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Summary. Computational ontologies in the context of information systems are
artifacts that encode a description of some world, for some purpose. Under the
assumption that there exist classes of problems that can be solved by applying
common solutions (as it has been experienced in software engineering), we envision
small, task-oriented ontologies with explicit documentation of design rationales. In
this chapter, we describe components called Ontology Design Patterns (OP), and
methods that support pattern-based ontology design.

We present a typology of OPs, and then focus on Content Ontology Design
Patterns in terms of their background, definition, communication means, related
work beyond ontology engineering, exemplification, creation, and usage principles.
At the time of chapter’s final version, recently performed experiments of pattern-
based ontology design show remarkable quality improvement within some sample
ontology design projects, specially in terms of compliance to tasks expressed as
competency questions or scenarios.

1 Introduction

Computational ontologies in the context of information systems are artifacts
that encode a description of some world (actual, possible, counterfactual, im-
possible, desired, etc.), for some purpose. They have a (primarily logical)
structure, and must match both domain and task: they allow the description
of entities whose attributes and relations are of concern because of their rele-
vance in a domain for some purpose, e.g. query, search, integration, matching,
explanation, etc.

Like any artifact, ontologies have a lifecycle: they are designed, imple-
mented, evaluated, fixed, exploited, reused, etc. (cf. chapter “Ontology En-
gineering Methodology” for an in-depth examination of ontology engineering
methodologies).

In this chapter, we focus on patterns for ontology design [14,18].
Despite the original ontology engineering approach, when ontologies were

seen as “portable” components [22], and its enormous impact on Semantic
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Web and interoperability, today one of the most challenging and neglected ar-
eas of ontology design is reusability. The possible reasons include at least: size
and complexity of the major reusable ontologies, opacity of design rationales
in most ontologies, lack of criteria in the way existing knowledge resources
(e.g. thesauri, database schemata, lexica) can be reengineered, and brittleness
of tools that should assist ontology designers.

Nowadays, an average user that is trying to build or reuse an ontology, or
an existing knowledge resource, is typically left with just some limited assis-
tance in using unfriendly logical structures, some large, hardly comprehensible
ontologies, and a bunch of good practices that must be discovered from the
literature. A typical usage scenario includes, e.g. a large set of web ontologies
that are evaluated (usually in an implicit way) against the intended domain
and tasks. The selected ontology (if any) is reused, and then an adaptation
process is started in order to cope with the implicit requirements from an on-
tology project. This scenario is costly in many cases, and automatic selection
mechanisms do not help with the adaptation process. Another typical sce-
nario includes so-called “reference” or “core” ontologies that are supposed to
be directly reused and specialized. Unfortunately, even if well designed, they
are usually large and cover more knowledge than what a designer might need.
In this case, it is hard to reuse only the “useful pieces” of the ontology, and
consequently the cost of reuse is higher than developing a new ontology from
scratch.

On the other hand, the success of very simple and small ontologies like
FOAF [6] and SKOS [31] shows the potential of really portable, or “sustain-
able” ontologies. The lesson learnt supports the new approach to ontology
design, which is sketched here.

Under the assumption that there exist classes of problems that can be
solved by applying common solutions (as it has been experienced in software
engineering), we propose to support reusability on the design side specifically.
We envision small (or cleverly modularized) ontologies with explicit documen-
tation of design rationales, and best reengineering practices. These compo-
nents need specific functionalities in order to be implemented in repositories,
registries, catalogues, open discussion and evaluation forums, and ultimately
in new-generation ontology design tools. In this chapter, we describe small,
motivated ontologies that can be used as building blocks in ontology design.
A formal framework for (collaborative) ontology design that justifies the use
of building blocks with explicit rationales is presented in [18].

We call the basic building blocks to be used in ontology design Content
Ontology Design Patterns (CP) [14]. CPs are small ontologies that medi-
ate between use cases (problem types) and design solutions. They are used
as modelling components: ideally, an ontology results from a composition of
CPs, with appropriate dependencies between them, plus the necessary design
expansion based on specific needs.
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Throughout experiences in ontology engineering projects1 as well as in
other ongoing international projects that have experimented with these ideas,
typical conceptual patterns have emerged out of different domains, for differ-
ent tasks, and while working with experts having heterogeneous backgrounds.
For example, a simple CP called participation (including objects taking part
in events) emerges in domain ontologies as different as enterprise models [23],
legal norms [19], sofware management [34], biochemical pathways [16], and
fishery techniques [17]. Other, more complex CPs have also emerged in the
same disparate domains.

Moreover, since CPs are strictly related to small use cases, they are trans-
parent with respect to the rationales applied to the design of a certain ontol-
ogy. CPs are therefore an additional tool to achieve tasks such as ontology
evaluation, matching, modularization, etc. For example, an ontology can be
evaluated against the presence of certain patterns (which act as unit tests for
ontologies, cf. [50] and chapter “Ontology Engineering Environments”) that
are typical of the tasks addressed by a designer. Furthermore, mapping and
composition of CPs can facilitate ontology mapping and alignment/merging.
Two ontologies drafted according to CPs can be mapped in an easier way: CP
hierarchies will be more stable and well-maintained than local, partial, scat-
tered ontologies. Finally, CPs can be also used in training and educational
contexts for ontology engineers.

CPs are a very beneficial kind of patterns for ontology design, because they
provide solutions to domain-oriented problems, and are directly reusable. On
one hand, CPs are comparable to software engineering (SE) design patterns
for what concerns the way they are documented and communicated. On the
other hand, the intuition behind their usage is analogous to that of software
engineering (object oriented) reusable libraries, e.g. Java libraries. A similar
intuition is at the base of approaches to modularization of ontologies, e.g. [8],
where the typical distinction between interface and implementation is used
in order to distinguish between the module interface and the ontologies that
a module encapsulates. CPs are compliant with this approach, and can be
encapsulated in modules. However, this aspect is not key to the purpose of
this chapter, and does not impact on their expected usage.

There are other types of ontology design patterns (OPs) that are beneficial
for different purposes and targeted at different types of users. A typology of
OPs will be also introduced in this chapter.

In principle, OPs do not depend on any specific representation language.2

In this context, we focus mainly on CPs; in order to provide the readers with
concrete examples and a closer view on their exploitation on the Semantic
Web, we have decided to refer to OWL CPs (cf. chapter “Web Ontology

1 For example, in the projects FOS : http://www.fao.org/agris/aos/, WonderWeb:
http://wonderweb.semanticweb.org,Metokis: http://metokis.salzburgresearch.at,
and NeOn: http://www.neon-project.org

2 With the exception of Logical OPs.
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Language: OWL” for details on OWL). In fact, CPs fit well with Semantic
Web requirements for reuse and interoperability of ontologies and data, and
as part of our work we have set up the ontologydesignpatterns.org web portal,
which collects and makes them available on the Web [36].

Chapter’s content is organized as follows: Sect. 1.1 gives some background
notions; Sect. 2 introduces the types of OPs, defines them, and provides the
reader with some examples; Sect. 3 presents a sample catalogue of CPs; Sect. 4
describes ways to create and work with CPs, and Sect. 5 presents an example
of their application. Finally, Sect. 6 provides some conclusions and remarks.

1.1 Background

In the seventies, the architect and mathematician Christopher Alexander in-
troduced the term “design pattern” for shared guidelines that help solve design
problems. In [1] he argues that a good (architectural) design can be achieved
by means of a set of rules that are “packaged” in the form of patterns, such as
“courtyards which live”, “windows place”, or “entrance room”. Design pat-
terns are then assumed as archetypal solutions to design problems in a certain
context.

Taking seriously the architectural metaphor, the notion has been eagerly
endorsed by software engineering [12, 21, 29], and DBMS applications with
so-called data model patterns [27]. In these areas, pattern is used as a gen-
eral term for formatted guidelines in software reuse, and, more recently, has
also appeared in requirements analysis, conceptual modelling, and ontology
engineering [7, 11, 24, 39, 44, 48].3 Traditionally, design patterns appear more
like a collection of shortcuts and suggestions related to a class of context-
bound problems and success stories. Software engineering patterns are largely
used for documenting software [26], and there is software support for auto-
matic code generation based on them (see, e.g the Eclipse functionality for
generating factory methods,4 and the Whole platform.5) Furthermore, there
is recent work going towards a more formal encoding of design patterns (no-
tably [3,24,30]), and even towards using ontology patterns to encode software
engineering patterns [34].

Ontology engineering literature has tackled the notion of design pattern
at least since [7, 39], while in the context of Semantic Web research and ap-
plication, where OPs are now a hot topic, the notion has been introduced by
[16,38,45,48] and has been approached also by the W3C Semantic Web Best
Practices and Deployment Group.6 In particular, [16, 48] take a foundational
approach that anticipates that presented in [14,37] (which are closely related
3 In software engineering, formal approaches to design patterns, based on dedicated

ontologies, are being investigated, e.g. in so-called semantic middleware [34].
4 Eclipse (http://www.eclipse.org/) is a programming environment used for devel-

oping Java projects.
5 http://whole.sourceforge.net/
6 See http://www.w3.org/2001/sw/BestPractices/
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to this chapter). Some work [4] has also attempted a learning approach (by
using case-based reasoning) to derive and rank patterns with respect to user
requirements. The research has also addressed domain-oriented best prac-
tices and patterns, e.g. to express sequences in OWL [10], for content objects
and multimedia [2] (cf. chapter “Ontologies for Cultural Heritage”), software
components (cf. chapter “COMM: A Core Ontology for Multimedia Annota-
tion”), business modelling and interaction [20], medical [43, 46] (cf. chapter
“An Ontology for Software”).

2 Types of Ontology Design Patterns

An ontology design pattern (OP) is a modelling solution to solve a recurrent
ontology design problem. We have identified several types of OPs, and have
grouped them into six families (cf. Fig. 1): Structural OPs, Correspondence
OPs, Content OPs (CPs), Reasoning OPs, Presentation OPs, and Lexico-
Syntactic OPs.

Although this chapter mainly focuses on CPs, in this section we give an
overview of the OP families, with some examples. For more details, the reader
can refer to [37].

Structural OPs

Structural OPs include Logical OPs and Architectural OPs. Logical OPs are
compositions of logical constructs that solve a problem of expressivity, while
Architectural OPs affect the overall shape of the ontology either internally or
externally.

Logical OPs are only expressed in terms of a logical vocabulary, because
their signature (the set of predicate names, e.g. the set of classes and prop-
erties in an OWL ontology) is empty (with minor exceptions, e.g. the default
inclusion of owl:Thing in OWL). On one hand, Logical OPs are independent
from a specific domain of interest (i.e. they are content-independent), on the
other hand, they depend on the expressivity of the logical formalism that
is used for representation. In other words, Logical OPs help to solve design
problems where the primitives of the representation language do not directly
support certain logical constructs. For example, if the representation language
is OWL, and a designer needs to represent a relation between more than two

Fig. 1. Ontology design pattern types



226 A. Gangemi and V. Presutti

elements, a Logical OP is needed in order to express an n-ary relation seman-
tics by only using class and binary relation primitives. The root of Logical
OPs can be found in [5], where so-called description logics were conceived as
a way of representing knowledge in a structural manner by singling out the
most relevant and tractable patterns from first-order logic (and beyond). The
first proposal for a library of Semantic Web logical patterns is [45]. We can
informally divide Logical OPs into two types:

Logical macros provide a shortcut to model a recurrent intuitive log-
ical expression, e.g. the combination of owl:allValuesFrom restriction with
owl:someValuesFrom restriction.

Transformation patterns translate a logical expression from a logical lan-
guage into another, which approximates the semantics of the first, in order to
find a trade-off between requirements and expressivity. For example, the so
called n-ary relation pattern, documented in [33] with respect to OWL, is a
transformation pattern from first-order logic to OWL DL. Other Logical OPs
are documented in [33,37,47].

The application of Logical OPs has consequences on the results and effi-
ciency of reasoning procedures. They can be used in order to document design
choices and are particularly suitable for teaching good practices of ontology
design as they provide designers with solutions to represent complex logical
expressions.

Architectural OPs affect the overall shape of the ontology: their aim is to
constrain “how the ontology should look like”. They can be of two types:
(i) internal, defined in terms of collections of Logical OPs that have to be
exclusively employed when designing an ontology, e.g. an OWL species (cf.
chapter “Web Ontology Language: OWL”), or the varieties of description
logics (cf. chapter “Description Logics”); (ii) external, defined in terms of
meta-level constructs, e.g. the modular architecture consists of an ontology
network, where the involved ontologies play the role of modules (according to
definitions given in [25]). The modules are connected by the import operation.

Architectural OPs emerged as design choices motivated by specific needs,
e.g. computational complexity constraints. Such OPs are also useful as refer-
ence documentation for those initially approaching the design of an ontology.

Reasoning OPs

Reasoning OPs are applications of Logical OPs oriented to obtain certain
reasoning results, based on the behaviour implemented in a reasoning engine.
Examples of Reasoning OPs include: classification, subsumption, inheritance,
materialization, de-anonymizing, etc.

Reasoning OPs, when declared on top of an ontology, inform about the
state of that ontology, and let a system decide what reasoning has to be per-
formed on the ontology in order to carry out queries, evaluation, etc. Examples
of Reasoning OPs are so called normalizations. In [51,52] five normalizations
have been identified (cf. chapter “Ontology Engineering Environments”).
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Correspondence OPs

Correspondence OPs include Reengineering OPs and Mapping OPs.
Reengineering OPs provide designers with solutions to the problem of

transforming a conceptual model, which can even be a non-ontological re-
source, into a new ontology. Mapping OPs are patterns for creating semantic
associations between two existing ontologies.

Reengineering OPs are transformation rules applied in order to create
a new ontology (target model) starting from elements of a source model.
The target model is an ontology, while the source model can be either an
ontology, or a non-ontological resource, e.g. a thesaurus concept, a data model
pattern, a UML model, a linguistic structure, etc. Reengineering OPs are
described in terms of metamodel transformation rules. We distinguish two
types of Reengineering OPs.

Schema reengineering patterns are rules for transforming, e.g. a non-OWL
DL metamodel into an OWL DL ontology. For example, consider the use
of SKOS [31] for Knowledge Organization Systems (KOS) reengineering to
a knowledge base (an OWL ABox), based-on the SKOS TBox. Transforma-
tion Logical OPs are a kind of schema reengineering patterns. In principle,
all modelling problems can be represented as higher-order logical expressions,
and if we have to represent them, e.g. in OWL DL, we implicitly apply a
schema reengineering pattern in order to stay within the expressivity of OWL
DL. However, we also (pragmatically) distinguish between transformation and
schema reengineering patterns because of the different intention of the de-
signer. In the first case, the designer wants to directly represent a modelling
solution in a certain representation formalism, e.g. OWL DL,7 while in the
second case the designer wants to reengineer, e.g. an existing non-OWL DL
model into an OWL DL ontology.

Refactoring patterns provide designers with rules for transforming, i.e.
refactoring, e.g. an existing OWL DL source ontology into a new OWL DL
target ontology. In this case, the transformation rule has the effect of chang-
ing the type of the ontology elements that are involved in the refactoring. For
example, let us consider the case in which an ontology defines an object prop-
erty for representing the relation of preparing a coffee, which holds between
agents and coffees. Now, let us consider a change of requirements, so that a
designer has to represent that the coffee is prepared by an agent at a certain
time by using a certain tool. In order to address such a change in OWL DL, a
designer has to apply an n-ary relation Logical OP, because preparing a cof-
fee has now four arguments: agent, coffee, time interval, and tool. The n-ary
relation Logical OP plus the description of how to apply it in order to replace
an object property from an existing ontology is a Refactoring OP.

7 In the pragmatics of an ontology designer, the fact that all modelling solutions
are representable as higher-order logic expressions is hardly relevant, and such
implicit reengineering has been never documented as actually happening.
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Mapping ontology design patterns Mapping OPs refer to the possible se-
mantic relations between mappable elements, as defined in [25]. There are
three basic semantic relations that are used for mapping assertions: equiva-
lence, containment, and overlap. They can be supplemented by their negative
counterparts, i.e. not equivalent, not contained, and not overlap or disjoint,
respectively. Mapping OPs provide designers with solutions to relate two on-
tologies without changing the logical types (e.g. owl:Class) of the ontology
elements involved.

Presentation OPs

Presentation OPs deal with usability and readability of ontologies from a user
perspective. They are meant as good practices that support the reuse of on-
tologies by facilitating their evaluation and selection. Examples are Naming
OPs and Annotation OPs. The former are conventions about how to create
names for namespace, files, and ontology elements in general (classes, prop-
erties, etc.). They are good practices that boost ontology readability and
understanding by humans, by supporting homogeneity in naming procedures.
Annotation OPs provide annotation properties or annotation property sche-
mas that can be used in order to improve the understandability of ontologies
and their elements.

An example of Naming OP relates to namespace declared for ontologies.
It is recommended to use the base URI of the organization that publishes
the ontology (e.g. http://www.w3.org for the W3C, http://www.fao.org
for the FAO, http://www.loa-cnr.it for the Laboratory for Applied On-
tologies (LOA) etc.) followed by a reference directory for the ontologies (e.g.
http://www.loa-cnr.it/ontologies/). Additionally, it is also important to
choose an approach for encoding versioning, either on the name, or on the
reference directory.

Lexico-Syntactic OPs

Lexico-Syntactic OPs are linguistic structures or schemas that consist of cer-
tain types of words following a specific order, and that permit to generalize
and extract some conclusions about the meaning they express. They are use-
ful for associating simple Logical and Content OPs with natural language
sentences, e.g. for didactic purposes.

Content Ontology Design Patterns (CPs)

CPs encode conceptual, rather than logical design patterns. In other words,
while Logical OPs solve design problems independently of a particular concep-
tualization, CPs propose patterns for solving design problems for the domain
classes and properties that populate an ontology, therefore addressing content
problems [14]. CPs are instantiations of Logical OPs (or of compositions of
Logical OPs), featuring a non-empty signature. Hence, they have an explicit
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non-logical vocabulary for a specific domain of interest (i.e. they are content-
dependent). CPs provide solutions to domain modelling problems and affect
only the specific region of the ontology dealing with such domain modelling
problems. They are typically reused by applying specialization, extension,
and composition to them. In principle, CPs do not depend on any specific
language, however in order to reuse them as building blocks, they have to be
implemented in some way. In the context of this chapter, we deal with CPs
in a Semantic Web context. Hence, we use OWL as a reference formalism for
representation.

3 Towards a Catalogue and Repository of CPs

In this section we focus on CPs. We define them, and explain the dependencies
between CPs and use cases (Sect. 3.1). Section 3.2 lists the characteristics that
differentiate CPs as special ontologies (such characteristics cross the bound-
aries between ontology engineering, cognitive science, and linguistics). Finally,
we describe two CPs (Sect. 3.3).

The way to document OPs can be compared to the typical way followed for
SE patterns. The mainstream approach for describing SE patterns is to use a
template, although there is no standard format. A description of the most well-
known SE pattern templates can be found at Martin Fowler’s web site.8 The
templates used for describing SE patterns follow quite closely that suggested
by Alexander [1]: given an artifact type, the pattern provides examples of
it, its context, the problem addressed by the pattern, the involved “forces”
(requirements and constraints), and a solution.

In order to describe CPs, we follow a similar approach: each CP is associ-
ated with a catalogue entry including the following set of information fields.

Name provides a name for the pattern; Intent describes the Generic Use
Case addressed by the pattern; Competency questions contains examples of
competency questions that the knowledge base associated with the CP needs
to address; Also Known as provides other names (if any) with which the
pattern is known; Scenarios provides examples of requirements, expressed in
natural language, which can be modeled by using the pattern; Diagram de-
picts a UML class diagram representing the pattern; Elements describes the
elements (classes and relations) included in the pattern, and their role within
the pattern; Consequences provides a description of the benefits and/or pos-
sible trade-offs when using the pattern; Known uses gives examples of real-
istic ontologies where the pattern is used, Extracted from/Reengineered from
provides the reference ontology/conceptual schema (if any), from which the
pattern has been extracted/reused; Related patterns indicates other patterns
(if any) that are either a specialization, generalization, composition, or compo-
nent of the pattern being described. Furthermore, this field may indicate other
8 http://www.martinfowler.com/articles/writingPatterns.html#CommonPattern

Forms
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patterns that are typically used in conjunction with the described one. Im-
portant similarities and differences with other patterns can be also described
here; Building block provides references to implementations of the pattern, a
URI. In the case of CPs for Semantic Web ontologies, this field provides the
URI of an OWL file (containing an implementation of the pattern).

Section 3.3 contains two examples of CPs that are described by means of a
simplified version of the catalogue template. Such a catalogue can be found at
the ontologydesignpatterns.org web portal [36], a dedicated wiki site through
which a lightweight repository of CPs can be accessed. In fact, [36] allows
users to download, propose, and discuss CPs. Furthermore, each CP includes
a set of annotations9 that can be exploited by Semantic Web applications.
The reader can refer to chapter “Ontology Repositories” for more details on
ontology repositories.

3.1 CPs and Competency Questions

CPs are reusable solutions to recurrent modelling problems. As known from
a long time in conceptual modelling (cf. the difference between class and
use case diagrams in UML) and knowledge engineering (cf. the distinction
between domain and task ontologies in UPML [32]), these problems have two
components: a domain and a use case (or task). A same domain can have
many use cases (e.g. different scenarios in a clinical information context), and
a same use case can be found in different domains (e.g. different domains with
a same “competence finding” scenario).

Ontologies are usually considered models for a domain, but their use case
is usually unknown. As reusable solutions, CPs must explicitly encode both a
domain and a use case. Since use cases are extremely diversified, a catalogue of
CPs requires the notion of a “Generic Use Case” (GUC), i.e. a generalization
of use cases that can be provided as examples for an issue of domain modelling.
A GUC is the expression of a recurrent scenario in different domain ontology
projects.

Being generic at the use case level allows us to divide, or to refactor the
design problems of a use case, by composing different GUCs. We can hier-
archically organize GUCs from the most generic to the most specific ones,
and from the “purest” (e.g. “which objects take part in a certain event?”) to
the most articulated and applied ones (e.g. “what protein is involved in the
Jack/Stat biochemical pathway?”).

The intuition underlying GUC hierarchies is based on a methodological
observation: ontologies must be built out of domain tasks that can be captured
by means of competency questions [23]. A competency question is a typical
query that an expert might want to submit to a knowledge base of its target
domain, for a certain task. In principle, an accurate domain ontology should
specify all and only the conceptualizations required in order to answer all

9 http://www.ontologydesignpatterns.org/schema/cpannotationschema.owl
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the competency questions formulated by, or acquired from, experts. A GUC
cannot do much as a guideline, unless we are able to find formal patterns that
encode it. CPs are the solution to this issue. Based on the above assumptions,
we define a CP as:

CPs are distinguished ontologies. They address a specific set of com-
petency questions, which represent the problem they provide a solu-
tion for. Furthermore, CPs show certain characteristics, i.e. they are:
computational, small, autonomous, hierarchical, cognitively relevant,
linguistically relevant, and best practices.

3.2 General Characteristics of CPs

CPs are components that represent, and possibly help solving a modelling
problem arising across different use cases. E.g. the agent-role pattern provides
a solution to represent agents that play some role. We have sketched their theo-
retical basis in Sect. 2, and explained their dependance on use cases (Sect. 3.1).
Before providing a sample list of CPs against an example use case (Sect. 3.3),
we now describe a more inclusive set of general, pragmatic features of CPs.
These features, besides positioning CPs in a wider scientific context, give hints
on how to discover or to extract CPs from existing knowledge resources.

Computational components. CPs are language-independent, and should
be encoded in a higher-order representation language. Nevertheless, their
(sample) representation in OWL is needed in order to (re)use them as building
blocks over the Semantic Web.

Small, autonomous components. Regardless of the particular way a CP
has been created, it is a small, autonomous ontology. Smallness (typically
two to ten classes with relations defined between them) and autonomy of
CPs facilitate ontology designers: composing CPs enable them to govern the
complexity of the whole ontology, because of the explicit rationales and the
amount of know-how provided by the users of a same CP library. Smallness
also allows diagrammatical visualizations that are aesthetically acceptable and
easily memorizable.

Hierarchical components. A CP can be an element in a partial order, where
the ordering relation requires that at least one of the classes or properties in
the pattern is specialized. A hierarchy of CPs can be built by specializing or
generalizing some of the elements (either classes or relations).

Inference-enabling components. There are combinations of ontology ele-
ments that do not allow any useful inference, e.g. a taxonomy with two sibling
classes, an object property alone, etc. A CP allows some form of inference,
e.g. a taxonomy with two sibling disjoint classes, a property with explicit do-
main and range set, a property and a class with a universal restriction on that
property, etc.

Cognitively relevant components. CP visualization must be intuitive and
compact, and should catch relevant, “core” notions of a domain [14].
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Linguistically relevant components. Many CPs nicely match linguistic pat-
terns called frames. A frame can be described as a lexically founded OP. The
richest repository of frames is FrameNet [3]. Frames can be used for validat-
ing CPs with respect to lexical coverage, for lexicalizing them, and can be
reengineered as CPs.

Best practice components. A CP should be used to describe a “best prac-
tice” of modelling. Best practices are intended here as local, thus derived from
experts, emerging from real applications. The quality of CPs is currently based
on the personal experience and taste of the proposers, or on the provenance
of the knowledge resource where the pattern comes from. However, evidence
from reusability across different projects, large-scale applications, and open
rating systems will provide a good base for CP evaluation.

3.3 Samples of CP Catalogue Entries

In this section we show two CPs taken from [36], Each CP is presented in
a catalogue-like way, and with reference to the OWL language. For space
reasons, we describe each CP with a simplified catalogue entry composed of:
the Name (including possible alternative names), the Intent (i.e., the GUC),
Competency questions, some Examples of its application, the Diagram de-
scribing its structure, the Elements and the role they play in the pattern, and
some General Remarks that indicate general guidelines about how to use it,
including relations to other CPs. The complete entry10 also contains a field
named building block that provides references to implementations of the pat-
tern, i.e. repository of reusable components. In the case of CPs for Semantic
Web ontologies, this field provides the URI of an OWL file (containing an
implementation of the pattern). We have used TopBraid Composer11 in order
to produce the OWL encoding. With the same tool, we automatically gener-
ated a diagrammatical visualization based on a UML profile for OWL. UML
classes (boxes) are used in order to depicts OWL classes. Two kinds of OWL
classes can be visualized in a diagram: named classes (owl:Class, in white
boxes) and anonymous classes (in grey boxes), e.g. owl:Restriction with
owl:someValuesFrom. UML generalization (arrow with a large end) corre-
sponds to rdfs:subClassOf, while UML association (arrow with a small end)
corresponds to owl:ObjectProperty. Finally, UML class attributes (state-
ments inside white boxes) are used in order to indicate either rdfs:domain
and rdfs:range, or owl:Restriction with owl:allValuesFrom. When a
class name is preceded by a prefix, e.g. sit:, it is interpreted as a class im-
ported (e.g. by owl:imports) from another (typically more general) CP that
is indexed by means of that prefix.

In the rest of this section we use the OWL terminology in order to describe
the proposed design solutions, e.g. object property, datatype property, etc.

10 See [36,37].
11 http://www.topbraidcomposer.com/
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The information realization CP

The information realization CP is extracted from the Dolce+DnS Ultra Lite
ontology,12 and represents the relations between information objects like po-
ems, songs, formulas, etc., and their physical realizations like printed books,
registered tracks, physical files, etc..

The information realization CP is associated with information according
to the catalogue entry fields reported below:

Intent : to represent relations between information objects and their phys-
ical realizations.

Competency questions: which physical object realizes a certain information
object? Which information object is realized by a certain physical object?

Diagram: Fig. 2 shows a UML diagram of the information realization CP.
Elements:

• InformationObject: a piece of information, such as a musical composi-
tion, a text, a word, a picture, independently from how it is concretely
realized.

• InformationRealization: a concrete realization of an InformationOb-
ject, e.g. the written document containing the text of a law.

• realizes: a relation between an information realization and an informa-
tion object, e.g. the paper copy of the Italian Constitution realizes the text
of the Constitution.

• isRealizedBy: a relation between an information object and an informa-
tion realization, e.g. the text of the Constitution is realized by the paper
copy of the Italian Constitution.

General remarks: this CP13 allows to distinguish between information en-
coded in an object and the possible physical representations of it. The
Multimedia ontology (cf. chapter “Ontologies for Cultural Heritage”) uses
this CP.

Fig. 2. The information realization CP UML graphical representation

12 http://www.ontologydesignpatterns.org/ont/dul//DUL.owl
13 http://www.ontologydesignpatterns.org/cp/owl/informationrealization.owl
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The Time Indexed Person Role CP

The time indexed person role is a CP that represents time indexing for the rela-
tion between persons and roles they play, e.g. George W. Bush was the
president of the United States in 2007. This CP is also extracted from the
Dolce+DnS Ultra Lite ontology.

According to its associated catalogue entry, the main information associ-
ated with this CP are the following:

Intent : to represent time indexing for the relation between persons and
roles they play.

Competency questions: who was playing a certain roles during a given time
interval? When did a certain person play a specific role?

Diagram: see Fig. 3, the elements which compose the CP are described in
the Elements field.

Elements:

• Entity: anything: real, possible, or imaginary, which some modeller wants
to talk about for some purpose.

• Person: persons in commonsense intuition, i.e. either as physical agents
(humans) or social persons.

• Role: a Concept that classifies a Person.
• TimeInterval: any region in a dimensional space that aims at representing

time.
• TimeIndexedPersonRole: a situation that expresses time indexing for the

relation between persons and roles they play.
• hasRole: a relation between a Role and an Entity, e.g. “John is considered

a typical rude man”; your last concert constitutes the achievement of a
lifetime; “20-year-old means she’s mature enough”.

• isRoleOf: a relation between a Role and an Entity, e.g. the Role “student”
classifies a Person “John”.

Fig. 3. The time indexed person role CP UML graphical representation
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• isSettingFor: a relation between time indexed role situations and related
entities, e.g. “I was the director between 2000 and 2005”, i.e. the situation
in which I was a director is the setting for a the role of director, me, and
the time interval.

• hasSetting: the inverse relation of isSettingFor.

General remarks: this CP14 allows to assign a time interval to roles played by
people.

4 Creating and Working with CPs

This section discusses how CPs can be created, and provides guidelines on
how they can be practically (re)used. Section 4.1 describes four approaches to
create CPs, while Sect. 4.2 shows the main operations that are performed for
reusing a CP, and describes the possible situations of CP selection and usage
that can occur in practice.

4.1 Where do Content Ontology Design Patterns Come from?

CP creation and usage rely on a common set of operations.

Import : consists of including a CP in the ontology under development. This is
the basic mechanism for reusing CPs (and ontologies in general). By im-
porting a CP, the importing ontology ensures the set of inferences allowed
by the CP in its corresponding knowledge base. Elements of an imported
CP cannot be modified.

Specialization: can be referred to ontology elements or to CPs. Specialization
between ontology elements of a CP consists of creating sub-classes of some
CP’s class and/or sub-properties of some CP’s properties. A CP c1 is a
specialization of a CP c if c1 imports c, and at least one ontology element
from c1 specializes an ontology element from c.

Generalization: A CP c1 is a generalization of a CP c if c1 imports c, and at
least one ontology element from c1 generalizes an element from c.

Composition: consists of associating classes (properties) of one CP with
classes (properties) of other CPs, by means of some OWL axiom.

Expansion: consists of adding new classes, properties and axioms to the on-
tology to the aim of covering the requirements that are not addressed by
the reused CPs.

CPs come from the experience of ontology engineers in modelling foundational
(cf. chapter “Foundational Choices in DOLCE”), upper-level, core [15], or do-
main ontologies. Informally, the distinction between these kinds of ontologies
relates to the degree by which an ontology covers the domain of interest,

14 http://ontologydesignpatterns.org/cp/owl/timeindexedpersonrole.owl
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cf. chapter “What Is an Ontology” for details. Assuming the above distinc-
tions, there are four main ways of creating CPs, which can be summarized as
follows:

Reengineering from other data models. A CP can be the result of a reengi-
neering process applied to different conceptual modelling languages, primi-
tives, and styles. Knowledge resources that can be reengineered to produce
candidate CPs are database schemas, knowledge organization systems such
as thesauri, and lexica. For more references, the reader can refer to [20] that
describes a reengineering approach for creating CPs starting from UML dia-
grams [35], workflow patterns [49], and data model patterns [27].

Specialization/Composition of other CPs. A CP can be created by com-
posing other CPs, or by specializing another CP, (both composition and spe-
cialization can be combined with expansion, see below).

Extraction from reference ontologies. A CP can be extracted from an ex-
isting ontology, which acts as the “source” ontology. In this case, the CP
corresponds to a fragment of the source ontology, which constitutes its ax-
iomatic background context. A CP is axiomatized according to the fragment
it extracts. E.g. the co-participation CP depends on a set of axioms from the
DOLCE ontology [9], which state that an event has at least one participant,
that co-participation requires two participants in a same event, that partic-
ipants must participate at least partly at the same time, etc. If a modeller
specializes the co-participation CP for representing, e.g. an academic lecture
or a football match, the reasoning services will operate with reference to the
co-participation axioms, without the need for encoding them again. However,
a CP is autonomous, and only the axioms that have been extracted from the
reference ontology are actually used by an ontology that reuses a CP. There-
fore, reasoning services do not need to also process the general axiomatic
context from the reference ontology.

Creation by combining extraction, specialization, generalization, and ex-
pansion The definition of a CP can be the result of an extraction (see above),
followed by specialization and/or generalization of some ontology elements,
and expansion.15

4.2 How to Use Content Ontology Design Patterns

Supporting reuse and alleviating difficulties in ontology design activities are
the main goals of setting up a catalogue of CPs. In order to be able to reuse
CPs, two main functionalities must be ensured: selection and application.

Selection of CPs corresponds to finding the most appropriate CP for the
actual domain modelling problem. Hence, selection includes search and eval-
uation of available CPs. This task can be performed by applying procedures
for ontology selection [28, 41] and evaluation [13] (cf. chapter “Ontology En-
gineering Environments”).

15 See [37] for more details.
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Informally, a GUC, i.e. the intent of a CP, must match an actual use case.
Once a CP has been selected, it has to be applied to the domain ontology.
Typically, application is performed by means of import, specialization, compo-
sition, or expansion (see Sect. 4.1). In realistic design projects, the operations
are usually combined as it is shown by the example of Sect. 5.

Several situations of matching between GUCs and actual use cases can
occur, each associated with a different approach to using CPs. The following
summary assumes a manual (re)use of CPs. However, an initial library of CPs
is already available [36], and tool support to their selection and usage can take
into account the principles informally explained in the summary below as base
requirements. Precise or redundant matching. The CP matches a GUC, which
is either more complex or directly usable to describe the local use case: the
CP has only to be imported in the domain ontology.

Broader matching. The CP matches a GUC that is more general than the
local use case: the CP’s catalogue entry may contain reference to less general
CPs that specialize it. If none of them is appropriate, the CP has firstly to be
imported, then it has to be specialized in order to cover the domain part to
be represented.

Narrower matching. The CP matches a GUC that is more specific than the
local use case: the CP’s catalogue entry may contain references to more general
CPs. If none of them is appropriate, a the CP has firstly to be imported, then
it has to be generalized according to the local requirements.

Partial matching. The CP partly matches a GUC that does not cover all
aspects of the local use case (it is simpler): the CP’s catalogue entry may
contain references to CPs it is a component of. If none of such compound CPs
is appropriate, the local use case has to be partitioned into smaller pieces. One
of these pieces will be covered by the selected CP. For the other pieces, other
CPs have to be selected. All selected CPs have to be imported and composed.

In all the above situation, expansion is performed when needed.

5 Use Case Example in the Music Industry Domain

As an example of usage we design a small fragment of an ontology for the
music industry domain. The ontology fragment has to address the following
competency questions:

Which recordings of a certain song do exist in our archive?
Who did play a certain musician role in a given band during a certain period?

The first competency question requires to distinguish between a song and
its recording, while the second competency question highlights the issue of
assigning a given musician role, e.g. singer, guitar player, etc., to a person
who is member of a certain band, at a given period of time. The intent of
the information realization is related to the first competency question with
a broader matching. The intent of the time indexed person role partially and
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broadly matches the second competency question. Hence, we select these two
CPs as building blocks for our ontology.16

We proceed by importing and composing the two selected CPs in our on-
tology (the information realization CP is associated with the prefix ir:; the
time indexed person role CP is associated with the prefix tipr:). Additionally,
we might want to import the time interval CP17 that allows us to assign a date
to the time interval. In order to complete our ontology fragment we create: the
class Song that specializes ir:InformationObject, the class Recording that
specializes ir:InformationRealization, the class MusicianRole that spe-
cializes tipr:Role, the class Band, and the object property memberOf (and its
inverse) with explicit domain, i.e. tipr:Person, and range, i.e. Band. A screen-
shot of the resulting ontology fragment is shown in Fig. 4.18 On the left side
of the picture ontology classes are shown, on the right side there are on-
tology properties, while at the bottom there are the imported CPs. Notice
that CPs can be very useful when they address issues in a specific domain.
For this reason, an ontology fragment like this one might be proposed as a
CP19 if it is associated with a successful application in an ontology design
project.

Fig. 4. The music industry example

16 Notice that the second requirement would also require to represent member-
ship relation between a person and a band. The collection entity CP available
at http://www.ontologydesignpatterns.org/cp/owl/collectionentity.owl addresses
membership. We do not include the description of this CP and its usage for the
sake of brevity.

17 Available at http://www.ontologydesignpatterns.org/cp/owl/timeinterval.owl
18 The screenshot shows the TopBraid Composer interface, see http://www.

topbraidcomposer.com
19 See [36] area of proposed CP.
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6 Conclusion and Remarks

Ontology design is a crucial research area for semantic technologies. Many
bottlenecks in the wide adoption of semantic technologies depend on the diffi-
culty of understanding ontologies and on the scarcity of tools supporting their
lifecycle, from creation to adaptation, reuse, and management. The lessons
learnt until now, either from the early adoption of Semantic Web solutions
or from local, organizational applications, put a lot of emphasis on the need
for simple, modular ontologies that are accessible and understandable by typ-
ical computer scientist and field experts, and on the dependability of these
ontologies on existing knowledge resources.20

In this chapter, we have described a breed of components, called Ontology
Design Patterns, and tools that will support ontology design at the level
that is more natural to domain experts and laymen, i.e. the level at which
small, expertise-aware components can be assembled as easy-to-apply, easy-
to-customize building blocks.

The quality of these components is expected to be evaluated with re-
spect to known good practices, as well as in the large testbed of organi-
zational or web-scale open rating systems. In order to allow the maximum
transparency and flexibility, OPs are supplied with a rich set of metadata
for their explanation, rationale declaration, use case history, evaluation crite-
ria, etc. In this chapter, we have sketched a typology of OPs, then focused
on Content Ontology Design Patterns (which are most beneficial to ontology
design) in terms of their background, definition, communication means, re-
lated work beyond ontology engineering, exemplification, creation, and usage
principles.

There is still a lot of work to be carried out for populating repositories of
patterns, discoverying or extracting them from existing ontologies, assisting
users in their application, defining a robust semantics and algebra for them,
etc. (cf. [42]). The larger context of ontology design research is still very young,
and many ideas are just emerging, for example in (semi-)automatizing the
creation and evaluation of ontologies, based only on informal documentation
from users, a set of software components, and a repository of design patterns.
In a larger report [37] and by setting up the ontologydesignpatterns.org web
portal [36], we make some steps towards the open issues. Moreover, we have
designed a set of experiments that are going to be performed in order to show
OPs’ effectiveness, e.g. in teaching ontology design, lower the cost of ontology
projects, etc. However, some initial experiences with PhD students classes,
and the employment of CPs in of our own recent projects have provided us
with concrete proof of the benefits deriving from their application.

20 An interesting review of evaluation, selection and reuse methods in ontology en-
gineering is in [40].



240 A. Gangemi and V. Presutti

References

1. Christopher Alexander. The Timeless Way of Building. Oxford Press, 1979.
2. Richard Arndt, Raphael Troncy, Steffen Staab, Lynda Hardman, and Miroslav

Vacura. COMM: Designing a Well-Founded Multimedia Ontology for the Web.
In Proceedings of the 4th European Semantic Web Conference (ISCW’07), Busan
Korea, November 2007. Springer.

3. Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The Berkeley FrameNet
project. In Christian Boitet and Pete Whitelock, editors, Proceedings of the
Thirty-Sixth Annual Meeting of the Association for Computational Linguistics
and Seventeenth International Conference on Computational Linguistics, pages
86–90, San Francisco, California, 1998. Morgan Kaufmann.

4. Eva Blomqvist. Fully automatic construction of enterprise ontologies using de-
sign patterns: Initial method and first experiences. In Robert Meersman, Zahir
Tari, Mohand-Said Hacid, John Mylopoulos, Barbara Pernici, Özalp Babaoglu,
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