gap of 64%, showing that
the Lagrangian behavior can be less stable than GRASP.

As we noted above, the Lagrangian method provides a lower bound on the
value of an optimal solution to the p-median (SP) problem. Further, this lower
bound is computed with less memory than an LP relaxation of SP. Thus, another
practical motivation for applying the Lagrangian method is that it computes a
valid lower bound on the value of solutions generated by GRASP!

We also consider the use of witness aggregation to further reduce the mem-
ory required for the Lagrangian method, particularly aggregation of locations
that have the same impact values. However, we cannot embed the set-cover con-
straints (the second set of constraints in the waSP formulation) without altering
the Lagrangian model. We can run the heuristic with the aggregated witnesses
where the superlocations are not directly associated with their constituent loca-
tions. This creates a straight p-median problem for the Lagrangian solver that
now no longer has the same optimal solution. Because there are fewer opportu-
nities to witness incidents, this revised formulation has a higher optimal impact,
and therefore the current Lagrangian solver does not give a valid lower bound.
However, we can still compute a heuristic solution by solving this modified prob-
lem and mapping superlocations back to real locations.

We have developed a preliminary version of an aggregated Lagrangian heuris-
tic that simply selects the first real location in a superlocation list. For a large-
scale problem with 42,000 junctions, the Lagrangian heuristic required only
100Mb for the aggregation problem where we equated only witnesses of equal
impact. This is a considerable reduction from the 1.8GB the Lagrangian method
required with no witness aggregation, even of equal impact (the SP version).
The GRASP heuristic required 17GB; there is no value for witness aggregation
in the GRASP heuristic, so this is the memory requirement for the SP version.
However, the objective of the Lagrangian solution is 60% worse than the solution

1 This problem is the same size as those Avella et al. call “large-scale.”
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found by GRASP. The significant reduction in space motivates more work on this
aggregated Lagrangian heuristic, and we expect more sophisticated techniques
for mapping from supernodes to real location will improve its performance.

6 Discussion and Conclusion

In practice, a particular sensor placement problem must be solved numerous
times, e.g., to generate sensor budget versus performance trade-off curves, or
to guide search toward solutions of a specific form. Consequently, the design of
SPOT was initially focused on execution speed, to facilitate maximal analysis
throughput. For the smaller sensor placement problems examined in the early
phases of this project, emphasis on run-time achieved this goal.

However, as larger and larger problems became available, our design focus
rapidly shifted from minimizing run-time toward minimizing the memory foot-
print for large sensor placement problems. SPOT is intended for general use by
water utilities throughout the United States, most of which do not possess high-
end computing platforms, and limited-memory sensor placement strategies are
needed for commonly available workstations. This change in emphasis focused
algorithm design and development efforts in fundamentally new, unanticipated
directions.

There is a broad lesson here: a strict focus on run-time can severely limit the
applicability of algorithmic techniques to real-world problems. Non-algorithmic
considerations can significantly impact the practicality of an algorithmic ap-
proach. End-users consider a wide range of factors when deciding to use a com-
putational tool, such as likely acceptance in their organization, the background
of users, and required computation resources. These factors can easily outweigh
algorithmic considerations like run-time efficiency. This is not a new observation,
but what is surprising is that most discrete optimization research appears to be
driven strictly by run-time considerations, e.g., to obtain either new best-known
solutions to benchmark problems or reduce the run-time required to obtain high-
quality solutions. This project illustrates that focusing on other performance
factors can lead to fundamentally new algorithmic challenges, and that assess-
ments of algorithmic strategies should consider trade-offs between factors that
impact their use in practice.
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Abstract. This paper introduces a new hybrid algorithmic nature in-
spired approach based on the concepts of the Honey Bees Mating Opti-
mization Algorithm (HBMO) and of the Greedy Randomized Adaptive
Search Procedure (GRASP), for optimally clustering N objects into K
clusters. The proposed algorithm for the Clustering Analysis, the Hybrid
HBMO-GRASP, is a two phase algorithm which combines a HBMO algo-
rithm for the solution of the feature selection problem and a GRASP for
the solution of the clustering problem. This paper shows that the Honey
Bees Mating Optimization can be used in hybrid synthesis with other
metaheuristics for the solution of the clustering problem with remarka-
ble results both to quality and computational efficiency. Its performance
is compared with other popular stochastic/metaheuristic methods like
particle swarm optimization, ant colony optimization, genetic algorithms
and tabu search based on the results taken from the application of the
methodology to data taken from the UCI Machine Learning Repository.

Keywords: Honey Bees Mating Optimization, Greedy Randomized
Adaptive Search Procedure, Nature Inspired Intelligence, Clustering
Analysis.

1 Introduction

During the last years, nature inspired intelligence becomes increasingly popular
through the development and utilisation of intelligent methods in advanced infor-
mation systems design and optimization. These methods are driven by concepts
from nature and biology including advances in structural genomics, mapping
of genes to proteins and proteins to genes, modelling of complete cell struc-
tures, functional genomics, self-organization of natural systems. For optimization
within complex domains of data or information, the most popular nature inspired
approaches are those representing successful animal and micro-organism team
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behaviour. Thus, birds flocks or fish schools inspired Particle Swarm Optimiza-
tion [28], the imitation of the biological immune systems led to the development
of the artificial immune systems ([15], [14]), the ants foraging behaviours gave
rise to Ant Colony Optimization [16] while the mating process of honey bees gave
rise to the honey bees mating optimization algorithm ([1], [2]). Since then, the
honey bees mating optimization algorithm has been used on different applica-
tions ([3], [17], [21]). The Honey Bees Mating Optimization algorithm simulates
the mating process of the queen of the hive that begins when the queen flights
away from the nest performing the mating flight during which the drones follow
the queen and mate with her in the air.

In this paper, a new hybrid metaheuristic algorithm based on the Honey Bees
Mating Optimization algorithm and on the Greedy Randomized Adaptive Search
Procedure (GRASP) [18] is proposed for the clustering analysis. Clustering anal-
ysis is an important tool for data exploration and it has been applied in a wide
variety of fields. The typical clustering analysis consists of four steps (i.e. feature
selection or extraction, clustering algorithm design or selection, cluster valida-
tion and results interpretation) with feedback pathway. These steps are closely
related to each other and affect the derived clusters. The proposed hybrid al-
gorithm uses the Honey Bees Mating Optimization algorithm for the solution
of the feature selection problem and the Greedy Randomized Adaptive Search
Procedure for the clustering problem. It should be noted that such an algo-
rithm that combines a nature inspired intelligence technique like HBMO and a
stochastic metaheuristic like GRASP is applied for the first time for the solu-
tion of this kind of problems, at least to our knowledge. In order to assess the
efficacy of the proposed algorithm, this methodology is evaluated on datasets
from the UCI Machine Learning Repository. Also, the method is compared with
the results of four other metaheuristic algorithms for clustering analysis that use
a Tabu Search Based Algorithm [19], a Genetic Based Algorithm [20], an Ant
Colony Optimization algorithm [16] and the Particle Swarm Optimization [28]
for the solution of the feature selection problem [35]. All these algorithms use
the GRASP for the clustering algorithm. Also, the efficiency of the proposed
algorithm is compared with the results of a classical clustering approach, like
k-means [43]. The rest of this paper is organized as follows: In the next sec-
tion a description of the Clustering Analysis is presented. In the third section
the proposed algorithm, the Honey Bees Mating Optimization Algorithm for
the Clustering Analysis (Hybrid HBMO-GRASP) is presented and analyzed in
detail. Computational results are presented and analyzed in the fourth section
while in the last section conclusions and future research are given.

2 Clustering Analysis

Clustering analysis identifies clusters (groups) embedded in the data, where
each cluster consists of objects that are similar to one another and dissimilar to
objects in other clusters ([23], [42], [47]). As it has already been mentioned, the
typical clustering analysis consists of four steps [47]:
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– The basic feature selection problem (FSP), where the problem is to
search through the space of feature subsets to identify the optimal or near-
optimal one with respect to a performance measure. In the literature many
successful feature selection algorithms have been proposed ([24], [35]). Fea-
ture extraction utilizes some transformations to generate useful and novel
features from the original ones.

– The clustering algorithm design or selection step is usually combined
with the selection of a corresponding proximity measure ([23], [42]) and the
construction of a clustering criterion function which makes the partition of
clusters a well defined optimization problem. The clustering objective func-
tions are highly non-linear and multi-modal functions and, thus, the problem
is NP-hard and as a consequence it is difficult to investigate the problem in an
analytical approach. Many heuristic, metaheuristic and stochastic algorithms
have been developed in order to find a near optimal solution in reasonable
computational time. Analytical surveys of the clustering algorithms can be
found in [23], [42], [47]. In [4], [12], [33] algorithms based on Tabu Search are
presented. Simulated Annealing for clustering is used in [8], [10], [12] while
in [9] a clustering algorithm based on Greedy Randomized Adaptive Search
Procedure (GRASP) is applied. Genetic algorithms are used in [7], [13], [32],
[37] while an analytical review of the use of neural networks in clustering is
given in [31]. Clustering algorithms based on Ant Colony Optimization are
used in [5], [6], [11], [22], [26], [37], [39], [44] while in [25], [27], [36], [39], [45]
clustering algorithms based on Particle Swarm Optimization are applied.
Clustering algorithms based on Artificial Immune Systems are presented in
[30], [40] and, finally, a clustering algorithm based on Honey Bees Mating
Optimization is presented in [17].

– Cluster validity analysis is the assessment of a clustering procedure’s out-
put. Effective evaluation standards and criteria are used in order to find the
degree of confidence for the clustering results derived from the used algo-
rithms. External indices, internal indices, and relative indices are used for
cluster validity analysis ([23], [47]).

– In the results interpretation step, experts in the relevant fields inter-
pret the data partition in order to guarantee the reliability of the extracted
knowledge.

3 The Proposed Hybrid HBMO-GRASP Algorithm for
Clustering

3.1 Introduction

The proposed algorithm (Hybrid HBMO-GRASP) for the solution of the clus-
tering problem is a two phase algorithm which combines a Honey bees mating
optimization (HBMO) algorithm for the solution of the feature selection prob-
lem and a Greedy Randomized Adaptive Search Procedure (GRASP) for the
solution of the clustering problem. In this algorithm, the activated features are
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calculated by the Honey bees mating optimization (HBMO) algorithm (see 3.3)
and the fitness (quality) of each particle is calculated by the clustering algorithm
(see 3.4).

The problem of clustering N objects (patterns) into K clusters is considered.
In particular the problem is stated as follows: Given N objects in Rn , allocate
each object to one of K clusters such that the sum of squared Euclidean distances
between each object and the center of its belonging cluster (which is also to be
found) for every such allocated object is minimized. The clustering problem can
be mathematically described as follows:

Minimize J(w, z) =
N∑

i=1

K∑
j=1

wij ‖ xi − zj ‖2 (1)

Subject to
K∑

j=1

wij = 1, i = 1, ..., N (2)

wij = 0 or 1, i = 1, ..., N, j = 1, ..., K (3)

where K is the number of clusters (given or unknown), N is the number of
objects (given), xi ∈ Rn, (i = 1, ..., N) is the location of the ith pattern (given),
zj ∈ Rn, (j = 1, ..., K) is the center of the jth cluster (to be found), (zj =

1
Nj

N∑
i=1

wijxi, where Nj is the number of objects in the jth cluster), and wij is

the association weight of pattern xi with cluster j, (to be found), where wij is
equal to 1 if pattern i is allocated to cluster j, ∀i = 1, ..., N, j = 1, ..., K and is
equal to 0, otherwise.

Initially in the first phase of the algorithm a number of features are activated,
using the Honey Bees Mating Optimization Algorithm. In order to find the clus-
tering of the samples (fitness or quality of the HBMO algorithm) a GRASP
algorithm is used. The clustering algorithm has the possibility to solve the clus-
tering problem with known or unknown number of clusters. When the number
of clusters is known, the equation (1), denoted as SSE, is used in order to find
the best clustering. In the case that the number of clusters is unknown, the se-
lection of the best solution of the feature selection problem cannot be performed
based on the sum of squared Euclidean distances because when the features are
increased (or decreased) a number of terms are added (or subtracted) in equa-
tion (1) and the comparison of the solutions is not possible, using only the SSE
measure. Thus the minimization of a validity index ([41], [46]) is used, given by:

validity =
SSE

SSC
(4)

where SSC =
∑K

i

∑K
j (‖ zi − zj ‖)2 is the distance between the centers of the

clusters.
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3.2 Honey Bees

Honey bees are social insects that work together in a highly structured social
order and create hives. Each hive typically consists of a single queen, drones and
workers [2]. The queen is fed with ”royal jelly” (a milky-white colored, jellylike
substance that makes her bigger than any other bee in the hive), can lay over
1500 eggs per day and will live five to six years [29]. Drones provide the queen
with some sperm and in order to spot the queen when she is on her mating flight,
drones have noticeably bigger eyes than those of the other castes [21]. At the
end of the season the drones left in the hive will be driven out of the hive to die
and, thus, drones live up to 6 months [3].

Workers are all sterile females and do all the different tasks needed to maintain
and operate the hive, like comb construction, brood rearing (broods arise either
from fertilized eggs representing potential queens or workers or unfertilized eggs
representing prospective drones), tending the queen and drones, cleaning, tem-
perature regulation and defending the hive when they are young and foraging
outside the hive to gather nectar, pollen, water and certain sticky plant resins
used in hive construction when they are older [21]. The workers that are born
early in the season live about 6 weeks while those that are born in the fall live
until the following spring [3].

In the marriage process, the queen mates during her mating flight far from
the nest. During this flight the drones follow the queen and mate with her in
the air [2]. The queen mates multiple times, but the drone only once as the
insemination ends with the eventual death of the drone and the queen receiving
the ”mating sign”. In each mating, sperm reaches the spermatheca and, thus,
each time a queen lays fertilized eggs, she randomly retrieves a mixture of the
sperm in her spermatheca to fertilize the egg [3].

3.3 Honey Bees Mating Optimization for the Feature Selection
Problem

Feature selection is used as the first step of the clustering task in order to reduce
the dimension of problem, decrease noise and improve the speed of the algorithm
by the elimination of irrelevant or redundant features. In this paper, the Honey
Bees Mating Optimization Algorithm is used for feature selection. Initially, we
have to choose the population of the honey bees that will configure the initial
hive. Each bee is randomly placed in the d-dimensional space as a candidate so-
lution (in the feature selection problem d corresponds to the number of activated
features). One of the key issues in designing a successful algorithm for Feature
Selection Problem is to find a suitable mapping between Feature Selection Prob-
lem solutions and bees in Honey Bees Mating Optimization Algorithm. Every
candidate feature in HBMO is mapped into a binary particle where the bit 1
denotes that the corresponding feature is selected and the bit 0 denotes that
the feature is not selected. Afterwards the fitness of each idividual is calculated
using the GRASP algorithm for clustering (see section 3.4) and the best member
of the initial population of bees is selected as the queen of the hive while all the
other members of the population are the drones.
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Before the process of mating begins, the user has to define a number that
corresponds to the queen’s size of spermatheca. This number corresponds to the
maximum number of mating of the queen in a single mating flight. Each time
the queen succesfully mates with a drone the genotype of the drone is stored and
a variable is increased by one until the size of spermatheca is reached. Another
two parameters have to be defined, the number of queens and the number of
broods that will be born by all queens. In this implementation of Honey Bees
Mating Optimization (HBMO) Algorithm, the number of queens is set equal to
one, because in the real life only one queen will survive in a hive, and the number
of broods is set equal to the number corresponding to the queen’s spermatheca
size. Then, we are ready to begin the mating flight of the queen. At the start of
the flight, the queen is initialized with some energy content (initially, the speed
and the energy of the queen are generated at random) and returns to her nest
when the energy is within some threshold from zero to full spermatheca [3]. A
drone mates with a queen probabilistically using the following annealing function
[1], [2]:

Prob(D) = e[ −∆(f)
Speed(t) ] (5)

where Prob(D) is the probability of adding the sperm of drone D to the sper-
matheca of the queen (that is, the probability of a successful mating), ∆(f) is
the absolute difference between the fitness of D and the fitness of the queen
(for complete description of the calculation of the fitness function see 3.4) and
Speed(t) is the speed of the queen at time t. The probability of mating is high
when the queen is still at the beginning of her mating flight, therefore her speed
is high, or when the fitness of the drone is as good as the queen’s. After each tran-
sition in space, the queen’s speed and energy decays according to the following
equations:

Speed(t + 1) = α × Speed(t) (6)

energy(t + 1) = α × energy(t) (7)

where α is a factor ∈ (0, 1) and is the amount of speed and energy reduction after
each transition and each step. A number of mating flights are realized. If the
mating is successful (i.e., the drone passes the probabilistic decision rule), the
drone’s sperm is stored in the queen’s spermatheca. By crossovering the drone’s
genotypes with the queen’s, a new brood (trial solution) is formed which later
can be improved, employing workers to conduct local search. One of the major
differences of the Honey Bees Mating Optimization Algorithm from the classic
evolutionary algorithms is that since the queen stores a number of different
drone’s sperm in her spermatheca she can use parts of the genotype of different
drones to create a new solution which gives the possibility to have more fittest
broods. In the crossover phase, we use a crossover procedure which initially
identifies the common characteristics of the queen and the drone and, then,
inherits them to the broods. Subsequently, a greedy procedure is applied to each
brood in order to complete the solution.

In real life, the role of the workers is restricted to brood care and for this
reason the workers are not separate members of the population but they are
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used as local search procedures in order to improve the broods produced by
the mating flight of the queen. Each of the workers have different capabilities
and the choise of two different workers may produce different solutions. Each of
the worker have the possibility to activate or deactivate a number of different
features. Each of the brood will choose, randomly, one worker to feed it with
royal jelly (local search phase) having as a result the possibility of replacing
the queen if the solution of the brood is better than the solution of the current
queen. If the brood fails to replace the queen, then in the next mating flight of
the queen this brood will be one of the drones.

3.4 Greedy Randomized Adaptive Search Procedure for the
Clustering Problem

As it was mentioned earlier in the clustering phase of the proposed algorithm a
Greedy Randomized Adaptive Search Procedure (GRASP) ([18], [34])
is used which is an iterative two phase search algorithm. Each iteration con-
sists of two phases, a construction phase and a local search phase. In the
construction phase, a randomized greedy function is used to built up an initial
solution which is then exposed for improvement attempts in the local search
phase. The final result is simply the best solution found over all iterations. In
the first phase, a randomized greedy technique provides feasible solutions
incorporating both greedy and random characteristics. This phase can be de-
scribed as a process which stepwise adds one element at a time to the partial
(incomplete) solution. The choice of the next element to be added is determined
by ordering all elements in a candidate list (Restricted Candidate List -
RCL) with respect to a greedy function. The heuristic is adaptive because the
benefits associated with every element are updated during each iteration of the
construction phase to reflect the changes brought on by the selection of the pre-
vious element. The probabilistic component of a GRASP is characterized by
randomly choosing one of the best candidates in the list but not necessarily the
top candidate. The greedy algorithm is a simple one pass procedure for solving
the clustering problem. In the second phase, a local search is initialized from
the solution of the first phase, and the final result is simply the best solution
found over all searches. In the following the way the GRASP algorithm is applied
for the solution of the clustering problem is analyzed in detail. An initial solution
(i.e. an initial clustering of the samples in the clusters) is constructed step by
step and, then, this solution is exposed for development in the local search phase
of the algorithm. The first problem that we have to face was the selection of the
number of the clusters. Thus, the algorithm works with two different ways.

If the number of clusters is known a priori, then a number of samples equal to
the number of clusters are selected randomly as the initial clusters. In this case,
as the iterations of GRASP increase the number of clusters do not change. In each
iteration, different samples (equal to the number of clusters) are selected as initial
clusters. Afterwards, the RCL is created. The RCL parameter determines the
level of greediness or randomness in the construction. In our implementation, the
best promising candidate samples are selected to create the RCL. The samples
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in the list are ordered taking into account the distance of each sample from
all centers of the clusters and the ordering is from the smallest to the largest
distance. From this list, the first E samples (E is a parameter of the problem)
are selected in order to form the final RCL. The candidate sample for inclusion
in the solution is selected randomly from the RCL using a random number
generator. Finally, the RCL is readjusted in every iteration by recalculated all
the distances based on the new centers and replacing the sample which has been
included in the solution by another sample that does not belong to the RCL,
namely the (E+iter)th sample where iter is the number of the current iteration.
When all the samples have been assigned to clusters two measures are calculated
(see section 3.1) and a local search strategy is applied in order to improve the
solution. The local search works as follows: For each sample the probability of
its reassignment in a different cluster is examined by calculating the distance of
the sample from the centers. If a sample is reassigned to a different cluster the
new centers are calculated. The local search phase stops when in an iteration
no sample is reassigned. If the number of clusters is unknown, then initially
a number of samples are selected randomly as the initial clusters. Now, as the
iterations of GRASP increase the number of clusters changes but cannot become
less than two. In each iteration a different number of clusters can be found. The
creation of the initial solutions and the local search phase work as in the previous
case. The only difference compared to the previous case concerns the use of the
validity measure in order to choose the best solution because as we have different
number of clusters in each iteration the sum of squared Euclidean distances varies
significantly for each solution.

4 Computational Results

4.1 Data and Parameter Description

The performance of the proposed methodology is tested on 9 benchmark in-
stances taken from the UCI Machine Learning Repository. The datasets from
the UCI Machine Learning Repository were chosen to include a wide range of
domains and their characteristics are given in Table 1. The data varies in term of
the number of observation from very small samples (Iris with 150 observations)
up to larger data sets (Spambase with 4601 observations). Also, there are data
sets with two and three clusters. In one case (Breast Cancer Wisconsin) the data
set is appeared with different size of observations because in this data set there
is a number of missing values. The problem of missing values was faced with
two different ways. In the first way where all the observations are used we took
the mean values of all the observations in the corresponding feature while in the
second way where we have less values in the observations we did not take into
account the observations that they had missing values. Some data sets involve
only numerical features, and the remaining include both numerical and categori-
cal features. For each data set, Table 1 reports the total number of features and
the number of categorical features in parentheses. The parameter settings for
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Table 1. Data Sets Characteristics

Data Sets Observations Features Clusters
Australian Credit (AC) 690 14(8) 2

Breast Cancer Wisconsin 1 (BCW1) 699 9 2
Breast Cancer Wisconsin 2 (BCW2) 683 9 2

Heart Disease (HD) 270 13(7) 2
Hepatitis 1 (Hep1) 155 19 (13) 2
Ionosphere (Ion) 351 34 2
Spambase(spam) 4601 57 2

Iris 150 4 3
Wine 178 13 3

Hybrid HBMO-GRASP algorithm were selected after thorough empirical test-
ing and they are: The number of queens is set equal to 1, the number of drones
is set equal to 200, the number of mating flights (M) is set equal to 1000, the
size of spermatheca is set equal to 50, number of broods is set equal to 50, α is
set equal to 0.9, the number of workers (w) is set equal to 20 and, finally, the
size of RCL is set equal to 50. The algorithm was implemented in Fortran 90 and
was compiled using the Lahey f95 compiler on a Centrino Mobile Intel Pentium
M 750 at 1.86 GHz, running Suse Linux 9.1.

4.2 Results of the Proposed Algorithm

The objective of the computational experiments is to show the performance of
the proposed algorithm in searching for a reduced set of features with high clus-
tering of the data. The purpose of feature variable selection is to find the smallest
set of features that can result in satisfactory predictive performance. Because of
the curse of dimensionality, it is often necessary and beneficial to limit the num-
ber of input features in order to have a good predictive and less computationally
intensive model. In general there are 2numberoffeatures − 1 possible feature com-
binations and, thus, in our cases the problem with the fewest number of feature
combinations is the Iris (namely 24 − 1), while the most difficult problem is the
Spambase where the number of feature combinations is 257 − 1.

A comparison with the classic k-means and other metaheuristic approaches
for the solution of the clustering problem is presented in Table 2. In this Table,
eight other algorithms are used for the solution of the feature subset selection
problem and for the clustering problem. In the first one a Particle Swarm Op-
timization algorithm is used for the solution of the feature selection problem
while a Greedy Randomized Adaptive Search Procedure is used in the cluster-
ing phase [36] (columns 4 and 5 of Table 2), while in the second an Ant Colony
Optimization Algorithm is used in the feature selection problem with Greedy
Randomized Adaptive Search Procedure in the clustering phase [37] (columns 6
and 7 of Table 2). Subsequently, in the second group of algorithms and columns
2 and 3 of Table 2 a genetic algorithm [20] is used in the first phase of the al-
gorithm while a Greedy Randomized Adaptive Search Procedure is used in the
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second phase of the algorithm [38]. In the second group and in columns 4 and 5
of Table 2 a Tabu Search Algorithm [19] is used in the first phase and a GRASP
algorithm is used in the second phase. Finally, classic k-means algorithm is used
for the clustering problem using all features (columns 6 and 7 of Table 2 of the
second group). In the third group of algorithms in columns 2 and 3 of Table
2 a Particle Swarm Optimization is used in the first phase and an Ant Colony
Optimization algorithm is used in the second phase [39], in the second one in
both phases (feature selection phase and clustering phase) an Ant Colony Op-
timization algorithm is used (columns 4 and 5 of Table 2 of the third group)
while in the third one a Particle Swarm Optimization in both phases (feature
selection phase and clustering phase) algorithm is used (columns 6 and 7 of Ta-
ble 2 of the third group). The parameters and the implementation details of all
of the algortihms presented in the comparisons are analyzed in papers [36], [37],
[38], [39].

From this table, it can be observed that the Hybrid HBMO-GRASP algorithm
performs better (has the largest number of correct clustered samples) than the
other eight algorithms in all instances. It should be mentioned that in some
instances the differences in the results between the Hybrid HBMO-GRASP al-
gorithm and the other eight algorithms are very significant. Mainly, for the two
data sets that have the largest number of features compared to the other data
sets, i.e. in the Ionosphere data set the percentage of corrected clustered samples
for the Hybrid HBMO-GRASP algorithm is 88.03%, for the Hybrid PSO-ACO
algorithm is 86.03%, for the Hybrid PSO-GRASP algorithm is 85.47%, for the
Hybrid ACO-GRASP algorithm is 82.90%, for the Genetic-GRASP algorithm
is 75.78%, for the Tabu-GRASP algorithm is 74.92%, for the PSO algorithm
is 74.35%, for the ACO algorithm is 73.50% and for the k-means is 70.65%
and in the Spambase data set the percentage of corrected clustered samples for
the Hybrid HBMO-GRASP algorithm is 87.54%, for the Hybrid PSO-ACO al-
gorithm is 87.19%, for the Hybrid PSO-GRASP algorithm is 87.13%, for the
Hybrid ACO-GRASP algorithm is 86.78%, for the ACO algorithm is 86.22%,
for the PSO algorithm is 86.06%, for the k-means is 86.02%, for the Genetic-
GRASP algorithm is 85.59% and for the Tabu-GRASP algorithm is 82.80%.
It should, also, be noted that a hybridization algorithm performs always bet-
ter than a no hybridized algorithm. More precisely, the only three algorithms
that are competitive in almost all instances with the proposed Hybrid HBMO-
GRASP algorithm are the Hybrid PSO - ACO, the Hybrid PSO - GRASP and
the Hybrid ACO - GRASP algorithms. These results prove the significance of
the solution of the feature selection problem in the clustering algorithm as when
more sophisticated methods for the solution of this problem (Honey Bees Mating
Optimization, Particle Swarm Optimization and Ant Colony Optimization) were
used the performance of the clustering algorithm was improved. The significance
of the solution of the feature selection problem using the Honey Bees Mating
Optimization Algorithm is, also, proved by the fact that with this algorithm the
best solution was found by using less features than the other algorithms used
in the comparisons. More precisely, in the most difficult instance, the Spambase
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Table 2. Results of the Algorithm

Instance HBMO-GRASP PSO-GRASP ACO-GRASP
Selected Correct Selected Correct Selected Correct

Feat. Clustered Features Clustered Feat. Clustered
BCW2 5 664(97.21%) 5 662(96.92%) 5 662(96.92%)
Hep1 5 140(90.32%) 7 135(87.09%) 9 134(86.45%)
AC 8 604(87.53%) 8 604(87.53%) 8 603(87.39%)

BCW1 5 677(96.85%) 5 676(96.70%) 5 676(96.70%)
Ion 8 309 (88.03%) 11 300(85.47%) 2 291(82.90%)

spam 31 4028 (87.54%) 51 4009(87.13%) 56 3993(86.78%)
HD 8 237(87.77%) 9 232(85.92%) 9 232(85.92%)
Iris 3 146(97.33%) 3 145(96.67%) 3 145(96.67%)

Wine 7 176(98.87%) 7 176(98.87%) 8 176(98.87%)
Instance Genetic-GRASP Tabu-GRASP k-Means

Sel. Correct Sel. Correct Sel Correct
Feat. Clustered Feat. Clustered Feat. Clustered

BCW2 5 662(96.92%) 6 661(96.77%) 9 654(95.74%)
Hep1 9 134(86.45%) 10 132(85.16%) 19 121(78.06%)
AC 8 602(87.24%) 9 599(86.81%) 14 580(84.05%)

BCW1 5 676(96.70%) 8 674(96.42%) 9 672(96.13%)
Ion 17 266(75.78%) 4 263(74.92%) 34 248(70.65%)

spam 56 3938(85.59%) 34 3810(82.80%) 57 3958(86.02%)
HD 7 231(85.55%) 9 227(84.07%) 13 220(81.48%)
Iris 4 145(96.67%) 3 145(96.67%) 4 144(96%)

Wine 7 175(98.31%) 7 174(97.75%) 13 172(96.92%)
Instance PSO-ACO ACO PSO

Selected Correct Sel. Correct Sel. Correct
Features Clustered Feat. Clustered Feat. Clustered

BCW2 5 664(97.21%) 5 662(96.92%) 5 662(96.92%)
Hep1 6 139(89.67%) 9 133(85.80%) 10 132(85.16%)
AC 8 604(87.53%) 8 601(87.10%) 8 602(87.24%)

BCW1 5 677(96.85%) 8 674(96.42%) 8 674(96.42%)
Ion 7 302(86.03%) 16 258(73.50%) 12 261(74.35%)

spam 39 4012(87.19%) 41 3967(86.22%) 37 3960(86.06%)
HD 9 235(87.03%) 9 227(84.07%) 9 227(84.07%)
Iris 3 146(97.33%) 3 145(96.67%) 3 145(96.67%)

Wine 7 176(98.87%) 7 174(97.75%) 7 174(97.75%)

instance, the proposed algorithm needed 31 features in order to find the optimal
solution, while the other seven algorithms (in the k-means the feature selection
problem was not solved) the algorithms needed between 34 - 56 features to find
their best solution. It should, also, be mentioned that the algorithm was tested
with two options: with known and and unknown number of clusters. When the
number of clusters was unknown and thus in each iteration of the algorithm
different initial values of clusters were selected the algorithm always converged
to the optimal number of clusters and with the same results as in the case that
the number of clusters was known.
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5 Conclusions and Future Research

In this paper a new metaheuristic algorithm, the Hybrid HBMO-GRASP, is
proposed for solving the Clustering Problem. This algorithm is a two phase al-
gorithm which combines a Honey Bees Mating Optimization (HBMO) algorithm
for the solution of the feature selection problem and a Greedy Randomized Adap-
tive Search Procedure (GRASP) for the solution of the clustering problem. A
number of metaheuristic algorithms and the classic k-means algorithm were also
used for comparison purposes. The performance of the proposed algorithm was
tested using various benchmark datasets from UCI Machine Learning Repos-
itory. The objective of the computational experiments, the desire to show the
high performance of the proposed algorithms, was achieved as the algorithm gave
very efficient results. The significance of the solution of the clustering problem by
the proposed algorithm is proved by the fact that the percentage of the correct
clustered samples is very high and in some instances is larger than 98%. Also,
the focus in the significance of the solution of the feature selection problem is
proved by the fact that the instances with the largest number of features gave
better results when the HBMO algorithm was used. Future research is intended
to be focused in using different algorithms both to the feature selection phase
and to the clustering algorithm phase.
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Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G.,
Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A.,
Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO
2003. LNCS, vol. 2723, pp. 219–230. Springer, Heidelberg (2003)

41. Ray, S., Turi, R.H.: Determination of Number of Clusters in K-means Clustering
and Application in Colour Image Segmentation. In: Proceedings of the 4th Inter-
national Conference on Advances in Pattern Recognition and Digital Techniques
(ICAPRDT 1999), Calcutta, India (1999)

42. Rokach, L., Maimon, O.: Clustering Methods. In: Maimon, O., Rokach, L. (eds.)
Data Mining and Knowledge Discovery Handbook, pp. 321–352. Springer, New
York (2005)



152 Y. Marinakis, M. Marinaki, and N. Matsatsinis

43. Selim, S.Z., Ismail, M.A.: K-means-type algorithms: A generalized convergence
theorem and characterization of local optimality. IEEE Transactions on Pattern
Analysis and Machine Intelligence 6, 81–87 (1984)

44. Shelokar, P.S., Jayaraman, V.K., Kulkarni, B.D.: An Ant Colony Approach for
Clustering. Analytica Chimica Acta 509, 187–195 (2004)

45. Shen, H.-Y., Peng, X.-Q., Wang, J.-N., Hu, Z.-K.: A Mountain Clustering Based
on Improved PSO Algorithm. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC
2005. LNCS, vol. 3612, pp. 477–481. Springer, Heidelberg (2005)

46. Shen, J., Chang, S.I., Lee, E.S., Deng, Y., Brown, S.J.: Determination of Clus-
ter Number in Clustering Microarray Data. Applied Mathematics and Computa-
tion 169, 1172–1185 (2005)

47. Xu, R., Wunsch II, D.: Survey of Clustering Algorithms. IEEE Transactions on
Neural Networks 16(3), 645–678 (2005)



Ant Colony Optimization and the
Minimum Spanning Tree Problem

Frank Neumann1 and Carsten Witt2,�

1 Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany
fne@mpi-inf.mpg.de

2 LS Informatik 2, Technische Universität Dortmund, 44221 Dortmund, Germany
cw-lion@ls2.cs.uni-dortmund.de

Abstract. Ant Colony Optimization (ACO) is a kind of metaheuristic
that has become very popular for solving problems from combinatorial
optimization. Solutions for a given problem are constructed by a ran-
dom walk on a so-called construction graph. This random walk can be
influenced by heuristic information about the problem. In contrast to
many successful applications, the theoretical foundation of this kind of
metaheuristic is rather weak. Theoretical investigations with respect to
the runtime behavior of ACO algorithms have been started only recently
for the optimization of pseudo-Boolean functions.

We present the first comprehensive rigorous analysis of a simple ACO
algorithm for a combinatorial optimization problem. In our investiga-
tions, we consider the minimum spanning tree problem and examine the
effect of two construction graphs with respect to the runtime behav-
ior. The choice of the construction graph in an ACO algorithm seems
to be crucial for the success of such an algorithm. First, we take the
input graph itself as the construction graph and analyze the use of a
construction procedure that is similar to Broder’s algorithm for choos-
ing a spanning tree uniformly at random. After that, a more incremental
construction procedure is analyzed. It turns out that this procedure is
superior to the Broder-based algorithm and produces additionally in a
constant number of iterations a minimum spanning tree if the influence
of the heuristic information is large enough.

1 Introduction

Using Ant Colony Optimization (ACO) algorithms to obtain good solutions for
combinatorial optimization problems has become very popular in recent years.
In contrast to other kinds of randomized search heuristics such as Simulated
Annealing or evolutionary algorithms, ACO algorithms have the ability to inte-
grate knowledge about the problem into the construction of a new solution. In
the case of a new combinatorial optimization problem, there is often some knowl-
edge about the problem which can be incorporated into this kind of randomized
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search heuristic. Therefore, the main application of ACO algorithms lies in the
field of combinatorial optimization and the first problem to which this kind of
heuristic has been applied was the traveling salesperson problem [6]. ACO is
inspired by a colony of ants that search for a common source of food. It has
been observed that ants are able to find a shortest path to such a source under
certain circumstances by indirect communication. This communication is done
by so-called pheromone values. The behavior of ants is put into an algorithmic
framework to obtain solutions for a given problem. Solutions are constructed
by random walks of artificial ants on a so-called construction graph, which has
weights – the pheromone values – on the edges. Larger pheromone values lead to
higher probability of the edges being traversed in the next walk. In addition, the
random walk is usually influenced by heuristic information about the problem.

In contrast to successful applications, the theoretical foundation of the men-
tioned search heuristics is still in its infancy. A lot of applications show their
practical evidence, but for a long time they were not analyzed with respect to
their runtime or approximation qualities (see [5, 9] for an overview on different
theoretical approaches including first steps to runtime analyses). We concen-
trate on the analysis of such heuristics with respect to their runtime behavior in
a similar fashion to what is usually done for randomized algorithms. In this case,
either the expected optimization time, which equals the number of constructed
solutions until an optimal one has been obtained, or the success probability after
a certain number of steps is analyzed.

The first results with respect to the runtime of a simple ACO algorithm have
been obtained for the optimization of pseudo-Boolean functions [14, 4, 3, 11].
Many combinatorial optimization problems can be considered as the optimiza-
tion of a specific pseudo-Boolean function. Especially in the case of polynomially
solvable problems, we cannot hope that more or less general search heuristics
outperform the best-known algorithms for a specific problem. Nevertheless, it is
interesting to analyze them on such problems as this shows how the heuristics
work and therefore improve the understanding of these, in practice successful,
algorithms. A basic evolutionary algorithm called (1+1) EA has been considered
for a wide class of combinatorial optimization problems in the context of optimiz-
ing a pseudo-Boolean function. All results with respect to the (1+1) EA transfer
to a simple ACO algorithm called 1-ANT in this context [14]. This includes
runtime bounds on some of the best-known polynomially solvable combinatorial
optimization problems such as maximum matching, and the minimum spanning
tree problem. In the case of NP-hard problems, the result of Witt [17] on the
partition problem transfers to the 1-ANT.

In this paper, we conduct a first comprehensive runtime analysis of ACO
algorithms on a combinatorial optimization problem. We have chosen the well-
known minimum spanning tree (MST) problem as a promising starting point
since different randomized search heuristics, in particular the (1+1) EA, have
been studied w. r. t. this problem before, e. g., by Neumann and Wegener [13,12]
and Wegener [15]. Due to [14] and the result on the (1+1) EA in [13], the expected
optimization time of the 1-ANT for the MST problem is O(m2(log n+logwmax)),
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where wmax is the largest weight of the input. In addition, a class of instances
with polynomial weights has been presented in [13] where the expected time to
obtain an optimal solution is Θ(n4 log n).

It is widely assumed and observed in experiments that the choice of the con-
struction graph has a great effect on the runtime behavior of an ACO algorithm.
The construction graph used in [14,4,3,11] is a general one for the optimization of
pseudo-Boolean functions and does not take knowledge about the given problem
into account. ACO algorithms have the advantage that more knowledge about
the structure of a given problem can be incorporated into the construction of
solutions. This is done by choosing an appropriate construction graph together
with a procedure which allows to obtain feasible solutions. The choice of such a
construction graph together with its procedure has been observed experimentally
as a crucial point for the success of such an algorithm.

We examine ACO algorithms that work on a construction graphs which seem
to be more suitable for MST problem. First, we consider a random walk on
the input graph to construct solutions for the problem. It is well known how
to choose a spanning tree of a given graph uniformly at random using random
walk algorithms (see e. g. [1,16]). Our construction procedure produces solutions
by a variant of Broder’s algorithm [1]. We show a polynomial, but relatively
large, upper bound for obtaining a minimum spanning tree by this procedure
if no heuristic information influences the random walk. Using only heuristic
information for constructing solutions, we show that the 1-ANT together with
the Broder-based construction procedure with high probability does not find a
minimum spanning tree or even does not present a feasible solution in polynomial
time.

After that, we consider a more incremental construction procedure that fol-
lows a general approach proposed by Dorigo and Stützle [7] to obtain an ACO
construction graph. We call this the Kruskal-based construction procedure as in
each step an edge that does not create a cycle is chosen to be included into the
solution. It turns out that the expected optimization time of the 1-ANT using
the Kruskal-based construction procedure is O(mn(log n+logwmax)). This beats
the 1-ANT in the case that the minimum spanning tree problem is more gener-
ally modeled as an optimization problem of a special pseudo-Boolean function
since then the above-mentioned lower bound Ω(n4 log n) of the (1+1) EA carries
over. Using the 1-ANT together with the Kruskal-based construction procedure
and a large influence of the heuristic information, the algorithm has even a con-
stant expected optimization time. All our analyses show that and how ACO
algorithms for combinatorial optimization can be analyzed rigorously using the
toolbox from the analyses of randomized algorithms. In particular, we provide
insight into the working principles of ACO algorithms by studying the effect of
the (guided) random walks that these algorithms perform.

After having motivated our work, we introduce the model of the minimum
spanning tree problem and the 1-ANT in Section 2. In Section 3, we consider
a construction procedure which is influenced by Broder’s algorithm and con-
sider its effect with respect to the runtime behavior. Section 4 deals with the
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analysis of the 1-ANT using the Kruskal-based construction graph. We finish
with conclusions and the discussion of some open problems.

2 Minimum Spanning Trees and the 1-ANT

Throughout the paper, we consider the well-known MST problem. Given an
undirected connected graph G = (V, E) with edge costs (weights) w : E → N≥1,
the goal is to find a spanning tree E∗ ⊆ E such that the total cost

∑
e∈E∗ w(e)

becomes minimal. Denote n := |V | and m := |E| and assume w. l. o. g. that
E := {1, . . . , m}. Moreover, let m ≥ n since an existing spanning tree is unique
if m = n−1. The MST problem can be solved in time O(m log n) or O(n2) using
the Greedy algorithms by Kruskal respectively Prim, see, e. g., [2].

We study the simple ACO algorithm called 1-ANT (see Algorithm 1), already
analyzed in [14] for the optimization of pseudo-Boolean functions. In the 1-ANT,
solutions are constructed iteratively by different construction procedures on a
given directed construction graph C = (X, A). In the initialization step, each
edge (u, v) ∈ A gets a pheromone value τ(u,v) = 1/|A| such that the pheromone
values sum up to 1. Afterwards, an initial solution x∗ is produced by a random
walk of an imaginary ant on the construction graph and the pheromone values
are updated w. r. t. this walk. In each iteration, a new solution is constructed
and the pheromone values are updated if this solution is not inferior (w. r. t. a
fitness function f) to the best solution obtained so far.

Algorithm 1 (1-ANT)
1.) Set τ(u,v) = 1/|A| for all (u, v) ∈ A.
2.) Compute a solution x using a construction procedure.
3.) Update the pheromone values and set x∗ := x.
4.) Compute x using a construction procedure.
5.) If f(x) ≤ f(x∗), update the pheromone values and set x∗ := x.
6.) Go to 4.).

We analyze the influence of different construction procedures on the runtime
behavior of the 1-ANT algorithm. This is done by considering the expected
number of solutions that are constructed by the algorithm until a minimum
spanning tree has been obtained for the first time. We call this the expected
optimization time of the 1-ANT.

3 Broder-Based Construction Graph

Since the MST problem is a graph problem, the first idea is to use the input
graph G to the MST problem itself as the construction graph C of the 1-ANT.
(Note that each undirected edge {u, v} can be considered as two directed edges
(u, v) and (v, u).) However, it is not obvious how a random walk of an ant on G is
translated into a spanning tree. Interestingly, the famous algorithm of Broder [1],
which chooses uniformly at random from all spanning trees of G, is a random
walk algorithm.
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We will use an ACO variant of Broder’s algorithm as given in Algorithm 2.
As usual in ACO algorithms, the construction procedure maintains pheromone
values τ and heuristic information η for all edges of the construction graph G.
Considering the MST problem, we assume that the heuristic information η{u,v}
of an edge {u, v} is the inverse of the weight of the edge {u, v} in G. α and β
are parameters that control the extent to which pheromone values respectively
heuristic information is used.

Algorithm 2 (BroderConstruct(G, τ, η))
1.) Choose an arbitrary node s ∈ V .
2.) u := s, T = ∅
3.) Let R :=

∑
{u,v}∈E [τ{u,v}]α · [η{u,v}]β.

4.) Choose neighbor v of u with probability [τ{u,v}]α·[η{u,v}]β

R .
5.) If v has not been visited before, set T := T ∪ {u, v}.
6.) Set u := v.
7.) If each node of G has been visited return T , otherwise go to 3.)

Obviously, Algorithm 2 outputs a spanning tree T whose cost f(T ) is measured
by the sum of the w-values of its edges. After a new solution has been accepted,
the pheromone values τ are updated w. r. t. the constructed spanning tree T . We
maintain upper and lower bounds on these values, which is a common measure
to ensure convergence [5] and was also proposed in the previous runtime analysis
of the 1-ANT [14]. We assume that after each update, the τ -value of each edge
in the construction graph attains either the upper bound h or lower bound �.
Hence, for the new pheromone values τ ′ after an update, it holds that

τ ′
{u,v} = h if {u, v} ∈ T and τ ′

{u,v} = � if {u, v} /∈ T .

So the last constructed solution is indirectly saved by the n−1 undirected edges
that obtain the high pheromone value h. The ratio of the parameters � and h
is crucial since too large values of � will lead to too large changes of the tree in
subsequent steps whereas too large values of h will make changes of the tree too
unlikely. We choose h and l such that h = n3� holds and will argue later on the
optimality of this choice.

Note that choosing β = 0 or α = 0 in Algorithm 2, only the pheromone value
respectively the heuristic information influence the random walk. We examine
the cases where one of these values is 0 to study the effect of the pheromone
values respectively the heuristic information separately. First, we consider the
case α = 1 and β = 0 for the Broder-based construction graph. This has the
following consequences. Let u be the current node of the random walk and denote
by R :=

∑
{u,v}∈E τ{u,v} the sum over the pheromone values of all edges that are

incident on u. Then the next node is chosen proportionally to the pheromone
values on the corresponding edges, which means that a neighbor v of u is chosen
with probability τ{u,v}/R.

For simplicity, we call the described setting of α, β, h and � the cubic update
scheme. To become acquainted therewith, we derive the following simple esti-
mations on the probabilities of traversing edges depending on the pheromone
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values. Assume that a node v has k adjacent edges with value h and i adjacent
edges with value �. Note that k + i ≤ n − 1 and h = n3�. Then the probability
of choosing an edge with value h is

kh

kh + i�
= 1 − i

kn3 + i
≥ 1 − 1

n2 ,

where among the edges with values h one edge is chosen uniformly at random.
The probability of choosing a specific edge with value � is at least

�

� + (n − 2)h
≥ �

nh
≥ 1

n4 .

This leads us to the following theorem, which shows that the 1-ANT in the
described setting is able to construct MSTs in expected polynomial time provided
wmax, the largest weight of the edges, is not excessively large.

Theorem 1. The expected optimization time of the 1-ANT using the procedure
BroderConstruct with cubic update scheme is O(n6(log n + log wmax)). The ex-
pected number of traversed edges in a run of BroderConstruct is bounded above
by O(n2) except for the initial run, where it is O(n3).

Proof. We use the following idea for Theorem 2 in [13]. Suppose the spanning
tree T ∗ was constructed in the last accepted solution. Let T = T ∗ \ {e} ∪ {e′}
be any spanning tree that is obtained from T ∗ by including one edge e′ and
removing another edge e, and let s(m, n) be a lower bound on the probability of
producing T from T ∗ in the next step. Then the expected number of steps until
a minimum spanning tree has been obtained is O(s(m, n)−1(log n + log wmax)).
To prove the theorem, it therefore suffices to show that the probability of the
1-ANT producing T by the next constructed solution is Ω(1/n6).

To simplify our argumentation, we first concentrate on the probability of re-
discovering T ∗ in the next constructed solution. This happens if the ant traverses
all edges of T ∗ in some arbitrary order and no other edges in between, which
might require that an edge has to be taken more than once. (This is a pes-
simistic assumption since newly traversed edges are not necessarily included in
the solution.) Hence, we are confronted with the cover time for the tree T ∗.
The cover time for trees on n nodes in general is bounded above by 2n2 [10],
i. e., by Markov’s inquality, it is at most 4n2 with probability at least 1/2. We
can apply this result if no so-called error occurs that an edge with pheromone
value � is taken. According to the above calculations, the probabilty of an error
is bounded above by 1/n2 in a single step of the ant. Hence, there is no error
in O(n2) steps with probability Ω(1). Therefore, the probability of rediscover-
ing T ∗ in the next solution (using O(n2) steps of BroderConstruct) is at least
Ω(1). Additionally taking into account the number of steps O(n3) for the initial
solution [1], we have already bounded the expected number of traversed edges
in a run of BroderConstruct.

To construct T instead of T ∗, exactly one error is desired, namely e′ has to be
traversed instead of e. Consider the ant when it is for the first time on a node on
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which e′ is incident. By the calculations above, the probability of including e′ is
Ω(1/n4). Note that inserting e′ into T ∗ closes a cycle c. Hence, when e′ has been
included, there may be at most n − 2 edges of T̃ := T ∗ \ {e} left to traverse. We
partition the edges of the forest T̃ into two subsets: The edges that belong to
the cycle c are called critical and the remaining ones are called uncritical. The
order of inclusion for the uncritical edges is irrelevant. However, all critical edges
have to be included before the ant traverses edge e.

We are faced with the following problem: Let v1, . . . , vk, v1 describe the cycle c
and suppose w. l. o. g. that e′ = {v1, vk}. It holds that e = {vi, vi+1} for some
1 ≤ i ≤ k − 1. Moreover, let vs be the node of c that is visited first by the ant.
W. l. o. g., 1 ≤ s ≤ i. With probability Ω(1/n4), the edge e′ is traversed exactly
once until a new solution has been constructed. Hence, after e′ has been taken,
the ant must visit the nodes vk, vk−1, . . . , vi+1 in the described order (unless
an error other than including e′ occurs), possibly traversing uncritical edges
in between. To ensure that e is not traversed before, we would like the ant to
visit all the nodes in {v1, . . . , vi}, without visiting nodes in {vi+1, . . . , vk}, before
visiting vk by traversing e′. We apply results on the Gambler’s Ruin Problem [8].
The probability of going from vs to vi before visiting vk is at least Ω(1/n). The
same lower bound holds on the probability of going from vi to v1 before visiting
vi+1. These random walks are still completed in expected time O(n2). Hence, in
total, the probability of constructing T is Ω((1/n4) · (1/n) · (1/n)) = Ω(1/n6) as
suggested. ��

We see that the ratio h/� = n3 leads to relatively high exponents in the expected
optimization time. However, this ratio seems to be necessary for our argumen-
tation. Consider the complete graph on n nodes where the spanning tree T ∗

equals a path of length n − 1. The cover time for this special tree T ∗ is bounded
below by Ω(n2). To each node of the path, at most 2 edges with value h and
at least n − 3 edges with value � are incident. Hence, the ratio is required to
obtain an error probability of O(1/n2). It is much more difficult to improve the
upper bound of Theorem 1 or to come up with a matching lower bound. The
reasons are twofold. First, we cannot control the effects of steps where the ant
traverses edges to nodes that have been visited before in the construction step.
These steps might reduce the time until certain edges of T ∗ are reached. Sec-
ond, our argumentation concerning the cycle v1, . . . , vk, v1 makes a worst-case
assumption on the starting node vs. It seems more likely that vs is uniform over
the path, which could improve the upper bound of the theorem by a factor Ω(n).
However, a formal proof of this is open.

ACO algorithms often use heuristic information to direct the search process.
In the following, we set α = 0 and examine the effect of heuristic information for
the MST problem. Recall that the heuristic information for an edge e is given
by η(e) = 1/w(e). Interestingly, for the obvious Broder-based graph, heuristic
information alone does not help to find MSTs in reasonable time regardless
of β. On the following example graph G∗, either the runtime of BroderConstruct
explodes or MSTs are found only with exponentially small probability. W. l. o. g.,
n = 4k + 1. Then G∗, a connected graph on the nodes {1, . . . , n}, consists of
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k triangles with weights (1, 1, 2) and two paths of length k with exponentially
increasing weights along the path. More precisely, let

T ∗ :=
k⋃

i=1

{
{1, 2i}, {1, 2i+ 1}, {2i, 2i + 1}

}
,

where w({1, 2i}) = w({2i, 2i+1}) := 1 and w({1, 2i+1}) := 2. Moreover, denote

P ∗
1 := {1, 2k + 2} ∪

k⋃
i=2

{
2k + i, 2k + i + 1

}
,

where w({1, 2k + 2}) := 2 and w({2k + i, 2k + i + 1}) := 2i, and, similarly,

P ∗
2 := {1, 3k + 2} ∪

k⋃
i=2

{
3k + i, 3k + i + 1

}
,

where w({1, 3k + 2}) := 2 and w({3k + i, 3k + i+ 1}) := 2i. Finally, the edge set
of G∗ is T ∗ ∪ P ∗

1 ∪ P ∗
2 . Hence, all triangles and one end of each path are glued

by node 1.

Theorem 2. Choosing α = 0 and β arbitrarily, the probability that the 1-ANT
using BroderConstruct finds an MST for G∗, or the probability of termination
within polynomial time is 2−Ω(n).

Proof. Regardless of the ant’s starting point, at least one path, w. l. o. g. P ∗
1 , must

be traversed from 1 to its other end, and for least k − 1 triangles, both nodes 2i
and 2i+1 must be visited through node 1. For each of these initially undiscovered
triangles, the first move into the triangle must go from 1 to 2i, otherwise the
resulting tree will not be minimal. If the triangle is entered at node 2i, we
consider it a success, otherwise (entrance at 2i + 1) an error. The proof idea is
to show that for too small β, i. e., when the influence of heuristic information is
low, with overwhelming probability at least one triangle contains an error. If, on
the other hand, β is too large, the ant with overwhelming probability will not be
able to traverse P ∗

1 in polynomial time due to its exponentially increasing edge
weights.

We study the success probabilities for the triangles and the path P1. Given
that the ant moves from 1 to either 2i or 2i + 1, the probability of going to 2i
equals

(η({1, 2i}))β

(η({1, 2i}))β + (η({1, 2i + 1}))β
=

1
1 + 2−β

since η(e) = 1/w(e). Therefore, the probability of k − 1 successes equals, due to
independence, (1 + 2−β)−k+1. This probability increases with β. However, for
β ≤ 1, it is still bounded above by (2/3)k−1 = 2−Ω(n).

Considering the path P ∗
1 , we are faced with the Gambler’s Ruin Problem.

At each of the nodes 2k + i, 2 ≤ i ≤ k − 1, the probability of going to a lower-
numbered node and the probability of going to a higher-numbered have the same
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ratio of r := (2−i+1)β/(2i)β = 2β. Hence, starting in 2k + 2, the probability
of reaching 3k + 1 before returning to 1 equals r

rk−1 = 2β

2kβ−1 (see [8]). This
probability decreases with β. However, for β ≥ 1, it is still bounded above by
2/(2k − 1) = 2−Ω(n). Then the probability of reaching the end in a polynomial
number of trials is also 2−Ω(n). ��

4 A Kruskal-Based Construction Procedure

Dorigo and Stützle [7] state a general approach how to obtain an ACO con-
struction graph from any combinatorial optimization algorithm. The idea is to
identify the so-called components of the problem, which may be objects, binary
variables etc., with nodes of the construction graph and to allow the ant to choose
from these components by moving to the corresponding nodes. In our setting,
the components to choose from are the edges from the edge set {1, . . . , m} of
the input graph G. Hence, the canonical construction graph C(G) for the MST
problem is a directed graph on the m+1 nodes {0, 1, . . . , m} with the designated
start node s := 0. Its edge set A of cardinality m2 is given by

A :=
{
(i, j) | 0 ≤ i ≤ m, 1 ≤ j ≤ m, i �= j

}
,

i. e., C(G) is obtained from the complete directed graph by removing all self-loops
and the edges pointing to s. When the 1-ANT visits node e in the construction
graph C(G), this corresponds to choosing the edge e for a spanning tree. To
ensure that a walk of the 1-ANT actually constructs a tree, we define the feasible
neigborhood N(vk) of node vk depending on the nodes v1, . . . , vk visited so far:

N(vk) :=
(
E \
{
v1, . . . , vk

})
\
{
e ∈ E

∣∣ (V, {v1, . . . , vk, e}
)

contains a cycle
}
.

Note that the feasible neighborhood depends on the memory of the ant about
the path followed so far, which is very common in ACO algorithms, see, e. g., [7].

A new solution is constructed using Algorithm 3. Again, the random walk of
an ant is controlled by the pheromone values τ and the heuristic information η
on the edges. Similarly to the Broder-based construction graph, we assume that
the η(u,v)-value of an edge (u, v) is the inverse of the weight of the edge of G
corresponding to the node v in C(G).

Algorithm 3 (Construct(C(G), τ, η))
1.) v0 := s; k := 0.
2.) While N(vk) is nonempty:

a.) Let R :=
∑

y∈N(vk)[τ(vk,y)]α · [η(vk,y)]β.

b.) Choose neighbor vk+1 ∈ N(vk) with probability
[τ(vk,vk+1)]

α·[η(vk,vk+1)]
β

R .
c.) Set k := k + 1 and go to 2.).

3.) Return the path p = (v0, . . . , vk) constructed by this procedure.

A run of Algorithm 3 returns a sequence of k + 1 nodes of C(G). It is easy to
see that k := n − 1 after the run, hence the number of steps is bounded above
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by n, and that v1, . . . , vn−1 is a sequence of edges that form a spanning tree
for G. Accordingly, we measure the fitness f(p) of a path p = (v0, . . . , vn−1)
simply by w(v1) + · · · + w(vn−1), i. e., the cost of the corresponding spanning
tree. It remains to specify the update scheme for the pheromone values. As in the
case of the Broder-based construction procedure, we only consider two different
values h and �. To allow the ant to rediscover the edges of the previous spanning
tree equiprobably in each order, we reward all edges pointing to nodes from p
except s, i. e., we reward (m + 1)(n − 1) edges. Hence, the τ ′-values are

τ ′
(u,v) = h if v ∈ p and v �= s and τ ′

(u,v) = � otherwise.

We choose h and � such that h = (m − n + 1)(log n)� holds. In this case, the
probability of taking a rewarded edge (if applicable) is always at least 1−1/logn.

We consider the case where the random walk to construct solutions is only
influenced by the pheromone values on the edges of C(G). The following result
can be obtained by showing that the probability of obtaining from the current
tree T ∗ a tree T = T ∗ \ {e} ∪ {e′} is lower bounded by Ω(1/(mn)). The proof
can be carried out in a similar fashion as done for Theorem 1.

Theorem 3. Choosing α = 1 and β = 0, the expected optimization time of the
1-ANT with construction graph C(G) is bounded by O(mn(log n + log wmax)).

Proof. Let e1, . . . , en−1 be the edges of T ∗ and suppose w. l. o. g. that the edges
of T are e1, . . . , en−2, e

′ where e′ �= ei for 1 ≤ i ≤ n − 1. With probability
Ω(1), exactly n − 2 (but not n − 1) out of the n − 1 nodes visited by the
1-ANT in C(G) form a uniformly random subset of {e1, . . . , en−1}. Hence, en−1
is missing with probability 1/(n − 1). Furthermore, the probability of visiting e′

rather than en−1 as the missing node has probability at least Ω(1/m). Hence,
in total, T is constructed with probability Ω(1/(nm)). Again we use the proof
idea for Theorem 2 in [13]. It suffices to show the following claim. Suppose the
1-ANT has constructed the spanning tree T ∗ in the last accepted solution. Let
T = T ∗ \ {e} ∪ {e′} be any spanning tree that is obtained from T ∗ by including
one edge e′ and removing another edge e. Then the probability of producing T
by the next constructed solution is Ω(1/(nm)).

Let e1, . . . , en−1 be the edges of T ∗ and suppose w. l. o. g. that the edges
of T are e1, . . . , en−2, e

′ where e′ �= ei for 1 ≤ i ≤ n − 1. We show that with
probability Ω(1), exactly n − 2 (but not n − 1) out of the n − 1 nodes visited by
the 1-ANT in C(G) form a uniformly random subset of {e1, . . . , en−1}. Hence,
en−1 is missing with probability 1/(n − 1). Furthermore, we will show that the
probability of visiting e′ rather than en−1 as the missing node has probability
at least Ω(1/m). Hence, in total, T is constructed with probability Ω(1/(nm)).

We still have to prove the statements on the probabilities in detail. We study
the events Ei, 1 ≤ i ≤ n − 1, defined as follows. Ei occurs iff the first i − 1
and the last n − i − 1 nodes visited by the 1-ANT (excluding s) correspond to
edges of T ∗ whereas the i-th one does not. Edges in C(G) pointing to nodes of T ∗

have pheromone value h and all remaining edges have value �. Hence, if j−1 edges
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of T ∗ have been found, the probability of not choosing another edge of T ∗ by
the next node visited in C(G) is at most

(m − (n − 1))�
((n − 1) − (j − 1))h

=
1

(n − j) log n
.

Therefore, the first i−1 and last n− i−1 nodes (excluding s) visited correspond
to edges of T ∗ with probability at least

1 −
n−2∑
j=1

1
(n − j) log n

≥ 1 − (ln(n − 1) + 1)
log n

+
1

log n
≥ 1 − ln n

log n
= Ω(1)

(estimating the (n − 1)-th Harmonic number by ln(n − 1) + 1) and, due to the
symmetry of the update scheme, each subset of T ∗ of size n − 2 is equally likely,
i. e., has probability Ω(1/n). Additionally, the probability of choosing by the i-th
visited node an edge e′ not contained in T ∗ equals

�

(n − i)h + k�
≥ 1

(n − i + 1)(m − n + 1) log n
,

where k is the number of edges outside T ∗ that can still be chosen; note that
k� ≤ h. Hence, with probability at least c/((n − i + 1)mn log n) for some small
enough constant c (and large enough n), Ei occurs and the tree T is constructed.
Since the Ei are mutually disjoint events, T is constructed instead of T ∗ with
probability at least

n−1∑
i=1

c

(n − i + 1)mn logn
= Ω(1/(mn))

as suggested. ��

In the following, we examine the use of heuristic information for the Kruskal-
based construction graph. Here it can be proven that strong heuristic information
helps the 1-ANT mimicking the greedy algorithm by Kruskal.

Theorem 4. Choosing α = 0 and β ≥ 6wmax log n, the expected optimization
time of the 1-ANT using the construction graph C(G) is constant.

Proof. We show that the next solution that the 1-ANT constructs is with prob-
ability at least 1/e a minimum spanning tree, where e is Euler’s number. This
implies that the expected number of solutions that have to be constructed until
a minimum spanning tree has been computed is bounded above by e.

Let (w1, w2, . . . , wn−1) the weights of edges of a minimum spanning tree. Let
wi ≤ wi+1, 1 ≤ i ≤ n−2 and assume that the ant has already included i−1 edges
that have weights w1, . . . , wi−1 and consider the probability of choosing an edge
of weight wi in the next step. Let M = {e1, . . . , er} be the set of edges that can
be included without creating a cycle and denote by Mi = {e1, . . . , es} the subset
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of M that includes all edges of weight wi. W. l. o. g., we assume w(ei) ≤ w(ei+1),
1 ≤ i ≤ r − 1.

The probability of choosing an edge of Mi in the next step is given by∑s
k=1(η(ek))β∑r
l=1(η(el))β

=
∑s

k=1(η(ek))β∑s
l=1(η(el))β +

∑r
l=s+1(η(el))β

,

where η(ej) = 1/w(ej) holds. Let a =
∑s

k=1(η(ei))β =
∑s

k=1(1/wi)β and b =∑r
l=s+1(η(el))β . The probability of choosing an edge of weight wi is a/(a + b),

which is at least 1 − 1/n if b ≤ a/n. The number of edges in M \ Mi is bounded
above by m, and the weight of such an edge is at least wi + 1. Hence, b ≤
m · (1/(wi + 1))β .

We would like m · (1/(wi +1))β ≤ s · (1/wi)β/n to hold. This can be achieved
by choosing

β ≥ log(mn/s)
log((wi + 1)/wi)

=
log(mn/s)

log(1 + 1/wi)
,

which is at most
(log(mn/s))/(wi/2) ≤ 6wmax log n

since mn ≤ n3 and ex ≤ 1 + 2x for 0 ≤ x ≤ 1. Due to our choices, the ant
traverses the edge with weight wi with probability at least 1−1/n. Therefore, the
probability that in every step i such an edge is taken is at least (1−1/n)n−1 ≥ 1/e
as suggested. ��

The result of Theorem 4 does not necessarily improve upon Kruskal’s algorithm
since the computational efforts in a run of the construction algorithm and for
initializing suitable random number generators (both of which are assumed con-
stant in our cost measure for the optimization time) must not be neglected. With
a careful implementation of the 1-ANT, however, the expected computational
effort w. r. t. the well-known uniform cost measure could be at least bounded
above by the runtime O(m log m) of Kruskal’s algorithm.

5 Conclusions

ACO algorithms have in particular shown to be successful in solving problems
from combinatorial optimization. In contrast to many applications, first theo-
retical estimations of the runtime of such algorithms for the optimization of
pseudo-Boolean functions have been obtained only recently. In the case of com-
binatorial optimization problems, the construction graphs used are more related
to the problem at hand. For the first time, the effect of such graphs have been
investigated by rigorous runtime analyses. We have considered a simple ACO
algorithm 1-ANT for the well-known minimum spanning tree problem. In the
case of the Broder-based construction procedure a polynomial, but relatively
large, upper bound has been proven. In addition, it has been shown that heuris-
tic information can mislead the algorithm such that an optimal solution with
high probability is not found within a polynomial number of steps. In the case
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of the Kruskal-based construction procedure, the upper bound obtained shows
that this construction graph leads to a better optimization process than the
1-ANT and simple evolutionary algorithms in the context of the optimization of
pseudo-Boolean functions. In addition, a large influence of heuristic information
makes the algorithm mimic Kruskal’s algorithm for the minimum spanning tree
problem. All analyses provide insight into the guided random walks that the
1-ANT performs in order to create solutions of our problem.

There are several interesting open questions concerning ACO algorithms.
First, it would be desirable to obtain the expected optimization time for the
considered algorithms asymptotically exactly. For the Broder-based construction
graph, we have argued why we expect relatively large lower bounds. Neverthe-
less, a formal proof for that is open. On the other hand, the influence of the
pheromone values and the heuristic information has been analyzed only sepa-
rately. The same bounds should also hold if the effect of one of these parameters
is low compared to the other one. It would be interesting to also consider cases
where both have a large influence.
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Abstract. We consider the relationship between the graph coloring
problem (GCP) and the vector assignment problem (VAP). Given an
undirected graph, VAP asks to assign a vector to each vertex so as to
maximize the minimum angle between the vectors corresponding to adja-
cent vertices. We show that any solution to the VAP in the 2-dimensional
space, which we call the 2-dimensional VAP (2VAP), gives a feasible col-
oring, and that such transformation can be computed efficiently. We also
show that any optimal solution to 2VAP gives an optimal coloring for
GCP. Based on this fact, we propose a heuristic algorithm for GCP,
whose search space is the set of solutions for 2VAP. The algorithm is
quite simple and can be considered as a variant of the threshold accept-
ing. The experiments show that our algorithm works well for graphs with
relatively low degree.

1 Introduction

A vertex coloring for graph G = (V, E) with n = |V | vertices and m = |E| edges
is an assignment c : V → IN such that c(i) �= c(j) if (i, j) ∈ E. A k-coloring is a
vertex coloring whose range is {1, 2, . . . , k}. The graph coloring problem (GCP)
is the problem of finding, for a given graph G, a k-coloring of G with minimum k.
Such k is called the chromatic number of G and is denoted by χ(G). The graph
coloring problem is one of the representative combinatorial optimization prob-
lems and is known to be NP-hard. It has many applications in such fields as
scheduling, time-tabling and so forth. Hence much effort has been devoted to
designing exact and heuristic algorithms for GCP.

Included among metaheuristic algorithms for GCP are tabu search [7], ge-
netic algorithm [6], GRASP [13], variable neighborhood search [1], an so on.
Kochenberger et. al. proposed a general solver to the unconstrained quadratic
binary programming problem and applied it to GCP [12]. As for exact algo-
rithms, Caramia and Dell’Olmo have proposed the multistage branch-and-bound
method and solved instances with about 500 vertices [4].

Inspired by the theoretical success of Karger, Motwani, and Sudan [10], this
paper considers the vector assignment problem (VAP). In this problem, we are
given an undirected graph and asked to assign a vector to each vertex so as

V. Maniezzo, R. Battiti, and J.-P. Watson (Eds.): LION 2007 II, LNCS 5313, pp. 167–176, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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to maximize the minimum angle between the vectors corresponding to adjacent
vertices. When vectors are restricted in the plane, we call the resulting problem
the 2-dimensional VAP (2VAP). A similar problem was considered e.g. in [3],
in which the relationship with the maximum cut problem was discussed. In this
paper, we show that any feasible solution to 2VAP can be transformed into
a feasible coloring of G in time O(n log n + m) via the piercing set problem
on circular-arc graphs [11]. Moreover, this procedure transforms any optimal
solution for 2VAP to an optimal coloring for GCP.

Based on these facts, we propose a heuristic algorithm for GCP, whose search
space is the set of feasible solutions to 2VAP. We call this algorithm VAP-COL.
The algorithm is quite simple because our objective is to observe the fundamental
behavior of algorithms based on such search space. Algorithm VAP-COL repeat-
edly modifies the position of a vector in such a way that (basically) expands the
smallest angle between the vector in consideration and those corresponding to
the adjacent vertices. The algorithm allows accepting moves that reduce the
smallest angle slightly; this rule can be considered as a variant of the threshold
accepting [5]. The experiments show that algorithm VAP-COL works well for
graphs with relatively low degree.

The idea of using more than one search space alternately is confirmed to
be promising [8,14]. Such a strategy is called variable space search or formula-
tion space search, which can be considered as a generalization of variable neigh-
borhood search. One of the contributions of our paper is that it proposes a
new search space that can be exploited to devise more sophisticated algorithms
for GCP by using the idea of variable space search.

The rest of the paper is structured as follows. In Sect. 2, we give the formu-
lation of 2VAP and show how to obtain a coloring from the given solution to
2VAP. Section 3 describes the heuristic algorithm VAP-COL. We provide our
experimental results in Sect. 4. The concluding remarks are in Sect. 5.

2 The Vector Assignment Problem

2.1 Definition

Assume that the given graph G = (V, E) has n = |V | vertices and m = |E| edges.
We also assume that V = {1, 2, . . . , n}.

The vector assignment problem (VAP) for G is the problem of assigning a unit
vector vi for each vertex i ∈ V so that the maximum of the inner products vi ·vj

for all (i, j) ∈ E is minimized. This problem is formalized as follows:

minimize α

subject to α ≥ vi · vj for all (i, j) ∈ E,

‖vi‖2 = 1 for all i ∈ V .

(1)

If all the vectors are restricted to be d-dimensional, we call the problem d-
dimensional VAP (dVAP). We will consider 2VAP in the following, while Karger,
Motwani, and Sudan used nVAP [10].
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Because a 2-dimensional unit vector v is characterized by its angle θ as v =
(cos θ, sin θ), we can rewrite 2VAP of formulation (1) as the following simpler
form:

maximize β

subject to β ≤ diff(θi, θj) for all (i, j) ∈ E,

θi ∈ [0, 2π) for all i ∈ V ,

(2)

where diff(φ, θ) = min{|θ − φ| , |φ − θ|} denotes the difference (between 0 and
π) of the angles φ and θ.

In the following, we will use the formulation (2) unless otherwise stated. We
also assume that angles are in the range [0, 2π).

2.2 Relationship with the Graph Coloring Problem

If the graph G is k-colorable, then the corresponding 2VAP defined by (2)
has a feasible solution with objective value 2π/k. To see this, let us fix a k-
coloring c : V → {1, . . . , k} of G. For t = 1, . . . , k, let φt = 2tπ/k. Now we
assign θi := φc(i) for all i ∈ V . With this assignment, it is easy to see that
diff(θi, θj) ≥ 2π/k holds for any adjacent pair (i, j) ∈ E of vertices.

We then consider the opposite direction. That is, given a graph G and a
solution (θ1, . . . , θn) to (2) with objective value β, we show how to generate a
valid coloring of G.

The first method, simple rounding (SR), is quite simple. Because we are given
a solution (θ1, . . . , θn) to (2), no vertices i and j are adjacent provided that
diff(θi, θj) < β. In other words, we can give the same color to such vertices.
Thus we can construct a k-coloring of G for k = �2π/β� by the following rule.
Divide the unit circle into k equi-sized sectors S1, . . . , Sk, that is, St = {θ |
2π(t−1)/k ≤ θ < 2πt/k}. Now we associate the color t to the sector St and give
the color t to all vertices i with θi ∈ St. This coloring is valid for the following
reason. Assume that vertices i and j are adjacent. Their corresponding angles θi

and θj should satisfy the inequality diff(θi, θj) ≥ β. This implies that θi and θj

are not in the same sector, because each sector has center angle 2π/k ≤ β. Thus,
for any adjacent pair (i, j) ∈ E of vertices, i and j have different colors.

We note that this method may produce a coloring with more colors than
necessary. Suppose that the graph G is 3-partite. As we use a heuristic method
to solve 2VAP, an obtained solution to (2) for such a graph can have β = 2π/3−ε
for a small ε. In this case, the above rounding method may require four colors.
We will overcome this problem by a more sophisticated rounding method.

The second method, circular arc rounding (CAR), comes from the following
observation. What we want to find is the division of unit circle into k sectors S1,
. . . , Sk so that no two adjacent vertices i and j correspond to the angles θi and
θj lying in the same sector.

To minimize the number of sectors, we further convert this problem. For
two adjacent vertices i and j, we consider two counterclockwise circular arcs,
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arc(θj , θi) from θj to θi and arc(θi, θj) from θi to θj , where arc(φ, θ) is the set
of angles defined by

arc(φ, θ) =

{
{ψ | φ < ψ < θ} θ ≥ φ,

{ψ | φ < ψ < 2π} ∪ {ψ | 0 ≤ ψ < θ} θ < φ.

We assume that these arcs does not include their end points. Let S be the set
of such arcs for all pairs of adjacent vertices. From the above observation, what
we need is to find the set Φ = {φ1, . . . , φk} of angles such that every arc in
S includes at least one angle in Φ. Such a set is called a piercing set of S,
and the problem of finding the minimum cardinality piercing set is called the
minimum piercing set problem for arcs. Katz, Nielsen and Segal [11] proposed
an algorithm for the minimum piercing set problem, running in O(s log s) time
for the given set of s arcs. Thus we can find an optimal coloring according to
the solution (θ1, . . . , θn) as follows:

1. Construct the set of arcs S.
2. Solve the minimum piercing set problem for S. Let Φ = {φ1, . . . , φk} be the

minimum piercing set for S, where we assume that 0 ≤ φ1 < φ2 < · · · <
φk < 2π.

3. For each vertex i ∈ V , assign color t (< k) if θi ∈ arc(φt, φt+1), and assign
color k if θi ∈ arc(φk, φ1).

It is obvious that no two adjacent vertices have the same color. The running
time is O(m log m) because step 2 dominates the running time and |S| = 2m
means that step 2 requires O(m log m) time.

We note that the running time can be reduced further for the following two
reasons. One reason is that S has many unnecessary arcs. For example, assume
that arc a completely contains another arc b. In this case, any point in b is also
in a and thus a is redundant. This means we need only two arcs for each vertex.
Now the cardinality of |S| is reduced to 2n. The other reason is that, the circular-
arc graph GS of S cannot be complete for n ≥ 4. Therefore a clique cover CS of
GS with s cliques provides a piercing set of S with s points, each corresponding
to distinct clique. A minimum clique cover of circular-arc graph GS can be
found in linear time if the end points of all the arcs in S are sorted [9]. Thus we
can accelerate the rounding method. The improved computation time is O(m +
n log n).

3 A Heuristic Algorithm for the Graph Coloring Problem

We now propose a heuristic algorithm VAP-COL for GCP based on 2VAP. For
a given graph G, this algorithm first solves 2VAP defined by (2) for G by a
procedure described in the following and then rounds the feasible solution by
the second rounding method in Sect. 2.2 to find a valid coloring for G.

We will use the difference cdiff(φ, θ) of φ and θ for 0 ≤ θ, φ < 2π defined as

cdiff(φ, θ) =

{
θ − φ if θ ≥ φ

2π + θ − φ if θ < φ.
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That is, x = cdiff(φ, θ) means that the vector (cos θ, sin θ) is obtained from the
vector (cosφ, sin φ) by the counterclockwise rotation with the angle x.

We now define the middle angle mid(φ, θ) of arc(φ, θ) by

mid(φ, θ) =

⎧⎪⎨⎪⎩
(φ + θ)/2 φ ≤ θ

(φ + θ)/2 + π θ < φ and θ + φ < 2π

(φ + θ)/2 − π θ < φ and θ + φ ≥ 2π

Our algorithm for 2VAP, which we call “threshold accepting vector assign-
ment” (TAVA), is as follows:

1. Randomly initialize the angle θi ∈ [0, 2π) for each vertex i ∈ V .
2. Repeat l times:
3. For each vertex i ∈ V , do:
4. Let ψ1, . . . , ψd be the vectors assigned to the vertices adjacent to i.

We assume that these are sorted in the increasing order of cdiff(θi, ψj).
Currently θi ∈ {ψd} ∪ arc(ψd, ψ1). Let us call arc(ψd, ψ1) the current
arc of θi.

5. Let w = cdiff(ψd, ψ1) be the width of the current arc of θi.
6. Let arc(ψs, ψs+1) be the widest arc among arc(ψj , ψj+1) for j = 1, . . . ,

d − 1, and w′ = cdiff(ψs, ψs+1) be its width.
7. If w′ ≥ (1− f)w (f is a parameter) holds, then set vi to mid(ψs, ψs+1).

Otherwise, set vi to mid(ψd, ψ1).
8. Output θ1, . . . , θn as a feasible solution.

If the parameter f = 0, then this algorithm is the same as the hill-climbing
heuristics, because at the line 7 the algorithm selects the widest range for θi in
this case. The experiment in Sect. 4 shows that small positive f works better for
random k partite graphs.

Note that we do not need to sort in line 4: for each vertex we can maintain
the sorted order. We also note that O(n + m) time is enough to check all the
vertices in line 3.

For a graph G, the entire algorithm VAP-COL for GCP is described as follows:

1. Solve 2VAP for G by TAVA.
2. Apply CAR to the final solution (θ1, . . . , θn) to find a coloring of G.

4 Experimental Results

We have conducted two numerical experiments to compare the performance of
VAP-COL with others. In the first experiment, we use random k-partite graphs
to observe the influence of the relaxation factor to the number of colors used.
We also compare this result with other heuristic algorithms. In the second ex-
periment, we use some graphs from the Second DIMACS Challenge.

We used the following heuristic algorithms for comparison: a tabu search of
Hertz and de Werra (HW) [7] and DSATUR [2]. There are two reasons for this
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choice: both are simple heuristic algorithms and the codes are publicly available1.
For HW, tabu tenure is set to 20 and execution is terminated after 10,000 iter-
ations.

The experiments are done on a PC with PentiumD 3.4GHz and 2GB of RAM.

4.1 Experiment on Random k-Partite Graphs

We generate random k-partite graphs for k = 5, 9 as follows: Let Vi, i = 1,
. . . , k, be sets of 100 vertices each. Thus the entire graph has 100k vertices. For
any pair of vertices v ∈ Vi and u ∈ Vj with i �= j, we give edge (v, u) with
probability p, which specifies the edge density. For the values of p, we consider
p = 0.05, 0.10, . . . , 0.95. For each k and probability p, we generate ten graphs.

In order to observe the influence of the parameter f , we run VAP-COL with
f = 0.00, f = 0.15, f = 0.35 and f = 0.50 on each of the graph. The algorithm
stops after l = 1000 iterations.

The results, the average number of colors used, are depicted in Figs 1 and 2.
It seems that the factor of 0.35 or more is too big; in such cases, the performance
is worse than the simple hill-climbing for most values of the edge density. The
setting of f = 0.00 is a good choice for dense graphs, but it performs poorly
for sparse graphs. For both k = 5 and 9, the setting f = 0.15 gives fairly good
performance for all edge probabilities and thus we use f = 0.15 in the rest of
the experiments.

The results of VAP-COL for f = 0.00 and f = 0.15, with the results of
DSATUR and HW are in Figs 3 and 4. HW showed best performance for sparse
graphs with k = 5, but for other graphs VAP-COL with f = 0.15 works fine.

4.2 Experiment on DIMACS Challenge Benchmarks

In Experiment 2, we select some benchmark graphs from the Second DIMACS
Challenge to compare the performance of VAP-COL with other heuristics.

Table 1 shows the experimental results. In each entry, the minimum and
the maximum numbers of colors used in ten independent runs are shown. The
columns f = 0.15 and f = 0.00 are for VAP-COL with the corresponding factors.
Entries in other columns are from the literatures.

From the Table 1, we can observe the effectiveness of allowing moves to non-
improving solutions; compared to the case with f = 0, the setting of f = 0.15
improves the performance of VAP-COL. Moreover, VAP-COL with f = 0.15
obtains solutions of competitive (or sometimes better) quality compared to other
heuristics. However, VAP-COL requires more computation time than HW and
DSATUR. For example, on flat1000 60 0, HW and DSATUR uses one or two
seconds, while VAP-COL needs about eighty seconds. Improving the speed of
VAP-COL is one of the important directions of our future research.

1 The program codes of HW and DSATUR are obtained from Culberson’s Web site,
http://www.cs.ualberta.ca/~joe/Coloring/Colorsrc/color.tar.gz
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Table 1. Results on the DIMACS benchmark instances

Instance |V | |E| f = 0.15 f = 0.00 HW[7] DSATUR[2]
DSJC250.5 250 31 336 34–37 39–46 41–43 37–39
DSJC500.5 500 125 248 59–63 70–80 71–74 65–68
DSJC1000.5 1 000 499 652 106–109 122–136 125–129 114–119
flat300 20 0 300 21 375 38–41 43–52 45–48 41–43
flat300 26 0 300 21 633 39–41 43–52 45–48 41–43
flat300 28 0 300 21 695 38–41 43–51 45–48 41–45
flat1000 50 0 1 000 245 000 104–107 121–133 124–127 114–117
flat1000 60 0 1 000 245 830 105–109 120–133 122–126 114–117
latin square 10 900 307 350 123–126 137–156 146–156 126–134
le450 15a 450 8 168 20–21 21–25 17–20 16–18
le450 15b 450 8 169 19–22 21–25 17–20 16–17
le450 15c 450 16 680 25–28 31–36 29–30 24–25
le450 15d 450 16 750 27–28 31–36 28–31 24–26
mulsol.i.1 197 3 925 49–50 49–49 49–49 49–49
school1 385 19 095 15–30 29–45 14–15 14–29
school1 nsh 352 14 612 18–29 34–45 14–15 14–25

5 Conclusion

In this paper, we proposed the problem 2VAP and a new heuristic algorithm
VAP-COL based on the fact that GCP can be reduced to 2VAP and the trans-
formation is efficient. Thus 2VAP provides a new search space for the graph
coloring problem. The experimental results show that VAP-COL works well for
random k-partite graphs with relatively low degree. On the DIMACS benchmark
instances, VAP-COL obtains solutions of competitive quality with DSATUR and
tabu search though it requires more computation time. An important observa-
tion is that the graph types for which an algorithm performs better than others
are quite different if the algorithm is different. This indicates that it is worth
trying to incorporate the new search space proposed in this paper to other meta-
heuristic algorithms, e.g., by using the idea of variable space search.
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Abstract. A common problem in Data Mining (DM) is the presence of noise in 
the data being mined. Artificial neural networks (ANN) are robust and have a 
good tolerance to noise, which makes them suitable for mining very noisy data. 
Although they may achieve high classification accuracy, they have the well-
known disadvantage of having black-box nature and not discovering any high-
level rule that can be used as a support for human understanding. The main 
challenge in using ANN in DM applications is to get explicit knowledge from 
these models. For this purpose, a study on knowledge acquirement from trained 
ANNs for classification problems is presented. The proposed method uses 
Touring Ant Colony Optimization (TACO) algorithm for extracting accurate 
and comprehensible rules from databases via trained artificial neural networks. 
The suggested algorithm is experimentally evaluated on different benchmark 
data sets. Results show that the proposed approach has a potential to generate 
accurate and concise rules.  

Keywords: Artificial Neural Networks, Ant Colony Optimization, Rule  
Extraction. 

1   Introduction 

There has been a great interest in the area of data mining in which the general goal is 
to discover knowledge that is not only correct, but also comprehensible and interest-
ing for the user. Data mining has been defined as the nontrivial extraction of implicit, 
previously unknown and potentially useful information from data [9]. DM encom-
passes a number of different technical approaches such as clustering, data summariza-
tion, learning classification rules, finding dependency networks and detecting  
anomalies [3].  

Classification rule discovery is characterized by a concern for finding highly  
predictive rules, often by using heuristic techniques. Classification is the process of 
finding a set of models (or functions) which describe and distinguish data classes or 
concepts, for the purpose of being able to use the model to predict the class of objects 
whose class label is unknown [10]. The derived model is based on the analysis of a set 
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of training data.  A rule generally represents a decision in the form of “IF … THEN 
…” proposition. The main goal of rule extraction is to discover hidden knowledge and 
explain it understandably, to extract previously unknown relations and to ensure rea-
soning and defining capability.  

ANN is one of the most widely used techniques in classification. An ANN is a 
mathematical or computational model based on biological neural networks. It consists 
of an interconnected group of artificial neurons and processes information using a 
connectionist approach to computation. In most cases an ANN is an adaptive system 
that changes its structure based on external or internal information that flows through 
the network during the learning process. ANN can be used to model complex rela-
tionships between inputs and outputs or to find patterns in the data.  

The NN method is highly accurate in classification and prediction of output. How-
ever classification and function approximation concepts of the NN are usually incom-
prehensible to the human user. This is because typical NN solutions consist of a large 
number of interacting non-linear elements, characterized by large sets of real-valued 
parameters that are hard to interpret. Distributed internal representations make it even 
harder to understand what exactly a network has learned and where it will fail to gen-
erate the correct answer [15]. Because of that, many researchers tend to develop new 
algorithms for rule extraction from NNs. 

Hruschka and Ebecken [12] suggested a clustering-based approach for extracting 
rules from multilayer perceptrons in classification problems. Their rule extraction 
algorithm basically consists of two steps. First, a clustering genetic algorithm is ap-
plied to find clusters of hidden unit activation values. Then classification rules de-
scribing these clusters, in relation to the inputs, are generated.  

Tokinaga et al [21] concentrated on the use of NN rule extraction techniques based 
on genetic programming (GP) to build intelligent and explanatory evaluation systems. 
They utilized GP to automate the rule extraction process in the trained neural net-
works where the statements changed into a binary classification.  

Markowska-Kaczmar [16] described the experimental study of the influence of pa-
rameters on the final results of the rule extraction method from NN for classification 
problems. The method is based on evolutionary approach, where for each class 
evolves separate population. He also presented a method for rule extraction from a 
NN based on the genetic approach with Pareto optimization [17]. They described the 
idea of Pareto optimization and shown the details of the developed method.  

Elalfi et al [7] presented a new algorithm for extracting accurate and comprehensi-
ble rules from databases via trained NN using a genetic algorithm (GA). Their algo-
rithm does not depend on the NN training algorithms and does not modify the training 
results. The GA is used to find the optimal values of input attributes, which maximize 
the output function of output nodes. They decoded the optimal chromosome and used 
to get a rule which belongs to target class.  

Santos et al [18] presented a method for extracting accurate, comprehensible rules 
from NNs. They proposed a method which uses GA to find a good NN topology. This 
topology is then passed to a rule extraction algorithm, and the quality of the extracted 
rules is then fed back to the GA.  

Arbatlı and Akın [2] proposed an algorithm for rule extraction from trained NNs 
using GAs. The idea behind their approach is to use GA to optimize a NN topology 
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and then extract relevant inputs from the input domain using the optimized topology, 
and finally to extract conjunctive rules using these relevant inputs.  

Despite the successful applications of Ant Colony Optimization (ACO) algorithm 
in many optimization problems, it’s observed that there is an absence of ACO appli-
cation on rule extraction from trained NN. In this study, a Touring-ACO algorithm is 
developed and implemented for extracting rules from NNs.  The TACO algorithm is 
used to find the optimal values of input attributes which maximize the output function 
of NN. Experiments on test data sets show that the proposed method is able to pro-
duce accurate and effective results.  

2   Classification Rule Extraction from Trained NN Via TACO  

NN is a powerful data modeling tool that is able to capture and represent complex 
input/output relationships. NNs resemble the human brain in two aspects; firstly a NN 
acquires knowledge through learning and secondly a NN’s knowledge is stored within 
inter-neuron connection strengths known as synaptic weights.  

The knowledge acquired by a NN is codified on its connection weights, which in 
turn are associated to both its architecture and activation functions [1]. In this context, 
the process of knowledge acquisition from NNs usually implies the use of algorithms 
based on the values of either connection weights or hidden unit activations. The algo-
rithms designed to perform such task are generally called algorithms for rule extrac-
tion from NNs [12]. 

In this study, multi-layer perceptron (MLP) which is one of the most widely used 
NN is considered. MLP is especially useful for special problems such as classifica-
tion, recognition and generalization. Multi-layer perceptron uses sigmoid or tanh 
functions in general. In this study L-36 Taguchi Design is carried out for determining 
effective structural parameters of MLP and improving convergence rates for all  
datasets. 

Elements of the data set must be decoded in binary form in order to extract classi-
fication rules from the trained NN via the proposed TACO algorithm. A sample bi-
nary coding, with six input attributes and two output classes for “monks data set” is 
shown in Table 1. Attributes must be discretized before transformed into binary form 
for data sets which contain continuous attributes. 

NN is trained on the encoded vectors of the input attributes and the corresponding 
vectors of the output classes until the convergence rate between actual and the desired 
output is achieved. The general methodology of rule extraction from NNs by TACO 
is shown in Figure 1.  

Table 1. Coding the database in the binary format (R: rectangular, S: square, O:  octagon, Y: 
yes, N: no, Sw: sword, F: flag, B: balloon, Re: red, Y: yellow, G: green, Bl: blue) 

Head Shape Body Shape Is smiling Holding Jacket Color Has Tie Target 
Class 

R S O R S O Y N Sw F B Re Y G Bl Y N Y N 

1x  2x  3x  4x 5x  6x  7x  8x 9x 10x 11x 12x 13x 14x 15x 16x 17x  1c  2c  

1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 
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Fig. 1. General flowchart for the proposed methodology 

After training the MLP, by using sigmoid activation function and one hidden layer 
as an example, two groups of weights can be obtained. The first group (WG1) con-
sists of the weights from input layer to hidden layer and the second group (WG2) 
consists of the weights from hidden layer to output layer. Using these weights, final 
value of the kth output node, kχ  is given by:  
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The function kχ is an exponential function and its maximum output value is equal 

to 1. Finally, for extracting rules between input attributes and related classes, it is 

necessary to find the input vector, which maximizes the function kχ .  This is an op-

timization problem and can be stated as:  
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Objective function kχ  is nonlinear and decision variables are binary. So this is a 

nonlinear integer programming problem and ACO algorithm can be used to solve it.  
ACO algorithm is a meta-heuristic algorithm which was developed by simulating 

the behavior of real ants [6]. In this study, a version of Touring ACO algorithm which 
was first designed by Hiroyosu et al [11] for handling continuous variables in optimi-
zation problems is employed. In TACO algorithm, each solution is represented by a 
vector of parameters of which each is coded with a string of binary bits. At the deci-
sion stage for the value of a bit, ants use only the pheromone information. Once a 
solution is produced and quality value of the solution is calculated, an artificial 
pheromone to be attached to the sub-paths forming the solution is computed. After all 
ants in the colony have produced their solutions and the pheromone amount belonging 
to each solution has been calculated, the pheromones of sub-paths between the bits 
are updated [14].  

As an example when calculating the probability of being preferred of a sub-path 
between 0 and 1 )10( → the following equation is used:  

0001

01
01 ττ

τ
+

=p  (3) 

Where; p01 is the probability associated with the sub-path )10( → , and 00τ  and 01τ  

are the artificial pheromones of the sub-paths )00( →  and )10( → . Artificial 

pheromone is computed by using equation 4: 

⎩
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where k
01τ∆  is the pheromone attached to the sub-path )10( →  by the artificial ant 

k, Fk is the objective function value which is calculated by using the solution found by 
the ant k and Q is a positive constant. After N ants in the colony complete the search 
process and produce their solutions, the pheromone amount to be attached to the sub-
path )10( → between time t and (t+1) is computed by using equation 5: 
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The pheromone amount of the same sub-path at the time (t+1) is updated by using 
equation 6: 

)1,()()1( 010101 +∆+=+ tttt τρττ  (6) 

Here, ρ  is a coefficient called the evaporation rate of which the value is in between 0 

and 1 )10( <≤ ρ . 
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The basic TACO algorithm faces with the premature convergence problem. This is 
due to the fact that it employs a pure pheromone-based direction selection strategy. In 
order to overcome this problem, the memory feature of Tabu Search (TS) algorithm 
can be incorporated into the TACO algorithm [13, 14]. 

The main feature of TS algorithm is that it has an explicit memory. The memory 
stores information about the past steps of search and new moves are produced in a 
certain neighborhood according to this memory. In TACO, the frequency based mem-
ory stores information about how often a sub-path is followed by ants. If ants some-
times choose their directions depending on this principle, they can follow different 
paths and get out of a local optimum, and hence be able to find the global optimum. 
The probability based on the frequency memory is calculated by using equation 7: 
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Here, f is a frequency factor ( )1( ≥f . If the condition )*( 0001 fff <  is satisfied, 

then the path )10( →  is directly chosen; else the pheromone-based direction selec-

tion strategy is employed.  
In the proposed TACO algorithm, solution strings are produced according to the 

kχ  quality function and rules whose quality values are bigger than a user specified 

threshold value are stored for rule induction procedure. In rule induction process, 
rules are selected based on the fitness values of the solution strings.  

When a rule is used to classify a given training instance, one of the four possible 
concepts can be observed [19]: true positive (tp), false positive (fp), true negative (tn) 
and false negative (fn). The true positive and true negative are correct classifications, 
while false positive and false negative are incorrect classifications.  

 

• True positive (tp): The rule predicts that the class is yes (positive) and the 
class of given instance is indeed yes (positive); 

• True negative (tn): The rule predicts that the class is no (negative) and the 
class of given instance is indeed no (negative); 

• False positive (fp): The rule predicts that the class is yes (positive) but the 
class of the given instance is no (negative); 

• False negative (fn): The rule predicts that the class is no (negative) but the 
class of the given instance is yes (positive). 

 

Using these concepts, the fitness function is defined as follows [3]; 

fptn

tn

fntp

tp
fitness

++
= *  (8) 

The main steps of the TACO algorithm which is used to find the best solution 

string by maximizing the kχ  is shown in Figure 2.  
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Step 1: Data coding in binary format 
Step 2: Train the NN with binary inputs and outputs 
Step 3: Extract weight groups from the NN. 

Step 4: Initialize parameters, pheromone and frequency amounts. Set kχ  as quality 

function.  
Step 5: Set fitness function as in (8). 
Step 6: Repeat the following steps until stopping criteria is satisfied. 
     Step 6.1: Generate artificial ways for all artificial ants according to, pheromone and 

frequency amount 
• Based on the probability value given in equation (7), choose a path for 

moving 
• Repeat until all ants completed their ways. 

     Step 6.2: Compute the kχ quality and fitness values for all ants.  

     Step 6.3: Update the pheromone and frequency attached on the ways based on kχ , 

according to following formulas:   
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Step 7: Keep the ways (solutions) whose kχ values are bigger than a user specified 

threshold value 
Step 8: Rule induction: Initialize the rule list as empty. Do the following steps until a 

user specified training accuracy.  
     Step 8.1: From the solutions produced in step 7 find the solution whose fitness is 

the biggest. 
     Step 8.2: Remove the satisfied cases from the training data  
     Step 8.3: Keep the solution as a rule and add it to the rule list. 

Step 9: Apply the rules to the testing data and find the accuracy of the rule set.  
Step 10: Transform the solutions into linguistic rules. 

Fig. 2. The main steps of the proposed algorithm 

Table 2. Rule refinement and transformation to linguistic rule 

Head Shape Body Shape Is smiling Holding Jacket Color Has Tie Target 
Class 

R S O R S O Y N Sw F B Re Y G Bl Y N Y N 

1x  2x  3x  4x 5x  6x  7x  8x 9x 10x 11x 12x 13x 14x 15x 16x 17x  1c  2c  

1 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 1 0 

Extracted Rule: If head shape is round and body shape is round and is smiling or not smiling and hold-
ing flag and jacket color is red or yellow or green or blue then robot is in target class 
Refined Rule: If head shape is round and body shape is round and holding flag then robot is in target class.  
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The solution strings extracted by the proposed TACO algorithm are refined and 
transformed into linguistic rules. A sample transformation of rules and the refinement 
procedure is shown in Table 2.  

3   Evaluation of the Proposed Algorithm 

The proposed rule extraction algorithm is tested on five data sets namely Monks-2, 
Tic-Tac-Toe, Iris, Crx and Nursery from the UCI (University of California at Irvine) 
Machine Learning Repository, http://mlearn.ics.edu/MLRepository.html. Monks-2, 
Tic-Tac-Toe and Crx data sets have binary classes and Iris and Nursery data sets are 
n-ary classification problems.  

The main characteristics of the data sets are summarized in Table 3. Table 3 shows 
the data set name, number of cases, number of categorical attributes, number of con-
tinuous attributes and number of classes in the data set.  

Table 3. Main characteristics of the data sets 

Data set # Cases # Categorical  
attributes 

# Continuous 
attributes 

Missing attribute 
values 

# Classes 

Monks-2 432 6 - No 2 
Tic-Tac-Toe 958 9 - No 2 
Iris 150 - 4 No 3 
Crx 690 9 6 Yes 2 
Nursery 12.960 8 - No 5 

 
The proposed rule extraction algorithm requires that data being mined have binary 

values. However, three of the data sets used in our experiments have categorical at-
tributes, one of them has continuous attributes and the other one has categorical and 
continuous attributes. Categorical attributes are directly transformed into binary at-
tributes as shown in Table 1. Continuous attributes in Iris and Crx data sets are pri-
marily discretized by using Fayyad and Irani’s [8] entropy based discretization 
method (MDL) and then transformed into binary attributes as a pre-processing step 
before evolving the neural network.  

After coding the data sets in the binary form, related binary input attributes and 
output classes are obtained. Table 4 shows the attributes and corresponding binary 
variables of the data sets.  

In Iris, Tic-Tac-Toe, Crx and Nursery data sets predictive accuracy is measured by 
well-known methodology of cross validation, with a cross-validation factor of ten. In 
other words, each data set is partitioned into ten data subsets and the rule extraction 
algorithm is run ten times. In each run a distinct data subset is used as the test set and 
the remaining nine partitions are used as the training set. The maximum, minimum 
and average predictive accuracies on the test set of the ten runs are presented. Also 
standard deviations of the corresponding predictive accuracies are calculated. Because 
of Monks-2 data set is originally partitioned into single train and test set, ten-fold 
cross validation is not applied to this data set.  

 
 



Rule Extraction from Neural Networks Via Ant Colony Algorithm for DM Applications 185 

Table 4. Attributes and corresponding binary variables of data sets 

Binary variables 
(17) 

Monks-2 
variables 

Binary variables 
(27) 

Tic-Tac-Toe 
variables 

x1, x2, x3 Head shape: X1 (1, 2, 3) 
{round, square, octagon} 

x1, x2, x3 Top-left-square: X1 (1,2,3) 
{x,o,b} 

x4, x5, x6 Body shape: X2 (1, 2, 3) 
{round, square, octagon} 

x4, x5, x6 Top-middle-square: X2 (1,2,3) 
{x,o,b} 

x7, x8 Is smiling : X3 (1, 2) 
{yes, no} 

x7, x8, x9 Top-right-square: X3 (1,2,3) 
{x,o,b} 

x9, x10, x11 Holding: X4 (1, 2, 3) 
{sword, balloon, flag} 

x10, x11, x12 Middle-left-square: X4 (1,2,3) 
{x,o,b} 

x12, x13, x14, x15 Jacket color: X5 (1, 2, 3, 4) 
{red, yellow, green, blue} 

x13, x14, x15 Middle-middle-square: X5 (1,2,3) 
{x,o,b} 

x16, x17 Has tie: X6 (1, 2) 
{yes,no} 

x16, x17, x18 Middle-right-square: X6 (1,2,3) 
{x,o,b} 

  x19, x20, x21 Bottom-left-square: X7 (1,2,3) 
{x,o,b} 

Binary variables 
(54) 

Crx  
variables 

x22, x23, x24 Bottom-middle-square:X8 (1,2,3) 
{x,o,b} 

x1, x2 A1: X1 (1, 2) 
{a,b} 

x25, x26, x27 Bottom-right-square: X9 (1,2,3) 
{x,o,b} 

x3, x4 A2: X2 (1, 2) 
{(-; 38.96], (38.96; -)} 

  

x5, x6 A3: X3 (1, 2) 
{(-; 4.2075], (4.2075; -)} 

Binary variables 
(12) 

Iris 
variables 

x7, x8, x9, x10  A4: X4 (1, 2, 3, 4) 
{u, y, l, t} 

x1, x2, x3 Sepal length: X1 (1, 2, 3) 
{(-;5.55],(5.55;6.15],(6.15;-)} 

x11, x12, x13 A5: X5 (1, 2, 3) 
{g, p, gg} 

x4, x5, x6 Sepal width: X2 (1, 2, 3) 
{(-;2.95],(2.95;3.35],(3.35;-)} 

x14,x15,…., x26,x27 A6: X6 (1,2,3,….,13,14) 
{w,q,m,r,cc,k,c,d,x,I,e,aa,ff,j} 

x7, x8, x9 Petal length: X3 (1, 2, 3) 
{(-;2.45],(2.45;4.75],(4.75;-)} 

x28,x29,…..,x35,x36 A7: X7 (1,2,3,4,5,6,7,8,9) 
{v,h,bb,ff,j,z,o,dd,n} 

x10, x11, x12 Petal width: X4 (1, 2, 3) 
{(-;0.8],(0.8;1.75],(1.75;-)} 

x37, x38 A8: X8 (1, 2) 
{(-; 1.02] , (1.02; -)} 

  

x39, x40 A9: X9 (1,2) 
{t, f} 

Binary variables 
(27) 

Nursery 
variables 

x41, x42 A10: X10 (1, 2) 
{t, f} 

x1, x2, x3 parents: X1 (1,2,3) 
{usual, pretentious, great_pret} 

x43, x44, x45 A11: X11 (1, 2, 3) 
{(-; 0.5], (0.5; 2.5], (2.5; -)} 

x4,x5,x6,x7,x8 has_nurs: X2 (1,2,3,4,5) 
{prop,less_prop,improp,crit,very_crit} 

x46, x47 A12: X12 (1, 2) 
{t, f} 

x9, x10, x11,x12 form: X3 (1,2,3,4) 
{complete,completed,incomplete,foster} 

x48, x49, x50 A13: X13 (1, 2, 3) 
{g, s, p} 

x13,x14,x15,x16 children: X4 (1,2,3,4) 
{1, 2, 3, more} 

x51, x52 A14: X14 (1,2) 
{(-; 105], (105; -)} 

x17, x18, x19 housing: X5 (1,2,3) 
{convenient, less_conv, critical} 

x53, x54 A15: X15 (1,2) 
{(-; 492], (492, -)} 

x20, x21 finance: X6 (1,2) 
{convenient, inconv} 

  x22, x23, x24 social: X7 (1,2,3) 
{non-prob,slightly-prob,problematic} 

  x25, x26, x27 health:X8 (1,2,3) 
{recommended,priority, not_recom} 
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In this study, L-36 (2**4 3*1) Taguchi Design is created using Minitab 14 statisti-
cal software for determining the best parameter settings of MLP. Taguchi Design 
factors and their levels are shown in Table 5.  

Table 5. Taguchi Design factors and factor levels (n: number of input vectors) 

Factor Name / Level Values 1                     2                              3 
Number of hidden layer 1                     2 
Processing elements in hidden layer(s) n/3                 (n/3) ± 4 
Transfer function sigmoidaxon  tanhaxon 
Max epoch 10000            20000 
Learning rule momentum    conjugategradient     quickprob 

 
The NN is trained on the binary input attribute vectors and the corresponding out-

put class vectors with different Taguchi design parameter levels by using NeuroSolu-
tions 5 software for all data sets and mean square errors (MSE) of neural networks are 
achieved. Best parameter settings of MLPs are determined according to the MSEs 
(response factor). Due to the space limitations, only the best parameter setting for all 
data sets are included in Table 6. 

Table 6. L-36 Taguchi Design analysis results 

Data set Number of  
hidden layer 

Processing elements 
 in hidden layer(s) 

Transfer 
 function 

Max. 
epoch 

Learning rule 

Monks-2 1 8 tanhaxon 10000 conjugategradient 
Tic-Tac-Toe 2 8 tanhaxon 20000 conjugategradient 
Iris 2 9 sigmoidaxon 20000 momentum 
Crx 2 18 sigmoidaxon 20000 conjugategradient 
Nursery 2 13 sigmoidaxon 20000 conjugategradient 

 
NNs are trained on the best parameter settings of Taguchi design for all data sets 

and weights are extracted. After getting the weights from trained NNs, TACO algo-
rithm is applied to solve the equation kχ . Table 7 shows the parameter setting of the 

proposed TACO algorithm. 

Table 7. Parameter setting of TACO algorithm 

No. of Ants (M) No. of Iterations 
(T) 

Frequency Factor 
(f) 

Evaporation 
Parameter ( ρ ) 

Constant Q 

100 1000 2 0.8 5 

Solutions whose kχ values are bigger than 0.9 (predefined threshold value) are 

stored for rule induction procedure. Table 8 summarizes the 10-fold cross-validation 
results for each of the five data sets. Average, maximum and minimum predictive 
accuracies ( (tp+tn)/(tp+tn+fp+fn) ) on the test data sets, standard deviations and av-
erage number of rules are presented. Since Monks-2 dataset is divided into two parts, 
accuracies are obtained by evaluating ten different executions of the algorithm on the 
same training and test data sets.  
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Table 8. Predictive accuracies of proposed algorithm 

Dataset Max  
(%) 

Average  
(%) 

Min  
(%) 

S. D.  
(%) 

Average number of rules 

Monks-2 100 98.99 94.67 1.74 7 
Tic-Tac-Toe 100 99.37 97.92 0.73 16 
Iris 100 98.67 93.33 2.81 3 
Crx 98.55 92.61 88.41 3.83 11 
Nursery 99.15 97.16 94.60 1.60 22 

Table 9. The best rule sets, quality and fitness value of each rule 

 
Data sets 

Quality  

( kχ ) 

 
Fitness 

 
Best rule sets 

Monk-2 0,9013 0,3192 If X5=2 or 3 then class 1 
 0,9121 0,3076 If X1=2 or 3 and X5=1 or 2 or 3 then class 1 
 0,9554 0,3071 If X3=1 and X6=2 then class 1 
 0,9184 0,2827 If X4=3 then class 1 
 0,9926 0,2833 If X5=1 or 2 then class 1 
 0,9822 0,2499 If X1=1 then class 1 
 0,9681 0,2499 If X1=2 or 3 and X6=1 then class 1 
 0,9245 0,2430 If X1=1 or 2 and X6=2 then class 1 
 0,9963 0,2188 If X1=1 or 3 then class 1 
   Else class 2. 
Tic-Tac-
Toe 

0,9002 0,3439 If X2=1 or 2 and X5=2 or 3 and X8=1 or 2 then class 2 

 0,9003 0,3349 If X1=1 or 2 and X5=2 or 3 and X8=1 or 2 then class 2 
 0,9002 0,2906 If X1=2 or 3 and X2=1 or 3 and X5=2 or 3 then class 2 
 0,9000 0,2814 If X3=2 or 3 and X4=1 or 2 then class 2 
 0,9002 0,2510 If X1=1 or 2 and X4=1 or 2 and X7=2 then class 2 
 0,9002 0,2384 If X2=1 or 3 and X5=2 and X7=2 or 3 then class 2 
 0,9002 0,2354 If X2=1 or 2 and X5=1 or 3 and X8=1 or 3 and X9=2 or 3 then class 

2 
 0,9001 0,1931 If X1=2 or 3 and X2=1 or 2 and X5=2 or 3 and X6=1 or 3 and X8=1 

or 3 then class 2 
 0,9000 0,1910 If X2=1 or 2 and X4=1 or 2 and X5=2 or 3 and X7=1 or 2 and X9=1 

or 3 then class 2 
 0,9000 0,1864 If X2=1 or 2 and X5=1 or 2 and X6=1 and X9=2 or 3 then class 2 

 0,9003 0,1859 If X1=1 or 2 and X2=2 or 3 and X4=1 or 3 and X5=1 or 2 and X8=1 
or 2 then class 2 

 0,9006 0,1821 If X3=1 or 2 and X5=1 or 2 and X6=2 or 3 and X7=2 or 3 then class 
2 

 0,9001 0,1684 If X1=1 or 2 and X2=2 or 3 and X4=1 or 2 and X9=1 or 3 then class 
2 

 0,9001 0,1551 If X2=1 or 2 and X5=1 or 2 and X6=1 or 3 and X7=2 or 3 then class 
2 

 0,9002 0,1490 If X1=2 or 3 and X2=2 or 3 and X3=1 or 2 and X6=1 or 3 and X8=1 
or 2 then class 2 

 0,9004 0,1422 If X1=2 and X2=2 or 3 and X9=1 or 3 then class 2 
 0,9001 0,1380 If X1=1 or 2 and X2=2 or 3 and X3=2 or 3 and X4=1 or 3 and X7=1 

or 2 then class 2 
 0,9002 0,1267 If X1=2 or 3 and X2=2 or 3 and X3=1 or 2 and X4=1 or 3 and X5=1 

or 2 and X8=1 or 2 then class 2 
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Table 9. (continued) 

 0,9000 0,1229 If X1=2 or 3 and X2=1 and X3=2 or 3 and X5=1 or 2 and X6=1 or 2 
and X7=1 or 2 then class 2 

 0,9002 0,0638 If X1=1 or 3 and X2=1 or 2 and X3=2 or 3 and X4=1 or 3 and X6=2 
then class 2 

   Else class 1. 
Iris 0,9074 1,0000 If X3= 1 then class 1 
 0,9104 0,9237 If X3= 2 or 3 and X4=2 then class 2 
   Else class 3.  
Crx 0,9999 0,5079 If X4=1 or 2 and X6=1 or 3 or 5 or 6 or 7 or 9 or 10 or 11 and X7=1 

or 2 or 5 or 6 or 8 and X9=1 and X13=1 or 3 then class 1 
 0,9999 0,3307 If X4=1 or 3 and X6=1 or 2 or 3 or 6 or 7 or 8 or 11 or 12 or 14 and 

X7=1 or 2 or 3 or 4 or 7 or 8 and X11=2 or 3 and X13=1 or 2 then 
class 1 

 0,9999 0,3301 If X6=2 or 5 or 6 or 7 or 9 or 10 or 11 or 12 and X7=1 or 2 or 5 or 6 
or 7 and X13=1 or 3 then class 1 

 0,9999 0,2727 If X4=1 or 2 and X6=2 or 5 or 7 or 8 or 9 or 11 and X7=1 or 3 or 5 
or 6 or 8 and X13=1 or 3 then class 1 

 0,9950 0,2499 If X5=1 and X6=1 or 2 or 4 or 5 or 6 or 7 or 9 or 10 or 11 or 12 or 
14 and X7=1 or 2 or 4 or 5 or 6 or 9 and X11=1 or 3 and X15=2 then 
class 1 

 0,9900 0,2492 If X4=1 or 3 and X5=1 and X6=1 or 2 or 4 or 5 or 6 or 7 or 9 or 10 
or 11 or 13 or 14 and X7=1 or 2 or 4 or 5 or 6 or 9 and X11=1 or 3 
and X13=1 or 3 and X15=2 then class 1 

 0,9942 0,2377 If X3= 2 and X4=1 or 2 and X5=1 or 3 and X6=1 or 2 or 5 or 6 or 7 
or 10 or 11 or 13 and X7=1 or 2 or 3 or 5 or 6 or 7 or 9 and X8=2 
and X13=1 or 2 then class 1 

 0,9995 0,2356 If X3= 1 and X4=1 or 3 and X5=1 and X6=1 or 2 or 3 or 5 or 6 or 7 
or 9 or 10 or 11 or 12 or 14 and X7=1 or 2 or 3 or 7 and X9=1 and 
X11=1 or 3 and X13=1 then class 1 

 0,9719 0,2113 If X4=1 or 2 and X5=1 or 2 and X6=1 or 2 or 3 or 4 or 5 or 6 or 7 or 
8 or 13 or 14 and X7=1 or 2 or 3 or 8 and X9=1 and X11= 1 or 3 and 
X13=1 or 2 and X15=1 then class 1 

   Else class 2. 
Nursery 0,9474 0,4808 If X2=2 or 3 or 4 or 5 and X8=1 or 3 then class 1 
 0,9509 0,4696 If X1=1 or 2 and X4=2 or 3 or 4 and X8=1 or 2 then class 4 
 0,9509 0,4546 If X1=1 or 2 and X2=1 or 2 or 3 or 5 and X3=2 or 3 or 4 and X8=1 or 

2 then class 4 
 0,9503 0,4015 If X2=1 or 2 and X3=1 or 2 and X4=1 or 2 and X7=1 or 2 then class 

3 
 0,9519 0,3950 If X5=1 or 2 and X7=1 or 2 and X8=1 or 2 then class 4 
 0,9508 0,3703 If X2=1 or 2 or 3 or 4 and X4=2 or 3 or 4 and X7=2 or 3 and X8=1 or 

2 then class 4 
 0,9508 0,3693 If X2=1 or 2 or 3 or 5 and X4=1 or 3 or 4 and X5=1 or 3 and X8=1 or 

2 then class 4 
 0,9521 0,3605 If X2=2 or 3 or 4 and X3=2 or 3 or 4 and X8=1 or 2 then class 4 
 0,9506 0,3597 If X2=1 or 2 or 3 or 4 and X4=2 or 3 or 4 and X5=2 or 3 and X8=1 or 

2 then class 4 
 0,9509 0,3590 If X1=1 or 2 and X2=2 or 3 or 4 and X3=1 or 2 or 3 and X8=1 or 2 

then class 4 
 0,9533 0,3508 If X1=1 or 2 and X2=1 or 2 or 3 or 5 and X3=1 or 2 or 3 and X4=1 or 

2 and X7=2 and X8=1 then class 3 
 0,9338 0,3505 If X2=1 or 2 or 3 or 5 and X3=1 or 2 or 4 and X4=1 or 2 or 3 and 

X8=1 or 3 then class 1 
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Table 9. (continued) 

 0,9499 0,3412 If X2=1 or 2 or 5 and X3=1 or 3 or 4 and X4=1 or 2 or 4 and X8=3 
then class 1 

 0,9503 0,3388 If X2=1 or 2 or 5 and X3=1 or 2 or 4 and X4=1 or 2 or 4 and X8=3 
then class 1 

 0,9317 0,3299 If X3=1 or 3 or 4 and X4=1 or 2 or 4 and X5=1 or 2 X8=1 or 2 then 
class 4 

 0,9506 0,3188 If X2=1 or 2 or 3 or 4 and X3=1 or 3 or 4 and X4=1 or 3 or 4 and 
X5=1 or 3 and X8=1 or 2 then class 4 

 0,9345 0,3104 If X1=1 and X2=1 or 2 or 3 and X3=1 or 2 and X4=1 or 2 and X7=1 
or 2 then class 3 

 0,9502 0,2694 If X1=2 or 3 and X2=1 or 3 or 4 or 5 and X4=2 or 3 and X8=3 then 
class 1 

 0,9312 0,2548 If X2=1 or 2 or 3 or 5 and X3=1 or 2 or 3 and X4=2 or 3 X8=1 or 3 
then class 1 

 0,9507 0,2316 If X2=1 or 2 or 3 or 4 and X4=1or 3 or 4 and X7=1 or 3 and X8=1 
then class 4 

 0,9518 0,2236 If X2=1 or 2 or 5 and X3=2 or 3 or 4 and X4=1 or 2 or 3 and X7=1 or 
3 and X8=1 or 2 then class 4 

   Else class 5. 

Table 10. Comparison results of proposed algorithm with other rule based classifiers 

Dataset Algorithm Mean Accuracy 
(%) 

Average Number of  
Rules 

Tan et al [19] 71,5 6 
Chen et al [4] 67,13 2 

 
Monks-2 

TACO Algorithm 98,36 7 
Baykasoğlu and Özbakır [3] 94,47 2 
Thabtah and Cowling [20] 100 26 
Chen et al [4] 100 26 

 
Tic-Tac-Toe 

TACO Algorithm 97,59 16 
Tan et al [19] 92,81 4 
Thabtah and Cowling [20] 93,87 15 
Santos et al [18] 93,33 5 
Chen et al [4] 94 7 

 
Iris 

TACO Algorithm 98 3 
Baykasoğlu and Özbakır [3] 96,96 2 
Tan et al [19] 85,48 5 
Chen et al [4] 82,5 21 

 
Crx 

TACO Algorithm 92,61 11 
Baykasoğlu and Özbakır [3] 95,83 5 
Dehuri and Mall [5] 76,65 7 

 
Nursery 

TACO Algorithm 97,16 22 

Table 9 shows the extracted rules for Monks2, Tic-Tac-Toe, Iris, Crx and Nursery 
problems. As it can be seen from the Tables 8 and 9 proposed method is able to ex-
tract rules with high predictive accuracy and comprehensibility.  

Accuracy and comprehensibility of extracted rules in comparison to some other 
rule based classifiers which were presented in the literature [3, 4, 5, 18, 19, 20] are 
shown in Table 10. As shown in Table 10, the performance of the proposed algorithm 
is competitive to the compared rule-based classifiers from the literature. For Monks-2, 
Iris and Nursery data sets the proposed algorithm outperforms the other algorithms 
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with better accuracies. If the average number of extracted rules is considered, ACO 
algorithm finds shorter rule sets on Iris data set. The proposed ACO algorithm has 
also very good predictive accuracy in comparison to compared algorithms.  

4   Conclusion 

ACO algorithm is a global optimization technique with certain advantages. In this 
study, a new framework for extracting comprehensible and accurate classification 
rules from trained artificial neural networks by using Touring ACO is presented. The 
methodology does not make any approximation to the activation function; it only uses 
weights to extract rules belonging to certain classes. Performance of the proposed 
algorithm is tested on the five benchmark data sets. The computational results have 
shown that in all of the five data sets, the proposed ACO based algorithm extracted 
comprehensible rules with high accuracy rates.  The presented applications are stud-
ied as an introductory stage of this research. Different fitness functions, addition of 
the fitness function into TACO probability calculation as the visibility measure and 
different approaches to avoid entrapment into local optimum instead of frequency 
factor are scheduled as future works.  
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Abstract. Reinforcement Learning and local search have been com-
bined in a variety of ways, in order to learn how to solve combinatorial
problems more efficiently. Most approaches optimise the total reward,
where the reward at each action is the change in objective function. We
argue that it is more appropriate to optimise the average reward. We
use R-learning to dynamically tune noise in standard SAT local search
algorithms on single instances. Experiments show that noise can be suc-
cessfully automated in this way.

1 Introduction

Local search is used to solve many combinatorial problems, but to be effective
it often requires at least one (and sometimes several) runtime parameters to be
tuned manually by the user. Automatic parameter tuning and algorithm selec-
tion are active areas of research, and machine learning is a promising approach.
In this paper we focus on Reinforcement Learning (RL) applied to the task of
tuning local search noise level on single SAT instances. First we motivate the
approach.

1.1 Local Optima and Long-Term Rewards

Local search performs iterative descent to find local minima, and applies noise
to escape local minima in the hope of finding deeper ones.1 Noise is the tendency
of local search to make moves that appear counter-productive, but are necessary
in order to escape from local optima. This may be a simple probability, a temper-
ature as used in Simulated Annealing, or some other parameter used to increase
diversification and/or decrease intensification.

Different noise levels might be best in different regions of the search space. For
example consider the minimisation problem in Figure 1. For high values of the
objective function it takes a “big valley” form, which is common in optimisation
problems [1]. A good strategy for finding minima in such a space is low-noise
local search [14], which is able to escape the small local minima while moving
1 We assume without loss of generality that optimisation problems are minimisation,

rather than maximisation.
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Fig. 1. A minimisation problem

steadily toward the centre. But if the search starts in a shallow valley then it
will take a long time to escape to a deeper valley. Random restarts can escape
these shallow valleys, but finding the deeper ones requires a lucky guess, and if
the deep valleys are very narrow then this is unlikely to occur.

We could use high noise so that the search does not become trapped in a
shallow valley, but instead performs a near-random walk until falling into a deep
valley. Unfortunately, in the deep valleys high noise is counter-productive, as we
need low noise to locate the very deepest minima. Ideally we would like to use
dynamic noise that is high when the objective function value is high, and low
otherwise. In other examples we might need high noise when the function is low,
or some more complex pattern.

This kind of behaviour is largely achieved by Dynamic Local Search methods
(see [8] for a survey), in which search stagnation initiates changes to the objective
function, so that local minima are transformed into peaks. But these changes
must be rediscovered each time stagnation occurs, and there is no attempt to
learn from past experience. If a search space contains similar structures repeated
many times (as in Figure 1) then there might be an opportunity for machine
learning techniques to improve search performance.

1.2 Benefits of Learned Noise

We now show that making noise dependent upon the objective function value
can potentially reduce the time complexity of a local search algorithm. Suppose
we want to minimise a function of a vector v of Boolean variables. Let x(v) be
the Hamming distance of v from the fixed vector 0, in other words the number
of 1s in v, and y(x) be the function in Figure 2: a step function of a single integer
variable, changing value at each step. The lowest point corresponds to the global
minimum. A local move flips the value of a variable, changing the value of x by 1.
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Fig. 2. A motivating example

From now on we will ignore v and consider only x, but note that each x value
may correspond to an exponential number of states.

Suppose that we would like to find the global minimum using the following
simple local search: from a given state x move to a random neighbour x′ = x±1:
if y(x′) ≤ y(x)+k then accept the move, otherwise reject it and restore the state
to x, where k is a fixed runtime parameter chosen by the user that we will refer
to as “noise”. This is similar to constant-temperature annealing, but instead of
accepting bad local moves with a probability that depends on how bad they are,
we crudely prohibit moves that are worse than a threshold. The hypothetical
algorithm also performs a periodic random restart every r local moves, where
r is another parameter specified by the user at runtime. This is not a good or
commonly-used local search algorithm but it is easy to analyse and, as we will
show, on our example it can be boosted to give very good performance by RL.

Consider the behaviour of this local search algorithm on the problem in
Figure 2. Let Dl and Dg denote the difference in y between a deepest local
minimum and its lesser and greater neighbouring states, respectively. There are
three cases:

– If k > Dg all local moves will be accepted and there is no tendency to
improvement. The algorithm will therefore perform a pure random walk
among states, and will take an exponential time to find the global minimum.

– Using k ≤ Dl causes the algorithm to become trapped in a local minimum
(assuming it does not start at the global minimum) until freed by a random
restart, so the best restart strategy is to restart at every local move by setting
r = 1, which is simply uniform random picking [8] and will again sample an
exponential number of points.
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– Using Dl ≤ k < Dg causes random walk behaviour everywhere except at the
deepest local minima (where it will quickly find the global minimum).

Thus any fixed values of k and r give exponential behaviour. Note that simulated
annealing (with any cooling schedule) may also perform poorly on this example.
It does have a tendency to improvement because, from a local minimum, there is
a greater probability of accepting a move towards the global minimum than away
from it. But if the peaks decrease very slowly in height then both left and right
moves can be made to have arbitrarily close probabilities, so simulated annealing
can be made to behave arbitrarily closely to a random walk and exponential time.

However, suppose that we use a variable value of k that depends purely on
the current objective value: k ≡ k(y). Choose k such that at any local minimum
x, k(y) always takes a value between y(x − 1) and y(x + 1), that is the peaks
immediately to its left and right. Then any move away from the global minimum
will be rejected and any move towards it will be accepted. So the algorithm will
reach the global minimum in an expected number of moves that is linear in the
Hamming distance between the initial state and the global minimum.

Thus for a very specific form of noise function k(y) we find linear execution
time, but for any other form we find exponential time. If we could learn the noise
function and remember it when exploring similar valleys (and apply random
restarts appropriately) then we could find each central minimum in linear instead
of exponential time. This would allow us to sample the central minima rapidly,
greatly speeding up the search for the global minimum. We might not obtain
such dramatic gains on realistic problems, but this thought experiment shows
that the potential gains make the approach worth investigating.

1.3 Our Approach

We use RL to learn appropriate noise levels for different objective function val-
ues. Section 2 describes a new combination of standard RL and local search
algorithms for SAT problems. Section 3 presents experimental results. Section
4 surveys related work. Section 5 summarises the work and discusses possible
extensions.

2 Temporal Difference Learning for Noise

Escaping shallow valleys in order to reach deeper ones requires the sacrifice of
short-term rewards in the hope of gaining long-term rewards. The RL technique
of temporal difference learning (TD) is specifically designed to maximise long-
term rewards at the expense of short-term rewards, based on trial-and-error
and the propagation of information between reward estimates (bootstrapping).
Perhaps its most impressive application is to the game of Backgammon [22].
The TD-Gammon system was trained by playing against itself, and reached
grandmaster status. Kit Woolsey, rated fifth in the world in 1992, noted that:

“There is no question in my mind that its positional judgement is far
better than mine. Only on small technical areas can I claim a definite
advantage over it.”
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(Cited in [22]). TD-Gammon has even changed how humans select opening
moves. This attests to the ability of TD to maximise long-term rewards in the
face of randomness and uncertainty. It therefore seems like an appropriate tool
for tuning noise in local search.

2.1 Total Reward

When applying RL to optimisation problems it is common to use a delta cost
reward . Suppose that the objective function is f , the search starts with an initial
objective function value f0, and global minima have value f∗. We could define the
reward for each local move to be ∆f , the reduction in the value of f as a result of
the move. Maximising the reward will solve the problem: this form of optimality
is called total reward optimality [10] and is used by standard TD algorithms such
as Q-learning [25] and SARSA [17]. A drawback of total reward optimality is
that, in continuing (non-episodic) applications that run indefinitely, the reward
is unbounded. A common solution is to use the TD technique of discounting,
which distorts the rewards. But in our application the total reward cannot exceed
f∗ − f0 so discounting is unnecessary.

A more serious drawback with total reward optimality for this task is that it
does not try to solve the problem quickly, which is our real aim. It produces a bias
towards states with low f values but might do so by a circuitous route. The total
reward is the same for any policy that manages to solve the problem, and there
is no distinction between policies that solve the problem quickly and those that
solve it slowly. In fact if the underlying local search algorithm is probabilistically
approximately complete [8] then it can be solved from any state, and all policies
are equally good.

A similar situation is discussed by Sutton & Barto [21] (pp. 56–57). Suppose
a robot uses TD to navigate through a maze. We might fix all rewards to 0,
except for a reward of 1 on successful navigation. This seems reasonable as the
same is done for Backgammon. But then there is no pressure to exit the maze
quickly, so the robot will not improve its navigation. A solution is to replace
the rewards of 0 by a small negative number such as −0.001, so that better
navigation has higher total reward. We could use the same trick when applying
TD to optimisation problems: add a small negative reward to each local move.
But this ad hoc method introduces an arbitrary number, and Sutton & Barto
note the importance of choosing a reward that reflects what we truly want,
though it can be tempting to tweak the reward to alter the search heuristics.

2.2 Average Reward

We argue that the natural optimisation criterion for each local move is the
average progress towards a solution: that is the average difference in the objective
function before and after the local move. This form of optimality is called gain
optimality [10]. Suppose that the objective function is reduced by an average
of ∆f per local move. Then the problem will be solved in exactly ∆f(f0 − f∗)
local moves, and the greater the average reward the quicker the problem will be
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solved. This direct link between average reward and local search performance
makes average reward more appropriate than total reward.

Figure 2.2 shows an average-reward TD algorithm called R-learning [18]. It
learns an action-value function Q(s, a) which estimates the reward for following
each action a from each state s, initially set to arbitrary values. From each state
s it selects an action a: usually the one with the best estimated reward, but
occasionally a random action. This is typical of TD and is intended to balance
the exploitation of the current state of learning with exploration for further
learning. We use a standard behaviour policy called ε-greedy: choose a random
action with probability ε, otherwise choose the best action according to current
Q(s, a) estimates. Whichever action is taken, a new state s′ and a reward r are
observed. The average reward is estimated by ρ which is updated in a similar
way to Q, and also initialised to an arbitrary value.

initialise ρ and the Q(s, a) arbitrarily
repeat forever
( s ← current state

choose action a using a behaviour policy such as ε-greedy
take action a and observe r, s′

Q(s, a) ← Q(s, a) + α [r − ρ + maxa′Q(s′, a′) − Q(s, a)]
if Q(s, a) = maxaQ(s, a) then

ρ ← ρ + β [r − ρ + maxa′Q(s′, a′) − maxaQ(s, a)]
)

Fig. 3. The R-learning algorithm

A drawback of gain optimality that has been pointed out [10] is that it does
not distinguish between policies that have the same average reward but incur
different “startup costs”. That is, some policies might produce a slow but steady
decrease in f , while others rapidly reduce f at the start of the search (SAT
local search typically behaves in the latter way [6]). To make this distinction we
might use an alternative such as bias optimality [10]. This objection is relevant in
anytime optimisation, in which we aim for the best solution in a limited time, but
it is irrelevant if we are interested in finding the global minimum in the shortest
time possible. In this paper we consider local search applied to SAT problems, so
gain optimality is appropriate, but bias optimality might be useful for a problem
such as MAX-SAT. Interestingly, standard SAT local search algorithms do not
seem to be the best choice for MAX-SAT [23], illustrating the fact that different
objectives require different search heuristics.

2.3 SAT Local Search with R-Learning

The SAT problem is to determine whether a Boolean expression has a satisfying
labelling (set of truth assignments). The problems are usually expressed in con-
junctive normal form: a conjunction of clauses c1 ∧ . . .∧cm where each clause c is
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a disjunction of literals l1 ∨ . . .∨ ln and each literal l is either a Boolean variable
v or its negation v̄. A Boolean variable can be labelled true (T ) or false (F ).

There has been considerable research on local search for SAT, but we consider
just three algorithms: the well-known SKC variant of WalkSAT [11,19]; a recent
variant called VW1 [16]; and HWSAT [7], a version of WalkSAT/G [11,19] that
breaks ties by preferring the least recently flipped variable. All start from an
arbitrary total assignment of truth values to variables, and proceed by flipping
the values of single variables with the aim of satisfying all clauses. WalkSAT/SKC
is shown in Figure 2.3, where the phrase “break fewest clauses” means that we
choose a variable that minimises the number of currently satisfied clauses that
would be violated if its truth value were flipped. A freebie move is one that breaks
no satisfied clause. Noise is controlled by the parameter p which is a probability
chosen at runtime by the user. The VW1 algorithm [16] is exactly the same
algorithm, except that in the last line it breaks ties between variables by choosing
the one that has been flipped fewest times so far, a heuristic that was shown
to improve performance on structured problems at the expense of performance
on random problems. HWSAT was chosen for variety: like WalkSAT/G it tries
to minimise the total number of clause violations, instead of the number of
satisfied clauses that would become violated, and it does not use freebie moves.
The algorithm is shown in Figure 2.3.

initialise all variables to randomly selected truth values
repeat until no clause is violated
( randomly select a violated clause C

if C contains freebie variables
randomly flip one of them

else with probability p
flip a variable in C chosen randomly

else with probability 1 − p
flip a variable in C that would break fewest clauses

)

Fig. 4. The WalkSAT/SKC algorithm

We propose to use R-learning to learn noise functions for these algorithms
while solving a problem instance. In our approach a state is the number of
violated clauses of a given local search state, an action is the selection of a new
noise level from the set {0.05, 0.1, 0.15, . . . , 0.95, 1.00} followed by a local move,
and the reward is the reduction (possibly zero or negative) in the number of
violated clauses since the last state. The local search algorithm is unchanged by
the addition of R-learning, except that its noise level may be reset at each move.
We terminate both R-learning and local search on solving the SAT problem.

In this scheme the choice of action only affects the choice of local move in a
probabilistic way, via the noise parameter. This is not a problem, as TD learning
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initialise all variables to randomly selected truth values
repeat until no clause is violated
( randomly select a violated clause C

with probability p
flip a variable in C chosen randomly

else with probability 1 − p
flip a variable in C giving fewest violations

)

Fig. 5. The HWSAT algorithm

is often applied to problems in which actions have a probabilistic effect. These
are stochastic as opposed to deterministic policies, and in fact stochastic policies
can be arbitrarily more efficient than deterministic policies [20].

Note that we have replaced a single noise parameter p by the three R-learning
parameters α, β, ε. But these are “second-order” parameters that we hope will
be robust over a wide range of instances, whereas noise is strongly instance-
dependent. This approach has worked well with dynamic local search algorithms,
which often have several parameters of their own that can be set to default
values [8].

3 Experiments

First we experimented with WalkSAT/SKC and VW1 using selected SAT bench-
mark problems from the SATLib repository,2 with results shown in Tables 1 and
2 respectively. In both tables we compare (i) the original algorithm with optimal
constant noise parameter (“best”) after trying noise values p ∈ {0.1, 0.2, . . . , 0.9},
(ii) a random noise value at each step (“random”) as a sanity check in case the
instances are insensitive to the noise setting, and (iii) the algorithm with noise
guided by R-learning using three values of α. We set ε = 0.01 and β = 0.001 in
all cases. The figures are the median number of flips taken to solve the problem
over 100 runs, and entries marked “—” denote medians greater than 107 flips.
Note that different aim instances appear in the two tables: 100-variable instances
were much harder for SKC so we used 50-variable instances.

These results show the potential of the method. With SKC the best results
using R-learning are close to the best results using fixed noise, with the exception
of the random 3-SAT problem f1000, on which its results are worse than those
using random noise. Note that on this instance random noise is roughly equiva-
lent to the best fixed noise level of 0.5, so this is not as strange as it first appears.
But R-learning clearly fails on f1000. The aim problems are random problems
that have been slightly modified to make them harder for local search. They
are not very noise-sensitive but R-learning does reasonably well on them. The

2 http://www.cs.ubc.ca/˜hoos/SATLIB/
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Table 1. The effect of R-learning on WalkSAT/SKC

with R-learning
instance best (p) random α = 0.1 α = 0.9 α = 0.99

logistics.a 64,866 (0.3) 159,544 85,252 106,027 91,402
logistics.b 88,186 (0.2) 230,029 141,603 148,182 213,870
logistics.c 104,610 (0.2) 502,150 192,134 241,706 373,994
logistics.d 425,746 (0.4) 718,580 492,059 329,326 503,427
bw large.a 14,459 (0.5) 16,808 28,107 26,258 15,731
bw large.b 422,723 (0.3) 972,153 1,249,395 739,082 632,595

ais6 891 (0.4) 838 1,160 832 824
ais8 19,306 (0.4) 25,639 17,190 25,926 29,066

ais10 106,752 (0.3) 315,685 148,630 249,420 314,948
ais12 1,219,293 (0.1) 9,199,786 1,677,166 3,391,396 2,699,864
f600 130,625 (0.5) 118,268 1,707,566 188,158 143,536

f1000 491,262 (0.5) 609,146 — 1,962,880 2,071,272
aim50-2.0-1 151,840 (0.5) 189,208 244,746 179,538 150,210
aim50-2.0-2 15,605 (0.4) 16,542 25,140 18,454 22,965
aim50-2.0-3 123,724 (0.5) 151,556 218,648 190,526 222,628
aim50-2.0-4 92,836 (0.4) 86,094 151,358 114,570 193,079

Table 2. The effect of R-learning on VW1

with R-learning
instance best (p) random α = 0.1 α = 0.9 α = 0.99

logistics.a 27,236 (0.4) 37,412 29,936 29,898 29,070
logistics.b 18,302 (0.3) 38,399 19,951 22,700 31,693
logistics.c 29,483 (0.3) 67,874 33,047 36,366 46,764
logistics.d 168,500 (0.3) 797,784 210,562 219,786 338,060
bw large.a 8,085 (0.4) 8,924 10,620 7,398 8,249
bw large.b 80,468 (0.3) 147,120 120,894 112,175 125,012
bw large.c 582,056 (0.3) — 609,188 616,455 1,290,333
bw large.d 630,464 (0.3) — 615,151 5,503,318 —

ais6 984 (0.3) 652 827 1,190 1,068
ais8 18,661 (0.4) 21,757 29,820 15,924 18,721

ais10 101,157 (0.3) 169,546 148,438 142,182 166,760
ais12 816,645 (0.3) 5,705,746 834,994 1,424,670 4,546,006
f600 148,749 (0.4) 237,162 367,262 113,244 154,618

f1000 939,022 (0.4) 3,795,379 4,611,894 879,957 710,552
aim100-2.0-1 259,875 (0.3) 649,063 525,126 414,677 993,611
aim100-2.0-2 221,535 (0.3) 450,447 240,532 281,849 376,057
aim100-2.0-3 64,717 (0.3) 363,624 122,032 170,495 195,893
aim100-2.0-4 175,616 (0.3) 304,225 317,986 292,277 505,835
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logistics, bw large and ais instance are structured problems from planning
and music theory, and R-learning does better on these.

The VW1 algorithm results are better, and even on f1000 R-learning equals
the performance with best fixed noise. It is encouraging that R-learning works
better on the stronger of the algorithms: new techniques often seem promising
when applied to weaker algorithms, but have little effect when combined with
stronger ones. It is also encouraging that R-learning works well on the larger
instances (except for SKC on f1000): again, new techniques often pay off on
small instances but fail to scale up to harder problems.

The negative results might be caused simply by suboptimal values for the
R-learning parameters. In further experiments we found that reducing β to
0.000001 greatly improved SKC with R-learning on the f1000 instance: with
α, ε as before it now takes a median of 708,736 flips, which is not much more
than SKC with optimal fixed noise. This is gratifying as f1000 was our worst
result, and using the best α, ε values from above this new β value does not
harm SKC or VW1 performance on other instances: in fact it improves VW1
performance on logistics.d to 170,237 flips, again close to optimal fixed noise
performance. We now have uniformly good results on this set of benchmarks for
SKC and VW1.

Guided by these results, we experimented with HWSAT using β = 0.000001
(again with ε = 0.01) with results shown in Table 3. As with SKC we used
50-variable aim instances. R-learning’s worst result is on the very easy ais6
problem, where it takes three times as long as the best fixed noise. Its next worst
results are on f600 and bw_large.awhere it takes less than twice as long as with
the best fixed noise. The R-learning results are slightly worse on the logistics
problems but better than random noise; similarly for the larger ais instances.
On bw_large.b R-learning matches the best fixed noise result and beats that
of random noise. On aim instances 2, 3 and 4 there is little difference between
best fixed noise, random noise, and the best R-learning results. In summary,
R-learning never fails very badly, and then only on the easiest problems. On the
harder problems it matches or is slightly worse than using the best fixed noise
value.

It is promising that R-learning seems to work best with stronger local search
algorithms and harder SAT problems. We have not seen any dramatic improve-
ments such as those we speculated about in Section 1.2, but this work is still at
an early stage. Our next step will be to find a robust setting for the α parameter
and to experiment with more instances.

4 Related Work

The first use of RL for combinatorial optimisation was by Zhang & Dietterrich
[26] to learn local repair moves on a variant of the TSP. Total reward was opti-
mised using a final reward for solving the problem, and a small negative reward
for each step to encourage fast solution. Nareyek [15] also used RL to choose lo-
cal moves during search and optimised total rewards, but did not use a standard
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Table 3. The effect of R-learning on HWSAT

with R-learning
instance best (p) random α = 0.1 α = 0.9 α = 0.99

logistics.a 137,332 (0.4) 210,242 215,580 174,430 187,724
logistics.b 151,214 (0.3) 485,512 205,414 249,155 314,829
logistics.c 270,154 (0.3) 1,151,212 318,720 659,552 841,401
logistics.d 281,172 (0.4) 775,631 400,186 346,294 389,250
bw large.a 12,372 (0.5) 10,834 38,972 21,514 18,946
bw large.b 484,932 (0.4) 716,006 885,652 475,520 442,115

ais6 1,268 (0.5) 1,110 9,246 3,791 3,430
ais8 27,688 (0.4) 26,978 78,162 34,810 36,462

ais10 165,035 (0.3) 498,898 211,262 387,969 357,534
ais12 1,357,178 (0.2) — 2,898,064 8,713,594 9,067,544
f600 136,267 (0.6) 147,172 — 440,695 257,892

aim50-2.0-1 139,502 (0.5) 104,493 230,238 149,092 144,672
aim50-2.0-2 14,126 (0.5) 13,562 16,753 24,742 13,243
aim50-2.0-3 99,860 (0.5) 88,126 178,398 94,383 81,532
aim50-2.0-4 23,124 (0.4) 29,215 61,870 27,488 30,726

RL algorithm or exploit TD-style bootstrapping to estimate long-term rewards.
Boyan & Moore’s STAGE [2] algorithm estimates the quality of a search state
according to the quality of local minimum that can be reached from it using a
fixed local search algorithm. Another local search is performed on the learned
value function. Varrentrapp’s Guided Adaptive Iterated Local Search (GAILS)
[24] uses Q-learning to learn composite moves in an Iterating Local Search be-
tween local optima. This has the effect of smoothing out the effects of single local
moves. Again total rewards are optimised. Moll et al. [13] use standard TD(λ)
algorithms from RL, with a non-standard use of exploration, and two variations
on total reward that penalise local moves in order to encourage fast search. They
use a training phase to learn how to solve a class of problems.

Some hybrid algorithms use distributed systems of agents that individually
exploit RL, and collectively behave like local or evolutionary search algorithms.
Crites & Barto [3] solve an elevator scheduling problem by applying RL to each
elevator separately, and the agents learn to cooperate. Gambardella & Dorigo [5]
describe Ant-Q, a generalisation of ant systems with similarities to a distributed
form of Q-learning, and apply it to the TSP. Miagkikh & Punch [12] apply a
distributed RL algorithm to the QAP.

Gagliolo & Schmidhuber [4] treat the problem of algorithm selection as a ban-
dit problem, a form of RL in which actions are learned independently of the cur-
rent state, and attempts to balance exploitationwith exploration. On a sequence of
problem instances this approach learns which algorithms work best, giving online
performance improvement. Lagoudakis &Littman [9] apply a version ofQ-learning
to recursive problems, learning which algorithm to apply at each recursion.

In summary, our approach has novel features with respect to other work on
RL for combinatorial optimisation: few approaches use RL on single problem
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instances; few hybridise standard RL algorithms with standard local search al-
gorithms; and none (to the best of our knowledge) optimise the average reward.

5 Conclusion and Future Work

We described an application of Reinforcement Learning to SAT local search:
using temporal difference learning to select a noise level at each local move,
as a function of the current objective function value. This simple technique
allows the easy combination of standard Reinforcement Learning algorithms with
standard local search algorithms, so that neither is compromised. We use R-
learning instead of the more usual Q-learning or SARSA algorithms, in order
to optimise average reward instead of total reward with or without local move
penalties, and we argue that this is a more natural approach. Our experimental
results show that noise can be successfully automated by using this technique.

We plan to extend this work in several directions. Firstly, generalising states
to objective function values is quite drastic, and additional features could be
used. These need not be raw features, but could instead be derived features
such as a smoothed estimate of local gradients, time spent near the current
value, or a measure of objective function variance (which is a useful invariant for
noise tuning [11]). Function approximation techniques such as neural networks
could be used to generalise search states. We will also generalise the method
to tune more parameters such as the random restart period, and the two extra
parameters in a more complex version of the VW1 algorithm [16].

A possible drawback with using TD to tune runtime parameters is an assump-
tion made by TD methods: that the problem to be solved is a Markov Decision
Process , in other words the optimum action depends only on the state. Our states
are generalised versions of the search state, and this assumption clearly does not
hold. The problem we are trying to solve is actually a Partially Observable MDP
(POMDP). TD algorithms sometimes give good results on POMDPs, but better
results can usually be obtained by more complex algorithms with some form of
memory, whereas the policies we find in this work are memoryless (or reactive).
This is an interesting direction for future work.
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Abstract. In this paper we introduce the variable fitness function which can be 
used to control the search direction of any search based optimisation heuristic 
where more than one objective can be defined, to improve heuristic perform-
ance. The method is applied to a multi-objective travelling salesman problem 
and the performance of heuristics enhanced with the variable fitness function is 
compared to the original heuristics, yielding significant improvements. The 
structure of the variable fitness functions is analysed and the search is visual-
ised to better understand the process.  

Keywords: Fitness Function, Evolution, Heuristic, Local Search, VFF. 

1   Introduction 

Optimisation heuristics are used when an optimal solution cannot be found in a rea-
sonable amount of time. When the problem is just too complex to solve exactly, a 
heuristic method is used to find a sufficiently good or near optimal solution. One such 
type of heuristic is local search, which takes an initial solution and tries to improve it 
through a series of local perturbations. Local search has the problem of getting stuck 
in local optima. These are solutions from which a local change cannot improve the 
solution, however the solution is not globally optimal. Hence, a local move may not 
be the best globally, and the global fitness function may not be adequate for assessing 
local moves. Many ways to escape local optima have been introduced, including [1, 2, 
3]. However, all these methods require modification of the local search. The method 
we introduce changes the search direction to avoid and escape local optima and can 
be applied to any search based optimisation heuristic without modification so long as 
two conditions are satisfied: (i) The objective function can be expressed in terms of 
two or more sub objectives (which is almost always the case in our experience of 
practical problems); and (ii) We have enough CPU time to run the heuristic  
many times. The search direction is determined by a Variable Fitness Function (VFF), 
which is evolved using a genetic algorithm. We apply this enhancement method  
to various heuristic methods for the TSP [4]. We show that given an optimisation 
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heuristic H, we can create a better heuristic VFF(H) and that the extra time used by 
the VFF is far better than using random perturbations with the original heuristic. 

In this paper we introduce the Variable Fitness Function and show how it can be 
used to enhance local searches for a multi objective problem, by varying the fitness 
function over the course of the search. Throughout this paper, the term global fitness 
function will be used where we mean the global fitness function that is used to assess 
the overall quality of solution so as to make a clear distinction between it and the 
variable fitness function.  

The next section reviews literature related to the variable fitness function and the 
TSP test case. Section 3 describes how a variable fitness function is represented and 
evolved. Section 4 details the implementation of the variable fitness function and 
section 5 describes computational experiments and results. Section 6 draws final con-
clusions and analysis from the work and identifies future work. 

2   Related Work 

Local search (including constructive heuristics, which are a special case of local 
search) may fall well short of a global optimum when the search converges to a local 
optimum or a basin of attraction. A local optimum is a solution which has no better 
neighbouring solution, but such a solution may be far worse than the global optimum. 
Several methods have been described in literature. Here we describe three that are 
effective and have the practical advantage that they are easy to implement for com-
plex, practical problems. 

Simulated Annealing is a local search method that was inspired by the physical an-
nealing process [3]. Simulated annealing works by changing the acceptance criteria of 
a local search operator. It will always accept moves which lead to a better solution, 
however it also has a chance to accept moves that make the solution worse. This 
probability of accepting a worse move is controlled by a cooling scheme and is in-
versely proportional to how bad the move is and how far into the search the process 
is. This helps diversity at the beginning and helps intensify the search toward the end. 
In the survey done by Kolisch and Hartmann [5] the heuristic was shown to be com-
petitive and performed well ranking about midway of the tested heuristics for a the 
Resource Constrained Project Scheduling Problem (RCPSP). 

Guided Local Search [2] attempts to modify the fitness function to change the di-
rection the search heads when a local optimum has been found. Features of a solution 
are identified and penalties for solutions exhibiting these features are increased when 
the solution is stuck in a local optimum. It redefines the objective function thus: 
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where λ  is the weighting for the guided local search, F is the number of features, pi is 
the penalty value for the i-th feature and Ii(s)=1 when s exhibits feature i, 0 otherwise. 
When the search settles on a local optimum s* the utility of penalising a feature is 
defined by:  
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The feature or features with the largest utility will be penalised by increasing their 
penalty values. This has the effect of changing the fitness function and forces the 
search to move in another direction. 

Variable Neighbourhood Search (VNS) [1] is based on the idea of systematically 
changing the neighbourhood of a local search algorithm. Variable Neighbourhood 
Search enhances local search using a variety of neighbourhoods to “shake” the search 
into a new position after it reaches a local optimum. Several variants of VNS exist as 
extensions to the VNS framework [6] which have been shown to work well on vari-
ous optimisation problems. 

These local search metaheuristics all require modification of the local search. In the 
case of simulated annealing, only a minor change to the criteria of accepting a 
neighbouring solution is needed, however in guided local search and variable 
neighbourhood search, much larger changes are needed. The methods we introduce 
require no modification of the underlying local search and hence can easily be used to 
enhance any local search method. This becomes particularly important when trying to 
solve complex, real-world problems with a wide range of objectives and a detailed 
model, where the VFF approach provides a straightforward way to further enhance an 
existing approach. 

The single objective travelling salesman problem [4] is a well known, well studied 
problem, often used to test single objective metaheuristics (for example [6] for VNS, 
[7] for GLS). [8] studies a multi-objective version of this which they call the J-
objective TSP. Here, J different objectives are associated with travelling between each 
city. In practical applications these could represent factors such as distance, cost, 
travel time or some measure of traffic although uncorrelated objectives are used in 
[8]. Several greedy heuristics for initial tour construction exist for the TSP. Nearest 
neighbour and Multiple fragment are two we look at in this paper [9]. 2-opt is a local 
search heuristic often used to find good solutions quickly for the TSP. The basic move 
consists of choosing two edges and seeing if swapping them improves the tour. The 
result for Euclidean TSPs is that crossed edges get uncrossed and the tour is short-
ened. The TSP is a simple-to-express but difficult-to-solve problem which has been 
studied extensively and proven to be a good benchmark problem. It provides a very 
useful case study to investigate our VFF approach. 

3   The Variable Fitness Function 

The Variable Fitness Function describes how the weights of a weighted sum fitness 
function change over the iterations of a search process. Here we use a weighted sum 
linear objective, but the approach is immediately applicable to non-linear parameter-
ised objectives. The variable fitness function is piecewise linear, describing the  
relative importance of objectives at each iteration. We consider two alternatives, the 
standard variable fitness function fixes the number of discontinuities and the number 
of iterations between them. The adaptive variable fitness function allows the points of 
discontinuity to evolve along with the variable fitness function objective weights. 
These two methods will be described in detail in the next sections. 
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3.1   Standard Variable Fitness Function 

We define a set of weights {Wa,b} where a indexes the weight set (a=0…A-1) and b 
indexes the objective (b=1…B). We define I, the number of iterations between the 
weight sets. The variable fitness function is now defined as:  
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where s is the solution to be evaluated and i is the iteration, Ob(s) is the value of ob-
jective b for solution s, and  
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(i.e. the linear interpolation of the weight of objective b for iteration i) 
Figure 1 shows how the weights of an example variable fitness function change 

over iterations. In this example, B=4, A=3 and I=100. 
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Fig. 1. An example standard variable fitness function. The number of weight sets (3) and the 
number of iterations between them (100) are fixed. 

3.2   Adaptive Variable Fitness Function 

Initial experiments with the standard variable fitness function quickly showed its 
weakness. If the number of iterations was too small, the solution quality would suffer. 
If the number of iterations was to large, CPU time would be wasted. The adaptive 
variable fitness function does not require the optimal number of weight sets and itera-
tions between them to be known. These are evolved along with the weight data to find 
appropriate values. This can lead to more complex variable fitness functions. 

Figure 2 shows an example adaptive variable fitness function. This describes how 
the weights change over the iterations, for example, that the weight of objective 1 
(W1) starts off at 2 and then after iteration 200 its importance starts to decrease and 
objective 3 (that has weight W3) is to be minimized, and its importance is high at the 
start and end of the search process. 
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Fig. 2. An example adaptive variable fitness function. In this example, the number of iterations 
between the weight sets and the number of weight sets may vary. 

3.3   Evolution 

Little work has been done in encoding piecewise linear functions such as these into 
chromosomes. [10] uses a complex encoding for polynomial expressions. The encod-
ing is used to optimise a curve to fit a function described by a set of data points and is 
not an appropriate method in this case. The evolution here is similar to work done on 
tuning of parameters for another algorithm using genetic algorithms [11]. 

When optimizing the weights of the variable fitness function, each weight in the 
variable fitness function appears as a gene in a GA chromosome. When the adaptive 
variable fitness function is used, the iterations between the weight sets is also in-
cluded. Figure 3 shows how the weight sets are mapped to the genes of a chromo-
some.  

A modified version of 1 point crossover [12] will be used. It works the same way 
as normal 1-point crossover but the crossover point may only be on a weight set 
boundary. This method will keep mutually compatible weight sets together. The thick 
lines in Figure 3 show these crossover points. Each gene will have a chance to be 
mutated with a probability of pmut, the mutation rate. Mutation will simply mutate the 
value of the gene by a random variable normally distributed around 0 and with the 
standard deviation defined for that weight. Hence Wa,b is deviated by a value from the 
normal distribution N(0, Vb) with probability pmut. Where Vb is the standard deviation 
of mutation associated with objective b and pmut is the probability of mutation for all 
alleles. This is similar to work done on mutation of artificial neural network weights 
evolved using GAs [13] where the network weight is mutated by a random number 
selected from a normal distribution. 

The initial population of variable fitness functions is generated at random. We may 
also seed the initial population with the global fitness function. These seeds are vari-
able fitness functions where the weights are constant over all iterations and equivalent 
to the global fitness function. This may give the genetic algorithm a good individual 
to work from or provide good genetic material to create other individuals. For the 
random individuals Wa,b is picked uniformly at random out of the interval [Lb, Ub].  
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W0,1 … W0,B W1,1 … W1,B … WA-1,1 … WA-

1,B 

 

W0,1 … W0,B I0 W1,1 … W1,B I1 … WA-1,1 … WA-

1,B 

Fig. 3. Mapping the weights to a chromosome for a standard variable fitness function (top) and 
an adaptive variable fitness function (bottom) 

Seeding the initial population with the global fitness function and using an elitist 
replacement scheme would ensure that in a worst case scenario, the best individual of 
the final population is a variable fitness function representing the global fitness  
function. 

In the adaptive version there is also a padapt probability that the chromosome will 
change length. If a chromosome is to change length there is an equal probability it 
will either shrink or grow by one weight set. If it is to shrink, a random weight set is 
chosen and removed from the chromosome. If it is to grow, a new weight set is in-
serted between two randomly chosen adjacent weight sets. The inserted weight set 
does not change the shape of the variable fitness function as it is inserted exactly half 
way between the two adjacent weight sets and has weight values that are the mean of 
the bordering weight sets. The new weight set is then mutated. Lastly, the Ia genes 
also have a pmut probability of being mutated. This gives the chromosomes a chance 
to get more and less complex and to also expand to more or less iterations. 

We have introduced a lot of parameters in this section but our experiments using 
the TSP and other problems show that the performance of VFF is not sensitive to 
these parameters. Lb and Ub can be set to -1 and 1 respectively without losing any 
information as any weighted sum objective function can be normalised and the indi-
vidual weights will lie within this range. We have found that Vb set to 5% of the range 
(Vb = 0.05(Ub – Lb)) also works well. All the experiments here have used these de-
fault values. In the experiments carried out in this paper, pmut= padapt=0.05. 

4   Application to the Traveling Salesman Problem 

The Travelling Salesman Problem (TSP) is a well studied optimisation problem which 
is often solved using a basic local search operator 2-opt [14]. We study a multi-
objective variant of the TSP and use the variable fitness function to guide a 2-opt 
local search to find better solutions than 2-opt alone. 

The TSP consists of a set of n cities, and a cost matrix cij such that 1 ≤ i,j ≤ n that 
defines the cost of travelling from city i to city j. The aim of the TSP is to determine a 
tour of minimum length visiting each city only once and returning to the starting city.  
The Symmetric TSP (STSP) add a further constraint that cij = cji for all i,j. We study a 
variant of this such that each journey has B uncorrelated objectives associated with it. 
The global objective is a weighted sum of the B objectives. It should be noted that 
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Fig. 4. Example MO-TSP with 4 cities and 2 objectives 

these problems can easily be converted into an STSP (and in fact we do to solve them 
exactly). This way of creating multi objective TSP problems is related to the work of 
Jaszkiewicz [8] who use uncorrelated objectives to make the symmetric TSP into a 
multi-objective problem. 

Figure 4 shows an example problem. The edge costs are uncorrelated. In the prob-
lems we look at, all costs are generated uniformly at random between 0 and 1. “Split-
ting” each edge in this way provides a way to convert a single-objective TSP to a 
multiple objective problem, which is readily applicable to other problems. In most of 
the real-world problems which we study, there are already many (often too many) 
objectives. 

4.1   Variable Fitness Function Usage 

We will use 3 different initial solution generation methods and improve them using 2-
opt. We will then use the variable fitness function to enhance these methods in two 
ways. Firstly, just enhancing the 2-opt part and secondly enhancing the initial solution 
generation method as well. The methods are shown in Table 1. All of these heuristics 
for the TSP are well known – see [4] for details. 

The three initial solution generation methods we will use are an arbitrary solution 
(AR), nearest neighbour (NN) and multiple fragment (MF). The arbitrary solution is 
simply the tour where all the nodes are visited in numeric order. Nearest neighbor 
starts the tour at a given point and repeatedly adds the nearest unvisited city to the city 
at a fixed end of the current partial tour until a complete tour is found. Multiple frag-
ment is similar to nearest neighbor as at each iteration it adds an edge between the 
two closest unconnected cities whose connection does not form a cycle (unless it is 
the last edge to be added).  

2-opt is a simple local search heuristic which improves a TSP solution by finding 
edges (i, j) and (k, l) in the current tour such that cij + ckl > cik + ckl and replacing 
edges (i, j) and (k, l) with (i, k) and (j, l). For each of the NN, MF and 2-opt we con-
sider stochastic versions where instead of greedily choosing the best at each iteration, 
we choose peckishly [15], with equal probability, one of the best two possibilities at 
each iteration, so allowing us to use extended CPU time sensibly. 
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Table 1. Hueristics and variable fitness function enhanced versions used in our experiments 

Heuristic Description 

AR Solution is an arbitrary solution 

NN Solutions are generated using a stochastic nearest neighbor 
algorithm 

MF Solutions are generated using a stochastic multiple fragment 
algorithm 

AR + 2opt Solutions are generated using AR and improved using a stochas-
tic 2-opt 

NN + 2opt Solutions are generated using NN and improved using a stochas-
tic 2-opt 

MF + 2opt Solutions are generated using MF and improved using a stochas-
tic 2-opt 

AR + 
 VFF(2opt) 

Solutions are generated using AR then improved using 2-opt 
where the fitness function for 2-opt is evolved  

NN + 
 VFF(2opt) 

Solutions are generated using NN then improved using 2-opt 
where the fitness function for 2-opt is evolved 

MF + 
 VFF(2opt) 

Solutions are generated using MF then improved using 2-opt 
where the fitness function for 2-opt is evolved 

VFF(NN +  
2opt) 

Solutions are generated using NN and improved using 2-opt 
where the fitness function for both the NN and the 2-opt algo-
rithm is evolved  

VFF(MF + 
 2opt) 

Solutions are generated using MF and improved using 2-opt 
where the fitness function for both the MF and the 2-opt algo-
rithm is evolved  

 
Table 2 shows the parameters used in the evolution. Picking the weights between -

1 and 1 gives us the possibility to start the search in every direction, including those 
negatively correlated with the global fitness function.  

Table 2. Parameters used to evolve the variable fitness functions for the MOTSP problems 

Objective  
b. 

Initial Value 
Lb…Ub 

Standard Deviation
Vb 

all -1…1 0.1 
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5   Computational Experiments 

Each of our ten methods was run 5 times for each of 5 problem instances. They were 
given the same CPU time (15 minutes) in which to find a solution and were restarted  
if they completed before the allotted time. The optimal solution of each of the 5 in-
stances was found using CONCORDE [16]. The five instances have 100 cities and 2 
objectives, equally weighted in the global fitness function. The quality of a method 
will be assessed by the average deviation from the optimal tour, measured by this 
global objective, over the 25 runs. 

To tune the genetic algorithm parameters for the variable fitness function evolu-
tion, the genetic algorithm was run for 1000 fitness evaluations with different popula-
tion sizes of 10, 20 and 40 in an attempt to find the best parameters. The population 
was seeded with 0, 1 and All global fitness functions to see the difference. The pa-
rameter tuning experiments show that the genetic algorithm was not very sensitive to 
the parameters. A Population size of 20, and seeding with no global fitness functions 
were among the best set of parameters and were used for the rest of the experiments. 

The comparative results are shown in Figure 5, showing each method’s average 
deviation from the global optimum over 5 runs of 5 problems instances together with 
90% confidence intervals. We can see that NN provides the weakest result. In fact, the 
stochastic version of NN is worse on average than normal NN (not shown here). 2-opt 
can be seen to improve the NN and MF heuristics considerably as expected. When we 
enhance the 2-opt with the variable fitness function, we can see significant further 
improvements. When also enhancing the NN or MF as well as the 2-opt we see dif-
ferent results. In the case of VFF(NN + 2opt) the solution quality improves again, 
however, for VFF(MF + 2opt) the solution gets worse when compared to MF + 
VFF(2opt). This decrease in solution is, however, statistically insignificant at the 90% 
confidence level and could be because MF + VFF(2opt) is already producing very 
good solutions. Overall the results demonstrate that the MF + VFF(2opt) and 
VFF(MF + 2opt) perform the best. For every heuristic H in our experiments, VFF(H) 
performs significantly better than H (at the 90% confidence level). These results pro-
vide good evidence that the variable fitness function can be used to enhance a simple 
local search without needing knowledge of the problem or modification of the search 
technique.  

Figure 6 show a sample of the best variable fitness functions evolved for different 
MO-TSP problem instances. They are quite different and have very little in common, 
ranging from really simple to quite complex. This implies, not surprisingly, that there 
is not a single good variable fitness function for this set of uncorrelated MO-TSP 
problems instances. This can be seen where the weights of variable fitness function 
change priority (for example at approximately iteration 75 of the top left graph). This 
could be because the search has reached a local optimum and changing the direction 
toward the other objective avoids or escapes it. We will investigate this in more detail 
below. Each one is quite different because the problem instances have nothing in 
common. This is as expected because the objectives were generated randomly and 
uncorrelated.  
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Fig. 5. Average Deviation of the six tested methods from the optimal solution. Error bars show 
90% confidence intervals. 
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Fig. 6. Sample of the best variable fitness functions evolved for the VFF(NN + 2Opt) heuristic 
for different MO-TSP problems 

To show that the evolved variable fitness functions exploit individual problem in-
stances characteristics rather than the characteristics of the TSP itself, we used each of 
the evolved variable fitness functions for VFF(NN + 2opt) on the other problem in-
stances for which it was not evolved. Figure 7 shows this comparison and indicates 
that using an incorrect variable fitness function is worse than using the global fitness 
function (comparing Mismatch VFF(NN + 2 opt) to NN + 2 opt). 
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Fig. 8. Mismatch VFF(NN + 2 opt) represents the average deviation from the optimal solution 
when using variable fitness function evolved for other problem instance 

For problems where there is significant correlation between the objectives in dif-
ferent instances, a VFF generated using historical problem instances is likely to show 
good performance on future problem instances. Our initial work on real-world sched-
uling problems (forthcoming) show that this is indeed the case. 

Figure 9 shows a visualisation of the search process of a variable fitness function 
for a AR + VFF(2opt) search. The top plot shows the evolved variable fitness function 
and the plot below it attempts to visualise the search. Current Solution Fitness shows 
the fitness of the solution at each iteration. Moves to Local Optima and Local Optima 
Fitness show the number of 2-opt moves the current solution is to the 2-opt local 
optimum that would be found if the weights were fixed (at the VFF values) and the 
fitness of that local optimum. This shows us many things. When the Moves to Local 
Optima reaches zero the search is at a local optimum. When it increases after being 
zero it has changed search direction and escaped a local optimum. When Local Op-
tima Fitness stays constant, the search is heading for the same local optima, and when 
it changes it has changed direction. When the Local Optima Fitness is worse than the 
Current Solution Fitness the search is heading in a non intuitive way (in terms of the 
global fitness function), away from a globally unpromising region. 

From Figure 8 we see that the search is both escaping local optima and changing 
direction to avoid local optima throughout the search process. Until a good local op-
timum is reached the Moves to Local Optimum stays high, keeping the search away 
from local optima. After a good local optima is reached, the Moves to Local Optimum 
is increased by more radical changes in the objective weights. During the beginning 
of the search the Current Solution Fitness does not improve much and the Local Op-
timum Fitness varies a lot. This could indicate the search is moving to a different area 
of the search space. We then see a period of intensification where there is a large 
improvement in the solution quality and the Local Optimum Fitness varies less and 
the Moves to Local Optimum steadily decreases indicating it is heading toward the 
 



 Evolution of Fitness Functions to Improve Heuristic Performance 217 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

O
bj

ec
tiv

e 
W

ei
gh

t

Objective a Weight
Objective b Weight

 

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

Iterations

G
lo

ba
l F

itn
es

s

0

50

100

150

200

250

M
ov

es

Local Optimum Fitness
Current Solution Fitness
Moves To Local Optimum

 

Fig. 8. Visualising the search. Fitness use the right axis and are measured in term of the global 
fitness function. 

same local optima. At around iteration 140, the search has reached a local optima after 
which, we see a change in the priority of weights in the variable fitness function which 
leads the search to another local optima at around iteration 200. During this period of 
“diversification” we can see that the Local Optimum Fitness is worse than the Current 
Solution Fitness. This is because the Objective a Weight has become very small and the 
search is probably pushing toward the other objective at the expense of this one. 

6   Conclusions  

The variable fitness function has demonstrated its ability to enhance local search methods 
to provide better solutions. We have shown that given a optimization heuristic H and a 
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sufficiently large quantity of CPU time we can produce a better heuristic VFF(H). We 
have also shown evidence that the variable fitness functions are learning to move the 
search to different parts of the search space when local optimum are encountered  

The generation of a solution using VFF takes longer due to the evolutionary proc-
ess. However, if the time is available, this method appears to be better than random 
perturbations to a local search and requires no modification of the local search unlike 
most common meta-heuristics. Although we have not empirically tested this method 
against and in conjunction with other common meta-heuristics, we feel that from 
limited testing, the variable fitness function would result in improvements and we will 
try this in future work. 

Preliminary experiments with more complex, real world problems indicate that 
when using variable fitness functions on problems with correlated objectives and 
rather unusual, non-linear, real-world objectives, variable fitness functions can be 
evolved to work on a range of problem instances and hence the VFF can be evolved 
offline and then used online with no increase in CPU time. 
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Abstract. In 1965 Motzkin and Straus established a remarkable con-
nection between the local/global maximizers of the Lagrangian of a graph
G over the standard simplex ∆ and the maximal/maximum cliques of
G. In this work we generalize the Motzkin-Straus theorem to k-uniform
hypergraphs, establishing an isomorphism between local/global minimiz-
ers of a particular function over ∆ and the maximal/maximum cliques
of a k-uniform hypergraph. This theoretical result opens the door to a
wide range of further both practical and theoretical applications, con-
cerning continuous-based heuristics for the maximum clique problem on
hypergraphs, as well as the discover of new bounds on the clique num-
ber of hypergraphs. Moreover we show how the continuous optimization
task related to our theorem, can be easily locally solved by mean of a
dynamical system.

1 Introduction

Many problems of practical interest are inherently intractable, in the sense that
it is not possible to find fast (i.e., polynomial time) algorithms to solve them
exactly, unless the classes P and NP coincide. The Maximum Clique Problem
(MCP) is one of the most famous intractable combinatorial optimization prob-
lems, that asks for the largest complete subgraph of a given graph. This problem
is even hard to approximate within a factor of n/2(log n)1−ε

for any ε > 0 where
n is the number of nodes in the graph [15]. Although this pessimistic state
of affairs and because of its important applications in different fields such as
computer vision, experimental design, information retrieval and fault tolerance,
much attention has gone into developing efficient heuristics for the MCP, even if
no formal guarantee of performance may be provided, but are nevertheless useful
in practical applications. Moreover many important problems can be easily re-
duced to maximum clique problem e.g. boolean satisfiability problem, subgraph
isomorphism problem, vertex cover problem etc.

Plenty of heuristics have been proposed over the last 50 years and we re-
fer to [7] for a complete survey about complexity issues and applications of
the MCP. In this introduction, we will focus our attention in particular on the
continuous-based class of heuristics, since they are strongly related to the topics
addressed in this paper. The heuristics of this class are mostly based on a result

V. Maniezzo, R. Battiti, and J.-P. Watson (Eds.): LION 2007 II, LNCS 5313, pp. 220–233, 2008.
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of Motzkin and Straus [17] that establishes a remarkable connection between
the maximum clique problem and the extrema of the Lagrangian of a graph
(1). In Section 2 we will see in deeper details the Motzkin-Straus theorem, but
briefly it states, especially in its regularized version, an isomorphism between
the set of maximal/maximum cliques of an undirected graph G and the set of
local/global maximizers of the Lagrangian of G. This continuous formulation of
the MCP suggests a fundamental new way of solving this problem, by allowing
a shift from the discrete domain to the continuous one in an elegant manner.
As pointed out in [20] continuous formulations of discrete problems are partic-
ularly attractive, because they not only allow us to exploit the full arsenal of
continuous optimization techniques, thereby leading to the development of new
algorithms, but may also reveal unexpected theoretical properties.

From an applicative point of view the Motzkin-Straus result led to the devel-
opment of several MCP heuristics [6,8,13,21,23], but very interesting are also its
theoretical implications. This result in fact was originally achieved by Motzkin
and Straus to support an alternative proof of a slightly weaker version of the
fundamental Turán theorem [27], moreover it was successfully used to achieve
several bounds for the clique number of graphs [9,28,29]. The Motzkin-Straus
theorem was also successfully generalized to vertex- weighted graphs [14] and
edge-weighted graphs [22].

Recently the interest of researchers in many fields is focusing on hypergraphs,
i.e. generalizations of graphs where edges are subsets of vertices, because of
their greater expressiveness in representing higher-order relations. Just as graphs
naturally represent many kinds of information in mathematical and computer
science problems, hypergraphs also arise naturally in important practical prob-
lems [10,19,30]. Moreover, many theorems involving graphs, as for example the
Ramsey’s theorem or the Szemerédi lemma, also hold for hypergraphs, in par-
ticular for k-uniform hypergraphs (or more simply k-graphs), i.e. hypergraphs
whose edges have all cardinality k. Nevertheless, all known intractable problems
on graphs can be reformulated on hypergraphs and in particular the maximum
clique problem.

Even if clique problems on hypergraphs are gaining increasing popularity in
several scientific communities, a bridge from these discrete structures to the
continuous domain is still missing. With our work we will fill up this gap, in the
same way as the Motzkin-Straus theorem filled it up in the context of graphs.
Hence the contribution of this paper is purely theoretical and basically consists
in a generalization of the Motzkin-Straus theorem to k-uniform hypergraphs.
However, as happened for the Motzkin-Straus theorem, our hope is to open the
door to a wide range of further both practical and theoretical applications. First
of all, we furnish a continuous characterization of maximal cliques in k-graphs,
allowing the development of continuous-based heuristics for the maximum clique
problem over hypergraphs based on it. Thereby, in Section 5 we provide a discrete
dynamical system to elegantly find maximal cliques in k-graphs, that turns out
to include the heuristic for MCP developed by Pelillo [23] on graphs as a special
case (in fact graphs are 2-uniform hypergraphs). Moreover our theorem can be
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used to achieve new bounds for the clique number on k-graphs, a very popular
problem in the extremal graph theory field, however we leave this topic as a
future development of this work.

2 The Motzkin-Straus Theorem

Let G = (V, E) be an (undirected) graph, where V = {1, . . . , n} is the vertex set
and E ⊆

(
V
2

)
is the edge set, with

(
V
k

)
denoting the set of all k-element subsets of

V . A clique of G is a subset of mutually adjacent vertices in V . A clique is called
maximal if it is not contained in any other clique. A clique is called maximum
if it has maximum cardinality. The maximum size of a clique in G is called the
clique number of G and is denoted by ω(G).

Consider the following function LG : ∆ 
→ �, sometimes called the Lagrangian
of graph G

LG(x) =
∑

{i,j}∈E

xixj (1)

where

∆ = {x ∈ �
n : x ≥ 0,

n∑
i=1

xi = 1}

is the standard simplex.
In 1965, Motzkin and Straus [17] established a remarkable connection between

the maxima of the Lagrangian of a graph and its clique number.

Theorem 1 (Motzkin-Straus). Let G be a graph with clique number ω(G),
and x∗ a maximizer of LG then

LG(x∗) =
1
2

[
1 − 1

ω(G)

]

Additionally Motzkin and Straus proved that a subset of vertices S is a maximum
clique of G if and only if its characteristic vector xS is a global maximizer of
LG.1 The characteristic vector of a set S is the vector in ∆ defined as:

xS
i =

1i∈S

|S|

where |S| indicates the cardinality of the set S and 1P is an indicator function
giving 1 if property P is satisfied and 0 otherwise. With σ(x) we will denote the
support of a vector x ∈ ∆, i.e. the set of positive components in x. For example,
the support of the characteristic vector of a set S is S.

Gibbons, Hearn, Pardalos and Ramana [14], and Pelillo and Jagota [24], ex-
tended the theorem of Motzkin and Straus, providing a characterization of max-
imal cliques in terms of local maximizers of LG, however not all local maximizers
1 Actually, Motzkin and Straus provided just the “only if” part of this theorem, even

if the converse direction is a direct consequence of their results [24].
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were in the form of a characteristic vector. Finally Bomze et al. [6] introduced a
regularizing term in the graph Lagrangian obtaining Lτ

G : ∆ 
→ � defined as

Lτ
G(x) = LG(x) + τ

∑
i∈V

x2
i

and proved that all local maximizers of Lτ
G are strict and in one-to-one relation

with the characteristic vector of the maximal cliques of G, provided that 0 <
τ < 1

2 .

Theorem 2 (Bomze). Let G be a graph and 0 < τ < 1
2 . A vector x ∈ ∆ is a

global/local maximizer of Lτ
G over ∆ if and only if it is the characteristic vector

of a maximum/maximal clique of G.

The Motzkin-Straus theorem was successfully extended also to vertex-weighted
graphs by Gibbons et al. [14] and edge-weighted graphs by Pavan and Pelillo [22].

In this paper we provide a further generalization of the Motzkin-Straus as well
as the Bomze theorems to k-uniform hypergraphs, but firstly, we will introduce
hypergraphs and review another generalization of the Motzkin-Straus theorem
due to Sós and Straus [26].

3 k-Uniform Hypergraphs

Let P(A) be the power set of A. A hypergraph G is a pair (V, E) where V =
{1, . . . , n} is a set of vertices and E ⊆ P(V ) is a set of hyperedges. If all hyper-
edges have cardinality k, then the hypergraph is k-uniform (or more easily it is
called k-graph). A clique C of G is a set of vertices such that every subset of C
of order k forms an hyperedge of G. A clique is maximal if it is not contained
in any other clique. It is maximum if it has maximum cardinality. The clique
number ω(G) of a k-graph G is the cardinality of a maximum clique.

The Lagrangian of a k-graph G = (V, E) is denoted by LG : ∆ 
→ � and
defined as

LG(x) =
∑
e∈E

∏
j∈e

xj . (2)

Unfortunately LG cannot be directly used to extend the Motzkin-Straus the-
orem to k-graphs. Frankl and Rödl [12] proved that by taking a maximizer x∗ of
LG with support as small as possible, the subhypergraph induced by the support
of x∗ is a 2-cover, i.e. a hypergraph such that every pair of vertices is contained
in some hyperedge. Since 2-covers in graphs are basically cliques, we could expect
a possible generalization of the Motzkin-Straus theorem where the clique number
is replaced by the size l of the maximum 2-cover in the hypergraph. However x∗

is not necessarily in the form of a characteristic vector, and it is not in general
possible to express l as a function of LG(x∗). Nevertheless, this result was used by
Mubay [18] to achieve a bound for LG(x∗) in terms of l on k-graphs, obtaining

LG(x∗) ≤
(

l

k

)
l−k.

and he used it to provide an hypergraph extension of the Turán’s theorem.
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The only real case of generalization of the Motzkin-Straus theorem to k-
uniform hypergraphs, although not explicit and not general, is due to Sós and
Straus [26]. They attach a nonnegative weight x(Hl) to every complete l-
subgraph Hl of a graph G, normalized by the condition∑

Hl⊆G

x(Hl)l = 1

and to every complete (l + 1)-subgraph Hl+1 of G they attach the weight

x(Hl+1) =
∏

Hl⊂Hl+1

x(Hl)

and they define
fG(x) =

∑
Hl+1⊆G

x(Hl+1).

Then they get the following.

Theorem 3. maxx fG(x) =
(

k
l+1

)
/
(
k
l

)(l+1)/l
, where k is the order of a maximum

clique K of G. This maximum is attained by attaching weights
(
k
l

)−1/l
to the l-

subgraphs of K and weight 0 to all other complete l-subgraphs.

Note that, the case l = 1 is exactly the Motzkin-Straus theorem.
Even if this result does not explicitly apply to hypergraphs, actually this

theorem could be extended to k-graphs by attaching weights to subsets of hy-
peredges. However in order this theorem to work, the k-graph should satisfy a
strong property that it to be a complete-subgraph graph of an ordinary graph
(also said to be conformal [4]). This restricts the applicability of this theorem
to a class of hypergraphs isomorphic to a subclass of 2-graphs having cliques of
cardinality ≥ k. We will see in the subsequent sections that our generalization
applies to all k-uniform hypergraphs.

4 Characterization of Maximal Cliques on k-Graphs

Let G = (V, E) be a k-graph. The complement of G is given by Ḡ = (V, Ē)
where Ē =

(
V
k

)
\ E.

Consider the following function hG(x) : ∆ 
→ � defined as

hG(x) = LG(x) + τ

n∑
i=1

xk
i (3)

where τ ∈ � and LG is the Lagrangian of the hypergraph G defined in (2).
We will indicate with hj

G(x) the partial derivative of hG with respect to xj ,
i.e.

hj
G(x) =

∂hG(x)
∂xj

=
∑
e∈E

1j∈e

∏
i∈e\{j}

xi + τkxk−1
j .
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Lemma 1. Let G be a k-graph and let x be a global/local minimizer of hḠ with
τ > 0. If C = σ(x) is a clique of G then it is a maximum/maximal clique and
x is the characteristic vector of C.

Proof. Since x is a local minimizer of hḠ over the simplex, it satisfies the first
order necessary Karush-Kuhn-Tucker (KKT) condition. Therefore for all j ∈ C
we have that λ = τkxk−1

j and this implies that x is the characteristic vector of
C. Moreover if there exists a larger clique D that contains C, then there exists a
vertex j ∈ D \ C such that hj

Ḡ
(x) = 0 < λ. This contradicts the KKT condition

and hence C is a maximal clique of G.
Finally, hḠ(x) = τ |σ(x)|1−k attains its global minimum when x is the char-

acteristic vector of a maximum clique. ��

Lemma 2. Let G be a k-graph and xC the characteristic vector of a maxi-
mum/maximal clique C of G. Then xC is a strict global/local minimizer of hḠ,
provided that 0 < τ < 1

k .

Proof (Sketch). For simplicity let x = xC . We can prove [25] that x is a strict
local minimizer of hḠ by checking that the second order sufficiency conditions
for local minimum are satisfied.

Finally, hḠ(xC) = τ |C|1−k attains its global minimum where C is as large as
possible, i.e. a maximum clique. ��

Lemma 3. Let G be a k-graph. If x is a global/local minimizer of hḠ then it
is the characteristic vector of a maximum/maximal clique of G, provided that
τ < 1

2k−2 .

Proof (Sketch). Let x be a local minimizer of hḠ. We claim that its support
forms a clique of G. Otherwise suppose that an edge ẽ ⊆ σ(x) is missing. Let
w, j ∈ ẽ and take y = x + ε(ej − ew), where ej denotes a zero vector except
for the j-th element set to 1 and where 0 < ε < xw and assume without loss of
generality that xw ≤ xj ≤ minz∈ẽ\{j,w} xz .

We can prove [25] that hḠ(y)− hḠ(x) < 0, contradicting the minimality of x
and hence C = σ(x) is a clique of G. Finally by applying Lemma 1 we conclude
the proof. ��

The following theorem generalizes the Bomze’s Theorem (2) on k-graphs.

Theorem 4. Let G be a k-graph and 0 < τ < 1
2k−2 . A vector x ∈ ∆ is a

global/local minimizer of hḠ(x) if and only if it is the characteristic vector of a
maximum/maximal clique of G.

Proof. It follows from Lemmas 2 and 3. ��

Note that if we take k = 2 and 0 < τ < 1
2 then global/local minimizers of h

correspond to global/local maximizers of L
1
2−τ

G . In fact
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h(x) =
∑

{i,j}∈Ē

xixj + τ

n∑
i=1

x2
i =

1
2

−
∑

{i,j}∈E

xixj +
(

τ − 1
2

) n∑
i=1

x2
i =

=
1
2

−

⎡⎣ ∑
{i,j}∈E

xixj +
(

1
2

− τ

) n∑
i=1

x2
i

⎤⎦ =
1
2

− L
1
2−τ

G (x)

Since 0 < 1
2 − τ < 1

2 , what we obtain is an equivalent formulation of the Bomze
Theorem on graphs in terms of a minimization task.

The following corollary is our generalization of the Motzkin-Straus Theorem
(1) to k-graphs, with the only difference that we deal for convenience with min-
imizers of a function instead of maximizers.

Corollary 1. Let G be a k-graph with clique number ω(G). Then hḠ attains its
minimum at τ ω(G)1−k provided that 0 < τ ≤ 1

2k−2 .

Proof (Sketch). Let x be a global minimizer of hḠ with support as small as
possible. We claim that its support forms a clique of G. Otherwise suppose that
an edge ẽ ⊆ σ(x) is missing. Let w, j ∈ ẽ and take y = x + xw(ej − ew) and
assume without loss of generality that xw ≤ xj ≤ minz∈ẽ\{j,w} xz. Then we can
prove [25] that hḠ(y) ≤ hḠ(x). If the inequality is strict, it clearly contradicts
the minimality of x, and if hḠ(y) = hḠ(x) it contradicts the minimality of the
support size of x.

Hence σ(x) is a clique of G. By Lemma 1 follows that x is the characteristic
vector of a maximum clique of G and thereby hḠ(x) = τ |C|1−k = τω(G)1−k. ��

Note that this result is equivalent to the original Motzkin-Straus Theorem (1)
for graphs, if we take k = 2 and τ = 1

2 . In fact, in this case we obtain

LG(x) =
∑

{i,j}∈E

xixj =
1
2

−
∑

{i,j}∈Ē

xixj − 1
2

n∑
i=1

x2
i =

1
2

− h(x)

and it follows that

max
x∈∆

LG(x) =
1
2

− min
x∈∆

h(x) =
1
2

− 1
2ω(G)

=
1
2

[
1 − 1

ω(G)

]
.

5 Finding Maximal Cliques of k-Graphs

Summarizing our results, we propose a generalization of a well-known theorem
in the extremal graph theory field to k-graphs that turns out to provide a contin-
uous characterization of a purely discrete problem, i.e. finding maximal cliques
in k-graphs. More precisely, we implicitly provide an isomorphism between the
set of maximal/maximum cliques of a k-graph G and the set of local/global
minimizers of a particular function hḠ over ∆, that permits to perform local
optimization on hḠ in order to extract, through the isomorphism, a maximal
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clique of the k-graph G. In this section we will see that the optimization of hḠ

may be easily carried out thanks to a theorem due to Baum and Eagon [1].
In the late 1960s, Baum and Eagon [1] introduced a class of nonlinear trans-

formations in probability domain and proved a fundamental result which turns
out to be very useful for the optimization task at hand. Their result generalizes
an earlier one by Blakley [5] who discovered similar properties for certain homo-
geneous quadratic transformations. The next theorem introduces what is known
as the Baum-Eagon inequality.

Theorem 5 (Baum-Eagon). Let P (x) be a homogeneous polynomial in the
variables xi with nonnegative coefficients, and let x ∈ ∆. Define the mapping
z = M(x) as follows:

zi = xi
∂P (x)
∂xi

/ n∑
j=1

xj
∂P (x)
∂xj

, i = 1, . . . , n. (4)

Then P (M(x)) > P (x), unless M(x) = x. In other words M is a growth
transformation for the polynomial P .

This result applies to homogeneous polynomials, however in a subsequent paper,
Baum and Sell [3] proved that Theorem 5 still holds in the case of arbitrary
polynomials with nonnegative coefficients, and further extended the result by
proving that M increases P homotopically, which means that

P (ηM(x) + (1 − η)x) ≥ P (x), 0 ≤ η ≤ 1

with equality if and only if M(x) = x.
The Baum-Eagon inequality provides an effective iterative means for maxi-

mizing polynomial functions in probability domains, and in fact it has served as
the basis for various statistical estimation techniques developed within the the-
ory of probabilistic functions of Markov chains [2]. As noted in [3], the mapping
M defined in Theorem 5 makes use of the first derivative only and yet is able to
take finite steps while increasing P . This contrasts sharply with classical gradi-
ent methods, for which an increase in the objective function is guaranteed only
when infinitesimal steps are taken, and determining the optimal step size entails
computing higher-order derivatives. Additionally, performing gradient ascent in
∆ requires some projection operator to ensure that the constraints not be vio-
lated, and this causes some problems for points lying on the boundary [11,16].
In (4), instead, a computationally simple vector normalization is required.

It is worth noting that not all stationary points of the mapping M correspond
to local maxima of the polynomial P ; consider the vertices of ∆ as an example.
However all local maxima are the only stationary states that are stable, or even
asymptotically stable if they are strict. Therefore if the dynamics gets trapped
in non optimal stationary states, it suffices a small perturbation to get rid of the
problem. We will see an example of this fact in Section 6.

Moving a step back to our function hḠ, it satisfies the hypothesis of Theorem
5 since it is a homogeneous polynomial of degree k with nonnegative coefficients
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in the variables xi with x ∈ ∆. However our targets are not local maxima but
local minima. Fortunately, it turns out that we can transform our minimiza-
tion problem into an equivalent maximization one, by keeping the conditions of
Theorem 5 still satisfied.

Note that all coefficients of hḠ(x) are positive and upper bounded by 1.
Furthermore, let ξ = max

[
τ, 1

k!

]
and note that ξ can be expressed as a complete

homogeneous polynomial π(x) of degree k in the variables xi as follows

ξ = ξ

(
n∑

i=1

xi

)k

= π(x), ∀x ∈ ∆.

It is trivial to verify that the polynomial π(x) − hḠ(x) is a homogeneous poly-
nomial of degree k with nonnegative coefficients. Moreover

arg min
x∈∆

hḠ(x) = arg max
x∈∆

[ξ − hḠ(x)] = arg max
x∈∆

[π(x) − hḠ(x)] .

Therefore, in order to minimize hḠ we can apply Theorem 5 considering P (x) =
π(x) − hḠ(x), and since

∂π(x)
∂xi

= kξ

(
n∑

i=1

xi

)k−1

= kξ

we end up with the following dynamics for the minimization of hḠ over ∆

x
(t+1)
i =

x
(t)
i

[
kξ − hi

Ḡ
(x(t))

]
kξ −

∑n
j=1 x

(t)
j hj

Ḡ
(x(t))

, (5)

that will converge to a local minima of hḠ starting from any state x in the interior
of ∆, which corresponds by Theorem 4 to a maximal clique of the k-graph G.

6 A Toy Example

This section is not intended to provide experimental evidence that the dynamics
(5) works, since we have a proof that guarantees it. Indeed, we provide a very
simple toy example.

Figure 1 represents a 3-graph T , and the two sets that seem to be 4-edges are
actually complete 3-subgraphs on the respective vertex sets. Hence T contains
all possible 3-edges on the 5 vertices except for {0, 3, 4} and {1, 3, 4}. T is a small
example of a non conformal graph, i.e. it is not a complete-subgraphs graph of
an ordinary graph. In other words, there exists no ordinary graph that has the
same maximal cliques and therefore the generalization of the Motzkin-Straus
theorem due to Sós and Straus [26] does not hold on this 3-graph. The set of
maximal cliques of T is {{0, 1, 2, 3}, {0, 1, 2, 4}, {2, 3, 4}}.

We illustrate the behaviour of the dynamics (5) when applied to our toy
example. Our parameters choice in this test is τ = 1

12 , but no matter what



A Continuous Characterization of Maximal Cliques 229

1

2

30

4

Fig. 1. A non conformal 3-graph T . Note that the sets {0, 1, 2, 3} and {0, 1, 2, 4} should
be interpreted as complete 3-subgraphs on the respective vertex set. We draw them as
4-edges only for graphical clarity. In other words T contains all possible 3-edges on the
5 vertices except for {0, 3, 4} and {1, 3, 4}.

is chosen as long as 0 < τ < 1
6 as stated in Theorem 4, and therefore in the

dynamics we have kξ = 1
2 . The initial state encodes the hypothesis we make

about the likelihood of a vertex to be part of a maximal clique, in fact if we set
for example the i-th component of the initial state vector to zero then the i-th
vertex will never be considered in a solution. Figure 2 presents three plots of the
evolution of the state vector of the dynamics (5) for the 3-graph T over time.
The initial states are respectively set to the simplex barycenter in the first two
plots in order to have full uncertainty, and to x(0) = (0.1, 0.1, 0.1, 0.35, 0.35)′ in
the last one in order to provide an initial stronger preference on the vertices 3
and 4.

Analysing our toy graph, we see that vertex 2 belongs to every maximal clique
of T , while vertices 0 and 1 are shared between the two maximal 4-cliques and
finally vertices 3 and 4 belong individually to a different maximal 4-clique, but
together to the maximal 3-clique. Considering the first 114 iterations of the first
two plots in Figure 2, we see that without advancing preferences of vertices,
i.e. we start from the barycenter of the simplex, the dynamics converges to a
stationary state, that is not optimal and hence not stable, but very informative.
In fact, vertex 2 that certainly belongs to a maximal clique, has the highest
likelihood, followed by vertices 0 and 1, that are shared between the two biggest
maximal cliques in T and finally we find vertices 3 and 4. By inducing a small
perturbation at that point, we introduce some random preference on vertices
that leads the dynamics to a certain solution; in the first case we end up with
the maximal 4-clique {0, 1, 2, 3}, while in the second one we end up with the
maximal 4-clique {0, 1, 2, 4}. Let us move now our attention on the last plot in
Figure 2. In order to extract the smallest maximal clique, that has a smaller basin
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(a) Extraction of the maximal clique {0, 1, 2, 3}
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(b) Extraction of the maximal clique {0, 1, 2, 4}
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(c) Extraction of the maximal clique {2, 3, 4}

Fig. 2. Evolution of the components of the state vector x(t) for the k-graph in Figure
1, using the dynamics (5)
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of attraction we have to put stronger preferences on some vertices; for example
we put stronger hypothesis on the vertices 3 and 4, since the only maximal clique
they share is the smallest one. As we can see, the dynamics is able to extract also
the maximal clique {2, 3, 4}. The solutions we found for this small example are
the only stable ones for the dynamics (5) when applied to T . Hence randomly
choosing the initial state we will certainly end up with a maximal clique, but
clearly the maximal cliques with a larger basin of attraction are more likely to
be extracted.

7 Conclusions and Future Work

In this paper we provide a generalization of a well-known extremal graph theory
result, i.e. the Motzkin-Straus theorem, to k-uniform hypergraphs, and through
it, we are able to provide a bridge between the purely discrete problem of finding
maximal cliques in k-graphs and a minimization task of a continuous function.
More precisely we introduce an isomorphism from the set of maximal/maximum
cliques of a k-graph G and the set of local/global minima of the function hḠ. In
this way we can focus our attention on minimizing hḠ in order to find maximal
cliques in G. Nevertheless, in the last section we provide also a dynamical system,
derived from a result due to Baum and Eagon, to easily solve the optimization
problem at hand. This basically furnishes an heuristic for the maximum clique
problem on k-graphs.

This result opens a wide range of possible future works. First of all, we may
conduct experiments on the effectiveness of our heuristic for the maximum clique
problem on k-graphs, however we expect in general performances on hypergraphs
comparable with those obtained by Pelillo [23] on simple graphs. Even more
interesting could be the theoretical applications carrying on with our work, such
as finding new bounds on the clique number of k-uniform hypergraphs, or further
generalizing the Motzkin-Straus theorem to vertex-weighted and edge-weighted
hypergraphs.
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Niterói, RJ, Brazil

Abstract. This paper describes some tabu search based heuristics with
path relinking for the multi-mode resource-constrained project schedul-
ing problem. Path relinking is used as a post optimization strategy, so
that it explores paths that connect elite solutions found by the tabu
search based heuristics. Computational results show that path relink-
ing is able to improve the tabu search based heuristics, and that these
hybrid heuristics are able to find good quality solutions in quite short
computational times.

1 Introduction

The resource constrained project scheduling problem (RCPSP) consists in min-
imizing the time to execute a project composed by activities, which are interre-
lated by precedence relations and demand scare resources. This is an
NP-complete problem [1].

This paper deals with its multiple mode version (MRCPSP), which is a gener-
alization of the RCPSP and is a strong NP-hard problem. In this problem, each
activity may be performed in one of several modes, where each mode specifies
the duration of the activity, the number of needed resources and their types.
There are two types of resources: renewable and non-renewable. The renewable
resources such as machines and workers have a limited period availability, and
the non-renewable resources such as raw materials are limited for the entire
project.

The MRCPSP consists in minimizing the makespan of a project, composed
by a set of activities J , subject to a set of precedence constraints P and to a set
of resource constraints. A set of resources R consists of renewable Rre and non-
renewable Rnon resources. The total amount of a k renewable resource rre

k ∈ Rre,
required simultaneously by more than one activity in each time t, should not
exceed Rre

k . For each k resource rnon
k ∈ Rnon, the total amount required by

all activities should not exceed Rnon
k within the whole execution period. Each

activity j ∈ J can execute in one mode mj chosen from a set Mj . Each mode
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mj ∈ Mj specifies, for an activity j, its duration pmj and the number of required
resources of each type, rre

k,mj
and rnon

k,mj
.

We can find some exact procedures developed to solve this problem [2,3,4]. Due
to the NP-hardness of the problem, it is difficult to optimally solve large projects
using exact methods. Some heuristic methods have been developed in order to
find near optimal solutions in reduced computation times. Simulated annealing
algorithms can be found in [5,6,7,8] and genetic algorithms were proposed in
[9,10,11]. Nonobe and Ibaraki [12] developed a tabu search algorithm.

In this paper, we describe some heuristics developed for the MRCPSP based
on tabu search, and a path relinking method applied to the pool of solutions
obtained by these heuristic procedures. We show that path relinking can improve
the quality of these solutions.

The paper is organized as follows. The next section describes the developed
heuristics and Section 3 reports the computational results. The last section
presents conclusions and future work.

2 Proposed Heuristics

Some algorithms using tabu search for RCPSP and MRCPSP achieved very
good results [12,13,14]. Therefore, we decided to develop some heuristics based
on tabu search and tried to improve the obtained results using a path relinking
intensification procedure.

We use the same solution representation described in [12]. Given the set of
activities J , the set of resources R, the set of modes Mj of each activity j,
a solution is represented by a scheme (m, s) consisting of a vector of activity
modes m = (mj |j ∈ J) and a list of activity starting time s = (sj |j ∈ J).
Each mode mj specifies a duration pmj for each activity j, the units of each k
renewable resource rre

k required by the mode in each period and the units of each
k non-renewable resource rnon

k consumed. The conclusion time of an activity j
is cj = sj + pmj .

2.1 Heuristics Based on Tabu Search

The underlying ideas of tabu search were proposed by Glover [15] and it was later
developed in [16,17,18]. It may be viewed as a dynamic neighborhood method
that makes use of memory to drive the search by escaping from local optima
and avoiding cycling [19]. Contrarily to memoryless heuristics such as simulated
annealing, and to methods that use rigid memory structures such as branch-
and-bound, tabu search makes use of flexible and adaptive memory designs.

The developed heuristics are based on [12]. In order to improve the efficiency
of the algorithm, a solution is represented by a scheme (m, l), instead of (m, s),
where the list l represents an ordered relation among the activities. There is
a special procedure to construct feasible solutions (m, s) from a scheme (m, l),
which respects the precedence and resource constraints, and generates start and
end times for all activities found in the ordered list l using the established modes
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procedure TabuAlgorithm(J, P, M, Rre, Rnon, Tmax, maxcbt,Max Tabu Iter,
Tabu Tenure)
1. S ←GenerateInitialSolution();
2. S∗ ← S;
3. cbt ← 0;
4. while cbt < maxcbt do
5. S ← TS neigh activity(S,Max Tabu Iter,Tabu Tenure);
6. if c(S) < c(S∗) then
7. S∗ ← S
8. end if
9. S ← TS neigh mode(S,Max Tabu Iter,Tabu Tenure);
10. if c(S) < c(S∗) then
11. S∗ ← S
12. end if
13. cbt ← cbt + 1;
14. end while;
15. return S;
end.

Fig. 1. Tabu search for MRCPSP

in m. A solution is considered not feasible only if its makespan is larger than a
parameter Tmax.

Figure 1 shows the developed algorithm based on tabu search. The input
parameters are the activity list J , the precedence relations among activities P ,
the set of modes allowable for each activity M , the set of renewable Rre and
nonrenewable Rnon resources, the maximum time allowable for the makespan
so that a solution is considered feasible Tmax, the maximum number of itera-
tions maxcbt, the maximum number of iterations for each Tabu Search proce-
dure Max Tabu Iter and the number of iterations to consider a move as tabu,
Tabu Tenure.

We try to find an initial solution S = (m(0), l(0)), in line 1, Figure 1, which
simultaneously does not violate the constraints related to maximum makespan,
precedence and nonrenewable resources. First, an incumbent mode list m(0) is
generated by choosing a mode for each activity with the smallest relative non-
renewable resource consumption. Then a tabu search is applied on the neighbor-
hood of this solution which is obtained by changing a mode of an activity j to
another mode. The aim of this tabu search is to choose minimum durations for
pmj and for the number of non-renewable resources rnon

k,mj
. After obtaining m(0),

the list l(0) is generated using the Most Total Successors Rule, where the first
activity to be scheduled presents more direct or indirect successors.

After generating an initial solution, two algorithms TS neigh activity and
TS neigh mode based on tabu search algorithm are applied maxcbt times, as
shown in line 4, Figure 1. The neighborhoods used by each algorithm are very
distinct among themselves.
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The TS neigh activity procedure looks for the best feasible non-tabu neigh-
bor solution S′ ∈ N(S) from all neighbors n ∈ N(S). Each neighbor n is obtained
by taking an activity pair (i, j) in l, where j is scheduled after i, and reschedule
j immediately before i. The incumbent solution is replaced by S′ and the related
pair (i′, j′) is inserted into the tabu list remaining in this list for Tabu Tenure it-
erations. This procedure is repeated Max Tabu Iter iterations. The best known
solution is updated in line 7.

The TS neigh mode procedure looks for the best feasible non-tabu neighbor
solution S′ ∈ N(S). But this procedure uses a different neighborhood. Each
neighbor n is obtained by choosing an activity j from J and changing its current
mode mj to another m′

j . There are two ways used to consider N(S): greedy and
non-greedy. In the greedy mode, an activity j is randomly selected, all mode
changes related to it are evaluated, and S′ is set to the best among them. In the
non-greedy mode, we evaluate mode changes for all activities, and S′ is set to the
best among them. For both cases, the incumbent solution is replaced by S′ and
the related pair (mj , m

′
j) is inserted into the tabu list remaining in this list for

Tabu Tenure iterations. This procedure is repeated Max Tabu Iter iterations.
The best known solution is updated in line 11.

2.2 Path Relinking

Path-relinking was originally proposed by Glover [20] as an intensification strat-
egy exploring trajectories connecting elite solutions obtained by tabu search or
scatter search. Starting from one or more elite solutions, paths in the solution
space leading toward other elite solutions are generated and explored in the
search for better solutions. To generate paths, moves are selected to introduce
attributes in the current solution that are present in the elite guiding solution.

Several alternatives have been considered and combined in recent successful
implementations of path-relinking in conjunction with tabu search, GRASP, and
genetic algorithms [21,22,23,24,25,26,27].

We implemented a post-optimization path-relinking applied to a pool of so-
lutions generated by the algorithms described in previous section. Each time a
better solution is found by the tabu search procedure, it is inserted in the pool
Nel, which is a vector composed by the best solutions generated by the algorithm,
ordered by their makespan values (from worst to best). The path-relinking is ap-
plied to each adjacent pair in Nel in order to reduce the path-relinking execution
time. The solution Nel[i] is the initial solution and Nel[i + 1] is the guiding so-
lution. We implemented the path-relinking by adjusting only the modes of the
initial solution to the guiding solution. Therefore, we verify the activities in Nel[i]
that are associated to a different mode in Nel[i + 1]. For all these activities, we
generate a new feasible solution (if possible) by changing the mode of an activity
in the initial solution to the mode of the same activity in the guiding solution.
The best generated solution is selected as the new initial solution and the pro-
cedure is repeated until all activities in the initial solution have the same modes
of the guiding solution.
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3 Computational Results

We implemented eight versions of the algorithms previously described, as shown
in Table 1. The first column is the name of the algorithm. The second column
indicates if TS neigh activity procedure is executed. The third column shows
the mode that TS neigh mode procedure (greedy or non-greedy) is implemented
and the fourth column presents the number of iterations that a move is consid-
ered tabu. For example, algorithm V1 uses the tabu search executing only the
TS neigh mode procedure, its greedy version and infinite tabu tenure, i.e, once
a move is considered tabu, it will never be selected again.

For all algorithms the parameter maxcbt is equal to 5 and Max tabu Iter is
set to 1000. We chose these parameters for the tabu search procedure to execute
the same number of iterations performed in [12], as we based our procedures in
this work.

The path-relinking is applied in all versions and the pool has a maximum
size of 100. We chose this maximum size in order to allow all better solutions to
be inserted in the pool. So, each instance of the problem may present different
number of solutions in the pool, because all better solutions found by the tabu
search procedure are inserted in the pool.

Table 1. Algorithm versions

Version TS neigh activity TS neigh mode Tabu tenure
V1 NO Greedy ∞

V1.a NO Greedy 30
V1.b NO Greedy 1500
V2 NO Non-Greedy ∞

V2.a NO Non-Greedy 30
V2.b NO Non-Greedy 1500
V3 YES Non-Greedy ∞
V4 YES Greedy ∞

We evaluated the algorithms by using some benchmark problems found in
http:129.187.106.231/psplib.The available instances in this library present dis-
tinct characteristics related to number of activities, activity modes, use of re-
sources, etc. We used the j30mm instances which consists of multi-mode problems
with 30 activities. They are considered the most difficult instances of this type
in this library. There are 640 instances in this group.

All codes were written in C++ and compiled using the Integrated Develop-
ment Environment DEV C++ and run on an IBM compatible PC with a 1 G
HZ Pentium Processor.

For the 640 instances, there are 506 known optimal solutions and 46 known
feasible solutions [4]. The results obtained are compared to the optimal or best
known solutions available. In Table 2, we present the average and maximum
relative deviation from the optimal or the best known solution, the percentage
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Table 2. Results for all algorithms

Algorithm Aver. Dev.(%) Max. Dev.(%) Feas. (%) Best (%)
V1 5.4 44.7 96.4 44.4

V1.a 5.5 31.0 96.4 42.1
V1.b 9.1 36.8 96.4 32.9
V2 11.7 61.0 96.4 33.8

V2.a 11.7 61.0 96.4 33.8
V2.b 11.7 61.0 96.4 33.8
V3 10.2 61.0 96.2 38.4
V4 4.5 29.8 96.2 46.0

of feasible solutions and the percentage of best solutions (optimal or best know
solution) found by each algorithm.

We can see that V4 presents the best results, V1 and its variations present the
second best results and V2 and its variations and V3 present worse results. These
results show that the greedy version of the TS neigh mode procedure performs
better that the non-greedy version, and that the TS neigh activity procedure
improves the results when executed together with TS neigh mode procedure.

In order to show the influence of path relinking for all procedures, Table 3
shows the number of solutions improved by the path-relinking technique for each
algorithm and the number of best solutions achieved. The use of this technique
brings some benefits by improving 45% of the solutions generated by the tabu
search for V1 and V1.a, 34% for V4 and 33% for V1.b. We can also see that
the number of optimal or equal to the best known solutions was increased when
using path-relinking. There were no improvements for V2, V2.a, V2.b and V3.

Table 3. Number of solutions improved by path-relinking

V1 V1.a V1.b V2 V2.a V2.b V3 V4
Number of solutions improved 239 239 174 0 0 0 2 182

Number of best solutions achieved 56 45 40 0 0 0 0 42

Table 4 shows the number of initial solutions improved by the algorithms. We
can see that 59.6% of the solutions were improved for V1, 60.7% for V1.a, 48.5%
for V1.b, 53% for V2, 57.6% for V3 and 68% for V4, showing that all versions
were able to improve the initial solutions.

Table 4. Number of initial solutions improved by tabu search

V1 V1.a V1.b V2 V2.a V2.b V3 V4
317 323 258 282 282 282 306 361
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Table 5. Computational times (seconds)

V1 V1.a V1.b V2 V2.a V2.b V3 V4
mean time 14 15 14 13 40 40 262 264
max. time 18 33 28 17 50 58 660 556
std dev. 1 2 1 1 3 4 79 102

Table 5 shows statistics for times obtained by processing all instances for
each algorithm. The mean times for algorithms V3 and V4 are larger than those
obtained for V1 and V2. It follows because V3 and V4 executes both procedures
TS neigh activity and TS neigh mode. We observed that the time needed to
generate the initial solution and to perform path relinking is much shorter than
the processing time demanded by the procedures based on tabu search.

4 Concluding Remarks

This paper presented some versions of hybrid heuristics to solve the multi-mode
resource constrained project scheduling problem (MRCPSP). Some heuristics
based on tabu search were hybridized with a path-relinking strategy. Experi-
mental results showed that we were able to find good quality solutions in quite
short computational times.

An important contribution of this work is to show that the use of path re-
linking significantly improves the quality of the solutions generated by the tabu
search based heuristics and does not cause a significant increase in computational
time.

As described in [27], there are three components that are critical in the design
of a path-relinking procedure: rules for building the elite set, rules for choosing
the initial and guiding solution and the neighborhood structure for moving from
the initial to the guiding solution. In this paper, we implemented path-relinking
as a post-optimization strategy and adopted just one option for each of these
components. As we obtained good results using this strategy, we intend to explore
other options and also to study the use of path-relinking as an intensification
strategy applied during the execution of the tabu search based heuristics.
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