
Ontology Engineering Environments

Riichiro Mizoguchi and Kouji Kozaki

The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan,
miz@ei.sanken.osaka-u.ac.jp, kozaki@ei.sanken.osaka-u.ac.jp

Summary. In this chapter we discuss trends of ontology engineering environments
and their characteristics through comparison between some tools. After a summa-
rization of the recent trends of them, the authors enumerate factors which charac-
terize those environments. Then we take up OntoEdit, Hozo, WebODE, SWOOP
and Protégé, and compare them according to the factors.

1 Introduction

In order to discuss ontology engineering environments, we first need to clarify
what we mean by ontology engineering. Ontology engineering is a successor
of knowledge engineering which has been considered as a key technology for
building knowledge-intensive systems. Although knowledge engineering has
contributed to eliciting expertise, organizing it into a computational struc-
ture, and building knowledge bases, AI researchers have noticed the necessity
of a more robust and theoretically sound engineering which enables knowledge
sharing/reuse and formulation of the problem solving process itself. Knowl-
edge engineering technology has thus developed into “ontology engineering”
where “ontology” is the key concept to investigate.

There is another story concerning the importance of ontology engineering.
It is the Semantic Web. The Semantic Web strongly requires semantic inter-
operability among metadata which are made using semantic tags defined in
different ontologies. The issue here is to build good ontologies to come up with
meaningful sets of tags which are made interoperable by ontology alignment.

Although the importance of ontology is well-understood, it is also known
that building a good ontology is a hard task. This is why there have been
developed some methodologies for ontology development [Chapter 6, 9] and
have been built a number of ontology representation and editing tools.

This chapter discusses factors of an ontology engineering environment
thorough comparison of some tools. The purpose is not to rank them but
to discuss characteristics of them intended to give a guideline for users to

S. Staab and R. Studer (eds.), Handbook on Ontologies, International Handbooks 315
on Information Systems, DOI 10.1007/978-3-540-92673-3,
c© Springer-Verlag Berlin Heidelberg 2009



316 R. Mizoguchi and K. Kozaki

choose an appropriate tool for their purpose. While over a hundred tools are
developed to date, because of the space limitation, this chapter takes up On-
toEdit [22, 23], Hozo [12,13], WebODE [1], SWOOP [10,11] and Protégé [17]
which cover a wide range of ontology development process rather than being
single-purpose tools which are covered elsewhere. After discussing the recent
trends of ontology engineering tools, the authors compare some of them.

2 Trends of Ontology Engineering Environment

In the 1990s, several ontology engineering environments, such as Ontolingua
Server, WebOnto, Ontosaurus, have been developed as the advancement of on-
tology engineering. Reference [3] surveys features of six ontology development
tools at that time and found all tools did not have common ontology repre-
sentation language and they were implemented based on their own ontological
theories and representation models.

In the 2000s, OIL, DAML and DAML+OIL, which are the predecessors
of OWL [Chapter 4], were published, and ontology engineering tools for those
languages were developed. The representatives of them are OilEd, OntoEdit,
Protégé and so on. After RDF(S) [Chapter 3], and OWL were published, these
tools supported them as well as many other tools did. In Ontology Tools Sur-
vey1 on XML.com, 52 tools were listed at November 06, 2002, and 93 tools
were listed at September 14, 2004. At the present, the authors could find about
150 ontology development tools on the web2 (Table 1). This shows a rapid
increase of ontology engineering environments. According to the observation
of these tools, the authors summarize the trends of ontology engineering en-
vironments as follows:

Domain-specific environments: In several domains, such as the Semantic Web,
bioinformatics, medical science, agent technology, and software develop-
ment, ontology development tools specialized to each domain are devel-
oped. For instance, OBO-Edit and DAG-Edit are ontology editors for
Gene Ontology (GO) in bioinformatics, CliniClue is an ontology brows-
ing tool for SNOMED CT in the medical domain, and Zeus is an agent
development tool kit including an ontology editing tool.

Integrated environment for ontology development and use: Several tools are
developed as an integrated environment which supports all processes for
ontology construction to use them for development of ontology-based
applications. Such environments provide users with an ontology editor,
an ontology management tool, API for ontologies and so on. For instance,
IODT (IBM Integrated Ontology Development Toolkit) developed by IBM
includes an Eclipse-based ontology-engineering environment and OWL

1 http://www.xml.com/pub/a/2004/07/14/onto.html
2 Some of them are listed in the web sites such as ESW Wiki SemanticWebTools

(http://esw.w3.org/topic/SemanticWebTools), Ontology Tool Survey and so on.



Ontology Engineering Environments 317

Table 1. List of ontology engineering environments (portion)

@@name of tools @@web site

Domain specific environments

OBO-Edit http://geneontology.sourceforge.net/
DAG-Edit http://amigo.geneontology.org/dev/
CliniClue http://www.cliniclue.com/
Zeus http://labs.bt.com/projects/agents/zeus/
ArgoUML http://argouml.tigris.org/
COE http://cmap.ihmc.us/coe/
CoGui http://www.lirmm.fr/cogui/
Cypher http://www.monrai.com/products/cypher

Integrated environment for ontology development and use

KAON2 http://kaon2.semanticweb.org/
IODT http://www.alphaworks.ibm.com/tech/semanticstk
WSMO Studio http://www.wsmostudio.org/

Supporting system for ontology development based on various techniques

OntoBilder(OntoX, etc) http://iew3.technion.ac.il/OntoBuilder/
OntoGen http://ontogen.ijs.si/
DODDLE-OWL http://doddle-owl.sourceforge.net/

commercial tools

OntoStudio http://www.ontoprise.de/
IODE http://www.ontologyworks.com/
TopBraid http://www.topbraidcomposer.com/

The detailed list is available at http://www.hozo.jp/OntoTools/

ontology storage with an inference system based on RDBMS. WSMO
Studio is Eclipse-based integrated environments to edit the Semantic
Web service for WSMO3 (Web Service Modeling Ontology). It can be
used with other tools for WSMO such as a reasoner, a validator, API for
web services and so on.

Supporting system for ontology development based on various techniques:
Many researchers propose methods to support ontology development
based on various techniques such as Natural Language Processing, Ma-
chine Learning [Chapter 11], and Search Engine. For instance, OntoBilder
supports ontology development by extracting terms form web pages, On-
toGen is a semi-automatic ontology construction system based on machine
learning and text mining algorithms, and DODDLE-OWL supports con-
struction of domain ontology by extracting valuable information from
existing lexical databases or ontologies such as Word-Net4. GINO (a
guided input natural language ontology editor) uses controlled natural
language to edit and query ontologies.

3 http://www.wsmo.org/
4 http://wordnet.princeton.edu/



318 R. Mizoguchi and K. Kozaki

Increase of commercial tools: Recently, commercial tools for ontology devel-
opment are increasing. About 30 tools among 150 which the authors found
are commercial software. Most of them support large scale construction
for development of enterprise system. OntoStudio powered by Ontoprise
is a successor of OntoEdit which was developed in the early days of the
Semantic Web research. It supports RDF(S), OWL as ontology language
and F-Logic for the rule processing. And it can connect to databases, file-
systems, applications and web-serves thorough many connecters. Ontol-
ogy Works provides integrated environments for ontology construction and
uses such as modeling tools, databases server and information integration
software. Their central technology is the Integrated Ontology Develop-
ment Environment (IODETM). It supports construction and management
of high-fidelity domain ontologies. TopBraid ComposerTM is eclipse-based
platform for developing web ontologies and the Semantic Web applica-
tions. It supports the Semantic Web standards and other components for
applications such as Geography and Location Mapping, Ontology-Driven
Forms, UML-like Class Diagrams and so on.

3 Factors of an Ontology Engineering Environment

A comprehensive evaluation of ontology engineering tools is found in [3, 6] in
which the major focus is put on static characteristics of tools. The evaluation
in this chapter is done focusing on dynamic aspects of the tools. We consider
that a lifecycle of ontology engineering process consists of ontology devel-
opment phase, ontology use phase and ontology refinement and evaluation
phase. We concentrate on characteristics of the ontology engineering process
supported by the five environments. Let us enumerate factors by which an
environment should be characterized for each phase.

Ontology development phase The first key task of ontology engineering
is ontology construction. It includes constructions of class hierarchies, de-
scribing definitions of classes, defining relations between classes, and so
on. Ontology engineering environments should support the process with
the following characteristics.

Development methodology Though an ontology development requires a so-
phisticated development methodology, a methodology itself is not suffi-
cient. Developers need an integrated environment which helps them build
an ontology in every phase of the building process. In other words, a com-
puter system should navigate developers in the ontology building process
according to a methodology.

Collaborative development Building an ontology is often done with collab-
oration of multiple developers who need help in orchestration of the
collaborative activities.



Ontology Engineering Environments 319

Compliance with an ontological theory (Theory-awareness) An ontology is
not just a set of concepts but at least a “well-organized” set of concepts.
An environment is expected to guide users to a well-organized ontology
which largely depends on the environment’s discipline of what an ontol-
ogy should be rather than an ad hoc classification of concepts or a frame
representation. This is why an environment needs to be compliant with a
sophisticated theory of ontology.

Ontology use phase Ontology use is the other key task of ontology engi-
neering. Users need also effective support in how to share ontology with
others, how to use/reuse an ontology and how to build an instance model
based on an ontology.

Compliance with WWW standard There are many languages standardized by
W3C: XML, RDF(S), DAML+OIL and OWL, etc. The environment is
required to be compliant with these.

Ontology/Model(instance) server Ontologies and instance models should be
available through internet.

Ontology evaluation and refinement phase To construct a well-
organized ontology, evaluation and refinement of the developed ontology
are repeated many times. An environment should support the process.

Evaluation methodology Many theories and methods for ontology evaluation
are discussed [Chapter 13]. Tools should support them.

Inference service An inference engine is used to check the consistency of on-
tologies/instances.

Refinement mechanism It is important to manage version of ontologies and
its change histories for maintenance of the consistency of ontologies. De-
bugging mechanisms and suggestion for modification are also useful for
refinement of ontologies.

Software level issues
Usability GUI as well as functionality is essential to the usability of the

environment.
Architecture of the environment An environment should be designed in an ad-

vanced and sophisticated architecture to make it usable.
Extensibility It is good if users easily extend the environment.

4 OntoEdit

OntoEdit [22, 23], professional version, is an ontology engineering environ-
ment to support the development and maintenance of ontologies. Ontology
development process in OntoEdit is based on their own methodology, On-To-
Knowledge [Chapter 6] which is originally based on Common KADS method-
ology and consists of major three steps such as requirement specification,
refinement and evaluation processes. The requirement specification consists
of description of the domain and the goal of the ontology, design guidelines,
available knowledge sources, potential users and use cases, and applications



320 R. Mizoguchi and K. Kozaki

Fig. 1. Architecture of OntoEdit

supported by the ontology. The output of this phase is refined into a formal de-
scription in the next phase. Refinement is done usually collaboratively. In the
evaluation phase, competency questions are used to evaluate if the ontology
built can answer these questions.

Figure 1 shows the architecture of OntoEdit consisting of three layers:
GUI, OntoEdit Core and Parser. It employs the plug-in architecture to make
it easily extensible and customizable by the users. It is compliant with XML
family standards in import and export the ontology. At the present, the tech-
nologies of OntoEdit are inherited to OntoStudio as a commercial tool. It has
new features such as connectors to many kinds of resources, integrated rule
management, mapping view between different ontologies and so on.

4.1 Ontology Development Phase

Requirement Specification Phase

Two tools, OntoKick and Mind2Onto, are prepared for supporting this phase
of ontology capture. OntoKick is designed for computer engineers who are fa-
miliar with software development process and tries to build relevant structures
for building informal ontology description by obtaining competency questions
proposed in [8] which the resulting ontology and ontology-based applications
have to answer. Examples of competency questions made by OntoKick include
“which research groups exist at the institute?”, “which teaching courses are
offered by the insti-tute?”, etc. Mind2Onto is a graphical tool for capturing
informal relations between concepts. It is easy to use because it has a good
visual interface and allows loose identification of relations between concepts.
However, it is necessary to convert the map into a more formal organization
to generate an ontology.



Ontology Engineering Environments 321

4.2 Ontology Evaluation and Refinement Phase

Refinement Phase [23]

This phase is for developers to use the editor to refine the ontological struc-
ture and the definition of concepts and relations. Like most of other tools,
OntoEdit employs the client/server architecture where ontologies are man-
aged in a server and multiple clients access and modify it. A sophisticated
transaction control is introduced to enable concurrent development of an on-
tology in a collaborative manner. Because OntoEdit allows multiple users to
edit the same class in an ontology at the same time, it needs a powerful lock
mechanism of each class and devises Strict two Phase Locking protocol: S2PL
to support arbitrary nested transactions.

Evaluation Phase

The key process in this phase is use of competency questions obtained in the
first phase to see if the designed ontology satisfies the requirements. To do
this, OntoEdit provides users with a function to form a set of instances and
axioms used as a test set for evaluating the ontology against the competency
questions. It also provides users with debugging tools for ease of identify and
correct incorrect part of the ontology. It maintains the dependency between
competency questions and concepts derived from them to facilitate the debug-
ging process. This allows users to trace back to the origins of each concept.
Another unique feature of this phase is that collaborative evaluation is also
supported by introducing the name space so that the inference engine can
process each of test sets given by multiple users. Further, it enables local eval-
uation corresponding to respective test sets followed by global evaluation using
the combined test. Like WebODE, OntoEdit supports OntoClean [Chapter 9]
methodology to build a better is-a hierarchy.

Inference

OntoEdit employs Ontobroker [2] and F-Logic[Chapter 2] as its inference en-
gine. It is used to process axioms in the refinement and evaluation phases.
Especially, it plays an important role in the evaluation phase because it pro-
cesses competency questions to the ontology to prove that it satisfies them.
It exploits the strength of F-logic in that it can express arbitrary pow-
erful rules which quantify over the set of classes which Description logics
cannot.



322 R. Mizoguchi and K. Kozaki

5 Hozo

Hozo5 is an ontology engineering environment based on fundamental onto-
logical theories [12,13]. It is composed of “Ontology Editor”, “Onto-Studio,”
“Ontology Server” and “Ontology Manager.” One of the most remarkable
features of Hozo is that it can deal with Role based on a sophisticated onto-
logical theory of Role [16].

When an ontology and its instance model seriously reflects the real world,
users have to be careful not to confuse the Role such as teacher, mother, fuel,
etc. with other basic concepts (natural type) such as human, water, oil, etc.
Let us take an example: <teacher is-a human>. Assume John is a teacher of a
school. Given the usual semantics of is-a, since John is an instance of teacher
then he is also an instance of human at the same time. When he quits being
a teacher, he cannot be an instance of teacher so that you need to delete the
instance-of link between John and teacher. However, you have to restore an
instance-of link between John and human, otherwise John dies. This problem
would be difficult for a model with no idea of roles to represent changes in the
roles played by John (e.g., teacher, husband, patient) according to contexts
or aspects.

In Hozo, three different classes are introduced to deal with the concept of
role appropriately.

Role-concept A concept representing a role dependent on a context (e.g.,
teacher role)

Basic concept A concept which does not need other concepts for being defined
(e.g., human)

Role holder An entity of a basic concept which is holding the role (e.g.,
teacher)

A basic concept is used as the class constraint which indicates potential
players who can play the role (role concepts). Then an instance that satisfies
the class constraint plays the role and becomes a role holder. Hozo supports
to define such a role concept as well as a basic concept.

5.1 Ontology Development Phase

Like other editors, Ontology Editor in Hozo provides users with a graphical
interface through which they can browse and modify ontologies by simple
mouse operations. How to deal with “role concept” and “relation” on the
basis of fundamental consideration is discussed in [12]. This interface consists
of the following four parts (Fig. 2):

1. Navigation pane provides several functionalities for browsing the ontology
such as displaying the ontology in a hierarchical structure according to

5 http://www.hozo.jp/



Ontology Engineering Environments 323

Fig. 2. GUI of ontology editor

only is-a relation between concepts, showing thumbnail of the ontology
and searching for concepts.

2. Browsing pane displays the concept graphically, and the user can select
concepts which he/she wants to edit.

3. Definition pane allows users to define and modify the selected concept in
the browsing pane or in the is-a hierarchy browser.

4. Project Manager supports distributed development of ontologies.

Collaborative Development

Collaborative development of an ontology is supported in Hozo [21]. At the
primitive level, the ontology server stores ontologies under version manage-
ment and access control by lock/unlock mechanism. It allows users to sharing
ontologies and to avoid conflict of modification by different users. Further-
more, Hozo allows users to divide an ontology into several components and
manages the dependency between them to enable the concurrent develop-
ment of the whole ontology. In the concurrent development, one of key issues is
the maintenance of consistency among inter-dependent component ontologies.
Hozo provides users with a module to maintain consistencies of the dependen-
cies among ontologies. When a component ontology is updated, the system
checks the change by comparing the modified ontology and its old version.
Hozo shows users a list of changes with possible countermeasures for coping
with each of the changes. These countermeasures are devised through our in-
vestigation on conceptual dependencies of ontologies and the change type of
imported concepts.

5.2 Ontology Use Phase

Functionality and GUI of Hozo’s instance editor is the same as the one for on-
tology. The consistency of all the instances with the ontology is automatically



324 R. Mizoguchi and K. Kozaki

guaranteed, since a user is given valid classes and their slot value restrictions
by the editor when he/she creates an instance. Inference mechanism of Hozo
is not very sophisticated. Axioms are defined for each class but it works as a
semantic constraint checker like WebODE. Hozo has an experience in mod-
eling of a real-scale Oil-refinery plant with about 2000 instances including
even pipes and their topological configuration which is consistent with the
Oil-refinery plant ontology developed with domain experts [15]. The model as
well as the ontology are served by the ontology server and can answer ques-
tions on the topological structure of the plant, the name of each device, etc.
Any ontology can have multiple sets of instances which are independent of one
another. The ontology server stores ontologies and instance models and serves
them to clients through API. Ontology editor is also a client of the ontology
server. The internal representation of Hozo is XML-based frame language and
it generates RDF(S) and OWL code to export the ontology and instance.

6 WebODE

WebODE6 [1] is a scalable and integrated workbench for ontology engineer-
ing and is considered as a Web evolution of ODE(Ontology Development
Environment [4]). It supports building an ontology at the knowledge level,
and translates it into different ontology languages. WebODE is designed on
the basis of a general architecture shown in Fig. 3 and to cover most of the

Fig. 3. Arcdhitecture of WebODE [1]

6 http://webode.dia.fi.upm.es/WebODEWeb/index.html



Ontology Engineering Environments 325

processes appearing in the ontology lifecycle. WebODE is based on a client-
server architecture which provides high extensibility and usability by allowing
the addition of new services and the use of existing services. Ontology is stored
in an SQL database to attain high performance in the case of a large ontol-
ogy. It has export and import services from and into XML, and its translation
services into and from various ontology specification languages such as OWL,
RDF(S), OIL, DAML+OIL, UML, Prolog, X-CARIN, Jess and F-Logic. Like
OntoEdit, WebODE’s ontology editor allows the collaborative edition of on-
tologies. One of the most characteristic features of WebODE is that it is based
on an ontology development methodology named METHONTOLOGY [4].

6.1 Ontology Development Phase

WebODE has ontology editing service, WAB: WebODE Axiom Builder
service, inference engine service, interoperability service and ontology
documentation service in this phase. The ontology editor provides users
with form based and graphical user interfaces, WAB provides an easy graph-
ical interface for defining axioms. It enables users to define an axiom by
using templates given by the tool with simple mouse operations. Axioms are
translated into Prolog. The inference engine is based on Prolog and OKBC
protocol to make it implementation independent. Interoperability services
provided by WebODE are of variety. It includes ontology access API, ontol-
ogy export/import in XML-family languages, translation of classes into Java
beans to enable Jess system to read them and OKBC compliance.

ODEClean [5]

Like OntoEdit, WebODE supports OntoClean methodology to build a more
convincing is-a hierarchy. Ontology for OntoClean is composed of top level
universal ontology developed by Guarino [Chapter 9], a set of meta-properties
and OntoClean axioms which are translated into Prolog to be interpreted by
WebODE inference engine. It is given to the ODEClean which works on the
basis of it.

Collaborative Development

The collaborative editing of an ontology is supported by a mechanism that
allows users to establish the type of access to the ontologies developed through
the notion of groups of users. Synchronization mechanism is also introduced
to enable several users to safely edit the same ontology. Ontologies are auto-
matically documented in different formats such as HTML tables with Methon-
tology’s intermediate representations, concept taxonomies and XML.



326 R. Mizoguchi and K. Kozaki

6.2 Ontology Use Phase

To support the use process of ontology, WebODE has several functionalities.
Like Hozo, it allows users to have multiple sets of instances for an ontology
by introducing instance sets depending on different scenarios, and conceptual
views from the same conceptual model, which allows creating and storing dif-
ferent parts of the ontology, highlighting and/or customizing the visualization
of the ontology for each user. WebPicker is a set of wrappers to enable users
to bring classification of products in the e-Commerce world into WebODE
ontology. ODEMerge is a module for merging ontologies with the help of cor-
respondence information given by the user. Methontology and ODE have been
used for building many ontologies including chemical ontology [4].

WebODE is also used for developing some semantic web frameworks such
as ODE SWS [7] and ODESeW. The ODE SWS is a framework for designing
semantic web services at the knowledge level. It supports development of
web services based on problem solving method ontology. The ODE SeW is
a semantic web application framework to develop and manage web sites as
a knowledge portal. In these ways, many applications have been developed
using WebODE as workbench for ontology engineering.

7 SWOOP

SWOOP7 [10,11] is an ontology browser and editor designed wholly for OWL,
while many other tools (e.g., Hozo, WebODE and Protégé) support OWL as
an extended feature. The architecture is based on the Model-View-Controller
paradigm. SwoopModel component stores OWL ontologies loaded by a rea-
soner and other information related to them. They are visualized by renderers
in multiple views. Controller is based on the plug-in architecture. Although
the development of SWOOP is done by Mindswap project but has been ter-
minated on August in 2006, its source code is available at URL.

7.1 Ontology Development Phase

A key feature of its design rationale is to realize user interface like the stan-
dard web browser. It consists of an address bar, history buttons (back, next),
a navigation sidebar, bookmarks and so on (Fig. 4). In this GUI, URIs play
a central role for understanding and constructing OWL ontologies. The users
can load an OWL ontology by entering its URL in the address bar. If the
ontology is importing other ontologies by owl:import property, SWOOP also
loads the imported ontologies automatically. The loaded multiple ontologies
are listed on the top of the navigation sidebar and their class/property hierar-
chies are shown at the bottom. The contents of selected ontology/entity (class,

7 http://www.mindswap.org/2004/SWOOP/



Ontology Engineering Environments 327

Fig. 4. Graphical User Interface of SWOOP

property and instance) are displayed on the center pane in the webpage-like
format. In the pane, relationships between entities are represented by hyper-
links. It enables users to navigate the OWL ontology just like another web
page. For linking entities in different ontologies, SWOOP provides a single
common interface. It is displayed by clicking “Add” hyperlink in the center
pane and shows the list of ontologies along with entities defined in them.
Users can edit the ontology by selecting the entity to link. Through the edit-
ing process, external ontologies are modified as a local version and maintained
separately. SWOOP also supports various presentation syntaxes for OWL such
as RDF/XML, OWL Abstract Syntax and Turtle. Users can browse and edit8

ontologies in these syntaxes.

Collaborative Development

For collaborative ontology development, SWOOP supports collaborative an-
notation and version control. The collaborative annotation is based on the
standard W3C Annotea protocols. Users can share annotations about change
of ontologies and discussions through a public Annotea server. The version
control supports undo/redo with logging of changes and save of checkpoints.
While the change logs can be used to track back the changes, the checkpoints
are used as a snapshot of ontology at particular time.

7.2 Ontology Evaluation and Refinement Phase

SWOOP contains two reasoners: RDFS-like and Pellet. The former is a
lightweight reasoner for RDFS, and the latter is a powerful reasoner for
OWL-DL. Pellet is based on the tableaux algorithms and can be used to
check inconsistencies of definition in ontologies. SWOOP provides functions

8 Inline editing in RDF/XML and Turtle is supported by SWOOP ver.2.3.



328 R. Mizoguchi and K. Kozaki

for ontology debugging and repair using the description logic reasoner [10].
The former explains the result of reasoning to the user in a meaningful and
readable manner, and the latter gives a guideline to repair the inconsistencies
of ontologies.

8 Protégé

Protégé9 [17] whose architecture is shown in Fig. 5 is strong in the use phase
of ontology: Use for knowledge acquisition, merging and alignment of existing
ontologies, and plug-in new functional modules to augment its usability. It
has been used for many years for knowledge acquisition of domain knowledge
and for domain ontology building in recent years. Its main features include:

1. Extensible knowledge model to enable users to redefine the representa-
tional primitives

2. A customizable output file format to adapt any formal language
3. A customizable user interface
4. Powerful plug-in architecture to enable integration with other applications

Fig. 5. Architecture of Protégé [17]

9 http://protege.stanford.edu/



Ontology Engineering Environments 329

These features make Protégé a meta-tool for domain model building, since
a user can easily adapt it to his/her own instance acquisition tool together
with the customized interface. It is highly extensible thanks to its very so-
phisticated plug-in architecture and a Java-based API for development of
knowledge based applications. Unlike the other three, Protégé assumes local
installation rather than use through internet using client/server architecture.
Its knowledge model is based on frame similar to other environments. Espe-
cially, the fact that Protégé generates its output in many ontology languages
and its powerful customizability make it easy for users to change it to an
editor of a specific language. For instance, the definition of a class of RDFS is
defined as a subclass of standard class of Protégé. This “meta-tuning” can be
easily done thanks to Protégé’s declarative definition of all the meta-classes
which play a role of a template of a class.

8.1 Ontology Development Phase

The system provides two main ways for ontology development such as Protégé-
Frames and Protégé-OWL. The former supports frame-based knowledge
model which is compatible to OKBC. And the latter is extensions of them
using the Protégé OWL plug-in [14] for supporting OWL. It also supports to
edit SWRL rules. It support owl:imports mechanism by ontology repository
manager which manages URLs of imported ontologies.

Protégé has a semi-automatic tool for ontology merging and alignment
named PROMPT [18]. It performs some tasks automatically and guides
the user in per-forming other tasks. It also detects possible inconsistencies
in the ontology, which result from the user’s actions, and suggests ways
to remedy them. For ontology evolution in collaborative environments [19],
Protégé provides two functionalities: Change-management which stores a list
of change with annotations and shows history of the change to the user, and
Client-Server mode which support synchronous ontology editing by multiple
users.

9 Comparison and Discussion

The five environments are compared according to the factors presented above.
Table 2 summarizes the comparison.

9.1 Ontology Development Phase

Development Methodology

Philosophy of supporting ontology development is partly based on viewing an
ontology as a software product. Common features of OntoEdit and WebODE



330 R. Mizoguchi and K. Kozaki

Table 2. Comparison of the five environments

OntoEdit Hozo WebODE SWOOP Protégé

Ontology development phase

Methodological On-To- No METHON No No

support Knowledge TOLOGY

Collaboration Partly Yes Partly Yes Yes

support

Ontological Ontoclean Role theory Ontoclean Implicit Implicit

theory

Ontology use phase

Standards RDF(S), RDF(S), OWL RDF(S),OWL RDF(S), RDF(S),

compliance F-Logic (export only) F-Logic OWL OWL, SWRL

Ontology/ High High High Middle Middle

model server (Web server)

Ontology evaluation and refinement phase

Evaluation OntoClean No OntoClean Debugging No

methodology by reasoner

Inference OntoBroker Constraint Prolog, RDFS-like, FaCT, Jess,

service checking Jess Pellet F-Logic...

Refinement Debugging Change ODEClean Debugging PROMPT

support tool checking tool

Software level issue

Friendly GUI GUI based Graphically GUI based In line GUI based

editing editing editing editting editing

Architecture Client Client/ Client/ Standalone Standa-

/server server server lone

Extensibility Plug-in API API/Plug-in Plug-in API/Plug-in

include management of the well-known steps in software development pro-
cess, that is, requirement specification, conceptual design, implementation
and evaluation. OntoEdit is based on the On-To-Knowledge methodology,
and WebODE is based on the METHONTOLOGY. Others have no such a
methodology.

Collaboration

Collaboration occurs in two different ways: (1) Construction a single ontology
by different developers and (2) Construction several modularized ontologies
in parallel by different developers. In the case of (1), because multiple persons
might modify the same class at the same time, transaction control is one of
the main issues in supporting collaboration. OntoEdit, WebODE, SWOOP
and Protégé take this approach. While OntoEdit and WebODE only have
some mechanisms for access management to ontologies, SWOOP and Protégé
can manage histories of change with annotation for supporting collaborative
construction.



Ontology Engineering Environments 331

On the other hand, Hozo mainly takes (2). Its main issue is to take care of
the dependencies between the modularized ontologies because each developer
constructs some modules under his responsibility. When building a large on-
tology, (2) is very useful because it allows users the concurrent development
of an ontology like usual software development. To make the latter approach
feasible, however, the system does need to provide developers with relevant
information of changes done in other ontologies developed by others which
might influence on the ontology they are developing. Hozo is designed to cope
with all the possible situations developers encounter by analyzing possible
patterns of influences propagated to each modularized ontology in a differ-
ent module according to the type of the change. Although both approaches
look different, they are complementary. The former can be incorporated in
the latter. In fact, Hozo supports the former as well so that users can share a
component ontology.

Theory-Awareness

Ontology building is not easy. This is partly because a good guideline is not
available which people badly need when articulating the target world and
organizing a taxonomic hierarchy of concepts. An ontology engineering en-
vironment has to be helpful also in this respect. WebODE and OntoEdit
support Guarino’s Ontoclean method. Guarino and his group have been in-
vestigating basic theories for ontology for several years and have come up
with a sophisticated methodology which identifies inappropriate organization
of is-a hierarchy of concepts. Developers who develop an ontology based on
their intuition tend to misuse of is-a relation and to use it in more situa-
tions than are valid, which Guarino called “is-a overloading.” Ontoclean is
based on the idea of meta-property which contributes to proper categoriza-
tion of concepts at the meta-level and hence to appropriate organization of
is-a hierarchy.

OntoEdit and WebODE way of ontology cleaning can be said that post-
processing way. On the contrary, Hozo tries to incorporate the fruits of onto-
logical theories during the development process. One of the major causes of
producing an inappropriate is-a hierarchy from Guarino’s theory is lack of the
concept of Role such as teacher, mother, food, etc. which has different char-
acteristics from so-called basic concepts like human, tree, fish, etc. Ontology
editor in Hozo incorporates a way of representing the concept of Role.

9.2 Ontology Use Phase

Standards Compliance

All the five have support standards ontology languages such as RDF(S) and
OWL. Hozo only can export its ontology and model in RDF(S) and OWL.
Protégé also supports Semantic Web Rule Language (SWRL).



332 R. Mizoguchi and K. Kozaki

Ontology/Model(Instance) Server

Hozo and WebODE has an ontology/model server which allows agents to
access the ontologies and instance models through internet. OntoEdit and
Protégé have an ontology server. SWOOP does not have a specific ontology
server but can download ontologies in general web servers.

9.3 Ontology Evaluation and Refinement Phase

Evaluation Methodology

OntoEdit and WebODE support OntoClean methodology to build a better
is-a hierarchy. SWOOP provides functions for ontology debugging and repair
using the tableaux based reasoning. It explains the result of reasoning with
a guideline to repair the inconsistencies of ontologies. Hozo and Protégé have
no evaluation methodology.

Inference Service

All the five have inference mechanisms. Hozo supports only inference for con-
straint checking of own language.

Refinement Support

OntoEdit and WebODE have a debugging tool based on OntoClean. Hozo has
a function to Check changes and suggest countermeasures for modification by
comparison of ontologies. SWOOP provides a debugging tool based on reason-
ing and change management and a version control mechanism with logging
of changes. Protégé also supports change monument and a semi-automatic
ontology alignment tool named PROMPT.

9.4 Software Level Issue

Friendly GUI

All the five have sophisticated GUI such as visualization of class hierarchies
and editing tool for constraints (axioms) of classes. It makes users free from
coding using a complicated language. In Hozo, visualization of an ontology
is default, and users can browse and edit it graphically. SWOOP supports
in-line/GUI based editing functions and visualization of ontologies as just
like a web page. Others provides mainly GUI based editing functions with
some graphical visualization tool of ontologies. For instance, Protégé supports
several ontology visualization pulig-ins such as OWL-Viz and Jambalaya.



Ontology Engineering Environments 333

Architecture and Extensibility

While WebODE and Hozo employ standardized API to the main ontology
base, OntoEdit and SWOOP supports a plug-in architecture. Protégé provides
both of API and plug-in. Both enable a module can easily added or deleted
to make the environment extensible. WebODE, OntoEdit and Hozo are web-
based, while Protégé is basically not. But Protégé has another mode to support
server-client architecture.

10 Other Environments

In this section, other environments are summarized. We discuss four tools
which have characteristic functionalities to aid user’s ontology development.

10.1 OntoGen

OntoGen10 is a system for semi-automatic ontology construction developed
under SEKT project. The system has functionalities for keywords extraction
form text data and suggestion using text mining and machine learning tech-
niques. It helps users construct overview of ontologies from text documents.
Some features of this tool are as follows:

Keywords extraction: In the system, two keyword extraction methods, the
concept’s centroid model and SVM linear model, are implemented. The
extracted keywords by both methods are shown with related information
about the number of related documents, average inner-cluster similarity
measure, and so on.

Concept suggestion: The system suggests sub-concepts of the selected concept
to the user based on two different approaches: an unsupervised approach
and a supervised one. In the unsupervised approach, OntoGen supports
four clustering methods: k-means, LSI, PH k-means, and a categorization
according to the labels in the input data. The user can select one of the
methods, and supervises the parameters for the method. Then the system
suggests sub-concepts using the selected method with the parameters.
The supervised approach is based on SVM active learning method. In
the approach, the user enters a query the active learning system then the
system asks if a particular document (instance) belongs to the selected
concept and the user answers yes or no. After repetition of this learning
process the system outputs most important keywords with information
about positively classified into the concept.

Document management: The system manages documents related to concepts.
When a new concept is added to ontology, it automatically assigns doc-
uments to it according to the similarity between documents. The system

10 http://ontogen.ijs.si/



334 R. Mizoguchi and K. Kozaki

also has a functionality to detect if documents related to a concept belongs
to its super concept. The user can know inconsistency between ontologies
through the result.

10.2 CampTools Ontology Editor

CampTools ontology editor (COE) [9] is a tool for collaborative ontology
development and reuse based on CampTools. CmapTools is software to con-
struct, navigate and navigate a Concept map which is a knowledge represen-
tation model to display knowledge as a two-dimensional network of labeled
nodes and links. COE supports editing, storing, and sharing Concept maps
and ontologies, and the users can search for concepts and properties in them.
The system also provides a cluster-based vicinity concepts view. In the view,
the system shows concepts which relevant to selected concept based on multi-
viewpoint clustering analysis (MVP-CA) software developed by Pragati, Inc..

10.3 OntoBilder

OntoBuilder [20] is a tool for extraction and matching of ontologies from web
sources. The system extracts HTML form elements of web pages and relation-
ships among them. A set of terms (vocabulary) associated with the extracted
elements are regarded as an ontology in the system. The main feature of Onto-
Builder is functionalities for ontology matching. It supports several matching
algorithm such as term matching, value matching, precedence matching and
so on. And the user can add another matching algorithm as plug-in.

10.4 KAON

KAON11: Karlsruhe Ontology and Semantic Web framework is a sophisticated
plug-in framework with API and provides services for ontology and metadata
management for E-Services. Its main focus is put on the enterprise application
in the semantic web age. At the present, its new version, called KAON2, is
available. It supports OWL-DL, SWRL and F-logic, and provides an API for
ontology, an inference engine for answering SPARQL queries, a DIG interface
and so on.

11 Concluding Remarks

A lot of ontology engineering environments have been developed. Although
some are powerful as a software tool, but many are passive in the sense that few
guidance or suggestion is made by the environment. Theory-awareness should
be enriched further to make the environment more sophisticated. Especially,
11 http://kaon.semanticweb.org/, http://kaon2.semanticweb.org/



Ontology Engineering Environments 335

more effective guidelines for appropriate class and relationship identification
are needed. Collaboration support becomes more and more important as on-
tology building requirements increases. Ontology alignment is also crucial for
reusing the existing ontologies and for facilitating their interoperability. Com-
bination of the strong functions of each environment of the five would realize
a novel and better environment, which suggests that we are heading right
directions to go.

References

1. Corcho O, Fernandez-Lopez M, Gómez-Pérez A, Vicente O (2002) WebODE: An
Integrated Workbench for Ontology Representation, Reasoning and Exchange,
Proc. of EKAW2002, Springer LNAI 2473: 138–153.

2. Decker S, Erdmann M, Fensel D, Studer R (1999) Ontobroker: Ontology Based
Access to Distributed and Semi-structured Information: 351–369.

3. Duineveld A, Weiden M, Kenepa B, Benjamis R (1999) WonderTools? A Com-
parative Study of Ontological Engineering Tools. Proc. of KAW99.

4. Fernandez-Lopez M, Gómez-Pérez A, Pazos Sierra J (1999) Building a Chemical
Ontology Using Methontology and the Ontology Design Environment, IEEE
Intelligent Systems, 14(1): 37–46.

5. Fernandez-Lopez M, Gómez-Pérez A, (2002) The Integration of OntoClearn in
WebODE, Proc. of the 1st Workshop on Evaluation of Ontology-based Tools
(EON2002): 38–52.

6. Gómez-Pérez A, Angele J, Fernandez-Lopez, et al. (2002) A Survey on Ontology
Tools. OntoWeb Deliverable 1.3, Universidad Politecnia de Madrid.

7. Gómez-Pérez A, González-Cabero R, Manuel Lama (2004) ODE SWS: A Frame-
work for Designing and Composing Semantic Web Services, IEEE Intelligent
Systems 19(4): 24–31.

8. Gruninger R, Fox M (1994) The Design and Evaluation of Ontologies for En-
terprise Engineering, Proc. of Comparison of implemented ontology: 105–128.

9. Hayes P, Eskridge T C, Mehrotra M, et al. (2005) COE: Tools for Collaborative
Ontology Development and Reuse, Proc. of K-CAP2005.

10. Kalyanpur A, Parsia B, Sirin E, Cuenca-Grau B, Hendler J (2005) Swoop: A
‘Web’ Ontology Editing Browser, Journal of Web Semantics 4(2).

11. Kalyanpur A, Parsia B, Sirin E, Hendler J (2005) Debugging Unsatisfiable
Classes in OWL Ontologies, Journal of Web Semantics 3(4).

12. Kozaki K, et al. (2000) Development of an Environment for Building Ontologies
Which is Based on a Fundamental Consideration of “Relationship” and “Role”,
Proc.oftheSixthPacificKnowledgeAcquisitionWorkshop(PKAW2000):205–221.

13. Kozaki K, Kitamura Y, Ikeda M, Mizoguchi R (2002) Hozo: An Environment
for Building/Using Ontologies Based on a Fundamental Consideration of “Role”
and “Relationship”, Proc. of EKAW2002: 213–218.

14. Knublauch H, Fergerson R W, et al. (2004) The Protégé OWL Plugin: An Open
Development Environment for Semantic Web Applications, Proc. of ISWC 2004:
229–243.

15. Mizoguchi R, Kozaki K, Sano T, Kitamura Y (2000) Construction and Deploy-
ment of a Plant Ontology, Proc. of EKAW2000: 113–128.



336 R. Mizoguchi and K. Kozaki

16. Mizoguchi R, et al. (2007) A Model of Roles in Ontology Development Tool:
Hozo, Journal of Ontological Analysis and Conceptual Modeling, 2(2): 159–179.

17. Musen M A, Fergerson R W, Grosso W E, Crubezy M, Eriksson H, et al. (2003)
The Evolution of Protégé: An Environment for Knowledge-Based Systems De-
velopment, International Journal of Human–Computer Studies, 58(1): 89–123.

18. Noy N F, Musen M A (2000) PROMPT: Algorithm and Tool for Automated
Ontology Merging and Alignment, Proc. of the Seventeenth National Conference
on Artificial Intelligence (AAAI-2000): 450–455.

19. Noy N, Chugh A, Liu W, Musen M (2006) A Framework for Ontology Evolution
in Collaborative Environments, Proc. of ISWC2006, LNCS 4273: 544–558.

20. Roitman H, Gal A (2006) OntoBuilder: Fully Automatic Extraction and Con-
solidation of Ontologies from Web Sources Using Sequence Semantics. Proc. of
EDBT Workshops 2006: 573–576.

21. Sunagawa E, Kozaki K et al. (2003) An Environment for Distributed Ontology
Development Based on Dependency Management, Proc. of ISWC2003: 453–468.

22. Sure Y, Staab S, Angele J (2002) OntoEdit: Guiding Ontology Development by
Methodology and Inferencing, Proc. of the Confederated International Confer-
ences CoopIS, DOA and ODBASE: 1205–1222.

23. Sure Y, Staab S, Erdmann M, et al. (2002) OntoEdit: Collaborative Ontology
Development for the Semantic web, Proc. of ISWC2002: 221–235.




