RDF Storage and Retrieval Systems

Alice Hertel, Jeen Broekstra, and Heiner Stuckenschmidt

! Fraunhofer Institute for Information and Data Processing, Fraunhoferstr. 1,
76131 Karlsruhe, Germany, alice.hertel@iitb.fraunhofer.de

2 Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven,
The Netherlands, j.broekstra@tue.nl

3 University of Mannheim, Schloss, 68131 Mannheim, Germany,
heiner@informatik.uni-mannheim.de

Summary. Ontologies are often used to improve data access. For this purpose,
existing data has to be linked to an ontology and appropriate access mechanisms have
to be provided. In this chapter, we review RDF storage and retrieval technologies as
a common approach for accessing ontology-based data. We discuss different storage
models, typical functionalities of RDF middleware such as data model support and
reasoning capabilities and RDF query languages with a special focus on SPARQL as
an emerging standard. We also discuss some trends such as support for expressive
ontology and rule languages.

1 Introduction

It is widely acknowledged that information access can benefit from the use
of ontologies. For this purpose, available data has to be linked to concepts
and relations in the corresponding ontology and access mechanisms have to
be provided that support the integrated model consisting of ontology and
data. The most common approach for linking data to ontologies is via an
RDF representation of available data that describes the data as instances of
the corresponding ontology that is represented in terms of an RDF Schema
(compare chapter “Resource Description Framework”). Due to the practical
relevance of data access based on RDF and RDF Schema, a lot of effort
has been spent on the development of corresponding storage and retrieval
infrastructures.

In this chapter, we summarize the state of the art with respect to exist-
ing storage and retrieval technologies for RDF data. In particular, we first
review the general architecture of RDF infrastructures that normally consist
of a storage and a middleware layer. We discuss important aspects of these
layers covering different storage formats for RDF data, common middleware
functionalities such as RDF Schema reasoning and basic operations for data
access and manipulation. Throughout the chapter, we discuss these aspects on

S. Staab and R. Studer (eds.), Handbook on Ontologies, International Handbooks 489
on Information Systems, DOI 10.1007/978-3-540-92673-3,
(© Springer-Verlag Berlin Heidelberg 2009

490 A. Hertel et al.

a general level and only point to particular systems to provide examples of con-
crete implementations. We further discuss RDF query languages as the most
common interface for interacting with ontology-based RDF data and present
the SPARQL language in more detail. In Sect. 7 we also provide a very brief
overview of existing approaches to extend RDF storage and retrieval systems
to support more complex ontology languages than RDF Schema. We close
with a discussion of current trends and speculate about future developments.

2 Architecture of RDF Stores

An RDF store allows storage of RDF data and schema information, and pro-
vides methods to access that information. Thus, the two primary components
of an RDF store are a repository and a middleware that builds on top of that
repository. The middleware can be further divided into components as the
access methods can be categorized into methods for adding, deleting, query-
ing and exporting data. To describe the different components in detail, we
assume a layered architecture as proposed in [1] and regard the layers from
the bottom up.

Different repositories are imaginable, e.g. main memory, files or databases,
but the access methods should remain the same. Thus, it is reasonable to
encapsulate the access to the repository in an own layer, which provides well-
defined interfaces to the upper layers and can be exchanged if another repos-
itory is used. The inference support also resides in this layer as close to the
repository as possible. Sesame [1] implements such a layer and calls it the
Storage And Inference Layer (SAIL).

The above mentioned access methods are located on a higher level and
address the interfaces of the SAIL (or directly address the repository if there
is no SAIL implementation). According to the different requirements of each
access method they can be realized in different modules: The admin module
provides the functionality for adding new data to and deleting data from the
RDF store. Especially when loading data from files this requires parsing and
validating RDF, so an RDF parser and an RDF validator are usually part of
the admin module. The query module handles queries to the RDF store. As
these queries can be formulated in any kind of RDF query language, several
query modules may be necessary, each implementing a parser and handler for
one query language. Finally, the export module allows a dump of the RDF
store into files for data exchange with other systems.

These modules can be accessed locally or remotely, e.g. using SOAP or
RMI. This is why the highest layer in the middleware contains protocol
handlers that can manage different access modes. Figure 1 shows the generic
architecture as proposed in [1]. This architecture is not only valid for Sesame —
other RDF store implementations have a similar modular structure reflecting
the different aspects of an RDF store.

RDF Storage and Retrieval Systems 491

RMI
Handler

SOAP
Handler

Admin Export
Module Module Module

’ Storage and Inference Layer ‘

A
[

Fig. 1. Generic architecture of an RDF store (Sesame)

Query

Middleware

3 Storing RDF Data

RDF schemas and instances can be efficiently accessed and manipulated in
main memory. For persistent storage the data can be serialized to files, but
for large amounts of data the use of a database management system is more
reasonable. Examining currently existing RDF stores we found that they are
using relational and object-relational database management systems (RDBMS
and ORDBMS).

Storing RDF data in a relational database requires an appropriate ta-
ble design. There are different approaches that can be classified in generic
schemas, i.e. schemas that do not depend on the ontology, and ontology spe-
cific schemas. In the following we describe the most important table designs
showing their advantages and shortcomings.

3.1 Generic Schemas

The most simple generic schema is the triple store with only one table re-
quired in the database. The table contains three columns named Subject,
Predicate and Object, thus reflecting the triple nature of RDF statements.
This corresponds to the wvertical representation for storing objects in a table
in [2].

The greatest advantage of this schema is that no restructuring is required
if the ontology changes. Adding new classes and properties to the ontology
can be realized by a simple INSERT command in the table. On the other hand,
performing a query means searching the whole database and queries involving
joins become very expensive. Another aspect is that the class hierarchy cannot
be modeled in this schema, what makes queries for all instances of a class
rather complex.

The triple store can be used in its pure form [3], but most existing sys-
tems add several modifications to improve performance or maintainability. A
common approach, the so-called normalized triple store, is adding two further

492 A. Hertel et al.

Triples: Resources: Literals:
Subject | Predicate | IsLiteral | Object ID URI ID Value
r1 r2 False r3 r1 L # " Valuet
r1 r4 True 1 2 .H#H2

Fig. 2. Normalized triple store

tables to store resource URIs and literals separately as shown in Fig. 2, which
requires significantly less storage space [4]. Furthermore, a hybrid of the sim-
ple and the normalized triple store can be used, allowing to store the values
themselves either in the triple table or in the resources table [5].

In a further refinement, the Triples table can be split horizontally into
several tables, each modeling an RDF(S) property:

SubConcept for the rdfs:subClass0f property, storing the class hierarchy
SubProperty for the rdfs:subProperty0f property, storing the property
hierarchy

e PropertyDomain for the rdfs:domain property, storing the domains and
cardinalities of properties

e PropertyRange for the rdfs:range property, storing the ranges of
properties
ConceptInstances for the rdf : type property, storing class instances
PropertyInstances for the rdf : type property, storing property instances
AttributeInstances for the rdf:type property, storing instances of
properties with literal values

These tables only need two columns for Subject and Object. The table names
implicitly contain the predicates. This schema separates the ontology schema
from its instances, explicitly models class and property hierarchies and dis-
tinguishes between class-valued and literal-valued properties [1,6].

3.2 Ontology Specific Schemas

Ontology specific schemas are changing when the ontology changes, i.e. when
classes or properties are added or removed. The basic schema consists of one
table with one column for the instance ID, one for the class name and one for
each property in the ontology. Thus, one row in the table corresponds to one
instance. This schema is corresponding to the horizontal representation in [2]
and obviously has several drawbacks: large number of columns, high sparsity,
inability to handle multi-valued properties and the need to add columns to
the table when adding new properties to the ontology, just to name a few.

Horizontally splitting this schema results in the so called one-table-per-
class schema: one table for each class in the ontology is created. A class table
provides columns for all properties whose domain contains this class. This is
tending to the classic entity-relationship-model in database design and bene-
fits queries about all attributes and properties of an instance.

RDF Storage and Retrieval Systems 493

However, in this form the schema still lacks the ability to handle multi-
valued properties, and properties that do not define an explicit domain must
then be included in each table. Furthermore, adding new properties to the
ontology again requires restructuring existing tables.

Another approach is vertically splitting the schema, what results in the
one-table-per-property schema, also called the decomposition storage model.
In this schema one table for each property is created with only two columns
for subject and object. RDF(S) properties are also stored in such tables, e.g.
the table for rdf : type contains the relationships between instances and their
classes.

This approach is reflecting the particular aspect of RDF that properties
are not defined inside a class. However, complex queries considering many
properties have to perform many joins, and queries for all instances of a class
are similarly expensive as in the generic triple schema.

In practice, a hybrid schema combining the table-per-class and table-per-
property schemas is used to benefit from the advantages of both of them. This
schema contains one table for each class, only storing there a unique ID for the
specific instance. This replaces the modeling of the rdf:type property. For
all other properties tables are created as described in the table-per-property-
approach (Fig.3) [7]. Thus, changes to the ontology do not require changing
existing tables, as adding a new class or property results in creating a new
table in the database.

A possible modification of this schema is separating the ontology from the
instances. In this case, only instances are stored in the tables described above.
Information about the ontology schema is stored separately in four additional
tables Class, Property, SubClass and SubProperty [8]. These tables can be
further refined storing only the property ID in the Property table and the
domain and range of the property in own tables Domain and Range [1]. This
approach is similar to the refined generic schema, where the ontology is stored
the same way and only the storage of instances is different.

To reduce the number of tables, single-valued properties with a literal as
range can be stored in the class tables. Adding new attributes would then re-
quire to change existing tables. Another variation is to store all class instances
in one table called Instances. This is especially useful for ontologies where
there is a large number of classes with only few or no instances [8].

ClassA: Property1: ClassB:
ID Subject Obiject ID
L #1 L #1 L H#3 .. #3

Fig. 3. Hybrid schema

494 A. Hertel et al.
3.3 Further Issues

There are further issues that may require an extension of the triple-based
schemas and thus are affecting the design of the database tables:

e Storing multiple ontologies in one database
e Storing statements from multiple documents in one database

Both points are concerning the aspect of provenance, which means keeping
track of the source an RDF statement is coming from.

When storing multiple ontologies in one database it should be considered
that classes, and consequently the corresponding tables, can have the same
name. Therefore, either the tables have to be named with a prefix referring
to the source ontology [7] or this reference is stored in an additional attribute
for every statement. A similar situation arises for storing multiple documents
in one database. Especially, when there are contradicting statements it is im-
portant to know the source of each statement. Again, an additional attribute
denoting the source document helps solving the problem [7].

The concept of named graphs [9] is including both issues. The main idea
is that each document or ontology is modeled as a graph with a distinct
name, mostly a URI. This name is stored as an additional attribute, thus
extending RDF statements from triples to so-called quads. For the database
schemas described above this means adding a fourth column to the tables and
potentially storing the names of all graphs in a further table.

3.4 Object-Oriented Features

Current ORDBMS provide the subtable facility which allows for a better mod-
eling of the subclass and subproperty relationships. The table of a subclass
is then created as a subtable of the superclass table. Consequently, querying
for all instances of a class does not require searching for all triples with the
rdfs:subClassOf property or looking up a SubClass table. However, this
feature should be used carefully, as a new subtable can only be added at the
bottom of the hierarchy. Otherwise, the complete table hierarchy needs to be
rebuilt [1,8].

Oracle! offers another object-relational feature: an own datatype to store
RDF based on a graph data model. RDF triples can be persisted, indexed and
queried, similar to other object-relational data types.

Although the RDF model has several object-oriented characteristics and
most RDF stores are internally working with an object model, approaches to
store RDF data and schema information using object database management
systems (ODBMS) are rarely known. (Object-)Relational databases are still
predominant, when large amounts of data have to be persisted on a server,

! See http://download-east.oracle.com/otndocs/tech/semanticweb/pdf/rdfrm.
pdf

RDF Storage and Retrieval Systems 495

and object databases did not and will most probably not replace them. How-
ever, new developments of ODBMS may show some advantages over RDBMS
in certain applications, e.g. for embeddable persistence solutions in mobile
devices. This is why storing ontologies in an ODBMS is worth a closer look.

4 RDF Middleware

What we call RDF middleware is the layer implementing the access to the
physical RDF data store. Besides an inference mechanism, the access layer
should provide functions for creating, querying and deleting data in the store.
While adding data requires parsing and ideally a validation of the incoming
RDF sentences, querying the RDF store needs the implementation of some
kind of query language as well as an interpretation and a translation of this
query language into calls to the physical RDF storage. Another important
feature of this layer is the possibility to export data to a file for exchange
with other systems.

4.1 Inference for RDF

Inference for RDF is specified by the RDF(S) entailment rules described in
[12]. The practice-relevant rules can be roughly divided into the two following
groups:

e Inferring the transitive closure for the properties rdfs:subClass0f and
rdfs:subProperty0f

e Inferring class memberships analysing the use of properties and their
domains and/or ranges

One approach is to compute the transitive closure using a recursive algorithm
and to store it in database views. This algorithm constructs a view for each
class, starting with the class table and adding the views of all of its sub-
classes examining the statements with the rdfs:subClass0f relationship in
the database. Analogously, a view for each property is constructed from the
rdfs:subProperty0f relationships. A similar algorithm can be used to infer
class membership from the properties of an instance [7].

An alternative is to use a production rule system that generates new facts
from existing ones by forward chaining or applies backward chaining on a
query presented to the system. This brings up an important aspect of the
inference, namely the time, when the inference is executed. There are two
possibilities:

e Inference in advance (eager evaluation)
e Inference at query runtime (lazy evaluation)

496 A. Hertel et al.

The eager evaluation is computing the deductive closure in advance, so the
time to evaluate a query is reduced [1]. However, it also may cause a dramatic
increase of the amount of stored data, potentially generating entailments that
are rarely matching queries. In contrast, the lazy evaluation only performs
evaluation of entailments matched by a given query, so no unused entailments
need to be generated and stored. This significantly increases the query pro-
cessing time. A compromise is to use both methods: those entailment rules
that generate fewer entailments are evaluated in advance, while those requiring
more storage space and less evaluation time are evaluated at query time [4].

Although we describe the inference mechanism as part of the middleware,
the algorithms can also be defined as stored procedures in the database, leav-
ing the inference task to the database management system. This depends on
the capabilities of the DBMS used for storing the data.

4.2 Querying Data

For formulating a query to the RDF store there are several approaches:

e Implementing a proprietary query API
e Implementing a query language

Proprietary query APIs are defining their own query format. E.g. DLDB [7]
is using conjunctive queries composed of atoms whose structure is based on
First Order Logic. Constructing an SQL query is done through a transla-
tion algorithm that substitutes predicates and variables by table and column
names. Another possibility is to create an own query language, e.g. KAON
Query [6] or SeRQL [1].

Most RDF stores are using one of the common RDF query languages like
RQL, RDQL or SPARQL [1,4, 8]. This means implementing a parser that
analyses the syntax of this query language. A potential intermediate step is
to translate the parsed query into relational calculus [4], a graph [8] or the
object model [1] to capture the query semantics. After that, the SQL query
sentence is formed and sent to the database.

The syntax of the created SQL query usually depends on the underlying
DBMS. This is why the implementation of an additional intermediate layer
is reasonable that abstracts from the actual storage mechanism offering stor-
age and retrieval functions. An example for that is the Storage And Inference
Layer (SAIL) in Sesame. The layer can be exchanged according to the used
DBMS and can even be placed on top of another SAIL to offer further func-
tionality like caching recent query results [1].

An important aspect for accessing data is query optimization. It can be
left to the database system, considering the sophisticated evaluation and op-
timization mechanisms of modern RDBMS. So, the query must be translated
to SQL as completely as possible. This is the approach used by most RDF
stores. Another approach is optimizing the query in the middleware itself,
which is particularly interesting if the query engine should be independent

RDF Storage and Retrieval Systems 497

of the underlying storage like in Sesame. Here, the query is translated into a
set of SQL queries and joins or other operations are performed in the query
engine. This not only requires an optimization strategy but also implies a
transaction management, because one RQL query can result in multiple SQL
queries and the state of the database must not change until all these queries
are executed [1].

4.3 Adding, Deleting and Exporting Data

Adding data to the RDF store can be realized by creating new concepts, prop-
erties or instances in main memory using the API and then calling a function
to store them into the knowledge base [5,6]. Another possibility is reading
RDF data from a file or an online source, which is implemented by all RDF
stores as it is important for loading an ontology. Reading RDF data requires
an RDF parser for reading in the statements and mapping them on the object
model or directly on the database schema. Most systems use a parser that
reads the RDF/XML notation, e.g. the ARP (Another RDF Parser), which
is part of the Jena toolkit, or the Raptor RDF parser. Optionally, an RDF
validator can be used to check the incoming data for correctness and for com-
pliance with already loaded schemas [8]. In this case, the schemas should be
loaded before the instances.

Delete operations in RDF stores have to be handled very carefully. While
completely clearing the store is a quite simple function, deleting single state-
ments can entail the deletion of other related statements. This not only
requires recomputing the deductive closure for the RDF store, but also a
mechanism for truth maintenance. Hence, deletions become quite costly [1].

To exchange data with other systems an export mechanism is required.
Most RDF stores implement such an export function which allows to serialize
the ontology and instance data from the RDF store into a file. The com-
mon formats for serializing RDF are N-Triples, N3 notation and RDF /XML
notation.

5 RDF Query Languages

As mentioned in the preceding section, the use of query languages is the
most common way of interacting with an RDF store. Many query languages
already exist that could, in principle, be used to interact with RDF data.
The most obvious example is SQL, the standard query language for relational
databases. In this section, we will explore what properties a query language
for semistructured data, and in particular for RDF, should have, and what the
difference is with existing approaches such as SQL. We will then discuss several
proposals for query languages. In particular, we will describe the SPARQL
query language in more detail.

498

A. Hertel et al.

5.1 General Properties of Query Languages

We can identify several general properties with which one can characterize
query languages. Here, we name six such properties:

Ezxpressiveness: Expressiveness indicates how powerful queries can be for-
mulated in a given language. Ideally, a query language should be expressive
enough to allow the retrieval of any arbitrary combination of values from
the queried model, that is, be complete with respect to its datamodel.
Usually, expressiveness is restricted to maintain other properties such as
safety and to allow an efficient (and optimizable) execution of queries.
Closure: The closure property requires that the results of an operation are
again elements of the data model. This means that if a query language
operates on a graph data model, the query results would again have to be
graphs.

Adequacy: A query language is called adequate if it uses all concepts of the
underlying data model. This property therefore complements the closure
property: For the closure, a query result must not be outside the data
model, for adequacy the entire data model needs to be exploited.
Orthogonality: The orthogonality of a query language requires that all
operations may be used independently of the usage context.

Safety: A query language is considered safe, if every query that is syntac-
tically correct returns a finite set of results (on a finite data set). Typ-
ical concepts that cause query languages to be unsafe are recursion and
negation.

5.2 Path Expressions

One of the main distinguishing features of query languages for semi-structured
data is their ability to reach to arbitrary depths in the data graph. To do this,
these languages all use the notion of path expressions. A path expression is
a simple query, the result of which, for a given data graph, is a set of nodes.
For example, consider the following bit of XML:

<?xml version="1.0"7>
<body>

This page is written by
<author>Jeen Broekstra</author>.
<location>

His tel.nr. at work is <tel>3686</tel>,
his number at home is <tel>555722</tel>, and his
room number is <room>HG7.76</room>.

</location>

</body>

The result of the path expression body.location.tel would be the set of

nodes with the associated values “3,686”, “555,722”.

Many useful regular expressions can be used in path expressions to facil-

itate more complex expressions than just specification of the complete path.
For example, a regular expression location|name specifies either a location

RDF Storage and Retrieval Systems 499

node or a name node. Another very useful pattern is the wildcard, which
matches any node label. Using the symbol to express this, body.tel matches
any path consisting of a body node followed by any node, followed by a tel
node. Also, closure operations, like arbitrary repeats of a regular expression
can be used. For example, body* . tel specifies the set of tel nodes that occur
at arbitrary depth within the body node. At another level of abstraction, regu-
lar expressions can also be used to express matches on the actual string format
of labels. For example the regular expression body. " [aA]uthor" matches any
author node within the body, possibly with the first letter capitalized.

Path expressions, although they are an essential feature of query languages
for semistructured data, can only return a subset of nodes in the database.
They can not construct new nodes, perform joins, or test values stored in the
database. In other words: path expressions are necessary but not sufficient for
a good query language on semistructured data. A query language that lacks
path expressions cannot be considered adequate, nor sufficiently expressive
for querying semistructured data.

5.3 Why not just SQL?

For strictly relational data (as opposed to semistructured data), SQL is by far
the most widely supported query language, including support for large data
storage, efficient indexing schemes, query optimizers, etc. It would therefore
be attractive if we could use this robust and widely available technology for
our purposes of querying semistructured data. Unfortunately, this can only be
done at the cost of a very large gap between the data model in the repository
(e.g. RDF) and the data-model on which the query language is based (the
relational model).

To exemplify this, let us look at how the scenario would look for an XML
implementation in a relational database: as a first step, we would have to
encode the XML data model in the relational model. This would be possible
by assigning each node in an XML tree a unique identifier, with each entry
in the relational database linking such a node with all its descendants and
attributes. The problems start when we want to use this as the basis for
querying the XML structure: each XML query should be compiled into an
SQL query on the underlying relational tables. Typically, a single XML query
(such as: “return all descendants of a given node”) must be compiled into a
complicated set of SQL queries. It is not even clear whether a finite set of
SQL queries could be generated for every reasonable XML query.

Although perhaps attractive as a short term solution, we feel that in the
long run this is not an appropriate solution. Rather, techniques for large data
storage, indexing schemes, query optimizers, etc., should be provided for the
native data model (be it XML or RDF), instead of relying on these techniques
for a completely different data model.

500 A. Hertel et al.
5.4 Querying RDF

RDF documents and RDF schemata can be considered at three different levels
of abstraction:

1. At the syntactic level they are XML documents.

2. At the structure level they consist of a set of RDF triples.

3. At the semantic level they constitute one or more graphs with partially
predefined semantics.

We can query these documents at each of these three levels. We will briefly
consider the pros and cons of doing so for each level in the next few sections.

Querying at the Syntactic Level

As we have seen previously, RDF models can be written down in XML nota-
tion. It would therefore seem reasonable to assume that we can query RDF
using an XML query language (e.g. XQuery?). However, this approach disre-
gards the fact that RDF is not just an XML notation but has its own data
model that is different from the XML tree structure: whereas XML is an
ordered, node-labeled tree structure, RDF is an unordered, node- and edge-
labeled graph structure. XML querying techniques have no functionality for
dealing with differentiating between node and edge labels or with the absence
of order or a tree root. Moreover, relationships in the RDF data that are
not immediately apparent from the XML tree structure become very hard to
query in this approach.

Querying at the Structure Level

When we abstract from the syntax any RDF document represents a set of
triples, each triple representing a statement of the form subject-predicate-
object. A number of query languages have been proposed and implemented
that regard RDF documents as sets of such triples, and that allow to query
such a triple set in various ways.

However, querying at this level means that we now interpret any
RDF model only as a set of triples, including those elements which have
been given special semantics in RDF Schema. For example, the fact that
rdfs:subClass0f is a transitive relation is ignored at this level.

Querying at the Semantic Level

When we consider RDF models at the semantic level we query the full knowl-
edge of everything that the RDF model entails, and not just those facts that
happen to be represented explicitly.

2 See http://www.w3.org/TR/xquery/

RDF Storage and Retrieval Systems 501

There are at least two options to achieve this goal:

1. Compute and store the deductive closure of a graph as a basis for querying.
2. Let a query processor infer new statements as needed per query.

While the choice of an RDF query language is, in principle, independent
of the choice made in this respect, the fact remains that most RDF query
languages have been designed to query a simple triple store and have no
specific functionality or semantics to discriminate between data and schema
information.

5.5 SPARQL

The SPARQL Query Language [23] is a W3C Candidate Recommendation
for querying RDF, and as such is fast becoming the standard query language
for this purpose. In September 2006, almost all major RDF query tools have
begun implementing support for the SPARQL query language. Even though
other query languages (e.g. SeRQL [1], RQL [24], RDQL [25]) have existed
longer and have a more mature implementation base and a more expressive
feature set, they typically are supported by only one or two tools, hindering
interoperability. Several surveys and comparative analyses of these different
query languages have been published, a fairly comprehensive one can be found
in [27]. In this chapter, we will concentrate on the SPARQL query language,
giving a brief introduction into its basic usage, highlighting some interesting
features. For a formal analysis of the semantics and complexity of the SPARQL
language, we recommend reading [26].

Basic Queries

The SPARQL query language is based on matching graph patterns. The sim-
plest graph pattern is the triple pattern, which is like an RDF triple, but with
the possibility of a variable instead of an RDF term in the subject, predicate
or object positions. Combining triple patterns gives a basic graph pattern,
where an exact match to a graph is needed to fulfill a pattern.

As a simple example, consider the following query:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT 7c

WHERE

{
}

The above query retrieves all triple patterns where the property is rdf:type
and the object is rdfs:Class. In other words, this query, when executed, will
retrieve all classes.

Note that like the namespace mechanism we have previously seen for writ-
ing down RDF in XML, SPARQL allows us to define prefixes for namespaces

?c rdf:type rdfs:Class .

502 A. Hertel et al.

and use these in the query pattern, to make queries shorter and easier to read.
In the rest of this chapter, we will omit the declaration of the “rdf” and “rdfs”
prefixes, for brevity.

To get all instances of a particular class, for example the FOAF vocabulary
class “Person”, we write:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT 7i
WHERE

?i rdf:type foaf:Person .

}

SPARQL makes no explicit commitment to support RDFS semantics.
Therefore, the result of this query depends on whether or not the system
answering the query supports RDFS semantics. If it does, then the result of
this query will include all instances of the subclasses of Person as well. If it
does not support RDFS semantics, then it will only retrieve those instances
that are explicitly of type “Person”.

Using Select—From—Where

As in SQL, SPARQL queries have a SELECT-FROM-WHERE structure:

SELECT specifies the projection: the number and order of retrieved data.

FROM is used to specify the source being queried. This clause is optional; when
not specified we can simply assume we are querying the knowledge base
of a particular system.

WHERE imposes constraints on possible solutions in the form of graph pattern
templates and boolean constraints.

For example, to retrieve all e-mail addresses of persons, we can write

SELECT 7x 7?7y
WHERE

{

?x foaf:mbox 7y .

}

Here 7x and 7y are variables, and ?x foaf:mbox 7y represents a resource-
property-value triple pattern.

We can create more elaborate graph patterns to get more complex in-
formation from our queries. For example, to retrieve all persons with name
“Bob” and their phone numbers, we can write

SELECT 7?7x 7?7y
WHERE

{

?x foaf:name "Bob";
foaf:mbox 7y .
}
Here 7x foaf:name "Bob" collects all resources which have a name “Bob”,
as discussed, and binds the result to the variable ?x. The second pattern

RDF Storage and Retrieval Systems 503

collects all triples with predicate mbox. There is an implicit join here, in that
we restrict the second pattern only to those triples, the subject of which is
in the variable 7x. Note that in this case we use a bit of syntax-shortcut
as well: we use a semi-column to indicate that the following triple pattern
shares its subject with the previous one, so the above query is equivalent to
writing down:

SELECT 7x 7y
WHERE

{

?x foaf:name "Bob" .
?x foaf:mbox 7y .

}

We demonstrate an explicit join by a query that retrieves the name of all
persons known by the person with name “Bob”.

SELECT 7n
WHERE

?x rdf:type foaf:Person ;
foaf:name 7n .
7c foaf:name "Bob" ;
foaf:knows 7y .
FILTER (?x = ?7y).
}
In SPARQL, we use a FILTER condition to indicate a boolean constraint.
In this case, the constraint is the explicit join of the variables ?x and 7y by

using an equality (=) operator.

Optional Patterns

The graph patterns we have seen so far are mandatory patterns: either the
knowledge base matches the complete pattern, in which case an answer is
returned, or it does not, in which case the query does not produce a result.
However, in many cases we may wish to be more flexible. Consider, for exam-
ple, the following bit of RDF:

<foaf:Person rdf:about="#bob">
<foaf :name>Bob</foaf :name>
</foaf :Person>

<foaf:Person rdf:about="#alice">

<foaf :name>Alice</foaf :name>

<foaf :mbox>alice@example.org</foaf :mbox>
</foaf :Person>

As you can see, this fragment contains information on two people. For one
person it only lists the name, for the other it also lists the e-mail address.
Now, we want to query for all people and their e-mail addresses:

SELECT 7name 7email
WHERE
{ ?x rdf:type foaf:Person ;

foaf:name 7name ;
foaf :mbox 7email .

504 A. Hertel et al.
The result of this query would be:

Tname ‘ 7email
Alice ‘alice@example.org

So, despite the fact that Bob is listed as a person, the query does not return
him: the query pattern does not match because he has no e-mail address.
As a solution we can adapt the query to use an optional pattern:

SELECT 7name 7email
WHERE
{ ?x rdf:type foaf:Person ;
foaf:name 7name .
OPTIONAL { ?x foaf:mbox ?7email }

}

The meaning is roughly “give us all the names of persons, and if known
also their e-mail address” and the result looks like this:

?name ‘ ?email
Bob
Alice |alice@example.org

This covers the basics of the SPARQL query language. For a full overview
of the SPARQL language and an explanation of more advanced features,
such as named graphs, we recommend reading the SPARQL specification at
http://www.w3.org/TR/rdf-sparql-query/.

6 Scalability of RDF Stores

In terms of data storage and retrieval, scalability and performance is a very
important issue. The performance of an RDF store depends on various fac-
tors: the underlying database system, the database representation of the RDF
schema and instances, the efficiency of the query engine, and the performance
of the inference engine. A detailed overview of the scalability and performance
of different RDF stores would be out of scope of this chapter, but we can men-
tion some interesting points.

Theoharis et al. [10] benchmarked different database representations and
provide detailed results for the approaches described in Sect. 3. In this evalu-
ation the ontology specific schema in its hybrid form performs better in terms
of query execution times of taxonomic queries than the generic schemas. Al-
though only one sort of queries has been evaluated this shows the weakness of
the generic schemas. However, there is always a trade-off between the query ex-
ecution times and the overhead for ontology evolution and table management:
ontology specific schemas suffer from potentially large numbers of tables, and
from the need to change the database schema when adding or deleting a class
or property in the ontology.

An elaborate method and toolset to evaluate Semantic Web repositories
as a whole is the Lehigh University Benchmark (LUBM) [11]. Although it

RDF Storage and Retrieval Systems 505

is focussing on OWL applications, the LUBM can be applied to most of the
RDF stores mentioned above, but there are only few evaluations available.
LUBM provides means to generate a test dataset, several test queries, support
for different degrees of reasoning as well as multiple performance metrics for
load time, repository size, query response time, and query completeness and
soundness.

The W3C maintains a web site recording the size of the largest deployed
installations of triple stores.? End of February 2008 the site reports a number
of systems that have been tested with about one billion statements. The largest
data set is reported by the YARS2 System that is claimed to be able to store 7
billion triples generated using the LUBM benchmark.

7 Beyond RDF Schema

While the development of storage and retrieval systems for semantic data so
far has been focussed on supporting RDF and RDF Schema there is also an
interest in extending available infrastructures to more expressive languages. In
particular, supporting more expressive ontology languages such as OWL-Lite
and OWL-DL as well as expressive rule languages is a subject of active work.
Other activities include the extension of representation and query languages
with advanced features such as time [20], preference and uncertainty (e.g.
[18,19,21]). In the following, we focus on the first kind of activities.

The most straightforward extension of existing RDF infrastructures is a
support for ontologies encoded in OWL. As OWL can be serialized in RDF, the
corresponding models can be stored in any RDF repository without changing
the systems. The structural complexity of the OWL encoding in RDF, espe-
cially the high number of blank nodes, however, makes the access to these
models rather cumbersome. In order to overcome these problems, many RDF
stores use dedicated APIs as part of the middleware layer to support the stor-
age, retrieval and manipulation of OWL ontologies. While some systems such
as Jena use their own ontology API, other systems like KAON adopted the
proposal for a standardized OWL API described in [22].

Naturally, extensions to more expressive languages do not only aim at pro-
viding support at the syntactic level, but also with respect to the semantics of
the corresponding languages. As mentioned above, most RDF stores support
RDF Schema reasoning on the basis of a specialized set of deduction rules.
A common way of extending this fixed schema is to provide support for user
defined rule sets. These rule sets can be used for defining parts of the seman-
tics of OWL [16]. Examples of systems supporting OWL-Lite reasoning on
the basis of custom rule sets are Sesame, Jena and OWLIM [14]. Besides this,
customized rule sets can also be used for capturing domain specific knowl-
edge [15] and for defining efficient subsets of the RDF Schema Semantics for
particular applications [17].

3 http://esw.u3.org/topic/LargeTripleStores

506 A. Hertel et al.

An alternative way of supporting OWL semantics is to provide an interface
to dedicated Description Logic reasoners (e.g. Racer, FaCT or Pellet) either
via specialized data structures or on the basis of the standardized DIG API
(http://dig.sourceforge.net/). Systems differ in the amount of derivable
knowledge that is actually integrated into the RDF model for query answering.
The BOR reasoner (http://www.ontotext.com/bor/) for example computes
the subsumption hierarchy of an OWL ontology and stores the derived sub-
Class relations in the RDF model for further processing. Furthermore, there
are some RDF compatible systems that implement expressive rule languages
such as KAON2 which implements disjunctive datalog [13] or OntoBroker that
implements F-Logic (cf. chapter “Ontologies in F-Logic”).

8 Conclusion

After reviewing a number of existing RDF storage and retrieval systems, we
can draw some conclusions about the state of the art and general trends in
the fields. On the general level, we can say that there is strong convergence
of technologies which is documented by the mergence of SPARQL as a stan-
dard query language but also in terms of features that are common to different
systems. For instance, we can observe that most RDF stores are not really spe-
cialized database systems for RDF data but rather an intelligent middleware
that wraps existing database technology. Besides providing special support
for the graph data model that is characteristic for RDF data, the main func-
tionality provided by this middleware is support for ontological reasoning. An
observation that can be made in connection with these two main functions is
the fact that almost all systems rely on relational databases that provide very
limited support with respect to data model and reasoning. There are very lit-
tle approaches that try to delegate some of these aspects to the storage model
as well by using deductive or object oriented database technologies.

With respect to further development of RDF technologies, we can iden-
tify two trends. The first one that was already mentioned in Sect.7 is the
extension of existing systems to more expressive representation languages. In
this context, rule languages (compare chapter “Ontologies and Rules”) are
the most promising candidates because it has been shown that rule-based
reasoning has the potential to scale to very large data sets whereas ontologi-
cal reasoning based on description logics shows serious limitations when large
numbers of instances are involved. The other major direction of development
concerns the scalability of RDF infrastructures to internet scale. In this con-
text, approaches for distributed RDF processing are becoming more and more
important. Both aspects, expressive representation languages and distribution
are essential with respect to realizing the vision of the semantic web and are
therefore important steps towards real semantic web applications.

RDF Storage and Retrieval Systems 507

References

10.

11.

12.
13.

14.

15.

16.

17.

. Broekstra J (2005) Storage, querying and inferencing for Semantic Web

languages. PhD Thesis, Vrije Universiteit, Amsterdam.

Agrawal R, Somani A, XuY (2001) Storage and querying of e-commerce data.
In: Proceedings of the 27th Conference on Very Large Data Bases, VLDB 2001,
Roma, Italy.

Oldakowski R, Bizer C, Westphal D (2005) RAP: RDF API for PHP. In: Pro-
ceedings of Workshop on Scripting for the Semantic Web, SFSW 2005, at 2nd
European Semantic Web Conference, ESWC 2005, Heraklion, Greece.

Harris S, Gibbins N (2003) 3store: Efficient bulk RDF storage. In: Proceedings
of the 1st International Workshop on Practical and Scalable Semantic Systems,
PSSS 2003, Sanibel Island, FL, USA.

Jena2 database interface — database layout. http://jena.sourceforge.net/
DB/layout.html.

Gabel T, Sure Y, Voelker J (2004) KAON — An overview. Insititute AIFB, Uni-
versity of Karlsruhe. http://kaon.semanticweb.org/main kaonOverview.pdf.
Pan Z, Heflin J (2004) DLDB: Extending relational databases to support
Semantic Web queries. Technical Report LU-CSE-04-006, Department of
Computer Science and Engineering, Lehigh University.

Alexaki S, Christophides V, Karvounarakis G, Plexousakis D, Tolle K (2001)
The ICS-FORTH RDFSuite: Managing voluminous RDF description bases.
In: Proceedings of the 2nd International Workshop on the Semantic Web,
Hongkong.

Caroll J, Bizer C, Hayes P, Stickler P (2004) Semantic Web publishing using
named graphs. In: Proceedings of Workshop on Trust, Security, and Reputation
on the Semantic Web, at the 3rd International Semantic Web Conference, ISWC
2004, Hiroshima, Japan.

Theoharis Y, Christophides V, Karvounarakis G (2005) Benchmarking data-
base representations of RDF/S stores. In: Proceedings of the 4th International
Semantic Web Conference, ISWC 2005, Galway, Ireland.

Guo Y, Pan Z, Heflin J (2005) LUBM: A benchmark for OWL knowledge base
systems. Journal of Web Semantics 3(2):158-182.

RDF semantics — W3C recommendation. http://wuw.w3.org/TR/rdf-mt.
Hustadt U, Motik B, Sattler U (2007) Reasoning in description logics by a re-
duction to disjunctive datalog. Journal of Automated Reasoning 39(3):351-384.
Kiryakov A, Ognyanov D, Manov D (2005) OWLIM: A pragmatic semantic
repository for OWL. In: Proceedings of the International Workshop on Scalable
Semantic Web Knowledge Base Systems, SSWS 2005, WISE 2005, New York
City, NY, USA.

ter Horst H (2005) Combining RDF and part of OWL with rules: Semantics,
decidability, complexity. In: Proceedings of the 4th International Semantic Web
Conference, ISWC 2005, Galway, Ireland.

ter Horst H (2005) Completeness, decidability and complexity of entailment for
RDF Schema and a semantic extension involving the OWL vocabulary. Journal
of Web Semantics 3:79-15.

Munoz J, Perez C, Gutierrez C (2007) Minimal deductive systems for RDF.
In: Proceedings of the 4th European Semantic Web Conference, ESWC 2007,
Innsbruck, Austria.

508

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

A. Hertel et al.

Bernstein A, Kiefer C (2005) iRDQL — Imprecise queries using similarity joins
for retrieval in ontologies. In: Proceedings of the 4th International Semantic
Web Conference, ISWC 2005, Galway, Ireland.

Siberski W, Pan J, Thaden U (2006) Querying the Semantic Web with pref-
erences. In: Proceedings of the 5th International Semantic Web Conference,
ISWC 2006, Athens, GA, USA.

Gutierrez C, Hurtado C, Vaisman A (2007) Introducing time into RDF. IEEE
Transactions on Knowledge and Data Engineering, Special Issue on Knowledge
and Data Engineering in the Semantic Web Era 19:207-218.

Hurtado C, Poulovassilis A, Wood P (2006) A relaxed approach to RDF query-
ing. In: Proceedings of the 5th International Semantic Web Conference, ISWC
2006, Athens, GA, USA.

Bechhofer S, Lord P, Volz R (2003) Cooking the Semantic Web with the OWL
API. In: Proceedings of the 2nd International Semantic Web Conference, ISWC
2003, Sanibel Island, FL, USA.

Prud’hommeaux E, Seaborne A (2006) SPARQL query language for RDF. W3C
Candidate Recommendation. http://www.w3.org/TR/rdf-sparql-query.
Karvounarakis G, Christophides V, Plexousakis D, Alexaki S (2000) Querying
community web portals. Techreport, Institute of Computer Science, FORTH,
Heraklion, Greece. http://www.ics.forth.gr/proj/isst/RDF/RQL/rql.pdf.
Seaborne A (2004) RDQL — A query language for RDF. W3C Member Sub-
mission. http://wuw.w3.org/Submission/2004/SUBM-RDQL-20040109.

Perez J, Arenas M, Gutierrez C (2006) The semantics and complexity of
SPARQL. In: Proceedings of the 5th International Semantic Web Conference,
ISWC 2006, Athens, Georgia, USA.

Haase P, Broekstra J, Eberhart A, Volz R (2004) A comparison of RDF query
languages. In: Proceedings of the 3rd International Semantic Web Conference,
ISWC 2004, Hiroshima, Japan.

