
Description Logics

Franz Baader1, Ian Horrocks2, and Ulrike Sattler3

1 Institut für Theoretische Informatik, TU Dresden, Germany,
baader@tcs.inf.tu-dresden.de

2 Computing Laboratory, Oxford University, Oxford, UK,
ian.horrocks@comlab.ox.ac.uk

3 Department of Computer Science, University of Manchester, Manchester, UK,
sattler@cs.man.ac.uk

Summary. In this chapter, we explain what description logics are and why they
make good ontology languages. In particular, we introduce the description logic
SHIQ, which has formed the basis of several well-known ontology languages, in-
cluding OWL. We argue that, without the last decade of basic research in description
logics, this family of knowledge representation languages could not have played such
an important rôle in this context.

Description logic reasoning can be used both during the design phase, in order to
improve the quality of ontologies, and in the deployment phase, in order to exploit
the rich structure of ontologies and ontology based information. We discuss the
extensions to SHIQ that are required for languages such as OWL and, finally, we
sketch how novel reasoning services can support building ontologies.

1 Introduction

The aim of this section is to give a brief introduction to description logics, and
to argue why they are well-suited as ontology languages. In the remainder of
the chapter we will put some flesh on this skeleton by providing more technical
details with respect to the theory of description logics, and their relationship
to state of the art ontology languages. More detail on these and other matters
related to description logics can be found in [6].

1.1 Ontologies

There have been many attempts to define what constitutes an ontology, per-
haps the best known (at least amongst computer scientists) being due to
Gruber: “an ontology is an explicit specification of a conceptualisation” [49].1

In this context, a conceptualisation means an abstract model of some aspect
1 This was later elaborated to “a formal specification of a shared conceptualisation”

[21].

S. Staab and R. Studer (eds.), Handbook on Ontologies, International Handbooks 21
on Information Systems, DOI 10.1007/978-3-540-92673-3,
c© Springer-Verlag Berlin Heidelberg 2009



22 F. Baader et al.

of the world, taking the form of a definition of the properties of important
concepts and relationships. An explicit specification means that the model
should be specified in some unambiguous language, making it amenable to
processing by machines as well as by humans.

Ontologies are becoming increasingly important in fields such as knowl-
edge management, information integration, cooperative information systems,
information retrieval and electronic commerce. One application area which
has recently seen an explosion of interest is the so called Semantic Web [18],
where ontologies are set to play a key rôle in establishing a common ter-
minology between agents, thus ensuring that different agents have a shared
understanding of terms used in semantic markup.

The effective use of ontologies requires not only a well-designed and well-
defined ontology language, but also support from reasoning tools. Reasoning
is important both to ensure the quality of an ontology, and in order to exploit
the rich structure of ontologies and ontology based information. It can be em-
ployed in different phases of the ontology life cycle. During ontology design,
it can be used to test whether concepts are non-contradictory and to derive
implied relations. In particular, one usually wants to compute the concept hi-
erarchy, i.e. the partial ordering of named concepts based on the subsumption
relationship. Information on which concept is a specialization of another, and
which concepts are synonyms, can be used in the design phase to test whether
the concept definitions in the ontology have the intended consequences or not.
This information is also very useful when the ontology is deployed.

Since it is not reasonable to assume that all applications will use the same
ontology, interoperability and integration of different ontologies is also an im-
portant issue. Integration can, for example, be supported as follows: after the
knowledge engineer has asserted some inter-ontology relationships, the inte-
grated concept hierarchy is computed and the concepts are checked for con-
sistency. Inconsistent concepts as well as unintended or missing subsumption
relationships are thus signs of incorrect or incomplete inter-ontology asser-
tions, which can then be corrected or completed by the knowledge engineer.

Finally, reasoning may also be used when the ontology is deployed. As
well as using the pre-computed concept hierarchy, one could, for example, use
the ontology to determine the consistency of facts stated in annotations, or
infer relationships between annotation instances and ontology classes. More
precisely, when searching web pages annotated with terms from the ontology,
it may be useful to consider not only exact matches, but also matches with
respect to more general or more specific terms – where the latter choice de-
pends on the context. However, in the deployment phase, the requirements
on the efficiency of reasoning are much more stringent than in the design and
integration phases.

Before arguing why description logics are good candidates for such an on-
tology language, we provide a brief introduction to and history of description
logics.



Description Logics 23

1.2 Description Logics

Description logics (DLs) [6, 16, 30] are a family of knowledge representation
languages that can be used to represent the knowledge of an application do-
main in a structured and formally well-understood way. The name description
logics is motivated by the fact that, on the one hand, the important notions
of the domain are described by concept descriptions, i.e. expressions that are
built from atomic concepts (unary predicates) and atomic roles (binary pred-
icates) using the concept and role constructors provided by the particular
DL. On the other hand, DLs differ from their predecessors, such as semantic
networks and frames, in that they are equipped with a formal, logic-based
semantics.

In this introduction, we only illustrate some typical constructors by an
example. Formal definitions are given in Sect. 2. Assume that we want to
define the concept of “A man that is married to a doctor and has at least five
children, all of whom are professors.” This concept can be described with the
following concept description:

Human 
 ¬Female 
 ∃married.Doctor 
 (≥ 5 hasChild) 
 ∀hasChild.Professor

This description employs the Boolean constructors conjunction (
), which
is interpreted as set intersection, and negation (¬), which is interpreted as
set complement, as well as the existential restriction constructor (∃R.C), the
value restriction constructor (∀R.C), and the number restriction constructor
(≥nR). An individual, say Bob, belongs to ∃married.Doctor if there exists
an individual that is married to Bob (i.e. is related to Bob via the married
role) and is a doctor (i.e. belongs to the concept Doctor). Similarly, Bob be-
longs to (≥ 5 hasChild) iff he has at least five children, and he belongs to
∀hasChild.Professor iff all his children (i.e. all individuals related to Bob via
the hasChild role) are professors.

In addition to this description formalism, DLs are usually equipped with
a terminological and an assertional formalism. In its simplest form, termino-
logical axioms can be used to introduce names (abbreviations) for complex
descriptions. For example, we could introduce the abbreviation HappyMan
for the concept description from above. More expressive terminological for-
malisms allow the statement of constraints such as

∃hasChild.Human � Human,

which says that only humans can have human children. A set of terminological
axioms is called a TBox. The assertional formalism can be used to state
properties of individuals. For example, the assertions

HappyMan(BOB), hasChild(BOB,MARY)

state that Bob belongs to the concept HappyMan and that Mary is one of his
children. A set of such assertions is called an ABox, and the named individuals
that occur in ABox assertions are called ABox individuals.



24 F. Baader et al.

Description logic systems provide their users with various inference ca-
pabilities that deduce implicit knowledge from the explicitly represented
knowledge. The subsumption algorithm determines subconcept–superconcept
relationships: C is subsumed by D iff all instances of C are necessarily in-
stances of D, i.e. the first description is always interpreted as a subset of the
second description. For example, given the definition of HappyMan from above,
HappyMan is subsumed by ∃hasChild.Professor – since instances of HappyMan
have at least five children, all of whom are professors, they also have a child
that is a professor. The instance algorithm determines instance relationships:
the individual i is an instance of the concept description C iff i is always
interpreted as an element of C. For example, given the assertions from above
and the definition of HappyMan, MARY is an instance of Professor. The con-
sistency algorithm determines whether a knowledge base (consisting of a set
of assertions and a set of terminological axioms) is non-contradictory. For ex-
ample, if we add ¬Professor(MARY) to the two assertions from above, then
the knowledge base containing these assertions together with the definition of
HappyMan from above is inconsistent.

In order to ensure reasonable and predictable behavior of a DL system,
these inference problems should at least be decidable for the DL employed
by the system, and preferably of low complexity. Consequently, the expressive
power of the DL in question must be restricted in an appropriate way. If the
imposed restrictions are too severe, however, then the important notions of
the application domain can no longer be expressed. Investigating this trade-
off between the expressivity of DLs and the complexity of their inference
problems has been one of the most important issues in DL research. Roughly,
the research related to this issue can be classified into the following four
phases.

Phase 1 (1980–1990) was mainly concerned with implementation of systems,
such as Klone, K-Rep, Back, and Loom [24, 70, 71, 80]. These systems
employed so-called structural subsumption algorithms, which first normalize
the concept descriptions, and then recursively compare the syntactic structure
of the normalized descriptions [73]. These algorithms are usually relatively
efficient (polynomial), but they have the disadvantage that they are complete
only for very inexpressive DLs, i.e. for more expressive DLs they cannot detect
all the existing subsumption/instance relationships. At the end of this phase,
early formal investigations into the complexity of reasoning in DLs showed
that most DLs do not have polynomial-time inference problems [23,74]. As a
reaction, the implementors of the Classic system (the first industrial-strength
DL system) carefully restricted the expressive power of their DL [22,79].

Phase 2 (1990–1995) started with the introduction of a new algorithmic
paradigm into DLs, so-called tableau-based algorithms [40, 54, 88]. They work
on propositionally closed DLs (i.e. DLs with full Boolean operators) and are
complete also for expressive DLs. To decide the consistency of a knowledge
base, a tableau-based algorithm tries to construct a model of it by breaking



Description Logics 25

down the concepts in the knowledge base, thus inferring new constraints on
the elements of this model. The algorithm either stops because all attempts
to build a model failed with obvious contradictions, or it stops with a “canon-
ical” model. Since in propositionally closed DLs, subsumption and satisfiabil-
ity can be reduced to consistency, a consistency algorithm can solve all the
inference problems mentioned above. The first systems employing such algo-
rithms (Kris and Crack) demonstrated that optimized implementations of
these algorithm lead to an acceptable behavior of the system, even though the
worst-case complexity of the corresponding reasoning problems is no longer in
polynomial time [9, 27]. This phase also saw a thorough analysis of the com-
plexity of reasoning in various DLs [39–41]. Another important observation
was that DLs are very closely related to modal logics [85].

Phase 3 (1995–2000) is characterized by the development of inference proce-
dures for very expressive DLs, either based on the tableau-approach [58,60] or
on a translation into modal logics [35–38]. Highly optimized systems (FaCT,
Race, and Dlp [50, 55, 78]) showed that tableau-based algorithms for ex-
pressive DLs lead to a good practical behavior of the system even on (some)
large knowledge bases. In this phase, the relationship to modal logics [36, 86]
and to decidable fragments of first-order logic was also studied in more detail
[19, 45–47, 76], and applications in databases (like schema reasoning, query
optimization, and integration of databases) were investigated [28,29,31].

We are now at the beginning of Phase 4, where industrial strength DL systems
employing very expressive DLs and tableau-based algorithms are being devel-
oped, with applications like the Semantic Web or knowledge representation
and integration in bio-informatics in mind.

1.3 Description Logics as Ontology Languages

As already mentioned above, high quality ontologies are crucial for many ap-
plications, and their construction, integration, and evolution greatly depends
on the availability of a well-defined semantics and powerful reasoning tools.
Since DLs provide for both, they should be ideal candidates for ontology lan-
guages. That much was already clear ten years ago, but at that time there
was a fundamental mismatch between the expressive power and the efficiency
of reasoning that DL systems provided, and the expressivity and the large
knowledge bases that ontologists needed [42]. Through the basic research in
DLs of the last 10–15 years that we have summarized above, this gap between
the needs of ontologist and the systems that DL researchers provide has finally
become narrow enough to build stable bridges.

The suitability of DLs as ontology languages has been highlighted by their
role as the foundation for several web ontology languages, including OWL, an
ontology language standard developed by the W3C Web-Ontology Working
Group2 (see chapter “Web Ontology Language: OWL”). OWL has a syntax
2 http://www.w3.org/2001/sw/WebOnt/



26 F. Baader et al.

based on RDF Schema, but the basis for its design is the expressive DL SHIQ
[60],3 and the developers have tried to find a good compromise between ex-
pressiveness and the complexity of reasoning. Although reasoning in SHIQ
is decidable, it has a rather high worst-case complexity (ExpTime). Never-
theless, highly optimized SHIQ reasoners such as FaCT++ [95], Racer [52]
and Pellet [91] behave quite well in practice.

Let us point out some of the features of SHIQ that make this DL ex-
pressive enough to be used as an ontology language. Firstly, SHIQ provides
number restrictions that are more expressive than the ones introduced above
(and employed by earlier DL systems). With the qualified number restrictions
available in SHIQ, as well as being able to say that a person has at most two
children (without mentioning the properties of these children):

(≤ 2 hasChild),

one can also specify that there is at most one son and at most one daughter:

(≤ 1 hasChild.¬Female) 
 (≤ 1 hasChild.Female).

Secondly, SHIQ allows the formulation of complex terminological axioms like
“humans have human parents”:

Human � ∃hasParent.Human.

Thirdly, SHIQ also allows for inverse roles, transitive roles, and subroles. For
example, in addition to hasChild one can also use its inverse hasParent, one
can specify that hasAncestor is transitive, and that hasParent is a subrole of
hasAncestor.

It has been argued in the DL and the ontology community that these
features play a central role when describing properties of aggregated objects
and when building ontologies [43, 83, 93]. The actual use of a DL providing
these features as the underlying logical formalism of the web ontology language
OWL [57] substantiates this claim [93].4

Finally, we would like to briefly mention three extensions to SHIQ that
are often used in ontology languages (we will discuss them in more detail in
Sect. 4).

Complex roles are often required in ontologies. For example, when describ-
ing complex physically composed structures it may be desirable to express the
fact that damage to a part of the structure implies damage to the structure
as a whole. This feature is particularly important in medical ontologies: it is
supported in the Grail DL [81], which was specifically designed for use with
medical terminology, and in another medical terminology application using

3 To be exact, it is based on SHOIN .
4 The more expressive qualified number restrictions are not supported by OWL,

but are featured in the proposed OWL 2 extension (see Sect. 4).



Description Logics 27

the comparatively inexpressive DL ALC, a rather complex “work around” is
performed in order to capture this kind of information [89].5

It is quite straightforward to extend SHIQ so that this kind of propagation
can be expressed: simply allow for the use of complex roles in role inclusion
axioms. E.g. hasLocation ◦ partOf � hasLocation expresses the fact that things
located in part of something are also located in the thing as a whole. Although
this leads to undecidability in general, syntactic restrictions can be devised
that lead to a decidable logic [59].

Concrete domains [7,69] integrate DLs with concrete sets such as the real
numbers, integers, or strings, and built-in predicates such as comparisons ≤,
comparisons with constants ≤ 17, or isPrefixOf. This supports the modelling of
concrete properties of abstract objects such as the age, the weight, or the name
of a person, and the comparison of these concrete properties. Unfortunately,
in their unrestricted form, concrete domains can have dramatic effects on the
decidability and computational complexity of the underlying DL [69].

Nominals are special concept names that are to be interpreted as singleton
sets. Using a nominal Turing, we can describe all those computer scientists that
have met Turing by CSientist 
 ∃hasMet.Turing. Again, nominals can have
dramatic effects on the complexity of a logic [94]. The extension of SHIQ
with nominals is usually called SHOIQ.

2 The Expressive Description Logic SHIQ

In this section, we present syntax and semantics of the expressive DL SHIQ
[60] (although, as can be seen in chapter “Web Ontology Language: OWL”,
the DL underlying OWL is, in some respects, slightly more expressive).

In contrast to most of the DLs considered in the literature, which con-
centrate on constructors for defining concepts, the DL SHIQ also allows for
rather expressive roles. Of course, these roles can then be used in the definition
of concepts.

Definition 1 (Syntax and semantics of SHIQ-roles and concepts). Let
R be a set of role names, which is partitioned into a set R+ of transitive roles
and a set RP of normal roles. The set of all SHIQ-roles is R∪{r− | r ∈ R},
where r− is called the inverse of the role r.

Let C be a set of concept names. The set of SHIQ-concepts is the smallest
set such that

1. every concept name A ∈ C is a SHIQ-concept,
2. if C and D are SHIQ-concepts and r is a SHIQ-role, then C
D, C�D,
¬C, ∀r.C, and ∃r.C are SHIQ-concepts,

5 In this approach, so-called SEP-triplets are used both to compensate for the
absence of transitive roles in ALC, and to express the propagation of properties
across a distinguished “part-of” role.



28 F. Baader et al.

3. if C is a SHIQ-concept, r is a simple6 SHIQ-role, and n ∈ N, then
(� n r.C) and (� n r.C) are SHIQ-concepts.

An interpretation I = (ΔI , ·I) consists of a set ΔI , called the domain of
I, and a function ·I that maps every role to a subset of ΔI ×ΔI such that,
for all p ∈ R and r ∈ R+,

〈x, y〉 ∈ pI iff 〈y, x〉 ∈ (p−)I ,

if 〈x, y〉 ∈ rI and 〈y, z〉 ∈ rI then 〈x, z〉 ∈ rI .

The interpretation function ·I of an interpretation I = (ΔI , ·I) maps,
additionally, every concept to a subset of ΔI such that

(C 
D)I = CI ∩DI , (C �D)I = CI ∪DI , ¬CI = ΔI \ CI ,

(∃r.C)I = {x ∈ ΔI | There is some y ∈ ΔI with 〈x, y〉 ∈ rI and y ∈ CI},
(∀r.C)I = {x ∈ ΔI | For all y ∈ ΔI , if 〈x, y〉 ∈ rI , then y ∈ CI},

(� n r.C)I = {x ∈ ΔI | �rI(x,C) � n},
(� n r.C)I = {x ∈ ΔI | �rI(x,C) � n},

where �M denotes the cardinality of the set M , and rI(x,C) := {y | 〈x, y〉 ∈
rI and y ∈ CI}. If x ∈ CI , then we say that x is an instance of C in I, and
if 〈x, y〉 ∈ rI , then y is called an r-successor of x in I.

So far, we have fixed the syntax and semantics of concepts and roles. Next,
we define how they can be used in a SHIQ TBox. Please note that authors
sometimes distinguish between a role hierarchy or RBox and a TBox – we do
not make this distinction here.

Definition 2 (TBox). A role inclusion axiom is of the form r � s, where r, s
are SHIQ-roles. A general concept inclusion (GCI) is of the form C � D,
where C,D are SHIQ-concepts.

A finite set of role inclusion axioms and GCIs is called a TBox.
An interpretation I is a model of a TBox T if it satisfies all axioms in

T , i.e. CI ⊆ DI holds for each C � D ∈ T and rI ⊆ sI holds for each
r � s ∈ T .

A concept definition is of the form A ≡ C, where A is a concept name; it
can be seen as an abbreviation for the two GCIs A � C and C � A.

In addition to describing the relevant notions of an application domain,
a DL knowledge base may also contain knowledge about the properties of
specific individuals (or objects) existing in this domain. This done in the
assertional part of the knowledge base (ABox).
6 We refer the interested reader to [60] for a definition of simple roles: roughly

speaking, a role is simple if it is neither transitive nor has a transitive sub-role.
Only simple roles are allowed in number restrictions to ensure decidability [60].



Description Logics 29

Definition 3. Let I be a set of individual names disjoint from R and C.
For a, b ∈ I individual names, C a possibly complex SHIQ concept, and r a
SHIQ role, an expression of the form

• C(a) is called a concept assertion, and
• r(a, b) is called a role assertion.

A finite set of concept and role assertions is called an ABox.
An interpretation function ·I , additionally, is required to map every indi-

vidual name a ∈ I to an element aI ∈ ΔI . An interpretation I satisfies

• a concept assertion C(a) if aI ∈ CI , and
• a role assertion r(a, b) if 〈aI , bI〉 ∈ rI .

An interpretation that satisfies each concept assertion and each role assertion
in an ABox A is called a model of A.

Inference problems for concepts are defined w.r.t. a TBox. Inference prob-
lems for individuals additionally involve an ABox.

Definition 4. The concept C is called satisfiable with respect to the TBox
T iff there is a model I of T with CI �= ∅. Such an interpretation is called a
model of C w.r.t. T . The concept D subsumes the concept C w.r.t. T (written
C �T D) if CI ⊆ DI holds for all models I of T . Two concepts C,D are
equivalent w.r.t. T (written C ≡T D) if they subsume each other.

The ABox A is called consistent with respect to the TBox T iff there exists
a model of T and A. The individual a is called an instance of the concept C
with respect to the TBox T and the ABox A iff aI ∈ CI holds for all models
of I of T and A.

By definition, equivalence can be reduced to subsumption. In addition, sub-
sumption can be reduced to satisfiability since C �T D iff C 
 ¬D is un-
satisfiable w.r.t. T . Satisfiability and the instance problem can be reduced to
the consistency problem since C is satisfiable w.r.t. T if the ABox {C(a)} is
consistent w.r.t. T , and a is an instance of C w.r.t. T and A if the ABox
A ∪ {¬C(a)} is inconsistent w.r.t. T .

As mentioned above, most DLs are (decidable) fragments of (first-order)
predicate logic [5,19]. Viewing role names as binary relations, concept names
as unary relations, and individual names as constants, for example, the role
inclusion axiom r � s− translates into ∀x∀y.r(x, y) ⇒ s(y, x), the concept
assertion (A 
 B)(a) translates into A(a) ∧ B(a), and the GCI A 
 ∃r.C �
D � ∀s−.E translates into

∀x.(A(x) ∧ ∃y.r(x, y) ∧ C(y)) ⇒ (D(x) ∨ ∀y.s(y, x) ⇒ E(y)).

This translation preserves the semantics: we can easily view DL interpretations
as predicate logic interpretations, and then prove, e.g. that each model of a
concept C w.r.t. a TBox T is a model of the translation of C conjoined with
the (universally quantified) translations of T .



30 F. Baader et al.

The reasoning services that can decide the inference problems intro-
duced above can be implemented using various algorithmic techniques,
including tableaux-based techniques (see chapter “Tableau-Based Reason-
ing”) and resolution-based techniques (see “Resolution-Based Reasoning for
Ontologies”).

3 Describing Ontologies in SHIQ

In general, an ontology can be formalised in a DL knowledge base as follows.
Firstly, we restrict the possible worlds by introducing restrictions on the al-
lowed interpretations. For example, to express that, in our world, we want to
consider humans, which are either muggles or sorcerers, we can use the GCIs

Human � Muggle � Sorcerer and Muggle � ¬Sorcerer.

Next, to express that humans have exactly two parents and that all parents
and children of humans are human, we can use the following GCI:

Human � ∀hasParent.Human 
 (� 2 hasParent.�) 
 (� 2 hasParent.�) 

∀hasParent−.Human,

where � is an abbreviation for the top concept A � ¬A.7

In addition, we consider the transitive role hasAncestor, and the role
inclusion

hasParent � hasAncestor.

The next GCI expresses that humans having an ancestor that is a sorcerer
are themselves sorcerers:

Human 
 ∃hasAncestor.Sorcerer � Sorcerer.

Secondly, we can define the relevant notions of our application domain
using concept definitions. Recall that the concept definition A ≡ C stands for
the two GCIs A � C and C � A. A concept name is called defined if it occurs
on the left-hand side of a definition, and primitive otherwise.

We want our concept definitions to have definitional impact, i.e. the inter-
pretation of the primitive concept and role names should uniquely determine
the interpretation of the defined concept names. For this, the set of concept
definitions together with the additional GCIs must satisfy three conditions:

1. There are no multiple definitions, i.e. each defined concept name must
occur at most once as the left-hand side of a concept definition.

7 When the qualifying concept is �, this is equivalent to an unqualified restriction,
and it will often be written as such, e.g. (� 2 hasParent).



Description Logics 31

2. There are no cyclic definitions, i.e. no cyclic dependencies between the
defined names in the set of concept definitions.8

3. The defined names do not occur in any of the additional GCIs.

In contrast to concept definitions, the GCIs in SHIQ may well have cyclic
dependencies between concept names. An example are the above GCIs de-
scribing humans.

As a simple example of a set of concept definitions satisfying the restric-
tions from above, we define the concepts grandparent and parent9:

Parent ≡ Human 
 ∃hasParent−.�,

Grandparent ≡ ∃hasParent−.Parent.

The TBox consisting of the above concept definitions and GCIs, together
with the fact that hasAncestor is a transitive superrole of hasParent, implies
the following subsumption relationship:

Grandparent 
 Sorcerer � ∃hasParent−.∃hasParent−.Sorcerer,

i.e. grandparents who are sorcerers have a grandchild who is a sorcerer.
Though this conclusion may sound reasonable given the assumptions, it re-
quires quite some reasoning to obtain it. In particular, one must use the fact
that hasAncestor (and thus also hasAncestor−) is transitive, that hasParent−

is the inverse of hasParent, and that we have a GCI that says that children of
humans are again humans.

To sum up, a SHIQ-TBox can, on the one hand, axiomatize the basic no-
tions of an application domain (the primitive concepts) by GCIs, transitivity
statements, and role inclusions, in the sense that these statements restrict the
possible interpretations of the basic notions. On the other hand, more com-
plex notions (the defined concepts) can be introduced by concept definitions.
Given an interpretation of the basic notions, the concept definitions uniquely
determine the interpretation of the defined notions.

The taxonomy of such a TBox is then given by the subsumption hierarchy
of the defined concepts. It can be computed using a subsumption algorithm
for SHIQ (see chapters “Tableau-Based Reasoning” and “Resolution-Based
Reasoning for Ontologies”). The knowledge engineer can test whether the
TBox captures her intuition by checking the satisfiability of the defined con-
cepts (since it does not make sense to give a complex definition for the empty
concept), and by checking whether their place in the taxonomy corresponds to
their intuitive place. The taxonomy of our example TBox would contain, for
example, the fact that Grandparent is subsumed by Parent which is, in turn,
subsumed by Human – if this is not intended, then the knowledge engineer
8 In order to give cyclic definitions definitional impact, one would need to use

fixpoint semantics for them [1,75].
9 In addition to the role hasParent, which relates children to their parents, we use

the concept Parent, which describes all humans having children.



32 F. Baader et al.

would need to go back and modify the TBox. The expressive power of SHIQ
together with the fact that one can “verify” the TBox in the sense mentioned
above is the main reason for SHIQ being well-suited as an ontology language
[43,83,93].

In case we have, in addition to our TBox T , also an ABox A, we can first
ask a DL reasoner to check whether A is consistent w.r.t. T to make sure
that our assertions in A conform with the axioms expressed in T . Consider
the following ABox:

A = {Human(Harry), Sorcerer(Bob)
hasParent(Harry,Bob)},

and let T consist of all axioms in this section. We can first use a DL reasoner
to prove that A is consistent w.r.t. T . Next, we can query A through T . For
example, we can ask a DL reasoner to retrieve all instances of Human w.r.t. T
and A. This would result in Harry and Bob being returned: for the former, this
information is explicit in A, for the latter, this is implied by the GCI which
states that parents of humans are humans. Similarly, both Harry and Bob are
instances of Sorcerer w.r.t. T and A: for Harry, this is a consequence of the
GCI which states that offsprings of sorcerers are sorcerers. As a final example,
let us point out that our ABox contains no instance of ∀hasParent.Sorcerer:
even though all explicitly known parents of Harry are sorcerers, Harry could
have other parents (and indeed must have another parent) who may or may
not be a sorcerer – this feature of DL semantics is known as the “open world
assumption” [5].

4 Extensions and Variants of SHIQ

The ontology language OWL extends SHIQ with nominals and concrete
datatypes; see chapter “Web Ontology Language: OWL.” In this section, we
discuss the consequences of these extensions on the reasoning problems in
SHIQ.

Concrete datatypes, as available in OWL, are a very restricted form of
concrete domains [7]. For example, using the concrete domain of all nonneg-
ative integers equipped with the < predicate, a (functional) role age relating
(abstract) individuals to their (concrete) age, and a (functional) subrole father
of hasParent, the following axiom states that children are younger than their
fathers:

Animal � (age < (father ◦ age)).

Extending expressive DLs with concrete domains may easily lead to undecid-
ability [8,68]. In OWL, however, no datatype predicates are supported – only
XML schema datatypes (such as integer and string) and enumerations (such
as {1, 2, 5, 7}) can be used in descriptions. These restrictions are enough to



Description Logics 33

ensure that decidability is not compromised (in fact in [77], decidability of
SHIQ extended with a more general type of concrete domains is shown).

Concerning nominals, things become a bit more complicated: nominals
are individual names used as concepts, as in Catholic 
 ∃hasSeen.{Pope} and
thus allow the use of individuals not only in ABoxes, but also in concept
expressions and TBoxes. Firstly, we can use the same (relativised axiomatiza-
tion) technique as used for SHIQ in [94] to translate SHIQ extended with
nominals into a fragment of C2, the two-variable fragment of first order logic
with counting quantifiers [48, 76]. Since this translation is polynomial, satis-
fiability and subsumption are decidable in NExpTime. This is optimal since
the problem is also NExpTime-hard [94]. Roughly speaking, the combination
of GCIs (or transitive roles and role inclusions), inverse roles, and number
restrictions with nominals is responsible for this leap in complexity (from
ExpTime for SHIQ to NExpTime). Until recently, no “practical” decision
procedure for SHOIQ, i.e. the extension of SHIQ with nominals, had been
described, where by “practical” we mean a decision procedure that works in
some “goal-directed” way, in contrast to “blindly” guessing a model I of at
most exponential size and then checking whether I is indeed a model of the
input. An extension of the tableaux algorithm for SHIQ has, however, now
been developed [59], has been successfully implemented in the FaCT++ and
Pellet systems, and seems to work well on realistic ontologies [90].

Finally, as mentioned above, it is quite straightforward to extend SHIQ, or
even SHOIQ, with complex role inclusion axioms. The resulting DL, SROIQ
[56], is the basis for a recent proposal to extend the OWL language, the ex-
tended language being called OWL 2.10 In addition to complex role inclusion
axioms, OWL 2 also supports qualified number restrictions, and more expres-
sive datatypes than OWL.

5 Reasoning Beyond the Standard Inference Problems

As argued in the introduction, standard reasoning services for concepts (such
as satisfiability and subsumption algorithms) can be used in different phases of
the ontology life cycle. In the design phase, they can test whether concepts are
non-contradictory and can derive implied relations between concepts. How-
ever, for these services to be applied, one already needs a sufficiently developed
TBox. The result of reasoning can then be used to develop the TBox further.
Until recently, however, DL systems provided no reasoning support for writ-
ing this initial TBox. The development of so-called non-standard inferences in
DLs (like computing least common subsumers [13,32,65,67], most specific con-
cepts [10, 66], rewriting [14], approximation [26], and matching [3, 11, 12, 20])
tries to overcome this deficit. These kinds of inferences are sketched in the
first subsection.

10 http://www.w3.org/TR/2008/WD-owl2-syntax-20081202/



34 F. Baader et al.

In the presence of ABoxes, one often wants to ask queries that are more
complex than simple instance queries involving only one individual and one
concept. So-called conjunctive queries, which are treated in the second sub-
section, overcome this deficit.

5.1 Non-standard Inferences

In this subsection, we will sketch how non-standard inferences can support
building a DL knowledge base.

Assume that the knowledge engineer wants to introduce the definition of
a new concept into the TBox. In many cases, she will not develop this new
definition from scratch, but rather try to re-use things that are already present
in some knowledge base (either the one she is currently building or a previous
one). In a chemical process engineering application [72,82], we have observed
two ways in which this is realized in practice:

1. The knowledge engineer decides on the basic structure of the newly defined
concept, and then tries to find already defined concepts that have a similar
structure. These concepts can then be modified to obtain the new concept.

2. Instead of directly defining the new concept, the knowledge engineer first
gives examples of objects that belong to the concept to be defined, and
then tries to generalize these examples into a concept definition.

Both approaches can be supported by the non-standard inferences mentioned
above, though this kind of support is not yet provided by any of the existing
DL systems.

The first approach can be supported by matching concept patterns against
concept descriptions. A concept pattern is a concept description that may
contain variables that stand for descriptions. A matcher σ of a pattern D
onto the description C replaces the variables by concept descriptions such that
the resulting concept σ(D) is equivalent to C. For example, assume that the
knowledge engineer is looking for concepts concerned with individuals having
a son and a daughter sharing some characteristic. This can be expressed by
the pattern

∃hasChild.(Male 
X) 
 ∃hasChild.(Female 
X).

The substitution σ = {X �→ Tall} shows that this pattern matches the de-
scription ∃hasChild.(Male 
 Tall) 
 ∃hasChild.(Female 
 Tall). Note, however,
that in some cases the existence of a matcher is not so obvious.

The second approach can be supported by algorithms that compute most
specific concepts and least common subsumers. Assume that the examples
are given as ABox individuals i1, . . . , ik. In a first step, these individuals are
generalized into concepts by respectively computing the most specific (w.r.t.
subsumption) concepts C1, . . . , Ck in the available DL that have these indi-
viduals as instances. In a second step, these concepts are generalized into



Description Logics 35

one concept by computing the least common subsumer of C1, . . . , Ck, i.e. the
least concept description (in the available DL) that subsumes C1, . . . , Ck. In
this context, rewriting of concepts comes into play since the concept descrip-
tions produced by the algorithms for computing least common subsumers
may be rather large (and thus not easy to comprehend and modify for the
knowledge engineer). Rewriting minimizes the size of these description with-
out changing their meaning by introducing names defined in the TBox.

Until now, the results on such non-standard inferences are restricted to DLs
that are considerably less expressive than SHIQ. For some of them, they only
make sense if used for inexpressive DLs. For example, in DLs that contain the
disjunction constructor, the least common subsumer of C1, . . . , Ck is simply
their disjunction, and computing this is of no help to the knowledge engineer.
What one would like to obtain as a result of the least common subsumer
computation are the structural similarities between the input concepts.

Thus, support by non-standard inferences can only be given if one uses
DLs of restricted expressive power. However, this also makes sense in the
context of ontology engineering. In fact, the users that will require the most
support are the naive ones, and it is reasonable to assume that they will not
use (or even be offered) the full expressive power of the underlying DL. This
two-level approach is already present in tools like Protégé [64], which offer a
frame-like user interface. Using this simple interface, one gets only a fragment
of the expressive power of OWL. To use the full expressive power, one must
type in DL expressions.

Another way to overcome the gap between DLs of different expressive
power is to use the approximation inference [26]. Here, one tries to approxi-
mate a given concept description C in an expressive DL L1 by a description D
in a less expressive DL L2. When approximating from above, D should be the
least description in L2 subsuming C, and when approximating from below, D
should be the greatest description L2 subsumed by C.

5.2 Queries

As we have seen in Sect. 3, given an ontology consisting of an ABox and possi-
bly a TBox, we can retrieve instances of concepts from it, thereby explicating
knowledge about concept instances in the given ontology. In this sense, we
can use concepts as a query language. It has turned out, however, that this is
a rather weak query language which does not allow one to query, for example,
for humans whose parents are married. Continuing the example from Sect. 3,
could express this query as a conjunctive query :

q(x) :− Human(x), hasParent(x, y), hasParent(x, z),married(y, z)

Conjunctive queries are well-known in the database community and have been
suggested as an expressive query language for DLs [29]. Their answers can be
sets of individual names from the ABox as in the example query above or,



36 F. Baader et al.

more generally, sets of tuples (if we have more than one answer variable).
Roughly speaking, individual names from the ABox are in the answer set if,
for each model of the ontology, we can find a match from the variables into
the model’s domain such that all conjuncts in the query are satisfied. Hence,
as in instance retrieval, all axioms in the ontology are taken fully into account
when answering queries. However, in contrast to the standard reasoning prob-
lems, and especially instance retrieval, answering conjunctive queries cannot
be reduced to consistency. This problem is, however, decidable for a variety
of logics [29] and it turned out to remain decidable even if transitive roles are
used in the query [44].

6 Conclusion

The emphasis in DL research on a well-defined, logic-based semantics and
a thorough investigation of the basic reasoning problems, together with the
availability of highly optimized systems for very expressive DLs, makes this
family of knowledge representation formalisms an ideal starting point for defin-
ing ontology languages. The standard reasoning services such as consistency
checking, computation of the taxonomy, testing for unsatisfiable concepts, and
instance retrieval, are provided by highly optimised, state-of-the-art DL sys-
tems for very expressive DLs. Optimizations of these systems for large ABoxes
and the implementation of conjunctive query answering algorithms are active
research areas.

To be used in practice, the domain expert also needs tools that further
support knowledge acquisition (i.e. building ontologies), maintenance (i.e. evo-
lution of ontologies), and integration and inter-operation of ontologies. First
steps in this direction have already been taken. For example, Protégé [64] and
SWOOP [63] are tools that support the development of OWL ontologies. On
a more fundamental level, non-standard inferences that support building and
maintaining knowledge bases are now important topics of DL research. These
include the inference problems discussed in Sect. 5.1 but also others that we
have not discussed there due to space limitations: for example, tool support
has been developed to explain subsumption and unsatisfiability and to re-
pair unsatisfiable concepts (for example, see [62,87]) and to support modular
design and re-use of ontologies (for example, see [33]).

In this chapter we have concentrated on very expressive Description Log-
ics that are the formal basis for the web ontology language OWL. For the
sake of completeness, we mention here some recent results on inexpressive
DLs that are relevant in the context of ontology applications. Several bio-
medical ontologies, such as SNOMED [92] and the Gene Ontology [34], are
based on rather inexpressive DLs, whose main distinguishing feature is that
they disallow value restrictions (∀r.C), but provide for existential restrictions
(∃r.C). Recently, it has turned out that such inexpressive DLs with exis-
tential restrictions behave much better w.r.t. computational complexity than



Description Logics 37

the corresponding DLs with value restrictions. For example, the subsump-
tion problem in EL, which allows for conjunction, existential restrictions, and
the top concept, stays polynomial in the presence of (cyclic or acyclic) con-
cept definitions [2] and even arbitrary GCIs [25]. In [4] it is shown that these
polynomiality results also hold for extensions of EL by constructors that are
of interest for ontology applications, such as the bottom concept (which al-
lows disjointness statements to be formulated), nominals, a restricted form of
concrete domains, and a restricted form of so-called role-value maps. A first
implementation of the polynomial-time subsumption algorithm for such an
extension of EL behaves well on very large bio-medical ontologies [15].

References

1. Franz Baader. Using automata theory for characterizing the semantics of ter-
minological cycles. Annals of Mathematics and Artificial Intelligence, 18(2–4):
175–219, 1996.

2. Franz Baader. Terminological cycles in a description logic with existential re-
strictions. In Georg Gottlob and Toby Walsh, editors, Proc. of the 18th Int.
Joint Conf. on Artificial Intelligence (IJCAI 2003), pages 325–330. Morgan
Kaufmann, Los Altos, 2003.

3. Franz Baader, Sebastian Brandt, and Ralf Küsters. Matching under side con-
ditions in description logics. In Bernhard Nebel, editor, Proc. of the 17th Int.
Joint Conf. on Artificial Intelligence (IJCAI 2001), pages 213–218. Morgan
Kaufmann, Seattle, WA, 2001.

4. Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope.
In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005),
2005.

5. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and
Peter Patel-Schneider, editors. The Description Logic Handbook. Cambridge
University Press, 2003.

6. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory, Im-
plementation and Applications. Cambridge University Press, 2003.

7. Franz Baader and Philipp Hanschke. A schema for integrating concrete domains
into concept languages. In Proc. of the 12th Int. Joint Conf. on Artificial Intel-
ligence (IJCAI’91), pages 452–457, 1991.

8. Franz Baader and Philipp Hanschke. Extensions of concept languages for a
mechanical engineering application. In Proc. of the 16th German Workshop on
Artificial Intelligence (GWAI’92), volume 671 of Lecture Notes in Computer
Science, pages 132–143. Springer, Berlin, 1992.

9. Franz Baader and Bernhard Hollunder. A terminological knowledge represen-
tation system with complete inference algorithm. In Proc. of the Workshop on
Processing Declarative Knowledge (PDK’91), volume 567 of Lecture Notes in
Artificial Intelligence, pages 67–86. Springer, Berlin, 1991.

10. Franz Baader and Ralf Küsters. Computing the least common subsumer and
the most specific concept in the presence of cyclic ALN -concept descriptions.



38 F. Baader et al.

In Proc. of the 22nd German Annual Conf. on Artificial Intelligence (KI’98),
volume 1504 of Lecture Notes in Computer Science, pages 129–140. Springer,
Berlin, 1998.

11. Franz Baader and Ralf Küsters. Matching in description logics with existential
restrictions. In Proc. of the 7th Int. Conf. on Principles of Knowledge Repre-
sentation and Reasoning (KR 2000), pages 261–272, 2000.

12. Franz Baader, Ralf Küsters, Alex Borgida, and Deborah L. McGuinness. Match-
ing in description logics. Journal of Logic and Computation, 9(3):411–447, 1999.

13. Franz Baader, Ralf Küsters, and Ralf Molitor. Computing least common sub-
sumers in description logics with existential restrictions. In Proc. of the 16th
Int. Joint Conf. on Artificial Intelligence (IJCAI’99), pages 96–101, 1999.

14. Franz Baader, Ralf Küsters, and Ralf Molitor. Rewriting concepts using termi-
nologies. In Proc. of the 7th Int. Conf. on Principles of Knowledge Representa-
tion and Reasoning (KR 2000), pages 297–308, 2000.

15. Franz Baader, Carsten Lutz, and Bontawee Suntisrivaraporn. CEL – a
polynomial-time reasoner for life science ontologies. In Ulrich Furbach and
Natarajan Shankar, editors, Proc. of the Int. Joint Conf. on Automated Rea-
soning (IJCAR 2006), volume 4130 of Lecture Notes in Artificial Intelligence,
pages 287–291. Springer, Berlin, 2006.

16. Franz Baader and Ulrike Sattler. An overview of tableau algorithms for descrip-
tion logics. Studia Logica, 69(1):5–40, 2001.

17. Sean Bechhofer, Ian Horrocks, Carole Goble, and Robert Stevens. OilEd: a
reason-able ontology editor for the semantic web. In Proc. of the 2001 Descrip-
tion Logic Workshop (DL 2001), pages 1–9. CEUR (http://ceur-ws.org/),
2001.

18. Tim Berners-Lee. Weaving the Web. Harpur, San Francisco, 1999.
19. Alexander Borgida. On the relative expressiveness of description logics and pred-

icate logics. Artificial Intelligence, 82(1–2):353–367, 1996.
20. Alexander Borgida and Deborah L. McGuinness. Asking queries about frames.

In Proc. of the 5th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR’96), pages 340–349, 1996.

21. Pim Borst, Hans Akkermans, and Jan Top. Engineering ontologies. International
Journal of Human-Computer Studies, 46:365–406, 1997.

22. Ronald J. Brachman. “Reducing” CLASSIC to practice: knowledge representa-
tion meets reality. In Proc. of the 3rd Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR’92), pages 247–258. Morgan Kaufmann, Los
Altos, 1992.

23. Ronald J. Brachman and Hector J. Levesque. The tractability of subsumption in
frame-based description languages. In Proc. of the 4th Nat. Conf. on Artificial
Intelligence (AAAI’84), pages 34–37, 1984.

24. Ronald J. Brachman and James G. Schmolze. An overview of the KL-ONE
knowledge representation system. Cognitive Science, 9(2):171–216, 1985.

25. Sebastian Brandt. Polynomial time reasoning in a description logic with existen-
tial restrictions, GCI axioms, and – what else? In Ramon López de Mántaras and
Lorenza Saitta, editors, Proc. of the 16th Eur. Conf. on Artificial Intelligence
(ECAI 2004), pages 298–302, 2004.

26. Sebastian Brandt, Ralf Küsters, and Anni-Yasmin Turhan. Approximation and
difference in description logics. In D. Fensel, F. Giunchiglia, D. McGuiness, and



Description Logics 39

M.-A. Williams, editors, Proc. of the 8th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR 2002), pages 203–214. Morgan Kaufmann,
Los Altos, 2002.

27. Paolo Bresciani, Enrico Franconi, and Sergio Tessaris. Implementing and testing
expressive description logics: preliminary report. In Proc. of the 1995 Descrip-
tion Logic Workshop (DL’95), pages 131–139, 1995.

28. Martin Buchheit, Francesco M. Donini, Werner Nutt, and Andrea Schaerf.
A refined architecture for terminological systems: terminology = schema +
views. Artificial Intelligence, 99(2):209–260, 1998.

29. Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the
decidability of query containment under constraints. In Proc. of the 17th
ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS’98), pages 149–158, 1998.

30. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Daniele
Nardi. Reasoning in expressive description logics. In Alan Robinson and An-
drei Voronkov, editors, Handbook of Automated Reasoning, chapter 23, pages
1581–1634. Elsevier, Amsterdam, 2001.

31. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi,
and Riccardo Rosati. Description logic framework for information integration.
In Proc. of the 6th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR’98), pages 2–13, 1998.

32. William W. Cohen, Alex Borgida, and Haym Hirsh. Computing least com-
mon subsumers in description logics. In William Swartout, editor, Proc. of
the 10th Nat. Conf. on Artificial Intelligence (AAAI’92), pages 754–760. AAAI
Press/The MIT Press, Austin, TX, 1992.

33. Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler.
Modular reuse of ontologies: theory and practice. Journal of Artificial Intelli-
gence Research, 31:273–318, 2008.

34. The Gene Ontology Consortium. Gene ontology: tool for the unification of bi-
ology. Nature Genetics, 25:25–29, 2000.

35. Giuseppe De Giacomo. Decidability of Class-Based Knowledge Representation
Formalisms. PhD thesis, Dipartimento di Informatica e Sistemistica, Università
di Roma “La Sapienza”, 1995.

36. Giuseppe De Giacomo and Maurizio Lenzerini. Boosting the correspondence
between description logics and propositional dynamic logics. In Proc. of the
12th Nat. Conf. on Artificial Intelligence (AAAI’94), pages 205–212, 1994.

37. Giuseppe De Giacomo and Maurizio Lenzerini. Concept language with number
restrictions and fixpoints, and its relationship with μ-calculus. In Proc. of the
11th Eur. Conf. on Artificial Intelligence (ECAI’94), pages 411–415, 1994.

38. Giuseppe De Giacomo and Maurizio Lenzerini. TBox and ABox reasoning in
expressive description logics. In Proc. of the 5th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR’96), pages 316–327, 1996.

39. Francesco M. Donini, Bernhard Hollunder, Maurizio Lenzerini, Alberto
Marchetti Spaccamela, Daniele Nardi, and Werner Nutt. The complexity of exis-
tential quantification in concept languages. Artificial Intelligence, 2–3:309–327,
1992.

40. Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner Nutt. The
complexity of concept languages. In Proc. of the 2nd Int. Conf. on the Principles
of Knowledge Representation and Reasoning (KR’91), pages 151–162, 1991.



40 F. Baader et al.

41. Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner Nutt.
Tractable concept languages. In Proc. of the 12th Int. Joint Conf. on Artifi-
cial Intelligence (IJCAI’91), pages 458–463, 1991.

42. Jon Doyle and Ramesh S. Patil. Two theses of knowledge representation:
language restrictions, taxonomic classification, and the utility of representation
services. Artificial Intelligence, 48:261–297, 1991.

43. Dieter Fensel, Frank van Harmelen, Michel Klein, Hans Akkermans, Jeen Broek-
stra, Christiaan Fluit, Jos van der Meer, Hans-Peter Schnurr, Rudi Studer,
John Hughes, Uwe Krohn, John Davies, Robert Engels, Bernt Bremdal, Fredrik
Ygge, Thorsten Lau, Bernd Novotny, Ulrich Reimer, and Ian Horrocks. On-to-
knowledge: ontology-based tools for knowledge management. In Proceedings of
the eBusiness and eWork 2000 (eBeW’00) Conference, October 2000.

44. Birte Glimm, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. Conjunctive query
answering for the description logic SHIQ. Journal of Artificial Intelligence Re-
search, 31:157–204, 2008.

45. Erich Grädel. Guarded fragments of first-order logic: a perspective for new de-
scription logics? In Proc. of the 1998 Description Logic Workshop (DL’98).
CEUR Electronic Workshop Proceedings, http://ceur-ws.org/Vol-11/, 1998.

46. Erich Grädel. On the restraining power of guards. Journal of Symbolic Logic,
64:1719–1742, 1999.

47. Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem
for two-variable first-order logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.

48. Erich Grädel, Martin Otto, and Eric Rosen. Two-variable logic with counting
is decidable. In Proc. of the 12th IEEE Symp. on Logic in Computer Science
(LICS’97), 1997.

49. Thomas Gruber. A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2):199–220, 1993.

50. Volker Haarslev and Ralf Möller. RACE system description. In Proc. of the
1999 Description Logic Workshop (DL’99), pages 130–132. CEUR Electronic
Workshop Proceedings, http://ceur-ws.org/Vol-22/, 1999.

51. Volker Haarslev and Ralf Möller. Expressive ABox reasoning with number re-
strictions, role hierarchies, and transitively closed roles. In Proc. of the 7th Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR 2000),
pages 273–284, 2000.

52. Volker Haarslev and Ralf Möller. RACER system description. In Proc. of the
Int. Joint Conf. on Automated Reasoning (IJCAR 2001), volume 2083 of Lecture
Notes in Artificial Intelligence, pages 701–705. Springer, Berlin, 2001.

53. Patrick Hayes. RDF model theory. W3C Working Draft, April 2002.
http://www.w3.org/TR/rdf-mt/.

54. Bernhard Hollunder, Werner Nutt, and Manfred Schmidt-Schauß. Subsumption
algorithms for concept description languages. In Proc. of the 9th Eur. Conf. on
Artificial Intelligence (ECAI’90), pages 348–353. Pitman, London, 1990.

55. Ian Horrocks. Using an expressive description logic: FaCT or fiction? In Proc.
of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR’98), pages 636–647, 1998.

56. Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible
SROIQ. In Proc. of the 10th Int. Conf. on Principles of Knowledge Represen-
tation and Reasoning (KR 2006), pages 57–67. AAAI Press, New York, 2006.



Description Logics 41

57. Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ
and RDF to OWL: the making of a web ontology language. Journal of Web
Semantics, 1(1):7–26, 2003.

58. Ian Horrocks and Ulrike Sattler. A description logic with transitive and in-
verse roles and role hierarchies. Journal of Logic and Computation, 9(3):385–410,
1999.

59. Ian Horrocks and Ulrike Sattler. A tableaux decision procedure for SHOIQ. In
Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pages
448–453, 2005.

60. Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for very
expressive description logics. Journal of the Interest Group in Pure and Applied
Logic, 8(3):239–264, 2000.

61. Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Reasoning with individuals for
the description logic SHIQ. In David McAllester, editor, Proc. of the 17th Int.
Conf. on Automated Deduction (CADE 2000), volume 1831 of Lecture Notes in
Computer Science, pages 482–496. Springer, Berlin, 2000.

62. Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and Bernardo Cuenca-Grau.
Hendler. Repairing Unsatisfiable Concepts in OWL Ontologies. In Proc. of 3rd
Europ. Semantic Web Conf. (ESWC 2006), number 4011 of LNCS, Springer,
Berlin, 2006.

63. Aditya Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca-Grau, and
James Hendler. SWOOP: a web ontology editing browser. Journal of Web
Semantics, 4(2), 2005.

64. Holger Knublauch, Ray Fergerson, Natalya Noy, and Mark Musen. The Protégé
OWL Plugin: an open development environment for semantic web applications.
In Sheila A. McIlraith, Dimitris Plexousakis, and Frank van Harmelen, editors,
Proc. of the 2004 International Semantic Web Conference (ISWC 2004), number
3298 in LNCS, pages 229–243. Springer, Berlin, 2004.

65. Ralf Küsters and Alex Borgida. What’s in an attribute? Consequences for the
least common subsumer. Journal of Artificial Intelligence Research, 14:167–203,
2001.

66. Ralf Küsters and Ralf Molitor. Approximating most specific concepts in de-
scription logics with existential restrictions. In F. Baader, editor, Proc. of the
Joint German/Austrian Conference on Artificial Intelligence, 24th German /
9th Austrian Conference on Artificial Intelligence (KI 2001), volume 2174 of
Lecture Notes in Artificial Intelligence. Springer, Berlin, 2001.

67. Ralf Küsters and Ralf Molitor. Computing least common subsumers in ALEN. In
Bernard Nebel, editor, Proc. of the 17th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2001), pages 219–224. Morgan Kaufmann, Los Altos, 2001.

68. Carsten Lutz. NEXPTIME-complete description logics with concrete domains.
In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2001), volume
2083 of Lecture Notes in Artificial Intelligence, pages 45–60. Springer, Berlin,
2001.

69. Carsten Lutz. Description logics with concrete domains – a survey. In Advances
in Modal Logics Volume 4. World Scientific Publishing Co. Pte. Ltd., Singapore,
2003.

70. Robert MacGregor. The evolving technology of classification-based knowledge
representation systems. In John F. Sowa, editor, Principles of Semantic Net-
works, pages 385–400. Morgan Kaufmann, Los Altos, 1991.



42 F. Baader et al.

71. Eric Mays, Robert Dionne, and Robert Weida. K-Rep system overview. SIGART
Bulletin, 2(3):93–97, 1991.

72. Ralf Molitor. Unterstützung der Modellierung verfahrenstechnischer Prozesse
durch Nicht-Standardinferenzen in Beschreibungslogiken. PhD thesis, LuFG
Theoretical Computer Science, RWTH-Aachen, Germany, 2000. In German.

73. Bernhard Nebel. Reasoning and Revision in Hybrid Representation Systems,
volume 422 of Lecture Notes in Artificial Intelligence. Springer, Berlin, 1990.

74. Bernhard Nebel. Terminological reasoning is inherently intractable. Artificial
Intelligence, 43:235–249, 1990.

75. Bernhard Nebel. Terminological cycles: semantics and computational proper-
ties. In John F. Sowa, editor, Principles of Semantic Networks, pages 331–361.
Morgan Kaufmann, Los Altos, 1991.

76. Leszek Pacholski, Wieslaw Szwast, and Lidia Tendera. Complexity of two-
variable logic with counting. In Proc. of the 12th IEEE Symp. on Logic in
Computer Science (LICS’97), pages 318–327. IEEE Computer Society Press,
Los Alamitos, CA, 1997.

77. Jeff Z. Pan and Ian Horrocks. Semantic web ontology reasoning in the
SHOQ(Dn) description logic. In Proc. of the 2002 Description Logic Workshop
(DL 2002), 2002.

78. Peter F. Patel-Schneider. DLP. In Proc. of the 1999 Description Logic
Workshop (DL’99), pages 9–13. CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-22/, 1999.

79. Peter F. Patel-Schneider, Deborah L. McGuiness, Ronald J. Brachman,
Lori Alperin Resnick, and Alexander Borgida. The CLASSIC knowledge rep-
resentation system: guiding principles and implementation rational. SIGART
Bulletin, 2(3):108–113, 1991.

80. Christof Peltason. The BACK system – an overview. SIGART Bulletin,
2(3):114–119, 1991.

81. A. Rector, S. Bechhofer, C. A. Goble, I. Horrocks, W. A. Nowlan, and
W. D. Solomon. The grail concept modelling language for medical terminology.
Artificial Intelligence in Medicine, 9:139–171, 1997.

82. Ulrike Sattler. Terminological knowledge representation systems in a process
engineering application. PhD thesis, RWTH Aachen, 1998.

83. Ulrike Sattler. Description logics for the representation of aggregated objects.
In Proc. of the 14th Eur. Conf. on Artificial Intelligence (ECAI 2000), 2000.

84. Andrea Schaerf. Reasoning with individuals in concept languages. Data and
Knowledge Engineering, 13(2):141–176, 1994.

85. Klaus Schild. A correspondence theory for terminological logics: preliminary
report. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91),
pages 466–471, 1991.

86. Klaus Schild. Querying Knowledge and Data Bases by a Universal Description
Logic with Recursion. PhD thesis, Universität des Saarlandes, Germany, 1995.

87. Stefan Schlobach, Zhisheng Huang, Ronald Cornet, and Frank van Harme-
len. Debugging Incoherent Terminologies. Journal of Automated Reasoning,
39(3):317–349, 2007.

88. Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions
with complements. Artificial Intelligence, 48(1):1–26, 1991.

89. Stefan Schulz and Udo Hahn. Parts, locations, and holes – formal reasoning
about anatomical structures. In Proc. of AIME 2001, volume 2101 of Lecture
Notes in Artificial Intelligence. Springer, Berlin, 2001.



Description Logics 43

90. Evren Sirin, Bernardo Cuenca Grau, and Bijan Parsia. From wine to water:
optimizing description logic reasoning for nominals. In Proc. of the 10th Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR 2006),
pages 90–99. AAAI Press, New York, 2006.

91. Evren Sirin and Bijan Parsia. Pellet: an OWL DL reasoner. In Proc. of the 2004
Description Logic Workshop (DL 2004), 2004.

92. K.A. Spackman, K.E. Campbell, and R.A. Cote. SNOMED RT: a reference
terminology for health care. Journal of the American Medical Informatics As-
sociation, pages 640–644, 1997. Fall Symposium Supplement.

93. Robert Stevens, Ian Horrocks, Carole Goble, and Sean Bechhofer. Building a
reasonable bioinformatics ontology using OIL. In Proceedings of the IJCAI-
2001 Workshop on Ontologies and Information Sharing, pages 81–90. CEUR
(http://ceur-ws.org/), 2001.

94. Stephan Tobies. Complexity Results and Practical Algorithms for Logics in
Knowledge Representation. PhD thesis, RWTH Aachen, 2001.

95. Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner: sys-
tem description. In Proc. of the Int. Joint Conf. on Automated Reasoning
(IJCAR 2006), volume 4130 of Lecture Notes in Artificial Intelligence, pages
292–297. Springer, Berlin, 2006.




