
Games on Multi-stack Pushdown Systems

Anil Seth

Department of Computer Science & Engg.
I.I.T. Kanpur, Kanpur 208016, India

seth@cse.iitk.ac.in

Abstract. Bounded phase multi-stack pushdown automata have been
studied recently. In this paper we show that parity games over bounded
phase multi-stack pushdown systems are effectively solvable and winning
strategy in these games can be effectively synthesized. We show some
applications of our result, including a new proof of a known result that
emptiness problem for bounded phase multi-stack automata is decidable.

1 Introduction

A multi-stack pushdown system (mpds) has a finite set of control states and
a fixed number of stacks. The transition function of a mpds takes as input its
control state and topmost symbols of each stack and may (nondeterministically)
do a push or a pop operation on any stack along with a possible change in
control state of mpds. A mpds obviously generalizes a pushdown system pds as it
can have more than one stack. While pushdown systems can be used to model
sequential recursive programs, multi-stack pushdown systems can be used to
model a class of programs with both recursion and threads. Each thread has its
own stack for its procedures calls and communication among threads is through
the common finite states of mpds. Model checking of programs with threads is
an important problem and there have been several recent works, see [1,3,4,5,6],
in the area of model checking mpds and their variants. Some restrictions however
are needed to be imposed on mpds to get effectively checkable properties of the
model, as even simple properties such as reachability from one configuration to
another are undecidable for unrestricted mpds. A restriction considered in [4,5]
is bounded context switching. In a k context switching mpds we consider only
those runs of mpds which can be divided into k stages, where each stage is a
consecutive sequence of moves from the run in which push and pop operations
are performed only in one stack. While this seems a strong restriction, it has
been useful in practice and reachability analysis with this restriction has helped
uncover some errors. Bounded context switching mpds admit effective global
reachability analysis also. For a mpds M and a regular set C of configurations
of M , pre∗(C), the set of configurations of M from which a configuration in C
can be reached by M , is shown to be regular in [5]. Similarly post∗(C), the set of
configurations to which a configuration in C can be reached by M , is also shown
to be regular in [5].

S. Artemov and A. Nerode (Eds.): LFCS 2009, LNCS 5407, pp. 395–408, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

396 A. Seth

In [1], a more liberal version of mpds called bounded phase systems have been
considered. In a k−phase bounded mpds only those runs of mpds are considered
which can be divided into k stages where each stage is a consecutive sequence
of moves from the run in which pop operations are performed only in one stack
(push operations can be performed on any stack in a single phase). The class
of bounded phase mpds strictly includes the class of bounded context switching
mpds. In [1] emptiness problem of bounded phase multi-stack automata (mpda)
is shown to be decidable. Bounded phase mpds have also been used in model
checking of concurrent queues [3] and bounded phase multi-stack pushdown
transducers have been used to give an infinite automaton characterization of
complexity class of problems solvable in double exponential time, 2ETIME [2].

In model checking, it is often needed to consider richer properties than reach-
ability. This can be done meaningfully over restricted mpds also. For example,
existence of a bad infinite path in a bounded phase mpds implies the existence
of the same for the unrestricted mpds also. A general way to specify verifica-
tion problems is through infinite games [9], where evaluating a formula in a
model is equivalent to deciding if a player has a winning strategy in a game. For
example, evaluating a modal mu-calculus formula on a transition system can
be reduced to solving a parity game on a graph closely related to the transi-
tion system. Games can also be used to model reactive systems naturally. Two
player parity games over single stack pushdown systems (pds) have been stud-
ied in [9] where it is shown that these games can be effectively solved. That is,
there is an algorithm which from the description of a game can determine which
player has a winning strategy in the game starting from the initial configuration
of pds.

Two player games over mpds have not been studied so far. In this paper, we
study two player reachability and parity games over bounded phase mpds and
show them to be effectively solvable. Our solution is based on a fundamental
technique of Walukiewicz [9] which shows how to reduce a parity game on a
pushdown system to a parity game over finite state space. In [9] each time a
symbol is pushed in the stack, a set of states (along with priorities) is guessed
by player 0, the game now divides into two parts. In the first subgame player 1
verifies that if the symbol is popped then it is in one of the guessed states, in
the second game it is verified that if the pushed symbol is popped satisfying the
guessed conditions then the game is winning for player 0. This does not let the
stack grow in any subgame, only topmost symbol of the stack needs to be kept
in a game state along with some bounded auxiliary information, thus resulting
in a finite state game.

We extend this technique to the case of bounded phase mpds. To begin with,
we need to store the topmost symbol of each stack. The main difficulty in case
of more than one stack is that when a symbol in some stack i is pushed it is
not sufficient to guess the states and minimum priorities visited for popping
this symbol. The contents of stack j, j �= i, can change in an arbitrary way
between a push and the corresponding pop in stack i. For example, we may
have a sequence like pushi, pushj pushj popi, where subscript indicates the

Games on Multi-stack Pushdown Systems 397

stack on which the operation is performed. In general, we may have an arbi-
trary number of push operations to stack j, j �= i between a matching push
and pop operation in stack i. The information about contents of stack j at the
time of pop in stack i is needed to simulate the mpds transitions after the popi.
The important issue is to see how much information about stack j is needed,
will a bounded amount of information suffice? Let us examine this, we need to
know at least the topmost symbol of stack j, say γ′, at the time of popi. In
addition to this, to abstract out the contents of stack j below γ′, we may need
something like popping condition for γ′ after popi. But this seems circular as
in identifying the popping condition for pushi we need to know the popping
condition for γ′ in stack j, j �= i. Further, the popping condition for γ′ of stack
j, j �= i, needs to be guessed at the time of pushi only. The apparent circu-
larity may be removed by looking at how the phase changes after various pop
operations involved. We formulate these conditions recursively using recursion
on the number of phases. This is the main technical contribution in our reduc-
tion of bounded phase mpds game to a finite state game. The size of the FSG,
we get is rather huge. It is a tower of exponentials of height k, the number of
phases of mpds. This is also the complexity of our decision procedure to solve
mpds game.

In [9] it is also shown that the winning strategy in pds game can be executed
by a pushdown automaton. This extends naturally to our setting, we show that
the winning strategy in bounded phase mpds game can be executed by a bounded
phase mpda. As a special case of our general game, we consider one player reach-
ability game, in which all configurations belong to player 0 only and the winning
condition is reaching some specified control state. Existence of winning strat-
egy for player 0 in this game is equivalent to the specified control state being
reachable from the initial configuration of mpds. In this case the size of our finite
state game reduces to double exponential in the number of phases allowed. This
special case gives us an alternative proof of one of the main results in [1] that the
emptiness problem of bounded phase mpda is decidable. Our proof uses quite
different technique than the ones used in [1]. In [1] a translation of bounded
phase words into finite trees is defined such that the image of this translation
is definable in monadic second order logic (MSO) over finite trees. Decidability
of MSO on the class of finite trees is then used in [1] to derive the result. The
complexity of our decision procedure matches the optimal complexity bound
obtained in [3]. Further, our strategy synthesis result when specialized to one
player reachability game, can be used to generate counter-examples in automatic
verification of safety properties of bounded phase mpds.

2 Preliminaries

Definition 1. A multi-stack pushdown system (mpds) is given as a tuple
(Q, Γ, l, δ, q0), where Q is a finite set of states, l is the number of stacks, Γ is
the stack alphabet and q0 is the initial state. The transition function δ is given
as δ = δi ∪ δr ∪ δe, where

398 A. Seth

– δe ⊆ Q × Γ l × Q × [1 . . . l] × Γ ,
– δi ⊆ Q × Γ l × Q × [1 . . . l] × Γ ,
– δr ⊆ Q × Γ l × [1 . . . l] × Q.

(δe, δi, δr represent exchange, push and pop operations respectively). An mpds
operation depends on its control state and topmost symbols of all its stacks. Γhas
a special symbol ⊥ for marking bottom of a stack. ⊥ can’t be pushed, popped
or exchanged by any other symbol. For instance, if (q, γ̄, q′, j, γ) ∈ δe, where
γ̄ = γ1 . . . γl and γj = ⊥ then γ = ⊥. Also, if (q, γ̄, i, q′) ∈ δr then γi �= ⊥.

Definition 2. A configuration of multi-stack pushdown system (Q, Γ, l, δ, q0) is
a tuple (q, s1, . . . , sl), where q ∈ Q and si ∈ {⊥} × (Γ − {⊥})∗, for 1 ≤ i ≤ l.
One step transition t→ on configurations of mpds is defined as below, where γ̄ =
γ1 . . . γl.

– (q, s1.γ1, . . . , sl.γl)
t→ (q′, s′1, . . . , s

′
l) if t = (q, γ, q′, i, γ) ∈ δe, s′i = si.γ and

s′j = sj.γj for j �= i, 1 ≤ j ≤ l.

– (q, s1.γ1, . . . , sl.γl)
t→ (q′, s′1, . . . , s

′
l) if t = (q, γ, q′, i, γ) ∈ δi,

s′i = si.γi.γ and s′j = sj .γj for j �= i, 1 ≤ j ≤ l.

– (q, s1.γ1, . . . , sl.γl)
t→ (q′, s′1, . . . , s

′
l) if t = (q, γ, i, q′) ∈ δr, s′i = si and

s′j = sj.γj for j �= i, 1 ≤ j ≤ l.

The initial configuration of mpds is defined as (q0, ⊥, . . . , ⊥).

Definition 3. A multi-step transition between configurations of mpds, on say

sequence t1t2 . . . tn of mpds moves, c
t1t2...tn� d is defined as follows. c

t1t2...tn� d

iff either n = 0 and c = d or there is a c′ s.t. c
t1→ c′ and c′

t2...tn� d. We write
c � d for a multi-step transition from c to d when the sequence of mpds moves
is not relevant.

Definition 4. Let c0 be the initial configuration of a mpds and let c be a config-
uration reached from c0 by a sequence t1t2 . . . tn of mpds moves. If the topmost
symbol of stack i is γ �= ⊥, then the push operation corresponding to the topmost
symbol of stack i is defined as the last unmatched push operation in stack i in
the sequence t1t2 . . . tn.

The previous definition is usually understood without explicitly mentioning it.
It may be noted however that because of exchange operations the push opera-
tion corresponding to γ may actually have pushed a symbol γ′, γ′ �= γ on the
stack. For example, after sequence pushγ1

1 , exchγ1,γ
1 , (where pushγ

i means push-
ing symbol γ to stack i, exchγ,γ′

i means replacing the topmost symbol γ of the
stack i by γ′) the topmost symbol on stack 1 is γ, but it corresponds to pushγ1

1
operation. Similarly, in sequence pushγ1

1 , exchγ1,γ
1 , pop1, the last pop matches

the first push operation pushγ1
1 .

Games on Multi-stack Pushdown Systems 399

Definition 5. A configuration d of multi-stack pushdown system (Q, Γ, l, δ) is
reachable from configuration c in m-phases if there are α1, . . . , αm where each
αi is a sequence of mpds moves with pop moves from at most one stack and
c

α1� c1
α2� c2 . . .

αm� cm = d .

We assume the reader to be familiar with standard notions of two player par-
ity games, such as game graph, plays, a winning strategy and parity winning
condition, see [12].

A 2-player k-phase mpds parity game is given as (H, Q0, Q1, M, Ω, k), where
H = (Q, Γ, l, δ, q0) is an mpds, Q = Q0⊕Q1 is a partition of states in player 0 and
player 1, M is a finite set of priorities and Ω : Q → M is a priority assignment
to each state in Q.

Vertices of our game graph are configurations of mpds. A vertex
(q, −, . . . , −) belongs to player i iff q ∈ Qi. priority of a vertex (q, −, . . . , −)
is defined as Ω(q). A player can move from c to c′ only if c → c′. A play is a
sequence of legal moves starting from the initial configuration. A phase in a play
is a consecutive sequence of moves such that in this sequence elements from at
most one stack are popped (though in a single phase elements may be pushed
to any stack). All plays in this game are k − phase bounded. That is a player
can not make a move that takes the play into (k + 1)th phase.

Remark1: Some authors take a play to be a sequence of moves which can not
be extended further, we use the descriptor maximal play for this and take a play
to be any sequence of moves as defined above.

Remark2: We could make the game graph more standard by taking its vertices
as triples (c, p, r) where c is an mpds configuration p ≤ k is the phase in play so
far and r ≤ l is the number of stack popped last. There is an edge from (c, p, r)
to (c′, p′, r′) iff c → c′ and as a result of this transition the phase changes from p
to p′ and the number of the last popped stack changes from r to r′ in the mpds
configuration.

Winning condition for a maximal play (play which can not be extended further)
ρ is defined as follows. If ρ is finite then the player whose turn it is to move
at the last vertex of ρ loses. If ρ is infinite then a priority i ∈ M is said to be
visited infinitely often iff there are infinitely many vertices with priority i in ρ.
ρ is winning for player 0 iff the minimum, among the set of priorities visited
infinitely often in ρ, is even.

Informally, having a winning strategy for player i, means that regardless of
player (1 − i)’s moves, player i can always play a move such that he wins the
resulting play. We will always consider games which start in a predefined initial
configuration. A game is called winning for player i if player i has a winning
strategy in it starting from the initial configuration.

Given a winning strategy τ for player 0, in game G, by a τ -play we mean a
play of G in which all moves of player 0 are according to τ . For configurations
c, c′ of G, c

τ→ c′ and c
τ� c′ mean that c′ is reachable from c in a τ -play in

one move or in an arbitrary number of moves respectively.

400 A. Seth

3 Reducing MPDS Game to Finite State Game

3.1 Intuitive Idea

Let H = (Q, Γ, l, δ, q0) be a mpds and let G = (H, Q0, Q1, max, Ω : Q → M)
be a game structure on H, where Q = Q0 ⊕ Q1 and M = {0, . . . , max} is the
set of priorities assigned to vertices of the game. We use below notation T for a
sequence T1, . . . , Tl and T [C/i] for sequence T1, . . . , Ti−1, C, Ti+1, . . . , Tl, which
is the same as T except at ith position where it is C. We follow [8] in presentation
of our finite state game.

Most important vertices of the finite state game (FSG) are of the form
Check(q, p, r, γ, B, m), where q ∈ Q, p ∈ [1, k], r ∈ [0, l], γ = γ1 . . . γl with
each γi ∈ Γ , B = B1, . . . , Bl with each Bi ∈ τi and m = m1 . . . ml with
mi ∈ {0 . . .max}. Intuitively the vertex Check(q, p, s, γ, B, m) asserts that

– q is the state of the configuration.
– p is the current phase.
– r is the number of stack from which last pop operation was done (initially

it is set to 0).
– γi is the topmost symbol of stack i.
– mi is the minimum priority seen since the push operation corresponding

to the topmost symbol of stack i (if topmost symbol is ⊥, which is never
pushed, then mi = 0).

– Bi ⊆ ∪k
j=1Ni,j gives constraints to be met on popping the topmost element

of stack i (if stack i is empty then Bi = ∅).

When an element of stack i is popped, the resulting configuration, say d, is in a
phase belonging to [1, k]. Ni,j is the set of conditions related to pop operations
of stack i which result in configurations of phase j on popping. In a FSG play
for each element pushed in stack i a subset of all popping scenarios ∪k

j=1Ni,j is
guessed. Ni,j is defined below simultaneously for 1 ≤ i ≤ l using recursion on j,
starting from j = k going down to j = 1.

Definition 6. In this definition we assume that q, m, γ range over Q, M l, Γ l

respectively and p ranges over [1, l].

Ni,k = {(a1...ai−1, (q, k, γ, m), ai+1...al) | ap = ∅ p �= i}
For j, k > j ≥ 1,
Ni,j = {(a1...ai−1, (q, j, γ, m), ai+1...al) | ap ⊆ ∪k

r=j+1Np,r p �= i}.

Each element u ∈ Nij describes a scenario for popping an element of stack i.
Assume that the element is popped in mpds configuration c and the resulting
mpds configuration (after pop) is d. The tuple (q, j, γ, m) in a scenario u stip-
ulates that γ = γ1 . . . γl and m = m1 . . . ml, where for 1 ≤ r ≤ l, γr is the
topmost symbol of stack r in c and mr is the value in c whose interpretation
is as described above. q is the mpds state in d and j is the phase of d. at for
1 ≤ t ≤ l, t �= i, is a set of popping conditions for the topmost symbol γt of
stack t in configuration d. That is at stands for conditions in which γt can be

Games on Multi-stack Pushdown Systems 401

popped. This uses recursively the conditions defined for popping a symbol. Note
that after popping stack i in d a pop in stack t will result in configuration of
phase > j. This ensures well defined nature of recursion. Also note that we use
at as a set of scenarios, instead of a single scenario for popping of γt in some
configuration after d. This is necessary in a two player game, because in a two
player game player 0 can only guarantee that the resulting mpds configuration
be one from a set (rather than a uniquely specified) of mpds configurations.

In the definition of Ni,k, at for t �= i, is taken to be ∅ because after popping
the symbol in stack i phase k is reached and no other stack can be popped, so
popping conditions for topmost symbol of stack t is not of any use now.

3.2 The Finite State Game (FSG)

Each mpds transition gives rise to some FSG transitions. We group transitions
of FSG according to mpds transitions (shown in bold) which give rise to them.

1. (q, γ,q′, i, γ′) ∈ δe, 1 ≤ i ≤ l.

(a) Check(q, p, r, γ, B, m) → Check(q′, p, r, γ[γ′/i], B, m′),
where m′

j = min(mj, Ω(q′)), for 1 ≤ j ≤ l.

2. (q, γ,q′, i, γ′) ∈ δi, 1 ≤ i < l.

(a) Check(q, p, r, γ, B, m) → Pushi(p, r, γ, B, m, q′, γ′)

(b) Pushi(p, r, γ, B, m, q′, γ′) → Claimi(p, r, γ, B, m, q′, γ′, C),

for all C ⊆ ∪k
j=1Ni,j .

(c) Claimi(p, r, γ, B, m, q′, γ′, C) → Check(q′, p, r, γ[γ′/i], B[C/i], m′),

where m′
j =

{
min(mj , Ω(q′)) if j �= i
Ω(q′) if j = i

(d) To check the game after corresponding popi operation.

Claimi(p, r, γ, B, m, q′, γ′, C) → Jumpi(q′′, j, γ, γ′′, m′, B′, m)

for all (a1...ai−1, (q′′, j, γ′′, m′), ai+1...al) ∈ C

where B′ = (a1...ai−1, Bi, ai+1...al).

(e) Jumpi(q′′, j, γ, γ′′, m′, B′, m) → Check(q′′, j, i, γ′′[γi/i], B′, m′′),

where m′′
j =

{
min(m′

j , Ω(q′′)) if j �= i
min(mi, m

′
i, Ω(q′′)) if j = i

3. (q, γ, i,q′) ∈ δr, 1 ≤ i ≤ l.

(a) Check(q, p, r, γ, B, m) → Win0 if C[(q′, p′, γ, m)/i] ∈ Bi

402 A. Seth

(b) Check(q, p, r, γ, B, m) → Win1 if C[(q′, p′, γ, m)/i] �∈ Bi

where p′ =

⎧⎨
⎩

1 if r = 0
p if r = i
p + 1 if r �= i

,

p′ ≤ k and C =
{

B if p′ < k

∅ if p′ = k
.

Priority of vertex v in FSG, denoted by λ(v), is defined as follows.
λ(Check(q, . . .)) = Ω(q), λ(Pushi(. . .)) = λ(Claimi(. . .)) = max and
λ(Jumpi(q, j, γ, γ′, n, B, m)) = ni, where n = n1 . . . nl. Vertex Check(q, . . .)
belongs to player j, j ∈ {0, 1}, iff q ∈ Qj . Vertices Pushi(...), belong to player
0 whereas vertices Claimi(...), belong to player 1, for 0 ≤ i < n. Each vertex
Jumpi(...) has a single outgoing edge so it is immaterial which player is assigned
to these vertices.

4 Relating Winning in MPDS Game and the FSG

Our main theorem is the following.

Theorem 1. A mpds game is winning for player 0 (from initial configura-
tion (q0, ⊥S , . . . , ⊥S)) iff FSG is winning for player 0 (from initial configura-
tion Check(q0, 1, 0, ⊥, ∅, 0)). Further, if mpds game is winning for player 0 then
player 0 has a winning strategy in mpds game that is computable by a multi-stack
automaton.

Proof. We present the construction of strategy automaton below, this is used
in proving the direction that a winning strategy for player 0 in FSG implies a
winning strategy in mpds game. The detailed correctness of this construction as
well as the other direction of the theorem that a winning strategy for player 0 in
mpds game implies a winning strategy in FSG, are given in full version of this
paper. Idea of the proofs is similar to that in [8], but we need to deal with more
involved cases as we argue for multi-stack pushdown systems. �

4.1 Strategy Automaton

Assuming that there is a winning strategy for player 0 in FSG from
Check(q0, 1, 0, ⊥, ∅, 0), we design a l stack pushdown automaton S which ex-
ecutes a winning strategy τ of player 0 in mpds game from mpds configuration
(q0, ⊥S , . . . , ⊥S).

Fix a history free winning strategy σ for player 0 in FSG from configuration
Check(q0, 1, 0, ⊥, ∅, 0) (such a strategy exists in any parity game, see [12]). Using
σ, we design a deterministic l stack pushdown automaton S as follows. Apart
from the stacks, S has an input and an output tape. S reads moves of player 1

Games on Multi-stack Pushdown Systems 403

from the input tape and outputs moves of player 0 on the output tape. Struc-
ture of S’s stacks, at any point in play, is the same as that of mpds stacks at
that point. For a symbol γ ∈ Γ in stack i of mpds, S stores at the correspond-
ing position in its stack i a tuple of the form (γ, B, m), where B ⊆ ∪k

j=1Ni,j

and m ∈ {0, 1, . . . , max}. The additional information (B, m) in stacks of S
records relevant information about the FSG play being simulated. Bottom of
stack marker for S is defined to be ⊥S = (⊥, ∅, 0). Control state of S is of the
form (q, p, r), where q is the current state in mpds game, p is the phase and r is
the stack from which mpds play can pop in phase p.

Configuration of S is defined as its state along with the contents of its stacks.
It subsumes the current mpds configuration in it. We define a function f from
configurations of S to vertices of FSG. If c is a configuration of S in which state
of S is (q, p, r) and top of the stack j symbol is (γj , Bj , mj), for 1 ≤ j ≤ l, then
f(c) = Check(q, p, r, γ, B, m). In strategy execution the following invariant is
maintained: if S is in configuration c then there is a σ play from f(c0) to f(c),
where c0 is the initial configuration of S.

Suppose S is in configuration c as above. The next move in the mpds play is
either read from the input tape (if q ∈ Q1) or S mimics the σ move (if q ∈ Q0)
from the corresponding FSG configuration f(c) = Check(q, p, r, γ, B, m). (Moves
from an mpds configuration and from the corresponding Check(. . .) vertex in
FSG are in 1 − 1 correspondence by design of FSG.)

4.2 Operation of S

Initially, S is in state (q0, 1, 0) and each stack of S is ⊥S . At any arbitrary point
in mpds play if S is in configuration c in which state of S is (q, p, r) and top
of the stack j symbol is (γj , Bj , mj), for 1 ≤ j ≤ l. Then for each mpds move
played in the mpds game, we describe actions performed by S. Stack and state
updation of S below is grouped by the moves of mpds regardless of whichever
player plays.

[I] (q, γ, q′, i, γ′) ∈ δe, 1 ≤ i ≤ l.
S sets top of the stack i symbol to (γ′, Bi, min(mi, Ω(q′))) and top
of the stack j (for j �= i) symbol to (γj , Bj , min(mj, Ω(q′))) and
changes its control state to (q′, p, r).

[II] (q, γ, q′, h, γ′) ∈ δi, 1 ≤ h ≤ l.
Let C ⊆ ∪k

t=1Nh,t be as in transition (2.b) in corresponding σ play.
S pushes (γ′, C, Ω(q′)) on stack h, topmost symbol of the stack j
(for j �= h) is changed to (γj , Bj , min(mj, Ω(q′))) and S changes its
control state to (q′, p, r).

[III] (q, γ, i, q′) ∈ δr, 1 ≤ i ≤ l.
S pops the topmost symbol from stack i. Let the resulting topmost
symbol in stack i (after the above pop) be (γ′, D, n). S modifies
it to (γ′, D, min(mi, n, Ω(q′))). S modifies the topmost symbol of

404 A. Seth

stack j (for j �= i) to (γj , Bj , min(mj, Ω(q′))) and enters control
state (q′, p′, i), where

p′ =

⎧⎨
⎩

1 if r = 0
p if r = i
p + 1 if r �= i

.

4.3 Complexity of Solving the Game

By the reduction in section 3, to solve the mpds game it suffices to solve the
associated FSG. In this section we estimate the size of FSG and the complexity
of solving it. Let us begin by defining a class of functions expn(m) iteratively as
follows.

exp1(m) = 2m and for n ≥ 1, expn+1(m) = 2expn(m).
Roughly, expn(m) is a tower of exponentials of height n. Let H be an mpds

and G be an mpds game on H as in section 3.1. For a set A, we let |A| denote
its cardinality. Then by definition 6,

|Ni,k| = |Q|.k.|M |l.|Γ |l, for all i.

|Ni,j | ≤ t.(
∏l

p=1 2Σk
r=j+1|Np,r|), for 1 ≤ j < k where t = |Q|.k.|M |l.|Γ |l.

|Ni,j | ≤ t.(
∏l

p=1 2k|Np,j+1|), using |Np,j+1| > |Np,r| for r > j + 1

|Ni,j | ≤ t.(2l.k|Ni,j+1|), because by symmetry |Np,j+1| = |Ni,j+1|,
for 1 ≤ p ≤ l.

|Ni,j | ≤ (2c.l.k|Ni,j+1|) for a constant c, using m.2m ≤ 22m.
This leads to |Ni,1| = expk−1(O(z)) and |B1| = expk(O(z)), where

z = l.k2.|Q|.|M |l.|Γ |l. The number of vertices in FSG is therefore expk(O(z)).
It is known that a game graph with n vertices, m edges and d priorities can

be solved in time O(m.nd), see [10].
Number of edges in FSG is bounded by [expk(O(z))]2, which is the same as

expk(O(z)). Number of distinct priorities in FSG is |M |. It follows that our
FSG can be solved and winning strategy can be constructed in time bounded by
expk(O(z.|M |)), where z = l.k2.|Q|.|M |l.|Γ |l as mentioned above.

5 One Player Case

Let H be an mpds and G be an mpds game on H as in section 3.1. In this section,
we consider the special case when all configurations belong to player 0, that is
Q = Q0. In this case popping conditions in definition 6 can be simplified as
follows.

Definition 7. In this definition we assume that q, m, γ range over Q, M l, Γ l

respectively and p ranges over [1, l].
Ni,k = {(a1...ai−1, (q, k, γ, m), ai+1...al) | ap = ∅ p �= i}
For j, k > j ≥ 1,
Ni,j = {(a1...ai−1, (q, j, γ, m), ai+1...al) | ap ∈ ∪k

r=j+1Np,r p �= i}.
Bi ∈ ∪k

j=1Ni,j

Games on Multi-stack Pushdown Systems 405

Complexity analysis in this case becomes:
|Ni,k| = |Q|.k.|M |l.|Γ |l, for all i.

|Ni,j | ≤
∏l

p=1(Σ
k
r=j+1|Np,r|), for 1 ≤ j < k.

|Ni,j | ≤ (
∏l

p=1 k.|Np,j+1|) using |Np,j+1| > |Np,r| for r > j + 1.

|Ni,j | ≤ (k.|Ni,j+1|)l, because by symmetry |Np,j+1| = |Ni,j+1|, for 1 ≤ p ≤ l.

This leads to |Ni,1| = zlO(k)
and |B1| = zlO(k)

, for l ≥ 2 where z = |Q|.|M |.|Γ |.
The number of vertices in FSG is therefore zlO(k)

and it can be solved in time
z|M|.(lO(k)), where z = |Q|.|M |.|Γ |.

5.1 Bounded Phase Multi-stack Pushdown ω-Automata

We may also consider bounded phase multi-stack pushdown ω-automata on in-
finite words.

Definition 8. A bounded phase multi-stack pushdown parity ω-automaton is
given as a tuple (Q, Σ, Γ, l, k, δ, q0, M, Ω), where Q is a finite set of states, Σ is
an input alphabet and k is a bound on the number of phases. Γ, q0, l are the same
as in definition 1. δ = δi ∪δr ∪δe is also the same as in definition 1,2 except that
each transition of the automaton also depends on the current symbol being read
from the input tape apart from the state and the topmost symbols of all stacks.
Therefore

– δe ⊆ Q × Σ × Γ l × Q × [1 . . . l] × Γ ,
– δi ⊆ Q × Σ × Γ l × Q × [1 . . . l] × Γ ,
– δr ⊆ Q × Σ × Γ l × [1 . . . l] × Q.

A configuration of this automaton is the same as a mpds configuration along with
position of input head on the input tape. With each move the input head moves
one position to the right. A run of this automaton is a sequence of configurations
starting with the initial configuration and in which for any two consecutive
configurations the successor configuration is a result of some δ−transition on
the predecessor configuration. A run is accepting if the number of phases in it
are ≤ k and it satisfies the parity acceptance condition given by Ω. We have the
following theorem about such automata.

Theorem 2. Emptiness problem for bounded phase multi-stack pushdown
ω−automata with parity acceptance condition is decidable in time
(|Q|.|M |.|Γ |)|M|.(lO(k)), where Q, Γ, l, k, M are as in definition 8 and l ≥ 2.

Proof. Consider a bounded phase multi-stack ω-automaton M as in definition
8. We erase all input symbols from transitions of M and let all states belong to
player 0. This gives a one player mpds game. Winning in this game for player 0
is equivalent to M having an accepting run on some input, that is L(M) �= ∅.
By section 5, this mpds game can be solved in time (|Q|.|M |.|Γ |)|M|.(lO(k)). �

406 A. Seth

5.2 Reachability in Bounded Phase mpds

In this section we study applications of our results to reachability problem among
configurations of mpds. Reachability easily reduces to parity winning condition.

Definition 9. Let H be a mpds with Q as its finite set of states. A set C of
configurations of H is regular if there is a finite multi-automaton which accepts
string s1#s2# . . . #sl starting from state q iff (q, s1, s2, . . . , sl) ∈ C.

The finite multi-automaton in the above definition is just a finite automaton
which has one initial state for each q ∈ Q. Finite multi-automata were introduced
in [11].

A slightly general version of reachability problem for mpds can be defined as
the following decision problem.

Definition 10. (Regular reachability problem) Given an mpds M and a regular
set R of configurations of M, is there a r ∈ R and such that configuration r is
reachable from the initial configuration.

Theorem 3. Regular reachability problem for bounded phase mpds is decidable
in time (|Q|.|Γ |)lO(k+l)

, where |Q| is the sum of states in input mpds and in input
multi-automaton accepting R, Γ is stack alphabet, k is the bound on phases and
l ≥ 2 is the number of stacks in the input mpds.

Proof. The idea is to add transitions to the input mpds to check if its configura-
tion is in R. This can be done in 2l phases. Easy details of this proof are given
in full version. �

Corollary 1. Emptiness problem of bounded phase nondeterministic multi-stack
pushdown automata is decidable in (|Q|.|Γ |)lO(k+l)

time where |Q| is the number
of states, Γ is stack alphabet, k is bound on phases and l ≥ 2 is the number of
stacks in input mpda.

Proof. Let given multi-stack pushdown automaton accept by reaching the final
state qf . We convert this mpda to mpds by erasing input symbols from transitions.
Emptiness problem of the given automaton is the same as regular reachability
problem of the resulting mpds with R = {qf} × (Γ ∗)l. �

If we keep fixed all parameters of mpda except the number of phases allowed, by
the above corollary we get the time complexity as a function of k, to be 22O(k)

.
This is same as the complexity of emptiness checking of an mpda in [2].

Consider a multi-stack pushdown system M with 3 stacks. Define it’s transi-
tion function so that if stack 1 is empty then it has no transition, otherwise it
pops a symbol from stack 1 and pushes a b on stack 2 and a c on stack 3. After
this M again checks stack 1 and repeats the same sequence of actions. If M starts
with initial configuration (q0, ⊥.an, ⊥, ⊥) then it reaches (q0, ⊥, ⊥.bn, ⊥.cn). This
shows that post∗ of a regular set is not regular. We do not have any example to
show that pre∗ of a regular set is not regular. In fact, we think that pre∗ of a
regular set is regular for bounded phase mpds.

Games on Multi-stack Pushdown Systems 407

6 Conclusion

In this paper we have shown that parity games over bounded phase multi-stack
pushdown systems can be effectively solved. The complexity of our algorithm is
a tower of exponentials of the height same as the number of phases allowed. An
open question is that if this complexity can be improved or is there a matching
lower bound. In [7,8], winning regions in parity games over pds have been shown
to be regular. The same question can also be asked for two player parity games
over bounded context switching mpds and over bounded phase mpds. We think
that our techniques can be used to show that winning region in these games is
also regular. It will also be interesting to know if MSO theory of configuration
graphs of bounded phase mpds is decidable.

Finally, we have also mentioned application of our results in deciding empti-
ness of multi-stack bounded phase ω−automata. It seems interesting to study
the class of languages recognized by such ω−automata.

Acknowledgments. Financial support for this work is provided by Research I
Foundation.

References

1. Madhusudan, P., Parlato, G., La Torre, S.: A Robust Class of Context-Sensitive
Languages. In: 22nd IEEE Symp. on Logic in Computer Science (LICS) Wroclaw,
Poland (2007)

2. Madhusudan, P., Parlato, G., La Torre, S.: An Infinite Automaton Characterization
of Double Exponential Time. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS,
vol. 5213, pp. 33–48. Springer, Heidelberg (2008)

3. Madhusudan, P., Parlato, G., La Torre, S.: Context-Bounded Analysis of Con-
current Queue Systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 299–314. Springer, Heidelberg (2008)

4. Lal, A., Reps, T.: Reducing Concurrent Analysis Under a Context Bound to Se-
quential Analysis. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
37–51. Springer, Heidelberg (2008)

5. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In:
Proceedings of the 11th International Symposium on Tools and Algorithms for the
Construction and Analysis of Systems (2005)

6. Kahlon, V., Ivancic, F., Gupta, A.: Reasoning About Threads Communicating via
Locks. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
505–518. Springer, Heidelberg (2005)

7. Serre, O.: Note on Winning Positions on Pushdown Games with Omega-Regular
Conditions. Information Processing Letters 85(6), 285–291 (2003)

8. Cachat, T.: Uniform solution of parity games on prefix-recognizable graphs. In:
Proc. INFINITY. ENTCS, vol. 68(6) (2002)

9. Walukiewicz, I.: Pushdown processes: games and model checking. Information and
computation 164, 234–263 (2001)

408 A. Seth

10. Jurdziński, M.: Small Progress Measures for Solving Parity Games. In: Reichel, H.,
Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg
(2000)

11. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Applications to model checking. In: Proc. Concur, pp. 135–150 (1997)

12. Thomas, W.: Languages, automata and logic. In: Rozenberg, G., Salomaa, A. (eds.)
Handbook of Formal Languages, vol. III, pp. 389–455. Springer, New York (1997)

	Games on Multi-stack Pushdown Systems
	Introduction
	Preliminaries
	Reducing MPDS Game to Finite State Game
	Intuitive Idea
	The Finite State Game (FSG)

	Relating Winning in MPDS Game and the FSG
	Strategy Automaton
	Operation of S
	Complexity of Solving the Game

	One Player Case
	Bounded Phase Multi-stack Pushdown ω-Automata
	Reachability in Bounded Phase $mpds$

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

