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Summary. This chapter introduces Resource Description Framework (RDF), the
W3C recommendation for semantic annotations in the Semantic Web. It will cover
the syntax and semantics of RDF, as well as its relation with the W3C OWL Web
Ontology Language. To address the mismatch between RDF and OWL-DL, the most
expressive decidable fragment of the OWL standard, we introduce a novel variant
of RDF(S), called RDFS-FA, which provides a solid semantic foundation for many
of the latest Description Logic-based SW ontology languages, such as OWL-DL and
OWL2-DL.

1 Introduction: Heading for the Semantic Web

In Realising the Full Potential of the Web [2], Tim Berners-Lee identifies two
major objectives that the Web should fulfil. The first goal is to enable people
to work together by allowing them to share knowledge. The second goal is to
incorporate tools that can help people analyse and manage the information
they share in a meaningful way. This vision has become known as the Semantic
Web (SW) [3].

The Web’s provision to allow people to write online content for other
people is an appeal that has changed the computer world. This same feature
that is responsible for fostering the first goal of the Semantic Web, however,
hinders the second objective. Much of the content on the existing Web, the so-
called syntactic Web, is human but not machine readable. Furthermore, there
is great variance in the quality, timeliness and relevance [2] of Web resources
(i.e. Web pages as well as a wide range of Web accessible data and services)
that makes it difficult for programs to evaluate the worth of a resource.

The vision of the Semantic Web is to augment the syntactic Web so that
resources are more easily interpreted by programs (or ‘intelligent agents’).
The enhancements will be achieved through the semantic markups which are
machine-understandable annotations associated with Web resources.

Encoding semantic markups will necessitate the Semantic Web adopting an
annotation language. To this end, the W3C (World Wide Web Consortium)
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Fig. 1. RDF annotations in a directed labeled graph

community has developed a recommendation called resource description
framework (RDF) [13]. The development of RDF is an attempt to support
effective creation, exchange and use of annotations on the Web.

Example 1. Annotating Web Resources in RDF
As shown in Fig. 1, we can associate an RDF annotation1 to http://

example.org/Ganesh.html and state that it is the homepage of the resource
Ganesh, which is an elephant and eats grasses.

We invite the reader to note that the above RDF annotations are different
from HTML [27] mark-ups in that they describe the contents of Web resources,
instead of the presentation of Web pages.

Annotations alone do not establish the semantics of what is being marked-
up. For example, the annotations presented in Fig. 1 do not explain what ele-
phants mean. The rest of the chapter is organised as follows. Section 2 presents
RDF and two ways of providing semantics to RDF annotations. Section 3
introduces RDF Schema (or RDFS for short) and its semantics. Section 4
explains the semantic mismatch between RDF(S) and OWL-DL, while Sect. 5
introduces a sub-language of RDF, called RDFS-FA, which on the one hand
has a semantics that is compatible with OWL-DL and on the other hand still
allows meta-classes and meta-properties. Section 6 concludes the chapter.

2 Annotation and Meaning

The vision of the Semantic Web is to make Web resources (not just HTML
pages, but a wide range of Web accessible data and services) more under-
standable to machines. Machine-understandable annotations are, therefore,
introduced to describe the content and functions of Web resources.

1 See Sect. 2 for precise definitions of RDF syntax.
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2.1 RDF

RDF [13] as a W3C recommendation provides a data model for annota-
tions in the Semantic Web. It is built upon earlier developments such as the
Dublin Core (see Sect. 2.2) and the platform for Internet content selectivity
(PICS) [26] content rating initiative.

An RDF statement (or RDF triple) is of the form:

subject property object. (1)

RDF annotates Web resources in terms of named properties. Values of named
properties (i.e. objects) can be URIrefs of Web resources or literals, viz. rep-
resentations of data values (such as integers and strings). A set of RDF state-
ments is call an RDF graph.

To represent RDF statements in a machine-processable way, RDF de-
fines a specific extensible markup language (XML) syntax, referred to as
RDF/XML [14]. RDF-annotated resources (i.e. subjects) are usually named
by Uniform Resource Identifier references. Uniform resource identifiers (URIs)
are strings that identify Web resources [7]. Uniform resource locators (URLs)
are a particular type of URIs, i.e. those have network locations. A URI
reference (or URIref) is a URI, together with an optional fragment identi-
fier at the end. For example, the URI reference http://www.example.org/
Elephant#Ganesh consists of the URI http://www.example.org/Elephant
and (separated by the # character) the fragment identifier Ganesh. As a con-
vention, name spaces, which are sources where multiple resources are from, are
(usually) URIs with the # character. For example, http://www.example.org/
Elephant# is a name space. Resources without URIrefs are called blank nodes;
a blank node indicates the existence of a resource, without explicitly men-
tioning the URIref of that resource. A blank node identifier, which is a local
identifier, can be used to allow several RDF statements to reference the same
blank node. As RDF/XML is verbose, in this chapter, we use the Notation 3
(or N3) syntax of RDF, where each RDF statement is of the form (1). Figure 2
shows an RDF graph in N3 syntax, where the ‘@prefix’ introduces short-
hand identifications (such as ‘ex:’) of XML namespaces and a semicolon ‘;’
introduces another property of the same subject. In these statements, the

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@prefix ex: <http://example.org/#>

@prefix elp: <http://example.org/Animal#>

elp:Ganesh ex:mytitle "A resource called Ganesh" ;

ex:mycreator "Pat Gregory" ;

ex:mypublisher : b1 .

: b1 elp:name "Elephant United" .

Fig. 2. RDF statements
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annotated resource is elp:Ganesh, which is annotated with three properties
ex:mytitle, ex:mycreator and ex:mypublisher. Note that : b1 is a blank node
identifier.

Given that RDF alone does not specify the intended meaning for Web
resources, how do we provide meaning to Web resources through annota-
tions? The meaning comes either from pre-agreed informal semantics, e.g.
from Dublin Core, or from ontologies.

2.2 Dublin Core

One way of giving meaning to annotations is to provide some pre-agreed in-
formal semantics for a set of information properties. For example, the Dublin
Core Metadata Element Set [5] provides 15 ‘core’ information properties,
such as ‘Title’, ‘Creator’, ‘Date’, with descriptive semantic definitions (in nat-
ural language). One can use these information properties in, e.g. RDF or
META tags of HTML.

If we replace the properties ex:mytitle, ex:mycreator and ex:mypublisher
used in Fig. 2 with dc:title, dc:creator and dc:publisher as shown in Fig. 3,
Dublin Core compatible intelligent agents can then understand that the title
of the Web resource is ‘A resource called Ganesh’, and the creator is Pat
Gregory. This is not possible for the RDF statements in Fig. 2 because, in
general, users may use arbitrary names for the title, creator and publisher
properties, etc.

The limitation of the ‘pre-agreed informal semantics’ approach is its in-
flexibility, i.e. only a limited range of pre-agreed information properties can
be expressed.

2.3 Ontology

An alternative approach is to use ontologies to specify the meaning of Web
resources. Ontology is a term borrowed from philosophy that refers to the
science of describing the kinds of entities in the world and how they are

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@prefix dc: <http://purl.org/dc/elements/1.1/>

@prefix elp: <http://example.org/Animal#>

elp:Ganesh dc:title "A resource called Ganesh" ;

dc:creator "Pat Gregory" ;

dc:publisher : b1 .

: b1 elp:name "Elephant United" .

Fig. 3. Dublin core properties in RDF statements
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related. In computer science, ontology is, in general, a ‘representation of a
shared conceptualisation’ of a specific domain [8, 30]. It provides a shared
and common vocabulary, including important concepts, properties and their
definitions, and constraints, sometimes referred to as background assumptions
regarding the intended meaning of the vocabulary, used in a domain that can
be communicated between people and heterogeneous, distributed application
systems.

The ontology approach is more flexible than the pre-agreed informal se-
mantics approach because users can customise vocabulary and constraints in
ontologies. For example, applications in different domains can use different
ontologies. Typically, ontologies can be used to specify the meaning of Web
resources (through annotations) by asserting resources as instances of some
important concepts and/or asserting resources relating to resources by some
important properties defined in ontologies.

Ontologies can be expressed in Description Logics. An ontology usually
corresponds to a TBox in Description Logics (see chapter “Description Log-
ics”). Vocabulary in an ontology can be expressed by named concepts and
roles, and concept definitions can be expressed by equivalence introductions.
Background assumptions can be represented by general concept and role ax-
ioms. Sometimes, an ontology corresponds to a DL knowledge base. For ex-
ample, in the OWL Web ontology language to be introduced in chapter “Web
Ontology Language: OWL,” an ontology also contains instances of important
concepts and relationships among these instances, which can be represented
by DL assertions. In the rest of the chapter, we will introduce RDF Schema
(RDFS), an ontological schema language, and a novel modification of RDF(S)
as a semantic foundation for many of the latest Description Logics-based SW
ontology languages, including OWL-DL and OWL 1.1.

3 RDFS: A Web Ontological Schema Language

Following W3C’s ‘one small step at a time’ strategy, RDFS can be seen as a
first try to support expressing simple ontologies with RDF syntax. In RDFS,
predefined Web resources rdfs:Class, rdfs:Resource and rdf:Property can be
used to define classes (concepts), resources and properties (roles), respectively.

Unlike Dublin Core, RDFS does not predefine information properties but a
set of meta-properties that can be used to represent background assumptions
in ontologies:

• rdf:type: the instance-of relationship
• rdfs:subClassOf: the property that models the subsumption hierarchy

between classes
• rdfs:subPropertyOf: the property that models the subsumption hierarchy

between properties
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@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

@prefix elp: <http://example.org/Animal#>

elp:Animal rdf:type rdfs:Class .

elp:Habitat rdf:type rdfs:Class .

elp:Elephant rdf:type rdfs:Class ; rdfs:subClassOf elp:Animal .

elp:liveIn rdf:type rdf:Property ;

rdfs:domain elp:Animal ; rdfs:range elp:Habitat .

elp:south-sahara rdf:type elp:Habitat .

elp:Ganesh rdf:type elp:Elephant ; elp:liveIn elp:south-sahara .

Fig. 4. An RDFS ontology

• rdfs:domain: the property that constrains all instances of a particular
property to describe instances of a particular class

• rdfs:range: the property that constrains all instances of a particular
property to have values that are instances of a particular class

RDFS statements are simply RDF triples; viz. RDFS provides no syntactic
restrictions on RDF triples. Figure 4 shows an animal ontology in RDFS;
it has three classes, i.e. elp:Animal, elp:Habitat and elp:Elephant (which is
rdfs:subClassOf elp:Animal), and a property elp:liveIn, the rdfs:domain and
rdfs:range of which are elp:Animal and elp:Habitat, respectively. In addition,
it states that the resource elp:Ganesh is an instance of elp:Elephant, and that
it elp:liveIns an elp:Habitat called elp:south-sahara.

At a glance, RDFS is a simple ontological schema langauge that supports
only class and property hierarchies, as well as domain and range constraints for
properties. According to the RDF Model Theory (RDF MT) to be explained
in Sect. 3.2, however, it is more complicated than that (see Proposition 1 on
page 79).

3.1 RDF(S) Datatyping

RDF(S) provides a specification of datatypes and data values; accordingly,
it allows the use of datatypes defined by any external type systems, e.g. the
XML Schema type system, which conform to this specification.

Definition 1. (Datatype) A datatype d is characterised by a lexical space,
L(d), which is a non-empty set of Unicode strings; a value space, V (d), which
is a non-empty set, and a total mapping L2V (d) from the lexical space to the
value space.

For example, boolean is a datatype with value space {true, false}, lexical
space {“T”, “F”,“1”,“0”} and lexical-to-value mapping {“T”�→ true, “F”�→
false, “1”�→ true, “0”�→ false}.
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Definition 2. (Typed and Plain Literals) Typed literals are of the form
“v”ˆˆu, where v is a Unicode string, called the lexical form of the typed literal,
and u is a URI reference of a datatype. Plain literals have a lexical form and
optionally a language tag as defined by [1], normalised to lowercase.

The denotation of a typed literal is the value mapped from its enclosed
Unicode string by the lexical-to-value mapping of the datatype associated with
its enclosed datatype URIref. For example, “1”ˆˆxsd:boolean is a typed literal
that represents the boolean value true, while “1”ˆˆxsd:integer represents the
integer 1. Plain literals, e.g. “1”, are considered to denote themselves [9].

The associations between datatype URI references (e.g. xsd:boolean) and
datatypes (e.g. boolean) can be provided by datatype maps defined as follows.

Definition 3. (Datatype Map) We consider a datatype map Md that is a
partial mapping from datatype URI references to datatypes.

Example 2. DatatypeMapMd1 = {〈xsd:string, string〉, 〈xsd:integer, integer〉}
is adatatypemap,wherexsd:string andxsd:integer aredatatypeURI references,
and string and integer are datatypes. ♦

A datatype map may include some built-in XML Schema datatypes (as
seen in Example 2), while other built-in XML Schema datatypes are prob-
lematic and thus unsuitable for various reasons. For example, xsd:ENTITIES
is a list-value datatype that does not fit the RDF datatype model.2 Please
note that derived XML Schema datatypes are not RDF(S) datatypes, because
there is no standard way to access a derived XML Schema datatype through
a URI reference. Therefore, there is no way to include a derived XML Schema
datatype in a datatype map.

3.2 RDF Model Theory

RDF MT provides semantics not only for RDFS ontologies, but also for RDF
triples. RDF MT is built on simple interpretations. To simplify presentations,
in this chapter we do not cover blank nodes, which are identified by local
identifiers instead of URIrefs.

Definition 4. (Simple Interpretation) Given a set of URI references V,
a simple interpretation I of V in the RDF model theory is defined by:

• A non-empty set IR of resources, called the domain (or universe) of I
• A set IP, called the set of properties in I
• A mapping IEXT , called the extension function, from IP to the powerset of

IR × IR

• A mapping IS from URIrefs in V to IR ∪ IP

2 See the RDF semantics document [9] for the complete list of RDF(S) built-in
datatypes.
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Fig. 5. A simple interpretation of V = {a,b,c} (from [9])

Given a triple [s p o .], I([s p o .]) = true if s,p,o ∈ V, IS(p) ∈ IP, and
〈IS(s), IS(o)〉 ∈ IEXT (IS(p)); otherwise, I([s p o .]) = false.

Given a set of triples S, I(S) = false if I([s p o .]) = false for some triple
[s p o .] in S, otherwise I(S) = true. I satisfies S, written as I |= S if I(S)
= true; in this case, we say I is a simple interpretation of S.

Note that Definition 4 does not specify the relationship between IP and
IR, i.e. IP may or may not be disjoint with IR. Figure 5 presents a simple
interpretation I of V = {a,b,c}, where the URIref b is simply interpreted as
a property because IS(b) = 1 ∈ IP, and IEXT (IS(b)), the extension of
IS(b), is a set of pairs of resources that are in IR, i.e. {〈1, 2〉,〈2, 1〉}. Since
〈IS(a), IS(c)〉 ∈ IEXT (IS(b)), I([a b c .]) = true; hence, we can conclude
that I satisfies [a b c .].

The semantics of RDF triples is given in terms of RDF-Interpretations.

Definition 5. (RDF-Interpretation) Given a set of URI references V and
the set rdfV, called the RDF vocabulary, of URI references in the rdf: names-
pace, an RDF-interpretation of V is a simple interpretation I of V ∪ rdfV
that satisfies:

1. For p ∈ V ∪ rdfV, IS(p) ∈ IP iff 〈IS(p), IS(rdf:Property)〉 ∈
IEXT (IS(rdf:type))

2. All the RDF axiomatic statements3

Condition 1 of Definition 5 implies that each member of IP is a resource
in IR, due to the definition of IEXT in Definition 4; in other words, RDF-
interpretations require IP to be a subset of IR. RDF axiomatic statements
3 Readers are referred to [9] for the list of the RDF axiomatic statements.
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mentioned in Condition 2 are RDF statements about RDF built-in vocab-
ularies in rdfV; e.g. [rdf:type rdf:type rdf:Property.] is an RDF axiomatic
statement. According to Definition 5, any RDF-interpretation I should satisfy
[rdf:type rdf:type rdf:Property.], viz. IS(rdf:type) should be in IP.

Finally, the semantics of RDFS statements written in RDF triples is given
in terms of RDFS-Interpretations.

Definition 6. (RDFS-Interpretation) Given rdfV, a set of URI refer-
ences V and the set rdfsV, called the RDFS vocabulary, of URI references in
the rdfs: namespace, an RDFS-interpretation I of V is an RDF-interpretation
of V ∪ rdfV ∪ rdfsV which introduces:

• A set IC, called the set of classes in I

• A mapping ICEXT (called the class extension function) from IC to the set of

subsets of IR

and satisfies the following conditions (let x,y,u,v be URIrefs in V ∪ rdfV ∪
rdfsV)4:

1. IS(x) ∈ ICEXT (IS(y)) iff 〈IS(x), IS(y)〉 ∈ IEXT (IS(rdf:type))
2. IC = ICEXT (IS(rdfs:Class)) and IR = ICEXT (IS(rdfs:Resource)),
3. If 〈IS(x), IS(y)〉∈ IEXT (IS(rdfs:domain)) and 〈IS(u), IS(v)〉∈ IEXT (IS(x)),

then IS(u) ∈ ICEXT (IS(y))
4. If 〈IS(x), IS(y)〉 ∈ IEXT (IS(rdfs:range)) and 〈IS(u), IS(v)〉 ∈ IEXT (IS(x)),

then IS(v) ∈ ICEXT (IS(y))
5. IEXT (IS(rdfs:subPropertyOf)) is transitive and reflexive on IP
6. If 〈IS(x), IS(y)〉 ∈ IEXT (IS(rdfs:subPropertyOf)), then IS(x),IS(y) ∈ IP and

IEXT (IS(x)) ⊆ IEXT (IS(y))
7. IEXT (IS(rdfs:subClassOf)) is transitive and reflexive on IC
8. If 〈IS(x), IS(y)〉 ∈ IEXT (IS(rdfs:subClassOf)), then IS(x),IS(y) ∈ IC and

ICEXT (IS(x)) ⊆ ICEXT (IS(y))

9. If IS(x) ∈ IC, then 〈IS(x), IS(rdfs:Resource)〉 ∈ IEXT (IS(rdfs:subClassOf))

and satisfies all the RDFS axiomatic statements.5

Condition 1 indicates that a ‘class’ is not a strictly necessary but conve-
nient semantic construct [9] because the class extension function ICEXT is
simply ‘syntactic sugar’ and is defined in terms of IEXT . Handling classes
in this way can be counter-intuitive (cf. Proposition 1). Condition 2 to 8
are about RDFS meta-properties rdfs:domain, rdfs:range, rdfs:subPropertyOf
and rdfs:subClassOf. Condition 9 ensures that all classes are sub-classes of
rdfs:Resource.

Proposition 1. The RDFS statements [rdfs:Resource rdf:type rdfs:Class .]
and [rdfs:Class rdfs:subClassOf rdfs:Resource.] are always true in all RDFS-
interpretations.
4 We only focus on the core RDFS primitives, i.e. the RDFS predefined meta-

properties introduced on page 75.
5 Again, readers are referred to [9] for a list of the RDFS axiomatic statements,

which includes, e.g. [rdf:type rdfs:range rdfs:Class.].
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Proof. For [rdfs:Resource rdf:type rdfs:Class.]:

1. According to the definition of IS and Definition 5, for any resource x, we
have IS(x) ∈ IR. Due to IR = ICEXT (IS(rdfs:Resource)) and Condi-
tion 1 in Definition 6, 〈IS(x), IS(rdfs:Resource)〉 ∈ IEXT (IS(rdf:type)).
Since rdf:Property is a built-in resource, we have 〈IS(rdf:Property),
IS(rdfs:Resource) 〉 ∈ IEXT (IS(rdf:type)).

2. Due to [rdf:type rdfs:range rdfs:Class.] (an RDFS axiomatic statement),
〈IS(rdf:Property), IS(rdfs:Resource)〉 ∈ IEXT (IS(rdf:type)) and Con-
dition 4 in Definition 6, we have IS(rdfs:Resource) ∈ICEXT (IS())
rdfs:Class. Therefore, for any RDFS-interpretation I, we have I |=
[rdfs:Resource rdf:type rdfs:Class.].

For [rdfs:Class rdfs:subClassOf rdfs:Resource .]: According to the defi-
nition of IC, every class is its member, including IS(rdfs:Class), viz.IS()
rdfs:Class ∈ IC. Due to Condition 9 of Definition 6, 〈IS(rdfs:Class),
IS(rdfs:Resource)〉 ∈ IEXT (IS(rdfs:subClassOf)); hence, for any RDFS-
interpretation I, we have I |= [rdfs:Class rdfs:subClassOf rdfs:Resource.]

�

The two RDFS statements in Proposition 1 suggest a strange situa-
tion for rdfs:Class and rdfs:Resource as discussed in [18]: On the one hand,
rdfs:Resource is an instance of rdfs:Class; on the other hand, rdfs:Class is a
sub-class of rdfs:Resource. Hence is rdfs:Resource an instance of its sub-class?
Users may find this counter-intuitive and thus hard to understand – this is
why we say that RDF(S) is more complicated than it appears. We will address
this issue in Sect. 5.

Now we define RDFS-interpretations w.r.t. a datatype map Md.

Definition 7. (RDFS Md-Interpretation) Given a datatype map Md, an
RDFS Md-interpretation I of a vocabulary V is any RDFS-interpretation of
V ∪ {u | ∃ d.〈u, d〉 ∈ Md} which introduces

• A distinguished subset LV of IR, called the set of literal values, which contains
all the plain literals in V

• A mapping IL from typed literals in V into IR

and satisfies the following extra conditions:

1. LV = ICEXT (IS(rdfs:Literal))
2. For each pair 〈u, d〉 ∈ Md

(a) ICEXT (d) = V (d) ⊆ LV
(b) There exist d ∈ IR s.t. IS(u) = d
(c) IS(u) ∈ ICEXT (IS(rdfs:Datatype))
(d) For “s”ˆˆu′ ∈ V, IS(u′) = d, if s ∈ L(d), then IL(“s”ˆˆu′) = L2S(d)(s),

otherwise, IL(“s”ˆˆu′) �∈ LV,

3. If d ∈ ICEXT (IS(rdfs:Datatype)), then 〈d, IS(rdfs:Literal)〉 ∈ IEXT (rdfs:

subClassOf ).
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According to Definition 7, LV is a subset of IR; i.e. literal values are
resources. Condition 1 ensures that the class extension of rdfs:Literal is LV.
Condition 2) asserts that RDF(S) datatypes are classes, condition 2) ensures
that there is a resource d for datatype d in Md, condition 2) ensures that
the class rdfs:Datatype contains the datatypes used in any satisfying Md-
interpretation, and condition 2) explains why the range of IL is IR rather
than LV (because, for “s”ˆˆu, if s �∈ L(IS(u)), then IL(“s”ˆˆu) �∈ LV).
Condition 3 requires that RDF(S) datatypes are sub-classes of rdfs:Literal.

If the datatypes in the datatype map Md impose disjointness conditions
on their value spaces, it is possible for an RDF graph to have no RDFS Md-
interpretation which satisfies it, i.e. there exists a datatype clash. For example,

: x rdf:type xsd:string.

: x rdf:type xsd:decimal.

would constitute a datatype clash because the value spaces of xsd:string and
xsd:decimal are disjoint. In RDF(S), an ill-typed literal does not in itself
constitute a datatype clash, cf. Condition 2) in Definition 7, but a graph which
entails that an ill-typed literal has rdf:type rdfs:Literal would be inconsistent.

Having described the semantics, we now briefly discuss reasoning in
RDF(S). Entailment is the key inference problem in RDF(S), which can be
defined on the basis of interpretations. Indeed, cRDF is impossible to express
contradictions if we do not consider datatypes.

Definition 8. (RDF Entailments) Given two sets of RDF statements S1

and S2, and a datamap Md, S1 simply entails (RDF-entails, RDFS-entails,
RDFS-Md-entails) S2 if all the simple interpretations (RDF-interpretations,
RDFS-interpretations, RDFS Md-interpretation, resp.) of S1 also satisfy S2.

4 Mismatch between RDF(S) and OWL-DL

This section describes the relation between RDF(S) and OWL-DL, which is
a key sub-language of the standard (W3C recommendation) Web Ontology
Langauge. One key question is whether it is possible to use an RDF(S) infer-
ence engine to do OWL-DL reasoning, or vice versa. The short answer is no,
and this section explains why.

The OWL recommendation actually consists of three languages of increas-
ing expressive power: OWL-Lite, OWL-DL and OWL-Full. OWL-Lite and
OWL-DL are basically very expressive description logics (DLs). OWL-Full
provides the same set of constructors as OWL-DL, but allows them to be
used in an unconstrained way (in the style of RDF). OWL-Full is undecidable,
because it combines the OWL expressivity with the meta-modelling architec-
ture of RDF(S) [15].6 Accordingly, OWL-DL is the most expressive decidable
6 Another reason that OWL-Full is undecidable is that it does not impose restric-

tions on the use of transitive properties [12].
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sub-language of OWL. More details of the OWL language can be found in
chapter “Web Ontology Language: OWL.”

This section discusses both the syntactic and semantic mismatches between
RDF(S) and OWL-DL. From the syntax aspect, OWL-DL heavily restricts
the syntax of RDF(S), viz. some RDF(S) annotations are not recognisable
by OWL-DL agents, since they are syntactically ill formed. The RDF/XML
syntax form of an OWL-DL ontology is valid, iff it can be translated (according
to the mapping rules provided in [25]) from the abstract syntax form of the
ontology. Actually, it is far from an easy task to check if an RDF graph is
an OWL-DL ontology [11], since no inverse mapping is defined in the OWL
specification.

From the semantics aspect, OWL-DL has an RDF MT-style semantics,
in which (including built-in) classes and properties are treated as objects
(or resources) in the domain. In order to make it equivalent to the direct
semantics of OWL-DL [25], the domain of discourse is divided into several
disjoint parts. In particular, the interpretations of classes, properties, individ-
uals and OWL/RDF vocabulary are strictly separated. Therefore, classes and
properties, unsurprisingly, cannot be treated as ordinary resources as they are
in RDF MT. Strictly speaking, even those RDF(S) statements which are valid
OWL-DL statements do not share the same meaning in an RDF(S) ontology
and an OWL-DL ontology.

OWL-Full seems to be a bridge between RDF(S) and OWL-DL; however,
there exist at least three known issues that the RDF-style semantics for OWL-
Full needs to solve, and a proven solution has yet to be given. The first issue
is about entailment [23]. Consider the following question: does the following
individual axiom

Individual(ex:John

type(intersectionOf(ex:Student ex:Employee ex:European)))

entail the individual axiom

Individual(ex:John

type(intersectionOf(ex:Student ex:European)))?

In OWL-DL, the answer is simply ‘yes’, since intersectionOf(ex:Student
ex:Employee ex:European) is a sub-class of intersectionOf(ex:Student
ex:European). Since in RDF(S) every class is a resource, OWL-Full needs
to make sure of the existence of the resource intersectionOf(ex:Student
ex:European) in every possible interpretation; otherwise, the answer will be
‘no’ which leads to a disagreement between OWL-DL and OWL-Full. In
general, OWL-Full introduces so called comprehension principles to add all
the missing resources into the domain for all the OWL class descriptions. It
has yet to be proved that the proper resources are all added into the uni-
verse, no more and no less, and that the added resources will not bring any
side-effects.
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The second issue is about contradiction classes [11, 23, 24]. In OWL-Full,
it is possible to construct a class the instances of which have no rdf:type
relationship linked to:

: c owl:onProperty rdf:type; owl:allValuesFrom : d.

: d owl:complementOf : e.

: e owl:oneOf : l

: l rdf:first : c; rdf:rest rdf:nil.

The above triples require that rdf:type relates members of the class : c
to anything but : c. It is impossible for one to determine the member-
ship of : c. If an object is an instance of : c, then it is not; but if
it is not then it is – this is a contradiction class. Note that it is not a
valid OWL-DL class, as OWL-DL disallows using rdf:type as an object
property. With naive comprehension principles, resources of contradiction
classes would be added to all possible OWL-Full interpretations, which
thus have ill-defined class memberships. To avoid the issue, the compre-
hension principles must also consider avoiding contradiction classes. Un-
surprisingly, devising such comprehension principles took a considerable
amount of effort [11], and no proof has ever shown that all possible con-
tradiction classes are excluded in the comprehension principles of OWL-
Full.

The third issue is about the size of the universe [10]. Consider the following
question: is it possible that there is only one object in an interpretation of
the following OWL ontology?

Individual(elp:Ganesh type(elp:Elephant))

DisjointClasses(elp:Elephant elp:Plant)

In OWL-DL, classes are not objects, so the answer is ‘yes’: The only object in
the domain is the interpretation of elp:Ganesh, the elp:Elephant class thus
has one instance, i.e. the interpretation of elp:Ganesh, and the elp:Plant
class has no instances. In OWL-Full, since classes are also objects, besides
elp:Ganesh, the classes elp:Elephant and elp:Plant should both be mapped
to the only one object in the universe. This is not possible because the in-
terpretation of elp:Ganesh is an instance of elp:Elephant, but not an in-
stance of elp:Plant; hence, elp:Elephant and elp:Plant should be different,
i.e. there should be at least two objects in the universe. As the above ax-
ioms are valid OWL-DL axioms, this example shows that OWL-Full disagrees
with OWL-DL on valid OWL-DL ontologies. To partially address this issue,
the OWL specification weakens the relations between OWL-DL and OWL-
Full by claiming (with a sketched proof) that, given two OWL-DL ontologies
O1 and O2, O1 entails O2 w.r.t. the OWL-DL semantics implies that O1
entails O2 w.r.t. the OWL-Full semantics. Furthermore, this example shows
that the interpretation of OWL-Full has different features than the interpreta-
tion of standard first order logic (FOL) model theoretic semantics. This raises
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the question as to whether it is possible to layer FOL languages on top of
RDF(S).

It should be noted that for some the above presentation of the three
issues might be a little too negative about the situation w.r.t. OWL-Full
and OWL-DL: the first two issues are difficulties that have, in theory, been
claimed to be solved by the use of comprehension principles and restrictions
on the syntactic form of OWL-DL’s RDF serialisation. From this perspec-
tive, the main side effect of comprehension principles is that all OWL-
Full models have infinite domains; hence, any OWL-DL ontologies that
have only finite models are necessarily inconsistent when treated as OWL-
Full ontologies. This leads to the third issue and demonstrates why, in the
OWL specification, the relations between OWL-Full and OWL-DL is weak-
ened.

5 RDFS-FA: Connecting RDF(S) and OWL-DL

In this section, we introduce RDFS-FA (RDFS with Fixed layered meta-
modelling architecture), as a sub-language of RDF(S), to restore the desired
connection between RDF(S) and OWL-DL. RDFS-FA addresses the following
characteristics of RDF(S):

• RDF triples have built-in semantics.
• Classes and properties, including built-in classes and properties of RDF(S)

and its subsequent languages such as OWL, are treated as objects (or re-
sources) in the domain.

• There are no restrictions on the use of built-in vocabularies.

Intuitively, RDFS-FA provides a UML like meta-modelling architecture.
Let us recall that RDFS has a non-layered meta-modelling architecture; re-
sources in RDFS can be classes, objects and properties at the same time, viz.
classes and their instances (as well as relationships between the instances) are
the same layer. RDFS-FA, instead, divides up the universe of discourse into
a series of strata (or layers). The built-in modelling primitives of RDFS are
separated into different strata of RDFS-FA, and the semantics of modelling
primitives depend on the stratum they belong to. Theoretically there can
be a large number of strata in the meta-modelling architecture; in practice,
four strata (as shown in Fig. 6) are usually enough. The UML-like meta-
modelling architecture makes it easier for users who are familiar with UML
to understand and use RDFS-FA.

In RDFS-FA, classes cannot be objects and vice versa;7 in RDFS, Web
resources can be classes, properties, objects or even datatypes all at once. We
argue that RDFS-FA is more intuitive than RDFS based on the following ob-
servation: when users design their ontologies, a common concern is to decide
7 Classes can be regarded as mega-objects in upper strata of the meta-modelling

architecture.
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Fig. 6. The UML-like meta-modelling architecture (number of strata = 4) of RDFS-
FA

@prefix fa: <http://dl-web.man.ac.uk/rdfsfa/ns#>

@prefix elp: <http://example.org/Animal#>

elp:Animal fa:type2 fa:Class2 .

elp:Habitat fa:type2 fa:Class2 .

elp:Elephant fa:type2 fa:Class2 ; fa:subClassOf2 elp:Animal .

elp:liveIn fa:type2 fa:AbstractProperty2 ;

fa:domain2 elp:Animal ; fa:range2 elp:Habitat .

elp:south-sahara fa:type1 elp:Habitat .

elp:Ganesh fa:type1 elp:Elephant ; elp:liveIn elp:south-sahara .

Fig. 7. An RDFS-FA ontology

whether to model something in the domain as a class or as an object (see
also [17]). This concern suggests that users intuitively tend to assume that
classes and objects should be different from each other. Therefore, layered
meta-models could be more intuitive than non-layered meta-models.

Readers are referred to [21] for a formal introduction of RDFS-FA on-
tologies and their semantics. Informally speaking, an RDFS-FA ontology is
a set of RDFS-FA axioms, which are basically RDF triples (in N3 syntax)8

with extra syntactic rules, which (1) disallow arbitrary use of its built-in
vocabulary and (2) enable the use of meta-classes and meta-properties in
specified layers as well as the use of annotation properties.

Figure 7 shows an example RDFS-FA ontology. Firstly, the layering struc-
ture is clear. elp:Animal, elp:Habitat, elp:Elephant and elp:liveIn are in
stratum 1 (the Ontology layer), while elp:Ganesh and elp:south- sahara are
in stratum 0 (the Instance Layer). Secondly, RDFS-FA disallows arbitrary
use of its built-in vocabulary. For example, in class inclusion axioms, the

8 Here we use the N3 syntax, instead of the RDF/XML syntax, as it is more
compact.
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subjects can only be only user-defined class URIrefs (such as elp:Animal),
which could disallow triples like

fa:Resource1 fa:subClassOf2 elp:Animal .

Furthermore, RDFS-FA allows users to specify classes and properties in
specified strata. For example, the class inclusion axiom

elp:Elephant fa:subClassOf2 elp:Animal .

requires that both elp:Elephant and elp:Animal are class URIrefs in stra-
tum 1.

We conclude this section by showing the interoperability between RDFS-
FA and OWL-DL. It is much easier to layer OWL-DL, syntactically and
semantically, on top of RDFS-FA than on top of RDF(S). In particular,
there is a one-to-one bidirectional mapping (see [21] for details) between the
RDFS-FA axioms in strata 0-1 and OWL-DL axioms in OWL abstract syn-
tax. For example, the RDFS-FA class inclusion axiom [C1 fa:subClassOf2 D1.]
can be mapped to the OWL class axiom (SubClassOf C1 D1) and vice versa.
In the syntactic level, it is easier to layer OWL-DL on top of RDFS-FA
than on top of RDF(S), due to the above bidirectional mapping. Let us
recall that, according to the OWL Semantics and Abstract Syntax docu-
ment [25], the mapping between OWL-DL axioms, or OWL axioms for short,
and RDF(S) statements is only unidirectional, i.e. from OWL axioms to
RDF(S) statements. For example, we can map the following OWL axiom
SubClassOf (C1 D1) to the RDF(S) statement [C1 rdfs:subClassOf D1.], with
an implicit OWL constraint, viz., C1 and D1 can only be class URIrefs, but
not URIrefs for properties or individuals, etc. However, the above RDF(S)
statement without such (implicit) constraint cannot be correctly mapped to
the OWL axiom (SubClassOf C1 D1). In the semantic level, it can be shown
that the above bidirectional mapping is a semantics-preserving mapping [21].

It has be shown [22] that we can extend OWL DL with the meta-modelling
architecture of RDFS-FA into OWL-FA, and that OWL-FA is also decidable.

6 Related Work

As earlier works [4, 16] pointed out, RDFS has a non-standard and non-fixed
layer meta-modelling architecture, which makes some elements in the model
have multiple roles in the RDFS specification. Therefore, it makes even the
RDFS specification itself somehow confusing and difficult to understand for
users. To clear up any confusion, Pan and Horrocks [18] proposed a Fixed
layer meta-modelling Architecture for RDFS, reducing the multiple roles
of RDFS built-in primitives by stratifying them into different layers of the
meta-modelling architecture. Subsequently, the RDF Model Theory (RDF
MT) [9] gave an official semantics for RDF and RDFS, justifying the dual
roles by treating both classes and properties as objects in the universe. Pan
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and Horrocks [19] suggested that RDFS could have two kinds of semantics,
i.e. RDF MT and the stratified semantics of RDFS(FA).

Horst [29] extends RDF MT to cover some OWL constructors and ax-
ioms by proposing the so-called pD* semantics. Interestingly, the pD* se-
mantics is in line with the ‘if-semantics’ of RDFS and weaker than the
‘iff-semantics’ that is used in the RDF-compatible semantic for OWL
DL and OWL Full. One of the motivations of having the iff-semantics
in the RDF-compatible semantic for OWL is to solve the ‘too few en-
tailment’ problem [19]. Note that the iff-semantics is not relevant to the
direct semantics of OWL DL. Among the 15 OWL URIs, the pD* inter-
prets owl:FunctionalProperty, owl:InverseFunctionalProperty, owl:
SymmetricProperty and owl:Transi- tiveProperty as the if conditions of
the standard mathematical definitions. The owl:inverseOf is interpreted
as that if two properties are owl:inverseOf-related, then their extensions
are each other’s inverse as binary relations. The pD* semantics requires
that two classes are equivalent if and only if they are both subclasses
of each other. owl:equivelantProperty is treated in a similar way to
owl:equivalentClass. The pD* semantics interprets owl:sameAs as an
equivalence relation.In particular, the pD* semantics includes the iff condi-
tion for owl:hasValue. But for owl:someValueFrom and owl:allValueFrom,
the pD* semantics still includes half of OWL’s iff conditions. If two classes
are owl:disjointWith-related the pD* semantics requires their extensions are
disjoint. The pD* semantics requires that the extensions of owl:sameAs
and owl:differentForm are disjoint. Based on the pD* semantics discussed
above, the corresponding pD* entailment rules are also given in [29]. It con-
sists of 23 rules to illustrate that what conclusion can be deduced from some
given premises. These rules are proved to be sound and complete with respect
to the pD* semantics.

Patel-Shneider et al. [25] extended RDFS with OWL constructors to OWL
Full, which keeps the meta-modelling architecture of RDFS. Motik [15] shows
that the meta-modelling architecture of OWL Full contributes to its undecid-
ability. Motik [15] also provides two alternative meta-modelling approaches
for OWL DL, i.e. the contextual approach and the HiLog approach.

• In the context approach, the names for classes, properties and individuals
are not distinct and are interpreted depending on the context; i.e. they
are interpreted by class interpretation functions, property interpretation
functions and individual interpretation functions, respectively. Intuitively
speaking, this approach provides a ‘two-layered’ meta-modelling architec-
ture, i.e. the instance layer and class layer. OWL FA provides a ‘multi-
layered’ meta-modelling architecture. At a quick glance, the ‘two-layered’
and the ‘multi-layered’ meta-modelling architectures should be similar;
however, the example we show later in this section indicates that they are
quite different.
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• The HiLog approach is closer to the spirit of OWL Full meta-modelling.
It has a ‘two-step’ interpretation function for classes, which first maps
symbols to resources in the domain and then maps these resources to a set
of resources in the domain. Intuitively speaking, this approach provides
a ‘one-layered’ meta-modelling architecture, in the sense that classes and
individuals are both interpreted as resources in the domain. Note that it
is dificult/impossible to map classes in the ‘one-layered’ meta-modelling
architecture to the ‘multi-layered’ meta-modelling architectures such as
that of MOF.

We now use an example in [15] to illustrate some of the differences among
the above two approaches and our approach. Let us consider the following
knowledge base9 Σ ={ Harry :1 Eagle, Harry :1 ¬Aquila,Eagle =1 Aquila}.
In the contextual approach, since Eagle and Aquila as concepts and as indi-
viduals are independent, Σ is satisfiable. In the HiLog approach, it is not
satisfiable because Eagle and Aquila are interpreted as the same object, let
us call it a, and Harry cannot be both in and not in the concept extension
of a. In OWL FA, Σ is unsatisfiable because the meta-individual equality
axiom Eagle =1 Aquila indicates two concepts Eagle and Aquila are equivalent,
and HarryI cannot be both in and not in EagleI . This example indicates
the contextual semantics (at least sometimes) is not as intuitive as the Hilog
semantics and the FA semantics.

Let us conclude this section by briefly comparing the three approaches.
In terms of syntax, the contextual and Hilog approaches seem to be more
elegant in that they do not have to change the syntax of OWL DL, while
the FA approach introduces strata numbers to facilitate the ‘multi-layered’
meta-modelling architecture. In terms of semantics, it seems that the FA
approach is closer to the Hilog approach (according to the above example). It
is an interesting peace of future work to investigate more detailed differences
between the Hilog approach and the FA approach. In terms of computability,
the FA approach is closer to the contextual approach in that we can reduce
the reasoning services (such as knowledge base satisfiability) to existing DL
reasoning services. Finally, the contextual approach and the Hilog approach
have not covered datatypes yet, while the FA approach covers datatypes. In
order to support datatypes in the contextual approach, some extra syntax
may be needed for OWL DL, otherwise it is difficult to distinguish the con-
texts. For example, in ∃R.E, E can be either a class or a datatype. It is not
clear how to support datatypes in the Hilog approach yet.

Other existing approaches either limit the extension of RDF(S) to only
a property-related subset of OWL with a weaker semantics proposed by ter
Horst ([28, 29]), or weaken the semantic connection between the individual
interpretation and class interpretation of a given URI [6], hence failing to
propagate important inferences from meta-classes to classes (see [21]).

9 In [15], the subscripts are not used.
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7 Conclusion

In this chapter, we have presented RDF. RDF is a standard syntax for
Semantic Web annotations and languages. RDF Schema is an ontological
schema language that supports only class and property hierarchies, as well
as domain and range constraints for properties. RDF(S) has a key role in
supporting such compatibility by providing a common basis on which more
expressive SW languages can be built. Recent research, however, has shown
that there exist syntactic and semantic mismatch between RDF(S) and OWL-
DL. Accordingly, this chapter includes a novel modification of RDF(S), called
RDFS-FA, which provides a solid semantic foundation for many of the latest
Description Logic-based SW ontology languages, and imposes no limitation
on its extension to more expressive Description Logics (such as OWL-DL,
OWL2-DL and OWL-Eu [20]).

In chapter “RDF Storage and Retrieval Systems,” we will further describe
entailment and querying over RDF(S) ontologies. As for RDFS-FA, reasoning
in RDFS-FA and its OWL extension, OWL-FA, is discussed in [22]; such
reasoning can be performed by reduction to OWL-DL reasoning.
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