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Preface

The second edition of the Handbook on Ontologies provides an up-to-date
comprehensive overview of the field of ontologies that is evolving rather fast.
Since the first edition of the handbook that was finished in 2003 and published
in 2004, ontologies have achieved an even more important role with respect to
the advancement of established information systems, of systems for data and
knowledge management, or of systems for collaboration and information shar-
ing as well as for the development of revolutionary fields such as semantic tech-
nologies and, more specifically, the Semantic Web. By covering a broad range
of aspects that are related to ontologies, i.e. language and engineering aspects,
infrastructures and applications, the reader of this handbook may either get
a broad, comprehensive picture of the field of ontologies or he may investigate
specific aspects of ontologies that are most relevant for her or his work.

Major Changes with Respect to the 1st Edition

Between the time we wrote the preface to the 1st edition of the ontology hand-
book, 5 years ago, and today, a large amount of research work, development
and use of ontologies have happened. Therefore, the handbook has undergone
major changes from the first to the second revision.

At the level of the coarsest granularity, the reader may discover one com-
pletely new part (Part III) on – Ontologies. This part now covers the de-
scription of some very intriguing ontologies that were not around in 2003.
Thereby, this part mirrors the fact that – unlike in 2003 – finding ontologies
on the Web is now easy, selecting the right one may be the hard and learning
by example what is a good ontology or what is a promising field of application
for ontologies is absolutely necessary.

Furthermore, the reader may discover that the part on Ontology Infras-
tructure has been divided into two parts, one on Infrastructure for Ontologies
and one on Ontology-Based Infrastructures and Methods. The first extends the
scope of ontologies by providing a larger extent of scalability for dealing with
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ontologies. The second extends the scope of ontologies by presenting refined
and new approaches for putting ontologies into different types of software in-
frastructures and methods. The latter kind does in fact constitute a generic
type of application of ontologies, one that is independent of a particular target
domain of application.

Finally, one may find again core parts of the first edition, such as Part I:
Ontology Representation Languages, Part II: Ontology Engineering and Part
VI: Ontology-Based Applications.

However, within these parts 21 (sic!) of the 36 overall chapters had to be
written from scratch. Nearly all the remaining chapters have undergone sub-
stantial changes to make them up-to-date. We will not describe these changes
in detail, but we want to present to the reader the flow he now finds in the
second edition of the ontology handbook.

Overview of the 2nd Edition of the Handbook

‘Ontology’ is still a rather overloaded term, which is used with several differ-
ent meanings. This handbook does not consider the philosophical notion of
an ‘ontology’ as addressed in philosophy for more than two thousand years by
investigating questions like “what exists?”. It rather approaches the notion
of ontologies from a Computer Science point of view. In Computer Science,
ontologies started to become a relevant notion in the 1990s, related mostly
to work in Knowledge Acquisition at that time. In this context the basic
definition of an ontology was coined as follows: “An ontology is an explicit
specification of a conceptualization” (cf. [7]). I.e. an ontology provides a spec-
ification of a conceptualization of generic notions like time and space or of
an application domain like knowledge management or life sciences. Starting
from this initial definition, various characterizations of ontologies have been
developed resulting in the following and nowadays most frequently seen defi-
nition: “An ontology is a formal, explicit specification of a shared conceptual-
ization” (cf. [6]). ‘Explicit’ refers to the fact that all elements of an ontology
are explicitly defined, whereas ‘formal’ means that the ontology specification
is given in a language that comes with a formal syntax and semantics, thus
resulting in machine executable and machine interpretable ontology descrip-
tions. Finally, ‘shared’ captures the aspect that an ontology is representing
consensual knowledge that has been agreed on by a group of people, typically
as a result of a social process.

What Is an Ontology? preceeding the main body of the handbook will
further elaborate the definition of what an ontology is:

Nicola Guarino, Daniel Oberle, and Steffen Staab:
What Is an Ontology?

In order not to appeal to intuition and to fix the terminology precisely, the
introduction will give a very formal approach to the definition of ontologies.
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The formally well-versed reader may enjoy the formal accuracy of the def-
inition of ontology – at a level of precision that has been sorely lacking so
far. However, the more application-oriented reader may focus only on the
run-through example given in the introduction and rather warm up with the
applications he may find in Part VI: Ontology-Based Applications.

Part I: Ontology Representation Languages

The main body of the handbook starts with a part on current representation
languages for ontologies in correlation with other aspects, such as data, the
Web and rules. The first chapter describes the family of ontology languages de-
scribed as Description Logics that constitutes the foundation for the majority
of ontology work found nowadays. Description Logics is a subset of first-order
predicate logics and combines expressiveness with a well-understood logical
framework:

U. Sattler, F. Baader, and I. Horrocks: Description Logics

The second chapter describes an approach to ontologies that is derived
from work in the area of logics-based databases. Ontologies in F-Logic ties in
neatly with existing database frameworks and has found many up-and-running
commercial applications.

J. Angele, G. Lausen, and M. Kifer: Ontologies in F-Logic

As explained in What is an Ontology? the aspect of sharing is central to
the notion of ontologies. The Web is the current, almost pervasive means to
share information and also knowledge. A lightweight representation for data
and knowledge on the Web is the Resource Description Framework (RDF).
Its core objectives and its connection to logical frameworks are explained in
the following chapter.

J.Z. Pan: Resource Description Framework

Very soon after the definition of RDF and RDF Schema, ontology engi-
neers and users recognized the need for a more expressive ontology represen-
tation language. The outcome of a joint development process is explained in
Web Ontology Language: OWL. OWL and particularly its flavor of OWL-DL
now constitute the language of choice for representing an ontology in the
Semantic Web.

G. Antoniou and F. van Harmelen: Web Ontology Language: OWL

When ontologies were developed to improve the expressiveness of knowl-
edge bases, they were typically used in connection with production rule-based
systems. While production rule-based systems have severe disadvantages with
regard to manageability because of a lack of declarativeness, new develop-
ments since the first edition of the handbook have shown how logical rules
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may be included into ontology languages such as description logics. Some
corresponding results are presented in Chapter “Ontologies and Rules”.

B. Parsia and P. Hitzler: Ontologies and Rules

This part of the book will be very helpful to the reader if he wants to un-
derstand the representational underpinnings of ontologies. Many examples in
the chapters will help him to get an intuitive understanding of the represen-
tational issues. Advanced issues and more complete descriptions are pointed
out in the many references given in these chapters.

Part II: Ontology Engineering

The second part of the handbook deals with the practical development of
ontologies. The first chapter presents a generic model of ontology develop-
ment that is now state-of-the-art and found in many variations in textbooks
on the topic of ontology engineering. In fact, it also introduces the different
aspects of ontology engineering found in the remainder of this part of the
ontology handbook.

Y. Sure, S. Staab, and R. Studer: Ontology Engineering Methodology

While the general methodological blueprint reflects concerns that one
would also find in a software engineering process, the next chapter focuses
on an issue that becomes almost unavoidable for large, realistic ontologies. It
shows how to develop ontologies in a distributed setting where most experts
cannot afford to assemble often – if at all.

H.S. Pinto, C. Tempich, and S. Staab:
Ontology Engineering and Evolution in a Distributed World

Using DILIGENT

The sound engineering of ontologies needs sophisticated tools. The follow-
ing two chapters describe Formal Concept Analysis and OntoClean, tools that
both aim at improving the inheritance relationships of specified concepts. The
first does so by analysing the correlation between intensions and extensions
of concepts, while the second investigates how the variability of a concept is
constrained by the intended conceptualization.

G. Stumme: Formal Concept Analysis

N. Guarino and C.A. Welty: An Overview of OntoClean

Beyond conceptual relationships, ontology engineers need to express spe-
cific concerns: knowledge about knowledge, part-whole-relationships, etc. The
chapter on Ontology Design Patterns explains how the idea of software de-
sign patterns can be adopted in ontologies to provide an understandable and
expressive model.
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A. Gangemi and V. Presutti: Ontology Design Patterns

Such ontology design patterns may be filled by manual work, but the use
of machine learning mechanisms as a tool for suggesting ontological constructs
is an increasingly important means.

P. Cimiano, A. Mädche, S. Staab, and J. Völker: Ontology Learning

When learning an ontology, the induction mechanisms need to distinguish
between the – possibly multiple – names of a concept or relation and the
concept or relation itself. Thus, it constructs a lexicon. Investigating existing
lexica, one finds that these actually contain many more specific hints useful
for reuse during ontology construction.

G. Hirst: Ontology and the Lexicon

At the end of the ontology engineering process, the resulting ontology
needs to be matched against the requirements. Such requirements may be task
or domain specific (e.g. high precision when retrieving knowledge); however,
there are also general criteria of soundness of ontologies that are analysed by
Vrandečić.

D. Vrandečić: Ontology Evaluation

The whole process of ontology engineering may be supported by specific
tools that allow the management of specification and design documents as well
as ontology-specific concerns such as traceability information, patterns, lexica,
etc. Though the full support of all these aspects has not been realized by any
environment, the current state-of-the-art is elaborated on by Mizoguchi and
Kozaki.

R. Mizoguchi and K. Kozaki: Ontology Engineering Environments

The part on ontology engineering closes the ultimate issue of concern about
ontologies in any kind of application: ontologies are supposed to improve the
total cost of operating a system by improving system aspects such as efficiency
or quality. However, with regard to the total cost of ownership, one also needs
to consider the amount of time and money to be invested in the construction
and the maintenance of the ontology.

E. Simperl and C. Tempich:
Exploring the Economical Aspects of Ontology Engineering

Only if the overall balance between investment and return yields a suffi-
ciently large margin, the employment of an ontology can be taken into consid-
eration. As will be shown in the parts on Ontology-Based Infrastructures and
Applications, the improvement of ontology engineering, an increased amount
of experience and sound and scalable infrastructure, now contribute success-
fully to the uptake of ontologies and ontology technologies.
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Part III: Ontologies

Some important experiences of ontology engineering are captured in structures
of existing ontologies and in the use of existing ontologies. Authors have dis-
tinguished different types of ontologies at different levels of generality and for
different types of purposes (cf. [1,3,7]): ‘Top-level ontologies’, sometimes also
called ‘foundational ontologies’, capture general concepts that are domain-
independent, like an event. Or they specify the conceptualization of common
sense knowledge, e.g. about space and time. ‘Domain ontologies’ model con-
cepts and relations that are relevant for a specific domain, like ‘gene’ in a life
science domain. Similarly, ‘Task ontologies’ describe concepts that are specific
for a task at hand, like ‘symptom’ for a diagnostic task. Finally, at the low-
est level of abstraction, so-called ‘Application Ontologies’ are specified that
combine domain and task ontologies and extend them with more refined do-
main and task specific concepts and relations, like ‘fever’ as a symptom for
diagnosis in the medical domain.

A widely used foundational ontology has been defined with DOLCE:

S. Borgo and C. Masolo: Foundational Choices in DOLCE

DOLCE is re-used in some domain and application ontologies in order
to provide a sound and comprehensively specific, yet extensible framework.
Extensibility is a core concern, because it is impossible to formalize domains
like Software or Multimedia completely.

D. Oberle, S. Grimm, and S. Staab: An Ontology for Software

R. Arndt, R. Troncy, S. Staab, and L. Hardman:
COMM: A Core Ontology for Multimedia Annotation

The next chapter targets concerns about processes and tasks. It reflects the
fact that the integration of procedural aspects into static constraints specified
in ontologies is gaining importance because of application domains such as
Web Services (Chapter “Semantic Web Services”).

M. Grüninger: Using the PSL Ontology

The final two chapters of this part consider the re-use of knowledge struc-
tures toward a more comprehensive formalization in an ontology. Both in bio-
medicine and in the domain of managing cultural objects, the need for rich
structuring of the complex domains have led to a long tradition in defining
knowledge structures and to a fruitful field of application for ontologies.

N. Shah and M. Musen:
Ontologies for Formal Representation of Biological Systems

M. Doerr: Ontologies for Cultural Heritage
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Part IV: Infrastructures for Ontologies

The scalability of ontology technology is crucial to its uptake in industrial
settings. Thereby, one can find an overwhelming development. As recently as
1994, Benchmarking of systems (cf. [5]) surveyed complete ontology reason-
ing that would work on rather weakly expressive languages with a couple of
hundred entities at the most (i.e. concepts and/or instances). The situation
has changed completely with current infrastructures for ontologies that target
high to very high scalability of dealing with ontological structures.

Current work targets simple ontological structures in RDF with billions
of triples1. The first chapter of this part explains state-of-the-art systems for
RDF Storage and Retrieval.

A. Hertel, J. Broekstra, and H. Stuckenschmidt:
RDF Storage and Retrieval Systems

With regard to description logic languages like OWL-DL, one nowadays
finds ontology reasoning systems that can also handle 105 concepts in onto-
logical concept definitions occurring in practice (cf. also [4]).

R. Möller and V. Haarslev: Tableau-Based Reasoning

Furthermore, developments in recent years have joined means of opti-
mization used in the fields of logic programming and logic databases (also
cf. Chapter “Ontologies in F-Logic”) with the field of description logics
(Chapter “Description Logics”) in order to achieve higher scalability for on-
tological reasoning with databases (more specifically: A-Boxes).

B. Motik: Resolution-Based Reasoning for Ontologies

Beyond infrastructures for single ontologies, this part also presents ap-
proaches towards managing multiple ontologies. In order to search for and
re-use ontologies it is necessary to index them. Ontology Repositories provide
such means for supporting the process for search and re-use.

J. Hartmann, R. Palma, and A. Gómez-Pérez: Ontology Repositories

On the Semantic Web ontologies, and the entities they contain are sup-
posed to cross-reference to each other to allow for a seamless use of ontologies.
If such cross-references do not yet exist, infrastructures for establishing ontol-
ogy mappings allow for their definition.

N.F. Noy: Ontology Mapping

1 Cf. the billion triple challenge at http://challenge.semanticweb.org/
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Part V: Ontology-Based Infrastructure and Methods

Infrastructures and methods may be extended with ontology technologies to
benefit from the agreement on a shared vocabulary and the underlying reason-
ing technology. These characteristics are frequently given when the domain of
applications of the infrastructures and methods is inherently complex, must
be kept extensible, and requires the interaction of some user.

The first two chapters on ontology-based infrastructures and methods fall
into the domain of software. The first contribution identifies different opportu-
nities in the Software Engineering lifecycle where ontologies may play a role –
the ‘user’ here is the software developer.

D. Gašević, N. Kaviani, and M. Milanović:
Ontologies and Software Engineering

The second contribution of this kind presents an approach for describing
dynamic access to software provided through the means of Web Services. The
approach targets a software environment where software building block may
be composed ad hoc, the user being either a software developer, a person
configuring software, or even an end user.

J. de Bruijn, M. Kerrigan, M. Zaremba, and D. Fensel:
Semantic Web Services

The next two chapters present the use of ontologies in data analysis task.
Ontologies for Machine Learning show how domain complexity may be used
by machine learning algorithms in order to enhance effectiveness and/or ex-
plainability of machine learning and data mining results.

S. Blöhdorn and A. Hotho: Ontologies for Machine Learning

The second chapter of this kind shows how ontologies are used for captur-
ing the complexities of entities and relationships that may be discovered from
texts using automated information extraction.

C. Nédellec, A. Nazarenko, and R. Bossy: Information Extraction

In the final chapter of this part Dzbor, Motta and Gridinoc consider an
ontology-enhanced infrastructure for user interaction, more specifically an
ontology-extended browser.

M. Dzbor, E. Motta, and L. Gridinoc:
Browsing and Navigation in Semantically Rich Spaces:

Experiences with Magpie Applications

While such infrastructures and methods as described in this part of the
handbook can be considered as constituting some kind of application, they
are generic and may be used in very different domains, e.g. from various types
of business processes (e.g. customer relationship management or knowledge
management) to health and to information repositories (recommender sys-
tems, portals). In the following part, we target some of these specific areas.
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Part VI: Ontology-Based Applications

Over the last 15 years, ontology-based applications have been spreading and
maturing. One now finds ontology-based applications in areas as diverse as
customer support and engineering of cars.

Coming from knowledge acquisition and knowledge-based systems, a core
area of application for ontologies has been knowledge management. But, rather
than fully capturing knowledge about a particular domain, the idea of using
ontologies in knowledge was that one would agree on a common vocabulary
and use it for knowledge shared by formal as well as by informal means, e.g.
texts, while making best use of the reasoning technology in the background.

A. Abecker and L. van Elst: Ontologies for Knowledge Management

As mentioned earlier (Chapter “Ontologies for Formal Representation of
Biological Systems”), biomedical applications have been using ontological
structuring for a long time – albeit tending towards less formal structures.
There, the most prominent domain of application was data integration for
human use. Now, however, the target of ontologies in this domain is the sup-
port for computational support of biological data, e.g. in experiments and
simulations.

R. Stevens and P. Lord: Application of Ontologies in Bioinformatics

Two more chapters target the use of ontologies in portals. The domains of
art and cultural heritage have a long interest in comprehensive classifications
to manage the many artifacts available, e.g. in museums, and present them to
the public.

E. Hyvönen: Semantic Portals for Cultural Heritage

The final chapter of the handbook targets the domain of digital libraries
and shows how ontology-based recommender systems can facilitate access to
such libraries – especially in situations where traditional recommender systems
stall because of the so-called “cold start problem”, i.e. the disadvantage that it
is difficult to provide good recommendations when only little is known about
the user of the system.

S.E. Middleton, D. De Roure, and N.R. Shadbolt:
Ontology-Based Recommender Systems

Conclusion

As the size of the handbook is physically limited, this last chapter will con-
clude the handbook. Many more chapters would be necessary to fully capture
the range of ontology technologies and applications. New ontology represen-
tation languages have been researched and become input for standardization
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processes, such as the extension of OWL-DL into OWL-2. New tools are be-
ing developed to provide infrastructure for ontologies via Web frontends. New
applications pop up almost daily and in unforeseen domains. Hence, this hand-
book cannot be complete and will not be in the next couple of years. However,
we see this as a vital sign for the area of research and development of ontology
and ontology technologies and not as a detriment to the intended usefulness
of this handbook. We hope that you, the reader, will enjoy its content and
make productive use of it.

Koblenz & Karlsruhe, Steffen Staab
October 2008 Rudi Studer
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Summary. The word “ontology” is used with different senses in different com-
munities. The most radical difference is perhaps between the philosophical sense,
which has of course a well-established tradition, and the computational sense, which
emerged in the recent years in the knowledge engineering community, starting from
an early informal definition of (computational) ontologies as “explicit specifications
of conceptualizations”. In this paper we shall revisit the previous attempts to clarify
and formalize such original definition, providing a detailed account of the notions
of conceptualization and explicit specification, while discussing at the same time the
importance of shared explicit specifications.

1 Introduction

The word “ontology” is used with different meanings in different communi-
ties. Following [9], we distinguish between the use as an uncountable noun
(“Ontology,” with uppercase initial) and the use as a countable noun (“an
ontology,” with lowercase initial) in the remainder of this chapter. In the first
case, we refer to a philosophical discipline, namely the branch of philosophy
which deals with the nature and structure of “reality.” Aristotle dealt with
this subject in his Metaphysics1 and defined Ontology2 as the science of “be-
ing qua being,” i.e., the study of attributes that belong to things because of
their very nature. Unlike the experimental sciences, which aim at discovering
and modeling reality under a certain perspective, Ontology focuses on the

1 The first books of Aristotle’s treatises, known collectively as “Organon,” deal
with the nature of the world, i.e., physics. Metaphysics denotes the subjects dealt
with in the rest of the books – among them Ontology. Philosophers sometimes
equate Metaphysics and Ontology.

2 Note, that the term “Ontology” itself was coined only in the early seventeenth
century [13].

S. Staab and R. Studer (eds.), Handbook on Ontologies, International Handbooks 1
on Information Systems, DOI 10.1007/978-3-540-92673-3,
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nature and structure of things per se, independently of any further considera-
tions, and even independently of their actual existence. For example, it makes
perfect sense to study the Ontology of unicorns and other fictitious entities:
although they do not have actual existence, their nature and structure can be
described in terms of general categories and relations.

In the second case, which reflects the most prevalent use in Computer
Science, we refer to an ontology as a special kind of information object or
computational artifact. According to [7, 8], the account of existence in this
case is a pragmatic one: “For AI systems, what ‘exists’ is that which can be
represented.”

Computational ontologies are a means to formally model the structure
of a system, i.e., the relevant entities and relations that emerge from its
observation, and which are useful to our purposes. An example of such a
system can be a company with all its employees and their interrelationships.
The ontology engineer analyzes relevant entities3 and organizes them into con-
cepts and relations, being represented, respectively, by unary and binary predi-
cates.4 The backbone of an ontology consists of a generalization/specialization
hierarchy of concepts, i.e., a taxonomy. Supposing we are interested in as-
pects related to human resources, then Person, Manager, and Researcher
might be relevant concepts, where the first is a superconcept of the latter
two. Cooperates-with can be considered a relevant relation holding between
persons. A concrete person working in a company would then be an instance
of its corresponding concept.

In 1993, Gruber originally defined the notion of an ontology as an “explicit
specification of a conceptualization” [7].5 In 1997, Borst defined an ontology
as a “formal specification of a shared conceptualization” [1]. This definition
additionally required that the conceptualization should express a shared view
between several parties, a consensus rather than an individual view. Also,
such conceptualization should be expressed in a (formal) machine readable
format. In 1998, Studer et al. [15] merged these two definitions stating that:
“An ontology is a formal, explicit specification of a shared conceptualization.”

3 Entity denotes the most general being, and, thus, subsumes subjects, objects,
processes, ideas, etc.

4 Unfortunately, the terminology used in Computer Science is problematic here.
What we call “concepts” in this chapter may be better called “properties” or “cat-
egories.” Regrettably, “property” is used to denote a binary relation in RDF(S),
so we shall avoid using it. Also, Smith made us aware that the notion of “con-
cept” is quite ambiguous [14]. A way to solve the terminological conflict is to
adopt the philosophical term “universal,” which roughly denotes those entities
that can have instances; particulars are entities that do not have instances. What
we call “concepts” correspond to unary universals, while “relations” correspond
to binary universals.

5 Other definitions of an ontology have surfaced in the literature, e.g., [16] or [11],
which are similar to Gruber’s. However, the one from Gruber seems to be the
most prevalent and most cited.
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All these definitions were assuming an informal notion of “conceptualiza-
tion,” which was discussed in detail in [9]. In the following, we shall revisit
such discussion, by focusing on the three major aspects of the definition by
Studer et al.:

• What is a conceptualization?
• What is a proper formal, explicit specification?
• Why is ‘shared ’ of importance?

It is the task of this chapter to provide a concise view of these aspects
in the following sections. It lies in the nature of such a chapter that we have
tried to make it more precise and formal than many other useful definitions
of ontologies that do exist – but that do not clarify terms to the degree of
accuracy that we target here.

Accordingly, the reader new to the subject of ontologies may prefer to
learn first about applications and examples of ontologies in the latter parts of
this book and may decide to return to this opening chapter once he wants to
see the common raison d’être behind the different approaches.

2 What is a Conceptualization?

Gruber [7, 8] refers to the notion of a conceptualization according to
Genesereth and Nilsson [5], who claim: “A body of formally represented
knowledge is based on a conceptualization: the objects, concepts, and other
entities that are assumed to exist in some area of interest and the relationships
that hold among them. A conceptualization is an abstract, simplified view
of the world that we wish to represent for some purpose. Every knowledge
base, knowledge-based system, or knowledge-level agent is committed to some
conceptualization, explicitly or implicitly.”

Despite the complex mental nature of the notion of “conceptualization,”
Genesereth and Nilsson choose to explain it by using a very simple mathe-
matical representation: an extensional relational structure.

Definition 2.1 (Extensional relational structure) An extensional re-
lational structure, (or a conceptualization according to Genesereth and
Nilsson), is a tuple (D,R) where

• D is a set called the universe of discourse
• R is a set of relations on D

Note that, in the above definition, the members of the set R are ordinary
mathematical relations on D, i.e., sets of ordered tuples of elements of D. So
each element of R is an extensional relation, reflecting a specific world state
involving the elements of D, such as the one depicted in Fig. 1, concerning the
following example.
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Example 2.1 Let us consider human resources management in a large soft-
ware company with 50,000 people, each one identified by a number (e.g., the
social security number, or a similar code) preceded by the letter I. Let us as-
sume that our universe of discourse D contains all these people, and that we
are only interested in relations involving people. Our R will contain some
unary relations, such as Person, Manager, and Researcher, as well as the bi-
nary relations reports-to and cooperates-with.6 The corresponding extensional
relation structure (D,R) looks as follows:

• D = {I000001, ..., I050000, ...}
• R = {Person,Manager,Researcher, cooperates-with, reports-to}

Relation extensions reflect a specific world. Here, we assume that Person
comprises the whole universe D and that Manager and Researcher are strict
subsets of D. The binary relations reports-to and cooperates-with are sets of
tuples that specify every hierarchical relationship and every collaboration in
our company. Some managers and researchers are depicted in Fig. 1. Here,
I046758, a researcher, reports to his manager I034820, and cooperates with
another researcher, namely I044443.

• Person = D
• Manager = {..., I034820, ...}
• Researcher = {..., I044443, ..., I046758, ...}
• reports-to = {..., (I046758, I034820), (I044443, I034820), ...}
• cooperates-with = {..., (I046758, I044443), ...}

Researcher(I046758)

reports-to 

reports-to 

Manager(I034820)

Researcher(I044443)

Person(I050000)cooperates-with 

Fig. 1. A tiny part of a specific world with persons, managers, researchers, and
their relationships in the running example of human resources in a large software
company

6 The name of a person could also be assigned via relations, e.g.,
firstname(I046758,‘Daniel’) and lastname(I046758,‘Oberle’).
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Despite its simplicity, this extensional notion of a conceptualization does
not really fit our needs and our intuition, mainly because it depends too much
on a specific state of the world. Arguably, a conceptualization is about con-
cepts. Now, should our concept of reports-to change when the hierarchical
structure of our company changes? Indeed, as discussed in [9], a conceptual-
ization should not change when the world changes. Otherwise, according to
the Genesereth and Nilsson’s view given in Definition 2.1, every specific peo-
ple interaction graph, such as the one depicted in Fig. 1, would correspond to
a different conceptualization, as shown in Example 2.2.

Example 2.2 Let us consider the following alteration of Example 2.1 with
D′ = D and R′ = {Person,Manager,Researcher, reports-to’, cooperates-with}
where reports-to’ = reports-to ∪ {(I034820, I050000)}.

Although we only added one new reporting relationship, it is obvious that
(D,R) �= (D′,R′) and, thus, we have two different conceptualizations accord-
ing to Genesereth and Nilsson.

The problem is that the extensional relations belonging to R reflect a
specific world state. However, we need to focus on the meaning of the under-
lying concepts, which are independent of a single world state: for instance,
the meaning of cooperates-with lies in the particular way two persons act in
the company.

In practice, understanding such meaning implies having a rule to decide,
observing different behavior patterns, whether or not two persons are coop-
erating. Suppose that, in our case, for two persons I046758 and I044443 to
cooperate means that (1) both declare to have the same goal; (2) both do
something to achieve this goal. Then, the meaning of “cooperating” can be
defined as a function that, for each global behavioral context involving all
our universe, gives us the list of couples who are actually cooperating in that
context. The reverse of this function grounds the meaning of a concept in a
specific world state. Generalizing this approach, and abstracting from time for
the sake of simplicity, we shall say that an intensional relation7 (as opposed
to an extensional relation) is a function from a set of maximal world states
(the global behavioral contexts in our case) into extensional relations. This is
the common way of expressing intensions, which goes back to Carnap [2] and
is adopted and extended in Montague’s semantics [4].

To formalize this notion of intensional relation, we first have to clarify what
a “world” and a “world state” is. We shall define them with reference to the
notion of “system,” which will be given for granted: since we are dealing with
computer representations of real phenomena, a system is simply the given
piece of reality we want to model, which, at a given degree of granularity, is

7 To underly their link with conceptualizations, Guarino has proposed to call such
intensional relations “conceptual relations” in [10].
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“perceived” by an observing agent (typically external to the system itself) by
means of an array of “observed variables.”8

In our case, this system will be an actual group of people interacting
in certain ways. For the sake of simplicity, we shall assume to observe this
system at a granularity where single persons can be considered as atoms,
so we shall abstract, e.g., from body parts. Moreover, we shall assume that
the only observed variables are those which tell us whether a person has a
certain goal (belonging to a pre-determined list), and whether such person is
actually acting to achieve such goal. Supposing there is just one goal, we have
50,000 + 50,000 = 100,000 variables. Each combination of such variables is a
world state. Two different agents (outside the observed system) will share the
same meaning of “cooperating” if, in presence of the same world states, will
pick up the same couples as instances of the cooperates-with relation. If not,
they will have different conceptualizations, i.e., different ways of interpreting
their sensory data. For instance, an agent may assume that sharing a goal is
enough for cooperating, while the other may require in addition some actual
work aimed at achieving the goal.

Definition 2.2 (World) With respect to a specific system S we want to
model, a world state for S is a maximal observable state of affairs, i.e., a
unique assignment of values to all the observable variables that characterize
the system. A world is a totally ordered set of world states, corresponding
to the system’s evolution in time. If we abstract from time for the sake of
simplicity, a world state coincides with a world.

At this point, we are ready to define the notion of an intensional relation
in more formal terms, building on [9], as follows:

Definition 2.3 (Intensional relation, or conceptual relation) Let S be
an arbitrary system, D an arbitrary set of distinguished elements of S, and W
the set of world states for S (also called worlds, or possible worlds). The tuple
<D,W> is called a domain space for S, as it intuitively fixes the space of
variability of the universe of discourse D with respect to the possible states of
S. An intensional relation (or conceptual relation) ρn of arity n on <D,W>
is a total function ρn : W → 2Dn

from the set W into the set of all n-ary
(extensional) relations on D.

Once we have clarified what a conceptual relation is, we give a represen-
tation of a conceptualization in Definition 2.4. Below, we also show how the
conceptualization of our human resources system looks like in Example 2.3.

Definition 2.4 (Intensional relational structure, or conceptualization)
An intensional relational structure (or a conceptualization according to
Guarino) is a triple C = (D,W,�) with
8 It is important to note that, if we want to provide a well-founded, grounded

account of meaning, this system needs to be first of all a physical system, and
not an abstract entity.
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• D a universe of discourse
• W a set of possible worlds
• � a set of conceptual relations on the domain space <D,W>

Example 2.3 Coming back to the Examples 2.1 and 2.2, we can see them as
describing two different worlds compatible with the following conceptualization
C:

• D = {I000001, ..., I050000, ...} the universe of discourse
• W = {w1, w2, ...} the set of possible worlds
• �={Person1,Manager1,Researcher1, cooperates-with2, reports-to2} the set

of conceptual relations

For the sake of simplicity, we assume that the unary conceptual relations,
viz., Person1, Manager1, and Researcher1, are rigid, and, thus, map to the
same extensions in every possible world. We do not make this specific assump-
tion here for the binary reports-to2 and cooperates-with2:

• for all worlds w in W : Person1(w) = D
• for all worlds w in W : Manager1(w) = {..., I034820, ...}
• for all worlds w in W : Researcher1(w) = {..., I044443, ..., I046758, ...}
• reports-to2(w1) = {..., (I046758, I034820), (I044443, I034820), , ...}
• reports-to2(w2) = {..., (I046758, I034820), (I044443, I034820), (I034820,

I050000), ...}
• reports-to2(w3) = ...
• cooperates-with2(w1) = {..., (I046758, I044443), ...}
• cooperates-with2(w2) = ...

3 What is a Proper Formal, Explicit Specification?

In practical applications, as well as in human communication, we need to use
a language to refer to the elements of a conceptualization: for instance, to
express the fact that I046758 cooperates with I044443, we have to introduce
a specific symbol (formally, a predicate symbol, say cooperates-with, which,
in the user’s intention, is intended to represent a certain conceptual relation.
We say in this case that our language (let us call it L) commits to a con-
ceptualization.9 Suppose now that L is a first-order logical language, whose
nonlogical symbols (i.e., its signature, or its vocabulary) are the elements of
the set {I046758, I044443, cooperates-with, reports-to}. How can we make sure

9 Of course, properly speaking, it is an agent who commits to a conceptualization
while using a certain language: what we call the language commitment is an
account of the competent use of the language by an agent who adopts a certain
conceptualization.
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that such symbols are interpreted according to the conceptualization we com-
mit to? For instance, how can we make sure that, for somebody who does
not understand English, cooperates-with is not interpreted as corresponding
to our conceptualization of reports-to, and vice versa? Technically, the prob-
lem is that a logical signature can, of course, be interpreted in arbitrarily
many different ways. Even if we fix a priori our interpretation domain (the
domain of discourse) to be a subset of our cognitive domain, the possible in-
terpretation functions mapping predicate symbols into proper subsets of the
domain of discourse are still unconstrained. In other words, once we commit
to a certain conceptualization, we have to make sure to only admit those mod-
els which are intended according to the conceptualization. For instance, the
intended models of the cooperates-with predicate will be those such that the
interpretation of the predicate returns one of the various possible extensions
(one for each possible world) of the conceptual relation denoted by the pred-
icate. The problem however is that, to specify what such possible extensions
are, we need to explicitly specify our conceptualization, while conceptualiza-
tions are typically in the mind of people, i.e., implicit.

Here emerges the role of ontologies as “explicit specifications of conceptu-
alizations.” In principle, we can explicitly specify a conceptualization in two
ways: extensionally and intensionally. In our example, an extensional speci-
fication of our conceptualization would require listing the extensions of every
(conceptual) relation for all possible worlds. However, this is impossible in
most cases (e.g., if the universe of discourse D or the set of possible worlds W
are infinite) or at least very impractical. In our running example, we are deal-
ing with thousands of employees and their possible cooperations can probably
not be fully enumerated. Still, in some cases it makes sense to partially spec-
ify a conceptualization in an extensional way, by means of examples, listing
the extensions of conceptual relations in correspondence of selected, stereo-
typical world states. In general, however, a more effective way to specify a
conceptualization is to fix a language we want to use to talk of it, and to
constrain the interpretations of such a language in an intensional way, by
means of suitable axioms (called meaning postulates [2]). For example, we can
write simple axioms stating that reports-to is asymmetric and intransitive,
while cooperates-with is symmetric, irreflexive, and intransitive. In short, an
ontology is just a set of such axioms, i.e., a logical theory designed in order
to capture the intended models corresponding to a certain conceptualization
and to exclude the unintended ones. The result will be an approximate spec-
ification of a conceptualization: the better intended models will be captured
and non-intended models will be excluded (cf. Fig. 2).

The axioms for intensionally and explicitly specifying the conceptualiza-
tion can be given in an informal or formal language L. As explained in the
introduction, [15] requires that the explicit specification must be formal in
addition to what proposed in [1,7]. ‘Formal’ refers to the fact that the expres-
sions must be machine readable, hence natural language is excluded. Let us
now discuss all the notions above in a more formal way.
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Fig. 2. The relationships between phenomena occurring in reality, their perception
(at different times), their abstracted conceptualization, the language used to talk
about such conceptualization, its intended models, and an ontology

3.1 Committing to a Conceptualization

Let us assume that our language L is (a variant of) a first-order logical lan-
guage, with a vocabulary V consisting of a set of constant and predicate
symbols (we shall not consider function symbols here). We shall introduce the
notion of ontological commitment by extending the standard notion of a (ex-
tensional) first order structure to that of an intensional first order structure.

Definition 3.1 (Extensional first-order structure) Let L be a first-
order logical language with vocabulary V and S = (D,R) an extensional
relational structure. An extensional first order structure (also called model
for L) is a tuple M = (S, I), where I (called extensional interpretation func-
tion) is a total function I : V → D ∪R that maps each vocabulary symbol of
V to either an element of D or an extensional relation belonging to the set R.
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Fig. 3. The predicate symbol Person has both an extensional interpretation
(through the usual notion of model, or extensional first-order structure) and an
intensional interpretation (through the notion of ontological commitment, or inten-
sional first order structure)

Definition 3.2 (Intensional first-order structure) (also called: onto-
logical commitment) Let L be a first-order logical language with vocabulary
V and C = (D,W,�) an intensional relational structure (i.e., a conceptual-
ization). An intensional first order structure (also called ontological commit-
ment) for L is a tuple K = (C, I), where I (called intensional interpretation
function) is a total function I : V → D∪� that maps each vocabulary symbol
of V to either an element of D or an intensional relation belonging to the
set �.

It should be clear now that the definition of ontological commitment extends
the usual (extensional) definition of “meaning” for vocabulary symbols to the
intensional case, substituting the notion of model with the notion of concep-
tualization. Figure 3 captures this idea.

Example 3.1 Coming back to our Example 2.1, the vocabulary V coincides
with the relation symbols, i.e., V = {Person, Manager, Researcher, reports-to,
cooperates-with}. Our ontological commitment consists of mapping the relation
symbol Person to the conceptual relation Person1 and proceeding alike with
Manager, Researcher, reports-to, and cooperates-with.

3.2 Specifying a Conceptualization

As we have seen, the notion of ontological commitment is an extension of the
standard notion of model. The latter is an extensional account of meaning,
the former is an intensional account of meaning. But what is the relationship
between the two? Of course, once we specify the intensional meaning of a
vocabulary through its ontological commitment, somehow we also constrain
its models. Let us introduce the notion of intended model with respect to a
certain ontological commitment for this purpose.

Definition 3.3 (Intended models) Let C = (D,W,�) be a conceptual-
ization, L a first-order logical language with vocabulary V and ontological
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commitment K = (C, I). A model M = (S, I), with S = (D,R), is called an
intended model of L according to K iff

1. For all constant symbols c ∈ V we have I(c) = I(c)
2. There exists a world w ∈ W such that, for each predicate symbol v ∈ V

there exists an intensional relation ρ ∈ � such that I(v) = ρ and I(v) =
ρ(w)

The set IK(L) of all models of L that are compatible with K is called the set
of intended models of L according to K.

Condition 1 above just requires that the mapping of constant symbols
to elements of the universe of discourse is identical. Example 2.1 does not
introduce any constant symbols. Condition 2 states that there must exist a
world such that every predicate symbol is mapped into an intensional re-
lation whose value, for that world, coincides with the extensional interpre-
tation of such symbol. This means that our intended model will be – so
to speak – a description of that world. In Example 2.1, for instance, we
have that, for w1, I(Person) = {I000001, ..., I050000, ...} = Person1(w1)
and I(reports-to) = {..., (I046758, I034820), (I044443, I034820), (I034820,
I050000) , ...} = reports-to2(w1).

With the notion of intended models at hand, we can now clarify the role of
an ontology, considered as a logical theory designed to account for the intended
meaning of the vocabulary used by a logical language. In the following, we
also provide an ontology for our running example.

Definition 3.4 (Ontology) Let C be a conceptualization, and L a logical
language with vocabulary V and ontological commitment K. An ontology OK

for C with vocabulary V and ontological commitment K is a logical theory
consisting of a set of formulas of L, designed so that the set of its models
approximates as well as possible the set of intended models of L according to
K (cf. also Fig. 2).

Example 3.2 In the following we build an ontology O consisting of a set of
logical formulae. Through O1 to O6 we specify our human resources domain
with increasing precision.

Taxonomic Information. We start our formalization by specifying that Re-
searcher and Manager are sub-concepts of Person:
O1 = {Researcher(x) → Person(x),Manager(x)→ Person(x)}

Domains and Ranges. We continue by adding formulae to O1 which specify
the domains and ranges of the binary relations:
O2 = O1 ∪ {cooperates-with(x, y) → Person(x) ∧
Person(y), reports-to(x, y) → Person(x) ∧ Person(y)}

Symmetry. cooperates-with can be considered a symmetric relation:
O3 = O2 ∪ {cooperates-with(x, y) ↔ cooperates-with(y, x)}

Transitivity. Although arguable, we specify reports-to as a transitive relation:
O4 = O3 ∪ {reports-to(x, z) ← reports-to(x, y) ∧ reports-to(y, z)}
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Disjointness There is no Person who is both a Researcher and a Manager:
O5 = O4 ∪ {Manager(x)→ ¬Researcher(x)}

3.3 Choosing the Right Domain and Vocabulary

On the basis of the discussion above, we might conclude that an ideal on-
tology is one whose models exactly coincide (modulo isomorphisms) with the
intended ones. Things are not so simple, however: even a “perfect” ontology
like that may fail to exactly specify its target conceptualization, if its vocabu-
lary and its domain of discourse are not suitably chosen. The reason for that
lies in the distinction between the logical notion of model and the ontological
notion of possible world. The former is basically a combination of assignments
of abstract relational structures (built over the domain of discourse) to vocab-
ulary elements; the latter is a combination of actual (observed) states of affairs
of a certain system. Of course, the number of possible models depends both
on the size of the vocabulary and the extension of the domain of discourse,
which are chosen more or less arbitrarily, on the basis of what appears to be
relevant to talk of. On the contrary, the number of world states depends on
the observed variables, even those which – at a first sight – are considered as
irrelevant to talk of. With reference to our example, consider the two models
where the predicates of our language (whose signature is reported above) are
interpreted in such a way that their extensions are those described respec-
tively in Examples 2.1 and 2.2. Each model corresponds to a different pattern
of relationships among the people in our company, but, looking at the model
itself, nothing tells us what are the world states where a certain pattern of
relationships holds. So, for example, it is impossible to discriminate between
a conceptualization where cooperates-with means that two persons cooperate
when they are just sharing a goal, and another where they need also do some-
thing to achieve that goal. In other words, each model, in this example, will
“collapse” many different world states. The reason of this is in the very simple
vocabulary we have adopted: with just two predicates, we have not enough
expressiveness to discriminate between different world states. So, to really
capture our conceptualization, we need to extend the vocabulary in order to
be able to talk of sharing a goal or achieving a goal, and we have to introduce
goals (besides persons) in our domain of discourse. In conclusion, the degree
to which an ontology specifies a conceptualization depends (1) on the rich-
ness of the domain of discourse; (2) on the richness of the vocabulary chosen;
(3) on the axiomatization. In turn, the axiomatization depends on language
expressiveness issues as discussed in Sect. 3.4.

3.4 Language Expressiveness Issues

At one extreme, we have rather informal approaches for the language L that
may allow the definitions of terms only, with little or no specification of the
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Fig. 4. Different approaches to the language L according to [17]. Typically, logical
languages are eligible for the formal, explicit specification, and, thus, ontologies

meaning of the term. At the other end of the spectrum, we have formal ap-
proaches, i.e., logical languages that allow specifying rigorously formalized log-
ical theories. This gives rise to the continuum introduced by [17] and depicted
in Fig. 4. As we move along the continuum, the amount of meaning speci-
fied and the degree of formality increases (thus reducing ambiguity); there is
also increasing support for automated reasoning (cf. Chapters “Tableau-Based
Reasoning” and “Resolution-Based Reasoning for Ontologies”).

It is difficult to draw a strict line of where the criterion of formal starts
on this continuum. In practice, the rightmost category of logical languages
is usually considered as formal. Within this rightmost category one typically
encounters the trade-off between expressiveness and efficiency when choosing
the language L. On the one end, we find higher-order logic, full first-order
logic, or modal logic. They are very expressive, but do often not allow for
sound and complete reasoning and if they do, reasoning sometimes remains
untractable. At the other end, we find less stringent subsets of first-order logic,
which typically feature decidable and more efficient reasoners. They can be
split in two major paradigms. First, languages from the family of description
logics (DL) (cf. chapter “Description Logics”), e.g., OWL-DL (cf. chapter
“Web Ontology Language: OWL”), are strict subsets of first-order logic. The
second major paradigm comes from the tradition of logic programming (LP)
[3] with one prominent representor being F-Logic (cf. chapter “Ontologies in
F-Logic”). Though logic programming often uses a syntax comparable to
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first-order logics, it assumes a different interpretation of formulae. Unlike the
Tarski-style model theory [18] of first-order and description logic, logic pro-
gramming selects only a subset of models to judge semantic entailment of
formulae. There are different ways to select subsets of models resulting in dif-
ferent semantics – all of them geared to deal more efficiently with larger sets
of data than approaches based on first-order logic. One of the most promi-
nent differences resulting from this different style of logical models is that
expressive logic programming theories become non-monotonic.

4 Why is Shared of Importance?

A formal specification of a conceptualization does not need to be a specifica-
tion of a shared conceptualization. As outlined above, the first definitions of
“ontologies” did not consider the aspect of sharing [6,8] and only later it was
introduced by Borst [1]. Indeed, one may correctly argue that it is not possible
to share whole conceptualizations, which are private to the mind of the indi-
vidual. What can be shared, are approximations of conceptualizations based
on a limited set of examples and showing the actual circumstances where
a certain conceptual relation holds (for instance, actual situations showing
cases where the cooperates-with relationship occurs). Beyond mere examples
it is also possible to share meaning postulates, i.e., explicit formal constraints
(e.g., the relationship cooperates-with is symmetric). Such definitions, how-
ever, presuppose a mutual agreement on the primitive terms used in these
definitions. Since however meaning postulates cannot fully characterize the
ontological commitment of primitive terms, one may recognize that sharing
of conceptualizations is at best partial.

For practical usage of ontologies, it turned out very quickly that without
at least such minimal shared ontological commitment from ontology stake-
holders, the benefits of having an ontology are limited. The reason is that an
ontology formally specifies a domain structure under the limitation that its
stakeholder understand the primitive terms in the appropriate way. In other
words, the ontology may turn out useless if it is used in a way that runs
counter to the shared ontological commitment. In conclusion, any ontology
will always be less complete and less formal than it would be desirable in
theory. This is why it is important, for those ontologies intended to support
large-scale interoperability, to be well-founded, in the sense that the basic
primitives they are built on are sufficiently well-chosen and axiomatized to be
generally understood.

4.1 Reference and Meaning

For appropriate usage, ontologies need to fulfill a further function, namely
facilitating the communication between the human and the machine – refer-
ring to terminology specified in the ontology – or even for facilitating inter-
machine and inter-human communication. The communication situation can
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Fig. 5. Semiotic triangle

be illustrated using the semiotic triangle of Ogden and Richard [12], following
thoughts by Peirce, Saussure, and Frege (cf. Fig. 5).

All agents, whatever their commitment to an ontology is, find themselves in
a communication situation illustrated using the semiotic triangle: The sender
of a message may use a word or – more generally – a sign like the string
“Person” to stand for a concept the sender has in his own “mind.” He uses
the sign in order to refer to abstract or concrete things in the world, which
may, but need not be, physical objects. The sender also invokes a concept in
the mind of an actor receiving this sign. The receiver uses the concept in order
to point out the individual or the class of individuals the sign was intended
to refer to. Thereby, the interpretation of the sign as a concept as well as
its use in a given situation depends heavily on the receiver as well as the
overall communication context. Therefore, the meaning triangle is sometimes
supplemented with further nodes in order to represent the receiver or the
context of communication. We have illustrated the context by an instable
arrow from sign to thing that constrains possible acts of reference. Note that
the act of reference remains indirect, as it is mediated by the mental concept.
Once the concept is invoked, it behaves (so to speak) as a function that, given
a particular context (i.e., the world state mentioned in previous sections),
returns the things we want to refer to. Moreover, the correspondences between
sign, concept, and thing are weak and ambiguous. In many communication
circumstances, the usage of signs can erroneously invoke the wrong concepts
and represent different entities than intended to.

This problem is further aggravated when a multitude of agents exchanges
messages in which terms do not have a prescribed meaning. Unavoidably,
different agents will arrive at different conclusions about the semantics and
the intention of the message.

When agents commit to a common ontology they can limit the conclu-
sions possibly associated with the communications of specific signs, because
not all relations between existing signs may hold and logical consequences
from the usage of signs are implied by the logical theory specifying the ontol-
ogy. Therefore the set of possible correspondences between signs, concepts and
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Fig. 6. Semiotic triangle revisited

real-world entities is strongly reduced – ideally up to a situation where the
message becomes completely unambiguous (cf. Fig. 6). Thereby, not only the
act of reference becomes clearer, but also the connection between sign and
concept changes from a weakly defined relationship of “invokes” into a logi-
cally precise meaning of “denotes.” Likewise, the meaning of a concept is now
determined by a precise logical theory (contrast Figs. 5 and 6).

5 Discussion

In this chapter we have introduced three core aspects of computational on-
tologies: conceptualizations, specifications of conceptualizations, and shared
ontological commitments. These are very broad categories suitable to investi-
gate many different formalisms and fields of applications.

In fact, they are not even the only aspects of ontologies, which may be
classified into different types, depending on the way they are used. For in-
stance, the primary purpose of top-level ontologies lies in providing a broad
view of the world suitable for many different target domains. Reference on-
tologies target the structuring of ontologies that are derived from them. The
primary purpose of core ontologies derives from the definition of a super do-
main. Application ontologies are suitable for direct use in reasoning engines
or software packages – and this list is not yet complete and will require many
more experiences yet to be made.
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Summary. In this chapter, we explain what description logics are and why they
make good ontology languages. In particular, we introduce the description logic
SHIQ, which has formed the basis of several well-known ontology languages, in-
cluding OWL. We argue that, without the last decade of basic research in description
logics, this family of knowledge representation languages could not have played such
an important rôle in this context.

Description logic reasoning can be used both during the design phase, in order to
improve the quality of ontologies, and in the deployment phase, in order to exploit
the rich structure of ontologies and ontology based information. We discuss the
extensions to SHIQ that are required for languages such as OWL and, finally, we
sketch how novel reasoning services can support building ontologies.

1 Introduction

The aim of this section is to give a brief introduction to description logics, and
to argue why they are well-suited as ontology languages. In the remainder of
the chapter we will put some flesh on this skeleton by providing more technical
details with respect to the theory of description logics, and their relationship
to state of the art ontology languages. More detail on these and other matters
related to description logics can be found in [6].

1.1 Ontologies

There have been many attempts to define what constitutes an ontology, per-
haps the best known (at least amongst computer scientists) being due to
Gruber: “an ontology is an explicit specification of a conceptualisation” [49].1

In this context, a conceptualisation means an abstract model of some aspect
1 This was later elaborated to “a formal specification of a shared conceptualisation”

[21].

S. Staab and R. Studer (eds.), Handbook on Ontologies, International Handbooks 21
on Information Systems, DOI 10.1007/978-3-540-92673-3,
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of the world, taking the form of a definition of the properties of important
concepts and relationships. An explicit specification means that the model
should be specified in some unambiguous language, making it amenable to
processing by machines as well as by humans.

Ontologies are becoming increasingly important in fields such as knowl-
edge management, information integration, cooperative information systems,
information retrieval and electronic commerce. One application area which
has recently seen an explosion of interest is the so called Semantic Web [18],
where ontologies are set to play a key rôle in establishing a common ter-
minology between agents, thus ensuring that different agents have a shared
understanding of terms used in semantic markup.

The effective use of ontologies requires not only a well-designed and well-
defined ontology language, but also support from reasoning tools. Reasoning
is important both to ensure the quality of an ontology, and in order to exploit
the rich structure of ontologies and ontology based information. It can be em-
ployed in different phases of the ontology life cycle. During ontology design,
it can be used to test whether concepts are non-contradictory and to derive
implied relations. In particular, one usually wants to compute the concept hi-
erarchy, i.e. the partial ordering of named concepts based on the subsumption
relationship. Information on which concept is a specialization of another, and
which concepts are synonyms, can be used in the design phase to test whether
the concept definitions in the ontology have the intended consequences or not.
This information is also very useful when the ontology is deployed.

Since it is not reasonable to assume that all applications will use the same
ontology, interoperability and integration of different ontologies is also an im-
portant issue. Integration can, for example, be supported as follows: after the
knowledge engineer has asserted some inter-ontology relationships, the inte-
grated concept hierarchy is computed and the concepts are checked for con-
sistency. Inconsistent concepts as well as unintended or missing subsumption
relationships are thus signs of incorrect or incomplete inter-ontology asser-
tions, which can then be corrected or completed by the knowledge engineer.

Finally, reasoning may also be used when the ontology is deployed. As
well as using the pre-computed concept hierarchy, one could, for example, use
the ontology to determine the consistency of facts stated in annotations, or
infer relationships between annotation instances and ontology classes. More
precisely, when searching web pages annotated with terms from the ontology,
it may be useful to consider not only exact matches, but also matches with
respect to more general or more specific terms – where the latter choice de-
pends on the context. However, in the deployment phase, the requirements
on the efficiency of reasoning are much more stringent than in the design and
integration phases.

Before arguing why description logics are good candidates for such an on-
tology language, we provide a brief introduction to and history of description
logics.
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1.2 Description Logics

Description logics (DLs) [6, 16, 30] are a family of knowledge representation
languages that can be used to represent the knowledge of an application do-
main in a structured and formally well-understood way. The name description
logics is motivated by the fact that, on the one hand, the important notions
of the domain are described by concept descriptions, i.e. expressions that are
built from atomic concepts (unary predicates) and atomic roles (binary pred-
icates) using the concept and role constructors provided by the particular
DL. On the other hand, DLs differ from their predecessors, such as semantic
networks and frames, in that they are equipped with a formal, logic-based
semantics.

In this introduction, we only illustrate some typical constructors by an
example. Formal definitions are given in Sect. 2. Assume that we want to
define the concept of “A man that is married to a doctor and has at least five
children, all of whom are professors.” This concept can be described with the
following concept description:

Human 
 ¬Female 
 ∃married.Doctor 
 (≥ 5 hasChild) 
 ∀hasChild.Professor

This description employs the Boolean constructors conjunction (
), which
is interpreted as set intersection, and negation (¬), which is interpreted as
set complement, as well as the existential restriction constructor (∃R.C), the
value restriction constructor (∀R.C), and the number restriction constructor
(≥nR). An individual, say Bob, belongs to ∃married.Doctor if there exists
an individual that is married to Bob (i.e. is related to Bob via the married
role) and is a doctor (i.e. belongs to the concept Doctor). Similarly, Bob be-
longs to (≥ 5 hasChild) iff he has at least five children, and he belongs to
∀hasChild.Professor iff all his children (i.e. all individuals related to Bob via
the hasChild role) are professors.

In addition to this description formalism, DLs are usually equipped with
a terminological and an assertional formalism. In its simplest form, termino-
logical axioms can be used to introduce names (abbreviations) for complex
descriptions. For example, we could introduce the abbreviation HappyMan
for the concept description from above. More expressive terminological for-
malisms allow the statement of constraints such as

∃hasChild.Human � Human,

which says that only humans can have human children. A set of terminological
axioms is called a TBox. The assertional formalism can be used to state
properties of individuals. For example, the assertions

HappyMan(BOB), hasChild(BOB,MARY)

state that Bob belongs to the concept HappyMan and that Mary is one of his
children. A set of such assertions is called an ABox, and the named individuals
that occur in ABox assertions are called ABox individuals.
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Description logic systems provide their users with various inference ca-
pabilities that deduce implicit knowledge from the explicitly represented
knowledge. The subsumption algorithm determines subconcept–superconcept
relationships: C is subsumed by D iff all instances of C are necessarily in-
stances of D, i.e. the first description is always interpreted as a subset of the
second description. For example, given the definition of HappyMan from above,
HappyMan is subsumed by ∃hasChild.Professor – since instances of HappyMan
have at least five children, all of whom are professors, they also have a child
that is a professor. The instance algorithm determines instance relationships:
the individual i is an instance of the concept description C iff i is always
interpreted as an element of C. For example, given the assertions from above
and the definition of HappyMan, MARY is an instance of Professor. The con-
sistency algorithm determines whether a knowledge base (consisting of a set
of assertions and a set of terminological axioms) is non-contradictory. For ex-
ample, if we add ¬Professor(MARY) to the two assertions from above, then
the knowledge base containing these assertions together with the definition of
HappyMan from above is inconsistent.

In order to ensure reasonable and predictable behavior of a DL system,
these inference problems should at least be decidable for the DL employed
by the system, and preferably of low complexity. Consequently, the expressive
power of the DL in question must be restricted in an appropriate way. If the
imposed restrictions are too severe, however, then the important notions of
the application domain can no longer be expressed. Investigating this trade-
off between the expressivity of DLs and the complexity of their inference
problems has been one of the most important issues in DL research. Roughly,
the research related to this issue can be classified into the following four
phases.

Phase 1 (1980–1990) was mainly concerned with implementation of systems,
such as Klone, K-Rep, Back, and Loom [24, 70, 71, 80]. These systems
employed so-called structural subsumption algorithms, which first normalize
the concept descriptions, and then recursively compare the syntactic structure
of the normalized descriptions [73]. These algorithms are usually relatively
efficient (polynomial), but they have the disadvantage that they are complete
only for very inexpressive DLs, i.e. for more expressive DLs they cannot detect
all the existing subsumption/instance relationships. At the end of this phase,
early formal investigations into the complexity of reasoning in DLs showed
that most DLs do not have polynomial-time inference problems [23,74]. As a
reaction, the implementors of the Classic system (the first industrial-strength
DL system) carefully restricted the expressive power of their DL [22,79].

Phase 2 (1990–1995) started with the introduction of a new algorithmic
paradigm into DLs, so-called tableau-based algorithms [40, 54, 88]. They work
on propositionally closed DLs (i.e. DLs with full Boolean operators) and are
complete also for expressive DLs. To decide the consistency of a knowledge
base, a tableau-based algorithm tries to construct a model of it by breaking
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down the concepts in the knowledge base, thus inferring new constraints on
the elements of this model. The algorithm either stops because all attempts
to build a model failed with obvious contradictions, or it stops with a “canon-
ical” model. Since in propositionally closed DLs, subsumption and satisfiabil-
ity can be reduced to consistency, a consistency algorithm can solve all the
inference problems mentioned above. The first systems employing such algo-
rithms (Kris and Crack) demonstrated that optimized implementations of
these algorithm lead to an acceptable behavior of the system, even though the
worst-case complexity of the corresponding reasoning problems is no longer in
polynomial time [9, 27]. This phase also saw a thorough analysis of the com-
plexity of reasoning in various DLs [39–41]. Another important observation
was that DLs are very closely related to modal logics [85].

Phase 3 (1995–2000) is characterized by the development of inference proce-
dures for very expressive DLs, either based on the tableau-approach [58,60] or
on a translation into modal logics [35–38]. Highly optimized systems (FaCT,
Race, and Dlp [50, 55, 78]) showed that tableau-based algorithms for ex-
pressive DLs lead to a good practical behavior of the system even on (some)
large knowledge bases. In this phase, the relationship to modal logics [36, 86]
and to decidable fragments of first-order logic was also studied in more detail
[19, 45–47, 76], and applications in databases (like schema reasoning, query
optimization, and integration of databases) were investigated [28,29,31].

We are now at the beginning of Phase 4, where industrial strength DL systems
employing very expressive DLs and tableau-based algorithms are being devel-
oped, with applications like the Semantic Web or knowledge representation
and integration in bio-informatics in mind.

1.3 Description Logics as Ontology Languages

As already mentioned above, high quality ontologies are crucial for many ap-
plications, and their construction, integration, and evolution greatly depends
on the availability of a well-defined semantics and powerful reasoning tools.
Since DLs provide for both, they should be ideal candidates for ontology lan-
guages. That much was already clear ten years ago, but at that time there
was a fundamental mismatch between the expressive power and the efficiency
of reasoning that DL systems provided, and the expressivity and the large
knowledge bases that ontologists needed [42]. Through the basic research in
DLs of the last 10–15 years that we have summarized above, this gap between
the needs of ontologist and the systems that DL researchers provide has finally
become narrow enough to build stable bridges.

The suitability of DLs as ontology languages has been highlighted by their
role as the foundation for several web ontology languages, including OWL, an
ontology language standard developed by the W3C Web-Ontology Working
Group2 (see chapter “Web Ontology Language: OWL”). OWL has a syntax
2 http://www.w3.org/2001/sw/WebOnt/
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based on RDF Schema, but the basis for its design is the expressive DL SHIQ
[60],3 and the developers have tried to find a good compromise between ex-
pressiveness and the complexity of reasoning. Although reasoning in SHIQ
is decidable, it has a rather high worst-case complexity (ExpTime). Never-
theless, highly optimized SHIQ reasoners such as FaCT++ [95], Racer [52]
and Pellet [91] behave quite well in practice.

Let us point out some of the features of SHIQ that make this DL ex-
pressive enough to be used as an ontology language. Firstly, SHIQ provides
number restrictions that are more expressive than the ones introduced above
(and employed by earlier DL systems). With the qualified number restrictions
available in SHIQ, as well as being able to say that a person has at most two
children (without mentioning the properties of these children):

(≤ 2 hasChild),

one can also specify that there is at most one son and at most one daughter:

(≤ 1 hasChild.¬Female) 
 (≤ 1 hasChild.Female).

Secondly, SHIQ allows the formulation of complex terminological axioms like
“humans have human parents”:

Human � ∃hasParent.Human.

Thirdly, SHIQ also allows for inverse roles, transitive roles, and subroles. For
example, in addition to hasChild one can also use its inverse hasParent, one
can specify that hasAncestor is transitive, and that hasParent is a subrole of
hasAncestor.

It has been argued in the DL and the ontology community that these
features play a central role when describing properties of aggregated objects
and when building ontologies [43, 83, 93]. The actual use of a DL providing
these features as the underlying logical formalism of the web ontology language
OWL [57] substantiates this claim [93].4

Finally, we would like to briefly mention three extensions to SHIQ that
are often used in ontology languages (we will discuss them in more detail in
Sect. 4).

Complex roles are often required in ontologies. For example, when describ-
ing complex physically composed structures it may be desirable to express the
fact that damage to a part of the structure implies damage to the structure
as a whole. This feature is particularly important in medical ontologies: it is
supported in the Grail DL [81], which was specifically designed for use with
medical terminology, and in another medical terminology application using

3 To be exact, it is based on SHOIN .
4 The more expressive qualified number restrictions are not supported by OWL,

but are featured in the proposed OWL 2 extension (see Sect. 4).
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the comparatively inexpressive DL ALC, a rather complex “work around” is
performed in order to capture this kind of information [89].5

It is quite straightforward to extend SHIQ so that this kind of propagation
can be expressed: simply allow for the use of complex roles in role inclusion
axioms. E.g. hasLocation ◦ partOf � hasLocation expresses the fact that things
located in part of something are also located in the thing as a whole. Although
this leads to undecidability in general, syntactic restrictions can be devised
that lead to a decidable logic [59].

Concrete domains [7,69] integrate DLs with concrete sets such as the real
numbers, integers, or strings, and built-in predicates such as comparisons ≤,
comparisons with constants ≤ 17, or isPrefixOf. This supports the modelling of
concrete properties of abstract objects such as the age, the weight, or the name
of a person, and the comparison of these concrete properties. Unfortunately,
in their unrestricted form, concrete domains can have dramatic effects on the
decidability and computational complexity of the underlying DL [69].

Nominals are special concept names that are to be interpreted as singleton
sets. Using a nominal Turing, we can describe all those computer scientists that
have met Turing by CSientist 
 ∃hasMet.Turing. Again, nominals can have
dramatic effects on the complexity of a logic [94]. The extension of SHIQ
with nominals is usually called SHOIQ.

2 The Expressive Description Logic SHIQ

In this section, we present syntax and semantics of the expressive DL SHIQ
[60] (although, as can be seen in chapter “Web Ontology Language: OWL”,
the DL underlying OWL is, in some respects, slightly more expressive).

In contrast to most of the DLs considered in the literature, which con-
centrate on constructors for defining concepts, the DL SHIQ also allows for
rather expressive roles. Of course, these roles can then be used in the definition
of concepts.

Definition 1 (Syntax and semantics of SHIQ-roles and concepts). Let
R be a set of role names, which is partitioned into a set R+ of transitive roles
and a set RP of normal roles. The set of all SHIQ-roles is R∪{r− | r ∈ R},
where r− is called the inverse of the role r.

Let C be a set of concept names. The set of SHIQ-concepts is the smallest
set such that

1. every concept name A ∈ C is a SHIQ-concept,
2. if C and D are SHIQ-concepts and r is a SHIQ-role, then C
D, C�D,
¬C, ∀r.C, and ∃r.C are SHIQ-concepts,

5 In this approach, so-called SEP-triplets are used both to compensate for the
absence of transitive roles in ALC, and to express the propagation of properties
across a distinguished “part-of” role.



28 F. Baader et al.

3. if C is a SHIQ-concept, r is a simple6 SHIQ-role, and n ∈ N, then
(� n r.C) and (� n r.C) are SHIQ-concepts.

An interpretation I = (ΔI , ·I) consists of a set ΔI , called the domain of
I, and a function ·I that maps every role to a subset of ΔI ×ΔI such that,
for all p ∈ R and r ∈ R+,

〈x, y〉 ∈ pI iff 〈y, x〉 ∈ (p−)I ,

if 〈x, y〉 ∈ rI and 〈y, z〉 ∈ rI then 〈x, z〉 ∈ rI .

The interpretation function ·I of an interpretation I = (ΔI , ·I) maps,
additionally, every concept to a subset of ΔI such that

(C 
D)I = CI ∩DI , (C �D)I = CI ∪DI , ¬CI = ΔI \ CI ,

(∃r.C)I = {x ∈ ΔI | There is some y ∈ ΔI with 〈x, y〉 ∈ rI and y ∈ CI},
(∀r.C)I = {x ∈ ΔI | For all y ∈ ΔI , if 〈x, y〉 ∈ rI , then y ∈ CI},

(� n r.C)I = {x ∈ ΔI | �rI(x,C) � n},
(� n r.C)I = {x ∈ ΔI | �rI(x,C) � n},

where �M denotes the cardinality of the set M , and rI(x,C) := {y | 〈x, y〉 ∈
rI and y ∈ CI}. If x ∈ CI , then we say that x is an instance of C in I, and
if 〈x, y〉 ∈ rI , then y is called an r-successor of x in I.

So far, we have fixed the syntax and semantics of concepts and roles. Next,
we define how they can be used in a SHIQ TBox. Please note that authors
sometimes distinguish between a role hierarchy or RBox and a TBox – we do
not make this distinction here.

Definition 2 (TBox). A role inclusion axiom is of the form r � s, where r, s
are SHIQ-roles. A general concept inclusion (GCI) is of the form C � D,
where C,D are SHIQ-concepts.

A finite set of role inclusion axioms and GCIs is called a TBox.
An interpretation I is a model of a TBox T if it satisfies all axioms in

T , i.e. CI ⊆ DI holds for each C � D ∈ T and rI ⊆ sI holds for each
r � s ∈ T .

A concept definition is of the form A ≡ C, where A is a concept name; it
can be seen as an abbreviation for the two GCIs A � C and C � A.

In addition to describing the relevant notions of an application domain,
a DL knowledge base may also contain knowledge about the properties of
specific individuals (or objects) existing in this domain. This done in the
assertional part of the knowledge base (ABox).
6 We refer the interested reader to [60] for a definition of simple roles: roughly

speaking, a role is simple if it is neither transitive nor has a transitive sub-role.
Only simple roles are allowed in number restrictions to ensure decidability [60].
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Definition 3. Let I be a set of individual names disjoint from R and C.
For a, b ∈ I individual names, C a possibly complex SHIQ concept, and r a
SHIQ role, an expression of the form

• C(a) is called a concept assertion, and
• r(a, b) is called a role assertion.

A finite set of concept and role assertions is called an ABox.
An interpretation function ·I , additionally, is required to map every indi-

vidual name a ∈ I to an element aI ∈ ΔI . An interpretation I satisfies

• a concept assertion C(a) if aI ∈ CI , and
• a role assertion r(a, b) if 〈aI , bI〉 ∈ rI .

An interpretation that satisfies each concept assertion and each role assertion
in an ABox A is called a model of A.

Inference problems for concepts are defined w.r.t. a TBox. Inference prob-
lems for individuals additionally involve an ABox.

Definition 4. The concept C is called satisfiable with respect to the TBox
T iff there is a model I of T with CI �= ∅. Such an interpretation is called a
model of C w.r.t. T . The concept D subsumes the concept C w.r.t. T (written
C �T D) if CI ⊆ DI holds for all models I of T . Two concepts C,D are
equivalent w.r.t. T (written C ≡T D) if they subsume each other.

The ABox A is called consistent with respect to the TBox T iff there exists
a model of T and A. The individual a is called an instance of the concept C
with respect to the TBox T and the ABox A iff aI ∈ CI holds for all models
of I of T and A.

By definition, equivalence can be reduced to subsumption. In addition, sub-
sumption can be reduced to satisfiability since C �T D iff C 
 ¬D is un-
satisfiable w.r.t. T . Satisfiability and the instance problem can be reduced to
the consistency problem since C is satisfiable w.r.t. T if the ABox {C(a)} is
consistent w.r.t. T , and a is an instance of C w.r.t. T and A if the ABox
A ∪ {¬C(a)} is inconsistent w.r.t. T .

As mentioned above, most DLs are (decidable) fragments of (first-order)
predicate logic [5,19]. Viewing role names as binary relations, concept names
as unary relations, and individual names as constants, for example, the role
inclusion axiom r � s− translates into ∀x∀y.r(x, y) ⇒ s(y, x), the concept
assertion (A 
 B)(a) translates into A(a) ∧ B(a), and the GCI A 
 ∃r.C �
D � ∀s−.E translates into

∀x.(A(x) ∧ ∃y.r(x, y) ∧ C(y)) ⇒ (D(x) ∨ ∀y.s(y, x) ⇒ E(y)).

This translation preserves the semantics: we can easily view DL interpretations
as predicate logic interpretations, and then prove, e.g. that each model of a
concept C w.r.t. a TBox T is a model of the translation of C conjoined with
the (universally quantified) translations of T .
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The reasoning services that can decide the inference problems intro-
duced above can be implemented using various algorithmic techniques,
including tableaux-based techniques (see chapter “Tableau-Based Reason-
ing”) and resolution-based techniques (see “Resolution-Based Reasoning for
Ontologies”).

3 Describing Ontologies in SHIQ

In general, an ontology can be formalised in a DL knowledge base as follows.
Firstly, we restrict the possible worlds by introducing restrictions on the al-
lowed interpretations. For example, to express that, in our world, we want to
consider humans, which are either muggles or sorcerers, we can use the GCIs

Human � Muggle � Sorcerer and Muggle � ¬Sorcerer.

Next, to express that humans have exactly two parents and that all parents
and children of humans are human, we can use the following GCI:

Human � ∀hasParent.Human 
 (� 2 hasParent.�) 
 (� 2 hasParent.�) 

∀hasParent−.Human,

where � is an abbreviation for the top concept A � ¬A.7

In addition, we consider the transitive role hasAncestor, and the role
inclusion

hasParent � hasAncestor.

The next GCI expresses that humans having an ancestor that is a sorcerer
are themselves sorcerers:

Human 
 ∃hasAncestor.Sorcerer � Sorcerer.

Secondly, we can define the relevant notions of our application domain
using concept definitions. Recall that the concept definition A ≡ C stands for
the two GCIs A � C and C � A. A concept name is called defined if it occurs
on the left-hand side of a definition, and primitive otherwise.

We want our concept definitions to have definitional impact, i.e. the inter-
pretation of the primitive concept and role names should uniquely determine
the interpretation of the defined concept names. For this, the set of concept
definitions together with the additional GCIs must satisfy three conditions:

1. There are no multiple definitions, i.e. each defined concept name must
occur at most once as the left-hand side of a concept definition.

7 When the qualifying concept is �, this is equivalent to an unqualified restriction,
and it will often be written as such, e.g. (� 2 hasParent).
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2. There are no cyclic definitions, i.e. no cyclic dependencies between the
defined names in the set of concept definitions.8

3. The defined names do not occur in any of the additional GCIs.

In contrast to concept definitions, the GCIs in SHIQ may well have cyclic
dependencies between concept names. An example are the above GCIs de-
scribing humans.

As a simple example of a set of concept definitions satisfying the restric-
tions from above, we define the concepts grandparent and parent9:

Parent ≡ Human 
 ∃hasParent−.�,

Grandparent ≡ ∃hasParent−.Parent.

The TBox consisting of the above concept definitions and GCIs, together
with the fact that hasAncestor is a transitive superrole of hasParent, implies
the following subsumption relationship:

Grandparent 
 Sorcerer � ∃hasParent−.∃hasParent−.Sorcerer,

i.e. grandparents who are sorcerers have a grandchild who is a sorcerer.
Though this conclusion may sound reasonable given the assumptions, it re-
quires quite some reasoning to obtain it. In particular, one must use the fact
that hasAncestor (and thus also hasAncestor−) is transitive, that hasParent−

is the inverse of hasParent, and that we have a GCI that says that children of
humans are again humans.

To sum up, a SHIQ-TBox can, on the one hand, axiomatize the basic no-
tions of an application domain (the primitive concepts) by GCIs, transitivity
statements, and role inclusions, in the sense that these statements restrict the
possible interpretations of the basic notions. On the other hand, more com-
plex notions (the defined concepts) can be introduced by concept definitions.
Given an interpretation of the basic notions, the concept definitions uniquely
determine the interpretation of the defined notions.

The taxonomy of such a TBox is then given by the subsumption hierarchy
of the defined concepts. It can be computed using a subsumption algorithm
for SHIQ (see chapters “Tableau-Based Reasoning” and “Resolution-Based
Reasoning for Ontologies”). The knowledge engineer can test whether the
TBox captures her intuition by checking the satisfiability of the defined con-
cepts (since it does not make sense to give a complex definition for the empty
concept), and by checking whether their place in the taxonomy corresponds to
their intuitive place. The taxonomy of our example TBox would contain, for
example, the fact that Grandparent is subsumed by Parent which is, in turn,
subsumed by Human – if this is not intended, then the knowledge engineer
8 In order to give cyclic definitions definitional impact, one would need to use

fixpoint semantics for them [1,75].
9 In addition to the role hasParent, which relates children to their parents, we use

the concept Parent, which describes all humans having children.
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would need to go back and modify the TBox. The expressive power of SHIQ
together with the fact that one can “verify” the TBox in the sense mentioned
above is the main reason for SHIQ being well-suited as an ontology language
[43,83,93].

In case we have, in addition to our TBox T , also an ABox A, we can first
ask a DL reasoner to check whether A is consistent w.r.t. T to make sure
that our assertions in A conform with the axioms expressed in T . Consider
the following ABox:

A = {Human(Harry), Sorcerer(Bob)
hasParent(Harry,Bob)},

and let T consist of all axioms in this section. We can first use a DL reasoner
to prove that A is consistent w.r.t. T . Next, we can query A through T . For
example, we can ask a DL reasoner to retrieve all instances of Human w.r.t. T
and A. This would result in Harry and Bob being returned: for the former, this
information is explicit in A, for the latter, this is implied by the GCI which
states that parents of humans are humans. Similarly, both Harry and Bob are
instances of Sorcerer w.r.t. T and A: for Harry, this is a consequence of the
GCI which states that offsprings of sorcerers are sorcerers. As a final example,
let us point out that our ABox contains no instance of ∀hasParent.Sorcerer:
even though all explicitly known parents of Harry are sorcerers, Harry could
have other parents (and indeed must have another parent) who may or may
not be a sorcerer – this feature of DL semantics is known as the “open world
assumption” [5].

4 Extensions and Variants of SHIQ

The ontology language OWL extends SHIQ with nominals and concrete
datatypes; see chapter “Web Ontology Language: OWL.” In this section, we
discuss the consequences of these extensions on the reasoning problems in
SHIQ.

Concrete datatypes, as available in OWL, are a very restricted form of
concrete domains [7]. For example, using the concrete domain of all nonneg-
ative integers equipped with the < predicate, a (functional) role age relating
(abstract) individuals to their (concrete) age, and a (functional) subrole father
of hasParent, the following axiom states that children are younger than their
fathers:

Animal � (age < (father ◦ age)).

Extending expressive DLs with concrete domains may easily lead to undecid-
ability [8,68]. In OWL, however, no datatype predicates are supported – only
XML schema datatypes (such as integer and string) and enumerations (such
as {1, 2, 5, 7}) can be used in descriptions. These restrictions are enough to
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ensure that decidability is not compromised (in fact in [77], decidability of
SHIQ extended with a more general type of concrete domains is shown).

Concerning nominals, things become a bit more complicated: nominals
are individual names used as concepts, as in Catholic 
 ∃hasSeen.{Pope} and
thus allow the use of individuals not only in ABoxes, but also in concept
expressions and TBoxes. Firstly, we can use the same (relativised axiomatiza-
tion) technique as used for SHIQ in [94] to translate SHIQ extended with
nominals into a fragment of C2, the two-variable fragment of first order logic
with counting quantifiers [48, 76]. Since this translation is polynomial, satis-
fiability and subsumption are decidable in NExpTime. This is optimal since
the problem is also NExpTime-hard [94]. Roughly speaking, the combination
of GCIs (or transitive roles and role inclusions), inverse roles, and number
restrictions with nominals is responsible for this leap in complexity (from
ExpTime for SHIQ to NExpTime). Until recently, no “practical” decision
procedure for SHOIQ, i.e. the extension of SHIQ with nominals, had been
described, where by “practical” we mean a decision procedure that works in
some “goal-directed” way, in contrast to “blindly” guessing a model I of at
most exponential size and then checking whether I is indeed a model of the
input. An extension of the tableaux algorithm for SHIQ has, however, now
been developed [59], has been successfully implemented in the FaCT++ and
Pellet systems, and seems to work well on realistic ontologies [90].

Finally, as mentioned above, it is quite straightforward to extend SHIQ, or
even SHOIQ, with complex role inclusion axioms. The resulting DL, SROIQ
[56], is the basis for a recent proposal to extend the OWL language, the ex-
tended language being called OWL 2.10 In addition to complex role inclusion
axioms, OWL 2 also supports qualified number restrictions, and more expres-
sive datatypes than OWL.

5 Reasoning Beyond the Standard Inference Problems

As argued in the introduction, standard reasoning services for concepts (such
as satisfiability and subsumption algorithms) can be used in different phases of
the ontology life cycle. In the design phase, they can test whether concepts are
non-contradictory and can derive implied relations between concepts. How-
ever, for these services to be applied, one already needs a sufficiently developed
TBox. The result of reasoning can then be used to develop the TBox further.
Until recently, however, DL systems provided no reasoning support for writ-
ing this initial TBox. The development of so-called non-standard inferences in
DLs (like computing least common subsumers [13,32,65,67], most specific con-
cepts [10, 66], rewriting [14], approximation [26], and matching [3, 11, 12, 20])
tries to overcome this deficit. These kinds of inferences are sketched in the
first subsection.

10 http://www.w3.org/TR/2008/WD-owl2-syntax-20081202/
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In the presence of ABoxes, one often wants to ask queries that are more
complex than simple instance queries involving only one individual and one
concept. So-called conjunctive queries, which are treated in the second sub-
section, overcome this deficit.

5.1 Non-standard Inferences

In this subsection, we will sketch how non-standard inferences can support
building a DL knowledge base.

Assume that the knowledge engineer wants to introduce the definition of
a new concept into the TBox. In many cases, she will not develop this new
definition from scratch, but rather try to re-use things that are already present
in some knowledge base (either the one she is currently building or a previous
one). In a chemical process engineering application [72,82], we have observed
two ways in which this is realized in practice:

1. The knowledge engineer decides on the basic structure of the newly defined
concept, and then tries to find already defined concepts that have a similar
structure. These concepts can then be modified to obtain the new concept.

2. Instead of directly defining the new concept, the knowledge engineer first
gives examples of objects that belong to the concept to be defined, and
then tries to generalize these examples into a concept definition.

Both approaches can be supported by the non-standard inferences mentioned
above, though this kind of support is not yet provided by any of the existing
DL systems.

The first approach can be supported by matching concept patterns against
concept descriptions. A concept pattern is a concept description that may
contain variables that stand for descriptions. A matcher σ of a pattern D
onto the description C replaces the variables by concept descriptions such that
the resulting concept σ(D) is equivalent to C. For example, assume that the
knowledge engineer is looking for concepts concerned with individuals having
a son and a daughter sharing some characteristic. This can be expressed by
the pattern

∃hasChild.(Male 
X) 
 ∃hasChild.(Female 
X).

The substitution σ = {X �→ Tall} shows that this pattern matches the de-
scription ∃hasChild.(Male 
 Tall) 
 ∃hasChild.(Female 
 Tall). Note, however,
that in some cases the existence of a matcher is not so obvious.

The second approach can be supported by algorithms that compute most
specific concepts and least common subsumers. Assume that the examples
are given as ABox individuals i1, . . . , ik. In a first step, these individuals are
generalized into concepts by respectively computing the most specific (w.r.t.
subsumption) concepts C1, . . . , Ck in the available DL that have these indi-
viduals as instances. In a second step, these concepts are generalized into
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one concept by computing the least common subsumer of C1, . . . , Ck, i.e. the
least concept description (in the available DL) that subsumes C1, . . . , Ck. In
this context, rewriting of concepts comes into play since the concept descrip-
tions produced by the algorithms for computing least common subsumers
may be rather large (and thus not easy to comprehend and modify for the
knowledge engineer). Rewriting minimizes the size of these description with-
out changing their meaning by introducing names defined in the TBox.

Until now, the results on such non-standard inferences are restricted to DLs
that are considerably less expressive than SHIQ. For some of them, they only
make sense if used for inexpressive DLs. For example, in DLs that contain the
disjunction constructor, the least common subsumer of C1, . . . , Ck is simply
their disjunction, and computing this is of no help to the knowledge engineer.
What one would like to obtain as a result of the least common subsumer
computation are the structural similarities between the input concepts.

Thus, support by non-standard inferences can only be given if one uses
DLs of restricted expressive power. However, this also makes sense in the
context of ontology engineering. In fact, the users that will require the most
support are the naive ones, and it is reasonable to assume that they will not
use (or even be offered) the full expressive power of the underlying DL. This
two-level approach is already present in tools like Protégé [64], which offer a
frame-like user interface. Using this simple interface, one gets only a fragment
of the expressive power of OWL. To use the full expressive power, one must
type in DL expressions.

Another way to overcome the gap between DLs of different expressive
power is to use the approximation inference [26]. Here, one tries to approxi-
mate a given concept description C in an expressive DL L1 by a description D
in a less expressive DL L2. When approximating from above, D should be the
least description in L2 subsuming C, and when approximating from below, D
should be the greatest description L2 subsumed by C.

5.2 Queries

As we have seen in Sect. 3, given an ontology consisting of an ABox and possi-
bly a TBox, we can retrieve instances of concepts from it, thereby explicating
knowledge about concept instances in the given ontology. In this sense, we
can use concepts as a query language. It has turned out, however, that this is
a rather weak query language which does not allow one to query, for example,
for humans whose parents are married. Continuing the example from Sect. 3,
could express this query as a conjunctive query :

q(x) :− Human(x), hasParent(x, y), hasParent(x, z),married(y, z)

Conjunctive queries are well-known in the database community and have been
suggested as an expressive query language for DLs [29]. Their answers can be
sets of individual names from the ABox as in the example query above or,
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more generally, sets of tuples (if we have more than one answer variable).
Roughly speaking, individual names from the ABox are in the answer set if,
for each model of the ontology, we can find a match from the variables into
the model’s domain such that all conjuncts in the query are satisfied. Hence,
as in instance retrieval, all axioms in the ontology are taken fully into account
when answering queries. However, in contrast to the standard reasoning prob-
lems, and especially instance retrieval, answering conjunctive queries cannot
be reduced to consistency. This problem is, however, decidable for a variety
of logics [29] and it turned out to remain decidable even if transitive roles are
used in the query [44].

6 Conclusion

The emphasis in DL research on a well-defined, logic-based semantics and
a thorough investigation of the basic reasoning problems, together with the
availability of highly optimized systems for very expressive DLs, makes this
family of knowledge representation formalisms an ideal starting point for defin-
ing ontology languages. The standard reasoning services such as consistency
checking, computation of the taxonomy, testing for unsatisfiable concepts, and
instance retrieval, are provided by highly optimised, state-of-the-art DL sys-
tems for very expressive DLs. Optimizations of these systems for large ABoxes
and the implementation of conjunctive query answering algorithms are active
research areas.

To be used in practice, the domain expert also needs tools that further
support knowledge acquisition (i.e. building ontologies), maintenance (i.e. evo-
lution of ontologies), and integration and inter-operation of ontologies. First
steps in this direction have already been taken. For example, Protégé [64] and
SWOOP [63] are tools that support the development of OWL ontologies. On
a more fundamental level, non-standard inferences that support building and
maintaining knowledge bases are now important topics of DL research. These
include the inference problems discussed in Sect. 5.1 but also others that we
have not discussed there due to space limitations: for example, tool support
has been developed to explain subsumption and unsatisfiability and to re-
pair unsatisfiable concepts (for example, see [62,87]) and to support modular
design and re-use of ontologies (for example, see [33]).

In this chapter we have concentrated on very expressive Description Log-
ics that are the formal basis for the web ontology language OWL. For the
sake of completeness, we mention here some recent results on inexpressive
DLs that are relevant in the context of ontology applications. Several bio-
medical ontologies, such as SNOMED [92] and the Gene Ontology [34], are
based on rather inexpressive DLs, whose main distinguishing feature is that
they disallow value restrictions (∀r.C), but provide for existential restrictions
(∃r.C). Recently, it has turned out that such inexpressive DLs with exis-
tential restrictions behave much better w.r.t. computational complexity than
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the corresponding DLs with value restrictions. For example, the subsump-
tion problem in EL, which allows for conjunction, existential restrictions, and
the top concept, stays polynomial in the presence of (cyclic or acyclic) con-
cept definitions [2] and even arbitrary GCIs [25]. In [4] it is shown that these
polynomiality results also hold for extensions of EL by constructors that are
of interest for ontology applications, such as the bottom concept (which al-
lows disjointness statements to be formulated), nominals, a restricted form of
concrete domains, and a restricted form of so-called role-value maps. A first
implementation of the polynomial-time subsumption algorithm for such an
extension of EL behaves well on very large bio-medical ontologies [15].
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Summary. Frame Logic (F-logic) combines the advantages of conceptual model-
ing that come from object-oriented frame-based languages with the declarative style,
compact and simple syntax, and the well defined semantics of logic-based languages.
F-logic supports typing, meta-reasoning, complex objects, methods, classes, inheri-
tance, rules, queries, modularization, and scoped inference. In this paper we describe
the capabilities of knowledge representation systems based on F-logic and illustrate
the use of this logic for ontology specification. We give an overview of the syntax
and semantics of the language and discuss the main ideas behind the various imple-
mentations. Finally, we present a concrete application deployed in the automotive
industry.

1 Introduction

A conceptual model (or an ontology) is an abstract, declarative description of
the information for an application domain. It includes the relevant vocabu-
lary, constraints on the valid states of the information, and the ways to draw
inferences from that information.

Conceptual modeling has a long history in the area of database systems.
It began with the seminal work on the Entity-Relationship (ER) model [8],
which divided the world into entity types and relationship types. An entity
type is a homogeneous set of entities specified via their attributes and ranges.
An entity represents a concrete object that belongs to one or more entity types
and whose structure conforms to the types it belong to. A relationship type is
a homogeneous set of relationships. It is specified by the entity types that are
involved in the relationship and the roles these types play in that relationship.
The ER model is thus a rudimentary language for specifying ontologies for the
kinds of information that is natural to store in relational databases. ER was
later extended to extended entity relationship (EER) model [20,29] by adding
specialization, generalization, grouping, and other features. Subsequent mod-
eling languages, like UML, were greatly influenced by ER and EER.
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Declarative query languages, like SQL, were central to relational database
systems from their inception. The most attractive aspect of database query
languages is the fact that their queries say which things to find rather than
how to find them. Clearly, such languages are much harder to implement than
the traditional imperative languages, like C. In the early days, database query
languages had to be severely restricted in order to enable reasonably efficient
implementations. However, as applications grew in sophistication, computing
power increased, and our knowledge of algorithms for query processing ex-
panded, the use of rule-based languages for processing information became
more and more attractive. Further push came from the Semantic Web, which
increased the awareness of the need for logic-based languages for processing
ontologies and other distributed knowledge on the Web. This awareness led
W3C to create a working group that was chartered with creation of a rule
interchange format (RIF) – a family of standardized languages intended to
facilitate the exchange of rule-based applications over the Web.1

Datalog [2] is the basis of all database rule languages. It has a model-
theoretic semantics, can be efficiently implemented, and is reasonably expres-
sive. However, it does not support function symbols, which are important
for representing objects, and it is a poor choice as a modeling language. To
improve the modeling power of logic-based languages, a number of exten-
sions were proposed. These include more powerful kinds of negation, function
symbols, high-level modeling constructs, and frame-based syntax. F-logic (or
Frame Logic) [23] has emerged as a popular extension that provides all these
features. As conceptual modeling goes, it faces little competition among rule-
based logic languages. It accounts in a clean and declarative manner for most
of the structural aspects of frame-based and object-oriented languages and, at
the same time, is as powerful as any rule-based language for knowledge repre-
sentation. An overview of logic-based languages can be found in [24]. Related,
but limited languages have also been proposed for semi-structured and XML
databases (e.g., [17, 26]).

There are several major implementations of F-logic, including FLORID
[25], OntoBrokerTM [12], and FLORA-2 [36]. Each implementation introduces
a number of extensions to F-logic as well as restrictions to make their par-
ticular implementation methods more effective. FLORID and FLORA-2 were
developed in the academia. Their main goal is to provide free platforms for
experimenting with innovative features in the design of an F-logic based rule
language. OntoBrokerTM is a commercial system. Its main emphasis is on
efficiency and integration with external tools and systems.

This paper takes a view of F-logic as an ontology modeling language as
well as a language for building applications that use these ontologies. The
ability to span both sides of the engineering process, ontologies and appli-
cations, is a particularly strong aspect of F-logic. This should be contrasted
with the current state of semantic Web applications, which specify ontologies

1 http://www.w3.org/2005/rules/wg.html
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declaratively, using the OWL language [28], but then work with these ontolo-
gies using imperative languages, like Java, and in this mismatch loose many
of the advantages of OWL’s logic-based modeling.

In the following sections we give an overview of the syntax and the seman-
tics of F-logic by illustrating the main features through a number of simple
examples. Then we describe the ways in which F-logic can be implemented.
Towards the end we present a real-life ontology-based application of F-logic
in the automotive industry.

2 F-Logic by Example

In this paper we use the new syntax for F-logic – a simplified and extended
version of the original syntax introduced in [23]. It was developed by the
F-logic Forum group2 and incorporates experience gained in the course of
a decade of using F-logic in real life applications. The main points of the
new syntax are summarized in [13]. All major F-logic based systems are in
the process of migrating to the new syntax and some (e.g., FLORA-2) have
already done so.

2.1 A Simple Ontology-Based Application

F-logic is an object-oriented language and ontologies are modeled in this lan-
guage in an object-oriented style. One starts with class hierarchies, proceeds
with type specification, defines the relationships among classes and objects
using rules, and finally populates the classes with concrete objects.

The first part of the example presented in Fig. 1 is a small ontology. It
states that every woman and man is a person. Objects have attributes. In the
example, person-objects have the attributes father, mother, daughter, son,
and these attributes have ranges. For example, the range of the attribute son

is man and of mother is woman. The statements that specify the types of the
attributes (which use the ∗=> sign) are called signatures. We will explain the
significance of the symbol “∗” in ∗=> in due time.

Then follows a set of rules, which say what else can be derived from the
ontology. The first rule says that if ?X is the father of ?Y and ?Y is a man,
then ?Y is a son of ?X. A similar relationship holds for sons and mothers,
and for daughters, fathers, and mothers. All variables in a rule are implicitly
quantified outside of the rule (and for that reason the quantifiers are dropped).
For instance, from the logical point of view the first rule in Fig. 1 is just an
abbreviation for

∀?X ∀?Y (?X[son -> ?Y] ← ?Y:man[father -> ?X])

2 http://projects.semwebcentral.org/projects/forum/
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/∗ ontology consisting of a class hierarchy and signatures ∗/
woman::person.

man::person.

person[father{0:1} ∗=> man].
person[mother{0:1} ∗=> woman].
person[daughter ∗=> woman].
person[son ∗=> man].
/∗ rules consisting of a rule head and a rule body ∗/
?X[son -> ?Y] :- ?Y:man[father -> ?X].

?X[son -> ?Y] :- ?Y:man[mother -> ?X].

?X[daughter -> ?Y] :- ?Y:woman[father -> ?X].

?X[daughter -> ?Y] :- ?Y:woman[mother -> ?X].

/∗ facts ∗/
Abraham:man.

Sarah:woman.

Isaac:man[father -> Abraham, mother -> Sarah].

Ishmael:man[father -> Abraham, mother -> Hagar:woman].

Jacob:man[father -> Isaac, mother -> Rebekah:woman].

Esau:man[father -> Isaac, mother -> Rebekah].

/∗ query ∗/
?- X:woman[son -> ?Y[father -> Abraham]].

Fig. 1. A simple ontology-based application

Once the ontology is ready, we populate it with facts, some of which are
specified at the end of the example. These facts tell us that Abraham is a
man and Sarah is a woman. We also learn that Isaac is a man and his parents
are Abraham and Sarah. Similar information is supplied on a number of other
well-known individuals. These facts are part of the object base in our example.
Other facts can be derived via deductive rules or other inference rules, such as
inheritance. For instance, we can derive that Isaac is a son of Abraham even
though this is not stated explicitly.

The last statement in Fig. 1 is a query to the object base. It asks to find
all the women who have sons by Abraham. The answers are ?X = Sarah,

?Y = Isaac and ?X = Hagar, ?Y = Ishmael. The query illustrates how object
descriptions can be nested within other object descriptions and yield concise
and natural specification. Nesting is mostly a syntactic sugar, however. The
same query can be written as a conjunction of non-nested expressions:

?- ?X:woman and ?X[son -> ?Y] and ?Y[father -> Abraham].

Note that all methods and attributes are multi-valued. For instance, from the
rules we can derive Abraham[son -> {Isaac,Ishmael}] or

Abraham[son -> Isaac].

Abraham[son -> Ishmael].
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Sometimes the nature of the application domain calls suggests cardinality
constraints on some attributes in an ontology. In our example, the father

and the mother attributes should have the cardinality constraint {0:1}, since
there can be no more than one mother or father. Our ontology allows for the
possibility that there can be no mother or father because the parents’ identity
may not be known or because there are none (notably, Adam and Eve).

The original F-logic explicitly distinguished between functional methods
(whose cardinality constraint is {0:1}) and set-valued methods (whose cardi-
nality is {0:∗}). It did not use the cardinality constraints syntax, but used
instead => to denote functional methods in the schema and =>> for set-valued
methods. To specify facts, the symbols -> and ->> were used, respectively.
However, experience has shown that this notation is too error prone (it is
easy to forget the extra “>”) and not sufficiently flexible. For instance, it was
hard to specify that some attribute is mandatory, i.e., must always have at
least one value. Using the new syntax this is easy enough. For example, the
following states that the name of a person must always be known:

person[name{1:∗} ∗=> string].

Here string is a new built-in data type for strings – see Sect. 2.4.

2.2 Objects and Their Properties

Figure 1 shows the main components of an F-logic knowledge base: class
hierarchies, signatures, rules, and objects. In this section we will take a closer
look at each of these components in turn.

Object Names and Variable Names

Object names and variable names, also called id-terms, are the basic syntactic
elements of F-logic. To distinguish object names from variable names, the
later are prefixed with the ?-sign. Examples of object names are Abraham, man,
daughter, and of variable names are ?X, or ?method. Object names can take
several different forms:

• Symbol. A symbol is a sequence of characters enclosed in quotation marks
(e.g., "ab*-@c"). Alphanumeric strings do not require quotes (e.g., abc123,
parent).

• A primitive data type. An object that belongs to a primitive data type
has the form "..."^^typename (e.g., "12:22:33"^^ time, "123"^^ integer).
Primitive data types are discussed in Sect. 2.4.

• A numeric shorthand. Integers, decimals, and floating point numbers have
shorthand notation. For instance, "123"^^ integer can be written simply as
123, "123.45"^^ decimal as 123.45, and "123.45E-1"^^ float as 123.45E-1.

Complex id-terms are created from function symbols and other id-terms as
usual in predicate logic: couple(Abraham, Sarah), f(?X). An id-term that con-
tains no variable is called a ground id-term.
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Methods

Application of a method to an object is specified using data-F-atoms. A re-
markable feature of F-logic is that methods are also represented as objects and
can be handled like regular objects without any special language support. For
instance, in Fig. 1 the method names father and son are also object names
just like Isaac and Abraham. Variables may appear anywhere, which enables
queries about method names like

?- Abraham[?X -> ?].

?X = son

This query returns only one answer because only one attribute has values for
the object Abraham. However, if we ask a query about the attributes defined
in the schema of the object Abraham then more answers are returned:

?- Abraham[?X => ?].

?X = son, daughter, father, mother
(1)

This is because Abraham is a man, who is a person, and the class person

has four attributes in its signature (the first group of statements in Fig. 1).
We will explain later why we use => in (1), while Fig. 1 uses ∗=> in the
signatures for the class person. Note that both of the above queries use a
special variable ?, the don’t-care variable. Each occurrence of this variable
is treated as a completely new variable and answer substitutions are never
returned for that variable.

Sometimes a method may take arguments. For example, Jacob’s sons are
born by different women. To express this, we introduce a version of the method
son, which takes a parameter that denotes the mother. Parameters are also
objects and are represented by id-terms.

Jacob[son(Leah) -> {Reuben, Simeon, Levi, Judah, Issachar, Zebulun},
son(Rachel) -> {Joseph, Benjamin},
son(Zilpah) -> {Gad, Asher},
son(Bilhah) -> {Dan, Naphtali}].

(2)

We could add one more parameter to indicate the order in which the sons
were born:

Jacob[son(Leah,1) -> Reuben, son(Leah,2) -> Simeon,

son(Leah,3) -> Levi, son(Leah,4) -> Judah,

son(Bilhah,5) -> Dan, son(Bilhah,6) -> Naphtali,

son(Zilpah,7) -> Gad, son(Zilpah,8) -> Asher,

son(Leah,9) -> Issachar, son(Leah,10) -> Zebulun,

son(Rachel,11) -> Joseph, son(Rachel,12) -> Benjamin].

(3)

Note that in (1), (2), and (3) above, the same method son is used with different
numbers of parameters. This is one of the forms of overloading supported by
F-logic. Given the object base described in Fig. 1, the query
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?- Jacob[son -> ?X].

yields all twelve sons of Jacob. In contrast, the query

?- Jacob[son(Rachel) -> ?X].

returns only ?X = Joseph and ?X = Benjamin. Note that variables in a query
can be bound only to individual objects and never to sets of objects. Thus,
the above query does not return one answer, the set ?X = {Joseph, Benjamin},
but two answers. In each of these answers ?X is bound to exactly one element.
However, all of the following queries return the answer true:

?-Jacob[son -> {Joseph, Benjamin}].
?-Jacob[son -> Joseph].

?-Jacob[son -> Benjamin].

If we wanted to know whether {Joseph, Benjamin} is precisely the set of all
Jacob’s sons by Rachel then negation must be used (see [23], Sect. 12.4.1.2).

F-logic also supports Boolean methods. These return no values, but only
state whether a property is true or not. For instance, Jacob[married].

Class Hierarchies

Class hierarchies are defined with the help of isa-F-atoms and subclass-
F-atoms. An isa-F-atom of the form o:c states that an object o is a member of
class c. The members of a class typically are called the instances of the class.
A subclass-F-atom of the form sc::cl says that the class sc is a subclass of the
class cl. In the following example the first three isa-F-atoms say that Abraham

and Isaac are instances of the class man, whereas Sarah is an instance of the
class woman. The next two subclass-F-atoms state that both man and woman are
subclasses of the class person:

Abraham:man.

Isaac:man.

Sarah:woman.

woman::person.

man::person.

In F-logic, classes are also objects and thus are represented as id-terms. Hence,
classes can have methods defined on them, and they can be instances of other
classes. As mentioned earlier, methods are also objects and, as such, can be-
long to classes (or can themselves serve as classes). This can be helpful when
one needs to attach meta-information to ontology elements – for example, to
annotate them with provenance information:

son:Relation[authoredby -> Hans].

Furthermore, variables are permitted at all positions in isa- and subclass-
F-atoms, so objects, methods, and classes are represented and queried
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uniformly using the same language facilities. In this way, F-logic naturally
supports the meta-information facility. In contrast to other object-oriented
languages where an object can be an instance of exactly one most specific
class (e.g., ROL [24]), F-logic permits to be an instance in several, possibly
incomparable, most specific classes. Likewise, a class can have several in-
comparable most specific superclasses. Thus, the class hierarchy is a directed
acyclic graph.

Expressing Information About an Object: F-Molecules

F-molecules are used to make several different assertions about the same ob-
ject in a compact way. For example, the following F-molecule says that Isaac
is a man, his father is Abraham, and Jacob and Esau are amongst his sons.

Isaac:man[father -> Abraham, son -> {Jacob,Esau}]. (4)

This F-molecule is equivalent to a conjunction of the following statements:

Isaac:man.

Isaac[father -> Abraham].

Isaac[son -> Jacob].

Isaac[son -> Esau].

Note that sets can equivalently be split into subsets. Thus, for Isaac’s sons in
(4) we have an equivalent representation:

Isaac[son -> {Jacob}].
Isaac[son -> {Esau}].

For singleton sets, the braces around set elements can be omitted:

Isaac[son -> Jacob].

Isaac[son -> Esau].

An important feature of F-molecules is that they can be nested. The following
molecules are examples of nesting of data-F-atoms and isa-F-atoms.

Isaac[father -> Abraham:man[son(Hagar:woman) -> Ishmael],

mother -> Sarah:woman].

Jacob:(man::person).

Jacob[(father:method) -> Isaac].

(5)

Nesting allows one to specify the properties of an object locally without the
need to split a complex statement into verbose conjunctions where the dif-
ferent assertions may appear far apart. However, nesting is just a syntactic
sugar, which does not increase the expressive power. The statements in (5)
can be “unnested” and represented as the following set of facts:
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Isaac[father -> Abraham].

Abraham:man.

Abraham[son(Hagar) -> Ishmael].

Hagar:woman.

Isaac[mother -> Sarah].

Sarah:woman.

man::person.

Jacob:man.

Jacob[father -> Isaac].

father:method.

Formally speaking, a nested molecule is equivalent to a conjunction of its
atomic components.

As usual with nesting of expressions, there are precedence rules. In F-logic,
molecules are processed left-to-right, and if this is not what one expects then
parentheses must be used. For instance, the first clause below says that Isaac
is a man and he believes in God, whereas the second clause says that Isaac is
a man and that the class man, when treated as an object, believes in God.

Isaac:man[believesin -> God].

Isaac:(man[believesin -> God]).

Signatures

Signature-F-atoms specify the schema of a class; they declare the methods
that apply to the various classes, the types of the arguments used by those
methods, and the methods’ ranges. In addition, cardinality constraints can
be specified, as we saw previously. Syntactically, signature atoms are similar
to data-F-atoms, but the arrow ∗=> is used instead of -> . Here are some
examples of signatures:

person[father{0:1} ∗=> man].
person[daughter ∗=> woman].
man[son(woman) ∗=> man].

The first states that the single-valued method father is defined for instances
of the class person and the range of that method is the class man. We know
that this is a single-valued method because of the cardinality constraint that
says that a person can have at most one father. The second signature defines
the multi-valued method daughter for the class person. It says that the ob-
jects returned by this method belong to the class woman. How do we know
that daughter is a multi-valued method? By its cardinality constraint (more
precisely, the lack of it). Unless stated otherwise, a method is multi-valued
and its default cardinality constraint is {0:∗}, which does not really constrain
anything. The third signature-F-atom declares the multi-valued method son,
which applies to objects of the class man. The method takes arguments of
type woman. The result of the method must be an object of class man. Boolean
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combinations of ranges can also be used. For instance (momentarily changing
the theme of our example), we could define teaching assistants to be both
students and employees:

course[teachingAssistant ∗=> (student and employee)]. (6)

Intersection of ranges can actually be specified without the and-operator:

course[teachingAssistant ∗=> student].
course[teachingAssistant ∗=> employee]. (7)

Union of ranges is harder to specify without an operator that works on classes,
but the or-operator saves the day:

course[instructor ∗=> (professor or lecturer)].

F-logic supports method overloading. This means that methods denoted by
the same object name may be declared for different classes. Methods may also
be overloaded and used with different numbers of parameters, as we saw in
examples (2) and (3), which use the method son of class man with both one
and two parameters. The corresponding signature-F-atoms look like this:

man[son(woman) ∗=> man].
man[son(woman,integer) ∗=> man].

As with data-F-atoms, signatures can be combined and nested. For example:

person[father{0:1} ∗=> man[son(woman) ∗=> man, son(woman,integer) ∗=> man]].

Inheritable and Non-inheritable Methods

Now we are ready to explain the difference between the symbols => and ∗=> in
signatures. F-logic distinguishes between inheritable and non-inheritable
methods. Inheritable methods are roughly like instance methods in Java. One
defines them for a class, they are inherited by subclasses and instances, and
they are invoked by applying them to instances of a class. Non-inheritable
methods are like static methods in Java. They are defined for classes and
make sense only when applied to classes.3

In F-logic, to declare a signature of an inheritable method, use ∗=> . When
a method is non-inheritable, use => . Inheritable methods are inherited to
subclasses also as inheritable methods. For instance, in Fig. 1, we declared
several signatures for the class person. Since man is a subclass of person, the

3 Java permits application of static methods to instances of the classes for which
those methods are defined. However, this is a (perhaps unfortunate) syntactic
sugar. The result of such an application is the same as applying the static method
to the corresponding class.
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same signatures are inherited by that class, so the following is implied by the
semantics of F-logic:

man[father{0:1}∗=>man, mother{0:1}∗=>woman, daughter ∗=> woman, son ∗=> man].

However, when inheritable methods are inherited to the instances of the
classes, they become non-inheritable. For instance, Isaac is an instance of
the class man. When the methods father, mother, etc., are inherited by Isaac

from man, these methods become non-inheritable, so the following is implied
by the semantics of F-logic:

Isaac[father{0:1}=>man, mother{0:1} => woman, daughter => woman, son => man].

The stars are gone and => is used instead of ∗=> . This is why the query in
Fig. 1 uses => instead of ∗=> . Note that even if the object Isaac were also
treated as a class, e.g., the class of Isaac’s camels, it would not necessarily make
sense to further inherit the methods father, mother, etc., down to the instances
of that class. This is why inheritable methods loose their inheritability when
they are inherited by class instances.

F-Molecules Without Properties

If we want to represent an object without giving any properties, we have to
attach an empty method-specification list to the object name:

Thing[].

This statement asserts that the object Thing exists, but does not state any
properties. The query that asks about existence of this object

?- Thing[].

will return true, but

?- Thing[foo -> ?].

will return false, if the property foo had not been defined. The fact Thing[ ]

is different from the fact Thing. This latter says that Thing is a proposition,
which implies that the query

?- Thing.

(which is different from the query ?- Thing[ ]) would succeed.

Predicate Symbols

Experience shows that it is convenient to be able to use predicates alongside
objects. In F-logic, predicate symbols are used in the same way as in other de-
ductive languages, such as Datalog. A predicate formula is constructed out of a
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predicate symbol followed by one or more arguments included in parentheses.
Such a formula is called a P-atom. The following are examples of P-atoms.

married(Isaac,Rebekah).

male(Jacob).

sonof(Isaac,Rebekah,Jacob).

Thing.

The last P-atom above is a 0-ary predicate symbol, a proposition. Information
expressed by P-atoms can usually be represented by F-atoms, as shown below:

Isaac[marriedto -> Rebekah].

Jacob:man.

Isaac[son(Rebekah) -> Jacob].

Nesting of F-molecules inside P-molecules is permitted and handled similarly
to nesting F-molecules. For instance, the P-molecule

married(Isaac[father -> Abraham], Rebekah:woman).

is equivalent to the following set of P- and F-atoms:

married(Isaac,Rebekah).

Isaac[father -> Abraham].

Rebekah:woman.

F-logic also supports predicate signatures, but we do not discuss this here.4

2.3 Path Expressions

Path expressions are a standard fixture in most object-oriented languages.
In F-logic, a path expression of the form obj.expr denotes the set of objects
{a1,a2,...}, such that obj[expr -> {a1,a2,...}] is true. The expression in the
path expression can be a simple attribute or a method application. Method
expressions can be further applied to the results of path expressions, and in
this way longer path expressions can be constructed: obj.expr1.expr2.expr3.
Here are some path expressions and the sets of objects they refer to in the
example of Fig. 1.

Isaac.son {Jacob, Esau}
Jacob.son(Rachel,11) {Joseph}
Esau.father.father.son {Isaac, Ishmael}

(8)

The second line illustrates an application of a method in a path expression,
and the third line shows a path expression where expressions are applied

4 Details can be found at http://projects.semwebcentral.org/projects/forum/
forum-syntax.html.
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repeatedly. Since a method can yield a set of results, one might wonder about
the meaning of an expression such as this:

Abraham.son.son

Since Abraham.son is a set, what does the second attribute, son, apply to? In
F-logic, the answer is that it applies to every object denoted by Abraham.son,
and the results of all such applications are unioned. Thus, this path expression
denotes the set of all Abraham’s grandchildren.

Path expressions in F-logic were first introduced [23] and subsequently
refined and extended in [14]. As a result of this enhancement, path expressions
can appear anywhere an object can.

In imperative object-oriented languages, path expressions provide the only
way to navigate object relationships. In F-logic, most general way to navigate
through objects is to use F-molecules and combine them with logical connec-
tives and and or. However, the use of path expressions can simplify formulas in
many cases. Since a path expression, such as obj.expr, denotes all the objects
that can bind to the variable ?X in obj[expr -> ?X], path expressions can help
eliminate variables. For instance, Abraham’s grandsons can be represented in
either of the following ways:

?- Abraham.son.son=?X .

?- Abraham.son[son -> ?X].

?- Abraham[son -> ?Y] and ?Y[son -> ?X].

These queries have two answers, one per each of Abraham’s grandsons. The
first query is most concise. The second query combines path expression no-
tation with frame-based notation. It is slightly longer, but both queries use
just one variable. The third query does not use path expressions; it is bulkier
than the first two, and requires two variables instead of one. It should be
clear that by stacking more method applications in one path expression one
can eliminate many variables and thus simplify some queries and rules.

2.4 Built-in Data Types and Methods

The new syntax for F-logic supports a large number of XML Schema data
types and the corresponding built-ins. The built-ins are largely the same as
in XQuery, but F-logic follows more elegant, object-based conventions.

The most important data types are string, integer, decimal, iri,

time, dateTime, and duration. By convention, the built-in types and meth-
ods start with an underscore. The constants that belong to these types are
denoted as "..."^^ type. The first three of the built-in types above are
self-explanatory. The type iri is for representing International Resource
Identifiers (e.g., "http://foo.bar.com/a/b/c#fgh?id=7"^^ iri), which gener-
alize URLs and are used to denote objects on the Web. This type pro-
vides methods such as schema (http in our case), host (foo.bar.com), path
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(/a/b/c), and more. The type time represents a time point within one day
(for instance, "12:33:56"^^ time), and dateTime is a type of arbitrary time
points (for instance "2007-06-22T10:23:55+03:00"^^ dateTime represents the
time point of 10:23:55 on June 22, 2007 with time zone three hours ahead of
Greenwich). The type duration represents temporal durations (for instance,
"P2Y3DT1H3.4S"^^ duration represents the duration of two years, three days,
one hour, and 3.4 seconds). The duration-objects can be added to or sub-
tracted from the time and dateTime objects. The following examples illustrate
these types and their corresponding built-ins.

?- "file:///abc/cde/efg"^^ iri[ scheme -> ?P]. // ?P = file

?- "mailto:me@foo.com"^^ iri[ user -> ?U, host -> ?H].

/ / ?U = me, ?H = foo.com

?- "2007-11-22T23:33:55.234"^^ dateTime[ hour -> ?Hr]. // ?Hr = 23

?- "P21Y11M12DT11M55S"^^ duration[ year -> ?Yr1]. // ?Yr = 21

?- "21:22:55"^^ time[ add("PT2H1M1S"^^ duration) -> ?X].
/ / ?X = "23:23:56"^^ time

Along with the primitive data types come variables that are restricted to that
data type only. For instance, ?L^^ iri can unify only with the objects of the
primitive data type iri, which is described above. Thus, if we had

Obj[location -> "file:///abc/cde/efg"^^ iri].
Obj[location -> NewYork].

?- Obj[location -> ?L^^ iri].

then the only answer will be ?L = "file:///abc/cde/efg"^^ iri. The object
NewYork will not be returned because it is not an IRI.

2.5 Rules

Rules are perhaps the best candidates for building applications around on-
tologies. We have already seen examples of rules in Fig. 1. In general, a rule
is an expression of the form head :- body, where the head of the rule is an
F-molecule and the body is a Boolean combination of F-molecules or negated
F-molecules. Conjunctions are represented using the and keyword and dis-
junctions using or. Commas can also be used in place of and, and the semi-
colon is a shorthand for or. Molecules may contain variables, and all variables
are implicitly ∀-quantified outside of the rule. Rules in F-logic have a logi-
cal semantics as developed in the fields of logic programming and deductive
databases. Consider the following rule from Fig. 1:

?X[son -> ?Y] :- ?Y:man[father -> ?X].

Its semantics can be informally explained as follows. Whenever we can find
id-terms for the variables ?X and ?Y so that all molecules in the body
become either existing or derived facts, then the head of the rule is de-
rived after applying the same substitutions to ?X and ?Y in the head. In
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case of our rule above, its body is true for ?X=Abraham and ?Y=Isaac or
?Y=Ismael; or for ?X=Isaac and either ?Y=Jacob or ?Y=Esau. This is due to
the facts that Isaac:man[father -> Abraham], Ishmael:man[father -> Abraham],
Jacob: man[father -> Isaac], Esau:man[father -> Isaac] are explicitly given in
Fig. 1. From these facts and the above rule we can derive

Abraham[son -> Isaac], Abraham[son -> Ishmael]
Isaac[son -> Jacob], Isaac[son -> Esau].

We can write these facts in a more concise way as Abraham[son -> {Isaac,
Ishmael}] and Isaac[son -> {Jacob,Esau}]. Similarly, with the rule

?X[grandson -> ?Y] :- ?Y:man[father -> ?Z], ?Z:man[father -> ?X]].

we can derive Abraham[grandson -> {Jacob, Esau}]. When molecules in a rule
body are negated, a form of the well-founded semantics is typically used in
F-logic systems [18,35]. Note that, since F-logic allows variables over method
and class names, formulas like ?X:?Y[?X -> ?Y] are legal and might, in fact,
match some facts in a particular ontology. For instance, if both abc:cde and
abc[abc -> cde] are true). There are many interesting applications for F-logic’s
meta-information capabilities. For instance, one can write rules for checking
type correctness:

?O[typeError -> ?M] :- ?O[?M => ?T], ?O[?M -> ?V], not ?V:?T.

This rule says that a type error exists if there is a data molecule ?O[?M -> ?V]

that does not conform to the signature ?O[?M => ?T] for the method ?M. If a
type error is found, ?O is bound to the object where the type error exists, and
?M to the offending method.

Note that here both the signature and the data molecule can be derived
rather than explicitly given. Also, due to signature inheritance, it is enough to
use ?O[?M => ?T] instead of ?C[?M ∗=> ?T], for some superclass ?C of ?O. This
is because if c[m ∗=> t] and o:c are true for some o, c, m, t, then o[m => t] is
derived by inheritance.

Rules can be recursive. For example, given a genealogy (a parenthood
relationship), we may want to specify ancestry information as follows:

?X[ancestor -> ?Y] :- ?X[parent -> ?Y].

?X[ancestor -> ?Y] :- ?X[ancestor -> ?Z], ?Z[parent -> ?Y].

A more complex case is when we want to combine ancestry information with
the information about the number of generations by which an ancestor is
removed from the subject person.

?X[generation(?Y) -> 1] :- ?X[parent -> ?Y].

?X[generation(?Y) -> ?N] :-

?X[generation(?Z) -> ?N1], ?Z[parent -> ?Y], ?N is ?N1+1.



60 J. Angele et al.

Note that the generation method is, in general, multi-valued, since there can
be multiple genealogical lines connecting a pair of individuals.

The genealogy example gives us an opportunity to illustrate the powerful
facility of aggregate functions supported by most F-logic based systems:

?X[shortestAncestryLine(?Y) -> ?N] :- ?N = min{?L|?X[generation(?Y) -> ?L]}.

This rule says that the length of the shortest ancestry line between any pair
of individuals, ?X and ?Y, is some number ?N that is computed as the smallest
?L such that ?X[generation(?Y) -> ?L] is true.

2.6 Scoped Inference: Modularization and Integration

The concept of scoped inference [19, 21] is central to modularization and in-
tegration of knowledge. It was first proposed in TRIPLE [30] and FLORA-2
[36], and the F-logic Forum group has adopted this concept as the main vehicle
for modularization of F-logic ontologies.5

The concept of a module is well known in software engineering, and it
is equally important in knowledge engineering. It is especially important for
representing distributed knowledge, such as ontologies scattered over the Web,
since rules and concepts that belong to different ontologies may interact in
subtle and unintended ways.

The basic idea is that a knowledge base is a collection of scopes of infer-
ence or modules. Each module is a collection of rules and facts. The notion
of a rule is extended as follows. As before, it is a statement of the form Head

:- Body. The head literal is a predicate or an F-molecule – still no change
here. The notion of a body of a rule is also unchanged – a Boolean com-
bination of predicates and F-molecules. However, now these predicates and
molecules can optionally be labeled with module references like this: pred-or-
molecule@module-name. Note that only the formulas that occur in a rule body
can have references to modules. The formulas in the head cannot.

A rule of the form Head :- Body that belongs in a particular module, M,
defines Head for that module. A subformula of the form L@N inside Body is
a query to module N, asking whether L is implied by the knowledge base that
resides in module N. For instance, some data source, gendata, may provide
information about parents of various individuals. One may not be able to (or
may not want to) insert new rules into that data source in order to preserve
the integrity of the data. However, it is possible to create a different module,
say mygenealogy, put rules there, and reference the information in the data
source gendata:

?X[ancestor -> ?Y] :- ?X[parent -> ?Y]@gendata.

?X[ancestor -> ?Y] :- ?X[parent -> ?Z]@gendata, ?Z[ancestor -> ?Y].

5 http://projects.semwebcentral.org/projects/forum/forum-syntax.html
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Here, the molecules of the form ...[ancestor -> ...] are defined in the same
module where our two rules belong, i.e., mygenealogy. The literals of the form
...[parent -> ...]@gendata are queries to the module gendata where the par-
enthood information resides. Some other module might query both of these
modules, but the answers might be different. For instance, the queries

?- ?X[parent -> ?Y]@gendata.

?- ?X[parent -> ?Y]@mygenealogy.

will likely return different answers, since the parent attribute is not defined
in mygenealogy. Thus, the first query will return all it knows about the par-
enthood relationship among individuals, while the second query will return
nothing. Likewise,

?- ?X[ancestor -> ?Y]@gendata.

?- ?X[ancestor -> ?Y]@mygenealogy.

will return different answers: the ancestor attribute is not defined in module
gendata so the first query will return nothing, while the second will return the
transitive closure of the parent attribute (which mygenealogy imports from
gendata using the above rules).

Module names can be arbitrary strings. Some systems even allow module
names to be arbitrary terms. However, in case of public ontologies, module
names most often are URIs.

Modules can be created in different ways. First, a new module can be
created on-the-fly and rules can be added to it at run time. For instance, in
FLORA-2, the following query will create the module mygenealogy and drop
the above rules into it:

?-newmodule{mygenealogy},
insertrule{((?X[ancestor -> ?Y] :- ?X[parent -> ?Y]@gendata),

(?X[ancestor -> ?Y] :-

?X[parent -> ?Z]@gendata, ?Z[ancestor -> ?Y])

)@mygenealogy }.

Another method is to create a file containing rules and facts, and then load it
into a module. For example, in the FLORA-2 system this is done as follows:

?- load(myfile>>mygenealogy).

Finally, a file can be designated to specifically contain rules for a particular
module using the declaration of the form

:- module mygenealogy.

at the beginning of the file.
Besides modularization, the concept of a module is a potent vehicle for

integration of and reasoning about ontologies that reside at different sources.
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If one just unions the rules and the facts found at the sources of interest, as
implied by the import mechanism of the OWL language, the rules may con-
tradict each other or have subtle and unintended interactions. In contrast, if
different sources are treated as separate modules, one can differentiate among
the information residing at these sources and specify the appropriate inte-
gration rules. These rules may give preference to some sources, partially or
completely disregard information supplied by others, or clearly flag conflicting
information.

F-logic modules can be imported into other modules. This allows one to
construct ontologies in a hierarchical way. For instance, an upper level ontol-
ogy may be defined in one module and a domain-specific ontology, defined in
another module, might inherit concept definitions from the upper-level ontol-
ogy. This can be conveniently specified by the following statement included
at the top of the domain ontology:

:- importmodule myupperlevelontology.

The effect of this statement is that every concept and method defined in the
upper ontology can be used in the domain ontology without the need for the
@myupperlevelontology designator.

The reader is referred to [16] for further details on the powerful mechanism
of modules in F-logic.

2.7 Inheritance

In frame-based systems, inheritance comes in two forms: structural and behav-
ioral. Structural inheritance means that declarations of structure in a class are
also inherited by subclasses. Behavioral inheritance deals with default method
definitions. The F-logic Forum group has decided to include structural inher-
itance as a core feature, but made behavioral inheritance optional.

Structural inheritance is simpler, and we look at it first. Consider the
signature declarations such as

person[father{0:1} ∗=> man].
person[daughter ∗=> woman].

Since man::person holds, it should follow that a man’s father is also a man:

man[father{0:1} ∗=> man].
man[daughter ∗=> woman].

should logically follow from the above. Structural inheritance is monotonic in
the sense that types inherited from superclasses are never overwritten, but
are accumulated instead. In the following example, class workingStudent is
defined as subclass of the classes worker and student. A worker is paid by at
least one company and a student may be paid by research institutions.
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worker[paidBy{1:*} ∗=> company].
student[paidBy ∗=> researchInstitution].
workingStudent::worker.

workingStudent::student.

As structural inheritance is monotonic, it follows that whenever a working
student is paid, the money must come from an institution which is a company
and a research institution as well.

Behavioral inheritance is much more complex because it can be overwritten
by explicit or derived information specified for subclasses. For instance, most
humans have their heart on the left and so it is reasonable to specify this as a
default. In F-logic, defaults for classes are specified using the * -> arrow style:

person[heartPosition * -> left].

But dextrocardiacs have their hearts on the right, which is expressed as

dextrocardiac[heartPosition * -> right].

dextrocardiac :: person.

Suppose John Doe is a dextrocardiac: JohnDoe:dextrocardiac. He inherits
heartPosition * -> left from the class person and heartPosition* -> right

from the class dextrocardiac. Although this is a contradiction, the class
dextrocardiac is more specific to John Doe than the class person, so inheri-
tance from dextrocardiac overrides inheritance from person.

Unlike structural inheritance, behavioral inheritance is nonmonotonic.
This means that inferences that were made from a set of facts and rules,
S, may no longer hold from a bigger set S′ ⊇ S. To see this, let us return to
our biblical genealogy. We know Abraham:person, and there has been no indi-
cation that he was a dextrocardiac. According to the common understanding
of inference by inheritance, it should follow that

Abraham[heartPosition -> left].

It also follows that, for example, man[heartPosition* -> left]. (Properties are
inherited to individual class instances as non-inheritable methods and to sub-
classes as inheritable ones. This is why we use the -> style arrow for Abraham

and * -> for man.)
Suppose now that new information says that Abraham was a dextrocardiac.

The rules of inheritance then tell us that inheritance from dextrocardiac over-
rides inheritance from person so Abraham[heartPosition -> left] must become
false while Abraham[heartPosition -> right] must become true. In other words,
a larger set of premises no longer entails the old conclusion that Abraham’s
heart is on the left.

In F-logic, class hierarchies can be defined by rules, so it is not possible
to “eyeball” an ontology and tell which classes are subclasses of other classes
and which inheritance overrides what. This is further complicated by the fact
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that class hierarchies may depend on negative facts derived through default
negation. The complete treatment of the semantics for inheritance in F-logic
is beyond the scope of this paper. Several semantics have been proposed [3,
23,27,35], but the F-logic Forum group adopted the semantics defined in [35].

3 Implementations of F-Logic

Implementations of F-logic based systems can be roughly divided into two
categories: those that are based on native object-oriented deductive engines
and those that use relational deductive engines. The engines can be further
divided into bottom-up and top-down engines.

FLORID implements F-logic using a dedicated bottom-up deductive en-
gine, which handles objects directly through an object manager. In that
sense, it is similar to object-oriented databases. In contrast, FLORA-2 and
OntoBrokerTM use relational engines, which do not support objects directly.
Instead, both systems translate F-logic formulas into statements that use pred-
icates (relations) instead of F-logic molecules, and then execute them using
relational deductive engines. FLORA-2’s target engine is XSB – a Prolog-
like inference engine with numerous enhancements, which make XSB into a
more declarative and logically complete system than the usual Prolog im-
plementations. XSB’s inference mode is top-down with a number of bottom-
up-like extensions. OntoBrokerTM uses its own relational deductive engine.
Its main inference mode is bottom-up, but it includes several enhancements
inspired by top-down inference, such as dynamic filtering [22] and Magic
Sets [10].

The translation from F-logic into the relational syntax used by FLORA-2
and OntoBrokerTM was defined in [23]. The main ideas are as follows:

(1) First, molecular expressions are replaced by equivalent conjunctions of
atomic molecules. We illustrated this process in earlier sections.

(2) Next, these atomic expressions are represented by first-order predicates.
(3) The resulting set of rules is augmented with additional “closure rules” to

capture the specific semantics of F-logic. Some rules are needed to express
statements such as the transitivity of the subclass relationship; other rules
implement the semantics of inheritance and other features.

Table 1 shows the second stage in the translation process. Whenever an F-logic
specification is split into modules, the predicates type, sub, isa, etc., in the
table are disambiguated for different modules by either adding an additional
argument or by specializing predicate names for each module.

The following are examples of some of the closure rules added in stage (3)
of the translation process:

// closure rules for ?X :: ?Y

sub(?X, ?Z) :- sub(?X, ?Y) and sub(?Y, ?Z).
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F-atom Predicate

C[A(B1,...,Bn) => R] type(C,A(B1,...,Bn),R)

C[A(B1,...,Bn) ∗=> R] defaulttype(C,A(B1,...,Bn),R)

A::B sub(A,B)

o:C isa(o,C)

o[A -> b] data(o,A,b)

o[A* -> b] defaultdata(o,A,b)

p(b1,...,bn) p(b1,...,bn)

Table 1. Transformation of F-logic atoms into predicate notation.

// closure rules for ?X : ?C

isa(?O, ?C) :- sub(?C1, ?C) and isa(?O, ?C1).

// structural inheritance of signatures

defaulttype(?C1, ?A, ?T) :- sub(?C1, ?C2) and defaulttype(?C2, ?A, ?T).

type(?O, ?A, ?T) :- isa(?O, ?C) and defaulttype(?C, ?A, ?T).

In systems that support non-monotonic inheritance, additional rules are in-
cluded [35]. The resulting rule sets then processed using the well-founded
semantics for rule-based languages [18]. As an optimization, OntobrokerTM

recognizes special cases where a simpler, stratified semantics can be used,
while FLORID allows the user to explicitly define the stratification.

4 An Industrial Application: Configuration of Test Cars

We will now describe a project in the automotive industry where ontologies
have two main purposes: (1) representing and sharing knowledge to optimize
business processes for testing cars and (2) integration of live data into this
optimization process. A car manufacturer has a fleet of test cars. The cars
are frequently reconfigured and tested with the new configuration. Reconfig-
uration could mean changing the engine, the gear, the electric system, etc.
When parts are replaced, many of their interdependencies must be taken into
account. In many cases these dependencies are known only by certain human
experts and require significant amount of communication between different
departments in the manufacturer’s plant, between the manufacturer and sup-
pliers, and between different suppliers. Often test cars are misconfigured and
do not work. Thus, if dependencies can be checked by a computer without
building misconfigured cars, manufacturer’s costs can be significantly lowered.
The same advantage applies to the development of new cars, collaboration be-
tween the manufacturer and suppliers, and the built-to-order process.

Besides describing human knowledge about various domains, ontologies
serve as mediators between data sources [6]. This enables retrieving up-to-date
data about parts from the legacy systems of the manufacturers. This integra-
tion aspect is handled in more detail elsewhere [5].
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Fig. 2. Part of the automotive ontology

The ontology created in this project is used in two different ways. It is
integrated into a software assistant which helps the engineer in configuring
test cars. The engineer asks the assistant about a reconfigured system and the
system responds with dependencies that have to be taken into account and
also supplies the contact information for the relevant experts. In addition, the
assistant provides explanations to help the engineer understand and validate
the decisions made by the software assistant.

Creation of the ontology for the auto manufacturer is supported by
OntoBrokerTM and OntoStudioTM [1] (cf. Fig. 2). The former is the already
mentioned inference engine for F-logic and the latter is a complete graphical
environment for ontology and rule engineering. The basic part of the ontology
describes parts and the part-of hierarchy. Much of the ontology structure was
gleaned from legacy systems. Figure 4 shows an excerpt of that ontology. It
indicates that, for example, a gear is part of a car and switching lever is a part
of the gear. For motors, attributes like maximum power and type, are shown.

Without the rules, an ontology can describe only simple relationships be-
tween concepts, like a part being a component of another part, or being con-
nected to another part. More complex relationships require the use of rules
and constraints. The following are examples of such rules and constraints:

Rule 1 : If a part is assigned to a sub-system then sub-parts are also assigned
to the same sub-system.
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Rule 2 : The sub-part relation is transitive.
Rule 3 : If the fuel injector is damaged then the motor is damaged
Rule 4 : Cars that do not have a 12 cylinder motor, fulfill the DIN norm.
Constraint 1 : The maximum power of the motor must not exceed the maxi-

mum power of the brakes.
Constraint 2 : The filter in the catalyst must suit the motor fuel.

In F-logic, these rules are represented as follows:

Rule 1 :
?Z[sub system -> ?Y] :- ?X[has part -> ?Z, sub system -> ?Y].

Rule 2 :
?X[has part -> ?Z] :- ?X.has part.has part = ?Z.

Rule 3 :
?X[damaged] :- ?Y:fuel inj[damaged], ?X:motor, ?Y.part of = ?X.part of.

Rule 4 :
?X[fulfills -> DIN] :- ?X:Car[has part -> ?Y:motor], not ?Y[cyl -> 12].

Constraint 1 :
!- ?X:motor[max power -> ?Z1], (?Y:brake).max power =< abs(?Z3).

Constraint 2 :
!- ?X:motor[fuel type -> ?Z], ?Y:filter[fuel type -> ?Z].

Taken separately, each of the above rules or constraints is simple. However,
it is not the complexity of individual rules that determines the difficulty of
the problem, but the overwhelming amount of such rules and constraints. The
rules can interfere with each other and make the task of configuring a correct
test car complex and error prone. On the other hand the simplicity of the
individual rules indicates that such ontologies can be created and maintained
by domain experts, like mechanical engineers in our case.

5 F-Logic and the Semantic Web

F-logic has strong following in the Semantic Web area. Although it was not
chosen as a standard for ontology representation, the most frequent ontolog-
ical constructs map straightforwardly into F-logic. For example, Bruijn and
Heymans [7] show how to embed RDF(S) in F-logic. The advantages of F-
logic for building ontology-based applications were recognized early on in the
development of the Semantic Web. For instance, Decker et al. [11] and Staab
et al. [31] advocate F-logic as an inference service for RDF. Two W3C member
submissions, SWSL-Rules6 and WRL,7 are also based on F-logic.

6 http://www.w3.org/Submission/2005/SUBM-SWSF-SWSL-20050909/
7 http://www.w3.org/Submission/WRL/
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Now that the activities around adding rules to the semantic Web are in
full swing, the W3C’s RIF working group8 is adding F-logic style frames to
the core part of the RIF specification. Frames are also the main mechanism
for combining RDF data with RIF-compliant languages.

F-logic plays even more important role in the area of Semantic Web
Services, where the need to go beyond ontologies is most evident. It is one
of the core ideas underlying the Web Services Modeling Ontology (WSMO)9

and Semantic Web Services Framework (SWSF).10

6 Conclusions

The focus of this paper is the use of F-logic as a language for representing on-
tologies and building intelligent applications on top. F-logic is a frame-based
logic language, which supports object-oriented style of application develop-
ment. A remarkable feature of F-logic is the ability to reason about objects
and their schema naturally and without the need for special language features.

A number of implementations of F-logic exist – both commercial and open-
source academic systems (OntoBrokerTM, FLORID, FLORA-2). There is now
vast experience with using F-logic for building intelligent information systems
that rely on ontologies for extensibility and interoperability. Many practical
applications, such as [4,33], have shown that F-logic is not only an ideal tool
for declarative modeling of complex real-life application domains, but also
that the inference engines for F-logic have matured to the extent that enables
commercial use.
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Summary. This chapter introduces Resource Description Framework (RDF), the
W3C recommendation for semantic annotations in the Semantic Web. It will cover
the syntax and semantics of RDF, as well as its relation with the W3C OWL Web
Ontology Language. To address the mismatch between RDF and OWL-DL, the most
expressive decidable fragment of the OWL standard, we introduce a novel variant
of RDF(S), called RDFS-FA, which provides a solid semantic foundation for many
of the latest Description Logic-based SW ontology languages, such as OWL-DL and
OWL2-DL.

1 Introduction: Heading for the Semantic Web

In Realising the Full Potential of the Web [2], Tim Berners-Lee identifies two
major objectives that the Web should fulfil. The first goal is to enable people
to work together by allowing them to share knowledge. The second goal is to
incorporate tools that can help people analyse and manage the information
they share in a meaningful way. This vision has become known as the Semantic
Web (SW) [3].

The Web’s provision to allow people to write online content for other
people is an appeal that has changed the computer world. This same feature
that is responsible for fostering the first goal of the Semantic Web, however,
hinders the second objective. Much of the content on the existing Web, the so-
called syntactic Web, is human but not machine readable. Furthermore, there
is great variance in the quality, timeliness and relevance [2] of Web resources
(i.e. Web pages as well as a wide range of Web accessible data and services)
that makes it difficult for programs to evaluate the worth of a resource.

The vision of the Semantic Web is to augment the syntactic Web so that
resources are more easily interpreted by programs (or ‘intelligent agents’).
The enhancements will be achieved through the semantic markups which are
machine-understandable annotations associated with Web resources.

Encoding semantic markups will necessitate the Semantic Web adopting an
annotation language. To this end, the W3C (World Wide Web Consortium)
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Fig. 1. RDF annotations in a directed labeled graph

community has developed a recommendation called resource description
framework (RDF) [13]. The development of RDF is an attempt to support
effective creation, exchange and use of annotations on the Web.

Example 1. Annotating Web Resources in RDF
As shown in Fig. 1, we can associate an RDF annotation1 to http://

example.org/Ganesh.html and state that it is the homepage of the resource
Ganesh, which is an elephant and eats grasses.

We invite the reader to note that the above RDF annotations are different
from HTML [27] mark-ups in that they describe the contents of Web resources,
instead of the presentation of Web pages.

Annotations alone do not establish the semantics of what is being marked-
up. For example, the annotations presented in Fig. 1 do not explain what ele-
phants mean. The rest of the chapter is organised as follows. Section 2 presents
RDF and two ways of providing semantics to RDF annotations. Section 3
introduces RDF Schema (or RDFS for short) and its semantics. Section 4
explains the semantic mismatch between RDF(S) and OWL-DL, while Sect. 5
introduces a sub-language of RDF, called RDFS-FA, which on the one hand
has a semantics that is compatible with OWL-DL and on the other hand still
allows meta-classes and meta-properties. Section 6 concludes the chapter.

2 Annotation and Meaning

The vision of the Semantic Web is to make Web resources (not just HTML
pages, but a wide range of Web accessible data and services) more under-
standable to machines. Machine-understandable annotations are, therefore,
introduced to describe the content and functions of Web resources.

1 See Sect. 2 for precise definitions of RDF syntax.
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2.1 RDF

RDF [13] as a W3C recommendation provides a data model for annota-
tions in the Semantic Web. It is built upon earlier developments such as the
Dublin Core (see Sect. 2.2) and the platform for Internet content selectivity
(PICS) [26] content rating initiative.

An RDF statement (or RDF triple) is of the form:

subject property object. (1)

RDF annotates Web resources in terms of named properties. Values of named
properties (i.e. objects) can be URIrefs of Web resources or literals, viz. rep-
resentations of data values (such as integers and strings). A set of RDF state-
ments is call an RDF graph.

To represent RDF statements in a machine-processable way, RDF de-
fines a specific extensible markup language (XML) syntax, referred to as
RDF/XML [14]. RDF-annotated resources (i.e. subjects) are usually named
by Uniform Resource Identifier references. Uniform resource identifiers (URIs)
are strings that identify Web resources [7]. Uniform resource locators (URLs)
are a particular type of URIs, i.e. those have network locations. A URI
reference (or URIref) is a URI, together with an optional fragment identi-
fier at the end. For example, the URI reference http://www.example.org/
Elephant#Ganesh consists of the URI http://www.example.org/Elephant
and (separated by the # character) the fragment identifier Ganesh. As a con-
vention, name spaces, which are sources where multiple resources are from, are
(usually) URIs with the # character. For example, http://www.example.org/
Elephant# is a name space. Resources without URIrefs are called blank nodes;
a blank node indicates the existence of a resource, without explicitly men-
tioning the URIref of that resource. A blank node identifier, which is a local
identifier, can be used to allow several RDF statements to reference the same
blank node. As RDF/XML is verbose, in this chapter, we use the Notation 3
(or N3) syntax of RDF, where each RDF statement is of the form (1). Figure 2
shows an RDF graph in N3 syntax, where the ‘@prefix’ introduces short-
hand identifications (such as ‘ex:’) of XML namespaces and a semicolon ‘;’
introduces another property of the same subject. In these statements, the

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@prefix ex: <http://example.org/#>

@prefix elp: <http://example.org/Animal#>

elp:Ganesh ex:mytitle "A resource called Ganesh" ;

ex:mycreator "Pat Gregory" ;

ex:mypublisher : b1 .

: b1 elp:name "Elephant United" .

Fig. 2. RDF statements
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annotated resource is elp:Ganesh, which is annotated with three properties
ex:mytitle, ex:mycreator and ex:mypublisher. Note that : b1 is a blank node
identifier.

Given that RDF alone does not specify the intended meaning for Web
resources, how do we provide meaning to Web resources through annota-
tions? The meaning comes either from pre-agreed informal semantics, e.g.
from Dublin Core, or from ontologies.

2.2 Dublin Core

One way of giving meaning to annotations is to provide some pre-agreed in-
formal semantics for a set of information properties. For example, the Dublin
Core Metadata Element Set [5] provides 15 ‘core’ information properties,
such as ‘Title’, ‘Creator’, ‘Date’, with descriptive semantic definitions (in nat-
ural language). One can use these information properties in, e.g. RDF or
META tags of HTML.

If we replace the properties ex:mytitle, ex:mycreator and ex:mypublisher
used in Fig. 2 with dc:title, dc:creator and dc:publisher as shown in Fig. 3,
Dublin Core compatible intelligent agents can then understand that the title
of the Web resource is ‘A resource called Ganesh’, and the creator is Pat
Gregory. This is not possible for the RDF statements in Fig. 2 because, in
general, users may use arbitrary names for the title, creator and publisher
properties, etc.

The limitation of the ‘pre-agreed informal semantics’ approach is its in-
flexibility, i.e. only a limited range of pre-agreed information properties can
be expressed.

2.3 Ontology

An alternative approach is to use ontologies to specify the meaning of Web
resources. Ontology is a term borrowed from philosophy that refers to the
science of describing the kinds of entities in the world and how they are

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@prefix dc: <http://purl.org/dc/elements/1.1/>

@prefix elp: <http://example.org/Animal#>

elp:Ganesh dc:title "A resource called Ganesh" ;

dc:creator "Pat Gregory" ;

dc:publisher : b1 .

: b1 elp:name "Elephant United" .

Fig. 3. Dublin core properties in RDF statements
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related. In computer science, ontology is, in general, a ‘representation of a
shared conceptualisation’ of a specific domain [8, 30]. It provides a shared
and common vocabulary, including important concepts, properties and their
definitions, and constraints, sometimes referred to as background assumptions
regarding the intended meaning of the vocabulary, used in a domain that can
be communicated between people and heterogeneous, distributed application
systems.

The ontology approach is more flexible than the pre-agreed informal se-
mantics approach because users can customise vocabulary and constraints in
ontologies. For example, applications in different domains can use different
ontologies. Typically, ontologies can be used to specify the meaning of Web
resources (through annotations) by asserting resources as instances of some
important concepts and/or asserting resources relating to resources by some
important properties defined in ontologies.

Ontologies can be expressed in Description Logics. An ontology usually
corresponds to a TBox in Description Logics (see chapter “Description Log-
ics”). Vocabulary in an ontology can be expressed by named concepts and
roles, and concept definitions can be expressed by equivalence introductions.
Background assumptions can be represented by general concept and role ax-
ioms. Sometimes, an ontology corresponds to a DL knowledge base. For ex-
ample, in the OWL Web ontology language to be introduced in chapter “Web
Ontology Language: OWL,” an ontology also contains instances of important
concepts and relationships among these instances, which can be represented
by DL assertions. In the rest of the chapter, we will introduce RDF Schema
(RDFS), an ontological schema language, and a novel modification of RDF(S)
as a semantic foundation for many of the latest Description Logics-based SW
ontology languages, including OWL-DL and OWL 1.1.

3 RDFS: A Web Ontological Schema Language

Following W3C’s ‘one small step at a time’ strategy, RDFS can be seen as a
first try to support expressing simple ontologies with RDF syntax. In RDFS,
predefined Web resources rdfs:Class, rdfs:Resource and rdf:Property can be
used to define classes (concepts), resources and properties (roles), respectively.

Unlike Dublin Core, RDFS does not predefine information properties but a
set of meta-properties that can be used to represent background assumptions
in ontologies:

• rdf:type: the instance-of relationship
• rdfs:subClassOf: the property that models the subsumption hierarchy

between classes
• rdfs:subPropertyOf: the property that models the subsumption hierarchy

between properties
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@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

@prefix elp: <http://example.org/Animal#>

elp:Animal rdf:type rdfs:Class .

elp:Habitat rdf:type rdfs:Class .

elp:Elephant rdf:type rdfs:Class ; rdfs:subClassOf elp:Animal .

elp:liveIn rdf:type rdf:Property ;

rdfs:domain elp:Animal ; rdfs:range elp:Habitat .

elp:south-sahara rdf:type elp:Habitat .

elp:Ganesh rdf:type elp:Elephant ; elp:liveIn elp:south-sahara .

Fig. 4. An RDFS ontology

• rdfs:domain: the property that constrains all instances of a particular
property to describe instances of a particular class

• rdfs:range: the property that constrains all instances of a particular
property to have values that are instances of a particular class

RDFS statements are simply RDF triples; viz. RDFS provides no syntactic
restrictions on RDF triples. Figure 4 shows an animal ontology in RDFS;
it has three classes, i.e. elp:Animal, elp:Habitat and elp:Elephant (which is
rdfs:subClassOf elp:Animal), and a property elp:liveIn, the rdfs:domain and
rdfs:range of which are elp:Animal and elp:Habitat, respectively. In addition,
it states that the resource elp:Ganesh is an instance of elp:Elephant, and that
it elp:liveIns an elp:Habitat called elp:south-sahara.

At a glance, RDFS is a simple ontological schema langauge that supports
only class and property hierarchies, as well as domain and range constraints for
properties. According to the RDF Model Theory (RDF MT) to be explained
in Sect. 3.2, however, it is more complicated than that (see Proposition 1 on
page 79).

3.1 RDF(S) Datatyping

RDF(S) provides a specification of datatypes and data values; accordingly,
it allows the use of datatypes defined by any external type systems, e.g. the
XML Schema type system, which conform to this specification.

Definition 1. (Datatype) A datatype d is characterised by a lexical space,
L(d), which is a non-empty set of Unicode strings; a value space, V (d), which
is a non-empty set, and a total mapping L2V (d) from the lexical space to the
value space.

For example, boolean is a datatype with value space {true, false}, lexical
space {“T”, “F”,“1”,“0”} and lexical-to-value mapping {“T”�→ true, “F”�→
false, “1”�→ true, “0”�→ false}.
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Definition 2. (Typed and Plain Literals) Typed literals are of the form
“v”ˆˆu, where v is a Unicode string, called the lexical form of the typed literal,
and u is a URI reference of a datatype. Plain literals have a lexical form and
optionally a language tag as defined by [1], normalised to lowercase.

The denotation of a typed literal is the value mapped from its enclosed
Unicode string by the lexical-to-value mapping of the datatype associated with
its enclosed datatype URIref. For example, “1”ˆˆxsd:boolean is a typed literal
that represents the boolean value true, while “1”ˆˆxsd:integer represents the
integer 1. Plain literals, e.g. “1”, are considered to denote themselves [9].

The associations between datatype URI references (e.g. xsd:boolean) and
datatypes (e.g. boolean) can be provided by datatype maps defined as follows.

Definition 3. (Datatype Map) We consider a datatype map Md that is a
partial mapping from datatype URI references to datatypes.

Example 2. DatatypeMapMd1 = {〈xsd:string, string〉, 〈xsd:integer, integer〉}
is adatatypemap,wherexsd:string andxsd:integer aredatatypeURI references,
and string and integer are datatypes. ♦

A datatype map may include some built-in XML Schema datatypes (as
seen in Example 2), while other built-in XML Schema datatypes are prob-
lematic and thus unsuitable for various reasons. For example, xsd:ENTITIES
is a list-value datatype that does not fit the RDF datatype model.2 Please
note that derived XML Schema datatypes are not RDF(S) datatypes, because
there is no standard way to access a derived XML Schema datatype through
a URI reference. Therefore, there is no way to include a derived XML Schema
datatype in a datatype map.

3.2 RDF Model Theory

RDF MT provides semantics not only for RDFS ontologies, but also for RDF
triples. RDF MT is built on simple interpretations. To simplify presentations,
in this chapter we do not cover blank nodes, which are identified by local
identifiers instead of URIrefs.

Definition 4. (Simple Interpretation) Given a set of URI references V,
a simple interpretation I of V in the RDF model theory is defined by:

• A non-empty set IR of resources, called the domain (or universe) of I
• A set IP, called the set of properties in I
• A mapping IEXT , called the extension function, from IP to the powerset of

IR × IR

• A mapping IS from URIrefs in V to IR ∪ IP

2 See the RDF semantics document [9] for the complete list of RDF(S) built-in
datatypes.
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Fig. 5. A simple interpretation of V = {a,b,c} (from [9])

Given a triple [s p o .], I([s p o .]) = true if s,p,o ∈ V, IS(p) ∈ IP, and
〈IS(s), IS(o)〉 ∈ IEXT (IS(p)); otherwise, I([s p o .]) = false.

Given a set of triples S, I(S) = false if I([s p o .]) = false for some triple
[s p o .] in S, otherwise I(S) = true. I satisfies S, written as I |= S if I(S)
= true; in this case, we say I is a simple interpretation of S.

Note that Definition 4 does not specify the relationship between IP and
IR, i.e. IP may or may not be disjoint with IR. Figure 5 presents a simple
interpretation I of V = {a,b,c}, where the URIref b is simply interpreted as
a property because IS(b) = 1 ∈ IP, and IEXT (IS(b)), the extension of
IS(b), is a set of pairs of resources that are in IR, i.e. {〈1, 2〉,〈2, 1〉}. Since
〈IS(a), IS(c)〉 ∈ IEXT (IS(b)), I([a b c .]) = true; hence, we can conclude
that I satisfies [a b c .].

The semantics of RDF triples is given in terms of RDF-Interpretations.

Definition 5. (RDF-Interpretation) Given a set of URI references V and
the set rdfV, called the RDF vocabulary, of URI references in the rdf: names-
pace, an RDF-interpretation of V is a simple interpretation I of V ∪ rdfV
that satisfies:

1. For p ∈ V ∪ rdfV, IS(p) ∈ IP iff 〈IS(p), IS(rdf:Property)〉 ∈
IEXT (IS(rdf:type))

2. All the RDF axiomatic statements3

Condition 1 of Definition 5 implies that each member of IP is a resource
in IR, due to the definition of IEXT in Definition 4; in other words, RDF-
interpretations require IP to be a subset of IR. RDF axiomatic statements
3 Readers are referred to [9] for the list of the RDF axiomatic statements.
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mentioned in Condition 2 are RDF statements about RDF built-in vocab-
ularies in rdfV; e.g. [rdf:type rdf:type rdf:Property.] is an RDF axiomatic
statement. According to Definition 5, any RDF-interpretation I should satisfy
[rdf:type rdf:type rdf:Property.], viz. IS(rdf:type) should be in IP.

Finally, the semantics of RDFS statements written in RDF triples is given
in terms of RDFS-Interpretations.

Definition 6. (RDFS-Interpretation) Given rdfV, a set of URI refer-
ences V and the set rdfsV, called the RDFS vocabulary, of URI references in
the rdfs: namespace, an RDFS-interpretation I of V is an RDF-interpretation
of V ∪ rdfV ∪ rdfsV which introduces:

• A set IC, called the set of classes in I

• A mapping ICEXT (called the class extension function) from IC to the set of

subsets of IR

and satisfies the following conditions (let x,y,u,v be URIrefs in V ∪ rdfV ∪
rdfsV)4:

1. IS(x) ∈ ICEXT (IS(y)) iff 〈IS(x), IS(y)〉 ∈ IEXT (IS(rdf:type))
2. IC = ICEXT (IS(rdfs:Class)) and IR = ICEXT (IS(rdfs:Resource)),
3. If 〈IS(x), IS(y)〉∈ IEXT (IS(rdfs:domain)) and 〈IS(u), IS(v)〉∈ IEXT (IS(x)),

then IS(u) ∈ ICEXT (IS(y))
4. If 〈IS(x), IS(y)〉 ∈ IEXT (IS(rdfs:range)) and 〈IS(u), IS(v)〉 ∈ IEXT (IS(x)),

then IS(v) ∈ ICEXT (IS(y))
5. IEXT (IS(rdfs:subPropertyOf)) is transitive and reflexive on IP
6. If 〈IS(x), IS(y)〉 ∈ IEXT (IS(rdfs:subPropertyOf)), then IS(x),IS(y) ∈ IP and

IEXT (IS(x)) ⊆ IEXT (IS(y))
7. IEXT (IS(rdfs:subClassOf)) is transitive and reflexive on IC
8. If 〈IS(x), IS(y)〉 ∈ IEXT (IS(rdfs:subClassOf)), then IS(x),IS(y) ∈ IC and

ICEXT (IS(x)) ⊆ ICEXT (IS(y))

9. If IS(x) ∈ IC, then 〈IS(x), IS(rdfs:Resource)〉 ∈ IEXT (IS(rdfs:subClassOf))

and satisfies all the RDFS axiomatic statements.5

Condition 1 indicates that a ‘class’ is not a strictly necessary but conve-
nient semantic construct [9] because the class extension function ICEXT is
simply ‘syntactic sugar’ and is defined in terms of IEXT . Handling classes
in this way can be counter-intuitive (cf. Proposition 1). Condition 2 to 8
are about RDFS meta-properties rdfs:domain, rdfs:range, rdfs:subPropertyOf
and rdfs:subClassOf. Condition 9 ensures that all classes are sub-classes of
rdfs:Resource.

Proposition 1. The RDFS statements [rdfs:Resource rdf:type rdfs:Class .]
and [rdfs:Class rdfs:subClassOf rdfs:Resource.] are always true in all RDFS-
interpretations.
4 We only focus on the core RDFS primitives, i.e. the RDFS predefined meta-

properties introduced on page 75.
5 Again, readers are referred to [9] for a list of the RDFS axiomatic statements,

which includes, e.g. [rdf:type rdfs:range rdfs:Class.].
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Proof. For [rdfs:Resource rdf:type rdfs:Class.]:

1. According to the definition of IS and Definition 5, for any resource x, we
have IS(x) ∈ IR. Due to IR = ICEXT (IS(rdfs:Resource)) and Condi-
tion 1 in Definition 6, 〈IS(x), IS(rdfs:Resource)〉 ∈ IEXT (IS(rdf:type)).
Since rdf:Property is a built-in resource, we have 〈IS(rdf:Property),
IS(rdfs:Resource) 〉 ∈ IEXT (IS(rdf:type)).

2. Due to [rdf:type rdfs:range rdfs:Class.] (an RDFS axiomatic statement),
〈IS(rdf:Property), IS(rdfs:Resource)〉 ∈ IEXT (IS(rdf:type)) and Con-
dition 4 in Definition 6, we have IS(rdfs:Resource) ∈ICEXT (IS())
rdfs:Class. Therefore, for any RDFS-interpretation I, we have I |=
[rdfs:Resource rdf:type rdfs:Class.].

For [rdfs:Class rdfs:subClassOf rdfs:Resource .]: According to the defi-
nition of IC, every class is its member, including IS(rdfs:Class), viz.IS()
rdfs:Class ∈ IC. Due to Condition 9 of Definition 6, 〈IS(rdfs:Class),
IS(rdfs:Resource)〉 ∈ IEXT (IS(rdfs:subClassOf)); hence, for any RDFS-
interpretation I, we have I |= [rdfs:Class rdfs:subClassOf rdfs:Resource.]

�

The two RDFS statements in Proposition 1 suggest a strange situa-
tion for rdfs:Class and rdfs:Resource as discussed in [18]: On the one hand,
rdfs:Resource is an instance of rdfs:Class; on the other hand, rdfs:Class is a
sub-class of rdfs:Resource. Hence is rdfs:Resource an instance of its sub-class?
Users may find this counter-intuitive and thus hard to understand – this is
why we say that RDF(S) is more complicated than it appears. We will address
this issue in Sect. 5.

Now we define RDFS-interpretations w.r.t. a datatype map Md.

Definition 7. (RDFS Md-Interpretation) Given a datatype map Md, an
RDFS Md-interpretation I of a vocabulary V is any RDFS-interpretation of
V ∪ {u | ∃ d.〈u, d〉 ∈ Md} which introduces

• A distinguished subset LV of IR, called the set of literal values, which contains
all the plain literals in V

• A mapping IL from typed literals in V into IR

and satisfies the following extra conditions:

1. LV = ICEXT (IS(rdfs:Literal))
2. For each pair 〈u, d〉 ∈ Md

(a) ICEXT (d) = V (d) ⊆ LV
(b) There exist d ∈ IR s.t. IS(u) = d
(c) IS(u) ∈ ICEXT (IS(rdfs:Datatype))
(d) For “s”ˆˆu′ ∈ V, IS(u′) = d, if s ∈ L(d), then IL(“s”ˆˆu′) = L2S(d)(s),

otherwise, IL(“s”ˆˆu′) �∈ LV,

3. If d ∈ ICEXT (IS(rdfs:Datatype)), then 〈d, IS(rdfs:Literal)〉 ∈ IEXT (rdfs:

subClassOf ).
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According to Definition 7, LV is a subset of IR; i.e. literal values are
resources. Condition 1 ensures that the class extension of rdfs:Literal is LV.
Condition 2) asserts that RDF(S) datatypes are classes, condition 2) ensures
that there is a resource d for datatype d in Md, condition 2) ensures that
the class rdfs:Datatype contains the datatypes used in any satisfying Md-
interpretation, and condition 2) explains why the range of IL is IR rather
than LV (because, for “s”ˆˆu, if s �∈ L(IS(u)), then IL(“s”ˆˆu) �∈ LV).
Condition 3 requires that RDF(S) datatypes are sub-classes of rdfs:Literal.

If the datatypes in the datatype map Md impose disjointness conditions
on their value spaces, it is possible for an RDF graph to have no RDFS Md-
interpretation which satisfies it, i.e. there exists a datatype clash. For example,

: x rdf:type xsd:string.

: x rdf:type xsd:decimal.

would constitute a datatype clash because the value spaces of xsd:string and
xsd:decimal are disjoint. In RDF(S), an ill-typed literal does not in itself
constitute a datatype clash, cf. Condition 2) in Definition 7, but a graph which
entails that an ill-typed literal has rdf:type rdfs:Literal would be inconsistent.

Having described the semantics, we now briefly discuss reasoning in
RDF(S). Entailment is the key inference problem in RDF(S), which can be
defined on the basis of interpretations. Indeed, cRDF is impossible to express
contradictions if we do not consider datatypes.

Definition 8. (RDF Entailments) Given two sets of RDF statements S1

and S2, and a datamap Md, S1 simply entails (RDF-entails, RDFS-entails,
RDFS-Md-entails) S2 if all the simple interpretations (RDF-interpretations,
RDFS-interpretations, RDFS Md-interpretation, resp.) of S1 also satisfy S2.

4 Mismatch between RDF(S) and OWL-DL

This section describes the relation between RDF(S) and OWL-DL, which is
a key sub-language of the standard (W3C recommendation) Web Ontology
Langauge. One key question is whether it is possible to use an RDF(S) infer-
ence engine to do OWL-DL reasoning, or vice versa. The short answer is no,
and this section explains why.

The OWL recommendation actually consists of three languages of increas-
ing expressive power: OWL-Lite, OWL-DL and OWL-Full. OWL-Lite and
OWL-DL are basically very expressive description logics (DLs). OWL-Full
provides the same set of constructors as OWL-DL, but allows them to be
used in an unconstrained way (in the style of RDF). OWL-Full is undecidable,
because it combines the OWL expressivity with the meta-modelling architec-
ture of RDF(S) [15].6 Accordingly, OWL-DL is the most expressive decidable
6 Another reason that OWL-Full is undecidable is that it does not impose restric-

tions on the use of transitive properties [12].
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sub-language of OWL. More details of the OWL language can be found in
chapter “Web Ontology Language: OWL.”

This section discusses both the syntactic and semantic mismatches between
RDF(S) and OWL-DL. From the syntax aspect, OWL-DL heavily restricts
the syntax of RDF(S), viz. some RDF(S) annotations are not recognisable
by OWL-DL agents, since they are syntactically ill formed. The RDF/XML
syntax form of an OWL-DL ontology is valid, iff it can be translated (according
to the mapping rules provided in [25]) from the abstract syntax form of the
ontology. Actually, it is far from an easy task to check if an RDF graph is
an OWL-DL ontology [11], since no inverse mapping is defined in the OWL
specification.

From the semantics aspect, OWL-DL has an RDF MT-style semantics,
in which (including built-in) classes and properties are treated as objects
(or resources) in the domain. In order to make it equivalent to the direct
semantics of OWL-DL [25], the domain of discourse is divided into several
disjoint parts. In particular, the interpretations of classes, properties, individ-
uals and OWL/RDF vocabulary are strictly separated. Therefore, classes and
properties, unsurprisingly, cannot be treated as ordinary resources as they are
in RDF MT. Strictly speaking, even those RDF(S) statements which are valid
OWL-DL statements do not share the same meaning in an RDF(S) ontology
and an OWL-DL ontology.

OWL-Full seems to be a bridge between RDF(S) and OWL-DL; however,
there exist at least three known issues that the RDF-style semantics for OWL-
Full needs to solve, and a proven solution has yet to be given. The first issue
is about entailment [23]. Consider the following question: does the following
individual axiom

Individual(ex:John

type(intersectionOf(ex:Student ex:Employee ex:European)))

entail the individual axiom

Individual(ex:John

type(intersectionOf(ex:Student ex:European)))?

In OWL-DL, the answer is simply ‘yes’, since intersectionOf(ex:Student
ex:Employee ex:European) is a sub-class of intersectionOf(ex:Student
ex:European). Since in RDF(S) every class is a resource, OWL-Full needs
to make sure of the existence of the resource intersectionOf(ex:Student
ex:European) in every possible interpretation; otherwise, the answer will be
‘no’ which leads to a disagreement between OWL-DL and OWL-Full. In
general, OWL-Full introduces so called comprehension principles to add all
the missing resources into the domain for all the OWL class descriptions. It
has yet to be proved that the proper resources are all added into the uni-
verse, no more and no less, and that the added resources will not bring any
side-effects.
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The second issue is about contradiction classes [11, 23, 24]. In OWL-Full,
it is possible to construct a class the instances of which have no rdf:type
relationship linked to:

: c owl:onProperty rdf:type; owl:allValuesFrom : d.

: d owl:complementOf : e.

: e owl:oneOf : l

: l rdf:first : c; rdf:rest rdf:nil.

The above triples require that rdf:type relates members of the class : c
to anything but : c. It is impossible for one to determine the member-
ship of : c. If an object is an instance of : c, then it is not; but if
it is not then it is – this is a contradiction class. Note that it is not a
valid OWL-DL class, as OWL-DL disallows using rdf:type as an object
property. With naive comprehension principles, resources of contradiction
classes would be added to all possible OWL-Full interpretations, which
thus have ill-defined class memberships. To avoid the issue, the compre-
hension principles must also consider avoiding contradiction classes. Un-
surprisingly, devising such comprehension principles took a considerable
amount of effort [11], and no proof has ever shown that all possible con-
tradiction classes are excluded in the comprehension principles of OWL-
Full.

The third issue is about the size of the universe [10]. Consider the following
question: is it possible that there is only one object in an interpretation of
the following OWL ontology?

Individual(elp:Ganesh type(elp:Elephant))

DisjointClasses(elp:Elephant elp:Plant)

In OWL-DL, classes are not objects, so the answer is ‘yes’: The only object in
the domain is the interpretation of elp:Ganesh, the elp:Elephant class thus
has one instance, i.e. the interpretation of elp:Ganesh, and the elp:Plant
class has no instances. In OWL-Full, since classes are also objects, besides
elp:Ganesh, the classes elp:Elephant and elp:Plant should both be mapped
to the only one object in the universe. This is not possible because the in-
terpretation of elp:Ganesh is an instance of elp:Elephant, but not an in-
stance of elp:Plant; hence, elp:Elephant and elp:Plant should be different,
i.e. there should be at least two objects in the universe. As the above ax-
ioms are valid OWL-DL axioms, this example shows that OWL-Full disagrees
with OWL-DL on valid OWL-DL ontologies. To partially address this issue,
the OWL specification weakens the relations between OWL-DL and OWL-
Full by claiming (with a sketched proof) that, given two OWL-DL ontologies
O1 and O2, O1 entails O2 w.r.t. the OWL-DL semantics implies that O1
entails O2 w.r.t. the OWL-Full semantics. Furthermore, this example shows
that the interpretation of OWL-Full has different features than the interpreta-
tion of standard first order logic (FOL) model theoretic semantics. This raises
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the question as to whether it is possible to layer FOL languages on top of
RDF(S).

It should be noted that for some the above presentation of the three
issues might be a little too negative about the situation w.r.t. OWL-Full
and OWL-DL: the first two issues are difficulties that have, in theory, been
claimed to be solved by the use of comprehension principles and restrictions
on the syntactic form of OWL-DL’s RDF serialisation. From this perspec-
tive, the main side effect of comprehension principles is that all OWL-
Full models have infinite domains; hence, any OWL-DL ontologies that
have only finite models are necessarily inconsistent when treated as OWL-
Full ontologies. This leads to the third issue and demonstrates why, in the
OWL specification, the relations between OWL-Full and OWL-DL is weak-
ened.

5 RDFS-FA: Connecting RDF(S) and OWL-DL

In this section, we introduce RDFS-FA (RDFS with Fixed layered meta-
modelling architecture), as a sub-language of RDF(S), to restore the desired
connection between RDF(S) and OWL-DL. RDFS-FA addresses the following
characteristics of RDF(S):

• RDF triples have built-in semantics.
• Classes and properties, including built-in classes and properties of RDF(S)

and its subsequent languages such as OWL, are treated as objects (or re-
sources) in the domain.

• There are no restrictions on the use of built-in vocabularies.

Intuitively, RDFS-FA provides a UML like meta-modelling architecture.
Let us recall that RDFS has a non-layered meta-modelling architecture; re-
sources in RDFS can be classes, objects and properties at the same time, viz.
classes and their instances (as well as relationships between the instances) are
the same layer. RDFS-FA, instead, divides up the universe of discourse into
a series of strata (or layers). The built-in modelling primitives of RDFS are
separated into different strata of RDFS-FA, and the semantics of modelling
primitives depend on the stratum they belong to. Theoretically there can
be a large number of strata in the meta-modelling architecture; in practice,
four strata (as shown in Fig. 6) are usually enough. The UML-like meta-
modelling architecture makes it easier for users who are familiar with UML
to understand and use RDFS-FA.

In RDFS-FA, classes cannot be objects and vice versa;7 in RDFS, Web
resources can be classes, properties, objects or even datatypes all at once. We
argue that RDFS-FA is more intuitive than RDFS based on the following ob-
servation: when users design their ontologies, a common concern is to decide
7 Classes can be regarded as mega-objects in upper strata of the meta-modelling

architecture.
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Fig. 6. The UML-like meta-modelling architecture (number of strata = 4) of RDFS-
FA

@prefix fa: <http://dl-web.man.ac.uk/rdfsfa/ns#>

@prefix elp: <http://example.org/Animal#>

elp:Animal fa:type2 fa:Class2 .

elp:Habitat fa:type2 fa:Class2 .

elp:Elephant fa:type2 fa:Class2 ; fa:subClassOf2 elp:Animal .

elp:liveIn fa:type2 fa:AbstractProperty2 ;

fa:domain2 elp:Animal ; fa:range2 elp:Habitat .

elp:south-sahara fa:type1 elp:Habitat .

elp:Ganesh fa:type1 elp:Elephant ; elp:liveIn elp:south-sahara .

Fig. 7. An RDFS-FA ontology

whether to model something in the domain as a class or as an object (see
also [17]). This concern suggests that users intuitively tend to assume that
classes and objects should be different from each other. Therefore, layered
meta-models could be more intuitive than non-layered meta-models.

Readers are referred to [21] for a formal introduction of RDFS-FA on-
tologies and their semantics. Informally speaking, an RDFS-FA ontology is
a set of RDFS-FA axioms, which are basically RDF triples (in N3 syntax)8

with extra syntactic rules, which (1) disallow arbitrary use of its built-in
vocabulary and (2) enable the use of meta-classes and meta-properties in
specified layers as well as the use of annotation properties.

Figure 7 shows an example RDFS-FA ontology. Firstly, the layering struc-
ture is clear. elp:Animal, elp:Habitat, elp:Elephant and elp:liveIn are in
stratum 1 (the Ontology layer), while elp:Ganesh and elp:south- sahara are
in stratum 0 (the Instance Layer). Secondly, RDFS-FA disallows arbitrary
use of its built-in vocabulary. For example, in class inclusion axioms, the

8 Here we use the N3 syntax, instead of the RDF/XML syntax, as it is more
compact.
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subjects can only be only user-defined class URIrefs (such as elp:Animal),
which could disallow triples like

fa:Resource1 fa:subClassOf2 elp:Animal .

Furthermore, RDFS-FA allows users to specify classes and properties in
specified strata. For example, the class inclusion axiom

elp:Elephant fa:subClassOf2 elp:Animal .

requires that both elp:Elephant and elp:Animal are class URIrefs in stra-
tum 1.

We conclude this section by showing the interoperability between RDFS-
FA and OWL-DL. It is much easier to layer OWL-DL, syntactically and
semantically, on top of RDFS-FA than on top of RDF(S). In particular,
there is a one-to-one bidirectional mapping (see [21] for details) between the
RDFS-FA axioms in strata 0-1 and OWL-DL axioms in OWL abstract syn-
tax. For example, the RDFS-FA class inclusion axiom [C1 fa:subClassOf2 D1.]
can be mapped to the OWL class axiom (SubClassOf C1 D1) and vice versa.
In the syntactic level, it is easier to layer OWL-DL on top of RDFS-FA
than on top of RDF(S), due to the above bidirectional mapping. Let us
recall that, according to the OWL Semantics and Abstract Syntax docu-
ment [25], the mapping between OWL-DL axioms, or OWL axioms for short,
and RDF(S) statements is only unidirectional, i.e. from OWL axioms to
RDF(S) statements. For example, we can map the following OWL axiom
SubClassOf (C1 D1) to the RDF(S) statement [C1 rdfs:subClassOf D1.], with
an implicit OWL constraint, viz., C1 and D1 can only be class URIrefs, but
not URIrefs for properties or individuals, etc. However, the above RDF(S)
statement without such (implicit) constraint cannot be correctly mapped to
the OWL axiom (SubClassOf C1 D1). In the semantic level, it can be shown
that the above bidirectional mapping is a semantics-preserving mapping [21].

It has be shown [22] that we can extend OWL DL with the meta-modelling
architecture of RDFS-FA into OWL-FA, and that OWL-FA is also decidable.

6 Related Work

As earlier works [4, 16] pointed out, RDFS has a non-standard and non-fixed
layer meta-modelling architecture, which makes some elements in the model
have multiple roles in the RDFS specification. Therefore, it makes even the
RDFS specification itself somehow confusing and difficult to understand for
users. To clear up any confusion, Pan and Horrocks [18] proposed a Fixed
layer meta-modelling Architecture for RDFS, reducing the multiple roles
of RDFS built-in primitives by stratifying them into different layers of the
meta-modelling architecture. Subsequently, the RDF Model Theory (RDF
MT) [9] gave an official semantics for RDF and RDFS, justifying the dual
roles by treating both classes and properties as objects in the universe. Pan
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and Horrocks [19] suggested that RDFS could have two kinds of semantics,
i.e. RDF MT and the stratified semantics of RDFS(FA).

Horst [29] extends RDF MT to cover some OWL constructors and ax-
ioms by proposing the so-called pD* semantics. Interestingly, the pD* se-
mantics is in line with the ‘if-semantics’ of RDFS and weaker than the
‘iff-semantics’ that is used in the RDF-compatible semantic for OWL
DL and OWL Full. One of the motivations of having the iff-semantics
in the RDF-compatible semantic for OWL is to solve the ‘too few en-
tailment’ problem [19]. Note that the iff-semantics is not relevant to the
direct semantics of OWL DL. Among the 15 OWL URIs, the pD* inter-
prets owl:FunctionalProperty, owl:InverseFunctionalProperty, owl:
SymmetricProperty and owl:Transi- tiveProperty as the if conditions of
the standard mathematical definitions. The owl:inverseOf is interpreted
as that if two properties are owl:inverseOf-related, then their extensions
are each other’s inverse as binary relations. The pD* semantics requires
that two classes are equivalent if and only if they are both subclasses
of each other. owl:equivelantProperty is treated in a similar way to
owl:equivalentClass. The pD* semantics interprets owl:sameAs as an
equivalence relation.In particular, the pD* semantics includes the iff condi-
tion for owl:hasValue. But for owl:someValueFrom and owl:allValueFrom,
the pD* semantics still includes half of OWL’s iff conditions. If two classes
are owl:disjointWith-related the pD* semantics requires their extensions are
disjoint. The pD* semantics requires that the extensions of owl:sameAs
and owl:differentForm are disjoint. Based on the pD* semantics discussed
above, the corresponding pD* entailment rules are also given in [29]. It con-
sists of 23 rules to illustrate that what conclusion can be deduced from some
given premises. These rules are proved to be sound and complete with respect
to the pD* semantics.

Patel-Shneider et al. [25] extended RDFS with OWL constructors to OWL
Full, which keeps the meta-modelling architecture of RDFS. Motik [15] shows
that the meta-modelling architecture of OWL Full contributes to its undecid-
ability. Motik [15] also provides two alternative meta-modelling approaches
for OWL DL, i.e. the contextual approach and the HiLog approach.

• In the context approach, the names for classes, properties and individuals
are not distinct and are interpreted depending on the context; i.e. they
are interpreted by class interpretation functions, property interpretation
functions and individual interpretation functions, respectively. Intuitively
speaking, this approach provides a ‘two-layered’ meta-modelling architec-
ture, i.e. the instance layer and class layer. OWL FA provides a ‘multi-
layered’ meta-modelling architecture. At a quick glance, the ‘two-layered’
and the ‘multi-layered’ meta-modelling architectures should be similar;
however, the example we show later in this section indicates that they are
quite different.
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• The HiLog approach is closer to the spirit of OWL Full meta-modelling.
It has a ‘two-step’ interpretation function for classes, which first maps
symbols to resources in the domain and then maps these resources to a set
of resources in the domain. Intuitively speaking, this approach provides
a ‘one-layered’ meta-modelling architecture, in the sense that classes and
individuals are both interpreted as resources in the domain. Note that it
is dificult/impossible to map classes in the ‘one-layered’ meta-modelling
architecture to the ‘multi-layered’ meta-modelling architectures such as
that of MOF.

We now use an example in [15] to illustrate some of the differences among
the above two approaches and our approach. Let us consider the following
knowledge base9 Σ ={ Harry :1 Eagle, Harry :1 ¬Aquila,Eagle =1 Aquila}.
In the contextual approach, since Eagle and Aquila as concepts and as indi-
viduals are independent, Σ is satisfiable. In the HiLog approach, it is not
satisfiable because Eagle and Aquila are interpreted as the same object, let
us call it a, and Harry cannot be both in and not in the concept extension
of a. In OWL FA, Σ is unsatisfiable because the meta-individual equality
axiom Eagle =1 Aquila indicates two concepts Eagle and Aquila are equivalent,
and HarryI cannot be both in and not in EagleI . This example indicates
the contextual semantics (at least sometimes) is not as intuitive as the Hilog
semantics and the FA semantics.

Let us conclude this section by briefly comparing the three approaches.
In terms of syntax, the contextual and Hilog approaches seem to be more
elegant in that they do not have to change the syntax of OWL DL, while
the FA approach introduces strata numbers to facilitate the ‘multi-layered’
meta-modelling architecture. In terms of semantics, it seems that the FA
approach is closer to the Hilog approach (according to the above example). It
is an interesting peace of future work to investigate more detailed differences
between the Hilog approach and the FA approach. In terms of computability,
the FA approach is closer to the contextual approach in that we can reduce
the reasoning services (such as knowledge base satisfiability) to existing DL
reasoning services. Finally, the contextual approach and the Hilog approach
have not covered datatypes yet, while the FA approach covers datatypes. In
order to support datatypes in the contextual approach, some extra syntax
may be needed for OWL DL, otherwise it is difficult to distinguish the con-
texts. For example, in ∃R.E, E can be either a class or a datatype. It is not
clear how to support datatypes in the Hilog approach yet.

Other existing approaches either limit the extension of RDF(S) to only
a property-related subset of OWL with a weaker semantics proposed by ter
Horst ([28, 29]), or weaken the semantic connection between the individual
interpretation and class interpretation of a given URI [6], hence failing to
propagate important inferences from meta-classes to classes (see [21]).

9 In [15], the subscripts are not used.
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7 Conclusion

In this chapter, we have presented RDF. RDF is a standard syntax for
Semantic Web annotations and languages. RDF Schema is an ontological
schema language that supports only class and property hierarchies, as well
as domain and range constraints for properties. RDF(S) has a key role in
supporting such compatibility by providing a common basis on which more
expressive SW languages can be built. Recent research, however, has shown
that there exist syntactic and semantic mismatch between RDF(S) and OWL-
DL. Accordingly, this chapter includes a novel modification of RDF(S), called
RDFS-FA, which provides a solid semantic foundation for many of the latest
Description Logic-based SW ontology languages, and imposes no limitation
on its extension to more expressive Description Logics (such as OWL-DL,
OWL2-DL and OWL-Eu [20]).

In chapter “RDF Storage and Retrieval Systems,” we will further describe
entailment and querying over RDF(S) ontologies. As for RDFS-FA, reasoning
in RDFS-FA and its OWL extension, OWL-FA, is discussed in [22]; such
reasoning can be performed by reduction to OWL-DL reasoning.
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Summary. The expressivity of RDF and RDF Schema that was described in [12]
is deliberately very limited: RDF is (roughly) limited to binary ground predicates,
and RDF Schema is (again roughly) limited to a subclass hierarchy and a property
hierarchy, with domain and range definitions of these properties.

However, the Web Ontology Working Group of W3C [10] identified a number
of characteristic use-cases for Ontologies on the Web which would require much
more expressiveness than RDF and RDF Schema. It proceeded to define OWL,
the language that is aimed to be the standardised and broadly accepted ontology
language of the Semantic Web.

In this chapter, we first describe the motivation for OWL in terms of its require-
ments, and the resulting non-trivial relation with RDF Schema. We then describe
the various language elements of OWL in some detail.

1 Requirements for Ontology Languages

Ontology languages allow users to write explicit, formal conceptualizations of
domains models. The main requirements are: (a) a well-defined syntax; (b) a
well-defined semantics; (c) efficient reasoning support; (d) sufficient expressive
power; and (e) convenience of expression.

The importance of a well-defined syntax is clear, and known from the area
of programming languages; it is a necessary condition for machine-processing
of information. OWL builds upon RDF and RDFS and has the same kind of
syntax.

Formal semantics describes precisely the meaning of knowledge.“Precisely”
here means that the semantics does not refer to subjective intuitions, nor
is it open to different interpretations by different persons (or machines).
The importance of formal semantics is well-established in the domain of
mathematical logic, among others.

S. Staab and R. Studer (eds.), Handbook on Ontologies, International Handbooks 91
on Information Systems, DOI 10.1007/978-3-540-92673-3,
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One use of formal semantics is to allow humans to reason about the
knowledge. For ontological knowledge we may reason about:

• Class membership: If x is an instance of a class C, and C is a subclass of
D, then we can infer that x is an instance of D.

• Equivalence of classes: If class A is equivalent to class B, and class B
equivalent to class C, then A is equivalent to C, too.

• Consistency: Suppose we have declared x to be an instance of the class
A. Further suppose that A is a subclass of B, and A and B are declared
disjoint. Then we have an inconsistency which points to a probable error
in the ontology.

• Classification: If we have declared that certain property-value pairs are
sufficient conditions for membership of a class A, then if an individual x
satisfies such conditions, then x must be an instance of A.

Semantics is a prerequisite for reasoning support: Derivations such as the above
can be made mechanically, instead of being made by hand. Reasoning support
is important because it allows one to check the consistency of the ontology
and the knowledge, check for unintended relationships between classes, and
automatically classify instances in classes. Checks like the above are valu-
able for designing large ontologies, where multiple authors are involved, and
integrating and sharing ontologies from various sources.

Formal semantics and reasoning support is usually provided by mapping
an ontology language to a known logical formalism, and by using automated
reasoners that already exist for those formalisms. OWL is (partially) mapped
on a description logic, and makes use of existing reasoners such as FaCT and
RACER.

1.1 Limitations of the Expressive Power of RDF Schema

RDF and RDFS allow the representation of some ontological knowledge. The
main modelling primitives of RDF/RDFS concern the organization of vocab-
ularies in typed hierarchies: subclass and subproperty relationships, domain
and range restrictions, and instances of classes. However a number of other
features are missing. Here we list a few:

• Local scope of properties: rdfs:range defines the range of a property,
say eats, for all classes. Thus in RDF Schema we cannot declare range
restrictions that apply to some classes only. For example, we cannot say
that cows eat only plants, while other animals may eat meat, too.

• Disjointness of classes: Sometimes we wish to say that classes are disjoint.
For example, male and female are disjoint. But in RDF Schema we can
only state subclass relationships, e.g. female is a subclass of person.

• Boolean combinations of classes: Sometimes we wish to build new classes
by combining other classes using union, intersection and complement. For
example, we may wish to define the class person to be the disjoint union of
the classes male and female. RDF Schema does not allow such definitions.
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• Cardinality restrictions: Sometimes we wish to place restrictions on how
many distinct values a property may or must take. For example, we would
like to say that a person has exactly two parents, and that a course is
taught by at least one lecturer. Again such restrictions are impossible to
express in RDF Schema.

• Special characteristics of properties: Sometimes it is useful to say that a
property is transitive (like “greater than”), unique (like “is mother of”),
or the inverse of another property (like “eats” and “is eaten by”).

So we need an ontology language that is richer than RDF Schema, a language
that offers these features and more. In designing such a language one should
be aware of the tradeoff between expressive power and efficient reasoning sup-
port. Generally speaking, the richer the language is, the more inefficient the
reasoning support becomes, often crossing the border of non-computability.
Thus we need a compromise, a language that can be supported by reasonably
efficient reasoners, while being sufficiently expressive to express large classes
of ontologies and knowledge.

1.2 Compatibility of OWL with RDF/RDFS

Ideally, OWL would be an extension of RDF Schema, in the sense that
OWL would use the RDF meaning of classes and properties (rdfs:Class,
rdfs:subClassOf, etc.), and would add language primitives to support the
richer expressiveness identified above.

Unfortunately, the desire to simply extend RDF Schema clashes with
the trade-off between expressive power and efficient reasoning mentioned be-
fore. RDF Schema has some very powerful modelling primitives, such as the
rdfs:Class (the class of all classes) and rdf:Property (the class of all prop-
erties). These primitives are very expressive, and will lead to uncontrollable
computational properties if the logic is extended with the expressive primitives
identified above.

1.3 Three Species of OWL

All this has lead to a set of requirements that may seem incompatible: efficient
reasoning support and convenience of expression for a language as powerful
as a combination of RDF Schema with a full logic.

Indeed, these requirements have prompted W3C’s Web Ontology Work-
ing Group to define OWL as three different sublanguages, each of which is
geared towards fulfilling different aspects of these incompatible full set of
requirements:

• OWL Full: The entire language is called OWL Full, and uses all the OWL
languages primitives (which we will discuss later in this chapter). It also
allows to combine these primitives in arbitrary ways with RDF and RDF
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Schema. This includes the possibility (also present in RDF) to change the
meaning of the pre-defined (RDF or OWL) primitives, by applying the
language primitives to each other.
The advantage of OWL Full is that it is fully upward compatible with
RDF, both syntactically and semantically: any legal RDF document is also
a legal OWL Full document, and any valid RDF/RDF Schema conclusion
is also a valid OWL Full conclusion. As a disadvantage, the language has
become so powerful as to be undecidable, dashing any hope of guarantees
on complete and efficient reasoning.

• OWL DL: In order to regain computational efficiency, OWL DL (short
for: Description Logic) is a sublanguage of OWL Full which restricts the
way in which the constructors from OWL and RDF can be used. We will
give details later, but roughly this amounts to disallowing application of
OWL’s constructor’s to each other, and thus ensuring that the language
corresponds to a well studied description logic.
The advantage of this is that it permits efficient reasoning support.
The disadvantage is that we loose full compatibility with RDF: an RDF
document will in general have to be extended in some ways and restricted
in others before it is a legal OWL DL document. Conversely, every legal
OWL DL document is still a legal RDF document.

• OWL Lite: An even further restriction limits OWL DL to a subset of
the language constructors. For example, OWL Lite excludes enumerated
classes, disjointness statements and arbitrary cardinality (among others).
The advantage of this is a language that is both easier to grasp (for users)
and easier to implement (for tool builders).
The disadvantage is of course a restricted expressivity.

Ontology developers adopting OWL should consider which sublanguage
best suits their needs. The choice between OWL Lite and OWL DL depends on
the extent to which users require the more-expressive constructs provided by
OWL DL and OWL Full. The choice between OWL DL and OWL Full mainly
depends on the extent to which users require the meta-modeling facilities
of RDF Schema (e.g. defining classes of classes, or attaching properties to
classes). When using OWL Full as compared to OWL DL, reasoning support is
less predictable since complete OWL Full implementations will be impossible.

There are strict notions of upward compatibility between these three
sublanguages:

• Every legal OWL Lite ontology is a legal OWL DL ontology
• Every legal OWL DL ontology is a legal OWL Full ontology
• Every valid OWL Lite conclusion is a valid OWL DL conclusion
• Every valid OWL DL conclusion is a valid OWL Full conclusion
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rdfs:Class

owl:Class owl:DatatypePropertyowl:ObjectProperty

rdf:Property

rdfs:Resource

Fig. 1. Subclass relationships between OWL and RDF/RDFS

OWL still uses RDF and RDF Schema to a large extent:

• All varieties of OWL use RDF for their syntax
• Instances are declared as in RDF, using RDF descriptions and typing

information
• OWL constructors like owl:Class, owl:DatatypeProperty and owl:

ObjectProperty are all specialisations of their RDF counterparts. Figure 1
shows the subclass relationships between some modelling primitives of
OWL and RDF/RDFS.

The original hope in the design of OWL was that there would be a down-
ward compatibility with corresponding re-use of software across the various
layers. However, the advantage of full downward compatibility for OWL (that
any OWL aware processor will also provide correct interpretations of any RDF
Schema document) is only achieved for OWL Full, at the cost of computational
intractability.

2 The OWL Language

2.1 Syntax

OWL builds on RDF and RDF Schema, and uses RDF’s XML syntax. Since
this is the primary syntax for OWL, we will use it here, but it will soon become
clear that RDF/XML does not provide a very readable syntax. Because of this,
other syntactic forms for OWL have also been defined:

• An XML-based syntax which does not follow the RDF conventions. This
makes this syntax already significantly easier to read by humans.

• An abstract syntax which is used in the language specification document.
This syntax is much more compact and readable then either the XML
syntax or the RDF/XML syntax.
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• A graphical syntax based on the conventions of the UML language
(Universal Modelling Language). Since UML is widely used, this will
be an easy way for people to get familiar with OWL.

2.2 Header

OWL documents are usually called OWL ontologies, and are RDF documents.
So the root element of a OWL ontology is an rdf:RDF element which also
specifies a number of namespaces. For example:

<rdf:RDF

xmlns:owl ="http://www.w3.org/2002/07/owl#"

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd ="http://www.w3.org/2001/XLMSchema#">

An OWL ontology may start with a collection of assertions for house-
keeping purposes. These assertions are grouped under an owl:Ontology
element which contains comments, version control and inclusion of other on-
tologies. For example:

<owl:Ontology rdf:about="">

<rdfs:comment>An example OWL ontology</rdfs:comment>

<owl:priorVersion

rdf:resource="http://www.mydomain.org/uni-ns-old"/>

<owl:imports rdf:resource="http://www.mydomain.org/persons"/>

<rdfs:label>University Ontology</rdfs:label>

</owl:Ontology>

The only one of these assertions which has any consequences for the logical
meaning of the ontology is owl:imports : this lists other ontologies whose
content is assumed to be part of the current ontology. Notice that while
namespaces are used for disambiguation purposes, imported ontologies pro-
vide definitions that can be used. Usually there will be an import element
for each used namespace, but it is possible to import additional ontologies,
for example ontologies that provide definitions without introducing any new
names.

Also note that owl:imports is a transitive property: if ontology A imports
ontology B, and ontology B imports ontology C, then ontology A also imports
ontology C.

2.3 Class Elements

Classes are defined using a owl:Class element.1 For example, we can define
a class associateProfessor as follows:

1 owl:Class is a subclass of rdfs:Class.
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<owl:Class rdf:ID="associateProfessor">

<rdfs:subClassOf rdf:resource="#academicStaffMember"/>

</owl:Class>

We can also say that this class is disjoint from the professor and
assistantProfessor classes using owl:disjointWith elements. These ele-
ments can be included in the definition above, or can be added by referring
to the id using rdf:about. This mechanism is inherited from RDF.

<owl:Class rdf:about="#associateProfessor">

<owl:disjointWith rdf:resource="#professor"/>

<owl:disjointWith rdf:resource="#assistantProfessor"/>

</owl:Class>

Equivalence of classes can be defined using a owl:equivalentClass
element:

<owl:Class rdf:ID="faculty">

<owl:equivalentClass rdf:resource="#academicStaffMember"/>

</owl:Class>

Finally, there are two predefined classes, owl:Thing and owl:Nothing .
The former is the most general class which contains everything (everything
is a thing), the latter is the empty class. Thus every class is a subclass of
owl:Thing and a superclass of owl:Nothing; in addition, a class may be
equivalent to owl:Thing or owl:Nothing.

2.4 Property Elements

In OWL there are two kinds of properties:

• Object properties which relate objects (instances of classes, that is, inter-
esting elements of the domain of discourse) to other objects.
Examples are isTaughtBy, supervises etc.

• Datatype properties which relate objects to datatype values.
Examples are phone, title, age, etc. OWL does not have any predefined
data types, nor does it provide special definition facilities. Instead it al-
lows one to use XML Schema data types, thus making use of the layered
architecture the Semantic Web. Datatype properties are expressed using
owl:DatatypeProperty

Here is an example of a datatype property.

<owl:DatatypeProperty rdf:ID="age">

<rdfs:range rdf:resource=

"http://www.w3.org/2001/XLMSchema#nonNegativeInteger"/>

</owl:DatatypeProperty>
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User-defined data types will usually be collected in an XML schema, and
then used in an OWL ontology.

Here is an example of a property, expressed using owl:ObjectProperty

<owl:ObjectProperty rdf:ID="isTaughtBy">

<rdfs:domain rdf:resource="#course"/>

<rdfs:range rdf:resource="#academicStaffMember"/>

<rdfs:subPropertyOf rdf:resource="#involves"/>

</owl:ObjectProperty>

More than one domain and range may be declared. In this case the inter-
section of the domains, respectively ranges, is taken.

OWL allows us to relate “inverse properties”, via owl:inverseOf . A typ-
ical example is isTaughtBy and teaches.

<owl:ObjectProperty rdf:ID="teaches">

<rdfs:range rdf:resource="#course"/>

<rdfs:domain rdf:resource="#academicStaffMember"/>

<owl:inverseOf rdf:resource="#isTaughtBy"/>

</owl:ObjectProperty>

Actually domain and range can be inherited from the inverse property
(interchange domain with range).

Equivalence of properties can be defined using owl:equivalentProperty.

<owl:ObjectProperty rdf:ID="lecturesIn">

<owl:equivalentProperty rdf:resource="#teaches"/>

</owl:ObjectProperty>

2.5 Property Restrictions

With rdfs:subClassOf we can specify a class C to be subclass of another
class C ′; then every instance of C is also an instance of C ′.

Now suppose we wish to declare, instead, that the class C satisfies certain
conditions, that is, all instances of C satisfy the conditions. Obviously it is
equivalent to saying that C is subclass of a class C ′, where C ′ collects all
objects that satisfy the conditions. That is exactly how it is done in OWL,
as we will show. Note that, in general, C ′ can remain anonymous, as we will
explain below.

The following element requires first year courses to be taught by professors
only (according to a questionable view, older and more senior academics are
better at teaching).

<owl:Class rdf:about="#firstYearCourse">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#isTaughtBy"/>

<owl:allValuesFrom rdf:resource="#Professor"/>
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</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

owl:allValuesFrom is used to specify the class of possible values the prop-
erty specified by owl:onProperty can take (in other words: all values of the
property must come from this class). In our example, only professors are
allowed as values of the property isTaughtBy.

We can declare that mathematics courses are taught by staff member with
ID 949358 as follows:

<owl:Class rdf:about="#mathCourse">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#isTaughtBy"/>

<owl:hasValue rdf:resource="#949352"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

owl:hasValue states a specific value that the property, specified by owl:
onProperty must have. And we can declare that all academic staff members
must teach at least one undergraduate course as follows:

<owl:Class rdf:about="#academicStaffMember">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#teaches"/>

<owl:someValuesFrom rdf:resource="#undergraduateCourse"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Let us compare owl:allValuesFrom and owl:someValuesFrom . The ex-
ample using the former requires every person who teaches an instance of the
class, a first year subject, to be a professor. In terms of logic we have a uni-
versal quantification.

The example using the latter requires that there exists an undergraduate
course that is taught by an instance of the class, an academic staff member.
It is still possible that the same academic teaches postgraduate courses, in
addition. In terms of logic we have an existential quantification.

In general, an owl:Restriction element contains a owl:onProperty ele-
ment, and one or more restriction declarations. One type of restriction decla-
rations are those that define restrictions on the kinds of values the property
can take:
owl:allValuesFrom, owl:hasValue and owl:someValuesFrom. Another type
of restrictions are cardinality restrictions, expressed by owl:minCardinality
or owl:maxCardinality . For example, we can require every course to be
taught by at least someone.
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<owl:Class rdf:about="#course">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#isTaughtBy"/>

<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">

1

</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Notice that we had to specify that the literal “1” is to be interpreted
as a nonNegativeInteger (instead of, say, a string), and that we used the
xsd namespace declaration made in the header element to refer to the XML
Schema document.

Similarly, one can declare an upper limit on the number of class elements
(for instance, that a department must have at most thirty members) using
owl:maxCardinality.

It is possible to specify a precise number. For example, a PhD student
must have exactly two supervisors. This can be achieved by using the same
number in owl:minCardinality and owl:maxCardinality. For convenience,
OWL offers also owl:cardinality .

We conclude by noting that owl:Restriction defines an anonymous class
which has no id, is not defined by owl:Class and has only a local scope: it
can only be used in the one place where the restriction appears. When we
talk about classes, please bare in mind the twofold meaning: classes that are
defined by owl:Class with an id, and local anonymous classes as collections
of objects that satisfy certain restriction conditions, or as combinations of
other classes, as we will see shortly. The latter are sometimes called class
expressions.

2.6 Special Properties

Some properties of property elements can be defined directly:

• owl:TransitiveProperty defines a transitive property, such as “has bet-
ter grade than”, “is taller than”, “is ancestor of”, etc.

• owl:SymmetricProperty defines a symmetric property, such as “has same
grade as”, “is sibling of”, etc.

• owl:FunctionalProperty defines a property that has at most one unique
value for each object, such as “age”, “height”, “directSupervisor”, etc.

• owl:InverseFunctionalProperty defines a property for which two
different objects cannot have the same value, for example the property
“isTheSocialSecurityNumberfor” (a social security number is assigned to
one person only).
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An example of the syntactic form of the above is:

<owl:ObjectProperty rdf:ID="hasSameGradeAs">

<rdf:type rdf:resource="&owl;TransitiveProperty" />

<rdf:type rdf:resource="&owl;SymmetricProperty" />

<rdfs:domain rdf:resource="#student" />

<rdfs:range rdf:resource="#student" />

</owl:ObjectProperty>

2.7 Boolean Combinations

It is possible to talk about Boolean combinations (union, intersection, com-
plement) of classes (be it defined by owl:Class or by class expressions). For
example, we can say that courses and staff members are disjoint as follows:

<owl:Class rdf:about="#course">

<rdfs:subClassOf>

<owl:Restriction>

<owl:complementOf rdf:resource="#staffMember"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

The owl:complementOf says that every course is an instance of the com-
plement of staff members, that is, no course is a staff member. Note that this
statement could also have been expressed using owl:disjointWith.

The union of classes is built using owl:unionOf .

<owl:Class rdf:ID="peopleAtUni">

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#staffMember"/>

<owl:Class rdf:about="#student"/>

</owl:unionOf>

</owl:Class>

The rdf:parseType attribute is a shorthand for an explicit syntax for
building list with <rdf:first> and <rdf:rest> tags. Such lists are required
because the built-in containers of RDF have a serious limitation: there is no
way to close them, i.e. to say “these are all the members of the container”. This
is because, while one graph may describe some of the members, there is no way
to exclude the possibility that there is another graph somewhere that describes
additional members. The list syntax provides exactly this facility, but is very
verbose, which motivates the rdf:parseType shorthand notation.

Note that this does not say that the new class is a subclass of the union,
but rather that the new class is equal to the union. In other words, we have
stated an equivalence of classes. Also, we did not specify that the two classes
must be disjoint: it is possible that a staff member is also a student.
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Intersection is stated with owl:intersectionOf.

<owl:Class rdf:ID="facultyInCS">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#faculty"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#belongsTo"/>

<owl:hasValue rdf:resource="#CSDepartment"/>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

Note that we have built the intersection of two classes, one of which was
defined anonymously: the class of all objects belonging to the CS depart-
ment. This class is intersected with faculty to give us the faculty in the CS
department. Further we note that Boolean combinations can be nested arbi-
trarily. The following example defines administrative staff to be those staff
members that are neither faculty nor technical support staff.

<owl:Class rdf:ID="adminStaff">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="\#staffMember"/>

<owl:Class>

<owl:complementOf>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="\#faculty"/>

<owl:Class rdf:about="\#techSupportStaff"/>

</owl:unionOf>

</owl:Class>

</owl:complementOf>

</owl:Class>

</owl:intersectionOf>

</owl:Class>

2.8 Enumerations

An enumeration is a owl:oneOf element, and is used to define a class by listing
all its elements.

<owl:Class rdf:ID="daysOfTheWeek">

<owl:oneOf rdf:parseType="Collection">

<owl:Thing rdf:about="\#Monday"/>

<owl:Thing rdf:about="\#Tuesday"/>

<owl:Thing rdf:about="\#Wednesday"/>

<owl:Thing rdf:about="\#Thursday"/>

<owl:Thing rdf:about="\#Friday"/>

<owl:Thing rdf:about="\#Saturday"/>
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<owl:Thing rdf:about="\#Sunday"/>

</owl:oneOf>

</owl:Class>

2.9 Instances

Instances of classes are declared as in RDF. For example:

<rdf:Description rdf:ID="949352">

<rdf:type rdf:resource="#academicStaffMember"/>

</rdf:Description>

or equivalently:

<academicStaffMember rdf:ID="949352"/>

We can also provide further details, such as:

<academicStaffMember rdf:ID="949352">

<uni:age rdf:datatype="&xsd;integer">

39

</uni:age>

</academicStaffMember>

Unlike typical database systems, OWL does not adopt the unique names
assumption, thus: just because two instances have a different name (or: ID),
that does not imply that they are indeed different individuals. For example,
if we state that each course is taught by at most one one staff member:

<owl:ObjectProperty rdf:ID="isTaughtBy">

<rdf:type rdf:resource="&owl;FunctionalProperty" />

</owl:ObjectProperty>

and we subsequently state that a given course is taught by two staff
members:

<course rdf:about="CIT1111">

<isTaughtBy rdf:resource="#949318"/>

<isTaughtBy rdf:resource="#949352"/>

</course>

this does not cause an OWL reasoner to flag an error. After all, the system
could validly infer that the resources "949318" and "949352" are apparently
equal. To ensure that different individuals are indeed recognised as such, we
must explicitly assert their inequality:

<lecturer rdf:ID="949318">

<owl:differentFrom rdf:resource="#949352">

</lecturer>
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Because such inequality statements occur frequently, and the required
number of such statements would explode if we wanted to state the inequality
of a large number of individuals, OWL provides a shorthand notation
to assert the pairwise inequality of all individuals in a given list using
owl:AllDifferent:

<owl:AllDifferent>

<owl:distinctMembers rdf:parseType="Collection">

<lecturer rdf:about="#949318"/>

<lecturer rdf:about="#949352"/>

<lecturer rdf:about="949111"/>

</owl:distinctMembers>

</owl:AllDifferent>

Note that owl:distinctMembers can only be used in combination with
owl:AllDifferent.

2.10 Datatypes

Although XML Schema provides a mechanism to construct user-defined
datatypes (e.g. the datatype of adultAge as all integers greater than 18, or
the datatype of all strings starting with a number), such derived datatypes
cannot be used in OWL. In fact, not even all of the many the built-in XML
Schema datatypes can be used in OWL. The OWL reference document lists
all the XML Schema datatypes that can be used, but these include the most
frequently used types such as string, integer, boolean, time and date.

2.11 Versioning Information

We have already seen the owl:priorVersion statement as part of the header
information to indicate earlier versions of the current ontology. This informa-
tion has not formal model-theoretic semantics but can be exploited by humans
readers and programs alike for the purposes of ontology management.

Besides owl:priorVersion, OWL has three more statements to indicate fur-
ther informal versioning information. None of these carry any formal meaning:

• An owl:versionInfo statement generally contains a string giving infor-
mation about the current version, for example RCS/CVS keywords.

• An owl:backwardCompatibleWith statement contains a reference to an-
other ontology. This identifies the specified ontology as a prior version of
the containing ontology, and further indicates that it is backward com-
patible with it. In particular, this indicates that all identifiers from the
previous version have the same intended interpretations in the new ver-
sion. Thus, it is a hint to document authors that they can safely change
their documents to commit to the new version (by simply updating names-
pace declarations and owl:imports statements to refer to the URL of the
new version).
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• An owl:incompatibleWith on the other hand indicates that the contain-
ing ontology is a later version of the referenced ontology, but is not back-
ward compatible with it. Essentially, this is for use by ontology authors
who want to be explicit that documents cannot upgrade to use the new
version without checking whether changes are required.

2.12 Layering of OWL

Now that we have discussed all the language constructors of OWL, we can
completely specify which features of the language can be used in which sub-
language (OWL Full, DL and Lite):

OWL Full

In OWL Full, all the language constructors can be used in any combination
as long as the result is legal RDF.

OWL DL

In order to exploit the formal underpinnings and computational tractability
of Description Logics, the following constraints must be obeyed in an OWL
DL ontology:

• Vocabulary partitioning: Any resource is allowed to be only either a class,
a datatype, a datatype property, an object property, an individual, a data
value or part of the built-in vocabulary, and not more than one of these.
This means that, for example, a class cannot be at the same time an
individual, or that a property cannot have some values from a datatype
and some values from a class (this would make it both a datatype property
and an object property).

• Explicit typing: Not only must all resources be partitioned (as prescribed
in the previous constraint), but this partitioning must be stated explicitly.
For example, if an ontology contains the following:

<owl:Class rdf:ID="C1">

<rdfs:subClassOf rdf:resource="#C2" />

</owl:Class>

this already entails that C2 is a class (by virtue of the range specification
of rdfs:subClassOf). Nevertheless, an OWL DL ontology must explicitly
state this information:

<owl:Class rdf:ID="C2"/>

• Property separation: By virtue of the first constraint, the set of object
properties and datatype properties are disjoint. This implies that inverse
properties, and functional, inverse functional and symmetric characteris-
tics can never be specified for datatype properties.
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• No transitive cardinality restrictions: No cardinality restrictions may be
placed on transitive properties (or their superproperties, which are of
course also transitive, by implication).

• Restricted anonymous classes: Anonymous classes are only allowed in the
domain and range of owl:equivalentClass and owl:disjointWith, and
in the range (not the domain) of rdfs:subClassOf.

OWL Lite

An OWL ontology must be an OWL DL ontology, and must further satisfy
the following constraints:

• The constructors owl:oneOf, owl:disjointWith, owl:unionOf,
owl:complementOf and owl:hasValue are not allowed

• Cardinality statements (both minimal, maximal and exact cardinality) can
only be made on the values 0 or 1, and no longer on arbitrary non-negative
integers.

• owl:equivalentClass Statements can no longer be made between anony-
mous classes, but only between class identifiers (Figs. 2 and 3).

OWL DL has a formal model-theoretic semantics [4] providing a rigorous
and provably decidable semantics for the language. As discussed in chapter
“Resource Description Framework,” DLs are a decidable subset of first order
logic (FOL), being restricted to the 2-variable fragment of FOL. The trans-
lation of languages constructs from OWL to Description Logic constructors
is given in tables 2 and 3. The OWL constructs are given in terms of their
abstract syntax [4].

Abstract Syntax DL Syntax

owl:Thing �
owl:Nothing ⊥
intersectionOf(C1 C2 ...) C1  C2

unionOf(C1 C2 ...) C1 � C2

complementOf(C) ¬C
oneOf(o1 ...) {o1, . . .}
restriction(R someValuesFrom(C)) ∃R.C
restriction(R allValuesFrom(C)) ∀R.C
restriction(R hasValue(o)) R : o
restriction(R minCardinality(n)) ≥n R
restriction(R minCardinality(n)) ≤n R

restriction(U someValuesFrom(D)) ∃U.D
restriction(U allValuesFrom(D)) ∀U.D
restriction(U hasValue(v)) U : v
restriction(U minCardinality(n)) ≥n U
restriction(U maxCardinality(n)) ≤n U

Fig. 2. OWL DL descriptions
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Abstract Syntax DL Syntax

Class(A partial C1 ...Cn) A � C1  . . .  Cn

Class(A complete C1 ...Cn) A = C1  . . .  Cn

EnumeratedClass(A o1 ...on) A = {o1, . . . , on}
SubClassOf(C1 C2) C1 � C2

EquivalentClasses(C1 ...Cn) C1 = . . . = Cn

DisjointClasses(C1 ...Cn) Ci  Cj = ⊥, i �= j

DatatypeProperty(U super(U1)...super(Un) U � Ui

domain(C1) ...domain(Cm) ≥ 1 U � Ci

range(D1) ...range(Dl) � � ∀U.Di

[Functional]) � � ≤ 1 U
SubPropertyOf(U1 U2) U1 � U2

EquivalentProperties(U1 ...Un) U1 = . . . = Un

ObjectProperty(R super(R1)...super(Rn)) R � Ri

domain(C1) ...domain(Cm) ≥ 1 R � Ci

range(C1) ...range(Cl) � � ∀R.Ci

[inverseOf(R0] R = (−R0)
[Symmetric] R = (−R)
[Functional] � � ≤ 1 R
[InverseFunctional] � � ≤ 1 R−

[Transitive]) Tr(R)
SubPropertyOf(R1 R2) R1 � R2

EquivalentProperties(R1 ...Rn) R1 = . . . = Rn

Fig. 3. OWL DL axioms and facts

The decidability of the logic ensures that sound and complete DL reasoners
can be built to check the consistency of an OWL ontology, i.e. verify whether
there are any logical contradictions in the ontology axioms. Furthermore,
reasoners can be used to derive inferences from the asserted information,
e.g. infer whether a particular concept in an ontology is a subconcept of
another, or whether a particular individual in an ontology belongs to a specific
class.

At the time of this writing, an effort is underway to define another
sublanguage, sometimes referred to as RDFS+ and other times as OWL Very
Lite, which is intended to be a much simpler version that provides only simple
reasoning extensions to RDFS to allow for very efficient scalability.

OWL DLP

As explained above, OWL is based on Description Logic. Since this is a
fragment of FOL, it inherits many of the properties of that logic. In particu-
lar, it inherits the open-world assumption and the non-unique name assump-
tion. This has lead to the definition of an interesting sublanguage of OWL DL,
named OWL DLP. OWL DLP is not part of the official W3C OWL-species
layering, but is nevertheless sufficiently interesting to deserve some discussion
here.
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The open-world assumption says that we cannot conclude some statement
x to be false simply because we cannot show x to be true. After all, our ax-
ioms may be simply non-committal on the status of x. In other words, we
may not deduce falsity from a the absence of truth. The opposite assumption
(closed-world assumption, CWA) would allow to derive falsity from the in-
ability to derive truth. The choice between open world semantics and closed
world semantics is a recurring issue in the design of web-based KR languages.
Although in general the Web would seem more suited to open-world reasoning
(and indeed both RDFS and OWL adopt an open-world semantics), there are
many use-cases where a closed-world semantics is appropriate: students in a
class, customers of a company, cities in a country are all examples of closed
sets: if a student is not listed as enrolled, we can safely assume she is not
enrolled. Although useful in many cases, there is currently no practical mech-
anism in RDFS or OWL to state that a given set of individuals (or facts) is
“closed”. The only (limited) possibility is to empose an owl:maxCardinality
constraint on a role.

The unique name assumption has been discussed above: if we encounter
two individuals with different names, we can safely assume they are indeed dif-
ferent individuals. Typically, database systems assume a single, unique name
for each individual. Again, on the web this assumption would be too strong.
In a world as large as the web, many individuals are known under multiple
names (“Jim Hendler”, “James Hendler”, “Prof. J. Hendler”, “the co-chair
of the OWL Working Group”, etc.). When encountering two such different
names, we should safely assume that they may or may not designate the same
individual, until further reasoning decides the issue one way or the other. OWL
contains a simple device to state that all individuals in an enumerated set are
known to be different (i.e. that they are not just different names for some of the
same individuals), but this language construct (owl :AllDifferent) requires
the explicit enumeration of these names, which can be either impractical, or
even impossible in principle.

Hence, for both the CWA and the UNA, ontologies are sometimes in
need of one, and sometimes in need of the other. This conundrum was
nicely resolved in [13], which identified a fragment of OWL baptised DLP,
for Description Logic Programming: this fragment is the largest fragment on
which the choice for CWA and UNA does not matter as depicted in Fig. 4.
That is to say, OWL DLP is weak enough so that the differences between the
choices do not show up. The advantage of this is that people or applications
that wish to make different choices on these assumptions can still exchange
ontologies in OWL DLP without harm. Of course, as soon as they go out-
side OWL DLP, they will notice that they draw different conclusions from the
same statements. In other words, they will notice that they disagree on the
semantics.

Fortunately, DLP is still large enough that it can be used for useful repre-
sentation and reasoning tasks. It allows the use of such OWL constructors as
class and property equivalence, equality and inequality between individuals,
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Fig. 4. Relation of OWL-DLP to other KR languages

inverse, transitive, symmetric and functional properties, and the intersection
of classes. It excludes however constructors such as intersection and arbitrary
cardinality-constraints.

These constructors do not only allow useful expressivity for many prac-
tical cases, while guaranteeing correct interchange between OWL reasoners
independent of their CWA and UNA, they also allow for a translation into
efficiently implementable reasoning techniques based on databases and logic
programs.

As is already clear from the above two points, RDFS and OWL do not allow
any form default reasoning, even though many years of KR applications have
shown this to be a very useful device for dealing with incomplete knowledge.
This would be particularly important in a world as large as the Web, where not
all properties of all objects will be explicitly known, but must often be inferred
by default until shown otherwise. However, a lack of concensus in the KR
community on how to best formalise defaults has prevented such features to
be included in the Semantic Web standardised representation languages.

Finally, a point often raised is that the large and open world of the Web
will almost certainly need some forms of uncertainty and fuzziness. Again, lack
of concensus has prevented such language features to be included, although it
would seem clear that they will ultimately be needed in some form or other,
either in the representation or in the inference mechanisms.

3 Summary

OWL is the proposed standard for Web ontologies. It allows us to describe
the semantics of knowledge in a machine-accessible way. OWL builds upon
RDF and RDF Schema: (XML-based) RDF syntax is used; instances are de-
fined using RDF descriptions; and most RDFS modelling primitives are used.
Formal semantics and reasoning support is provided through the mapping of
OWL on logics. Predicate logic and description logics have been used for this
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purpose. While OWL is sufficiently rich to be used in practice, extensions are
in the making. They will provide further logical features, including rules.
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Summary. Ontologies and rules are two established paradigms in knowledge
modelling, and play an important role for the Semantic Web. In this chapter,
we present an introduction to common approaches for combining OWL ontologies
and rules. In particular, we cover the Semantic Web Rules Language SWRL and
Description Logic Programs DLP, and give pointers to the literature.

1 Introduction

The Web Ontology Language OWL, as introduced in chapter “Web Ontology
Language: OWL,” is the language recommended by the World Wide Web
consortium (W3C) for expressing ontologies for the Semantic Web. OWL is
based on Description Logics, see chapter “Description Logics,” and as such
is based on first-order predicate logic as underlying knowledge representation
and reasoning paradigm.

Throughout the advent of the Semantic Web, however, F-Logic as an al-
ternative approach for expressing ontologies has been based on rules, more
precisely on the logic programming paradigm, see chapter “Ontologies in
F-Logic.” Due to this, and also due to the importance of rule-based systems in
industrial practice, it is natural to ask how OWL and rule-based knowledge-
representation and reasoning can be combined.

Achieving a conceptually clear integration of OWL and rules, how-
ever, is not a trivial task. The reason for the difficulties lies in the fact
that OWL – based on first-order predicate logic – adheres to the open-
world assumption, while rules generally follow the closed-world assumption.
Consequently, the semantics of OWL and rules differs considerably, and
achieving a meaningful, intuitive, and formally clear combined semantics is
not straightforward.

Research on the topic of ontologies and rules has thus spawned into several
different directions. In this chapter, we provide an overview of the state of the
art, by discussing briefly some of the approaches which we consider to be

S. Staab and R. Studer (eds.), Handbook on Ontologies, International Handbooks 111
on Information Systems, DOI 10.1007/978-3-540-92673-3,
c© Springer-Verlag Berlin Heidelberg 2009



112 P. Hitzler and B. Parsia

most promising or interesting. Since we want to be brief and to the point, our
selection is naturally subjective, but we made an effort to include references
to many of the recent publications on the topic.

In Sect. 2, we present the Semantic Web Rules Language SWRL, a rule
extension of OWL DL which adheres to the open-world paradigm, and is
thus entirely in the spirit of the OWL DL language. We also introduce the
decidable fragment of SWRL known as DL-Safe rules. SWRL adds to the
expressive power of OWL by allowing the modelling of certain axioms which
lie outside the capability of OWL DL.

In Sect. 3, we change perspective and consider rule fragments of OWL DL.
In particular, we present its naive Horn fragment DLP – description logic
programs – and a more sophisticated fragment called Horn-SHIQ, which
encompasses DLP.

In Sect. 4, we briefly address hybrid approaches, i.e. theories and systems
which combine OWL with some existing rules language, and thus combine the
open- and the closed-world assumption.

We conclude in Sect. 5.
Throughout the chapter, we will employ the syntax for Description Logics

as introduced in chapter “Description Logics.”

2 SWRL and DL-Safe Rules

Attempts to combine some sort of rules with a description logic go back at
least as far as the Classic system [2]. Starting in the late 1990s, there were a
number of attempts to combine Datalog (as the premier deductive database
language) with description logics; notable examples include AL-log [6] and
CARIN [22]. While partially motivated by the desire to increase the expressive
power of both components, these attempts (esp. AL-log) at hybrid systems
were strongly constrained by the desire to retain both the modeling and the
computational properties of the respective components, and even, perhaps,
the implementation techniques or actual implementations. (For example, the
proof procedure for AL-log described in [6] calls an independently developed
description logic reasoner as a oracle.)

In general, when considering combination formalisms, the upper bound is
the unrestricted union of the two systems. In essence, the Semantic Web Rule
Language (SWRL)1 [13] is the unrestricted union of OWL DL (i.e. roughly
the description logic SHOIN (D)) and (binary) function-free Horn logic. The
result is a very expressive formalism which is, unsurprisingly, undecidable.
Also, it is comparatively not well understood: there are no native reasoners
for it, relationships to other formalisms are not precisely mapped out, and
there is almost no experience in using SWRL for ontology modeling. However,
it does serve as a unifying overarching formalism for various rule and rule like
extension to OWL DL. It is, for example, a superset of (binary) AL-log and
of CARIN.
1 http://www.w3.org/Submission/SWRL/
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Decidability can be regained with the imposition of a safety condition on
SWRL rules. Essentially, the possible values of (explicit) variables in SWRL
rules are restricted to named individuals only which confines the direct effects
of such rules to the ABox. This safety condition is known as “DL-Safety” and
such SWRL rules are generally called “DL-Safe SWRL rules” or “DL-Safe
rules”. Not only are DL-Safe rules (in combination with OWL-DL) decidable,
but reasonable implementations are emerging.

SWRL was first proposed under the name OWL Rules Language [13] before
gaining built-in atoms and a more RuleML2 flavored syntax. In that form,
it was published as a W3C member submission. The decidability of SWRL
rules with the DL-Safety condition was established in [31, 32], and further
elaborated in [28], including a discussion of a robust implementation of (most
of) OWL plus DL-safe rules, KAON2.

2.1 Definition of SWRL

SWRL contains OWL DL as a proper part, that is, all OWL DL axioms are
SWRL axioms. Additionally, a SWRL knowledge base may contain a set of
rules, which consist of an antecedent (body) and a consequent (head) which
themselves are sets of SWRL atoms.

A SWRL atom may be of the following3 forms:

• Unary atoms:
C(arg1) where C is an arbitrary OWL DL class expression
D(dataArg1) where D is a datatype URI or an enumerated value range

• Binary atoms:
P (arg1, arg2) where P is an object property
Q(arg1, dataArg1) where Q is a datatype property
arg1 = arg1 equality, or “sameAs”
arg2 �= arg2 inequality, or “differentFrom”

Where arguments are of the form:

arg1 | arg2 these are either individuals denoting URIs or
individual ranging variables

dataArg1 these are data literals or data value ranging
variables

A SWRL rule is of the form:

• Atom1 ∧ . . . ∧Atomn → Atomn+1 ∧ . . . ∧Atomm

where atoms 1 through n form the antecedent (i.e. body) and atoms n + 1
through m form the consequent (i.e. the head).

2 http://www.ruleml.org/
3 In addition to the forms directly below, SWRL also allows for “built-in” atoms

which are discussed in Sect. 2.3.



114 P. Hitzler and B. Parsia

The semantics of SWRL are traditionally given via an extension of the
“direct” model theory for OWL DL.4 However, for current purposes it is a little
more perspicuous to present the semantics as an extension of the standard
translation5 of description logics to first order logic. To avoid various tedious
details of the translation of SHOIN (D) which are irrelevant to understanding
SWRL, we give only the translation of the simpler description logic SH, that
is, omitting nominals, inverse roles, number restrictions, and datatypes (but
retaining (in)equality). We therefore also eliminate SWRL atoms with data
valued arguments.

In the table below, X and Y are meta-linguistic variables that range over
constants (i.e. names of individuals) or object variables (i.e. x, y, and z). A
represents an arbitrary atomic concept, C and D represent arbitrary class ex-
pressions, a and b represent arbitrary constants, and P represents an arbitrary
role:

• Atomics
Term ...... Translation
π(x) or π(y) y or x (resp.)
π(A,X ) A(X )
π(P,X ,Y) P (X ,Y)

• Concept expressions
Concept ...... Translation
π(A,X ) A(X )
π(¬C,X ) ¬π(C,X )
π(C 
D,X ) π(C,X ) ∧ π(D,X )
π(C �D) π(C,X ) ∨ π(D,X )
π(∃P.C,X ) ∃π(X )(π(P,X , π(X )) ∧ π(C, π(X )))
π(∀P.C,X ) ∀π(X )(π(P,X , π(X )) → π(C, π(X )))

• Axioms6
Axiom ... Translation
Π(C � D) ∀x(π(C, x) → π(D,x))
Π(P � Q) ∀x, y(π(P, x, y) → π(Q, x, y))
Π(Trans(P )) ∀x, y, z(π(P, x, y) ∧ π(P, y, z) → π(P, x, z))
Π(a : C) π(C, a)
Π(< a, b >: P ) π(P, a, b)
Π(a = b) a = b

Π(a �= b) a �= b

4 As in the SWRL submission.
5 For a basic discussion of the standard translation in a modal logic context, see

chapter “Ontologies in F-Logic” of [1]. For variants of the standard translation
for SHOIN (D) and other description logics see [32] and [16].

6 Class and property equivalence axioms can be defined as a pair of inclusion
axioms.
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It is clear that, except for transitivity axioms, SH can be encoded into first
order logic using only two distinct variables (i.e. x and y) and transitivity only
needs one additional variable (i.e. z). To extend this translation to a SWRL
extension of SH, we need an arbitrary supply of variables, that is, at least
enough for each distinct variable in the rule with the largest number of distinct
variables in a given rule set. To help distinguish translations of SH axioms
from translations of SWRL rules, we shall use capital letters from {X,Y,Z}
with subscripts when necessary.

Let Ψ = ψ1 ∧ . . . ∧ ψn → ψn+1 ∧ . . . ∧ ψm be a SWRL rule, such that
V ar(Ψ) = V1 . . . Vk are all the SWRL variables in the atoms ψ1 . . . ψm. Then
we can extend the translation function, π, as follows (note that the meta-
variables X and Y now also range over SWRL variables):

• Atomics
Term ...... Translation
π(x) or π(y) or π(V) y or x or V(resp.)
π(A,X ) A(X )
π(P,X ,Y) P (X ,Y)

• Axioms
Axiom ... Translation
π(Ψ) ∀V1 . . . Vk(π(ψ1) ∧ . . . ∧ π(ψn) → π(ψn+1) ∧ . . . ∧ π(ψm))

Where a ψ is of the form A(X ) or P (X ,Y)

One immediate consequence of the translation is that it is obvious that
SWRL rules can entirely replace the role axioms of SH:

Axiom FOL
Trans(P ) ∀x, y, z(P (x, y) ∧ P (y, z) → P (x, z))
P (X,Y ) ∧ P (Y,Z) → P (X,Y ) ∀X,Y,Z(P (X,Y ) ∧ P (Y,Z) → P (X,Z))
P � Q ∀x, y(P (x, y) → Q(x, y)
P (X,Y ) → Q(X,Y ) ∀X,Y (P (X,Y ) → Q(X,Y )

Clearly, replacing the variables in the first order translation of the SH
axioms with their uppercased versions results in the first order translation of
the SWRL rule. Thus SH+SWRL is trivially reducible to ALC+SWRL. Of
course, concept inclusion axioms may be encoded as SWRL rules analogously
to how property inclusions are (at least, if we allow concept expressions as
the functor of atoms; otherwise, we need at least some definitions). If, as
the SWRL submission does, we permit SWRL rules with empty antecedents,
then we can assimilate the ABox axioms (i.e. type, property, and (in)equality
assertions) as well.

These reductions, as observed in [13], highlight the fact that Description
Logics can be seen as rule languages, given a sufficiently liberal notion of rule.
The flip side is that SWRL rules have more in common with description logic
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axioms than with Datalog rules and certainly more than with production or
ECA rules.

While we know of no user study comparing the usability of explicit rules
to Description Logic style variable free axioms (and we believe that this
would be a very difficult study to conduct), there is no shortage of claims
that one style or the other is more usable, transparent, or easy to learn. For
example, some researchers working on controlled natural languages (CNLs)
for OWL argue that it is better to produce a CNL sentence correspond-
ing to the SWRL rule (including explicit variables!) for transitivity instead
of using the more succinct “Property P is transitive”. At least one trade
off seems clear: Description Logic “variable free” style is less cluttered with
(clearly redundant!) variables, whereas SWRL style is probably initially more
comfortable for people familiar with rule languages such as Prolog or with
first order logic or with query languages like SQL. The lack of “visual noise”
for standard Description Logic axioms (i.e. concept and property subsump-
tion, transitivity, inverse, etc.) seems decisive except for explication purposes.
Similarly, the operator style syntax of Description Logics makes it easier to
manage complex nested expressions. This suggests that there may be user
advantages to continuing to adopt more expressive role constructors (such as
the expanded role composition operator in OWL 2).

The undecidability of SHOIN+SWRL can easily be seen by the fact
that it is possible to encode the transitivity of an otherwise simple role using
a SWRL rule. Transitive roles in number restrictions are a well known source
of undecidability for SHIQ (e.g. see [14]), and thus of OWL DL as well. Of
course, it is also easy to directly encode undecidable domino tiling problems
in SWRL (as described in [13], for which SH+SWRL is sufficient) or other
known undecidable extensions (such as role-value-maps).

We have seen that we can see SWRL as a very straightforward generalisa-
tion of description logics. The addition of arbitrary variables to conditionals
brings in a lot of expressive power. However, SWRL is a somewhat strange
fragment of first order logic. It lacks, at least, n-ary predications and function
symbols, but it nevertheless is only semi-decidable. Of course, pure Prolog
is another case of an undecidable fragment of first order logic, but there the
question of “Why not move to full first order logic?” has a well known an-
swer: Prolog has a proof procedure which gives rise to a powerful, reasonably
efficient in the common case, and understandable performance model for com-
putations. In fact various compromises (such as omitting the occurs check)
have well understood performance (and soundness/completeness) tradeoffs.
Unfortunately, there is no such body of knowledge about SWRL yet.

2.2 Definition of DL-Safe SWRL

The free syntax of SWRL (e.g. conjunctions in the head and arbitrary con-
cept expressions as atoms) helps emphasis the similarities of SWRL rules with
Description Logic axioms, but it obscures the relation between SWRL rules
and rules systems based on Horn clauses, such as Datalog. However, it is
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easy enough to transform an arbitrary SWRL knowledge base (consisting of a
rules part and a Description Logic part) into a form where all the SWRL rules
consequents contain only a single conjunct and all the atoms are atomic. (Es-
sentially, definitions are added to the description logic part that replace each
complex class atom with a fresh atomic atom, and conjunctive consequences
are eliminated via the Lloyd–Topor transformations [24] as mentioned in the
SWRL submission.)

SWRL ontologies in this form of a knowledge base resemble hybrid De-
scription logic and Datalog knowledge bases. By adjusting the rules portion to
be semantically more like Datalog rules (that is, so that the rules act only on
the explicit facts in the knowledge and other rules), the hybrid flavor becomes
stronger including regained decidability. In the translation to first order logic,
one can impose the safety restriction (of variables to named individuals) by
means of a special DL predicate, O, which is true of all named individuals (i.e.
there is a fact of the form O(a) for all individual names, a, appearing in the
ontology) and does not appear in any concept expression of the ontology (and
thus not in the scope of any existential quantifier).7 Then, for each variable
in the DL-safe rule, an O-atom with that variable is added to the body.8

That is, we extend the translation to first order in the following way. Let
Ω(K) = c1 . . . cn be the set of individual names appearing in a knowledge
base K. K ′ = K ∪{c1 : O . . . cn : O}. Π is then applied to the elements of K ′.
Furthermore, let Ψdls = α1 ∧ . . . ∧ αn → αn+1 be a DL-Safe rule such that
every α is atomic and V ar(Ψdls) = v1 . . . vk are all the SWRL variables in the
atoms α1 . . . αn+1. Then:

Axiom Translation
π(Ψdls) ∀v1 . . . vk(π(α1) ∧ . . . ∧ π(αn) ∧O(v1) ∧ . . . ∧O(vk) → π(αn+1))

It is clear from the translation that the DL-Safe version of the SWRL rule
is much weaker than the unrestricted version. Consider the following simple
example (adapted from [38]):

Foot � ∃partOf.Leg (1)
BurnOnFoot � ∃locatedIn.Foot (2)

LegInjury ≡ ∃locatedIn.Leg (3)
< burn1, foot1 > : locatedIn (4)

< foot1, leg1 > : partOf (5)
leg1 : Leg (6)

foot1 : Foot (7)
burn2 : BurnOnFoot (8)

locatedIn(X, Y) ∧ partOf(Y, Z)→ locatedIn(X, Z) (9)

7 Thanks to an anonymous reviewer for some clarifications on this point.
8 We presume normal Datalog safety, i.e. that every variable in the head appears

in the body.



118 P. Hitzler and B. Parsia

If we interpret (8) as an unrestricted SWRL rule, then we can conclude:

< burn1, leg1 > : locatedIn (10)
burn1 : LegInjury (11)

BurnOnFoot � LegInjury (12)
burn2 : LegInjury (13)

whereas, if we impose DL-Safety on (8), we can only conclude (10) and (11).
Clearly, with DL-Safety, rules can still interact with Description Logic axioms,
but only through new ground facts. It is because we infer (10) (via (9)) that
we can conclude (11) (via the class definition (3)). Thus, DL-Safety constrains
rules to work on and through ground facts.

DL-Safe SWRL rules, in addition to being much more computationally
reasonable, may be more cognitively adequate, perhaps due to their relative
expressive weakness. For users coming from a database background, they can
be seen as a data manipulation language. It is at least plausible that it is
somewhat easier for the typical user to understand why a missing fact blocks
an entailment, than to understand why a subsumption fails because of there
only being necessary, but not sufficient, conditions defined.

2.3 Built-ins

This more programmatic feel is enhanced by the presence of built-in atoms,
that is, atoms with a fixed, predefined interpretation. The SWRL submission
includes built-ins for value comparison, mathematics, and string manipula-
tion among others. There are several issues with built-ins with perhaps the
most prominent being how they are to be interpreted if their variables are
under-instantiated when being evaluated (that is, whether they should be in-
terpreted as arbitrary constraints or more procedurally, e.g. “throwing” an
error when an binding is of an inappropriate type or must be drawn arbitrar-
ily from the domain rather than determined by the knowledge base). However,
SWRL built-ins seem fairly popular: at least they are reported as desired, as
a supplement to OWL’s datatype facility. In spite of this clamor, it is un-
clear what the right semantics of built-ins (or even just data property atoms)
should be, in part due to the fact that the most natural reading of data prop-
erty atoms (and built-ins) is as general constraints, whereas many users talk
about built-ins as if they were procedural attachments.

3 Rule Fragments of OWL

3.1 Description Logic Programs

DLP are a naive Horn fragment of OWL. They inherit their semantics from
OWL, thus adhering to the open world assumption. At the same time, DLPs
can be transformed syntactically into Logic Programming syntax, and thus
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provide a kind of basic interoperability between OWL and Logic Program-
ming. Let it be noted, though, that DLP is not a common fragment of OWL
and Logic Programming, because the two semantics normally considered are
different. Nevertheless, the two semantics have a clearly understood and strong
relationship, about which we will talk later in Sect. 3.2.

Compared to OWL DL, DLP is a rather primitive ontology language.
It strictly contains, however, the OWL DL fragment of RDFS (see chapter
“Resource Description Framework.”) and has the pleasing property of having
polynomial data complexity. It is thus one of the tractable OWL fragments9

discussed within the currently ongoing OWL 2 standardisation effort.10

According to an analysis in [40], most of the existing OWL ontologies
are almost completely contained in DLP.11 An example is the Semantic Web
Research Community ontology, SWRC [39],12 which is the most imported
ontology on the web.13

DLP was originally presented in [11], and a thorough treatment can be
found in [40].

Definition of DLP

Originally, DLP was presented as fragment of OWL. We present DLP in an
alternative and more constructive way, which exposes the modeling capabili-
ties and the limitations of it. It can be considered a kind of normal form for
DLP.

We need to fix terminology first. We understand DLP as a semantic frag-
ment of OWL, i.e. we abstract (for the time being) from a concrete syntax:
Every OWL statement which is semantically equivalent – in the sense of first
order logic – to a (finite) set of function-free Horn clauses constitutes a valid
DLP statement.14 Allowing integrity constraints, we call the resulting frag-
ment DLP IC (or just IC). Allowing integrity constraints and equality, we call
the resulting fragment DLP ICE (or ICE). We write DLP+ for the (semantic)
fragment common to OWL DL and (function-free non-disjunctive) Datalog.
Analogously, we write DLP+ IC, IC+, etc.

9 http://www.w3.org/Submission/2006/SUBM-owl11-tractable-20061219/
10 http://www.w3.org/2007/OWL/
11 We would like to mention that it has been argued whether this analysis is appro-

priate.
12 http://www.aifb.uni-karlsruhe.de/about.html
13 http://ebiquity.umbc.edu/blogger/2007/06/15/how-owlimport-is-used/
14 In our terminology, the set of OWL Lite statements {C � D � E, D ≡ E} would

not qualify as a set of DLP statements, although it is semantically equivalent to
{C � D, D ≡ E}, which is expressible in DLP. We are well aware of this restric-
tion, but will not be concerned with it in the moment, because this more general
notion of semantic equivalence is not readily accessible by syntactic means. Note,
however, that C � D � D qualifies as a DLP statement, since it is semantically
equivalent to C � D.
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Now to the definition. Allowed are the following, where a, b, ai stand for
individuals, C stands for a concept name and R,Q,Ri, Qi,j stand for role
names.

• ABox:
C(a) (individual assertion)
R(a, b) (property assertion)
a = b (ICE) (individual equivalence)

• Property Characteristics:
R ≡ Q (equivalence)
R � Q (subproperty)
� � ∀R.C (C �= ⊥) (domain)
� � ∀R−.C (C �= ⊥) (range)
R ≡ Q− (inverse)
R ≡ R− (symmetry)
� �≤1R (ICE) (functionality)
� �≤1R− (ICE) (inverseFunctionality)

• TBox: We allow expressions of the form

∃Q(−)
1,1 . . . ∃Q(−)

1,m1
.Left1 
 · · · 
 ∃Q(−)

k,1. . . ∃Q
(−)
k,mk

.Leftk � ∀R(−)
1 . . . ∀R(−)

n .Right

where the following apply.
– For DLP we allow Leftj to be of the forms C, {o1, . . . , on}, ⊥ or �,

and Right to be of the forms C or �.
– For DLP IC we allow Leftj to be of the forms C, {o1, . . . , on}, ⊥, or
�, and Right to be of the form C, �, or ⊥.

– For DLP ICE we allow Leftj to be of the forms C, {o1, . . . , on}, ⊥, or
�, and Right to be of the form C, �, ⊥, or {o}.

– For the DLP+ versions we furthermore allow Right to be of the form
∃R(−).{a}.

The superscript (−) shall indicate that an inverse symbol may occur in
these places. Note that (by a common abuse of notation) we allow any of
k,mi, n to be zero. For k = 0 the left hand side becomes �. Note also that
we could have disallowed ⊥ on the left and � on the right, since in either
case the statement becomes void. Likewise, it would suffice to require n = 0
in all cases, since universal quantifiers on the right are expressable using
existentials on the left. Disallowing the existential quantifiers on the left
(while keeping universals on the right) is also possible, but at the expense
of the introduction of an abundance of new concept names. As an example,
note that ∃R.C 
 ∃Q.D � E would have to be translated into the set of
statements {C1 
D1 � E,C � ∀R−.C1,D � ∀Q−.D1}, where C1 and D1

are new concept names. Our representation is more compact.
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Using any of the established syntaxes of the OWL language, an OWL
axiom is said to be in DLP if its translation into Description Logic syntax
results in a finite set of statements of the above mentioned form.

An Example

We give a small example ontology which displays the modeling expressivity
of DLP:

For the TBox, we model the following sentences

(1) Every man or woman is an adult
(2) A grown-up is a human who is an adult
(3) A woman who has somebody as a child, is a mother
(4) An orphan is the child of humans who are dead
(5) A lonely child has no siblings
(6) AIFB researchers are employed by the University of Karlsruhe

They can be written in DL syntax as follows – the axioms actually
constitute an ALCIO TBox (see chapter “Description Logics”).

Man �Woman � Adult (14)
GrownUp � Human 
Adult (15)

Woman 
 ∃childOf−.� � Mother (16)
Orphan � ∀childOf.(Dead 
Human) (17)

LonelyChild � ¬∃siblingOf.� (18)
AIFBResearcher � ∃employedBy.{UKARL} (19)

Using the forms of DLP statements which we introduced, the TBox can
be written as follows.

Man � Adult (1)
Woman � Adult (1)

GrownUp � Human (2)
GrownUp � Adult (2)

Woman 
 ∃childOf−.� � Mother (3)
Orphan � ∀childOf.Dead (4)
Orphan � ∀childOf.Human (4)

LonelyChild � ∀siblingOf.⊥ (5)
AIFBResearcher � ∃employedBy.{UKARL} (6)
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We note that for (5) we require DLP IC, while for (6) we require DLP+.
As an example for an RBox, we use the following.

parentOf ≡ childOf− parentOf and childOf are inverse roles.
parentOf � ancestorOf parentOf is a subrole of ancestorOf.

fatherOf � parentOf fatherOf is a subrole of parentOf.
� � ∀ancestorOf.Human Human is the domain of ancestorOf.

� �≤1fatherOf− fatherOf is inverse functional.

We can populate the classes and roles by means of an ABox, e.g. in the
following way.

{Ian, Benjamin,Raphael,Horrocks} � Man
{Yue,Ulrike} �Woman

Ian = Horrocks
< Ian,UMAN > : employedBy . . .

Note that an ABox statement such as

{Yue,Ulrike} �Woman

is simply syntactic sugar for the two statements

Yue : Woman Ulrike : Woman.

We therefore consider it to be part of the ABox. To be precise, the original

statement actually is (syntactically) not in OWL Lite, but the equivalent set
of three ABox statements is. The statement Ian = Horrocks requires DLP
ICE.

Note also that class inclusions cannot in general be replaced by equiva-
lences. For example, the statement

Adult � Man �Woman

is not in DLP.

Relation to Logic Programming

A DLP knowledge base can be translated into Horn logic, and the latter
can be expressed using Logic Programming syntax. To be more precise, DLP
translates syntactically into Datalog. Let us first continue our example, giving
the knowledge base in Datalog form.
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The TBox is as follows.

Adult(y) ← Man(y) (1)

Adult(y) ← Woman(y) (1)

Human(y) ← GrownUp(y) (2)

Adult(y) ← GrownUp(y) (2)

Mother(y) ← childOf(x, y) ∧Woman(y) (3)

Dead(y) ← Orphan(x) ∧ childOf(x, y) (4)

Human(y) ← Orphan(x) ∧ childOf(x, y) (4)

← LonelyChild(x) ∧ siblingOf(x, y) (5)

y = UKARL ← AIFBResearcher(x) ∧ employedBy(x, y) (6)

Translating the RBox yields the following statements.

parentOf(x, y) ← childOf(y, x)

childOf(x, y) ← childOf(y, x)

ancestorOf(x, y) ← parentOf(x, y)

parentOf(x, y) ← fatherOf(x, y)

Human(y) ← ancestorOf(x, y)
y = z ← fatherOf(y, x) ∧ fatherOf(z, x)

Translated as such, DLP knowledge bases can also be evaluated under
Datalog semantics, which differs from the OWL semantics. The two seman-
tics, however, coincide on the set of inferred instances of named classes, i.e.
ABox reasoning in DLP can be done using Datalog semantics. The formal
relationship between the two semantics is as follows.

Theorem 1. Let K be a DLP knowledge base and let K′ be the translation of
K into Datalog syntax. Let C be a named class and a be a named individual.
Then K |=OWL C(a) under the OWL semantics iff K |=Datalog C(a) under
the Datalog semantics.15

Very recently, in the wake of the already mentioned forthcoming revision
of the OWL standard, which will be based on the SROIQ description logic, a

15 Note that – since we have non-disjunctive rules – the only effect of integrity
constraints is that they can render the knowledge base to be inconsistent. Equality
also needs some explanations: The theorem assumes that we do not use the unique
name assumption, and equality thus has the same meaning as it has under OWL
DL, e.g. two different constants can be equal, meaning that they denote the same
individual.
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naive rule fragment of SROIQ has been identified which considerably extends
DLP, but is not a fragment of SHOIN (D) (i.e. of OWL DL). It is called
SROIQ Rules, and the interested reader shall be pointed to [21] (see also
[10,35]).

3.2 Horn-SHIQ

Horn-SHIQ is another Horn fragment of OWL DL, which encompasses DLP.
To be precise, Horn-SHIQ has a feature which lies outside OWL DL, namely
the use of qualified number restrictions.16 The corresponding fragment lying
within OWL DL would be Horn-SHIN , which is obtained from Horn-SHIQ
by simply disallowing the use of qualified number restrictions.

Horn-SHIQ has the pleasing property that it is of tractable (i.e. poly-
nomial) data complexity [15, 28], while its combined complexity is ExpTime
[20]. It thus provides striking balance between expressivity and ABox reason-
ing scalability. While Horn-SHIQ can be dealt with by any of the standard
OWL reasoners, it is specifically supported by KAON217 [28] – see chapter
“Resolution-Based Reasoning for Ontologies” – and by the new HermiT sys-
tem18 [33].

The original definition of Horn-SHIQ, due to [15, 28], remained implicit.
It was defined as the fragment of SHIQ which, after transformation by the
KAON2 algorithms, resulted in (non-disjunctive) Datalog. It is outside the
scope of this chapter to detail the underlying KAON2 algorithms, and we refer
the reader to chapter “Resolution-Based Reasoning for Ontologies” and to [28]
for this. Instead, we give an alternative definition by means of a grammar.

Definition of Horn-SHIQ

The following definition is taken from [19], where also a formal proof can be
found that this definition coincides with the original notion.

We say that a SHIQ axiom C � D is Horn if the concept expression
¬C �D has the form C+

1 as defined by the context-free grammar in Table 1.
A SHIQ knowledge base with an extensionally reduced ABox is in Horn-
SHIQ if all of its TBox axioms are Horn.

It is easily seen by referring to the definition on page 120, that DLP IC
is indeed contained in Horn-SHIQ. Just note that the use of {o1, . . . , on} on
the Left is removed by extensionally reducing the ABox. Intuitively speaking,
Horn-SHIQ adds the free use of role restrictions to DLP, as, e.g. existential
restriction can be used freely.

16 However, Horn-SHIQ lies within the proposed OWL 2 language, see http://
www.w3.org/Submission/owl11-tractable/

17 http://kaon2.semanticweb.org/
18 http://www.cs.man.ac.uk/∼bmotik/HermiT/
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Table 1. A grammar for defining Horn-SHIQ

C+
1 ← � | ⊥ | ¬C−

1 | C+
1  C+

1 | C+
0 � C+

1 | ∃R.C+
1 | ∀S.C+

1 | ∀R.C+
0 |

| ≥n R.C+
1 | ≤1 R.C−

0 | A
C−

1 ← � | ⊥ | ¬C+
1 | C−

0  C−
1 | C−

1 � C−
1 | ∃S.C−

1 | ∃R.C−
0 | ∀R.C−

1 |
| ≥2 R.C−

0 | ≤n R.C+
1 | A

C+
0 ← � | ⊥ | ¬C−

0 | C+
0  C+

0 | C+
0 � C+

0 | ∀R.C+
0

C−
0 ← � | ⊥ | ¬C+

0 | C−
0  C−

0 | C−
0 � C−

0 | ∃R.C−
0 | A

A, R, and S denote the sets of all concept names, role names, and simple role names,
respectively. The presentation is slightly simplified by exploiting associativity and
commutativity of  and �, and by omitting ≥1 R.C if ∃R.C is present. The grammar
for Horn-SHIN is obtained by replacing the qualifying class by � in all number
restrictions

An Example

As an example for a Horn-SHIQ knowledge base, consider the ontology in
Table 2, which exemplifies the expressivity possible in Horn-SHIQ. Note in
particular the free use of role restrictions which is not possible in DLP.

Relation to Logic Programming

Horn-SHIQ can be translated into Datalog syntax, i.e. it can be understood
as a rule fragment of SHIQ. We do not have the space to detail the under-
lying KAON2 translation algorithms, and refer to chapter “Resolution-Based
Reasoning for Ontologies” and [28] for this. It shall be noted, though, that
this transformation is not an equivalence translation in the sense that the
original ontology and its translation have the same models. The relationship
is more intricate, as given in the following theorem from [28].

Theorem 2. Let K be a Horn-SHIQ knowledge base and let D(K) be the
transformation of K into Datalog syntax resulting from the application of the
KAON2 transformation algorithms. Then the following hold.

1. K is unsatisfiable if and only if D(K) is unsatisfiable.
2. K |= α if and only if D(K) entails α under Datalog semantics, where α

is of the form A(a) or R(a, b), and A is an atomic concept.
3. K |= C(a) for a non-atomic concept C if and only if, for Q a new atomic

concept, Q(a) is entailed by D(K∪{C � Q}) under the Datalog semantics.

In order to exemplify the mentioned transformation, we give a translation
of the ontology from Table 2 into a logic program which can be executed under
Prolog with tabling.19 This example is due to [36].

19 Using, e.g. XSB-Prolog, http://xsb.sourceforge.net/
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Table 2. An example ontology in Horn-SHIQ
TBox/RBox

(1) Parent ≡ ∃ hasChild.�
(2) Person � ∃ childOf.Person
(3) ManyChildren � ≥2 hasChild.�
(4) NoSiblings � Person  ∀ childOf.(≤1 hasChild.�)
(5) childOf ≡ hasChild−1

ABox
< Elaine, Sir Lancelot > : hasChild

Lancelot du Lac : noSiblings
< Lancelot du Lac, Elaine > : childOf

So consider the ontology given in Table 2. The corresponding translation
to logic programming is given in Table 3. Let us first consider the upper part,
which shows the rules directly created in the translation. Some of the rules
clearly represent (part of) some SHIQ-axiom, as is the case for “person(X) ←
nosiblings(X).” and axiom (4). Other rules are obtained by more compli-
cated reasoning steps, such as, e.g. “parent(X) ← manychildren(X).” which
is obtained from axioms (3) and (1). While such rules are still fairly self-
explanatory, there are also a number of axioms that include predicates of the
form Sf (X,Xf ) which do not appear in the original knowledge base. These
predicates are introduced during the transformation process, more precisely
during a step for eliminating Skolem-functions. Intuitively, Sf (X,Y ) holds
if and only if Y = f(X). However, the predicates Sf are only satisfied for
a finite number of constants, since arbitrary application of functions is not
needed and might even lead to undecidability. The exact number of addi-
tional function symbols may vary from case to case. Finally, two of the rules
represent integrity constraints by means of the predicate inc, in the sense that
inc evaluates to true if the integrity constraint is violated.

The rules in the lower part of Table 3 define various auxiliary predicates
that are needed for the correctness of the translation. In order to restrict
these definitions to a finite number of terms, we introduce a predicate O that
specifies the individuals for which the program applies. In our case, these are
just the individuals from the ABox. Using O, we define Sf as discussed above.
Further, we introduce a predicate HU defining which terms are considered in
the program, namely individuals from O and their immediate successors for
each function symbol. The remaining rules yield a necessary equality theory,
restricted to the terms in HU.

The resulting program now allows us to conclude several ABox statements.
For example, we can derive that “parent(Elaine)” and that “Sir Lancelot ≈
Lancelot du Lac”.
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Table 3. Continuation of the example from Table 2: Its translation into Horn-logic,
consisting of the translated rules (middle) and auxiliary axioms (bottom)

person(X) ← nosiblings(X).
person(Xf3) ← person(X), Sf3(X, Xf3).

parent(X) ← haschild(X, Y ).
parent(X) ← manychildren(X).

haschild(Y, X) ← childof(X, Y ).
haschild(X, Xf1) ← manychildren(X), Sf1(X, Xf1).
haschild(X, Xf2) ← parent(X), Sf2(X, Xf2).
haschild(X, Xf0) ← manychildren(X), Sf0(X, Xf0).
childof(X, Xf3) ← person(X), Sf3(X, Xf3).

childof(Y, X) ← haschild(X, Y ).

Y1 ≈ Y2 ← nosiblings(X), childof(X, Z), haschild(Z, Y1), haschild(Z, Y2).
inc ← manychildren(X), nosiblings(X0), childof(X0, X).
inc ← Xf1 ≈ Xf0, manychildren(X), Sf1(X, Xf1), Sf0(X, Xf0).

Sf (X, f(X)) ← O(X).
HU(X) ← O(X).

HU(f(X)) ← O(X). (for f ∈ {f0, f1, f2, f3})
X ≈ X ← HU(X).
X ≈ Y ← Y ≈ X, HU(X), HU(Y ).
X ≈ Z ← X ≈ Y, Y ≈ Z, HU(X), HU(Y ), HU(Z).

C(Y ) ← C(X), X ≈ Y, HU(X), HU(Y ).
(for
C ∈
{person, parent, manychildren, nosiblings})

R(Y1, Y2) ← R(X1, X2), X1 ≈
Y1, X2 ≈
Y2, HU(X1), HU(X2), HU(Y1), HU(X2).

(for R ∈ {childof, haschild})
O(Elaine). O(Sir Lancelot). O(Lancelot du Lac).

4 Hybrid Approaches

In Sect. 2, we discussed the SWRL rule extension of OWL, which basically
follows the design principles of OWL DL by adhering to the open world as-
sumption and by being semantically based on first-order predicate logic. In
Sect. 3, we discussed rule languages which are fragments of OWL DL, and
thus inherit its semantics.

We have focussed on these perspectives for several reasons:

• They align with OWL DL semantically in a very natural way
• They are supported by some of the most prominent and powerful OWL

reasoning engines
• They appear to be least disputed as to their importance for ontology

modeling
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At the same time, there is a multitude of proposals for hybrid systems
which comprise both classical OWL reasoning and traditional rule-based
approaches like logic programming in different variants. The quest for such
hybrid solutions is currently still ongoing, but is not yet close to a conclusion.
We briefly discuss the two approaches which we consider to be most mature
at this stage.

The first of these is called Hybrid MKNF knowledge bases due to [29,
30], which roughly is an autoepistemic extension of OWL DL with DL-safe
rules. The result is a seamless integration of open- and closed-world reasoning
within a single framework which encompasses both OWL DL reasoning and
prominent forms of non-monotonic reasoning. Recent investigations [17, 18]
strive at establishing an implementable semantics for this approach.

The second approach is based on an integration of OWL DL reasoning
with Answer Set Programming, which has been realised as the dlvhex system
[8,9,37]. The integration is less strong as for Hybrid MKNF knowledge bases,
and basically consists of two reasoning engines which interact in a bidirectional
way when reasoning over knowledge bases.

Many additional approaches are currently being investigated and pro-
posed, ranging from tightly integrated ones to loosely coupled systems. We
list recent references as a starting point for the interested reader [4, 5, 7, 12,
23,25–27,34].

5 Conclusions

Our discussion of ontologies and rules is centered on two specific paradigms of
“ontology” formalisms and rule formalisms: Description Logics and logic pro-
gramming (though we have only lightly touched on issues with various forms
of non-monotonicity and similar core features of logic programming systems).
While arguably these are both very prominent, one might say dominant, for-
malisms in the ontology engineering communities today – and there is an
enormous amount of work on their combination as we have seen – historically,
this was not always the case. For example, if we consider expert systems of
the 1970s and 1980s such as Mycin [3] we find that production rule languages
were quite prominent as rule formalisms for ontologies, and for knowledge
representation more generally. Today, that community generally represents
itself as dealing with “business rules” almost exclusively.20 This is reflected in
the make up of the currently ongoing rules interchange format (RIF) working
group21 of the W3C.

Integrating logic programming and business rules, much less description
logics, has proven to be challenging. This is rather surprising given the obvious

20 See http://www.businessrulesgroup.org/brmanifesto.htm for a taste of business
rule concerns.

21 http://www.w3.org/2005/rules/wg



Ontologies and Rules 129

parallels between Prolog and OPS5 style rules and the natural thought that
use of forward chaining inference methods – or more specifically variants of
the Rete algorithm – is irrelevant to the semantics of the rules. It seems
very natural to think that a (simple) relational database with some (simple)
event-condition-action (ECA) rules is equivalent to that relational database
with some Datalog rules. However, a database administrator may have reason
to prefer that the ECA rule evaluation modified the database. In fact, that
may have been a key feature of those rules: consider a situation where one
wished to validate certain inputs but only at input time, that is, subsequent
operations are licensed to violate the validation criteria. In such contexts,
the notion of “assert” and “retract” have representational significance. If you
add, in the action language, the ability to execute code fragments written in a
programming language, it seems clear that there is a fundamental divergence.
Unfortunately, unlike with Description Logics and logic programming, we do
not currently have a well established common semantic framework (i.e. modal
theory) ready to hand to aid us with integration.
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to reason with OWL in a logic programming system. In Proc. 2nd Int. Conf.
on Rules and Rule Markup Languages for the Semantic Web (RuleML 2006),
Athens, Georgia, USA. Springer, Berlin, 2006.
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Summary. In this chapter we present a methodology for introducing and main-
taining ontology based knowledge management applications into enterprises with a
focus on Knowledge Processes and Knowledge Meta Processes. While the former
process circles around the usage of ontologies, the latter process guides their initial
set up. We illustrate our methodology by an example from a case study on skills
management. The methodology serves as a scaffold for Part B “Ontology Engineer-
ing” of the handbook. It shows where more specific concerns of ontology engineering
find their place and how they are related in the overall process.

1 Introduction

Ontologies constitute valuable assets that are slowly, but continuously gain-
ing recognition and use throughout a set of disciplines – as becomes visible in
Part C of this book. Ontologies frequently being a complex asset, their creation
and management does neither come by coincidence nor does it come for free.
Rather, the objectives pursued with their development as well as the devel-
opment itself must be critically assessed by the organization or – rarely – the
individual who is pushing for their creation and maintenance. The discipline
that investigates the principles, methods and tools for initiating, developing
and maintaining ontologies is “ontology engineering” which is the topic of
this part of the handbook. “Ontology engineering methodology” as a part of
ontology engineering deals with the process and methodological aspects of on-
tology engineering, i.e. with the issues of how to provide guidelines and advice
to (potential) developers of ontologies.

It is the purpose of this chapter to introduce a rather generic ontology en-
gineering methodology to the reader and to indicate where this methodology
links to more specific topics discussed mostly, but obviously not completely,
in the remainder of part B of this handbook. Such as software engineer-
ing methodologies cannot be described in isolation from actual software
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engineering activities, the purpose of ontology engineering methodologies can
only be understood in the context of actual ontology engineering experiences.

The methodology presented here, has been derived from several case stud-
ies of building and using ontologies in the realm of knowledge management.
Knowledge management deals with the thorough and systematic manage-
ment of knowledge within an enterprise and between several cooperating
enterprises. Knowledge management is a major issue for human resource
management, enterprise organization and enterprise culture – nevertheless,
information technology (IT) constitutes a crucial enabler for many aspects of
knowledge management and ontologies frequently turn out to be valuable as-
sets for knowledge management in order to target core knowledge management
issues such as search, information integration, or mapping of knowledge assets.
As a consequence, knowledge management is an inherently interdisciplinary
subject and ontologies used for knowledge management play a central role, but
at the same time they are by no means the single factor to determine success
or failure of the overall system. Thus, we may derive our rationale that the
objective of knowledge management constitutes a typical, yet comprehensive
blueprint for issues that arise when developing complex ontologies. Therefore,
we have chosen the knowledge management setting described below in order
to report on a generic ontology engineering methodology.

IT-supported KM solutions are frequently built around some kind of orga-
nizational memory [1] that integrates informal, semi-formal and formal knowl-
edge in order to facilitate its access, sharing and reuse by members of the
organization(s) for solving their individual or collective tasks [7]. In such a
context, knowledge has to be modelled, appropriately structured and inter-
linked for supporting its flexible integration and its personalized presentation
to the consumer. Ontologies may provide such structuring and modeling of
problems by providing a formal conceptualization of a particular domain that
is shared by a group of people in an organization [14,22].

There exist various proposals for methodologies that support the system-
atic introduction of KM solutions into enterprises and with it the construction
of ontologies. A classical approach for introducing knowledge management
systems – including ontologies – is CommonKADS that puts emphasis on an
early feasibility study as well as on constructing several models that capture
different kinds of knowledge needed for realizing a KM solution [26].

Re-engineering earlier approaches, we found that methodologies must dis-
tinguish two processes in order to achieve a clear identification of issues [27]:
whereas the first process addresses aspects of introducing a new ontology-
based system into an organization as well as maintaining it (the so-called
“Knowledge Meta Process”), the second process addresses the management
of knowledge using the developed ontology (or ontologies), i.e. the so-called
“Knowledge Process” (see Fig. 1). E.g. in the approach described in [25],
one may recognize the intermingling of the two aspects from the different
roles that, e.g. “knowledge identification” and “knowledge creation” play.
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Fig. 1. Two orthogonal processes with feedback loops

The Knowledge Meta Process would certainly have its focus on knowledge
identification and the Knowledge Process would rather stress knowledge
creation.

The generic methodology presented here has been developed and applied
in the EU project On-To-Knowledge1 [6]. We now describe some general issues
when implementing and launching ontology-based knowledge management ap-
plications. Then we focus on the knowledge meta process and the knowledge
process and illustrate the instantiation of the knowledge meta process by
an example from a skills management case study of the On-To-Knowledge
project. During the description of the process we will point to more specific
topics of ontology engineering dealt with in further chapters of this handbook.

2 Implementation and Launch of KM Applications

To implement and launch a KM application, one has to consider different
processes (cf. Fig. 2). We have dealt with three major processes occurring in
our case study, i.e. “Knowledge Meta Process”, “Human Issues” and “Soft-
ware Engineering”. The processes are not completely separate but they do
also overlap and interfere. As mentioned before, KM is an inherently interdis-
ciplinary subject which should not be dominated by information technology
(IT) alone, but which needs to take human and organizational issues into ac-
count. Hence, the targeted solution must trade off between problems to be
solved by automated IT solutions and problems to be taken care of by human
actors and through organizational processes. As a rule of thumb KM experts
at a “Dagstuhl Seminar on Knowledge Management”2 (cf. [23]) estimated that
IT support cannot cover more than 10–30% of KM concerns.

Human issues (HI) and the related cultural environment of organizations
heavily influence the acceptance of KM. It is often mentioned in discussions
that the success of KM – and especially KM applications – strongly depends
1 http://www.ontoknowledge.org
2 http://dagstuhl-km-2000.aifb.uni-karlsruhe.de/
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Fig. 2. Relevant processes for developing and deploying KM applications

on the acceptance by the involved people. As a consequence, “quick wins” are
recommended for the initial phase of implementing any KM strategy. The aim
is to quickly convince people that KM is useful for them and adds value to
their daily work.

Software engineering (SE) for knowledge management applications has to
accompany the other processes. The software requirements coming from the
knowledge processes need to be reflected in the planning and management of
the overall system design and implementation.

In the following sections we will now focus on the Knowledge Meta Process
as the core process of ontology engineering and we will mention some cross-
links to the other processes as well as to more specific ontology engineering
issues.

3 Knowledge Meta Process

The Knowledge Meta Process (cf. Fig. 3) consists of five main steps. Each step
has numerous sub-steps, requires a main decision to be taken at the end and
results in a specific outcome. The main stream indicates steps (phases) that
finally lead to an ontology-based KM application. The phases are “Feasibility
Study”, “Kickoff”, “Refinement”, “Evaluation” and “Application and Evolu-
tion”. Below every box depicting a phase the most important sub-steps are
listed, e.g. “Refinement” consists of the sub-steps “Refine semi-formal ontol-
ogy description”, “Formalize into target ontology” and “Create prototype”,
etc. Each document-flag above a phase indicates major outcomes of the step,
e.g. “Kickoff” results in an “Ontology Requirements Specification Document
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Fig. 3. The knowledge meta process

(ORSD)” and the “Semi-formal ontology description”, etc. Each node above
a flag represents the major decisions that have to be taken at the end to
proceed to the next phase, e.g. whether in the Kickoff phase one has cap-
tured sufficient requirements. The major outcomes typically serve as decision
support for the decisions to be taken. The phases “Refinement–Evaluation–
Application and Evolution” typically need to be performed in iterative cycles.
One might notice that the development of such an application is also driven
by other processes, e.g. software engineering and human issues. We will only
briefly mention some human issues in the example section.

3.1 Feasibility Study

Any knowledge management system may function properly only if it is seam-
lessly integrated in the organization in which it is operational. Many factors
other than technology determine success or failure of such a system. To ana-
lyze these factors, we initially start with a feasibility study [26], e.g. to identify
problem/opportunity areas and potential solutions. In general, a feasibility
study serves as a decision support for economical, technical and project fea-
sibility, determining the most promising focus area and target solution.

Considering ontology engineering specifically, there is a need to consider
the return on investment of developing ontologies as an asset. So far, the ac-
counting of ontology as value assets has not been undertaken to our knowledge.
Methods of accounting other intangible assets, such as [8] which builds on
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the approach of Balanced Scorecard [18], seem to be applicable, but need to
be investigated more specifically. Experiences of investment needs for ontol-
ogy development have been collected and are now available for broader use.
They are reported in chapter “Exploring the Economical Aspects of Ontology
Engineering.”

3.2 Kickoff

In the kickoff phase the actual development of the ontology begins. Similar to
requirements engineering and as proposed by [11] we start with an ontology
requirements specification document (ORSD). The ORSD describes what an
ontology should support, sketching the planned area of the ontology appli-
cation and listing, e.g. valuable knowledge sources for the gathering of the
semi-formal ontology description. The ORSD should guide an ontology engi-
neer to decide about inclusion and exclusion of concepts and relations and the
hierarchical structure of the ontology. In this early stage one should look for
already developed and potentially reusable ontologies (cf. [31] on reuse).

Valuable knowledge sources may include text documents or available rela-
tional data. The knowledge contained in such data sources, and particularly
in text, may be unlocked by means of ontology learning methods (cf. chapter
“Ontology and the Lexicon”). A specific techniques, which is sometimes used
for ontology learning, is the analysis of concept properties allowing for the
derivation of hierarchical relationships by means of formal concept analysis
(cf. chapter “Formal Concept Analysis”).

The outcome of this phase is (beside the ontology requirement specifi-
cation document (ORSD)) a semi-formal description of the ontology, i.e. a
graph of named nodes and (un-)named, (un-)directed edges, both of which
may be linked with further descriptive text, e.g. in form of mind maps (cf.
[4, 32]). If the requirements are sufficiently captured, one may proceed with
the next phase. The decision is typically taken by ontology engineers in col-
laboration with domain experts. “Sufficiently” in this context means, that
from the current perspective there is no need to proceed with capturing or
analyzing knowledge. However, it might be the case that in later stages gaps
are recognized. Therefore, the ontology development process is cyclic.

3.3 Refinement

During the kick-off and refinement phase one might distinguish in general two
concurrent approaches for modeling, in particular for refining the semi-formal
ontology description by considering relevant knowledge sources: top–down and
bottom–up. In a top–down-approach for modeling the domain one starts by
modeling concepts and relationships on a very generic level. Subsequently
these items are refined. This approach is typically done manually and leads to
a high-quality engineered ontology. Available top-level ontologies (cf. chapter
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“Foundational Choices in DOLCE”) may here be reused and serve as a start-
ing point to develop new ontologies. In our example scenario we encountered
a middle-out approach, i.e. to identify the most important concepts which will
then be used to obtain the remainder of the hierarchy by generalization and
specialization. However, with the support of an automatic document analy-
sis (cf. chapter “Ontology and the Lexicon”), a typical bottom–up-approach
may be applied. There, relevant concepts are extracted semi-automatically
from available documents. Based on the assumption that most concepts and
conceptual structures of the domain as well the company terminology are de-
scribed in documents, applying knowledge acquisition from text for ontology
design helps building ontologies automatically.

To formalize the initial semi-formal description of the ontology into the
target ontology, ontology engineers firstly form a taxonomy out of the semi-
formal description of the ontology and add relations other than the “is-a”
relation which forms the taxonomical structure. The ontology engineer adds
different types of relations as analyzed, e.g. in the competency questions to
the taxonomic hierarchy. However, this step is cyclic in itself, meaning that
the ontology engineer now may start to interview domain experts again and
use the already formalized ontology as a base for discussions. It might be help-
ful to visualize the taxonomic hierarchy and give the domain experts the task
to add attributes to concepts and to draw relations between concepts (e.g.
we presented them the taxonomy in form of a mind map as mentioned in the
previous section). The ontology engineer should extensively document the ad-
ditions and remarks to make ontological commitments made during the design
explicit. The application of design patterns for ontologies (cf. chapter “Ontol-
ogy Design Patterns”) may greatly improve the efficiency and effectiveness of
the process as well as the quality of the ontology.

The outcome of this phase is the “target ontology”, that needs to be eval-
uated in the next step. The major decision that needs to be taken to finalize
this step is whether the target ontology fulfills the requirements captured in
the previous kickoff phase. Typically an ontology engineer compares the initial
requirements with the current status of the ontology. This decision will typ-
ically be based on the personal experience of ontology engineers. As a good
rule of thumb we discovered that the first ontology should provide enough
“flesh” to build a prototypical application. This application should be able to
serve as a first prototype system for evaluation.

3.4 Evaluation

We distinguish between three different types of evaluation: (1) technology-
focussed evaluation, (2) user-focussed evaluation and (3) ontology-focused
evaluation.

Our evaluation framework for technology-focussed evaluation consists of
two main aspects: (1) the evaluation of properties of ontologies generated by
development tools, (2) the evaluation of the technology properties, i.e. tools
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and applications which includes the evaluation of the evaluation tool prop-
erties themselves. In an overview these aspects are structured as follows: (1)
Ontology properties (e.g. language conformity (Syntax), consistency (Seman-
tics)) and (2) technology properties (e.g. interoperability, turn around ability,
scalability etc.).

The framework shown above concentrates on the technical aspects of on-
tologies and related ontologies. However, the aspect of user-focussed evaluation
remains open. The most important point from our perspective is to evaluate
whether users are satisfied by the KM application. More specific, whether an
ontology based application is at least as good as already existing applications
that solve similar tasks.

Beside the above mentioned process oriented and pragmatic evaluation
methods, one also need to formally evaluate ontologies. One of the most promi-
nent approaches here is the OntoClean approach (cf. chapter “An Overview of
OntoClean”), which is based on philosophical notions. Another well-known ap-
proach (cf. chapter “Ontology Engineering Environments”) takes into account
the normalization of an ontology. Applying such approaches helps avoiding
common modelling errors and leads to more correct ontologies.

The outcome of this phase is an evaluated ontology, ready for the roll-out
into a productive system. However, based on our own experiences we expect
in most cases several iterations of “Evaluation–Refinement–Evaluation” until
the outcome supports the decision to roll-out the application. The major de-
cision that needs to be taken for finalizing this phase is whether the evaluated
ontology fulfills all evaluation criteria relevant for the envisaged application
of the ontology.

3.5 Application and Evolution

The application of ontologies in productive systems, or, more specifically, the
usage of ontology based systems, is being described in the following Sect. 4
that illustrates the knowledge process.

The evolution of ontologies is primarily an organizational process. There
have to be rules to the update, insert and delete processes of ontologies (cf.
[29]). We recommend, that ontology engineers gather changes to the ontology
and initiate the switch-over to a new version of the ontology after thoroughly
testing all possible effects to the application. Most important is therefore to
clarify who is responsible for maintenance and how it is performed and in
which time intervals is the ontology maintained. However, there also exist
technical approaches for the consistent evolution of ontologies (cf. [16,17,30]).

A current topic for research and practice is the use of evolutionary knowl-
edge management technologies that frequently build on Web2.0 technology
and that decentralize the responsibility of knowledge management processes
and meta processes to the individuals in the (virtual) organization with a
corresponding need to decentralize ontology engineering (cf. [3, 28] on de-
centralized and evolutionary knowledge management and chapter “Ontology
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Engineering and Evolution in a Distributed World Using DILIGENT” on de-
centralized, evolutionary ontology engineering).

The outcome of an evolution cycle is an evolved ontology, i.e. typically
another version of it. The major decision to be taken is when to initiate
another evolution cycle for the ontology.

4 Knowledge Process

Once a KM application is fully implemented in an organization, knowledge
processes essentially circle around the following steps (cf. Fig. 4):

• Knowledge creation and/or import of documents and meta data, i.e. con-
tents need to be created or converted such that they fit the conventions
of the company, e.g. to the knowledge management infrastructure of the
organization.

• then knowledge items have to be captured in order to elucidate impor-
tance or interlinkage, e.g. the linkage to conventionalized vocabulary of
the company by the creation of relational metadata.

• retrieval of and access to knowledge satisfies the “simple” requests for
knowledge by the knowledge worker;

• typically, however, the knowledge worker will not only recall knowledge
items, but she will process it for further use in her context.

Fig. 4. The knowledge process
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5 Example: Skills Management at Swiss Life

We now give an example of the Knowledge Meta Process instantiation of a
skills management case study at Swiss Life (cf. [19]). Skills management makes
skills of employees explicit. Within the case study existing skill databases and
documents (like, e.g. personal homepages) are integrated and expanded. Two
aspects are covered by the case study: first, explicit skills allow for an ad-
vanced expert search within the intranet. Second, one might explore his/her
future career path by matching current skill profiles vs. job profiles. To ensure
that all integrated knowledge sources are used in the same way, ontologies are
used as a common mean of interchange to face two major challenges. Firstly,
being an international company located in Switzerland, Swiss Life has inter-
nally four official languages, viz. German, English, French and Italian. Sec-
ondly, there exist several spellings of same concepts, e.g. “WinWord” vs. “MS
Word”. To tackle these problems, ontologies offer external representations for
different languages and allow for representation of synonymity. Figure 5 shows
a screenshot from the skills management application. The prototype enables
any employee to integrate personal data from numerous distributed and het-
erogeneous sources into a single coherent personal homepage.

Fig. 5. Skills management case study at Swiss life
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5.1 Feasibility Study

For identifying factors which can be central for the success or failure of the
ontology development and usage we made a requirement analysis of the exist-
ing skills management environment and evaluated the needs for a new skills
management system. We identified mainly the human resources department
and the management level of all other departments as actors and stakeholders
for the skills management. After finding the actors and stakeholders in the
skills management area, we named the ontology experts for each department,
which are preferably from the associated training group of each department.

5.2 Kickoff

The departments private insurance, human resources and IT constitute three
different domains that were the starting point for an initial prototype.
The task was to develop a skills ontology for the departments containing
three trees, viz. for each department one. The three trees should be combined
under one root with cross-links in between. The root node is the abstract
concept “skills” (which means in German “Kenntnisse/Faehigkeiten”) and is
the starting point to navigate through the skills tree from the top.

During the kickoff phase two workshops with three domain experts3 were
held. The first one introduced the domain experts to the ideas of ontolo-
gies. Additional potential knowledge sources were identified by the domain
experts, that were exhaustively used for the development of the ontologies,
e.g. a book of the Swiss Association of Data Processing (“Schweizerischer Ver-
band fuer Datenverarbeitung”) describing professions in the computing area
in a systematic way similar to an ontology. Obviously, this was an excellent
basis to manually build the skills ontology for the IT domain. First experi-
ments with extracting an ontology semi-automatically by using information
extraction tools did not satisfy the needs for a clearly structured and easily
understandable model of the skills. The domain experts and potential users
felt very uncomfortable with the extracted structures and rather chose to build
the ontology by themselves “manually”. To develop the first versions of the
ontologies, we used a mind mapping tool (“MindManager”). It is typically
used for brainstorming sessions and provides simple facilities for modelling
hierarchies very quickly. The early modelling stages for ontologies contain ele-
ments from such brainstorming sessions (e.g. the gathering of the semi-formal
ontology description).

During this stage a lot of “concept islands” were developed, which were iso-
lated sets of related terms. These islands are subdomains of the corresponding
domain and are self-contained parts like “operating systems” as sub domain
in the IT domain. After developing these concept islands it was necessary to

3 Thanks to Urs Gisler, Valentin Schoeb and Patrick Shann from Swiss Life for
their efforts during the ontology modelling.
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combine them into a single tree. This was a more difficult part than assembling
the islands, because the islands were interlaced and for some islands it was
possible to add them to more than one other island, which implies awkward
skills trees that contain inconsistencies after merging. For each department
one skills tree was built in separate workshops. A problem that came up very
early was the question where to draw the line between concepts and instances.
E.g. is the programming language Java instantiated by “jdk1.3” or is “jdk1.3”
so generic that it still belongs to the concept-hierarchy? Another problem was
the size of the ontology. What is the best depth and width of each skills tree?
Our solution was, that it depends on the domain and should be determined
by the domain expert.

As result of the kick-off phase we obtained the semi-formal ontology de-
scriptions for the three skills trees, which were ready to be formalized and
integrated into a single skills ontology. At this stage the skills trees reached a
maturity that the combination of them caused no major changes for the single
skills trees.

5.3 Refinement

During the refinement phase we formalized and integrated the semi-formal
ontology descriptions into a single coherent skills ontology. An important as-
pect during the formalization was (1) to give the skills proper names that
uniquely identify each skill and (2) to decide on the hierarchical structure of
the skills. We discussed two different approaches for the hierarchical order-
ing: we discovered that categorization of skills is typically not based on an
is-a-taxonomy, but on a much weaker hasSubtopic relationship that has im-
plications for the inheritance of attached relations and attributes. However,
for our first prototype this distinction made no difference due to missing cross-
taxonomical relationships. But, according to [15], subsumption provided by
is-a taxonomies is often misused and a later formal evaluation of the skills
ontology according to the proposed OntoClean methodology possibly would
have resulted in a change of the ontology.

In a second refinement cycle we added one more relation type, an “associa-
tive relation” between concepts. They express relations outside the hierarchic
skills tree, e.g. a relation between “HTML” and “JSP”, which occur not in
the same tree, but correspond with each other, because they are based on the
same content. “HTML” is in the tree “mark-up languages”, while the tree
“scripting languages” contains “JSP”. This is based on the basic characteris-
tics and the history of both concepts, which changed over time. But in reality
they have a close relationship, which can be expressed with the associative
relation.

The other task in this phase was to integrate the three skills ontologies into
one skills ontology and eliminate inconsistencies in the domain ontology parts
and between them. Because the domain ontologies were developed separately,
the merger of them caused some overlaps, which had to be resolved. This
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happened for example in the computer science part of the skills trees, where
the departments IT and private insurance have the same concepts like “Trofit”
(which is a Swiss Life specific application). Both departments use this concept,
but each uses a different view. The IT from the development and the private
insurance from the users view. Additionally the personal skills of any employee
are graded according to a generic scale of four levels: basic knowledge, practical
experience, competency, and top specialist. The employees will grade their own
skills themselves. As known from personal contacts to other companies (e.g.
Credit Suisse, ABB and IBM), such an approach proved to produce highly
reliable information.

As a result at the end of the refinement phase the “target skills ontology”
consisted of about 700 concepts, which could be used by the employees to
express their skill profile.

5.4 Application and Evolution

The evaluation of the prototype and the underlying ontology was unfortu-
nately skipped due to internal restructuring at Swiss Life which led to a
closing down of the whole case study.

Still, we considered the following aspects for the evolution of our skills man-
agement application: The competencies needed from employees are a moving
target. Therefore the ontologies need to be constantly evaluated and main-
tained by experts from the human resource department. New skills might be
suggested by the experts themselves, but mainly by employees. Suggestions
include both, the new skill itself as well as the position in the skills tree where
it should be placed. While employees are suggesting only new skills, the ex-
perts decide which skills should change in name and/or position in the skills
tree and, additionally, decide which skill will be deleted. This was seen as
necessary to keep the ontology consistent and to avoid that, e.g. similar if not
the same concept appear even in the same branch. For each ontology (and
domain) there should exist a designated ontology manager who decides if and
how the suggested skill is integrated.

6 Related Work on Methodologies

A first overview on methodologies for ontology engineering can be found in [9].
Within OntoWeb4 there have been joint efforts of members, who produced an
extensive state-of-the-art overview of methodologies for ontology engineering
(cf. [10,13]). There exist also deliverables on guidelines and best practices for
industry (cf. [20, 21]) with a focus on applications for E-Commerce, Informa-
tion Retrieval, Portals and Web Communities.

4 OntoWeb, a European thematic network, see http://www.ontoweb.org for further
information.
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CommonKADS [26] is not per se a methodology for ontology development.
It covers aspects from corporate knowledge management, through knowledge
analysis and engineering, to the design and implementation of knowledge-
intensive information systems. CommonKADS has a focus on the initial phases
for developing knowledge management applications, we therefore relied on
CommonKADS for the early feasibility stage. E.g. a number of worksheets
is proposed that guide through the process of finding potential users and
scenarios for successful implementation of knowledge management.

The Enterprise Ontology [37] [38] proposed three main steps to engineer
ontologies: (1) to identify the purpose, (2) to capture the concepts and rela-
tionships between these concepts, and the terms used to refer to these con-
cepts and relationships, and (3) to codify the ontology. In fact, the principles
behind this methodology influenced many approaches in the ontology com-
munity. These principles are also reflected and appropriately extended in the
steps kickoff and refinement of our methodology.

TOVE [36] proposes a formalized method for building ontologies based on
competency questions. We found the approach of using competency questions,
that describe the questions that an ontology should be able to answer, very
helpful and integrated it in our methodology.

METHONTOLOGY [11, 12] is a methodology for building ontologies ei-
ther from scratch, reusing other ontologies as they are, or by a process of
re-engineering them. The framework enables the construction of ontologies
at the “knowledge level”. The framework consists of: identification of the
ontology development process where the main activities are identified (eval-
uation, configuration, management, conceptualization, integration implemen-
tation, etc.); a lifecycle based on evolving prototypes; and the methodology
itself, which specifies the steps to be taken to perform each activity, the tech-
niques used, the products to be output and how they are to be evaluated.
METHONTOLOGY is partially supported by WebODE. Our combination of
the On-To-Knowledge Methodology and OntoEdit (cf. [32, 33]) is quite simi-
lar to the combinations of METHONTOLOGY and WebODE (cf. [2]. In fact,
they are the only duet that has reached a comparable level of integration of
tool and methodology.

More recently, the DILIGENT methodology has been developed that ad-
dresses the decentralized engineering of ontologies [24]. The development of
DILIGENT is driven by the fact that in a lot of application scenarios a
geographically dispersed group of ontology engineers, domain experts, and
ontology users that are often distributed across different organizations, has
to develop and maintain a shared ontology for knowledge management. DILI-
GENT puts special emphasis on supporting the argumentation process that
is needed in agreeing on updates of a shared ontology [35]. Obviously, these
techniques would be a valuable support for the refinement and evolution
phases of our methodology. A detailed description of DILIGENT is given in
chapter “Ontology Engineering and Evolution in a Distributed World Using
DILIGENT.”
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Currently, the NeOn methodology for engineering networked ontologies
is under development as part of the NeOn 5 project [31]. This methodology
supports among others the reuse of ontologies as well as of non-ontological
resources as part of the engineering process. The NeOn methodology also pro-
vides detailed guidelines for executing its various activities. This includes the
usage of ontology design patterns as described in chapter “Ontology Design
Patterns.” Thus, the NeOn methodology would provide additional methods
for the kickoff and refinement phases of our methodology.

7 Conclusion

The described methodology was developed and applied in the On-To-
Knowledge project and influenced work, e.g. in the SEKT and the NEON
projects. One of the core contributions of the methodology that could not
be shown here is the linkage of available tool support with case studies by
showing when and how to use tools during the process of developing and
running ontology based applications in the case studies (cf. [34]).

Lessons learned during setting up and employing the methodology in
the On-To-Knowledge case studies include: (1) different processes drive KM
projects, but “Human Issues” might dominate other ones (as already outlined
by Davenport [5]), (2) guidelines for domain experts in industrial contexts
have to be pragmatic, (3) collaborative ontology engineering requires physical
presence and advanced tool support and (4) brainstorming is very helpful for
early stages of ontology engineering, especially for domain experts not familiar
with modelling (more details on be found, e.g. in [32,33]).

In this chapter we have shown a process oriented methodology for intro-
ducing and maintaining ontology based knowledge management systems. Core
to the methodology are Knowledge Processes and Knowledge Meta Processes.
While Knowledge Meta Processes support the setting up of an ontology based
application, Knowledge Processes support its usage. Still, there are many open
issues to solve, e.g. how to handle a distributed process of emerging and aligned
ontologies that is likely to be the scenario in the semantic web.

References

1. A. Abecker, A. Bernardi, K. Hinkelmann, O. Kuehn, and M. Sintek. Toward a
technology for organizational memories. IEEE Intelligent Systems, 13(3):40–48,
1998.
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22. D. O’Leary. Using AI in knowledge management: Knowledge bases and ontolo-
gies. IEEE Intelligent Systems, 13(3):34–39, 1998.

23. D. O’Leary and R. Studer. Knowledge management: An interdisciplinary ap-
proach. IEEE Intelligent Systems, Special Issue on Knowledge Management,
16(1), 2001.

24. H. S. Pinto, S. Staab, and C. Tempich. Diligent: Towards a fine-grained method-
ology for distributed, loosely-controlled and evolving engineering of ontologies.
In ECAI, pages 393–397, 2004.

25. G. Probst, K. Romhardt, and S. Raub. Managing Knowledge. Wiley, New York,
1999.

26. G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt, W. van
de Velde, and B. Wielinga. Knowledge Engineering and Management – The
CommonKADS Methodology. MIT, Cambridge, MA, 1999.

27. S. Staab, H.-P. Schnurr, R. Studer, and Y. Sure. Knowledge processes and on-
tologies. IEEE Intelligent Systems, Special Issue on Knowledge Management,
16(1):26–34, 2001.

28. S. Staab and H. Stuckenschmidt, editors. Semantic Web and Peer-to-Peer.
Springer, Berlin, 2006.

29. L. Stojanovic, A. Maedche, B. Motik, and N. Stojanovic. User-driven ontol-
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31. M. C. Suárez-Figueroa, G. Aguado de Cea, C. Buil, K. Dellschaft, M. Fernández-
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Summary. Existing mature ontology engineering approaches are based on some
basic assumptions that are often neglected in practice.

Ontologies often need to be built in a decentralized way, ontologies must be
given to a community in a way such that individuals have partial autonomy over
them, ontologies have a life cycle that involves an iteration back and forth between
construction/modification and use and ontologies should support the participation
of non-expert users in ontology engineering processes.

While recently there have been some initial proposals to consider these issues,
they lack the appropriate rigor of mature approaches. i.e. these recent proposals lack
the appropriate depth of methodological description, which makes the methodology
usable, and they lack a proof of concept by concrete cases studies. In this paper, we
describe the DILIGENT methodology that takes decentralization, partial autonomy,
iteration and non-expert builders into account and we demonstrate its proof-of-
concept in two real-world organizational case studies.

1 Introduction and Motivation

Ontologies are used to improve the quality of communication between com-
puters, between humans and computers as well as between humans. Therefore
an ontology should result from an agreement between its different stakeholders
and this agreement must be reached in a comprehensive ontology engineering
process. There are several mature methodologies that have been proposed to
structure this process and thus to facilitate it (cf. chapter “Ontology Engineer-
ing Methodology” and [4,17,24]) and their success has been demonstrated in
a number of applications. Nevertheless, these methodologies make some basic
assumptions about the way the ontology engineering process takes place and
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about the way the resulting ontologies are used. In practice, we thus observe
that these methodologies neglect some important issues:

1. Decentralization: Existing methodologies do not take into account that
even a medium size group of stakeholders of an ontology is often quite
distributed and does not necessarily meet often or easily. These methodolo-
gies approach ontology engineering in the same style that knowledge-based
systems were approached in the past: while the user group of a resulting
ontology may be large, its development is performed by a comparatively
small group of (1) domain experts who represent the user community and
(2) ontology engineers who help structuring that knowledge.
In contrast, we have observed that ontology-based applications tend to
be built and used in a more widely distributed fashion. By distributed
we mean, not only geographically dispersed, but also involving a large
number of interested parties from different organizations, with different
areas of expertise and competence, different kinds of users with different
requirements, etc. For instance, the Gene Ontology (GO), as reported in
its web page,1 is a result of a consortium with 99 members from 18 or-
ganizations distributed worldwide, and statistics show above 1,000 hits
per week of the GO download web page, on average. Therefore, it almost
seems a characteristic of ontologies, that they are more useful if the sys-
tems that they support are reaching out over several locations, several
independent information systems and several, if not many, independent
groups of users. However, applications that are heavily distributed, e.g.
applications for virtual organizations2 or ontology-based Peer-to-Peer ap-
plications3 or Semantic Web applications, have people and organizations
frequently leaving or joining a network. Therefore, ontology engineering
processes targeting more traditional, centralized knowledge structures do
not provide a representative picture of what the stakeholders of the ontol-
ogy require. In such a scenario, the ontology development process needs
to integrate a wider group of stakeholders, and take into account that
stakeholders will hardly ever gather in one place – not even in a virtual
space.
Therefore, ontology engineering methodologies need to consider decentral-
ization in depth and provide corresponding methodological support.

2. Partial Autonomy : We have had the experience that potential users of an
ontology are typically forced to use an ontology as is, but that they are
commonly not able to influence its development and have to forget about
it if it does not fit their needs exactly. A typical situation that we have
encountered was that people want to retain a part of the shared ontology
and modify it locally, i.e. personalize it [13].

1 http://www.geneontology.org
2 http://www.virtuelle-fabrik.com
3 http://swap.semanticweb.org
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There have been very few approaches that have touched upon the issue of
adaptation to individual purposes [10,14]. Most of these approaches have
targeted this question by considering the re-use of (parts of) ontologies
for constructing a new and rather independent ontology, while in the set-
ting of individual adaptation one rather needs to construct a living view
onto an existing ontology that is augmented by individual, idiosyncratic
extensions.
Thus, existing methodologies have not really dealt with users adapting
ontologies for personal use.

3. Iteration: Existing ontology engineering methodologies mention the prob-
lem of evolving the ontology, but the actual cases that support the method-
ologies are typically cases where the ontology construction phase strictly
precedes its usage phase.
In contrast, we often see the need for interleaving ontology construction
and use [13]. Moreover, there is a lack of case studies that support hy-
potheses about how to iterate in the ontology evolution process.
Therefore, evolution needs to be addressed in real, and long run case
studies.

4. Non-expert builders: Existing ontology engineering methodologies have
been derived in a style useful for knowledge engineers. These methodolo-
gies propose check lists to guide the engineering process which have been
shaped by the needs of knowledge engineers to cope with a complex pro-
cess and to come up with an often intricate resulting system or ontology.
In contrast, in the distributed, evolving cases we consider, the participa-
tion of a knowledge engineer is often restricted to a, possibly complex,
core ontology. Beyond the core, typical application cases involve extensive
participation and, comparatively simple, concept formation by domain
experts and/or users. Support for their participation is mostly lacking in
these methodologies.

These issues arise naturally for many ontologies, e.g. [15] or GO and one
might claim for all ontologies in the Semantic Web! Recently a number of other
approaches that touch these issues have been proposed [1, 6]. However, none
goes very far from a methodological point of view, namely they do not provide
elaborated methodological support, or were extensively used in concrete case
studies with regard to these four issues, such as actions to take, their input
and output, etc.

Therefore, to account for some of the differences between classical knowl-
edge engineering and ontology engineering methodologies derived from there,
we thus have started to develop DILIGENT, a methodology for:

1. DIstributed
2. Loosely-controlled, and
3. evolvInG Engineering of oNTologies that is able to
4. support non-expert ontology builders
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While developing DILIGENT, we also had to consider two general method-
ological objectives:

First, we wanted to provide guidance to the knowledge engineer, the on-
tology engineer and the non-expert ontology builders that was as fine-grained
as possible to make the sequence of tasks as concrete and re-producible by
novices as possible.

Second, we needed to check DILIGENT by some concrete case studies to
show that it can live up to its promises. Clearly, it is very difficult to near
impossible to match any methodology, which constitutes an abstraction of
many processes, onto an instantiated process in detail. Nevertheless without
a reasonable substantiation of the proposed steps in concrete case studies a
proposal like DILIGENT would remain vacuous.

We will therefore describe DILIGENT in detail and some experiences
where it was shown how it maps onto comprehensive case studies. Neverthe-
less, it will not be possible to describe the finest grain size of DILIGENT. At
the finest grain size of methodological support, we have proposed an argumen-
tation framework, an argumentation ontology, technical support and several
case studies to investigate only these aspects. Including all these investigations
in depth as required by a sound scientific presentation would have doubled
the size of this paper, hence we only refer to this work here [12,19,20,23] and
sketch it briefly in Sect. 4.

In the following, we present our ontology engineering methodology, DILI-
GENT. In Sect. 2 we give an overview of how we have proceeded to design
and validate DILIGENT. In Sect. 3 we describe DILIGENT elaborating the
hierarchical task structure in detail. In Sect. 4, we briefly describe how we
have applied DILIGENT in some comprehensive case studies, i.e. a distributed
knowledge management scenario supported by an ontology-based peer-to-peer
knowledge sharing platform and supported by wikis. Eventually, we compare
with related work in Sect. 5 and conclude.

2 Developing the DILIGENT Ontology Engineering
Methodology

In order to arrive at a sound Ontology Engineering (OE) methodology we
have proceeded in five steps to develop DILIGENT.

Around 2000, ontology engineering efforts with a clear distributed, loosely-
controlled and dynamic flavor were taking place. For instance SUMO4 was
being collaboratively developed by a group of worldwide distributed re-
searchers, in a loosely-controlled and evolutionary fashion. No particular
methodologies were being followed to control these new features, but these pro-
cesses were clearly following different process models from the ones that were
being tackled by the methodologies available at that time. These new efforts
[13] provided the initial ideas to conceive our initial DILIGENT framework.
4 http://suo.ieee.org/
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Second, the first step in DILIGENT consists of the construction of a core
ontology (cf. Sect. 3). In this step DILIGENT does not introduce any special
or new requirements for the core ontology when compared to the ones dealt
with by existing methodologies (cf. Sect. 1). Therefore, with regard to this
step, we have decided not to develop a new methodology, but to borrow from
existing work. We expect that any mature methodology can be used. In our
case studies, we have exploited the OTK-methodology (chapter “Ontology
Engineering Methodology”).

Third, in order to validate the combined methodology we proceed in two
fronts. On the one hand, we analyzed its potential for the past and ongo-
ing development process of the biological taxonomy of living species. When
we analyze its evolution since 1735 one can realize that it completely follows
the 5-step DILIGENT process, as briefly described in Sect. 3. On the other
hand, we conducted a lab experiment case study to specifically investigate
whether some argumentation structures dominate the progress in the ontol-
ogy engineering task and should therefore be accounted for in a fine-grained
methodology. Our experiments [12] provide strong indication – though not
full-fledged evidence – that a restriction of arguments can enhance the ontol-
ogy engineering effort in a distributed environment. Moreover it also shows
us that proper social management procedures and tool support helps to reach
consensus in a smoother way (cf. [2]).

Fourth, we started a real-life, cross-organizational case study in the tourism
industry. We reported about its initial state supporting means in [11]. In this
case study, the process template was realized in a decentralized, autonomous
and collaborative setting with high personalization requirements. The pro-
cess was supported by a peer-to-peer system and tools were specifically de-
veloped to support non-ontology engineering experts. Two rounds following
DILIGENT were monitored over a 3 month period.

Fifth, by the sum of these initial process templates,5 cases and experi-
ments, we arrived at the new and refined DILIGENT methodology that we
present here. The focus of the refinement has been on decentralization, itera-
tion and partial autonomy as well as on guiding users who are not ontology
engineering experts. The methodology has been validated by the iterative case
study presented in Sect. 4 and others reported in the literature [23,25]. Thus,
we have repeatedly switched between hypothesis formulation and validation.

3 The DILIGENT Methodology

In order to give the necessary context for the detailed process description as
described in Sect. 3.2 we start by summarizing the overall DILIGENT process
model.
5 In our terminology, a methodology for an engineering artefact is a tested and

validated process template abstracting over all possible successful engineering
processes for engineering the artefact.
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The DILIGENT process [11] supports its participants, in collaboratively
building one shared ontology. In DILIGENT we assume that there are sev-
eral participants, with different and complementary skills, which, in most of
the cases, are geographically distributed, and which have genuine interest in
collaboratively building or using one ontology. For instance, in a virtual or-
ganization, the different participants may be in a “coopetition” relationship:
on the one hand they may be from different but similar organizations that
compete for the same resources, but on the other, to compete against exter-
nal threats, they should cooperate to improve their chances of success. In this
case, it may be important, for instance to promote interoperability between
their applications, that they all agree on a given ontology, the shared ontology,
and use it as a common ground of understanding.

There are different kinds of participants in the DILIGENT process: (1)
domain experts, that know about the domain that is targeted (2) ontology
engineers, that know how to build ontologies (3) knowledge engineers, that
know how to build knowledge or information systems based on ontologies, and
(4) users, that use the ontology resulting from the process in their systems for
their own uses. The participants directly involved in building the ontology,
may or may not use the ontology. However, most ontology users will typically
not build or modify the given ontology. DILIGENT supports trained ontology
engineers as well as typical users of information systems likewise. The ontol-
ogy engineers perform the defined activities with more accuracy and awareness
of the process, while the non-ontology-engineering-expert users will tend to
follow them implicitly guided by the provided tools. At some points of the pro-
cess there is a subset of participants that plays a special role and has added
responsibilities: the board. As in the other steps of the process, the composi-
tion of the board is not fixed, that is members can enter or leave, although it
should have a more stable composition than that of the participants involved
in the DILIGENT process. This board is responsible for the shared ontology:
in the beginning it builds the initial version of the ontology, in the iterations
that follow it is responsible for the evolution of the shared ontology.

3.1 General Process

The process comprises five main activities: (1) build, (2) local adaptation, (3)
analysis, (4) revision, (5) local update, Fig. 1. The process starts by having
domain experts, users, knowledge engineers and ontology engineers build ing
an initial ontology. The team involved in building the initial ontology should
be relatively small, in order to more easily find a small and consensual first
version of the shared ontology. At this point, it is not required to arrive at an
initial ontology that covers the complete domain.

Once the initial ontology is made available, users can start using it and
locally adapting it for their own purposes. Typically, due to new business
requirements or user and organization changes, their local ontologies evolve.
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Fig. 1. Distributed, loosely controlled, evolving Ontology Engineering

In DILIGENT there are two kinds of ontologies: The shared ontology and
local ontologies. The shared ontology is available to all users and cannot be
changed directly except by the board. Users are free to change, in their local
environments, a copy of the shared ontology. The ontology resulting from the
changes of a user is the user local ontology.

A board of ontology stakeholders analyzes the local ontologies and the
users’ requests and tries to identify similarities in their ontologies. At this
point it is not intended to merge all local ontologies. Instead, changes to local
ontologies will be analyzed by the board in order to decide which changes
introduced or requested by the users should be introduced in the shared on-
tology. Therefore, a crucial activity of the board is deciding which changes are
going to be introduced in the next version. A balanced decision that takes into
account the different needs of user’s evolving requirements has to be found.

The board should regularly revise the shared ontology, so that the parts
of the local ontologies overlapping the domain of the shared ontology do not
diverge too far from it. Therefore, the board should have a well-balanced and
representative participation of the different kinds of participants involved in
the process, which includes ontology engineers, domain experts and users. Of
course, these are roles that may overlap.

Once a new version of the shared ontology is released, users can update
their own local ontologies to better use the knowledge represented in the new
version. The last four stages of the process are performed in a cyclic manner:
when a new common ontology is available a new round starts again.

There are evidences that this process template can be used in different
areas and therefore understanding and better supporting it is important. For
instance, the taxonomy of life on earth has been evolving since 1735 follow-
ing a DILIGENT like 5-step process. It was initially proposed by Linnaeus
(build) based on phenetics (observable features). Considering the “most gen-
eral” level, initially, two kingdoms were proposed: animals and plants. As more
and more detailed knowledge about them was discovered, new kingdoms were
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proposed by its users and introduced by the boards controlling them once
some consensus was reached. For instance, when microorganisms were discov-
ered the moving ones were classified in the animals kingdom and the colored
(non-moving) ones in the plants kingdom (local adaptation). A few of them
were classified in both kingdoms. Users were locally adapting the taxonomy
for their own purposes. To more easily identify organisms in both classes,
Haeckel (1894) proposed a new kingdom to more easily identify them, the
Protista kingdom. This change was introduced by the board (analysis and re-
vision). This kingdom still exists today (locally update) and is used to gather
all organisms that do not belong to one of the other kingdoms. The major
force driving the reorganization of the taxonomy over time has been the iden-
tification of important classifying features and gathering all beings sharing a
given value for that feature into that class. The parallel between DILIGENT
template process and the development of the taxonomy of life on earth is far
more deep than described here. For other examples see [12].

3.2 DILIGENT Process Stages

In order to facilitate the application of DILIGENT ontology engineering pro-
cesses and provide guidance to its participants in real settings, DILIGENT
had to be more detailed. For this purpose, we have analyzed the different
process stages in detail. For each stage we have identified (1) major roles, (2)
input, (3) decisions, (4) actions, (5) available tools, and (6) output informa-
tion. One should stress that this elaboration is rather a recipe or check list
than an algorithm or integrated tool set. In different contexts it may have to
be adapted or further refined to fit particular needs and settings. Tools may
need to be integrated or customized to match requirements of the application
context. In Fig. 2 we sketch our results, which are presented in the following.
For the sake of brevity we refer the reader to [20] that includes an even more
detailed process description.

Build

As mentioned before, DILIGENT focuses on distributed ontology development
and ontology evolution, but borrows from established methodologies (chapter
“Ontology Engineering Methodology” and [4]). This is particularly true at
this stage. The goal is to quickly build an ontology that is going to be used
in an application. At this stage one can follow different approaches and even
approaches inspired from software engineering methodologies, such as rapid
prototyping, extreme programming and open source guidelines. The motto is:
get something small and useful and give it to the users, as early as possible.
Therefore, there is no need for completeness, although usability and usefulness
are crucial.

Roles: Usually, there are three roles: knowledge engineer, ontology engineer
and domain expert. The domain expert provides both knowledge and ontol-
ogy engineers with the required domain knowledge and knowledge sources.
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Fig. 2. Process stages (1–5), actions (1–17) and structures

The knowledge engineer creates a conceptual model of the domain from the
knowledge extracted from these sources. The ontology engineer generates a
machine readable ontology from the conceptual model. Quite often the knowl-
edge engineer and ontology engineer are roles performed by the same person.
Additionally to these classical roles we also propose the involvement of users.
At this stage, usually the actors involved as users are also involved in the
process in one of the other more classical roles. Most of those involved in the
build stage are initial board members.

Input : Since this stage borrows from traditional OE the usual pre-
development activities are performed. Given our analysis of existing method-
ologies [21] we recommend the adoption of the OTK methodology (chapter
“Ontology Engineering Methodology”, since it is the one providing more
guidance and has a more detailed and complete set of activities. However, the
use of other methodologies is not excluded.

Decisions: The usual decisions of a classical OE process need to be taken.
In contrast to common OE methodologies we do not require completeness of
the ontology at this stage. It is particularly important that the ontology is
clear and easily understandable by possible users.

Actions: As in classical OE development, common core activities are con-
ceptualization, formalization, and implementation.6 Integral activities like
knowledge acquisition, evaluation, reuse (comprising fusion and composition),
and documentation are complemented in DILIGENT with a recommendation
for Argument provision.

6 Maintenance is supported by later stages of DILIGENT.
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Output : The result is an ontology with the main concepts of the domain.
Once an initial ontology is (1) built and released, users will start to adapt it
locally for their own purposes.

Local Adaptation

This is a use and personalization stage, therefore users use and adapt the
released ontology to their own needs. The idea is for users to understand the
shared ontology, use it in the context of their applications, eventually find some
problems in the shared ontology for their particular applications that require
customization on their local ontologies, and accordingly modify these to best
suit their needs. All changes should be justified with arguments. Their changes
will only apply to their local copies and not to the shared ontology that was
made available to all users. In ideal settings, users can also have access to
other users’ ontologies, when customizing the shared ontology (either under
the same framework or from external sources) therefore reuse of ontologies
may also be performed.7 One should stress that all traditional OE activities
are usually performed by the users at this stage, such as knowledge acquisition,
conceptualization, formalization, evaluation, integration, etc. Once in a while
a new shared ontology is made available to users.

Roles: The actors involved in the local adaptation step are users of the
ontology. However, they usually do not have an OE background. They use
the ontology, e.g. to retrieve documents which are related to certain topics
modeled in the ontology or more structured data like the projects an employee
was involved in.

Input : Besides the common shared ontology, in the local adaptation step
the information available in the local information space is used. This can be
existing databases, ontologies or folder structures and documents. Moreover,
external knowledge sources or ontologies can also be reused as well as other
user’s ontologies.

Decisions: The users decide which changes they want to make to their
local ontology, hence they must decide if and where new concepts are needed
and which relations a concept should have. They should provide reasons for
their changes.

Actions: To achieve the desired output the user performs different groups of
actions namely: Analyze the shared ontology; Change and integrate the shared
and local ontologies; and Use the shared ontology. The last two actions of the
process step are performed in a cyclic manner until a new shared ontology is
available and the entire process step starts again.

One important issue is the fact that this stage can either be performed
immediately after a build or after a local update stages. In both cases, the
shared ontology is available: in the first case, it is the only ontology users
have had so far, in the second they have already their own local ontologies

7 With naive users this usually does not occur often.
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that were somewhat connected (or not) to the shared ontology. Users then
start adapting the shared ontology to their own purposes. Although these two
situations are not different from a conceptual point of view, from a practical
point of view they are different since in the second case users usually are not
going to simply discard their local ontologies and build them again so that
they can be connected to the new version of the shared ontology. Therefore,
it is important to assure that there can be a smooth transition.

We now describe in detail each one of the proposed actions:
The Analysis of shared ontology usually involves (2) Understand shared

ontology and (3) Identify similarities between own and shared conceptualiza-
tion. An ontology should represent a shared conceptualization of part of the
world. At this point the analysis is mainly the identification of similarities and
mismatches between the available shared ontology and either the conceptual
model of the domain users have in their minds or the local ontologies they
already developed in previous iterations of the process.

(2) Understand the shared ontology The user must learn where the dif-
ferent concepts are located in the ontology and how they are interrelated.
The ontology can be very complex, thus understanding the ontology depends
mainly on its visualization, and good naming conventions.

(3) Identify similarities between own and shared conceptualization Follow-
ing the comprehension of the ontology, the user can realize the similarities
and differences between the own and shared conceptualizations

Change and integration of shared and local ontologies usually involves (4)
Map equivalent conceptualizations of different actors (5) Identify mismatches
in conceptualizations, and (6) Change conceptualization.

(4) Map equivalent conceptualizations of different actors: After the iden-
tification of similarities they should be made explicit, otherwise the system
will not be able to make use of these findings in later stages. This is partic-
ularly important when the user is identifying similarities between his local
concepts and the new concepts in the shared ontology. Different implementa-
tions may add specialized adds-on. Mappings have the advantage, that they
leave the original local structures unchanged. Of course users may also decide
to change their local structures in favor of the common structure. In this case
the changes must be traceable, so that the user can retain his old version,
whenever he wants.

(5) Identify mismatches in conceptualizations: The techniques to identify
similarities can also be applied in the subsequent step to support the user in
identifying missing conceptualizations. Depending on the scenario, the user
might have access to other users’ ontologies and use their local adaptations
as further input to identify missing concepts in his own conceptual model.

(6) Change conceptualization: After identifying missing or unwanted con-
ceptualizations the user must be enabled to introduce them. This is a cus-
tomization phase and of course, evaluation is also performed here. Users should
assure that their changes are adequate both from a domain and a representa-
tion point of view. Since later on the board analyzes the changes performed
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or requested by the users, users must provide reasons for each change and/or
request for change, so that the board can understand them. To support the
user in providing reasons, the argumentation framework focuses the user on
the relevant arguments, [19].

Ontology use typically involves that users (7) Organize local knowledge ac-
cording to the new conceptualization. At this point the local ontology should
reflect the user’s conceptualization. Now he can use the ontology in his applica-
tion. In our case studies ontologies were used in information retrieval scenarios
therefore, ontology use typically involved the organization of local knowledge
according to the local conceptualization. Therefore, the user instantiated the
ontology with the information available locally and hence contributed to the
collective knowledge.

Output : One output of the process step is a locally changed ontology
which better reflects the user’s needs. Each change is supported by arguments
explaining the reasons for a change. At this point changes are not propa-
gated to the shared ontology. Moreover, users can send requests for changes
directly to the control board, which should also be duly justified. Only in the
analysis step the board gathers all ontology changes and requests and their
corresponding arguments to be able to evolve the common shared ontology in
a user driven revision step.

Analysis

In this stage, the board analyzes incoming requests and observations of
changes.8 The idea is for the board to identify which changes should be made
to the ontology based on the changes made or requested by the users. The
frequency of this analysis is determined based on the frequency and volume of
changes to the local ontologies. The board analyzes and decides which changes
would the users most benefit from and would most like to see implemented. At
this stage the new requirements for the future version of the shared ontology
are identified. At this stage, work is conducted at a conceptual level. This
activity borrows from classical ontology reuse processes, but is simpler since
local ontologies are available in the same environment and language.

Roles: In the analysis stage we can distinguish three roles played by board
members: (1) The domain expert decides which changes to the common on-
tology are relevant from the domain point of view and which are relevant
for smaller communities only. (2) Representatives from the users explain dif-
ferent requirements from the usability perspective. (3) The ontology engi-
neers analyze the proposed changes from a knowledge representation point of
view foreseeing whether the requested changes could later be formalized and
implemented.9

8 Ideally the board should have access to all users’ ontologies. However, in some
settings it may only have access to requests for changes.

9 In the revision stage.
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Input : The analysis stage takes as input the ontology changes requested
and/or made by the participating actors. To be able to understand their
changes and requests, users should have provided their reasons. Both manual
and automated methods can be used in the previous stages, therefore be-
sides of arguments by ontology stakeholders, one may here consider rationales
generated by automated methods, e.g. ontology learning. The arguments un-
derlying the proposed changes constitute important input for the board to
achieve a well balanced decision about which changes to adopt.

Decisions: The board must decide which changes to introduce into the new
shared ontology at the conceptual level. Metrics to support this decision are
(1) the number of users who introduced a change in proportion to all users
who made changes. (2) The number of queries including certain concepts. (3)
The number of concepts adapted by the users from previous rounds.

Actions: To achieve the desired output the board takes different actions
namely (8) Gather locally updated ontologies and corresponding arguments,
(9) Analyze the introduced changes and (10) Decide on changes to be made.

We now describe in detail each one of the proposed actions:
(8) Gather locally updated ontologies and corresponding arguments: De-

pending on the deployed application the gathering of the locally updated
ontologies can be more or less difficult. It is important that the board has
access to the local changes from users and their corresponding arguments to
be able to analyze them. It may also be interesting not only to analyze the
current users’ ontologies, but also its evolution. However, with an increasing
number of participants this in-depth analysis may be unfeasible. Since usually
analysis takes place at the conceptual level, reverse engineering is usually an
important technique to get the conceptual model from the formalized model
[4]. To support users providing their reasons, the argumentation framework
focuses the users on the relevant arguments, [19].

(9) Analyze introduced changes: In this action the board tries to identify
the parts of the shared ontology which should be modified. As the number
of change requests may be large and also contradictory, first the board must
identify the different areas in which changes took place. Within analysis the
board should bear in mind that changes of concepts should be analyzed be-
fore changes of relations and these before changes of axioms. Good indicators
for changes relevant to the users are (1) overlapping changes and (2) their
frequency. Furthermore, the board should analyze (3) the queries made to the
ontology. This should help to find out which parts of the ontology are more
often used. Since actors instantiate the ontology locally, (4) the number of
instances for the different proposed changes can also be used to determine the
relevance of certain adaptations.

(10) Decide on changes to be made: Having analyzed the changes and
having grouped them according to the different parts of the ontology they
belong to, the board has to identify the most relevant changes, that is iden-
tify changes presumably relevant for a significant share of all actors. Based
on the provided arguments the board must decide which changes should be
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introduced. Depending on the quality of the arguments the board itself might
argue about different changes. For instance, the board may decide to introduce
a new concept that better abstracts several specific concepts introduced by
users, and connect it to the several specific ones. Therefore, the final decisions
entail some form of evaluation from a domain and a usage point of view.

Output : The outcome of this action is a reduced and structured list of
changes that are to be implemented in the shared ontology that were agreed
by the board. Arguments should be provided for each one of them. All changes
which should not be introduced into the shared ontology are filtered. Argu-
ments justifying the decisions to leave them out should also be provided. At
this stage it is not required to decide on the final modeling of the shared
ontology.

Revision

The revision and analysis stages are closely related. While in the previous
stage the new requirements for the shared ontology are identified, in this
stage they are formalized and implemented. In the end the new version of the
shared ontology is distributed to its users.

Roles: The ontology engineers from the board judge the changes from an
ontological perspective more exactly at a formalization level. Some changes
may be relevant for the common ontology, but may not be correctly formu-
lated by the users. The domain experts from the board should judge and
decide wether new concepts/relations should be introduced into the common
ontology even though they were not requested by the users

Input : The input for the revision phase is a list of changes at a concep-
tual level which should be included into the ontology and the arguments
underlying them.

Decisions: The main decisions in the revision phase are formal ones. All
intended changes identified during the analysis phase should be included into
the common ontology. In the revision phase the ontology engineer decides
how the requested changes should be formalized. Evaluation of the decisions
is performed by comparing the changes on the conceptual level with the final
formal decisions. The differences between the original formalization by the
users and the final formalization in the shared ontology should be kept to a
minimal basis.

Actions: To achieve the desired output the members of the board, mainly
its ontology engineers, perform different actions namely (11) Formalization
of the decided changes, (12) Aggregation of corresponding arguments, (13)
Documentation, and (14) Distribution of the new ontology to all actors.

We now describe in detail each one of the proposed actions:
(11) Formalization of the decided changes: As in classical OE development,

the requested changes must be formalized with respect to the expressivity of
the ontology representation language. Before their actual implementation, the
agreed changes should be analyzed from a knowledge representation point of
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view. This evaluation is somehow similar to the one performed when reusing
an ontology according to classical reuse methodologies. The goal is to deter-
mine how the changes identified in the previous step should be formalized.
Once this is done, the actual changes are formalized and the quality of the
resulting ontology is again assured through evaluation. All required activities
are addressed by classical OE methodologies.

(12) Aggregation of arguments: As arguments play a major roll in the
decision process we expect that the changes which are eventually included into
the common ontology are supported by good arguments. One of the reasons
for keeping track of the arguments is to enable users to better understand why
certain decisions have been made. Therefore, the board should summarize and
aggregate understandable, pedagogical and the most convincing arguments
underlying each change. The user should be able to retrieve them.

(13) Documentation: With the help of the arguments, the introduced
changes are already well documented. However, we assume that some ar-
guments may only be understandable by the domain experts and not users.
Hence, we expect that the changes should be documented to a certain level.

(14) Distribution of the ontology to all actors: Analogously to stage (1) the
shared ontology must be distributed to the different participants. Depending
on the overall system architecture different methods can be applied here.
Moreover, the board should assure version and release management.

Output : The new version of the shared ontology together with its argu-
ments and documentation is the result of this stage. This documentation is
essential for users to understand the new shared ontology when a new cycle
begins.

Local Update

In the local update stage the new shared ontology is released and put to use
by its users. They decide which changes they will adopt. Part of this stage is
similar to local adaptation: users must get familiar with the new version and
identify which parts of their local ontologies they will discard in favor of the
new shared ontology and which ones they will retain.

Roles: The local update phase involves only users. They perform different
actions to include the new common ontology into their local system before
they start a new round of local adaptation.

Input : The new formalized shared ontology is the input for this step.
We also require as input the documentation and arguments justifying those
changes. For a better understanding the user should be allowed to request a
delta to the original version.

Decisions: The user must decide which changes he will introduce locally.
This depends on the differences between the own and the new shared con-
ceptualization. The user does not need to update his entire ontology. This
stage interferes a lot with the next local adaptation stage. We do not exclude
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the possibility of conflicts and/or ambiguity between local and shared ontolo-
gies, which may entail reduced precision if the ontology is being used in IR
applications.10

Actions: To achieve the desired output the user takes different actions
namely Analysis of the new shared ontology ; and Integration of new shared
version with current user’s local one.

After the local update, the iteration continues with local adaptation. Dur-
ing the next analysis step the board reviews which changes were actually
accepted by the users.

We now describe in detail each one of the proposed actions:
Analysis of the new shared ontology : The goal is to understand the new

shared ontology. The user scans for the changes introduced by the board
that are relevant for his use, and controls whether his change proposals were
implemented. He must further identify wether the benefits of updating to
the new version outweight its effort. Issues to be analyzed include: concepts
introduced by other users, consistency of new shared version with local version,
maintenance of interoperability with other users.

Integration of new shared version with current user’s local one: In this
action the user reuses or not the new version of the shared ontology. If the
new shared ontology is not of use the system should allow the user to retain
the outdated version. In this case the user will have to perform (15) Tagging
of the outdated version. In case the user finds the new shared version of use
two further subactions can be performed: (16) Inclusion of the updated version
and (17) update local adaptations not included in the common ontology.

(15) Tagging of the outdated version: To ensure user satisfaction, the sys-
tem must enable the user to retain his old version of the ontology or parts of
it. The user may later realize that the new updated version of the common
ontology does not represent his needs anymore and thus want to leave the
update cycle out and return to the old version. To reach a better acceptance
this must be possible and is foreseen in the methodology. The user can always
balance between the advantages of using a shared ontology or using his own
conceptual model. Therefore, the old version should be stored for possible
later reuse.

(16) Inclusion of the updated version: The system must support the user
to easily integrate the new version into his local system. It must be guaranteed
that all annotations made for the old version of the ontology are available in
the new version. It may require restructuring and adaptation of instantiations
to stay in line with the new model.

(17) Update of local adaptations which are not included in the common
ontology : The update of the local ontology can lead to different kinds of con-
flict. Changes proposed by the user may indeed have found their way into
the common ontology. Hence, the user should be enabled to use from now on

10 Ideally one should be able to blacken out the ambiguous parts like in multilevel
databases. This has not been transferred to OE yet.
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the shared model instead of his own identical model. Furthermore, the board
might have included a change based on arguments the user was bringing for-
ward, but has drawn different conclusions. Here the user can decide wether
he prefers the shared interpretation.

Other options may emerge in the course of further case studies.
Output : Ideally the output of the local update phase is an updated local

ontology which includes all changes made to the shared ontology. However,
since not all users may want to completely change to the new version, we
do not require the users to adopt all changes proposed by the board. So, the
output is not mandatory since the actors could change the new ontology back
to the old one in the local adaptation stage.

4 Applying DILIGENT in Case Studies

In this section we describe briefly how we specifically investigated how
a distributed, loosely controlled and evolving ontology engineering process
following DILIGENTcould be implemented. For more detailed descriptions
refer to the relevant bibliography referred in each subsection.

4.1 The IBIT Case Study

The first running case study took place under the SWAP project. In this
project, the challenges were how the process template could be implemented
in a multi-organizational setting with non-expert ontology engineering users,
and which finer grained support could be provided to these users.

In the SWAP project, the IBIT case study was in the tourism domain of the
Balearic Islands. The needs of the tourism industry there, which accounts for
80% of the islands’ economy, are best described by the term “coopetition”.
On the one hand the different organizations compete for customers against
each other. On the other hand, they must cooperate in order to provide high
quality for regional issues like infrastructure, facilities, clean environment, or
safety – that are critical for them to be able to compete against other tourism
destinations. To collaborate on regional issues a number of organizations now
collect and share information about indicators reflecting the impact of growing
population and tourist fluxes in the islands, their environment, and their in-
frastructures. Moreover, these indicators can be used to make predictions and
help planning. For instance, organizations that require Quality & Hospitality
Management use the information to better plan, e.g. their marketing cam-
paigns. As another example, the governmental agency IBIT,11 the Balearic
Government’s co-ordination center of telematics, provides the local industry
with information about New Technologies that can help the tourism industry
to better perform their tasks.

11 http://www.ibit.org
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Due to the different working areas and goals of the collaborating organi-
zations, it proved impossible to build a centralized knowledge management
system or even a centralized ontology satisfying all user requirements. The
users emphasized the need for local control over their ontologies. They asked
explicitly for a system without a central server, where knowledge sharing was
integrated into the normal work, but where different kinds of information, like
files, emails, bookmarks and addresses could be shared with others. To this
end the SWAP consortium – including us at University of Karlsruhe, IBIT,
Free Univ. Amsterdam, Meta4, and Empolis – developed the SWAP generic
P2P platform and built a concrete application on top that allowed the satis-
faction of the information sharing needs just elaborated using local ontologies,
which were linked to a shared ontology. A case study was set up. The main
goals were the evaluation of the DILIGENT process and the developed peer-
to-peer platform. The case study lasted for 3 months. Moreover, a set of tools
were also specifically developed [18] to support the participants in the case
study. However, most of the tools were being developed at the same time as
the process was taking place. Therefore, the administrator had a major role
in bridging the gap between our real users and the weaknesses of the tools,
for instance by doing local adaptations for the users since the tools were not
error-proof.

Regarding the methodology we had four hypothesis: (1) DILIGENT sup-
ports collaborative development of a shared ontology; (2) ontologies in use
need to evolve; (3) non-ontology engineering experts can participate in ontol-
ogy engineering processes, and (4) the organizational structure DILIGENT
suggests fits the organizational setting found in the IBIT case study, a peer-
to-peer setting.

The first round of our OE process started with the distribution of the three
modules of the common ontology to all users. In both rounds, users – during
the local adaptation stage – and the board – in the revision stage – could
perform ontology change operations (concepts/relations/instances). Most fre-
quently the concept hierarchy was changed.

The first month of the case study, corresponded to the first round of the
DILIGENT process. One organization with seven peers participated. This
organization can be classified as a rather loose one. In the first round we
had seven users, six of which had no OE background. In general, the users
added concepts to the shared ontology to represent the topics of their core
working area. They did not share all their local information, but selected the
documents which they thought would be interesting for the group. In the
interviews they commented, that they would share more files at a later stage,
when they would feel more confident with the system. In this organization
most of the users were very active and did local adaptations to best serve
their own needs. They also add access to other user’s ontologies. Moreover,
the board received by e-mail requests to modify the shared ontology. The first
round of the process resulted in seven adapted ontologies.
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In Analysis, the board consisted of two ontology engineers and two domain
experts/users, the same that were involved in the build stage. The local adap-
tations from seven users were collected. Additionally the board had access to
their folder structures. All changes introduced were motivated by the users’
requests and changes. They all made sense and were not contradictory on the
conceptual level. Then, the new shared ontology was distributed.

In Local update all users decided to use the new shared ontology as it
covered more domain knowledge and they found their requests integrated to
it. As a result of this stage the new shared ontology was commonly used and
the users’ folders were aligned with the new shared ontology.

In the second round the case study was extended to four organizations
with 21 peers. The users participating in the first round had more experi-
ence and were still active. One of the new organizations was very hierarchical.
None of the new 14 users had OE experience. The experienced users started
with the result of the local update stage, while the new users received only
the new shared ontology. All users shared the local information which they
thought relevant for the group. The new users behaved in a similar way as
the users in the first stage and did not share many folders, as they wanted to
gain confidence in the system first. The experienced users, however, published
more information, and adapted the local ontologies accordingly. The second
local adaptation stage resulted in 14 adapted ontologies. The rest of the users
did not make changes. Although, some did not change the shared ontology
directly, they submitted change requests to their supervisor, thus they dele-
gated the modeling task. The supervisor then communicated the requests to
the board.

In Analysis, in this round the board consisted of one domain expert and
two ontology engineers. Additionally two users were invited to answer ques-
tions to clarify the changes they introduced. The 21 local ontologies of the
users were the input to the second round. This time the board had to perform
reverse engineering on the formal local ontologies from users in order to get
their conceptual models. As in the first round the board included all change
requests from users. Again, as in the first round, only very few concepts in the
common ontology were never used. All conceptual requests could be modelled
in the ontology, providing the next version.

The case study ended after the distribution of the new shared ontology.
We collected feedback from the users w.r.t. to their impressions on the new
version. They emphasized that the new version represented their requirements
at that time. The users commented that they appreciated being involved in the
development process, although they recognized that they were not experienced
in ontology engineering. They did not object to the modeling decisions of the
board and understood the reasons for the differences between their change
requests and the final modeling.

However, updating to the new version was still a problem, since some in-
stances of the ontology might have to be newly annotated to the new concepts
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of the shared ontology. In our case, documents needed a new classification.
This problem can be partly overcome with the help of technology [7].

For more detailed descriptions on this project refer to [20,21].

4.2 The Judges Case Study

The Judges case study took place under the SEKT project. It aimed at provid-
ing an intelligent Frequently Asked Questions system, Iuriservice, that offers
help to newly appointed judges in Spain. Although judges had a strong and
thorough education and became experts in their domain, they still often seek
the help of senior judges or tutors regarding procedural questions. The sys-
tem focuses on such procedural knowledge, which is often neglected, as it is
very hard to externalize. Examples for procedural questions are: How should
I organize a round of recognition of suspects if there are no people available?
Which are the actual functions and competences of the judge as compared to
those of the secretaries?

In this regard, the design of legal ontologies requires not only to represent
the legal, normative language of written documents (decisions, judgments,
rulings, partitions, etc.) but also those chunks of professional knowledge from
the daily practice at courts. One of the main features of this professional
legal knowledge is that it is context-sensitive. In this sense, it implies: (1) the
ability to discriminate among related but different situations; (2) the practical
attitude or disposition to rule, judge or make a decision; (3) the ability to
relate new and past experiences of cases; (4) the ability to share and discuss
these experiences with the group of peers.

In this case, the argumentation framework developed under the DILI-
GENTmethodology, together with a wiki system proved an invaluable tool
that promoted discussion and allowed finding good solutions for the problems
newly appointed judges faced.

For more detailed descriptions on this project refer to [20,22].

5 Related Work

In the past, there have been OE case studies involving dispersed teams, such
as (KA)2 ontology [1] or [13]. However, they usually involved tight control
of the ontology, of its development process, and of a small team of ontology
engineering experts that could cope with the lack of precise guidelines.

Established methodologies for ontology engineering summarized in [4, 17,
24], focus on the centralized development of static ontologies, i.e. they do
not consider iteration between construction/modification and use. METHON-
TOLOGY [4] and the OTK methodology [17] are good examples for this ap-
proach. They offer guidance for building ontologies either from scratch, reusing
other ontologies as they are, or re-engineering them. They divide OE processes
into several stages which produce an evaluated ontology for a specific domain.
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Holsapple et al. [5] focus their methodology on the collaborative aspects of
ontology engineering but still aim at a static ontology. A knowledge engi-
neer defines an initial ontology which is extended and modified based on the
feedback from a panel of domain experts. HCOME is a methodology which
integrates argumentation and ontology engineering in a distributed setting
[6]. It supports the development of ontologies in a decentralized setting and
allows for ontology evolution. It introduces three different spaces in which
ontologies can be stored: In the Personal Space users can create and merge
ontologies, control ontology versions, map terms and word senses to concepts
and consult the top ontology. The evolving personal ontologies can be shared
in the Shared Space. The Shared Space can be accessed by all participants. In
the shared space users can discuss ontological decisions. After some discussion
and agreement, the ontology is moved into the Agreed space. However, they
have neither reported that their methodology had been applied in a case study
nor do they provide any detailed description of the defined process stages.

There are a number of technical solutions to tackle problems of remote
collaboration, e.g. ontology editing with mutual exclusion [3], inconsistency
detection with a voting mechanism [9], collaborative ontology editing [8, 16]
or evolution of ontologies by different means [7]. All these solutions address
the issue of keeping an ontology consistent. Obviously, none supports (and
do not intend to) the work process of the ontology engineers by way of a
methodology.

6 Conclusion

Decentralization can take different forms. One can have more loose or more
hierarchical organizations. We observed and supported both kinds of orga-
nizations. Therefore, the first finding is the fact that this process can be
adapted both to hierarchical and to more loose organizations. DILIGENT pro-
cesses cover both traditional OE processes and more Semantic Web-oriented
OE processes, that is with strong decentralization and partial autonomy
requirements.

The process helped non-OE-expert users to conceptualize, specialize and
refine their domain. The agreement met with the formalized ontologies was
high, as shown by people willing to change their folder structures to better use
the improved domain conceptualization. In spite of the technical challenges,
user feedback was very positive.

The DILIGENT process proved to be a natural way to have different people
from different organizations collaborate and change the shared ontology. The
set-up phase for DILIGENT was rather fast, and users could profit from their
own proposals (local adaptations) immediately. The result was much closer
to the user’s own requirements. Moreover, other users profited from them
in a longer term. Finally, the case studies clearly have shown the need for
evolution. Users performed changes and adaptations.
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The development of ontologies in centralized settings is well studied
and there are established methodologies. However, current experiences from
projects suggest that ontology engineering should be subject to continuous im-
provement rather than a one-time effort and that ontologies promise the most
benefits in decentralized rather than centralized systems. To this end we have
conceived the DILIGENT methodology. DILIGENT supports domain experts,
users, knowledge engineers and ontology engineers in collaboratively building
a shared ontology in a distributed setting. Moreover, the methodology guides
the participants in a fine grained way through the ontology evolution process,
allowing for personalization. We have demonstrated the applicability of our
process model in a cross-organizational case study in the realm of tourism in-
dustry and another in the judicial domain. Real users were using the ontology
to satisfy their information needs for an extended period of time.
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Summary. Formal concept analysis (FCA) is a mathematical theory about con-
cepts and concept hierarchies. Based on lattice theory, it allows to derive concept
hierarchies from datasets. In this survey, we recall the basic notions of FCA, includ-
ing its relationship to folksonomies. The survey is concluded by a list of FCA based
knowledge engineering solutions.

1 Introduction

Formal concept analysis (FCA) [71] is a mathematical theory for concepts
and concept hierarchies that reflects an understanding of “concept” which
is first mentioned explicitly in the Logic of Port Royal [2] in 1668 and has
been established in the German standard ‘DIN 2330 – Concepts and terms;
general principles’ [19]. FCA explicitly formalises extension and intension of
a concept, their mutual relationships, and the fact that increasing intent im-
plies decreasing extent and vice versa. Based on lattice theory, it allows to
derive a concept hierarchy from a given dataset. FCA complements thus the
usual ontology engineering approach, where the concept hierarchy is modeled
manually.

FCA differs from other knowledge representation formalisms (like RDF
(see chapter “Resource Description Framework”), description logics (see chap-
ter “Description Logics”), OWL (see chapter “Web Ontology Language:
OWL”), or conceptual graphs [53]). The standard DIN 2330 [19] helps us
pointing out the difference. It distinguishes three levels: object level, concept
level, and representation level (see Fig. 1). There is no immediate relationship
between objects and names. This relationship is rather provided by concepts.
On the concept level, the objects under discussion constitute the extension
of the concept, while their shared properties constitute the intension of the

S. Staab and R. Studer (eds.), Handbook on Ontologies, International Handbooks 177
on Information Systems, DOI 10.1007/978-3-540-92673-3,
c© Springer-Verlag Berlin Heidelberg 2009



178 G. Stumme

Fig. 1. Object level, concept level, and representation level according to DIN 2330

concept. On the representation level, a concept is specified by a definition and
is referred to by a name.1

While formalisms like description logics, conceptual graphs, RDF or OWL
focus on the representation level, the focus of FCA is on the concept level: in
FCA, concepts consist of extension and intension, while concept names and
definitions are not within the core notions of FCA. FCA, on the other hand,
considers the extensional and the intensional part equally important, whereas
the other formalisms are biased towards the intensional aspect of concepts.
FCA is thus complementing other conceptual knowledge representations; and
the combination of FCA with other representations has been the topic of many
publications. For instance, several approaches combined FCA with description
logics (e.g. [3, 4, 46,58]) and with conceptual graphs (e.g. [29,74,75]).

In the mid 1990s, a triadic version of FCA has been launched. Beside
its extension and its intension, a tri-concept additionally contains a set of
conditions under which extension and intension match. During the last dozen
years, triadic FCA has been primarily of academic interest. With the rise of
social bookmarking systems in the Web 2.0, however, they gained increased
interest, as the data structures of social bookmarking systems – so-called
folksonomies – match exactly the theory of triadic FCA.

1 After a discussion of the three levels, DIN 2330 focusses on guidelines for good
namings and definitions. It is thus a valuable resource for ontology engineers. An
alternative source is the related international standard ‘ISO 704: Terminology
Work – Principles and Methods’ [41].
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1.1 Organisation of the Survey

In Sects. 2–5, the theory of FCA is presented, including basic notions like
“formal context” and “concept lattice”, visualisations with (nested) line
diagrams, conceptual scaling, and the relationship to association rule min-
ing. Section 6 presents an FCA based approach for knowledge acquisition.
Section 7 discusses the relationship between triadic FCA and folksonomies in
detail. Section 8 concludes the paper with a selection of FCA based knowledge
engineering applications.

2 Formal Concept Analysis: A Theory About Concepts
and Concept Hierarchies

This section presents the basic notions of FCA. Good starting points for a
more in depth lecture are the textbooks [12,28,30], the proceedings of the Intl.
Conferences on FCA2 and the Intl. Conferences on Conceptual Structures3

(both series are published as Springer Lecture Notes), as well as the collection
of FCA publications at BibSonomy.4

To allow for a definition of concepts, FCA starts with a (formal) context.

Definition 1. A (formal) context is a triple K := (G,M, I), where G is a
set whose elements are called objects, M is a set whose elements are called
attributes, and I is a binary relation between G and M (i.e. I ⊆ G ×M).
(g,m) ∈ I is read “the object g has the attribute m”.

Example 1. The left part of Fig. 2 shows a formal context developed for an
educational movie about living beings and water ([66], see also [30]). The
object set G comprises the eight living beings that were discussed in the movie,
and the attribute set M lists features that distinguish the living beings. The
binary relation I is given by the cross table and describes which living being
has which of the attributes.

For a given context (G,M, I), we can define two derivation operators, both
denoted by the ′ symbol. They are used for defining formal concepts.

Definition 2. For A ⊆ G, let A′ := {m ∈ M | ∀g ∈ A : (g,m) ∈ I} and,
for B ⊆ M , let B′ := {g ∈ G | ∀m ∈ B : (g,m) ∈ I}. A (formal) concept
of a formal context (G,M, I) is a pair (A,B) with A ⊆ G, B ⊆ M , A′ = B
and B′ = A.5 The sets A and B are called the extent and the intent of the
formal concept (A,B), respectively. The subconcept–superconcept relation is

2 http://www.informatik.uni-trier.de/∼ley/db/conf/icfca/
3 http://www.informatik.uni-trier.de/∼ley/db/conf/iccs/
4 http://www.bibsonomy.org/tag/fca
5 This is equivalent to requiring that A × B ⊆ I such that neither A nor B can be

enlarged without validating this condition.
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Fig. 2. Left: a formal context about living beings. Right: a conceptual scale for the
many-valued attribute “Number of seed leaves”

formalised by (A1, B1) ≤ (A2, B2) :⇐⇒ A1 ⊆ A2 (⇐⇒ B1 ⊇ B2). The set of
all formal concepts of a context K together with this order relation is always
a complete lattice, called the concept lattice of K and denoted by B(K).

Theorem 1 ([30]). The concept lattice B(K) of a context K := (G,M, I)
is a complete lattice6 in which infimum (

∧
) and supremum (

∨
)of a set

{(At, Bt)|t ∈ T} of concepts (where T is any index set) are given by

∧

t∈T

(At, Bt) =

(
⋂

t∈T

At,

(
⋃

t∈T

Bt

)′′)

and
∨

t∈T

(At, Bt) =

((
⋃

t∈T

At

)′′

,
⋂

t∈T

Bt

)

.

A complete lattice V is isomorphic to B(K) if and only if there are mappings
γ̃ : G → V and μ̃ : M → V such that γ̃(G) is supremum-dense in V [i.e. each
element in V is supremum of some subset of γ̃(G)] and μ̃(M) is infimum-dense
in V. In particular, V ∼= B(K) for K = (V, V,≤).

Concept lattices can be visualised as line diagrams. Line diagrams follow
the conventions for the visualisation of hierarchical concept systems as estab-
lished in the German standard DIN 2331 [18]. In a line diagram, each node
represents a formal concept. A concept c1 is a subconcept of a concept c2 if
and only if there is a path of descending edges from the node representing c2

to the node representing c1.
6 That is, each subset of concepts has a unique greatest common subconcept (called

its infimum) and a unique least common superconcept (called its supremum).
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needs water to live

can move around

has limbs

needs chlorophyl to produce food

one seed leaf

lives on land

suckles its offspring two seed leaves

lives in water

Dog

Maize

Bean

Leech

Bream 

Spike-weed

Frog Reed

Fig. 3. The concept lattice of the context in Fig. 2

Example 2. Figure 3 shows the concept lattice of the context in Fig. 2 as a line
diagram. We describe below how to read it.

The second part of Theorem 1 provides an efficient visualisation of con-
cept lattices via line diagrams, as it states that a diagram is unambiguous
even if each object name and each attribute name is displayed only once:
in the line diagram, the name of an object g ∈ G is attached to the node
representing the object concept γ(g) := ({g}′′, {g}′), and the name of an at-
tribute m ∈ M is attached to the node representing the attribute concept
μ(m) := ({m}′, {m}′′). This means that the name of an object g is always
attached to the node representing the smallest concept with g in its extent;
dually, the name of an attribute m is always attached to the node represent-
ing the largest concept with m in its intent. We can read the context relation
from the diagram because an object g has an attribute m if and only if the
concept labeled by g is a subconcept of the one labeled by m. The extent of a
concept consists of all objects whose labels are attached to subconcepts, and,
dually, the intent consists of all attributes attached to superconcepts.

Example 3. For example, the concept in the very middle of Fig. 3 has {Frog,
Reed} as extent, and {lives on land, lives in water, needs water to live} as
intent. It is a direct subconcept of the two concepts ({lives on land}, {Dog,
Frog, Maize, Reed, Bean}) and ({lives in water}, {Leech, Bream, Frog, Spike-
weed, Reed}).
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The top concept of the diagram always has all objects in its extent. In
this case, its intent is non-empty, as it contains the attribute “needs water to
live”. This indicates that all living beings addressed in the movie depend on
water. We see also that the diagram – and thus the set of objects – can be
decomposed into two parts: the animals are grouped under the attribute “can
move around”, while all plants “need chlorophyll to produce food”.

Dependencies between attributes can be described by implications.

Definition 3. For X,Y ⊆ M , the implication X → Y holds in the context,
if each object having all attributes in X also has all attributes in Y .

Example 4. The implication {can move around, lives on land} → {has limbs}
holds in this context. It can be read directly in the line diagram: the largest
concept having both “can move around” and “lives on land” in its intent (i.e.
the infimum of μ(can move around) and μ(lives on land), which is the concept
that is second-most to the left) also has “has limbs” in its intent.

Note that these implications hold only for those objects that are listed
in the context. If one is interested in implications that “hold globally”, the
context needs thus to contain sufficiently many “typical” objects. Section 6
discusses a knowledge acquisition process for interactively determining these
typical objects.

3 Nested Line Diagrams

Nested line diagrams are used for visualising larger concept lattices. For their
construction, the formal context is vertically split, and for each part a sepa-
rate line diagram of its concept lattice is drawn. The line diagrams are then
combined as shown in Fig. 4.

Example 5. Figure 4 shows a nested line diagram for the living being example.
The outer diagram consists of four nodes, and results from the first three
attributes of the left context in Fig. 2. It shows for instance that Dog, Bean,
and Maize all live on land, while Frog and Reed live both on land and in
water. The inner diagram results from the remaining six attributes of the left
context in Fig. 2. It shows for instance that Maize, Reed and Spike-weed all
have one seed leaf.

The combination of the two diagrams represents the direct product of both
concept lattices. Its order relation can be read by replacing each of the four
lines of the outer diagram by eight parallel lines linking corresponding nodes
in the inner diagrams. The concept lattice given in Fig. 3 consists of the large
nodes only. The concept mentioned above (the most central one in Fig. 3) is
for instance represented in the lowest node of the outer diagram by the upper-
most large circle of the inner diagram. The different shades of grey indicate
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Leech

Fig. 4. A nested line diagram of the concept lattice in Fig. 3

the number of objects belonging to the respective concept extents. The 19
concepts represented by larger nodes are referred to as “realised concepts”, as
their intents correspond to concept intents of the non-nested line diagram in
Fig. 3.

It can be shown [30], that the set of realised concepts is always a complete
supremum–semilattice of the direct product, which is generated by the object
concepts. This means that the supremum of any set of realised concepts is
always a realised concept as well, and gives us a construction method for
the nested line diagram: First, the direct product is drawn. Each object g is
attached to the node representing the smallest concept with g in its extent,
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and the node is marked as realised concept. Then the suprema of all pairs of
realised concepts are marked as realised as well. This is done iteratively until
all suprema are marked. Finally the bottom node is marked (as supremum of
the empty set).

The non-realised concepts are not only displayed to indicate the struc-
ture of the inner scale, but also because they indicate implications: Each
non-realised concept indicates that the attributes in its intent imply the at-
tributes contained in the largest realised concept below. The implication dis-
cussed above ({can move around, lives on land} → {has limbs}) is indicated
by the non-realised concept having as intent “lives on land” and “can move
around”, which is represented by the only empty node in the left ellipse in
Fig. 4. Likewise, the empty node labeled by “two seed leaves” indicates the
implication {two seed leaves} → {lives on land}, because the largest realised
concept below it is the one labeled by “Bean” – which additionally has “lives
on land” in its intent.

Nested line diagrams often result from conceptual scaling, which is dis-
cussed next.

4 Conceptual Scaling

FCA is also able to deal with many-valued contexts, i.e. they may contain
attribute-value pairs.

Definition 4. A many-valued context is a tuple K := (G,M, (Wm)m∈M , I)
where G is a set of objects, M a set of attributes, Wm the set of possible
values for the attribute m ∈M , and I is a relation I ⊆ G×{(m,w) | m ∈M,
w ∈ Wm} with the constraint (g,m,w1) ∈ I, (g,m,w2) ∈ I =⇒ w1 = w2

imposed. (g,m,w) ∈ I indicates that object g ∈ G has value w ∈ Wm for
attribute m ∈ M .

From a many-valued context, a concept lattice cannot be computed di-
rectly. One has to transform it first into a a one-valued context. This trans-
formation is called conceptual scaling [26].

Definition 5. A conceptual scale for a subset B ⊆ M of attributes is a (one-
valued) formal context SB := (GB ,MB , IB) with GB ⊆ ×m∈BWm.

Let S be the set of conceptual scales for the many-valued context K :=
(G,M, (Wm)m∈M , I). For any subset S ⊆ S of scales, we can now translate
the many-valued context into a one-valued one:

Definition 6. The derived context KS is defined by KS :=
(
G,

⋃
SB∈S MB , IS

)

with (g, n) ∈ IS if there exists a scale SB ∈ S with m ∈ MB and w ∈ Wm

where (g,m,w) ∈ I and (g, n) ∈ IB.
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Example 6. The two attributes “one seed leaf” and “two seed leaves” in our
running example have been derived from a many-valued attribute “Number
of seed leaves”, which has as set of possible values WNumber of seed leaves :=
{0, 1, 2}. Applying the conceptual scale S{Number of seed leaves} that is dis-
played at the right of Fig. 2 results in the two columns in the context in the
left of Fig. 2 that are labeled by “one seed leaf” and “two seed leaves”.

The concept lattice of the derived context can canonically be visualised
in a nested line diagram. For each scale, its line diagram is pre-computed.
The nested line diagram for any combination of scales can then be combined
online. This combination of conceptual scaling and nested line diagrams is
implemented in the open source software ToscanaJ.7

Conceptual scaling covers typical scales as known from measurement the-
ory: Let the set G of objects of the scale w. l. o. g. be {0, . . . , n}. The nominal
scale has then {= 0, . . . ,= n} as set of attributes; and is applied to many-
valued attributes with incomparable values (e.g. eye colors). The ordinal scale
has {≤ 0, . . . ,≤ n} as set of attributes; and is used for attributes where
the values are ordered, like weights or costs. The inter-ordinal scale extends
the ordinal scale. It has {≤ 0, . . . ,≤ n,> 0, . . . , > n} as set of attributes; and
is applied when intervals are of interest. (The relations of all these scales are
defined in the obvious way.)

Example 7. The scale for the number of seed leaves is a nominal scale, with
the difference that the value 0 has been suppressed, as it was not considered
meaningful for this application. The choice of the appropriate scale is the task
of the knowledge engineer. Depending on his aim, he could have chosen an
ordinal or inter-ordinal scale instead.

5 Iceberg Concept Lattices and Bases
of Association Rules

The concept lattice of a formal context can be considered as a conceptual, hi-
erarchical clustering of the set of objects, with the concept extents being the
clusters and the intents being their descriptions [11, 40,56]. In comparison to
other conceptual clustering approaches, concept lattices have structural prop-
erties which can be stated explicitly: they do not depend on any parameters
(whose semantics are often difficult to interpret), nor on the order in which
the input is presented to the algorithm, nor on any particularities of the im-
plementation. Another distinction to other hierarchical clustering results is
that they allow for multiple inheritance (and not only for trees), so that all

7 http://toscanaj.sourceforge.net/, see also [37] for its foundations and a description
of its predecessor TOSCANA.
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potentially interesting specialisation paths are contained in the resulting hi-
erarchy. The trade-off is a high complexity, as the concept lattice can be – in
the worst case – exponential in the size of the input.

To alleviate this complexity problem, the notion of iceberg concept lattices
has been introduced in [64]. For a given threshold minsupp ∈ [0, 1], the iceberg
concept lattice of a formal context K contains all concepts (A,B) of K whose
support supp(A,B) := |A|

|G| (= |B′|
|G| ) is larger than minsupp. Iceberg concept

lattices show thus only the top-most part of a concept lattice.

Example 8. In Fig. 5, an iceberg concept lattice of the Mushrooms data
set from the UCI KDD Archive8 is shown. The context consists of 8,416
mushrooms as objects, and of 80 attributes (which were derived from 22
many-valued attributes with nominal scales); and its complete concept lat-
tice consists of 32,086 concepts. The minimum support threshold in Fig. 5 is
set to 0.7, i.e. all concepts whose extents do not comprise at least 70% of all
mushrooms are pruned. Instead of the objects names, the diagram displays
the support of each concept. From the diagram, we can read three implica-
tions: {} → {veil type: partial}, {ring number: one, veil color: white} → {gill
attachment: free}, and {ring number: one, gill spacing: close} → {veil color:
white, gill attachment: free}. These implications hold for the whole dataset.

Iceberg concept lattices were developed as an answer of FCA to the asso-
ciation rule mining problem [1]. Association rules are statements of the type
“67% of the customers buying cereals and sugar also buy milk (where 7% of
all customers buy all three items)”. The task of mining association rules is to
determine all rules whose confidences (67% in the example) and supports (7%
in the example) are above user-defined thresholds.

veil type: partial
ring number: one

veil color: white

gill attachment: free

gill spacing: close

100 %

92.30 % 97.62 %97.43 %

81.08 %

76.81 % 78.80 %

97.34 %90.02 %

89.92 %

78.52 %

74.52 %

Fig. 5. Iceberg concept lattice for the Mushrooms data set for minsupp = 70%

8 http://kdd.ics.uci.edu/
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The expensive step of computing association rules is to compute all fre-
quent itemsets, i.e. in terms of FCA, all subsets B ⊆ M of the attribute set
M of a context (G,M, I) with supp(B) := |B′|

|G| ≥ minsupp. Lakhal et al. [42],
Zaki [77], and Stumme [61] discovered independently that it is sufficient to
compute only the frequent concept intents. In the data mining community,
they were then called frequent closed itemsets, because the set of concept in-
tents forms a closure system (which means that the intersection of any set of
concept intents is again a concept intent). The corresponding closure operator
is the function which maps each itemset B ⊆ M to its closure, the itemset B′′.

The support of any itemset B ⊆ M equals the support of the smallest
concept intent containing it (which is just B′′). Hence, for computing all asso-
ciation rules, it is sufficient to consider only frequent concept intents instead
of all frequent itemsets.

One can go even one step further and compute not all association rules,
but only a basis, i.e. a non-redundant subset from which all other rules can
be derived [43,65,76]. The smallest basis for exact rules (i.e. those with 100%
confidence; called implications above) is the so-called Duquenne–Guigues ba-
sis, see [21, 24, 65] for details. The exact rules can also be read directly from
the line diagram as described above. The Luxenburger basis ([65], based on
work by M. Luxenburger [39]) is a basis for the approximate rules (those with
confidence < 100%) which can be visualised in the concept lattice.

Example 9. The Luxenburger basis for the Mushrooms database with a min-
imum support of 70% and a minimum confidence of 95% is shown in Fig. 6.
Every edge (read downwards) is one rule of the basis, with its confidence
listed. Its support equals the support of the concept the arrow is pointing to,
and can be read from Fig. 5.

ring number: one

veil type: partial
gill attachment: free

gill spacing: close

97.0%

99.9% 99.6%

97.2%

97.4%

99.9%

99.7%

97.5%

veil color: white
97.6%

Fig. 6. Luxenburger basis for the Mushrooms data set
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The first results on concept intents/closed itemsets launched the search for
other condensed representations of the set of frequent itemsets, for instance
key sets [5] = free sets [8] = minimal generators [43], non-derivable item-
sets [10], disjunction free sets [9], and k-free sets [47]. These presentations
have not yet been extended to bases of association rules (with the exception
of minimal generators, see [43]).

6 Knowledge Acquisition with Formal Concept Analysis

Knowledge Acquisition aims at supporting the acquisition of knowledge from
humans and its transformation into a formal model. The most prominent FCA
technique is B. Ganter’s Attribute Exploration [24] (see also [30]). It addresses
the problem of a formal context where the object set is not completely known
a priori, or too large to be completely listed. In an interactive, iterative ap-
proach, the Duquenne–Guigues basis is computed. Each implication is sug-
gested to the user. She has then either to accept it (i.e. she excludes potential
objects) or to provide a counter-example (i.e. she provides a (typical) object),
until the basis – and thus the concept lattice – is completely determined.

Concept Exploration extends this approach to situations where both the
object set and the attribute set of the context are not completely known a
priori or too large [57,60]. An overview over interactive knowledge acquisition
techniques based on FCA can be found in [59].

7 Folksonomies and Triadic Concept Analysis

Social resource sharing systems are Web 2.0 systems that allow users to upload
their resources, and to label them with arbitrary words, so-called tags. Each
system has a specific type of resources it supports. Flickr, for instance, allows
the sharing of photos, del.icio.us the sharing of bookmarks, CiteULike9 and
Connotea10 the sharing of bibliographic references, and 43Things11 even the
sharing of goals in private life. Our system BibSonomy12 ([33], see Fig. 7)
allows to share both bookmarks and bibliographic references.

In their core, these systems are all very similar. Users can add resources
to the system, and assign arbitrary tags to them. The collection of a users
assignments is his personomy, the collection of all personomies constitutes the
folksonomy. The user can explore his personomy, as well as the personomies of
other users, in all dimensions: for a given user one can see all resources he has
uploaded, together with the tags he has assigned to them (see Fig. 7); when

9 http://www.citeulike.org
10 http://www.connotea.org
11 http://www.43things.com
12 http://www.bibsonomy.org
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Fig. 7. BibSonomy displays bookmarks and bibliographic references simultaneously

clicking on a resource one sees which other users have uploaded this resource
and how they tagged it; and when clicking on a tag one sees who assigned it
to which resources.

With the emergence of social bookmarking systems, the interest in a triadic
extension of FCA raised again. This extension was introduced by R. Wille
and F. Lehmann in [38] in 1995, where a formal context was extended by
a third dimension: the sets of objects and of attributes were complemented
with a third set, containing so-called conditions. The notion of concepts and
of concept lattices was lifted to the third dimension as well.

Structurally, triadic contexts are equal to folksonomies. Hence the whole
theory of triadic FCA can be applied directly to folksonomies.

In the first part of this section, we present a formal definition of folk-
sonomies, before giving an overview over triadic FCA, and connecting its
notions to those of folksonomies.

7.1 Folksonomies

The word “folksonomy” is a blend of the words “taxonomy” and “folk”, and
stands for conceptual structures created by the people. Folksonomies are thus
a bottom-up complement to more formalised Semantic Web technologies, as
they rely on emergent semantics [54,55] which result from the converging use
of the same vocabulary. A folksonomy describes the users, resources, and tags,
and the user-based assignment of tags to resources.

Definition 7 ([34]). A folksonomy is a tuple F := (U, T,R, Y,≺) where:

• U , T , and R are finite sets, whose elements are called users, tags and
resources, resp.

• Y is a ternary relation between them, i.e. Y ⊆ U × T × R, called tag
assignments (TAS for short)

• ≺ is a user-specific subtag/supertag-relation, i.e. ≺⊆ U × T × T , called
subtag/supertag relation
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The personomy Pu of a given user u ∈ U is the restriction of F to u, i.e.
Pu := (Tu, Ru, Iu,≺u) with Iu := {(t, r) ∈ T ×R | (u, t, r) ∈ Y }, Tu := π1(Iu),
Ru := π2(Iu), and ≺u := {(t1, t2) ∈ T × T | (u, t1, t2) ∈ ≺}, where πi denotes
the projection on the ith dimension.

Users are typically described by their user ID, and tags may be arbitrary
strings. What is considered as a resource depends on the type of system.
For instance, in del.icio.us, the resources are URLs, in Flickr pictures, and in
BibSonomy they are either URLs or bibliographic references.

7.2 Triadic Formal Concept Analysis

Inspired by the pragmatic philosophy of Charles S. Peirce with its three uni-
versal categories [44], Rudolf Wille and Fritz Lehmann extended FCA in 1995
with a third category [38].

Definition 8 ([38]). A triadic formal context is a quadruple K :=
(G,M,B, Y ) where G, M , and B are sets, and Y is a ternary relation
between G, M , and B, i.e. Y ⊆ G ×M × B. The elements of G, M , and B
are called objects, attributes, and conditions, resp, and (g,m, b) ∈ Y is read
“object g has attribute m under condition b”.

In terms of FCA, a folksonomy (without its is-a relation ≺ on the tag set)
is thus just a triadic formal context F := (U, T,R, Y ). In the remainder of this
paper, we will thus use the two terms synonymously.

Triadic concepts are defined in a manner analogue to the dyadic case.

Definition 9 ([38]). A tri-concept of K is a triple (A1, A2, A3) with A1 ⊆ G,
A2 ⊆ M , A3 ⊆ B, and A1 × A2 × A3 ⊆ Y such that none of its three
components can be enlarged without violating this condition. A1 is called the
extent, A2 the intent, and A3 the mode of the tri-concept (A1, A2, A3).

We define three quasi-orders �1, �2, and �3 on the set of all tri-concepts,
one for each dimension G, M , and B: (A1, A2, A3) �i (B1, B2, B3) iff Ai ⊆
Bi, for i = 1, 2, 3.

Lemma 1. For two tri-concepts a and b, a �i b and a �j b imply b �k a, for
{i, j, k} = {1, 2, 3}.

Lehmann and Wille present in [38] an extension of the theory of ordered
sets and (concept) lattices to the triadic case, and discuss structural prop-
erties. This approach initiated research on the theory of concept trilattices,
e.g. [6, 7, 17, 25, 72] see BibSonomy13 for more references. References [38] and
[17] present several ways to project a triadic context to a dyadic one. Ref-
erence [62] presents a model for navigating a triadic context by visualising
concept lattices of such projections.
13 http://www.bibsonomy.org/tag/triadic+fca
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7.3 Analysing Folksonomies with Triadic FCA

The notion of iceberg concept lattices/frequent closed itemsets has been lifted
to the triadic case by Jäschke et al. [35]. For each of the three dimensions,
one can provide a minimum support threshold. A tri-concept is then said to
be frequent, if the cardinalities of its extent, intent, and mode are all above
the respective thresholds. The authors also provide an efficient algorithm for
mining iceberg tri-concept lattices, based on the Next Closure algorithm pre-
sented above.

Example 10. Figure 8 shows the iceberg tri-concept lattice for the publi-
cation part of the social bookmark and publication management system
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Fig. 8. All frequent tri-concepts of the BibSonomy publications
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BibSonomy.14 It includes all publications entered until November 23, 2006,
excluding the content of the DBLP computer science bibliography15 The re-
sulting snapshot contains |Y | = 44, 944 tag assignments built by |U | = 262
users, containing |R| = 11, 101 publication references tagged with |T | =
5,954 distinct tags.16 The complete tri-concept lattice consists of 13,992 tri-
concepts. Figure 8 shows all 21 tri-concepts which contain at least three
users, two tags and two publication entries. The publications in the fig-
ure are substituted by numbers for space reasons. They can be found un-
der http://www.bibsonomy.org/group/kde/trias example?items=50, and are
numbered in alpabetic order of the paper title.

The 21 nodes in the center of the triangle represent the 21 frequent tri-
concepts. The sets of users, tags, and resources composing a tri-concept can
be read off the three sides of the triangle. There, three Hasse diagrams display
the three quasi-orders �1, �2, and �3 as introduced above. The arrows guide
the reader to the larger elements of each quasi-order. Each node in a hierarchy
represents the set containing the labels attached to it plus all labels below. The
empty nodes are not part of the quasi-order. They are just used to be able to
place each label once only. A node in the middle of the diagram represents then
the tri-concept consisting of the three components it projects to. For instance,
the lower-most node in the triangle represents the tri-concept consisting of the
set {jaeschke, schmitz, stumme} of users, the set {fca, triadic} of tags, and
the set {1, 37} of resources.

A closer look on the tag hierarchy reveals the content of the most central
publications in the system. The tag social co-occurs with most of the tags. On
the level of generality defined by the support thresholds, this tag is (together
with the tags ai [meaning Artificial Intelligence], . . . , tags) assigned by the
users lkl kss and yish to the publications 19 and 30, (together with the tag
bookmarking) by the users hotho, jaeschke, stumme to the publications 4 and
28, and (again together with the tag bookmarking) by the users brotkasting,
jaeschke, stumme to the publications 28 and 29. The tags as well as the
corresponding publication titles indicate that the two sets of users {lkl kss,
yish} and {brotkasting, hotho, jaeschke, stumme} form two sub-communities
which both work on social phenomena in the Web 2.0, but from different
perspectives. A second topical group is spanned by the tag semantic, which
occurs in three different contexts: semantic wikis, semantic web mining, and
together with the tag “folksonomy”. A detailed discussion of this diagram is
given in [36].

One way to simplify the analysis of triadic data is to project it down
to a two-dimensional dataset. There are different possible projections.
Lehmann and Wille present, for instance, in [38] the derived dyadic context

14 http://www.bibsonomy.org
15 http://www.informatik.uni-trier.de/∼ley/db/
16 BibSonomy benchmark datasets are available for scientific purposes, see http://

www.bibsonomy.org/faq.
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K
(1) := (G,M × B, Y (1)) with (g, (m, b)) ∈ Y (1) : ⇐⇒ (g,m, b) ∈ Y , and

its two symmetric variations. The set B was also used to define two modal
operators for generating projections [17]. A survey over the potential projec-
tions is given in [62], where also a model for navigating a triadic context by
visualising concept lattices of such projections is given.

We discussed in [49], how to compute association rules from a triadic con-
text based on such projections. A first step towards truly “triadic association
rules” has been done by Ganter and Obiedkov [25].

The focus of this section was on folksonomy research that is related to For-
mal Concepts Analysis. A general survey over theory and applications of folk-
sonomies is out of the scope of this article. A collection of folksonomy related
publications can be found at http://www.bibsonomy.org/tag/folksonomies.

8 Ontology Engineering with Formal Concept Analysis

We conclude this survey on FCA with a short discussion of some FCA based
ontology engineering solutions. A more detailed survey can be found in [15].

8.1 Browsing Ontologies

Ferré and Ridoux use FCA for building a virtual file system in which the
files are considered as the objects of a formal context, and descriptors (in first
order logic) are its attributes [22]. The extents of the formal concepts are then
used as virtual folders. A similar idea is exploited in the Conceptual Email
Manager17 [16], which is an FCA based email management system that allows
to classify emails simultaneously in more than one folder of a folder/concept
hierarchy. The application of FCA results in the visualisation of a concept
lattice which additionally contains all possible intersections (in terms of logic:
conjunctions) of folders as new, virtual folders. The ImageSleuth system [20]
follows this approach for browsing collections of images. Another system along
this line is the Courseware Watchdog [69], which allows for browsing also the
non-hierarchical relations of an ontology. A formal framework of this approach
is presented by Tane [67,68], based on the notion of a multi-context [73], which
is roughly equivalent to a set of RDF statements (without reification).

8.2 Non-atomic Attributes

The attributes of a formal context can be considered as unary predicates. In
the standard context, they are atomic, but no one prevents us from defin-
ing them in a more complex knowledge representation. In this sense, first
order logic and SQL were used for conceptual scaling [45], and the description
logic ALC for defining one-valued attributes of formal contexts [46]. These
17 See http://www.mail-sleuth.com/ for a commercial follow-up.
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approaches were followed independently by Chaudron and Maille [13] and
Ferre and Ridoux [23], using first order logic. The latter was then exploited
for the virtual file system [22] described above.

8.3 Ontology Learning and Merging

The Attribute Exploration procedure described in Sect. 6 was used by Baader
et al. and Rudolph for computing the hierarchy of all conjunctions of all
concepts of a given description logic knowledge base [3,4,48] . Ganter used it
for interactively refining the concept hierarchy of a given ontology [27].

The method FCA–Merge [63] for merging ontologies follows a bottom-
up approach for merging ontologies. For the source ontologies, it extracts
instances from a given set of domain-specific text documents by applying nat-
ural language processing techniques. The resulting concept lattice provides a
conceptual clustering of the concepts of the source ontologies. It is explored
and interactively transformed to the merged ontology by the ontology engi-
neer. Cimiano et al. follow a similar approach for ontology learning [14]. They
use text mining methods to extract a formal context from a set of documents.
Its concept lattice is then transformed automatically into an ontology.

8.4 Class Design in Software Engineering

The task of designing class hierarchies in object-oriented (OO) programming
has many similarities with the construction of an ontology. There are several
FCA applications in this area. Reference [32] use FCA for deriving class hi-
erarchies from use cases. Reference [31] uses concept lattices for structuring
OO class hierarchies. Reference [50] builds a conceptual hierarchy from source
code, based on preprocessor commands. Reference [52] is the most complex
application in this domain. It describes a semantics-preserving refactoring of
a class hierarchy using FCA. Surveys of FCA support for software engineering
are given in [51] and [70].

Remark. An extended list of references can be found at BibSonomy.18
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Avancées (BDA’98), pages 177–196, Octobre 1998.

43. N. Pasquier, R. Taouil, Y. Bastide, G. Stumme, and L. Lakhal. Generating a
condensed representation for association rules. Journal of Intelligent Informa-
tion Systems, 24(1):29–60, 2005.

44. C. S. Peirce. Collected Papers of Charles Sanders Peirce. Harvard University
Press, Cambridge, 1931–1935, 1958.

45. S. Prediger. Logical scaling in formal concept analysis. In D. Lukose,
H. Delugach, M. Keeler, L. Searle, and J. F. Sowa, editors, Conceptual Struc-
tures: Fulfilling Peirce’s Dream, number 1257 in Lecture Notes in Artificial
Intelligence. Springer, Berlin, 1997.

46. S. Prediger and G. Stumme. Theory-driven logical scaling. In E. F. et al.
editors, Proc. 6th Intl. Workshop Knowledge Representation Meets Databases
(KRDB’99), volume CEUR Workshop Proc. 21, 1999. Also in P. Lambrix et al.
editors, Proc. Intl. Workshop on Description Logics (DL’99). CEUR Workshop
Proc. 22, 1999 http://ceur-ws.org/Vol-21.

47. F. Rioult. Extraction de connaissances dans les bases de données comportant
des valeurs manquantes ou un grand nombre d’attributs. PhD thesis, Université
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Summary. OntoClean is a methodology for validating the ontological adequacy
and logical consistency of taxonomic relationships. It is based on highly general
ontological notions drawn from philosophy, like essence, identity, and unity, which
are used to elicit and characterize the intended meaning of properties, classes, and
relations making up an ontology. These aspects are represented by formal metaprop-
erties, which impose several constraints on the taxonomic relationships between con-
cepts. The analysis of these constraints helps in evaluating and validating the choices
made. In this chapter we present an informal overview of the philosophical notions
involved and their role in OntoClean, review some common ontological pitfalls, and
walk through the example that has appeared in pieces in previous papers and has
been the basis of numerous tutorials and talks.

1 Introduction

The OntoClean methodology was first introduced in a series of conference-
length papers in 2000 [4–7, 12], and received much attention and use in sub-
sequent years. The main contribution of OntoClean was the beginning of a
formal foundation for ontological analysis. Alan Rector, a seasoned veteran at
ontological analysis in the medical domain, said of OntoClean, “. . . what you
have done is reduce the amount of time I spend arguing with doctors that
the way I want to model the world is right. . . ” [10]. A similar comment came
from the CYC people attending our AAAI-2000 tutorial: “You showed why
the heuristic choices we adopted were right.” Most experienced domain mod-
elers can see the correct way to, e.g., structure a taxonomy, but are typically
unable to justify themselves to others. OntoClean has provided a logical basis
for arguing against the most common modeling pitfalls, and arguing for what
we have called “clean ontologies.”

∗ This is a slightly edited version of the paper with the same title published in the
previous edition of this volume.
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In this chapter we present an informal overview of the four basic notions
essence, identity, unity, and dependence, and their role in OntoClean, review
the basic ontology pitfalls, and walk through the example that has appeared
in pieces in previous papers and has been the basis of numerous tutorials and
talks beginning with AAAI-2000.

1.1 Background

The basic notions in OntoClean were not new, but existed in philosophy for
some time. Indeed, the practice of modeling the world for information systems
has many parallels in philosophy, whose scholars have been trying to describe
the universe in a formal, logical way since the time of Aristotle. Philosophers
have struggled with deep problems of existence, such as God, life and death,
or whether a statue and the marble from which it is made are the same entity
(see [11] for a classic text on the notions touched here). While these problems
may seem irrelevant to the designer of an information system, we found that
the conceptual analysis and the techniques used to attack these problems are
not, and form the basis of our methodology.

1.2 Properties, Classes, and Subsumption

Many terms have been borrowed by computer science from mathematics and
logic, but unfortunately this borrowing has resulted often in a skewed meaning.
In particular, the terms property and class are used in computer science with
often drastically different meanings from the original. The use of the term
property in RDF is an example of such unfortunate deviation from the usual
logical sense.

In this chapter, we shall consider properties as the meanings (or inten-
sions) of expressions like being an apple or being a table, which correspond
to unary predicates in first-order logic. Given a particular state of affairs (or
possible world, if you prefer), we can associate to each property a class (its
extension), which is the set of entities that exhibit that property in that par-
ticular situation. The members of this class will be called instances of the
property. Classes are therefore sets of entities that share a property in com-
mon; they are the extensional counterpart of properties. In the following, we
shall refer most of the time to properties rather than classes or predicates,
to stress the fact that their ontological nature (characterized by means of
meta-properties) does not depend on syntactic choices (as it would be for
predicates), nor on specific states of affairs (as it would be for classes).

The independence of properties from states of affairs gives us the oppor-
tunity to make clear the meaning of the term subsumption we shall adopt in
this paper. A property p subsumes q if and only if, for every possible state of
affairs, all instances of q are also instances of p. On the syntactic side, this
corresponds to what is usually held for description logics, P subsumes Q if
and only if there is no model of Q ∧¬P.
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2 The Basic Notions

2.1 Essence and Rigidity

A property of an entity is essential to that entity if it must be true of it in
every possible situation, i.e., if it necessarily holds for that entity. For example,
the property of having a brain is essential to human beings. Every human must
have a brain in every possible situation.

A special form of essentiality is rigidity; a property is rigid if it is essential
to all its possible instances; an instance of a rigid property cannot stop being
an instance of that property in a different situation. For example, while having
a brain may be essential to humans, it is not essential to, say, scarecrows in the
Wizard of Oz. If we were modeling the world of the Wizard of Oz, the property
of having a brain would not be rigid, though still essential to humans. On the
other hand, the property being a human is typically rigid, every human is
necessarily so.

The fact that we said “typically” in the previous statement requires an
immediate clarification. The point of OntoClean is not to help people decid-
ing about the ontological nature of a certain property; this choice depends
on the way the domain at hand is conceptualized [3], and cannot be forced in
advance. What OntoClean offers is, rather, a formal framework for expressing
(some of) the ontological assumptions lying behind a certain conceptualiza-
tion (its so-called ontological commitment). Rigidity is the first ingredient of
this framework: expressing (by means of meta-properties) whether it holds or
not for the relevant properties of our conceptualization helps clarifying the
ontological commitment of such conceptualization.

When a property is non-rigid, it can acquire or lose (some of) their in-
stances depending on the situation at hand. Within non-rigid properties, we
distinguish between properties that are essential to some entities and not es-
sential to others (semi-rigid), and properties that are not essential to all their
instances (anti-rigid). For example, the property being a student is typically
anti-rigid – every instance of student can cease to be such in a suitable sit-
uation, whereas the property having a brain in our Wizard of Oz world is
semi-rigid, since there are instances that must have a brain as well as others
that consider a brain just as a (useful) optional.

Rigidity and its variants are important meta-properties, every property in
an ontology should be labeled as rigid, non-rigid, or anti-rigid. In addition to
providing more information about what a property is intended to mean, these
meta-properties impose constraints on the subsumption relation, which can
be used to check the ontological consistency of taxonomic links. One of these
constraints is that anti-rigid properties cannot subsume rigid properties. For
example, the property being a student cannot subsume being a human if the
former is anti-rigid and the latter is rigid. To see this, consider that, if p is
an anti-rigid property, all its instances can cease to be such. This is certainly
the case for student, since any student may cease being a student. However,
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no instance of human can cease to be a human, and if all humans would
be necessarily students (the meaning of subsumption), then no person could
cease to be a student, creating therefore an inconsistency.

2.2 Identity and Unity

Although very subtle and difficult to explain without experience, identity and
unity are perhaps the most important notions we use in our methodology.
These two things are often confused with each other; in general, identity refers
to the problem of being able to recognize individual entities in the world as
being the same (or different), and unity refers to being able to recognize all
the parts that form an individual entity.

Identity criteria are the criteria we use to answer questions like, “is that
my dog?” In point of fact, identity criteria are conditions used to determine
equality (sufficient conditions) and that are entailed by equality (necessary
conditions).

It is perhaps simplest to think of identity criteria over time (diachronic
identity criteria), e.g., how do we recognize people we know as the same person
even though they may have changed? It is also very informative, however, to
think of identity criteria at a single point in time (synchronic identity criteria).
This may, at first glance, seem bizarre. How can you ask, “are these two entities
the same entity?” If they are the same then there is one entity, it does not
even make sense to ask the question.

The answer is not that difficult. One of the most common decisions that
must be made in ontological analysis concerns identifying circumstances in
which one entity is actually two (or more). Consider the following example,
drawn from actual experience: somebody proposed to introduce a property
called time duration whose instances are things like one hour and two hours,
and a property time interval referring to specific intervals of time, such as
“1:00–2:00 next Tuesday” or “2:00–3:00 next Wednesday.” The proposal was
to make time duration subsume time interval, since all time intervals are
time durations. Seems to make intuitive sense, but how can we evaluate this
decision?

In this case, an analysis based on the notion of identity can be informative.
According to the identity criteria for time durations, two durations of the same
length are the same duration. In other words, all one-hour time durations are
identical – they are the same duration and therefore there is only one “one
hour” time duration. On the other hand, according to the identity criteria for
time intervals, two intervals of the same duration occurring at the same time
are the same, but two intervals occurring at different times, even if they are the
same duration, are different. Therefore the two example intervals above would
be different intervals. This creates a contradiction: if all instances of time
interval are also instances of time duration (as implied by the subsumption
relationship), how can they be two instances of one property and a single
instance of another?
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This is one of the most common confusions of natural language when used
for describing the world. When we say “all time intervals are time durations”
we really mean “all time intervals have a time duration” – the duration is
a component of an interval, but it is not the interval itself. In this case we
cannot model the relationship as subsumption, time intervals have durations
(essentially) as qualities. More examples of such confusions are provided at
the end of this article.

One of the distinctions proposed by OntoClean is between properties that
carry an identity criterion and properties that do not. The former are labeled
with an ad hoc meta-property, +I. Since criteria of identity are inherited along
property subsumption hierarchies, a further distinction is made to mark those
properties that supply (rather just carrying) some “own” identity criteria,
which are not inherited from the subsuming properties. These properties are
marked with the label +O (where O stands for “own”).

Unfortunately, despite their relevance, recognizing identity criteria may be
extremely hard. However, in many cases identity analysis can be limited to
detecting the properties that are just necessary for keeping the identity of a
given entity, i.e., what we have called the essential properties. Obviously, if two
things do not have the same essential properties they are not identical. Take for
instance the classical example of the statue and the clay: is the statue identical
to the clay it is made of? Let us consider the essential properties: having (more
or less) a certain shape is essential for the statue, but not essential for the
clay. Therefore, they are different: we can say they have different identity
criteria, even without knowing exactly what these criteria are. In practice, we
can say that “sharing the essential property P,” where P is essential for all the
instances of a property Q different from P, is the weakest form of an identity
criterion carried by Q. Such criterion can be used to make conclusions about
non-identity, if not about identity.

A second notion that is extremely useful in ontological analysis is Unity.
Unity refers to the problem of describing the parts and boundaries of objects,
such that we know in general what is part of the object, what is not, and
under what conditions the object is whole.

Unity can tell us a lot about the intended meaning of properties in an
ontology. Certain properties pertain to wholes, that is, all their instances are
wholes, others do not. For example, being (an amount of) water does not
have wholes as instances, since each amount can be arbitrarily scattered or
confused with other amounts. In other words, knowing it is an amount of water
does not tell us anything about its parts, and recognizing it as a single entity.
On the other hand, being an ocean is a property that picks up whole objects, as
its instances, such as “the Atlantic Ocean” is recognizable as a single entity.
Of course, one might observe that oceans have vague boundaries, but this
is not an issue here: the important difference with respect to the previous
example is that in this case we have a criterion to tell, at least, what is
not part of the Atlantic Ocean, and still part of some other ocean. This is
impossible for amounts of water.
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In general, in addition to specifying whether or not properties have wholes
as instances, it is also useful to analyze the specific conditions that must hold
among the parts of a certain entity in order to consider it a whole. We call
these conditions unity criteria (UC). They are usually expressed in terms of a
suitable unifying relation, whose ontological nature determines different kinds
of wholes. For example, we may distinguish topological wholes (a piece of coal),
morphological wholes (a constellation), functional wholes (a hammer, a bikini).
As these examples show, nothing prevents a whole from having parts that are
themselves wholes (under different unifying relations). Indeed, a plural whole
can be defined as a whole that is a mereological sum of wholes.

In OntoClean, we distinguish with suitable meta-properties the properties
all whose instances must carry a common UC (such as ocean) from those
that do not. Among the latter, we further distinguish properties all of whose
instances must be wholes, although with different UCs, from properties all of
whose instances are not necessarily wholes. An example of the former kind
may be legal agent, if we include both people and companies (with different
UCs) among its instances. Amount of water is usually an example of the latter
kind, since none of its instances must be wholes (this is compatible with the
view that a particular amount of water may become a whole for a short while,
e.g., while forming an iceberg. We say that ocean carries unity (+U), legal
agent carries no unity (−U), and amount of water carries anti-unity (∼U).

The difference between unity and anti-unity leads us again to interesting
problems with subsumption. It may make sense to say that “Ocean” is a
subclass of “Water,” since all oceans are water. However, if we claim that
instances of the latter must not be wholes, and instances of the former always
are, then we have a contradiction. Problems like this again stem from the
ambiguity of natural language, oceans are not “kinds of” water, they are
composed of water.

2.3 Constraints and Assumptions

A first observation descending immediately from our definitions regards some
subsumption constraints. Given two properties, p and q, when q subsumes
p the following constraints hold:

1. If q is anti-rigid, then p must be anti-rigid
2. If q carries an identity criterion, then p must carry the same criterion
3. If q carries a unity criterion, then p must carry the same criterion
4. If q has anti-unity, then p must also have anti-unity
5. If q is dependent on property c, then p is dependent on property c

Finally, we make the following assumptions regarding identity (adapted from
Lowe [8]):

• Sortal Individuation. Every domain element must instantiate some prop-
erty carrying an IC (+I). In this way we satisfy Quine’s dicto “No entity
without identity” [9].
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• Sortal Expandability. If something is an instance of different properties (for
instance related to different times), then it must be also instance of a more
general property carrying a criterion for its identity.

Together, the two assumptions imply that every entity must instantiate a
unique most general property carrying a criterion for its identity.

3 An Extended Example

In this section we provide a walk-through of the way the OntoClean analysis
can be used. This example is based on those presented at various tutorials
and invited talks.

We begin with a set of classes arranged in a taxonomy, as shown in Fig. 1.
The taxonomy we have chosen makes intuitive sense prima facie, and in most
cases the taxonomic pairs were taken from existing ontologies such as Word-
net1, Pangloss2, and the 1993 version of CYC.3

We have chosen, following our previous papers, to use a shorthand notation
for indicating meta-property choices on classes. Rigidity is indicated by R,
identity by I, unity by U, and dependence by D. Each letter is preceded

Fig. 1. An uncleaned taxonomy

1 URL. . .
2 URL. . .
3 The current version of Cyc no longer contains these errors.
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by +, − or ∼, to indicate the positive, negative, or anti meta-property, e.g.,
being rigid (+R), carrying an identity criterion (+I), carrying a common unity
criterion (+U); not rigid (−R), not carrying an identity criterion (−I), not
carrying a common unity criterion (−U); being anti-rigid (∼R) and having
anti-unity (∼U). We also used (+O) to indicate when a property carries
its own identity criterion, as opposed to inheriting one from a more general
property.

3.1 Assigning Meta-Properties

The first step is to assign the meta-properties discussed above to each property
in the taxonomy. When designing a new ontology, this step may occur first,
before arranging the properties in a taxonomy. Note that the assignments
discussed here are not meant to be definitive at all: rather, these represent
prima facie decisions reflecting our intuitions about the meaning ascribed
to the terms used. The point of this exercise is not so much to discuss the
ontological nature of these properties, but rather to explore and demonstrate
the logical consequences of making these choices. As we shall see, in some
cases they will result contradictory with respect to the formal semantics of
our meta-properties, although intuitive at a first sight. In our opinion, this
proves the utility of a formal approach to ontology analysis and evaluation.

Entity

Everything is necessarily an entity. Our meta-properties assignment is −I−U
+R. This is the most abstract property, indeed it is not necessary having an
explicit predicate for it.

Location

A location is considered here as a generalized region of space. Our assignment
is +O∼U+R. We assume the property as rigid since instances of locations
cannot change being locations. The identity criterion is that two locations are
the same if and only if they have the same parts. This kind of criterion is
fairly common, and is known as mereological extensionality. It applies to all
entities that are trivially defined to be the sum of their parts. It is important to
realize that this criterion implies that a location or region cannot “expand” –
if so then the identity criteria would have to be different. So, extending a
location makes it a different one. So we see that identity criteria are critical
in specifying precisely what a property is intended to mean.

Amount of Matter

We conceptualize an amount of matter as a clump of unstructured or scattered
“stuff” such as a liter of water or a kilogram of clay. Amounts of matter should
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not be confused with substances, such as water or clay; an amount of matter
is a particular amount of the substance. Therefore, amounts of matter are
mereologically extensional, so we assign +O to this property. As discussed
above, they are not necessarily wholes, so our assignment is ∼U. Finally,
every amount of matter is necessarily so, therefore the property is +R.

Red

What we have in mind here is the property of being a red thing, not the prop-
erty of being a particular shade color. We see in this case that it is useful to
ask ourselves what the instances of a certain property are. Do we have oranges
and peppers in the extension of this property, or just their colors? Red entities
share no common identity criteria, so our assignment is –I. A common confu-
sion here regarding identity criteria concerns the fact that all instances of red
are colored red, therefore we have a clear membership criterion. Membership
criteria are not identity criteria, as the latter gives us information about how
to distinguish entities from each other. Having a color red is common to all
instances of this property, and thus is not informative at all for identity.

A red amount of matter would be an instance of this property, which is
not a whole, as would a red ball, which is a whole. Therefore we must choose
–U, indicating that there is no common unity criterion for all instances.

Finally, we choose –R since some instances of Red may be necessarily so,
and most will not. This weak and unspecific combination of meta-properties
indicates that this property is of minimal utility in an ontology, we call them
attributions [12].

Agent

We intend here an entity that plays a causal part in some event. Just about
anything can be an agent, a person, the wind, a bomb, etc. Thus there is no
common identity nor unity criterion for all instances, and we choose –I–U. No
instance of agent is necessarily an agent, thus the property is ∼R. Clearly this
assignment of meta-properties selects a particular meaning of agent among
the many possible ones. See for example [2] for a discussion on the meaning
of causal agent in WordNet.

Group

We see here a group as an unstructured finite collection of wholes. Instances
of group are mereologically extensional as they are defined by their mem-
bers, thus +O. Since, given a group, we have no way to isolate it from other
groups, no group is per se a whole, thus ∼U. In any case, like many general
terms, Group is fairly ambiguous, and once again this choice of identity crite-
ria and anti-unity exposes the choice we have made. Finally, it seems plausible
to assume that every instance of group is necessarily so, thus +R.
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Physical Object

We think here of physical objects as isolated material entities, i.e., something
that can be “picked up and thrown” (at a suitable scale, since a planet would
be considered an instance of a physical object as well. . . ). Under this vision,
what characterizes physical objects is that they are topological wholes – so we
assign +U to the corresponding property.

For the sake of simplicity, we assume here that no two instances of this
property can exist in the same spatial location at the same time. This is
an identity criterion, so we assign +O to this property. Note that this is
a synchronic identity criterion (see identity and unity, above) – we do not
assume a common diachronic identity criterion for all physical objects.

Physical object is a rigid property, so we have +R. To see this, consider the
alternative: there must be some instance of the property that can, possibly,
stop being a physical object, yet still exist and retain its identity. By assigning
rigidity to this property, we assert that there is no such instance, and that
every instance of Physical Object ceases to exist if it ceases to be a physical
object.

Living Being

Instances of living being must be wholes according to some common biological
unity criterion. We do not need to specify it to assign +U to this property.

For identity, it is difficult to assume a single criterion that holds for all
instances of living being. The way we, e.g., distinguish people may be different
from the way we distinguish dogs. However, a plausible diachronic criterion
could be having the same DNA (although only-necessary, since it does not help
in the case of clones). Moreover, we can easily think of essential properties
that characterize living beings (e.g., the need of taking nutrients from the
environment), and this is enough for assigning them +O.

We assume living being to be a rigid property (+R), so if an entity ceases
to be living then it ceases to exist. Notice that this is a precise choice that is
totally dependent on our conceptualization: nothing would exclude considering
life as a contingent (non-rigid) property; by considering it as rigid, we are
indeed constructing a new kind of entity, justified by the fact that this property
is very relevant for us.

Food

Nothing is necessarily food, and just about anything is possibly food. In a
linguistic sense, “food” is a role an entity may play in an eating event. Con-
sidering that anything that is food can also possibly not be food, we assign
∼R to this property. We also assume that any quantity of food is an amount
of matter and inherits its extensional identity criterion, thus +I and ∼U.
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Animal

Like for living being, the identity criteria for animal may be difficult to char-
acterize precisely, but we can devise numerous essential properties that apply
only to them, or only-sufficient conditions that act as heuristics especially
for diachronic identity criteria. Humans, in particular, are quite good at rec-
ognizing most individual animals, typically based on clues present in their
material bodies. The undeniable fact is that we do recognize “the same” an-
imal over time, so there must be some way that is accomplished. Therefore,
we assign +O.

The property is clearly rigid (+R); moreover, being subsumed by living
being, it clearly carries unity (+U).

Legal Agent

This is an agent that is recognized by law. It exists only because of a legal
recognition. Legal agents are entities belonging to the so-called social reality,
insofar their existence is the result of social interaction. All legal systems
assign well-defined identity criteria to legal agents, based on, for example, an
id number. Therefore, it seems plausible to assign +O. Concerning unity, if
we include companies (as well as persons) among legal agents, then probably
there is no unity criteria shared by all of them, so we assign −U. Finally,
since nothing is necessarily a legal agent, we assign ∼R. For instance, we may
assume that a typical legal entity, such as a person, becomes such only after
a certain age.

Group of People

A special kind of Group all of whose members are instances of Person. Identity
and unity criteria are the same as Group, and thus we have +I∼U. Finally,
we consider Group of People to be rigid, since any entity which is a group of
people must necessarily be such.

Social Entity

A group of people together for social reasons. Such as the “Bridge Club”
(i.e., people who play cards together). We cannot imagine a common identity
criteria for this property, however we assume it is rigid and carries unity.
−I+U+R.

Organization

Instances of this property are intended to be things like companies, depart-
ments, governments, etc. They are made up of people with play specific roles
according to some structure. Like people, organizations seem to carry their
own identity criterion, and are wholes with a functional notion of unity, so we
assign +O+U+R.
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Fruit

We are thinking here of individual fruits, such as oranges or bananas. We
assume they have their own essential properties, and can clearly be isolated
from each other. Therefore, +O+U+R seems to be an obvious assignment.

Apple

This likely adds its on essential properties to those of fruits, so we assign it
+O+U+R.

Red-Apple

Red apples do not have essential meta-properties in addition to apples. More-
over, no red apple is necessarily red, therefore we assign +I+U∼R.

Vertebrate

This property is actually intended to be vertebrate-animal. This is a biological
classification that adds new membership criteria to Animal (has-backbone),
but apparently no new identity criteria: +I+U+R.

Person

Like Living Entity and Animal, the Person property is +I+U. It seems clear
that specializing from Vertebrate to Person we add some further essential
properties, thus we assume that Person has its own identity criteria, and we
assign +O.

Butterfly and Caterpillar

Like Animal, Butterfly and Caterpillar have +I+U. However, every instance
of Caterpillar can possibly become a non-caterpillar (namely a butterfly),
and every instance of Butterfly can possibly be (indeed, must have been) a
non-butterfly (namely a caterpillar), thus we assign ∼R to each.

Country

Intuitively, a country is a place recognized by convention as having a certain
political status. Identity may be difficult to characterize precisely, but some
essential properties seem to be clearly there, so +O. Countries are certainly
wholes, so +U. Interestingly, it seems clear that some countries, like Prussia,
still exist but are no longer countries, so we must assign ∼R.
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3.2 Analyzing Rigid Properties

The Backbone Taxonomy

We now focus our analysis on what we have called the backbone taxonomy, that
is, the rigid properties in the ontology, organized according to their subsump-
tion relationships. These properties are the most important to analyze first,
since they represent the invariant aspects of the domain. Our sortal expand-
ability and individuation principles guarantee that no element of the domain
is “lost” due to this restriction, since every element must instantiate at least
one of the backbone properties, that supplies an identity criterion for it.

The backbone taxonomy based on the initial ontology is shown in Fig. 2.
After making the initial decisions regarding meta-properties and arranging

the properties in a taxonomy, we are then in a position to verify whether
any constraints imposed by the meta-properties are violated in the backbone.
These violations have proven to be excellent indicators of misunderstandings
and improperly constructed taxonomies. When a violation is encountered, we
must reconsider the assigned meta-properties and/or the taxonomic link. and
take some corrective action.

Living beings are not amounts of matter. The first problem we encounter
is between Amount of Matter and Living Being. The problem is that a ∼U
property cannot subsume one with +U. While it certainly seems to make
sense to say that all living beings are amounts of matter, based on the meaning

Fig. 2. The initial backbone taxonomy with meta-properties Backbone Constraint
Violations
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we have assigned there is an inconsistency: every amount of matter can be
arbitrarily scattered, but this is certainly not the case for living beings. A
further reason against this subsumption link is in the identity criteria: amounts
of matter have an extensional identity, that is, they are different if any of their
parts is substituted or annihilated – if you remove some clay from a lump of
clay, it is a different amount. Living beings, on the other hand, can change
parts and still remain the same – when you cut your fingernails off you do not
become a different person.

This is one of the most common modeling problems we have. Living beings
are constituted of amounts of matter, they are not themselves the matter.
Natural language convention fails to capture this subtle distinction, but it
is a violation of the intended meaning to claim that all living beings are
mereologically extensional.

The solution here is to remove the subsumption link between these two
properties, and represent the relationship as one of constitution.

Physical objects are not amounts of matter. Again, we see a violation since
a ∼U property cannot subsume one with +U. This is yet another example
of constitution being confused with subsumption. Physical objects are not
themselves amounts of matter, they are constituted of matter. The solution
is to make Physical Object subsumed directly by Entity.

Social entities are not groups of people. Another ∼U/+U violation, as well
as a violation of identity criteria. Social entities are constituted of people, but,
as with other examples here, they are not merely groups of people, they are
more than that. A group of people does not require a unifying relation, as we
assume these people can be however scattered in space, time, or motivations.
On the contrary, a social entity must be somehow unified. Moreover, although
both properties supply their own identity criteria, these criteria are mutally
inconsistent. Take for instance two typical examples of social entities, such as
a bridge club and a poker club. These are clearly two separate entities, even
though precisely the same people may participate in both. Thus we would
have a situation where, if the social entity was the group of people, the two
clubs would be the same under the identity criteria of the group, and different
under the identity criteria of the social entity. The solution of the puzzle is
that this is, once again, a constitution relationship: a club is constituted by a
group of people.

Animals are not physical objects. Although no constraints involving meta-
properties are violated in this subsumption link, a closer look at the identity
criteria of the two properties involved reveals that the link is inconsistent.
Animals, by our account, cease to exist at death, since being alive is an es-
sential property for them. However their physical bodies remain for a time
after: being alive is not essential to them. Indeed, under our assumption no
physical object has being alive as an essential property. Now, if an animal is a
physical object, as implied by subsumption, how could it be that it is at the
same time necessarily alive and not necessarily alive? The answer is that there
must be two entities, related by a form of constitution, and the subsumption
link should be removed.
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In this example, it is not the meta-properties, but the methodology re-
quiring to make identity criteria explicit in terms of essential properties that
reveals the error.

3.3 Analyzing Non-rigid Properties

Let us now turn our attention to the non-rigid properties, which – so to speak
– “flesh out” the backbone taxonomy. In [12] we have discussed a taxonomy
of property kinds based on an analysis of their meta-properties, which dis-
tinguishes three main cases of non-rigid properties: phased sortals, roles, and
attributions. All these cases appear in our example, and are discussed below.

Among other things, the differences among these property kinds are based
on a meta-property not discussed here, based on the notion of dependence.
A proper grasping of this notion (which is rather difficult to formalize) is not
essential for an introductory understanding of the OntoClean methodology,
so we shall rely on intuitive examples only.

Phased Sortals

The notion of a phased sortal was originally introduced by Wiggins [13].
A phased sortal is a property whose instances are allowed to change cer-
tain of their identity criteria during their existence, while remaining the same
entity. The canonical example is a caterpillar. The intuition here is that when
the caterpillar changes into a butterfly, something fundamental about the way
it may be recognized and distinguished has changed, even though it is still
the same entity. Phased sortals are recognized in our methodology by the fact
that they are independent, anti-rigid, and supply identity criteria.

In the typical case, phased sortals come into clusters of at least two prop-
erties – an instance of a phased sortal (e.g., Caterpillar) should be able to
“phase” into another one (e.g., Butterfly), and these clusters should have a
common subsuming property providing an identity criterion for across phases,
according to the sortal individuation principle.

Caterpillars and butterflies. Consider now our example. Caterpillar and
Butterfly appear in out initial taxonomy, but there is no single property that
subsumes only the phases of the same entity. Our formal analysis shows that
there must be such property. After some thinking, we find what we need: it
is the property Lepidopteran, which is +O+U+R. This is what supplies the
identity criteria needed to recognize the same entity across phases.

Countries. The property Country does not, prima facie, appear to be a
phased sortal, yet it meets our definition (+O∼R). This is an example where
reasoning on the meta-properties assignments and their consequences helps
us pushing our ontological analysis further: what are we talking of, here? Is
it a region that occasionally becomes a country, and in this case acquires
some extra (yet temporary) identity criteria? What happens when something
is not a country any more? Does it cease to exist, or does it just undergo the
change of a property, like changing from being sunny and being shady? While
answering to these questions, we realize we are facing a common problem in
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building ontologies, that of lumping together multiple meanings of a term into
a single property. It seems there are two different interpretations of “country,”
one as a geographical region, and another as a geopolitical entity. It is the
latter that ceases to exist when the property does not hold any more.

So there are two entities: the Country Prussia and the Geographical Region
Prussia. These two entities are related to each other (e.g., countries occupy
regions), but are not the same, and therefore we must break the current prop-
erty into two.

We assign +O+U+R to Country, and +I−U+R to Geographical Region.
The intuition is that countries have their own identity criteria, while geograph-
ical regions inherit the identity of locations. Countries have clearly a unity,
while this is not the case for arbitrary geographical regions. Both properties
are now rigid. Interestingly enough, we replaced an anti-rigid property with
two rigid properties.

Roles

After analyzing phased sortals, we end up with the taxonomy shown in Fig. 3,
and we are now ready to consider adding roles back into the taxonomy. Roles
are properties that characterize the way something participates to a contingent
event or state of affairs. It is because of such contingency that these properties
are anti-rigid. Differently from phase sortals, roles do not supply identity
criteria.

Country
+O+U+D+R

Entity-I-U-D+R

Physical  object
+O+U−D+R

Amount of matter 
+O~U−D+R Group

+O~U−D+R

Organization
+O+U−D+R

Location
+O−U−D+R

Living being
+O+U−D+R

Person
+O+U−D+R

Animal
+O+U−D+R

Social entity
−I+U−D+R

Apple
+O+U−D+R

Fruit
+O+U−D+R

Group of people
+I−O~U−D+R

Vertebrate
+I−O+U−D+RGeographical

Region
+I−U−D+R Caterpillar

+I+U−D~R
Butterfly

+I+U−D~R

Lepidopteran
+O+U−D+R

Fig. 3. The taxonomy after backbone and phased sortals
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Agent. The analysis of roles often exposes subsumption violations concern-
ing rigidity, in particular that a property with ∼R cannot subsume a property
with +R. Indeed, when we add the Agent property back to the backbone we
see that it originally subsumed two classes, Animal and Social Entity. These
subsumption links (shown to the right as dotted lines) should be removed, as
they are incorrect.

Entity-I-U-D+R

Living being
+O+U-D+R

Animal
+O+U-D+R

Social entity
-I+U-D+R

Agent
-I-U+D~R

This is a different kind of problem in which subsumption is being used to
represent a type restriction. The modeler intends to mean, not that all animals
are agents, but that animals can be agents. This is a very common misuse of
subsumption, often employed by object-oriented programmers. The correct
way to represent this kind of relationship is with a covering, i.e., all agents
are either animals or social entities. Clearly this is a different notion than
subsumption. The solution is to remove the subsumption links and represent
this information elsewhere.

Legal Agent. The next problem we encounter is when the role Legal Agent
is added below Agent, with its subsuming links to Person, Organization, and
Country. Again, as with the previous example, we have a contradiction, an
anti-rigid property cannot subsume a rigid one, so these subsumption links
(shown as dotted lines at right) must be removed.

Country
+O+U+D+R

Entity-I-U-D+R

Organization
+O+U-D+R

Living being
+O+U-D+R

Person
+O+U-D+R

Animal
+O+U-D+R

Social entity
-I+U-D+R

Vertebrate
+I-O+U-D+R

Agent
-I-U+D~R

Legal agent
+I-U+D~R
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As with the Agent role, being forced to remove these links forces us to
reconsider the meaning of the Legal Agent property. A legal agent is simply
an entity recognized by law as an agent in some transaction or contract. Again,
as with the Agent example, this is not a true subsumption link, but rather
another type restriction. The links should be removed and replaced with a
covering axiom.

Food. We chose to model the notion of food as a role, that is a property
of things that may or can be food in some situation. So nothing is essentially
food – even a stuffed turkey during a holiday feast or an enormous bowl of
pasta with pesto sauce may avoid being eaten and end up not being food (it
is possible, however unlikely).

Entity-I-U-D+R

Physical  
object

+O+U-D+R

Amount of 
matter 

+O~U-D+R

Living being
+O+U-D+R

Animal
+O+U-D+R

Apple
+O+U-D+R

Fruit
+O+U-D+R

Caterpillar
+I+U-D~R

Lepidopteran
+O+U-D+R

Food
+I-

O~U+D~R

While our notion of what an apple means may seem to be violated by
removing the subsumption link to food, the point is that we have chosen to
represent the property in a particular way, as a role, and this link is incon-
sistent with that meaning and should be removed. In this case, the links are
probably being used to represent purpose (see, e.g., [1]), not subsumption.

Attributions

The final category of properties we consider are attributions. We have one such
property in our example, Red, whose instances are intended to be red things.
We think that in general it is not useful representing attributions explicitly in
a taxonomy, and that the proper way to model attributions is with a simple
attribute, like color, and a value, such as red. This quickly brings us to the
notion of qualities, discussed in the related chapter of this handbook on Dolce,
and we avoid that discussion here.

Attributions do, however, come in handy on occasions. Their practical
utility is often found in cases where there are a large number of entities that
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need to be partitioned according to the value of some attribute. We may have
apples and pears, for example, and decide we need to partition them into red
and green ones. Ontologically, however, the notion of red-thing does not have
much significance, since there is nothing we can necessarily say of red-things,
besides their color. This seems to us a very good reason for not consider at-
tributions as part of the backbone. In other words, the backbone taxonomy
helps in focusing on the more important classes for understanding the invari-
ant aspects of domain structure, whereas attributions help in organizing the
instances on an ad-hoc, temporary basis.

4 Conclusion

The final, cleaned, taxonomy is shown in Fig. 4. The heavier lines indicate
subsumption relationships between members of the backbone taxonomy. Al-
though it is not always the case, the cleaned taxonomy has far fewer “multiple
inheritance” links than the original. The main reason for this is that sub-
sumption is often used to represent things other than subsumption, that can
be described in language using “is a.” We may quite naturally say, for ex-
ample, that an animal is a physical object, however we have shown in this

Country
+O+U+D+R

Entity-I-U-D+R

Physical object
+O+U−D+R

Amount of matter 
+O~U−D+R Group

+O~U−D+R

Organization
+O+U−D+R

Location
+O−U−D+R

Living being
+O+U−D+R

Person
+O+U−D+R

Animal
+O+U−D+R

Social entity
−I+U−D+R

Apple
+O+U−D+R

Fruit
+O+U−D+R

Group of 
people

+I−O~U−D+R

Vertebrate
+I−O+U−D+R

Geographical
Region

+I−U−D+R Caterpillar
+I+U−D~R

Butterfly
+I+U−D~R

Lepidopteran
+O+U-D+R

Agent
−I−U+D~R

Legal agent
+I−U+D~R

Food
+I−O~U+D~R

Red
−I−U−D−R

Red apple
+I−O+U−D~R

Fig. 4. The final cleaned ontology
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chapter that this kind of linguistic use of “is a” is not logically consistent with
the subsumption relationship. This results in many subsumption relationships
being removed after analysis.
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Summary. Computational ontologies in the context of information systems are
artifacts that encode a description of some world, for some purpose. Under the
assumption that there exist classes of problems that can be solved by applying
common solutions (as it has been experienced in software engineering), we envision
small, task-oriented ontologies with explicit documentation of design rationales. In
this chapter, we describe components called Ontology Design Patterns (OP), and
methods that support pattern-based ontology design.

We present a typology of OPs, and then focus on Content Ontology Design
Patterns in terms of their background, definition, communication means, related
work beyond ontology engineering, exemplification, creation, and usage principles.
At the time of chapter’s final version, recently performed experiments of pattern-
based ontology design show remarkable quality improvement within some sample
ontology design projects, specially in terms of compliance to tasks expressed as
competency questions or scenarios.

1 Introduction

Computational ontologies in the context of information systems are artifacts
that encode a description of some world (actual, possible, counterfactual, im-
possible, desired, etc.), for some purpose. They have a (primarily logical)
structure, and must match both domain and task: they allow the description
of entities whose attributes and relations are of concern because of their rele-
vance in a domain for some purpose, e.g. query, search, integration, matching,
explanation, etc.

Like any artifact, ontologies have a lifecycle: they are designed, imple-
mented, evaluated, fixed, exploited, reused, etc. (cf. chapter “Ontology En-
gineering Methodology” for an in-depth examination of ontology engineering
methodologies).

In this chapter, we focus on patterns for ontology design [14,18].
Despite the original ontology engineering approach, when ontologies were

seen as “portable” components [22], and its enormous impact on Semantic
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Web and interoperability, today one of the most challenging and neglected ar-
eas of ontology design is reusability. The possible reasons include at least: size
and complexity of the major reusable ontologies, opacity of design rationales
in most ontologies, lack of criteria in the way existing knowledge resources
(e.g. thesauri, database schemata, lexica) can be reengineered, and brittleness
of tools that should assist ontology designers.

Nowadays, an average user that is trying to build or reuse an ontology, or
an existing knowledge resource, is typically left with just some limited assis-
tance in using unfriendly logical structures, some large, hardly comprehensible
ontologies, and a bunch of good practices that must be discovered from the
literature. A typical usage scenario includes, e.g. a large set of web ontologies
that are evaluated (usually in an implicit way) against the intended domain
and tasks. The selected ontology (if any) is reused, and then an adaptation
process is started in order to cope with the implicit requirements from an on-
tology project. This scenario is costly in many cases, and automatic selection
mechanisms do not help with the adaptation process. Another typical sce-
nario includes so-called “reference” or “core” ontologies that are supposed to
be directly reused and specialized. Unfortunately, even if well designed, they
are usually large and cover more knowledge than what a designer might need.
In this case, it is hard to reuse only the “useful pieces” of the ontology, and
consequently the cost of reuse is higher than developing a new ontology from
scratch.

On the other hand, the success of very simple and small ontologies like
FOAF [6] and SKOS [31] shows the potential of really portable, or “sustain-
able” ontologies. The lesson learnt supports the new approach to ontology
design, which is sketched here.

Under the assumption that there exist classes of problems that can be
solved by applying common solutions (as it has been experienced in software
engineering), we propose to support reusability on the design side specifically.
We envision small (or cleverly modularized) ontologies with explicit documen-
tation of design rationales, and best reengineering practices. These compo-
nents need specific functionalities in order to be implemented in repositories,
registries, catalogues, open discussion and evaluation forums, and ultimately
in new-generation ontology design tools. In this chapter, we describe small,
motivated ontologies that can be used as building blocks in ontology design.
A formal framework for (collaborative) ontology design that justifies the use
of building blocks with explicit rationales is presented in [18].

We call the basic building blocks to be used in ontology design Content
Ontology Design Patterns (CP) [14]. CPs are small ontologies that medi-
ate between use cases (problem types) and design solutions. They are used
as modelling components: ideally, an ontology results from a composition of
CPs, with appropriate dependencies between them, plus the necessary design
expansion based on specific needs.
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Throughout experiences in ontology engineering projects1 as well as in
other ongoing international projects that have experimented with these ideas,
typical conceptual patterns have emerged out of different domains, for differ-
ent tasks, and while working with experts having heterogeneous backgrounds.
For example, a simple CP called participation (including objects taking part
in events) emerges in domain ontologies as different as enterprise models [23],
legal norms [19], sofware management [34], biochemical pathways [16], and
fishery techniques [17]. Other, more complex CPs have also emerged in the
same disparate domains.

Moreover, since CPs are strictly related to small use cases, they are trans-
parent with respect to the rationales applied to the design of a certain ontol-
ogy. CPs are therefore an additional tool to achieve tasks such as ontology
evaluation, matching, modularization, etc. For example, an ontology can be
evaluated against the presence of certain patterns (which act as unit tests for
ontologies, cf. [50] and chapter “Ontology Engineering Environments”) that
are typical of the tasks addressed by a designer. Furthermore, mapping and
composition of CPs can facilitate ontology mapping and alignment/merging.
Two ontologies drafted according to CPs can be mapped in an easier way: CP
hierarchies will be more stable and well-maintained than local, partial, scat-
tered ontologies. Finally, CPs can be also used in training and educational
contexts for ontology engineers.

CPs are a very beneficial kind of patterns for ontology design, because they
provide solutions to domain-oriented problems, and are directly reusable. On
one hand, CPs are comparable to software engineering (SE) design patterns
for what concerns the way they are documented and communicated. On the
other hand, the intuition behind their usage is analogous to that of software
engineering (object oriented) reusable libraries, e.g. Java libraries. A similar
intuition is at the base of approaches to modularization of ontologies, e.g. [8],
where the typical distinction between interface and implementation is used
in order to distinguish between the module interface and the ontologies that
a module encapsulates. CPs are compliant with this approach, and can be
encapsulated in modules. However, this aspect is not key to the purpose of
this chapter, and does not impact on their expected usage.

There are other types of ontology design patterns (OPs) that are beneficial
for different purposes and targeted at different types of users. A typology of
OPs will be also introduced in this chapter.

In principle, OPs do not depend on any specific representation language.2

In this context, we focus mainly on CPs; in order to provide the readers with
concrete examples and a closer view on their exploitation on the Semantic
Web, we have decided to refer to OWL CPs (cf. chapter “Web Ontology

1 For example, in the projects FOS : http://www.fao.org/agris/aos/, WonderWeb:
http://wonderweb.semanticweb.org,Metokis: http://metokis.salzburgresearch.at,
and NeOn: http://www.neon-project.org

2 With the exception of Logical OPs.
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Language: OWL” for details on OWL). In fact, CPs fit well with Semantic
Web requirements for reuse and interoperability of ontologies and data, and
as part of our work we have set up the ontologydesignpatterns.org web portal,
which collects and makes them available on the Web [36].

Chapter’s content is organized as follows: Sect. 1.1 gives some background
notions; Sect. 2 introduces the types of OPs, defines them, and provides the
reader with some examples; Sect. 3 presents a sample catalogue of CPs; Sect. 4
describes ways to create and work with CPs, and Sect. 5 presents an example
of their application. Finally, Sect. 6 provides some conclusions and remarks.

1.1 Background

In the seventies, the architect and mathematician Christopher Alexander in-
troduced the term “design pattern” for shared guidelines that help solve design
problems. In [1] he argues that a good (architectural) design can be achieved
by means of a set of rules that are “packaged” in the form of patterns, such as
“courtyards which live”, “windows place”, or “entrance room”. Design pat-
terns are then assumed as archetypal solutions to design problems in a certain
context.

Taking seriously the architectural metaphor, the notion has been eagerly
endorsed by software engineering [12, 21, 29], and DBMS applications with
so-called data model patterns [27]. In these areas, pattern is used as a gen-
eral term for formatted guidelines in software reuse, and, more recently, has
also appeared in requirements analysis, conceptual modelling, and ontology
engineering [7, 11, 24, 39, 44, 48].3 Traditionally, design patterns appear more
like a collection of shortcuts and suggestions related to a class of context-
bound problems and success stories. Software engineering patterns are largely
used for documenting software [26], and there is software support for auto-
matic code generation based on them (see, e.g the Eclipse functionality for
generating factory methods,4 and the Whole platform.5) Furthermore, there
is recent work going towards a more formal encoding of design patterns (no-
tably [3,24,30]), and even towards using ontology patterns to encode software
engineering patterns [34].

Ontology engineering literature has tackled the notion of design pattern
at least since [7, 39], while in the context of Semantic Web research and ap-
plication, where OPs are now a hot topic, the notion has been introduced by
[16,38,45,48] and has been approached also by the W3C Semantic Web Best
Practices and Deployment Group.6 In particular, [16, 48] take a foundational
approach that anticipates that presented in [14,37] (which are closely related
3 In software engineering, formal approaches to design patterns, based on dedicated

ontologies, are being investigated, e.g. in so-called semantic middleware [34].
4 Eclipse (http://www.eclipse.org/) is a programming environment used for devel-

oping Java projects.
5 http://whole.sourceforge.net/
6 See http://www.w3.org/2001/sw/BestPractices/
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to this chapter). Some work [4] has also attempted a learning approach (by
using case-based reasoning) to derive and rank patterns with respect to user
requirements. The research has also addressed domain-oriented best prac-
tices and patterns, e.g. to express sequences in OWL [10], for content objects
and multimedia [2] (cf. chapter “Ontologies for Cultural Heritage”), software
components (cf. chapter “COMM: A Core Ontology for Multimedia Annota-
tion”), business modelling and interaction [20], medical [43, 46] (cf. chapter
“An Ontology for Software”).

2 Types of Ontology Design Patterns

An ontology design pattern (OP) is a modelling solution to solve a recurrent
ontology design problem. We have identified several types of OPs, and have
grouped them into six families (cf. Fig. 1): Structural OPs, Correspondence
OPs, Content OPs (CPs), Reasoning OPs, Presentation OPs, and Lexico-
Syntactic OPs.

Although this chapter mainly focuses on CPs, in this section we give an
overview of the OP families, with some examples. For more details, the reader
can refer to [37].

Structural OPs

Structural OPs include Logical OPs and Architectural OPs. Logical OPs are
compositions of logical constructs that solve a problem of expressivity, while
Architectural OPs affect the overall shape of the ontology either internally or
externally.

Logical OPs are only expressed in terms of a logical vocabulary, because
their signature (the set of predicate names, e.g. the set of classes and prop-
erties in an OWL ontology) is empty (with minor exceptions, e.g. the default
inclusion of owl:Thing in OWL). On one hand, Logical OPs are independent
from a specific domain of interest (i.e. they are content-independent), on the
other hand, they depend on the expressivity of the logical formalism that
is used for representation. In other words, Logical OPs help to solve design
problems where the primitives of the representation language do not directly
support certain logical constructs. For example, if the representation language
is OWL, and a designer needs to represent a relation between more than two

Fig. 1. Ontology design pattern types
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elements, a Logical OP is needed in order to express an n-ary relation seman-
tics by only using class and binary relation primitives. The root of Logical
OPs can be found in [5], where so-called description logics were conceived as
a way of representing knowledge in a structural manner by singling out the
most relevant and tractable patterns from first-order logic (and beyond). The
first proposal for a library of Semantic Web logical patterns is [45]. We can
informally divide Logical OPs into two types:

Logical macros provide a shortcut to model a recurrent intuitive log-
ical expression, e.g. the combination of owl:allValuesFrom restriction with
owl:someValuesFrom restriction.

Transformation patterns translate a logical expression from a logical lan-
guage into another, which approximates the semantics of the first, in order to
find a trade-off between requirements and expressivity. For example, the so
called n-ary relation pattern, documented in [33] with respect to OWL, is a
transformation pattern from first-order logic to OWL DL. Other Logical OPs
are documented in [33,37,47].

The application of Logical OPs has consequences on the results and effi-
ciency of reasoning procedures. They can be used in order to document design
choices and are particularly suitable for teaching good practices of ontology
design as they provide designers with solutions to represent complex logical
expressions.

Architectural OPs affect the overall shape of the ontology: their aim is to
constrain “how the ontology should look like”. They can be of two types:
(i) internal, defined in terms of collections of Logical OPs that have to be
exclusively employed when designing an ontology, e.g. an OWL species (cf.
chapter “Web Ontology Language: OWL”), or the varieties of description
logics (cf. chapter “Description Logics”); (ii) external, defined in terms of
meta-level constructs, e.g. the modular architecture consists of an ontology
network, where the involved ontologies play the role of modules (according to
definitions given in [25]). The modules are connected by the import operation.

Architectural OPs emerged as design choices motivated by specific needs,
e.g. computational complexity constraints. Such OPs are also useful as refer-
ence documentation for those initially approaching the design of an ontology.

Reasoning OPs

Reasoning OPs are applications of Logical OPs oriented to obtain certain
reasoning results, based on the behaviour implemented in a reasoning engine.
Examples of Reasoning OPs include: classification, subsumption, inheritance,
materialization, de-anonymizing, etc.

Reasoning OPs, when declared on top of an ontology, inform about the
state of that ontology, and let a system decide what reasoning has to be per-
formed on the ontology in order to carry out queries, evaluation, etc. Examples
of Reasoning OPs are so called normalizations. In [51,52] five normalizations
have been identified (cf. chapter “Ontology Engineering Environments”).
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Correspondence OPs

Correspondence OPs include Reengineering OPs and Mapping OPs.
Reengineering OPs provide designers with solutions to the problem of

transforming a conceptual model, which can even be a non-ontological re-
source, into a new ontology. Mapping OPs are patterns for creating semantic
associations between two existing ontologies.

Reengineering OPs are transformation rules applied in order to create
a new ontology (target model) starting from elements of a source model.
The target model is an ontology, while the source model can be either an
ontology, or a non-ontological resource, e.g. a thesaurus concept, a data model
pattern, a UML model, a linguistic structure, etc. Reengineering OPs are
described in terms of metamodel transformation rules. We distinguish two
types of Reengineering OPs.

Schema reengineering patterns are rules for transforming, e.g. a non-OWL
DL metamodel into an OWL DL ontology. For example, consider the use
of SKOS [31] for Knowledge Organization Systems (KOS) reengineering to
a knowledge base (an OWL ABox), based-on the SKOS TBox. Transforma-
tion Logical OPs are a kind of schema reengineering patterns. In principle,
all modelling problems can be represented as higher-order logical expressions,
and if we have to represent them, e.g. in OWL DL, we implicitly apply a
schema reengineering pattern in order to stay within the expressivity of OWL
DL. However, we also (pragmatically) distinguish between transformation and
schema reengineering patterns because of the different intention of the de-
signer. In the first case, the designer wants to directly represent a modelling
solution in a certain representation formalism, e.g. OWL DL,7 while in the
second case the designer wants to reengineer, e.g. an existing non-OWL DL
model into an OWL DL ontology.

Refactoring patterns provide designers with rules for transforming, i.e.
refactoring, e.g. an existing OWL DL source ontology into a new OWL DL
target ontology. In this case, the transformation rule has the effect of chang-
ing the type of the ontology elements that are involved in the refactoring. For
example, let us consider the case in which an ontology defines an object prop-
erty for representing the relation of preparing a coffee, which holds between
agents and coffees. Now, let us consider a change of requirements, so that a
designer has to represent that the coffee is prepared by an agent at a certain
time by using a certain tool. In order to address such a change in OWL DL, a
designer has to apply an n-ary relation Logical OP, because preparing a cof-
fee has now four arguments: agent, coffee, time interval, and tool. The n-ary
relation Logical OP plus the description of how to apply it in order to replace
an object property from an existing ontology is a Refactoring OP.

7 In the pragmatics of an ontology designer, the fact that all modelling solutions
are representable as higher-order logic expressions is hardly relevant, and such
implicit reengineering has been never documented as actually happening.
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Mapping ontology design patterns Mapping OPs refer to the possible se-
mantic relations between mappable elements, as defined in [25]. There are
three basic semantic relations that are used for mapping assertions: equiva-
lence, containment, and overlap. They can be supplemented by their negative
counterparts, i.e. not equivalent, not contained, and not overlap or disjoint,
respectively. Mapping OPs provide designers with solutions to relate two on-
tologies without changing the logical types (e.g. owl:Class) of the ontology
elements involved.

Presentation OPs

Presentation OPs deal with usability and readability of ontologies from a user
perspective. They are meant as good practices that support the reuse of on-
tologies by facilitating their evaluation and selection. Examples are Naming
OPs and Annotation OPs. The former are conventions about how to create
names for namespace, files, and ontology elements in general (classes, prop-
erties, etc.). They are good practices that boost ontology readability and
understanding by humans, by supporting homogeneity in naming procedures.
Annotation OPs provide annotation properties or annotation property sche-
mas that can be used in order to improve the understandability of ontologies
and their elements.

An example of Naming OP relates to namespace declared for ontologies.
It is recommended to use the base URI of the organization that publishes
the ontology (e.g. http://www.w3.org for the W3C, http://www.fao.org
for the FAO, http://www.loa-cnr.it for the Laboratory for Applied On-
tologies (LOA) etc.) followed by a reference directory for the ontologies (e.g.
http://www.loa-cnr.it/ontologies/). Additionally, it is also important to
choose an approach for encoding versioning, either on the name, or on the
reference directory.

Lexico-Syntactic OPs

Lexico-Syntactic OPs are linguistic structures or schemas that consist of cer-
tain types of words following a specific order, and that permit to generalize
and extract some conclusions about the meaning they express. They are use-
ful for associating simple Logical and Content OPs with natural language
sentences, e.g. for didactic purposes.

Content Ontology Design Patterns (CPs)

CPs encode conceptual, rather than logical design patterns. In other words,
while Logical OPs solve design problems independently of a particular concep-
tualization, CPs propose patterns for solving design problems for the domain
classes and properties that populate an ontology, therefore addressing content
problems [14]. CPs are instantiations of Logical OPs (or of compositions of
Logical OPs), featuring a non-empty signature. Hence, they have an explicit
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non-logical vocabulary for a specific domain of interest (i.e. they are content-
dependent). CPs provide solutions to domain modelling problems and affect
only the specific region of the ontology dealing with such domain modelling
problems. They are typically reused by applying specialization, extension,
and composition to them. In principle, CPs do not depend on any specific
language, however in order to reuse them as building blocks, they have to be
implemented in some way. In the context of this chapter, we deal with CPs
in a Semantic Web context. Hence, we use OWL as a reference formalism for
representation.

3 Towards a Catalogue and Repository of CPs

In this section we focus on CPs. We define them, and explain the dependencies
between CPs and use cases (Sect. 3.1). Section 3.2 lists the characteristics that
differentiate CPs as special ontologies (such characteristics cross the bound-
aries between ontology engineering, cognitive science, and linguistics). Finally,
we describe two CPs (Sect. 3.3).

The way to document OPs can be compared to the typical way followed for
SE patterns. The mainstream approach for describing SE patterns is to use a
template, although there is no standard format. A description of the most well-
known SE pattern templates can be found at Martin Fowler’s web site.8 The
templates used for describing SE patterns follow quite closely that suggested
by Alexander [1]: given an artifact type, the pattern provides examples of
it, its context, the problem addressed by the pattern, the involved “forces”
(requirements and constraints), and a solution.

In order to describe CPs, we follow a similar approach: each CP is associ-
ated with a catalogue entry including the following set of information fields.

Name provides a name for the pattern; Intent describes the Generic Use
Case addressed by the pattern; Competency questions contains examples of
competency questions that the knowledge base associated with the CP needs
to address; Also Known as provides other names (if any) with which the
pattern is known; Scenarios provides examples of requirements, expressed in
natural language, which can be modeled by using the pattern; Diagram de-
picts a UML class diagram representing the pattern; Elements describes the
elements (classes and relations) included in the pattern, and their role within
the pattern; Consequences provides a description of the benefits and/or pos-
sible trade-offs when using the pattern; Known uses gives examples of real-
istic ontologies where the pattern is used, Extracted from/Reengineered from
provides the reference ontology/conceptual schema (if any), from which the
pattern has been extracted/reused; Related patterns indicates other patterns
(if any) that are either a specialization, generalization, composition, or compo-
nent of the pattern being described. Furthermore, this field may indicate other
8 http://www.martinfowler.com/articles/writingPatterns.html#CommonPattern

Forms
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patterns that are typically used in conjunction with the described one. Im-
portant similarities and differences with other patterns can be also described
here; Building block provides references to implementations of the pattern, a
URI. In the case of CPs for Semantic Web ontologies, this field provides the
URI of an OWL file (containing an implementation of the pattern).

Section 3.3 contains two examples of CPs that are described by means of a
simplified version of the catalogue template. Such a catalogue can be found at
the ontologydesignpatterns.org web portal [36], a dedicated wiki site through
which a lightweight repository of CPs can be accessed. In fact, [36] allows
users to download, propose, and discuss CPs. Furthermore, each CP includes
a set of annotations9 that can be exploited by Semantic Web applications.
The reader can refer to chapter “Ontology Repositories” for more details on
ontology repositories.

3.1 CPs and Competency Questions

CPs are reusable solutions to recurrent modelling problems. As known from
a long time in conceptual modelling (cf. the difference between class and
use case diagrams in UML) and knowledge engineering (cf. the distinction
between domain and task ontologies in UPML [32]), these problems have two
components: a domain and a use case (or task). A same domain can have
many use cases (e.g. different scenarios in a clinical information context), and
a same use case can be found in different domains (e.g. different domains with
a same “competence finding” scenario).

Ontologies are usually considered models for a domain, but their use case
is usually unknown. As reusable solutions, CPs must explicitly encode both a
domain and a use case. Since use cases are extremely diversified, a catalogue of
CPs requires the notion of a “Generic Use Case” (GUC), i.e. a generalization
of use cases that can be provided as examples for an issue of domain modelling.
A GUC is the expression of a recurrent scenario in different domain ontology
projects.

Being generic at the use case level allows us to divide, or to refactor the
design problems of a use case, by composing different GUCs. We can hier-
archically organize GUCs from the most generic to the most specific ones,
and from the “purest” (e.g. “which objects take part in a certain event?”) to
the most articulated and applied ones (e.g. “what protein is involved in the
Jack/Stat biochemical pathway?”).

The intuition underlying GUC hierarchies is based on a methodological
observation: ontologies must be built out of domain tasks that can be captured
by means of competency questions [23]. A competency question is a typical
query that an expert might want to submit to a knowledge base of its target
domain, for a certain task. In principle, an accurate domain ontology should
specify all and only the conceptualizations required in order to answer all

9 http://www.ontologydesignpatterns.org/schema/cpannotationschema.owl
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the competency questions formulated by, or acquired from, experts. A GUC
cannot do much as a guideline, unless we are able to find formal patterns that
encode it. CPs are the solution to this issue. Based on the above assumptions,
we define a CP as:

CPs are distinguished ontologies. They address a specific set of com-
petency questions, which represent the problem they provide a solu-
tion for. Furthermore, CPs show certain characteristics, i.e. they are:
computational, small, autonomous, hierarchical, cognitively relevant,
linguistically relevant, and best practices.

3.2 General Characteristics of CPs

CPs are components that represent, and possibly help solving a modelling
problem arising across different use cases. E.g. the agent-role pattern provides
a solution to represent agents that play some role. We have sketched their theo-
retical basis in Sect. 2, and explained their dependance on use cases (Sect. 3.1).
Before providing a sample list of CPs against an example use case (Sect. 3.3),
we now describe a more inclusive set of general, pragmatic features of CPs.
These features, besides positioning CPs in a wider scientific context, give hints
on how to discover or to extract CPs from existing knowledge resources.

Computational components. CPs are language-independent, and should
be encoded in a higher-order representation language. Nevertheless, their
(sample) representation in OWL is needed in order to (re)use them as building
blocks over the Semantic Web.

Small, autonomous components. Regardless of the particular way a CP
has been created, it is a small, autonomous ontology. Smallness (typically
two to ten classes with relations defined between them) and autonomy of
CPs facilitate ontology designers: composing CPs enable them to govern the
complexity of the whole ontology, because of the explicit rationales and the
amount of know-how provided by the users of a same CP library. Smallness
also allows diagrammatical visualizations that are aesthetically acceptable and
easily memorizable.

Hierarchical components. A CP can be an element in a partial order, where
the ordering relation requires that at least one of the classes or properties in
the pattern is specialized. A hierarchy of CPs can be built by specializing or
generalizing some of the elements (either classes or relations).

Inference-enabling components. There are combinations of ontology ele-
ments that do not allow any useful inference, e.g. a taxonomy with two sibling
classes, an object property alone, etc. A CP allows some form of inference,
e.g. a taxonomy with two sibling disjoint classes, a property with explicit do-
main and range set, a property and a class with a universal restriction on that
property, etc.

Cognitively relevant components. CP visualization must be intuitive and
compact, and should catch relevant, “core” notions of a domain [14].
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Linguistically relevant components. Many CPs nicely match linguistic pat-
terns called frames. A frame can be described as a lexically founded OP. The
richest repository of frames is FrameNet [3]. Frames can be used for validat-
ing CPs with respect to lexical coverage, for lexicalizing them, and can be
reengineered as CPs.

Best practice components. A CP should be used to describe a “best prac-
tice” of modelling. Best practices are intended here as local, thus derived from
experts, emerging from real applications. The quality of CPs is currently based
on the personal experience and taste of the proposers, or on the provenance
of the knowledge resource where the pattern comes from. However, evidence
from reusability across different projects, large-scale applications, and open
rating systems will provide a good base for CP evaluation.

3.3 Samples of CP Catalogue Entries

In this section we show two CPs taken from [36], Each CP is presented in
a catalogue-like way, and with reference to the OWL language. For space
reasons, we describe each CP with a simplified catalogue entry composed of:
the Name (including possible alternative names), the Intent (i.e., the GUC),
Competency questions, some Examples of its application, the Diagram de-
scribing its structure, the Elements and the role they play in the pattern, and
some General Remarks that indicate general guidelines about how to use it,
including relations to other CPs. The complete entry10 also contains a field
named building block that provides references to implementations of the pat-
tern, i.e. repository of reusable components. In the case of CPs for Semantic
Web ontologies, this field provides the URI of an OWL file (containing an
implementation of the pattern). We have used TopBraid Composer11 in order
to produce the OWL encoding. With the same tool, we automatically gener-
ated a diagrammatical visualization based on a UML profile for OWL. UML
classes (boxes) are used in order to depicts OWL classes. Two kinds of OWL
classes can be visualized in a diagram: named classes (owl:Class, in white
boxes) and anonymous classes (in grey boxes), e.g. owl:Restriction with
owl:someValuesFrom. UML generalization (arrow with a large end) corre-
sponds to rdfs:subClassOf, while UML association (arrow with a small end)
corresponds to owl:ObjectProperty. Finally, UML class attributes (state-
ments inside white boxes) are used in order to indicate either rdfs:domain
and rdfs:range, or owl:Restriction with owl:allValuesFrom. When a
class name is preceded by a prefix, e.g. sit:, it is interpreted as a class im-
ported (e.g. by owl:imports) from another (typically more general) CP that
is indexed by means of that prefix.

In the rest of this section we use the OWL terminology in order to describe
the proposed design solutions, e.g. object property, datatype property, etc.

10 See [36,37].
11 http://www.topbraidcomposer.com/
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The information realization CP

The information realization CP is extracted from the Dolce+DnS Ultra Lite
ontology,12 and represents the relations between information objects like po-
ems, songs, formulas, etc., and their physical realizations like printed books,
registered tracks, physical files, etc..

The information realization CP is associated with information according
to the catalogue entry fields reported below:

Intent : to represent relations between information objects and their phys-
ical realizations.

Competency questions: which physical object realizes a certain information
object? Which information object is realized by a certain physical object?

Diagram: Fig. 2 shows a UML diagram of the information realization CP.
Elements:

• InformationObject: a piece of information, such as a musical composi-
tion, a text, a word, a picture, independently from how it is concretely
realized.

• InformationRealization: a concrete realization of an InformationOb-
ject, e.g. the written document containing the text of a law.

• realizes: a relation between an information realization and an informa-
tion object, e.g. the paper copy of the Italian Constitution realizes the text
of the Constitution.

• isRealizedBy: a relation between an information object and an informa-
tion realization, e.g. the text of the Constitution is realized by the paper
copy of the Italian Constitution.

General remarks: this CP13 allows to distinguish between information en-
coded in an object and the possible physical representations of it. The
Multimedia ontology (cf. chapter “Ontologies for Cultural Heritage”) uses
this CP.

Fig. 2. The information realization CP UML graphical representation

12 http://www.ontologydesignpatterns.org/ont/dul//DUL.owl
13 http://www.ontologydesignpatterns.org/cp/owl/informationrealization.owl
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The Time Indexed Person Role CP

The time indexed person role is a CP that represents time indexing for the rela-
tion between persons and roles they play, e.g. George W. Bush was the
president of the United States in 2007. This CP is also extracted from the
Dolce+DnS Ultra Lite ontology.

According to its associated catalogue entry, the main information associ-
ated with this CP are the following:

Intent : to represent time indexing for the relation between persons and
roles they play.

Competency questions: who was playing a certain roles during a given time
interval? When did a certain person play a specific role?

Diagram: see Fig. 3, the elements which compose the CP are described in
the Elements field.

Elements:

• Entity: anything: real, possible, or imaginary, which some modeller wants
to talk about for some purpose.

• Person: persons in commonsense intuition, i.e. either as physical agents
(humans) or social persons.

• Role: a Concept that classifies a Person.
• TimeInterval: any region in a dimensional space that aims at representing

time.
• TimeIndexedPersonRole: a situation that expresses time indexing for the

relation between persons and roles they play.
• hasRole: a relation between a Role and an Entity, e.g. “John is considered

a typical rude man”; your last concert constitutes the achievement of a
lifetime; “20-year-old means she’s mature enough”.

• isRoleOf: a relation between a Role and an Entity, e.g. the Role “student”
classifies a Person “John”.

Fig. 3. The time indexed person role CP UML graphical representation
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• isSettingFor: a relation between time indexed role situations and related
entities, e.g. “I was the director between 2000 and 2005”, i.e. the situation
in which I was a director is the setting for a the role of director, me, and
the time interval.

• hasSetting: the inverse relation of isSettingFor.

General remarks: this CP14 allows to assign a time interval to roles played by
people.

4 Creating and Working with CPs

This section discusses how CPs can be created, and provides guidelines on
how they can be practically (re)used. Section 4.1 describes four approaches to
create CPs, while Sect. 4.2 shows the main operations that are performed for
reusing a CP, and describes the possible situations of CP selection and usage
that can occur in practice.

4.1 Where do Content Ontology Design Patterns Come from?

CP creation and usage rely on a common set of operations.

Import : consists of including a CP in the ontology under development. This is
the basic mechanism for reusing CPs (and ontologies in general). By im-
porting a CP, the importing ontology ensures the set of inferences allowed
by the CP in its corresponding knowledge base. Elements of an imported
CP cannot be modified.

Specialization: can be referred to ontology elements or to CPs. Specialization
between ontology elements of a CP consists of creating sub-classes of some
CP’s class and/or sub-properties of some CP’s properties. A CP c1 is a
specialization of a CP c if c1 imports c, and at least one ontology element
from c1 specializes an ontology element from c.

Generalization: A CP c1 is a generalization of a CP c if c1 imports c, and at
least one ontology element from c1 generalizes an element from c.

Composition: consists of associating classes (properties) of one CP with
classes (properties) of other CPs, by means of some OWL axiom.

Expansion: consists of adding new classes, properties and axioms to the on-
tology to the aim of covering the requirements that are not addressed by
the reused CPs.

CPs come from the experience of ontology engineers in modelling foundational
(cf. chapter “Foundational Choices in DOLCE”), upper-level, core [15], or do-
main ontologies. Informally, the distinction between these kinds of ontologies
relates to the degree by which an ontology covers the domain of interest,

14 http://ontologydesignpatterns.org/cp/owl/timeindexedpersonrole.owl
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cf. chapter “What Is an Ontology” for details. Assuming the above distinc-
tions, there are four main ways of creating CPs, which can be summarized as
follows:

Reengineering from other data models. A CP can be the result of a reengi-
neering process applied to different conceptual modelling languages, primi-
tives, and styles. Knowledge resources that can be reengineered to produce
candidate CPs are database schemas, knowledge organization systems such
as thesauri, and lexica. For more references, the reader can refer to [20] that
describes a reengineering approach for creating CPs starting from UML dia-
grams [35], workflow patterns [49], and data model patterns [27].

Specialization/Composition of other CPs. A CP can be created by com-
posing other CPs, or by specializing another CP, (both composition and spe-
cialization can be combined with expansion, see below).

Extraction from reference ontologies. A CP can be extracted from an ex-
isting ontology, which acts as the “source” ontology. In this case, the CP
corresponds to a fragment of the source ontology, which constitutes its ax-
iomatic background context. A CP is axiomatized according to the fragment
it extracts. E.g. the co-participation CP depends on a set of axioms from the
DOLCE ontology [9], which state that an event has at least one participant,
that co-participation requires two participants in a same event, that partic-
ipants must participate at least partly at the same time, etc. If a modeller
specializes the co-participation CP for representing, e.g. an academic lecture
or a football match, the reasoning services will operate with reference to the
co-participation axioms, without the need for encoding them again. However,
a CP is autonomous, and only the axioms that have been extracted from the
reference ontology are actually used by an ontology that reuses a CP. There-
fore, reasoning services do not need to also process the general axiomatic
context from the reference ontology.

Creation by combining extraction, specialization, generalization, and ex-
pansion The definition of a CP can be the result of an extraction (see above),
followed by specialization and/or generalization of some ontology elements,
and expansion.15

4.2 How to Use Content Ontology Design Patterns

Supporting reuse and alleviating difficulties in ontology design activities are
the main goals of setting up a catalogue of CPs. In order to be able to reuse
CPs, two main functionalities must be ensured: selection and application.

Selection of CPs corresponds to finding the most appropriate CP for the
actual domain modelling problem. Hence, selection includes search and eval-
uation of available CPs. This task can be performed by applying procedures
for ontology selection [28, 41] and evaluation [13] (cf. chapter “Ontology En-
gineering Environments”).

15 See [37] for more details.
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Informally, a GUC, i.e. the intent of a CP, must match an actual use case.
Once a CP has been selected, it has to be applied to the domain ontology.
Typically, application is performed by means of import, specialization, compo-
sition, or expansion (see Sect. 4.1). In realistic design projects, the operations
are usually combined as it is shown by the example of Sect. 5.

Several situations of matching between GUCs and actual use cases can
occur, each associated with a different approach to using CPs. The following
summary assumes a manual (re)use of CPs. However, an initial library of CPs
is already available [36], and tool support to their selection and usage can take
into account the principles informally explained in the summary below as base
requirements. Precise or redundant matching. The CP matches a GUC, which
is either more complex or directly usable to describe the local use case: the
CP has only to be imported in the domain ontology.

Broader matching. The CP matches a GUC that is more general than the
local use case: the CP’s catalogue entry may contain reference to less general
CPs that specialize it. If none of them is appropriate, the CP has firstly to be
imported, then it has to be specialized in order to cover the domain part to
be represented.

Narrower matching. The CP matches a GUC that is more specific than the
local use case: the CP’s catalogue entry may contain references to more general
CPs. If none of them is appropriate, a the CP has firstly to be imported, then
it has to be generalized according to the local requirements.

Partial matching. The CP partly matches a GUC that does not cover all
aspects of the local use case (it is simpler): the CP’s catalogue entry may
contain references to CPs it is a component of. If none of such compound CPs
is appropriate, the local use case has to be partitioned into smaller pieces. One
of these pieces will be covered by the selected CP. For the other pieces, other
CPs have to be selected. All selected CPs have to be imported and composed.

In all the above situation, expansion is performed when needed.

5 Use Case Example in the Music Industry Domain

As an example of usage we design a small fragment of an ontology for the
music industry domain. The ontology fragment has to address the following
competency questions:

Which recordings of a certain song do exist in our archive?
Who did play a certain musician role in a given band during a certain period?

The first competency question requires to distinguish between a song and
its recording, while the second competency question highlights the issue of
assigning a given musician role, e.g. singer, guitar player, etc., to a person
who is member of a certain band, at a given period of time. The intent of
the information realization is related to the first competency question with
a broader matching. The intent of the time indexed person role partially and
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broadly matches the second competency question. Hence, we select these two
CPs as building blocks for our ontology.16

We proceed by importing and composing the two selected CPs in our on-
tology (the information realization CP is associated with the prefix ir:; the
time indexed person role CP is associated with the prefix tipr:). Additionally,
we might want to import the time interval CP17 that allows us to assign a date
to the time interval. In order to complete our ontology fragment we create: the
class Song that specializes ir:InformationObject, the class Recording that
specializes ir:InformationRealization, the class MusicianRole that spe-
cializes tipr:Role, the class Band, and the object property memberOf (and its
inverse) with explicit domain, i.e. tipr:Person, and range, i.e. Band. A screen-
shot of the resulting ontology fragment is shown in Fig. 4.18 On the left side
of the picture ontology classes are shown, on the right side there are on-
tology properties, while at the bottom there are the imported CPs. Notice
that CPs can be very useful when they address issues in a specific domain.
For this reason, an ontology fragment like this one might be proposed as a
CP19 if it is associated with a successful application in an ontology design
project.

Fig. 4. The music industry example

16 Notice that the second requirement would also require to represent member-
ship relation between a person and a band. The collection entity CP available
at http://www.ontologydesignpatterns.org/cp/owl/collectionentity.owl addresses
membership. We do not include the description of this CP and its usage for the
sake of brevity.

17 Available at http://www.ontologydesignpatterns.org/cp/owl/timeinterval.owl
18 The screenshot shows the TopBraid Composer interface, see http://www.

topbraidcomposer.com
19 See [36] area of proposed CP.
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6 Conclusion and Remarks

Ontology design is a crucial research area for semantic technologies. Many
bottlenecks in the wide adoption of semantic technologies depend on the diffi-
culty of understanding ontologies and on the scarcity of tools supporting their
lifecycle, from creation to adaptation, reuse, and management. The lessons
learnt until now, either from the early adoption of Semantic Web solutions
or from local, organizational applications, put a lot of emphasis on the need
for simple, modular ontologies that are accessible and understandable by typ-
ical computer scientist and field experts, and on the dependability of these
ontologies on existing knowledge resources.20

In this chapter, we have described a breed of components, called Ontology
Design Patterns, and tools that will support ontology design at the level
that is more natural to domain experts and laymen, i.e. the level at which
small, expertise-aware components can be assembled as easy-to-apply, easy-
to-customize building blocks.

The quality of these components is expected to be evaluated with re-
spect to known good practices, as well as in the large testbed of organi-
zational or web-scale open rating systems. In order to allow the maximum
transparency and flexibility, OPs are supplied with a rich set of metadata
for their explanation, rationale declaration, use case history, evaluation crite-
ria, etc. In this chapter, we have sketched a typology of OPs, then focused
on Content Ontology Design Patterns (which are most beneficial to ontology
design) in terms of their background, definition, communication means, re-
lated work beyond ontology engineering, exemplification, creation, and usage
principles.

There is still a lot of work to be carried out for populating repositories of
patterns, discoverying or extracting them from existing ontologies, assisting
users in their application, defining a robust semantics and algebra for them,
etc. (cf. [42]). The larger context of ontology design research is still very young,
and many ideas are just emerging, for example in (semi-)automatizing the
creation and evaluation of ontologies, based only on informal documentation
from users, a set of software components, and a repository of design patterns.
In a larger report [37] and by setting up the ontologydesignpatterns.org web
portal [36], we make some steps towards the open issues. Moreover, we have
designed a set of experiments that are going to be performed in order to show
OPs’ effectiveness, e.g. in teaching ontology design, lower the cost of ontology
projects, etc. However, some initial experiences with PhD students classes,
and the employment of CPs in of our own recent projects have provided us
with concrete proof of the benefits deriving from their application.

20 An interesting review of evaluation, selection and reuse methods in ontology en-
gineering is in [40].
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Summary. Ontology learning techniques serve the purpose of supporting an ontol-
ogy engineer in the task of creating and maintaining an ontology. In this chapter, we
present a comprehensive and concise introduction to the field of ontology learning.
We present a generic architecture for ontology learning systems and discuss its main
components. In addition, we introduce the main problems and challenges addressed
in the field and give an overview of the most important methods applied. We con-
clude with a brief discussion of advanced issues which pose interesting challenges to
the state-of-the-art.

1 Introduction

Ontology engineering is slowly changing its status from an art to a science
and in fact, during the last decade, several ontology engineering methodolo-
gies (see chapters “Ontology Engineering Methodology” and “Ontology Engi-
neering and Evolution in a Distributed World Using DILIGENT”) have been
examined. But still, as pointed out in chapter “Exploring the Economical As-
pects of Ontology Engineering”, the task of engineering an ontology remains
a resource-intensive and costly task. Therefore, techniques which support the
task of ontology engineering are necessary to reduce the costs associated with
the engineering and maintenance of ontologies. As data in various forms (tex-
tual, structured, visual, etc.) is massively available, many researchers have de-
veloped methods aiming at supporting the engineering of ontologies by data
mining techniques, thus deriving meaningful relations which can support an
ontology engineer in the task of modeling a domain. Such data-driven tech-
niques supporting the task of engineering ontologies have become to be known
as ontology learning. Ontology learning has indeed the potential to reduce the
cost of creating and, most importantly, maintaining an ontology. This is the
reason why a plethora of ontology learning frameworks have been developed in
the last years and integrated with standard ontology engineering tools. Text-
ToOnto [55], for example, was originally integrated into the KAON ontology
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engineering environment [27], OntoLT [11] was integrated with Protégé and
Text2Onto [22] has been recently integrated with the NeOn Toolkit.1

There are three kinds of data to which ontology learning techniques can
be applied: structured (such as databases), semi-structured (HTML or XML,
for example) as well as unstructured (e.g., textual) documents. The meth-
ods applied are obviously dependent on the type of data used. While highly
structured data as found in databases facilitates the application of pure
machine learning techniques such as Inductive Logic Programming (ILP),
semi-structured and unstructured data requires some preprocessing, which
is typically performed by natural language processing methods.

Ontology Learning builds upon well-established techniques from a vari-
ety of disciplines, including natural language processing, machine learning,
knowledge acquisition and ontology engineering. Because the fully automatic
acquisition of knowledge by machines remains in the distant future, the overall
process is considered to be semi-automatic with human intervention.

Organization

This chapter is organized as follows: Sect. 2 introduces a generic architecture
for ontology learning and its relevant components. In Sect. 3 we introduce
various complementary basic ontology learning algorithms that may serve as
a basis for ontology learning. Section 4 describes ontology learning frame-
works and tools which have been implemented in the past. In particular, we
also discuss our own system, Text2Onto, the successor of the TextToOnto
framework [55].

2 An Architecture and Process Model
for Ontology Learning

The purpose of this section is to introduce a generic ontology learning archi-
tecture and its major components. The architecture is graphically depicted
in Fig. 1. In general, the process of ontology learning does not differ sub-
stantially from a classical data mining process (e.g., [15]) with the phases of
business and data understanding, data preparation, modeling, evaluation and
deployment. The key components of an architecture for ontology learning are
the following: an ontology management, a coordination, a resource processing
and an algorithm library component. We describe these components in more
detail in the following.

2.1 Ontology Management Component

The ontology engineer uses the ontology management component to manip-
ulate ontologies. Ontology management tools typically facilitate the import,
1 http://www.neon-toolkit.org
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Fig. 1. Ontology learning conceptual architecture

browsing, modification, versioning as well as evolution of ontologies. However,
the main purpose of the ontology management component in the context of on-
tology learning is to provide an interface between the ontology and the learning
algorithms. When learning new concepts, relations or axioms, the learning al-
gorithms should add them into the ontology model accessing the Application
Programming Interface (API) of the ontology management component. Thus,
the ontology management API should at least contain methods for creating
new concepts, relations, axioms, individuals, etc. Most available APIs indeed
fulfill this requirement. Further important functionalities for ontology learn-
ing are: evolution, reasoning and evaluation. Techniques for ontology evolution
as presented in [52] or [35] are very important for ontology learning as it is
an inherently dynamic process. As the underlying data changes, the learned
ontology should change as well and this requires not only incremental ontol-
ogy learning algorithms, but also some support for ontology evolution at the
ontology management level. Reasoning and evaluation play a crucial role in
guiding the ontology learning process. In case the ontology learning system
faces several alternatives, it should definitely choose that alternative which
preserves the consistency of the underlying ontology [36] or the one which
maximizes certain quality criteria.
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2.2 Coordination Component

The ontology engineer uses this component to interact with the ontology learn-
ing components for resource processing as well as with the algorithm library.
Comprehensive user interfaces should support the user in selecting relevant
input data that are exploited in the further discovery process. Using the coor-
dination component, the ontology engineer also chooses among a set of avail-
able resource processing methods and among a set of algorithms available in
the algorithm library. A central task of the coordination component is further
to sequentially arrange and apply the algorithms selected by the user, passing
the results to each other.

2.3 Resource Processing Component

This component contains a wide range of techniques for discovering, im-
porting, analyzing and transforming relevant input data. An important sub-
component is the natural language processing system. The general task of
the resource processing component is to generate a pre-processed data set as
input for the algorithm library component.

Resource processing strategies differ depending on the type of input data
made available. Semi-structured documents, like dictionaries, may be trans-
formed into a predefined relational structure. HTML documents can be in-
dexed and reduced to free text. For processing free text, the system must
have access to language-specific natural language processing systems. Nowa-
days, off-the-shelf frameworks such as GATE [24] already provide most of the
functionality needed by ontology learning systems. The needed NLP compo-
nents could be the following ones:

• A tokenizer and a sentence splitter to detect sentence and word boundaries.
• A morphological analyser. For some languages a lemmatizer reducing words

to their base form might suffice, whereas for languages with a richer
morphology (e.g., German) a component for structuring a word into its
components (lemma, prefix, affix, etc.) will be necessary. For most ma-
chine learning-based algorithms a simple stemming of the word might be
sufficient (compare [60]).

• A part-of-speech (POS) tagger to annotate each word with its syntactic
category in context, thus determining whether it is a noun, a verb, an
adjective, etc. An example for a POS tagger is the TreeTagger [63].

• Regular expression matching allowing to define regular expressions and
match these in the text. This functionality is provided for example by
GATE’s Java Annotation Pattern Engine (JAPE).

• A chunker in order to identify larger syntactic constituents in a sentence.
Chunkers are also called partial parsers. An example of a publicly available
chunker is Steven Abney’s CASS [1].

• A syntactic parser determining the full syntactic structure of a sentence
might be needed for some ontology learning algorithms (compare [20]).
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Example 1. Given a sentence such as The man drove a bike to
Buxton. we would for example yield the following tokenization,
lemmatization as well as result of the POS tagging:

Tokens The man drove the bike to Buxton.
Lemma The man drive the bike to Buxton.
POS DT NN VBD DT NN IN NP.

where we use the Penn Treebank2 tagset in which DT stands for
a determiner, NN for a singular noun, IN for a preposition, NP
for a proper noun and VBD for a past tense verb. The parse tree
for the above sentence looks as follows:

2.4 Algorithm Library Component

This component acts as the algorithmic backbone of the framework. A number
of algorithms are provided for the extraction and maintenance of the ontol-
ogy modeling primitives contained in the ontology model. Thus, the algorithm
library contains the actual algorithms applied to learning. In particular, the al-
gorithm library consists mainly of machine learning algorithms and versions of
these customized for the purpose of ontology learning. In particular, machine
learning algorithms typically contained in the library are depicted in Table 1.

Most of these machine learning algorithms can be obtained off-the-shelf
in various versions from standard machine learning frameworks such as
WEKA [76]. Additionally, the library should also contain a comprehensive
number of implemented distance or similarity measures such as Jaccard, Dice,
the cosine measure, the Kullback–Leibler divergence, etc. (compare [49]) to
support semantic clustering. In addition, the algorithm library could also con-
tain traditional measures for discovering collocations between words known
from computational linguistics research (e.g., [43]). In order to be able to
combine the extraction results of different learning algorithms, it is necessary
to standardize the output in a common way. In general, a common result
structure for all learning methods is needed. In the Text2Onto system [22],
2 See http://www.cis.upenn.edu/∼treebank
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Table 1. Typical machine learning algorithms in the algorithm library

Algorithm Generic use Use in ontology learning

Association rule
discovery (e.g., [2])

Discovery of “interesting”
transactions in itemsets
(e.g., customer data)

Discovery of interesting
associations between words

(Hierarchical)
Clustering

Discovery of groups in data
(unsupervised)

Clustering of words

Classification (e.g.,
SVMs, Naive Bayes,
kNN, etc.)

Prediction (supervised)
Classification of new
concepts into an
existing hierarchy

Inductive logic
programming ([48])

Induction of rules from data
(supervised)

Discovery of new
concepts from
extensional data

Conceptual clustering
(e.g., FCA – see
chapter “Formal
Concept Analysis”)

Concept discovery
(extension and intension)

Learning concepts and
concept hierarchies

for example, there is a blackboard-style result structure – the POM (Possible
Ontologies Model) – where all algorithms can update their results.

3 Ontology Learning Algorithms

The various tasks relevant in ontology learning have been previously organized
in a layer diagram showing the conceptual dependencies between different
tasks. This ontology learning layer cake was introduced in [18] and is shown in
Fig. 2. It clearly focuses on learning the TBox part of an ontology. With respect
to information extraction techniques to populate the ABox of an ontology,
the interested reader is referred to chapter “Information Extraction”. The
layers build upon each other in the sense that results of tasks at lower layers
typically serve as input for the higher layers. For example, in order to extract
relations between concepts, we should consider the underlying hierarchy to
identify the right level of generalization for the domain and range of the
relation. The two bottom layers of the layer cake correspond to the lexical
level of ontology learning. The task in this part of the layer is to detect the
relevant terminology as well as groups of synonymous terms, respectively. The
extracted terms and synonym groups can then form the basis for the formation
of concepts. Concepts differ from terms in that they are ontological entities
and thus abstractions of human thought in the sense of Ganter and Wille [32].
According to our formalization, concepts are triples c:=< i(c), [[c]], Refc >
consisting of an intensional description i(c), an extension [[c]] and a reference
function Refc representing how the concept is symbolically realized in a text
corpus, an image, etc. (see [10]). At higher levels of the layer cake, we find the
layers corresponding to the tasks of learning a concept hierarchy, relations, a
relation hierarchy as well as deriving arbitrary rules and axioms. The top two
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Fig. 2. Ontology learning layer cake from [18]

layers correspond certainly to the most challenging task as in principle there
is no limit on the type and complexity of axioms and rules to be learned.
In practice, however, as we commit to a specific knowledge representation
language – the Web Ontology Language (OWL) for example (see chapter
“Web Ontology Language: OWL”) – the types of axioms that are allowed are
more restricted. In what follows, we discuss the various tasks layer by layer
and point the reader to relevant approaches in the literature of the field.

3.1 Term Extraction

The task at the lexical layers is to extract terms and arrange these into groups
of synonymous words. A simple technique for extracting relevant terms that
may indicate concepts is counting frequencies of terms in a given set of (lin-
guistically preprocessed) documents, the corpus D. In general this approach
is based on the assumption that a frequent term in a set of domain-specific
texts indicates the occurrence of a relevant concept. Research in information
retrieval has shown that there are more effective methods of term weight-
ing than simple counting of frequencies. Weighting measures well-known from
information retrieval such as tf.idf (see [6]) might also be applied here.

Further, the computational linguistics community has proposed a wide
range of more sophisticated techniques for term extraction. An interesting
measure is the C-value/NC-value measure presented in [31] which does not
only take into account the frequency of terms but also the fact that terms
can be nested into each other. Further, the approach also takes into account
contextual clues which are strong indicators of the “termhood” of some se-
quence of words. Overall, while the field of term extraction seems quite ma-
ture and a plethora of techniques have been suggested and examined, there is
not yet a clear understanding of which measures work best for which purpose.
Clearly, specific domains, such as genomics, medicine or E-commerce need
corresponding adaptations of tools and methods with respect to their specific
characteristics.
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3.2 Synonym Extraction

In order to extract synonyms, most approaches rely on the distributional
hypothesis claiming that words are semantically similar to the extent to
which they share syntactic contexts [39]. This hypothesis is also in line with
Firth’s well known statement that “you shall know a word by the company it
keeps” [30]. For each word w, a distributional representation is computed and
represented as a vector vw on the basis of the word’s context. Features used to
represent a word are typically other words appearing within a certain window
from the target word, syntactic information and dependencies. The similarity
in vector space between different word vectors can then be computed and
highly similar words can be regarded as synonyms.

Example 2. Assuming that we parse a text corpus and identify, for
each noun, the verbs for which it appears at the object position,
we can construct a matrix as follows:

Bookobj Rentobj Driveobj Rideobj Joinobj

Hotel x
Apartment x x
Car x x x
Bike x x x x
Excursion x x
Trip x x

Each row represents the context of a word, while each column
corresponds to one dimension of the context representation, in
our case the different verbs that the nouns appear at the object
position. Assuming the representation as binary vectors shown
in the matrix above, we can for example calculate the similarity
between the different terms using the Jaccard coefficient which
compares the sets A and B of the non-negative dimensions of the
vector representations two words a and b: Jaccard := |A∩B|

|A∪B| . The
resulting similarities are thus:

Hotel Apartment Car Bike Excursion Trip
Hotel 1.0 0.5 0.33 0.25 0.5 0.5
Apartment 1.0 0.66 0.5 0.33 0.33
Car 1.0 0.75 0.25 0.25
Bike 1.0 0.2 0.2
Excursion 1.0 1.0
Trip 1.0

Important approaches along these lines include the work of Grefenstette
[33] as well as Lin et al. [50]. Some researchers have also combined differ-
ent similarity extractors using ensemble methods [25]. Other techniques for
extracting synonyms include the application of statistical methods to the
Web (cf. [7, 69]) or the calculation of semantic relatedness with respect to
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a taxonomy or semantic network such as WordNet (compare [61]) or more re-
cently also the Wikipedia categories (see [67]). WordNet [29] is a lexical data-
base organizing words in terms of synonym sets (synsets) and providing lexical
relations between these synsets, i.e., hypernymy/hyponymy (“is a kind of”)
as well as meronymy/holonymy (“part of”) relations. In addition, WordNet
provides glosses, which are natural language definitions of the synsets. Tur-
ney [69] for example relies on the well-known Pointwise Mutual Information
(PMI) measure to extract synonyms. The pointwise mutual information of
two events x and y is defined as:

PMI(x, y) := log2
P (x, y)

P (x) P (y)

where P (x, y) is the probability for a joint occurrence of x and y and P (x)
is the probability for the event x. The PMI is thus in essence the (logarithmic)
ratio of the joint probability and the probability under the assumption of
independence. In fact, if P (x, y) ≤ P (x)P (y), we will have a negative (or
zero) value for the PMI, while in case P (x, y) > P (x)P (y), we will have a
positive PMI value. The PMI can be calculated using Google and counting
hits as follows:

PMIWeb(x, y) := log2
Hits(x AND y) MaxPages

Hits(y) Hits(y)

where MaxPages is an approximation for the maximum number of English
web pages. This measure can thus be used to calculate the statistical depen-
dence of two words on the Web. If they are highly dependent, we can assume
they are synonyms or at least highly semantically related. This approach to
discover synonyms has been successfully applied to the TOEFL test (see [69]).

3.3 Concept Learning

In this section we focus on approaches inducing concepts by clearly defining
the intension of the concept. We will distinguish the following three paradigms:

• Conceptual clustering
• Linguistic analysis
• Inductive methods

Conceptual Clustering

Conceptual clustering approaches such as Formal Concept Analysis ([32],
chapter “Formal Concept Analysis”) have been applied to form concepts
and to order them hierarchically at the same time. Conceptual clustering
approaches typically induce an intensional description for each concept in
terms of the attributes that it shares with other concepts as well as those that
distinguish it from other concepts.
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Linguistic Analysis

Linguistic analysis techniques can be applied to derive an intensional descrip-
tion of a concept in the form of a natural language description. The approach
of Velardi et al. [70] for example relies on WordNet to compositionally in-
terpret a compound term and as a byproduct produce a description on the
basis of the WordNet descriptions of the single terms constituting the com-
pound [70]. The definition of the term knowledge management practices: “a
kind of practice, knowledge of how something is customarily done, relating to
the knowledge of management, the process of capturing value, knowledge and
understanding of corporate information, using IT systems, in order to main-
tain, re-use and de-ploy that knowledge.” is compositionally determined on
the basis of the definitions of knowledge management3 and practice.4 For this
purpose, disambiguation with respect to the different senses of a word with
respect to its several meanings in a lexical database (such as WordNet) is re-
quired. Further, a set of rules is specified which drive the above compositional
generation of definitions.

Finally, given a populated knowledge base, approaches based on induc-
tive learning such as Inductive Logic Programming can be applied to derive
rules describing a group of instances intentionally. Such an approach can for
example be used to reorganize a taxonomy or to discover gaps in conceptual
definitions (compare [51]).

3.4 Concept Hierarchy

Different methods have been applied to learn taxonomic relations from texts.
In what follows we briefly discuss approaches based on matching lexico-
syntactic patterns, clustering, phrase analysis as well as classification.

Lexico-Syntactic Patterns

In the 1980s, people working on extracting knowledge from machine readable
dictionaries already realized that regularities in dictionary entries could be
exploited to define patterns to automatically extract hyponym/hypernym and
other lexical relations from dictionaries (compare [3, 4, 13]). This early work
was continued later in the context of the ACQUILEX project (e.g., [23]).

In her seminal work, Hearst [40] proposed the application of so-called
lexico-syntactic patterns to the task of automatically learning hyponym re-
lations from corpora. In particular, Hearst defined a collection of patterns

3 Knowledge management: the process of capturing value, knowledge and under-
standing of corporate information, using IT systems, in order to mantain, re-use
and re-deploy that knowledge.

4 Practice: knowledge of how something is customarily done.
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indicating hyponymy relations. An example of a pattern used by Hearst is the
following:

such NP0 as NP1,...,NPn−1 (or|and) other NPn

where NPi stands for a noun phrase. If such a pattern is matched in a
text, according to Hearst we could derive that for all 0 < i ≤ n hy-
ponym(NPi,NP0).5 For example, from the sentence Such injuries as bruises,
wounds and broken bones..., we could derive the relations: hyponym(bruise,
injury), hyponym(wound, injury) and hyponym(broken bone, injury).

The patterns used by Hearst are the following:

Hearst1: NPhyper such as {NPhypo,}* {(and | or)} NPhypo

Hearst2: such NPhyper as {NPhypo,}* {(and | or)} NPhypo

Hearst3: NPhypo {,NP}* {,} or other NPhyper

Hearst4: NPhypo {,NP}* {,} and other NPhyper

Hearst5: NPhyper including {NPhypo,}* NPhypo {(and | or)} NPhypo

Hearst6: NPhyper especially {NPhypo,}* {(and|or)} NPhypo

Overall, lexico-syntactic patterns have been shown to yield a reasonable
precision for extracting is-a as well as part-of relations (e.g., [14, 16,59]).

Clustering

Clustering can be defined as the process of organizing objects into groups
whose members are similar in some way based on a certain representation,
typically in the form of vectors (see [46]). In general, there are three major
styles of clustering:

1. Agglomerative: In the initialization phase, each term is defined to consti-
tute a cluster of its own. In the growing phase, larger clusters are itera-
tively generated by merging the most similar/least dissimilar ones until
some stopping criterion is reached. Examples of uses of agglomerative
clustering techniques in the literature are [8, 20,28].

2. Divisive: In the initialization phase, the set of all terms constitutes a clus-
ter. In the refinement phase, smaller clusters are (iteratively) generated by
splitting the largest cluster or the least homogeneous cluster into several
subclusters. Examples for divisive clustering can be found in [20,58].
Both agglomerative and divisive clustering techniques are used to produce
hierarchical descriptions of terms. Both rely on notions of (dis-)similarity,
for which a range of measures exist (e.g., Jaccard, Kullback–Leibler di-
vergence, L1-norm, cosine; cf. [49]).

3. Conceptual: Conceptual clustering builds a lattice of terms by investigat-
ing the exact overlap of descriptive attributes between two represented
terms. In the worst case, the complexity of the resulting concept lattice is
exponential in n. Thus, people either just compute a sublattice [68] or rely

5 From a linguistic point of view, a term t1 is a hyponym of a term t2 if we can say
a t1 is a kind of t2. Correspondingly, t2 is then a hypernym of t1.
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on certain heuristics to explore and/or prune the lattice. Examples of ap-
plications of conceptual clustering techniques to ontology learning can be
found in [20,38].

Either way one may construct a hierarchy of term clusters for detailed
inspection by the ontology engineer.

Example 3. Using hierarchical agglomerative clustering, we can
build a cluster tree for the objects in Example 2. Let us assume
we are using single linkage as measure of the similarity between
clusters. First, we cluster excursion and trip as they have a simi-
larity of 1.0. We then cluster bike and car as this is the next pair
with the highest degree of similarity. We then build a cluster con-
sisting of bike, car and apartment. Next, we either join the latter
cluster with hotel or build a cluster between hotel and the already
created cluster consisting of excursion and trip. Assuming that
we traverse the similarity matrix from the upper left corner to
the lower right one, we can add hotel to the cluster consisting of
bike, car and apartment. At the top level we then join the clusters
{hotel, apartment, bike, car} and {excursion, trip} producing a
universal cluster containing all elements. The corresponding clus-
ter tree would then look as follows:

Phrase Analysis

Some approaches rely on the fact that the internal structure of noun phrases
can be used to discover taxonomic relations (compare [11, 62], but also [21]).
In essence, these methods build on the heuristic that additional modifiers (ad-
jectival or nominal) added to the front of a noun typically define a subclass of
the class denoted by the noun. That means, for example, that focal epilepsy
is interpreted as a subclass of epilepsy. This is in essence the approach imple-
mented in the OntoLT system (see below and [11]). Sanchez and Moreno [62]
exploit this heuristic in a web setting to find terms which occur to the left
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of a term to be refined into subclasses. A measure inspired in the Pointwise
Mutual Information (PMI) is used to assess the degree of correlation between
the term in question and the modifier to the left.

Classification

When a substantial hierarchy is already given, e.g., by basic level categories
from a general resource like WordNet [29], one may rather decide to refine
the taxonomy by classifying new relevant terms into the given concept hierar-
chy. The distributional representation described above is then used to learn a
classifier from a training corpus and the set of predefined concepts with their
lexical entries. Afterwards, one may construct the distributional representa-
tions of relevant, unclassified terms and let the learned classifier propose a
node to which to classify the new term. While many researchers have consid-
ered lexical databases such as WordNet to test such algorithms (e.g., [41] and
[75], other researchers have indeed considered domain-specific ontologies see,
e.g., the work of Pekar and Staab [57]). Pekar and Staab have in particular
considered different algorithms to classify a new term into an existing con-
cept hierarchy without testing all concepts, e.g., by exploiting the hierarchical
structure using tree-ascending or tree-descending algorithms.

3.5 Relations

In order to discover arbitrary relations between words, different techniques
from the machine learning and statistical natural language processing commu-
nity have found application in ontology learning. In order to discover “anony-
mous” associations between words, one can look for a strong co-occurrence
between words within a certain boundary, i.e., a window of words, a sentence
or a paragraph. Mädche et al. [53] apply the well-known association discovery
algorithm and represent co-occurrences of words within a sentence as transac-
tions. This representation allows to calculate the support and confidence for
binary transactions and thus to detect anonymous binary associations between
words.

In the computational linguistics community, the task of discovering strong
associations between words is typically called collocation discovery. In essence,
the idea is to discover words which co-occur beyond chance in a statistically
significant manner. Statistical significance is typically checked using some test
such as the Student’s t-test or the χ2-test (compare [43,56]). Other researchers
have aimed at learning labeled relations by relying on linguistic predicate-
argument dependencies. Typically, verb structures are considered for this pur-
pose (compare [17, 19, 64]). When learning relations, a crucial issue is to find
the right level of abstraction with respect to the concept hierarchy for the
domain and range of the relation in question. This issue can be addressed
in different ways. While Mädche et al. [53] incorporate the concept hierarchy
into the association discovery process, Ciaramita et al. [17] as well as Cimiano
et al. [19] formulate this as a problem of generalizing along a hierarchy as long
as the statistical significance does not diminish.
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3.6 Axioms and Rules

Ontology learning approaches so far have focused on the acquisition of rather
simple taxonomic hierarchies, properties as well as lexical and assertional
knowledge. However, the success of OWL which allows for modeling far
more expressive axiomatizations has led to some advances in the direction
of learning complex ontologies and rules.

Völker et al. [71] propose an approach for generating formal class descrip-
tions from natural language definitions extracted, e.g., from online glossaries
and encyclopedias. The implementation of this approach is essentially based
on a syntactic transformation of natural language definitions into OWL DL
axioms in line with previous work on lexico-syntactic patterns (cf. Sect. 3.4)
and lexical entailment.

One of the first methods for learning disjointness axioms relies on a sta-
tistical analysis of enumerations which has been implemented as part of the
Text2Onto framework [37]. Völker et al. [73] developed a supervised learning
approach based on an extended set of methods yielding both lexical and
logical evidence for or against disjointness.

3.7 Pruning/Domain Adaptation

One relatively straightforward approach towards generating an appropriate
domain ontology given a corpus is to prune an existing general ontology. Along
these lines, Buitelaar et al. [12] propose a method by which WordNet synsets
can be ranked by relevance with respect to the corpus in question on the basis
of a frequency-based measure. The techniques used to prune WordNet, thus
adapting it to a certain domain and corpus, can be also applied to prune a
given ontology. Kietz et al. [47] for example present a method which addition-
ally uses a general corpus as contrast. They only select a concept as relevant
in case it appears a factor c times more relevant in the domain-specific than
in the general corpus. Hereby, c is a user-specified constant and the relevance
measure used is tf.idf.

4 Ontology Learning Systems

In the last years, many different tools and frameworks for ontology learning
have emerged. Needless to say that it is out of the scope of this chapter to
discuss them all. Instead, we will provide a rather subjective snapshot of the
current tool landscape. Some well-known and frequently cited tools are for ex-
ample: OntoLearn [70], OntoLT [11], Terminae [5] as well as TextToOnto [55]
and its successor Text2Onto [22]. All these tools implement various and differ-
ent methods, such that a detailed discussion and comparison is out of the scope
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of this chapter. OntoLearn for example integrates a word sense disambigua-
tion component to derive intensional descriptions of complex domain-specific
terms, which are assumed to denote concepts, on the basis of WordNet glosses
(compare Sect. 3.3). In this sense, OntoLearn also induces intensionally de-
fined domain concepts and ingeniously exploits the knowledge available in
general resources for a specific domain. OntoLT , which is available as a plug-
in to the Protégé ontology editor [34], allows for term extraction using various
measures such as tf.idf and extraction of taxonomic relations relying on inter-
preting modifiers (nominal or adjectival) as introducing subclasses (compare
Sect. 3.4).

TextToOnto [55] is a framework containing various tools for ontology learn-
ing. It includes standard term extraction using a number of different measures,
the algorithm for mining relations based on association rules described in [53]
(see Sect. 3.5) as well as hierarchical clustering algorithms based on Formal
Concept Analysis (compare Sect. 3.4). Its successor, Text2Onto, besides im-
plementing most of the algorithms available also in TextToOnto, abstracts
from a specific knowledge representation language and stores the learned on-
tology primitives in the form of a meta-model called Possible Ontologies Model
(POM), which can then be translated to any reasonably expressive knowledge
representation language, in particular to OWL and RDFS. On the other hand,
it implements a framework for data-driven and incremental learning in a sense
that changes in the underlying corpus are propagated to the algorithms, thus
leading to explicit changes to the POM. The advantage is that these changes
can be easily traced back to the original corpus changes, which gives more
control to the ontology engineer.

5 Advanced Issues

In this section, we briefly discuss some advanced and open issues in ontology
learning that are still under research. This section should help newcomers to
get a feeling for the open questions and allow for a quicker entry into the field.

5.1 Methodology

Certainly, besides providing tool support for ontology learning methods, it is
crucial to define how ontology learning methods can be integrated into the
process of engineering an ontology. Blueprints in this direction can be found
in the work of Simperl et al. [65] as well as Aussenec-Gilles et al. [5]. Simperl
et al. for example provide a methodology defining the necessary activities and
roles for ontology engineering supported by ontology learning methods. In
particular, they argue that without a clear methodology to be followed by an
ontology engineering project, ontology learning techniques can not reasonably
support ontology engineering activities. Aussenec-Gilles et al. [5] have also
conducted research on methodological issues in the context of their Terminae
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method. In particular, they have argued that knowledge models, in particular
ontologies, need to be anchored in language. Therefore, they emphasize the
role of language in the process of ontology engineering. In general, though
first attempts have been provided, there is still much further work to do in
order to clarify the benefits and drawbacks of different methodologies for inte-
grating ontology learning into available ontology engineering methodologies.
As argued by Simperl et al., ontology learning tools need to improve on their
usability and intuitiveness in order to be useful for the purpose of ontology
engineering.

5.2 Evaluation

A crucial part of ontology learning is to evaluate how good the learned on-
tologies actually are. Such an evaluation can in turn guide and control the
ontology learning process in the search towards an “optimal” ontology. How-
ever, the evaluation of ontology learning tools is a quite delicate issue as it
is not clear what one could compare to. The critical issue in many cases is
to define a gold standard which we can regard as ground truth an one can
compare with (see [26]). However, it is well known that there is no ground
truth for ontologies as different people will surely come up with very different
ontologies when asked to model a certain domain (see, e.g., the experiments
described in [54]).

Other approaches aim at approximating the appropriateness of some on-
tology by other means. Brewster et al. [9], for example, try to measure the
“corpus fit” of the ontology by considering the frequency with which the terms
in the ontology appear in the corpus. A completely different way to check the
quality of an ontology is pursued by the AEON framework [72], that aims to
automatize the application of the OntoClean methodology (see chapter “An
Overview of OntoClean”), hence ensuring the formal consistency of an ontol-
ogy. Finally, an integration of ontology learning and evaluation is proposed by
Haase et al. [37]. They describe an approach to exploiting contextual informa-
tion such as OntoClean meta-properties, or confidence and relevance values
for resolving logical inconsistencies in learned ontologies, and to optimize the
outcome of the ontology learning process.

5.3 Expressivity

Many people argue that the main benefits of using ontologies for knowledge
modeling become most evident in reasoning-based applications. Inferring new
knowledge and drawing conclusions beyond explicit assertions is an important
aspect of “intelligent” applications. However, the power of reasoning largely
depends on the expressivity of the underlying knowledge representation for-
malism and its instantiation by means of a concrete ontology.
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The vast majority of today’s lexical ontology learning focuses on the
extraction of simple class descriptions and axioms, i.e., atomic concepts,
subsumption and object properties, as well as ABox statements expressing
concept or property instantiation. The expressivity of ontologies generated
by lexical approaches, e.g., based on natural language processing techniques
is mostly restricted to ALC (Attributive Language with Complements) or
similar DL fragments such as AL-log. These rather simple, often informal on-
tologies have proven to be useful for many applications, or as Jim Hendler has
put it “A little semantics goes a long way” (see [42]). But semantic applica-
tions relying on reasoning over very complex domains such as bioinformatics
or medicine require more precise and accurate knowledge representation.

Learning more expressive ontologies greatly facilitates the acquisition and
evaluation of complex domain knowledge. But it also brings new challenges,
e.g., with respect to logical inconsistencies that may arise as soon as any
kind of negation or cardinality constraints are introduced into learned ontolo-
gies [45]. Methods for debugging, consistent ontology evolution, or inconsis-
tency reasoning will be required to face these challenges.

Finally, a tighter integration of lexical and logical ontology learning ap-
proaches will be required in order to prevent problems resulting from dif-
ferent semantic interpretations, e.g., of lexical and ontological relations (see
discussion in [71]). A first approach in this line is the RELExO framework by
Völker and Rudolph [74], which combines a lexical approach to the acquisi-
tion of complex class descriptions with the FCA-based technique of relational
exploration.

5.4 Combination of Evidence

As it is very unlikely that we will be able to derive high-quality ontologies
from one single source of evidence and using one single approach, a few re-
searchers have addressed the challenge of learning ontologies by considering
multiple sources of evidence. Cimiano et al. [21] have for example presented
a classification-based approach in which a classifier is trained with features
derived from various approaches and data sources. The approach is shown
to outperform any of the single algorithms considered. Snow et al. [66] have
phrased the problem in probabilistic terms and considered the task of adding
new concepts (synsets) to the WordNet taxonomy. These approaches have so
far focused only on learning taxonomic relations with the notable exception
of initial approaches to the automatic generation of disjointness axioms [73].
In general, there is a lot of further research needed in this direction.

5.5 Dynamics and Evolution

Most ontology learning approaches assume that there is one static corpus from
which to learn. However, collecting such a corpus can sometimes be a non-
trivial task. Currently, some researchers are attempting to frame ontology
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learning as the task of keeping an equilibrium between a (growing) corpus,
a (growing) set of extracted ontological primitives and a (changing) set of
extraction patterns. While it seems very hard to define such an equilibrium
in such a way that certain actions are triggered towards restoring it, first
attempts in this direction can be found in the work of Iria et al. [44]. Further,
as the underlying corpus can and will evolve, it is an important question to
explicitly track changes in the ontology model with respect to changes in the
corpus, thus enhancing the transparency of the ontology learning process and
allowing human inspection. From a performance point of view, an incremental
approach to ontology learning has moreover the benefit that the whole corpus
will not need to be processed each time it changes. A first approach in this
direction has been implemented in the Text2Onto system (compare [22]).

6 Conclusion

Ontology learning is a challenging and exciting research field at the intersec-
tion of machine learning, data and text mining, natural language processing
and knowledge representation. While fully automatic knowledge acquisition
techniques are not yet feasible (and possibly will nor should ever be), ontol-
ogy learning techniques have a high potential to support ontology engineering
activities. In fact, according to our view, ontology engineering can not be con-
sidered without the automatic or semi-automatic support of ontology learning
methods. Future work should and will surely aim at developing a new gen-
eration of intuitive ontology learning tools which are able to learn expressive
ontologies, but at the same time hide their internal complexity from the user.
These new generation of tools should feature intuitive user interfaces as well
as smoothly integrate into existing methodologies for ontology engineering.
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52. A. Mädche, B. Motik, and L. Stojanovic. Managing multiple and distributed
ontologies in the semantic web. VLDB Journal, 12(4):286–302, 2003.
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Summary. A lexicon is a linguistic object and hence is not the same thing as an
ontology, which is non-linguistic. Nonetheless, word senses are in many ways similar
to ontological concepts and the relationships found between word senses resemble
the relationships found between concepts. Although the arbitrary and semi-arbitrary
distinctions made by natural languages limit the degree to which these similarities
can be exploited, a lexicon can nonetheless serve in the development of an ontology,
especially in a technical domain.

1 Lexicons and Lexical Knowledge

1.1 Lexicons

A lexicon is a list of words in a language – a vocabulary – along with some
knowledge of how each word is used. A lexicon may be general or domain-
specific; we might have, for example, a lexicon of several thousand common
words of English or German, or a lexicon of the technical terms of dentistry in
some language. The words that are of interest are usually open-class or content
words, such as nouns, verbs, and adjectives, rather than closed-class or gram-
matical function words, such as articles, pronouns, and prepositions, whose
behaviour is more tightly bound to the grammar of the language. A lexicon
may also include multi-word expressions such as fixed phrases (by and large),
phrasal verbs (tear apart), and other common expressions (merry Christmas!;
teach 〈someone〉’s grandmother to suck eggs; Elvis has left the building).

Each word or phrase in a lexicon is described in a lexical entry; exactly
what is included in each entry depends on the purpose of the particular lexi-
con. The details that are given (to be discussed further in Sects. 2.1 and 3.2
below) may include any of its properties of spelling or sound, grammatical
behaviour, meaning, or use, and the nature of its relationships with other
words. A lexical entry is therefore a potentially large record specifying many
aspects of the linguistic behaviour and meaning of a word.
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Hence a lexicon can be viewed as an index that maps from the written
form of a word to information about that word. This is not a one-to-one cor-
respondence, however. Words that occur in more than one syntactic category
will usually have a separate entry for each category; for example, flap would
have one entry as a noun and another as a verb. Separate entries are usu-
ally also appropriate for each of the senses of a homonym – a word that has
more than one unrelated sense even within a single syntactic category; for
example, the noun pen would have distinct entries for the senses writing instru-

ment, animal enclosure, and swan. Polysemy – related or overlapping senses – is
a more-complex situation; sometimes the senses may be discrete enough that
we can treat them as distinct: for example, window as both opening in wall and
glass pane in opening in wall (fall through the window; break the window). But
this is not always so; the word open, for example, has many overlapping senses
concerning unfolding, expanding, revealing, moving to an open position, making open-

ings in, and so on, and separating them into discrete senses, as the writers
of dictionary definitions try to do, is not possible (see also Sects. 2.3 and 3.1
below).

On the other hand, morphological variants of a word, such as plurals of
nouns and inflected forms of verbs, will not normally warrant their own com-
plete lexical entry. Rather, the entry for such forms need be little more than
a pointer to that for the base form of the word. For example, the entries for
takes, taking, took, and taken might just note that they are inflected forms of
the base-form verb take, and point to that entry for other details; and con-
versely, the entry for take will point to the inflected forms. Similarly, flaps will
be connected both to the noun flap as its plural and to the verb flap as its
third-person singular. The sharing of information between entries is discussed
further in Sect. 2.2 below.

A lexicon may be just a simple list of entries, or a more-complex structure
may be imposed upon it. For example, a lexicon may be organized hierar-
chically, with default inheritance of linguistic properties (see Sect. 2.2 below).
However, the structures that will be of primary interest in this chapter are
semantic, rather than morphological or syntactic; they will be discussed in
Sect. 3.2 below.

1.2 Computational Lexicons

An ordinary dictionary is an example of a lexicon. However, a dictionary
is intended for use by humans, and its style and format are unsuitable for
computational use in a text or natural language processing system without
substantial revision. A particular problem is the dictionary’s explications of
the senses of each word in the form of definitions that are themselves writ-
ten in natural language; computational applications that use word meanings
usually require a more-formal representation of the knowledge. Nonetheless,
a dictionary in a machine-readable format can serve as the basis for a compu-
tational lexicon, as in the acquilex project [8] – and it can also serve as the
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basis for a semantic hierarchy (see Sect. 5.2 below). (An alternative or com-
plementary source of lexical information is inference from the usage observed
in text corpora; see, e.g. [7].)

Perhaps the best-known and most widely used computational lexicon of
English is WordNet [25]. The primary emphasis of WordNet is on semantic
relationships between words; it contains little syntactic and morphological
data and no phonetic data. The basic lexical entry in WordNet is the synset
(for “synonym set”), which groups together identical word senses. For exam-
ple, the synonymous nouns boarder, lodger, and roomer are grouped together
in a synset. WordNet includes an extensive network of relationships between
synsets; this will be discussed in detail in Sect. 3.2. Following the success of
WordNet for English, wordnets with a similar (but not necessarily identical)
structure have been (or are being) developed for a large number of other lan-
guages (some as part of the EuroWordNet project [67]), including Basque,
Dutch, French, Hindi, and Tamil (see www.globalwordnet.org).

Some other important general-purpose lexicons include celex [5], which
is a set of large, detailed lexicons of Dutch, German, and English, and the
parole project (www.ub.es/gilcub/SIMPLE/simple.html) and its successor
simple [40], which are large, rich lexicons for 12 European languages.

Two important sources for obtaining lexicons are these:

ELDA: The Evaluations and Language resources Distribution Agency
(www.elda.org) distributes many European-language general-purpose
and domain-specific lexicons, both monolingual and multilingual, includ-
ing parole and EuroWordNet.

LDC: The Linguistic Data Consortium (ldc.upenn.edu), although primar-
ily a distributor of corpora, offers celex and several other lexicons.

In addition, English WordNet is available free of charge from the project’s
Web page (wordnet.princeton.edu).

2 Lexical Entries

2.1 What is in a Lexical Entry?

Any detail of the linguistic behaviour or use of a word may be included in
its lexical entry: its phonetics (including pronunciations, syllabification, and
stress pattern), written forms (including hyphenation points), morphology (in-
cluding inflections and other affixation), syntactic and combinatory behaviour,
constraints on its use, its relative frequency, and, of course, all aspects of its
meaning. For our purposes in this chapter, the word’s semantic properties,
including relationships between the meanings of the word and those of other
words, are the most important, and we will look at them in detail in Sect. 3.2
below.
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Thus, as mentioned earlier, a lexical entry is potentially quite a large
record. For example, the celex lexicons of English, Dutch, and German [5] are
represented as databases whose records have 950 fields. And in an explanatory
combinatorial dictionary (ECD) (e.g. [46, 47]), which attempts to explicate
literally every aspect of the knowledge that a speaker needs to have in order
to use a word correctly, lexical entries can run to many pages. For example,
Steele’s [61] ECD-style entry for eight senses of hope (noun and verb) is 28
book-sized pages long, much of which is devoted to the combinatory properties
of the word – for example, the noun hope permits flicker of to denote a small
amount (whereas expectation, in contrast, does not).

Many linguistic applications will require only a subset of the information
that may be found in the lexical entries of large, broad-coverage lexicons. Be-
cause of their emphasis on detailed knowledge about the linguistic behaviour
of words, these large, complex lexicons are sometimes referred to as lexical
knowledge bases, or LKBs. Some researchers distinguish LKBs from lexicons
by regarding LKBs as the larger and more-abstract source from which in-
stances of lexicons for particular applications may be generated. In the present
chapter, we will not need to make this distinction, and will just use the term
lexicon.

2.2 Inheritance of Linguistic Properties

Generally speaking, the behaviour of words with respect to many non-semantic
lexical properties in any given language tends to be regular: words that are
phonetically, morphologically, or syntactically similar to one another usually
exhibit similar phonetic, morphological, or syntactic behaviour. For example,
in English most verbs form their past tense with either -ed or -d, and even
most of those that do not do so fall into a few small categories of behaviour;
and quite separately, verbs also cluster into a number of categories by their
alternation behaviour (see Sect. 4.3 below).

It is therefore possible to categorize and subcategorize words by their be-
haviour – that is, build an ontology of lexical behaviour – and use these
categories to construct a lexicon in which each word, by default, inherits the
properties of the categories and subcategories of which it is a member. Of
course, idiosyncratic properties (such as many of the combinatory properties
listed in an ECD) will still have to be specified in each word’s entry. Inheri-
tance of properties facilitates both economy and consistency in a large lexicon.
A hierarchical representation of lexical knowledge with property inheritance
is really just a special case of this style or method of knowledge representa-
tion. Accordingly, the inheritance of properties in the lexicon and the design
of formal languages for the representation of lexical knowledge have been ar-
eas of considerable study (e.g. [8,28]; for an overview, see [17]; for the DATR
language for lexical knowledge representation, see [22]).
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It should be clear that a hierarchical representation of similarities in lexical
behaviour is distinct from any such representation of the meaning of words;
knowing that boy and girl both take -s to make their plural form whereas
child does not tells us nothing about the relationship between the meanings
of those words. Relationships between meanings, and the hierarchies or other
structures that they might form, are a separate matter entirely; they will be
discussed in Sect. 3.2.

2.3 Generating Elements of the Lexicon

Even with inheritance of properties, compiling a lexicon is a large task. But
it can be eased by recognizing that because of the many regularities in the
ways that natural languages generate derived words and senses, many of the
entries in a lexicon can be automatically predicted.

For example, at the level of inflection and affixation, from the existence
of the English word read, we can hypothesize that (among others) reading,
reader, unreadable, and antireadability are also words in the lexicon, and in
three out of these four cases we would be right. Viegas et al. [64] present a
system of lexical rules that propose candidate words by inflection and affixa-
tion (an average of about 25 from each base form), automatically generating
lexical entries for them; a lexicographer must winnow the proposals. In their
Spanish lexicon, about 80% of the entries were created this way. But a lexicon
can never anticipate nonce words, neologisms, or compounds that are easily
created from combinations of existing words in languages such as German and
Dutch; additional word-recognition procedures will always be needed.

At the level of word sense, there are also regularities in the polysemy of
words. For example, the senses of the word book include both its sense as
a physical object and its sense as information-content: The book fell on the
floor; The book was exciting. (A problem for natural language processing,
which need not concern us here, is that both senses may be used at once:
The exciting book fell on the floor.) In fact, the same polysemy can be seen
with any word denoting an information-containing object, and if a new one
comes along, the polysemy applies automatically: The DVD fell on the floor;
The DVD was exciting. There are many such regularities of polysemy; they
have been codified in Pustejovsky’s [54] theory of the generative lexicon. Thus
it is possible to write rules that generate new lexical entries reflecting these
regularities; if we add an entry for DVD to the lexicon as an information-
containing object, then the other sense may be generated automatically [9].
(A fortiori, the theory of the generative lexicon says that a purely enumerative
lexicon – one that is just a list of pre-written entries – can never be complete,
because the generative rules always permit new and creative uses of words.)
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3 Word Senses and the Relationships Between Them

Most of the issues in the relationship between lexicons and ontologies pertain
to the nature of the word senses in the lexicon and to relationships between
those senses – that is, to the semantic structure of the lexicon.

3.1 Word Senses

By definition, a word sense, or the “meaning” of a word, is a semantic
object – a concept or conceptual structure of some kind, though exactly what
kind is a matter of considerable debate, with a large literature on the topic.
Among other possibilities, a word sense may be regarded as a purely mental
object; or as a structure of some kind of primitive units of meaning; or as the
set of all the things in the world that the sense may denote; or as a prototype
that other objects resemble to a greater or lesser degree; or as an intension
or description or identification procedure – possibly in terms of necessary and
sufficient conditions – of all the things that the sense may denote.

Word senses tend to be fuzzy objects with indistinct boundaries, as we
have seen already with the example of open in Sect. 1.1 above. Whether or
not a person may be called slim, for example, is, to some degree, a subjective
judgement of the user of the word. To a first approximation, a word sense
seems to be something like a category of objects in the world; so the word slim
might be taken to denote exactly the category of slim objects, with its fuzziness
and its subjectivity coming from the fuzziness and subjectivity of the category
in the world, given all the problems that are inherent in categorization (see
also [38]). Indeed, some critics have suggested that word senses are derived,
created, or modulated in each context of use, and cannot just be specified in a
lexicon [37,58].

Nonetheless, one position that could be taken is that a word sense is a cat-
egory. This is particularly appealing in simple practical applications, where
the deeper philosophical problems of meaning may be finessed or ignored. The
problems are pushed to another level, that of the ontology; given some ontol-
ogy, each word sense is represented simply as a pointer to some concept or
category within the ontology. In some technical domains this may be entirely
appropriate (see Sect. 5.1 below). But sometimes this move may in fact make
matters worse: all the problems of categorization remain, and the additional
requirement is placed on the ontology of mirroring some natural language or
languages, which is by no means straightforward (see Sect. 4 below); nonethe-
less, an ontology may act as an interpretation of the word senses in a lexicon
(see Sect. 5.4 below).

In addition to the denotative elements of meaning that refer to the world,
word senses also have connotation, which may be used to express the user’s
attitude: a speaker who chooses the word sozzled instead of drunk is exhibiting
informality, whereas one who chooses inebriated is being formal; a speaker who
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describes a person as slim or slender is implying that the person’s relative
narrowness is attractive to the speaker, whereas the choice of skinny for the
same person would imply unattractiveness.

3.2 Lexical Relationships

Regardless of exactly how one conceives of word senses, because they pertain
in some manner to categories in the world itself, lexical relationships between
word senses mirror, perhaps imperfectly, certain relationships that hold be-
tween the categories themselves. The nature of lexical relationships and the
degree to which they may be taken as ontological relationships are the topics
of most of the rest of this chapter. In the space available, we can do no more
than introduce the main ideas of lexical relationships; for detailed treatments,
see [15,23,30].

The “classical” lexical relationships pertain to identity of meaning, inclu-
sion of meaning, part–whole relationships, and opposite meanings. Identity of
meaning is synonymy: Two or more words are synonyms (with respect to one
sense of each) if one may substitute for another in a text without changing the
meaning of the text. This test may be construed more or less strictly; words
may be synonyms in one context but not another; often, putative synonyms
will vary in connotation or linguistic style (as in the drunk and slim exam-
ples in Sect. 3.1 above), and this might or might not be considered significant.
More usually, “synonyms” are actually merely near-synonyms (see Sect. 4.1
below).

The primary inclusion relations are hyponymy and its inverse hypernymy
(also known as hyperonymy) [15, 16]. For example, noise is a hyponym of
sound because any noise is also a sound; conversely, sound is a hypernym of
noise. Sometimes names such as is-a and a-kind-of are used for hyponymy and
subsumption for hypernymy; because these names are also used for ontological
categories, we avoid using them here for lexical relationships. The inclusion
relationship between verbs is sometimes known as troponymy, emphasizing
the point that verb inclusion tends to be a matter of “manner”; to murmur
is to talk in a certain manner [26]. Inclusion relationships are transitive, and
thus form a semantic hierarchy, or multiple hierarchies, among word senses;
words without hyponyms are leaves and words without hypernyms are roots.
(The structures are more usually networks than trees, but we shall use the
word hierarchy to emphasize the inheritance aspect of the structures.)

The part–whole relationships meronymy and holonymy may be glossed
roughly as has-part and part-of, but we again avoid these ontologically biased
terms. The notion of part–whole is overloaded; for example, the relationship
between wheel and bicycle is not the same as that of professor and faculty or
tree and forest; the first relationship is that of functional component, the sec-
ond is group membership, and the third is element of a collection. For analysis
of part–whole relationships, see [15,36,53].



276 G. Hirst

Words that are opposites, generally speaking, share most elements of their
meaning, except for being positioned at the two extremes of one particular
dimension. Thus hot and cold are opposites – antonyms, in fact – but tele-
phone and Abelian group are not, even though they have no properties in
common (that is, they are “opposite” in every feature or dimension). Cruse
[15] distinguishes several different lexical relations of oppositeness, including
antonymy of gradable adjectives, complementarity of mutually exclusive alter-
natives (alive–dead), and directional opposites (forwards–backwards).

These “classical” lexical relationships are the ones that are included in the
WordNet lexicon. Synonymy is represented, as mentioned earlier, by means
of synsets: if two words have identical senses, they are members of the same
synset. Synsets are then connected to one another by pointers representing
inclusion, part–whole, and opposite relations, thereby creating hierarchies.

There are many other kinds of lexical relationships in addition to the
“classical” ones. They include temporal relationships such as happens-before
(marry–divorce) [12] and relationships that may be broadly thought of as de-
riving from association or typicality [49]; for example, the relationship between
dog and bark is that the former is a frequent and typical agent of the latter.
Other examples of this kind of relationship include typical instrumentality
(nail–hammer), cause (leak–drip), and location (doctor–hospital).

Synonymy, inclusion, and associative relations are often the basis of the
structure of a thesaurus. While general-purpose thesauri, such as Roget’s [57],
leave the relationships implicit, others, especially those used in the classifi-
cation of technical documents, will make them explicit with labels such as
equivalent term, broader term, narrower term, and related term.

4 Lexicons are not (Really) Ontologies

The obvious parallel between the hypernymy relation in a lexicon and the
subsumption relation in an ontology suggests that lexicons are very similar
to ontologies. It even suggests that perhaps a lexicon, together with the lex-
ical relations defined on it, is an ontology (or is a kind of ontology in the
ontology of ontologies). In this view, we identify word senses with ontological
categories and lexical relations with ontological relations. The motivation for
this identification is clear from the preceding discussion (Sect. 3.2).

Nonetheless, a lexicon, especially one that is not specific to a technical
domain (see Sect. 5.1 below), is not a very good ontology. An ontology, after
all, is a set of categories of objects or ideas in the world, along with certain
relationships among them; it is not a linguistic object. A lexicon, on the other
hand, depends, by definition, on a natural language and the word senses in it.
These give, at best, an ersatz ontology, as the following sections will show.
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4.1 Overlapping Word Senses and Near-Synonymy

It is usually assumed in an ontology that subcategories of a category are
disjoint (cf. [66]). For example, if the category domesticated-mammal subsumes
the categories dog and cat, among others, then dog ∩ cat is empty: nothing
can be both a dog and a cat. This is not always so for the hyponymy relation
in lexicons, however; rather, two words with a common hypernym will often
overlap in sense – that is, they will be near-synonyms.

Consider, for example, the English words error and mistake, and some
words that denote kinds of mistakes or errors: blunder, slip, lapse, faux pas,
bull, howler, and boner. How can we arrange these in a hierarchy? First we
need to know the precise meaning of each and what distinguishes one from
another. Fortunately, lexicographers take on such tasks, and the data for this
group of words is given in Webster’s New Dictionary of Synonyms [29]; an
excerpt appears in Fig. 1; it lists both denotative and connotative distinctions,
but here we need consider only the former. At first, we can see some structure:
faux pas is said to be a hyponym of mistake; bull, howler, and boner are
apparently true synonyms – they map to the same word sense, which is a
hyponym of blunder. However, careful consideration of the data shows that a
strict hierarchy is not possible. Neither error nor mistake is the more-general
term; rather, they overlap. Neither is a hypernym of the other, and both, really,
are hypernyms of the more-specific terms. Similarly, slip and lapse overlap,
differing only in small components of their meaning. And a faux pas, as a
mistake in etiquette, is not really a type of mistake or error distinct from the
others; a faux pas could also be a lapse, a blunder, or a howler.

Error implies a straying from a proper course and suggests guilt as may lie in
failure to take proper advantage of a guide . . .

Mistake implies misconception, misunderstanding, a wrong but not always blame-
worthy judgment, or inadvertence; it expresses less severe criticism than error.

Blunder is harsher than mistake or error; it commonly implies ignorance or stu-
pidity, sometimes blameworthiness.

Slip carries a stronger implication of inadvertence or accident than mistake, and
often, in addition, connotes triviality.

Lapse, though sometimes used interchangeably with slip, stresses forgetfulness,
weakness, or inattention more than accident; thus, one says a lapse of mem-
ory or a slip of the pen, but not vice versa.

Faux pas is most frequently applied to a mistake in etiquette.
Bull, howler, and boner are rather informal terms applicable to blunders that

typically have an amusing aspect.

Fig. 1. An entry (abridged) from Webster’s New Dictionary of Synonyms [29]
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This example is in no way unusual. On the contrary, this kind of cluster of
near-synonyms is very common, as can be seen in Webster’s New Dictionary of
Synonyms and similar dictionaries in English and other languages. Moreover,
the differences between the members of the near-synonym clusters for the
same broad concepts are different in different languages. The members of the
clusters of near-synonyms relating to errors and mistakes in English, French,
German, and Japanese, for example, do not line up neatly with one another or
translate directly [20]; one cannot use these word senses to build an ontology
of errors.

These observations have led to the proposal [19, 20] that a fine-grained
hierarchy is inappropriate as a model for the relationship between the senses
of near-synonyms in a lexicon for any practical use in tasks such as machine
translation and other applications involving fine-grained use of word senses.
Rather, what is required is a very coarse-grained conceptual hierarchy that
represents word meaning at only a very coarse-grained level, so that whole
clusters of near-synonyms are mapped to a single node: their core meaning.
Members of a cluster are then distinguished from one another by explicit
differentiation of any of the peripheral concepts that are involved in the fine-
grained aspects of their denotation (and connotation). In the example above,
blunder might be distinguished on a dimension of severity, while faux pas would
be distinguished by the domain in which the mistake is made.

4.2 Gaps in the Lexicon

A lexicon, by definition, will omit any reference to ontological categories that
are not lexicalized in the language – categories that would require a (possibly
long) multi-word description in order to be referred to in the language. That
is, the words in a lexicon, even if they may be taken to represent categories, are
merely a subset of the categories that would be present in an ontology covering
the same domain. In fact, every language exhibits lexical gaps relative to other
languages; that is, it simply lacks any word corresponding to a category that
is lexicalized in some other language or languages. For example, Dutch has
no words corresponding to the English words container or coy; Spanish has
no word corresponding to the English verb to stab “to injure by puncturing with

a sharp weapon”; English has no single word for the German Gemütlichkeit
“combination of cosiness, cheerfulness, and social pleasantness” or for the French
bavure “embarrassing bureaucratic error”. On the face of it, this seems to argue
for deriving a language-independent ontology from the union of the lexicons
of many languages (as attempted by Emele et al. [21]); but this is not quite
feasible.

Quite apart from lexical gaps in one language relative to another, there are
many categories that are not lexicalized in any language. After all, it is clear
that the number of categories in the world far exceeds the number of word
senses in a language, and while different languages present different inventories
of senses, as we have just argued, it nonetheless remains true that, by and
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large, all will cover more or less the same “conceptual territory”, namely
the concepts most salient or important to daily life, and these will be much
the same across different languages, especially different languages of similar
cultures. As the world changes, new concepts will arise and may be lexicalized,
either as a new sense for an existing word (such as browser “software tool for

viewing the World Wide Web”), as a compositional fixed phrase (road rage), or as
a completely new word or phrase (demutualization “conversion of a mutual life

insurance company to a company with shareholders”, proteomics, DVD). That large
areas remain unlexicalized is clear from the popularity of games and pastimes
such as Sniglets (“words that do not appear in the dictionary but should”)
[32] and Wanted Words [24], which derive part of their humour from the
identification of established concepts that had not previously been articulated
and yet are immediately recognized as such when they are pointed out.

But even where natural languages “cover the same territory”, each differ-
ent language will often present a different and mutually incompatible set of
word senses, as each language lexicalizes somewhat different categorizations or
perspectives of the world. It is rare for words that are translation equivalents
to be completely identical in sense; more usually, they are merely cross-lingual
near-synonyms (see Sect. 4.1 above).

An area of special ontological interest in which the vocabularies of natural
languages tend to be particularly sparse is the upper ontology (see chapter
“Foundational Choices in DOLCE”). Obviously, all natural languages need
to be able to talk about the upper levels of the ontology. Hence, one might
have thought that at this level we would find natural languages to be in
essential agreement about how the world is categorized, simply because the
distinctions seem to be so fundamental and so basic to our biologically based,
and therefore presumably universal, cognitive processes and perception of the
world. But natural languages instead prefer to concentrate the richest and
most commonly used parts of their vocabulary in roughly the middle of the
hierarchy, an area that has come to be known as the basic-level categories;
categories in this area maximize both informativeness and distinctiveness [50].
A standard example: in the context Be careful not to trip over the X, in most
situations one is more likely to choose the word dog for X than entity, living
thing, animal, mammal, or Beddlington terrier, even though the alternatives
are ontologically equally correct. Certainly, all languages have words similar
to the English thing, substance, and process; but these words tend to be vague
terms and, even here, vary conceptually from one language to another. That
this is so is clear from the difficulty of devising a clear, agreed-on top-level
ontology, a project that has exercised many people for many years. That is, we
have found that we cannot build a satisfactory top-level ontology merely by
looking at the relevant vocabulary of one or even several natural languages;
see, for example, the extensive criticisms by Gangemi et al. [27] of the top
level of WordNet as an ontology. From this, we can conclude that the upper
levels of the lexical hierarchy are a poor ontology.
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4.3 Linguistic Categorizations That are not Ontological

And yet, even though natural languages omit many distinctions that we would
plausibly want in an ontology, they also make semantic distinctions – that
is, distinctions that are seemingly based on the real-world properties of
objects – that we probably would not want to include in an ontology. An
example of this is semantic categorizations that are required for “correct”
word choice within the language and yet are seemingly arbitrary or unmoti-
vated from a strictly ontological point of view. For example, Chinese requires
that a noun be preceded by an appropriate classifier in contexts involving
numbers and certain quantifiers:

In the Chinese expression liang tiao yu (‘two fish’), the classifier tiao, which
has a semantic indication for “long and rope-like” objects, must be present
between the number (two) and the head noun (fish). Since tiao also occurs
with other nouns in a quantifying structure, we can assume that these nouns
belong to one class by sharing similar semantic features denoted by the
classifier tiao: she ‘snake’, tui ‘leg’, kuzi ‘pair of pants’, he ‘river’, bandeng
‘bench’. (Zhang [70], pp. 43–44, glosses simplified)

There are about 900 such classifiers in Chinese; they are based on charac-
teristics such as shape, aggregation, and value [70]. But while characteristics
such as “long and rope-like” are semantic, it is unlikely that fish and pants, for
example, will be closely related in a practical ontology. Many other languages
of the world, including Japanese and Korean, also have a noun classification
system; Aikhenvald [1] describes in detail the kinds of semantic features that
various languages use in their classifications.

Often, such linguistic categorizations are not even a reliable reflection
of the world. For example, many languages distinguish in their syntax be-
tween objects that are discrete and those that are not: countable and mass
nouns. This is also an important distinction for many ontologies; but one
should not look in the lexicon to find the ontological data, for in practice,
the actual linguistic categorization is rather arbitrary and not a very accu-
rate or consistent reflection of discreteness and non-discreteness in the world.
For example, in English, spaghetti is a mass noun, but noodle is countable;
the English word furniture is a mass noun, but the French meuble and (in
some uses) the German Möbel are countable. Similarly, in Chinese, the clas-
sifier tiao mentioned above is not a reliable indicator of a long and rope-
like shape: because it applies to pants it also applies, by extension, to any
piece of clothing one puts one’s legs through, such as youyongku “swimming

trunks” [70].
A particularly important area in which languages make semantic distinc-

tions that are nonetheless ontologically arbitrary is in the behaviour of verbs
in their diathesis alternations – that is, alternations in the optionality and
syntactic realization of the verb’s arguments, sometimes with accompanying
changes in meaning [41]. Consider, for example, the English verb to spray:
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(1) Nadia sprayed water on the plants.
(2) Nadia sprayed the plants with water.
(3) Water sprayed on the plants.
(4) ∗The plants sprayed with water.

(The “∗” on (4) denotes syntactic ill-formedness.) These examples (from [41])
show that spray permits the locative alternation (examples 1 and 2), with
either the medium or the target of the spraying (water or the plants) being
realized as the syntactic object of the verb, and the second case (example 2)
carrying the additional implication that the entire surface of the target was
affected; moreover, the agent of spraying (Nadia) is optional (the causative
alternation) in the first case (example 3) but not the second (example 4).

In view of the many different possible syntactic arrangements of the argu-
ments of a verb, and the many different possible combinations of requirement,
prohibition, and optionality for each argument in each position, a large num-
ber of different kinds of alternations are possible. However, if we classify verbs
by the syntactic alternations that they may and may not undergo, as Levin
[41] has for many verbs of English, we see a semantic coherence to the classes.
For example, many verbs that denote the indirect application of a liquid to
a surface behave in the same manner as spray, including shower, splash, and
sprinkle. Nonetheless, the semantic regularities in alternation behaviour of-
ten seem ontologically unmotivated, and even arbitrary. For example, verbs
of destruction that include in their meaning the resulting physical state of
the affected entity (smash, crush, shatter) fall into a completely different be-
haviour class from verbs that just report the fact of the destruction (destroy,
demolish, wreck) (Levin [41], p. 239).

Even what is perhaps the most basic and seemingly ontological distinction
made by languages, the distinction between nouns, verbs, and other syntactic
categories, is not as ontologically well-founded as it might seem. From the
viewpoint of object-dominant languages [62] such as English (and the majority
of other languages), we are used to the idea that nouns denote physical and
abstract objects and events (elephant, Abelian group, running, lunch) and
verbs denote actions, processes, and states (run, disembark, glow). But even
within European languages, we find that occasionally what is construed as an
action or state in one language is not in another; a commonly cited example
is the English verb like translating to an adverb, a quality of an action, in
German: Nadia likes to sing: Nadia singt gern. But there are action-dominant
languages in which even physical objects are referred to with verbs:

For example, in a situation in which English might say There’s a rope ly-
ing on the ground, Atsugewi [a language of Northern California] might use
the single polysynthetic verb form ẃoswalak·a . . . [This can] be glossed as
‘a-flexible-linear-object-is-located on-the-ground because-of-gravity-acting-
on-it’. But to suggest its nounless flavor, the Atsugewi form can perhaps
be fancifully rendered in English as: “it gravitically-linearizes-aground”. In
this example, then, Atsugewi refers to two physical entities, a ropelike object
and the ground underfoot, without any nouns. (Talmy [62], p. 46)



282 G. Hirst

4.4 Language, Cognition, and the World

All the discussion above on the distinction between lexicon and ontology is
really nothing more than a few examples of issues and problems that arise in
discussions of the relationship between language, cognition, and our view of
the world. This is, of course, a Big Question on which there is an enormous
literature, and we cannot possibly do more than just allude to it here in order
to put the preceding discussion into perspective. Issues include the degree of
mutual causal influence between one’s view of the world, one’s culture, one’s
thought, one’s language, and the structure of cognitive processes. The Sapir–
Whorf hypothesis or principle of linguistic relativity, in its strongest form,
states that language determines thought:

We dissect nature along lines laid down by our native languages. The cat-
egories and types that we isolate from the world of phenomena we do not
find there because they stare every observer in the face; on the contrary,
the world is presented in a kaleidoscopic flux of impressions which has to
be organized by our minds – and this means largely by the linguistic sys-
tems in our minds. We cut nature up, organize it into concepts, and ascribe
significances as we do, largely because we are parties to an agreement to
organize it in this way – an agreement that holds throughout our speech
community and is codified in the patterns of our language. The agreement
is, of course, an implicit and unstated one, but its terms are absolutely oblig-
atory ; we cannot talk at all except by subscribing to the organization and
classification of data which the agreement decrees. (Whorf [69])

No two languages are ever sufficiently similar to be considered as represent-
ing the same social reality. The worlds in which different societies live are
distinct worlds, not merely the same world with different labels attached.
(Sapir [59])

These quotations imply a pessimistic outlook for the enterprise of practical,
language-independent ontology (or even of translation between two languages,
which as a distinct position is often associated with Quine [55]); but conversely,
they imply a bright future for ontologies that are strongly based on a language,
although such ontologies would have to be limited to use within that language
community. But taken literally, linguistic relativity is certainly not tenable;
clearly, we can have thoughts for which we have no words. The position is more
usually advocated in a weaker form, in which language strongly influences
worldview but does not wholly determine it. Even this is not broadly accepted;
a recent critic, for example, is Pinker [52], who states bluntly, “There is no
scientific evidence that languages dramatically shape their speakers’ ways of
thinking” (p. 58). Nonetheless, we need to watch out for the un-dramatic
shaping.

From a practical standpoint in ontology creation, however, while an overly
language-dependent or lexicon-dependent ontology might be avoided for all
the reasons discussed above, there is still much in the nature of natural lan-
guages that can help the creation of ontologies: it might be a good strategy to
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adopt or adapt the worldview of a language into one’s ontology, or to merge
the views of two different languages. For example, languages offer a rich anal-
ysis in their views of the structure of events and of space that can serve as
the basis for ontologies; see, for example, the work of Talmy [63], in analyz-
ing and cataloguing these different kinds of views. (For an overview of the
more-general matter of learning ontologies from natural language text, see
chapter “Ontology and the Lexicon”.) And, conversely, languages are crucial
for human comprehension of ontologies:

In fact, an ontology without natural language labels attached to classes
or properties is almost useless, because without this kind of grounding it is
very difficult, if not impossible, for humans to map an ontology to their own
conceptualization, i.e. the ontology lacks human-interpretability. (Völker
et al. [65])

5 Lexically Based Ontologies and Ontologically
Based Lexicons

Despite all the discussion in the previous section, it is possible that a lexicon
with a semantic hierarchy might serve as the basis for a useful ontology, and an
ontology may serve as a grounding for a lexicon. This may be so in particular
in technical domains, in which vocabulary and ontology are more closely tied
than in more-general domains. But it may also be the case for more-general
vocabularies when language dependence and relative ontological simplicity
are not problematic or are even desirable – for example if the ontology is
to be used primarily in general-purpose, domain-independent text-processing
applications in the language in question and hence inferences from the se-
mantic properties of words have special prominence over domain-dependent
or application-dependent inferences. In particular, Dahlgren [18] has argued
for the need to base an ontology for intelligent text processing on the linguistic
distinctions and the word senses of the language in question.

5.1 Technical Domains

In highly technical domains, it is usual for the correspondence between the
vocabulary and the ontology of the domain to be closer than in the case of
everyday words and concepts. This is because it is in the nature of technical
or scientific work to try to identify and organize the concepts of the domain
clearly and precisely and to name them unambiguously (and preferably with
minimal synonymy). In some fields of study, there is a recognized authority
that maintains and publishes a categorization and its associated nomencla-
ture. For example, in psychiatry, the Diagnostic and Statistical Manual of
the American Psychiatric Association [3] has this role. In botanical system-
atics, so vital is unambiguous communication and so enormous is the pool
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of researchers that a complex system of rules [45] guides the naming of gen-
era, species, and other taxa and the revision of names in the light of new
knowledge.

Obviously, the construction of explicit, definitive ontologies, or even ex-
plicit, definitive vocabularies, does not occur in all technical domains. Nor
is there always general consensus in technical domains on the nature of the
concepts of the domain or uniformity in the use of its nomenclature. On
the contrary, technical terms may exhibit the same vagueness, polysemy, and
near-synonymy that we see exhibited in the general vocabulary. For exam-
ple, in the domain of ontologies in information systems, the terms ontology,
concept, and category are all quite imprecise, as may be seen throughout this
volume; nonetheless, they are technical terms: the latter two are used in a
more-precise way than the same words are in everyday speech.

However, in technical domains where explicit vocabularies exist (including
glossaries, lexicons, and dictionaries of technical terms, and so on, whether
backed by an authority or not), an ontology exists at least implicitly, as we
will see in Sect. 5.2 below. And where an explicit ontology exists, an explicit
vocabulary certainly does; indeed, it is often said that the construction of any
domain-specific ontology implies the parallel construction of a vocabulary for
it; e.g. Gruber ([31], p. 909): “Pragmatically, a common ontology defines the
vocabulary with which queries and assertions are exchanged among agents”.

An example of a technical ontology with a parallel vocabulary is the Unified
Medical Language System (UMLS) (e.g. [42]; www.nlm.nih.gov/research/
umls; see also chapter “An Ontology for Software”). The concepts in the
Metathesaurus component of the UMLS, along with their additional interpre-
tation in the Semantic Net component, constitute an ontology. Each concept
is annotated with a set of terms (in English and other languages) that can be
used to denote it; this creates a parallel vocabulary. Additional linguistic in-
formation about many of the terms in the vocabulary is given in the separate
Specialist Lexicon component.

5.2 Developing a Lexically Based Ontology

It has long been observed that a dictionary implicitly contains an ontology,
or at least a semantic hierarchy, in the genus terms in its definitions. For
example, if automobile is defined as a self-propelled passenger vehicle that
usually has four wheels and an internal-combustion engine, then it is implied
that automobile is a hyponym of vehicle and even that automobile IS-A vehicle;
semantic or ontological part–whole relations are also implied.

Experiments on automatically extracting an ontology or semantic hierar-
chy from a machine-readable dictionary were first carried out in the late 1970s.
Amsler [4], for example, derived a “tangled hierarchy” from The Merriam-
Webster Pocket Dictionary [48]; Chodorow et al. [13] extracted hierarchies
from Webster’s Seventh New Collegiate Dictionary [68]. The task requires
parsing the definitions and disambiguating the terms used [11]; for example
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vehicle has many senses, including a play, role, or piece of music used to dis-
play the special talents of one performer or company, but this is not the sense
that is used in the definition of automobile. In the analysis of the definition,
it is also necessary to recognize the semantically significant patterns that are
used, and to not be misled by so-called “empty heads”: apparent genus terms
that in fact are not, such as member in the definition of hand as a member of a
ship’s crew [2,44]. Perhaps the largest project of this type was MindNet [56].

Often, the literature on these projects equivocates on whether the result-
ing hierarchies or networks should be thought of as purely linguistic objects
– after all, they are built from words and word senses – or whether they have
an ontological status outside language. If the source dictionary is that of a
technical domain, the claim for ontological status is stronger. The claim is also
strengthened if new, non-lexically derived nodes are added to the structure.
For example, in The Wordtree, a complex, strictly binary ontology of transi-
tive actions by Burger [10], the nodes of the tree were based on the vocabulary
of English (for example, to sweettalk is to flatter and coax), but names were man-
ually coined for nodes where English fell short (to goodbadman is to reverse and

spiritualize; to gorilla is to strongarm and deprive). A different approach was taken
in creating the lexically based ontology Omega [51], which was built not from
a dictionary but by merging the WordNet lexicon (see Sect. 1.2 above) with
Mikrokosmos [43], a less lexically oriented ontology. Following Cooper [14]
(in contrast to the remarks in Sect. 3.1 above), Omega distinguishes between
word senses and ontological concepts, taking the former to be much more fine-
grained than the latter. Hovy [34] describes a linguistically based methodology
for deriving a suitable inventory of concepts from an initial set of word senses
from a lexicon.

5.3 Finding Covert Categories

One way that a hierarchy derived from a machine-readable dictionary might
become more ontological is by the addition of categories that are unlexical-
ized in the language upon which it is based. Sometimes, these categories are
implicitly reified by the presence of other words in the vocabulary, and, fol-
lowing Cruse [15], they are therefore often referred to as covert categories. For
example, there is no single English word for things that can be worn on the
body (including clothes, jewellery, spectacles, shoes, and headwear), but the
category nonetheless exists “covertly” as the set of things that can substitute
for X in the sentence Nadia was wearing (an) X. It is thus reified through the
existence of the word wear as the category of things that can meaningfully
serve as the object of this verb.

Barrière and Popowich [6] showed that these covert categories (or some
of them, at least) can be identified and added as supplementary categories
to a lexically derived semantic hierarchy (such as those described in Sect. 5.2
above). Their method relies on the definitions in a children’s dictionary, in
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which the language of the definitions is simple and, unlike a regular dictio-
nary, often emphasizes the purpose or use of the definiendum over its genus
and differentia; for example, a boat carries people and things on the water. The
central idea of Barrière and Popowich’s method is to find frequently recurring
patterns in the definitions that could signal the reification of a covert category.
The first step is to interpret the definitions into a conceptual-graph represen-
tation [60]. Then, a graph-matching algorithm looks in the conceptual-graph
representations for subgraph patterns whose frequency exceeds an experimen-
tally determined threshold. For example, one frequent subgraph is

[X]←(agent)←[carry]→(object)→(person),

which could be glossed as “things that carry people”. This pattern occurs in
the definitions of many words, including boat, train, camel, and donkey. It
thus represents a covert category that can be named and added to a semantic
hierarchy as a new hypernym (or subsumer, now) of the nodes that were de-
rived from these words, in addition to any other hypernym that they already
had. The name for the covert category may be derived from the subgraph,
such as carry-object-person-agent for the example above. The hierarchy thus be-
comes more than just lexical relations, although less than a complete ontology;
nonetheless, the new nodes could be helpful in text processing. The accuracy
of the method is limited by the degree to which polysemy can be resolved;
for example, in the category of things that people play, it finds, among oth-
ers, music, baseball, and outside, representing different senses of play. Thus
the output of the method must be regarded only as suggestions that require
validation by a human.

Although Barrière and Popowich present their method as being for general-
purpose, domain-independent hierarchies and they rely on a particular and
very simple kind of dictionary, their method might also be useful in technical
domains to help ensure completeness of an ontology derived from a lexicon by
searching for unlexicalized concepts.

5.4 Ontologies for Lexicons

As mentioned in Sect. 3.1, most theories of what a word sense is relate it in
some way to the world. Thus, an ontology, as a non-linguistic object that more-
directly represents the world, may provide an interpretation or grounding
of word senses. A simple, albeit limited, way to do this is to map between
word senses and elements of or structures in the ontology. Of course, this
will work only to the extent that the ontology can capture the full essence
of the meanings. We noted in Sect. 5.1 above that the UMLS grounds its
Metathesaurus this way.

In machine translation and other multilingual applications, a mapping
like this could act as an interlingua, enabling the words in one language to
be interpreted in another. However, greater independence from any particular
language is required; at the very least, the ontology should not favour, say,
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Japanese over English if it is to be used in translation between those two lan-
guages. In the 12-language simple lexicon [40], a hand-crafted upper ontology
of semantic types serves as an anchor for lexical entries in all the languages
[39]. The semantic types are organized into four qualia roles, following the
tenets of generative lexicon theory (see Sect. 2.3 above).

Hovy and Nirenburg [35] have argued that complete language-independence
is not possible in an ontologically based interlingua for machine translation,
but some degree of language-neutrality with respect to the relevant languages
can nonetheless be achieved; and as the number of languages involved is
increased, language-independence can be asymptotically approached. Hovy
and Nirenburg present a procedure for merging a set of language-dependent
ontologies, one at a time, to create an ontology that is neutral with respect to
each. Near-synonyms across languages (Sect. 4.1 above) are just one challenge
for this approach. (See also Hovy [33] and chapter “Ontology Mapping”.)

6 Conclusion

In this chapter, we have discussed the relationship between lexicons, which are
linguistic objects, and ontologies, which are not. The relationship is muddied
by the difficult and vexed relationship between language, thought, and the
world: insofar as word-meanings are objects in the world, they may participate
in ontologies for non-linguistic purposes, but they are inherently limited by
their linguistic heritage; but non-linguistic ontologies may be equally limited
when adapted to applications such as text and language processing.
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actions between linguistic constraints: Procedural vs. declarative approaches.
Machine Translation, 7(1/2), 61–98. www.springerlink.com/content/100310/

22. Evans, Roger and Gazdar, Gerald (1996): DATR: A language for lex-
ical knowledge representation. Computational Linguistics, 22(2), 167–216.
www.aclweb.org/anthology/J96-2002

23. Evens, Martha Walton (ed.) (1988): Relational Models of the Lexicon. Cam-
bridge University Press.

24. Farrow, Jane (2000): Wanted Words: From Amalgamots to Undercarments.
Stoddart, Toronto.

25. Fellbaum, Christiane (1998): WordNet: An Electronic Lexical Database. MIT,
Cambridge, MA.

26. Fellbaum, Christiane (2002): On the semantics of troponymy. In: Green, R.,
Bean, C., Myaeng, S. (eds.), The Semantics of Relationships, pages 23–34.
Kluwer, Dordrecht.

27. Gangemi, Aldo, Guarino, Nicola, and Oltramari, Alessandro (2001): Conceptual
analysis of lexical taxonomies: The case of WordNet top-level. In: Welty, Chris
and Smith, Barry (eds.), Formal Ontology in Information Systems: Collected
Papers from the Second International Conference, pages 285–296. ACM, New
York.

28. Gazdar, Gerald and Daelemans, Walter (1992): Special issues on Inheritance.
Computational Linguistics, 18(2) and 18(3). acl.ldc.upenn.edu/J/J92/

29. Gove, Philip B. (ed.) (1973): Webster’s New Dictionary of Synonyms. G. & C.
Merriam Company, Springfield, MA.

30. Green, Rebecca, Bean, Carol A., and Myaeng, Sung Hyon (eds.) (2002): The
Semantics of Relationships: An Interdisciplinary Perspective. Kluwer Academic,
Dordrecht.

31. Gruber, Thomas R. (1993): Toward principles for the design of ontologies
used for knowledge sharing. International Journal of Human–Computer Studies,
43(5/6), 907–928.

32. Hall, Rich (1984): Sniglets (Snig’lit): Any Word That Doesn’t Appear in the
Dictionary, but Should. Collier Books.

33. Hovy, Eduard (1998): Combining and standardizing large-scale, practical ontolo-
gies for machine translation and other uses. Proceedings of the 1st International
Conference on Language Resources and Evaluation (LREC), Granada, Spain.
www.isi.edu/natural-language/people/hovy/publications.html

34. Hovy, Eduard (2005): Methodologies for the reliable construction of onto-
logical knowledge. In: Dau, Frithjof, Mugnier, Marie-Laure, and Stumme,
Gerd (eds.), Conceptual Structures: Common Semantics for Sharing Knowl-
edge, pages 91–106. Springer, Berlin. www.isi.edu/natural-language/people/
hovy/publications.html



290 G. Hirst

35. Hovy, Eduard and Nirenburg, Sergei (1992): Approximating an interlingua
in a principled way. Proceedings of the DARPA Speech and Natural Lan-
guage Workshop, Hawthorne, NY. www.isi.edu/natural-language/people/

hovy/publications.html
36. Iris, Madelyn Anne, Litowitz, Bonnie E., and Evens, Martha (1988): Problems

of the part–whole relation. In: Evens, M. (Ed.), Relational Models of the Lexi-
con: Representing Knowledge in Semantic Networks, pages 261–288. Cambridge
University Press.

37. Kilgarriff, Adam (1997): I don’t believe in word senses. Computers and the
Humanities, 31(2), 91–113. www.springerlink.com/content/100251

38. Lakoff, George (1987): Women, Fire, and Dangerous things: What Categories
Reveal About the Mind. The University of Chicago Press, Chicago.

39. Lenci, Alessandro (2001): Building an ontology for the lexicon: Semantic
types and word meaning. In: Jensen, Per Anker and Skadhauge, Peter (eds.),
Ontology-Based Interpretation of Noun Phrases: Proceedings of the First Inter-
national OntoQuery Workshop, University of Southern Denmark, pages 103–
120. www.ontoquery.dk/publications/

40. Lenci, Alessandro et al. (2000). simple: A general framework for the devel-
opment of multilingual lexicons. International Journal of Lexicography, 13(4),
249–263.

41. Levin, Beth (1993): English Verb Classes and Alternations: A preliminary in-
vestigation. The University of Chicago Press.

42. Lindberg, Donald A. B., Humphreys, Betsy L., and McCray, Alexa T. (1993):
The Unified Medical Language System. Methods of Information in Medicine,
32(4), 281–289.

43. Mahesh, Kavi, and Nirenburg, Sergei (1995): A situated ontology for practical
NLP. Proceedings of the Workshop on Basic Ontological Issues in Knowledge
Sharing, International Joint Conference on Artificial Intelligence (IJCAI-95),
Montreal.

44. Markowitz, Judith, Ahlswede, Thomas, and Evens, Martha (1986): Seman-
tically significant patterns in dictionary definitions. Proceedings of the 24th
Annual Meeting of the Association for Computational Linguistics, New York,
pages 112–119. www.aclweb.org/anthology/P86-1018

45. McNeill, J., Barrie, F. R., Burdet, H. M., Demoulin, V., Hawksworth, D. L.,
Marhold, K., Nicolson, D. H., Prado, J., Silva, P. C., Skog, J. E., Wiersema, J.,
and Turland, N. J. (eds.) (2006): International Code of Botanical Nomenclature
(Vienna Code). A.R.G. Gantner, Ruggell, Liechtenstein.
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Summary. The evaluation of ontologies is still an emerging field. A set of pre-
liminary ideas and frameworks have been suggested in the literature. This chapter
collects ontology quality criteria and lays out a common framework for aspects of
ontology evaluation. It will present in depth descriptions of these ontology aspects
and how to evaluate them. The techniques and ideas collected and presented here
will help to uncover errors in ontologies. This chapter concentrates on the automatic,
domain- and task-independent evaluation of an ontology.

1 Introduction

Today’s software systems are growing in size and complexity. They often con-
sist of a big number of software components, developed by heterogeneous
groups at different times, with varying skills and goals. These components are
still supposed to exchange and share data, and to cooperate for the advantage
of the users and their communities. Such software systems are increasingly
connected to each other, communicating on behalf of their users between dif-
ferent platforms and for changing purposes. The biggest such system is the
Semantic Web [6], an extension of the current web, that is used by aforemen-
tioned components in order to cooperate on a world-wide scale.

Ontologies are used in order to specify in a standard way the knowledge
that is exchanged and shared between the different systems, and within the
systems by the various components. Ontologies are engineering artifacts that
define the formal semantics of the terms used, and the relations between these
terms. They provide an “explicit specification of a conceptualization” [22].
Ontologies ensure that the meaning of the data, that is exchanged between and
within systems, is consistent and shared – both by computers (expressed by
formal models) and humans (as given by their conceptualization). Ontologies
make sure that all participants “speak a common language”.

Like any engineering artifact, an ontology needs to be thoroughly evalu-
ated. But the evaluation of ontologies poses a number of unique challenges:
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due to the declarative nature of ontologies developers cannot just compile
and run them like most other software artifacts. They are data that has to be
shared between different components and used for potentially different tasks.
Within the context of the Semantic Web, often ontologies may be used in ways
unexpected by the original creators of the ontology. Ontologies are expected
to enable the simple and serendipitous reuse and integration of heterogeneous
data sources. Such goals are hard to test in advance.

This chapter discusses the evaluation of web ontologies, i.e. ontologies spec-
ified in one of the standard web ontology languages (for now RDF(S) [31] and
the different flavours of OWL [48]) and published on the web, so that they
can be used and extended in ways not expected by the creators of the ontol-
ogy, outside of a central control mechanism. Some of the discussion in this
chapter will also apply to other ontology languages, and also for ontologies
within a better controlled environment than the web. Many problems dis-
cussed in earlier work on ontology evaluation do not apply in the context of
web ontologies: since the properties of the ontology language with regards to
monotonicity, expressivity, and other features are known, they need not to
be evaluated for each ontology anymore. This chapter will focus on domain-
and task-independent automatic evaluations (which does not mean that the
ontology has to be domain-independent or generic, but rather the evaluation
approach itself). We will discuss other types of evaluations briefly in Sect. 10.

Web ontologies as defined by the RDF or OWL standards do not include
only terminological knowledge – the terms used to describe data, and the
formal relations between these terms – but may also include the knowledge
bases themselves, i.e. terms describing individuals and ground facts asserting
the state of affairs between these individuals. In many cases such knowledge
bases are not regarded as being proper ontologies [38], but for the remainder
of this chapter we follow the OWL standard and regard ontologies as artifacts
encompassing both the terminological as well as the assertional knowledge.

The next section will discuss a number of ontology quality criteria as pro-
vided by literature. This will offer a frame of reference for the evaluation
methods described in the rest of the chapter. As we will see though, the qual-
ity criteria will not be trivially mappable to evaluation methods. Section 3
defines several aspects of an ontology, so that the following sections can work
on these aspects: vocabulary (Sect. 4), syntax (Sect. 5), structure (Sect. 6),
semantics (Sect. 7), representation (Sect. 8), and finally the context in which
the ontology is used (Sect. 9). The chapter closes with a discussion of further
approaches and an outlook at future work in this area.

2 Criteria

Ontology evaluation can target a number of several different criteria. In this
section we will list criteria from literature, namely five papers describing prin-
ciples for good ontologies [17,19,22,23,38]. A good ontology will not perform
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equally well with regards to all these criteria – some of the criteria are even
contradicting, like minimal ontological commitment and completeness. The
first task of the evaluator is therefore to choose the criteria relevant for the
given evaluation and then to choose the proper evaluation methods to assess
how well the ontology meets these criteria.

Gómez-Pérez [19] introduces the two terms ontology verification and val-
idation for describing ontology evaluation: ontology verification deals with
building the ontology correctly, that is, ensuring that its definitions implement
correctly the requirements. Ontology validation refers to whether the mean-
ing of the definitions really models the real world for which the ontology was
created. Or, to put it slightly different: ontology verification answers if the on-
tology was built in the right way, whereas ontology validation answers if the
right ontology was built. The majority of this chapter will deal with ontology
verification.

A complementing overview article dealing with ontology validation is pro-
vided by Obrst et al. [38]. It provides a concise overview of many evaluation
approaches that are not discussed here. These approaches include the align-
ment with upper level ontologies for evaluation purposes, human assessment,
natural language evaluation techniques, using reality as a benchmark, and on-
tology accreditation, certification, and maturity models. Ontology validation
is an important part of assessing the quality of an ontology, and usually the
only way to assure the correctness of the knowledge encoded in the ontology.
But most validation approaches require the close cooperation of domain and
ontology engineering experts. Validation often can not be performed automat-
ically. Since this chapter focuses on automatic evaluation approaches, we will
not repeat the approaches discussed by Obrst et al. [38].

Besides the two basic terms of verification and validation, the following
quality criteria are discussed in the literature. In order to arrive at a concise
description we take the liberty to collapse similar criteria.

• Accuracy [38]: Do the axioms comply to the expertise of one or more users
[17]? Does the ontology capture and represent correctly aspects of the real
world [38]?

• Adaptability [38]: Does the ontology anticipate its uses? Does it offer a
conceptual foundation for a range of anticipated tasks? Can the ontology
be extended and specialized monotonically, i.e. without the need to re-
move axioms? How does the ontology react to small changes in the axioms
[19]? Does the ontology comply to procedures for extension, integration,
and adaptation [17]? (also named expandability and sensitiveness by [19],
extendibility by [22], and flexibility by [17])

• Clarity [22]: Does the ontology communicate effectively the intended mean-
ing of the defined terms? Are the definitions objective and independent of
context? Does the ontology use definitions or partial descriptions? Are
the definitions documented? Is the ontology understandable? (also named
cognitive ergonomics, transparency [17], and intelligibility [38])
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• Completeness [19]/competency [23]: Is the domain of interest appropri-
ately covered? Are competency questions defined? Can the ontology an-
swer them? Does the ontology include all relevant concepts and their lexical
representations? (also called richness and granularity [38])

• Computational efficiency [17, 38]: How easy and successful can reasoners
process the ontology? How fast can the usual reasoning services (satisfia-
bility, instance classification, querying, etc.) be applied to the ontology?

• Conciseness [19]: Does the ontology include irrelevant axioms with re-
gards to the domain to be covered (i.e. a book ontology including axioms
about African lions)? Does it include redundant axioms? Does it impose
a minimal ontological commitment [22], i.e. does it specifying the weakest
theory possible and define only essential terms? How weak are the as-
sumptions regarding the ontology’s underlying philosophical theory about
reality [38]?

• Consistency [19]/coherence [22]: Do the axioms lead to contradictions (log-
ical consistency)? Are the formal and informal description of the ontol-
ogy consistent, i.e. does the documentation match the specification? Does
the translation from the knowledge level to the encoding show a mini-
mal encoding bias? Are any representation choices made purely for the
convenience of notation or implementation [22]? (covers also meta-level
integrity, i.e. following ordering principles [17] like OntoClean (see chapter
“An Overview of OntoClean”)

• Organizational fitness [17]/commercial accessibility : Is the ontology eas-
ily deployed within the organization? Do ontology-based tools within the
organization put constraints upon the ontology? Was the proper process
for creating the ontology used? Was it certified, if required? Does it meet
legal requirements? Is it easy to access? Does it align to other ontologies
already in use? Is it well shared among potential stakeholders?

These quality criteria define a good ontology. But just like the answer to
the question how good is the ontology? is usually not a simple one, the same
holds true for these quality criteria: they are all desiderata, goals to guide
the creation and evaluation of the ontology. None of them can be directly
measured.

Concrete evaluation methods are required in order to assess specific fea-
tures of an ontology. The relationship between criteria and methods is com-
plex: criteria provide justifications for the methods, whereas the result of a
method will provide an indicator for how well one or more criteria are met.
Most methods provide indicators for more than one criteria, therefore criteria
are a bad choice to structure evaluation methods. In the following sections we
describes evaluation methods. In order to give some structure for the descrip-
tion of the methods, we first introduce different aspects of an ontology. These
aspects provide guidance for the rest of the chapter.
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3 Aspects

An ontology is a complex, multi-layered information resource. In this sec-
tion we will identify different aspects that are amenable to the automatic,
domain- and task-independent evaluation of an ontology. Based on the eval-
uations of the different ontology aspects, evaluators can then integrate the
different evaluation results in order to achieve an aggregated, qualitative on-
tology evaluation. For each aspect we will show evaluation approaches within
the following sections.

Each aspect of an ontology that can be evaluated must represent a degree
of freedom (if there is no degree of freedom, there can be no evaluation since
it is the only choice). So each aspect describes some choices that have been
made during the design of the ontology.

• Vocabulary. The vocabulary of an ontology is the set of all names in that
ontology, be it URI references or literals, i.e. a value with a datatype or
a language identifier. This aspect deals with the different choices with
regards to the used URIs or literals.

• Syntax. Web ontologies can be described in a number of different surface
syntaxes like RDF/XML [4], N-Triples [20], OWL Abstract Syntax [41],
the Manchester Syntax [27], or many else. Often the syntactic description
within a certain syntax can differ widely. This aspect is about the different
serializations in the various syntaxes.

• Structure. A web ontology describes an RDF graph. The structure of an on-
tology is this graph. The structure can vary highly even describing seman-
tically the same ontology. These variances are evaluated when regarding
this aspect.

• Semantics. A consistent ontology describes a non-empty, usually infinite
set of possible models. The semantics of an ontology are the common
characteristics of all these models. This aspect is about the semantics
features of the ontology.

• Representation. This aspect captures the relation between the structure
and the semantics. Representational aspects are usually evaluated by com-
paring metrics calculated on the simple RDF graph with features of the
possible models as specified by the ontology.

• Context. This aspect is about the features of the ontology when compared
with other artifacts in its environment, which may be, e.g. an application
using the ontology, a data source that the ontology describes, a different
representation of the data within the ontology, or formalized requirements
towards the ontology in form of competency questions.

Note that in this chapter we assume that logical consistency or coherence
of the ontology is given, i.e. that any inconsistencies or incoherences have
been previously resolved using other methods. There is a wide field of work
discussing these logical properties, and also well-developed and active research
in debugging inconsistency and incoherence. Ontologies are inconsistent if
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they do not allow any model to fulfill the axioms of the ontology. Incoherent
ontologies have classes with an empty intension [24]. Regarding the evaluation
aspects, note that the vocabulary, syntax, and structure of the ontology can
be evaluated even when dealing with an inconsistent ontology. This also holds
true for some parts of the context. But semantic aspects – and thus also
representational and some contextual aspects – can not be evaluated if the
ontology does not have a model.

4 Vocabulary

The vocabulary of a web ontology is the set of all names used in it. Names
can be either URIs or literals. The set of all URIs of an ontology is called the
signature of the ontology (and is thus the subset of the vocabulary without
the literals). Literals are either typed (i.e. they consist of a tuple with a literal
value and a URI identifying the datatype of the value) or untyped. Untyped
literals may have a language tag (based on [42]).

Most of the nodes in the ontology graph are named with URIs [5]. Unlike
URLs, URIs are not limited to identifying things that have network locations,
or use other computer access mechanisms. They can be used to identify any-
thing, from a person over an abstract idea to a simple information resource on
the web. Most URIs in web ontologies are using a protocol that can be resolved
by the machine in order to fetch further information about the given URI, if
set up appropriately [46] – which is one of the major strengths of the Semantic
Web. Most commonly this is achieved by using the HTTP protocol [16].

A further issue concerns the naming of the URIs: even though the URI
standard [5] states that URIs should be treated opaque and no meaning should
be read into them besides their usage with their appropriate protocols, it
is obvious that a URI like http://aifb.de/person/Rudi Studer will invoke a
certain denotation in the human reader: the user will assume that this is the
URI of Rudi Studer, and it would be quite surprising if it were the URI of the
movie Casablanca.

URIs should also, if possible, reuse a common URI for a specific resource
instead of introducing a new one. In order to enable easier sharing, exchange,
and aggregation of information on the Semantic Web, the reuse of commonly
used URIs instead of inventing new ones will be helpful. At the time of writing
most domains do not have yet a lexicon of URIs, but it is expected that
projects like Swoogle [13], Sindice [39], or Semantic Wikipedia [33] will change
that soon.

In web ontologies, the type of a name may often be inferred, e.g. a triple
like ex:i rdf:type ex:A will let us infer that ex:i is an owl:Individual
and ex:A an owl:Class. This automatism leads to the problem that it is
impossible for a reasoner to discern if, e.g. ex:Adress is a new entity or
merely a typo of ex:Address. This can be checked by declaring names, so



Ontology Evaluation 299

that a tool can check if all used names are properly declared. This further
brings the additional benefit of a more efficient parsing of ontologies [36].

Labelling and commenting the URIs should follow a style guide: all URIs
should have labels, the languages that need to be supported are defined [42],
it should be clear if classes are labelled with a plural or singular noun, if prop-
erties are labelled with nouns or verbs (which can be tested using a resource
like WordNet [15]), and under what circumstances comments should be used.
It is obvious that this will be usually broken in an environment where ontolo-
gies are assembled on the fly from smaller ontologies or ontology parts [1].
It is rather improbable that a web wide style guide will ever become ubiqui-
tous. But then again, certain style guides may be created, and an ontology
could specify which style guide it follows by means of an adequate ontology
property.

Besides URIs, an ontology often contains data values like numbers, strings
or dates. They are given in the form of typed literals, i.e. a value and a URI
identifying the datatype of the value. Usually, one of a number of datatypes
given in the XML Schema Definition [14] standard are chosen. An ontology
should be checked if all used datatypes in the ontology can be dealt with by
the tools being used, and if all literals are syntactically correct.

5 Syntax

Web ontologies are serialized in a big (and growing) number of different surface
syntaxes. They may be separated into different groups: the ones that describe
a graph (which in return describes the ontology), and the ones that describe
the ontology directly (a graph can still be calculated from the ontology based
on the transformation described in [41]). Examples of the former group are
RDF/XML [3] or NTriples [20], examples of the latter are the Manchester
Syntax [27], OWL Abstract Syntax [41], or the OWL XML Presentation Syn-
tax [25].

All these different syntaxes should be transformable automatically from
and into each other. Note that many of the syntaxes allow for comments
which are not part of the semantics of the ontology. For example, an XML
comment like <!-- Created with Protege --> will usually be lost when
transforming syntaxes. Often such comments can be expressed as statements
with an explicit semantics, like an ontology property describing the used tool.
This way the content of the comment would be available to tools using the
ontology.

Common features that can be evaluated over most of the syntaxes in
a fairly uniform way are the proper indentation in the file and the order
of the triples (for graph-based syntaxes) or axioms (for ontology-based syn-
taxes). Triples forming complex axioms should be grouped together, as well as
groups of axioms forming an ontology pattern (see chapter “Ontology Design
Patterns”). Often axioms should precede facts, and facts about the same in-
dividual should be grouped together.



300 D. Vrandečić

A speciality of the RDF/XML syntax is that it can be used to let on-
tologies, particularly simple knowledge bases, resemble traditional XML doc-
uments and even be accompanied by a schema in DTD [8], XSD [14], or
RelaxNG [11]. A prime example of such a serialization is given by RSS 1.0
documents [49]. RSS 1.0 files are proper RDF files, but they still have a DTD
describing the document structure. This requires a specially written serializa-
tion module, but has the unique advantage that incoming files can be checked
not only with regards to their syntax but also with regards to their data-
completeness (see Sect. 7). A schema can describe required fields for an entity,
and thus files that are considered valid against the schema will guarantee to
have certain properties filled out. This is a very elegant way to check for data
completeness with an existing and well tested tool infrastructure.

Most serialization formats include mechanisms to abbreviate URI refer-
ences. They are often based on known XML based approaches, like entities [8]
or XML namespaces [7]. When defining abbreviations in an ontology, it should
be taken care to bind well known abbreviations with the appropriate URIs,
e.g. foaf should always be defined as http://xmlns.com/foaf/0.1/ [10].
A service like Swoogle [13] can be used to search for common usages of name-
spaces.

6 Structure

The most widely explored measures used on ontologies are structural mea-
sures. Graph measures are applied to the complete or partial RDF graph
describing the ontology. An example of an extensively investigated subgraph
would be the one consisting only of edges with the name rdfs:subClassOf
and the nodes connected by these edges (i.e. the explicit class hierarchy). This
subgraph can be checked to see if the explicit class hierarchy is a tree, a set of
trees, or if it has circularities, etc. If it is indeed a tree, the depth and breadth
of the tree can be measured. Current literature defines more than forty dif-
ferent metrics ([17, 18, 35, 50]) that measure the structure of the ontology.
Structural measures have a number of advantages:

• They can be calculated effectively from the ontology graph. Graph metrics
libraries are readily available and reusable for this task.

• They yield simple numbers. This makes tracking the evolution of the on-
tology easy, because even in case the meaning of the result itself is not well
understood, its change often is.

• Their results can be checked automatically against constraints, e.g. const-
raining the maximal number of outgoing edges of the type rdfs:subClassOf
from a single node to 5 can be checked on each commit of the ontology to
a version control system. Upon violation, an appropriate message can be
created.

• They can be simply visualized and reported.



Ontology Evaluation 301

Due to these advantages, quite some ontology toolkits provide ready ac-
cess to a number of these metrics (see chapter “Exploring the Economical
Aspects of Ontology Engineering”). Also a number of ontology repositories
provide annotations of ontologies with such metrics (see chapter “Ontology
Repositories”).

Structural metrics are often not well-defined. That is, based on their defi-
nitions in literature, it is hard to implement them unambiguously. Also there
is often confusion with regards to their meaning: for example, measure (M29)
in [17] is called the Class/relation ratio, suggesting that it returns the ra-
tio between classes and relations. But applying the definition yields the ratio
between the number of nodes representing classes and the number of nodes
representing relations, which will be a different number since a number of
nodes, and thus names, can all denote the same class or relation. We will
return to this difference in the following section.

Besides measures counting structural features of the ontology, the structure
can also be investigated with regards to certain patterns. The best known
example is to regard cycles within the taxonomic structure of the ontology as
an error [19]. But also more subtle patterns (or anti-patterns) and heuristics
can be used to discover such errors: Disjointness axioms between classes that
are very distant in the taxonomic structure [34], as well as certain usages of
the universal quantifier [54]. Chapter “Ontology Design Patterns” deals with
patterns in more detail.

Even though the complexity of the OWL DL language is known, this does
not give much information on particular ontologies. The expressivity of the
used language fragment merely defines an upper bound on the complexity
that applies to the reasoning tasks. A simple list of the constructs used within
the ontology allows to further refine the used DL fragment, and thus a possi-
bly lower complexity bound. For example, OWL DL is known to correspond
to the description logic SHOIN (D) [28], and thus reasoning tasks like sat-
isfiability checks are known to be NExpTime-Complete [47]. But most OWL
ontologies do not use the more expressive constructs [12,59]. Ontology editors
like SWOOP [30] show the language fragment that is actually being used in
a given ontology. Furthermore, even if more expressive constructs are used,
queries to the ontology can often be answered much more efficiently than the
theoretical upper bound suggests. Experiments indicate that a priori estimates
of resoning speed can be pursued based purely on structural features [58].

7 Semantics

Most current metrics do not take the semantics of the ontology being described
by the RDF graph into account, but consider only the structural properties
described in the previous section. But the structure of an ontology is often of
less interest than its actual semantics, especially when merging ontologies.
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In order to measure the properties of the models described by the struc-
ture, normalization can be used [56]. Normalization transforms the structure
of an ontology to make certain features of its semantics explicit within the
structure while retaining the semantics. Then the previously introduced struc-
tural measures can be used to measure these explicit semantic features.

Five normalization steps are defined:

1. Name all classes, so no anonymous complex class descriptions are left
2. Name anonymous individuals
3. Materialize the subsumption hierarchy and normalize names (so that

classes, properties and individuals that have more than one name use
only one of them, see the example in Fig. 1)

4. Instantiate the deepest possible class or property for each individual and
property instance (there may be more than one such class or property)

5. Normalize property instances (i.e. materialize symmetric and inverse prop-
erties and clean the transitivity graph)

Normalization offers the advantage that metrics are much easier defined
on the normalized ontology since some properties are guaranteed: the ontol-
ogy graph will have no cycles, the number of normal names and classes will
correspond, and problems of mapping (see chapter “Ontology Mapping”) and
redundancy are dealt with. For example, most metrics defining the depth of
an ontology (like metric (M3) in [17]) will yield ∞ when encountering a cycle
in the subsumption graph, whereas on the normalized ontology the very same
metrics will usually yield the result that they intuitively describe.

Another aspect of semantic metrics is their stability with regards to the
open world assumption of OWL DL ontologies [56]. The question is, how does
the metric fare when further axioms are added to the ontology? For example,
a taxonomy may have a certain depth, but new axioms could be added that
declare the equivalence of all leaves of the taxonomy with its root, thus leading
to a depth of 1. This often will not even raise an inconsistency, but is still an
indicator for a weak ontology.

When the original ontology was built, the engineer knew the minimal depth
of the ontology. But the stable metric measuring the minimal depth remained 1
because no axioms prevented the collapse of the taxonomy. By adding further
axioms to strengthen the taxonomy (for example complete partitions) the
minimal depth will raise, indicating a more robust ontology with regards to
future changes. Stable metrics are indicators for stable ontologies.

Stability with regards to the knowledge base can also be used by closing
certain classes. In some cases we know that a knowledge base offers complete
coverage: for example, we may publish a complete list of all members of a
certain work group, or a complete list of all countries. In this case we can
use enumerations to close off the class and declare its completeness. But note
that such a closure often has undesirable computational side effects in many
reasoners.
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Completeness is one of the ontology quality criteria. There are different
types of completeness. Here we will consider language completeness. Two
more types – data completeness and domain completeness will be discussed
in Sects. 9 and 10.

Language completeness is defined on a certain ontology with regards to a
specific ontology language (or subset of the language). Given a specific signa-
ture (i.e. set of names), language completeness measures the ratio between the
knowledge that can be expressed and the knowledge that is actually given.
For example, if we have an ontology with the signature Adam, Eve, Apple,
knows, eats, Person, we can ask which of the individuals are persons, and
which of the individuals know each other. Thus assuming a simple asser-
tional language like RDF, language completeness with regards to that lan-
guage (or short: assertional completeness) is achieved by knowing about all
possible ground facts that can be described by the ontology (i.e. for each fact
{C(i)|∀C ∈ O,∀i ∈ O} ∪ {R(i, j)|∀R ∈ O,∀i ∈ O,∀j ∈ O} we can say if it
is true or not). An expressive ontology language allows numerous more ques-
tions to be asked besides this ground facts: is the domain of knows a Person?
Is it its range? Is eats a subproperty of knows? In order to have a language
complete ontology with regards to the more expressive language, the ontology
must offer defined answers for all questions that can be asked with the given
language. Relational exploration is a method to explore language fragments
of higher expressivity, and to calculate the smallest set of questions that have
to be answered in order to achieve a complete ontology [44].

8 Representation

Representational aspects of the ontology deal with the relation between the se-
mantics and the structure, i.e. how are the semantics structurally represented?
This will often uncover mistakes and omissions within the relation between
the formal specification and the shared conceptualization – or at least the
models which are supposedly isomorphic to the conceptualizations.

In order to evaluate features of the representation, we compare the results
of the structural measures to the results of the semantic measures. Using the
normalization described in Sect. 7, we can even often use the same (or a very
similar) metric, applied before and after normalization, and compare the re-
spective results. Any deviations between the results of the two measurements
indicate elements of the ontology that require further investigation. For ex-
ample, consider the ontology given in Fig. 1. The number of classes before
normalization is 5, and after normalization 3. This difference shows that sev-
eral classes collapse into one, which may be an error or done by intention. In
case this is an error, it needs to be corrected. If this is done intentionally, the
rationale for this design decision should be documented in the ontology.

By contrasting the two ontology structures in Fig. 1 we see that the right
one is a more faithful representation of the semantics of the ontology. Both
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Fig. 1. An simple taxonomy before (left) and after (right) normalization. The arrow
denotes subsumption

structures have the same semantics, i.e. allow the same sets of models. The
right one is more concise, and for most cases more suitable than the left one.
Evaluation methods dealing with representational aspect can uncover such
differences and indicate problematic parts of an ontology [56].

9 Context

There are a number of approaches in literature describing the creation and
definition of artifacts accompanying the ontology. An evaluating tool can load
both the additional artifact and the ontology and then perform further eval-
uations. The additional artifact thus provides a formalized context.

One of the earliest approaches toward ontology evaluation was the intro-
duction of competency questions, i.e. questions that the ontology should be
able to answer [23]. In order to enable the automatic evaluation with regards
to competency questions, they need to be formalized in a query language
that can be used with an appropriate tool. The query language has to be
expressive enough to encode the competency questions appropriately. If it is
not, the relevance of the competency questions needs to be assessed: if the
ontology-based tool cannot ask the question, why should the correct answer
be important? Often the specific competency question can be dropped. The
additional artifact, in this case, would be the set of formalized competency
questions and the required correct answers.

Unit tests for ontologies [55] test if certain axioms can or can not be de-
rived from the ontology. This is especially useful in the case of evolving or
dynamic ontologies: we can test certain assumptions with regards to the on-
tology O. This is done by introducing two accompanying ontologies T+ and
T− so that O |= A+

i ∀A+
i ∈ T+ and O �|= A−

i ∀A−
i ∈ T−, i.e. every axiom in T+

can be inferred from the tested ontology O, and on the other hand no axiom
in T− can be inferred from O. The main purpose of unit tests for ontolo-
gies is similar to their purpose in software engineering: whenever an error is
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encountered with an axiom which is falsely inferred or respectively incorrectly
not inferred), the ontology maintainer may add this piece of knowledge to the
appropriate test ontology. Whenever the ontology is changed, the changed on-
tology can be automatically checked against the test ontology, containing the
formalized knowledge of previously encountered errors. There exists an exten-
sion for Protégé that allows for some of the unit tests described here [26].

Certain language constructs, or their combination, may increase reasoning
time considerably. In order to avoid this, ontologies are often kept simple. But
instead of abstaining from the use of more complex constructs, an ontology
could also be modularized with regards to its complexity: a highly axiomatized
ontology may come in different versions, one just defining the used vocabulary,
and maybe their explicitly stated taxonomic relations, and a second ontology
adding much more knowledge, like disjointness or domain and range declara-
tions. If the simple ontology is properly build, it can lead to an ontology which
often yields the same results to queries as the complete ontology (depending,
naturally, on the actual queries). The additional axioms of the highly axiom-
atized ontology can be used in order to check the consistency of the ontology
and the knowledge base with regards to the higher axiomatized version, but
for querying them the simple ontology may suffice.

This idea can be extended to include ontology extensions to the original
ontology that are formalized in more expressive languages than the current
web standards. For example, [37] introduces the notion of a CBox (constraint
box), that includes axioms that check the ontology with regards to additional
constraints. This way, for example, it is possible not only to declare domain
and ranges like in OWL, which means that they get inferred in case they are
not already given in a property instantiation, but also to check if property
instantiations follow domain and range constraints. Domain and ranges as
they are defined in RDFS and OWL are often a confusing element of ontology
engineering, especially for programmers who are used to declaring types for
parameters in order to check incoming parameters for type correctness.

Another approach is to describe what kind of information an ontology
is supposed to have, using autoepistemic constructs like the K- and A-
operators [21]. In this way we can, for example, define that every person in
our knowledge base needs to have a known name and an address, and put this
into a description. Note that this is different than just using the existential
construct: whereas an axiom as Human � ∃parent.Human tells us that every
human has to have a human parent, using the K operator we could require
that every humans’ parent has to be explicitly given in the knowledge base
or else an inconsistency should be raised inconsistency. Autoepistemic oper-
ators allow for a more semantic way to test the completeness of knowledge
bases than the syntactic XML based schema definitions described in Sect. 5.
This way the ontology can be evaluated with regards to its data complete-
ness. Data completeness is defined with regards to a tool that uses the data.
The tool needs to explicate which properties it expects when being confronted



306 D. Vrandečić

with an individual belonging to a certain class. The tool can define its data
completeness conditions within an autoepistemically extended ontology.

A further example for the use of more expressive ontology languages com-
plementing an existing ontology is the application of higher order consis-
tency rules. The best known example of such an approach is the OntoClean
methodology (see chapter “An Overview of OntoClean”). OntoClean defines
constraints with regards to the subsumptions of classes tagged with certain
metaproperties. One approach to using second order semantics on a given on-
tology is to reify the ontology in OWL DL [57], add additional constraints
using the reification language, and then check for consistency (as done using
the AEON system [53]).

10 Other Aspects

As stated in the introduction to this chapter, we focused on the domain-
and task-independent evaluation of the ontology. This ignored other relevant
evaluation methods that will be briefly discussed and referenced in this section.

An ontology is usually defined as a social artifact It specifies the shared
agreement of a group of stakeholders. Thus one quality criteria of the ontology
will be its sharedness, the agreement of the stakeholders with the conceptual-
ization specified in the ontology. This is relevant with regards to vocabulary (is
it complete with regards to the domain? are terms missing?) and semantics (do
they represent the relations between the terms correctly?). Aspects like syn-
tax, structure, and representation are usually of a lesser concern to the stake-
holders. Modern ontology engineering methodologies like DILIGENT [51] and
HCOME [32] take into account the fundamental role of discourse between dif-
ferent stakeholders (see also chapter “Ontology Engineering and Evolution in
a Distributed World Using DILIGENT” on distributed ontology engineering).

A related question is how to actually ground the terms in an ontology [29],
i.e. how will the terms in the ontology be understood by the users of the on-
tology (either directly, or via a certain tool). Since there is no way to encode
the meaning of a term (besides the very weak understanding of meaning as
the model-theoretic formal semantics) we need to make sure that a term like
foaf:Person is well grounded, usually through the documentation and shared
understanding. The meaning can be completely computer-based: since com-
puters are able to recognize and handle XML files, for example, the concept
of XML files can be completely grounded in the computer. But for concepts
relating to the world outside of the computer this remains a challenge.

The bigger a group that commits to an ontology (and the shared con-
ceptualization it purports), the harder it is to reach a consensus – but also
the bigger the potential benefit. Thus the status of the ontology with regards
to relevant standardization bodies in the given domain is a major criteria
when evaluating an ontology. Ontologies may be standardized or certified by
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a number of bodies like W3C, Oasis, IETF, and other organizations that may
standardize ontologies in their area of expertise – or just a group of peers that
declare an ontology a standard (cf. the history of RSS [49] or FOAF [10]). In
certain cases, adoption by relevant peers (especially business partners) may
be even more important than standardization. Tools like Swoogle [13] allow to
check how often an ontology is instantiated, and thus to measure the adoption
of the ontology on the web.

There are several approaches for task-dependent evaluations [9,43,45], and
ontology ranking and selection with regards to certain tasks [2, 40]. Sabou
et al. [45] create custom-tailored ontologies on the fly from the formulation of
a task [1] and evaluate them afterwards. Several problems are encountered,
ranging from broken links to incompatible axioms due to different contexts
and points of views. This strengthens the hypothesis that ontology evaluation
will become increasingly important in the context of networked ontologies.

Domain completeness is given when an ontology covers the complete do-
main of interest. This can be only measured automatically if the complete
domain is accessible automatically and can be compared to the ontology.
A way to assess the completeness of an ontology with respect to a certain
text corpus is to use ontology learning techniques to construct an ontology
from the corpus [52]. The learned ontology is then compared to the evaluated
ontology to see if the learned ontology covers knowledge not expressed in the
evaluated ontology. Ontology learning is discussed in chapter “Ontology and
the Lexicon”.

Often ontologies are tightly interwoven with an application, so that the
ontology cannot be simply exchanged. It may drive parts of the user interface,
the internal data management, and parts of it may be hard-coded into the
application. On the other hand, the user never accesses an ontology directly,
but always through some application. Often the application needs to be eval-
uated with the ontology, regarding the ontology as merely another component
of the used tool. Such a situation has the advantage that well-known software
evaluation methods can be applied, since the system can be regarded as an
integrated system where the fact that an ontology is used is of less importance.

11 Conclusions

In this chapter we discussed a number of evaluation methods for the different
aspects of an ontology. It should be clear that none of these methods, neither
alone nor in combination, can guarantee a good ontology. But they can at
least recognize problematic parts of an ontology, i.e. they can tell you when
an ontology is not good.

As we have seen, on the one hand, a number of quality criteria have been
suggested in literature. On the other hand, a number of evaluation meth-
ods have been designed, implemented, and experimentally verified. Their ac-
tual relation is only badly understood and superficially investigated, if at all.
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Whereas Gangemi et al. [17] discuss a number of quality criteria and how some
of the metrics may serve as indicators for certain criteria, either positive or
negative, they do not report on any experiments investigating the correlations
between the methods and the criteria. Recent experiments actually point to
some indeed counterintuitive relations, like a higher tangledness actually in-
creasing efficiency when using the ontology in a browsing task [60]. The lack
of such experimental evaluations matching methods and criteria will hinder
meaningful ontology evaluations. Figuring out the effect of certain features on
the quality of the ontology remains an open challenge for now.

It is obvious that domain- and task-independent evaluation techniques, as
discussed here, provide some common and minimum quality level, but can
only go a certain way. In order to properly evaluate an ontology, the evaluator
always needs to come up with methods appropriate for the domain and task
at hand, and decide on the relative importance of the evaluation criteria. But
the minimum quality level discussed here will at least provide the ontology
engineer with the confidence that they eliminated many errors and can publish
the ontology.

It seems that a proper ontology evaluation – being able to tell that an
ontology will be good for a certain task and in a certain environment – will
remain a task for a human level intelligence. But the more problems ontol-
ogy evaluation techniques can eliminate before-hand, the more will humans
be able to concentrate on the tasks they are best at: comparing the formal
specification in the computer with their human conceptualization, and thus
enabling computers and humans to speak a common language.
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for the quality diagnostic task. Technical report, Laboratory of Ap-
plied Ontologies – CNR, Rome, Italy, 2005. http://www.loa-cnr.it/Files/

OntoEval4OntoDev Final.pdf.
18. Aldo Gangemi, Carola Catenaccia, Massimiliano Ciaramita, and Jos Lehmann.

Qood grid: A metaontology-based framework for ontology evaluation and selec-
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25. Masahiro Hori, Jérôme Euzenat, and Peter F. Patel-Schneider. OWL Web On-
tology Language XML presentation syntax, 2003. W3C Note 11 June 2003.
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Summary. In this chapter we discuss trends of ontology engineering environments
and their characteristics through comparison between some tools. After a summa-
rization of the recent trends of them, the authors enumerate factors which charac-
terize those environments. Then we take up OntoEdit, Hozo, WebODE, SWOOP
and Protégé, and compare them according to the factors.

1 Introduction

In order to discuss ontology engineering environments, we first need to clarify
what we mean by ontology engineering. Ontology engineering is a successor
of knowledge engineering which has been considered as a key technology for
building knowledge-intensive systems. Although knowledge engineering has
contributed to eliciting expertise, organizing it into a computational struc-
ture, and building knowledge bases, AI researchers have noticed the necessity
of a more robust and theoretically sound engineering which enables knowledge
sharing/reuse and formulation of the problem solving process itself. Knowl-
edge engineering technology has thus developed into “ontology engineering”
where “ontology” is the key concept to investigate.

There is another story concerning the importance of ontology engineering.
It is the Semantic Web. The Semantic Web strongly requires semantic inter-
operability among metadata which are made using semantic tags defined in
different ontologies. The issue here is to build good ontologies to come up with
meaningful sets of tags which are made interoperable by ontology alignment.

Although the importance of ontology is well-understood, it is also known
that building a good ontology is a hard task. This is why there have been
developed some methodologies for ontology development [Chapter 6, 9] and
have been built a number of ontology representation and editing tools.

This chapter discusses factors of an ontology engineering environment
thorough comparison of some tools. The purpose is not to rank them but
to discuss characteristics of them intended to give a guideline for users to
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choose an appropriate tool for their purpose. While over a hundred tools are
developed to date, because of the space limitation, this chapter takes up On-
toEdit [22, 23], Hozo [12,13], WebODE [1], SWOOP [10,11] and Protégé [17]
which cover a wide range of ontology development process rather than being
single-purpose tools which are covered elsewhere. After discussing the recent
trends of ontology engineering tools, the authors compare some of them.

2 Trends of Ontology Engineering Environment

In the 1990s, several ontology engineering environments, such as Ontolingua
Server, WebOnto, Ontosaurus, have been developed as the advancement of on-
tology engineering. Reference [3] surveys features of six ontology development
tools at that time and found all tools did not have common ontology repre-
sentation language and they were implemented based on their own ontological
theories and representation models.

In the 2000s, OIL, DAML and DAML+OIL, which are the predecessors
of OWL [Chapter 4], were published, and ontology engineering tools for those
languages were developed. The representatives of them are OilEd, OntoEdit,
Protégé and so on. After RDF(S) [Chapter 3], and OWL were published, these
tools supported them as well as many other tools did. In Ontology Tools Sur-
vey1 on XML.com, 52 tools were listed at November 06, 2002, and 93 tools
were listed at September 14, 2004. At the present, the authors could find about
150 ontology development tools on the web2 (Table 1). This shows a rapid
increase of ontology engineering environments. According to the observation
of these tools, the authors summarize the trends of ontology engineering en-
vironments as follows:

Domain-specific environments: In several domains, such as the Semantic Web,
bioinformatics, medical science, agent technology, and software develop-
ment, ontology development tools specialized to each domain are devel-
oped. For instance, OBO-Edit and DAG-Edit are ontology editors for
Gene Ontology (GO) in bioinformatics, CliniClue is an ontology brows-
ing tool for SNOMED CT in the medical domain, and Zeus is an agent
development tool kit including an ontology editing tool.

Integrated environment for ontology development and use: Several tools are
developed as an integrated environment which supports all processes for
ontology construction to use them for development of ontology-based
applications. Such environments provide users with an ontology editor,
an ontology management tool, API for ontologies and so on. For instance,
IODT (IBM Integrated Ontology Development Toolkit) developed by IBM
includes an Eclipse-based ontology-engineering environment and OWL

1 http://www.xml.com/pub/a/2004/07/14/onto.html
2 Some of them are listed in the web sites such as ESW Wiki SemanticWebTools

(http://esw.w3.org/topic/SemanticWebTools), Ontology Tool Survey and so on.
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Table 1. List of ontology engineering environments (portion)

@@name of tools @@web site

Domain specific environments

OBO-Edit http://geneontology.sourceforge.net/
DAG-Edit http://amigo.geneontology.org/dev/
CliniClue http://www.cliniclue.com/
Zeus http://labs.bt.com/projects/agents/zeus/
ArgoUML http://argouml.tigris.org/
COE http://cmap.ihmc.us/coe/
CoGui http://www.lirmm.fr/cogui/
Cypher http://www.monrai.com/products/cypher

Integrated environment for ontology development and use

KAON2 http://kaon2.semanticweb.org/
IODT http://www.alphaworks.ibm.com/tech/semanticstk
WSMO Studio http://www.wsmostudio.org/

Supporting system for ontology development based on various techniques

OntoBilder(OntoX, etc) http://iew3.technion.ac.il/OntoBuilder/
OntoGen http://ontogen.ijs.si/
DODDLE-OWL http://doddle-owl.sourceforge.net/

commercial tools

OntoStudio http://www.ontoprise.de/
IODE http://www.ontologyworks.com/
TopBraid http://www.topbraidcomposer.com/

The detailed list is available at http://www.hozo.jp/OntoTools/

ontology storage with an inference system based on RDBMS. WSMO
Studio is Eclipse-based integrated environments to edit the Semantic
Web service for WSMO3 (Web Service Modeling Ontology). It can be
used with other tools for WSMO such as a reasoner, a validator, API for
web services and so on.

Supporting system for ontology development based on various techniques:
Many researchers propose methods to support ontology development
based on various techniques such as Natural Language Processing, Ma-
chine Learning [Chapter 11], and Search Engine. For instance, OntoBilder
supports ontology development by extracting terms form web pages, On-
toGen is a semi-automatic ontology construction system based on machine
learning and text mining algorithms, and DODDLE-OWL supports con-
struction of domain ontology by extracting valuable information from
existing lexical databases or ontologies such as Word-Net4. GINO (a
guided input natural language ontology editor) uses controlled natural
language to edit and query ontologies.

3 http://www.wsmo.org/
4 http://wordnet.princeton.edu/
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Increase of commercial tools: Recently, commercial tools for ontology devel-
opment are increasing. About 30 tools among 150 which the authors found
are commercial software. Most of them support large scale construction
for development of enterprise system. OntoStudio powered by Ontoprise
is a successor of OntoEdit which was developed in the early days of the
Semantic Web research. It supports RDF(S), OWL as ontology language
and F-Logic for the rule processing. And it can connect to databases, file-
systems, applications and web-serves thorough many connecters. Ontol-
ogy Works provides integrated environments for ontology construction and
uses such as modeling tools, databases server and information integration
software. Their central technology is the Integrated Ontology Develop-
ment Environment (IODETM). It supports construction and management
of high-fidelity domain ontologies. TopBraid ComposerTM is eclipse-based
platform for developing web ontologies and the Semantic Web applica-
tions. It supports the Semantic Web standards and other components for
applications such as Geography and Location Mapping, Ontology-Driven
Forms, UML-like Class Diagrams and so on.

3 Factors of an Ontology Engineering Environment

A comprehensive evaluation of ontology engineering tools is found in [3, 6] in
which the major focus is put on static characteristics of tools. The evaluation
in this chapter is done focusing on dynamic aspects of the tools. We consider
that a lifecycle of ontology engineering process consists of ontology devel-
opment phase, ontology use phase and ontology refinement and evaluation
phase. We concentrate on characteristics of the ontology engineering process
supported by the five environments. Let us enumerate factors by which an
environment should be characterized for each phase.

Ontology development phase The first key task of ontology engineering
is ontology construction. It includes constructions of class hierarchies, de-
scribing definitions of classes, defining relations between classes, and so
on. Ontology engineering environments should support the process with
the following characteristics.

Development methodology Though an ontology development requires a so-
phisticated development methodology, a methodology itself is not suffi-
cient. Developers need an integrated environment which helps them build
an ontology in every phase of the building process. In other words, a com-
puter system should navigate developers in the ontology building process
according to a methodology.

Collaborative development Building an ontology is often done with collab-
oration of multiple developers who need help in orchestration of the
collaborative activities.
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Compliance with an ontological theory (Theory-awareness) An ontology is
not just a set of concepts but at least a “well-organized” set of concepts.
An environment is expected to guide users to a well-organized ontology
which largely depends on the environment’s discipline of what an ontol-
ogy should be rather than an ad hoc classification of concepts or a frame
representation. This is why an environment needs to be compliant with a
sophisticated theory of ontology.

Ontology use phase Ontology use is the other key task of ontology engi-
neering. Users need also effective support in how to share ontology with
others, how to use/reuse an ontology and how to build an instance model
based on an ontology.

Compliance with WWW standard There are many languages standardized by
W3C: XML, RDF(S), DAML+OIL and OWL, etc. The environment is
required to be compliant with these.

Ontology/Model(instance) server Ontologies and instance models should be
available through internet.

Ontology evaluation and refinement phase To construct a well-
organized ontology, evaluation and refinement of the developed ontology
are repeated many times. An environment should support the process.

Evaluation methodology Many theories and methods for ontology evaluation
are discussed [Chapter 13]. Tools should support them.

Inference service An inference engine is used to check the consistency of on-
tologies/instances.

Refinement mechanism It is important to manage version of ontologies and
its change histories for maintenance of the consistency of ontologies. De-
bugging mechanisms and suggestion for modification are also useful for
refinement of ontologies.

Software level issues
Usability GUI as well as functionality is essential to the usability of the

environment.
Architecture of the environment An environment should be designed in an ad-

vanced and sophisticated architecture to make it usable.
Extensibility It is good if users easily extend the environment.

4 OntoEdit

OntoEdit [22, 23], professional version, is an ontology engineering environ-
ment to support the development and maintenance of ontologies. Ontology
development process in OntoEdit is based on their own methodology, On-To-
Knowledge [Chapter 6] which is originally based on Common KADS method-
ology and consists of major three steps such as requirement specification,
refinement and evaluation processes. The requirement specification consists
of description of the domain and the goal of the ontology, design guidelines,
available knowledge sources, potential users and use cases, and applications
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Fig. 1. Architecture of OntoEdit

supported by the ontology. The output of this phase is refined into a formal de-
scription in the next phase. Refinement is done usually collaboratively. In the
evaluation phase, competency questions are used to evaluate if the ontology
built can answer these questions.

Figure 1 shows the architecture of OntoEdit consisting of three layers:
GUI, OntoEdit Core and Parser. It employs the plug-in architecture to make
it easily extensible and customizable by the users. It is compliant with XML
family standards in import and export the ontology. At the present, the tech-
nologies of OntoEdit are inherited to OntoStudio as a commercial tool. It has
new features such as connectors to many kinds of resources, integrated rule
management, mapping view between different ontologies and so on.

4.1 Ontology Development Phase

Requirement Specification Phase

Two tools, OntoKick and Mind2Onto, are prepared for supporting this phase
of ontology capture. OntoKick is designed for computer engineers who are fa-
miliar with software development process and tries to build relevant structures
for building informal ontology description by obtaining competency questions
proposed in [8] which the resulting ontology and ontology-based applications
have to answer. Examples of competency questions made by OntoKick include
“which research groups exist at the institute?”, “which teaching courses are
offered by the insti-tute?”, etc. Mind2Onto is a graphical tool for capturing
informal relations between concepts. It is easy to use because it has a good
visual interface and allows loose identification of relations between concepts.
However, it is necessary to convert the map into a more formal organization
to generate an ontology.
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4.2 Ontology Evaluation and Refinement Phase

Refinement Phase [23]

This phase is for developers to use the editor to refine the ontological struc-
ture and the definition of concepts and relations. Like most of other tools,
OntoEdit employs the client/server architecture where ontologies are man-
aged in a server and multiple clients access and modify it. A sophisticated
transaction control is introduced to enable concurrent development of an on-
tology in a collaborative manner. Because OntoEdit allows multiple users to
edit the same class in an ontology at the same time, it needs a powerful lock
mechanism of each class and devises Strict two Phase Locking protocol: S2PL
to support arbitrary nested transactions.

Evaluation Phase

The key process in this phase is use of competency questions obtained in the
first phase to see if the designed ontology satisfies the requirements. To do
this, OntoEdit provides users with a function to form a set of instances and
axioms used as a test set for evaluating the ontology against the competency
questions. It also provides users with debugging tools for ease of identify and
correct incorrect part of the ontology. It maintains the dependency between
competency questions and concepts derived from them to facilitate the debug-
ging process. This allows users to trace back to the origins of each concept.
Another unique feature of this phase is that collaborative evaluation is also
supported by introducing the name space so that the inference engine can
process each of test sets given by multiple users. Further, it enables local eval-
uation corresponding to respective test sets followed by global evaluation using
the combined test. Like WebODE, OntoEdit supports OntoClean [Chapter 9]
methodology to build a better is-a hierarchy.

Inference

OntoEdit employs Ontobroker [2] and F-Logic[Chapter 2] as its inference en-
gine. It is used to process axioms in the refinement and evaluation phases.
Especially, it plays an important role in the evaluation phase because it pro-
cesses competency questions to the ontology to prove that it satisfies them.
It exploits the strength of F-logic in that it can express arbitrary pow-
erful rules which quantify over the set of classes which Description logics
cannot.
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5 Hozo

Hozo5 is an ontology engineering environment based on fundamental onto-
logical theories [12,13]. It is composed of “Ontology Editor”, “Onto-Studio,”
“Ontology Server” and “Ontology Manager.” One of the most remarkable
features of Hozo is that it can deal with Role based on a sophisticated onto-
logical theory of Role [16].

When an ontology and its instance model seriously reflects the real world,
users have to be careful not to confuse the Role such as teacher, mother, fuel,
etc. with other basic concepts (natural type) such as human, water, oil, etc.
Let us take an example: <teacher is-a human>. Assume John is a teacher of a
school. Given the usual semantics of is-a, since John is an instance of teacher
then he is also an instance of human at the same time. When he quits being
a teacher, he cannot be an instance of teacher so that you need to delete the
instance-of link between John and teacher. However, you have to restore an
instance-of link between John and human, otherwise John dies. This problem
would be difficult for a model with no idea of roles to represent changes in the
roles played by John (e.g., teacher, husband, patient) according to contexts
or aspects.

In Hozo, three different classes are introduced to deal with the concept of
role appropriately.

Role-concept A concept representing a role dependent on a context (e.g.,
teacher role)

Basic concept A concept which does not need other concepts for being defined
(e.g., human)

Role holder An entity of a basic concept which is holding the role (e.g.,
teacher)

A basic concept is used as the class constraint which indicates potential
players who can play the role (role concepts). Then an instance that satisfies
the class constraint plays the role and becomes a role holder. Hozo supports
to define such a role concept as well as a basic concept.

5.1 Ontology Development Phase

Like other editors, Ontology Editor in Hozo provides users with a graphical
interface through which they can browse and modify ontologies by simple
mouse operations. How to deal with “role concept” and “relation” on the
basis of fundamental consideration is discussed in [12]. This interface consists
of the following four parts (Fig. 2):

1. Navigation pane provides several functionalities for browsing the ontology
such as displaying the ontology in a hierarchical structure according to

5 http://www.hozo.jp/
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Fig. 2. GUI of ontology editor

only is-a relation between concepts, showing thumbnail of the ontology
and searching for concepts.

2. Browsing pane displays the concept graphically, and the user can select
concepts which he/she wants to edit.

3. Definition pane allows users to define and modify the selected concept in
the browsing pane or in the is-a hierarchy browser.

4. Project Manager supports distributed development of ontologies.

Collaborative Development

Collaborative development of an ontology is supported in Hozo [21]. At the
primitive level, the ontology server stores ontologies under version manage-
ment and access control by lock/unlock mechanism. It allows users to sharing
ontologies and to avoid conflict of modification by different users. Further-
more, Hozo allows users to divide an ontology into several components and
manages the dependency between them to enable the concurrent develop-
ment of the whole ontology. In the concurrent development, one of key issues is
the maintenance of consistency among inter-dependent component ontologies.
Hozo provides users with a module to maintain consistencies of the dependen-
cies among ontologies. When a component ontology is updated, the system
checks the change by comparing the modified ontology and its old version.
Hozo shows users a list of changes with possible countermeasures for coping
with each of the changes. These countermeasures are devised through our in-
vestigation on conceptual dependencies of ontologies and the change type of
imported concepts.

5.2 Ontology Use Phase

Functionality and GUI of Hozo’s instance editor is the same as the one for on-
tology. The consistency of all the instances with the ontology is automatically



324 R. Mizoguchi and K. Kozaki

guaranteed, since a user is given valid classes and their slot value restrictions
by the editor when he/she creates an instance. Inference mechanism of Hozo
is not very sophisticated. Axioms are defined for each class but it works as a
semantic constraint checker like WebODE. Hozo has an experience in mod-
eling of a real-scale Oil-refinery plant with about 2000 instances including
even pipes and their topological configuration which is consistent with the
Oil-refinery plant ontology developed with domain experts [15]. The model as
well as the ontology are served by the ontology server and can answer ques-
tions on the topological structure of the plant, the name of each device, etc.
Any ontology can have multiple sets of instances which are independent of one
another. The ontology server stores ontologies and instance models and serves
them to clients through API. Ontology editor is also a client of the ontology
server. The internal representation of Hozo is XML-based frame language and
it generates RDF(S) and OWL code to export the ontology and instance.

6 WebODE

WebODE6 [1] is a scalable and integrated workbench for ontology engineer-
ing and is considered as a Web evolution of ODE(Ontology Development
Environment [4]). It supports building an ontology at the knowledge level,
and translates it into different ontology languages. WebODE is designed on
the basis of a general architecture shown in Fig. 3 and to cover most of the

Fig. 3. Arcdhitecture of WebODE [1]

6 http://webode.dia.fi.upm.es/WebODEWeb/index.html
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processes appearing in the ontology lifecycle. WebODE is based on a client-
server architecture which provides high extensibility and usability by allowing
the addition of new services and the use of existing services. Ontology is stored
in an SQL database to attain high performance in the case of a large ontol-
ogy. It has export and import services from and into XML, and its translation
services into and from various ontology specification languages such as OWL,
RDF(S), OIL, DAML+OIL, UML, Prolog, X-CARIN, Jess and F-Logic. Like
OntoEdit, WebODE’s ontology editor allows the collaborative edition of on-
tologies. One of the most characteristic features of WebODE is that it is based
on an ontology development methodology named METHONTOLOGY [4].

6.1 Ontology Development Phase

WebODE has ontology editing service, WAB: WebODE Axiom Builder
service, inference engine service, interoperability service and ontology
documentation service in this phase. The ontology editor provides users
with form based and graphical user interfaces, WAB provides an easy graph-
ical interface for defining axioms. It enables users to define an axiom by
using templates given by the tool with simple mouse operations. Axioms are
translated into Prolog. The inference engine is based on Prolog and OKBC
protocol to make it implementation independent. Interoperability services
provided by WebODE are of variety. It includes ontology access API, ontol-
ogy export/import in XML-family languages, translation of classes into Java
beans to enable Jess system to read them and OKBC compliance.

ODEClean [5]

Like OntoEdit, WebODE supports OntoClean methodology to build a more
convincing is-a hierarchy. Ontology for OntoClean is composed of top level
universal ontology developed by Guarino [Chapter 9], a set of meta-properties
and OntoClean axioms which are translated into Prolog to be interpreted by
WebODE inference engine. It is given to the ODEClean which works on the
basis of it.

Collaborative Development

The collaborative editing of an ontology is supported by a mechanism that
allows users to establish the type of access to the ontologies developed through
the notion of groups of users. Synchronization mechanism is also introduced
to enable several users to safely edit the same ontology. Ontologies are auto-
matically documented in different formats such as HTML tables with Methon-
tology’s intermediate representations, concept taxonomies and XML.
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6.2 Ontology Use Phase

To support the use process of ontology, WebODE has several functionalities.
Like Hozo, it allows users to have multiple sets of instances for an ontology
by introducing instance sets depending on different scenarios, and conceptual
views from the same conceptual model, which allows creating and storing dif-
ferent parts of the ontology, highlighting and/or customizing the visualization
of the ontology for each user. WebPicker is a set of wrappers to enable users
to bring classification of products in the e-Commerce world into WebODE
ontology. ODEMerge is a module for merging ontologies with the help of cor-
respondence information given by the user. Methontology and ODE have been
used for building many ontologies including chemical ontology [4].

WebODE is also used for developing some semantic web frameworks such
as ODE SWS [7] and ODESeW. The ODE SWS is a framework for designing
semantic web services at the knowledge level. It supports development of
web services based on problem solving method ontology. The ODE SeW is
a semantic web application framework to develop and manage web sites as
a knowledge portal. In these ways, many applications have been developed
using WebODE as workbench for ontology engineering.

7 SWOOP

SWOOP7 [10,11] is an ontology browser and editor designed wholly for OWL,
while many other tools (e.g., Hozo, WebODE and Protégé) support OWL as
an extended feature. The architecture is based on the Model-View-Controller
paradigm. SwoopModel component stores OWL ontologies loaded by a rea-
soner and other information related to them. They are visualized by renderers
in multiple views. Controller is based on the plug-in architecture. Although
the development of SWOOP is done by Mindswap project but has been ter-
minated on August in 2006, its source code is available at URL.

7.1 Ontology Development Phase

A key feature of its design rationale is to realize user interface like the stan-
dard web browser. It consists of an address bar, history buttons (back, next),
a navigation sidebar, bookmarks and so on (Fig. 4). In this GUI, URIs play
a central role for understanding and constructing OWL ontologies. The users
can load an OWL ontology by entering its URL in the address bar. If the
ontology is importing other ontologies by owl:import property, SWOOP also
loads the imported ontologies automatically. The loaded multiple ontologies
are listed on the top of the navigation sidebar and their class/property hierar-
chies are shown at the bottom. The contents of selected ontology/entity (class,

7 http://www.mindswap.org/2004/SWOOP/
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Fig. 4. Graphical User Interface of SWOOP

property and instance) are displayed on the center pane in the webpage-like
format. In the pane, relationships between entities are represented by hyper-
links. It enables users to navigate the OWL ontology just like another web
page. For linking entities in different ontologies, SWOOP provides a single
common interface. It is displayed by clicking “Add” hyperlink in the center
pane and shows the list of ontologies along with entities defined in them.
Users can edit the ontology by selecting the entity to link. Through the edit-
ing process, external ontologies are modified as a local version and maintained
separately. SWOOP also supports various presentation syntaxes for OWL such
as RDF/XML, OWL Abstract Syntax and Turtle. Users can browse and edit8

ontologies in these syntaxes.

Collaborative Development

For collaborative ontology development, SWOOP supports collaborative an-
notation and version control. The collaborative annotation is based on the
standard W3C Annotea protocols. Users can share annotations about change
of ontologies and discussions through a public Annotea server. The version
control supports undo/redo with logging of changes and save of checkpoints.
While the change logs can be used to track back the changes, the checkpoints
are used as a snapshot of ontology at particular time.

7.2 Ontology Evaluation and Refinement Phase

SWOOP contains two reasoners: RDFS-like and Pellet. The former is a
lightweight reasoner for RDFS, and the latter is a powerful reasoner for
OWL-DL. Pellet is based on the tableaux algorithms and can be used to
check inconsistencies of definition in ontologies. SWOOP provides functions

8 Inline editing in RDF/XML and Turtle is supported by SWOOP ver.2.3.
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for ontology debugging and repair using the description logic reasoner [10].
The former explains the result of reasoning to the user in a meaningful and
readable manner, and the latter gives a guideline to repair the inconsistencies
of ontologies.

8 Protégé

Protégé9 [17] whose architecture is shown in Fig. 5 is strong in the use phase
of ontology: Use for knowledge acquisition, merging and alignment of existing
ontologies, and plug-in new functional modules to augment its usability. It
has been used for many years for knowledge acquisition of domain knowledge
and for domain ontology building in recent years. Its main features include:

1. Extensible knowledge model to enable users to redefine the representa-
tional primitives

2. A customizable output file format to adapt any formal language
3. A customizable user interface
4. Powerful plug-in architecture to enable integration with other applications

Fig. 5. Architecture of Protégé [17]

9 http://protege.stanford.edu/
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These features make Protégé a meta-tool for domain model building, since
a user can easily adapt it to his/her own instance acquisition tool together
with the customized interface. It is highly extensible thanks to its very so-
phisticated plug-in architecture and a Java-based API for development of
knowledge based applications. Unlike the other three, Protégé assumes local
installation rather than use through internet using client/server architecture.
Its knowledge model is based on frame similar to other environments. Espe-
cially, the fact that Protégé generates its output in many ontology languages
and its powerful customizability make it easy for users to change it to an
editor of a specific language. For instance, the definition of a class of RDFS is
defined as a subclass of standard class of Protégé. This “meta-tuning” can be
easily done thanks to Protégé’s declarative definition of all the meta-classes
which play a role of a template of a class.

8.1 Ontology Development Phase

The system provides two main ways for ontology development such as Protégé-
Frames and Protégé-OWL. The former supports frame-based knowledge
model which is compatible to OKBC. And the latter is extensions of them
using the Protégé OWL plug-in [14] for supporting OWL. It also supports to
edit SWRL rules. It support owl:imports mechanism by ontology repository
manager which manages URLs of imported ontologies.

Protégé has a semi-automatic tool for ontology merging and alignment
named PROMPT [18]. It performs some tasks automatically and guides
the user in per-forming other tasks. It also detects possible inconsistencies
in the ontology, which result from the user’s actions, and suggests ways
to remedy them. For ontology evolution in collaborative environments [19],
Protégé provides two functionalities: Change-management which stores a list
of change with annotations and shows history of the change to the user, and
Client-Server mode which support synchronous ontology editing by multiple
users.

9 Comparison and Discussion

The five environments are compared according to the factors presented above.
Table 2 summarizes the comparison.

9.1 Ontology Development Phase

Development Methodology

Philosophy of supporting ontology development is partly based on viewing an
ontology as a software product. Common features of OntoEdit and WebODE
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Table 2. Comparison of the five environments

OntoEdit Hozo WebODE SWOOP Protégé

Ontology development phase

Methodological On-To- No METHON No No

support Knowledge TOLOGY

Collaboration Partly Yes Partly Yes Yes

support

Ontological Ontoclean Role theory Ontoclean Implicit Implicit

theory

Ontology use phase

Standards RDF(S), RDF(S), OWL RDF(S),OWL RDF(S), RDF(S),

compliance F-Logic (export only) F-Logic OWL OWL, SWRL

Ontology/ High High High Middle Middle

model server (Web server)

Ontology evaluation and refinement phase

Evaluation OntoClean No OntoClean Debugging No

methodology by reasoner

Inference OntoBroker Constraint Prolog, RDFS-like, FaCT, Jess,

service checking Jess Pellet F-Logic...

Refinement Debugging Change ODEClean Debugging PROMPT

support tool checking tool

Software level issue

Friendly GUI GUI based Graphically GUI based In line GUI based

editing editing editing editting editing

Architecture Client Client/ Client/ Standalone Standa-

/server server server lone

Extensibility Plug-in API API/Plug-in Plug-in API/Plug-in

include management of the well-known steps in software development pro-
cess, that is, requirement specification, conceptual design, implementation
and evaluation. OntoEdit is based on the On-To-Knowledge methodology,
and WebODE is based on the METHONTOLOGY. Others have no such a
methodology.

Collaboration

Collaboration occurs in two different ways: (1) Construction a single ontology
by different developers and (2) Construction several modularized ontologies
in parallel by different developers. In the case of (1), because multiple persons
might modify the same class at the same time, transaction control is one of
the main issues in supporting collaboration. OntoEdit, WebODE, SWOOP
and Protégé take this approach. While OntoEdit and WebODE only have
some mechanisms for access management to ontologies, SWOOP and Protégé
can manage histories of change with annotation for supporting collaborative
construction.
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On the other hand, Hozo mainly takes (2). Its main issue is to take care of
the dependencies between the modularized ontologies because each developer
constructs some modules under his responsibility. When building a large on-
tology, (2) is very useful because it allows users the concurrent development
of an ontology like usual software development. To make the latter approach
feasible, however, the system does need to provide developers with relevant
information of changes done in other ontologies developed by others which
might influence on the ontology they are developing. Hozo is designed to cope
with all the possible situations developers encounter by analyzing possible
patterns of influences propagated to each modularized ontology in a differ-
ent module according to the type of the change. Although both approaches
look different, they are complementary. The former can be incorporated in
the latter. In fact, Hozo supports the former as well so that users can share a
component ontology.

Theory-Awareness

Ontology building is not easy. This is partly because a good guideline is not
available which people badly need when articulating the target world and
organizing a taxonomic hierarchy of concepts. An ontology engineering en-
vironment has to be helpful also in this respect. WebODE and OntoEdit
support Guarino’s Ontoclean method. Guarino and his group have been in-
vestigating basic theories for ontology for several years and have come up
with a sophisticated methodology which identifies inappropriate organization
of is-a hierarchy of concepts. Developers who develop an ontology based on
their intuition tend to misuse of is-a relation and to use it in more situa-
tions than are valid, which Guarino called “is-a overloading.” Ontoclean is
based on the idea of meta-property which contributes to proper categoriza-
tion of concepts at the meta-level and hence to appropriate organization of
is-a hierarchy.

OntoEdit and WebODE way of ontology cleaning can be said that post-
processing way. On the contrary, Hozo tries to incorporate the fruits of onto-
logical theories during the development process. One of the major causes of
producing an inappropriate is-a hierarchy from Guarino’s theory is lack of the
concept of Role such as teacher, mother, food, etc. which has different char-
acteristics from so-called basic concepts like human, tree, fish, etc. Ontology
editor in Hozo incorporates a way of representing the concept of Role.

9.2 Ontology Use Phase

Standards Compliance

All the five have support standards ontology languages such as RDF(S) and
OWL. Hozo only can export its ontology and model in RDF(S) and OWL.
Protégé also supports Semantic Web Rule Language (SWRL).
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Ontology/Model(Instance) Server

Hozo and WebODE has an ontology/model server which allows agents to
access the ontologies and instance models through internet. OntoEdit and
Protégé have an ontology server. SWOOP does not have a specific ontology
server but can download ontologies in general web servers.

9.3 Ontology Evaluation and Refinement Phase

Evaluation Methodology

OntoEdit and WebODE support OntoClean methodology to build a better
is-a hierarchy. SWOOP provides functions for ontology debugging and repair
using the tableaux based reasoning. It explains the result of reasoning with
a guideline to repair the inconsistencies of ontologies. Hozo and Protégé have
no evaluation methodology.

Inference Service

All the five have inference mechanisms. Hozo supports only inference for con-
straint checking of own language.

Refinement Support

OntoEdit and WebODE have a debugging tool based on OntoClean. Hozo has
a function to Check changes and suggest countermeasures for modification by
comparison of ontologies. SWOOP provides a debugging tool based on reason-
ing and change management and a version control mechanism with logging
of changes. Protégé also supports change monument and a semi-automatic
ontology alignment tool named PROMPT.

9.4 Software Level Issue

Friendly GUI

All the five have sophisticated GUI such as visualization of class hierarchies
and editing tool for constraints (axioms) of classes. It makes users free from
coding using a complicated language. In Hozo, visualization of an ontology
is default, and users can browse and edit it graphically. SWOOP supports
in-line/GUI based editing functions and visualization of ontologies as just
like a web page. Others provides mainly GUI based editing functions with
some graphical visualization tool of ontologies. For instance, Protégé supports
several ontology visualization pulig-ins such as OWL-Viz and Jambalaya.
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Architecture and Extensibility

While WebODE and Hozo employ standardized API to the main ontology
base, OntoEdit and SWOOP supports a plug-in architecture. Protégé provides
both of API and plug-in. Both enable a module can easily added or deleted
to make the environment extensible. WebODE, OntoEdit and Hozo are web-
based, while Protégé is basically not. But Protégé has another mode to support
server-client architecture.

10 Other Environments

In this section, other environments are summarized. We discuss four tools
which have characteristic functionalities to aid user’s ontology development.

10.1 OntoGen

OntoGen10 is a system for semi-automatic ontology construction developed
under SEKT project. The system has functionalities for keywords extraction
form text data and suggestion using text mining and machine learning tech-
niques. It helps users construct overview of ontologies from text documents.
Some features of this tool are as follows:

Keywords extraction: In the system, two keyword extraction methods, the
concept’s centroid model and SVM linear model, are implemented. The
extracted keywords by both methods are shown with related information
about the number of related documents, average inner-cluster similarity
measure, and so on.

Concept suggestion: The system suggests sub-concepts of the selected concept
to the user based on two different approaches: an unsupervised approach
and a supervised one. In the unsupervised approach, OntoGen supports
four clustering methods: k-means, LSI, PH k-means, and a categorization
according to the labels in the input data. The user can select one of the
methods, and supervises the parameters for the method. Then the system
suggests sub-concepts using the selected method with the parameters.
The supervised approach is based on SVM active learning method. In
the approach, the user enters a query the active learning system then the
system asks if a particular document (instance) belongs to the selected
concept and the user answers yes or no. After repetition of this learning
process the system outputs most important keywords with information
about positively classified into the concept.

Document management: The system manages documents related to concepts.
When a new concept is added to ontology, it automatically assigns doc-
uments to it according to the similarity between documents. The system

10 http://ontogen.ijs.si/



334 R. Mizoguchi and K. Kozaki

also has a functionality to detect if documents related to a concept belongs
to its super concept. The user can know inconsistency between ontologies
through the result.

10.2 CampTools Ontology Editor

CampTools ontology editor (COE) [9] is a tool for collaborative ontology
development and reuse based on CampTools. CmapTools is software to con-
struct, navigate and navigate a Concept map which is a knowledge represen-
tation model to display knowledge as a two-dimensional network of labeled
nodes and links. COE supports editing, storing, and sharing Concept maps
and ontologies, and the users can search for concepts and properties in them.
The system also provides a cluster-based vicinity concepts view. In the view,
the system shows concepts which relevant to selected concept based on multi-
viewpoint clustering analysis (MVP-CA) software developed by Pragati, Inc..

10.3 OntoBilder

OntoBuilder [20] is a tool for extraction and matching of ontologies from web
sources. The system extracts HTML form elements of web pages and relation-
ships among them. A set of terms (vocabulary) associated with the extracted
elements are regarded as an ontology in the system. The main feature of Onto-
Builder is functionalities for ontology matching. It supports several matching
algorithm such as term matching, value matching, precedence matching and
so on. And the user can add another matching algorithm as plug-in.

10.4 KAON

KAON11: Karlsruhe Ontology and Semantic Web framework is a sophisticated
plug-in framework with API and provides services for ontology and metadata
management for E-Services. Its main focus is put on the enterprise application
in the semantic web age. At the present, its new version, called KAON2, is
available. It supports OWL-DL, SWRL and F-logic, and provides an API for
ontology, an inference engine for answering SPARQL queries, a DIG interface
and so on.

11 Concluding Remarks

A lot of ontology engineering environments have been developed. Although
some are powerful as a software tool, but many are passive in the sense that few
guidance or suggestion is made by the environment. Theory-awareness should
be enriched further to make the environment more sophisticated. Especially,
11 http://kaon.semanticweb.org/, http://kaon2.semanticweb.org/
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more effective guidelines for appropriate class and relationship identification
are needed. Collaboration support becomes more and more important as on-
tology building requirements increases. Ontology alignment is also crucial for
reusing the existing ontologies and for facilitating their interoperability. Com-
bination of the strong functions of each environment of the five would realize
a novel and better environment, which suggests that we are heading right
directions to go.
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Summary. A core requirement for the usage of ontologies within enterprizes is the
availability of proved and tested techniques which guarantee an efficient engineering
of high-quality ontologies, be that by reuse, manual building or automatic knowledge
acquisition. Besides feasible technological support this includes in equal measure
integrating ontology engineering within the more general framework of enterprize
information architectures, and taking into account the economics of ontology engi-
neering projects, in particular issues of cost effectiveness and profitability. This chap-
ter addresses these two aspects. We discuss the role of ontology engineering in the
context of enterprize architectures, arguing for the importance of cost-related mea-
sures as decision support in planning and controlling. Then we analyze approaches
for reliably assessing the costs of building ontologies, and the usage of cost-related
information to quantifiably support decisions arising during the life cycle of an on-
tology and to optimize the operation of associated processes. We account for the
similarities and differences between software and ontology engineering in order to
establish the appropriateness of applying methods with a long-standing tradition
in this adjacent engineering field to ontologies. Building upon the results of this
analysis we introduce ONTOCOM as the first cost model for ontologies and discuss
different methods to improve its accuracy for a wide range of ontology engineering
projects at public and corporate level.

1 Introduction

The dissemination of ontologies and ontology-based applications within en-
terprizes requires methods and tools which are able to deal with both the
technical and the economic challenges of ontology engineering . In order for
ontologies to be efficiently built and deployed at large scale one needs ma-
ture technologies supporting the entire ontology, as well as proved and tested
means to plan and control the overall engineering process as part of more gen-
eral IT-related processes within an enterprize. A wide range of ontology engi-
neering methodologies have emerged in the Semantic Web community. Apart
from minor differences in the level of detail adopted for the description of the
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process model they define ontology engineering as an iterative process, which
shows major similarities to models emerged in the neighbored research field
of software engineering. However existing methodologies do not consider the
economic factors commonly related to every real-world engineering project,
in particular the estimation of development and maintenance costs using pre-
defined cost models, and the impact of such cost information on the operation
of an engineering process.

With ONTOCOM we present the first existing approach in this newly
emerging field of ontology engineering [17]. Estimating costs for ontology en-
gineering is similar to estimating costs for software (or product) engineering
as it requires the consideration of economic aspects for generic products and
the processes they result of. Therefore, our approach largely benefits from
the experiences made in estimating costs for software engineering. Through
expert interviews we identified the most relevant cost drivers for a wide class
of ontology engineering projects. In a large user study we acquired relevant
data from existing ontology engineering projects and calibrated a paramet-
ric cost prediction equation with promising results. Further on, we analyzed
the appropriateness of applying alternative approaches such as estimation by
analogy and the Delphi method in the same context. Combing the three we
were able to identify dimensions for further research and development towards
a methodology for the creation of any kind of cost estimation model for on-
tologies, independently of the ontology life cycle, the cost estimation method,
or the organizational setting it might be employed.

Cost estimation methods have a long-standing tradition in more mature
engineering disciplines such as software engineering or industrial production
[7,9,11,18,20,23]. Although the importance of cost issues is well-acknowledged
in the community, as to the best knowledge of the authors, no cost estimation
model for ontology engineering has been published so far. Analogue models for
the development of knowledge-based systems (e.g., [8]) implicitly assume the
availability of the underlying conceptual structures. Reference [15] provides a
qualitative analysis of the costs and benefits of ontology usage in application
systems, but does not offer any model to estimate the efforts. Reference [5]
presents empirical results for quantifying ontology reuse. Reference [14] ad-
justs the cost drivers defined in a cost estimation model for Web applications
w.r.t. the usage of ontologies. The cost drivers, however, are not adapted to
the requirements of ontology engineering and no evaluation is provided. We
present an evaluated cost estimation model, introducing cost drivers with a
proved relevance for ontology engineering, which can be applied in early stages
of arbitrary ontology development processes and further customized to specific
needs of these processes to improve its prediction quality.

The outline of this chapter is as follows. We start by reviewing the econom-
ical aspects of ontology engineering in the context of corporate IT, motivating
the need for cost estimation models in this field in Sect. 2. Provided reliable
means to estimate costs during particular stages of the life cycle of an on-
tology, Sect. 3 introduces a series of use cases showing how cost information
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could be utilized to optimize the operation of an ontology-related project.
The remaining sections are dedicated to the design and evaluation of a cost
model for ontologies. We first analyze potential methods for cost prediction in
Sect. 4. Section 5 introduces the ONTOCOM model based on the previously
identified most promising methods. Details about its application in concrete
ontology engineering projects are provided in Sect. 6. Section 7 summarizes
the lessons learned from our research and the planned future work.

2 Economical Aspects of Information Technology

In this section we situate ontology engineering in the IT landscape of an
enterprize. We discuss how the development and deployment of ontologies
influences the enterprize information architecture and analyze the most im-
portant economical aspects related to this setting. As a result we argue for the
necessity of reliable instruments for cost prediction for ontology engineering,
which is an essential part of the data architecture of an enterprize.

2.1 Enterprize Information Architecture

An enterprize information architecture includes the products, procedures, or-
ganizational structures and IT systems of an enterprize. The design of enter-
prize architectures and their continuously adaptation to new environmental
requirements are realized with the help of so-called architecture development
frameworks such as the Zachmann framework [26] or the TOGAF framework.1

They provide a comprehensive approach including methodologies, tools, best
practices and standardized guidelines to develop a broad range of different IT
architectures in an enterprize.

According to the latter an enterprize information architecture is typi-
cally modeled iteratively at four levels: Business, Application, Data, and
Technology. The design process starts at the business level with the defini-
tion of a business strategy, followed by the specification of requirements which
lead to an overall architecture vision and to a business, product and process
architecture. The following steps are more technically oriented. IT specialists
design the application architecture, the actual technology architecture imple-
menting the application, and the information system/data architecture, which
refers to the data models, or in our case ontologies, used in the application
(cf. Fig. 1).

So far the ontology engineering research community has focused mainly on
methods and tools for building and managing ontologies without reflecting on
the implications arising from enterprize architecture development processes.2

1 http://www.opengroup.org/togaf/
2 An exception from this statement is the IDEF integrated definition method.

The IDEF approach defines a function modeling method (IDEF0), information
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Fig. 1. Enterprize information architecture according to the TOGAF framework.
Ontology engineering is related to (C) Information System Architectures

These implications are twofold: on the one hand the development of an en-
terprize information architecture results, among other things, in a series of
domain and functional requirements regarding the scope and the utilization
of the ontology; on the other hand this imposes non-functional boundaries
such as the maximal development effort to be invested in the realization of
the ontology. Consequently the requirements in the first category need to be
matched to the estimated costs related to the development and the mainte-
nance of the ontology.

2.2 Governance

A second essential aspect in the context of an enterprize IT infrastructure is
the operation and maintenance of the underlying IT systems, tasks typically
accomplished according to a governance framework evaluated and approved by
dedicated institutes such as COBIT.3 Governance frameworks cover the orga-
nization, control, steering and diffusion of corporate IT system development:

modeling method (IDEF1), data modeling method (IDEF1X), process description
capture method (IDEF3), object oriented design method (IDEF4), and finally the
ontology description capture method (IDEF5), which can be mapped to the afore-
mentioned architectural models foreseen by enterprize architecture development
frameworks. More information about IDEF is available at http://www.idef.com/

3 http://www.itgi.org/
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Organization Organizational aspects describe the different roles relevant for
the development of an IT system in an organization, their responsibilities
and decision procedures.

Steering Steering includes the definition of processes and activities in which
the participants act in order to achieve the overall goals. The handling
of intellectual property rights is specified as well in this step. This is an
important aspect for ontology engineering as a systematic use of ontologies
is an important pre-requisite for achieving application interoperability.

Control Control covers the definition of indicators in order to monitor the
processes defined in the previous step and be able to detect unintended
consequences of a system development or operation. From an ontology
engineering perspective this step includes metrics for the characterization
of ontologies and the associated development and maintenance processes.

Diffusion Finally, one of the most important aspects in large organizations
is the definition of appropriate roll-out mechanisms in order to guarantee
that the whole organization is able to follow the proposed processes.

In our work we focus on cost effectiveness, as one of the most important
indicators at controlling level in an governance framework. Obviously the costs
associated to the development of an IT system, of which ontology engineering
is an important part, should be lower than the benefit expected to be obtained
through its deployment. The estimation of the efforts related to engineering
an ontology is crucial for the planning of data architecture change projects.
Taking into account the operation of IT systems, it is worthwhile to pay
attention to the reusability of an ontology. A reusable ontology is likely to be
more user-friendly, thus reducing the training effort required in the roll-out
phase of the associated IT system, while typically involving additional effort
in the development. For monitoring purposes it is furthermore interesting to
compare the estimated and the actual effort values in order to judge the ability
of the organization to develop ontologies.

Provided these various usage scenarios, we argue for the necessity of
extending existing IT-specific cost estimation approaches towards ontologies.
In the next section we provide a second motivating scenario for this require-
ment, explaining how knowledge about the efforts implied by the development,
maintenance and deployment of an ontology influences its life cycle.

3 Usage of Cost Information During the Life Cycle
of an Ontology

The previous section was concerned with the relevance of cost information
in the IT organization from a management perspective. This section focuses
on the implementation side of ontologies, and thus on the relevance of cost
information from a development and maintenance perspective. Figure 2 gives
an overview how cost information is typically used within the life cycle of a
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Fig. 2. Cost indicators during the life cycle of a product cf. [6]

product. Most product development projects start with the elaboration of a
business case, of which the trade-off analysis is a major part. The trade-off
analysis compares the expected benefit with the expected development costs.
Turning back to IT systems, in order to make valid decisions based on the
trade-off analysis, an accurate estimate of the expected costs and benefits
of ontologies within the context of a particular application scenario is thus
required in such early phases of a project.

The costs may be estimated with methods proposed in this chapter. The
quantification of the benefits are covered by recent proposals to value IT
development projects4 which could be transferred to ontology development.

The effort related to ontology engineering is relevant in the initial project
planning phase. In this phase the project manager assigns available resources
to the planned tasks, taking into account the estimates of the effort associated
to them, which are crucial for an on-time delivery of the project outcomes.
These estimates are updated during the remaining project phases, as at the
beginning of the project information about available skills and other influ-
encing factors might not be available or reliable. Re-estimations during the
project allow for adjustments in the project plan and provide a basis for the
calculation of the total resources necessary to complete the project. In terms
of ontology engineering the availability of cost information helps to make de-
cisions related to the expected quality, size and granularity of the ontology to
be developed. This is particularly of interest for ontology engineering method-
ologies following an iterative or rapid prototyping approach.

Effort estimates can be used in equal measure for controlling and bench-
marking purposes. As such estimates are derived from previous project

4 http://www.isaca.org/Content/ContentGroups/Val IT1/Val IT.htm
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experiences, the comparison between planned and actual effort values is a
benchmark against previous projects, either external or internal. If the vari-
ation exceeds certain thresholds the project manager can take early coun-
termeasures or, at least, can thoroughly examine the project and detect the
underlying reasons for the variation.

Towards the end of the ontology life cycle effort estimations for ontology
maintenance can support repair versus replacement decisions. This of course
requires knowledge about the total cost of ownership of an ontology and about
the cost statements with respect to particular ontology management activities.

To summarize cost estimation models for ontologies are necessary in order
to align the discipline of ontology engineering with common IT practice within
enterprizes, as well as for shaping the life cycle of ontologies in an economically
based fashion. The remaining sections describe how such cost models can be
designed, evaluated and used in an organization.

4 Design of an Ontology Cost Estimation Model

In order to design a cost estimation model for ontologies we can resort to es-
tablished approaches in the field of software measurement, which describe the
steps required for this purpose and the way they can be effectively performed
within a company (cf. Fig. 3).

Extract In this step the engineering team identifies the cost factors and decides
upon the method(s) used to generate the estimates.

Fig. 3. General measurement process cf. [6]
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Evaluate The model previously defined is evaluated and adapted according to
a specific procedure (see below). For expert-based methods, the evaluation
includes evaluation sessions among the participants. In case of mathemati-
cal prediction equations the evaluation uses data collected for this purpose
from previous projects. In the latter case it is essential that the evaluation
relies on a sufficient amount of historical data from internal projects in
order to customize the model to the particularities of a given enterprize
or department.

Execute Once a feasible quality of the predictions has been achieved the model
is used at various stages of the life cycle of a product (in our case an
ontology) and in relation to the more general enterprize architecture de-
velopment process. In this context it is important that the employees
understand the necessity of this additional workload and that they are
trained to correctly use the model.

We now turn to a description of the first step. Information about the
validation of a particular model (in our case based on a parametric approach)
are available in [17].

4.1 Generic Methods

Estimating costs for engineering processes can be performed according to
several methods, often used in conjunction in order to avoid individual
limitations [1, 22].

Expert judgment/Delphi method The Delphi method is based on a structured
process for collecting and distilling knowledge from a group of human ex-
perts by means of a series of questionnaires interspersed with controlled
opinion feedback. The involvement of human experts using their past
project experiences is a major advantage of the approach. Its most ex-
tensive critique point is related to the difficulties to explicitly state the
decision criteria used by the contributing experts and to its inherent de-
pendency of the availability of experts to carry on the process.

Analogy method The main idea of this method is the extrapolation of available
data from similar projects to estimate the costs of the proposed project.
The method is suitable in situations where empirical data from previous
projects is available and trustworthy, and depends on the accuracy in
establishing real differences between completed and current projects.

Decomposition method This method involves generating a work breakdown
structure, i.e., breaking a product into smaller components or a project
into activities and tasks in order to produce a lower-level, more detailed
description of the product/project at hand, which in turn allows more
accurate cost estimates. The total costs are calculated as average values,
possibly adjusted on the basis of the complexity of the components/tasks
considered. The successful application of the method depends of the avail-
ability of necessary information related to the work breakdown structure.
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Parametric/algorithmic method This method involves the usage of mathe-
matical equations based on research and historical data from previous
projects. The method analyzes main cost drivers of a specific class of
projects and their dependencies and uses statistical techniques to refine
and customize the corresponding formulas. As in the case of the analogy
method the generation of a proved and tested cost model using the para-
metric method is directly related to the availability of reliable and relevant
data to be used in calibrating the initial core model.

Orthogonally to the aforementioned methods we mention two high-level
approaches to cost estimation (cf. Table 1).

Bottom-up estimation This approach involves identifying and estimating
costs of individual project components separately and subsequently sum-
ming up the outcomes to produce an estimation for the overall project. As
such the bottom-up approach is at the core of the decomposition method
introduced above.

Top-down estimation By contrast the top-down method relies on overall
project parameters. For this purpose, the project is partitioned into lower-
level components and life cycle phases beginning at the highest level. The
approach produces are total project estimates, in which individual process
tasks or product components are responsible for a proportion of the total
costs.

The decomposition method is based on a bottom-up approach. Estimation
by expert judgment, analogy or parametric equations can be carried out in a
top-down or a bottom-up fashion, also depending of the stage of the project in

Table 1. Methods and approaches to cost estimation

Bottom-up estimation Top-down estimation

Expert judgement
method

Experts estimate the costs of
low-level components or
activities

Experts estimate the total
costs of a product or a
project

Analogy method Costs are calculated using
analogies between low-level
components or activities

Costs are estimated using a
global similarity function for
products or projects

Decomposition
method

Costs are calculated as an
average sum of the costs of
lower-level units, whose
development effort are known
in advance

Not applicable

Parametric method Costs are calculated using a
statistic model which predicts
the costs of lower-level units
on the basis of historical data
about the costs of developing
such units

Costs are calculated using a
statistic model which is
calibrated using historical
data about, and predicts the
current value of the total
development costs
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which the estimates need to calculated. Top-down estimation is more applica-
ble to early cost estimates when only global properties are known, but it can
be less accurate due to the less focus on lower-level parameters and techni-
cal challenges usually predictable later in the process life cycle, at most. The
bottom-up approach produces results of higher-quality, provided a realistic
work breakdown structure and means to estimate the costs of the lower-level
units the product/project has been decomposed into.

4.2 Methods Feasible for Ontology Engineering

In the following we examine the advantages and disadvantages of each of the
aforementioned approaches given the product- and process-related character-
istics of ontology engineering and the current state of the art in the field:

Expert judgment/Delphi method The expert judgement method seems to be
appropriate for our goals since large amount of expert knowledge with
respect to ontologies is already available in the Semantic Web community,
while the costs of the related engineering efforts are not. Experts’ opinion
on this topic can be used to compliment the results of other estimation
methods.

Analogy method The analogy method requires knowledge about the features
of an ontology, or of an ontology development process, which are relevant
for cost estimation purposes. Further on it assumes that an accurate com-
parison function for ontologies is defined, and that we are aware of cost
information from previous projects. While several similarity measures for
ontologies have already been proposed in the Semantic Web community,
no case studies on ontology costs are currently available. There is a need to
perform an in-depth analysis of the cost factors relevant for ontology en-
gineering projects, as a basis for the definition of such an analogy function
and its customization in accordance to previous experiences.

Decomposition method This method implies the availability of cost informa-
tion with respect to single low-level engineering tasks, such as costs in-
volved in the conceptualization of single concepts or in the instantiation of
the ontology. Due to the lack of available information the decomposition
method can not be applied yet to ontology engineering.

Parametric/algorithmic method Apart from the lack of costs-related infor-
mation which should be used to calibrate cost estimation formula for
ontologies, the analysis of the main cost drivers affecting the ontology
engineering process can be performed on the basis of existing case studies
on ontology building, representing an important step toward the elabo-
ration of a predictable cost estimation strategy for ontology engineering
processes. The resulting parametric cost model has to be constantly re-
fined and customized when cost information becomes available. Neverthe-
less the definition of a fixed spectrum of cost factors is important for a
controlled collection of existing real-world project data, a task which is
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Table 2. Cost estimation methods and approaches potentially applicable to ontol-
ogy engineering

Bottom-up estimation Top-down estimation

Expert judgment method Currently not feasible Feasible

Analogy method Currently not feasible Feasible

Decomposition method Currently not feasible Not applicable

Parametric method Currently not feasible Feasible

fundamental for the subsequent model calibration. This would also be use-
ful for the design and customization of alternative prediction strategies,
such as the aforementioned analogy approach.

Given the fact that cost estimation has been marginally explored in the
Semantic Web community so far, and that little is known about the underly-
ing cost factors , a bottom-up approach to the previously introduced methods
is currently not practicable, though it would produce more accurate results.
In turn, expert judgment, analogy and parametric cost estimates could be
obtained in a top-down fashion, if the corresponding methods are clearly de-
fined and customized in the context of ontology engineering. A summary of
the results of this feasibility analysis is depicted in Table 2. Due to the incom-
pleteness of the information related to cost issues, a combination of the three
methods is likely to overcome certain limitations of single ones.

Section 5 introduces the ontology cost model ONTOCOM and discuss ways
to improve its prediction quality. ONTOCOM follows a top-down approach to
cost estimation, by identifying the cost drivers associated to the most impor-
tant phases of the ontology life cycle and calculating a global effort estimate
on the basis of different prediction methods. The current version of ONTO-
COM investigates the usage of the parametric, the analogy and the Delphi
methods to ontology engineering.

5 ONTOCOM: A Cost Model for Ontology Engineering

In this section we introduce the generic ONTOCOM cost estimation model.
The model is generic in that it assumes a sequential ontology life cycle, accord-
ing to which an ontology is conceptualized, implemented and evaluated, after
an initial analysis of the requirements it should fulfill (see below). By contrast
ONTOCOM does not consider alternative engineering strategies such as rapid
prototyping or agile methods, which are based on different life cycles.5 This
limitation has been issued in previous work of ours, which describes how the
generic model should be customized to suit such scenarios [16,21].

5 Reference [10] for a discussion on the relation between this process model and the
IEEE standards [12].
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Table 3. Design of the ONTOCOM cost model (parametric, analogy and Delphi
methods)

Parametric Analogy Delphi
method method method

Extract Define work breakdown structure
Define cost drivers and ratings Provide individual

– Define similarities estimations

Evaluate Collect data Agree on estimates
Perform statistical cal-
ibration

Calibrate weights

Execute Specify ratings of the cost drivers which Calculate final
correspond to the application at hand result

Insert values to the prediction equation
Calculate estimate using equation

The cost estimation model is realized as follows. First a top-down work
breakdown structure for ontology engineering processes is defined in order to
reduce the complexity of project budgetary planning and controlling opera-
tions down to more manageable units [1]. Then we can derive the global costs
using various methods applicable for this top-down approach (cf. Table 3).
Currently we are looking into three methods: the parametric, the analogy and
the Delphi method, respectively.

For the parametric method the result of these steps is a statistical predic-
tion model (i.e., a parameterized mathematical formula). Its parameters are
given start values in pre-defined intervals, and are subsequently calibrated on
the basis of previous project data. This empirical information complemented
by expert opinions is used to evaluate and revise the predictions of the ini-
tial a priori model, thus creating a validated a posteriori model. The analogy
method works similarly. It is based on a similarity equation, which is a mathe-
matical formula aggregating similarity functions on the basic cost dimensions
in a weighed fashion. The weights need to be specified according to empirical
calibration and/or expert judgement, just as in the case of the parametric
method. The Delphi method can be applied independently of any prediction
formula or analogy function (see below).

The parametric equation has been carefully evaluated using statistical cal-
ibration and Bayes analysis as described in [17], whilst the analogy one is in
the process of being customized. The Delphi method has been applied several
times to derive specific initial inputs for the previous two methods.

5.1 The Work Breakdown Structure

The top-level partitioning of a generic ontology engineering process can be
realized by taking into account available process-driven methodologies in this
field [10,25] According to them ontology building consists of the following core
steps (cf. Fig. 4):
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Fig. 4. Typical ontology engineering process

Requirements analysis The engineering team consisting of domain experts
and ontology engineers performs a deep analysis of the project setting
w.r.t. a set of pre-defined requirements. This step might also include
knowledge acquisition activities in terms of the re-usage of existing on-
tological sources or by extracting domain information from text corpora,
databases etc. If such techniques are being used to aid the engineering
process, the resulting ontologies are to be subsequently customized to the
application setting in the conceptualization/implementation phases. The
result of this step is an ontology requirements specification document [24].
In particular this contains a set of competency questions describing the
domain to be modeled by the prospected ontology, as well as information
about its use cases, the expected size, the information sources used, the
process participants and the engineering methodology.

Conceptualization The application domain is modeled in terms of ontological
primitives, e.g. concepts, relations, axioms.

Implementation The conceptual model is implemented in a (formal) repre-
sentation language, whose expressivity is appropriate for the richness of
the conceptualization. If required reused ontologies and those generated
from other information sources are translated to the target representation
language and integrated to the final context.

Evaluation The ontology is evaluated against the set of competency ques-
tions. The evaluation may be performed automatically, if the competency
questions are represented formally, or semi-automatically, using specific
heuristics or human judgement. The result of the evaluation is reflected in
a set of modifications/refinements at the requirements, conceptualization
or implementation level.

Depending on the ontology life cycle underlying the process-driven
methodology, the aforementioned four steps are to be seen as a sequential
workflow or as parallel activities. Methontology [10], which applies proto-
typical engineering principles, considers knowledge acquisition, evaluation
and documentation as being complementary support activities performed
in parallel to the main development process. Other methodologies, usually
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following a classical waterfall model, consider these support activities as part
of a sequential engineering process. The OTK-Methodology [24] additionally
introduces an initial feasibility study in order to assess the risks associated
with an ontology building attempt. Other optional steps are ontology popu-
lation/instantiation and ontology evolution/maintenance. The former deals
with the alignment of concrete application data to the implemented ontology.
The latter relates to modifications of the ontology performed according to new
user requirements, updates of the reused sources or changes in the modeled
domain. Further on, likewise related engineering disciplines, reusing existing
knowledge sources – in particular ontologies – is a central topic of ontology
development. In terms of the process model introduced above, ontology reuse
is considered a knowledge acquisition task.

We now introduce the cost drivers associated to this work breakdown
structure.

5.2 The ONTOCOM Cost Drivers

The ONTOCOM cost drivers, which are proved to have a direct impact on the
total development efforts, can be roughly divided into three categories [16,17]:

Product-related cost drivers account for the impact of the characteristics of
the product to be engineered (i.e., the ontology) on the overall costs. The
following cost drivers were identified for the task of ontology building:
• Domain Analysis Complexity (DCPLX) to account for those features

of the application setting which influence the complexity of the engi-
neering outcomes

• Conceptualization Complexity (CCPLX) to account for the impact of
a complex conceptual model on the overall costs

• Implementation Complexity (ICPLX) to take into consideration the
additional efforts arisen from the usage of a specific implementation
language

• Instantiation Complexity (DATA) to capture the effects that the in-
stance data requirements have on the overall process

• Required Reusability (REUSE) to capture the additional effort asso-
ciated with the development of a reusable ontology item Evaluation
Complexity (OE) to account for the additional efforts eventually in-
vested in generating test cases and evaluating test results, and

• Documentation Needs (DOCU) to state for the additional costs caused
by high documentation requirements

Personnel-related cost drivers emphasize the role of team experience, ability
and continuity w.r.t. the effort invested in the engineering process:
• Ontologist/Domain Expert Capability (OCAP/DECAP) to account

for the perceived ability and efficiency of the single actors involved in
the process (ontologist and domain expert) as well as their teamwork
capabilities
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Table 4. The Conceptualization complexity cost driver CCPLX

Rating Level Description

Very Low Concept list

Low Taxonomy, high nr. of patterns, no constraints

Nominal Properties, general patterns available, some constraints

High Axioms, few modeling patterns, considerable nr. of constraints

Very High Instances, no patterns, considerable nr. of constraints

• Ontologist/Domain Expert Experience (OEXP/DEEXP) to measure
the level of experience of the engineering team w.r.t. performing on-
tology engineering activities

• Language/Tool Experience (LEXP/TEXP) to measure the level expe-
rience of the project team w.r.t. the representation language and the
ontology management tools

• Personnel Continuity (PCON) to mirror the frequency of the personnel
changes in the team

Project-related cost drivers relate to overall characteristics of an ontology
engineering process and their impact on the total costs:
• Support tools for Ontology Engineering (TOOL) to measure the effects

of using ontology management tools in the engineering process, and
• Multisite Development (SITE) to mirror the usage of the communica-

tion support tools in a location-distributed team

The ONTOCOM cost drivers have been defined after extensively surveying
recent ontology engineering literature and conducting expert interviews, and
from empirical findings of numerous case studies in the field [16]. For each cost
driver we specified in detail the decision criteria which are relevant for the
model user in order for him to determine the concrete rating of the driver in a
particular situation. For example for the cost driver CCPLX – accounting for
costs produced by a particularly complex conceptualization – we pre-defined
the meaning of the rating levels as depicted in Table 4. The decision criteria
associated with a cost driver are typically more complex than in the previous
example and might be sub-divided into further sub-categories, whose impact
is aggregated to a final rating/value of the corresponding cost driver by means
of normalized weights [16].

When using the model the project manager needs to specifies the cur-
rent rating level for each cost driver according to the setting to which the
estimation applies.

5.3 The Parametric Method

The parametric method integrates the efforts associated with each component
of this work breakdown structure to a mathematical formula as described
below:

PM = A ∗ Sizeα ∗
∏

CDi (1)
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According to the parametric method the total development efforts are
associated with cost drivers specific for the ontology engineering process and
its main activities. Experiences in related engineering areas [1, 13, 18] let us
assume that the most significant factor is the size of the ontology (in kilo
entities) involved in the corresponding process or process phase. In Equation
1 the parameter Size corresponds to the size of the ontology, i.e., the number
of primitives which are expected to result from the conceptualization phase
(including fragments built by reuse or other knowledge acquisition methods).
The possibility of a non-linear behavior of the model w.r.t. the size of the
ontology is covered by parameter α. The constant A represents a baseline
multiplicative calibration constant in person months, i.e., costs which occur
“if everything is normal.” The cost drivers CDi have a rating level (from Very
Low to Very High) that expresses their impact on the development effort. For
the purpose of a quantitative analysis each rating level of each cost driver is
associated to a weight (effort multiplier EMi). The productivity range PRi of
a cost driver (i.e., the ratio between the highest and the lowest effort multiplier
of a cost driver PRi = max(EMi)

min(EMi)
) is an indicator for the relative importance

of a cost driver for the effort estimation [1].
In order to determine the effort multipliers associated with the rating levels

and to select non-redundant cost drivers we followed a three-stage approach:
first experts estimated the a priori effort multipliers based on their experience
as regarding ontology engineering. Second we applied linear regression to real
world project data to obtain a second estimation of the effort multipliers.6

Third we combined the expert estimations and the results of the linear re-
gression in a statistically sound way using Bayes analysis [2]. More details on
the calibration results are available in [17].

5.4 The Analogy Method

The analogy method has several advantages when compared to the parametric
one, the most important being probably that its usage in a new measurement
environment does not require additional calibration efforts, which potentially
lead to varying accuracy levels for particular cost drivers. These advantages
come, however, at the cost of significant computational power required to cal-
culate similarities, therefore both methods can be seen as candidate techniques
to be applied in conjunction [3].

The analogy method defines similarities for each of the cost drivers asso-
ciated to the work breakdown structure and cumulates the results linearly in
a weighed equation:

SIM = min
∑

i,j=1,n

wi ∗ simi(CDi,current, CDi,j) (2)

6 Linear regression is a mathematical method to calculate the parameters of a linear
equation so that the squared differences between the predictions from the linear
equation and the observations are minimal [19].
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In Equation 2 CDi are ratings of the cost drivers elaborated above, in-
cluding the size of the ontology to be built. simi is the similarity defined for
ratings of the cost driver CDi. The parameter wi is the weight for this cost
driver, all weights summing up to 1. Typically one uses the Euclidian distance
as similarity function. The equation identifies the previous project with the
closest values of the cost drivers as compared to the current project, and uses
this overall similarity value to compute the estimate. j is an index of the size
n of the project data set used for the comparisons.

5.5 The Delphi Method

The Delphi or expert judgement method for cost estimation [1] is suitable
for ontology engineering projects in its generic form. Every Delphi process
involves a moderator and a decision team of three to seven members, which
meet two times in order to provide a consensual solution to a particular prob-
lem statement. In our context the experts are provided information about the
current ontology engineering project and are asked to deliver an estimate of
the development efforts according to their experience.

During the first brainstorming meeting the estimation team agrees upon
the work breakdown structure, then the individual members provide estimates
for the activities covered by this decomposition. In the second meeting the
team aims at achieving a consensus on the final estimation by reviewing and
revising the inputs of the members. This is an iterative process led by the
moderator according to pre-defined rules. Once an agreement on the activity-
based estimates has been achieved, the results are collected and compiled into
a global figure, which can be used in the project.

As aforementioned such consensus-driven estimations can be used in com-
bination with other methods and for particular cost drivers or activities in
order to adjust the effects of data entries which might be unavailable, unreli-
able or skewed. For example, we used expert estimations of the productivity
range of the ONTOCOM cost drivers for the calibration of the parametric
equation [17]. A second important use case for such procedures is the esti-
mation of the size of the prospected ontology, which is a core parameter of
statistical methods. In terms of the analogy method, expert opinion is crucial
for defining the similarity functions for each cost driver, for assigning a priori
value to the weights and for evaluating the overall similarity equation.

6 Using ONTOCOM

Starting from a typical ontology building scenario, in which a domain ontol-
ogy is created from scratch by the engineering team, we simulate the cost es-
timation process according to the parametric method underlying ONTOCOM.
Given the top-down nature of our approach this estimation can be realized in
the early phases of a project. In accordance to the process model introduced
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above the prediction of the arising costs can be performed during the feasi-
bility study or, more reliably, during the requirements analysis. Many of the
input parameters required to exercise the cost estimation are expected to be
accurately approximated during this phase: the expected size of the ontology,
the engineering team, the tools to be used, the implementation language etc.

The first step of the cost estimation is the specification of the size of the
ontology to be built, expressed in thousands of ontological primitives (con-
cepts, relations, axioms and instances): if we consider an ontology with 1,000
concepts, 200 relations (including is-a) and 100 axioms, the size parameter of
the estimation formula will be calculated as follows:

Size =
1,000 + 200 + 100

1,000
= 1.3 (3)

The next step is the specification of the cost driver ratings corresponding
to the information available at this point (i.e., without reuse and maintenance
factors, since the ontology is built manually from scratch). Depending on their
impact on the overall development effort, if a particular activity increases the
nominal efforts, then it should be rated with values such as High and Very
high. Otherwise, if it causes a decrease of the nominal costs, then it would
be rated with values such as Low and Very low. Cost drivers which are not
relevant for a particular scenario, or are perceived to have a nominal impact
on the overall estimate, should be rated with the nominal value 1, which does
not influence the result of the prediction equation.

Assuming that the ratings of the cost drivers are those depicted in Table 5
these ratings are replaced by numerical values. The value of the DCPLX
cost driver was computed as an equally weighted, averaged sum of a high-
valued rating for the domain complexity, a nominal rating for the requirements
complexity and a high effort multiplier for the information sources complexity
(for details of other rating values see [17]). According to the formula 1 (α = 1)
the development effort of 11.44 PM would be calculated as follows:

PM = 2.92 ∗ 1.31 ∗ (1.26 ∗ 110 ∗ 1.15 ∗ 1.11 ∗ 0.93 ∗ 1.11 ∗ 0.89 ∗ 1.2 ∗ 1.7) (4)

The constant A has been set to 2.92 after the calibration of the model,
while the economies of scale are so far not taken into consideration.

In order to use ONTOCOM in a particular setting (enterprize, business
domain, types of ontologies, to name only a few criteria) the generic model
should be customized according to the following steps:

• Refine and adapt the work breakdown structure in the light of the applied
life cycle and process model followed when engineering the ontology

• Define the statistical prediction model (i.e., a parameterized mathematical
formula)

• Calibrate the a priori model based on previous project data to create a
valid (more accurate) a posteriori model

• Use the calibrated model to predict development costs
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Table 5. Values of the cost drivers

Cost driver Effort Value Cost driver Effort Value

Product factors Personnel factors

DCPLX High 1.26 OCAP High 1.11

CCPLX Nominal 1 DCAP Low 0.93

ICPLX Low 1.15 OEXP High 1.11

DATA High 1 DEEXP Very Low 0.89

REUSE Nominal 1 LEXP Nominal 1

DOCU Low 1 TEXP Nominal 1

OE Nominal 1 PCON Very High 1

Project factors

TOOL Very Low 1 SITE Nominal 1

An example how the generic ONTOCOM model can be applied to a dif-
ferent ontology engineering methodology is described in [21]. Details about
a similar enterprize based however on a particular type of ontologies can be
found in [4].

7 Conclusions

Technologies related to the development, deployment and maintenance of on-
tologies have reached a maturity level that they become relevant for busi-
nesses. At this stage ontology engineering can no longer be accounted for in
a stand alone manner, but should be integrated into the overall architecture
and organization of an enterprize. We have shown how ontology engineering
fits into existing architecture development frameworks: ontology engineering
is an integral part of the information system architecture and influences the
technology architecture of an enterprize. Companies complement their overall
architecture with a governance framework setting the rules to organize, steer,
control and diffuse its deployment. A major concern of IT governance is to
timely identify changes in the architecture which are potentially of benefit
and to control the realization of the expected benefits. In this context the
availability of cost information related to the engineering of ontologies be-
comes important both at the beginning of an ontology engineering process
and during its operation.

In this chapter we have focused on the estimation of costs related to ontol-
ogy engineering for planning purposes. We have discussed different methods to
derive cost information from the environmental setting an existing knowledge
and selected three for a more detailed presentation. Following a top-down
approach all methods start with a definition of the work breakdown struc-
ture. The Delphi method is based on consensual expert estimates aligned to
this work breakdown structure, which are aggregated by the project manager



356 E. Simperl and C. Tempich

towards a final effort prediction. The parametric and analogy method define
cost drivers and rating levels as a basis for the mathematical equations cus-
tomized according to historical project data.

The results from our case studies point in several directions. On the one
hand incorporating cost-related aspects into ontology engineering practice is
likely to facilitate the interaction between the ontology engineering commu-
nity and business people. Cost information allow non-engineers to integrate
ontology engineering into their management frameworks and makes the cre-
ation of ontologies more transparent from a business perspective. On the other
hand the estimations are far from being precise yet. First results imply that
the creation of glossary-like structures is well understood and the related ef-
fort predictable. By contrast the effort related to the creation of ontologies
with a high axiomatization is hardly predictable and the exact correlations
remain an open issue for future research.

Hence, we see in number of new research directions for the economics
of ontology engineering. From a management perspective open issues remain
in the areas of controlling and the applicability of the cost models for non-
experts. Tool support and additional training materials are needed to ease
non-experts the interaction with these models and to guarantee their correct
usage. From a technical perspective, in the near future we intend to continue
the data collection procedure in order to improve the quality of the generic
model and its customizations. Much work needs to be done by many people,
thus we see ONTOCOM as a seed for an urgently needed field of research,
the cost estimation for ontologies. Any significant improvement in this field
will substantially facilitate the uptake of semantic technologies for industrial
projects. A second direction of research is related to the refinement of alter-
native methods for the estimation of critical input parameters such as the
size of the prospected ontology. The analogy method seem to be a promising
approach for this purpose.

Acknowledgments

This work has been partially supported by the European Network of Excellence

“KnowledgeWeb-Realizing the Semantic Web” (FP6-507482), as part of the Knowl-

edgeWeb researcher exchange program T-REX, and by the European project “Sekt-

Semantically-Enabled Knowledge Technologies”(EU IP IST-2003-506826). Further

information about ONTOCOM can be found under: http://ontocom.ag-nbi.de.

References

1. B. W. Boehm. Software Engineering Economics. Prentice-Hall, 1981.
2. G. Box and G. Tiao. Bayesian Inference in Statistical Analysis. Addison Wesley,

1973.



Exploring the Economical Aspects of Ontology Engineering 357

3. L. C. Briand, K. El Emam, D. Surmann, I. Wieczorek, and K. D. Maxwell.
An assessment and comparison of common software cost estimation model-
ing techniques. In ICSE ’99: Proceedings of the 21st International Conference
on Software Engineering, pages 313–322, Los Alamitos, CA, USA, 1999. IEEE
Computer Society.

4. T. Buerger, C. Ammendola, and E. Simperl. Evaluation of the economics of mul-
timedia ontologies (salero deliverable d3.1.4). Technical report, STI Innsbruck,
2008.

5. P. R. Cohen, V. K. Chaudhri, A. Pease, and R. Schrag. Does prior knowledge
facilitate the development of knowledge-based systems? In AAAI/IAAI, pages
221–226, 1999.

6. C. Ebert, R. Dumke, M. Bundschuh, and A. Schmietendorf. Best Practices in
Software Measurement. Springer, 2005.

7. B. W. Boehm et al. Software Cost Estimation with COCOMO II (with CD-
ROM). Prentice-Hall, 2000.

8. A. Felfernig. Effort estimation for knowledge-based configuration systems. In
Proc. of the 16th Int. Conf. of Software Engineering and Knowledge Engineering
SEKE04, 2004.

9. L. Fischman, K. McRitchie, and D. D. Galorath. Inside SEER-SEM. The Jour-
nal of Defense Software Engineering, 2005.

10. A. Gomez-Perez, M. Fernandez-Lopez, and O. Corcho. Ontological Engineering
– With examples form the areas of Knowledge Management, e-Commerce and
the Semantic Web. Springer, 2004.

11. W. S. Humphrey. Using a defined and measured personal software process. IEEE
Software, 13(3):77–88, 1996.

12. IEEE Computer Society. IEEE Standard for Developing Software Life Cycle
Processes. IEEE Std 1074-1995, 1996.

13. C. F. Kemerer. An Empirical Validation of Software Cost Estimation Models.
Communications of the ACM, 30(5), 1987.

14. M. Korotkiy. On the effect of ontologies on web application development effort.
In Proc. of the Knowledge Engineering and Software Engineering Workshop,
2005.

15. T. Menzies. Cost benefits of ontologies. Intelligence, 10(3):26–32, 1999.
16. E. P. Bontas and C. Tempich. How Much Does It Cost? Applying ONTOCOM

to DILIGENT. Technical Report TR-B-05-20, Free University of Berlin, October
2005.

17. E. Simperl, C. Tempich, and Y. Sure. Ontocom: A cost estimation model for
ontology engineering. In Proceedings of the 5th International Semantic Web
ISWC2006, pages 625–639, Springer, 2006.

18. L. H. Putnam and W. Myers. Measures for Excellence: Reliable Software on
Time, Within Budget. Yourdon, 1991.

19. G.A.F. Seber. Linear Regression Analysis. Wiley, 1977.
20. M. Shepperd, C. Schofield, and B. Kitchenham. Effort estimation using analogy.

In Proceedings of the 18th International Conference on Software Engineering
ICSE1996, pages 170–178, 1996.

21. E. Simperl, C. Tempich, and M. Mochol. Cost Estimation for Ontology
Development: Applying the ONTOCOM Model. In Technologies for Business
Information Systems, pages 327–340. Springer, 2007.

22. A. Stellman and J. Green. Applied Software Project Management. O’Reilly
Media, 2005.



358 E. Simperl and C. Tempich

23. R. D. Stewart, R. M. Wyskida, and J. D. Johannes. Cost Estimator’s Reference
Manual. Wiley, 1995.

24. Y. Sure, S. Staab, and R. Studer. Methodology for development and employment
of ontology based knowledge management applications. SIGMOD Record, 31(4),
2002.

25. Y. Sure, C. Tempich, and D. Vrandecic. Ontology engineering methodologies. In
Semantic Web Technologies: Trends and Research in Ontology-Based Systems.
Wiley, 2006.

26. J. A. Zachman. A framework for information systems architecture. IBM Systems
Journal, 26(3), 1987.



Part III

Ontologies



Foundational Choices in DOLCE

Stefano Borgo and Claudio Masolo

Laboratory for Applied Ontology (ISTC-CNR), Trento, Italy, borgo@loa-cnr.it,
masolo@loa-cnr.it

Summary. Foundational ontologies are ontologies that have a large scope, can be
highly reusable in different modeling scenarios, are philosophically and conceptually
well founded, and are semantically transparent.

After the analysis and comparison of alternative theories on general notions like
‘having a property’, ‘being in time’ and ‘change through time’, this paper shows how
specific elements of these theories can be coherently integrated into a foundational
ontology. The ontology is here proposed as an improvement of the core elements of
the ontology dolce and is thus called dolce-core.

1 Introduction

Chapter “What is an Ontology?” analyses what ontologies are and their pe-
culiarities with respect to other methods and technologies that exist in con-
ceptual modeling and knowledge representation. Foundational ontologies are
ontologies that: (1) have a large scope, (2) can be highly reusable in differ-
ent modeling scenarios, (3) are philosophically and conceptually well founded,
and (4) are semantically transparent and (therefore) richly axiomatized.

Foundational ontologies focus on very general and basic concepts (like
the concepts of object, event, quality, role) and relations (like constitution,
participation, dependence, parthood), that are not specific to particular do-
mains but can be suitably refined to match application requirements. These
notions have been largely investigated by philosophers and, even though foun-
dational ontologies assume a modeling and engineering perspective (far from
the absolutist view of most philosophical theories), one relies on philosophical
considerations for the construction, comparison, organization, and assessment
of the ontologies themselves.

To achieve semantic transparency, a careful choice of the primitives and
a precise characterization of their meaning are needed. This goal requires
a formal language with clear semantics and adequate expressive power (in
this chapter we will use first-order logic). Unfortunately, application concerns
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lead to work with languages that are suitable for run-time reasoning and one
often has to give up on expressivity and semantic clearness. For these reasons,
foundational ontologies are used in applications only in approximated forms
via partial translations into different application-oriented languages. Thus,
the relevance of foundational ontologies does not rely in their direct impact
on applications but in their ability to providing conceptual handles with which
to carry out a coherent and structured analysis of the domains of interest.

The paper is organized as follows. Section 2 analyzes and compares al-
ternative well founded theories on central notions like ‘having a property’,
‘being in time’ and ‘change through time’. Then, in Sect. 3, we study how
specific elements of these theories can be integrated into a foundational on-
tology that we call dolce-core and constitutes a first step in the revision
of dolce

1 [17]. Other foundational ontologies are not discussed in this paper
for lack of space.2

2 Foundational Distinctions

The literature on ontological choices is primarily of philosophical character.
Several tenable positions for each issue have been individuated and some have
been described to a rich level of detail. Unfortunately, there is no homogeneity
in the depth of the analysis: some topics, like the theories of parthood and
space, have been well studied others, e.g., the theories of dependence and
unity still lack a stable landscape [26]. Perhaps more worryingly, there is no
comprehensive list of ontological issues relevant to foundational ontologies.

2.1 Theories of Properties

The nature of properties, the explanation of what it means that an individual
has a property, and, more specifically, of how different individuals can have
the same property, have been widely discussed and investigated ([1,15,20] are
good surveys). Intuitively, the term individual (or, alternatively particular)
refers to entities that cannot have instances, that is, entities that cannot be
predicated of others like Aristotle, the Tour Eiffel, the Mars planet. On the
contrary, the term property denotes entities that can have instances, that is,
entities that qualify other entities, e.g., Red (the color), Person (the kind), Fiat
Panda (the car model). Traditionally, the notion of property has been formally
represented in two ways. In the first, it is associated with the set-theoretical
notion of class3 and, in the latter, with the logical notion of predicate.

1 http://www.loa-cnr.it/DOLCE.html
2 See, for instance, bfo: http://www.ifomis.org/bfo; gfo: http://www.onto-med.
de/ontologies/gfo.html; opencyc: http://www.opencyc.org; sumo: http://
www.ontologyportal.org/

3 As usual in this area, we use the terms ‘class’ and ‘set’ interchangeably.
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Fig. 1. Philosophical positions on properties

Our goal in this section is to briefly introduce a few alternative positions
that are of particular interest in modeling. Consider the expression “the in-
dividuals a and b share the property F” (as exemplified by, say, “my car and
my pen are both red”).

Figure 1 illustrates three different ways to represent this expression.4

Universalism claims that both entities a and b instantiate (inst) the uni-
versal F which, in short, means that F is a repeatable and independent entity
(a universal) that is wholly present in both a and b. Intuitively, one could
rephrase this view by saying “may car and my pen both instantiate redness”.
The instance-of relation, inst, is different from the set-theoretical membership
relation, ∈, (exemplified by expression “my car and my pen both belong to
the class of red things”) for two reasons: (1) the latter is extensional (two
different classes must have at least a different member) while the first might
not (nothing prevents different universals to have exactly the same instances);
and (2) classes are closed under union and intersection while nothing suggests
that the union or intersection of two universals must be a universal itself. Uni-
versals are, so to speak, sparse and minimal since they cannot be generated
by syntactic manipulations. They correspond to truly ontological distinctions
that are present in the world.

The second diagram in Fig. 1 depicts the trope theory (see [5] for a good
survey). This theory is based on the notion of individual property or trope. A
trope inheres in (I) one single individual and it represents the distinct way
an individual has a property (“my car is red” means that there is a specific
individual property, a trope, of my car and this trope is classified red). If
a and b are different individuals, then the way a is F (has property F ) is
necessarily different from the way b is F because a and b rely on different
tropes. In Fig. 1, aF is the F -trope of a and bF the F -trope of b. This means
that (1) the inherence relation between a trope and its bearer satisfies the non
migration principle, i.e., tropes inhere in a unique bearer (a1), and that (2)
tropes are existentially dependent on their bearers, i.e., tropes cannot exist
without a bearer (a2). If we read I(x, y) as “x inheres in y” and trope(t) as
“t is a trope”, then

a1 I(t, x) ∧ I(t, y) → x = y
a2 trope(t) → ∃x(I(t, x))

4 There are other positions like, e.g., the bundle theory [23].
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Then, if John and Paul have the same weight, this does not mean that
they have the same trope but that their distinct tropes (relative to weight)
are somehow similar. Trope sameness is an a equivalent relation called indis-
tinguishability or resemblance (≈): a and b share the property F if and only
if aF ≈ bF . In short, trope theory reduces properties to equivalence classes of
resembling tropes.

Note that trope theory and universalism are not antithetical. One can
rely on tropes and the inherence relation while substituting the classes of
resembling tropes by universals and membership (between tropes and classes)
by instantiation (between tropes and universals). That is, the universalist view
can be adopted to classify the tropes instead of the entities as in the third
diagram in Fig. 1.

Basic Properties, Quality Kinds, and Spaces

People compare entities along a variety of aspects such as color, weight, smell,
etc. For each aspect, similarities are established depending on the tools people
dispose of, or on the specific analysis they are interested in. This knowledge
disparity is often dismissed by philosophers as an epistemological or empirical
issue: the entities, they say, have a completely determined shade of color even
though in practice it is not accessible to the observer. This attitude somehow
prevents the assessment of a philosophical analysis of this issue, of course,
but the available philosophical notions still provide a good starting point for
building a philosophically based and yet application oriented framework.

In [10, 11] an important determinate-determinable relation (dD) between
properties has been suggested by combining subsumption and partitioning:
dD(F,G) means that entities that have the property F also have the (more
general) property G and entities that have the property G have at least one
of the (more specific) properties that are the determinates of G, among which
there is F . For example, “being crimson” and “being scarlet” are both deter-
minates of “being red” and the latter is a determinate of “being colored”. The
dD relation induces a partial-order over properties. According to this ordering,
properties about the same aspect of objects are organized in a tree the leaves
of which are formed by the most specific properties, hereafter called basic
properties. Then, any entity that has a property is claimed to have also a ba-
sic property in the corresponding tree. It is this basic property that makes the
entity ontologically indistinguishable (with respect to the given aspect) from
the other entities with the same basic property: two entities enjoying property
“being 1m long” cannot be differentiated on the basis of their lengths. Vice
versa, entities that have different basic properties are surely different. Shar-
ing non basic properties indicates some form of similarity but has no direct
import on the distinguishable/indistinguishable status of the entities.

In trope theory, sharing a basic property corresponds to having two exactly
resembling tropes: two ‘1m long’ entities have exactly similar (yet distinct)
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length-tropes. If they resemble each other inexactly, it is said that their length-
tropes resemble each other only up to a degree. One can add structure in the
class of tropes by saying that 1m and 2m length-tropes have a higher degree of
resemblance than the 1m and 30m length-tropes or analogously, that a scarlet-
trope and a crimson-trope resemble each other better than a scarlet-trope
and a turquoise-trope. In this view, non basic properties are built as classes
of inexactly resembling tropes. Exploiting the degrees of resemblance, all the
tropes can be collected in few large classes. However, if we put together a 1m-
trope and a ‘red’-trope or a 1kg-trope, we contradict the initial intuition that
the comparison between entities has to be done for ‘homogeneous’ properties,
i.e., properties on the same aspect of entities: the comparison between the
length of an object with the color of another object is not really plausible.

General properties that identify specific aspects of entities (like “being col-
ored”, “being shaped”, etc.) cannot be discharged: without these we cannot
even conceive the functional laws of physics [2]. Ingvar Johansson [10] char-
acterizes these general properties, hereafter called quality kinds, in terms of
maximal incompatibility and maximal comparability of their determinates: (1)
each entity that has a quality kind F must have just one basic property that
is a determinate of F , and (2) all the basic properties that are determinate
of F are qualitatively comparable. Summing up, each quality kind is a (non
basic) property that corresponds to one aspect/dimension of comparison for
entities, the property is partitioned into more specific properties that give
different levels of distinctions for that aspect, the lowest level is that of the
basic properties.

Properties in the same quality kind can be organized in taxonomies or in
more sophisticated ways: from ordering (weight, length) to complex topologi-
cal or geometrical relations (color splinter). Following [6] we call spaces these
complex structures of properties. Sometimes properties can be combined to-
gether to model multi-dimensional or multi-aspectual properties like density,
speed or force. The color property can also be seen as a multi-dimensional
property since one can distinguish hue, saturation, and brightness as different
quality kinds. These cases indicate that property spaces can combine to very
specialized structures.

Often spaces are motivated by applications or epistemological considera-
tions, it is quite natural to associate each quality kind to several spaces, each
organizing properties (and thus objects) according to different principles, in-
struments of investigation, applications concerns, etc. These spaces rely on
relative notions of resemblance that are discussed, adopted, and abandoned
by (communities of) intentional agents. This view of spaces as generated (and
eventually destroyed) structures leads to model spaces as temporal entities.
Alternative spaces can differ on several aspects: their structure, the level of de-
tail the adopted measuring tool can reach, or the point of view that motivate
them. This variety of spaces can be partially ordered according to the level of
detail they are capable of distinguishing, a notion often called granularity.
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Concepts and Roles

The framework just introduced addresses two concerns: (1) representing in-
tensional properties that are created (and eventually destroyed) by agents and
(2) classifying qualities according to different points of view and granularities.

The first point is important independently of the need to organize prop-
erties in spaces. Take properties like ‘being a student’, ‘being money’, ‘being
a catalyst’, etc. that we will call concepts. These have a clear conceptual and
intensional nature – they are defined in terms of relationships with external
entities, e.g., ‘a person enrolled in a university’, and do not depend on their
instances – but do not present any special internal structure. The rich frame-
work given by quality kinds and spaces is largely pointless for these concepts.
A mechanism more tailored to these properties is needed.

Roles are a subclass of concepts. The nature and the representation of
roles have been long discussed in a variety of fields: knowledge representation,
conceptual modeling, multi-agent systems, linguistics, sociology, philosophy,
and cognitive semantics (see [14,18,29]). These properties are intensional and
anti-rigid (see Chapter “An Overview of OntoClean”) in the sense that an
entity may play a role for a limited time (and perhaps resume it in different
periods) without changing its identity. Often in conceptual modeling roles are
seen as classes but this approach has severe problems [29].

2.2 Being in Time

The entities that are mostly studied in applied ontology are entities that exist
in time. Temporal existence is often modeled via a predicate like PRE(x, t),
whose informal reading is ‘x is present at time t’.

Since PRE is defined on times, these must be in the domain of quantifi-
cation. However, this does not necessarily lead to strong ontological commit-
ments on times: times could be constructed from events [12], ‘being present
at a time’ can be reduced to ‘being simultaneous with’ other entities [27]. Of
course, one can take the Newtonian view in which time is an independent con-
tainer. In this case, PRE is a sort of localization relation in that container. In
both cases, one can take times to be punctual or extended and even adopt dif-
ferent structures on them (discrete vs. continuous, linear vs. branching, etc.).
Furthermore, there are different ways of being in time: existing in time vs.
occurring in time (a distinction related to the contraposition between objects
and events, see Sect. 2.4) or being wholly present vs. being partially present
(relying on the contraposition between endurants and perdurants, see below).

We give for granted that some entities are present at different times, i.e.,
they are persisting through time. The explanation of this apparently obvious
fact may be quite intricate. Stage theory [8] claims that all existing entities,
called stages, are temporally instantaneous. In this perspective, ‘persisting
entity’ is meaningless since no entity can exists at different times. Common-
sense persistence is modeled by stage theory only at the conceptual level:
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persisting entities are reconstructed as collections of stages and special rules,
called unity criteria (see Chapter “An Overview of OntoClean”), are isolated
to flag meaningful collections.

Two main philosophical positions accept the ontological existence of per-
sisting entities: endurantism and perdurantism. Endurantists claim that one
and the same entity is wholly present at different times (enduring) and read
the formula PRE(a, t1) ∧ PRE(a, t2) as “a is wholly present at both the times
t1 and t2”. ‘Being wholly present’ is often contrasted with ‘being partially
present’, i.e., the rationale of perdurantism. Perdurantists claim that the per-
sistence through time is analogous to the extension in space: an entity has
different parts at different times (perduring). The previous formula is then
read by perdurantists as claiming “a has a part at t1 and a (different) part at
t2”. Therefore, in addition to a, perdurantists commit to the existence of the
parts of a that exist only at t1 and at t2, respectively.

Despite the disagreement between perdurantism and stage theory on the
nature of persisting entities, both the theories associate each persisting entity
with a sequel of other entities. Indeed, the following property holds in these
systems (it may fail for endurantists):

a3 PRE(a, t1) ∧ PRE(a, t2) ∧ t1 �= t2 →
∃b1, b2(PRE(b1, t1) ∧ ∀t(PRE(b1, t) → t = t1) ∧

PRE(b2, t2) ∧ ∀t(PRE(b2, t) → t = t2))

Provided one does not give up on expressive power, it is formally an advan-
tage to have a core theory compatible with different philosophical positions
since one can use the very same framework and specialize it, when needed,
with the additional constraints of one or the other theory. In this perspective,
without (a3) the formula PRE(a, t1) ∧ PRE(a, t2) can be interpreted freely by
endurantism, perdurantism, and stage theory.

2.3 Property Change

Persisting objects change through time by changing their properties: a may
be red at time t1 and green at t2.5 It should be clear by now that there
are alternative views on properties and on persistence through time. However
interesting these topics are, none is as debated as the issue of property change
itself. Aiming at a wide-ranging presentation, we formally model properties
in first order logic (FOL) via formulas of form F (a, t) without committing to
any ontological constraint beside those (fairly weak) of FOL itself. According
to [21], F (a, t) can be read in a very general way: “a exists at t and it has the
property F when t is (was, will be) present”. We will see alternative readings

5 We limit this presentation to properties. The arguments, mutatis mutandis, hold
for relations as well.
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of F (a, t) in terms of more committed theories. For the time being, let us begin
with a minimal condition: since a at t has property F , a needs to exist at t.6

a4 F (x, t) → PRE(x, t)

Formula F (a, t1) ∧G(a, t2) formalizes the change of a property.

Following Sect. 2.1, universalists have three ways to model property
change: (1) adding a temporal parameter to inst making it a ternary relation
on entities, universals, and times as in (a5); (2) applying temporal modal
operators to the binary inst, see (a6); (3) committing to temporal slices x@t
(the maximal part of x during t) as seen in perdurantism, see (a7). (Here we
use the same letter for both the relational property and its nominalization:
cfr. the occurrence of F on the left and on the right of ↔, resp.ly, in (a5).)

a5 F (x, t1) ∧G(x, t2) ↔ inst(x, F, t1) ∧ inst(x,G, t2)
a6 F (x, t1) ∧G(x, t2) ↔ �t1 inst(x, F ) ∧�t2 inst(x,G)
a7 F (x, t1) ∧G(x, t2) ↔ inst(x@t1, F ) ∧ inst(x@t2, G)

A trope theorist explains change as trope substitution, (a8).7 If one accepts
both universals and tropes, trope substitution can be formulated as in (a9).

a8 F (x, t1) ∧G(x, t2) ↔ ∃f, g(I(f, x) ∧ I(g, x) ∧ f ∈ F ∧ g ∈ G ∧
PRE(f, t1) ∧ PRE(g, t2))

a9 F (x, t1) ∧G(x, t2) ↔ ∃f, g(I(f, x) ∧ I(g, x) ∧ inst(f, F ) ∧ inst(g,G) ∧
PRE(f, t1) ∧ PRE(g, t2))

If both tropes and universals are considered, a notion of “tropes changing
over time” becomes available, we call these individual qualities. An individual
quality, like a trope, inheres in a unique bearer but, differently from tropes,
it can change over time. In this case we can explain change according to the
following schemata that are similar to (a5) and (a7), respectively8:

a10 F (x, t1) ∧G(x, t2) ↔ ∃q(I(q, x) ∧ inst(q, F, t1) ∧ inst(q,G, t2))
a11 F (x, t1) ∧G(x, t2) ↔ ∃q(I(q, x) ∧ inst(q@t1, F ) ∧ inst(q@t2, G))

In these approaches the color, weight, shape, etc. of an object are each
modeled by a different individual quality, and the changing through time of
these qualities explain changes in the bearers: intuitively, it is the individual
color of an object a that changes from, say, fuchsia to green and the individual
weight (a different individual quality of a) that changes from some weight to

6 Recall the notion of property given in Sect. 2.1. One should refrain from consider-
ing boolean combinations of predicates, like ‘not being present’, as possible values
for F .

7 We use the set-theoretical ∈ predicate to indicate that here F stands for the class
of tropes that satisfy F .

8 We could do as in (a6) as well but we do not investigate this option here.
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another. While (a10) is compatible with both an endurantist and a perdu-
rantist reading about persistence of individual qualities, we see that (a11) is
ontologically more demanding since it refers to temporal slices of individual
qualities. On the other hand, (a11) has the advantage of being compatible
with (a9) if we accept mereological sums of tropes. At the same time, (a9) is
to be preferred to (a8) because in (a9) inst can be taken to be intensional.

Of course, one should have some advantage for introducing yet another
type of entities like individual qualities. After all, why aren’t (a5) and (a7)
enough? The usefulness of individual qualities relies on the fact that they are
associated to one quality kind only and the latter usually has different spaces
associated. A change in the same individual quality is described differently by
the different points of views encoded by the spaces. For example, a change in
color can be described according to both a RGB and a CYMK color-space.
Having a unique individual color-quality related to all the relevant spaces al-
lows for expressing that it is the same aspect of the object (the color) that
changes. In [16] alternative positions that avoid individual qualities are ana-
lyzed and it is shown that, if expressivity is to be maintained, these systems
are technically and conceptually more complicated. These aspects may seem
minor to a neophyte and yet they are crucial in setting a foundational ontology
as we will see in Sect. 3.

Mereological Change: Endurantism vs. Perdurantism

The difference between the endurantist and perdurantist theories of persis-
tence (Sect. 2.2) can be addressed in terms of the parthood relation. Classical
endurantists think that “statements about what parts the object has must
be made relative to some time or other” ([8], p. 26), which makes temporary
parthood a primitive relation to endurantists. On the contrary, perdurantists
can derive temporary parthood from the relations of parthood simpliciter and
‘being present at a time’ via schema (a7) (which is applicable since perduran-
tists accept temporal slices). In [24,25] Sider provides a direct comparison of
these two positions by starting from a temporary parthood relation shaped
to be acceptable to both endurantists and perdurantists (even though they
would interpret it differently). Sider’s formulation of perdurantism is given
by the usual axioms for temporary parthood (see Sect. 3.2) plus the existence
of temporal slices to characterize the notion of ‘being partially present’. On
the other hand, the notion of ‘being wholly present’ (that plays a central
role in endurantism) remains somehow obscure and difficult to characterize
notwithstanding some attempts have been made [4, 9, 19]. Both endurantists
and perdurantists accept the usual axioms for temporary parthood, yet en-
durantists cannot accept that each entity has a temporal slice at each time at
which the entity exists.9 As noted in [25], either we assume that endurantism
9 Endurantists do not refuse the existence of temporal parts and temporal slices

in general. They do not accept that all the persistent entities necessarily have
temporal slices at each time of their existence.
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needs nothing more than the general axioms discussed before (therefore it is
a theory less constrained than perdurantism), or we need to accept that the
endurantist view still lacks a clear and formal characterization. After all, the
intuitive notion of ‘being wholly present at each instant’ is trivially satisfied
by temporary parthood even in the perdurantist axiomatization since all the
parts of x at t are present at t.

From these observations, perdurantists may indifferently adopt temporary
parthood or parthood simpliciter as the primitive relation, while endurantists
must rely on temporary parthood. In the perspective of foundational ontology,
this is an important result, exploited in Sect. 3.2, since it shows that one can
construct a fairly general ontology that is compatible with both endurantism
and perdurantism.

Parthood and Spatio-Temporal Inclusion

Perdurantists often see parthood as spatio-temporal inclusion and thus rely
on extensional mereology (axioms (A1)-(A4) and definition (D2) of Sect. 3.2).
This view pushes them to reject the existence of spatio-temporally coincident
entities: if x and y have the same spatio-temporal extension then both P(x, y)
and P(y, x) hold and consequently, due to antisymmetry of parthood, they are
identical. This position is, however, more restrictive than the original proposal
of Lesniewski [13]. Lesniewski proposed mereology as an alternative to set
theory that avoids the cognitively obscure distinction between urelements and
sets (not to mention the puzzling notion of empty set). The goal was to ensure
that the entity a+b, obtained combining a and b, is nothing more than a and b
(and not an abstract element like the set with members a and b). Indeed, in
mereology the sum and the addenda have the same ontological status.

In its general perspective, extensional mereology is a purely formal theory
and it applies to all kinds of entities (the spatio-temporal entities are just
one case).10 Parthood, when applied to spatio-temporal entities, is strictly
related to spatio-temporal inclusion. Nonetheless, these relations must not be
confused: philosophers and engineers like to apply parthood and mereological
change even to entities like, e.g., mathematical theories, word meanings, be-
liefs and societies, i.e., entities that are said to be in time but not in space.
On the other hand, it is unquestioned that two spatio-temporally extended
entities, that are one part of the other, are also spatio-temporally included.
The vice versa does not necessarily hold: some authors accept that some crete
constituted a given statue and yet reject that crete is part of the statue [22].

2.4 Events and Objects

We can all distinguish what changes from the changing event itself. A lively and
long discussion on the ontological status of events and on what distinguishes
10 Analogously for temporary parthood even though, of course, this relation requires

a notion of ‘existence in time’.
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them from objects has taken place especially in the philosophy of language [3].
Recently, philosophers have been discussing proposals to reduce events to
other basic notions, while researchers from the cognitive, the common-sense,
and the modeling perspectives are engaged in exploiting the strength and
relevance of the category of events and its relationship with that of objects.
There are formal and applicative advantages if events are part of the domain
(quantifying over actions, predicating on causality, overcoming reductionist
views.)

Several authors collapse the object vs. event distinction to the endurant vs.
perdurant one by identifying objects with endurants and events with perdu-
rants. The unification is endorsed by the observations that the ‘life of John’ is
only partially present at each time at which it exists (it has distinct temporal
parts at each time at which it exists) and ‘John’ is wholly present whenever
it exists (the existence of temporal parts is not required). However, if this
match were correct, classical perdurantism would not be able to embrace the
object vs. event distinction. The reason is easily stated: as shown in Sect. 2.3,
all the entities in a perdurantist view have temporal parts when they exist
but distinct entities cannot have exactly the same spatio-temporal location.
Thus, since ‘John’ and ‘the life of John’ have exactly the same spatio-temporal
location, perdurantists must identity them. Furthermore, it is not really an
option to insist that ‘John’ is part of the ‘life of John’ or viceversa. These
observations pushed some philosophers to reject as naive the previous identi-
fication and to look for a separate (and perhaps more general) foundation of
the distinction between objects and events.

Hacker [7] puts emphasis on the fact that events are primarily in (directly
related to) time while (material) objects are primarily in (directly related to)
space. This division is based on a series of observations among which:

• The properties (and qualities) that apply to material objects are different
from those that apply to events. Typically, material objects have weight,
size, shape, texture, etc. and are related by spatial relationships like con-
gruence. Events, on the other hand, can be sudden, brief or prolonged, fast
or slow, etc. and can occur before, after, simultaneously to other events.

• Space plays a role in the identification of material objects and in their
unity criteria, time in that of events. Material objects that are simultane-
ously located at different places are different and events that have different
temporal locations are different [30].

Of course, even though events are primarily in time and objects primarily
in other dimensions, there are strong interrelationships between them. Several
authors [7, 27] claim that events are not possible without objects and vice
versa. Since technically there seems to be no real advantage in committing
to a reductionist view (either choosing that events are the truly basic entities
or, alternatively, attributing to objects this role), the most general option
is to consider both events and objects as forming two primary and related
categories: events need participants (objects) and objects need lives (events).
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By means of the relationship between objects and events (aka participation),
it is possible to say that an object a exists at a certain time t “if and because”
its life exists at t [28], i.e., it is the life of a that is the truth-maker for the
proposition ‘a exists at t’. On the other hand, events are related to space only
indirectly via the material objects participating in them.

3 DOLCE-CORE: The New Basis for DOLCE

dolce [17] is a foundational ontology developed with the vision that a unique
universal ontology for knowledge representation cannot exist. The idea behind
dolce is that an ontology should be philosophically consistent and transpar-
ent (i.e., embrace a clear ontological perspective) and promote its correct
application (e.g., by describing explicitly the basic assumptions on which it
relies). Furthermore, dolce puts much emphasis on interoperability, in par-
ticular with other ontological systems, and exploits the “no hidden choice”
principle: if a philosophical or applicative position is compatible with the ex-
plicit commitments of an ontology, then this ontology can indeed be extended
to formalize that position. dolce goes even further in this view by allow-
ing coexistence of alternative ontological views via parametrization and other
formal techniques.

The aim of dolce is to capture the intuitive and cognitive bias underly-
ing common-sense while recognizing standard considerations and examples of
linguistic nature. These claims are sustained by the accompanying documenta-
tion that carefully describes the foundational choices and motivates both the
structure and the formalization of dolce. Generally speaking, dolce does
not commit to a strong referentialist metaphysics (it does not make claims
on the intrinsic nature of the world) nor to a scientific enterprise. Rather, it
looks at reality from the mesoscopic and conceptual level aiming at a formal
description of a specific conceptualization of the world. Technically, dolce is
the result of a careful selection of constraints so to guarantee expressiveness,
precision, and simplicity of use.

In the following, we resume our discussion in the previous sections to
present the ontological choices made by dolce. The discussion is limited
to a fragment of the whole ontology (the core formed by the most general
categories) and, in some cases, it departs from the published version [17].
For this reason, we dub the ontology in these pages the ‘core of dolce’ or
dolce-core, which forms the basis for the next version of the ontology. Due
to lack of space, we will explain only major consequences of these changes.

3.1 Basic Categories

dolce-core is an ontology limited to entities that exist in time, called tem-
poral particulars. While in dolce regions and spaces are abstract entities
(i.e., entities that are outside time and space), dolce-core adopts a contex-
tual perspective by introducing them as temporal entities that are created,
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adopted, abandoned, etc. Following [18], concepts (not considered in the orig-
inal dolce) are treated similarly. These assumptions are somehow debatable
but have the advantage of providing a general and comprehensive perspec-
tive on ontology which is well suited for applications. Abstract regions (and
abstract entities in general) can of course exist in the full ontology. They are
simply not discussed in the dolce-core fragment.

dolce-core partitions temporal-particulars (pt) (hereafter particulars)
into six basic categories: objects (o), events (e), individual qualities (q), regions
(r), concepts (c), and arbitrary sums (as). All these categories are rigid: an
entity cannot change from one category to another over time. Following the
observations in Sect. 2.4, the dolce’s categories ed (endurant) and pd (perdu-
rant) are, respectively, renamed o (object) and e (event). Individual qualities
are themselves partitioned into quality kinds (qi). Each quality kind qi is as-
sociated to one or more spaces (sij): each individual quality in qi has location
in (i.e., is associated to a region in each of) the associated spaces sij . Since
we impose that the spaces are disjoint, regions are themselves partitioned into
the spaces sij . For the sake of simplicity, we here consider a unique space t

for (regions of) time.11

3.2 Parthood and Temporary Parthood

dolce-core carefully distinguishes spatio-temporal inclusion and parthood
by adopting the axioms (A1)-(A4) of extensional mereology, see below. These
axioms apply to all entities in the domain. The basic categories, with the
exception of as, are homogeneous: the parts and the sums of entities belonging
to one category are still in the same category (see (A5) and (A6)). as collects
those mixed entities that are obtained as sum of elements in different basic
categories. However, note that the ontology does not enforce any mereological
sum of entities to exist. In particular, as may very well be an empty category.
It is left to the user to enforce this constraint (perhaps limited to specific
kinds of entities) when needed.

In the following P(x, y) stands for ‘x is part of y’, O(x, y) for ‘x overlaps
with y’, and SUM(z, x, y) for ‘z is the mereological sum of x and y’.

D1 O(x, y) � ∃z(P(z, x) ∧ P(z, y)) (Overlap)
D2 SUM(z, x, y) � ∀w(O(w, z) ↔ (O(w, x) ∨ O(w, y))) (Binary Sum)

A1 P(x, x) (reflexivity)
A2 P(x, y) ∧ P(y, z) → P(x, z) (transitivity)
A3 P(x, y) ∧ P(y, x) → x = y (antisymmetry)
A4 ¬P(x, y) → ∃z(P(z, x) ∧ ¬O(z, y)) (extensionality)
A5 If φ is o,e,qi, sjk, or c: φ(y) ∧ P(x, y) → φ(x) (dissectivity)
A6 If φ is o,e,qi, sjk, as, or c: φ(x) ∧ φ(y) ∧ SUM(z, x, y) → φ(z)

(additivity)
11 All these statements are easily stated in logic. Here we omit their formal charac-

terization.
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As anticipated in Sect. 2.2 we introduce the primitive predicate ‘being
present at’ (PRE) to identify at which times entities exist. No commitment
to a specific notion of time is taken in dolce-core. Nonetheless, in Sect. 3.4
we will analyze different readings of this predicate depending on the category
of entities it applies to. PRE is defined on times (A7) and it is dissective and
additive over time ((A8) and (A9)).

A7 PRE(x, t) → t(t)
A8 PRE(x, t) ∧ P(t′, t) → PRE(x, t′) (dissectivity)
A9 PRE(x, t′) ∧ PRE(x, t′′) ∧ SUM(t, t′, t′′) → PRE(x, t) (additivity)

As stated in Sect. 3.1, all the entities considered in dolce-core exist in
time:

A10 pt(x)→ ∃t(PRE(x, t))

To include entities not in time, one should add to dolce-core a more gen-
eral category that includes both temporal and abstract particulars. In this
general ontology, dolce-core provides the formalization of the subclass of
temporal particulars.

dolce-core adopts a temporary extensional mereology, also denoted by
P, which is based on axioms (A12)-(A15), i.e., those of extensional mereol-
ogy adapted to the extra temporal parameter. Further mereological aspects
are enforced via the notion of time regular relation (see below). Expression
P(x, y, t) stands for ‘x is part of y at time t’, analogously for O(x, y, t).

D3 O(x, y, t) � ∃z(P(z, x, t) ∧ P(z, y, t)) (Temporary Overlap)

A11 P(x, y, t) → PRE(x, t) ∧ PRE(y, t) (parthood implies being present)
A12 PRE(x, t) → P(x, x, t) (temporary reflexivity)
A13 P(x, y, t) ∧ P(y, z, t) → P(x, z, t) (temporary transitivity)
A14 PRE(x, t) ∧ PRE(y, t) ∧ ¬P(x, y, t) → ∃z(P(z, x, t) ∧ ¬O(z, y, t))

(temporary extensionality)
A15 If φ is o,e,qi, sjk or c: φ(y) ∧ P(x, y, t) → φ(x)

(temporary dissectivity)

Axiom (A3) implies that entities indistinguishable with respect to part-
hood are identical. Temporary coincidence (D4) provides a weaker form of
identification: two entities x and y that are temporary coincident at time t,
formally CC(x, y, t), are indistinguishable relatively to time t (they can still
differ in general).12 If CC(x, y, t) then all the properties of x at t are also
properties of y at t and vice versa.13 Yet, no constraint follows on properties
of x and y at a time different from t.

12 Perdurantists read CC(x, y, t) as the identity of the temporal slices x@t and y@t.
13 This claim has to be taken with a grain of salt since one should not consider

properties that constrain x before or after t itself, e.g., ‘being red an year after t’
(provided this actually counts as a property).
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Axiom (A16) states that in dolce-core parthood simpliciter can be de-
fined on the basis of temporary parthood, i.e., temporary parthood is more
informative. The opposite is true only committing to the existence of tempo-
ral parts that is not enforced here. This means that the axioms for temporary
parthood are compatible with both the endurantist and perdurantist views
of persistence through time. Note that axioms (A10) and (A16) make possi-
ble to define parthood simpliciter in terms of temporary parthood. Yet, we
use two distinct primitives to avoid hidden commitments: in an extension of
dolce-core that includes abstract entities, both the primitives are necessary
(and the two axioms maintain their validity).

D4 CC(x, y, t) � P(x, y, t) ∧ P(y, x, t) (Temp. Coincidence)
D5 CP(x, y) � ∃t(PRE(x, t)) ∧ ∀t(PRE(x, t) → P(x, y, t)) (Const. Part)

A16 ∃t(PRE(x, t)) → (CP(x, y) ↔ P(x, y))

Temporary parthood presents three main novelties with respect to the
corresponding relationship of dolce: (1) it is defined on all the particulars
that are in time; (2) the existence of sums is not guaranteed; (3) (A16) is new
(in dolce it was given as a possible extension).

dolce-core makes use of a few relations that satisfy the following struc-
tural axioms:

R(x, y, t) ∧ P(t′, t) → R(x, y, t′) (dissectivity)
R(x, y, t′) ∧R(x, y, t′′) ∧ SUM(t, t′, t′′) → R(x, y, t) (additivity)
R(x, y, t) ∧ CC(x′, x, t) ∧ CC(y′, y, t) → R(x′, y′, t) (substitutivity)

We can rephrase these constraints as follows: if the relation holds at a time,
it holds at any sub-time; if the relation holds at two times, then it holds also
at the time spanning the two (provided it exists); if the relation holds for two
entities at t, then it holds for entities temporally coincident with them at t.

These constraints are important in setting the dolce-core framework
and relations satisfying them are dubbed time regular. In particular, we en-
force the temporal parthood of dolce-core to be time regular.

3.3 Properties

dolce-core offers three different options to represent properties and tempo-
rary properties. The first option is standard and consists in the introduction
of an extensional predicate. With this choice one cannot represent whether the
property is related to contextual or social constructions nor its intensional as-
pects. In addition, to model change through time one needs to add a temporal
parameter as in expression F (a, t), i.e., ‘a has the property F at t’. This last
solution allows to represent dynamics in the properties but, as anticipated, is
not suited for roles [29]. For these reasons, predicates are adequate to model
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the basic elements of the user’s conceptualization of the world as well as the
categories and the primitive relations of dolce-core. The formalization of
properties as extensional predicates is straightforward and requires no special
formalism.

The second option consists in reifying properties, that is, in associating
them to entities in the category of concepts, c. In order to deal with concepts
and to relate concepts to an entity according to the properties the latter
has, a (possibly intensional) ‘instance-of’ relation, called classification (CF),
is introduced in the ontology. CF(x, y, t) stands for ‘x classifies y as it is at
time t’ and is characterized in dolce-core as a time regular relation that
satisfies also

A17 CF(x, y, t) → c(x)
A18 CF(x, y, t) → PRE(y, t)

The idea is to use concepts to represent properties for which the inten-
sional, contextual, or dynamic aspects are important (as in the case of roles
[18]): ‘being a student’, ‘being a catalyst’, ‘being money’.14 Since concepts
are temporal entities, they can be created, destroyed, etc. Note, however, that
they are mereologically constant i.e. they do not change through time with
respect to parthood:

A19 c(x) ∧ PRE(x, t) ∧ PRE(x, t′) → ∀y(P(y, x, t) ↔ P(y, x, t′))

The third option relies on the notions of individual quality, quality kind
and (quality-)space introduced in Sect. 2.1. Each individual quality, say “the
color of my car” or “the weight of John”, and its host are in a special re-
lationship called inherence (I). Formally, expression I(x, y), stands for “the
individual quality x inheres in the entity y”.15 This relationship binds a spe-
cific bearer (A21) and each quality existentially depends on the entity that
bears it (A22); in the previous examples the bearers are my car and John,
respectively. Finally, axiom (A23) states that qualities exist during the whole
life of their bearers.16

We anticipated that individual qualities are grouped into quality kinds,
say qi is the color-quality kind, qj the weight-quality kind, etc. These con-
straints are simple and we do not report them explicitly except for axiom
(A24) according to which an entity can have at most one individual quality
for each specific quality kind. Axioms (A25) and (A26) say that if two par-
ticulars coincide at t then they need to have qualities of the same kind and

14 Differently from [18], here we do not rely on logical definitions for concepts. The
intensional aspect is (partially) characterized by explicitly stating when concepts
are different.

15 In the original version of dolce this relation is called quality and written qt.
16 For those familiar with trope theory [5], qualities can be seen as sums of tropes.

Indeed, one can interpret trope substitution as a change of quality location. The
position adopted in dolce-core is compatible with trope theory without com-
mitting to the view that change corresponds to trope substitution.
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these qualities also coincide at t. In other terms, entities coincident at t must
have qualities that are indistinguishable at t. Axiom (A27) says that the sum
of qualities of the same kind that inhere in two objects inheres in the sum of
the objects (provided these sums exist).

A20 I(x, y) → q(x)
A21 I(x, y) ∧ I(x, y′) → y = y′

A22 q(x)→ ∃y(I(x, y))
A23 I(x, y) → ∀t(PRE(x, t) ↔ PRE(y, t))
A24 I(x, y) ∧ I(x′, y) ∧ qi(x) ∧ qi(x′) → x = x′

A25 CC(x, y, t) → (∃z(I(z, x) ∧ qi(z)) ↔ ∃z′(I(z′, y) ∧ qi(z′)))
A26 CC(x, y, t) ∧ I(z, x) ∧ I(z′, y) ∧ qi(z) ∧ qi(z′) → CC(z, z′, t)
A27 I(x, y) ∧ I(v, w) ∧ qi(x) ∧ qi(v) ∧ Sum(z, x, v) ∧ Sum(s, y, w) → I(z, s)

The location relation (L) provides the link between qualities and spaces.
First, we require regions (and in particular spaces) not to change over the
time they exist (A28). Expression L(x, y, t) is used to state “at time t, region
x is the location of the individual quality y” as enforced (at least in part)
by axioms (A30) and (A31).17 Each individual quality in qi must be located
at least in one of the associated spaces sij (axioms (A34) and (A35)). The
location in a single space is unique (A36) and a quality that has a location
in a space needs to have some location in that space during its whole life
(A37). (A38) says that two qualities coincident at t are also indistinguishable
with respect to their locations. Together with (A25) and (A26), this axiom
formalizes the substitutivity of temporary properties represented by qualities:
two entities that coincide at t are indistinguishable at t with respect to their
qualities.

Axioms (A32) and (A33) characterize the fact that the location of an indi-
vidual quality at t is the mereological sum of all the locations the quality has
during t, i.e., at all the sub-times of t. Note that if a is the region correspond-
ing to a property value of 1kg and b corresponds to a property value of 2kg,
then the sum of a and b is the region including just the two mentioned and
is distinguished from the region corresponding to the property value of 3kg.
The sum of locations must not be confused with the ‘sum’ of property values
since, in general, the latter strictly depends on the space structure while the
first does not.

A28 r(x) ∧ PRE(x, t) ∧ PRE(x, t′) → ∀y(P(y, x, t) ↔ P(y, x, t′))
A29 sij(x) ∧ sij(y) ∧ PRE(x, t) → PRE(y, t)
A30 L(x, y, t) → r(x) ∧ q(y)
A31 L(x, y, t) → PRE(y, t)

17 In dolce this relation is called quale and written ql. In dolce there is also a
distinction between the immediate quale (a non temporary relation) and the tem-
porary quale. dolce-core uses one temporary relation only since the temporal
qualities of an event e at t correspond to the temporal qualities of the maximal
part of e that spans t.
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A32 L(x, y, t) ∧ P(t′, t) ∧ L(x′, y, t′) ∧ sij(x) ∧ sij(x′) →
∀t′′(PRE(x, t′′) → P(x′, x, t′′))

A33 L(x′, y, t′) ∧ L(x′′, y, t′′) ∧ SUM(t, t′, t′′) ∧ SUM(x, x′, x′′)∧
sij(x′) ∧ sij(x′′) → L(x, y, t)

A34 L(x, y, t) ∧ qi(y) →
∨

j sij(x)
A35 q(y) ∧ PRE(y, t) → ∃x(L(x, y, t))
A36 L(x, y, t) ∧ L(x′, y, t) ∧ sjk(x) ∧ sjk(x′) → x = x′

A37 L(x, y, t) ∧ PRE(y, t′) ∧ sjk(x) → ∃x′(L(x′, y, t′) ∧ sjk(x′))
A38 L(x, y, t) ∧ CC(x′, x, t) ∧ CC(y′, y, t) → L(x′, y′, t) (L-substitutivity)

3.4 Objects and Events

dolce-core characterizes the distinction between objects and events follow-
ing the discussion in Sect. 2.4. In this approach events are primarily in time
while objects are primarily in space (in the case of physical objects) or in
other dimensions. Since by (A10) qualities, concepts, and regions are in time
as well, their participation to events (like their creation or destruction) is
plausible. One can investigate this position further and note that q, c and r

can be considered as specializations (subcategories) of o. However, to ensure
generality, we made the assumption that qualities, concepts, and regions form
categories disjoint from the category of objects.

The dolce-core unified framework relies on the participation relation
(PC) to relate the temporal qualities of events and the atemporal qualities of
objects. Participation is taken to be a time regular relation defined between
objects and events: PC(x, y, t) stands for “the object x participates in the
event y at t”. Axioms (A40) and (A41) capture the mutual existential de-
pendence between events and objects. Axioms (A42) and (A43) make explicit
the fact that participation relies on unity criteria neither for objects nor for
events [26]. This simply means that the participation relation is not bound
by these unity criteria: an object does not participate to an event as a whole
(its parts participate to it as well) and an event does not individuate its par-
ticipants by the virtue of some special unity property (any larger event has
those participants also). Participation, of course, can be used to define more
specific relations that take into account unity criteria. Since these criteria of-
ten depend on the purposes for which one wants to use the ontology, they are
not discussed here. Axiom (A44) makes explicit that a quality kind directly
related to events cannot be also directly related to objects and vice versa.
Note that the exact list of quality kinds that apply to objects and events are
not fixed, they depend on the modeling interests of the user.

A39 PC(x, y, t) → o(x) ∧ e(y)
A40 e(x) ∧ PRE(x, t) → ∃y(PC(y, x, t))
A41 o(x) ∧ PRE(x, t) → ∃y(PC(x, y, t))
A42 PC(x, y, t) ∧ P(y, y′, t) ∧ e(y′) → PC(x, y′, t)
A43 PC(x, y, t) ∧ P(x′, x, t) → PC(x′, y, t)
A44 I(x, y) ∧ qi(x) ∧ e(y) ∧ I(z, v) ∧ qj(z) ∧ o(v)→ ¬qj(x) ∧ ¬qi(z)
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Regarding the property of ‘being primarily in time’, we introduce the qual-
ity kind ‘being time-located’.18 Let us use tq for the quality kind for time
and recall that t, introduced in Sect. 3.1, is the unique space associated to tq.
dolce-core (as well as dolce) distinguishes direct qualities, i.e., properties
that can be predicated of x because it has a corresponding individual quality,
from indirect qualities, i.e., properties of x that are inherited from the relations
x has with other entities. For instance, events have a direct temporal location,
while objects are located in time just because they participate to events [28].
Analogously, physical objects have a direct spatial location, while events are
indirectly located in space through the spatial location of their participants.

(A45) makes explicit the temporal nature of the parameter t in the location
relation. (A46) guarantees that the events have a time-quality. These axioms,
together with (A10) and the axioms on inheritance and location guarantee
that, for events, ‘being in time’ reduces to having a time-quality located in
t. In addition, together with (A41) and (A44) they show that objects are in
time because of their participation in events.

A45 L(x, y, t) ∧ tq(y) → x = t
A46 e(x)→ ∃y(tq(y) ∧ I(y, x))

Note that if we define the spatial location of events via the location of
their participants, and the life of an object as the minimal event in which it
(maximally) participates, we obtain that an object spatio-temporally coincides
with its life. The distinction between participation and temporary parthood
ensures that these two entities, although spatio-temporally coincident, are not
identified.

4 Conclusions

In writing this introductory paper, we had three major goals: (1) to distinguish
foundational studies from the rest of the ontology research, (2) to introduce
topics and methodology typical of foundational ontology and (3) to show a
concrete example of how these theoretical arguments can be used to build a
foundational ontology. Unfortunately, in literature there is no good reference
that presents this research area at length and any attempt to introduce these
topics in the limited space of a paper are deemed to be unsatisfactory on
several aspects. At least, we hope that the paper gives the average reader
the opportunity to appreciate the goals of this area of research as well as
the subtle interactions between philosophy, logic and representational issues.
Finally, we are glad of the opportunity to present the dolce-core system of
Sect. 3 which is the first step, after the release of the dolce ontology in 2002,
toward a new version of this ontological system.

18 Analogously, the ontology comprises the quality kind ‘being space-located’ which
is not presented here.
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1 Introduction

The domain of software is a primary candidate for being formalized in an
ontology. On the one hand, the domain is sufficiently complex with different
paradigms (e.g., object orientation) and different aspects (e.g., security, le-
gal information, interface descriptions, etc.). On the other hand, the domain
is sufficiently stable, i.e., new paradigms and aspects occur rather seldom.
Capturing this stable core in a reference ontology for software can be fruit-
ful in order to prevent modeling from scratch. For example, the approaches
described in the Chapter “Ontologies and Software Engineering” introduce
individual formalizations of at least one paradigm or aspect although they
share basic principles.

In this chapter, we present such a reference ontology for software, called
the Core Software Ontology, which formalizes common concepts in the soft-
ware engineering realm, such as data, software with its different shades of
meaning, classes, methods, etc. As we cannot possibly formalize a complete
and comprehensive view of software, the Core Software Ontology is designed
for extensibility in different directions. In order to demonstrate the extensi-
bility, the chapter presents three examples of how to extend the core ontology
with the notions of libraries, policies, and software components.

The reference nature of such an ontology makes it important to clarify
the intended meanings of its concepts and associations. Otherwise, users of-
ten have a hard time untangling the intended meanings. The prevailing type
of ontologies, namely ones which are lightweight and quite often reduced to
simple taxonomies, are not eligible for this purpose because they exhibit the
following shortcomings (as identified in [10]):

Conceptual Ambiguity: We will consider an ontology to be conceptually am-
biguous if it is difficult for users to understand the intended meaning
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of concepts, the associations between the concepts, and the relationships
between concepts and modeled entities.

Poor Axiomatization: Even when an ontology is easy to understand by many
or most of its users, it may have only a poor axiomatization. Such a poor
axiomatization will lead to an unsatisfying restriction of possible logical
models (cf. Chapter “What is an Ontology?”).

Loose Design: An ontology is afflicted with loose design, if it contains mod-
eling artifacts. Modeling artifacts are concepts and associations which do
not bear ontological meaning.

Narrow Scope: An ontology exhibits narrow scope when it is unclear how
a distinction could be made between the objects and events within an
information system (regarding data and the manipulation of data) and the
real-world objects and events external to such a system. As an example
consider the distinction between a user account and its corresponding
natural person(s).

In order to remedy the shortcomings, we build the Core Software Ontology
on a foundational ontology (cf. Chapter “Foundational Choices in DOLCE”)
and apply content ontology design patterns (cf. Chapter “Ontology Design
Patterns”). We demonstrate that the formalization of the software domain
can greatly benefit from the use of the DOLCE foundational ontology and the
content ontology design patterns extracted from Descriptions & Situations,
the Ontology of Plans, as well as the Ontology of Information Objects.

The chapter is structured as follows: we start by presenting the origin and
motivation of our ontology in Sect. 2 in order to understand which aspects have
been taken into account and why. Subsequently, we sketch the formalization
of the Core Software Ontology in Sect. 3 and some of its extensions in Sect. 4.
For the complete formalization we refer the reader to [11,12]. Section 5 shows
examples of how the four shortcomings are improved as a proof of concept.
We give an overview of related work in Sect. 6 and conclude in Sect. 7.

2 Background

An initial ontology for software certainly cannot cover every single paradigm
and aspect related to software. As an example, we limit ourselves to the con-
cept of object orientation. In order to understand which aspects have been
taken into account and why, we present here the origin and motivation of
our ontology, viz., the work presented in [11]. The motivation for building
the ontology in this work is the missing conceptual coherence of application
server and Web service descriptors. We motivate that a careful and rigor-
ous modeling of the computational domain is necessary to automate – or at
least facilitate – some development and management tasks related to software
components and Web services. Several use cases are identified that give us
indications of what concepts a suitable ontology must contain.
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The use cases relevant for developing and managing software components
in application servers are: libraries and their dependencies, conflicting licenses
of libraries, capability descriptions, component classification and discovery, se-
mantics of parameters, support in error handling, reasoning with transactional
settings and reasoning with security settings.

The use cases relevant for developing and managing Web services are: an-
alyzing message contexts, selecting service functionality, detecting loops in the
interorganisational workflow, incompatible inputs and outputs, relating com-
munication parameters, monitoring of changes, aggregating service informa-
tion and quality of service.

Altogether, the use cases let us derive a set of modeling requirements
for deciding which aspects our ontology should formalize. The model-
ing requirements are: (i) libraries, licenses, component profiles, component
taxonomies, API descriptions, semantic API descriptions, access rights and
workflow information of software components and (ii) service profiles, ser-
vice taxonomies, policies, workflow information, API descriptions, as well as
semantic API descriptions of Web services.

We do not claim that the modeling requirements are exhaustive. However,
they allow us to constrain the initial modeling horizon. As demonstrated in
the following, the ontology is designed in an extensible way such that further
modeling requirements can be met easily.

3 Formalization of the Software Domain

Our contribution starts in this section with the Core Software Ontology (CSO)
which introduces fundamental concepts of the software domain such as soft-
ware itself, data, classes, or methods. The purpose of the ontology is to provide
a reference by specifying the intended meanings of software terms as precisely
as possible, and to prevent the shortcomings mentioned in the introduction.

The contribution continues in Sect. 4 where we extend the Core Soft-
ware Ontology in different directions, e.g., in the direction of software com-
ponents, resulting in a Core Ontology of Software Components. All of the
ontologies have been presented in detail in [11, 12] and are available at
http://cos.ontoware.org.

Figure 1 shows that we reuse the foundational ontology DOLCE [9] as a
modeling basis. DOLCE and its extensions Descriptions & Situations (DnS)
[5], the Ontology of Plans (OoP) [4], and the Ontology of Information Objects
(OIO) [4] provide us with content ontology design patterns which we apply
for formalizing the software domain. For extensive running examples please
refer to [11,12].

3.1 Software vs. Data

We start our discussion of the Core Software Ontology with a detailed discus-
sion of software and data. In order to clarify both concepts, which are heavily
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Fig. 1. Overview of the ontologies as UML package diagram. Packages represent
ontologies; dotted lines represent dependencies between ontologies. An ontology O1

depends on O2 if it specializes concepts of O2, has associations with domains and
ranges to O2 or reuses its axioms

inflicted by polysemy, it is necessary to identify and formalize the entities
of the computational domain. The computational domain has a reality of its
own, consisting of data manipulated by programs that implement algorithms.
The programs that manipulate the data are usually referred to as software.
Upon close inspection, it seems that the term software is overloaded and refers
to at least three different concepts:

1. The encoding of an algorithm specification in some kind of representation.
Encoding can be either in mind, on paper, or any other form. The Quick-
sort algorithm can be represented as Java or pseudo code, for instance.
This is SoftwareAsCode (which we abbreviate to Software) and is a kind
of OIO:InformationObject.1

2. The realization of the code in a concrete hardware. These realizations
are the DOLCE:PhysicalEndurants that are stored on hard disc or resid-
ing in memory. Henceforth, we call them ComputationalObjects (a special
kind of OIO:InformationRealization). This could be the appearance of the

1 Throughout the chapter, concepts and associations are written in sans serif and
are labelled in a namespace-like manner. Namespace-prefixes indicate the on-
tology where concepts and associations are defined. If no namespace is given,
concepts and associations are assumed to be defined in the ontology currently
discussed. With respect to the formulae given in the following, the reader might
refer to Chapters “Description Logics, Ontologies in F-Logic, Resource Descrip-
tion Framework (RDF), Web Ontology Language: OWL, Ontologies and Rules”
for the logic background.
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Quicksort algorithm in main memory that can be interpreted and exe-
cuted by the CPU. Hence, the difference between 1 and 2 is that 2 is
physically present in some hardware.

3. The running system, which is the result of an execution of a Computational-
Object. This is the form of software which manifests itself in a sequence of
activities in the computational domain, e.g., the increment of a variable,
the comparison of data, the storage of data on the hard disc, etc. This form
of software is a DOLCE:Perdurant which we call ComputationalActivity.

ComputationalObjects (item 2) are a specialization of OIO:Information-
Realization (any entity that realizes an OIO:InformationObject) as introduced
in the Ontology of Information Objects. ComputationalActivities (item 3)
are a specialization of OoP:Activity as introduced in the Ontology of Plans.
ComputationalObjects and ComputationalActivities are the entities that live in
the computational domain.

ComputationalObjects are characterized by the fact that they are neces-
sarily dependent on Hardware which is a DOLCE:PhysicalObject. A suitable
dependence association is axiomatized in DOLCE and is called specifically-
ConstantlyDependsOn. A ComputationalObject is considered here as a spatio-
temporally bounded entity, therefore it exists for the time a memory cell is
realizing a certain Software, for instance. Copies of ComputationalObjects in
the same or another Hardware are different, although related by some kind of
“copy” association. For example, in the case of mobile agents, where people
refer to a mobile agent as a piece of software that can move from machine
to machine executing the “same” process, it is useful to make agents distinct
because the “same” agent can perform differently from machine to machine.
The similarity has to be caught via a specialized association, such as copy
(which we do not define here) rather than via logical identity.

The execution of a ComputationalObject leads to ComputationalActivities.
ComputationalActivities require at least one ComputationalObject as a partici-
pant. The definitions below formalize the described properties.

(D1) ComputationalObject(x) =def OIO:InformationRealization(x) ∧
∀y(DOLCE:participantIn(x, y) → ComputationalActivity(y)) ∧
∃d(DOLCE:specificallyConstantlyDependsOn(x, d) ∧ Hardware(d))

(D2) ComputationalActivity(x) =def OoP:Activity(x) ∧
∀y(DOLCE:participantIn(y, x) → ComputationalObject(y)) ∧
∃c(DOLCE:participantIn(c, x) ∧ ComputationalObject(c))

(D3) DOLCE:specificallyConstantlyDependsOn(x, y) =def

(∃t(DOLCE:presentAt(x, t)) ∧ ∀t(DOLCE:presentAt(x, t) →
DOLCE:presentAt(y, t)))

(D4) DOLCE:presentAt(x, t) =def ∃t′(DOLCE:qlT (t′, x) ∧ DOLCE:part(t, t′))

Regarding item 1, we characterize Software as an OIO:InformationObject.
Accordingly, we specialize the design pattern represented by the Ontology
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Fig. 2. The classification of software and data. Concepts and associations taken
from DOLCE, Descriptions & Situations (DnS), the Ontology of Plans (OoP), the
Ontology of Information Objects (OIO) are labelled with a namespace

of Information Objects [4]. First, we constrain the OIO:realizedBy associa-
tion to ComputationalObjects. Second, we say that Software OIO:expresses an
OoP:Plan (cf. Fig. 2 for an overview). The OoP:Plan consists of an arbitrary
number of ComputationalTasks, which DnS:sequence ComputationalActivities
(cf. Definition (D6) below). As explained in the Ontology of Plans [4], Tasks
are the descriptive counterparts of OoP:Activities which are actually carried
out. Definition (D5) below captures this intuition of software.

(D5) Software(x) =def OIO:InformationObject(x) ∧ ∀y(OIO:realizedBy(x, y) →
ComputationalObject(y)) ∧ ∃p, t(OoP:Plan(p) ∧ OIO:expresses(x, p) ∧
ComputationalTask(t) ∧ DnS:defines(p, t))

(D6) ComputationalTask(x) =def OoP:Task(x) ∧ ∀y(DnS:sequences(x, y) →
ComputationalActivity(y))

We consider the data that is manipulated by the programs as Comput-
ationalObjects as well. This reflects the fact that the appearances in the main
memory or on the hard disc can be interpreted as instructions for the CPU
(i.e., as software) or can be treated as data from the viewpoint of another
program. For example, the operating system manipulates application software
(loading and unloading it into memory, etc.) much like application software
manipulates application data.

Hence, Data can also be considered as a special kind of OIO:Information-
Object. The difference to Software is that Data does not OIO:express an
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OoP:Plan.2 Furthermore, we introduce AbstractData as a special kind of Data
that identifies something different from itself. An example for AbstractData
might be a user account in a Unix operating system which has a physical
counterpart in the real world. Thus, we say that AbstractData identifies a
DOLCE:Particular (a natural person, a company, a physical object) [4]. The
identifies association is a specialization of OIO:about. Definitions (D7), (D8),
and (D9) capture these intuitions.

(D7) Data(x) =def OIO:InformationObject(x) ∧ ∀y(OIO:realizedBy(x, y) →
ComputationalObject(y))

(D8) AbstractData(x) =def Data(x)∧∃y(DOLCE:Particular(y)∧identifies(x, y))
(D9) identifies(x, y) =def

OIO:about(x, y) ∧ AbstractData(x) ∧ DOLCE:Particular(y) ∧ x �= y

The theorem (T1) below is an entailment of our axiomatization. (T1)
states that Software must also be considered as Data. As discussed before,
this is intuitively clear because an algorithm can be considered as Data from
the viewpoint of a compiler, for example. Comparing (D5) and (D7), we
find that Software additionally OIO:expresses an OoP:Plan with at least one
ComputationalTask. Thus, Software is strictly more specific than Data.

(T1) Software(x)→ Data(x)

3.2 Interfaces, Classes, and Methods

Building on the fundamental notions of software and data introduced in the
previous section, we now formalize the most important concepts of object
orientation. We begin with a Class in Definition (D10) as a special kind of
Software that encapsulates an arbitrary number of Data and an arbitrary
number of Methods. Vice versa, a Method is defined as being a part of a
Class, having input and output parameters and throwing exceptions.3 The
associations between Methods and their parameters and exceptions are estab-
lished via methodRequires, methodYields, and methodThrows (cf. (D11), (A1),
(A2), and (A3)). Exceptions are special kinds of Classes as defined in (D12).
dataType relates Data with specific kinds of DOLCE:Regions in the case of
simple datatypes, such as strings or integers, or with other Data in the case
of complex datatypes, e.g., other classes (cf. Axiom (A4)).

(D10) Class(x) =def Software(x) ∧ ∀y(DOLCE:properPart(y, x) →
(Data(y) ∨Method(y)))

(D11) Method(x) =def Software(x) ∧ ∀y(DOLCE:properPart(x, y) → Class(y))

2 The reader may note, that we occasionally use concept and association names
(written in sans serif and preceded by a namespace to clarify their origin) as
subjects, objects, and predicates of the sentences in the text.

3 The OoP:Plan of the Class contains all Plans of its Methods as alternatives.
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(D12) Exception(x) =def Class(x) ∧ ∀y(methodThrows(y, x) → Method(y))
(D13) DOLCE:properPart(x, y) =def DOLCE:part(x, y) ∧ ¬DOLCE:part(y, x)

(A1) methodRequires(x, y) → Method(x) ∧ Data(y)
(A2) methodYields(x, y) → Method(x) ∧ Data(y)
(A3) methodThrows(x, y) → methodYields(x, y) ∧ Exception(y)
(A4) dataType(x, y) → Data(x) ∧ (Region(y) ∨ Data(y))

We here introduce the notion of an Interface in order to group methods
and parameters independently of the Classes they belong to (cf. (D14) and
(A5) below). The Interface extends the notion of Java interfaces because it
allows to grasp additional information as explained above. In our ontology,
the Interface has to be classified as Data as it cannot be executed, i.e., it
does not OIO:express an OoP:Plan. Different Classes may implement the same
Interface as stated in (A6). In doing so, we are able to model that different
Classes provide names for Methods with comparable functionality (e.g., get-
Price() vs. getCost()).

(D14) Interface(x) =def Data(x) ∧ ∀m(inferfaceRequires(x,m) →
(∃p(OIO:expresses(m, p) ∧ OoP:Plan(p)) ∧ ∀d(methodRequires(m, d) →
∃e(DOLCE:Particular(e) ∧ OIO:about(d, e)))))

(A5) interfaceRequires(x, y) →
DOLCE:properPart(y, x) ∧ Interface(x) ∧Method(y)

(A6) implements(x, y) → Class(x) ∧ Interface(y) ∧
∀m1∃m2(interfaceRequires(y,m1) → DOLCE:properPart(x,m2))

3.3 Workflow Information

Workflow information, such as method invocations, also belong to the fun-
damental notions of software. In order to model such information, we use
and specialize the ontology design pattern of the Ontology of Plans which in
turn builds on Descriptions & Situations. We do so because the design pat-
tern allows abstracting from concrete, i.e., actually executed, workflows. That
means, we use ComputationalTasks, which are OoP:Tasks, to represent invoca-
tions, the addition of two integers, etc. rather than the actual executions of
such tasks (which would be ComputationalActivities). ComputationalTasks are
grouped and linked via the OoP:successor and OoP:predecessor associations in
an OoP:Plan (a DnS:SituationDescription).4

The workflow information we need to model is twofold. First, we have to
model invocations between software. Second, we also need to model the inputs
and outputs of tasks because the Ontology of Plans does not provide such
capabilities.
4 The OoP:predecessor and OoP:successor associations hold between OoP:Tasks, and

are different from OoP:precondition and OoP:postcondition associations, which
hold between OoP:Plans and DnS:SituationDescriptions.



An Ontology for Software 391

Invocations Between Software

We start with two associations, viz., executes and accesses, to formalize in-
vocations between Software. Below, (D15) introduces executes as “shortcut”
between Software, such as Class or Method, and a ComputationalTask. For ex-
ample, the doGet() method of a servlet executes an invocation task.

(D16) introduces accesses as “shortcut” between the ComputationalTask
and the Software or Data that is being called or modified by the task. The
sequence of executes and accesses can be further abbreviated by invokes which
is declared as being transitive (cf. (D17) and (A7)). Axioms (A8) and (A9) are
introduced for convenience. Regarding (A8), we say that also a Class executes
a ComputationalTask when one of its Methods executes this task. Regarding
(A9), we state that invokes also holds when we have succeeding tasks.

(D15) executes(x, y) =def Software(x) ∧ ComputationalTask(y) ∧
∃co, ca, p(ComputationalObject(co) ∧ ComputationalActivity(ca) ∧
OoP:Plan(p) ∧ OIO:realizedBy(x, co) ∧ OIO:expresses(x, p) ∧
DnS:defines(p, y) ∧ DnS:sequences(y, ca) ∧ DOLCE:participantIn(co, ca))

(D16) accesses(x, y) =def

ComputationalTask(x) ∧ Data(y) ∧ ∃ca, co(DnS:sequences(x, ca) ∧
ComputationalActivity(ca) ∧ DOLCE:participantIn(co, ca) ∧
ComputationalObject(co) ∧ OIO:realizes(co, y))

(D17) invokes(x, y) =def ∃z(executes(x, z) ∧ accesses(z, y))

(A7) invokes(x, z) ← invokes(x, y) ∧ invokes(y, z)
(A8) executes(x, y) ←

(executes(z, y) ∧Method(z) ∧ DOLCE:properPart(z, x) ∧ Class(x))
(A9) invokes(x, z) ← executes(x, y) ∧ OoP:successor(y, t) ∧ accesses(t, z)

Inputs and Outputs

Besides invocations, we also need to model the Inputs and Outputs of tasks. The
Ontology of Plans does not provide such capabilities. Inputs and Outputs are
required when we want to represent the information of a WS-BPEL workflow,
for instance. Inputs and Outputs are DnS:Roles which are both DnS:playedBy
Data and DnS:definedBy an OoP:Plan (cf. (D18), (D19) and (A12)). The re-
lationships between Inputs (Outputs) and ComputationalTasks are modeled by
inputFor / outputFor, as specified in (A10), and (A11).5 The difference be-
tween Inputs and Outputs is that the former must be present before the latter
(cf. (A13)).

(D18) Input(x) =def DnS:Role(x) ∧ ∀y(DnS:playedBy(x, y) → Data(y))
(D19) Output(x) =def DnS:Role(x) ∧ ∀y(DnS:playedBy(x, y) → Data(y))

5 Both are specializations of DnS:modalTarget, viz., the generic association holding
between DnS:Roles and DnS:Courses.
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(A10) inputFor(x, y) →
DnS:modalTarget(x, y) ∧ Input(x) ∧ ComputationalTask(y)

(A11) outputFor(x, y) →
DnS:modalTarget(x, y) ∧ Output(x) ∧ ComputationalTask(y)

(A12) Input(x) ∨ Output(x) → ∃p(OoP:Plan(p) ∧ DnS:defines(p, x))
(A13) ComputationalTask(ct) → ∀d1, d2(∀i, o(inputFor(i, ct) ∧

DnS:playedBy(i, d1) ∧ outputFor(o, ct) ∧ DnS:playedBy(o, d2)) →
∃t1, t2(presentAt(d1, t1) ∧ presentAt(d2, t2) ∧ t1 < t2))

4 Extensions to the Core Software Ontology

In this section, we continue our contribution of formalizing the software do-
main by extending the Core Software Ontology in three different directions.
First, we start with the minor extension of libraries and licenses which is put in
the Core Software Ontology itself. Second, our focus are access rights and poli-
cies which were originally put in the Core Software Ontology as well. However,
[7] continued to extend in this direction and emancipated their formalization
in a Core Policy Ontology. Third, an extra ontology module, i.e., the Core
Ontology of Software Components (COSC), is devoted to the paradigm of soft-
ware componentry. The reader may note, that other extensions are possible,
e.g., the Core Ontology of Web Services as presented in [12].

4.1 Libraries and Licenses

We introduce the concepts of SoftwareLibrary and License in (D20) and (D21)
below. Both occur in many programming languages and are a common means
in software engineering. A SoftwareLibrary consists of a number of CSO:Classes
and is classified as CSO:Data because it cannot be executed as a whole. The
concept License is a special kind of LegalContract as introduced in the Core
Legal Ontology [3].

(D20) SoftwareLibrary(x) =def CSO:Data(x) ∧ ∀c(DOLCE:properPart(x, c) →
CSO:Class(c))

(D21) License(x) =def

LegalContract(x) ∧ ∃y(CSO:Software(y) ∧ DnS:involves(x, y))

Very often there are functional dependencies between libraries that are
revealed only during run time (e.g., by ClassNotFoundExceptions in Java).
For example, a library lib1.jar might depend on lib2.jar which in turn
depends on lib3.jar and so forth. It is a very tedious task to keep track
of such dependencies and, additionally, to check whether there are conflicts
between libraries in this dependency graph. In order to reason with such infor-
mation, we introduce further associations and axioms, such as the transitive
libraryDependsOn in (A14) and (A15) and the symmetric libraryConflictsWith
in (A16) and (A17) below, while in (A18) we formalize indirect conflicts.
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The existence of incompatible licenses further complicates the situation.
Even if libraries in the dependency graph do not conflict, they might have
incompatible licenses. In order to reason with such information, we further
introduce the association releasedUnder between SoftwareLibraries and Licenses
in (A19), as well as the symmetric licenseIncompatibleWith in (A20) and (A21).

(A14) libraryDependsOn(x, y) →
DOLCE:specificallyConstantlyDependsOn(x, y) ∧ SoftwareLibrary(x) ∧
SoftwareLibrary(y)

(A15) libraryDependsOn(x, z) ←
libraryDependsOn(x, y) ∧ libraryDependsOn(y, z)

(A16) libraryConflictsWith(x, y) → SoftwareLibrary(x) ∧ SoftwareLibrary(y)
(A17) libraryConflictsWith(x, y) ↔ libraryConflictsWith(y, x)
(A18) libraryConflictsWith(x, z) ←

libraryDependsOn(x, y) ∧ libraryConflictsWith(y, z)
(A19) releasedUnder(x, y) →

OIO:expresses(x, y) ∧ SoftwareLibrary(x) ∧ License(y)
(A20) licenseIncompatibleWith(x, y) → License(x) ∧ License(y)
(A21) licenseIncompatibleWith(x, y) ↔ licenseIncompatibleWith(y, x)

4.2 Access Rights and Policies

In general, access rights are required to state that access is granted for a
specific user on a specific resource. Policies can be regarded as a generalization
of access rights. They define high-level guidelines that constrain the behavior
of an information system.

We use and specialize Descriptions & Situations for modeling access rights
and policies. The design pattern represented by Descriptions & Situations
provides us with the basic primitives of context modeling, such as the notion
of roles, which allows us to talk about subjects and objects of a policy on
the abstract level, i.e., independent of the entities that play such roles. As
described in [5], Descriptions & Situations therefore distinguishes between
descriptive entities and ground entities.

In a first step, it is necessary to introduce further ground entities which
are required later on. (D22) below specifies a User as a special kind of
AbstractData which identifies a DnS:Agent. The intuition behind User is a
user account in an operating system. Hence, Users identify DnS:Agents which
are either DOLCE:AgentivePhysicalObjects or DOLCE:AgentiveSocialObjects. In
most cases, a natural person is associated with such an account. We aggregate
Users to a UserGroup by exploiting DnS:Collection in (D23).

(D22) User(x) =def AbstractData(x) ∧ ∀y(identifies(x, y) → DnS:Agent(y))
(D23) UserGroup(x) =def DnS:Collection(x) ∧ ∀y(DnS:member(x, y) →

User(y))
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In a second step, we specialize the descriptive entities of Descriptions &
Situations, viz., DnS:Roles, DnS:Courses, DnS:Parameters, and DnS:Situation-
Descriptions as follows. First, we introduce two DnS:Roles to represent the
subject and the object of a policy in (D24) and (D25). PolicySubjects are
DnS:AgentiveRoles and can be DnS:playedBy Users or UserGroups. PolicyObjects
are DnS:NonAgentiveRoles and can be DnS:playedBy Data. Second, we need to
represent the predicate of a policy by a special kind of DnS:Course. (D6)
already introduces ComputationalTask which meets this requirement. We fur-
ther aggregate such tasks to TaskCollections in (D26). The intuition behind
TaskCollections are the security “roles” in operating systems or database sys-
tems. This means that a TaskCollection groups ComputationalTasks, such as
read, write, or execute. Third, we introduce Constraints as special kinds of
DnS:Parameter. The ComputationalTask or TaskCollections can be constrained
in some way, e.g., a Web service policy might state that an invocation is only
possible with Kerberos or X509 authentication (cf. (D27)). Finally, we con-
struct a PolicyDescription, viz., a special kind of DnS:SituationDescription, from
the aforementioned concepts.6 Axiom (A22) requires each PolicyDescription to
have a PolicySubject, ComputationalTask, and a PolicyObject. Figure 3 provides
an overview.

(D24) PolicySubject(x) =def DnS:AgentiveRole(x) ∧ ∀y(DnS:playedBy(x, y) →
(User(y) ∨ UserGroup(y))) ∧ ∀z(DnS:attitudeTowards(x, z) →
(ComputationalTask(z) ∨ TaskCollection(z)))

(D25) PolicyObject(x) =def DnS:NonAgentiveRole(x) ∧
∀y(DnS:playedBy(x, y) → Data(y)) ∧ ∀z(DnS:attitudeTowards(x, z) →
(ComputationalTask(z) ∨ TaskCollection(z)))

PolicyDescriptionComputationalTask

DnS:attitude
Towards

UserGroup

PolicySubject

DnS:definesDnS:playedBy

Constraint

TaskCollection DnS:unifies

DOLCE:member

PolicyObject

DOLCE:member

User

DnS:attitude
Towards

Data

DnS:playedBy
DnS:requisiteFor

DnS:attitude
Towards

DnS:defines

DnS:defines

DnS:defines

DnS:attitude
Towards

Fig. 3. The Policy Description as UML class diagram. Grey classes represent
ground entities, white classes the descriptive entities of Descriptions & Situations
or specializations

6 Note that DnS:unifies is the generic association between DnS:SituationDescriptions
and DnS:Collections.
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(D26) TaskCollection(x) =def DnS:Collection(x) ∧ ∀y(DnS:member(x, y) →
ComputationalTask(y))

(D27) Constraint(x) =def DnS:Parameter(x) ∧ ∀y(DnS:requisiteFor(x, y) →
(ComputationalTask(y) ∨ TaskCollection(y))) ∧ ∀z(DnS:defines(z, x) →
PolicyDescription(z))

(D28) PolicyDescription(x) =def DnS:SituationDescription(x)∧
∀y(DnS:unifies(x, y) → TaskCollection(y)) ∧ ∀z(DnS:defines(x, z) →
Constraint(z) ∨ ComputationalTask(z) ∨ PolicySubject(z) ∨
PolicyObject(z))

(A22) PolicyDescription(x)→
∃s, t, o(DnS:defines(x, s) ∧ PolicySubject(s) ∧ DnS:defines(x, t) ∧
ComputationalTask(t) ∧ DnS:defines(x, o) ∧ PolicyObject(o))

It is worthwhile to spend some words on the DnS:attitudeTowards asso-
ciation between DnS:Roles and DnS:Courses. The DnS:attitudeTowards asso-
ciation is a special kind of DnS:modalTarget and can be considered the
descriptive counterpart of the DOLCE:participantIn association. It is used to
state attitudes, attention, or even subjection that an object can have with
respect to an action or process. In our case, DnS:attitudeTowards is used to
state the relationship between PolicySubjects, as well as PolicyObjects, and
the ComputationalTask or TaskCollection. Descriptions & Situations provides
us with three initial specializations of DnS:attitudeTowards, viz., DnS:right-
Towards, DnS:empoweredTo, and DnS:obligedTo. We further refine DnS:right-
Towards in (A23) below.

(A23) computationalRightTowards(x, y) → DnS:rightTowards(x, y) ∧
PolicySubject(x) ∧ (ComputationalTask(y) ∨ TaskCollection(y))

(A24) computationalRightTowards(x, z) ← computationalRightTowards(x, y) ∧
TaskCollection(y) ∧ DnS:member(y, z) ∧ ComputationalTask(z)

(A25) (DnS:playedBy(x, z) ∧ PolicySubject(x) ∧ UserGroup(z)) →
∃y(DnS:member(z, y) ∧ User(y) ∧ DnS:playedBy(x, y))

(A24) and (A25) infer the closure of all resulting rights considering User-
Groups and TaskCollections. A PolicySubject is granted rights on all tasks which
are members of the TaskCollection. Similarly, a User is granted all access rights
which are granted for his UserGroup.

4.3 Core Ontology of Software Components

Software componentry is a loosely defined term for a software technology
proposing that software should be developed by glueing prefabricated com-
ponents together as in the field of electronics or mechanics. Software compo-
nentry also proposes encapsulating software functionality for multiple use in
a context-independent way, composable with other components, and as a unit
of independent deployment and versioning.
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Software components often take the form of object-oriented classes con-
forming to a framework specification. However, software components differ
from classes. The basic idea in object-oriented programming is that soft-
ware should be written according to a mental model of the actual or imag-
ined objects it represents. Software componentry, by contrast, makes no such
assumptions.

The framework specifications prescribe (1) interfaces that must be im-
plemented by components and (2) protocols that define how components in-
teract with each other. Examples of framework specifications are Enterprise
JavaBeans (EJB) and the Component Object Model (COM) from Microsoft.

The definitions below formalize this intuition of software component as
closely as possible. Assuming the object-oriented paradigm, (D31) below
states that a SoftwareComponent is a special kind of CSO:Class that conforms
to a FrameworkSpecification. According to the definition above, a Framework-
Specification is (1) a DOLCE:Collection of CSO:Interfaces and (2) a special kind
of OoP:Plan which specifies the interaction of components (cf. (D29)). Con-
formance means that at least one CSO:Interface prescribed by the Framework-
Specification has to be implemented by the SoftwareComponent (cf. (D30)).

(D29) FrameworkSpecification(x) =def

OoP:Plan(x) ∧ ∃y(DOLCE:Collection(y) ∧ DnS:unifies(x, y) ∧
∀z(DOLCE:member(y, z) → CSO:Interface(z)))

(D30) conforms(x, y) =def CSO:Class(x) ∧ FrameworkSpecification(y) ∧
∃i, c(CSO:Interface(i) ∧ DOLCE:member(c, i) ∧ DOLCE:Collection(c) ∧
DnS:unifies(y, c) → CSO:implements(x, i))

(D31) SoftwareComponent(x) =def

CSO:Class(x) ∧ ∃y(conforms(x, y) ∧ FrameworkSpecification(y))

The Core Ontology of Software Components also introduces component
profiles that group relevant information of a software component such as its
interfaces, policy descriptions, or plans. We expect that such an aggregation
makes browsing and querying for developers more convenient. The component
profile is envisioned to act as the central information source for a specific
software component rather than having bits and pieces all over the place.

(D32) and (A26) define a Profile as follows: First, it aggregates CSO:Policy-
Descriptions, an OoP:Plan, the required SoftwareLibraries, the implemented In-
terfaces and additional Characteristics of a specific Software entity. Second, the
link to the described Software is specified via the describes association. (D33)
specializes this definition to ComponentProfile.

Often, we need to express certain capabilities or features of components,
such as the version, transactional or security settings. For this purpose, we
introduce Characteristics on a Profile in (D34). It is expected that Component-
Profiles are specialized and put into a taxonomy. For example, we might
define a DatabaseConnectorProfile as a ComponentProfile that provides for
specific Characteristics describing whether the underlying database supports
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transactions or SQL-99. A taxonomic structure further accommodates the
developer in browsing and querying for ComponentProfiles in his system.

Finally, (A27) specifies the profiles association as a “catch-all” for DnS:-
defines, DnS:unifies, OIO:about, as well as OIO:expressedBy. This is done for
convenience in order to relieve the developer from modeling details, who will
certainly have to deal with such information.

(D32) Profile(x) =def OIO:InformationObject(x) ∧ ∀y(profiles(x, y) →
(CSO:PolicyDescription(y) ∨ SoftwareLibrary(y) ∨ CSO:Interface(y) ∨
OoP:Plan(y) ∨ Characteristic(y))) ∧ ∀z(describes(x, z) → Software(z))

(D33) ComponentProfile(x) =def Profile(x) ∧ ∀y(describes(x, y) →
SoftwareComponent(y))

(D34) Characteristic(x) =def DnS:Parameter(x) ∧ ∀y(DnS:defines(y, x) →
Profile(y)) ∧ ∀z(DnS:valuedBy(x, z) ∧ DOLCE:AbstractRegion(z))

(A26) describes(x, y) → OIO:about(x, y) ∧ Profile(x) ∧ CSO:Software(y)
(A27) profiles(x, y) → DnS:defines(x, y) ∨ DnS:unifies(x, y) ∨

OIO:about(x, y) ∨ OIO:expressedBy(x, y)

5 Proof of Concept

In this section, we give some examples of how the Core Software Ontology
and its extensions circumvent the four shortcomings, viz., conceptual ambi-
guity, poor axiomatization, loose design, and narrow scope, mentioned in the
introduction. We argue that the use of the DOLCE foundational ontology as
well as the use of content ontology design patterns help us here.

Conceptual Disambiguation

As mentioned in the introduction, lightweight ontologies typically suffer from
conceptual ambiguity. A prominent example is the notion of OWL-S:Service
in [8] which is defined twice and differently in the specification. In turn, both
definitions stand in conflict with the axiomatization of the concept in the
ontology. In [16], we have found a similar dilemma regarding the plethora of
meanings and definitions of terms, such as component, software component, or
software module. Typically, lightweight ontologies fail to convey their intended
meanings of such terms and leave the interpretation to the ontology user.

In contrast to such commonly built ontologies we have captured the in-
tended meanings of concepts and associations as precisely as possible. For this
purpose, it proved to be rather helpful to capture the three different flavors of
the term software via the information object content ontology design pattern,
for instance.

While our definitions of the terms “software” and “software component”
may not be the only ones, the fact that they are highly axiomatized allows
comparing them to alternative definitions and allows fostering discussions on
alternative conceptualizations.
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Increased Axiomatization

Ontologies are often reduced to a simple taxonomy with domain and range
restrictions on associations. This does not suffice to clarify the intended mean-
ing of terms which is of central importance when building ontologies for reuse
and reference purpose. As an example, consider control constructs, such as,
fork or join, to specify workflow information. Many ontologies, such as OWL-S
[8], omit a concise formalization of their intended meaning.

In our ontology we have made use of the Ontology of Plans which provides
extensive axiomatization of OoP:Tasks and subconcepts thereof. OoP:Tasks
are directly comparable to control constructs, but provide a heavyweight ax-
iomatization. An example is SynchroTask (an instance of OoP:ControlTask)
which matches the concept of a “join.” A SynchroTask joins a set of tasks after
a branching and waits for the execution of all tasks (except the optional ones)
that are direct successors to a ConcurrencyTask or AnyOrderTask. Below we
give the axiomatization of the SynchroTask as introduced in [4].

ControlTask(SynchroTask) → ∃t1, t2, t3(t1 = ConcurrencyTask ∨ t1 =
AnyOrderTask) ∧ successor(t1, x) ∧ (ComplexTask(t2) ∨ ActionTask(t2)) ∧
(ComplexTask(t3) ∨ ActionTask(t3)) ∧ directSuccessor(t2,SynchroTask) ∧
directSuccessor(t3,SynchroTask)

Another example is the link between the control constructs and the pro-
cess steps. Very often, the intended meaning of such links remains unclear. Is
it a parthood association? And if yes, is it temporary, transitive, etc.? Our
ontology is very specific with respect to such notions because it builds on
the Ontology of Plans. The latter exploits the DOLCE:temporaryComponent
association which has a firm foundation as a special kind of the more ba-
sic DOLCE:component mereological association and DOLCE:partlyCompresent
temporally indexing association. Both are characterized by formal restrictions
on their application to other basic concepts.

Improved Design

In our ontology, we propose to use contextualization as a design pattern.
Contextualization allows us to move from software descriptions to the repre-
sentation of different, possibly conflicting views with various granularity. The
Descriptions & Situations ontology provides us with a corresponding content
ontology design pattern with the basic primitives of context modeling such as
the notion of roles, for instance. Roles allow us to talk about inputs and out-
puts on the abstract level, i.e., independent of the objects that play such roles.

This pattern applies clearly defined semantics and scoping provided by
Descriptions & Situations where we want to express that the output of a
process is the input to another process. In our ontology, inputs and outputs
can be modeled as DnS:Roles which serve as variables. Thus, CSO:Data can
play multiple roles within the same or different descriptions. It is natural to
express that the given CSO:Data is output with respect to one process, but
input to another (cf. Fig. 4).
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DnS:Role

DnS:defines

CSO:Data

DnS:playedBy

CSO:Input CSO:Output

OoP:Plan

CSO:ComputationalTask

CSO:outputFor

DnS:playedBy

CSO:inputFor

DnS:defines

DnS:Situation
Description

Fig. 4. Data can play both the role of an Input and an Output at the same time.
Inputs and Outputs can be linked to ComputationalTasks in a Plan. White classes
represent descriptive entities, grey classes represent ground entities

Wider Scope

Software resides on the boundary of the world inside an information system
and the external world. Web services, in particular, may carry out operations
to support a real-world service. Functionality, which is an essential property
of a service, then arises from the entire process that comprises computational
as well as real-world activities.

The distinction between information objects, events, and physical objects
is not explicitly made in most ontologies. In our ontology, this separation
naturally follows from the use of DOLCE and the Ontology of Information
Objects, where the distinction is an important part of the characterization of
concepts. In particular, it becomes possible to be more precise about the kinds
of relationships that can occur among objects or between objects and events.

For example, we can distinguish a physical object (such as a natural
person) from an information object (such as user account in an information
system) and represent the link between the two. Figure 5 shows which capabil-
ities our ontology provides to do so. It is worthwhile to make such differences
explicit, e.g., when we want to infer the total of access rights granted for a nat-
ural person who might have several user accounts in and across information
systems.
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OIO:InformationObject

CSO:ComputationalObject

CSO:identifies CSO:User

CSO:AbstractData

DnS:Agent

OIO:realizedBy

Fig. 5. Using the Ontology of Information Objects allows us to model the relation-
ship between a user in an information system and its corresponding agent (e.g., a
natural person)

6 Related Work

As already outlined in the introduction, the Chapter “Ontologies and Soft-
ware Engineering” surveys a wealth of approaches that formalize at least one
paradigm or aspect of software in an ontology. Although the respective ontolo-
gies share basic principles, they (1) rely on individual formalizations, and (2)
are typically lightweight and not of a reference nature. Such approaches could
benefit from our Core Software Ontology capturing the stable core and pre-
venting modeling from scratch. The same proposition is valid for approaches
like [13,14] that embed ontology modeling into the transformation processes of
model-driven engineering in order to conjoin ontology modeling and software
engineering.

Furthermore, there has been some work that overlaps with the ideas pre-
sented here. For example, the COHSE Java ontology7 offers a formal schema
for expressing a Java software project by an ontology. The open source project
Introspector8 is a back-end to the popular GNU compiler collection gcc,9

which generates an RDF-defined ontology out of gcc compiled source code,
and thus works with all languages supported by gcc, for example, C, C++,
Java, Fortran, and others. [17] offers a more profound and sound ontology-
based foundation, analyzing the constructs available when programming. All
these works provide support for using ontologies in the area of software de-
velopment, but on a much finer grained level than the work presented here.
Thus, such ontologies could be used complementary to ours.

7 http://cohse.semanticweb.org/software.html
8 http://introspector.sourceforge.net
9 http://gcc.gnu.org
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An example of a higher level software component ontology in use is pro-
vided by [1]. The work focusses on the social and project-level management
of Open Source software projects. Such aspects have not been considered by
the Core Software Ontology yet.

Finally, there are some ontologies which focus on specific aspects, whereas
our ontology tries to relate the different aspects in a larger focus. Examples
are the Core Plan Representation (CPR) [15] and the Process Specification
Language (PSL) [6] which are comparable to the Ontology of Plans. UPML,
the Unified Problem-solving Method Development Language [2], has been de-
veloped to describe and implement intelligent broker architectures and com-
ponents to facilitate semi-automatic reuse and adaptation.

7 Conclusion

The chapter has shown how to proceed in building a Core Software Ontology
and extending it in different directions. The result is grounded in a founda-
tional ontology and avoids the typical shortcomings of lightweight ontologies.
Related, seminal approaches only weakly formalize the meaning of their terms
and leave their disambiguation to the intuition of the reader, a situation that
we here improve upon considerably.

The reader may note that what is presented here are the reference on-
tologies in this domain. For actual work, these reference ontologies need to
be reduced to knowledge representation schemes that are more amenable to
operation.

So far, the Core Ontology of Software Components has been applied in [11]
for developing and managing software components in an application server.
The Core Ontology of Web Services has been used by the EU project FUSION
(cf. http://www.fusionweb.org) for information integration. The Core Pol-
icy Ontology has been emancipated, extended and used for service market-
places by [7]. We expect many more fruitful applications and extensions of
our ontologies in the future.
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Summary. In order to retrieve and reuse non-textual media, media annotations
must explain how a media object is composed of its parts and what the parts repre-
sent. Annotations need to link to background knowledge found in existing knowledge
sources and to the creation and use of the media object. The representation and un-
derstanding of such facets of the media semantics is only possible through a formal
language and a corresponding ontology. In this chapter, we analyze the requirements
underlying the semantic representation of media objects, explain why the require-
ments are not fulfilled by most semantic multimedia ontologies and present COMM,1

a core ontology for multimedia, that has been built re-engineering the current de-
facto standard for multimedia annotation, i.e. MPEG-7, and using DOLCE as its
underlying foundational ontology to support conceptual clarity and soundness as
well as extensibility towards new annotation requirements.

1 Introduction

Multimedia objects are ubiquitous, whether found via web search (e.g. Google2

or Yahoo!3 images), or via dedicated sites (e.g. Flickr4 or YouTube5) or in the
repositories of private users or commercial organizations (film archives, broad-
casters, photo agencies, etc.). The media objects are produced and consumed
by professionals and amateurs alike. Unlike textual assets, whose content can
be searched for using text strings, media search is dependent on processes
that have either cumbersome requirements for feature comparison (e.g. color

∗ Lynda Hardman is also affiliated with the Technical University of Eindhoven.
1 This chapter is a revised and extended version of [1].
2 http://images.google.com/
3 http://images.search.yahoo.com/
4 http://www.flickr.com/
5 http://www.youtube.com/
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or texture) or rely on associated, more easily processable descriptions, select-
ing aspects of an image or video and expressing them as text, or as concepts
from a predefined vocabulary. Individual annotation and tagging applications
have not yet achieved a degree of interoperability that enables effective shar-
ing of semantic metadata and that links the metadata to semantic data and
ontologies found on the Semantic Web.

MPEG-7 [12, 13] is an international standard that specifies how to con-
nect descriptions to parts of a media asset. The standard includes descriptors
representing low-level media-specific features that can often be automatically
extracted from media types. Unfortunately, MPEG-7 is not fully suitable for
describing multimedia content, because (1) it is not open to standards that
represent knowledge and make use of existing controlled vocabularies for de-
scribing the subject matter and (2) its XML Schema based nature has led
to design decisions that leave the annotations conceptually ambiguous and
therefore prevent direct machine processing of semantic content descriptions.

In order to avoid such problems, we advocate the use of Semantic Web lan-
guages and a core ontology for multimedia annotations, which is built based
on rich ontological foundations provided by an ontology such as DOLCE
(cf. Chapter “Foundational Choices in DOLCE”) and sound ontology engi-
neering principles. The result presented in this chapter is COMM, a core
ontology for multimedia.

In the next section, we illustrate the main problems when using MPEG-7
for describing multimedia resources on the web. In Sect. 3, we review existing
multimedia ontologies and show why previous proposals are inadequate for
semantic multimedia annotation. Subsequently, we define the requirements
that a multimedia ontology should meet (Sect. 4) before we present COMM,
an MPEG-7 based ontology, and discuss our design decisions based on our
requirements (Sect. 5). In Sect. 6, we demonstrate the use of the ontology
with the scenario from Sect. 2 and then conclude.

2 Annotating Multimedia Assets on the Web

Let us imagine that Nathalie, a student in history, wants to create a multi-
media presentation of the major international conferences and summits held
in the last 60 years. Her starting point is the famous “Big Three” picture,
taken at the Yalta (Crimea) Conference, showing the heads of government of
the United States, the United Kingdom, and the Soviet Union during World
War II. Nathalie uses an MPEG-7 compliant authoring tool for detecting
and labeling relevant multimedia objects automatically. On the web, she finds
three different face recognition web services which provide very good results
for detecting Winston Churchill, Franklin D. Roosevelt and Josef Stalin, re-
spectively. Having these tools, she would like to run the face recognition web
services on images and import the extraction results into the authoring tool
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Fig. 1. MPEG-7 annotation example (Image adapted from Wikipedia), http://en.
wikipedia.org/wiki/Yalta Conference

in order to automatically generate links from the detected face regions to de-
tailed textual information about Churchill, Roosevelt and Stalin (image in
Fig. 1-A).

Nathalie would then like to describe a recent video from a G8 summit,
such as the retrospective A history of G8 violence made by Reuters.6 She uses
again an MPEG-7 compliant segmentation tool for detecting the seven main
sequences of this 2’26 minutes report: the various anti-capitalist protests dur-
ing the Seattle (1999), Melbourne (2000), Prague (2000), Gothenburg (2001),
Genoa (2001), St Petersburg (2006), Heiligendamm (2007) World Economic
Forums, EU and G8 Summits. Finally, Nathalie plans to deliver her multime-
dia presentation in an Open Document Format (ODF) document embedding
the image and video previously annotated. This scenario, however, causes
several problems with existing solutions.

Fragment identification. Particular regions of the image need to be local-
ized (anchor value in [6]). However, the current web architecture does not
provide a means for uniquely identifying sub-parts of multimedia assets, in
the same way that the fragment identifier in the URI can refer to part of
an HTML or XML document. Indeed, for almost any other media type, the
semantics of the fragment identifier has not been defined or is not commonly
accepted. Providing an agreed upon way to localize sub-parts of multimedia
objects (e.g. sub-regions of images, temporal sequences of videos or tracking
moving objects in space and in time) is fundamental7 [5]. For images, one can
use either MPEG-7 or SVG snippet code to define the bounding box coordi-
nates of specific regions. For temporal locations, one can use MPEG-7 code or

6 http://www.reuters.com/news/video/summitVideo?videoId=56114
7 See also the forthcoming W3C Media Fragments Working Group http://www.w3.

org/2008/01/media-fragments-wg.html
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the TemporalURI RFC.8 MPEG-21 specifies a normative syntax to be used in
URIs for addressing parts of any resource but whose media type is restricted
to MPEG [11]. The MPEG-7 approach requires an indirection: an annota-
tion is about a fragment of an XML document that refers to a multimedia
document, whereas the MPEG-21 approach does not have this limitation [21].

Semantic annotation. MPEG-7 is a natural candidate for representing the
extraction results of multimedia analysis software such as a face recognition
web service. The language, standardized in 2001, specifies a rich vocabulary of
multimedia descriptors, which can be represented in either XML or a binary
format. While it is possible to specify very detailed annotations using these
descriptors, it is not possible to guarantee that MPEG-7 metadata generated
by different agents will be mutually understood due to the lack of formal
semantics of this language [7, 18]. The XML code of Fig. 1-B illustrates the
inherent interoperability problems of MPEG-7 : several descriptors, semanti-
cally equivalent and representing the same information while using different
syntax can coexist [19]. As Nathalie used three different face recognition web
services, the extraction results of the regions SR1, SR2 and SR3 differ from
each other even though they are all syntactically correct. While the first ser-
vice uses the MPEG-7SemanticType for assigning the <Label> Roosevelt to
still region SR1, the second one makes use of a <KeywordAnnotation> for at-
taching the keyword Churchill to still region SR2. Finally the third service uses
a <StructuredAnnotation> (which can be used within the SemanticType) in
order to label still region SR3 with Stalin. Consequently, alternative ways for
annotating the still regions render almost impossible the retrieval of the face
recognition results within the authoring tool since the corresponding XPath
query has to deal with these syntactic variations. As a result, the authoring
tool will not link occurrences of Churchill in the images with, for example, his
biography as it does not expect semantic labels of still regions as part of the
<KeywordAnnotation> element.

Web interoperability. Nathalie would like to link the multimedia presenta-
tion to historical information about the key figures of the Yalta Conference
or the various G8 summits that is already available on the web. She has
also found semantic metadata about the relationships between these figures
that could improve the automatic generation of the multimedia presentation.
However, she realizes that MPEG-7 cannot be combined with these concepts
defined in domain-specific ontologies because of its closing to the web. As
this example demonstrates, although MPEG-7 provides ways of associating
semantics with (parts of) non-textual media assets, it is incompatible with
(semantic) web technologies and has no formal description of the semantics
encapsulated implicitly in the standard.

Embedding into compound documents. Finally, Nathalie needs to compile
the semantic annotations of the images, videos and textual stories into a
semantically annotated compound document. However, the current state of

8 http://www.annodex.net/TR/URI fragments.html
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the art does not provide a framework which allows the semantic annotation
of compound documents. MPEG-7 solves only partially the problem as it is
restricted to the description of audiovisual compound documents. Bearing the
growing number of multimedia office documents in mind, this limitation is a
serious drawback.

3 Related Work

In the field of semantic image understanding, using a multimedia ontology in-
frastructure is regarded to be the first step for closing the, so-called, semantic
gap between low-level signal processing results and explicit semantic descrip-
tions of the concepts depicted in images. Furthermore, multimedia ontologies
have the potential to increase the interoperability of applications producing
and consuming multimedia annotations. The application of multimedia rea-
soning techniques on top of semantic multimedia annotations is also a research
topic which is currently investigated [15]. A number of drawbacks of MPEG-7
have been reported [14, 17]. As a solution, multimedia ontologies based on
MPEG-7 have been proposed.

Hunter [7] provided the first attempt to model parts of MPEG-7 in RDFS,
later integrated with the ABC model. Tsinaraki et al. [22] start from the core
of this ontology and extend it to cover the full Multimedia Description Scheme
(MDS) part of MPEG-7, in an OWL DL ontology. A complementary approach
was explored by Isaac and Troncy [10], who proposed a core audio-visual
ontology inspired by several terminologies such as MPEG-7, TV Anytime
and ProgramGuideML. Garcia and Celma [4] produced the first complete
MPEG-7 ontology, automatically generated using a generic mapping from
XSD to OWL. Finally, Simou et al. [2] proposed an OWL DL Visual Descriptor
Ontology9 (VDO) based on the Visual part of MPEG-7 and used for image
and video analysis.

These ontologies have been recently compared with COMM according to
three criteria: (1) the way the multimedia ontology is linked with domain
semantics, (2) the MPEG-7 coverage of the multimedia ontology, and (3)
the scalability and modeling rationale of the conceptualization [20]. Unlike
COMM, all the other ontologies perform a one to one translation of MPEG-7
types into OWL concepts and properties. This translation does not, how-
ever, guarantee that the intended semantics of MPEG-7 is fully captured and
formalized. On the contrary, the syntactic interoperability and conceptual am-
biguity problems illustrated in Sect. 2 remain. Although COMM is based on
a foundational ontology, the annotations proved to be no more verbose than
those in MPEG-7.

Finally, general models for annotations of non-multimedia content have
been proposed by librarians. The Functional Requirements for Bibliographic

9 http://image.ece.ntua.gr/∼gstoil/VDO
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Records (FRBR)10 model specifies the conventions for bibliographic descrip-
tion of traditional books. The CIDOC Conceptual Reference Model (CRM)11

defines the formal structure for describing the concepts and relationships used
in cultural heritage documentation (cf. Chapter “Using the PSL Ontology”).
Hunter has described how an MPEG-7 ontology could specialize CIDOC-
CRM for describing multimedia objects in museums [8]. Interoperability with
such models is an issue, but interestingly, the design rationale used in these
models are often comparable and complementary to foundational ontologies
approach.

4 Requirements for Designing a Multimedia Ontology

Requirements for designing a multimedia ontology have been gathered and
reported in the literature, e.g. in [9]. Here, we compile these and use our
scenario to present a list of requirements for a web-compliant multimedia
ontology.

MPEG-7 compliance. MPEG-7 is an existing international standard, used
both in the signal processing and the broadcasting communities. It contains
a wealth of accumulated experience that needs to be included in a web-
based ontology. In addition, existing annotations in MPEG-7 should be easily
expressible in our ontology.

Semantic interoperability. Annotations are only re-usable when the
captured semantics can be shared among multiple systems and applica-
tions. Obtaining similar results from reasoning processes about terms in
different environments can only be guaranteed if the semantics is sufficiently
explicitly described. A multimedia ontology has to ensure that the intended
meaning of the captured semantics can be shared among different systems.

Syntactic interoperability. Systems are only able to share the semantics of
annotations if there is a means of conveying this in some agreed-upon syntax.
Given that the (semantic) web is an important repository of both media assets
and annotations, a semantic description of the multimedia ontology should be
expressible in a web language (e.g. OWL, RDF/XML or RDFa).

Separation of concerns. Clear separation of subject matter (i.e. knowledge
about depicted entities, such as the person Winston Churchill) from knowl-
edge that is related to the administrative management or the structure and
the features of multimedia documents (e.g. Churchill’s face is to the left of
Roosevelt’s face) is required. Reusability of multimedia annotations can only
be achieved if the connection between both ontologies is clearly specified by
the multimedia ontology.

Modularity. A complete multimedia ontology can be, as demonstrated by
MPEG-7, very large. The design of a multimedia ontology should thus be

10 http://www.ifla.org/VII/s13/frbr/index.htm
11 http://cidoc.ics.forth.gr/
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made modular, to minimize the execution overhead when used for multimedia
annotation. Modularity is also a good engineering principle.

Extensibility. While we intend to construct a comprehensive multime-
dia ontology, as ontology development methodologies demonstrate, this can
never be complete. New concepts will always need to be added to the on-
tology. This requires a design that can always be extended, without chang-
ing the underlying model and assumptions and without affecting legacy
annotations.

5 Adding Formal Semantics to MPEG-7

MPEG-7 specifies the connection between semantic annotations and parts of
media assets. We take it as a base of knowledge that needs to be expressible
in our ontology. Therefore, we re-engineer MPEG-7 according to the intended
semantics of the written standard. We satisfy our semantic interoperability
not by aligning our ontology to the XML Schema definition of MPEG-7, but
by providing a formal semantics for MPEG-7. We use a methodology based
on a foundational, or top level, ontology as a basis for designing COMM
(cf. Chapter “Ontology Engineering Methodology”). This provides a domain
independent vocabulary that explicitly includes formal definitions of founda-
tional categories, such as processes or physical objects, and eases the linkage
of domain-specific ontologies because of the shared definitions of top level con-
cepts. We briefly introduce our chosen foundational ontology in Sect. 5.1, and
then present our multimedia ontology, COMM, in Sects. 5.2 and 5.3. Finally,
we discuss why our ontology satisfies all our stated requirements in Sect. 5.4.

COMM is available at http://multimedia.semanticweb.org/COMM/.

5.1 DOLCE as Modeling Basis

Using the review in [16], we select the Descriptive Ontology for Linguistic
and Cognitive Engineering (DOLCE) (cf. Chapter “Foundational Choices in
DOLCE”) as a modeling basis. Our choice is influenced by two of the main de-
sign patterns: Descriptions & Situations (D&S) and Ontology of Information
Objects (OIO) [3]. The former can be used to formalize contextual knowledge,
while the latter, based on D&S, implements a semiotics model of communi-
cation theory. We consider that the annotation process is a situation (i.e. a
reified context) that needs to be described.

5.2 Multimedia Patterns

The patterns for D&S and OIO need to be extended for representing MPEG-7
concepts since they are not sufficiently specialized to the domain of multimedia
annotation. This section introduces these extended multimedia design pat-
terns, while Sect. 5.3 details two central concepts underlying these patterns:
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digital data and algorithms (cf. Chapter “Ontology Design Patterns”). In or-
der to define design patterns, one has to identify repetitive structures and
describe them at an abstract level. The two most important functionali-
ties provided by MPEG-7 are: the decomposition of media assets and the
(semantic) annotation of their parts, which we include in our multimedia
ontology.

Decomposition. MPEG-7 provides descriptors for spatial, temporal, spatio-
temporal and media source decompositions of multimedia content into
segments. A segment is the most general abstract concept in MPEG-7 and
can refer to a region of an image, a piece of text, a temporal scene of a video
or even to a moving object tracked during a period of time.

Annotation. MPEG-7 defines a very large collection of descriptors that
can be used to annotate a segment. These descriptors can be low-level visual
features, audio features or more abstract concepts. They allow the annotation
of the content of multimedia documents or the media asset itself.

In the following, we first introduce the notion of multimedia data and then
present the patterns that formalize the decomposition of multimedia content
into segments, or allow the annotation of these segments. The decomposition
pattern handles the structure of a multimedia document, while the media
annotation pattern, the content annotation pattern and the semantic annota-
tion pattern are useful for annotating the media, the features and the semantic
content of the multimedia document respectively.

Multimedia Data

This encapsulates the MPEG-7 notion of multimedia content and is a subcon-
cept of digital-data12 (introduced in more detail in Sect. 5.3). multimedia-data
is an abstract concept that has to be further specialized for concrete multi-
media content types (e.g. image-data corresponds to the pixel matrix of an
image). According to the OIO pattern, multimedia-data is realized by some
physical media (e.g. an image). This concept is needed for annotating the
physical realization of multimedia content.

Decomposition Pattern

Following the D&S pattern, we consider that a decomposition of a multimedia-
data entity is a situation13 (a segment-decomposition) that satisfies a descrip-
tion, such as a segmentation-algorithm or a method (e.g. a user drawing a
bounding box around a depicted face), which has been applied to perform
the decomposition, see Fig. 2-B. Of particular importance are the roles that
are defined by a segmentation-algorithm or a method. output-segment-roles ex-
press that some multimedia-data entities are segments of a multimedia-data en-
tity that plays the role of an input segment (input-segment-role). These data
12 Sans serif font indicates ontology concepts.
13 Cf. Chapter “Foundational Choices in DOLCE”.
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Fig. 2. COMM: Design patterns in UML notation: Basic design patterns (A), mul-
timedia patterns (B, D, E) and modeling examples (C, F)

entities have as setting a segment-decomposition situation that satisfies the
roles of the applied segmentation-algorithm or method. output-segment-roles as
well as segment-decompositions are then specialized according to the segment
and decomposition hierarchies of MPEG-7 ([12], part 5, Sect. 11). In terms
of MPEG-7, unsegmented (complete) multimedia content also corresponds to
a segment. Consequently, annotations of complete multimedia content start
with a root segment. In order to designate multimedia-data instances that
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correspond to these root segments the decomposition pattern provides the
root-segment-role concept. Note that root-segment-roles are not defined by
methods which describe segment-decompositions. They are rather defined by
methods which cause the production of multimedia content. These methods
as well as annotation modes which allow the description of the production
process (e.g. [12], part 5, Sect. 9) are currently not covered by our ontology.
Nevertheless, the prerequisite for enhancing the COMM into this direction is
already given.

The decomposition pattern also reflects the need for localizing segments
within the input segment of a decomposition as each output-segment-role
requires a mask-role. Such a role has to be played by one or more digital-data
entities which express one localization-descriptor. An example of such a descrip-
tor is an ontological representation of the MPEG-7RegionLocatorType14 for
localizing regions in an image (see Fig. 2-C). Hence, the mask-role concept
corresponds to the notion of a mask in MPEG-7.

The specialization of the pattern for describing image decomposi-
tions is shown in Fig. 2-F. According to MPEG-7, an image or an im-
age segment (image-data) can be composed into still regions. Following
this modeling, the concepts output-segment-role and root-segment-role are
specialized by the concepts still-region-role and root-still-region-role respec-
tively. Note, that root-still-region-role is a subconcept of still-region-role and
root-segment-role. The MPEG-7 decomposition mode which can be applied
to still regions is called StillRegionSpatialDecompositionType. Conse-
quently, the concept still-region-spatial-decomposition is added as a subconcept
of segment-decomposition. Finally, the mask-role concept is specialized by the
concept spatial-mask-role.

Analogously, the pattern can be used to describe the decomposition of a
video asset or of an ODF document (see Fig. 3).

Content Annotation Pattern.

This formalizes the attachment of metadata (i.e. annotations) to multimedia-
data (Fig. 2-D). Using the D&S pattern, annotations also become situations
that represent the state of affairs of all related digital-data (metadata and an-
notated multimedia-data). digital-data entities represent the attached metadata
by playing an annotation-role. These roles are defined by methods or algorithms.
The former are used to express manual (or semi-automatic) annotation while
the latter serve as an explanation for the attachment of automatically com-
puted features, such as the dominant colors of a still region. It is mandatory
that the multimedia-data entity being annotated plays an annotated-data-role.

The actual metadata that is carried by a digital-data entity depends
on the structured-data-description that is expressed by it. These descrip-
tions are formalized using the digital data pattern (see Sect. 5.3). Applying

14 Italic type writer font indicates MPEG-7 language descriptors.
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the content annotation pattern for formalizing a specific annotation, e.g.
a dominant-color-annotation which corresponds to the connection of a
MPEG-7DominantColorType with a segment, requires only the special-
ization of the concept annotation, e.g. dominant-color-annotation. This concept
is defined by being a setting for a digital-data entity that expresses one
dominant-color-descriptor (a subconcept of structured-data-description which
corresponds to the DominantColorType).

Media Annotation Pattern

This forms the basis for describing the physical instances of multimedia
content (Fig. 2-D). It differs from the content annotation pattern in only
one respect: it is the media that is being annotated and therefore plays an
annotated-media-role.

One can thus represent that some visual content (e.g. the picture of
a digital camera) is realized by a JPEG image with a size of 462848
bytes, using the MPEG-7MediaFormatType. Using the media annota-
tion pattern, the metadata is attached by connecting a digital-data en-
tity with the image. The digital-data plays an annotation-role while the
image plays an annotated-media-role. An ontological representation of the
MediaFormatType, namely an instance of the structured-data-description sub-
concept media-format-descriptor, is expressed by the digital-data entity. The
tuple formed with the scalar “462848” and the string “JPEG” is the value
of the two instances of the concepts file-size and file-format respectively. Both
concepts are subconcepts of structured-data-parameter.

Semantic Annotation Pattern

Even though MPEG-7 provides some general concepts (see [12], part 5,
Sect. 12) that can be used to describe the perceivable content of a multimedia
segment, independent development of domain-specific ontologies is more ap-
propriate for describing possible interpretations of multimedia – it is useful to
create an ontology specific to multimedia, it is not useful to try to model the
real world within this. An ontology-based multimedia annotation framework
should rely on domain-specific ontologies for the representation of the real
world entities that might be depicted in multimedia content. Consequently,
this pattern specializes the content annotation pattern to allow the connection
of multimedia descriptions with domain descriptions provided by independent
world ontologies (Fig. 2-E).

An OWL Thing or a DOLCE particular (belonging to a domain-specific
ontology) that is depicted by some multimedia content is not directly con-
nected to it but rather through the way the annotation is obtained. Ac-
tually, a manual annotation method or its subconcept algorithm, such as
a classification algorithm, has to be applied to determine this connection.
It is embodied through a semantic-annotation that satisfies the applied
method. This description specifies that the annotated multimedia-data has
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to play an annotated-data-role and the depicted Thing/particular has to play a
semantic-label-role. The pattern also allows the integration of features which
might be evaluated in the context of a classification algorithm. In that case,
digital-data entities that represent these features would play an input-role.

5.3 Basic Patterns

Specializing the D&S and OIO patterns for defining multimedia design pat-
terns is enabled through the definition of basic design patterns, which formal-
ize the notion of digital data and algorithm.

Digital Data Pattern

Within the domain of multimedia annotation, the notion of digital data is cen-
tral – both the multimedia content being annotated and the annotations them-
selves are expressed as digital data. We consider digital-data entities of arbi-
trary size to be information-objects, which are used for communication between
machines. The OIO design pattern states that descriptions are expressed by
information-objects, which have to be about facts (represented by particulars).
These facts are settings for situations that have to satisfy the descriptions that
are expressed by information-objects. This chain of constraints allows the mod-
eling of complex data structures to store digital information. Our approach
is as follows (see Fig. 2-A): digital-data entities express descriptions, namely
structured-data-descriptions, which define meaningful labels for the informa-
tion contained by digital-data. This information is represented by numerical
entities such as scalars, matrices, strings, rectangles or polygons. In DOLCE
terms, these entities are abstract-regions. In the context of a description, these
regions are described by parameters. structured-data-descriptions thus define
structured-data-parameters, for which abstract-regions carried by digital-data
entities assign values.

The digital data pattern can be used to formalize complex MPEG-7
low-level descriptors. Figure 2-C shows the application of this pattern by
formalizing the MPEG-7RegionLocatorType, which mainly consists of two
elements: a Box and a Polygon. The concept region-locator-descriptor corre-
sponds to the RegionLocatorType. The element Box is represented by the
structured-data-parameter subconcept BoundingBox while the element Polygon
is represented by the region-boundary concept.

The MPEG-7 code example given in Fig. 1 highlights that the for-
malization of data structures, so far, is not sufficient – complex MPEG-7
types can include nested types that again have to be represented by
structured-data-descriptions. In our example, the MPEG-7SemanticType con-
tains the element Definition which is of complex type TextAnnotationType.
The digital data pattern covers such cases by allowing a digital-data in-
stance dd1 to be about a digital-data instance dd2 which expresses a
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structured-data-description that corresponds to a nested type (see Fig. 2-A).
In this case the structured-data-description of instance dd2 would be a part of
the one expressed by dd1.

Algorithm Pattern

The production of multimedia annotation can involve the execution of
algorithms or the application of computer assisted methods which are used
to produce or manipulate digital-data. The recognition of a face in an image
region is an example of the former, while manual annotation of the characters
is an example of the latter.

We consider algorithms to be methods that are applied to solve a compu-
tational problem (see Fig. 2-A). The associated (DOLCE) situations repre-
sent the work that is being done by algorithms. Such a situation encompasses
digital-data15 involved in the computation, regions that represent the values of
parameters of an algorithm, and perdurants16 that act as computational-tasks
(i.e. the processing steps of an algorithm). An algorithm defines roles which
are played by digital-data. These roles encode the meaning of data. In order
to solve a problem, an algorithm has to process input data and return some
output data. Thus, every algorithm defines at least one input-role and one
output-role which both have to be played by digital-data.

5.4 Comparison with Requirements

We discuss now whether the requirements stated in Sect. 4 are satisfied with
our proposed modeling of the multimedia ontology.

The ontology is MPEG-7 compliant since the patterns have been de-
signed with the aim of translating the standard into DOLCE. It covers the
most important part of MPEG-7 that is commonly used for describing the
structure and the content of multimedia documents. Our current investiga-
tion shows that parts of MPEG-7 that have not yet been considered (e.g.
navigation & access) can be formalized analogously to the other descriptors
through the definition of further patterns. The technical realization of the
basic MPEG-7 data types (e.g. matrices and vectors) is not within the scope
of the multimedia ontology. They are represented as ontological concepts,
because the about relationship which connects digital-data with numerical en-
tities is only defined between concepts. Thus, the definition of OWL data
type properties is required to connect instances of data type concepts (sub-
concepts of the DOLCE abstract-region) with the actual numeric information
(e.g. xsd:string). Currently, simple string representation formats are used for

15 digital-data entities are DOLCE endurants, i.e. entities which exist in time and
space.

16 Events, processes or phenomena are examples of perdurants. endurants participate
in perdurants.
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serializing data type concepts (e.g. rectangle) that are currently not covered
by W3C standards. Future work includes the integration of the extended data
types of OWL 1.1.

Syntactic and semantic interoperability of our multimedia ontology is
achieved by an OWL DL formalization.17 Similar to DOLCE, we provide
a rich axiomatization of each pattern using first order logic. Our ontology can
be linked to any web-based domain-specific ontology through the semantic
annotation pattern.

A clear separation of concerns is ensured through the use of the multime-
dia patterns: the decomposition pattern for handling the structure and the
annotation pattern for dealing with the metadata.

These patterns form the core of the modular architecture of the multimedia
ontology. We follow the various MPEG-7 parts and organize the multimedia
ontology into modules which cover (1) the descriptors related to a specific
media type (e.g. visual, audio or text) and (2) the descriptors that are generic
to a particular media (e.g. media descriptors). We also design a separate
module for data types in order to abstract from their technical realization.

Through the use of multimedia design patterns, our ontology is also
extensible, allowing the inclusion of further media types and descriptors
(e.g. new low-level features) using the same patterns. As our patterns
are grounded in the D&S pattern, it is straightforward to include further
contextual knowledge (e.g. about provenance) by adding roles or parameters.
Such extensions will not change the patterns, so that legacy annotations will
remain valid.

6 Expressing the Scenario in COMM

The interoperability problem with which Nathalie was faced in Sect. 2 can
be solved by employing the COMM ontology for representing the metadata
of all relevant multimedia objects and the presentation itself throughout the
whole creation workflow. The student is shielded from details of the multi-
media ontology by embedding it in authoring tools and feature analysis web
services.

The application of the Winston Churchill face recognizer results in an an-
notation RDF graph that is depicted in the upper part of Fig. 3 (visualized by
an UML object diagram.18) The decomposition of Fig. 1-A, whose content is
represented by id0, into one still region (the bounding box of Churchill’s face)
is represented by the lighter middle part of the UML diagram. The segment is
represented by the image-data instance id1 which plays the still-region-role
srr1. It is located by the digital-data instance dd1 which expresses the
region-locator-descriptor rld1 (lower part of the diagram). Using the semantic

17 Examples of the axiomatization are available on the COMM website.
18 The scheme used in Fig. 3 is instance:Concept, the usual UML notation.
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Fig. 3. Annotation of one segment of the Yalta picture and its embedding into an
ODF document which contains a text segment that is also about Winston Churchill

annotation pattern, the face recognizer can annotate the still region by con-
necting it with the URI http://en.wikipedia.org/wiki/Winston Churchill.
An instance of an arbitrary domain ontology concept could also have been
used for identifying the resource.

Running the two remaining face recognizers for Roosevelt and Stalin will
extend the decomposition further by two still regions, i.e. the image-data
instances id2 and id3 as well as the corresponding still-region-roles, spatial-
mask-roles and digital-data instances expressing two more region-locator-
descriptors (indicated at the right border of Fig. 3). The domain ontologies
which provide the instances Roosevelt and Stalin for annotating id2 and id3
with the semantic annotation pattern do not have to be identical to the one
that contains Churchill. If several domain ontologies are used, Nathalie can
use the OWL sameAs and equivalentClass constructs to align the three face
recognition results to the domain ontology that is best suited for enhancing
the automatic generation of the multimedia presentation.

Decomposition of ODF documents is formalized analogously to image seg-
mentation (see Fig. 2-F). Therefore, embedding the image annotation into
an ODF document annotation is straightforward. The lower part of Fig. 3
shows the decomposition of a compound ODF document into textual and
image content. This decomposition description could result from copying an
image from the desktop and pasting it into an ODF editor such as OpenOffice.
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A plugin of this program could produce COMM metadata of the document in
the background while it is produced by the user. The media independent de-
sign patterns of COMM allow the implementation of a generic mechanism for
inserting metadata of arbitrary media assets into already existing metadata of
an ODF document. In the case of Fig. 3, the instance id0 (which represents the
whole content of the Yalta image) needs to be connected with three instances
of the ODF annotation: (1) the odf-decomposition instance odfd which is a
setting-for all top level segments of the odf-document, (2) the odf-segment-role
instance odfsr1 which identifies id0 as a part of the whole ODF content md
(a multimedia-data instance), (3) the instance odfdoc as the image now is also
realized-by the odf-document.

Figure 3 also demonstrates how a domain ontology19 can be used to define
semantically meaningful relations between arbitrary segments. The textual
content td as well as the image segment id1 are about Winston Churchill. Con-
sequently, the URI http://en.wikipedia.org/wiki/Winston Churchill is used
for annotating both instances using the media independent semantic annota-
tion pattern.

The two segments td and id1 are located within md by two digital-data in-
stances (dd2 and dd3) which express two corresponding odf-locator-descriptor
instances. The complete instantiations of the two odf-locator-descriptors are
not shown in Fig. 3. The modeling of the region-locator-descriptor, which
is completely instantiated in Fig. 3, is shown in Fig. 2-C. The technical
details of the odf-locator-descriptor are not presented. However, it is pos-
sible to locate segments in ODF documents by storing an XPath which
points to the beginning and the end of an ODF segment. Thus, the mod-
eling of the odf-locator-descriptor can be carried out analogously to the
region-locator-descriptor.

In order to ease the creation of multimedia annotations with our ontology,
we have developed a Java API20 which provides an MPEG-7 class interface for
the construction of meta-data at runtime. Annotations which are generated
in memory can be exported to Java based RDF triple stores such as Sesame.
For that purpose, the API translates the objects of the MPEG-7 classes into
instances of the COMM concepts. The API also facilitates the implementation
of multimedia retrieval tools as it is capable of loading RDF annotation graphs
(e.g. the complete annotation of an image including the annotation of arbitrary
regions) from a store and converting them back to the MPEG-7 class interface.
Using this API, the face recognition web service will automatically create the
annotation which is depicted in the upper part of Fig. 3 by executing the
following code:

Image img0 = new Image();

StillRegion isr0 = new StillRegion();

19 In this example, the domain ontology corresponds to a collection of wikipedia
URI’s.

20 The Java API is available at http://multimedia.semanticweb.org/COMM/api/.
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img0.setImage(isr0);

StillRegionSpatialDecomposition srsd1

= new StillRegionSpatialDecomposition();

isr0.addSpatialDecomposition(srsd1);

srsd1.setDescription(new SegmentationAlgorithm());

StillRegion srr1 = new StillRegion();

srsd1.addStillRegion(srr1);

SpatialMask smr1 = new SpatialMask();

srr1.setSpatialMask(smr1);

RegionLocatorDescriptor rld1 = new RegionLocatorDescriptor();

smr1.addSubRegion(rld1);

rld1.setBox(new Rectangle(300, 230, 50, 30));

Semantic s1 = new Semantic();

s1.addLabel("http://en.wikipedia.org/wiki/Winston_Churchill");

s1.setDescription(new SVMClassifier());

srr1.addSemantic(s1);

7 Conclusion and Future Work

We have presented COMM, an MPEG-7 based multimedia ontology,
well-founded and composed of multimedia patterns. It satisfies the re-
quirements, as they are described by the multimedia community itself,
for a multimedia ontology framework. The ontology is completely for-
malized in OWL DL and a stable version is available with its API at:
http://multimedia.semanticweb.org/COMM/. It has been used in projects
such as K-Space and X-Media.

The ontology already covers the main parts of the standard, and we are
confident that the remaining parts can be covered by following our method
for extracting more design patterns. Our modeling approach confirms that
the ontology offers even more possibilities for multimedia annotation than
MPEG-7 since it is interoperable with existing web ontologies. The explicit
representation of algorithms in the multimedia patterns describes the multi-
media analysis steps, something that is not possible in MPEG-7. The need for
providing this kind of annotation is demonstrated in the algorithm use case of
the W3C Multimedia Semantics Incubator Group.21 The intensive use of the
D&S reification mechanism causes that RDF annotation graphs, which are
generated according to our ontology, are quite large compared to the ones of
more straightforwardly designed multimedia ontologies. This presents a chal-
lenge for current RDF and OWL stores, but we think it is a challenge worth
deep consideration as it is utterly necessary to overcome the isolation of cur-
rent multimedia annotations and to achieve full interoperability for (nearly)
arbitrary multimedia tools and applications.

21 http://www.w3.org/2005/Incubator/mmsem/XGR-interoperability/
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19. Raphaël Troncy, Werner Bailer, Michael Hausenblas, Philip Hofmair, and Rudolf
Schlatte. Enabling Multimedia Metadata Interoperability by Defining Formal
Semantics of MPEG-7 Profiles. In 1st International Conference on Semantics
And digital Media Technology, pages 41–55, 2006.
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1 Introduction

Representing activities and the constraints on their occurrences is an integral
aspect of commonsense reasoning, particularly in manufacturing, enterprise
modelling, and autonomous agents or robots. In addition to the traditional
concerns of knowledge representation and reasoning, the need to integrate
software applications in these areas has become increasingly important.
However, interoperability is hindered because the applications use different
terminology and representations of the domain. These problems arise most
acutely for systems that must manage the heterogeneity inherent in various
domains and integrate models of different domains into coherent frameworks.
For example, such integration occurs in business process reengineering, where
enterprise models integrate processes, organizations, goals and customers.
Even when applications use the same terminology, they often associate dif-
ferent semantics with the terms. This clash over the meaning of the terms
prevents the seamless exchange of information among the applications. trans-
lators between every pair of applications that must cooperate. What is needed
is some way of explicitly specifying the terminology of the applications in an
unambiguous fashion.

The Process Specification Language (PSL) ([6, 9]) has been designed to
facilitate correct and complete exchange of process information among man-
ufacturing systems.1 Included in these applications are scheduling, process
modeling, process planning, production planning, simulation, project man-
agement, workflow, and business process reengineering. This chapter will give
an overview of the PSL Ontology, including its formal characterization as a set
of theories in first-order logic and the range of concepts that are axiomatized
in these theories.

1 PSL has been published as the International Standard ISO 18629 by the Inter-
national Organisation of Standardisation.

S. Staab and R. Studer (eds.), Handbook on Ontologies, International Handbooks 423
on Information Systems, DOI 10.1007/978-3-540-92673-3,
c© Springer-Verlag Berlin Heidelberg 2009
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2 How are Ontologies Used?

Applications of ontologies focus on their role as sharable and reusable repre-
sentations of knowledge (Chapters “What is an Ontology?”, “Ontology-Based
Recommender Systems”. Semantic heterogeneity is particularly acute problem
for tasks that require correct and meaningful communication and integration
among software systems, since different systems may ascribe disparate mean-
ings to the same terms or use distinct terms to convey the same meaning.
Ontologies support semantic integration through a shared understanding of
the intended semantics of the terminology used by the software systems.

The reusability of an ontology is determined relative to the genericity of its
axiomatization. In one sense, the axioms of the ontology can be instantiated
within different domains; this leads to the notion of domain theories that
capture the knowledge for particular problems. In another sense, the axioms
of the ontology capture those properties of the world that are valid across
multiple domains; new ontologies can then be constructed as more domain-
specific extensions of the generic ontologies.

2.1 Specifying Domain Theories

Within the context of a process ontology , domain theories take the form of de-
scriptions of processes as repeatable patterns of behaviour. The various forms
of process representations are ubiquitous in industry: there is a plethora of
business and engineering software applications – workflow, scheduling, discrete
event simulation, process planning, business process modeling, and others –
that are designed explicitly for the construction of process models of various
sorts [6]. In addition, there are many concrete domains for process represen-
tations, including manufacturing, web services, and business processes.

A process ontology provides the underlying semantics for the process ter-
minology that is common to the many disparate domains and software ap-
plications. This allows us to evaluate the consistency of process descriptions.
In this way, ontologies can be used to support automated reasoning (such as
theorem proving and constraint satisfaction) with the axioms of the ontology
and domain theories alone.

Ontologies also provide guidance in the specification of domain theories.
For example, each class of activities in the PSL Ontology is associated with
a specific class of sentences that are the correct process descriptions for that
class. The primary focus of this chapter will be a survey of the various classes of
activities in the ontology together with examples of the corresponding process
descriptions.

2.2 Semantic Integration

A semantics-preserving exchange of information between two software applica-
tions requires mappings between logically equivalent concepts in the ontology
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of each application. The challenge of semantic integration is therefore equiva-
lent to the problem of generating such mappings (Chapter “Why Is Ontology
Mapping Difficult?”), determining that they are correct, and providing a ve-
hicle for executing the mappings, thus translating terms from one ontology
into another.

The Twenty Questions approach ([3]) describes a technique for the semi-
automatic generation of semantic mappings from application ontologies to
the PSL Ontology, which can then be used to automatically derive direct
mappings between application ontologies.

The work in [7] describes an example of using PSL as a common ontol-
ogy to facilitate manufacturing process information exchange between two
different software applications, ProCAP – a process modelling tool based
upon the IDEF3 method of systems modelling and ILOG – a C++ library
for constraint-based scheduling. In a typical scenario, a user of ProCAP de-
scribes the types or processes that are necessary to produce some product,
specifies the order in which these processes must occur, and describes what
types of resources are necessary for the creation of the product. Semantic
mappings between the PSL Ontology and the terminology used in IDEF3 and
ILOG process descriptions form the basis for translators between the software
applications.

2.3 Building New Ontologies

An ontology with a consistent and complete axiomatization of its intended
semantics can be used as a semantic foundation for either building a new
ontology or for augmenting an ontology that has an incomplete axiomatiza-
tion (Chapter “Foundational Choices in DOLCE”). For example, the process
model of the semantic web services ontology OWL-S (Chapter “Semantic Web
Services”, [5]) contains a taxonomy of control constructs for specifying com-
posite web services; however, the intended semantics of these constructs is
expressed in natural language, since it cannot be axiomatized in OWL. The
work in [2] provides a first-order axiomatization of these constructs using the
PSL Ontology.

The Semantic Web Services Ontology (SWSO) ([11]) is an extension of
the PSL Ontology with Web service-specific concepts which enables reasoning
about the semantics underlying Web services and along with their interactions
with each other and with the “real world”. Because SWSO is an extension of
the PSL Ontology, it also provides a first-order axiomatization of the intended
semantics of the process model of OWL-S. This supports reasoning with the
axioms of the ontology alone, rather than use extra-logical algorithms to guar-
antee that queries are entailed by the web service specifications.
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3 Basic Ontological Distinctions

The PSL Ontology consists of a set of first-order logic theories within which
there is a distinction between core theories and definitional extensions.2 Core
theories introduce new primitive concepts, while all terms introduced in a
definitional extension that are conservatively defined using the terminology of
the core theories.

All core theories within the ontology are consistent extensions of PSL-Core
(Tpsl core), although not all extensions need be mutually consistent. Table 1
is a summary of the key terms in the lexicon of the eight core theories which
will be used in this chapter.

3.1 Activity and Activity Occurrence

In general, business and engineering processes are described at the type level –
a process specification characterizes a certain general pattern that might admit
of many instantiations which might differ considerably from one another. For
example, the specification of the manufacturing process for making a car will
describe different sequences of tasks for building the components of the car
and may even describe alternative ways of producing subassemblies. A robust
foundation for process modelling, therefore, should be able to characterize
both the general process pattern described by a specification as well as the
class of possible instantiations of that pattern. Moreover, such a foundation
must be able to clearly represent the constraints that a process specification
places on something’s counting as an instantiations of the process, that is, the
constraints on process execution.

Within the PSL Ontology, an activity is a repeatable pattern of behaviour,
while an activity occurrence corresponds to a concrete instantiation of this
pattern. The relationship between activities and activity occurrences is rep-
resented by the occurrence of(o, a) relation. Activities may have multiple
occurrences, or there may exist activities which never occur. Any activity
occurrence corresponds to a unique activity.

In contrast to many object-oriented approaches, activity occurrences are
not considered to be instances of activities, since activities are not classes
within the PSL Ontology. One can of course specify classes of activities in a
process description. For example the term pickup(x, y) can denote the class
of activities for picking up some object x with manipulator y, and the term
move(x, y, z) can denote the class of activities for moving object x from lo-
cation y to location z. Ground terms such as pickup(Block1, LeftHand) and

2 The complete set of axioms for the PSL Ontology can be found at http://www.

mel.nist.gov/psl/psl-ontology/. Core theories are indicated by a .th suffix
and definitional extensions are indicated by a .def suffix.

All axioms and definitions in the PSL Ontology are written in CLIF (Common
Logic Interchange Format).
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Table 1. Lexicon for core theories in the PSL Ontology

Tpsl core activity(a) a is an activity
activity occurrence(o) o is an activity occurrence
timepoint(t) t is a timepoint
object(x) x is an object
occurrence of(o, a) o is an occurrence of a
beginof(o) the beginning timepoint of o
endof(o) the ending timepoint of o
before(t1, t2) timepoint t1 precedes timepoint t2

on the timeline

Tsubactivity subactivity(a1, a2) a1 is a subactivity of a2

primitive(a) a is a minimal element of the
subactivity ordering

Tatomic atomic(a) a is either primitive or a concurrent
activity

conc(a1, a2) the activity that is the concurrent
composition of a1 and a2

Tocctree legal(s) s is an element of a legal occurrence
tree

earlier(s1, s2) s1 precedes s2 in an occurrence tree

Tdisc state holds(f, s) the fluent f is true immediately af-
ter the activity occurrence s

prior(f, s) the fluent f is true immediately be-
fore the activity occurrence s

Tcomplex min precedes(s1, s2, a) the atomic subactivity occurrence s1

precedes the atomic subactivity oc-
currence s2 in an activity tree for a

root(s, a) the atomic subactivity occurrence s
is the root of an activity tree for a

next subocc(s1, s2, a) the atomic subactivity occurrence s1

is by the atomic subactivity occur-
rence s2 in an activity tree for a

Tactocc subactivity occurrence(o1, o2) o1 is a subactivity occurrence of o2

root occ(o) the initial atomic subactivity occur-
rence of o

leaf occ(s, o) s is the final atomic subactivity oc-
currence of o

Tduration timeduration(d) d is a timeduration
duration(t1, t2) the timeduration whose value is

the “distance” from timepoint t1 to
timepoint t2
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move(Shipment1, Seattle, Chicago) are instances of these classes of activities,
and each instance can have different occurrences. Furthermore, there may be
classes of activity occurrences that do not correspond to activities, e.g. that
class of activity occurrences that finish by Friday.

3.2 Time

Underlying the intuition that activity occurrences are the instantiations of
activities is the notion that each activity occurrence is associated with unique
timepoints that mark the begin and end of the occurrence. The PSL Ontology
introduces two functions beginof and endof for this purpose.

The set of timepoints is linearly ordered, forwards into the future, and
backwards into the past. Within the PSL Ontology, the extension of the before
relation captures this linear ordering. There are also different ontological com-
mitments about time that are not made within the PSL Ontology, such as the
denseness of the timeline; any such commitments must be axiomatized within
a theory that extends the PSL Ontology.

There are some approaches (e.g. [4]) that do not distinguish between time-
points and activity occurrences, so that activity occurrences form a subclass
of timepoints. However, activity occurrences have preconditions and effects,
whereas timepoints do not. Other approaches hold that timepoints are prim-
itives but activity occurrences are not; for example, approaches such as [10]
claim that one can derive timepoints as “ticks” of a clock activity; how-
ever, such an approach ties the temporal ontology too closely to the process
ontology.

The core theory Tduration for duration adds a metric to the timeline by
mapping every pair of timepoints to a new sort called timeduration that sat-
isfies the axioms of algebraic fields. Of course, the duration of an activity
occurrence is of most interest, and is equal to the duration between the endof
and beginof timepoints of the activity occurrence.

3.3 Objects

Many debates have erupted within philosophy over the distinction between
objects that are continuants (that is, they exist whole and entire at different
times) and objects that are occurrents (that is, they have different parts ex-
isting at different times).3 Although the PSL Ontology tries to avoid making
any commitments that would preclude one position or another in this debate,
activity occurrences can be considered to be occurrents, while continuants are
represented by objects. The ternary relation participates in(x, o, t) is used to
tie the two approaches together by specifying that object x participates in
activity occurrence o at timepoint t.
3 This terminology is used in [1]. The treatment of objects as continuants is also

known as endurantism or 3D-ontology, while the treatment of objects as occur-
rents is also known as perdurantism or 4D-ontology.
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3.4 Composition

A ubiquitous feature of process formalisms is the ability to compose simpler
activities to form new complex activities (or conversely, to decompose any
complex activity into a set of subactivities). The PSL Ontology incorporates
this idea while making several distinctions between different kinds of compo-
sition that arise from the relationship between composition of activities and
composition of activity occurrences.

Subactivities

The PSL Ontology uses the subactivity relation to capture the basic intuitions
for the composition of activities. The core theory Tsubactivity axiomatizes this
relation as a discrete partial ordering (such as Fig. 1), in which primitive
activities are the minimal elements.

Tsubactivity alone does not specify any relationship between the occurrence
of an activity and occurrences of its subactivities. For example, we can com-
pose the primitive activities press and punch in Fig. 1 to make the complex
activity surfacing and we can also compose them to make a different complex
activity shaping. However, this specification of subactivities alone does not
allow us to say that surfacing is a deterministic activity, or that shaping is
a nondeterministic activity. The core theory Tcomplex is therefore introduced
to characterize the relationship between the occurrence of a complex activity
and occurrences of its subactivities.

Concurrency

Concurrency involves more than the fact that two activities occur at the same
time, since concurrent activities may have different preconditions and effects
than any of the activities if they occur alone. In particular, the activities may
have interfering preconditions, so that even if two activities can possibly occur
separately, they cannot occur concurrently (e.g. the oven cannot be used to
bake a cake and a turkey at the same time) or the effects of two activities may
clobber each other, so that the effects of the concurrent activity are different

cut press punch

surfacing shaping

make-frame fabricate

Fig. 1. Example of subactivities and their composition into different complex
activities
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than the effects of the two activities if they occur separately ([8]); for example,
the effect of lifting only the right side or only the left side of a table has the
effect that the table is touching the floor. Lifting both the right and left sides
concurrently has the effect of lifting the entire table.

This observation leads to a notion of atomic activity which corresponds to
some set of primitive activities. Concurrency is represented by the occurrence
of concurrent activities rather than concurrent activity occurrences. The core
theory Tatomic axiomatizes the conc function that specifies the aggregation of
sets of primitive activities into concurrent activities.

Subactivity Occurrences

The core theory Tactocc axiomatizes the subactivity occurrence relation,
which is the composition relation over activity occurrences corresponding to
the composition relation over activities. Occurrences of atomic activities are
the minimal elements in this composition ordering – they do not have any
nontrivial subactivity occurrences.

Following the intuition that activity occurrences are occurrents rather than
continuants, one can consider the subactivity occurrence to be a temporal part
of the complex activity occurrence. The axioms of Tactocc guarantee that any
subactivity occurrence is “during” an occurrence of the complex activity.

3.5 State and Change

Many applications of process ontologies are used to represent dynamic be-
haviour in the world so that software systems may make predictions about
the future and explanations about the past. In particular, these predictions
and explanations are often concerned with the state of the world and how
that state changes. The PSL core theory Tdisc state is intended to capture the
basic intuitions about state and its relationship to activities.

Properties in the domain that can change are called fluents . Similar to
the representation of activities, fluents can also be denoted by terms within
the language. For example, in stock(Gadget1, Cambridge) denotes the fluent
that represents the property that the object Gadget1 is available in stock at
the Cambridge warehouse.

Intuitively, a change in state is captured by the set of fluents that are
either achieved or falsified by an activity occurrence. The prior(f, o) relation
specifies that a fluent f is intuitively true prior to an activity occurrence o
and the holds(f, o) relation specifies that a fluent f is intuitively true after an
activity occurrence o. For example, before a delivery, Gadget1 is not in the
Cambridge warehouse, but after delivery occurs, it is in stock:

occurrence of(o, delivery(Gadget1, Cambridge)) ⊃
¬prior(in stock(Gadget1, Cambridge), o)
∧holds(in stock(Gadget1, Cambridge), o)
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A fluent is changed by the occurrence of activities, and a fluent can only
be changed by the occurrence of activities. Thus, if some fluent holds after an
activity occurrence, but after an activity occurrence later along the branch
it is false, then an activity must occur at some point between that changes
the fluent. This also leads to the requirement that the fluent holding after an
activity occurrence will be the same fluent holding prior to any immediately
succeeding occurrence, since there cannot be an activity occurring between
the two by definition.

State does not change during the occurrence of an atomic activity. Conse-
quently, the PSL Ontology cannot represent phenomena in which some feature
of the world is changing as some continuous function of time (hence the name
“Discrete State” for the extension). If state changes during an activity occur-
rence, then it must be an occurrence of a complex activity.

4 Process Descriptions for Atomic Activities

Within the taxonomy of the PSL Ontology, activities are classified according
to the kinds of constraints that their occurrences satisfy. A process descrip-
tion for an activity in some class imposes constraints on activity occurrences
corresponding to the definition of the class. Classes of atomic activities are
defined with respect to constraints that arise from the following two questions:

• Under what conditions does an atomic activity occur?
• How do occurrences of atomic activities change fluents?

A detailed exposition of these constraints requires a closer look at the
model theory of the core theory Tocctree, in particular, the notion of occurrence
trees.

4.1 Occurrence Trees

An occurrence tree is a partially ordered set of atomic activity occurrences,
such that for a given set of activities, all discrete sequences of their occur-
rences are branches of the tree. It is important to note that an occurrence
tree contains all occurrences of all atomic activities; it is not simply the set
of occurrences of a particular (possibly complex) activity. Because the tree is
discrete, each activity occurrence in the tree has a unique successor occurrence
of each activity.

Although occurrence trees characterize all sequences of activity occur-
rences, not all of these sequences will intuitively be physically possible within
the domain. This leads to the notion of the legal occurrence tree, which is
the subtree of the occurrence tree that consists only of possible sequences of
activity occurrences; The legal(o) relation specifies that the atomic activity
occurrence o is an element of the legal occurrence tree.
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4.2 Constraints on Legal Occurrence

The process descriptions for atomic activities constrain the legal occurrence
tree. The general form of such a process description is:

(∀o) occurrence of(o, a) ∧ legal(o) ⊃ Φ(o) (1)

where Φ(o) is a formula that specifies the constraint on the legal activity
occurrence. Within the PSL Ontology, different classes of atomic activities
correspond to different classes of formulae that are used to instantiate Φ(o) in
the general process description. In particular, we consider cases in which the
preconditions are based on state, time, or the occurrence of other activities.

State-Based Preconditions

The most prevalent kind of precondition are markovian preconditions, in
which the possibility of occurrence depends only on the state that holds prior
to an activity occurrence, e.g.

Mixing is not performed unless the moulding machine is clean.
In this case, the cleanliness of the machine is the state, and the occurrence

of the mixing activity depends on whether or not this state holds:

(∀o, x) occurrence of(o,mixing(x)) ∧ legal(o) ⊃ prior(clean(x), o) (2)

Note that for this particular class of activities, the consequent of the sentence
is a formula that contains only prior literals.

Time-Based Preconditions

In more general scenarios, there may be temporal preconditions that depend
only on the time at which the activity is to occur, such as

The pre-heating operation can only be performed on Tuesday or Thursday.
which is axiomatized as

(∀o, x) occurrence of(o, preheat(x)) ∧ legal(o) ⊃

(beginof(o) = Tuesday) ∨ (beginof(o) = Thursday) (3)

The consequent of this process description is a formula that contains only
beginof literals.

Occurrence Constraints

The possibility of an activity occurrence may depend on the occurrence of
other activities. Consider the example:

If we do not fold the metal after fabrication, we need to reheat it
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which is axiomatized as

(∀o1, x) occurrence of(o1, reheat(x)) ∧ legal(o1) ⊃

¬(∃o2) occurrence of(o2, fold(x)) ∧ earlier(o2, o1) ∧ legal(o2) (4)

In this case, an occurrence of the reheating activity will depend on the con-
dition that there is no earlier legal occurrence of the folding activity.

Time-Based Occurrence Constraints

Preconditions may also take the form of periodic occurrences, e.g.
Drill bits are replaced every 10 min.

(∀o1, x1) occurrence of(o1, replace(x1)) ∧ legal(o1) ⊃

(∃o2, x2) occurrence of(o2, replace(x2)) ∧ earlier(o2, o1)

∧legal(o2) ∧ (duration(beginof(o2), beginof(o1)) = 10) (5)

In this example, occurrences of the replacement activity depend not only
on the occurrence of an earlier replacement activity but also on the time at
which that activity occurred.

4.3 Effects

Effects characterize the ways in which activity occurrences change the state of
the world. Such effects may be context-free, so that all occurrences of the ac-
tivity change the same states, or they may be constrained by other conditions.
The general form of such a process description is:

(∀o) occurrence of(o, a) ∧ Φ(o) ⊃ holds(f, o) (6)

where Φ(o) is a formula that specifies the constraint on the effects of the
activity occurrence.

State-Based Effects

The most common constraint is state-based effects that depend on some
context:

If the object is fragile, then it will break when dropped; if the object is
elastic, then it will bounce when dropped.

(∀o, x) occurrence of(o, drop(x)) ∧ prior(fragile(x), o)

⊃ holds(broken(x), o) (7)
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Time-Based Effects

Although process descriptions for the effects of atomic activities are most often
specifying state-based effects, other kinds of constraints also arise in practice,
such as time-based effects:

If the rental car is returned after the due date, then the cost includes a
late fee

which is axiomatized by

(∀o, x) occurrence of(o, rental(x)) ∧ before(DueDate, endof(o))
⊃ holds(late fee(x), o) (8)

The effects of the activity occurrence depend only on timepoints – the time
at which the activity occurrence ends and the timepoint that is the due date
of the rental.

Occurrence-Based Effects

In some cases, the effects depend not only on when the activity occurs, but
also on the timepoints at which other activity occurrences begin or end. For
example,

If we remove the coffee pot before the brewing activity completes, then the
burner will be wet

is axiomatized by

(∀o1, o2, x, y) occurrence of(o1, brew(x, y))∧occurrence of(o2, remove(x, y))
∧before(beginof(o2), beginof(o1)) ⊃ holds(wet(y), o1) (9)

and in this case, the formula in the process description contains multiple
variables denoting different activity occurrences, as well as before literals.

Duration-Based Effects

For some classes of atomic activities, the effects are dependent on the duration
of the activity occurrences. For example,

The time on the clock display will change after holding the button for 3 s
is axiomatized by

(∀o, x) occurrence of(o, press(x)) ∧ duration(endof(o), beginof(o)) = 3
⊃ holds(display(x), o) (10)

The effects do not depend on the time at which the activity occurs, so that
the formula does not contain any before literals.



Using the PSL Ontology 435

5 Process Descriptions for Complex Activities

Classes of complex activities are defined with respect to the following two
questions:

• What is the relationship between the occurrence of the complex activity
and occurrences of its subactivities?

• Under what conditions does a complex activity occur?

An activity may have subactivities that do not occur; the only constraint
is that any subactivity occurrence must correspond to a subtree of the activity
tree that characterizes the occurrence of the activity.

5.1 Activity Trees

The basic structure that characterizes occurrences of complex activities is
the activity tree, which is a subtree of the legal occurrence tree that consists
of all possible sequences of atomic subactivity occurrences beginning from a
root subactivity occurrence. Each branch of an activity tree corresponds to a
possible sequence of occurrences of subactivities of the complex activity.

In a sense, an activity tree is a microcosm of the occurrence tree, in which
we consider all of the ways in which the world unfolds in the context of an
occurrence of the complex activity. For example, consider the occurrence tree
in Fig. 2, and suppose that an occurrence of the complex activity make frame
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o9

o2 

o8 

o11 

o1

o5
 cut

paint

press

punch

 press

paint

punch

press

 paint

punch

 cut

Fig. 2. Example of occurrence tree and activity trees
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consists of an occurrence of cut followed by occurrences of punch and press.
The subtree consisting of

{ocut
1 , opunch

2 , opress
7 , opress

4 , opunch
11 }

is a possible activity tree for make frame.
The models of any process description for a complex activity consists of

a set of activity trees within an occurrence tree. Each branch of an activity
tree is a sequence of atomic subactivity occurrences that satisfies the process
description.

Three relations in particular are used in process descriptions for complex
activities. The root(o, a) relation specifies that the atomic subactivity occur-
rence o is the root of the activity tree. The min precedes relation is the
ordering relation over the atomic subactivity occurrences in the activity tree.
In Fig. 2, the activity tree for make frame satisfies the process description

(∀o) occurrence of(o,make frame) ⊃ (∃o1, o2, o3) occurrence of(o1, cut)
∧occurrence of(o2, punch) ∧ occurrence of(o3, press)

∧root(o1,make frame)
∧min precedes(o1, o2,make frame) ∧min precedes(o1, o3,make frame)

The axioms of Tactocc guarantees that there is a one-to-one correspondence
between branches of activity trees and complex activity occurrences. The ax-
ioms for subactivity occurrence relation guarantee that the branches of the
activity trees for a subactivity are contained in the branches of the activity
tree for the complex activity. In Fig. 2, the branch {ocut

1 , opunch
2 , opress

7 } of the
activity tree corresponds to an occurrence omake frame

12 of make frame, and
each element of the branch is a subactivity occurrence of omake frame

12 .

5.2 Branch Structure

Different subactivities may occur on different branches of the activity tree –
different occurrences of an activity may have different subactivity occurrences
or different orderings on the same subactivity occurrences.

In this sense, branches of the activity tree characterize the nondetermin-
ism that arises from different ordering constraints or iteration. For example,
the surfacing activity is intuitively nondeterministic; the activity trees for
surfacing contain two branches, one branch consisting of an occurrence of
polish and one branch consisting of an occurrence of paint.

Complex activities can be classified with respect to symmetries of its ac-
tivity trees. Concretely, these are axiomatized by relationships between the
different branches of an activity tree. We will now take a closer look at the
process descriptions for activities in these classes.
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Permuted Activities

For permuted activities, each branch of the activity tree is a different permu-
tation of the same set of subactivity occurrences. For example, the informal
process description

Making the frame consists of cutting, punching, and pressing. can be for-
mally written as

(∀o, x) occurrence of(o,make frame(x))
⊃ (∃o1, o2, o3) occurrence of(o1, cut(x))

∧occurrence of(o2, punch(x)) ∧ occurrence of(o3, press(x)) (11)

If we consider the activity trees that satisfy this sentence (Fig. 3), we can see
that each branch contains an occurrence of each subactivity.

Activities may also be nondeterministic; for example, there could be alter-
native process plans to produce the same product depending on the customer,
such as the constraint

Fabrication consists of cutting the metal together with either pressing or
punching. which is formally written as

(∀o, x) occurrence of(o, fabricate(x))
⊃ (∃o1, o2) subactivity occurrence(o1, o) ∧ subactivity occurrence(o2, o)

∧occurrence of(o1, cut(x))
∧(occurrence of(o2, press(x)) ∨ occurrence of(o2, punch(x))) (12)

The activity tree in Fig. 4 that satisfies this sentence has branches that contain
occurrences of different subactivities.

o2

o6 

o7 

o4

o3 o1

o8

o5

 cut  press punch

press cut

 punch

press cut

Fig. 3. Activity trees for permuted activities
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o2
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o1 

press

 punch

cut

Fig. 4. Activity tree for a nondeterministic activity

o1 o5
o3

o6o4o2

make_body

make_frame

make_body

make_frame

final_assembly

final_assembly

Fig. 5. Activity trees for permuted activities

Ordering Constraints

One of the most common intuitions about processes is the notion of process
flow, or the specification of some ordering over the subactivities of an activity,
such as

Making the car chassis involves making the body and making the frame in
parallel, followed by final assembly.

which is axiomatized by the process description

(∀o, o1, o2, o3, x, y) occurrence of(o,make chassis(x, y))
∧occurrence of(o1,make body(y)) ∧ occurrence of(o2,make frame(x))

∧occurrence of(o3, final assembly(x, y))
⊃ min precedes(o1, o3,make chassis(x, y))
∧min precedes(o2, o3,make chassis(x, y)) (13)

In Fig. 5, we can see that each branch of the activity tree for this activity
satisfies the same set of ordering constraints on subactivity occurrences.

Iteration

Iteration is captured by the class of repetitive activities, in which the activ-
ity tree can be decomposed into copies of some subtree (which intuitively
corresponds to the activity tree of the subactivity that is being iterated).

Nondeterministic iteration, such as
Occurrences of painting consist of multiple occurrences of coating
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is axiomatized by a process description of the form

(∀o1) occurrence of(o1, painting) ⊃
((∀o2, s1) occurrence of(o2, coating) ∧ subactivity occurrence(o2, o1)

∧leaf occ(s1, o2) ⊃ (leaf occ(s1, o1) ∨ (∃o3, s2) occurrence of(o3, coating)
∧(s2 = root occ(o3)) ∧ next subocc(s1, s2, painting)) (14)

This process description says that for every occurrence of coating in an activity
tree for painting, either there exists a next occurrence of coating or the leaf
subactivity occurrence of the occurrence of coating is also the leaf occurrence
of the occurrence of painting.

Complex activities in which the number of iterations depends on achieving
some state (analogous to while loops) is a property of a set of activity trees,
as we shall see in the next section.

5.3 Spectrum and Variation

A complex activity will in general have multiple activity trees within an oc-
currence tree, and not all activity trees for an activity need be isomorphic to
each other. This property leads to the notion of the spectrum of an activity,
which is the set of equivalence classes of isomorphic activity trees. While the
former classes of activities compared branches within the same activity tree,
we can also define classes with respect to the spectrum of the activity.

The notion of variation within the PSL Ontology characterizes the con-
ditions under which activity trees for a complex activity are isomorphic to
each other. Different activity trees for the same activity can have different
subactivity occurrences, or the activity trees may differ on the ordering of the
subactivity occurrences.

For conditional activities, the fluents that hold prior to the activity occur-
rence determine which subactivities occur, as in the constraint

Within the painting activity, if the surface of the product is rough, then
sand the product:

which is written as

(∀s, o1, x) occurrence of(o1, paint(x))∧root occ(o1) = s∧(prior(rough(x), s)
⊃ (∃o2) occurrence of(o2, sand(x)) ∧ subactivity occurrence(o2, o1)

∧(root occ(o2) = s) (15)

Alternatively, the ordering over subactivity occurrences of an activity may
depend on state, as in the constraint

If the machine is not ready, then perform the painting before final assembly
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which can be written as

(∀o, o1, o2, x, y) occurrence of(o, assembly(x, y))
∧occurrence of(o1, paint(x)) ∧ occurrence of(o2, final(x))

∧¬prior(ready(y), root occ(o))
⊃ min precedes(root occ(o1), root occ(o2), assembly(x)) (16)

Notice how this is distinct from conditional activities, since both painting
and final assembly will occur; the different activity trees in this case arise from
the ordering of the occurrences of these activities.

5.4 Distribution

The preceding two sections have presented some of the classes in the ontol-
ogy that are defined with respect to the relationship between occurrences of
complex activities and occurrences of their atomic subactivities. We now turn
to the classes of complex activities that arise from constraints under which
complex activities themselves occur.

There may be branches of a subtree of the occurrence tree that are isomor-
phic to branches of an activity tree, yet they do not correspond to occurrences
of the activity. For example, in Fig. 2, {ocut

1 , opunch
8 } need not be an activity

tree for make frame, even though it is isomorphic to a branch of an activity
tree.

The general form for process descriptions related to distribution is:

(∀s) Φ(s) ⊃ (∃o) occurrence of(o, a) ∧ s = root occ(o) (17)

For triggered activities such as
Deliver the product when we have received three orders.
State determines when an activity must occur, so that the process descrip-

tion is written as

(∀s, x) prior(order quantity(x, 3), s) ⊃
(∃o) occurrence of(o, deliver(x)) ∧ s = root occ(o) (18)

For launched activities such as
Deliver the product at 1,000.
Time determines when an activity must occur, leading to the process

description
(∀s) (beginof(s) = 1000) ⊃

(∃o, x) occurrence of(o, deliver(x)) ∧ s = root occ(o) (19)

In either case, models of the process description specify the distribution
of activity trees within the occurrence tree.
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5.5 Embedding Constraints

The PSL Ontology does not force the existence of complex activities; there
may be subtrees of the occurrence tree that contain occurrences of subac-
tivities, yet not be activity trees. We can exploit this property to represent
the existence of activity attempts, intended effects, and temporal constraints;
subtrees that do not satisfy the desired constraints will simply not correspond
to activity trees for the activity.

External Activity Occurrences

For a given complex activity, there may be external activities (that is, ac-
tivities that are not subactivities) whose occurrence either interfere with the
complex activity or which are necessary for the activity to occur. Examples of
such necessary activities include either activities performed by external agents
(such as a courier delivery or pickup) or it may be an activity such as setup.
In the constraint To produce the chassis, first drill the series of 1 cm holes,
followed by drilling the series of 2 cm holes, the activity that changes the drill
bit fixture is not a subactivity of the process plan for producing the chassis,
but is a setup activity that must occur between drilling the two sets of holes.

Interruptability

Closely related to external activity occurrences is the notion of interruptability
and activity attempts. With an interruptable activity, an external activity may
occur without interfering with the original activity. For example, interruptable
activities may be preempted or suspended:

The assembly of computers for one customer can be halted to work on a
rush order for another customer

(∀s1, x1, x2) root(s1, assemble(x1)) ∧ occurrence of(s3, assemble(x2))
∧legal(s3) ∧ earlier(s1, s3)

⊃ (∃s2) leaf(s2, assemble(x1)) ∧min precedes(s1, s2, assemble(x1)) (20)

while noninterruptable activities may not:
Pouring of metal from the furnace cannot be stopped once initiated.

(∀s1, s2) root(s1, pour metal) ∧ leaf(s2, pour metal)
∧min precedes(s1, s2, pour metal)

⊃ ¬(∃s3) occurrence of(s3, stop) ∧ earlier(s1, s3) ∧ earlier(s3, s2) (21)

In this latter example, if for some reason the metal pouring does stop, then
we would intuitively consider this to be an activity attempt, rather than an
occurrence of the activity.
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Intended Effects

There are many circumstances in which we want to make a distinction between
the intended effects of an activity and the actual effects of the activity. For
example, the manufacturing process plan for making some product in a steel
company is defined with respect to the properties specified by customer and
quality requirements (such as grade, surface properties, width, and thickness),
but due to external nondeterministic factors, not every occurrence of the pro-
cess will provide products that satisfy these requirements. Quality problems
arise from this divergence of actual effects from intended effects.

For example, informal process descriptions such as Bake the soup until it is
opaque or Heat the solution until reaches 50 C can be formalized by sentences
of the form

(∀s) leaf(s, a) ⊃ holds(f, s) (22)

In both of these examples, it is possible to terminate the activity occur-
rence before the intended state is achieved, but in the context of the intended
effects, the activity occurrence will terminate only when the state is achieved.

Temporal Constraints

With temporal constraints, subactivities are not allowed to occur at arbitrary
times during occurrences of the activity. Examples of such constraints include
schedules, which specify the possible times at which the subactivities may
occur:

The part will arrive 10 days after placing the order request

(∀o, s1, s2) min precedes(s1, s2, a) ∧ occurrence of(s1, a1) ∧ occurrence of(s2, a2)

⊃ duration(endof(s2), endof(s1)) = 10 (23)

In this example, the possible occurrences of the activity are restricted to
those whose subactivities satisfy the temporal constraints.

6 Summary

Within the increasingly complex environments of enterprise integration,
electronic commerce, and the Semantic Web, where process models are main-
tained in different software applications, standards for the exchange of this
information must address not only the syntax but also the semantics of pro-
cess concepts. PSL draws upon well-known mathematical tools and techniques
to provide a robust semantic foundation for the representation of process in-
formation. This foundation includes first-order theories for concepts together
with complete characterizations of the soundness and completeness of these
theories. In this chapter, we have seen how the PSL Ontology can be used
to specify process descriptions for a broad range of problems and provide the
semantic foundations for new ontologies.



Using the PSL Ontology 443

References

1. Grenon, P. and Smith, B. (2004) SNAP and SPAN: Towards dynamic spatial
ontology. Spatial Cognition and Computation, 4(1):69-104, 2004.

2. Gruninger, M. (2003) Applications of PSL to Semantic Web Services, Workshop
on Semantic Web and Databases. Very Large Databases Conference, Berlin.

3. Gruninger, M. and Kopena, J. (2004) Semantic Integration through Invariants,
AI Magazine, 26:11-20, 2004.

4. Hayes, P. (1996) A Catalog of Temporal Theories. Artificial Intelligence Techni-
cal Report UIUC-BI-AI-96-01, University of Illinois at Urbana-Champaign.

5. McIlraith, S., Son, T.C. and Zeng, H. (2001) Semantic Web Services, IEEE
Intelligent Systems, Special Issue on the Semantic Web. 16:46–53, March/April,
2001.

6. Menzel, C. and Gruninger, M. (2001) A formal foundation for process modeling,
Second International Conference on Formal Ontologies in Information Systems,
Welty and Smith (eds), 256-269.

7. Ciocoiu, M., Gruninger M., and Nau, D. (2001) Ontologies for integrating
engineering applications, Journal of Computing and Information Science in
Engineering, 1:45-60.

8. Pinto, J. and Reiter, R. (1993) Temporal reasoning in logic programming: A
case for the situation calculus. Proceedings of the 10th International Conference
on Logic Programming, Budapest, Hungary, June 1993.

9. Schlenoff, C., Gruninger, M., Ciocoiu, M., (1999) The Essence of the Process
Specification Language, Transactions of the Society for Computer Simulation
vol.16 no.4 (December 1999) pages 204-216.

10. Sowa, J. (2000) Knowledge Representation: Logical, Philosophical, and Compu-
tational Foundations. Brooks/Cole Publishing.

11. Semantic Web Services Framework (SWSF) Overview W3C Member Submission
9 September 2005.



Ontologies for Formal Representation
of Biological Systems

Nigam Shah and Mark Musen

Stanford Medical Informatics, Stanford, CA, USA 94305, nigam@stanford.edu,
musen@stanford.edu

1 Introduction

This chapter provides an overview of how the use of ontologies may enhance
biomedical research by providing a basis for a formalized, and shareable de-
scriptions, of models of biological systems.

A wide variety of artifacts are labeled as “ontologies” in the Biomedical
domain, leading to much debate and confusion. The most widely used ontolog-
ical artifact are controlled vocabularies (CVs). A CV provides a list of terms
whose meanings are specifically defined. Terms from a CV are usually used for
indexing records in a database. The Gene Ontology (GO) is the most widely
used CV in databases serving biomedical researchers. The GO provides term
for declaring the molecular function (MF), biological process (BP) and cellu-
lar component (CC) of gene products. The statements comprising these MF,
BP and CC declaration are called annotations [51], which are predominantly
used to interpret results from high throughput gene expression experiments
[27,53]. Arguably, CVs provide the most value for effort in terms of facilitating
database search and interoperability.

The second most prevalent kind of artifact is an information model (or data
model). An information model provides an organizing structure to information
pertaining to a domain of interest, such as microarray1 data, and describes
how different parts of the information at hand, such as the experimental con-
dition and sample description, relate to each other. In biomedical research,
Microarray Gene Expression Object Model (MAGE-OM) is an example of

1 An automated technique for simultaneously analyzing thousands of different DNA
sequences or proteins affixed to a thumbnail-sized “chip” of glass or silicon. DNA
microarrays can be used to monitor changes in the expression levels of genes
in response to changes in environmental conditions or in healthy vs. diseased
cells. Protein arrays can be used to study protein expression, protein–protein
interactions, and interactions between proteins and other molecules. From –
www.niaaa.nih.gov/publications/arh26-3/165-171.htm

S. Staab and R. Studer (eds.), Handbook on Ontologies, International Handbooks 445
on Information Systems, DOI 10.1007/978-3-540-92673-3,
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a widely known information model. MAGE-OM, along with the controlled
terms that are used to populate the information model is referred to as the
Microarray Gene Expression Data (MGED) Ontology. The MGED Ontology
is used to describe the minimum information about a microarray experiment
that is essential to make sense of the numbers comprising the microarray data.

The third kind of artifact is an ontology in its true sense, which is in-
creasingly being used for knowledge representation in Biomedicine. In this
interpretation, an ontology is a specification of entities (or concepts) and re-
lationships among them in a domain of discourse; along with declarations of
the properties of each relationship, and, in some cases, a set of explicit axioms
defined for those relations and entities. In biomedical research, several ontolo-
gies are striving towards this goal. The foremost is the Foundational Model of
Anatomy (FMA), which is a computer-based knowledge source for anatomy
and represents classes and relationships necessary for the symbolic modeling of
the structure of the human body in a form that is understandable to humans
and is also navigable, parseable, and interpretable by machine-based systems
[44]. The biomedical research community is perhaps the farthest along in rec-
ognizing the need and starting an organized effort for the creation of ontologies
that serve as formal knowledge representations [47].

1.1 Uses of Ontologies in Biomedical Research

With the advent of high-throughput technologies,2 biomedical research is un-
dergoing a revolution in terms of the amount and types of data available to
the scientist. On the one hand, there is an abundance of individual data types
such as gene and protein sequences, gene expression data, protein structures,
protein interactions and annotations. On the other hand, there is a shortage
of tools and methods that can handle this deluge of information and allow a
scientist to draw meaningful inferences.

Currently, a significant amount of time and energy is spent in merely
locating and retrieving information rather than thinking about what that
information means. For example, a researcher trying to understand how the
proteins participating in the cell cycle interact with each other, has to read
several reviews to determine the list of proteins S/he should track, search
databases such as Uniprot to retrieve annotations for the relevant proteins,
follow the citations evidencing the annotations to determine the experiment/s
that were performed on each protein and in some cases retrieve the actual data
sets from special databases. All this information comes in different formats and
from different sources. It is extremely difficult to manually search through the
various sources and integrate this diverse information about biological systems
to formulate hypotheses (or “Models”) spanning a large number genes and
proteins [28].
2 High-throughput technologies are large-scale, usually automated, methods to pu-

rify, identify, and characterize DNA, RNA, proteins and other molecules. They
allow rapid analysis of very large numbers of samples.
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Until recently, the predominant use of ontologies in biomedicine has been
to facilitate interoperability among databases by indexing them with standard
terms to address the problem of locating and retrieving information. Even if
the problem of locating information were solved, it is still difficult to formulate
formal hypotheses and models comprising a large number genes and proteins
[28]. The difficulty arises primarily because there is no shared formalism –
akin to engineering drawings – in which to express such hypotheses or models
and the interpretation they convey. Lack of such a formalism also makes it
difficult to determine whether the hypotheses are consistent internally or with
data, to refine inconsistent hypotheses and to verify the implications of com-
plicated hypotheses in ‘what if’ thought experiments [11, 24]. This situation
needs to be rectified and tools need to be developed that utilize formal meth-
ods to assist in querying and interpreting the information at hand [11,15,52].

Besides using ontologies for enhancing interoperability among databases
and enabling data exchange, researchers have also used ontologies to create
knowledge bases that store large amounts of knowledge in a structured man-
ner [22, 23]. For example, EcoCyc is a comprehensive source of structured
knowledge on metabolic pathways in E. Coli. When used to create knowledge
bases, an ontology enables the declaration and storage of a theory – an exper-
imentally testable explanation of the interactions in a biological system [54].
If the ontologies are well-designed, then the resulting knowledge bases can
be used to retrieve relevant facts, to organize and interpret disparate knowl-
edge, to infer non-obvious relationships, and to evaluate hypotheses posited
by scientists [4, 31,41].

The emerging trend in the use of ontologies in biomedical research is that,
at the outset, ontology terms are used to name things, gradually proceed-
ing toward naming connections between things – first to create information
models and then progressing towards the creation of a formal representation3

[15, 52] which allows the creation of formal (both qualitative and quantitative)
models4 of biological systems.

In this chapter we focus on the latter use. Chapter “Ontology-Based Rec-
ommender Systems” discusses the current applications of bio-ontologies that
are focused around the theme of database interoperability and data integra-
tion. Bodenreider and Stevens [5] have recently reviewed in detail the current
progress in biomedical ontologies and we do not review it again in this chapter.
In the next sections, we discuss how the use of ontologies for formal represen-
tation of biological systems can aid in biomedical research, we then outline the
hurdles facing the realization of such use and in the end discuss the possible
role of the Semantic Web in advancing this particular use.
3 For this current discussion, a formal representation means a computer-

interpretable standardized form that can be the basis for creating unambiguous
descriptions of biological systems 2.1.

4 We use “models” to mean a schematic description of a system or phenomenon
that accounts for its known or inferred properties and can be used for further
study of its characteristics.



448 N. Shah and M. Musen

2 Constructing Hypotheses and Models of Biological
Systems

The discovery process in biomedical research is cyclical; Scientists examine
existing data to formulate models that explain the data, design experiments
to test the hypotheses and develop new hypotheses that incorporate the data
generated during experimentation. Currently, in order to advance this cy-
cle, the experimentalist must perform several tasks: (1) gather information of
many different types about the biological entities that participate in a bio-
logical process (2) formulate hypotheses (or models) about the relationships
among these entities, (3) examine the different data to evaluate the degree to
which his/her hypothesis is supported and (4) refine the hypotheses to achieve
the best possible match with the data. In todays data-rich environment, this
is a very difficult, time-consuming and tedious task. For example, even to
evaluate a simple hypothesis such as “protein A is a transcriptional activator
of genes X, Y and Z”, the experimentalist must examine the literature for
evidence showing that protein A is a transcription factor or exhibits protein
sequence homology with known transcriptional factors. S/he must look for
evidence indicating DNA binding activity for protein A and if found, examine
the promoters of X, Y and Z for presence of binding sequences for protein A.
Moreover, each of the preceding steps incorporate a set of implicit assumptions
such as sequence homology implying similarity of function.

Finally, the refined hypotheses are subjected to experimental testing. Hy-
potheses that survive these tests – validated hypotheses – are published in
scientific publications and represent the growing knowledge about biologi-
cal entities, processes and relationships among them. Validated hypotheses
are eventually synthesized into systems of relationships called “models” that
account for the known behavior of the system and provide the grounds for fur-
ther experimentation. Biologists’ models are generally presented as diagrams
showing the type, direction and strength of relationships among biological
entities such as genes and proteins. Figure5 1 shows a simplified a model of
regulation of the mitotic cell cycle in humans.6

Usually the goal of constructing a model of a biological system is to predict
the outcome (either qualitative of quantitative) from the system at some point
in the future. For the moment, for most biological systems, scientists must
describe the workings of biological systems in a qualitative manner because
there is not enough known to formulate quantitative modes [11]. Even for
qualitative models, we believe that such predictive models, though essential,
lie in the future because much of current research uses prior knowledge for
5 Source public domain, non copy righted image.
6 The cell cycle is a complicated biological process and comprises of the progression

of events that occur in a cell during successive cell replication. The process can be
described at varying level of details ranging from a high level qualitative descrip-
tion to a detailed system of differential equations. However, for most biological
processes the representation is primarily in terms of qualitative interactions.
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Fig. 1. A diagram showing a simple model of regulation of the mitotic cell cycle
in humans. The filled rectangles in the cell (gray box ) denote proteins and protein
complexes that participate in the process. The green oval shows the phases of the
cell cycle and the green arrows from the proteins shows the phase at which they
function. The black arrows depict activating relationships and the red ones show
inhibitory relationships. Note how temporal, logical and structural information is
mashed together in one representation

interpreting data sets rather than applying prior knowledge as a set of axioms
that will elicit new knowledge [56, 59]. In this situation, the most profitable
manner to use models is to construct a model or a set of models and then test
them for consistency with the available information and knowledge, revise
models to minimize the inconsistencies and then pick the most consistent
model as a basis for designing further experiments [39,41,52].

2.1 Creating a Formal Representation for Hypotheses and Models

If we accept the notion of an hypothesis (or a model) as the basis for an
organizing framework for the data and information sources we wish to inte-
grate and interpret, we immediately encounter several problems. As we have
discussed, for a large number of participating entities such genes, proteins,
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clinical observations and laboratory data, it is extremely difficult to integrate
current knowledge about the relationships within system under study to for-
mulate hypotheses or models. The difficulty arises primarily because there is
no shared formalism – akin to engineering drawings – in which to express
such hypotheses or models and the interpretation they convey. Therefore, it
is difficult to determine whether such hypotheses are internally consistent or
are consistent with data, to refine inconsistent hypotheses and to understand
the implications of complicated hypotheses [24].

It is widely recognized that one key challenge in managing this data
overload is to represent the results of high-throughput experiments as well
as clinical observations and patient records in a formal representation – a
computer-interpretable standardized form that can be the basis for unam-
biguous descriptions of hypotheses and models [15,52].

This raises the following question: What are the desirable properties of a
formal representation for hypotheses or models? Peleg et al. [38], have sug-
gested the following set of desirable properties in a formal representation for
models of biological processes:

1. A formal representation should be able to present structural, functional
and dynamic views of a biological process. The structural and functional
views show the entities that participate in a process and relationships
among them. The dynamic view shows the process over time, shows branch
points and conditional sub-processes.

2. A formal representation should include an associated ontology that un-
ambiguously identifies the entities and relationships in a process.

3. It should be able to represent biological processes at various scales
and should allow hierarchical representation of sub processes to manage
complexity.

4. The representation should be able to incorporate new data as they become
available and should be extensible to allow new categories of information
as they come in to existence.

5. The representation should have a corresponding conceptual (mathemati-
cal) framework that allows verification of system properties using simula-
tion and/or logical inference mechanisms.

6. The representation should have an intuitive visual layout.

If we can devise a formal representation for hypotheses and the data at
hand as well as the mechanisms to check the consistency of hypotheses with
that data and prior knowledge, we can significantly streamline the task of in-
terpreting diverse data. Moreover, if we develop such a formal representation,
we can develop tools that can operate upon current data sets, information
and existing knowledge to integrate them in an environment that supports
the formulation and testing of hypotheses [4, 9, 14,41,54].

Developing such a formal representation is not a trivial task. Moreover it
is unreasonable to expect one representation that will satisfy the needs of all
users. However, the need for creating such representation for specific domain
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(or sub domain) of study has been proposed multiple times in Biomedicine
[2,3,9,11,12,15,37]. In the next section we discuss the key issues in creating a
formal representation of a domain (see Fig. 2 for a quick overview) and then
in Sect. 3 we discuss the pivotal role ontologies can play in the process.

2.2 Challenges for Developing a Formal Representation

Knowledge Representation

The first challenge is the systematic representation of the various kinds of
biological entities that participate in any given disease process and the many
qualitatively different kinds of relationships among them. This requires the de-
velopment of an ontology for unambiguously representing biological entities
and interactions among them. Specifically, an ontology allows us to repre-
sent domain-specific entities along with their definitions, a set of relationships
among them, properties of each relationship, and, in some cases, a set of
explicit axioms defined for those relations and entities. We require different
ontologies to represent biological processes at different levels of granularity be-
cause biological processes and the relevant data can be considered at varying
levels of detail, ranging from molecular mechanisms to general processes such
as cell division and from raw data matrixes to qualitative relationships [6].

Ontologies have gained a lot of popularity in molecular biology over the
last several years. The earliest ontologies describe properties of ‘objects’ such
as genes, gene products and small molecules. The later ontologies describe the
‘processes’ that gene, proteins and small molecules participate in.

Currently, there are several ontologies that allow representation of pro-
cesses in a biological system by specifying relationships between biological
entities for tasks ranging from modeling biological systems to extracting in-
formation from literature. At the simplest level, gene ontology BP annotations
describe the processes a particular gene product might contribute to, which
can be viewed as a minimal model of the biological process that does not con-
tain any declaration of the specific relationships among its participants. At the
other end is the Systems biology markup language, SBML, which can repre-
sent quantitative models of biochemical processes and pathways [20]. However
for most systems such detailed information is not yet available.

There are multiple ontologies to represent biological processes, models and
hypotheses at varying degrees of granularity between the two extremes of
a GO BP annotation and a SBML representation. For example, EcoCyc’s
ontology, which is used to represent information about metabolic pathways
for E. coli [22] provides an ontology of biological entity types and processes.
An ontology developed by Rzhetsky et al. [49] allows representation signal
transduction pathways at a granularity level that is optimal for programs
that extract information about such pathways automatically from published
literature [49,50].

In Sect. 3 we will discuss how ontologies enable the creation of a formal
representation by enabling the knowledge representation task.
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Conceptual Representation

The second problem is to represent the biological system conceptually. The
conceptual framework for a biological system enables a user to reason about
a biological system and perform thought experiments. Thought experiments
serve two functions: prediction and verification. Prediction allows scientists to
make future claims based on models of a system. Verification provides guid-
ance and feedback about the accuracy of the models through comparison, ma-
nipulation, and evaluation against available data and knowledge. Prediction
and verification enable scientists to ask ‘what if’ questions about a system,
form explanations, as well as make and test predictions. Currently, one of the
major limiting factor is the conceptual representation of the “mathematics”
of biological systems [11].

A conceptual framework for representing biological systems must accom-
modate the modularity and temporal behavior of biological systems, as well as
handle their non-linearity and redundancy. The conceptual frameworks used
to represent biological models vary from ordinary differential equations to
Boolean [1,30] and Bayesian [13,17,36] networks as well as Petri Nets [37,43]
to qualitative process calculi [7], special logics [57] and rule systems [21].

The inability to represent disparate kinds of information, at different levels
of detail, about biological systems in a common conceptual framework is a
major limitation in the creation of formal representations of biological systems,
and current efforts usually focus on a limited categories of information [52].

A promising approach is to represent the biological processes in a system
as a sequence of ‘events’ that link particular ‘states’ of the system [40,42]. It
has been shown before that complex processes, particularly those that exhibit
non-linear behavior, are readily described by event-driven dynamics [19] be-
cause event dynamics allows description of the process in terms of observed
effects of the non-linear behavior rather then requiring that the non-linear be-
havior itself be represented as a mathematical function. Moreover, event-based
approaches can represent simple processes, such as protein phosphorylation,
to complex ones, such as the cell cycle, allowing a wide range of resolution.

An event-based framework offers several other advantages as well: (1) It
can explicitly represent states which allows for representing information such
as commitment to a developmental pathway [38]; (2) It allows hierarchical
representation of properties and hence avoid a rapid increase in the number
of states that need to be represented [18]; (3) It can represent temporal con-
straints on when events occur; (4) It can readily accept new categories of
information and represent information at different resolution levels.

It is unlikely that any conceptual framework will be adequate to represent
all biological systems and it is much more productive to represent the data,
information and knowledge at hand in an explicit ontology and then map the
various entity-types and relationships in the ontology to a particular concep-
tual frameworks needed under specific situations. For example, Rubin et al
have represented anatomic knowledge about the heart and the circulatory
system in an ontology and then mapped the ontology to differential equation
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models for blood pressure as well as to a reasoning service to predict the effect
of penetrating injuries to the heart [45,46].

Knowledge and Data Acquisition

The final challenge is the gathering, storage, and encoding of existing infor-
mation. Even if all of the above challenges are met, getting access to the
information and converting (or encoding) it into the relevant ontology in an
automated manner is a major challenge because the information resides in
separate repositories, each with custom storage formats and diverse access
methods. Moreover, most databases do not store information in an explicit
ontology and groups that design ontologies capable of representing models of
biological systems [10,20,38,41,50] do not store all relevant information struc-
tured in those ontologies. Hence, efforts aimed at building a unified formal rep-
resentation need to convert existing information into their ontology. For most
formal representations this conversion (or encoding) of existing information
and knowledge remains an unsolved problem and is the most common bottle-
neck preventing the use of the representation.

All the challenges described above are strongly inter-related as shown in
the Fig. 2 and need to solved in tandem for a particular domain of interest.

Fig. 2. Components of a Formal Representation: A formal representation is a
computer-interpretable standardized form that can be the basis for unambiguous
descriptions of hypotheses and models in a domain of discourse. Knowledge repre-
sentation comprises the methods and processes of systematically representing the
various biological entities and the different kinds of relationships between them.
The conceptual framework for a biological system enables a user to reason about a
biological system and perform thought experiments. The adoption and success of a
formal representation depends critically on the ability to gather and encode existing
information and knowledge



454 N. Shah and M. Musen

3 Ontologies Enable the Creation of a Formal
Representation

As discussed till now, in order to create a unified formal representation, we
need a conceptual framework that can represent models of biological systems.
The conceptual framework should represent the temporal dynamics of the
process and should not require a complete model rewrite on minor changes.
The conceptual framework should provide systematic methods to evaluate,
update, extend and revise models represented in that framework.

It is obvious that no conceptual framework will be adequate under all cir-
cumstances. We are better off representing the data, information and knowl-
edge at hand in an explicit ontology and then mapping the various entity-types
and relationships in the ontology to a particular conceptual framework needed
under specific situations [45,46].

The challenge then is to bridge the conceptual framework and the ontol-
ogy to create the formal representation. For example, the relationship ‘protein
A activates protein B’ is different from ‘protein A activates gene X’ though
it may be described by the same words. When representing a biological pro-
cess in a conceptual framework, it is essential to distinguish between the two
meanings. An ontology can distinguish between the two relationships by pro-
viding different terms to represent the two meanings as well as by clearly
specifying the two meanings. Having an associated ontology where each term
in the ontology has a corresponding construct in the conceptual framework
allows this distinction to be made in the conceptual model as well. Because
an ontology unambiguously declares the entities and relationship among those
entities, it can guide the design of the knowledgebases that store the various
experimental and clinical data as well as prior domain knowledge in a manner
that different conceptual frameworks can be overlayed on the primary data.

Particularly, the use ontologies will help in maintaining a strict distinc-
tion between data and an interpretation based on the data. For example, the
current diagnosis criteria for Multiple Sclerosis (MS) are based on observing
at least two clinical episodes with certain symptoms at least 3 months apart
and the presence of two plaques (on the spinal cord) on MRI. If we design
our database of clinical records to store the diagnostic code for MS, then, if
the diagnostic criteria for that diagnostic code change, we have to re-examine
every record, re-diagnose MS and re-associate the correct codes with each
record. However, if we define the interpretation about the existence of MS
separately from the data structure used to store observational data, then we
can change our criteria for MS and still reliably identify all cases of MS. Such
separation of the definition of a biomedical concept from the decision (such
as recommending a treatment) and computation (such as searching for corre-
lations with environmental factors) has been demonstrated to increase both
maintainability and efficiency of computer reasoning [25,32].

We believe that a particular conceptual framework along with the asso-
ciated ontology is the optimal way to create a formal representation fit for
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a specific situation. For example, differential equations along with the Sys-
tems Biology Markup Language (SBML) create an appropriate formal rep-
resentation for biochemical signaling pathways. Ontologies will play a cen-
tral role in enabling such modularity and maintaining a separation between
data, information and knowledge and the relevant conceptual (mathematical)
framework.

The formal representation resulting from such separation will be easily
extensible to incorporate new data types as they become available as well
as to incorporate novel conceptual frameworks as required. The hypotheses,
models and underlying data can become compatible with each other in the
context of the relevant conceptual framework, making it possible to bring
together the implications of many kinds of data and information in a unified
manner [41, 54]. We will gain the ability to test complex interpretations as
well as the ability to use data from unrelated research projects [35].

3.1 Unresolved Issues

Although, the use of ontologies in the creation of formal representations has
a very strong case in its favor, there are several challenging issues that need
to be addressed, which we discuss below:

Abstraction Levels

Biomedical researchers study biological systems at various scales, ranging from
electron microscopy images to patient populations. No ontology can span all
these and multiple ontologies already exist for different abstraction levels. We
need to create a mechanism by which ontologies at different abstraction levels
can be effectively mapped to each other.

Unambiguous Relationships

Within a particular abstraction level of representing a biological system, re-
lationships need to be explicitly defined so that their interpretation is not
subjective. The relationship ontology (RO) [55] is a step in this direction for
defining relations for the molecular level. Although the RO provides explicit
logical definitions, no computational implementation of the RO exists that
actually allows a user to verify the correct use of the relations. General, well
established mechanisms, such as Ontoclean (discussed in 9), to verify the clar-
ity of relationships in ontologies exist. However, their use in the biomedical
domain is minimal.

Consistency Across Abstraction Levels

Biomedical researchers cross multiple abstraction levels when describing bi-
ological systems. It is essential that relationships between entities at a par-
ticular abstraction levels can be consistently interpreted when we move to a
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different abstraction level (For example how does the mechanism of action of
a drug at the protein level affect the efficacy of the drug in treating a patient).

Bindings with Conceptual Frameworks

We have suggested a separation between the ontology used to structure knowl-
edge about a biological system and the conceptual framework used to model
the system mathematically. However, currently the process of establishing a
correspondence between constructs in an ontology and constructs in a con-
ceptual framework is quite ad hoc. Usually the ontology is designed with one
conceptual framework in mind (e.g. SBML [20] and differential equations or
the Biological Process ontology and Petri nets [38]). The general problem
of easily mapping a formal representation to conceptual models at different
scales is still unsolved and promises to be an exciting research direction.

4 Role of the Semantic Web

The Semantic Web is an evolving extension of the World Wide Web in which
web content can be expressed in a form that can be understood, interpreted
and used by software agents (besides humans), thus permitting software agents
to find, share and integrate information more easily.7

Given the heterogeneity of biological data both in form and location, the
Semantic Web is of considerable interest to the life sciences community; par-
ticularly because key issues such as the need for consistent data and knowledge
representation can be addressed using the Resource Description Framework
(RDF) and Web Ontology Language (OWL) [16]. A variety of technologies
have been built on this foundation of RDF and OWL that, together, support
identifying, representing, and reasoning across a wide range of biomedical data
[48,58].

The expectation from the Semantic Web in life sciences is that relation-
ships that exist implicitly in the minds of scientists will be explicitly declared
(using OWL ontologies) and then used to aggregate genomic, proteomic, cel-
lular, physiological, and chemical data. Semantic definitions will specify which
objects are related to others and how. Such linking will enable semantic tools
[34] that can pull together diverse information, render it in a manner defined
by the user and possibly reason over the collated information to derive novel
insights [8, 29,33,48].

However, not everyone is convinced that the Semantic Web will have such
a revolutionizing effect on life sciences. There are implicit assumptions in the
expected role of the Semantic Web, mainly that: (1) a simple syntax and the
semantic of description logics will be sufficient (2) translation of existing in-
formation into the simple syntax as well as inferences on the simple semantics

7 http://www.w3.org/2001/sw/SW-FAQ
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will work right [26]. If these two assumptions are not met, the promise of the
Semantic Web might not be realized in the field of biomedical research.

Currently there is immense excitement about the Semantic Web and its
possible contribution to advancing biomedical research; it remains to be seen
wether it bears out in practice.

5 Summary

In this chapter we have discussed how the use of ontologies for knowledge
representation can aid in current biomedical research. We have argued that
formally representing biological systems is necessary for advancing current
biomedical research and that it is increasingly recognized that biologists need
to use computational tools for performing thought experiments. We have de-
scribed how biomedical ontologies can play a pivotal role in enabling that
transition. We have outlined the hurdles facing the use of ontologies in cre-
ating formal representations that enable thought experiments. We have dis-
cussed the possible role of the Semantic Web in advancing this particular use
of ontologies.
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1 Introduction

In the cultural heritage domain information systems are increasingly deployed,
digital representations of physical objects are produced in immense numbers
and there is a strong political pressure on memory institutions to make their
holdings accessible to the public in digital form. The sector splits into a set of
disciplines with highly specialized fields. Due to the resulting diversity, one can
hardly speak about a “domain” in the sense of “domain ontologies” [33]. On
the other side, study and research of the past is highly interdisciplinary. Char-
acteristically, archaeology employs a series of “auxiliary” disciplines, such as
archaeometry, archaeomedicine, archaeobotany, archaeometallurgy, archaeoas-
tronomy, etc., but also historical sources and social theories.

Interoperability between various highly specialized systems, integrated in-
formation access and information integration increasingly becomes a demand
to support research, professional heritage administration, preservation, public
curiosity and education. Therefore the sector is characterized by a complex
schema integration problem of associating complementary information from
various dedicated systems, which can be efficiently addressed by formal on-
tologies [14,32,33].

There is a proliferation of specialized terminology, but terminology is less
used as a means of agreement between experts than as an intellectual tool for
hypothesis building based on discriminating phenomena. Automated classifi-
cation is a long established discipline of archaeology, but few terminological
systems are widely accepted. The sector is, however, more focused on estab-
lishing knowledge about facts and context in the past than about classes of
things and the laws of their behavior. Respectively, the concatenation of re-
lated facts by co-reference [56] to particulars, such as things, people, places,
periods is a major open issue. Knowledge Organisation Systems (KOS, [62])
describing people and places are employed to a certain degree, and pose sim-
ilar technical problems as ontologies, but the required scale is very large. In
this chapter, we describe how ontologies are and could be employed to improve
information management in the cultural heritage sector.
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2 The Cultural Heritage Domain

Layman may think of cultural heritage primarily as fine arts collections and re-
gard the description and indexing of these objects as relatively straightforward
and reasoning more as a matter of scholarly reflection about their ideal values
than a matter of logic. In reality, cultural heritage is more than as a domain.
It comprises a broad spectrum of functions about the study and preservation
of physical evidence of the past of all sorts of human activities [19].

2.1 What is Cultural Heritage?

In a narrower sense, we may regard the cultural heritage as the things pre-
served by the memory institutions, i.e. museums, sites and monuments records
(“SMR”), archives and libraries. Their international umbrella organizations
are: the International Council of Museums (ICOM,1) the International Fed-
eration of Library Associations (IFLA,2) and the International Council of
Archives (ICA.3) They maintain their specific documentation policies and
standards.

Following ICOM, “A museum is a non-profit making, permanent institu-
tion in the service of society and of its development, and open to the public,
which acquires, conserves, researches, communicates and exhibits, for purposes
of study, education and enjoyment, material evidence of people and their en-
vironment” [60] and “Museums” hold primary evidence for establishing and
furthering knowledge” [61]. SMRs are typically departments of a Ministry of
Culture, pursuing similar goals as museums, but for immobile sites. Archives
keep very large amounts of original material – mostly written and images –
in their historical order, such as administrational records, letters from VIPs,
photographic collections and others.

To a certain degree, libraries may also preserve cultural heritage when
they keep unique books, however their focus is on mediating access to non-
unique information sources. In contrast, most cultural heritage objects are a
rather mute evidence of past events that acquire relevance from understanding
the context of their origin and history. The object may appear less as an
information source in its own right than as an “illustration” of the past.
This distinction is important to understand the difference between library
and cultural heritage information, and the immense complexity of the latter.

One can appreciate the diversity of cultural heritage from the following
list of major kinds of collections:

• History of arts and modern arts (graphics, painting, photography, sculp-
ture, architecture, manuscripts, religious objects),

1 http://www.icom.org
2 http://www.ifla.org
3 http://www.ica.org
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• Historical heirloom (treaties, letters, manuscripts, drawings, photos, films,
personal objects, weapons),

• Archaeology (sherds, sculptures, tools, weapons, household items, human
remains),

• Design (furniture, tableware, cars, etc.),
• Science and technology (machinery, tools, weapons, vehicles, famous

experiments, discoveries),
• Ethnology (costumes, tools, weapons, household items, religious objects,

etc.)
• Immobile sites (architecture, sculpture, rock art, caves)
• To a certain degree, natural history collections, such as paleontology, bio-

diversity, mineralogy are also evidence of human activities (i.e. research)
and hence culture.

Handling information about all those kinds of things implies the use of very
rich terminology, multilingual and often specific to particular communities or
even to particular scholars. Agreement on common terminology is difficult
and equivalent terms in other languages are often missing. It is an obvious
challenge for employment of formal ontologies that poses not only technical
problems, but also intellectual challenges in the approximation of intuitive
or traditional concepts by logical definitions, such as the possible narrower
and wider meanings of the same term, objective declaration of discriminating
features or fuzzy transitions of instances from one class to another.

2.2 Functions of Cultural Heritage Information

One can distinguish kinds of cultural heritage information systems by their
major functions. Those are:

• Collection management (acquisition, registration, “deaccession”, inven-
tory, loans, exhibitions, insurance, rights, protection zones) [29,30]

• Conservation (diagnosis of deterioration, preventive measures, interven-
tions, treatments and chemical agents)[78]

• Research (investigation, description, interpretation)
• Presentation (portals, teaching, publication)

In each of these four areas quite distinct and highly specialized information
systems exist, created and maintained by different players. On the other side,
information in all those systems overlaps and should be mutually accessible
in order to do the job. One of the major challenges of cultural heritage infor-
mation management is the interoperability of those system and integration of
information across function and discipline.

Collection management systems are offered by several commercial ven-
dors. They are mostly built on Relational or hierarchical database systems.
Many customized systems are built on demand by IT experts. They sup-
port the technical management and administration of collections or sites and
monuments. A comprehensive, internationally accepted definition of their
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functions can be found in [29]. Curators provide basic descriptions of the
objects that serve their identification and handling, but do also research and
justify their relevance, i.e. why the object is kept in a museum. Archival collec-
tions typically consist of millions of leaves. It is unusual to describe each item.
Rather, curators document the historical context under which coherent sets
of documents were created or brought together as finding aids for researchers,
so-called collection-level metadata. Only recently, more fine-grained documen-
tation is occasionally considered [23].

Conservation information may be part of the collection management
or separate from it. It deals with the scientific, material analysis of the
objects, preventive measures and interventions. Loan management and his-
torical research may need those data. Art and monument conservation is an
underestimated sector of financial importance. Art conservators are scientists
who need, similar to doctors, to accumulate and exchange immense knowl-
edge about diagnosis methods, treatments and side effects [78]. There are a
few dedicated websites and systems for information exchange between experts
[3,58] and learning [20], but there is still a wide market for such systems. Since
they deal with categorical (general) knowledge, such systems should better be
ontology-based.

Research information systems are highly specialized and mostly built on
demand for specific projects. There are reference systems that list consol-
idated, uniform descriptions of all known items of a certain kind, such as
Roman Inscriptions [15] or the Union List of Artist Names [12]. There are
many systems4 that integrate information from thousands of sources for sta-
tistical or other kinds of analysis. Particularly important became GIS-based
reasoning systems, such as for archaeological site prediction, and systems for
running automatic classification (see for instance, [24,38]). Unfortunately, id-
iosyncratic design and insufficient management of source references frequently
make the reuse of the integrated information impossible after the project
ends.5 More effective means of data transformation and migration are still to
be developed. Ontologies could play an important role in that.

Presentation systems give access to cultural heritage information to the
general public or a community of subscribers, in particular teachers and aca-
demics (see Chapter “Ontology-Based Recommender Systems”). We estimate
that more than 95% of museum objects are not in any exhibition, and archives
are mostly closed to the public. Therefore there is a strong political pressure
to make at least object descriptions from the collection management systems
publicly accessible. Museum portals (see Chapter “Ontology-Based Recom-
mender Systems”) may present parts of collections. The scale is immense:

4 For instance, those published by the conference series Computer Applica-
tions & Quantitative Methods in Archaeology http://caa.leidenuniv.nl/

proceedings/
5 Round Table discussion at the 8th EAA ANNUAL MEETING, 24–29 September

2002, Thessaloniki–Hellas, http://www.symvoli.com.gr/eaa8/mple.htm#P5
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larger museums hold millions of objects. The Smithsonian Institutions hold
over 100 million objects. Other presentation systems may take the form of
an electronic exhibition, complementary information to a physical exhibition,
or the form of an electronic publication that elaborates a particular subject
matter. Ontologies play a major role to provide structured access points and
to structure the subject matter itself in these systems.

Recent efforts deal with the capturing and preservation of performing arts
and oral tradition [11, 34, 49]. Since there is no object to be described, tra-
ditional models of documentation are not appropriate, and new models are
discussed.

3 The Schema Integration Problem

Most of the professional systems referred to above are based on fairly complex
database schemata. For instance, CIDOC proposed until 1995 a standard Re-
lational Schema for museums with more than 400 tables. As described above,
cultural heritage information is distributed in many different systems which
complement each other. One source may relate Roman names to Roman in-
scriptions, another Roman inscriptions to stones, another stones to place of
finding, and another places to coordinates [25]. But still most efforts to inte-
grate heritage information concentrate on finding minimal common descrip-
tion elements for objects as finding aids rather than documentation. This is
motivated by practice from the library communities, in particular the Dublin
Core Consortium.6

3.1 Metadata and Application Profiles

Since libraries and Digital Libraries hold objects that contain data, they use
to call the descriptions of their objects “metadata”, i.e. data about data. This
term has also been adopted by museums for their object descriptions, even
though their objects are not data. There is a plethora of attempts to structure
metadata as flat lists of properties, which may be aggregated in so-called “ap-
plication profiles” [9, 37], and the mapping and data transformation between
different metadata formats may be called a “metadata crosswalk” [62]. The la-
bels of metadata properties, such as “creator”, “date”, etc., remind concepts.
Therefore several authors recently regard metadata schemata as “vocabular-
ies” or a kind of ontologies. We regard this as a confusion of information
models with ontologies, as elaborated by [71, 72]. It is to remind that formal
ontologies were introduced to computer science to describe common concep-
tualization behind multiple schemata [32, 33], and not to become a synonym
of schemata. Further, the reduction of complex object histories to a flat set of

6 http://dublincore.org/
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properties can only be achieved by semantic overloading of these properties,
which conflicts with the definition of an ontology, as shown in [18,43].

Nevertheless, numerous digitization projects of cultural objects create dig-
ital libraries with Dublin Core metadata elements as minimal standard. Also
wide-spread is the use of MPEG7 ([8, 40] and Chapter “Ontologies for Cul-
tural Heritage”), the metadata standard for multimedia objects, for obvious
reasons, which is a far richer representation of the structure, history and
subject of the object. There is serious research on automatic matching of
metadata elements in order to support schema mapping and merging which
is based on comparison of metadata elements with ontologies. The idea is to
detect similarities between schema elements and the underlying concepts by
the similarity of naming and properties. The underlying concepts are found
in a formal ontology, such as WordNet [26].

3.2 ISO21127

Information integration based on finding aids for the objects actually fails
to integrate the information about the wider historical contexts these objects
illustrate and from which they get their relevance. If a serious integration of the
relevant contents of cultural heritage information is intended, richer models
must be employed. For instance, the Research Libraries Group in California
successfully integrated in their Cultural Materials Initiative data from about a
thousand cultural institutions encoded in about a hundred different schemata
into a far richer schema, virtually without loss of information. This schema was
derived from the CIDOC CRM ontology, now ISO21127, which is currently the
most elaborated ontology for the integration of cultural heritage information.

The CIDOC CRM is a formal ontology [16] intended to facilitate the
integration, mediation and interchange of heterogeneous cultural heritage in-
formation. It was developed by interdisciplinary teams of experts, coming
from fields such as computer science, archaeology, museum documentation,
history of arts, natural history, library science, physics and philosophy, under
the aegis of the International Committee for Documentation (CIDOC) of the
International Council of Museums (ICOM). Its development started bottom
up, by reengineering and integrating the semantic contents of more and more
database schemata and documentation structures from all kinds of museum
disciplines, archives and recently libraries.

The development team applied strict principles to admit only concepts
that serve the functionality of global information integration, and other, more
philosophical restrictions about the kind of discourse to be supported (for
more details see [19]). The application of these principles was successful in two
ways. On the one side, the model became very compact without compromising
adequacy [71]. The very first schema analyzed in 1996, the CIDOC Relational
Data Model with more than 400 tables (described by [66]), could be reduced
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to a model of about 50 classes and 60 properties, with far wider applicability
than the original schema. On the other side, the more schemata were analyzed,
the fewer changes were needed in the model (see version history.7) The present
model contains 80 classes and 132 properties, representing the semantics of
may be hundreds of schemata. As a result of the successful reformulation of
the original Relational model, CIDOC started the standardization process in
collaboration with ISO in 2000. The model was accepted as ISO21127:2006 in
September 2006.

Deliberately, the CIDOC CRM ontology is presented in a textual form
to demonstrate independence from particular knowledge representation for-
mats. There exists however a formal definition in TELOS [59]. The CRM
distinguishes individual classes from properties (binary relationships). Prop-
erties are directed and bidirectional, with distinct labels for each direction.
It employs strict multiple inheritance (without exceptions) for both classes
and properties. It foresees multiple instantiation, i.e. one particular item can
accidentally be instance of more than one class. Domain and range of prop-
erties are associated with the quantifiers zero, one or many. There exist valid
equivalents in KIF, RDFS and OWL, to the degree the respective constructs
are supported. Four ideas are central to the CRM (see Fig. 1):

1. The possible ambiguity of the relationship between entities and the identi-
fiers (“Appellations”) that are used to refer to the entities are a part of the
historical reality to be described by the ontology rather than a problem to
be resolved in advance. Therefore, the CRM distinguishes the nodes repre-
senting a real item from the nodes representing only the names of an item.

2. “Types” and classification systems are not only a means to structure
information about reality from an external point of view, but also part of
the historical reality in their nature as human inventions. As such they

Fig. 1. Top-level entities of the CIDOC CRM

7 http://cidoc.ics.forth.gr
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fall under “Conceptual Objects”, inheriting properties of creation, use,
etc. Similarly, all documentation is seen as part of the reality, and may
be described together with the documented content itself. This reification
problem is not appropriately dealt with in current ontology languages.
The CRM is forced to use some workarounds we do not analyze here fur-
ther. Terminology, i.e. classes that are not contributing as domain or range
to the relationships expressed in data structures, are not part of the core
ontology itself but regarded as instances of “Type” for practical reasons.

3. The normal human way to analyze the past is to split up the evolution of
matters into discrete events in space and time. Thus the documented past
can be formulated as series of events involving “Persistent Items” (also
called endurants, see [19]) like Physical Things and Persons. The involve-
ment can be of different nature, but it implies at least the presence of the
respective items. The linking of items, places and time through events
creates a notion of “world-lines” of things meeting in space and time
(see Fig. 2). Events, seen as processes of arbitrary scale, are generalized
as “Periods” and further as “Temporal Entities” (also called perdurants
[19]). Only the latter two classes are directly connected to space and
time in the ontology. The Temporal Entities have fuzzy spatiotemporal
boundaries which can be approximated by outer and inner bounds.

4. Immaterial objects (“Conceptual Objects”) are items that can be created
but can reside on more than one physical carrier at the same time, in-
cluding human brains. Immaterial items can be present in events through
the respective physical information carriers (see Fig. 3). Immaterial items
cannot be destroyed, but they disappear when the last carrier is lost.

As a standard, the use of CRM concepts is not prescriptive, but provides a
controlled language to describe common high-level semantics that allow for
information integration at the schema level. It is intended to serve

1. As an intellectual guide to good practice of conceptual modeling in the
sector.

Fig. 2. Historical events as meetings
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Fig. 3. Information exchange as meetings

2. As global model for information integration in a “Local as View” (LAV,
[13]) or data warehouse manner.

3. As an intermediate model for data migration.

The coverage of the CRM for cultural heritage data has been validated by
mappings from numerous data structures of the sector to the CRM. Even the
common library format MARC (‘Machine Readable Cataloguing’) can be ad-
equately mapped to it [49]. Such a mapping can be seen as an interpretation
of the data structure elements in terms of the ontology. If the ontology is
implemented as a schema (such as in RDFS), the mapping can also be seen
as a specification for Local as View (LAV) schema integration. The examples
of mappings from Dublin Core or EAD to the CRM [18, 43] show how well-
defined common semantics can be associated with typical metadata formats.
In particular they allow for describing explicitly the cases of semantic over-
loading (such as the use of DC.date for various events). Even MPEG7 has been
aligned with the CRM [40]. The CRM is increasingly used in real integrated
information environments for cultural heritage systems. A list of references
can be found on [1, 2]. Due to the characteristic focus of the empirical base
of the CRM, i.e. data structures used for collection descriptions, it is rela-
tively poor in describing family relations, rights, and intellectual processes.
The latter has been recently complemented by the FRBRoo model [7, 48].

3.3 FRBRoo and Performing Arts

The FRBR model (‘Functional Requirements for Bibliographic Records’) was
designed as an entity-relationship model by a study group appointed by the
International Federation of Library Associations and Institutions (IFLA) dur-
ing the period 1991–1997 [68]. It was published in 1998. Its innovation is to
cluster publications and other items around the notion of a common con-
ceptual origin – the ‘Work’, in order to support information retrieval and to
initiate a new bibliographic practice. It distinguishes four levels of abstraction
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from conception to the book in my hands: The Work, Expression, Manifesta-
tion, Item. Its focus is domain-independent and can be regarded as the most
advanced formulation of library conceptualization [48].

Initial contacts in 2000 between the two communities eventually led to
the formation in 2003 of the International Working Group on FRBR/CIDOC
CRM Harmonisation. The common goals were to express the IFLA FRBR
model with the concepts, ontological methodology and notation conventions
provided by the CIDOC CRM, and to merge the two object-oriented models
thus obtained. Although both communities have to deal with collections per-
taining to cultural heritage, those collections are very different in nature: Most
of library holdings are non-unique exemplars of publications, i.e. products of
industrial processes. FRBR focuses therefore on the “abstract” characteristics
that all copies of a single publication should typically display in order to be
recognised as a copy of that publication. The history of individual copies and
of the immaterial content is not regarded as particularly relevant in library
catalogues and therefore widely ignored by FRBR. Of course, libraries do
also hold unique items, such as manuscripts; but there are no internationally
agreed standards how to deal with such materials, and FRBR mentions them
but does not account for them in a very detailed way.

Museums, on the other hand, are mainly concerned with unique items – the
uniqueness of which is counterpoised by a focus on the cultural circumstances
under which they were produced and through which they are interrelated.
CIDOC CRM highlights therefore the physical description of singular items,
the context in which they were produced, and the multiple ways in which
they can be related to other singular items, categories of items, or even just
ideological systems or cultural trends. Of course, museums may also have to
deal with exemplars of industrially produced series of artefacts, but CIDOC
CRM covers that notion just with the multi-purpose E55 Type class. Museum
objects may be referred to in literature kept in libraries. Museum objects
may illustrate subjects described in literature. Literature and objects may be
created by the same persons, in common events.

The Working Group has submitted the final draft of FRBRoo, i.e. the
object-oriented version of FRBR, harmonized with CIDOC CRM, for public
review by IFLA in February 2008. This formal ontology is intended to cap-
ture and represent the underlying semantics of bibliographic information and
to facilitate the integration, mediation and interchange of bibliographic and
museum information.

The major innovation of FRBRoo is a realistic, explicit model of the intel-
lectual creation process (see Fig. 1), which should still be developed further in
the future for the benefit of librarians and scholars from the various museum
disciplines. FRBRoo makes a fundamental distinction between internal repre-
sentations of our mind (Work), sets of signs or symbols human can interpret
(Expression), and physical information carriers.

The idea is that products of our mind, as long as they stay in one per-
son’s mind only, are relatively volatile and not evident. In an event of first



Ontologies for Cultural Heritage 473

externalization, the “Expression Creation”, concepts of a Work are made man-
ifest by creating an Expression on a first physical carrier. This may be just
another person’s memory, as in the case of oral tradition, a paper manuscript
or a computer disc. In its current draft version, FRBRoo includes a model
of performing arts, connecting the interpretation of theatre plays with the
recording and documentation of performances. It distinguishes and relates
the three intellectual contributions (works) of the creation of the play, of
the interpretation and the recording with the associated symbolic forms and
physical carriers. This part of the model has been developed and tested in
first examples in collaboration with the European funded project CASPAR
on Digital Preservation. Even though there is a rising interest in documenting
and preserving non-material culture, there are few other models about per-
forming arts [11]. Jane Hunter has done interesting research on representing
indigenous knowledge and its oral traditions [41].

3.4 Other Core Ontologies

Independent from the CRM, the European funded project IndeCs, a consor-
tium of multimedia experts, developed around 1997 a core model to trace
the provenance of contributions and associated intellectual property rights
in multimedia products and implemented a respective information system.
This model was taken up by the ABC ontology. The latter is an outcome
of the Harmony Project, which was funded cooperatively by the Distributed
Systems Technology Cooperative Research Centre (DSTC) (Australia), the
Joint Information Systems Committee (JISC) (UK), and the National Sci-
ence Foundation Digital Libraries Initiative (NSF DLI2) (US). The original
goal and continuing motivation of the ABC work arose from the need to in-
tegrate information from multiple genres of multimedia information within
digital libraries. The researchers working on the Harmony Project have each
been involved in a number of metadata initiatives including Dublin Core and
MPEG-7.

Complete details of the ABC ontology are described in [46]. It is far smaller
than the CRM, just 13 classes and 14 properties. As the CIDOC CRM, ABC
describes temporality in a first-class manner. Modeling change over time is
critical to the description of digital content due to its inherent fluidity and the
linkages of provenance to integrity or trust [45]. ABC includes both the notions
of “events” and “situations”, which respectively model transitions (i.e. verbs)
and existential properties. The inspiration for these concepts lies in process
models such as Petri Nets [63] and temporal extensions for first-order logic
such as Situational Calculus [55]. Due to these temporal concepts, ABC is
able to definitively model time periods during which certain properties of an
object are static. It is also able to model events or transitions marking property
modification, for example during the change of a version of a digital object.
Finally, ABC builds on the concepts developed in the FRBR model [68]. These
concepts – works, expressions, manifestations, and items – give ABC the
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ability to link entities that have common intellectual property origins. Work
in the library community has proven the utility of these concepts [47].

Similarities between ABC and CRM aims and solutions were so striking,
that both teams collaborated between 2001 and 2003 on a harmonization
project, in which both ontologies adopted concepts from each other and re-
arranged properties and IsA hierarchies, until a merged representation was
possible [21]. The CRM did not adopt the concept of a situation: In the end,
the representation of object history in ABC as a chain of states (situation) and
state transitions (events) turned out to be redundant, making knowledge re-
vision complex, and causing problems to integrate interconnected histories of
multiple objects and agents. ABC has been mainly used in research. Another
interesting core ontology is DOLCE [54]. It is product of careful reengineering
of the core concepts of WordNet, a linguistic resource derived from dictionar-
ies, enriched with theory-based foundational relationships such as participa-
tion, part-whole, constitution, etc. It is rigorously formulated in logic, making
it rather difficult for domain experts to comprehend and use it. In contrast to
the CRM, space and time are regarded as dependent properties of things, and
not as things existing in a potentially empty space-time – the only, but deep
incompatibility between both ontologies. Otherwise, many concepts exist in
both ontologies. Some concepts in DOLCE are characteristic for other kinds
of discourse than that found in data structures for heritage documentation.
Interesting enough, museums are not much interested to analyze iconographic
representations by discrete schema elements. With the aim of digital archive
interoperability in mind, D’Andrea et al. [17] took the CIDOC CRM com-
mon reference model for cultural heritage and enriched it with the DOLCE
D&S foundational ontology to better describe and subsequently analyze icono-
graphic representations, from, in this particular work, scenes and reliefs from
the meroitic time in Egypt.

3.5 Characteristics of Ontologies for Cultural Heritage

Ontologies that deal with semantics equivalent to those of data structures,
as the ones presented above, contain few classes and are rich in relationships
[19,51], in contrast to terminological ontologies for classifying individual items.
Data structures can be seen as equivalents of propositions about a domain
(“possible states of affairs”, [33]). Therefore their semantics reveal character-
istic parts of the discourse of a domain or sector. So what characterizes the
discourse in cultural heritage as reflected in data structures and ontologies?

Cultural heritage can be seen as the material evidence of human activities
of social relevance in the past. Therefore

• Information is mesoscopic, i.e. at a human scale, neither astronomic nor
microscopic, except for microscopic analysis of traces and materials. Infor-
mation is discrete. Processes are reported or become evident as discrete
events involving discrete things, in contrast to geological or meteorological
phenomena.
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• Information is event centric. Things, people and ideas connect and relate
via events.

• Its description is retrospective, in contrast to information to plan the fu-
ture, such as for manufacturing.

Information is naturally incomplete at some scale. It can be complemented
but not be completed. Its description serves a kind of detective work to recon-
struct possible pasts. The distinction between evidence and conclusion is vital.
Therefore information cannot be normalized and integrated on the basis of
the assumed past, such as on absolute dates, geographic coordinates, cause-
and-effect, states-and-state-transitions. The documentation of the process of
observation is necessary to interpret correctly the observed evidence. Even the
fact that some scholar classifies an object with a certain term is documented
as a historical, intellectual process (this holds equally for biodiversity). Infor-
mation is about material facts [35]. Observed individual facts are the basis to
induce categorical behavior, such as “all Pharaohs were mummified”.

The above characteristics hold equally well for other descriptive sciences,
such as geography, biodiversity, paleontology, clinical observation and epi-
demic studies, but also for the documentation of experiments and observations
in natural sciences. Whereas the latter formulate their conclusions about their
observations in categorical theories (“F=m*a”, or “any non-supported mate-
rial object in the atmosphere of Earth will fall”), scholars interpreting cultural
heritage would generally hesitate to formulate their categorical conclusions or
hypotheses in a formal representation (see also [31]). Rather, interpretation
is normally presented as text rendering implicitly a wealth of associated be-
lief values. Therefore the presented ontologies are surprisingly domain and
discipline independent. It is the retrospective discourse that determines their
characteristic form. Ontologies describing the formal structure of iconographic
subjects can be seen as an exception to this (see [17] and Sect. 4).

Also surprising is the fact that scholars hesitate to formulate in objective
terms causes and causation [50]. Whereas in the domain of jurisdiction charac-
teristic ontologies are being elaborated that detail contributions of individuals
in activities, modern scholars prefer a more distant stance of multiple views
and possible truths [39]. Noteworthy are the promising attempts of [27,67] to
formally structure archaeological argumentation, which could lead to an on-
tology or better epistemology of cultural heritage argumentation, even though
vehement arguments against this approach are not missing [39].

Particularly in ethnology and archaeology (as in biodiversity), some in-
formation is documented in a partially categorical form, such as: “The
boomerang is a hunting weapon of the Australian Aborigines”. I.e. a par-
ticular community is associated with characteristic kinds of things and kinds
of activities. The described object is seen as example of the category and an
illustration of the activity. There is neither currently a formal ontology nor a
suitable ontology language which would give a realistic account of the relation-
ship between such partially categorical statements and the individual facts as
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perceived by the domain expert, and there is no dedicated “metaontology”
which could be instantiated with such partially categorical statements.

The CIDOC CRM makes a practical distinction between core classes and
classes appearing as terminology motivated by the fact that they appear typ-
ically as data in data structures, in order to make fine distinctions between
the kinds of the referred items. Even though knowledge representation does
not distinguish between the two, it is an empirical fact that the sector uses
to organize terminology differently, in vocabularies and thesauri, which may
more and more be developed into formal ontologies in the proper sense. Con-
sequently, the RDF schema SKOS [5], a W3C First Public Working Draft,
suggests the encoding of terms from vocabularies and thesauri as particulars,
and not as RDF classes. We follow this distinction here to structure this chap-
ter. Cultural heritage terminology pertains mostly to classes detailing kinds of
material things, which is quite similar and or even overlapping with product
classification [69].

Other terminologies of the sector characteristically pertain to:

• Materials, conservation agents
• Information objects
• Processes, deterioration, activities
• Social roles
• Literary and iconographical subjects

In the following section we describe the role of terminology and the most
important ontologies in the sector.

4 Terminology in Cultural Heritage

In many collaborations and discussions with museum curators and archae-
ologists we encountered a negative position towards the use of controlled
vocabularies or even formal ontologies. Experts tend not to agree with the
terminology used by colleagues [31]. This is in strong contrast to the library
sector, which cannot exist without standardized terminology. We attribute
this to the fact that in the cultural heritage sector terminology is less used as
a means of agreement between experts than as an intellectual tool for hypoth-
esis building based on discriminating phenomena. Consequently, automated
classification is a long established discipline of archaeology, but few termino-
logical systems are widely accepted. They are built ad-hoc for specific research
questions.

The renowned archaeologist Franco Niccolucci posed the question, if ar-
chaeologists are “fuzzy” [38]. He discussed the notion of a neolithic tool, a
scraper. From a given set of similar stone tools, several archaeologists did
each classify a different subset as scrapers. The background of this disagree-
ment is that the concept is used to deduce hypothetic function in the past from
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observed morphology. It represents already a debatable hypothesis. Many ar-
chaeologists develop their own typologies. There is a continuous demand for
specialized reasoning systems (for instance, [24]).

4.1 Information Access by Terminology

The diversity and number of small ontologies, in the order of a hundred to
a thousand terms each, puts interesting challenges to ontology matching and
alignment. Only automated tools have a chance to exploit this expert termi-
nology for retrieval and reasoning across local systems.

The task of librarians is not hypothesis building, but providing access to
information. Quite naturally, they have a long tradition to agree on common
terminology as access points. It is not easy for cultural heritage experts to
appreciate the need for shared search terms (see for instance [31]), and there
is still enough conviction work to be done. In contrast to [31], we assume that
cultural heritage terminology could be separated into an upper, stable level
suitable for search, and a lower volatile level supporting hypothesis building.
This is motivated from our experience building ISO21127 and various infor-
mation systems. The largest and stable thesaurus in the sector, the Art &
Architecture Thesaurus (AAT, [64]), with more than 30,000 concepts, comes
actually from a library background (see below).

A problem with classification of material objects are the different aspects
(facets), under which the classification may be done. Dominant aspects are
the function of the object, its shape or appearance, elements or principles of
construction [22]. These three aspects are partially related. For instance, a
typical hammer may have a classical shape and construction, but a motorized
hammer may only share function, but not the other aspects. Other aspects
are forms specific to historical periods or nations. The effect may confuse the-
saurus and ontology editors when building IsA hierarchies, and may mislead
users when they apply classification terms.

The so-called facet analysis tries to resolve this problem (e.g. [53, 74])
by systematic separation of the concepts for each facet. “Faceted classifica-
tion”, which goes back to the Indian Librarian Ranganathan (1965) [65], em-
ploys the systematic combination of classification terms for each relevant facet.
For example, the AAT has removed the term “mills” because it can be con-
structed from “grinding & factories”. The method greatly reduces complexity
and depth of term hierarchies, and improves the quality of the ontology. On
the other side, faceted classification can be seen as a precursor of employing
Description Logic (DL) – simply the roles between the combined terms are
implicit. It is assumed that the user has an intuitive understanding of the
meaning, and that it is unambiguous. The use of DL in cultural heritage is
still in the beginning.

It is standard for museum portals and other cultural information systems
that provide information about material objects to offer faceted access by type
of object, person, place, date. MuseumFinland [42] employs a faceted Finnish
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ontology, may be the most advanced system in terms of formal representation
of terminological concepts. The UK national project FACET [75] with the UK
Science Museum’s collections database on Thesaurus-Based Query Expansion
employs a combination of novel techniques with a faceted theasurus (the Getty
Art and Architecture Thesaurus). Aroyo et al. [28] employ the VRA meta-
data scheme and encode terminology from the Getty Art and Architecture
Thesaurus, Union List of Artist Names and ICONCLASS in SKOS [5].

All terminological systems contain very general terms as root elements of
their hierarchies. These may vary considerably and cause unnecessary incon-
sistency between the ontologies, because the purpose of these ontologies is not
to solve the philosophical questions these general terms are associated with.
For instance, the AAT subsumes under visual works material and immaterial
things, such as paintings and electronic images. In the CIDOC CRM, ma-
terial and immaterial things are disjoint concepts, because reasoning differs
considerably for the two. In integrated information systems depending on rich
data structures, this incompatibility can interfere with schema integration.
The use of a shared core ontologies to enable interoperability between differ-
ent domain ontologies has been proposed a decade ago by [33]. The ongoing
British STAR project [6] is now investigating cross search over different ar-
chaeological datasets and grey literature with the CIDOC CRM core ontology
as an integrating framework for the datasets and domain thesauri.

4.2 Major Terminological Systems

The AAT is the most widespread ontology in cultural heritage. It has the form
of a thesaurus, compatible with ISO2788. Its topic is art and architecture, but
covers a wide range of archaeological and ethnological materials as well as any
kinds of object that may be subject of art in some way, such as weapons. It
was originally developed by merging culture-relevant subject keywords from
several large library systems. It is built for faceted classification. Its major
facets are: Activities, Agents, Materials, Objects, Physical Attributes, Styles
& Periods, Associated Concepts.

The broader term and narrower term relationship are used in the sense of
IsA. Its originally monohierarchical (“tree”) generalization structure has been
extended to polyhierarchical (directed acyclic graph). The AAT introduces
so-called guide terms, (node labels in ISO2788) to group terms under minor
facets, such as function or form, but there is no rigorous logic applied to this
organization principle. The AAT has been translated into Spanish and Dutch.

English Heritage (EH) maintains also a very large thesaurus of terms for
mobile and immobile objects for the United Kingdom, as well as the French
MERIMEE thesaurus.

The multilingual thesaurus attached to the European HEREIN project [4]
intends to offer a terminological standard for national policies dealing with
architectural and archaeological heritage, integrating concepts from the above
resources. Beyond just correlating concepts from different languages, the
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project decided to create for each language a new generalization-specialization
hierarchy and to harmonize concepts manually. However, they did not pre-
serve the concepts as found in other sources or link to them. We regard this
as problematic, as an opportunity for interoperability seems to have been
thrown away unnecessarily.

Remarkable is the successful use of SHIC [70], a classification system of
human activities, for the description of museum objects by several British
museums. Rather than characterizing the object, only the function or utility
of an object for a human activity is regarded. This focus on one uniform as-
pect (“facet”) avoids the ambiguity in the application of other terminological
systems. In 1950, the Netherlands Institute for Art History (Rijksbureau voor
Kunsthistorische Documentatie or RKD) began its collaboration with Henri
Van der Waal on the development of ICONCLASS,8 with the publication
of mounted and annotated photographs of Dutch works of art, the so-called
DIAL (Decimal Index of the Art of the Low Countries). From 1950 until 1982,
28 sets of 500 cards were produced, making for a total of 14,000 items. In the
RKD images database, which can be consulted via the RKD website, a large
number of Dutch works of art is made accessible with the help of ICON-
CLASS notations. In September 2006, the RKD acquired the rights for the
ICONCLASS software from the Royal Academy of Arts and Sciences (KNAW)
in Amsterdam. The ICONCLASS System is the only more widespread system
for iconographic classification. It is a kind of faceted classification system with
a hierarchy of concepts defined by decimal codes. It comprises general, Chris-
tian and Greco-Roman subjects. Concepts can be modified by keys to express,
for instance, ‘head of X’. So far, no formulation as a formal ontology has been
undertaken. Van Gendt [76] could only partially represent ICONCLASS in
SKOS. Even though it is a genuine aspect of cultural heritage, iconographic
classification is not regarded as part of standard museum documentation.

CAMEO is a searchable information center developed by the Museum
of Fine Arts, Boston [58]. The MATERIALS database contains chemical,
physical, visual, and analytical information on over 10,000 historic and con-
temporary materials used in the production and conservation of artistic, ar-
chitectural, archaeological, and anthropological materials. It offers only search
by keywords and alphabetic order. The European funded Project CRISATEL
developed a system and an ontology employing multiple generalization for art
conservation comprising materials, techniques and methods of investigation
and intervention for paintings, but the system has not been taken up by the
community yet [20].

4.3 KOS of Particulars and Information Extraction

Understanding cultural heritage lives from contextual knowledge and concate-
nation of facts. Therefore it is most important to be precise about particular

8 http://www.iconclass.nl/
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persons, places, historical periods and objects, which appear as the major
constituents that connect multiple facts. Relevant resources about particu-
lars are organized as Knowledge Organisation Systems, sometimes also called
“ontologies”, even though the term does not apply to lists of particulars.

For instance, large reference lists of Persons are maintained by national
libraries [10]. The Getty Research Institute maintains ULAN, the Union List of
Artist Names [64], and TGN, the Thesaurus of Geographic Names [36], which
lists a million of historical and current placenames organized in a hierarchy of
geographic spatial inclusion. Also the Alexandria Gazetteer is an important
resource of current placenames. In these resources, only the schema and the
typologies can be regarded as a kind of ontology. The Alexandria Gazetteer
contains an interesting list of feature types to classify places.

A large part of cultural heritage documentation, primary and secondary
literature is in textual form. Even though databases have become standard
tools for collection descriptions, curators prefer to express the relevant his-
torical facts in free text. Therefore, automated information extraction (IE)
becomes more and more important. Extracted information could be used to
produce structured metadata and to instantiate ontology-based knowledge
representation systems. Full text retrieval systems and text mining systems
use to recognize concept names from ontologies. Ontologies should be tailored
for this purpose, for instance be enriched with frequent synonyms. To our
knowledge, there has been no such attempt for the more popular cultural
heritage vocabularies.

So-called Named Entity Recognition of names of persons, things, places
[57, 73], or recognition of date and time expressions [52] works reasonably
well. Most systems use KOS or “gazetteers” to guess if a name is likely to
be a person or a place name. Some languages, like Latin, have more distinct
grammatical forms for location expressions, which makes the job to distinguish
these categories easier [73]. Note that detecting a name does not mean that
the individual has also been identified.

As the core ontologies presented in this chapter show, event information
is particularly important for cultural heritage. Automatic event recognition
could bring a break-through in the access to relevant historical knowledge.
Automatic event recognition is the next step after recognizing named entities
and dates. An event can normally be described by the kind of action, the
participating things and people, date and place. Event recognition should
be combined with NER. So far, there has been not too much work in this
direction (for instance, [44,52,77]). An obstacle is the lack of formal ontologies
relating characteristic action verbs, such as “printed”, “discovered”, “broke”,
“shot” with typical events, such as activities of creation, finding and destroying
things, meetings, birth, death and killing.
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5 Conclusions

Current ontologies for cultural heritage exhibit a focus on the material and
physical aspects of the past. This is quite natural, since “heritage” in the
narrower sense implies material evidence of the past. Information about events
in the physical world is central to the understanding of heritage information
and explicit formal representation of events a key element to integrate heritage
information. Interesting is the convergence of core ontologies to very similar
forms, which can be integrated, and their independence from a particular
“cultural” view. The work of historians is more a detective work than that of
a judge. This determines widely the character and focus of cultural heritage
ontologies. Information is incomplete. More important than the conclusions
is the careful collection of all evidence that could support the one or the
other view about the past. In contrast to that, natural sciences would get
rid of experimental data after a theory has been sufficiently supported by
experiments.

Conclusions and judgment about the past are rather published in schol-
arly texts than encoded in data structures. This focus may be due to the
characteristics of the reasoning in the sector, or just be enforced by the fact
that IT methods have penetrated the sector from core documentation and
management of physical collections. In the latter case, one may expect that
cultural ontologies may in the future extend to other applications in the sec-
tor as well. May be formal ontologies dealing with the intellectual structuring
of the sector, such as iconography, social interaction, and causation will find
more attention in the future. Generally, we expect a greater diversity of con-
ceptualization in the intellectual structure than in the description of material
aspects, as represented by the CIDOC CRM.

Since many scholars question the utility of standardized terminology, the
formalization of the major terminological systems in the sector is still poor,
but this may be overcome by a gradual transfer of know-how and better
appreciation of the specifics of cultural conceptualization by ontology engi-
neers. The sector shows enough interest in using ontologies to solve the inter-
operability of data structures and engages in real implementations. Ontology
languages seem to be sufficiently expressive for terminological problems. In
the area of data structures semantics, reification problems (i.e. simultaneous
use of ontologies and documentation of the discourse about them and docu-
menting facts together with their observation), as well as partially categorical
statements cannot sufficiently be described with current ontology languages.

In general, in the years of our collaboration with memory institutions and
scholars we found that a major obstacle to introducing advanced computer
science methods in the sector is a general underestimation of the complexity of
cultural heritage conceptualization by the IT experts, which is equaled by the
inability of domain experts to describe their conceptualizations in conscious,
objective terms. Whoever wants to deal with the subject effectively must be
prepared for a long knowledge engineering phase.
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Summary. Ontologies are often used to improve data access. For this purpose,
existing data has to be linked to an ontology and appropriate access mechanisms have
to be provided. In this chapter, we review RDF storage and retrieval technologies as
a common approach for accessing ontology-based data. We discuss different storage
models, typical functionalities of RDF middleware such as data model support and
reasoning capabilities and RDF query languages with a special focus on SPARQL as
an emerging standard. We also discuss some trends such as support for expressive
ontology and rule languages.

1 Introduction

It is widely acknowledged that information access can benefit from the use
of ontologies. For this purpose, available data has to be linked to concepts
and relations in the corresponding ontology and access mechanisms have to
be provided that support the integrated model consisting of ontology and
data. The most common approach for linking data to ontologies is via an
RDF representation of available data that describes the data as instances of
the corresponding ontology that is represented in terms of an RDF Schema
(compare chapter “Resource Description Framework”). Due to the practical
relevance of data access based on RDF and RDF Schema, a lot of effort
has been spent on the development of corresponding storage and retrieval
infrastructures.

In this chapter, we summarize the state of the art with respect to exist-
ing storage and retrieval technologies for RDF data. In particular, we first
review the general architecture of RDF infrastructures that normally consist
of a storage and a middleware layer. We discuss important aspects of these
layers covering different storage formats for RDF data, common middleware
functionalities such as RDF Schema reasoning and basic operations for data
access and manipulation. Throughout the chapter, we discuss these aspects on
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a general level and only point to particular systems to provide examples of con-
crete implementations. We further discuss RDF query languages as the most
common interface for interacting with ontology-based RDF data and present
the SPARQL language in more detail. In Sect. 7 we also provide a very brief
overview of existing approaches to extend RDF storage and retrieval systems
to support more complex ontology languages than RDF Schema. We close
with a discussion of current trends and speculate about future developments.

2 Architecture of RDF Stores

An RDF store allows storage of RDF data and schema information, and pro-
vides methods to access that information. Thus, the two primary components
of an RDF store are a repository and a middleware that builds on top of that
repository. The middleware can be further divided into components as the
access methods can be categorized into methods for adding, deleting, query-
ing and exporting data. To describe the different components in detail, we
assume a layered architecture as proposed in [1] and regard the layers from
the bottom up.

Different repositories are imaginable, e.g. main memory, files or databases,
but the access methods should remain the same. Thus, it is reasonable to
encapsulate the access to the repository in an own layer, which provides well-
defined interfaces to the upper layers and can be exchanged if another repos-
itory is used. The inference support also resides in this layer as close to the
repository as possible. Sesame [1] implements such a layer and calls it the
Storage And Inference Layer (SAIL).

The above mentioned access methods are located on a higher level and
address the interfaces of the SAIL (or directly address the repository if there
is no SAIL implementation). According to the different requirements of each
access method they can be realized in different modules: The admin module
provides the functionality for adding new data to and deleting data from the
RDF store. Especially when loading data from files this requires parsing and
validating RDF, so an RDF parser and an RDF validator are usually part of
the admin module. The query module handles queries to the RDF store. As
these queries can be formulated in any kind of RDF query language, several
query modules may be necessary, each implementing a parser and handler for
one query language. Finally, the export module allows a dump of the RDF
store into files for data exchange with other systems.

These modules can be accessed locally or remotely, e.g. using SOAP or
RMI. This is why the highest layer in the middleware contains protocol
handlers that can manage different access modes. Figure 1 shows the generic
architecture as proposed in [1]. This architecture is not only valid for Sesame –
other RDF store implementations have a similar modular structure reflecting
the different aspects of an RDF store.
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Fig. 1. Generic architecture of an RDF store (Sesame)

3 Storing RDF Data

RDF schemas and instances can be efficiently accessed and manipulated in
main memory. For persistent storage the data can be serialized to files, but
for large amounts of data the use of a database management system is more
reasonable. Examining currently existing RDF stores we found that they are
using relational and object-relational database management systems (RDBMS
and ORDBMS).

Storing RDF data in a relational database requires an appropriate ta-
ble design. There are different approaches that can be classified in generic
schemas, i.e. schemas that do not depend on the ontology, and ontology spe-
cific schemas. In the following we describe the most important table designs
showing their advantages and shortcomings.

3.1 Generic Schemas

The most simple generic schema is the triple store with only one table re-
quired in the database. The table contains three columns named Subject,
Predicate and Object, thus reflecting the triple nature of RDF statements.
This corresponds to the vertical representation for storing objects in a table
in [2].

The greatest advantage of this schema is that no restructuring is required
if the ontology changes. Adding new classes and properties to the ontology
can be realized by a simple INSERT command in the table. On the other hand,
performing a query means searching the whole database and queries involving
joins become very expensive. Another aspect is that the class hierarchy cannot
be modeled in this schema, what makes queries for all instances of a class
rather complex.

The triple store can be used in its pure form [3], but most existing sys-
tems add several modifications to improve performance or maintainability. A
common approach, the so-called normalized triple store, is adding two further



492 A. Hertel et al.

Triples:

Subject Predicate IsLiteral Object

r1 r2 False r3 

r1 r4 True l1 

… … … … 

Resources: 

ID URI 

r1 …#1 

r2 …#2 

… … 

Literals: 

ID Value 

l1 Value1 

… … 

… … 

Fig. 2. Normalized triple store

tables to store resource URIs and literals separately as shown in Fig. 2, which
requires significantly less storage space [4]. Furthermore, a hybrid of the sim-
ple and the normalized triple store can be used, allowing to store the values
themselves either in the triple table or in the resources table [5].

In a further refinement, the Triples table can be split horizontally into
several tables, each modeling an RDF(S) property:

• SubConcept for the rdfs:subClassOf property, storing the class hierarchy
• SubProperty for the rdfs:subPropertyOf property, storing the property

hierarchy
• PropertyDomain for the rdfs:domain property, storing the domains and

cardinalities of properties
• PropertyRange for the rdfs:range property, storing the ranges of

properties
• ConceptInstances for the rdf:type property, storing class instances
• PropertyInstances for the rdf:type property, storing property instances
• AttributeInstances for the rdf:type property, storing instances of

properties with literal values

These tables only need two columns for Subject and Object. The table names
implicitly contain the predicates. This schema separates the ontology schema
from its instances, explicitly models class and property hierarchies and dis-
tinguishes between class-valued and literal-valued properties [1, 6].

3.2 Ontology Specific Schemas

Ontology specific schemas are changing when the ontology changes, i.e. when
classes or properties are added or removed. The basic schema consists of one
table with one column for the instance ID, one for the class name and one for
each property in the ontology. Thus, one row in the table corresponds to one
instance. This schema is corresponding to the horizontal representation in [2]
and obviously has several drawbacks: large number of columns, high sparsity,
inability to handle multi-valued properties and the need to add columns to
the table when adding new properties to the ontology, just to name a few.

Horizontally splitting this schema results in the so called one-table-per-
class schema: one table for each class in the ontology is created. A class table
provides columns for all properties whose domain contains this class. This is
tending to the classic entity-relationship-model in database design and bene-
fits queries about all attributes and properties of an instance.
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However, in this form the schema still lacks the ability to handle multi-
valued properties, and properties that do not define an explicit domain must
then be included in each table. Furthermore, adding new properties to the
ontology again requires restructuring existing tables.

Another approach is vertically splitting the schema, what results in the
one-table-per-property schema, also called the decomposition storage model.
In this schema one table for each property is created with only two columns
for subject and object. RDF(S) properties are also stored in such tables, e.g.
the table for rdf:type contains the relationships between instances and their
classes.

This approach is reflecting the particular aspect of RDF that properties
are not defined inside a class. However, complex queries considering many
properties have to perform many joins, and queries for all instances of a class
are similarly expensive as in the generic triple schema.

In practice, a hybrid schema combining the table-per-class and table-per-
property schemas is used to benefit from the advantages of both of them. This
schema contains one table for each class, only storing there a unique ID for the
specific instance. This replaces the modeling of the rdf:type property. For
all other properties tables are created as described in the table-per-property-
approach (Fig. 3) [7]. Thus, changes to the ontology do not require changing
existing tables, as adding a new class or property results in creating a new
table in the database.

A possible modification of this schema is separating the ontology from the
instances. In this case, only instances are stored in the tables described above.
Information about the ontology schema is stored separately in four additional
tables Class, Property, SubClass and SubProperty [8]. These tables can be
further refined storing only the property ID in the Property table and the
domain and range of the property in own tables Domain and Range [1]. This
approach is similar to the refined generic schema, where the ontology is stored
the same way and only the storage of instances is different.

To reduce the number of tables, single-valued properties with a literal as
range can be stored in the class tables. Adding new attributes would then re-
quire to change existing tables. Another variation is to store all class instances
in one table called Instances. This is especially useful for ontologies where
there is a large number of classes with only few or no instances [8].

ClassA: 

ID

…#1

…

Property1: 

Subject Object 

…#1 …#3 

… … 

ClassB: 

ID

…#3

…

Fig. 3. Hybrid schema
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3.3 Further Issues

There are further issues that may require an extension of the triple-based
schemas and thus are affecting the design of the database tables:

• Storing multiple ontologies in one database
• Storing statements from multiple documents in one database

Both points are concerning the aspect of provenance, which means keeping
track of the source an RDF statement is coming from.

When storing multiple ontologies in one database it should be considered
that classes, and consequently the corresponding tables, can have the same
name. Therefore, either the tables have to be named with a prefix referring
to the source ontology [7] or this reference is stored in an additional attribute
for every statement. A similar situation arises for storing multiple documents
in one database. Especially, when there are contradicting statements it is im-
portant to know the source of each statement. Again, an additional attribute
denoting the source document helps solving the problem [7].

The concept of named graphs [9] is including both issues. The main idea
is that each document or ontology is modeled as a graph with a distinct
name, mostly a URI. This name is stored as an additional attribute, thus
extending RDF statements from triples to so-called quads. For the database
schemas described above this means adding a fourth column to the tables and
potentially storing the names of all graphs in a further table.

3.4 Object-Oriented Features

Current ORDBMS provide the subtable facility which allows for a better mod-
eling of the subclass and subproperty relationships. The table of a subclass
is then created as a subtable of the superclass table. Consequently, querying
for all instances of a class does not require searching for all triples with the
rdfs:subClassOf property or looking up a SubClass table. However, this
feature should be used carefully, as a new subtable can only be added at the
bottom of the hierarchy. Otherwise, the complete table hierarchy needs to be
rebuilt [1, 8].

Oracle1 offers another object-relational feature: an own datatype to store
RDF based on a graph data model. RDF triples can be persisted, indexed and
queried, similar to other object-relational data types.

Although the RDF model has several object-oriented characteristics and
most RDF stores are internally working with an object model, approaches to
store RDF data and schema information using object database management
systems (ODBMS) are rarely known. (Object-)Relational databases are still
predominant, when large amounts of data have to be persisted on a server,

1 See http://download-east.oracle.com/otndocs/tech/semantic web/pdf/rdfrm.
pdf
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and object databases did not and will most probably not replace them. How-
ever, new developments of ODBMS may show some advantages over RDBMS
in certain applications, e.g. for embeddable persistence solutions in mobile
devices. This is why storing ontologies in an ODBMS is worth a closer look.

4 RDF Middleware

What we call RDF middleware is the layer implementing the access to the
physical RDF data store. Besides an inference mechanism, the access layer
should provide functions for creating, querying and deleting data in the store.
While adding data requires parsing and ideally a validation of the incoming
RDF sentences, querying the RDF store needs the implementation of some
kind of query language as well as an interpretation and a translation of this
query language into calls to the physical RDF storage. Another important
feature of this layer is the possibility to export data to a file for exchange
with other systems.

4.1 Inference for RDF

Inference for RDF is specified by the RDF(S) entailment rules described in
[12]. The practice-relevant rules can be roughly divided into the two following
groups:

• Inferring the transitive closure for the properties rdfs:subClassOf and
rdfs:subPropertyOf

• Inferring class memberships analysing the use of properties and their
domains and/or ranges

One approach is to compute the transitive closure using a recursive algorithm
and to store it in database views. This algorithm constructs a view for each
class, starting with the class table and adding the views of all of its sub-
classes examining the statements with the rdfs:subClassOf relationship in
the database. Analogously, a view for each property is constructed from the
rdfs:subPropertyOf relationships. A similar algorithm can be used to infer
class membership from the properties of an instance [7].

An alternative is to use a production rule system that generates new facts
from existing ones by forward chaining or applies backward chaining on a
query presented to the system. This brings up an important aspect of the
inference, namely the time, when the inference is executed. There are two
possibilities:

• Inference in advance (eager evaluation)
• Inference at query runtime (lazy evaluation)
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The eager evaluation is computing the deductive closure in advance, so the
time to evaluate a query is reduced [1]. However, it also may cause a dramatic
increase of the amount of stored data, potentially generating entailments that
are rarely matching queries. In contrast, the lazy evaluation only performs
evaluation of entailments matched by a given query, so no unused entailments
need to be generated and stored. This significantly increases the query pro-
cessing time. A compromise is to use both methods: those entailment rules
that generate fewer entailments are evaluated in advance, while those requiring
more storage space and less evaluation time are evaluated at query time [4].

Although we describe the inference mechanism as part of the middleware,
the algorithms can also be defined as stored procedures in the database, leav-
ing the inference task to the database management system. This depends on
the capabilities of the DBMS used for storing the data.

4.2 Querying Data

For formulating a query to the RDF store there are several approaches:

• Implementing a proprietary query API
• Implementing a query language

Proprietary query APIs are defining their own query format. E.g. DLDB [7]
is using conjunctive queries composed of atoms whose structure is based on
First Order Logic. Constructing an SQL query is done through a transla-
tion algorithm that substitutes predicates and variables by table and column
names. Another possibility is to create an own query language, e.g. KAON
Query [6] or SeRQL [1].

Most RDF stores are using one of the common RDF query languages like
RQL, RDQL or SPARQL [1, 4, 8]. This means implementing a parser that
analyses the syntax of this query language. A potential intermediate step is
to translate the parsed query into relational calculus [4], a graph [8] or the
object model [1] to capture the query semantics. After that, the SQL query
sentence is formed and sent to the database.

The syntax of the created SQL query usually depends on the underlying
DBMS. This is why the implementation of an additional intermediate layer
is reasonable that abstracts from the actual storage mechanism offering stor-
age and retrieval functions. An example for that is the Storage And Inference
Layer (SAIL) in Sesame. The layer can be exchanged according to the used
DBMS and can even be placed on top of another SAIL to offer further func-
tionality like caching recent query results [1].

An important aspect for accessing data is query optimization. It can be
left to the database system, considering the sophisticated evaluation and op-
timization mechanisms of modern RDBMS. So, the query must be translated
to SQL as completely as possible. This is the approach used by most RDF
stores. Another approach is optimizing the query in the middleware itself,
which is particularly interesting if the query engine should be independent
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of the underlying storage like in Sesame. Here, the query is translated into a
set of SQL queries and joins or other operations are performed in the query
engine. This not only requires an optimization strategy but also implies a
transaction management, because one RQL query can result in multiple SQL
queries and the state of the database must not change until all these queries
are executed [1].

4.3 Adding, Deleting and Exporting Data

Adding data to the RDF store can be realized by creating new concepts, prop-
erties or instances in main memory using the API and then calling a function
to store them into the knowledge base [5, 6]. Another possibility is reading
RDF data from a file or an online source, which is implemented by all RDF
stores as it is important for loading an ontology. Reading RDF data requires
an RDF parser for reading in the statements and mapping them on the object
model or directly on the database schema. Most systems use a parser that
reads the RDF/XML notation, e.g. the ARP (Another RDF Parser), which
is part of the Jena toolkit, or the Raptor RDF parser. Optionally, an RDF
validator can be used to check the incoming data for correctness and for com-
pliance with already loaded schemas [8]. In this case, the schemas should be
loaded before the instances.

Delete operations in RDF stores have to be handled very carefully. While
completely clearing the store is a quite simple function, deleting single state-
ments can entail the deletion of other related statements. This not only
requires recomputing the deductive closure for the RDF store, but also a
mechanism for truth maintenance. Hence, deletions become quite costly [1].

To exchange data with other systems an export mechanism is required.
Most RDF stores implement such an export function which allows to serialize
the ontology and instance data from the RDF store into a file. The com-
mon formats for serializing RDF are N-Triples, N3 notation and RDF/XML
notation.

5 RDF Query Languages

As mentioned in the preceding section, the use of query languages is the
most common way of interacting with an RDF store. Many query languages
already exist that could, in principle, be used to interact with RDF data.
The most obvious example is SQL, the standard query language for relational
databases. In this section, we will explore what properties a query language
for semistructured data, and in particular for RDF, should have, and what the
difference is with existing approaches such as SQL. We will then discuss several
proposals for query languages. In particular, we will describe the SPARQL
query language in more detail.
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5.1 General Properties of Query Languages

We can identify several general properties with which one can characterize
query languages. Here, we name six such properties:

• Expressiveness: Expressiveness indicates how powerful queries can be for-
mulated in a given language. Ideally, a query language should be expressive
enough to allow the retrieval of any arbitrary combination of values from
the queried model, that is, be complete with respect to its datamodel.
Usually, expressiveness is restricted to maintain other properties such as
safety and to allow an efficient (and optimizable) execution of queries.

• Closure: The closure property requires that the results of an operation are
again elements of the data model. This means that if a query language
operates on a graph data model, the query results would again have to be
graphs.

• Adequacy: A query language is called adequate if it uses all concepts of the
underlying data model. This property therefore complements the closure
property: For the closure, a query result must not be outside the data
model, for adequacy the entire data model needs to be exploited.

• Orthogonality: The orthogonality of a query language requires that all
operations may be used independently of the usage context.

• Safety: A query language is considered safe, if every query that is syntac-
tically correct returns a finite set of results (on a finite data set). Typ-
ical concepts that cause query languages to be unsafe are recursion and
negation.

5.2 Path Expressions

One of the main distinguishing features of query languages for semi-structured
data is their ability to reach to arbitrary depths in the data graph. To do this,
these languages all use the notion of path expressions. A path expression is
a simple query, the result of which, for a given data graph, is a set of nodes.
For example, consider the following bit of XML:
<?xml version="1.0"?>
<body>

This page is written by
<author>Jeen Broekstra</author>.
<location>

His tel.nr. at work is <tel>3686</tel>,
his number at home is <tel>555722</tel>, and his
room number is <room>HG7.76</room>.

</location>
</body>

The result of the path expression body.location.tel would be the set of
nodes with the associated values “3,686”, “555,722”.

Many useful regular expressions can be used in path expressions to facil-
itate more complex expressions than just specification of the complete path.
For example, a regular expression location|name specifies either a location
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node or a name node. Another very useful pattern is the wildcard, which
matches any node label. Using the symbol to express this, body.tel matches
any path consisting of a body node followed by any node, followed by a tel
node. Also, closure operations, like arbitrary repeats of a regular expression
can be used. For example, body*.tel specifies the set of tel nodes that occur
at arbitrary depth within the body node. At another level of abstraction, regu-
lar expressions can also be used to express matches on the actual string format
of labels. For example the regular expression body."[aA]uthor" matches any
author node within the body, possibly with the first letter capitalized.

Path expressions, although they are an essential feature of query languages
for semistructured data, can only return a subset of nodes in the database.
They can not construct new nodes, perform joins, or test values stored in the
database. In other words: path expressions are necessary but not sufficient for
a good query language on semistructured data. A query language that lacks
path expressions cannot be considered adequate, nor sufficiently expressive
for querying semistructured data.

5.3 Why not just SQL?

For strictly relational data (as opposed to semistructured data), SQL is by far
the most widely supported query language, including support for large data
storage, efficient indexing schemes, query optimizers, etc. It would therefore
be attractive if we could use this robust and widely available technology for
our purposes of querying semistructured data. Unfortunately, this can only be
done at the cost of a very large gap between the data model in the repository
(e.g. RDF) and the data-model on which the query language is based (the
relational model).

To exemplify this, let us look at how the scenario would look for an XML
implementation in a relational database: as a first step, we would have to
encode the XML data model in the relational model. This would be possible
by assigning each node in an XML tree a unique identifier, with each entry
in the relational database linking such a node with all its descendants and
attributes. The problems start when we want to use this as the basis for
querying the XML structure: each XML query should be compiled into an
SQL query on the underlying relational tables. Typically, a single XML query
(such as: “return all descendants of a given node”) must be compiled into a
complicated set of SQL queries. It is not even clear whether a finite set of
SQL queries could be generated for every reasonable XML query.

Although perhaps attractive as a short term solution, we feel that in the
long run this is not an appropriate solution. Rather, techniques for large data
storage, indexing schemes, query optimizers, etc., should be provided for the
native data model (be it XML or RDF), instead of relying on these techniques
for a completely different data model.
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5.4 Querying RDF

RDF documents and RDF schemata can be considered at three different levels
of abstraction:

1. At the syntactic level they are XML documents.
2. At the structure level they consist of a set of RDF triples.
3. At the semantic level they constitute one or more graphs with partially

predefined semantics.

We can query these documents at each of these three levels. We will briefly
consider the pros and cons of doing so for each level in the next few sections.

Querying at the Syntactic Level

As we have seen previously, RDF models can be written down in XML nota-
tion. It would therefore seem reasonable to assume that we can query RDF
using an XML query language (e.g. XQuery2). However, this approach disre-
gards the fact that RDF is not just an XML notation but has its own data
model that is different from the XML tree structure: whereas XML is an
ordered, node-labeled tree structure, RDF is an unordered, node- and edge-
labeled graph structure. XML querying techniques have no functionality for
dealing with differentiating between node and edge labels or with the absence
of order or a tree root. Moreover, relationships in the RDF data that are
not immediately apparent from the XML tree structure become very hard to
query in this approach.

Querying at the Structure Level

When we abstract from the syntax any RDF document represents a set of
triples, each triple representing a statement of the form subject-predicate-
object. A number of query languages have been proposed and implemented
that regard RDF documents as sets of such triples, and that allow to query
such a triple set in various ways.

However, querying at this level means that we now interpret any
RDF model only as a set of triples, including those elements which have
been given special semantics in RDF Schema. For example, the fact that
rdfs:subClassOf is a transitive relation is ignored at this level.

Querying at the Semantic Level

When we consider RDF models at the semantic level we query the full knowl-
edge of everything that the RDF model entails, and not just those facts that
happen to be represented explicitly.
2 See http://www.w3.org/TR/xquery/
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There are at least two options to achieve this goal:

1. Compute and store the deductive closure of a graph as a basis for querying.
2. Let a query processor infer new statements as needed per query.

While the choice of an RDF query language is, in principle, independent
of the choice made in this respect, the fact remains that most RDF query
languages have been designed to query a simple triple store and have no
specific functionality or semantics to discriminate between data and schema
information.

5.5 SPARQL

The SPARQL Query Language [23] is a W3C Candidate Recommendation
for querying RDF, and as such is fast becoming the standard query language
for this purpose. In September 2006, almost all major RDF query tools have
begun implementing support for the SPARQL query language. Even though
other query languages (e.g. SeRQL [1], RQL [24], RDQL [25]) have existed
longer and have a more mature implementation base and a more expressive
feature set, they typically are supported by only one or two tools, hindering
interoperability. Several surveys and comparative analyses of these different
query languages have been published, a fairly comprehensive one can be found
in [27]. In this chapter, we will concentrate on the SPARQL query language,
giving a brief introduction into its basic usage, highlighting some interesting
features. For a formal analysis of the semantics and complexity of the SPARQL
language, we recommend reading [26].

Basic Queries

The SPARQL query language is based on matching graph patterns. The sim-
plest graph pattern is the triple pattern, which is like an RDF triple, but with
the possibility of a variable instead of an RDF term in the subject, predicate
or object positions. Combining triple patterns gives a basic graph pattern,
where an exact match to a graph is needed to fulfill a pattern.

As a simple example, consider the following query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?c
WHERE
{

?c rdf:type rdfs:Class .
}

The above query retrieves all triple patterns where the property is rdf:type
and the object is rdfs:Class. In other words, this query, when executed, will
retrieve all classes.

Note that like the namespace mechanism we have previously seen for writ-
ing down RDF in XML, SPARQL allows us to define prefixes for namespaces
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and use these in the query pattern, to make queries shorter and easier to read.
In the rest of this chapter, we will omit the declaration of the “rdf” and “rdfs”
prefixes, for brevity.

To get all instances of a particular class, for example the FOAF vocabulary
class “Person”, we write:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?i
WHERE
{

?i rdf:type foaf:Person .
}

SPARQL makes no explicit commitment to support RDFS semantics.
Therefore, the result of this query depends on whether or not the system
answering the query supports RDFS semantics. If it does, then the result of
this query will include all instances of the subclasses of Person as well. If it
does not support RDFS semantics, then it will only retrieve those instances
that are explicitly of type “Person”.

Using Select–From–Where

As in SQL, SPARQL queries have a SELECT–FROM–WHERE structure:

SELECT specifies the projection: the number and order of retrieved data.
FROM is used to specify the source being queried. This clause is optional; when

not specified we can simply assume we are querying the knowledge base
of a particular system.

WHERE imposes constraints on possible solutions in the form of graph pattern
templates and boolean constraints.

For example, to retrieve all e-mail addresses of persons, we can write
SELECT ?x ?y
WHERE
{

?x foaf:mbox ?y .
}

Here ?x and ?y are variables, and ?x foaf:mbox ?y represents a resource-
property-value triple pattern.

We can create more elaborate graph patterns to get more complex in-
formation from our queries. For example, to retrieve all persons with name
“Bob” and their phone numbers, we can write
SELECT ?x ?y
WHERE
{

?x foaf:name "Bob";
foaf:mbox ?y .

}

Here ?x foaf:name "Bob" collects all resources which have a name “Bob”,
as discussed, and binds the result to the variable ?x. The second pattern
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collects all triples with predicate mbox. There is an implicit join here, in that
we restrict the second pattern only to those triples, the subject of which is
in the variable ?x. Note that in this case we use a bit of syntax-shortcut
as well: we use a semi-column to indicate that the following triple pattern
shares its subject with the previous one, so the above query is equivalent to
writing down:
SELECT ?x ?y
WHERE
{

?x foaf:name "Bob" .
?x foaf:mbox ?y .

}

We demonstrate an explicit join by a query that retrieves the name of all
persons known by the person with name “Bob”.
SELECT ?n
WHERE
{

?x rdf:type foaf:Person ;
foaf:name ?n .

?c foaf:name "Bob" ;
foaf:knows ?y .

FILTER (?x = ?y).
}

In SPARQL, we use a FILTER condition to indicate a boolean constraint.
In this case, the constraint is the explicit join of the variables ?x and ?y by
using an equality (=) operator.

Optional Patterns

The graph patterns we have seen so far are mandatory patterns: either the
knowledge base matches the complete pattern, in which case an answer is
returned, or it does not, in which case the query does not produce a result.
However, in many cases we may wish to be more flexible. Consider, for exam-
ple, the following bit of RDF:
<foaf:Person rdf:about="#bob">
<foaf:name>Bob</foaf:name>

</foaf:Person>

<foaf:Person rdf:about="#alice">
<foaf:name>Alice</foaf:name>
<foaf:mbox>alice@example.org</foaf:mbox>

</foaf:Person>

As you can see, this fragment contains information on two people. For one
person it only lists the name, for the other it also lists the e-mail address.
Now, we want to query for all people and their e-mail addresses:
SELECT ?name ?email
WHERE
{ ?x rdf:type foaf:Person ;

foaf:name ?name ;
foaf:mbox ?email .

}
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The result of this query would be:

?name ?email
Alice alice@example.org

So, despite the fact that Bob is listed as a person, the query does not return
him: the query pattern does not match because he has no e-mail address.

As a solution we can adapt the query to use an optional pattern:
SELECT ?name ?email
WHERE
{ ?x rdf:type foaf:Person ;

foaf:name ?name .
OPTIONAL { ?x foaf:mbox ?email }

}

The meaning is roughly “give us all the names of persons, and if known
also their e-mail address” and the result looks like this:

?name ?email
Bob
Alice alice@example.org

This covers the basics of the SPARQL query language. For a full overview
of the SPARQL language and an explanation of more advanced features,
such as named graphs, we recommend reading the SPARQL specification at
http://www.w3.org/TR/rdf-sparql-query/.

6 Scalability of RDF Stores

In terms of data storage and retrieval, scalability and performance is a very
important issue. The performance of an RDF store depends on various fac-
tors: the underlying database system, the database representation of the RDF
schema and instances, the efficiency of the query engine, and the performance
of the inference engine. A detailed overview of the scalability and performance
of different RDF stores would be out of scope of this chapter, but we can men-
tion some interesting points.

Theoharis et al. [10] benchmarked different database representations and
provide detailed results for the approaches described in Sect. 3. In this evalu-
ation the ontology specific schema in its hybrid form performs better in terms
of query execution times of taxonomic queries than the generic schemas. Al-
though only one sort of queries has been evaluated this shows the weakness of
the generic schemas. However, there is always a trade-off between the query ex-
ecution times and the overhead for ontology evolution and table management:
ontology specific schemas suffer from potentially large numbers of tables, and
from the need to change the database schema when adding or deleting a class
or property in the ontology.

An elaborate method and toolset to evaluate Semantic Web repositories
as a whole is the Lehigh University Benchmark (LUBM) [11]. Although it
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is focussing on OWL applications, the LUBM can be applied to most of the
RDF stores mentioned above, but there are only few evaluations available.
LUBM provides means to generate a test dataset, several test queries, support
for different degrees of reasoning as well as multiple performance metrics for
load time, repository size, query response time, and query completeness and
soundness.

The W3C maintains a web site recording the size of the largest deployed
installations of triple stores.3 End of February 2008 the site reports a number
of systems that have been tested with about one billion statements. The largest
data set is reported by the YARS2 System that is claimed to be able to store 7
billion triples generated using the LUBM benchmark.

7 Beyond RDF Schema

While the development of storage and retrieval systems for semantic data so
far has been focussed on supporting RDF and RDF Schema there is also an
interest in extending available infrastructures to more expressive languages. In
particular, supporting more expressive ontology languages such as OWL-Lite
and OWL-DL as well as expressive rule languages is a subject of active work.
Other activities include the extension of representation and query languages
with advanced features such as time [20], preference and uncertainty (e.g.
[18,19,21]). In the following, we focus on the first kind of activities.

The most straightforward extension of existing RDF infrastructures is a
support for ontologies encoded in OWL. As OWL can be serialized in RDF, the
corresponding models can be stored in any RDF repository without changing
the systems. The structural complexity of the OWL encoding in RDF, espe-
cially the high number of blank nodes, however, makes the access to these
models rather cumbersome. In order to overcome these problems, many RDF
stores use dedicated APIs as part of the middleware layer to support the stor-
age, retrieval and manipulation of OWL ontologies. While some systems such
as Jena use their own ontology API, other systems like KAON adopted the
proposal for a standardized OWL API described in [22].

Naturally, extensions to more expressive languages do not only aim at pro-
viding support at the syntactic level, but also with respect to the semantics of
the corresponding languages. As mentioned above, most RDF stores support
RDF Schema reasoning on the basis of a specialized set of deduction rules.
A common way of extending this fixed schema is to provide support for user
defined rule sets. These rule sets can be used for defining parts of the seman-
tics of OWL [16]. Examples of systems supporting OWL-Lite reasoning on
the basis of custom rule sets are Sesame, Jena and OWLIM [14]. Besides this,
customized rule sets can also be used for capturing domain specific knowl-
edge [15] and for defining efficient subsets of the RDF Schema Semantics for
particular applications [17].
3 http://esw.w3.org/topic/LargeTripleStores
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An alternative way of supporting OWL semantics is to provide an interface
to dedicated Description Logic reasoners (e.g. Racer, FaCT or Pellet) either
via specialized data structures or on the basis of the standardized DIG API
(http://dig.sourceforge.net/). Systems differ in the amount of derivable
knowledge that is actually integrated into the RDF model for query answering.
The BOR reasoner (http://www.ontotext.com/bor/) for example computes
the subsumption hierarchy of an OWL ontology and stores the derived sub-
Class relations in the RDF model for further processing. Furthermore, there
are some RDF compatible systems that implement expressive rule languages
such as KAON2 which implements disjunctive datalog [13] or OntoBroker that
implements F-Logic (cf. chapter “Ontologies in F-Logic”).

8 Conclusion

After reviewing a number of existing RDF storage and retrieval systems, we
can draw some conclusions about the state of the art and general trends in
the fields. On the general level, we can say that there is strong convergence
of technologies which is documented by the mergence of SPARQL as a stan-
dard query language but also in terms of features that are common to different
systems. For instance, we can observe that most RDF stores are not really spe-
cialized database systems for RDF data but rather an intelligent middleware
that wraps existing database technology. Besides providing special support
for the graph data model that is characteristic for RDF data, the main func-
tionality provided by this middleware is support for ontological reasoning. An
observation that can be made in connection with these two main functions is
the fact that almost all systems rely on relational databases that provide very
limited support with respect to data model and reasoning. There are very lit-
tle approaches that try to delegate some of these aspects to the storage model
as well by using deductive or object oriented database technologies.

With respect to further development of RDF technologies, we can iden-
tify two trends. The first one that was already mentioned in Sect. 7 is the
extension of existing systems to more expressive representation languages. In
this context, rule languages (compare chapter “Ontologies and Rules”) are
the most promising candidates because it has been shown that rule-based
reasoning has the potential to scale to very large data sets whereas ontologi-
cal reasoning based on description logics shows serious limitations when large
numbers of instances are involved. The other major direction of development
concerns the scalability of RDF infrastructures to internet scale. In this con-
text, approaches for distributed RDF processing are becoming more and more
important. Both aspects, expressive representation languages and distribution
are essential with respect to realizing the vision of the semantic web and are
therefore important steps towards real semantic web applications.
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Summary. Tableau-based methods for satisfiability checking build the backbone
of major contemporary ontology reasoning systems. The main idea of tableau-based
methods for satisfiability checking is to systematically construct a representation
for a model of the input formulae. If all representations that are considered by
the procedure turn out to contain an obvious contradiction, a model representation
cannot be found and it is concluded that the set of formulae is unsatisfiable.

In this chapter, tableau-based reasoning methods are formally introduced. We
start with a nondeterministic basic version which subsequently will be extended with
optimization techniques in order to demonstrate how practical systems can be built.
We also demonstrate how computed tableau structures can be exploited for other
inference problems in an ontology reasoning system.

1 Introduction

As part of the infrastructure for working with ontologies, reasoning systems
are required. Reasoning is used at ontology development or maintenance time
as well as at the time ontologies are used for solving application problems.
In this section we will review so-called tableau-based decision procedures for
inference problems arising in both contexts. We start with the satisfiability
problem for a set of logical formulae. Speaking about ontologies, we focus on
description logics, which provide the basis for standardized practical ontology
languages. In this context, the set of formulae mentioned above is usually di-
vided into a Tbox and an Abox for the intensional and extensional part of the
ontology, respectively (see below for details). We are aware of the fact that on-
tology processing systems based on description logics also support some form
of rules as well as means for specifying constraints among attributes of differ-
ent individuals [5]. For introductory purposes, here we focus on satisfiability
checking in basic description logics, however.

The main idea of tableau-based methods for satisfiability checking is to
systematically construct a representation for a model of the input formulae.
If all representations that are considered by the procedure turn out to contain
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an obvious contradiction (clash), a model representation cannot be found,
and it is concluded that the set of formulae is unsatisfiable. In early publi-
cations on tableau-based proof procedures, in particular for first-order logics,
the notation for the model representations was done using tables (tableaux
in French). In recent approaches these tables are better described as graph
structures. The name tableau is retained for historical reasons, however.

Initially, tableau-based methods for description logics have been developed
for decidability proofs, and due to this fact, they are highly nondeterministic
for expressive description logics. It turned out, however, that they can in-
deed be efficiently implemented using appropriate search strategies and index
structures such that for typical-case inputs, acceptable runtimes can be ex-
pected even though the worst-case complexity is high. In practical systems,
tableau structures are efficiently maintained during branch and bound (or
backtracking) with the result that tableau-based methods have been success-
fully employed in ontology reasoning systems such as FaCT++, Pellet, or
RacerPro (cf. [26] for an overview about description logic systems).

Although, in practical contexts, tableau-based methods are often applied
in a refutation-based way (i.e., they are used to show unsatisfiability of a set of
formulae), the graph structures computed for solving the ontology satisfiabil-
ity problem can be reused for efficiently implementing higher-level reasoning
services such as instance retrieval requests. In other words, in practical sys-
tems, tableau-based methods are not just used for satisfiability checking but
are also used to compute index structures for subsequent calls to other rea-
soning services.

In this chapter, tableau-based reasoning methods are formally introduced.
We start with a nondeterministic basic version which subsequently will be
extended with optimization techniques in order to demonstrate how practi-
cal systems can be built. We also demonstrate how computed tableau struc-
tures can be exploited in an ontology reasoning system. In order to make this
chapter self-contained, we shortly introduce the syntax and semantics of the
description logic ALC and introduce Tboxes and Aboxes.

An overview on tableau algorithms for description logics can also be found
in [7] as well as in [6]. In this chapter, we also consider optimization issues,
and the presentation is oriented towards implementation aspects in order to
complement the presentations in [6, 7].

1.1 Syntax and Semantics of ALC

For a given application problem one chooses a set of elementary descriptions
(or atomic descriptions) for concepts and roles representing unary and binary
predicates, respectively. A set of individuals is fixed to denote specific objects
of a certain domain. We use letters A and R for atomic concepts and roles,
respectively. In addition, let {i, j, . . .} be the set of individuals. In ALC (At-
tributive Language with full Complement), descriptions for complex concepts
C or D can be inductively built using the following grammar:
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C, D −→ A | atomic concept
C  D | conjunction
C � D | disjunction
¬C | negated concept
∃R.C | existential quantification
∀R.C | value restriction

We introduce the concept descriptions � and ⊥ as abbreviations for A � ¬A
and A
¬A, respectively. Concept descriptions may be written in parentheses
in order to avoid scoping ambiguities.

For defining the semantics of concept and role descriptions we consider
interpretations I that consist of a non-empty set ΔI , the domain, and an
interpretation function ·I , which assigns to every atomic concept A a set
AI ⊆ ΔI and to every atomic role R a set RI ⊆ ΔI × ΔI . For complex
concept descriptions the interpretation function is extended as follows:

(C  D)I = CI ∩ DI

(C � D)I = CI ∪ DI

(¬C)I = ΔI\CI

(∃R.C)I = {x | ∃y.(x, y) ∈ RI and y ∈ CI}
(∀R.C)I = {x | ∀y. if (x, y) ∈ RI then y ∈ CI}

The semantics of description logics is based on the notion of satisfiability. An
interpretation I = (ΔI , ·I) satisfies a concept description C if CI �= ∅. In
this case, I is called a model for C.

A Tbox is a set of so-called generalized concept inclusions C � D. For
brevity the elements of a Tbox are called GCIs. An interpretation I satisfies a
GCI C � D if CI ⊆ DI . An interpretation is a model of a Tbox if it satisfies
all GCIs in the TBox. A concept description C is subsumed by a concept
description D w.r.t. a Tbox if the GCI C � D is satisfied in all models of the
Tbox. In this case, we also say that D subsumes C.

An Abox is a set of assertions of the form C(i) or R(i, j) where C is a
concept description, R is a role description, and i, j are individuals. A concept
assertion C(i) is satisfied w.r.t. a Tbox T if for all models I of T it holds that
iI ∈ CI . A role assertion R(i, j) is satisfied w.r.t. a Tbox T if (iI , jI) ∈ RI

for all models I of T . An interpretation satisfying all assertions in an Abox A
is called a model for A. An Abox A is called consistent if such a model exists,
it is called inconsistent otherwise.

1.2 Decision Problems and Their Reductions

The definitions given in the previous section can be paraphrased as decision
problems.

The concept satisfiability problem is to check whether a model for a concept
exists. The Tbox satisfiability problem is to check whether a model for the Tbox
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exists. The concept subsumption problem (w.r.t. a Tbox) is to check whether
CI ⊆ DI holds (in all models of the Tbox).

The Abox consistency problem for an AboxA (w.r.t. a Tbox) is the problem
to determine whether there exists a model of A (that is also a model of the
Tbox). Another problem is to test whether an individual i is an instance of a
concept description C w.r.t. a Tbox and an Abox (instance test or instance
problem). The instance retrieval problem w.r.t. a query concept description
C is to find all individuals i mentioned in the assertions of an Abox such that
i is an instance of C.

The latter problem is a retrieval problem but, in theory, it can be reduced
to several instance problems. Furthermore, the satisfiability problem for a
concept C can be reduced to the consistency problem of the Abox {C(i)}.
In order to solve the instance problem for an individual i and a concept
description C one can check if the Abox {¬C(i)} is inconsistent. The concept
subsumption problem can be reduced to an Abox consistency problem as well.
If the Abox {C(i),¬D(i)} is not consistent, C is subsumed by D [6].

Thus, in theory, all problems introduced above can be reduced to the Abox
consistency problem. Note that in practical systems, specific algorithms might
be used to decide a certain problem.

2 Deciding the Consistency Problem for ALC Aboxes

A decision procedure for the ALC Abox consistency problem is described in
this section using a so-called tableau-based algorithm. In order to simplify
the presentation, in this section, we do not consider Abox consistency with
respect to Tboxes. For Tboxes, among other extensions, additional machinery
is required to ensure termination (see Sect. 3 for details).

As indicated in the introduction, the main idea of the Abox consistency
algorithm is to systematically generate a representation for a model. In this
process which searches for a model, some representations are generated which
contain an obvious contradiction (clash), i.e., for an individual i we have C(i)
and ¬C(i) in an Abox. The assertions C(i) and ¬C(i) are called the culprits
for the clash. In case of a clash, the generated representations turn out to not
to describe a model.

From a theoretical point of view, the algorithm described below is sound
and complete but nondeterministic. In a practical implementation, indeter-
minism must be handled with systematic search techniques, and various
heuristics have been described in the literature to guide the search process.
If we see a tableau-based algorithm not as a theoretical vehicle for proving
decidability of a logic, but as a practical way to solve the Abox consistency
problem, then it becomes clear that it is important to be able to detect clashes
as early as possible while the model representations are built. A representa-
tion with a clash no longer needs to be considered. Thus, we should be able to
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identify clashes not only for assertions with atomic concepts but also for asser-
tions with complex concepts. Therefore, in contrast to other presentations of
tableau algorithms we will not transform a concept into a form that makes the
presentation (and analysis) of the tableau algorithm easier (negation normal
form), but directly use a form that is efficient for detecting clashes in typical-
case inputs (encoded normal form). The ALC Abox consistency algorithm
described below checks whether there exists a model for the input Abox.

The algorithm operates on a set of Aboxes A. Each Abox represents an
alternative to be investigated in the exhaustive model generation process. We
also call such an internal Abox, i.e., an element of A, a tableau (but also use the
term Abox in the following). Initially, the algorithm starts with a set A = {A}
containing the input Abox A. A set of rules is applied to an Abox from this
set until no more rule applications are possible or no more rule applications
are needed to determine the result. The rules are introduced below. If a rule
is applied to an Abox, the Abox is replaced by one or more Aboxes. If it is
replaced by more than one Abox (the so-called successor Aboxes), we say that
the rule introduces a so-called choice point. A rule introducing a choice point
is called a nondeterministic rule. All other rules are called deterministic. In
any case, the Abox to which a rule is applied is replaced with new Aboxes
that are “copies” of the original one plus some additional assertions.

If a tableau (Abox) is found to contain a clash, the tableau is called closed,
otherwise it is called open. A tableau to which no rule can be applied is called
complete. For a complete tableau the synonym completion is also used. If
there exists a completion, i.e., an open tableau to which no more rules can be
applied, the algorithm returns “yes” (indicating consistency). If all tableaux
that could be generated by applying rules are closed, the algorithm returns
“no” (inconsistency).

2.1 Concept Normalization and Encoding

In order to speed up the clash test, concepts are normalized using several
transformation steps. First, double negations are eliminated, i.e., ¬¬C is re-
placed with C. Then, maximal sequences of conjunctions (possibly with nested
parentheses) are flattened and represented with an n-ary conjunction term∧
{C1, C2, . . . , Cn} (written as a prefix operator to the set of arguments).

Corresponding representations
∨
{C1, C2, . . . , Cn} are built for disjunctions.

The interpretation function is extended in the obvious way

(
∧
{C1, C2, . . . , Cn})I = (C1)I ∩ (C1)I ∩ · · · ∩ (Cn)I ,

(
∨
{C1, C2, . . . , Cn})I = (C1)I ∪ (C1)I ∪ · · · ∪ (Cn)I .

If there are two concepts C and ¬C mentioned in a conjunction (dis-
junction) or the concept ⊥(�) appears, the whole term

∧
{C1, C2, . . . , Cn}

(
∨
{C1, C2, . . . , Cn}) is replaced with ⊥ (�).
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Afterwards, in an encoding process every concept description C and its
negation ¬C is inductively associated with a unique identifier. For instance,
one could use numbers as unique identifiers and store concepts as records in an
array, or it is possible use pointers to records (or objects) as unique identifiers.
The fact that conjunctions (or disjunctions) are represented as sets enables
the assignment of the same unique identifier to syntactically different but
semantically equivalent conjunctive and disjunctive concept descriptions. The
assignment of unique identifier to a concept is known as encoding a concept.
If we use a concept description in the following text, we assume that we refer
to its unique identifier.

The function neg(C) is used to find the negation of a concept. The imple-
mentation of this function should require constant time (i.e., be as efficient as
possible).1

Next, an internal representation of the input Abox with encoded concepts
is built in a preprocessing step. We assume that normalized concepts are used
from now on. For readability issues, however, in the presentation below, we
still use concept descriptions as introduced above.

2.2 Tableau Rules

The tableau rules are applied to an Abox A as part of the set of Aboxes A

on which the algorithm operates. A rule can be applied whenever the precon-
dition is satisfied and A is not in the set of closed Aboxes (this is an implicit
condition). Initially, the set of closed Aboxes is empty. Saying that A is re-
placed by an Abox or a sequence of Aboxes we mean that A is removed from
A and the Aboxes generated by the rule are added to A. If a rule is applied
to an assertion, we say the assertion is expanded :

• Conjunction rule: If (
∧
{C1, . . . , Cn})(x) ∈ A and {C1(x), . . . , Cn(x)} �⊆

A, then replace A with A ∪ {C1(x), . . . , Cn(x)}.
• Disjunction rule: If (

∨
{C1, . . . , Cn})(x) ∈ A and for all i ∈ {1, . . . , n} it

holds that Ci(x) �∈ A, then replaceA with a sequence of Aboxes A1, . . . , An

where A1 = A ∪ {C1(x)}, . . . ,An = A ∪ {Cn(x)}.
• Existential quantification rule: If (∃R.C)(x) ∈ A but there is no in-

dividual name y such that {C(y), R(x, y)} ⊆ A, then replace A with
A ∪ {C(z), R(x, z)} such that z is a fresh individual (i.e., an individual
not occurring in A).

• Value restriction rule: If {(∀R.C)(x), R(x, y)} ⊆ A but C(y) �∈ A, then
replace A with A ∪ {C(y)}.

1 For instance, if numbers are chosen for the unique identifier, the unique identifier
of the negation of a (non-negated) concept with number n could be n + 1. The
encoding process must assign numbers accordingly. If (pointers to) objects are
used for representing concepts, a field with a pointer to the negated concept
provides for a fast implementation of neg at the cost of memory requirements
probably being a little bit higher.
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• Negation rule: If ¬C(x) ∈ A but neg(C)(x) �∈ A, then replace A with
(A ∪ { neg(C)(x)}.

• Clash rule: If {C(x), neg(C)(x)} ⊆ A, then add A to the set of closed
Aboxes.

The algorithm runs in a loop and applies a rule if its precondition is satis-
fied. A precondition of a rule is satisfied if there exists a substitution for the
variables x or y with individuals such that the condition is satisfied. As indi-
cated before, if the precondition is satisfied, a rule is applied to an Abox in A.
Applying a rule means to execute the then-part applying the variable substi-
tution computed from the if-part of the rule. The loop ends if a completion is
found or if no rule is applicable.

The algorithm returns “yes” if there exists a completion and “no” other-
wise. In principle, the rules defined above can be applied in any order. Later
we will see that a rule application strategy might impose restrictions on the
order of rule applications. Restrictions are introduced to find completions
“early”, i.e., the strategy is used for optimization purposes. If the expressivity
of the language is extended, a particular rule application strategy might also
be necessary to ensure termination or soundness and completeness.

A few additional definitions are appropriate for the analysis of the
algorithm in the next subsection. If an Abox is replaced with one new
Abox, the new Abox contains strictly more assertions. We call this process
and-branching. Applying a nondeterministic rule (for the time being, the
disjunction rule) might introduce several new Aboxes. We call this process
or-branching.

The individuals mentioned in the original Abox are called old individ-
uals, all other individuals are called fresh. A sequence of role assertions
R1(x1, x2), R2(x2, x3), . . . , Rn−1(xn−1, xn), Rn(xn, xn+1) is called a path (of
length n) from x1 to xn+1. In a path of length 1, x2 is called the (direct)
successor and x1 is called predecessor of x2 (for a role R). The individuals xi

with i ∈ {2, n + 1} are called indirect successors of x1.

Formal Properties

The formal properties of the algorithm are analyzed in three steps. We first
show termination, and afterwards we prove soundness and completeness.

The procedure terminates: First, no rule can be applied twice to the same
Abox with the same bindings for the variables x, y due to the preconditions
(no infinite and-branching). Second, although new individuals are introduced
by applying the existential quantification rule, the quantification concept is
of a smaller size than the original concept. Hence, there can be no infinite
applications of the existential quantification rule. The length of the longest
Abox is bounded by the size of the input Abox. Third, no rule deletes an
assertion, and therefore, Aboxes can only grow (i.e., no so-called yo-yo effects
can occur [24, p. 547]).
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The algorithm is sound: If the algorithm returns “yes” there exists a model
satisfying all assertions of the input Abox. This is shown as follows. If the
algorithm returns “yes” there exists a completion. From the completion A a
so-called canonical model IA = (ΔI

A, ·IA) can be constructed (cf. [6]):

1. Let ΔI
A be the set of all individuals mentioned in A.

2. For all atomic concept descriptions A let AI
A = {x | A(x) ∈ A}.

3. For all role descriptions R let RI
A = {(x, y) | R(x, y) ∈ A}.

By definition, all role assertions are satisfied by IA. Now, using induction
on the structure of concepts, it is easy to show that IA also satisfies all concept
assertions in A (see [6] for details).

The algorithm is complete: If there exists a model for the input Abox,
then the algorithms returns “yes”. Or, by contraposition, it holds that if the
algorithm returns “no”, then there does not exist a model. If the algorithm
returns “no”, all tableaux are closed, i.e., there is a clash in each tableau.
Under the assumption that there exists a model for an Abox to which a rule
is applied, it is shown that a model for at least one of the generated Aboxes
can be constructed by examining every rule (and hence, no alternative to be
investigated is forgotten, for details see [6] again). Now since there is a clash in
every tableau in case the algorithm returns “no”, there cannot exist a model
for the input Abox.

The ALC Abox consistency problem is PSPACE-complete, cf. [29]. The
algorithm needs an exponential number of steps in the worst case. As we
will see in the next subsection, there exists a rule application strategy such
that intermediate tableaux can be discarded such that the algorithm runs in
polynomial space in order to be worst-case-optimal.

2.3 Towards an Optimized Implementation

The tableau rules refer to assertions for specific individuals or check for a
clash w.r.t. a specific individual. Thus, rather than using an arbitrary set
data structure for representing a tableau, in a concrete implementation of the
tableau algorithm, the set of assertions in an Abox is partitioned w.r.t. the
individuals the assertions refer to (for C(i) and R(i, j) the assertion refers
to i). We call such a partition an individual partition Pi. The access to the
partition of an individual i should require almost constant time. If there is an
assertion R(i, j) ∈ Pi, then there will also be a partition Pj for j (possibly
empty). We say Pj depends on Pi.

Furthermore, looking at the preconditions of the rules, it is revealed that
for each individual, the preconditions refer to specific concept constructors
(conjunctions, disjunctions, existential quantifications, or value restrictions).
Thus, for each individual partition, the set of conjunctions, disjunctions, ex-
istential quantifications, and value restrictions must be efficiently identifi-
able. For the latter two subsets, a further index over different roles might be
considered.
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The selection of a particular rule to apply is nondeterministic in the al-
gorithm above. Various kinds of heuristics have been investigated to reduce
the number of rule applications for typical-case inputs. First, in a practical
implementation, best results have been achieved if the clash rule is applied
with highest priority. Since no rules are applied to closed tableaux by defini-
tion, the number of applicability tests for rules is reduced if clashes are found
early. The overhead for the clash rule must be kept at a minimum, however.
Usually, in concrete implementations, the clash rule is (implicitly) applied
whenever a concept assertion C(x) is to be added to an Abox. Note that for
ALC, role assertions are not directly involved in a clash test – a condition that
is no longer true for more expressive logics. Checking whether the assertion
neg(C)(x) is already an element of the tableau to which C(x) is to be added is
a frequently executed operation in a practical implementation, and has to be
implemented very efficiently. As part of this so-called clash test, in a practical
implementation it might become apparent that C(x) is also already contained
in the Abox. So, there is no maintenance effort for the Abox to which C(x)
is added.

The conjunction rule is applied with second-highest priority. Although the
number of assertions to be handled in a partition is increased, the chance that
a clash is detected early is also increased. Since in many contexts the Abox
will indeed be consistent, conjunctions have to be “expanded” anyway. So, it
is a good heuristic to prefer the conjunction rule over other rules.

In order to reduce the number of Aboxes to be handled as parts of A,
in practical systems, deterministic rules are preferred over nondeterministic
ones. In order to reduce memory requirements (and to meet the complex-
ity class of the Abox consistency problem) the so-called trace technique has
been developed. Employing the trace technique, the disjunction rule is ap-
plied before the deterministic value restriction rule. Then, for each existential
quantification assertion (∃R.C)(x), it is ensured that all potentially applicable
value restrictions are indeed available in the Abox. Thus, the existential quan-
tification rule can be combined with the value restriction rule. Rather than
only adding a concept assertion C(y) based on the quantification concept as
indicated in the existential quantification rule for a role R, additionally for
every value restriction (∀R.Di)(x) the assertion Di(y) is added, with y being
the fresh individual introduced by the exists quantification rule. Then all as-
sertions {C(y),D1(y), . . . , Dn(y)} can be treated in isolation. If they turn out
not to lead to a clash, the assertions, and all those derived from them, can be
removed (and (∃R.C)(x) must somehow be marked to avoid repetitive rule
applications).

In a practical implementation, the trace technique might not be adopted
for various reasons. For instance, the removal of assertions might interfere with
the idea to reuse of previous computation results, in particular if Tboxes are
involved (see below). Or the strategy is to avoid the expansion of disjunctions
but check the satisfiability of existential quantifications first.
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2.4 Dealing with Indeterminism in a Tableau Algorithm

In the description above, a nondeterministic rule (in ALC only the disjunction
rule) generates a sequence of new Aboxes. If Aboxes are created in a naive
way, this can hardly be efficient. Thus, a practical implementation must find
a way to implement a structure-sharing strategy for copies of Aboxes in order
to avoid structures to be copied repeatedly. Copying complete structures is
memory-extensive as well as time-consuming. Even with a structure-sharing
approach, the naive generation of successor Aboxes should be avoided due to
the memory-management overhead involved.

Obviously, the disjunction rule does not need to generate successors that
immediately lead to a clash. If the disjunction rule would be applicable to
some disjunct Ci in an assertion (

∨
{C1, . . . , Cn})(x) and neg(Ci)(x) ∈ A

the corresponding successor Abox does not need to be generated (it will be
closed according to the clash rule immediately). The detection of those sit-
uations requires some additional machinery in the implementation (boolean
constraint propagation, BCP) [9]. Boolean constraint propagation is imple-
mented in all major contemporary tableau-based reasoners. The challenge is
to most efficiently determine which disjunctions can be virtually “shrunk” or
“eliminated” in this way. Note that a disjunction becomes deterministic if
only one disjunct “remains” after BCP, and it can be treated as a conjunction
in this case (also w.r.t. priorities in rule applications). It is easy to see that
termination and correctness is still fulfilled if boolean constraint propagation
is employed.

Further optimizations that also have no impact on the correctness of the
algorithm but provide for improved performance for typical-case inputs are
possible. For instance, the disjunction rule requires as a precondition that the
disjunct Ci(x) is not already in A. Thus, looking for a completion, in a con-
crete implementation it is advantageous to first apply the disjunction rule to
those concept assertions (

∨
{C1, . . . , Cn})(x) with disjuncts Ci such that Ci is

also mentioned in many other disjunctive assertions for the individual x. The
application of the disjunction rule for the other disjunctions for x involving
Ci is then “avoided“ (due to the precondition of the disjunction rule). Effi-
ciently finding those concepts Ci such that the number of occurrences in all
disjunctions applying to an individual x is maximized (or large) is non-trivial,
however. There is a tradeoff between the time spent in search for occurrences
of a concept assertion Ci(x), management of index structures for speeding up
this search process, and the gain of this in terms of or-branching reduction.

Reusing previous results can help finding clashes early. If A is an Abox,
then all Aboxes derived from A by applying a tableau rule are called sib-
ling Aboxes. Information acquired for one successor Abox A′ of A can be
propagated to sibling Aboxes of A′. Let us consider the successor Aboxes of
an application of the disjunction rule to an Abox A again. If it turns out
that one of the successor Aboxes A′ with Ci(x) being added contains a clash,
then, neg(Ci)(x) can be added to all (open) sibling Aboxes of A′. Again, if
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neg(Ci)(x) is explicitly present in a sibling Abox, an application of the dis-
junction rule to the sibling Abox might be prevented and a clash might be
revealed earlier. On the negative side it has to be mentioned that applying
rules to neg(Ci)(x) in a tableau also causes some overhead. In a practical im-
plementation one might avoid the applications of the rules to assertions added
this way (without impact on soundness and completeness).

Up to now, we have considered ways to find a completion earlier (i.e., we
attempt to reduce or-branching). This heuristic is useful because the algorithm
terminates if a completion is found. However, it is also possible to find ways to
close tableaux early. Consider the following example Abox, which is obviously
inconsistent (adapted from [17])

A={(
∨
{C1,D1})(i), . . . , (

∨
{Cn,Dn})(i), (∃R.(

∧
{A,B}))(i), (∀R.¬A)(i)}.

We assume that the tableau algorithm applies the disjunction rule to the
first disjunction in A. We get two new Aboxes A1 and A2. Both Aboxes
are supersets of A. In Fig. 1, Aboxes are indicated as circles. A set inclusion
relation is indicated with a solid arrow (pointing from the superset to the
subset). The assertions being added to an Abox w.r.t. its predecessor Abox are
written next to the circle used for indicating the Abox. Aboxes that initially
are not closed are presented with a bold outline. As indicated in Fig. 1, we
assume that tableaux are represented using a kind of trie data structure.

In Fig. 1 we assume further rule applications to the Aboxes A1,A3, . . . ,
A2n−1, and then A2n+1,A2n+2 and finally A2n+3. Initially, A2n+3 is assumed
to be open. Now, a clash is found and A2n+3 is marked as closed by the clash
rule (due to ¬A(j) and A(j) being an element of A2n+3).

The dashed lines (curved) indicate the dependencies of the assertions
that are added to the respective Aboxes (not all dependencies are shown for

Fig. 1. A clash occurs in tableau, and exploring other open tableaux will not resolve
it. The corresponding tableau can be closed even without a clash (see text)
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readability reasons). Looking at Fig. 1 it should be apparent that the Aboxes
A2,A4, . . . ,A2n, which are still open, will inevitably lead to the same clash.
The idea to avoid repeatedly detecting the same clash over and over again is
to find a way to close the Aboxes A2,A4, . . . ,A2n in advance.

This can be achieved as follows. The clash occurs in A2n+3. The culprit
in A2n+3 is A(j). The other culprit ¬A(j) is in A2n+2. Culprit assertions are
indicated with an exclamation mark. Starting with the culprits and following
the dashed lines the Aboxes are marked with exclamation markers. See Fig. 1
for the final marking in our example. Then, starting from the Abox with
the “rightmost” culprit (in our case A2n+3) and following the solid lines in
the direction of the arrows, the reachable Aboxes are visited. If an Abox A′

marked with “!” pointing to an Abox B (with more than one incoming link)
is reached, and the leaves of the other Aboxes pointing to the predecessor
of A′ are not closed, then the process stops. Then, all leaf Aboxes reachable
in the inverse direction of the solid lines from the Abox B are marked as
closed.

In the example shown in Fig. 1 the process stops at B = A. The closed
Aboxes found by following the solid lines in the inverse direction are indicated
with a corresponding label “Closed” in Fig. 1. Hence, futile rule applications
to A2,A4, . . . ,A2n are avoided.

A slightly modified example illustrates that the process does not necessar-
ily close all Aboxes but only those which, due to the given culprits, do not
lead to completions. The example is given as follows:

A = {(
∨
{C1,D1})(i), . . . , (

∨
{Cn,Dn})(i), (∃R.(

∧
{¬C2,D}))(i)}.

In Fig. 2, the situation is shown after a few rule applications. Culprit markers
indicate the assertions on which the clash depends. Walking from the right-
most culprit along the solid lines stops at B = A3. All leaves reachable from
A3 in the inverse direction of the solid lines are closed. In this example, A2

Fig. 2. Examining the dependencies reveals that A4 must not be automatically
closed to retain completeness (see text)
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and A4 remain open, which is necessary not to miss a possible completion to
be constructed. If all successor Aboxes of an Abox are marked with a clash,
their assertions are also seen as clash culprits and exclamation markers are
propagated via the curved dependency links as introduced before [9].

In the literature, the technique described here is known as backjumping,
which is a restricted form of dependency-directed backtracking [17]. We have
presented it here using mathematical structures as part of the branch-and-
bound strategy of a tableau algorithm. Note that Aboxes in the trie might
indeed be reused, and thus, full dependency-directed backtracking might be
achieved (with previous computations being maximally reused).

Usually, a partition for an individual is seen as a graph node with role
assertions “pointing” to other graph nodes, and concept assertions defining
the so-called “label” of a “node” (see below for a more formal introduction
of a label). Hence, from an implementation point of view a tableau is seen
as a graph with nodes and edges, both associated with a label. For nodes,
the label is a set of concepts, and for edges it is a set of roles. To every
path in the Abox trie from the root to a leaf (see Fig. 1 or Fig. 2) there
corresponds a particular graph. For understanding tableau algorithms one
can switch between the graph view and the tableau (or Abox) view. The
graph corresponds to a model (see the construction of the canonical model
mentioned above).

3 Dealing with Tboxes

The tableau algorithm introduced above must be extended to work with non-
empty Tboxes. In theory, it is possible to transform all GCIs of the Tbox into
a single GCI of the form � � M . The transformation is very simple. Instead
of writing a GCI as Ci � Di one could write � � ¬Ci �Di, and thus, M is
the conjunction

∧
i{Mi} of all Mi = ¬Ci�Di stemming from the GCIs in the

Tbox (M and Mi are called global constraints). With the Tbox transformed
into � �

∧
{M1, . . . ,Mn} we can see that the restriction M on the righthand

side applies to all domain objects. The transformation is called internalization
in the literature [8]. The tableau algorithm is extended with a new rule which
adds M(x) if there is an individual x mentioned in a tableau in which M(x)
is not already present:

• GCI rule: If C(x) ∈ A or R(x, y) ∈ A or R(y, x) ∈ A and M(x) �∈ A, then
replace A with A ∪ {M(x)}.

A problem with this rule is that the algorithm then does not terminate. M
might contain existential quantifications which cause new individuals y to be
created, for which M(y) is added and so on (infinite and-branching occurs).
Some form of blocking must be enforced (see, e.g., [8]).

The tableau algorithm can be slightly changed to exploit these insights.
We give a definition for the label of a partition. The label of a partition for an
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individual x is defined as {C | C(x) ∈ Px}. Now, if there exists an individual
partition Pk and there is no rule applicable to Pk nor to all partitions that
depend on Pk, then no rule need to be applied to an assertion in a partition Pl

if label(Pl) ⊆ label(Pk) and k, l are fresh variables (otherwise, partitions for
old individuals might block each other). We say Pl is blocked by the witness
Pk. The witness must be a fresh individual. Note that if there is a clash
detected for k the whole tableau is closed and no rule is applied to l anyway.
The condition label(Pl) ⊆ label(Pk) might become false if, due to other rule
applications, new assertions are added for the individuals k or l in Pk and Pl,
respectively. So, blocking conditions must be dynamically checked.

In order to show soundness in case of blocked partitions, one constructs
a canonical interpretation for an individual i for which there exists a blocked
partition Pi by defining tuples (i, x) ∈ RI for every assertion R(w, x) related
to the witness w of i (for details see, e.g., [8]).2

The precondition that no rule is applicable to Pk and all partitions that
depend on Pk could be dropped. But then one must make sure that Pl is
a strict subset of Pk. Otherwise, to both partitions no rule would be applied
and the algorithm would become incomplete. For more expressive logics, more
expressive blocking conditions have to be defined (e.g., [21]). In the literature
it has been shown that the extended algorithm is sound and complete for
arbitrary ALC Tboxes.

One drawback from a practical point of view is that now a possibly large
set of disjunctions is introduced for every individual mentioned in a tableau,
since Mi = ¬Ci �Di. Keeping in mind that, e.g., boolean constraint propa-
gation is employed to deal with disjunctions in a practical system, it becomes
clear that disjunctions always involve “heavy-weight” methods in a practical
implementation of the tableau algorithm. For specific forms of GCIs, the dis-
junctions do not have to be explicitly generated, however. This is explained
in the next subsection.

3.1 Lazy Unfolding

Let us assume, there is a global constraint of the form Li = ¬A � C in
M such that A is an atomic concept description. Rather than adding this
global constraint to every individual x, the idea is to only add C(x) if adding
¬A(x) would lead to a clash. For those global constraints, one can implicitly
assume that individuals are instances of ¬A “if not stated otherwise” (see the
construction of the canonical interpretation). The global constraint Li can be
handled “in a lazy way” by a new rule which “unfolds” an assertion A(x) in
a tableau (cf. [3]).

2 We use a way to construct the canonical interpretation that already considers
additional concept constructors such as, say, number restrictions. In case of ALC
it would be possible to map i to its witness w in the canonical interpretation.
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We need some definitions for specifying the exact conditions under which
soundness and completeness can be guaranteed. An atomic concept descrip-
tion A directly refers to an atomic description B if there exists a GCI A � C
such that B is mentioned in C but not in the scope of an existential quan-
tification or value restriction. A refers to B if it directly refers to B or there
exists an atomic concept description B′ such that A refers to B′ and B′ refers
to B.

A global constraint of the form Li = ¬A � C need not be handled as a
disjunction if A is an atomic concept description and C does not refer to A.
Let us assume that global constraints that satisfy the conditions introduced
above for Li are collected not in M but into a set L. There must be no other
global constraint in L with a disjunct ¬A or disjunct A. Then, the following
rule is used to deal with global constraints in L [3, 21]:

• Lazy unfolding rule 1: If A(x) ∈ A and (¬A�C) ∈ L and C(x) �∈ A, then
replace A with A ∪ {C(x)}.

In other words, only if there is an assertion A(x) in a tableau, then C(x) must
be added because assuming ¬A(x) would lead to a clash.

In case we also collect assertions of the form A�C into the set of concepts
L (and not into M) another rule must be added. Corresponding restrictions
as for ¬A � C apply:

• Lazy unfolding rule 2: If ¬A(x) ∈ A, (A � C) ∈ L and C(x) �∈ A, then
replace A with A ∪ {C(x)}.
Lazy unfolding exploits the fact that one can safely assume that a domain

object which is not explicitly enforced to be in AI (or (¬A)I in the second
case) is an element of (¬A)I (or AI in the second case). See [22] for details.

3.2 GCI Absorption

Global constraints in L are handled more effectively. If, initially, the global
constraints are not of the form that they can be put into L but must be
stored in M , the goal is to transform them in a way that a maximum number
of global constraints can be put into L, and possibly none must be kept in M ,
without changing the semantics of the Tbox. This transformation process is
known as GCI absorption (see [15,16,22] for details).

In some cases, still some global constraints remain in M even if GCIs are
transformed as describe above, unfortunately. For instance, this happens if
there are two GCIs of the form A � (∃R.A) 
 C and ∃R.A � A in a Tbox.
The latter kind of GCI is only relevant for an individual x if there exists an
assertion R(x, y) in tableau.

For ∃R�. � C an effective treatment is easily possible. The same holds
for range restrictions � � ∀R.C. Let domain(R) and range(R) denote sets of
concepts (initially empty). We assume that all (∀R.⊥) �C are removed from
M , and for each (∀R.⊥)�C removed, C is added to domain(R). In addition,
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all ⊥ � ∀R.C are removed from M , and for each ⊥ ∪ ∀R.C removed, there is
C added to range(R):

• Domain restriction rule: If R(x, y) ∈ A and C ∈ domain(R), then replace
A with A ∪ {C(x)}.

• Range restriction rule: If R(x, y) ∈ A and C ∈ range(R), then replace A
with A ∪ {C(y)}.

See [10] for a description of the initial idea and [31] for an analysis of this
technique. However, for ∃R.A � A a disjunction has to be added (to any
individual for which there exists a role successor), which still could cause a
combinatorial explosion if the wrong choice was made in a practical system.
For instance, this could happen for the following Abox:

A = {¬A(x0), R(x0, x1), R(x1, x2), . . . , R(xn−1, xn), A(xn)}.

For all xi, i ∈ {0, . . . , n−1}, a disjunction (∀R.¬A)�A would be asserted, and
choice points are set up. We assume that rules are first applied to the tableaux
created for ∀R.¬A. After several rule applications, a clash w.r.t. ¬A(xn) and
A(xn) would be detected. The situation could be even worse, if there was a
GCI B 
 ∃R.A � A with B being an atomic concept for which there exists a
GCI B � D. Thus, there is no way to absorb B 
 ∃R.A � A into L using the
above-mentioned techniques.

In [23], a new transformation called binary absorption has been introduced
to tackle this problem. Applying this transformation requires a new rule to
be added to the tableau algorithm. This is discussed in the next subsection.

3.3 Binary Absorption

A GCI B 
 ∃R.A � A should not be transformed into a disjunction to be
placed in M . It can be transformed into

∃R−1.� � A1 ,

A1 
A � ∀R−1.A2 ,

A2 
B � A ,

where R−1 denotes the inverse of role R. The idea is to introduce a marker
A1(y) for every y for which there is an assertion R(x, y). The first GCI of the
list above can be handled effectively by absorbing it into range(R) as described
before. A2 is a marker indicating an instance of ∃R.A (see the second GCI).
The third GCI now enforces y to be an instance of A in the tableau. In order
to deal with a conjunction of two atomic concepts on the left-hand side of a
GCI the lazy unfolding rules can be extended as follows [23]:

• Lazy unfolding rule 3: If {A1(x), A2(x)} ⊆ A, (¬(A1 
 A2) � C) ∈ L and
C(x) �∈ A, then replace A with A ∪ {C(x)}.
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No disjunctions of this particular type have to be handled after the trans-
formation is applied. Soundness and completeness of this approach have been
shown in [23]. A disadvantage is that the tableau algorithm now must also
handle inverse roles (denoted as R−1 in the GCIs above).

4 Tableau Structures for Subsumption Problems

Tableau-based reasoning can be exploited for solving other reasoning problems
as well. First, we consider the subsumption problem, then we turn to the
instance problem and the retrieval problem.

Subsumption problems occur very frequently if the so-called taxonomy of
a Tbox is computed. This is usually done at ontology development time in
order to check for modeling errors (unsatisfiable atomic concept descriptions,
unwanted subsumption relationships, etc.). The taxonomy of a Tbox is a graph
where the nodes are the atomic concept descriptions mentioned in the Tbox
(including � and ⊥), and the edges indicate whether a node is a most-specific
subsumer of another node.

For expressive languages such as ALC the subsumption problem A �? B
can be reduced to the Abox consistency problem {(A
¬B)(i)} for some indi-
vidual i. If the Abox is inconsistent the subsumption relation holds, otherwise
it does not hold. For practical Tboxes, GCIs usually involve conjunctions on
the right-hand side. Thus, if B is negated, disjunctions have to be handled by
the tableau algorithm, which might lead to “unfocused” applications of the
rules. For computing the taxonomy, many similar subsumption problems of
the form Ai �? B have to be solved, and hence, many Abox consistency prob-
lems {(Ai
¬B)(i)} are the consequence. In almost all cases the subsumption
relation between A and B does not hold, and hence, the Abox is likely to be
shown to be consistent. Quite some number of applications of tableau rules
might be required, however (with large or-branching, and for realistic ontology
considerable and-branching as well).

Therefore, in [15] the following technique was developed. Since ¬B is used
many times, its satisfiability is tested in isolation. Usually, ¬B is satisfiable
in practical contexts (otherwise, B would a synonym to �). The test whether
{¬B(i)} is consistent leads to a consistent Abox such that a label L1 is defined
for i. We call this label a pseudo model (for an atomic concept description).
The same is done now for Ai (let the label be called Li).

In [15] a process called model merging is defined. The idea of this process
is to show non-subsumption by comparing the labels. Four conditions must
be satisfied in order to conclude non-subsumption:

• For every A ∈ L1 there does not exist an ¬A ∈ Li.
• For every ¬A ∈ L1 there does not exist an A ∈ Li.
• For every ∃R.C ∈ L1 there does not exist an ∀R.D ∈ Li.
• For every ∀R.C ∈ L1 there does not exist an ∃R.D ∈ Li.
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If non-subsumption cannot be concluded, the “full” test whether {(C �
¬D)(i)} is consistent is performed. However, practical experiments have
shown that this is not often required [15, 16], so there is hardly any over-
head introduced by the model merging process. There is almost no search
involved in comparing the labels in the way defined above if the assertions in
the labels are indexed appropriately.

5 Conclusion

The tableau algorithm introduced in this section can be extended to deal
with additional concept and role constructors. With the addition of new con-
structors, the rule application strategy becomes important for termination
and correctness, not only for optimization. Furthermore, the blocking condi-
tion might become more complex. For instance, the following constructs have
been investigated in the literature and tableau algorithms have been specified:

• Concrete domains (with feature composition) [4]
• Qualifying number restrictions [14]
• Number restrictions plus role conjunctions and GCIs [8]
• Transitive roles [27]
• Transitive roles, role hierarchies, GCIs, and features [16]
• Transitive roles, role hierarchies, GCIs, plus number restrictions and

Aboxes [12]
• Transitive roles, role hierarchies, GCIs, number restrictions and Aboxes

plus concrete domains without feature composition [11]
• Transitive roles, role hierarchies, GCIs, Aboxes, plus qualifying number

restrictions and inverse roles [21]
• Nominals [1, 20,28,30]
• Role axioms [18]
• Concrete domains with role composition for description logics with

GCIs [25]

For almost all of the language features in this list, efficient implementations
based on tableau algorithms are available.

Tableau-based reasoning methods are very effective for concept satisfiabil-
ity checking [19] as well as for Tbox-based reasoning tasks [13, 16, 32]. Even
for some specific Tboxes for which it was assumed that resolution-based rea-
soning methods show better behavior, new techniques such as binary absorp-
tion have shown that tableau-based methods can exploit similar structures.
Tableau-based Tbox reasoners such as FaCT++, Pellet or RacerPro are the
fastest systems for expressive description logics for a wide range of expressive
Tboxes that regularly occur in practice.

Acknowledgments

We would like to thank Sebastian Wandelt and Michael Wessel for comments
on a draft of this chapter.



Tableau-Based Reasoning 527

References

1. Franz Baader, Martin Buchheit, and Bernhard Hollunder. Cardinality restric-
tions on concepts. Artificial Intelligence, 88(1–2):195–213, 1996.

2. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory, Im-
plementation, and Applications. Cambridge University Press, Cambridge, 2003.

3. Franz Baader, Enrico Franconi, Bernhard Hollunder, Bernhard Nebel, and
Hans-Jürgen Profitlich. An empirical analysis of optimization techniques for
terminological representation systems or: Making KRIS get a move on.
Applied Artificial Intelligence. Special Issue on Knowledge Base Management, 4:
109–132, 1994.

4. Franz Baader and Philipp Hanschke. A schema for integrating concrete domains
into concept languages. In Proc. of the 12th Int. Joint Conf. on Artificial Intel-
ligence (IJCAI’91), pages 452–457, 1991.
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Summary. We overview the algorithms for reasoning with description logic (DL)
ontologies based on resolution. These algorithms often have worst-case optimal com-
plexity, and, by relying on vast experience in building resolution theorem provers,
they can be implemented efficiently. Furthermore, we present a resolution-based al-
gorithm that reduces a DL knowledge base into a disjunctive datalog program, while
preserving the set of entailed facts. This reduction enables the application of opti-
mization techniques from deductive databases, such as magic sets, to reasoning in
DLs. This approach has proven itself in practice on ontologies with relatively small
and simple TBoxes, but large ABoxes.

1 Introduction

Tableau algorithms, introduced in chapter “Tableau-Based Reasoning”, are
nowadays the state-of-the-art for reasoning with description logic (DL) on-
tologies. This is mainly due to optimizations of the original algorithm that
heuristically guide the search for a model. DLs such as the ones underlying
the Web Ontology Language (OWL) (see chapter “Web Ontology Language
OWL”) are, however, complex logics, so no one reasoning method can be iden-
tified as the best. Rather, comparing different methods and identifying which
ones are suitable for which types of problems can give us crucial insights into
building practical reasoning systems. Therefore, alternatives to tableau calculi
have been explored in the past.

Resolution and its refinements [4] are nowadays the most widely used
calculi for general-purpose first-order theorem proving. They have been im-
plemented in a number of practical systems, of which Vampire [28] is one of
the most successful one. The general applicability of resolution is partly due
to the powerful redundancy elimination rules, which can drastically reduce
the search space.

Since resolution has been quite successful as a general theorem proving
technique, it is natural to apply it to ontology reasoning. Decision procedures
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for various DLs have been developed in the past. It turns out that, even
for relatively complex DLs, resolution-based algorithms can be derived easily
and are quite elegant. While tableau algorithms need sophisticated blocking
techniques to ensure termination [8], resolution-based algorithms terminate
automatically as a side-effect of the resolution calculus. Furthermore, many
resolution-based procedures are worst-case optimal [13,25].

In this chapter, we outline the principles underlying most known
resolution-based procedures for DLs. After introducing the basic notions
in Sect. 2, we present a decision procedure for the DL ALCHI in Sect. 3.
This DL provides many features characteristic of the DL languages, such
as full Boolean connectives, (restricted) existential and universal quantifica-
tion, inverse roles, and role hierarchies. Furthermore, the resolution decision
procedure for this DL conveys the basic principles without overloading the
presentation with technical detail. We also overview the problems involved in
extending the algorithm to more expressive DLs.

Deductive databases have been successfully applied to answering queries
over large data sets, so it is natural to apply them to DL reasoning with large
ABoxes. To enable this, in Sect. 4 we present a technique that reduces an
ALCHI knowledge base to a disjunctive datalog program without affecting
the set of entailed ground facts. Thus, one can answer DL queries using the
resulting disjunctive program, and, in doing so, one can apply known opti-
mization techniques such as magic sets [6]. This transformation can be derived
easily from the basic resolution-based decision algorithm.

The techniques presented in this chapter have been implemented in the DL
reasoner KAON2.1 Practical experience has shown that the reduction-based
techniques work quite well for ontologies with relatively small and simple
TBoxes, but large and complex ABoxes [23].

2 Preliminaries

2.1 The Description Logic ALCHI

Description logics have been introduced in detail in chapter “Description
Logics”, but, to make this chapter self-contained, we present the definition
of the DL ALCHI . For a set of role names NR, a role is either some R ∈ NR

or an inverse role R− for R ∈ NR. An RBox R is a finite set of role inclu-
sion axioms R � S. For a set of concept names NC , the set of concepts is the
smallest set containing �, ⊥, A, ¬C, C 
 D, C � D, ∃R.C, ∀R.C, where A
is a concept name, C and D are concepts, and R is a role. A TBox T is a
finite set of concept inclusion axioms C � D, where C and D are concepts.
For a set of individuals NI , an ABox A is a finite set of assertions of the form
C(a), R(a, b), and ¬R(a, b), where C is a concept, R is a role, and a and b are

1 http://kaon2.semanticweb.org/
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Table 1. Semantics of ALCHI by mapping to FOL

Mapping roles to FOL

πxy(R) = R(x, y) πyx(R) = R(y, x)
πxy(R−) = R(y, x) πyx(R−) = R(x, y)

Mapping concepts to FOL

πx(�) = � πy(�) = �
πx(⊥) = ⊥ πy(⊥) = ⊥
πx(A) = A(x) πy(A) = A(y)
πx(¬C) = ¬πx(C) πy(¬C) = ¬πy(C)
πx(C  D) = πx(C) ∧ πx(D) πy(C  D) = πy(C) ∧ πy(D)
πx(C � D) = πx(C) ∨ πx(D) πy(C � D) = πy(C) ∨ πy(D)
πx(∃R.C) = ∃y : πxy(R) ∧ πy(C) πy(∃R.C) = ∃x : πyx(R) ∧ πx(C)
πx(∀R.C) = ∀y : πxy(R) → πy(C) πy(∀R.C) = ∀x : πyx(R) → πx(C)

Mapping axioms to FOL

π(C � D) = ∀x : πx(C) → πx(D)
π(R � S) = ∀x, y : πxy(R) → πxy(S)
π(C(a)) = πx(C){x �→ a}
π((¬)R(a, b)) = (¬)πxy(R){x �→ a, y �→ b}
π(K) =

∧
α∈T ∪R∪A π(α)

individuals. An ALCHI knowledge base K is a triple (R, T ,A). With |K| we
denote the number of symbols needed to encode K. We say that K is exten-
sionally reduced if, in all ABox assertions C(a), the concept C is a concept
name or the negation of a concept name. Any K can be made extensionally re-
duced by replacing each assertion C(a) where C is not of the appropriate form
with an assertion AC(a) and an axiom AC � C, for AC a new concept name.

In chapter “Description Logics”, DLs are given a direct model-theoretic
semantics. In this chapter, however, we use an equivalent semantics based
on translation into first-order logic. In particular, we translate an ALCHI
knowledge base K into a first-order formula π(K), where π is the operator
defined in Table 1. It is well-known that these two semantics are equivalent [7].

The basic inference problem for ALCHI is checking satisfiability of K–
that is, checking whether π(K) is a satisfiable first-order formula. As discussed
in chapter “Description Logics”, other inference problems can be reduced to
knowledge base satisfiability.

The negation-normal form nnf(C) of a concept C is the concept equivalent
to C in which negation occurs only in front of concept names. The concept
nnf(C) can be computed in time polynomial in the size of C by well-known
transformations [2].

2.2 The Ordered Resolution Calculus

We use the well-known definitions of constants, variables, function symbols,
terms, predicates, and formulae of first-order logic [4]. An atom A is a formula
of the form P (t1, . . . , tn), where P is a predicate and ti are terms. A literal L
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is a positive atom A or a negative atom ¬A. A clause is a multiset of literals
and is written as L1 ∨ · · · ∨ Ln. The empty clause is written as �. Terms and
formulae that do not contain variables are called ground . We say that formulae
ϕ and ψ are equisatisfiable if ϕ is satisfiable if and only if ψ is satisfiable.

A substitution is mapping of variables to terms that is not identity on a
finite number of variables; we often write it as {x1 �→ t1, . . . , xn �→ tn}. An
application of a substitution σ to a term t (formula ϕ) is written tσ (ϕσ)
and it is the term (formula) obtained by replacing each free occurrence of a
variable x with xσ. A substitution σ is a unifier of terms s and t if sσ = tσ.
A unifier σ of s and t is called a most general unifier if, for each unifier η of
s and t, a substitution ξ exists such that xη = (xσ)ξ for every variable x. If a
most general unifier σ of s and t exists, it is unique up to variable renaming
[3], so we write σ = MGU(s, t).

The skolemization of a formula ϕ, written sk(ϕ), is obtained from ϕ by
successively replacing each subformula ∃x : ψ occurring positively or a subfor-
mula ∀x : ψ occurring negatively in ϕ with a formula ψ{x �→ f(x1, . . . , xn)},
where f is a new function symbol and x1, . . . , xn are the free variables of ψ
different from x. It is well-known that ϕ and sk(ϕ) are equisatisfiable [26]. Fi-
nally, Cls(ϕ) is the set of clauses that is equisatisfiable with ϕ and is obtained
from transforming sk(ϕ) into conjunctive normal form using the well-known
transformations.

Ordered resolution [4] is a calculus that can be used to prove that a for-
mula ϕ is unsatisfiable. Ordered resolution is a clausal calculus, so it cannot
be applied to ϕ directly. First, one must compute Cls(ϕ). Next, one must fix
the calculus’ parameters. The first parameter is an admissible ordering on
literals & – that is, an ordering that is (1) well-founded, stable under substi-
tutions (i.e., L1 & L2 implies L1σ & L2σ for all literals L1 and L2 and each
substitution σ), and total on ground literals; (2) ¬A & A for all ground atoms
A; and (3) B & A implies B & ¬A for all atoms A and B. A literal L is
maximal w.r.t. a clause C if there is no literal L′ ∈ C such that L′ & L, and L
is strictly maximal w.r.t. C if there is no L′ ∈ C such that L′ ' L. The second
parameter is a selection function, which assigns to each clause C a possibly
empty subset of negative literals of C.

An inference rule is a template that specifies how a conclusion is derived
given a set of premises; an inference is an application of an inference rule to
concrete premises. With R we denote the ordered resolution calculus, consist-
ing of the following inference rules, where the clauses C ∨A ∨B and D ∨ ¬B
are called the main premises, C ∨A is called the side premise, and Cσ ∨Aσ
and Cσ ∨Dσ are called conclusions (as usual in resolution theorem proving,
we make a technical assumption that the premises do not have variables in
common):

Positive factoring:
C ∨A ∨B

Cσ ∨Aσ

where (i) σ = MGU(A,B), (ii) Aσ is maximal with respect to Cσ ∨ Bσ and
no literal is selected in Cσ ∨Aσ ∨Bσ.
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Ordered resolution:
C ∨A D ∨ ¬B

Cσ ∨Dσ

where (i) σ = MGU(A,B), (ii) Aσ is strictly maximal with respect to Cσ and
no literal is selected in Cσ ∨Aσ, (iii) ¬Bσ is either selected in Dσ ∨¬Bσ, or
it is maximal with respect to Dσ and no literal is selected in Dσ ∨ ¬Bσ.

Ordered resolution is compatible with powerful redundancy elimination
techniques, which allow deleting certain clauses during the theorem proving
process without loss of completeness [4]. If a clause C is redundant in some
set of clauses N , then C can be safely removed from N .

If a clause C is a tautology, then it is redundant in any set of clauses N .
A sound and complete tautology check would itself require theorem proving,
and would therefore be difficult to realize. Therefore, one usually only checks
for syntactic tautologies – that is, clauses containing the literals A and ¬A.
A clause C subsumes a clause D if there is a substitution σ such that Cσ ⊆ D
and |C| < |D|. If a clause C is subsumed by a clause from a set of clauses N ,
then C is redundant in N .

A derivation by R from a set of clauses N is a sequence of sets of clauses
N0, N1, . . . such that N0 = N and, for i ≥ 0, either (1) Ni+1 = Ni ∪ {C}
where C is the conclusion of an inference by R from premises in Ni, or
(2) Ni+1 = Ni \ {C} where C is redundant in Ni. Each derivation must be
fair [4]; intuitively, this means that each applicable inference is performed
after a finite number of steps. Ordered resolution is sound and complete [4]:
if � ∈ Ni where Ni is derived by R from a set of clauses N0, then N0 is
unsatisfiable; conversely, if N0 is unsatisfiable, then, for each fair derivation
by R from N0, an integer i exists such that � ∈ Ni. The process of computing
a derivation by R from N0 is called a saturation of N0 by R.

2.3 Disjunctive Datalog

We recapitulate the basic notions of disjunctive datalog [11]. A datalog term
is a constant or a variable, and a datalog atom has the form A(t1, . . . , tn)
or t1 ≈ t2, where ti are datalog terms. A disjunctive datalog program with
equality P is a finite set of rules of the form A1 ∨ · · · ∨An ← B1, . . . , Bm

where Ai and Bj are datalog atoms. The literals Ai are called head literals,
whereas the literals Bi are called body literals. Each rule is required to be
safe – that is, each variable occurring in the rule must occur in at least one
body atom. A fact is a rule with m = 0. For the semantics, we take a rule to
be equivalent to a clause A1 ∨ · · · ∨An ∨ ¬B1 ∨ · · · ∨ ¬Bm. We consider only
Herbrand models, and say that a model M of P is minimal if there is no
model M ′ of P such that M ′

� M . A ground literal A is a cautious answer
of P (written P |=c A) if A is true in all minimal models of P . First-order
entailment coincides with cautious entailment for positive ground atoms.
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3 Deciding Satisfiability of ALCHI by Resolution

The fundamental principles for deciding a first-order fragment L by resolution
have been established by Joyner [17]. First, one selects a sound and complete
clausal calculus C. Second, one identifies the set of clausesNL such that (1)NL
is finite for a finite signature and (2) the translation of each formula ϕ ∈ L
into clauses produces only clauses from NL. Third, one demonstrates that NL
is closed under C; that is, one shows that applying an inference of C to clauses
from NL produces a clause in NL. This is sufficient to obtain a refutation
decision procedure for L: given any formula ϕ ∈ L, a saturation by C of the
clauses corresponding to ϕ will, in the worst case, derive all clauses of NL.
In this section, we apply these principles to obtain a procedure for checking
satisfiability of an ALCHI knowledge base K.

3.1 Translating the Knowledge Base into Clauses

The first step in deciding satisfiability of K is to transform K into an equisat-
isfiable set of clauses Ξ(K). A straightforward way of doing so is to compute
Cls(π(K)). Such an approach, however, has two important drawbacks. First,
the size of the resulting clause set could be exponential in the size of π(K),
due to nesting of 
 and �. Second, we should exploit the structure of the
formula π(K) in our algorithm, but Cls(π(K)) does not reflect this structure.
To avoid these problems, we preprocess K using the structural transformation
[26, 27].

Definition 1. For an ALCHI knowledge base K, the knowledge base Θ(K) is
computed as shown in Table 2.

Intuitively, this transformation replaces complex concepts with simpler
ones. The knowledge base Θ(K) does not contain 
, so it can be translated
into clauses without an exponential blowup.

Table 2. Structural transformation of K
Θ(K) =

⋃
α∈R∪A Θ(α) ∪

⋃
C1�C2∈T Θ(� � nnf(¬C1 � C2))

Θ(A � B) = {A � B}
Θ(A � ¬B) = {A � ¬B}
Θ(A � C1  C2) = Θ(A � C1) ∪ Θ(A � C2)
Θ(A � C1 � C2) = {A � QC1 � QC2} ∪ Θ(QC1 � C1) ∪ Θ(QC2 � C2)
Θ(A � ∃R.C) = {A � ∃R.QC} ∪ Θ(QC � C)
Θ(A � ∀R.C) = {A � ∀R.QC} ∪ Θ(QC � C)
Θ(R � S) = {R � S}
Θ(C(a)) = {QC(a)} ∪ Θ(QC � C)
Θ((¬)R(a, b)) = {(¬)R(a, b)}
Note: A and B are concept names or �; C, C1, and C2 are arbitrary concepts;
R and S are roles; and QX is a new concept name not occurring in K that is
unique for X.
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Lemma 1. An ALCHI knowledge base K and Θ(K) are equisatisfiable.

Proof. Consider a single application of Θ. It is obvious that the axioms ob-
tained after the transformation imply the axiom before the transformation,
which proves the (⇐) direction. For the (⇒) direction, simply observe that
each interpretation I of K can be extended to an interpretation I ′ of Θ(K) by
interpreting each newly introduced concept QX as X. 
�

To obtain a set of clauses corresponding to K, we translate Θ(K) into first-
order logic using the operator π from Table 1, skolemize it, and transform
the result into conjunctive normal form. This is captured by the following
definition:

Definition 2. For an ALCHI knowledge base K, let Ξ(K) = Cls(π(Θ(K))).

We now show that clausification does not affect the satisfiability of a knowl-
edge base, and that it produces clauses of a certain syntactic structure:

Lemma 2. The following claims hold for each ALCHI knowledge base K:

1. K is satisfiable if and only if Ξ(K) is satisfiable.
2. Ξ(K) can be computed in time polynomial in |K|.
3. Each clause in Ξ(K) is of the form as shown in Table 3.

Proof. (1) Equisatisfiability of K and Ξ(K) is a direct consequence of
Lemma 1. (2) The number of recursive invocations of Θ and the number
of new concepts QX are linear in |K|. Hence, |Θ(K)| is linear in |K|, so |Ξ(K)|
is polynomial in |K|. (3) It is easy to see that Θ(K) contains only axioms
from the left-hand side of Table 3, which are translated into clauses as shown
on the right-hand side of the table. 
�

Table 3. Clause types after clausification

Axiom Clause

R � S ¬R(x, y) ∨ S(x, y)

R− � S− ¬R(y, x) ∨ S(y, x)

R � S− ¬R(x, y) ∨ S(y, x)

R− � S ¬R(y, x) ∨ S(x, y)

A �
⊔

(¬)Bi ¬A(x) ∨
∨

(¬)Bi(x)

A � ∃R.B ¬A(x) ∨ R(x, f(x))
¬A(x) ∨ B(f(x))

A � ∃R−.B ¬A(x) ∨ R(f(x), x)
¬A(x) ∨ B(f(x))

A � ∀R.B ¬A(x) ∨ ¬R(x, y) ∨ B(y)

A � ∀R−.B ¬A(x) ∨ ¬R(y, x) ∨ B(y)

A(c) A(c)

(¬)R(c, d) (¬)R(c, d)

(¬)R−(c, d) (¬)R(d, c)

Note: The function symbol f is different for each axiom.
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3.2 Saturation by Ordered Resolution

Since ordered resolution (R) is a sound and complete calculus, we can use it
to check satisfiability of Ξ(K). To obtain a decision procedure, we just need
to ensure that each saturation of Ξ(K) by R terminates; that is, we must
ensure that we can derive only finitely many clauses from Ξ(K) by applying
the rules of R. There are two main reasons why we might derive an infinite
number of clauses.

First, we might derive clauses with ever deeper terms. This is shown by
the following example, in which the selected literals are underlined:

C(a) ¬C(x) ∨ C(f(x))
C(f(a)) ¬C(x) ∨ C(f(x))

C(f(f(a)))

Second, we might derive clauses with an unbounded number of variables.
For example, the following inference increases the number of variables by one,
and repeating it for the conclusion produces clauses with an arbitrary number
of variables:

¬C(x) ∨ ¬R(x, y) ∨ C(y) ¬C(y) ∨ ¬R(y, z) ∨ C(z)
¬C(x) ∨ ¬R(x, y) ∨ ¬R(y, z) ∨ C(z)

The inferences that ordered resolution performs on a given set of premises
are determined by the parameters of the calculus – the literal ordering and
the selection function. By choosing these parameters appropriately, we can
restrict the resolution inferences in a way that allows us to establish a bound
on the term depth and on the number of variables. In the first example,
if we ensure that C(f(x)) & ¬C(x), then the second premise can partici-
pate in an inference only on literal C(f(x)); since C(f(x)) and C(a) do
not unify, no inference of R is applicable to C(a) and ¬C(x) ∨ C(f(x)). In
the second example, the undesirable inference can be prevented if we select
¬R(x, y).

The following definition fixes the parameters for R that, as we shall see
shortly, restrict the inferences on Ξ(K) in a way which ensures termination.

Definition 3. Let RDL denote the calculus R parameterized as follows:

• The literal ordering is any admissible ordering & such that, for all function
symbols f and predicates R, C, and D, we have R(x, f(x)) & ¬C(x) and
D(f(x)) & ¬C(x).

• The selection function selects every negative binary literal in each clause.

An ordering compatible with Definition 3 can be obtained by instantiating
a lexicographic path ordering [10]; see [22, Sect. 4.4] for details.
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Table 4. Types of ALCHI-clauses

1 ¬R(x, y) ∨ S(x, y)
2 ¬R(x, y) ∨ S(y, x)
3 P(x) ∨ R(x, f(x))
4 P(x) ∨ R(f(x), x)
5 P1(x) ∨ P2(f(x))
6 P1(x) ∨ ¬R(x, y) ∨ P2(y)
7 P(a)
8 (¬)R(a, b)

Note: P(t) is a possibly empty disjunction of the form (¬)P1(t) ∨ · · · ∨ (¬)Pn(t)
for t a term of the form x, f(x), or a; P(a) is a possibly empty disjunction of
the form P1(a1) ∨ · · · ∨ Pm(am); and the empty clause � is of type 5.

It is easy to see that an application of RDL to clauses from Table 3 can
produce clauses of the form not shown in the table. Therefore, we generalize
Table 3 to ALCHI-clauses, shown in Table 4. It is easy to see that Ξ(K)
contains only ALCHI-clauses. As we show next, when applied to ALCHI-
clauses, each RDL inference produces an ALCHI-clause.

Lemma 3. Each RDL inference, when applied to ALCHI-clauses, produces
an ALCHI-clause.

Proof. We summarize all possible RDL inferences on all types of ALCHI-
clauses in Table 5. For the sake of brevity, we omit inferences in which par-
ticipating literals are complemented. The notation n + m = k above each
inference means that the inference premises are of types n and m, and the
conclusion is of type k. Due to the requirement on the literal ordering &, a
literal of the form (¬)A(x) occurring in a clause C can participate in an infer-
ence only if C does not contain a literal of the form (¬)B(f(x)) or R(x, f(x)).
Furthermore, a ground literal A(a) does not unify with a literal A(f(x)), and
R(a, b) does not unify with R(x, f(x)). Hence, ground clauses can participate
only in inferences with clauses not containing terms of the form f(x). One
can easily see that the conclusion is always an ALCHI clause. 
�

The following lemma shows that the number of ALCHI-clauses is finite
for a finite knowledge base K. In fact, the bound on the number of derivable
clauses can be used to estimate the complexity of the algorithm.

Lemma 4. For an ALCHI knowledge base K, the longest ALCHI-clause over
the signature of Ξ(K) is polynomial in |K|, and the number of such clauses
different up to variable renaming is exponential in |K|.

Proof. The number c of unary predicates in the signature of Ξ(K) is linear in
|K|, since each concept introduced by Θ corresponds to one nonliteral subcon-
cept of C. Similarly, the number f of unary function symbols in the signature
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Table 5. Possible inferences by RDL on ALCHI-clauses

1 + 3 = 3:

¬R(x, y) ∨ S(x, y) P(x) ∨ R(x, f(x))

P(x) ∨ S(x, f(x))

2 + 3 = 4:

¬R(x, y) ∨ S(y, x) P(x) ∨ R(x, f(x))

P(x) ∨ S(f(x), x)

1 + 4 = 4:

¬R(x, y) ∨ S(x, y) P(x) ∨ R(f(x), x)

P(x) ∨ S(f(x), x)

2 + 4 = 3:

¬R(x, y) ∨ S(y, x) P(x) ∨ R(f(x), x)

P(x) ∨ S(x, f(x))

6 + 3 = 5:

P1(x) ∨ ¬R(x, y) ∨ P2(y) P(x) ∨ R(x, f(x))

P(x) ∨ P1(x) ∨ P2(f(x))

6 + 4 = 5:

P1(x) ∨ ¬R(x, y) ∨ P2(y) P(x) ∨ R(f(x), x)

P(x) ∨ P1(f(x)) ∨ P2(x)

5 + 5 = 5:

P1(x) ∨ P2(f(x)) ∨ ¬A(f(x)) A(x) ∨ P3(x)

P1(x) ∨ P2(f(x)) ∨ P3(f(x))

5 + 5 = 5:

P1(x) ∨ ¬A(x) A(x) ∨ P2(x)

P1(x) ∨ P2(x)

5 + 5 = 5:

P1(x) ∨ P2(f(x)) ∨ ¬A(f(x)) A(f(x)) ∨ P3(f(x)) ∨ P4(x)

P1(x) ∨ P2(f(x)) ∨ P3(f(x)) ∨ P4(x)

7 + 5 = 7:

P1(a) ∨ ¬A(b) A(x) ∨ P2(x)

P1(a) ∨ P2(b)

7 + 7 = 7:

P1(a) ∨ ¬A(b) A(b) ∨ P2(c)

P1(a) ∨ P2(c)

8 + 1 = 8:

R(a, b) ¬R(x, y) ∨ S(x, y)

S(a, b)

8 + 2 = 8:

R(a, b) ¬R(x, y) ∨ S(y, x)

S(b, a)

8 + 6 = 7:

R(a, b) P1(x) ∨ ¬R(x, y) ∨ P2(y)

P1(a) ∨ P2(b)

8 + 8 = 5:

R(a, b) ¬R(a, b)

�
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of Ξ(K) is linear in |K|, since each function symbol is introduced by skolem-
izing one concept of the form ∃R.C. Consider now the longest ALCHI-clause
Cl6 of type 6. Such a clause contains a possibly negated literal A(x) for each
unary predicate A, and a possibly negated literal A(f(x)) for each pair of
unary predicate and function symbols, yielding at most � = 2c + 2cf literals,
which is polynomial in |K|. Each ALCHI-clause of type 2 is a subset of Cl6, so
there are 2� such clauses; that is, the number of clauses is exponential in |K|.
For other ALCHI-clause types, the bounds on the length and on the number
of clauses can be derived in an analogous way. 
�

We now state the main result of this section:

Theorem 1. For an ALCHI knowledge base K, saturating Ξ(K) by RDL

decides satisfiability of K and runs in time that is at most exponential in |K|.

Proof. By Lemma 4, the number of clauses derivable by RDL from Ξ(K) is
exponential in |K|. Each inference can be performed in time polynomial in
the size of clauses. Hence, the saturation terminates after performing at most
an exponential number of steps. Since RDL is sound and complete, it decides
satisfiability of Ξ(K), and by Lemma 2 of K as well, in time that is exponential
in |K|. 
�

3.3 An Example

We now present a simple example. Let K be the following knowledge base:

∃S.A � ∃R.B (1)
B � C (2)

∃R.C � D (3)
S(a, b) (4)

A(b) (5)

Let us assume that we want to check whether K |= D(a); as shown in chapter
“Description Logics”, this so if and only ifK ∪ {¬D(a)} is unsatisfiable. Hence,
let K′ be the knowledge base K extended with the assertion ¬D(a).

To check satisfiability ofK′ using resolution, we first apply structural trans-
formation. For (1), we obtain the following:

Θ(��∀S.¬A � ∃R.B)= {� � Q1 �Q2} ∪Θ(Q1 � ∀S.¬A) ∪Θ(Q2 � ∃R.B)

By Definition (1), we should introduce a new name for the concepts ¬A and B;
however, both Q1 � ∀S.¬A and Q2 � ∃R.B can be translated into ALCHI-
clauses in a straightforward way. Hence, we do not further apply Θ, and neither
we do so for (2) and (3). We obtain the set Ξ(K′) as follows (the meaning of
underlining will be explained shortly):
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� � Q1 �Q2 � Q1(x) ∨Q2(x) (6)
Q1 � ∀S.¬A � ¬Q1(x) ∨ ¬S(x, y) ∨ ¬A(y) (7)
Q2 � ∃R.B � ¬Q2(x) ∨R(x, f(x)) (8)
Q2 � ∃R.B � ¬Q2(x) ∨B(f(x)) (9)

B � C � ¬B(x) ∨ C(x) (10)
∃R.C � D � D(x) ∨ ¬R(x, y) ∨ ¬C(y) (11)

S(a, b) � S(a, b) (12)
A(b) � A(b) (13)

¬D(a) � ¬D(a) (14)

To saturate Ξ(K′) by RDL, we use a literal ordering & compatible with
Definition 3, where we break ties by comparing predicates alphabetically. The
literals that are either selected or maximal are underlined. We now saturate
Ξ(K′); R(xx+yy) means that a clause was obtained by resolving (xx) and
(yy).

D(x) ∨ ¬Q2(x) ∨ ¬C(f(x)) R(8+11) (15)
D(x) ∨ ¬Q2(x) ∨ ¬B(f(x)) R(15+10) (16)

D(x) ∨ ¬Q2(x) R(16+9) (17)
D(x) ∨Q1(x) R(17+6) (18)

¬Q1(a) ∨ ¬A(b) R(7+12) (19)
D(a) ∨ ¬A(b) R(18+19) (20)

¬A(b) R(14+20) (21)
� R(13+21) (22)

We derived the empty clause, so the set of clauses Ξ(K′) is unsatisfiable,
and so is K′, which implies K |= D(a).

3.4 Extending the Algorithm to the More Expressive DLs

We now overview the problems encountered in extending this basic algorithm
to more expressive DLs and point to the relevant literature for the solutions.

Boolean Role Expressions

The DL ALB [25] is obtained from ALCHI by allowing for concepts ∀E.C
and ∃E.C and axioms E1 � E2, where E(i) are Boolean role expressions R,
¬E, E1 � E2, and E1 
 E2. As shown in [25], ALB can easily be decided
by extending the algorithm from this section. The main difference is that
translating an ALB knowledge base to clauses can produce clauses of the
following form:
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¬R1(x, y) ∨ · · · ∨ ¬Rn(x, y) ∨ S1(x, y) ∨ · · · ∨ Sm(x, y) (23)

If n = 0, such clauses can cause termination problems. For example, resolving
the clauses (24) and (25) produces the clause (26):

R(x, y) (24)
A(x) ∨ ¬R(x, y) ∨B(y) (25)

A(x) ∨B(y) (26)

The clause (26) contains two clauses of type 6 that do not share a variable.
Resolving such clauses with other clauses of that form can easily produce
clauses with an arbitrary number of variables. For example, resolving (26)
with (27) produces (28), which contains more variables than either of the
premises:

¬B(y) ∨ C(y) ∨D(z) (27)
A(x) ∨ C(y) ∨D(z) (28)

This problem, however, can be solved in a simple way: since A(x) and B(y)
are variable-disjoint, similarly as in the DPLL procedure [9], we can split the
clause (26) into A(x) or B(y) – that is, we can guess which subclause is true.
This reduces (26) to a clause of type 6, which does not cause termination
problems. Splitting makes the procedure nondeterministic: deriving the empty
clause under one of the guesses does not mean that the original clause set
is unsatisfiable; rather, we must derive the empty clause under all possible
guesses. Hence, such an algorithm runs in NExpTime. This is worst-case
optimal, since ALB is an NExpTime-complete logic [21].

Transitivity Axioms

Many DLs allow roles to be declared as transitive [12]. Translation of transi-
tivity axioms produces clauses of the following form:

¬R(x, y) ∨ ¬R(y, z) ∨R(x, z) (29)

Such clauses are difficult for resolution. For example, if we also have the clause
(30), then it can be resolved with (29) to produce (31):

A(x′) ∨R(x′, f(x′)) (30)

¬R(x, x′) ∨A(x′) ∨R(x, f(x′)) (31)

Clause (31) is similar to (30), but it contains two variables; hence, further res-
olution inferences with (31) might produce clauses with even more variables.

To prevent the increase in the number of variables, one might select the
negative literal in (31). While this prevents the introduction of arbitrarily
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many variables, it allows the derivation of arbitrarily deep terms; for example,
a resolution of (30) and (31) produces the following clause:

A(x) ∨R(x, f(f(x))) (32)

There are several ways to address this problem. In [18], resolution has been
extended with simplification rules that transform clauses of the form (31) and
(32) into simpler clauses without affecting satisfiability.

Another solution is to replace transitivity axioms with new concept inclu-
sion axioms that capture the effects of the transitivity axioms. Roughly speak-
ing, a transitivity axiom Trans(S) is replaced with axioms ∀R.C � ∀S.(∀S.C),
for each R with S �∗ R and C a “relevant” concept from K; for more details,
please see [22, Sect. 5.2]. Similar encodings have been considered in modal
logic [29] and in DLs with role conjunctions [30].

Number Restrictions

As explained in chapter “Description Logics”, many DLs provide for number
restrictions � nR.C and � nR.C. The algorithm from this section can be
extended to such concepts by using the well-known translation of number
restrictions into first-order logic:

�nR.C � ∃y1, . . . , yn :
∧

1≤i≤n+1

[R(x, yi) ∧ C(yi)] ∧
∧

1≤i<j≤n

yi �≈ yj

�nR.C � ∀y1, . . . , yn+1 :
∧

1≤i≤n+1

[R(x, yi) ∧ C(yi)] →
∨

1≤i<j≤n+1

yi ≈ yj

These translations employs the equality predicate ≈. Ordered resolution
alone is not an efficient calculus for theorem proving with equality. Therefore,
deciding DLs with number restrictions typically requires the application of
a calculus optimized for theorem proving with equality. Basic superposition
[5,24] is one such calculus, which introduces new rules that take into account
the semantics of equality.

In [13], a decision procedure for the DLSHIQ− (a DL obtained fromSHIQ
by imposing certain restrictions on the usage of number restrictions) based

on basic superposition. In [14], this algorithm has been generalized to SHIQ
by extending basic superposition with a decomposition inference rule, which
simplifies certain clauses. All these procedures are worst-case optimal (i.e.,
they run in ExpTime) for unary coding of numbers. It is known that SHIQ
is ExpTime-complete even for binary coding of numbers [30]; however, the
assumption of unary number coding is standard in practical DL reasoning
systems.

Nominals

Another common construct considered in DLs are nominals. Although such
a result has not been published, it would be straightforward to extend the
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algorithms from [13,14] to handle the DL SHOQ . The combination of inverse
roles and nominals, however, is rather difficult to handle. Intuitively, such a
logic does not have the tree-model property. Still, in [19], basic superposition
has been extended with decomposition and novel nominal generation rule to
obtain a decision procedure for SHOIQ . The resulting decision procedure is,
however, not optimal: it runs in triple exponential time, whereas SHOIQ is
NExpTime-complete [30].

4 Reasoning by Reduction to Logic Programming

We now present an algorithm for reducing an ALCHI knowledge base to
a disjunctive datalog program that entails the same set of ground atoms.
As discussed in [23], such a reasoning technique is particularly suitable for
knowledge bases that have a rather small and simple TBox but a large ABox.

4.1 The Main Difficulty

For an ALCHI knowledge base K, our goal is to derive a disjunctive datalog
program DD(K) such that K |= α if and only if DD(K) |= α for α of the form
A(a) or R(a, b). Thus, we can use DD(K) instead of K for query answering, and
in doing so, we can apply all optimization techniques known from deductive
databases, such as magic sets [6] or join-order optimizations [1].

As shown in Table 1 and in [7], there is a close correspondence between
description logics and first-order logic. Consider the following knowledge base:

K = {A � ∃R.A,∃R.∃R.A � B,A(a)} (33)

A näıve attempt to reduce K into disjunctive datalog is to translate K into
a first-order formula π(K), skolemize it, translate it into conjunctive normal
form, and rewrite the obtained set of clauses into rules. For K, such an ap-
proach produces the following logic program LP(K):

R(x, f(x)) ← A(x) (34)
A(f(x)) ← A(x) (35)

B(x)← R(x, y), R(y, z), A(z) (36)
A(a) (37)

Clearly, K and LP(K) entail the same set of ground facts. The program
LP(K), however, contains a function symbol in a recursive rule (35). This
raises the issue of how to answer queries in LP(K). Namely, well-known
query evaluation techniques will not terminate on LP(K); for example, us-
ing bottom-up saturation, we shall derive A(f(a)), R(a, f(a)), A(f(f(a))),
R(f(a), f(f(a))), B(a), and so on. Obviously, such an algorithm will continue
deriving ever deeper facts, and will therefore never terminate. Note that we
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need all previously derived facts to derive B(a) from LP(K), and that we do
not know a priori when all relevant ground facts have been derived, so that
we might stop the saturation.

This problem could be solved by employing an appropriate cycle detection
mechanism. In [16], such an approach has been used to derive a decision proce-
dure for the DL ALC based on hyperresolution. Using specialized algorithms
for evaluating queries in LP(K) takes us, however, away from our original goal
of applying deductive database optimization techniques to description logics.
In a way, such an algorithm could be viewed as an alternative notation for the
tableau calculus, for which it is unclear how to apply optimization techniques
such as magic sets.

To avoid potential problems with termination, our goal is to derive a true
disjunctive datalog program DD(K) without function symbols. For such a
program, queries can be evaluated using any standard technique; furthermore,
all existing optimization techniques known from deductive databases can be
applied directly. Hence, the main problem that we deal with is the elimination
of function symbols from LP(K).

4.2 The Translation Algorithm

From Table 5, we see that (1) a ground clause cannot participate in an in-
ference with a nonground clause containing a function symbol, and (2) if one
premise in an inference by RDL is ground, the conclusion is ground as well.
Hence, we can perform all inferences among nonground clauses first, after
which we can simply delete all nonground clauses containing function sym-
bols. The remaining clause set consists of clauses without function symbols,
which can easily be translated into a disjunctive datalog program, by moving
positive literals into rule heads and negative literals into rule bodies. A minor
problem arises if the resulting rules contain unsafe variables. We deal with
such clauses using a simple trick: we introduce a new predicate HU and add
an assertion HU (a) for each individual a; next, we append HU (x) to the body
of each rule in which x is an unsafe variable.

Definition 4. Let K = (R, T ,A) be an extensionally reduced ALCHI knowl-
edge base. Then, Γ (T ∪ R) is the set of clauses obtained by

• saturating Ξ(T ∪ R) by RDL, and then
• deleting all clauses containing function symbols.

The disjunctive datalog program DD(K) is obtained from Γ (T ∪ R) ∪Ξ(A)
using the following transformations:

• Each clause of the form A1 ∨ · · · ∨An ∨ ¬B1 ∨ · · · ∨ ¬Bm is rewritten into
a rule A1 ∨ · · · ∨An ← B1, . . . , Bm.

• If a variable x occurs in some rule only in the head, then the literal HU (x)
is added to the rule body.
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• The fact HU (a) is added to the program for each constant a occurring
in K.

If K is not extensionally reduced, then DD(K) = DD(K′), where K′ is an
extensionally reduced knowledge base obtained from K as explained in Sect. 2.1.

We now state the properties of DD(K):

Theorem 2. The following claims hold for each ALCHI knowledge base K:

1. K is satisfiable if and only if DD(K) is satisfiable.
2. K |= α if and only if DD(K) |=c α, where α is of the form A(a) or R(a, b)

for A a concept name and R a role.
3. K |= C(a) for a complex concept C iff DD(K ∪ {C � Q}) |=c Q(a) for Q

a new concept name.
4. The number of literals in each rule in DD(K) is at most polynomial, the

number of rules in DD(K) is at most exponential, and DD(K) can be com-
puted in time exponential in |K|.

Proof. (1) Table 5 shows that each inference with at least one ground premise
(these are the inferences below the dashed line) always produces a ground
conclusion. Hence, in saturating Ξ(K) by RDL, we can perform all inferences
among nonground clauses first. Furthermore, Table 5 also shows that ground
clauses can participate in inferences only with clauses not containing function
symbols. Hence, after performing all inferences among nonground clauses of
Ξ(K), we can delete all clauses with terms of the form f(x).

By Definition 2, Ξ(T ∪ R) is exactly the set of nonground clauses of Ξ(K),
so Γ (T ∪ R) is exactly the set of clauses obtained by saturating the nonground
part of Ξ(K) and deleting the clauses containing function symbols. Further-
more, it is easy to see that Γ (T ∪ R) ∪Ξ(A) is satisfiable if and only if DD(K)
is satisfiable. Namely, both clause sets are function-free and they differ only
in that the unsafe variables in the latter set are bound using the predicate
HU which enumerates the entire Herbrand universe.

(2) Simply observe that K |= α if and only if K ∪ {¬α} is unsatisfiable.
The latter is the case if and only if DD(K ∪ {← α}) = DD(K) ∪ {← α} is
unsatisfiable, which is the case if and only if DD(K) |=c α.

(3) Follows in the same manner as (2).
(4) Follows immediately from Lemma 4. 
�

4.3 An Example

We now continue the example from Sect. 3.3 and compute a disjunctive datalog
program DD(K). The first step in the algorithm is to compute Ξ(T ∪ R);
clearly, it consists of the clauses (6)–(11).

The next step is to compute Γ (T ∪ R) by saturating Ξ(T ∪ R) by RDL.
This was already done in Sect. 3.3: the saturated set contains the clauses
(6)–(11) and, additionally, (15)–(18).
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The next step is to remove all clauses containing function symbols. There-
fore, we remove the clauses (8), (9), (15), (16). The final step is to compute
DD(K) by moving all negative literals into the body and the positive literals
into the head. The clauses (6) and (18) are unsafe, so we additionally add the
literals HU (x) to the body of the rules.

Q1(x) ∨Q2(x)← HU (x) (38)
← Q1(x), S(x, y), A(y) (39)

C(x) ← B(x) (40)
D(x) ← R(x, y), C(y) (41)

D(x)← Q2(x) (42)
D(x) ∨Q1(x)← HU (x) (43)

Finally, we add to DD(K) the ABox and the facts involving HU :

S(a, b) (44)
A(b) (45)

HU (a) (46)
HU (b) (47)

It is straightforward to verify that DD(K) |= D(a), in accordance with
Theorem 2.

It is instructive to compare the algorithm from this section with tableaux
algorithms from chapter “Tableau-Based Reasoning”. Tableau algorithms
introduce new individuals in order to satisfy the existential quantifiers. In
contrast, the programs obtained by the reduction do not represent such in-
dividuals at all. In our example, DD(K) is function-free, so the universe of
the program is restricted to the constants explicitly mentioned in it. Thus,
the models of K and DD(K) coincide only on positive ground facts, and are
unrelated for the facts involving unnamed objects.

To understand why the saturation of the TBox and RBox by RDL is
necessary, consider the role of each rule in DD(K). While the axiom (2) in
K is applicable to all individuals in a model, the rule (40) is applicable only
to named individuals. The relationship between (3) and (41) is analogous. To
compensate for the fact that (40) and (41) derive consequences only about
named individuals, DD(K) contains the rule (42), which is produced by the
saturation of Ξ(T ∪ R) by RDL. This rule acts as a shortcut: instead of
introducing for each x in Q2 an R-successor y in B by (8), propagating y to C
by (10), and then concluding that x is in D by (11), the rule (42) derives that
all instances of Q2 are instances of D in one step. This ensures that DD(K)
and K entail the same set of ground facts.
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4.4 Discussion

By Theorem 2, the program DD(K) is independent of the query, as long as the
query is a concept name or a role. Hence, DD(K) can be computed once, and
can be used to answer any query involving only concept names. If the query in-
volves a complex concept C (even if C is a negated concept name), then query
answering can be reduced to entailment of positive ground facts, by introduc-
ing a new name Q and by adding the axiom C � Q to the TBox. Obviously,
DD(K ∪ {C � Q}) may depend on C. Namely, by saturating Γ (T ∪ R), the
reduction algorithm derives all nonground consequences of K, and a complex
query concept can introduce new nonground consequences, which should be
taken into account in the reduction.

Theorem 2 allows |DD(K)| to be exponential in |K|, which may seem dis-
couraging. Note, however, that the number of rules depends on |T ∪ R| and
not on |A|. This is important for data complexity [31] – the complexity under
the assumption that the TBox and RBox are fixed. Under such an assump-
tion, |DD(K)| becomes polynomial in |A|, which has been used in [15] to show
that checking satisfiability of SHIQ knowledge bases is NP-complete for data
complexity. Also, a Horn fragment of SHIQ has been identified that does not
provide for disjunctive reasoning but exhibits polynomial data complexity. To
deal with the exponential blowup in the number of rules, an optimization
has been presented in [13, 22] that allows many rules to be removed from
DD(K) without invalidating Theorem 2. Practical experience has shown that
the number of remaining rules is typically twice the number of axioms in
K [23].

4.5 Adding Number Restrictions

The reduction algorithm presented in [13, 22] differs from this one mainly in
that it can handle knowledge bases with number restrictions. We now outline
the differences between this algorithm and the one presented in this section.
Namely, if K is an ALCHI knowledge base, all functional terms encountered
in a saturation of Ξ(K) by RDL are nonground (see Table 5). This is no
longer the case if K is an ALCHIQ knowledge base. Namely, the translation
of number restrictions can produce clauses such as (48). To see why such
clauses case problems, let us assume that some other axioms produce the
clauses (49)–(50).

¬R(x, y1) ∨ ¬R(x, y2) ∨ y1 ≈ y2 (48)
¬C(x) ∨R(x, f(x)) (49)

R(a, b) (50)

By resolving (48) with (49) and (50), we obtain the following clause:

¬C(a) ∨ f(a) ≈ b (51)
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This clause differs from clauses of type 7 from Table 4 in that it contains a
ground functional term. The functional terms from clauses such as (51) can
participate in further inferences, so we cannot just remove all clauses with
function terms.

The solution is to represent ground functional terms in clauses of the form
(51) using new constants. Thus, the clause (51) is encoded as the following
clause, where af is a new constant unique for a pair of a and f :

¬C(a) ∨ af ≈ b (52)

After saturation of TBox and RBox, the nonground clauses from the satu-
rated set are transformed in a certain way that reflects such an encoding of
the ground clauses. It is important to understand that the constants such
as af have no deeper semantic meaning; they are just a proof-theoretic aid
that allows the simulation of inferences of basic superposition in disjunctive
datalog.

5 Conclusion

This chapter overviews the algorithms for reasoning in description logics by
resolution. These algorithms are interesting because they are worst-case op-
timal, but are also suitable for practical implementation [23]. Furthermore,
such algorithms can be used to reduce a DL knowledge base to a disjunctive
datalog program. This allows the application of known reasoning algorithms
from deductive databases to reasoning with large ABoxes. Practical experi-
ence has shown that such algorithms are quite suitable for ontologies with
relatively small and simple TBoxes but large ABoxes.

A challenge for future research is to obtain a more elegant and perhaps
worst-case optimal algorithm for reasoning with nominals. Namely, reasoning
with nominals requires reasoning about the cardinality of sets, which is known
to be difficult for resolution. Another challenge is to provide methods for
dealing with transitivity and general role inclusion axioms, such as the ones
available in the DL SROIQ [20].
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Summary. The growing use and application of ontologies in the last years has led
to an increased interest of researchers and practitioners in the development of on-
tologies, either from scratch or by reusing existing ones. Reusing existing ontologies
instead of creating new ones from scratch has many benefits: It lowers the time
and cost of development, avoids duplicate efforts, ensures interoperability, etc. In
fact, ontology reuse is one of the key enablers for the realization of the Semantic
Web. However, currently, ontologies are mostly developed from scratch, due to sev-
eral reasons. First, ontologies are usually tailored to work for specific applications,
restricting its potential reusability. Second, developers usually follow a monolithic
approach when developing ontologies, usually covering different domains, hampering
the reusability of relevant parts for other applications. Third, ontologies are rather
difficult to find due to the lack of standards for documenting them and appropriate
tools supporting intelligent ontology discovery and selection by end users. In this
chapter, we define a generic ontology repository framework that enables the imple-
mentation of fully-fledged ontology repositories providing the technological support
to the aforementioned issues. We distinguish between the ontology repository itself
and the software to manage the repository, and describe their main aspects and
services. Finally, we present two exemplary systems based on this framework.

1 Introduction

Knowledge reuse and access is one of the leading motivations for the Semantic
Web. Driven by those intensions an increasing amount of ontologies can be
found nowadays on the Web distributed among personal or institutional web
pages. One of the key problems the ontology engineering community has to
face at the moment is that most ontologies are built from scratch – rather
than reusing existing ones – leading to high engineering efforts and costs. One
of the main reasons is that most existing ontologies are build having a specific
application scenario in mind, making them similar to custom software. This
leads to ontologies that are tailored to work with specific applications, but are
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not knowledge representation artifacts in the traditional sense. When design-
ing these ontologies, engineers focus on expected behavior in the application
rather than on reuse and interoperability with other ontologies. Another prob-
lem is that ontologies trying to cover domains in the knowledge representation
sense are often too big to be reused efficiently. These ontologies try to cap-
ture the complete domain knowledge whilst ontology engineers normally only
need to reuse certain parts for their ontology. Nevertheless, having modular
ontologies is not enough to facilitate the reusability of ontologies if developers
are not able to find them efficiently. We need an appropriate infrastructure
that enables an intelligent ontology discovery and selection by end users.

Currently, initial collections of ontologies have been created during the last
years, e.g., the DAML Library.1 Apparently these resources are mostly cre-
ated by hand and annotated manually. Many of these ontologies fail to follow
consistent representation and storage conventions, so humans and machines
are hampered by finding and reusing them. The process of identifying and ac-
cessing ontological resources, which can be summarized as ontology retrieval,
is consequently affected by non-existing mechanisms and standards for storing
and representing ontologies.

These circumstances point out the strong requirement for novel meth-
ods facilitating an efficient access and reuse of ontologies within a large scal-
able and reliable infrastructure, so called ontology repositories. The storage of
knowledge encoded by ontologies can only be part of the solution. Crucial for
ontology repositories is that additional knowledge about ontologies, so called
meta knowledge, is managed together in such a repository.

We propose a Generic Ontology Repository Framework (GORF) includ-
ing specific module support, tailored to exactly those requirements. We
base our framework on experiences gained by realizing our ontology repos-
itory Onthology

2 and previous work on the ontology metadata vocabulary
OMV.3 After their deployment, it became evident that having a central place
to find ontologies and ontology modules alone does not solve the problem of
quality assurance or knowing which module is the most suited for a specific
task. We therefore integrate an Open Rating System (ORS) into our repos-
itory to assist in the retrieval process and prove quality assurance through
feedback from the community itself. To fill the initial void of modules, exist-
ing ontologies can be partitioned (depending on their knowledge representa-
tion formalism, e.g., using the approach and tool mentioned in [6]) to create
relevant modules.

In the following we discuss essential aspects of ontology repositories. To
begin with, in Sect. 2 we describe the historical development from data to
ontology repositories. In Sect. 3 we will describe the generic architecture of an
ontology repository and corresponding management systems. Core elements

1 Cf. http://www.daml.org/ontologies/
2 Cf. http://www.onthology.org/
3 Cf. http://omv.ontoware.org/
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and services of an Ontology Repository are discussed in Sect. 4. Further we
illustrate management systems for ontology repositories in Sect. 5 and exem-
plify a centralized vs. a decentralized solution in Sect. 6. We conclude in Sect. 7
and comment on further steps.

2 From Data Repositories to Ontology Repositories

In this section we present an overview of how repositories have evolved
throughout time from general purpose data repositories to specialized on-
tology repositories.

In literature exist many different meanings and definitions to what a data
repository is, and in general to what a repository is. Hence we will first discuss
what we understand by a data repository, instead of giving another definition.
We consider a data repository as a collection of digital data that is available
to one or more entities (e.g., users, systems) for a variety of purposes (e.g.,
learning, administrative processes, research) and that has the characteristics
proposed by Heery and Anderson [17]:

• Content is deposited in a repository, whether by the content creator, owner
or third party.

• The repository architecture manages content as well as metadata.
• The repository offers a minimum set of basic services, e.g., put, get, search,

access control.
• The repository must be sustainable and trusted, well-supported and well-

managed.

The term data library is usually used in the literature to refer to subject
specific datasets (e.g., climate data library, time series data library, geospatial
data library). Moreover, a data library tends to house local data collections
and provides access to them through various means. Thus, in general a data
library usually provides access to the complete dataset instead of providing
the basic services (e.g., search, put, get) a data repository offers.

Around the middle 1990s the term digital library (previously also known
as electronic library or virtual library) was first made popular by the NSF/
DARPA/NASA Digital Libraries Initiative. According to [1] a digital library
is a managed collection of information, with associated services, where the
information is stored in digital formats and accessible over a network. The
information stored can be very diverse and used by many different users. In
general a digital library is considered similar to a traditional library (i.e., it
used by users to find information that others have created, and use it for study,
reference, or entertainment) but it takes advantage of the new technologies to
deliver the information to users.

Data warehouses [18] became popular during the late 1980s and early
1990s. The purpose of a data warehouse is to perform analysis of the stored
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data for management’s decision making. Data is entered into this reposi-
tory periodically, usually in an append-only manner. A data repository how-
ever, does not necessarily have that analysis functionality provided by a data
warehouse.

Similarly to data repository, it is also possible to find many different mean-
ing and definitions to what is a knowledge base. Yet, in general, a knowledge
base is a central repository of knowledge artifacts. Usually a knowledge base
may use an ontology to formally represent its content and its classification
scheme, but it may also include unstructured or unformalized information ex-
pressed in natural language or procedural code. Also, in contrast to a data
repository, usually the purpose of the knowledge base is to allow automated
deductive reasoning over the stored knowledge (i.e., decide how to act by
running formal reasoning procedures over the base of knowledge).

It is not surprising that some years ago, the ontology and semantic web
community became interested in using repositories to hold semantic content
(e.g., ontologies). Within the last years, ontologies have seen an enormous
development and application in many domains, especially in the context of
the semantic web. Academia and industry are developing and using ontologies
to provide new technologies and support daily operations. Therefore, currently
there exists a large amount of ontologies developed by many different parties
which makes necessary the means to share and reuse them.

Initial efforts to collect the base of existing ontologies proposed the cre-
ation of library systems (i.e., known as Ontology library systems) that offered
various functions for managing, adapting and standardizing groups of ontolo-
gies [8]. These systems defined an important environment in grouping and
reorganizing ontologies for further re-use, integration, maintenance, mapping
and versioning. They defined an evaluation model based on the functional-
ity the library system provided. Examples of library systems are: WebOnto,
Ontolingua, DAML Ontology Library System, SchemaWeb, etc.

Currently, efforts are put in the creation of ontology repositories. An on-
tology repository is similar to what Ding et al defined as an ontology library
system [8], but they also have some differences. In the remaining of this chap-
ter we will propose an widely-accepted definition of these terms.

3 Generic Ontology Repository Framework

Ontology reuse is still rarely encountered today. This is partly due to the
problem of finding suitable ontologies to reuse, and the way most ontologies
are created, namely without reusability in mind. Also, most of the established
ontologies containing domain knowledge are simply too big to be easily reused,
and no quality information is available on web ontologies.

We argue that ontology engineers can adopt from software engineers a way
how ontologies could be designed, namely modular. This way, small, reusable
components (ontology modules) are produced during creation. To manage
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and provide access to ontologies we propose an Generic Ontology Repository
Framework GORF with specific module and rating support. So not only on-
tologies or modules can be found in a single place, one can also see reviews
about their quality or their usefulness in different scenarios. This way ontology
engineers have a one-stop-shop for reusable knowledge artifacts.

The term ontology repository can be seen as evolved term coming from
the classical understanding of data repositories [18]. In the remaining we rely
on the following understanding of an ontology repository and corresponding
management systems.

Definition 1 (Ontology Repository and Management System). An
Ontology Repository (OR) is a structured collection of ontologies (schema
and instances), modules and additional meta knowledge by using an Ontol-
ogy Metadata Vocabulary. References and relations between ontologies and
their modules build the semantic model of an ontology repository. Access to
resources is realized through semantically-enabled interfaces applicable for hu-
mans and machines. Therefore a repository provides a formal query language.

Software to manage an ontology repository is known as Ontology Reposi-
tory Management System (ORMS). An ORMS is a system to store, organize,
modify and extract knowledge from an Ontology Repository.

The main driving motivation creating ontology repositories is to support
knowledge access and reuse for humans and machines. Hence ontology reposi-
tories on the one hand act as a storage facility and on the other provide access
to knowledge through defined interfaces and policies. To achieve these goals,
comprehensive facets must be considered by an ontology repository when han-
dling ontologies. In general, these facets can be separated into access-related
and storage-related aspects. A general requirement is that ontology reposito-
ries can support the entire ontology lifetime, i.e., ranging from the ontology
engineering process to the desired application within specialized tools or tasks.
Additionally, long term knowledge conservation is one of the crucial ontology
repository tasks.

On a technical level, practical realizations of ontology repositories might
differ in their concrete implementation. In contrast to that, relevant compo-
nents or services on a conceptual level are reusable among different technical
solutions. Consequentially, we now present a conceptual framework for ontol-
ogy repositories. Based on different ontology repository implementations and
realizations in the past [16], we identified a set of relevant components and
services which are embedded into a scalable and reliable framework.

To be more specific the Generic Ontology Repository Framework (GORF)
extends conceptually the SEAL (SEmantic portAL) [14] framework and pre-
liminary work on ontology repositories, as described in [16]. As a result, the
remaining framework GORF facilitates semantic-driven access and reuse of
ontologies, thereby maintaining the vision of the semantic web. Furthermore,
the framework remains scalable and can be distributed and interconnected to
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other repositories – like the one used in KMI’s Watson4 – using, e.g., web
services. We assume that there will be technically heterogeneous solutions
for semantic applications and especially for ontology repositories on the
WWW. To ensure an easy and efficient knowledge exchange between ap-
plications, knowledge workers, and repositories, GORF acts as a framework
identifying required components and services on a conceptual level, as shown
in Fig. 1.
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4 Cf. http://watson.kmi.open.ac.uk/
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GORF distinguishes between the ontology repository itself and software to
manage the repository. The latter one is called Ontology Repository Manage-
ment System (ORMS). We claim that such knowledge intensive applications
are also build using semantic technologies, as shown in [12]. In the following
we briefly discuss the main aspects and services of an Ontology Repository
and an ORMS.

4 Ontology Repositories

The framework for ontology repositories includes five conceptual layers. These
layers can be seen as knowledge workflows, from the bottom to the top layer.
In the following, we discuss each layer briefly.

4.1 Knowledge Access

Maintaining the vision of the Semantic Web [3], the architecture provides in-
terfaces for humans and machines. Presenting knowledge to users involves a
sophisticated visualization of knowledge for users with different interests and
experiences. Thus, the framework must provide adaptable views on the stored
knowledge, as shown in [14]. Although an ontology represents a commonly
shared conceptualization of a domain, users typically have their own personal
views and may request different visualizations. Therefore, an ontology repos-
itory should provide personalization services, which can become key success
factors.

To sum up, the following aspects show up as elementary access functions:

• Presentation and visualization: The access layer generates flexible graphi-
cal user interfaces for users in different formats, e.g., HTML output. Un-
derlying templates define where, how, and when the framework presents
knowledge to the user. Furthermore, the framework is able to dynamically
generate ontology browsing interfaces and navigation bars.
So, the presented framework for ontology repositories must provide several
views of the stored knowledge. The presentation layer generates graphical
user interfaces for users, e.g., by producing HTML output. Underlying
templates define where, how, and when the framework presents knowledge
to the user. Portals based on SEAL dynamically generate the ontology’s
browsing interface and navigation bar. To support users interacting with
the portal, we developed a context-sensitive help system that provides
useful tips and explanations based on the current context.

• Searching and querying a repository: Our framework offers several search
and query functionalities to the user. These include both standard full-
text search forms and complex query forms, such as allowing a query for
specific concepts or using simple query logic for a set of queries.
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• Personalization: Although an ontology represents a commonly shared con-
ceptualization of a domain, users typically have their own personal views
and may request different visualizations. So, a semantic portal, especially a
community one, should provide personalization services, which can become
key enablers for successful repositories.

Besides functionalities for accessing knowledge and rendering its presenta-
tion, the access component defines the interface used by the ORMS to manage
the OR.

4.2 Knowledge Processes and Services

Crucial to ontology repositories are processes and services for handling the
stored knowledge within the repository:

• Rating: GORF will support an Topic-Specific Trust Open Rating System
(TS-ORS) that can provide means to ensure the quality of ontologies and
modules in the repository. Open Rating Systems (ORS) [10] have become
increasingly popular over the last years. Nowadays, businesses have real-
ized their value in customer satisfaction and information, and a variety
of websites employ them. Examples are Epinions,5 where products can be
reviewed, Slashdot,6 where articles and news can be reviewed, Amazon7

(in the user review section), and iTunes8 where users can review music.
The general idea of ORS is to give everyone a voice, not only the so-called
experts. One nice aspect about not excluding anyone is that ORS scale
even when the rate of new content is growing steadily. Normally, in ORS,
a meta-rating approach is used. This means that reviews are rated useful
or not by other users. Based on these meta-reviews, a Web of Trust can
be computed [11] and reviews and products can be ranked. One of the
problems of the original algorithms and models [10,11] proposed for ORS
was that they were inflexible in the way objects could be reviewed (only
complete objects) and how trust could be expressed (only globally). This
is problematic because most people are only experts in certain fields and
not in all. Another problem is that content in the system could only be
rated as a whole, not specific properties separately. When applying ORS
to review complicated content like ontologies [23], this is not sufficient.
Users have to be able to review only those parts of the content they un-
derstand or have expertise on reviewing. To solve this problem, Lewen et
al introduced topic-specific trust in ORS [20] and extended the underlying
ORS model, making it a TS-ORS.

5 Cf. http://www.epinions.com
6 Cf. http://www.slashdot.org
7 Cf. http://www.amazon.com
8 Cf. http://www.apple.com/itunes
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• Mapping: Mapping – frequently also called alignment – of ontologies is a
core task to achieve interoperability and therefore a foundational service of
an ontology repository. Because most ontologies reflect a subject-oriented
view of the world, different people will model knowledge differently. Being
able to link these different representations is important for the success of
the Semantic Web. Thus, an ontology repository needs to support mapping
mechanisms.

• Evaluation: In contrast to ontology rating that is a subjective assessing
of an ontology, ontology evaluation can be seen as an assessment of the
quality and the adequacy of an ontology or parts of it regarding a specific
aim, goal or context. So far, several methods for evaluating ontologies
have been proposed. An overview can be found in [29]. Selected evaluation
strategies can be implemented in an evaluation component and applied in
a large repository.

• Trust: Trust is an ongoing and currently not fully solved research problem
in the area of the Semantic Web. However, we see trust management as an
important functionality for managing knowledge in ontology repositories.
The ORS partly addresses this issue in GORF.

• Security: Due to intellectual property rights, commercial licenses, patents
or copyrights, not all knowledge artifacts may be accessible by the public.
Therefore clear access control and right management functionalities are
required. While knowledge access might be restricted, meta knowledge like
OMV [15] remains accessible and processable. As a result, commercially
used knowledge artifacts can be identified in a repository while the access
is secured by specialized services like payment systems.

Additional processes or services might be added or attached through an
extension component. For example, reasoning or validation services might be
included here.

4.3 Knowledge Organization

The developed framework GORF can handle massive amounts of knowledge
stored in a repository. Additionally, the technology allows for having multiple
portals as access points on top of one ontology repository. Using the knowl-
edge representation mechanism, we developed several continuative knowledge-
organization methods to provide fast and effective access to knowledge:

• Modularization: The introduced framework aims to use ontology modules
as key elements to be stored in a repository – alongside existing ontologies
– for the reasons motivated beforehand. The core idea behind ontology
modularization is the identification of reusable knowledge artifacts which
are adaptable to different tasks and remain domain-independent. In con-
trast to an ontology, which aims at providing a domain-specific conceptu-
alization in one construct for a set of tasks, a module represents a shared,
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domain-independent conceptualization which is adaptive to and intended
for re-occurring tasks and applications. In general, ontology modules are
comparable to software libraries in the software engineering domain.
A key pre-condition for modularization is an expressive modeling language
for ontologies, e.g., [5]. Currently first approaches can be found in literature
for the modularization of ontologies and connecting these modules [30].
These approaches are, however, mostly driven by the underlying logic –
except the ones working on structural information, like graph-based mod-
ularization approaches (for an overview we refer to [7]).
The main principle of modularization is described in an abstract way
whereby we distinguish the process of modularization on existing ontolo-
gies and modularization whilst an ontology is being created. The first task,
modularization on existing ontologies, can be considered as an ontology
re-engineering task and the latter one represents an ontology engineering
task. We assume that in most cases the effort required to identify useful
modules in large and possibly unknown ontologies is too expensive for man-
ual modularization. So automatic or at least semi-automatic mechanisms
are required. First steps in this direction can be found in [6], where the
ontology engineering environment itself provides means to extract mod-
ules out of existing ontologies, keeping the logical entailments intact. So
the main challenge in extracting modules from existing ontologies is to
identify modules that are best suited for reuse and maintenance issues.
When new ontologies are created, they can be designed with a module-
based approach in mind. Software engineers are used to program following
the object-oriented modeling paradigm [26], meaning they encapsulate re-
quired behavior in smaller blocks according to functionality. If ontology
engineers would follow the same principle, the task of ontology engineer-
ing could become less cumbersome and less costly, due to an increase in
reusable knowledge components, namely ontology modules.
At a certain point ontology modules are likely to require connections to
other modules or ontologies to provide the functionality required for the
given application. Techniques for linking ontologies and modules range
from simple use of the owl:imports statement to fully fledged linking mech-
anisms [2, 4, 9]. These techniques differ in the assumptions they make re-
garding the source and target ontologies or modules. Some approaches
require that the local domains and terminologies are disjoint [19], others
require the use of special semantics. For an evaluation of their proper-
ties and usefulness in a distributed scenario as well as a more detailed
introduction of their internal workings, see [30].
Which formalism the ontology engineer uses at the end to connect on-
tologies or modules is dependent on requirements of the specific appli-
cation [21]. For our purposes it is just important to note that different
formalisms exist, and modular ontologies can be created using different
modules.
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• Lifecycle: The support for evolution of knowledge, in particular for ontolo-
gies, is a major requirement for ontology repositories. In contrast to static
content, ontologies are changing and demand mechanisms for updating and
evolving knowledge over time. Stojanovic [27] defines an ontology evolu-
tion process model based on a requirement analysis. The approach relies
on a declarative specification of change requests and evolution strategies.
The approach has been practically realized within the KAON [22] ontology
engineering framework. Such evolution mechanisms can be included into
GORF through so called lifecycle components.

• Meta model: Ontologies are commonly used as a shared means of com-
munication between computers and between humans and computers. Ergo
ontologies should be represented, described, exchanged, shared and ac-
cessed based on open standards such as the W3C standardized web on-
tology language OWL. However, most ontologies today exist without any
additional information about authorship, domain of interest and other
metadata about ontologies. Therefore, searching and identifying existing
ontologies which are potentially reusable because they are for example ap-
plied in similar domains, used within similar applications, or have similar
properties, is a rather hard and tedious task.
We argue that meta knowledge (seen as meta model) in the sense of ma-
chine processable information for the Web9 helps to improve accessibility
and reuse ontologies. Further, it can provide other useful resource infor-
mation to support maintenance. We claim that metadata does not only
help when it is applied (or attached) to documents, but also to ontologies.
As a consequence, ontologies which are annotated by metadata require an
infrastructure including metadata support – like the registry component
in the GORF. Metadata simply consisting of attribute-value pairs is not
sufficient for efficient knowledge access and reuse. Therefore first metadata
vocabularies for ontologies have been developed [13, 15] and successfully
applied in numerous applications [16]. In a more language centered way
an approach relating UML with ontologies has been developed [5].

• Validation: Integrating different knowledge sources requires capable val-
idation services. Validation components mainly analyze and validate the
syntax of ontologies.

• Registry and indices: Knowledge artifacts may exist as entities, modules,
schemes, or ontologies as a whole. Those artifacts are indexed by a registry
component (OMR – Ontology Metadata Registry).
The OMR provides services for storage, cataloging, discovery, manage-
ment, and retrieval of ontology metadata definitions. The OMR provides
the means to support advanced semantic searches of ontologies based on
their characteristics. In general the OMR can be a GORF component or
an independent system.

9 Cf. http://www.w3.org/Metadata/
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Analogically to the Dublin Core Metadata Initiative’s (DCMI) Metadata
Registry,10 the OMR is designed to promote the discovery and reuse of
existing ontologies. It provides users, and applications, with an authori-
tative source of information about the characteristics of ontologies, thus
simplifying the discovery process.
Registry services and indices accelerate access to a repository, especially
for search. Generally, indices are useful for concepts, relations, and full-
text search capability. Our facilities offer repository administrators the
possibility to freely define further indices.

Summarizing, the knowledge organization layer provides efficient methods
for handling and organizing knowledge in repositories.

4.4 Knowledge Storage

To support the envisioned large, scalable application scenario of GORF, we
use a highly scalable storage mechanism. Distributed repositories are set up
in a cluster for handling several requests. Therefore the storage layer includes
components for querying, transactions and replication of knowledge within
such repositories.

• Query processor: The query processing component handles queries for sin-
gle knowledge artifacts in a repository. As query language we prefer stan-
dardized languages like the well-known SPARQL11 query language:

• Transaction and consistency: Performing and handling access to knowledge
simultaneously requires sophisticated mechanisms preventing inconsisten-
cies. Thus, transaction and consistency components analyze and check
queries against the underlying knowledge storages.

• Replication: Being designed for scenarios with a high number of users
and queries, GORF provides adaptable knowledge replication mecha-
nisms. Those mechanisms replicate knowledge storages and additionally
distribute them among pre-defined spaces.

The knowledge storage layer provides mechanisms for handling and ac-
cessing distributed knowledge sources, which are described below.

4.5 Knowledge Sources

The presented approach provides a sophisticated framework for integrating
knowledge from different sources like files, data bases, ontologies or other
semantic portals. The framework is capable of using existing sources along
with their attached infrastructure. Therefore, our framework can rest atop

10 http://dublincore.org/dcregistry/
11 Cf. http://www.w3.org/TR/rdf-sparql-query/
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existing technologies and act as a kind of semantic layer for these technologies
to use the developed integration mechanisms.

Knowledge sources are typically distributed and heterogeneous, and tend
to change during semantic interrelation, aggravating the task of integrating
information into one common knowledge repository. The layer comprises two
modules. The generic knowledge integration module shares and integrates
knowledge from previously unknown sources. The interconnected-integration
module handles sources that are closely interconnected technically and se-
mantically. This module mainly integrates content such as other portals and
semantic metadata.

5 Ontology Repository Management Systems

An Ontology Repository Management System (ORMS) is a semantically-
enabled software to store, organize, modify and extract knowledge from an
Ontology Repository. Two systems, namely Oyster12 and Onthology

13 [16]
are already available to the end user.

In general, the main tasks of an ORMS are providing access to knowl-
edge resources, supporting retrieval and allocating sufficient management
mechanisms.

Retrieval

Ontology retrieval for humans and machines is a key functionality of an ontol-
ogy repository management system. The retrieval component provides mech-
anisms to manage search and discovery functions of an ontology repository.
For example consider the allocation of indices or the provision of metadata.

Browsing and Navigation

Semantically-driven navigation through knowledge stocks enables users to
identify new and potentially useful knowledge artifacts within a repository.
The navigation through repositories can be guided by specialized ontologies
for semantic navigation, as introduced in [14]. The browsing and navigation
component therefore allows mainly the selection of such navigation ontologies.
Based on a usage analysis [28], a repository manager is able to evolve deployed
navigation ontologies.

Management

An ontology repository is administrated through a management component
which contains all administrative functionalities required to store, organize

12 Cf. http://oyster.ontoware.org/
13 Cf. http://www.onthology.org/
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and maintain the knowledge within a repository. In general, manageable com-
ponents in a repository provide interfaces to the management component. The
main task hereby is to collect all manageable functionalities and to enable a
standardized and centralized access to all relevant administrative functional-
ities. The entire business logic is implemented within each repository com-
ponent itself. Thus, the management component itself does not contain real
business logic. As a result, components within GORF are easily interchange-
able and the whole framework remains flexible and scalable.

To sum up, an Ontology Repository Management System (ORMS) is a
powerful tool to manage ontology repositories, even several distributed ones
together. This way, established workflows and processes can be easily inter-
changed among other repositories reducing maintenance efforts and increasing
the usability of such repositories.

6 Centralized Vs. Decentralized Systems

We now present exemplary running systems based on GORF. In detail, we
present two complementary applications, namely the decentralized P2P sys-
tem Oyster and the centralized ontology portal Onthology. In general, the
two tools differ in their usage perspective and are appropriate for different
tasks. However, as we will see, only the combined application of both tools
will offer users the full potential of ontology management.

6.1 Centralized Systems

Ensuring a scalable and reliable access to ontologies, optimization techniques
are required. One well-known approach is a hybrid storage mechanism from
the data warehouse area which materializes content to provide faster access.
We present the conceptual design of a centralized ontology portal and its im-
plementation, so-called Onthology standing for “anthology of ontologies.”

Scope

Centralized systems allow to reflect long-term community processes in which
some ontologies become well accepted for a domain or community and others
become less important. Such well accepted ontologies and in particular their
metadata need to be stored in a central metadata portal which can be accessed
easily by a large number of users whereby the management procedures are well
defined. Hence, a main goal of a centralized metadata portal is to act as large
evidence storage of metadata resp. their related ontologies to facilitate access,
reuse and sharing as required for the Semantic Web.
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Actors

We identified several different user roles for Onthology: The visitor is an
anonymous user, he is allowed to browse the public content of the portal.
A visitor can become a user by completing an application form on the web-
site. In order to avoid unnecessary administrative work, a user is added au-
tomatically to the membership database. Users can customize their portal,
e.g., the content of their start-page or their bookmarks. If a user wants to
submit metadata to the portal, this submission has to be reviewed before
it is published. Onthology establishes a review process in order to ensure
a certain level of quality. Reviewers check the new submissions before they
are published. The technical administrator is responsible for any other task
mainly the maintenance of the portal.

Functionalities

Functionalities of Onthology can be separated into two groups based on
the usage. Indeed, basic functionalities which are provided to every user who
accesses the portal and sophisticated functionalities for reviewers and admin-
istrators. The main operations a user can perform on the repository are (1)
Search, (2) Submit and (3) Export.

The search and export can be performed by any visitor without being reg-
istered to the repository. Since providing new metadata is based on a certain
community confidence, a visitor has to register at the portal to be able to
submit data.

Architecture

Onthology consists of an ontology repository and an ORMS. Exemplary,
Sesame14 or KAON15 can be used as back-end metadata storage solution
for an ontology-based representation. Furthermore, access and in particu-
lar the management of the repository must be guaranteed, too. Therefore,
Onthology is based on the proposed framework GORF. It supports queries
to multiple sources, but beyond that also intensive use of the schema infor-
mation itself to allow for automatic generation of navigational views such
as navigation hierarchies that appear as has- part-trees or has- subtopic
trees in the ontology. In addition to that mixed ontology and content-based
presentation is supported. Further information can be found at [13,15].

6.2 Decentralized Systems

In this section we describe the distributed ontology registry (Oyster).

14 http://www.openrdf.org/
15 http://kaon.semanticweb.org/
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Oyster[24] is a Peer-to-Peer application that exploits semantic web tech-
niques in order to provide a solution for exchanging and re-using. In order to
achieve this goal, Oyster implements the proposal for a metadata standard
OMV[13] as the way to describe ontologies.

Oyster Design

The Oyster system16 was designed using a service-oriented approach, and
it provides a well defined API. Accessing the registry functionalities can be
done using directly the API within any application, invoking the web service
provided or using the included java-based GUI as a client for the distributed
registry. As part of the design, Oyster identifies an ontology metadata entry
by the URI of the ontology it describes, therefore two ontology metadata
entries are considered the same when the URI of both ontologies are the
same. However, due to the distributed nature and potentially large size of the
Peer-to-Peer network, two ontology metadata entries might refer to the same
ontology but have different URI, in which case they are considered duplicates.

In Oyster, ontologies are used extensively in order to provide its main
functions described in the following:

Creating and importing metadata: Oyster enables users to create metadata
about ontologies manually, as well as to import ontology files and to automat-
ically extract the ontology metadata available, letting the user fill in missing
values. The ontology metadata entries are aligned and formally represented
according to two ontologies: (1) the OMV ontology, (2) a topic hierarchy (i.e.,
the DMOZ topic hierarchy), which describes specific categories of subjects to
define the domain of the ontology.

Formulating queries: A user can search for ontologies using simple key-
word searches, or using more advanced, semantic searches. Here, queries are
formulated in terms of these two ontologies. This means queries can refer to
fields like name, acronym, ontology language, etc., or queries may refer to
specific topic terms.

Routing queries: Users may query a single specific peer (e.g., their own
computer, because they can have many ontologies stored locally and finding
the right one for a specific task can be time consuming, or users may want to
query another peer in particular because this peer is a known big provider of
information), or a specific set of peers (e.g., all the members of a specific orga-
nization), or the entire network of peers (e.g., when users have no idea where
to search), in which case queries are routed automatically in the network.

Processing results: Finally, results matching a query are presented in a
result list. The answer of a query might be very large, and contain many du-
plicates due to the distributed nature and potentially large size of the P2P
network. Such duplicates might not be exact copies because of the semi struc-
tured nature of the metadata, so the ontologies are used again to measure
16 For a complete information and for downloading Oyster system we refer the reader

to http://ontoware.org/projects/Oyster/



Ontology Repositories 567

the semantic similarity between different answers and to remove apparent du-
plicates. As proposed by the ontology metadata standard, all the different
realizations of an ontology (ontology documents) can be grouped by the same
ontology base to give a more organized view of the results.

Oyster Architecture

The high-level design of the architecture of a single Oyster node in the Peer-
to-Peer system is shown in Fig. 2. In the following, we discuss the individual
components of the system architecture.

The Local Repository of a node contains the metadata about ontologies
that it provides to the network. It supports query formulation and processing
and provides the information for peer selection. In Oyster, the Local Reposi-
tory is based on KAON2 and it supports SPARQL as its query language.

The Knowledge Integrator component is responsible for the extraction and
integration of knowledge sources (i.e., ontologies) into the Local Repository.
Oyster supports automatic extraction of metadata for OWL, DAML+OIL,
and RDF-S ontology languages. This component is also in charge of how
duplicate query results are detected and merged.

The Query Manager is the component responsible for the coordination of
the process of distributing queries. It receives queries from the user interface,
API or from other peers. Either way it tries to answer the query or distribute
it further according to the content of the query. The decision to which peers a
query should be sent is based on the scope of the query (i.e., a specific set of
peers or entire network) and optionally on the knowledge about the expertise
of other peers.

Oyster Web Service

Query Manager

Local Repository

Oyster API

AnswerQuery

Local Access

Advertisements P2P
Network

Remote Access

Peer

Peer

Informer

Knowledge
Integrator

Oyster GUIs

Registration

Oyster
Java
GUI

Local /Remote

P
2P

 N
etw

ork
S

ublayer

Fig. 2. Overview of Oyster architecture
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The Informer component is in charge of proactively advertising the avail-
able knowledge of a Peer in the Peer-to-Peer network and to discover peers
along with their expertise. This is realized by sending advertisements about
the expertise of a peer. In Oyster, these expertise descriptions contain a set of
topics (i.e., ontology domains) that the peer is an expert in. Peers may accept
these advertisements, thus creating a semantic link to the other peer. These
semantic links form a semantic topology, which is the basis for intelligent
query routing.

The Peer-to-Peer network sub-layer is the component responsible for the
network communication between peers. It provides communication services
for the data exchange with remote nodes, i.e., to propagate advertisement
messages and to realize the access to remote repositories. In Oyster, we rely
on an RMI-based implementation, however, other communication protocols
would be possible as well.

The API, WS and GUI components provide alternative ways for accessing
Oyster functionalities, i.e., the API defines a set of methods that expose all of
the functionalities, the web service encapsulates the API exposing a reduced
set of functionalities and the GUIs provide ready-to-use clients for the Oyster
network.

Additional registry functionalities can be provided by engineering compo-
nents. Some of these components are described in [25].

6.3 Discussion

Both presented applications are covering a variety of different tasks. Indeed,
for a user who wants to store metadata individually similar to managing his
personal favorite song list, a repository is required to which a user has full
access and can perform any operation (e.g., create, edit or delete metadata)
without any consequences to other users. Exemplary, users from academia or
industry might use a personal repository for a task-dependent investigation,
or ontology engineers might use it during their ontology development process
to capture information about different ontology versions. We argue, that a
decentralized system is the technique of choice, since it allows the maximum
of individuality while it still ensures exchange with other users.

Centralized systems allow to reflect long-term community processes in
which some ontologies become well accepted for a domain or community and
others become less important. Such well accepted ontologies and in particular
their metadata need to be stored in a central metadata portal which can be
accessed easily by a large number of users whereby the management proce-
dures are well defined. Obviously, personal repositories are quite limited from
this perspective. Actually, the Oyster system and Onthology are not neces-
sarily two completely separated repositories. Indeed, they are interconnected
and they exchange metadata between each other. We are currently supporting
the access of metadata stored in Onthology from any Oyster peer.
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The benefit of connecting both systems lies mainly in the simple use of
existing ontology metadata information within Oyster. So, while users are
applying or even developing their own ontologies they can manage their own
metadata along with other existing metadata in one application (in Oyster).
If some metadata entries from Oyster have reached a certain confidence, an
import into Onthology can be performed easily. In combination, both sys-
tems ensure efficient and effective ontology metadata management for various
use cases.

7 Conclusions

Ontology repositories will be a crucial cornerstone facilitating efficient
knowledge access and reuse especially in the context of the Semantic Web.
We have presented our Generic Ontology Repository Framework GORF
including rating and module support. We expect that there will be a shift in
ontology engineering towards developing ontologies in a modular way. We are
optimistic that then the critical mass of ontology modules in our repository
can be reached, and ontology engineers will start reusing them and providing
new ones.

Already existing realizations like Onthology and Oyster illustrate the
benefits of such systems. We assume that ontology repositories will play an
important role in realizing the Semantic Web vision.

Acknowledgement

Research reported in this chapter was partially supported by two European
Projects: The Network of Excellence KnowledgeWeb (FP6-507482) and the
NeOn Project (FP6-027595).

References

1. William Y. Arms. Digital Libraries. MIT, Cambridge, MA, 2001.
2. Jie Bao, Doina Caragea, and Vasant Honavar. Towards collaborative environ-

ments for ontology construction and sharing. In International Symposium on
Collaborative Technologies and Systems (CTS 2006), pages 99–108. IEEE Press,
2006.

3. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Amer-
ican Magazine, 284(5):34–43, 2001.

4. Alexander Borgida and Luciano Serafini. Distributed description logics: Directed
domain correspondences in federated information sources. In OTM Federated
Conference CoopIS/DOA/ODBASE, pages 36–53, 2002.

5. Saartje Brockmans, Robert M. Colomb, Elisa F. Kendall, Evan Wallace,
Christopher Welty, Guo Tong Xie, and Peter Haase. A model driven approach
for building OWL DL and OWL full ontologies. In Isabel Cruz et al., editor,



570 J. Hartmann et al.

The Semantic Web – ISWC 2006: 5th International Semantic Web Conference,
volume 4273 of LNCS, pages 187–200, Athens, GA, USA, Nov 2006. Springer.

6. Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler.
Just the right amount: Extracting modules from ontologies. In Proc. of the
Sixteenth International World Wide Web Conference (WWW 2007), 2007.

7. M. d’Aquin, M. Sabou, and E. Motta. Modularization: A key for the dynamic
selection of relevant knowledge components. In 1st International Workshop on
Modular Ontologies (WoMo 2006), co-located with ISWC, 2006.

8. Y. Ding and D. Fensel. Ontology library systems: The key to successful ontology
reuse, 2001. In Proc. 1st Int Semantic Web Working Symposium (SWWS’01),
2001.

9. Bernardo Cuenca Grau, Bijan Parsia, and Evren Sirin. Working with multiple
ontologies on the semantic web. In International Semantic Web Conference,
pages 620–634, 2004.

10. Ramanathan Guha. Open rating systems. Technical report, Stanford University,
CA, USA, 2003.

11. Ramanathan Guha, Ravi Kumar, Prabhakar Raghavan, and Andrew Tomkins.
Propagation of trust and distrust. In Proc. of the Thirteenth International World
Wide Web Conference, pages 403–412, New York, NY, May 2004. ACM Press.

12. Jens Hartmann. Ontology-based modeling and realization of knowledge man-
agement systems. PhD thesis, University of Karlsruhe (TH), Institute AIFB,
Karlsruhe, 2007.

13. Jens Hartmann and Raul Palma. OMV – Ontology Metadata Vocabulary for
the Semantic Web, 2006. v. 2.0, available at http://omv.ontoware.org/.

14. Jens Hartmann and York Sure. An infrastructure for scalable, reliable semantic
portals. IEEE Intelligent Systems, 19(3):58–65, 2004.

15. Jens Hartmann, York Sure, Peter Haase, Raul Palma, and Mari Carmen Suárez-
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1 Why Is Ontology Mapping Difficult?

A quick scan through ontologies mentioned in this book, would indicate that
many ontologies in use today overlap in content. Even for such, seemingly un-
controversial, domains, as anatomy, there are several ontologies representing
them. Consider, for instance, the ontology repository at the National Cen-
ter for Biomedical Ontologies [32].1 Even among the small number of well-
accepted and widely used ontologies there, several contain representation of
human anatomy: the Foundational Model of Anatomy, the National Cancer
Institute Thesaurus, the GALEN ontology. This situation is not surprising as
different applications require different views on and different representations
of the domain.

However, if we want to have the applications using different ontologies
to “talk” to one another, or if we want to integrate data that is annotated
with or structured according to different ontologies, we must first find the
correspondences between concepts in these ontologies. The process of finding
such correspondences is called ontology mapping . Ontology mapping (also
referred to as ontology matching, or ontology alignment) is one of the most
active areas of ontology research. Creating high-quality ontology mappings
automatically is the holy grail of the Semantic Web research. Ontologies have
gained popularity in the AI community as a means for establishing explicit
formal vocabulary to share between applications. Therefore, one can say that
one of the goals of using ontologies is not to have the problem of heterogeneity
at all. It is of course unrealistic to hope that there will be an agreement on
one or even a small set of ontologies. While having some common ground
either within an application area or for some high-level general concepts could
alleviate the problem of semantic heterogeneity, we will still need to map
between ontologies, whether they extend the same foundational ontology or
are developed independently.

1 biointology.org

S. Staab and R. Studer (eds.), Handbook on Ontologies, International Handbooks 573
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We define an ontology mapping as a set of correspondences between
components of two ontologies. These correspondences can be equivalence re-
lationships, they can be subclass or superclass relationships, transformation
rules, and so on. The process of finding ontology mapping is often referred to
as ontology matching.

So, what are the types of differences between ontologies? In part summa-
rizing earlier surveys, Klein [25] categorizes different types of mismatches be-
tween ontologies. The first class of mismatches are mismatches at the language
level – mismatches in expressiveness and semantics of ontology language. The
languages can differ in their syntax, but, more important, constructs avail-
able in one language (e.g., stating that classes are disjoint) are not available
in another. Even semantics of the same language primitives could be differ-
ent (e.g., whether declaration of multiple ranges of a property have union or
intersection semantics). The normalization process therefore often precedes
ontology-matching [24] and translates source ontologies to the same language,
resolving these differences. It is important to note that in recent years, with
the acceptance of RDFS and OWL for representing ontologies, the problem
of resolving language-level mismatches became far less important.

However, even for ontologies expressed in the same language, possible
ontology-level mismatches abound. A partial list of ontology-level mismatches
includes using the same linguistic terms to describe different concepts; us-
ing different terms to describe the same concept; using different modeling
paradigms (e.g., using interval logic or points for temporal representation);
using different modeling conventions and levels of granularity; having ontolo-
gies with differing coverage of the domain, and so on.

Let us start with an example to illustrate the problem. We will use this
example throughout the chapter. Suppose we have two airlines and ontologies
describing their two respective reservation systems. Figure 1 presents small
portions of these ontologies. Both ontologies have a class Reservation which
represents each reservation record. For simplicity, we assume that each flight
is a direct flight with no stops or connections.

In both ontologies, this class has a number of properties describing the
reservation. In the ontology for the first airline (the top figure, white rect-
angles representing classes), there is a reservation number (string property
reservationNumber), the date the reservation was made (reservationDate),
the price of the ticket, the string representing the airports where the flight de-
parts from (from) and where it lands (to). The records representing the time
and date of the departure and arrival (instances of the TimeAndDate class) are
values for the departure and arrival properties. There is a reference to the
aircraft (property aircraft pointing to a class PlaneModel) and a property
where all passengers are listed (passengers). Each passenger record is an in-
stance of class Passenger, or, more specifically, one of its subclasses, Child
or Adult.

The second ontology (the bottom figure, gray rectangles represent-
ing classes) has a similar structure: each reservation also has a number



Ontology Mapping 575

Reservation
reservationNumber: String
reservationDate: Date
price: Integer
from: String
to: String
departureTime: TimeAndDate
arrivalTime: TimeAndDate
aircraft: PlaneModel
passengers: Passenger

Passenger
name: String
contact: String

Child Adult

passengers

hasSubclass
hasSubclass

PlaneModel
make: String
model: String

aircraft

Reservation
recordLocator: String
reservationDate: String
price: Integer
departure: AirportAndTime
arrival: AirportAndTime
aircraft: Aircraft
passengers: Passenger

Customer
name: String
contact: String

Child Adult

Infant

passengers

hasSubclasshasSubclass

hasSubclass

aircraft

Aircraft

Airbus
model: String

Boeing
model: String

hasSubclass
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Fig. 1. Example of two ontologies representing airline reservations
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(recordLocator) and the date it was made (reservationDate). There is
information about the price of the ticket (property price) and the aircraft
(property aircraft with values that are instances of the class Aircraft,
or, more specifically, one of its subclasses; two of the subclasses, Boeing and
Airbus are presented in the figure; there could be many more, one for each
aircraft maker). Departure and arrival are represented as instances of the class
AirportAndTime that encapsulates both the airport and the departure date
and time. Passenger list for the reservation is also a collection of instances of
the class Customer that looks quite similar to the Passenger class in the first
ontology.

Now suppose the two airlines decided to merge. The merge means that
the airlines must integrate their reservation systems. This integration requires
reconciliation of the two different ontologies used to describe the reservations
in the two airlines. The result of this reconciliation would be an ontology
mapping that would enable transformation of reservation records into a single
database.

The two ontologies look rather similar, the information that they capture
is roughly the same and the level of granularity for this information is very
comparable; many terms are identical or similar as well. However, after careful
examination, we can see that the mapping is not at all straightforward even
for a human expert, let alone for tools that attempt to determine the mapping
automatically:

• We can say that the two classes Reservation are similar to each other:
their names are the same and they represent the same information.

• It is easy for a human expert to see that the properties reservationNumber
and recordLocator are equivalent, but it is not clear how an automatic
system can identify this fact; as humans, we have enough domain knowl-
edge to know that these terms usually refer to the same concept in the
context of airline reservations.

• Both Reservation classes have a property reservationDate. However,
in the first ontology the values of this property are instances of the class
Date and in the second they are simply strings. In the merged ontology we
will have to choose one representation or the other and to convert dates
from one format to another when we reconcile the records.

• Both ontologies have the property price, which has integer values. One
would think that this property is very easy to reconcile. However, it is
easy to imagine that in one system the price refers to the price for the
whole reservation and in the other it is a price of a single ticket and needs
to be multiplied by the number of passengers to get the price for the full
reservation. Note that just by looking at the ontology, we simply cannot
tell what the price refers to in either case. We need additional information,
for example in the form of documentation to determine whether the price
properties in the two ontologies are equivalent.
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• In the first ontology, the information about the departure and arrival loca-
tion and the time and date of arrival is represented directly in the reserva-
tion record. In the second ontology, the departure and arrival information
(the airport and the date and time) are encapsulated as instances of the
class AirportAndTime.

• Classes PlaneModel and Aircraft are equivalent – they both represent
various aircraft makes and models – but have different names.

• The classes Passenger and Customer have different names but are equiv-
alent in this context. Note that in general, for any two ontologies, classes
named Passenger and Customer may not be equivalent, but they are in
this context and given the structure of these two ontologies.

• In the first ontology, there are two subclasses of the class Passenger:
Child and Adult. In the second ontology, the breakdown is different, with
the class Infant representing children under 2. Thus the class Child in
the first ontology is the union of the classes Child and Infant from the
second; the two classes Child are not themselves equivalent.

• Finally, while in the first ontology the various makes of an aircraft are
represented as a string property make of the class PlaneModel, in the
second ontology this distinction is made in different subclasses, such as
Boeing and Airbus.

As you can see, even such small example of two ontology snippets with
very similar domain coverage and granularity, poses many difficulties in both
determining the correspondences between classes and properties and finding
them automatically.

The goal of this chapter is to discuss the major thrusts of approaches to
semantic integration produced by various projects in the ontology community
and the user-centered tools that support the ontology mapping in practice.
We do not attempt to provide a comprehensive review of the state of the art
in ontology mapping. We refer the reader to an excellent and thorough review
by Euzenat and Shvaiko [34] for that purpose.

We discuss four dimensions of ontology-mapping research in this chapter:

Mapping discovery: Given two ontologies, how do we find similarities between
them, determine which concepts and properties represent similar notions,
and so on.

Interactive specification of mappings: tools for enabling users and ontology
developers to define the compare ontologies interactively, define the map-
pings, perhaps with the semiautomated help from the tool itself.

Declarative formal representations of mappings: Given two ontologies, how
do we represent the mappings between them to enable reasoning with
mappings.

Reasoning with mappings: Once the mappings are defined, what do we do
with them, what types of reasoning are involved?

In the rest of this chapter, we explore these dimensions.
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2 Discovering Mappings

Many researchers agree that one of the major bottlenecks in semantic integra-
tion is mapping discovery. There are simply too many ontologies and database
schemas available and they are too large to have manual definition of corre-
spondences as the primary source of mapping discovery. Furthermore, in the
world where software agents will roam the (semantic) web, they will need to
map structures they know about to new structures they come across on-the-
fly. Hence, the task of finding mappings (semi-) automatically has been an
active area of research in both database and ontology communities [31,34].

We identify two major architectures for mapping discovery between on-
tologies. In the first approach, we create a mapping between two ontologies,
O1 and O2, by using another (or several other ontologies) as an intermediary:
we map both O1 and O2 to this third ontology or terminology and use this
set of two mappings to infer the mapping between O1 and O2. In the sec-
ond approach, the two ontologies are mapped directly to each other, by using
heuristic-based techniques, machine learning, graph comparison, or the use of
background knowledge.

2.1 Using a Shared Ontology

Recall that the goal of ontologies is to facilitate knowledge sharing. As a re-
sult, ontologies are often developed with the explicit goal of providing the
basis for future semantic integration. Here, the vision is that a general up-
per ontology is agreed upon by developers of different applications, who then
extend this general ontology with concepts and properties specific to their
applications. A number of very general ontologies formalizing notions such
as processes and events, time and space, physical objects, and so on, are be-
ing developed and some of them are becoming accepted standards (chapter
“Foundational Choices in DOLCE”). The explicit goal of these ontologies is to
have domain-specific ontologies extend them, thus providing the grounding in
common vocabulary for these ontologies. Two of the ontologies that are built
specifically with the purpose of being formal foundational ontologies are the
Suggested Upper Merged Ontology (SUMO) [27] and DOLCE [15]. SUMO
is an effort by the IEEE Standard Upper Ontology Working Group aimed
at developing “a standard upper ontology that will promote data interoper-
ability, information search and retrieval, automated inferencing, and natural
language processing.” The SUMO ontology defines such high-level concepts
as Object, ContinousObject, Process, Quantity, Relation, and so on, pro-
viding axioms in first-order logic that describe properties of these concepts
and relations among them. Similarly, the DOLCE ontology is a formal foun-
dational ontology developed as a foundational ontology in the WonderWeb
project, which comprises a large number of European research groups. The
goal of DOLCE is to provide a common reference framework for WonderWeb
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ontologies to facilitate sharing of information among them. In its represen-
tation, DOLCE aims at capturing “ontological categories underlying natural
language and human common-sense.”

While many researchers hope that domain- and application-specific ontolo-
gies will reuse the foundational ontologies, like SUMO and DOLCE, and that
such reuse will indeed facilitate semantic interoperation between applications
based on these ontologies, we do not yet have enough experience reports with
such approaches to claim it a success. There are reports on both the successes
[30] and difficulties [35] of such reuse.

There are also implemented semantic-integration tools that exploit the
idea that if two ontologies extend the same reference ontology in a consistent
way, then finding correspondences between their concepts is easier. For exam-
ple, the Process Specification Language (PSL) [19], developed at the National
Institute for Standards and Technology, is an ontology that is endorsed as an
International Standard within the International Organization of Standardiza-
tion (ISO) (see also chapter “Using the PSL Ontology”). PSL was designed
to “facilitate correct and complete exchange of process information among
manufacturing systems such as scheduling, process modeling, [and] process
planning” [20]. The designers of PSL have developed it as an interlingua for
ontologies representing these different process. All theories within the PSL
ontology have been verified with respect to the intended semantics of their
terminology. Grüninger and Kopena [20] developed an integration architec-
ture with the PSL ontology at the center and mappings between ontologies
for specific manufacturing processes and the PSL ontology. The mappings
are defined semiautomatically by presenting ontology developers with a set of
questions (in natural language) helping them to map terms in their process-
specific ontology to the terms in PSL. The system then generates two-way
mappings between the task-specific ontology, such as scheduling and the PSL
interlingua. Note that the generation of these mappings is defined formally
and is not based on heuristics. These mappings can be composed to provide
mappings between any task-specific ontologies.

Finally, the third approach is to use a reference ontology or terminology
as background knowledge that helps in aligning the ontologies that need to be
aligned. In this model, the source ontologies are first mapped to a reference
ontology that serves one of the two purposes: (1) providing wider domain cov-
erage to bridge the coverage gap of the source ontologies or (2) providing the
additional structure and semantic richness that the source ontologies lack. For
example, the developers of S-Match [16] used WordNet as the terminology that
provided wide coverage to bridge the source ontologies. Zhang and Bodenrei-
der used the relationships in UMLS to verify their automatically generated
mappings between two anatomy ontologies [36]. In both cases, the researchers
used simple lexical-matching techniques to map concepts from the source on-
tologies to the shared ontology. Aleksovski and colleagues mapped two simple
terminologies that had very little structure to a rich background medical ontol-
ogy; the background ontology then provided the additional information that
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was needed to map the two source terminologies [1]. The researchers mapped
the source ontologies to the shared ontology manually and then used the rich
information in the shared ontology to infer the mappings between the sources.

2.2 Structure-Based, Machine-Learning, and Other Approaches

It is certainly helpful to have ontologies that we need to match to refer to
the same foundational ontology or to conform to the same reference ontology.
However, we often do not have this “luxury” and need to create mappings
between ontologies that perhaps use the same specification language but do
not have any vocabulary beyond the specification language in common. Most
researchers agree that automatic mapping between ontologies in this context
is beyond our grasp at the moment, but many techniques have produced good
results.

Ontologies are often richly structured, with many links between definitions
of classes and properties. Thus, many approaches exploit this richness by
comparing various elements of the structure of the ontologies to be mapped.
Consider again the example in Fig. 1. A simple lexical mapping can identify
the correspondence of the two classes Reservation. While lexical mapping
will not identify the equivalence of the Passenger and Customer class in this
context, we can infer this equivalence by looking at the structure of the two
ontologies: the two properties passengers have the same labels, the equivalent
classes as their domains (Reservation) and have Passenger and Customer
as their respective ranges. These are the types of features that tools that
analyze ontology structure look at. For example, COMA++ [6] represents
both ontologies as graphs, treating all classes and properties as nodes and then
compares the structure of the two graphs. QOM [9] uses a range of ontology
features such as concept labels, domains and ranges of properties, relations
between classes, and so on to find how similar concepts in source ontologies
are. Similarly, Euzenat and Valtchev [12] exploit the full gamut of features
of the OWL ontologies to compute a weighted combination of similarities
in OWL concept definitions: their labels, domains and ranges of properties,
restrictions on properties (such as cardinality restrictions), types of concepts,
subclasses and superclasses, and so on. Prompt [28] is an interactive ontology-
mapping tool that guides users through the process and suggesting which
classes and properties can be merged. It records the mappings identified both
by the system and by the user during merging to create a declarative mapping
specification between source ontologies. To make suggestions, Prompt also
uses a mixture of lexical and structural features, as well as input from the
user during an interactive merging session to find the mappings. Another
algorithm in the toolset – AnchorPrompt [28] – treats an ontology as a
graph with classes as nodes and slots as links. The algorithm analyzes the
paths in the subgraph limited by the anchors and determines which classes
frequently appear in similar positions on similar paths. These classes are likely
to represent semantically similar concepts.
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GLUE [7] is an example of a system that employs machine-learning tech-
niques to find mappings. GLUE uses multiple learners exploiting information
in concept instances and taxonomic structure of ontologies. GLUE uses a
probabilistic model to combine results of different learners. The learners that
GLUE uses currently relies on ontologies having instances and they work much
better if many slot values have text in them rather than references to other
instances. For example, GLUE might identify the equivalence of the classes
Passenger and Customer in Fig. 1 by classifying their respective instances
and learning that they are similar.

Sabou and colleagues [33] have used the ontologies on the Semantic Web
itself to find mappings. In this work, in order to find correspondences between
terms in two ontologies, the authors find the same terms in ontologies in a
semantic web ontology repository. If there is an ontology where the two terms
are linked directly (say, through a subclass-of) relationship, then the authors
infer that the original terms are related as well.

Many researchers have now shown that the real power of these various
methods for discovering mappings lies in their combination. The tools that
have been showing the most success in performance recently [13] are the ones
that combine several very different approaches and manage to figure out the
right way to combine them in terms of relative weights of different compo-
nents. For instance, FOAM [10] uses machine-learning techniques to determine
the relative weights of different matchers. Falcon-AO [23] uses three different
matchers as input to the component that integrates them: one matchers looks
at the similarity of concept definitions, treating them as lexical entities and
comparing their vector-space models; the second matcher uses simple lexical
techniques to find both similarities and differences in concept labels; the third
uses a graph comparison algorithm to compare graph representations of the
two ontologies. A central controller then dynamically determines the relative
weight of each component based on its perceived success with the specific
source ontologies.

Researchers have also recognized that finding simple one-to-one mappings,
essentially representing equivalent or similar concepts, is not sufficient. Two
of the key aspects that researchers also look at are complex mappings and
approximate mappings.

Complex mappings express specialization or generalization relationship
between concepts, or perhaps even contain an expression linking entities to-
gether. For instance, the class Child in the first ontology in Fig. 1 is a union of
the classes Infant and Child in the second ontology. S-Match [17] is one exam-
ple of a system that identifies complex mappings. S-Match starts by grounding
their source ontologies in WordNet terms but then run a SAT prover on the
mappings to determine other types of mappings (such as generalization, spe-
cialization or disjointness): the authors reformulate the matching problem as
that of propositional satisfiability.

In many cases, exact mappings either cannot be derived or simply do
not exist: the entities from different ontologies may be related, but, have,
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for example, largely overlapping meaning. Consider, for instance, different
frequent-flyer programs for airlines. The frequent-flyer program in an ontol-
ogy describing one airline would be very similar but not exactly the same
as a frequent-flyer program for another airline. Gligorov and colleagues [18]
formalized approximate mapping by decomposing a concept definition into a
set of sub-definition and then determining how many of these sub-definitions
map another concept that they are trying to match.

3 Interactive Tools for Specifying Mappings

As the results of the OAEI tests show, even the best automatic tools for
discovering mappings still leave a lot of work for the user to do: to verify the
mappings and to add the ones that the algorithms missed.

However, many of the ontology-mapping tools focus only on the algorithm
and provide only rudimentary user interface. The most common interface is
the use of command line to provide the file names or URIs for the source
ontologies and to get a text listing of the mappings.

Clio [21] and COMA++ [6] are among the few exceptions – tools that
support graphical user interfaces. The number of visual paradigms that the
tools use to display the mappings is quite limited though. Clio was developed
by IBM for generating mappings between relational and XML schemas. Clio
can infer correspondences in the source and target schemas and it also allows
users to draw correspondences between parts of the schemas. Once the user
verifies the correspondences suggested by Clio, Clio generates queries to drive
the translation from the source schema to the target schema. COMA++ au-
tomatically generates mappings between the source and target schemas, and
draws lines between matching terms. Users can also define their own term
matches. Both tools draw mappings between the source and target schemas
as arrows and support in-tool navigation of the source ontologies.

In Sect. 2, we focused on the tools to discover mappings and in Sect. 4
on various representations. We will now discuss an interactive tool with a
graphical user interface that allows developers to leverage the best components
of other tools easily by integrating them in a single plugin framework.

In the Protégé group, we have developed a suite of tools to support users
in the process of ontology mappings. While in the early days of the Prompt

suite, we focused on algorithms [29], we have later come to realize the dearth of
the user-oriented tools in the field of ontology mapping. Most researchers focus
on the algorithms and leave the fine-tuning of the mapping as an “exercise to
the reader.”

We believe that in order for the ontology-mapping tools to “step out” of
the research labs and to be adopted in real-world and industrial setting, both
the performance of automatic ontology-mapping algorithms and the quality of
cognitive support in ontology-mapping tools must improve. Recognizing that
in many cases, researchers must focus on one or the other of these tasks, we
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have developed a plugin framework that covers the full spectrum of ontology
mapping, from specifying algorithms for initial comparison to executing the
mappings. We have developed a reference implementation for each of the
steps, including a number of cognitive aids. Developers can plug in their own
components and have the plugins developed by others (including our team)
fill in the missing pieces to have a comprehensive end-user tool.

The Prompt plugin framework [14] allows developers to replace any of the
components that we have just described with their own. The plugin framework
works by providing Java interfaces for various types of plugins (comparison
algorithm, visualization components, etc.). A plugin developer chooses the
interface they wish to implement, and then supplies the appropriate method
bodies in order to perform the operations they wish to execute. More specif-
ically, we view the ontology-mapping process as a sequence of the following
components (Fig. 2):

Perform initial comparison of the ontologies: an algorithm compares two on-
tologies and produces a list of candidate mappings.

Present candidate mappings to the user enabling him to analyze the results.
This step includes components for cognitive support (various visualiza-
tions of the source and target ontologies, options to filter content presented
in the display, etc.) and interactive comparison algorithms that are invoked
either explicitly by the user or as a result of mappings being verified.

Fine tune and save the mappings in a declarative mapping format.
Execute mappings to transform instances from source to target or to perform

other operations.

In the current implementation, developers can replace components of any
of the steps in this list, and our plan is to make all of the steps replaceable.

For example, the integration of FOAM and Prompt is one of the Prompt

plugins available as part of Prompt distribution. A developer of an algorithm
plugin can specify not only how to invoke the algorithm, but also how the
configuration screen presented to the user should look like.

Fig. 2. Configurable steps in the Prompt plugin framework. Developers can replace
any of the components in the figure with their own implementation
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4 Representations of Mappings

While developing tools for automatic and semiautomatic ontology matching is
a large thrust of semantic-integration research in the ontology community, it
is definitely not the only one. The high expressive power of ontology languages
provides the opportunity for representing mappings themselves in expressive
terms. We will discuss several representations of mappings here: using the
ontology language itself to express mappings; defining bridging axioms in first-
order logic to represent transformations; representing mappings as instances
in an ontology of mappings; and using views to describe mappings from a
global ontology to local ontologies.

We can use the constructs provided by the OWL language itself to express
mappings between concepts in different ontologies (chapter “Web Ontology
Language: OWL”). To express equivalence between classes, properties and
individuals, we can use the following three OWL constructs, respectively:
owl:equivalentClass, owl:equivalentProperty, and owl:sameAs. For in-
stance, we can say that a class Boeing in one ontology (Fig. 1) is equivalent to
the class PlaneModel where the property make hasValue “Boeing.” Similarly,
such RDFS and OWL constructs as rdfs:subclassOf can express general-
ization and specialization relations. Because these constructs can link any two
arbitrary class expressions, OWL itself is an expressive ontology-mapping lan-
guage. Mappings expressed as OWL constructs become part of the ontology
itself, and there is no clear separation between the mappings and the ontology
definitions.

Sometimes, however, we want to be more precise about the nature of the
mapping and to separate the definition of the mappings from the definition of
ontology concepts. The C-OWL language, for example, takes such approach
[2]. It keeps ontologies “contextualized,” that is not integrated with other
ontologies. C-OWL defines explicit mapping rules to express correspondences
between concepts in the ontologies. Semantically, these rules express how to
translate instances from the source ontology to the target ontology.

In the OntoMerge system [8] developed for semantic integration on the Se-
mantic Web, authors use a general-purpose inference engine to enable transla-
tion between mapped ontologies. In OntoMerge the correspondence between
two ontologies is expressed as a set of bridging axioms relating classes and
properties of the two source ontologies. Similar to C-OWL, the vocabulary of
the two ontologies are in different XML namespaces, so the bridging axioms
are essentially translation rules referring to concepts from source ontologies
and specifying how to express for example a class in one ontology by collecting
information from classes in another. The two source ontologies, together with
the bridging axioms are then treated as a single theory by a theorem prover
optimized for ontology-translation task. The theorem prover runs either in
forward-chaining or backward-chaining mode depending on the task at hand.

Several researchers use ontologies themselves to represent mappings declar-
atively, as instances in an ontology. The mapping ontology by Crubézy and
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colleagues [5] or the Semantic Bridge Ontology of the MAFRA framework
[26], for instance, define the structure of specific mappings and the transfor-
mation functions to transfer instances from one ontology to another. This
ontology can then be used by tools to perform the transformations. Such an
ontology usually provides different ways of linking concepts from the source
ontology to the target ontology, transformation rules to specify how values
should be changed, and conditions and effects of such rules. Then a mapping
between two ontologies constitutes a set of instances of classes in the mapping
ontology and can be used by applications to translate data from the source on-
tology to the target. The mapping ontology mentioned above [5], for example,
provides declarative means for defining many-to-one or many-to-many aggre-
gation relationships between concepts in the source and target ontologies, as
well as one-to-many concept-decomposition relations. It allows specification
of recursive mappings, complex mappings between that collect information
from several related concepts, and other mechanisms.

Finally, researchers also used views to define mappings between ontologies,
similar to defining mappings in information integration, both in global-as-
view (GAV) and local-as-view (LAV) setting. The OIS framework [3] is a
good example of such approach. In OIS, a global ontology is used to provide
access to local ontologies. Both global and local ontologies are defined using
Description Logics. The mappings are defined as views over either the global
or the local ontologies. In other words, a predicate from one ontology is defined
as a query (and DL expression) over predicates in another ontology.

5 We Have the Mappings: Now What?

Naturally, defining the mappings between ontologies, either automatically,
semiautomatically, or interactively, is not a goal in itself. The resulting
mappings are used for various integration tasks: data transformation, query
answering, or web-service composition, to name a few.

Given that ontologies are often used for reasoning, it is only natural that
many of these integration tasks involve reasoning over the source ontologies
and the mappings. For example, the OntoMerge system mentioned earlier [8]
uses reasoning to perform several tasks related to ontology translation. The
first task is translating instances that conform to one ontology (the source)
to instances conforming to another ontology (the target), given the mapping
between the source and target. To perform this task, OntoMerge first creates
a merged ontology that includes the source, the target, and the mapping and
performs inference on this merged ontology. Afterwards, OntoMerge performs
a projection step, where it retains only the new conclusions reached that
exclusively reference the target vocabulary.

For the second task that OntoMerge deals with – generating ontology
extensions – consider for example, two ontologies describing Web services:
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OWL-S2 and WSDL.3 Suppose we have defined a mapping between these
two ontologies. Suppose also that we have an ontology describing ticket-
purchasing web services – a domain-specific extension of the OWL-S ontology
(chapter “Semantic Web Services”). This ticket-purchasing ontology creates
subclasses of some of the classes in OWL-S, fills in some of the property val-
ues, and so on. In other words, it extends the OWL-S ontology. If we have
a mapping between OWL-S and WSDL, OntoMerge can automatically gen-
erate a WSDL description of ticket-purchasing – an extension of the WSDL
ontology. Note that this case is different from data translation since we are
dealing with subontologies rather than instances conforming to ontologies. In
both of these tasks, OntoMerge uses forward-chaining reasoner to perform the
translation.

In the OIS framework [3], ontologies are expressed in Description Logics
and therefore it is natural that DL reasoners are used to answer queries in the
data-integration framework. The authors address the general task of answer-
ing queries posed in terms of the global ontology using the data in the local
ontologies. However, while even in expressive Description Logics, computing
certain answers to queries is decidable, it may often be intractable. In re-
cent research, the authors have explored less expressive subsets of Description
Logics [4], making this type of query answering tractable.

6 The State of the Art

The best way to assess the state of the art in creating ontology mappings
automatically is to look at the results of the Ontology Alignment Evaluation
Initiative (OAEI).4 OAEI is a principled formal effort to compare the per-
formance of different ontology-mapping algorithms on the same set of data.
The OAEI is run annually since 2004 and more systems participate in the
evaluation each year. The total of 18 systems participated in 2007.

The OAEI organizers published the ontologies to be compared and the tool
developers apply their tools to find correspondences between these ontologies.
The organizers then compare the results to a set of reference alignments to
determine precision and recall of the performance of individual tools. The
ontologies range in the size and complexity, from relatively small ontologies
that are designed primarily to understand which features of ontologies tools
take into account, to large “real-world” ontologies representing such complex
domains as anatomy.

The performance of the tools varies depending on the setting. For the sim-
plest test cases, the best tools have close to perfect recall and precision. For
the large more complex test cases such as anatomy ontologies, for example, the

2 http://www.daml.org/services/owl-s/1.0/
3 http://www.w3.org/TR/wsdl
4 http://oaei.ontologymatching.org
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F-measure (the harmonic means of precision and recall) for the best perform-
ing generic domain independent tools (such as Falcon-AO [23] and ASMOV
[22]) is 0.73–0.75. The tools that take into account domain knowledge (e.g., the
tools specifically designed for alignment of ontologies in biomedical domain,
such as AOAS [36]), reach the precision of 92% and recall of 80% (F-measure
0.86). More important, the precision and recall measures for the best systems
keep improving every year [11].

The data provided by the OAEI initiative has affected quite dramatically
the field of ontology-mapping algorithms by providing a well-documented and
well-studied set of reference alignments that tool-developers can use to assess
their methods: It is impossible to publish a paper about an ontology-mapping
algorithm today without providing the results of how the algorithm performs
on the OAEI data set. It is important to note, however, that OAEI does not
evaluate all types of ontology-mapping systems: For instance, this type of
evaluation is not well suited for interactive ontology-mapping tools, such as
Prompt. At the same time, the OAEI results show that user interaction will
still be required in the foreseeable future if an application needs precise and
complete mappings.

Finally, in addition to improving precision and recall of ontology-mapping
algorithms, there are a number of other fundamental questions that re-
searchers are addressing: How do we explain the mappings produced by the
tools to the users? What are the best ways to support interactive ontology
mapping? Are imperfect or inconsistent alignment useful in some settings or
must alignments always be 100% precise to be useful? What are the settings
that con tolerate approximate mappings? What are the levels of precision
and recall that make such imprecise mappings useful? How do we main-
tain mappings between ontologies as the ontologies evolve? When ontologies
change, many of the mappings remain valid, but some are probably invali-
dated? How do we know which ones? Can we design a “tollbox” of mapping
approaches that we can custom-tailor to fit a given problem? Can generic
domain-independent ontology-mapping methods perform acceptably well, or
do we need domain-specific approaches? Researchers are actively investigating
these and many other intriguing challenges in ontology mapping and we can
fully expect this research area to continue to provide new advances and to
make automatic semantic integration – that holy grail of the Semantic Web –
more attainable.
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Sváte, Willem Robert van Hage, and Mikalai Yatskevich. Results of the ontology
alignment evaluation initiative 2006. In International Workshop on Ontology
Matching at ISWC-2006, Athens, GA, 2006.

14. S. Falconer, N. Noy, and M. A. Storey. Towards understanding the needs of
cognitive support for ontology mapping. In International Workshop on Ontology
Matching at ISWC-2006, Athens, GA, 2006.

15. A. Gangemi, N. Guarino, C. Masolo, and A. Oltramari. Sweetening wordnet
with DOLCE. AI Magazine, 24(3):13–24, 2003.

16. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-match: an algorithm and an
implementation of semantic matching. In European Conference on Semantic
Web (ESWC 2004), pages 61–75, 2004.



Ontology Mapping 589

17. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. Semantic matching. In 1st
European semantic web symposium (ESWS’04), pages 61–75, Heraklion, Greece,
2004.

18. R. Gligorov, Z. Aleksovski, W. ten Kate, and F. van Harmelen. Using Google
distance to weight approximate ontology matches. In Seventeenth World Wide
Web Conference WWWW-07, Banff, Canada, 2007.
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1 Athabasca University, Canada, dgasevic@acm.org
2 University of British Columbia, Canada, nimak@ece.ubc.ca
3 University of Belgrade, Serbia, milan@milanovic.org

Summary. The chapter analyzes the state of the art in the use of ontologies for
various software engineering tasks. The chapter starts from defining software en-
gineering as an application context for ontologies. Next, it introduces a framework
that identifies places in software lifecycle where ontologies can contribute to improve
the current state of software engineering.

1 Introduction

Fast growth of communication and mobile technologies, constant demands for
new services, and increased number of computer users, are some of the key
reasons of the constantly increasing need for more software. This naturally
requires effective methods for engineering software that will be able to respond
adequately to the needs for which the software was built, and yet to allow for
higher levels of productivity of software engineers. However, today’s state of
the art and practice demonstrates that both perspectives are still suffering
from serious problems. On one hand, the Standish Group published its well-
known “Chaos Report” in 1994 in which it was noted that only 16% of software
projects were successful, 31% were failures, and some 53% were challenged.
The 2006 report demonstrates a bit better situation where 35% of software
projects were successful, 19% were failures, and 46% were challenged [9]. On
the other hand, productivity methods are struggling with new challenges such
as better methods for software maintenance (e.g., tracing place in the code
when adding new or updating present functionalities to the software [69])
or facilitating collaboration of software teams (e.g., mutual understanding
between different parties collaborating in requirement engineering, especially
in the context of global software development [18]).

While software is a technical category designed to perform specific tasks by
using computer hardware, it is also a social category which nowadays is used
in almost every aspect of human’s life. In fact, software is a knowledge repos-
itory where knowledge is largely related to the application domain, and not
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to software as an entity [4]. So, we need to be able to share and interoperate
(application) knowledge stored in software with the knowledge about all rel-
evant aspects surrounding and influencing software (e.g., domain knowledge,
new requirements, policies, and contexts, in which people use and interact
with software) in order to get software to the more advanced levels. This
knowledge sharing and management requires the use of explicit definition of
knowledge, as it is a basic need for machines to be able to interpret knowledge.
This is why the software engineering community has recognized ontologies as
a promising way to address current software engineering problems [14,32].

Researchers have so far proposed many different synergies between soft-
ware engineering and ontologies. For example, ontologies are proposed to be
used in requirement engineering [47], software modeling [45], model transfor-
mations [42], software maintenance [43], software comprehension [70], software
methodologies [30], and software community of practice [1]. Moreover, soft-
ware engineering technologies are proposed for modeling and reasoning over
ontologies. These synergies between ontologies and software engineering have
also attracted attention of standardization bodies and have some on-going ac-
tivities. Ontology-Driven Architecture (ODA) is an effort of the W3C’s Soft-
ware Engineering Best Practices Working Group that tries to develop best
practices for using ontologies in software engineering [66]. Probably, the most
important result so far is the Ontology Definition Metamodel (ODM) that is
proposed to be the Object Management Group (OMG)’s standard [54]. The
ODM standard allows for integrating ontology languages (i.e., ontologies) into
the software development process based on model-driven engineering princi-
ples [7]. Although all of these different efforts demonstrate many benefits to
different aspects of software and ontology engineering or give a nice descrip-
tion of the state of the art in the area [14, 32], none of them analyze and
evaluate applications of ontologies in different aspects of software engineering
by following a comprehensive software life cycle framework.

In this chapter, we start from defining software engineering as an applica-
tion context for ontologies, and proceed to defining a framework that identifies
places in software life cycle where ontologies can contribute to improve the
current state of software engineering. We consequently have organized the
structure of this chapter to use this framework for analyzing the use of on-
tologies in different phases of software life cycle. Note that the chapter does
not discusses Semantic Web rules (see chapter “Ontologies and Rules”) or
upper layers of the Semantic Web cake, but fully focuses on ontologies in
software engineering.

2 Software Engineering

The goal of this section is to define software engineering, describe some typical
software life cycle phases, artifacts used and produced in them, participants,
their interactions, and relevant domain and application knowledge. Based on
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this discussion, we define a unified framework for the use of ontologies in
software engineering to which we are going to refer in the rest of the chapter.

The most commonly used definition of software engineering is the one
given in the IEEE Standard Glossary for Software Engineering [38], where
software engineering is defined as “the application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of soft-
ware, that is, the application of engineering to software.” It is obvious that
this definition has a very strong foundation on the life cycle of software, i.e.,
how it is built (i.e., development); how it is used (i.e., operation); and how
it is updated, and renewed (i.e., maintenance). Therefore, it is natural to
discuss about software engineering by focusing on software life cycle phases.
While different methodologies (e.g., Rational Unified Process (RUP) or adap-
tive methodologies such as agile development) consider different phases for
software life cycle, we use the phases of software life cycle as defined in [61]
given the dominant use of object-oriented paradigm, while the definition of
all stages are based on [38]. In Fig. 1, we give an overview of all software life
cycle phases with their parallel activities; used and produced artifacts; types
of interactions and collaborations; and participants and their roles. Each of
the software life cycle phases can be defined as follows [38]:

• Analysis phase determines what has to be done in a software system. After
determining what kind of software is needed to be developed, the require-
ments phase is the first and the most important step. In this phase, the
requirements for a software product are defined and documented. This is
usually done in collaboration with end-users and domain experts, where

Fig. 1. Software development life cycle: phases, artifacts, interaction and collabo-
ration, and participants
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the critical point is to establish common understanding of the domain
under study. Once requirements are defined, they are formally specified in
the form of a legal document. Typically, this document includes functional
requirements, performance requirements, interface requirements, design
requirements, and development standards; to eliminate all ambiguous-
ness, incompleteness, and contradictions. Modeling approaches are rec-
ommended at this stage (e.g., RUP recommends using UML use cases and
class diagrams), while some researchers recommend using even some more
formal approaches (e.g., Petri nets [39]).

• Design phase defines detailed designs for application domain, architecture,
software components, interfaces, and data. Since all the design should be
verified and validated to satisfy requirements, usually this phase regards
the use of modeling (e.g., UML). The more formal designs are defined,
the less potential errors will be, and the more potentials will exist for au-
tomatic software implementation (e.g., code generation). Therefore, the
software engineering community puts a lot of attention to the discipline
called model-driven engineering (MDE) to enable model-driven develop-
ment (MDD) of software products [24]. Moreover, model transformations
(model-to-model; model-to-text; and text-to-model) are the key concepts
of MDD which allow for round trip engineering (i.e., forward and reverse
engineering) of software.

• Implementation phase creates a software product from the design docu-
mentation and models. This phase also debugs and documents the software
product. This phase assumes the use of programming languages to encode
specified designs, and testing techniques (e.g., unit testing) to eliminate
any potential bugs. Besides eliminating software bugs, it is also impor-
tant to be able to check whether implementations are fully valid w.r.t. the
models (aka., model-based testing [3]).

• Integration phase is the process of combining software components
(e.g., Web services), hardware components, or both, into an overall sys-
tem. This phase is usually done in parallel with the implementation phase.
Besides importance of a high-quality and up-to-date documentation, this
stage also requires testing, such as acceptance testing (by end-users) and
integration testing (i.e., checking the integration with other components).

• Maintenance phase is the process of modifying a software system or com-
ponent after delivery to correct faults, improve performance or other
attributes, or adapt to a changed environment, i.e., any change after accep-
tance of the software by the client. This phase highly depends on the qual-
ity of documentation in order to trace parts of software to be changed. Of
course, this phase also assumes documenting all changes as well as testing
software for its compliance to the initial and newly-defined requirements.

• Retirement phase is the period of time in the software life cycle during
which support for a software product is stopped. This may happen in
cases where a drastic change in design, implementation, or documentation
has occurred. This phase also has to be well-documented to explain why
a software product is retired.
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However, the current software practice suffers from a lack of traceability of
all artifacts and elements produced/used in different stages of the life cy-
cle (e.g., requirement documents and source code), that can substantially
affect software development and especially software maintenance [69]. As al-
ready pointed out, software is a socio-technical category which necessitates
keeping track of all relevant human–human and human–software interac-
tions (e.g., chat discussions that may explain why some design decision were
made) [1].

It is also very important to mention that every software product strongly
relies on the application-specific domain knowledge, standards, and policies
related to the software system under study. In addition, every software de-
velopment process follows some methodologies,1 and it is useful to relate
methodology tasks and activities with the software artifacts produced/used
in different life cycle phases. Moreover, each task in the software development
life cycle is important to be assigned to a person (e.g., software programmer)
that has competencies needed. Very often, such knowledge is not represented
explicitly, and thus it is very hard to establish traceability links between such
knowledge and produced software artifacts and interactions used in all phases
of software life cycle. Such knowledge can further stimulate social interactions
and locate peers that can help in dealing with some specific software develop-
ment issues. In the rest of the chapter, we present how ontologies can assist in
establishing the missing semantic links in the above software life cycle phases.

3 Analysis

According to the Standish Group report from 1994,2 the main reasons for soft-
ware project failures are issues caused by the poor or inappropriate software
analysis. The three reasons for software success are user involvement, execu-
tive management support, and a clear statement of requirements, while the
main reasons for challenged and failed software projects are the lack of user
input, incomplete requirements and specifications; and changing requirements
and specifications. All these reasons stress the need for mutual understand-
ing between requirement engineers and end-users and the importance of the
preciseness of the requirement specification.

3.1 Ontologies as Requirement Engineering Products

The above arguments motivated researchers to look at ontologies as a so-
lution to improve the state of the art in this area. Breitman and Leite ar-
gue that ontologies should be sub-products of the requirement engineering
phase [10]. It follows the idea of Hendler that on the web we can have many

1 Today’s methodologies follow incremental and iterative software development.
2 http://www.spinroot.com/spin/Doc/course/Standish Survey.htm



598 D. Gašević et al.

application-oriented ontologies that should be interconnected to facilitate
knowledge sharing between different applications [34]. Thus, their require-
ment engineering process has a particular sub-process for ontology construc-
tion. This process is inspired by the layered ontology engineering approach
[49], where the main source for creating ontologies is the language’s extended
lexicon. The lexicon is built by eliciting the important terms from the relevant
source documents, and mapping the terms to the appropriate constructs (e.g.,
classes) of the ontology language used in the application under study. Look-
ing further to some other ontology development technologies, we can also find
out that requirement engineering and ontology engineering are even sharing
some common methodologies. For example, the DOGMA ontology engineer-
ing framework [65] uses a scenario-based approach to engineer ontologies for
application domains. The most important thing from both cases is that the on-
tology is a product of the analysis phase, which means that all parties involved
in this process should agree upon the ontology developed. This, in fact, should
eliminate the lack of misunderstanding of the users’ needs and should further
be propagated to the design phase (e.g., by transforming such an ontology
to models – cf. Sect. 4). Another benefit is that all documents (e.g., stories)
that are used for requirement acquisition could be semantically annotated
with the ontologies created from them to represent intelligent content [13]. If
such ontologies are further used in the design phase (e.g., models), we can then
have traceability between these two software development stages (i.e., analysis
and design) and establish mapping relations with other ontologies to provide
traceability with other potentially relevant sources of knowledge.

The use of upper-level ontologies is also well-known in software engineer-
ing when developing domain models that are usually part of the requirement
specification. Typically, an upper-level ontology (e.g., Bunge–Wand–Weber
[BWW] model) is used as a definition of the background theory (or the per-
spective to the world) based on which the domain model is built. Current
software development methodologies (e.g., RUP) suggest UML-based domain
models as the results of the analysis phase. The current experience demon-
strates that if one wants to make such domain models valid w.r.t. the upper
level ontology, then a modeling language should be constrained in order to
allow the use of only those models that are compliant to the upper ontology.
For example, Evermann and Wand [23] constrain the specification of the UML
(i.e., UML metamodel) by using the Object Constraint Language (OCL), so
that every UML model is fully compliant with the BWW model.

3.2 Requirement Engineering Approaches

Requirement engineering phase assumes the use of many different sources,
which are not only end-users and domain experts, but also policies and stan-
dards. Requirement engineering also implies the use of different methodolo-
gies such as goal-driven, viewpoints-oriented, and scenario-based approaches,
or their combinations [47]. None of these approaches usually allow for using
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different approaches collaboratively, since they are mainly constrained by
the tools they use. Recognizing this problem, Lee and Gandhi proposed an
ontology-based framework, aka Onto-ActRE, which promotes cohesiveness be-
tween the artifacts generated from different modeling techniques and creates
a shared understanding from multiple dimensions [47]. The central point of
this solution is a Problem Domain Ontology that integrates (1) goal-driven
scenario composition, (2) requirements domain model, (3) viewpoints hierar-
chy, and (4) other domain specific taxonomies. Leveraging PDO represented
in OWL and the Jena Semantic Web framework, they developed the GENeric
Object Model (GenOM) tool that, for example, allows requirement engineers
to utilize the requirements domain model along with the goals from the goal
hierarchy and the associated stakeholders in a viewpoints hierarchy. Although
not suggested by Lee and Gandhi, the requirements domain model can be ob-
tained from a domain ontology developed by some of the approaches discussed
earlier.

3.3 Requirement Engineering Collaboration

Collaboration appears to be the crucial activity in successful requirements
engineering, especially in the current global software development landscape.
The main challenges to be addressed are [16]: (1) knowledge acquisition and
sharing, (2) effective communication and coordination, and (3) aligning RE
processes and tools. We have already commented on how ontologies can ad-
dress (1), but there is a need to combine it with (2) to facilitate efficient
collaboration and coordination of involved parties. The use of Wikis appears
to be a promising solution to this task. Wikis demonstrate the use of ontologies
to define the structure (e.g., concepts such as Use Case, and Actor) and types
of documents used in the requirements engineering phase based on the story
telling approach [17]. Software engineering can benefit form semantic Wikis
as frameworks for (application) ontology engineering by using collective intel-
ligence [64]. Collaborative results produced in semantic Wikis can directly be
translated to models used in the design phase (cf. Sect. 4 for details).

Not only are Wikis means of collaboration in requirements engineering, but
stakeholders also communicate by other communication channels and tools
such as chats and discussion forums [63]. It would definitely be an important
research challenge to leverage ontologies for managing knowledge contained
in all these channels (e.g., semantically annotating discussion messages [67]
to represent contextual knowledge about why and how some decisions were
made). Finally, for a successful collaboration of distributed stakeholders, it is
also important that they fully understand the different cultural, geographical,
and organizational boundaries. For example, a common problem in collabora-
tion could be a misunderstanding of different requirements engineering tools,
methodologies they are based on, and levels of details of the requirement spec-
ification requested [18]. While ontologies like the Problem Domain Ontology
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can certainly harmonize different ontology engineering approaches, there are
some open opportunities for applications of ontologies such as to describe
requirement engineering tools and methodologies (and connect them with
general software engineering development methodologies [30]) or to harmo-
nize communication among stakeholders with different cultural and technical
origins.

3.4 Requirements Verification

Testing of identified and specified requirements is a critical activity of the
analysis phase, as it is very important to make sure that all involved stake-
holders with different backgrounds and levels of knowledge agree upon the
requirements specification. Probably, the most effective way is to use formal
model-based animations (e.g., UML use-cases and classes) that present defined
requirements. However, as UML does not have formally defined semantics, it
is very hard to run simulations that formally analyze the models defined [26].
Although development of methods for formal analysis of models is set as one
of the main challenges in the area of model-driven engineering [27], there are
already some proven formal languages that have successfully been used for
verification of requirement specifications. For example, Jorgensen and Bossen
suggest the use of Petri nets for defining executable use-cases [39]; demon-
strating potentials of Petri net analysis for requirement engineering.

However, Petri nets are a formalism for modeling processes rather than
for modeling a structure (e.g., domain model) of a system under study. The
question is then how to combine domain ontologies developed in some of the
above-mentioned ways and process formalisms such as Petri nets? Brockmans
et al. proposed a mechanism for semantic annotation of Petri nets by using
concepts from domain ontologies [12]. Taking a similar approach, [28] demon-
strates that ontology alignment techniques can assist in the automatic busi-
ness process integration. This example can stimulate some other applications
of ontologies to semantically enrich requirement engineering and even improve
traceability of all artifacts produced in this phase to be used in other software
life cycle phases. For example, one could trace requirement document from
Petri net models by using ontology concepts annotating Petri net elements.
Moreover, these semantic links between requirement documents and Petri net
models via the domain ontology could further increase the degree of “intelli-
gence” of content [13]. This ontology annotation of Petri nets can also serve
as an interesting direction for further integration of ontologies and models
to develop mechanisms to semantically annotate models used in the design
phase (e.g., [46] investigates workflow and composition languages). Such se-
mantically annotated artifacts will further be interlinked with the artifact
of the implementation and integration phases (e.g., Semantic Web services –
chapter “Semantic Web Services”).
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4 Design

As already mentioned, the design phase assumes a comprehensive definition
of the software system under study. As a result, this phase heavily relies on
the use of modeling principles and best software practices such as software
patterns. Due to the importance of modeling in this phase, in this section,
we first introduce model-driven engineering (MDE) as a software engineering
discipline that promotes software development fully based on modeling prin-
ciples. Then, we discuss how MDE helps to integrate ontologies into software
design, and finally, we conclude this section by discussing how ontologies can
be applied to improve the use of design patterns.

4.1 Model-Driven Engineering

Model Driven Engineering (MDE) is a new software engineering discipline in
which the process heavily relies on the use of models [7]. Models are the central
MDE concepts and are specified by using modeling languages (e.g., UML or
ODM), while modeling languages are defined by metamodels. A metamodel is
a model of a modeling language. That is, a metamodel makes statements about
what can be expressed in the valid models of a certain modeling language [62].
The core idea of MDE is to increase the productivity of software developers by
increasing level of abstraction when developing some software. Once models
have been developed, they can be translated to different platform specific
implementations (e.g., Java or C#). The OMG’s Model Driven Architecture
(MDA) is a possible architecture for MDE [50].

MDA consists of three layers, namely: M1 (model) for defining models of
systems under study; M2 (metamodel) for defining modeling languages (e.g.,
UML and Common Warehouse Metamodel [CWM]); and M3 (metameta-
model) where only one metamodeling language is defined (i.e., MOF) [53].
The relations between different MDA layers can be considered as instance-of
or conformant-to, which means that a model is an instance of a metamodel,
and a metamodel is an instance of a metametamodel. Besides MOF, MDA
also includes the Object Constraint Language (OCL) to define (more formal)
constraints over MOF-defined MDA layers, so that more precise model defi-
nitions can formally be verified. OCL is also defined by a MOF-based meta-
model resided on the M2 level. Another MDE architecture is Eclipse Modeling
Framework (EMF), which is different from MDA just in using Ecore on the
M3 layer instead of MOF (cf. Sect. 4.5).

4.2 MDE and Ontologies

Cranefield was the first to explore the synergy of software modeling languages
and ontologies [15]. He started from the assumption that there are similar-
ities between the standard concepts of UML and those of ontologies (e.g.,



602 D. Gašević et al.

classes, relations, and inheritance). Having this in mind, he proposed the use of
UML for modeling ontologies due to the wide-acceptance of UML by software
engineers and many already-developed UML models, which would facilitate
adoption of ontologies by software practitioners. Moreover, software engineers
can also benefit from the use of ontology reasoning services (e.g., consistency
checking) to reason over UML models. In this way, one can connect software
design and ontology development. This motivated several other researchers
to look into the problem of similarities and differences between ontology and
software modeling languages (mainly UML). The details about findings could
be found in [29].

The above-mentioned activities initiated a standardization process at the
Object Management Group (OMG) to issue a request for proposals for the
Ontology Definition Metamodel (ODM) in 2003. The aim was to define a
MOF-based metamodel for the OWL (cf. chapter “Resource Description
Framework”) and RDF(S) (cf. chapter “Web Ontology Language: OWL”)
ontology languages (i.e., ODM), corresponding ontology UML profile (to use
standard UML tools for modeling ontologies), and transformations between
ODM and other relevant ontology and modeling languages. These activities
resulted in the OMG’s ODM specification [54] that defines MOF-based meta-
models for Semantic Web ontology languages, RDF(S) and OWL as well as
metamodels of Common Logic, Entity-Relationship models, and Topic Maps.
The ODM specification also specifies model transformations (by using the
OMG’s Query/View/Transformations (QVT) standard transformation lan-
guage [55]) of the ODM and RDFS metamodels with the metamodels of
the following languages: UML, Common Logics, Topic Maps, and Entity-
Relationship. IBM’s tool Integrated Ontology Development Toolkit (IODT)
is the most complete implementation of ODM [57].

Note also that application (and domain) ontologies can also be used in
the design of software architectures. Grønmo et al. demonstrated how MDE
principles can be used to model Semantic Web services (i.e., OWL-S) by ex-
tending UML activity diagrams [31]. This approach reminds of the approach
for semantic annotation of Petri nets [12]. This demonstrates the importance
of further exploration of how ontologies can be integrated into custom mod-
eling languages (e.g., Business Process Modeling Notation – BPMN). This
effort can have several contributions to software engineering such as (1) im-
proved traceability of software models when maintaining software and (2)
improved software integration capacity, especially, in the context of service-
oriented architectures.

4.3 Software Models and Business Vocabularies

Not always should domain ontologies be defined in the analysis phase, but the
requirements specification can be only in the form of documents written in
natural language. This implies that we should define our domain models (i.e.,
ontologies) in the design phase from scratch. So, for this task it will be useful
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to have an automatic or a semi-automatic approach to produce ontologies for
requirement documents (see chapter “Ontology Engineering Environments”).
Moreover, we should also be able to update textual requirement documents
automatically with the changes of ontologies.

Semantics of Business Vocabulary and Business Rules (SBVR) is a promis-
ing solution to the above problem [56]. SBVR is the OMG specification that
defines a metamodel for capturing expressions in a controlled natural language
and representing them in formal logic structures. The SBVR metamodel is
compatible with Common Logic. Given that the ODM specification defines
the mappings between the Common Logics metamodel and the metamod-
els of both OWL and RDF(S), the ODM specification provides a bridge to
transform SBVR to OWL, RDF(S), UML, Topic Maps, Entity-Relationship
models, and Description Logics.

4.4 Ontologies and Model Reasoning

Software modeling tools are usually very intuitive and allow software designers
to use a visual notation of modeling languages (e.g., UML). However, today’s
software modeling tools lack the support for formal validation of software
models, and discovering some potentially hidden implications of such models
(e.g., inconsistencies and redundancies), which may impact the overall quality
of software designs [27]. Trying to address these issues, Berardi et al. explored
the use of description logics to enable reasoning over UML class models [6].
The main finding of their research is that UML class diagrams are EXPTIME-
hard, even under restrictive assumptions including only binary associations,
only minimal multiplicity constraints, and generalizations (between classes
and associations) with disjointness and completeness constraints. They also
demonstrated how reasoning over UML class models can become EXPTIME-
complete by disabling the arbitrary use of first order OCL predicates, but still
allowing disjointness constraints on the generalization hierarchies. A practical
contribution is a reasoner that allows for reasoning over UML class models.
There are similar on-going research activities in the MDE community to pro-
vide formal semantics for UML [27]. The ontology community also considers
the use of some UML features (e.g., composite structures) in the future OWL
extensions (e.g., OWL 1.1) [58].

4.5 Ontologies and Model Transformations

Model transformation plays an important role and represents the central
operation for handling models in MDE [7]. Model transformation is the process
of producing one model from another model of the same system [50]. Model
transformations are usually defined between different modeling languages that
are defined by different metamodels, and hence the process of transformation
is usually called metamodel-driven model transformation. The OMG adopted
the MOF2 Query/View/Transformation (QVT) specification [55] to address
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this need. One of the most commonly used QVT implementations is ATLAS
Transformation Language (ATL) [5], which is the official Eclipse recommen-
dation for model-to-model transformations, and yet is an open-source solu-
tion. Based on the previous discussions on the similarities between ontologies
and models, there have been several approaches that propose the use of on-
tology alignment techniques to attack the problem of model transformation.
The ModelCVS system addresses this problem by transforming (i.e., lifting)
metamodels into ontologies (i.e., transforming Ecore to ODM) [42]. Then,
such obtained ontologies are further refactored to represent explicitly some
hidden concepts that are usually not precisely represented in metamodels,
but should be placed in ontologies. Finally, ontology matching algorithms are
executed over such ontologies (e.g., COMA++), and discovered mapping re-
lations are encoded into the ATL transformations. The ontology-based model
transformation (ontMT) approach in an attempt that semantically annotates
metamodels with the concepts from a reference ontology of a domain [60].
ontMT makes use of such semantic annotations to reason over concepts of the
metamodels being mapped and generates model transformations (i.e., ATL)
from inferred mapping relations.

Both of these applications of ontologies to model transformations have
been recognized as valuable contributions to the MDE area. However, there
are many important research questions that should be solved such as: combi-
nations of both approaches to make the process of model transformation more
effective; applying ontologies and ontology matching at the model (M1) level
of MDA, for example, to improve software refactoring; and applications of
ontology matching to contribute round-trip engineering (i.e., code generation
and reverse engineering) by complementing the efforts for model-to-text and
text-to-model transformations [40].

4.6 Ontologies and Software Patterns

Using the experience form the urban architecture, software engineering
adopted the concept of software patterns as an attempt to describe successful
solutions to common software problems. The pattern, in short, is a thing,
which happens in the world, and the rule which tells us how and when to
create it. A pattern language is a network of multiple patterns, with links
between related patterns. The most known type of software patterns are
design patterns which nowadays are used in almost all applications. Patterns
are, in fact, shared knowledge of software engineering, and represent a way for
common understanding of software designs. Patterns are described in literary
forms, such as sonnets. This works fine if patterns are intended to be under-
stood by software engineers, but if they need to be interpreted by tools, there
is a need for a formal representation of patterns [20]. For example, the BORE
tool leverages the ontologies to encode the pattern language for usability
design patterns [36]. BORE does not automate user interface design, as for
effective user-interface design, talent and creativity of the software designer is
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very important. However, the design pattern ontology helps designers improve
their knowledge about patterns and share the design experience with other
designers easier. As suggested for using semantic annotations of models with
ontologies, semantic annotations of design patterns and artifacts can also
improve the maintenance, so that one can trace the knowledge on which the
design was based [20].

5 Implementation and Integration

The design of software products should specify how the system should fi-
nally be implemented and integrated with other software systems, so that
the software product eventually accomplishes the requirements initially set.
This phase usually looks at lower computer-specific details and is done by
using programming languages. Although the goal of MDE is to allow for au-
tomatically generating as much implementation code as possible along with
many promising results, the current state of the art indicates that many im-
plementation details should still be done manually. This section explores the
potentials of using ontologies in the implementation and integration phases.

5.1 Implementation

In this section, we distinguish between three different approaches to the use
of ontologies in software implementation.

First, as already indicated, some approaches claim that ontologies could
be used in the same manner as models in MDE. Thus, we should be able to
generate the implementation of a software system from an ontology, possibly
the domain ontology that we created in the analysis phase and refined in the
design phase. Following this approach, Cranefield created transformations of
UML models to Java code (e.g., classes) besides the RDF(S) ontologies [15],
and thus provided a complementary Java implementation for an RDF(S) on-
tology. However, this approach did not provide mechanisms for preservation of
the semantic definitions in ontologies (e.g., OWL restrictions). RDFReactor is
a more recent approach that allows for mapping RDF(S) ontologies to Java.
Although it does not support OWL, it improves the previous work by elim-
inating some non-safe type usages (e.g., Java.util.List for properties) by the
use of domain specific classes generated from the ontology and leverages the
use of static semantic analysis used by compilers of programming languages.

Second, given the AI origins of ontologies, ontologies can also be used in
the implementation of software systems in a more declarative way, but yet
to use conventional object-oriented programming languages (e.g., Java). HP’s
Jena Semantic Web framework offers a Java API for handling RDF(S) and
OWL ontologies. Examples of alternatives for Jena are the Protégé OWL API
and Protégé-Frames API [45]. In this case, we can say that ontologies are not
used only for code-generation (like it is the case with MDE and approaches
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such as [41] and [68]), but ontologies are also a part of the run-time software
behavior. A good aspect of implementations based on generic ontology APIs
is that they are more dynamic in terms of allowing for on-the-fly ontology
changes and updates. However, in these implementations, software developers
can not resolve run-time issues by using static semantic analysis. Such run-
time issues can hardly be handled with standard exception mechanisms of
programming language [45]. In addition, it is not possible to benefit from
widely-adopted techniques for software testing, such as JUnit. This group of
implementations can also benefit from the ODM specification, as the OWL
and RDF(S) metamodels can also be programmatically managed by using
model handlers (i.e., their APIs) such as EMF and Java Metadata Interface
(JMI, http://java.sun.com/products/jmi/).

Third, ontologies can be used as a part of the implementation logic in soft-
ware systems that are implemented by using rule-based languages (e.g., Jess
or JBoss Rules). This is the most flexible software implementation approach,
as it not only allows for dynamically changing ontologies, but also rules. Then,
an inference engine is responsible for execution of rules. Given that most of
rule languages define rules over vocabularies and ontologies, this implemen-
tation technique can nicely be applied to ontologies [33]. However, rule-based
languages are not the widely adopted implementation approach in software
engineering and this approach is mainly used for implementation of smaller
specialized components with high degree of dynamicity (e.g., e-Negotiations).

Besides the above-mentioned approaches, the use of ontology-based seman-
tic annotations can additionally improve software development life cycle. For
example, Java annotation mechanism can be used to semantically intercon-
nect parts of Java code and ontology conceptualization. Not does this can only
be useful for JavaBeans3 to perform some advanced reasoning (e.g., consis-
tency checking), but it can also produce some benefits for the overall software
maintenance (e.g., license ontologies can be useful to apply different license
policies to different parts of source code). Finally, the potential text mining
and ontology-based analysis of the code can be interesting to provide (semi-)
automatic approaches to verify some implementation requirements and their
designs, similar to the use of ontologies for detection of design errors [37].

5.2 Integration

The most important contribution of ontologies to software integration is
semantic Web services. Semantic Web services, as the augmentation of Web
service descriptions through Semantic Web annotations, facilitate the higher
automation of service discovery, composition, invocation, and monitoring on
the Web. In this section, we focus on a relevant topic: semantic middleware.

The concept of middleware is applied to managing heterogeneity of vari-
ous software components and technologies used in a distribute software sys-
tem. However, it is very important to have environments for developing such
3 http://blogs.sun.com/bblfish/entry/java annotations the semantic web
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middleware-based distributed systems. Application servers are component-
based middleware platforms that provide functionalities for developing dis-
tributed systems which can use the components developed the developers or
third parties. The current management of the functionalities of application
severs is based on the use of administrative tools and XML configuration.
While this brings a lot of flexibility, there are still many complexity manage-
ment issues for developers and administrators. These issues are chiefly cased
by the lack of an explicit representation of the data in configuration files, or
having no commitment to any abstract model that can improve the interpre-
tation of data when developing and analyzing distributed systems [51].

Studying the above issues, Oberle [51] identified the typical challenges
at development time as: component dependencies and versioning, licens-
ing, capability descriptions, service classification and discovery, semantics of
parameters, and automatic generation of component and service metadata.
In addition, typical run time use-cases, requiring more advanced complex-
ity management approaches are: access rights management, error handling,
transactional settings, and secure communication. Trying to provide a more
generic solution that can be independent of a particular application domain
as much as possible, Oberle et al. proposed a stack of the ontologies based
on the DOLCE (Descriptive Ontology for Linguistic and Cognitive Engineer-
ing) generic ontology and its sub-module for descriptions and situations that
define patterns for (re)structuring domain ontologies. At the top, the core
ontologies of components (typical concepts characterizing components in ap-
plication servers) and of services (typical concepts characterizing services) are
defined (see http://cos.ontoware.org and chapter “An Ontology for Soft-
ware”). These two ontologies are then specialized in domain ontologies by
adding concepts specific for a domain of discourse. These ontologies are lever-
aged in KAON SERVER, a semantic application server that is implemented
as an extension of the open-source JBoss application server. Thanks to the
ontological description of components, KAON SERVER can perform more
advanced analysis of the components used in a distributed system by mak-
ing use of ontology reasoning and query languages, and thus helps developers
and administrators with more contextualized feedback (e.g., who can access
a particular component).

The organization of ontologies on which KAON SERVER is based, indi-
cates why it is important to ground domain ontologies in upper-level ontologies
(e.g., DOLCE) in the early software life cycle development phases (e.g., anal-
ysis and design). There are many potential benefits for this approach. For ex-
ample, if our requirement domain models are based on upper-level ontologies,
requirement engineers will be able to search for suitable components in the
analysis phase. Moreover, the implementation of such systems can later be ca-
pable of more flexible integrations with software systems. Indeed, a similar ap-
proach for integration of business processes based on the use of Semantic Web
services have already been proposed [22], However, the future research should
define methodologies that can guide the use of generic ontologies used and
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refined in all software life cycle phases (see chapters “Foundational Choices
in DOLCE” and “An Ontology for Software” for more information).

6 Maintenance

Any change ever since the client accepts the software, is related to the
maintenance software development life cycle phase. When developing soft-
ware, software engineers need a lot of knowledge about application domain,
technologies used, algorithms applied, software testing, and past and new
requirements. However, this knowledge is usually not recorded and for soft-
ware maintainers (which are not necessarily the original software developers)
it is very hard to fully understand the system being maintained. It is then
not surprising why software maintainers spend 40–60% of their time just to
understand the system being maintained [59]. The current software develop-
ment practice tries to address this problem by requesting software developers
and maintainers to document as much of this knowledge as possible. However,
documenting software is usually not enough, as software maintainers need an
easy assess to the knowledge relevant to the given context of software main-
tenance. Traceability links between various software artifacts are needed, to
make this process more efficient. This is why some researchers argue that soft-
ware maintenance is a knowledge management task where ontologies play a
critical role [19].

To enable the support for managing knowledge of software maintenance,
Anquetil et al. developed a comprehensive ontology for software maintenance
consisting of five sub-ontologies [2]: the software system ontology with con-
cepts such as software system, users, and documentation; the computer sci-
ence skills ontology with concepts such as computer science technologies and
modeling languages; the modification process ontology with concepts such as
modification request and maintenance activity; the organizational structure
ontology with concepts such as organizational unit and directive; and the ap-
plication domain ontology that associates domain concepts with tasks to be
performed. Applying Post-Mortem Analysis (a method to elicit knowledge in
software engineering), they developed a methodology that allows for explicit
representation of knowledge of different stages of the ISO/IEC 14764 main-
tenance process (i.e., after modification analysis, after implementation of the
modification, and at the end of the project) by using their software main-
tenance ontology. However, this approach does not consider the problem of
establishing traceability links with the already developed artifacts in the pre-
vious phases. To do so, the knowledge management process requires (semi-)
automatic approaches to capture the knowledge encoded in legacy systems.

Witte et al. address the above problems by developing two ontologies,
namely, the source code ontology (i.e., an ontology of major concepts of
object-oriented programming languages) and documentation ontology (i.e.,
an ontology of different concepts that may appear in documents related to
programming, such as programming languages and data structures) [70]. This
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experiment demonstrated that these two ontologies allow for establishing
traceability links between software documentation (i.e., JavaDoc) and source
code. Moreover, such links can help in the validation of, for example, documen-
tation, by checking whether relations described in the documentation (e.g.,
between a class and a method) actually exist, and whether the documentation
reflects the state of the implementation in the source code. This approach al-
lows for even more advanced software maintenance use cases, including, identi-
fication of security concerns in source code (e.g., checking whether public and
non-final attributes can be updated outside of the class they belong to) and
architectural recovery and restructuring (e.g., checking whether documented
architecture such as layered architecture is actually implemented).

Other authors demonstrate that it is possible to perform even more
advanced software analysis by using ontologies [43]. Besides using software
ontology model (FAMIX-based and language-independent ontology of object-
oriented code), this approach uses a bug ontology (inspired by Bugzilla) and a
version ontology. These ontologies are first populated by parsing a source code
extracted from a CVS. Then, the ontologies are queried by using iSPARQL,
an extension of SPARQL that adopts the concept of virtual triples. The three
ontologies and iSPARQL can assist software maintainers in use cases such as:
code evolution visualization (e.g., how a class evolved in different revisions);
detection of code smells (e.g., long parameter list); application of code metrics
(e.g., big classes with many methods and attributes and their correlation with
bug reports); and ontology reasoning (e.g., methods that are not invoked, aka
orphan methods). This project also reports on the scalability issues of today’s
Semantic Web technologies (e.g., reasoners) which can be another stimulus for
the great interest of software engineering in the future research on integrating
searching and reasoning approaches on the Web [25].

For software maintainers it can also be important to know what designs
are implemented in the maintained source code [20]. An ontology of design
patterns can be used to analyze source code and discover design patterns
implemented. In addition, this ontology can assist in providing common un-
derstanding between software developers and software maintainers.

As we initially indicated, software is a social category, and so is software
maintenance. Thus, it is also important to allow for capturing other relevant
knowledge related to software maintenance (e.g., exchange of experiences on
discussion forums). Capturing such type of knowledge facilitates communica-
tion between developers and helps with locating the developers with the most
suitable skills, experiences, and reputations. The Dhruv system addresses this
problem and facilitates connecting three different types of knowledge, i.e.,
content, interaction, and community. There are certainly a lot of potentials to
experiment with the use of ontologies for social networking (e.g., FOAF) to
build networks of software developers. Additionally, this can also be applied
to analyze the trustworthiness of software based on the level of its devel-
oper’s reputation. A good example in the line of this research direction is
the Baetle ontology (http://code.google.com/p/baetle/) that combines a
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bug ontology with several other ones (e.g., atom, workflow, and description
of a project’s ontologies). In addition, software maintenance can benefit from
the use of domain ontologies that were built during the software development
(as described in the previous sections) or extracted from already developed
artifacts [8]. Moreover, there is a potential to use ontologies to semantically
annotate the logs of software behaviors, which can be useful for software main-
tenance (e.g., to synthesize models of behavior [44] and compare them with
models defined in the analysis and design phases [11]).

7 Conclusions

To the best of our knowledge, there has been no approach addressing the issues
of the retirement phase. Although retirement usually means the end of the use
of a software product, it could be very important for software developers to be
able to create repositories of retired software, as each retired software system
contains a lot of knowledge encoded in its implementation [48]. Thus, we need
methods to extract knowledge out of retired software systems, especially those
that are implemented using legacy technologies. Some of the ontology-based
approaches to software maintenance [20,43] could be used as good directions
for (re-)using knowledge from retired software systems. Ontologies could also
play an important role in the on-going effort of the OMG for Architecture-
Driven Modernization (ADM) and their metamodel for Knowledge Discovery
Metamodel (KDM) [52].

To sum up the current state of the use of ontologies, we refer back to
Sect. 2 and analyze the orthogonal dimensions to the software life cycle phases
(i.e., documenting, testing, artifacts, interaction/collaboration, and partici-
pants). Documentation is probably the most commonly analyzed application
of ontologies with ontologies used in all software life cycle phases. Domain,
upper-level, and document structure ontologies are chiefly used to improve
documentation. Still, the documentation activity could additionally benefit
from ontologies by developing intelligent tools for software annotation that
will for example have features for checking validity of documentation state-
ments w.r.t. the software artifacts [70]. Ontologies also help to have clear
semantic relations between different software artifacts and documentations
(e.g., models and documents), and thus building software documentations as
intelligent contents [13]. This research also indicates that there is a need for
developing standard ontologies of documentation structure and types.

Using ontologies for software testing is probably the least explored aspect
of software engineering. In fact, we have seen that (upper-level) ontologies
are only used to validate requirements and detect design errors [37]. Given
a lot of attention to model-based software testing, ontologies are definitely a
promising technology (as discussed in Sect. 6) to even outperform MDE-based
approaches (e.g., UML) thanks to their strong formal and reasoning founda-
tion. Therefore, further research topics such as semantic annotation of logs
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of software behaviors for intelligent monitoring, semantic annotations of unit
and integration tests, ontology-based reverse engineering, and ontology-based
software metrics can bring many potential benefits to software engineering.

The use of ontologies for various software artifacts is probably one of the
areas that has attracted a lot of attention so far. Domain and upper-level
ontologies, ontologies for documentation, source code, bugs, ontology-based
models, model transformations, requirements, and design patterns, are just
some examples that are used for important software engineering tasks such
as adding more semantics to the artifacts, improving traceability links, con-
sistency checking of models, generating model transformations, and software
metrics. While all these attempts are well-recognized by both the Semantic
Web and software engineering communities, further exploration of semantic
annotation mechanisms of software models and implementation code, inte-
gration of ontologies and metamodeling architectures, and a comprehensive
traceability model of software artifacts, are some of the biggest challenges
concerning the aspects of software knowledge artifacts.

Interaction and collaboration are fundamental requirements for successful
software engineering. The current efforts already demonstrate some interesting
results for some of the software life cycle phases (e.g., facilitating mutual un-
derstanding of stakeholders and semantic Wikis for requirement acquisition).
However, social aspects of design, implementation, integration, and mainte-
nance phases are almost the dark side of ontologies [35]. Investigating the use
of collaborative tagging and folksonomies to improve collaborative experience
when designing, implementing and integrating; leveraging social networking
ontologies (e.g., FOAF) for annotating software artifacts; and multi-cultural
understanding; are some of the potential applications where ontologies can
improve interaction capturing and facilitate better collaboration in software
engineering [21]. Ontologies can also be a suitable technology for integration of
software development environments and collaborative tools (e.g., adding chats
like GTalk chats in Gmail). In addition, competence ontologies can help locate
software engineers with competencies needed for particular projects, which is
one of the most common issues in today’s software knowledge management,
especially in the domain of global software development [18].

Another important area is to describe software processes and methodolo-
gies. Not only do ontologies of methodologies have potentials to be related
with modeling languages [30], but they can actually be used to semantically
interlink, for example, particular project tasks and activities with all different
artifacts produced/used, participants responsible, and interactions done.
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7. Jean Bézivin. On the unification power of models. Software and System

Modeling, 4(2):171–188, 2005.
8. Kalina Bontcheva and Marta Sabou. On Self-Validating Rule Bases. In Proc. of

the 2nd Int’l WSh on Semantic Web Enabled Software Eng., 2006.
9. Grady Booch. The Irrelevance of Architecture. IEEE Soft., 24(3):10–11, 2007.

10. Karin Breitman and Julio Cesar Sampaio do Prado Leite. Ontology as a Re-
quirements Engineering Product. In 11th IEEE Int’l Requirements Eng. Conf.,
pages 309–319, 2003.

11. Saartje Brockmans, Robert M. Colomb, Elisa F. Kendall, Evan Wallace,
Christopher Welty, Guo Tong Xie, and Peter Haase. A Model Driven Approach
for Building OWL DL and OWL Full Ontologies. In Proc. of the 5th Int’l Se-
mantic Web Conf., pages 187–200, 2006.

12. Saartje Brockmans, Marc Ehrig, Agnes Koschmider, Andreas Oberweis, and
Rudi Studer. Semantic Alignment of Business Processes. In Proc. of the 8th
Int’l Conf. on Enterprise Info. Sys., pages 191–196, 2006.

13. Tobias Bürger. Putting Business Intelligence into Documents. In Proc. of the
WSh. on Semantic Business Process and Product Lifecycle Management, 2007.

14. Calero Coral, Ruiz Francisco, and Piattini Mario. Ontologies for Software En-
gineering and Software Technology. Springer, Berlin, Heidelberg, 2006.

15. Stephen Cranefield. UML and the Semantic Web. In Proceedings of the Semantic
Web Working Symposium, pages 113–130, 2001.

16. Daniela Damian. Stakeholders in Global Requirements Engineering: Lessons
Learned from Practice. IEEE Software, 24(2):21–27, 2007.

17. Björn Decker, Eric Ras, Jörg Rech, Pascal Jaubert, and Marco Rieth. Wiki-
Based Stakeholder Participation in Requirements Engineering. IEEE Software,
24(2):28–35, 2007.

18. K. C. Desouza, Y. Awazu, and P. Baloh. Managing Knowledge in Global Soft-
ware Development Efforts: Issues and Practices. IEEE Soft., 23(5):30–37, 2006.
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30. César Gonzàlez-Pèrez and Brian Henderson-Sellers. An Ontology for Software
Development Methodologies and Endeavours, volume Ontologies for Software
Engineering and Software Technology, pages 123–151. Springer, 2006.

31. Roy Grønmo, Michael C. Jaeger, and Hjørdis Hoff. Transformations Between
UML and OWL-S. In Proc. of the 1st European Conference Model Driven Ar-
chitecture - Foundations and Applications, pages 269–283, 2005.

32. Hans-Jörg Happel and Stefan Seedorf. Applications of Ontologies in Software
Engineering. In Proc. of the Int’l WSh. on Semantic Web Enabled Software
Engineering, 2006.

33. Marek Hatala, Ron Wakkary, and Leila Kalantari. Rules and ontologies in sup-
port of real-time ubiquitous application. J. Web Sem., 3(1):5–22, 2005.

34. J. Hendler. Agents and the Semantic Web. IEEE Int. Sys., 16(2):30–37, 2001.
35. J. Hendler. The Dark Side of the Semantic Web. IEEE Int. Sys., 22(1):2–4,

2007.
36. Scott Henninger and Padmapriya Ashokkumar. An Ontology-Based Infrastruc-

ture for Usability Design Patterns. In Proc. of the Int’l WSh. on Semantic Web
Enabled Software Engineering, pages 41–55, 2005.

37. Allyson Hoss. Ontology-Based Methodology for Error Detection in Software De-
sign. PhD thesis, Louisiana State University Graduate School, 2006.

38. IEEE Standard Glossary of Software Engineering Terminology-Description,
1990. http://ieeexplore.ieee.org/servlet/opac?punumber=2238.

39. J.B. Jorgensen and C. Bossen. Executable use cases: requirements for a pervasive
health care system. IEEE Software, 21(2):34–41, Mar-Apr 2007.
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Summary. Semantic Web services are a prominent application area for ontologies,
and Semantic Web technologies in general. Using Semantic technologies such as
ontologies for describing Web services enables automating tasks such as discovering,
combining, and executing services. In this chapter we survey the aspects relevant to
the description of Semantic Web services through an overview of the Web Service
Modeling Ontology (WSMO), which provides a conceptual model for describing
services.

We then survey in more detail the various uses of ontologies in Web service de-
scriptions. Finally, we describe other prominent Web service description frameworks
and contrast them with WSMO, in particular WSDL-S, OWL-S, and SWSF.

1 Introduction

The Semantic Web [6, 25] aims at making the vast amount of information on
the Web accessible to machines through the annotation of Web content using
machine-understandable formats such as RDF1 and to enable comprehension
and integration of this information through the use of ontologies. However,
these annotations refer only to static knowledge; additionally, ontologies are –
generally speaking – static domain descriptions. Web services [3] are concerned
with providing functionality over the Web, and are thus more than pieces of
static information. An example of such functionality is the sale of books over
the Web; see, for example, the Amazon Web services.2 Web service technolo-
gies such as SOAP3 and WSDL4 provide means for the structured XML-based
annotation of, and interaction with, Web services. However, the description
of the functionality of services using these technologies is limited to natural
language text and a description of the structure of inputs and outputs. These
1 See http://www.w3.org/RDF and chapter “Resource Description Framework” of

this handbook.
2 http://aws.amazon.com/
3 http://www.w3.org/TR/soap/
4 http://www.w3.org/TR/wsdl
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limitations make it hard to understand the functionality of a service, let alone
automatically discover, combine, and execute Web services. Consequently, the
location, selection, combination, and usage of Web services requires consider-
able human effort.

Semantic Web services [18] aim to combine Semantic Web and Web service
technologies to overcome these limitations and enable automation of the men-
tioned Web service usage tasks (i.e., discovery, selection, composition, execu-
tion, etc.). The use of Semantic Web technologies – especially ontologies – for
the description of Web services has a number of benefits. First of all, ontologies
are specified using formal languages that have associated reasoning methods,
which is an important prerequisite for the automation of Web service usage
tasks. Second, ontologies (are intended to) reflect a common understanding of
a particular domain, shared among a potentially large group of stakeholders.
The use of ontologies as a common vocabulary for Web service descriptions
has the potential to increase the understanding and reusability of Web service
descriptions.

In order for the vision of Semantic Web services to be realized, it is nec-
essary to identify all the aspects related to the description of Web services in
a single conceptual framework. The Web Service Modeling Ontology WSMO
[10] is such a conceptual model; it identifies the functional and non-functional
aspects of Web service offerings, as well as user requests, to enable their de-
scription in an adequate manner. In this chapter we give an overview of the
modeling aspects of Web services as identified by WSMO, and describe the
typical current and envisioned role of ontologies in Web service description
and usage. In this presentation we are mainly concerned with the descrip-
tion of single Web services, rather than the composition (e.g., [7, 20, 26]) and
choreography of multiple services.5

This chapter is further structured as follows. Firstly in Sect. 2 we explain
the Web Service Modeling Ontology in more detail specifically focusing on the
elements that make up a WSMO Web service description. We then proceed
to describe a number of uses of ontologies in Web service descriptions, firstly
reviewing the concept of modeling Goals and Web services as concepts of an
ontology and then presenting the use of ontologies as the terminology for a
Web service description, in Sect. 3. In Sect. 4 we briefly review two prominent
other approaches to Semantic Web services, namely SAWSDL and OWL-S,
and describe how the mentioned uses of ontologies in Web service description
can be realized in these approaches. Finally we provide conclusions in Sect. 5.

2 WSMO: An Ontology for Modeling Web Services

The Web Service Modeling Ontology WSMO [10] aims to describe all as-
pects related to services that are accessible through a Web service interface.
Ultimately the goal is to enable the total or partial automation of tasks that
5 See, e.g., http://www.w3.org/TR/ws-cdl-10/
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Goals

Web Services

Mediators

Ontologies

Fig. 1. WSMO top level elements

usual occur in the process of using Web services. Such tasks include discover-
ing services that can fulfill a piece of functionality on behalf of the end user,
select the most appropriate service when more than one is available, compose
multiple services to perform complex tasks, resolve heterogeneity issues on
both the data and process levels, and ultimately invoke Web services on the
end user’s behalf.

Figure 1 shows the four top-level elements of WSMO:

• Ontologies provide formal and explicit specifications of the vocabulary
used by the other modeling elements in WSMO. The use of shared
ontologies specified in formal languages increases interoperability and al-
lows for automated processing of the descriptions. See chapters “What Is
an Ontology”, “Description Logics”, “Ontologies in F-Logic”, “Resource
Description Framework”, and “Web Ontology Language: OWL” in this
handbook for descriptions of the nature of ontologies and the formal and
shared languages used for their specification.

• A Web service is a piece of functionality accessible over the Web. A WSMO
Web service is made up of three parts, namely:
– The capability, which describes the functionality offered by the service.
– The interface,6 which describes (a) how to interact with the service,

through its choreography and (b) how the service makes use of other
services in order to provide its functionality, through its orchestration

– The non-functional information, comprising meta-data (e.g., Dublin
Core [30]) and Quality of Service (QoS) related parameters [23,28].

• The way in which service requesters use Web services may be very different
from what was envisaged by the provider of the service. Thus it is impor-
tant that requirements of the requester are given the same importance as
the description of services. Thus WSMO provides goals as a mechanism for
describing the requirements a given service requester has when searching

6 Note that WSMO allows including multiple interfaces in a Web service descrip-
tion, thereby facilitating interaction with the service in different ways.
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for services that meet these requirements. As is the case for the description
of Web services, these requirements are broken down into:
– The requested capability, i.e., the functionality the requester expects

the service to provide.
– An optional requested interface, i.e., what the interaction pattern of

the service should look like for interfacing with it and which services
this service should make use of in order to achieve its functionality.

– Non-functional information comprising metadata related to the goal
description and user preferences related to QoS parameters.

• The open and distributed nature of the Web requires resources to be decou-
pled. In other words, WSMO descriptions are created in (relative) isolation
from one another and thus the potential for heterogeneity problems be-
tween resources is high. Such heterogeneity issues can exist between the
formats of the data exchanged between service requesters and providers,
the process is used for invoking them and the protocols used in communica-
tion. WSMO Mediators are responsible for overcoming these heterogeneity
problems; WSMO emphasizes the centrality of mediation by making me-
diators a first class component of the WSMO model. An example of a
WSMO mediator for resolving data heterogeneity is a mediator that per-
forms transformation of instant information from one ontology to another
through the use of ontology mappings [19]. More information on ontology
mappings can be found in chapter “Ontology Mappping”.

Ontologies and ontology languages have been explained in detail throughout
this book (chapters “What Is an Ontology” “Description Logis”, “Ontolo-
gies in F-Logic”, “Resource Description Framework”, and “Web Ontology
Language: OWL”). We focus here on the structure of Web service and goal
descriptions and how they relate to each other. When clear from the context,
we refer to WSMO Web service and goal descriptions simply as a services and
goals, respectively. Recall that Web services define the information needed for
a machine to interpret the usability of a Web service to fulfill a requester’s
requirements, which are encoded as a goal. Figure 2 presents the elements of
a Web service description, namely non-functional properties, a capability, a
choreography and an orchestration. The term interface is used to describe the
combination of the choreography and orchestration of a service. The structure
of a goal is the same as that of a Web service and automating a given task
in the process of using Web services is essentially the interaction of a given
part of the goal description with a given part of one or more Web service de-
scriptions. Therefore below we describe the elements that make up goals and
Web services by describing how they interact with one another in the process
of automatically finding and using Web services.

To perform Web service discovery, in other words to automatically find
services that can fulfill the user’s requirements, the capability of the goal is
compared with the capabilities of known services. A capability is a description
of the functionality provided by a service (or requested by a requester) and is
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Fig. 2. Elements of a Web service description

described in terms of conditions on the state of the world that must exist for
execution of the service to be possible and conditions on the state of the world
that are guaranteed to hold after execution of the service. WSMO makes a
distinction between the state of the information space, i.e., the inputs and
outputs of the service, and the state of the world.

Based on these considerations a capability description comprises four main
elements. Preconditions describe conditions on the state of the information
space prior to execution. Therefore, preconditions specify requirements on
the inputs the service, e.g., typing. There may exist additional conditions
that must hold in the real world in order for the service to successfully ex-
ecute. These conditions, called Assumptions, are not necessarily checked by
the service before execution but are crucial to the successful execution of the
service (e.g., the balance on a credit card must be sufficient to conclude a
purchase). Postconditions describe conditions on the state of the information
space after execution has occurred, thus describing properties of the outputs
of the service, as well as the relationship between the inputs and the out-
puts. Many services will have real world effects, for example when purchasing
a book using a book selling service a physical book will be delivered to the
requester. Effects are conditions that are guaranteed to hold in the real world
after execution.

The process of discovering services by comparing the capabilities of goal
and Web service descriptions may yield a number of services that are capable
of achieving the user’s goals. However, compatibility of the capabilities of a
given goal and Web service does not mean that a given Web service is desir-
able for the requester. The interface of a Web service specifies how to interact
with the service in terms of a choreography, this choreography essentially pro-
vides information about the relationships between different operations on the
Web service, for example the login operation of a book selling service must
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be invoked before the buyBook operation. A choreography can also be spec-
ified within the goal, essentially allowing the provider to specify the desired
interaction pattern. The choreographies within the goal and discovered Web
service descriptions can be compared in order to filter out those services whose
interaction pattern is incompatible with that of the requester.

The interface of a Web service description also contains an orchestration
description. An orchestration specifies which services this service relies upon
to provide its functionality, for example the description of a book selling ser-
vice may specify that a specific delivery service is relied upon for final delivery
of books. The goal may also contain such an orchestration description spec-
ifying the desired external services the discovered service should rely upon.
Discovered Web services that do not meet these requirements may be elim-
inated, e.g., services that do not use the requested delivery service are not
desired by the requester and thus can be ignored.

After discovering those services whose functionally meets the requester’s
requirements and filtering out those that do not match in terms of their in-
teraction pattern or the services upon which they rely there may still be mul-
tiple services that can achieve the user’s goal. In this case the most desirable
a Web service must be selected from the list. To perform this selection the
non-functional properties of the discovered Web services are compared against
the requested non-functional properties within the goal. Non-functional prop-
erties, as their name suggests, are used to capture non-functional aspects of
a given Web service. These non-functional properties typically provide a de-
scription of the Quality of Service of the service, e.g., reliability, scalability,
and security. By comparing the requested non-functional properties of the goal
to those of the discovered services we can eliminate those services that do not
meet the minimum requirements laid out by the goal and rank the remaining
services to find the service that best fits the requester’s non-functional require-
ments. Having selected the right service for the requester, based on functional,
interface and non-functional parameters, automatic invocation of the selected
service is possible using the choreography description of the service.

In the remainder of this chapter we are concerned with the functional
description of goals and Web services, i.e., the description of capabilities.

3 Ontologies in Web Service Descriptions

Current Web service standards lack the necessary means to enable automation
of the service usage process; they do not allow specifying the semantics of
services in a machine-processable manner. In this section we describe how
ontologies and formal Semantic Web languages may be used for describing
user requirements and Web service functionality.

Most Web service usage tasks require descriptions of there functionality
and/or its interfaces. Web service discovery requires a description of the de-
sired (goal), as well as the provided (service) functionality, and a means to
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compare them. Web service composition requires a description of the function-
ality of all services taking part in the composition, as well as their interaction,
in order to verify whether the considered combination realizes the requested
functionality. Invocation of services requires a description of the choreogra-
phy of the service, in order to know how to invoke it, and to know which
data, should be sent to the service, in which format, and which output may
be expected. Non-functional descriptions of services (e.g., cost, security) play
an important role in the selection of services according to user preferences.
Ontologies play an important role in the description of the functional and
non-functional aspects, as well as the interfaces, of services.

In this section we review three typical uses of ontologies in goal and Web
service descriptions:

1. Modeling goals and Web services as concepts in a task ontology
2. Modeling inputs and outputs as ontology concepts
3. Using an ontology to provide the basic vocabulary for the rich functional

description of goals and services

These paradigms are of increasing complexity, and allow increasingly de-
tailed description of goals and services. The first and third paradigm are only
concerned with the description of the functionality, the second paradigm is
mostly concerned with (a simplified view of) the interface of the service.

In this presentation we limit ourselves to the use of ontologies in the func-
tional description of goals and services and do not address the use of ontologies
in non-functional or behavioral descriptions. For more details about the use
of ontologies for non-functional description of services we refer the reader
to [16, 22, 28]; for more details about the use of ontologies for behavioral de-
scription of services we refer the reader to [20].

3.1 Goals and Web Services as Task Ontology Concepts

One could view the tasks that may be performed by a Web service as the
domain of interest of a particular task ontology. The concepts in this ontol-
ogy represent the tasks that may be performed by a service, and that may
be requested in a goal. Furthermore, such tasks can be organized in a task
hierarchy, and further relations between tasks (such as simple kinds of com-
position) may be expressed in the ontology, depending on the expressiveness
of the ontology language.

Figure 3 depicts an example task hierarchy for the domain of book sales.
In the figure, arrow represents the subClassOf relationship. A task A being a
subclass of another task B indicates that A is more specialized. For example,
BookSelling is a specialization of Selling. Furthermore, the figure depicts a
disjointness relation between the tasks Shipping and Selling, indicating that
the tasks have nothing in common.

If the functionality of a goal is expressed as a concept in the same, or a
related, task ontology, then Web service discovery can be reduced to simply
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Fig. 3. Example task hierarchy for the bookselling domain

checking the relationship between the concept representing the goal and the
concept representing the Web service.

In particular, if a description logic-based language (e.g., OWL DL [8, 11];
see also chapter “Description Logics”) is used for the description of this on-
tology, then description logic reasoning services ([4]; see also the chapter
“Tableau-Based Reasoning” and “Resolution-Based Reasoning for Ontolo-
gies”) can be used for checking equivalence or subsumption of such concepts.
The matching of goals and Web services using description logic reasoning was
explored in detail by Li and Horrocks [14], reusing and refining matching
notions introduced in [24], [21], and [29].

In description logics concepts represent sets, and sub-concept and concept
equivalence relations correspond to set inclusion and set equality, respectively.
One can thus understand a Web service description WS as a set of elements
that can be delivered through execution of the Web service. In this setting, the
goal description G represents all the elements desired by the user. As pointed
out in [12], it is up to the person modeling the goals and Web services to
decide what these elements are meant to represent.

Given an ontology O, a concept WS (representing the Web service),
and a concept G (representing the goal), the following matching notions are
distinguished:

Exact match The goal G is equivalent to the Web service WS, given
the ontology O, denoted G ≡O WS.

PlugIn match The goal G is a sub-concept of the Web service WS, given
the ontology O, and thus the Web service can be “plugged
in” place of the goal, denoted G �O WS.

Subsume match The Web service WS is a sub-concept of the goal G, given
the ontology O, denoted WS �O G.

Intersection match The intersection of the Web service WS and the goal G,
given the ontology O, is not empty: WS 
 G ��O ⊥.

Disjoint The intersection of the Web service WS and the goal G,
given the ontology O, is empty, denoted WS 
 G �O ⊥.

So, an exact match can be understood as stating that all and only those
elements that fulfill the user desires G are provided by the Web service WS;
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a plug-in match means that all elements requested in G are provided by the
service WS; a subsume match means that all elements provided by WS are
requested in G, but there might be some elements that are not provided by
WS; an intersection match means that some elements requested in G are
(potentially) provided by WS; finally, a disjoint match means that none of
the elements requested in G is provided by WS.

The mentioned notions of matching were further refined by Keller
et al. [12]:

• A Match means that the Web service WS provides all elements requested
by the goal G: the Exact match and PlugIn match are both considered a
Match.

• A Partial match means that some of the elements requested in G can be
provided by WS: the Subsume match and Intersection match are both
considered a Partial match.

• A Non-match means that the Web service does not provide any of the
requested elements: the Disjoint match is a Non-match.

Example 1. Consider a goal G1 corresponding to a request for a service that
sells books and ships them. So, the goal is to find a service whose functional-
ity is the union of bookselling and shipping: G1 = unionOf(BookSelling
Shipping) (i.e., G1 ≡ BookSelling � Shipping). Imagine now a service S
that sells books and music: S = unionOf(BookSelling MusicSelling) (i.e.,
S ≡ BookSelling�MusicSelling). It is easy to see that there is an intersection,
and thus a Partial match between G1 and S: the service S provides bookselling,
but not shipping.

Consider now a goal G2 corresponding to a request for a service that pro-
vides shipping: G2 = Shipping. Clearly, G2 and S are disjoint (by the disjoint-
ness of Shipping and Selling, depicted in Fig. 3), so there is a Non-match
between G2 and S.

Considering the structure of WSMO capability descriptions (precondition,
postcondition, etc.), there does not appear to be a means for referencing con-
cepts in a task ontology. However, a capability description is a description of
the functionality of the service. Likewise, concepts in a task ontology repre-
sent all elements that are requested by or can be delivered through a goal or
Web service, respectively. Therefore, such concepts are in fact descriptions of
service functionality, and are thus capability descriptions that can be used as
such in WSMO Web service and goal descriptions.

3.2 Inputs and Outputs as Ontology Concepts

Most classical approaches to Web service description (e.g., WSDL) model Web
services in terms of the structure of the input and output messages of the
service. This is analogous to the way the interfaces of functions and methods
are typically described in popular programming languages such as C++ and
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Java; the description of input and output messages of the service corresponds
to the signature of a function or method. This description of the signature
of a Web service tells the user the format of the messages to be sent to the
service, and those returned by the service. However, the structure of a message
describes only the format of the message, not its semantics (intention).

The situation can be improved by using a shared ontology for the descrip-
tion of inputs and outputs in goal and the Web service descriptions. In the
goal description, the input corresponds to the information the user is able or
willing to provide, and the output corresponds to the desired output of the
service. In the service description, the input corresponds to the information
the provider requires before the service can be executed, and the output cor-
responds to the information that is produced by the service after successful
execution.

This scenario is similar to the one described in the previous section. How-
ever, in contrast to the previous scenario, the service description does not
correspond to the functionality of the service, but to the type of information
the service takes as input, and the type of information of its output. In case the
service is an information-providing service, the functionality of the service can
actually be described in terms of inputs and outputs.7 However, if the service
is a world-altering service (e.g., a shipping service), then input and output do
not capture the functionality of a service; in fact, such a service might not
have any output of interest; the added value of the service lies beyond the
informational world (e.g., physical delivery of a product to a home).

When describing inputs and outputs using description logic concepts,
matching notions similar to the ones in the previous section can be defined.
There are, however, two complicating factors: we need to distinguish between
input and output and the service may require several inputs and have several
outputs, as illustrated by the following example.

Example 2. Consider the simple domain ontology for the book and music sell-
ing domain in Fig. 4. In the figure, the arrow stands for the subClassOf
relationship.

Consider now the service S from Example 1. As input, the service ex-
pects instances of the concepts Product (the item to be purchased) and
CCInfo (the credit card information of the customer); as output, the ser-

Fig. 4. Example ontology for the bookselling domain

7 For a complete definition of the functionality of information-providing services,
the relation between the inputs and outputs should be specified as well.
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vice provides an instance of the concept PurchaseConfirmation. The goal
G1 includes willingness of the requester to provide instances of Book, CCInfo,
and Address as inputs of the service, and requires instances of the concepts
PurchaseConfirmation and ShippingConfirmation as outputs.

Clearly, the requester can provide all inputs required by the service.
However, the service can only provide some of the outputs required by the
requester.

We now extend the matching notions of the previous section to matching
notions for signatures:

• A Signature full match means that all inputs requested by the service are
provided by the goal, and all outputs requested by the goal are provided
by the service.

• A Signature output match means that all outputs requested by the goal are
provided by the service.

• A Partial signature match means that some outputs requested by the goal
are provided by the service.

• A Signature non-match means that none of the outputs requested by the
goal are provided by the service.

We now define these notions formally. Recall the description logic notation
introduced in chapter “Description Logics”.

We represent the individual inputs and outputs of a service S as description
logic concepts SI1, . . . ,SIm and SO1, . . . ,SOn, respectively, where SIi and SOj

(1 ≤ i ≤ m, 1 ≤ j ≤ n) range over the individual inputs and outputs of the
service. Likewise for the goal G.

We now define the overall Web service and goal inputs and outputs
(SI ,SO,GI ,GO) as description logic concepts, based on the individual inputs
and outputs:

SI ≡ ∃hasInput.SI1 
 · · · 
 ∃hasInput.SIm,
SO ≡ ∃hasOutput.SO1 
 · · · 
 ∃hasOutput.SOn,
GI ≡ ∃hasInput.GI1 
 · · · 
 ∃hasInput.GIk, and
GO ≡ ∃hasOutput.GO1 
 · · · 
 ∃hasOutput.GOl.

• There is a Signature full match if GI �O SI and SO �O GO.
• There is a Signature output match if SO �O GO.
• There is a Partial signature match if SO 
 GO ��O ⊥.
• There is a Signature non-match if SO 
 GO �O ⊥.

From the definition we can see that whenever there is a Signature full match,
there is a Signature output match, and whenever there is a Signature output
match, there is a Partial signature match. Conversely, if there is a Signature non-
match, then there is no Partial signature match; if there is no Partial signature
match, there is no Signature output match; and if there is no Signature output
match, then there is no Signature full match.



628 J. de Bruijn et al.

Example 3. Consider the Web service S and the goal G1 from Example 2. The
inputs of S are Product and CCInfo; the output is PurchaseConfirmation.
The input and output concepts of S are defined as follows.

SI ≡ ∃hasInput.Product 
 ∃hasInput.CCInfo
SO ≡ ∃hasOutput.PurchaseConfirmation

The inputs and outputs of G1 are Book, CCInfo and Address, and Purchase-
Confirmation and ShippingConfirmation, respectively. The input and out-
put concepts of G1 are defined as follows.

G1I ≡ ∃hasInput.Book 
 ∃hasInput.CCInfo 
 ∃hasInput.Address

G1O ≡
∃hasOutput.PurchaseConfirmation

∃hasOutput.ShippingConfirmation

We can now easily verify that SO ��O G1O, so there is no Signature output
match, and consequently no Signature full match. Nevertheless, SO
G1O ��O ⊥
holds, so there is a Partial signature match between G1 and S.

A similar model for describing inputs and outputs as ontology concepts,
and its use in the context of Web service discovery, was introduced by
Sycara et al. [27]. There are two main distinctions between the approach
described in this section and the approach by Sycara et al.:

• Sycara et al. use one concept to represent all inputs, and one concept to
represent all outputs, whereas we consider an arbitrary number of inputs
and outputs, and create the input and output concepts SI and SO using
the relations hasInput and hasOutput for the purpose of matching goals
and services.

• Where our notions of matching are mostly concerned with the outputs of
the service, Sycara et al. distinguish between input and output matching.
Our conjecture is that, for the task of Web service discovery, the service
requester is mostly interested in Web services that provide the desired
outputs, rather than services that accept its knowledge as input. Generally
speaking, a service requester will have far more knowledge than is required
as inputs for a single Web service invocation, and we do not expect that
all knowledge of the requester will be explicitly described in a goal, nor do
we expect that the requester is able to guess exactly which imports will be
required by the Web services that are potentially of interest when creating
the goal description.

In WSMO, the precondition and postcondition of a goal or Web service ca-
pability define conditions on the input and output of a service. In fact, the
concepts representing the inputs to the service are conditions on the input:
the input is required to be a member of this particular concept; similarly, the
concepts representing the outputs are conditions on the output of the service.
Therefore, the input concepts are part of a Web service precondition, and the
output concepts are part of a Web service postcondition.
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3.3 Ontologies as Terminologies for Web Service Description

The approach of describing the functionality of Web services in terms of inputs
and outputs, introduced in the previous section, has a number of limitations,
for example:

• It is not possible to describe the relationship between the inputs and out-
puts; output concepts provide a very limited notion of postcondition.

• This approach to description only deals with inputs and outputs, and thus
a partial description of the pre- and postconditions in the capability of
a goal or Web service. Consequently, the description only deals with the
information space, and not assumptions on the state of the world, and
effects in the real world of the execution of the service.

Consider the description of the service S in Example 2. The service has an
input of type Product and an output of type PurchaseConfirmation. How-
ever, it is not entirely clear from the description to which product this purchase
confirmation refers. One could assume that it refers to the input product; one
could also imagine that the purchase is of a similar product, in case the re-
quested product is not available. Generally speaking, the output of the service
is related to the input, and it is usually beneficial – and indeed necessary –
to specify this relationship, especially in a setting, as with Semantic Web
services, where service finding and usage are meant to be automated.

Concerning assumptions and effects, consider the descriptions of the ser-
vice S and the goal G1 in Example 2. One would expect a number of assump-
tions to be part of the description of S, e.g., the requested product is in stock,
and the balance on the credit card is sufficient, and one would expect certain
effects to be part of the description of G1, e.g., the product is delivered to the
address provided as input to the service.

As pointed out above, the description of inputs and outputs as ontology con-
cepts is not sufficient to describe the functionality of world-altering services. In
fact, it also has limitations when considering information-providing services,
because it is not possible to describe the relationship between the input and
output when viewing them merely as concepts of an ontology. In the remain-
der of this section we consider more expressive ways of describing goal and
Web service capabilities, in which it is possible to describe the relationships
between inputs, outputs, assumptions, and effects.

The execution of a Web service alters the state of the world. Therefore,
we need a notion of state. We principally distinguish between two states: the
pre-state is the state before and the post-state is the state after execution of a
service. Additionally, WSMO distinguishes between the state of the informa-
tion space and the state of the real world. Therefore, when considering a single
service, we are concerned with four states, namely: (1) the pre-state of the in-
formation space, (2) the post-state of the information space, (3) the pre-state
of the real world, and (4) the post-state of the real world. The precondition
and assumption are conditions on the pre-states of the information space and
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real world, respectively. The postcondition and effect are conditions on the
post-states of the information space and real-world, respectively, and describe
the relationship between the respective pre- and post-states. Specifically, the
information space consists of the inputs and outputs of the service, and thus
the precondition consists of conditions on the inputs, and the postcondition
consists of conditions on the outputs and relationships between inputs and
outputs.

Even though this type of description is the most expressive we consider
in this chapter, relatively little research has been done into the use of such
expressive Web service description, when compared with the more simple
kind of description based on task ontologies and interface description that we
described above. A notable exception is [20], in which the authors used the
situation calculus [17] to capture the semantics of Web service descriptions and
used Petri Nets for various Web service related tasks such as composition and
verification of services. Also, Keller et al. [13] propose a state-based semantic
framework to formalize and reason with goal and Web service capabilities.

For both approaches it is the case that if the elements of the capability are
specified using first-order logic formulas, which is by definition the case for
the situation calculus, then typical reasoning tasks can be reduced to corre-
sponding reasoning tasks in first-order logic. Realizability, which corresponds
to checking whether a Web service description can in theory be realized, i.e.,
there may be a Web service that realizes the description, can be reduced to
satisfiability checking in first-order logic, and functional refinement, which
corresponds to checking whether the capability of one goal or Web service is a
refinement of the capability of another, can be reduced to checking entailment
in first-order logic.

For the purposes of this presentation we do not give formal definitions of
either of these tasks; we illustrate the notion of functional refinement using an
example. For convenience, we only consider preconditions and postconditions
in the examples; however, they may be straightforwardly extended to include
also assumptions and effects, which are treated analogously. We use first-
order logic formulas for the description of the capabilities in the examples.
Note that the free variables in the precondition φpre and postcondition φpost

are shared between the conditions. Intuitively, a capability corresponds to
an implication (∀)φpre ⇒ φpost, where (∀) denotes universal closure, and ⇒
denotes state change (as opposed to material implication in classical logic):
for all inputs (variable assignments) holds that if the pre-state is such that
φpre is true, then the state will change to a post-state, in which φpost is true.
Classes in an ontology correspond to unary predicates.

Example 4. We use the bookselling ontology in Fig. 4. We assume that this
ontology is our background knowledge and is true in both the pre- and post-
state; it is thus implicitly part of both the pre- and postcondition.

Consider a book and CD selling and shipping Web service S with a pre-
condition Spre and a postcondition Spost. With the precondition Spre we want
to specify that there should be an input that identifies a book or a CD and
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there should be one which is a member of the class Address. The individual
inputs are denoted by the variables x and y, respectively:

Spre ≡ (Book(x) ∨ CD(x)) ∧Address(y).

With the postcondition Spost we want to specify that there is a confirma-
tion of purchase, denoted by the variable z, and that the product x is shipped
to y:

Spost ≡ ∃z(PurchaseConfirmation(z) ∧ confirms(z, x)) ∧ isShippedTo(x, y).

Consider now a goal G representing requests for a bookselling and shipping
service, with the precondition Gpre that specifies the willingness to provide a
book and address:

Gpre ≡ Book(x) ∧Address(y).

The postcondition Gpost specifies the requirement that the book is shipped to
the provided address:

Gpost ≡ shippedTo(x, y).

One can now verify that S is a functional refinement of G: any state that
is compliant with (i.e., that satisfies) the precondition of the goal Gpre is
also compliant with the precondition of the Web service Spre; and any post-
state compliant with the postcondition of the Web service Spost is also com-
pliant with the postcondition of the goal Gpost. So, any execution of the Web
service S with inputs satisfying the precondition of the goal (e.g., the inputs
provided by the user) completely fulfills the user’s requirements, and thus
there is a match between the goal and the service.

4 Other Frameworks for Semantic Web Service
Description

In this chapter we have described how ontologies can be used in the description
of Web services, in the context of WSMO, a framework for the description
of semantic Web services. Now, there are several other frameworks for de-
scribing semantic Web services that also allow using ontologies in Web service
descriptions. In this section we briefly review the most prominent other frame-
works for semantic Web service description. The frameworks we consider are
WSDL-S [1], SAWSDL [9], OWL-S [15], and SWSF [5].

4.1 WSDL-S / SAWSDL

WSDL-S was proposed as a member submission to the W3C in November
2005 between the LSDIS Laboratory and IBM [1]. After submitting WSDL-
S to W3C, the proposal has been superseded by SAWSDL [9], which is a
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W3C Recommendation. SAWSDL is a restricted and homogenized version
of WSDL-S in which annotations such as preconditions and effects are not
explicitly specified, as there is no current agreement about their usefulness or
their meaning in the broader Semantic Web services community.

In contrast to WSMO, SAWSDL is a lightweight approach to Web service
description. It extends WSDL and allows associating semantic annotations
with Web services, building on pre-existing standards. Using the extensibility
of SAWSDL, semantic annotations in the form of URI references to exter-
nal models, such as WSMO or OWL-S (presented in the next subsection)
can be added to the interface, operation and message constructs. SAWSDL is
independent from the language used for defining the semantic models and ex-
plicitly regards the possibility of using WSMO, OWL-S and UML as potential
candidates, as illustrated in the SAWSDL usage guide [2]. As such, SAWSDL
is complementary to WSMO.

SAWSDL extends WSDL with a set of attributes and elements that may
be used to associate semantic annotations with WSDL descriptions. For the
annotation of individual Web services, a bottom-up approach is followed,
meaning that WSDL message types, used for Web service inputs and outputs,
are mapped to the concepts in domain-specific ontologies (see also Sect. 3.2).
Additionally, WSDL operations, which are description of Web service func-
tionality, may be mapped to ontological concepts in a task ontology (see also
Sect. 3.1). The user goals may be represented using service templates based
on concepts from domain ontologies.

4.2 OWL-S

OWL-S (formerly known as DAML-S) [15] is an OWL ontology that facil-
itates the description, discovery, invocation, composition and monitoring of
services. The ontology consists of three main elements: Service Profile, Service
Grounding and Service Model (see Fig. 5). These concepts are used to describe

Fig. 5. Top-level elements of the OWL-S service ontology
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(1) what the service provides to prospective clients, (2) how the service can
be used, and (3) how interaction with the service can take place, respectively.

The Service Profile contains a number of non-functional properties of the
Web service, including: the service name, a textual description of the service,
contact information of the service responsible, an external categorization of
the service, and, finally, an expandable list of non-predefined properties.

The functional characterization of Web services is expressed in terms of the
information transformation and the state change produced by the execution
of the service. The state change, modeled by preconditions and effects, refer to
the change on the state of the world as a consequence of executing the service,
and information transformation, modeled by inputs and outputs, which refer
to what information is required and what information is produced (generally
depending on the information provided as input) by the service. The schema
to describe IOPEs (inputs, outputs, preconditions, and effects) instances is
defined in the Service Model, not in the Service Profile. Therefore, these in-
stances are described in the Service Model and referenced from the Service
Profile. Such IOPEs may be used for expressive Web service descriptions, as
illustrated in Sect. 3.3, although outputs cannot be used for expressing the
relationship between the inputs and outputs. Then, when leaving out the pre-
conditions and effects from the IOPE, one obtains a description of inputs and
outputs as in Sect. 3.2. Additionally, service models may refer to a service
category, which could be a concept in a task ontology (cf. Sect. 3.1).

Both OWL-S and WSMO aim (and claim) to provide the necessary means
for creating semantic descriptions for Web services, i.e., to enable the vision
of the Semantic Web services. Although both approaches have identical aims,
there are certain differences between the two. One striking difference is that,
in contrast to OWL-S, WSMO defines the concept of mediator as a first-
class citizen of the framework. The other major difference is the structure of
Web service descriptions. OWL-S defines an ontology comprising the main
elements of a service, where the service element serves as an organizational
point of reference for declaring Web services. The description of an individual
Web service is an instance of the Service concept. The structure of WSMO
descriptions is somewhat different as it offers four main top-level elements
(ontology, Web service, goal and mediator) that can refer to each other either
by using mediators or by importing ontologies (i.e., ontologies that contain
the vocabulary to be used in the semantic descriptions).

4.3 SWSF

The Semantic Web Services Framework (SWSF) [5] is a specification produced
by the SWSL Committee8 of the Semantic Web Service Initiative (SWSI).
SWSF has its own conceptual model, called Semantic Web Service Ontol-
ogy (SWSO) and language, called Semantic Web Service Language (SWSL).

8 http://www.daml.org/services/swsl/
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SWSO has been influenced by OWL-S and adopts its three ontologies, i.e.,
service profile, model and grounding. The difference and the key contribution
of SWSO is its rich behavioral process model, which is based on the Process
Specification Language PSL.9 Therefore, SWSO can support more powerful
descriptions and reasoning over Web service descriptions. SWSL has two sub-
sets, SWSL-FOL and SWSL-Rules, which are based on first-order-logic and
logic programming, respectively.

5 Conclusions

Existing E-Business solutions typically require the implementation of costly
and custom infrastructures by each of the business partners involved. Web ser-
vice technologies are a milestone on the path towards flexible interoperability
among distributed and independent software systems. However, while Web
services provide a uniform infrastructure for the provision of services over the
Web, they deliver only syntactical descriptions that are hardly amenable to
automation. The process of dynamically creating ad-hoc interactions between
companies, as envision by Web services, remains unattainable. Semantic Web
services, as presented in this chapter, are an application of Semantic Web
technologies, and ontologies in particular, to Web service description. Such
semantic descriptions enable machine processing of an automated reasoning
about Web service functionality, as well as the mechanisms used to invoke
them and the data used as inputs and outputs.

We have seen how ontologies can be used for the formal description of
both user requests and Web service functionality. Specifically, the three ways of
using ontologies in Web service descriptions we addressed in this chapter were:
describing goals and Web services as concepts in a task ontology, describing
inputs and outputs using concepts in a domain ontology, and using ontologies
as terminologies for expressive state-based Web service descriptions. We have
also described how the first and second approach can be formalized using
Description Logics (such as OWL DL) and how Description Logic reasoning
can be used for the task of Web service discovery.

Comparing the approaches to describing Web services, there is a difference
in the detail and preciseness of the descriptions both between and within
the approaches. At the one end of the spectrum there are the lightweight
task ontologies (such as the one depicted in Fig. 3) whose concepts are used
for rather coarse-grained Web service descriptions. At the other end, there
are the detailed state-based (pre- and postcondition) descriptions that use
heavyweight background ontologies. In between, there are the more detailed,
more heavyweight task ontologies, containing a more precise axiomatization
of the domain, state-based descriptions with more lightweight background
ontologies, etc.

9 http://www.mel.nist.gov/psl/
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As discussed in detail in chapter “Exploring the Economical Aspects of
Ontology Engineering”, creating ontologies, and especially heavyweight on-
tologies, have an (often considerable) cost. The engineering of Web service
descriptions based on such ontologies brings additional cost, which can be
considered relatively low in case they are based on task ontologies, but will be
high for the case of detailed state-based descriptions. The existence of ontolo-
gies on the (Semantic) Web, which may be reused in Web service descriptions,
would reduce the cost of describing goals and Web services. Nonetheless, au-
thors of such descriptions will need to make a trade-off between the detail of
the descriptions – descriptions with higher detail will lead to more accurate
results in Web service discovery and a higher degree of automation in selection
and execution – and the effort required to create the descriptions.
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Summary. The growing amounts of ontologies and semantically annotated data
has led to considerable interest in mining these richly structured data sources. While
research has actively addressed the issue of inducing semantic structures from con-
ventional types of data, approaches for mining semantically annotated data still
constitute an emerging field of research. Approaches in this direction either investi-
gate how semantic structures can help to advance classical Machine Learning tasks
or how semantic structures can themselves become the objects of interest. In this
chapter, we review some of the main topics at the intersection of Machine Learning
and Semantic Web research.

1 Introduction

Recent efforts of research and industry in the area of the Semantic Web (SW)
and ontologies together with the standardization of the Resource Description
Framework (RDF) and the Web Ontology Language (OWL) [38] have led
to an increasing amount of available ontologies, taxonomies and knowledge
structures of various types as well as a rising number of semantic annotations.
As of March 2009, the statistics of the SW Search Engine Swoogle

1 count
a total of 1, 615, 237 publicly available “error-free pure SW Documents”. As
typed graphs, supplemented by the formal semantics of the employed ontology
languages and the associated possibilities for logical reasoning, these data
sources also exhibit an unconventional structure as compared to traditional
data sources like single database tables or textual data.

In the last years, research has actively addressed the problem of learning
knowledge structures for the Semantic Web in the context of both Ontol-
ogy Learning (the topic of chapter “Ontology Learning” in this volume) and
Information Extraction (the topic of chapter “Information Extraction”).

Along another line, research has recently started to investigate how ex-
isting SW data sources can be mined and analysed by inductive learning
1 http://swoogle.umbc.edu/
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on Information Systems, DOI 10.1007/978-3-540-92673-3,
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techniques. Two communities contribute to this trend. On the one hand, the
Semantic Web community has started to incorporate concepts of inductive
learning into their research work, an area which is also referred to as Semantic
Web Mining [79]. On the other hand, the Machine Learning (ML) community
increasingly investigates how semantic structures can help to perform classi-
cal ML tasks or how richly structured data sources, including SW-type data,
can become the subject of learning techniques. Some of these approaches do
not (yet) explicitly build on SW technology but rather on own formalisms
and/or representations. However, these formalisms mostly have counterparts
in the Semantic Web or could be used in an analogous manner. We strongly
believe that with the increased availability of Semantic Web data, the issue of
mining the knowledge inclosed therein – i.e. mining from the Semantic Web
as opposed to mining for the Semantic Web – will become a substantial and
important research field.

In this chapter, we review various attempts to combine ML techniques
and ontologies, semantically annotated data or both. This is an exciting and
rapidly expanding but also highly scattered research area. Our exposition
includes both, references to explicit Semantic Web Mining research and ref-
erences to activities in the ML community that show links to SW research
efforts. In order to structure the different contributing research fields, the
next section starts with an overview over the whole research area and the
content of this chapter.

2 The Machine Learning and Semantic Web Research
Landscape

The use of ontologies and comparable declarative knowledge representation
paradigms within ML tasks is an emerging field of research which draws from
contributions from various communities and is shaped by a large number of
diverse paradigms. In this section, we aim at structuring this research field
along two major dimensions.

On the one hand, approaches can be organised according to the type of
the objects of interest to be analysed by the learning techniques:

“Ordinary” data: In this setting, the objects of interest are arbitrary data
items which have already been the subject of investigation in conventional
ML settings. However, their content and conventional representation can
be mapped to entities found in ontological structure. As an example, con-
sider textual data which on the one hand has a classical representation
for ML in terms of the Bag-of-Words (BOW) model but whose content
can on the other hand be described further by means of lexical ontologies
such as WordNet.

Ontology Entities: In this setting, the objects of interest are parts of an onto-
logical structure themselves. It covers all cases where ontological entities
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become the focus of the mining activities. This class could be further
divided according to the entity type, i.e. whether entities reside on the
schema or on the instance level of the ontology.

Ontologies: Finally, this group of approaches covers all cases, where sets of
ontological axioms, i.e. whole ontologies or parts of ontologies are the
object of ML interest.

On the other hand, the contributions in the field can be roughly organised
according to the structural component of the ML technique which is modified
primarily:

Feature representation: Techniques of this class use knowledge from the on-
tology to modify classical feature representations, e.g. by adding features
which can be deduced from the ontology.

Similarities and distances: While techniques of the previous class explicitly
transform the data representation, techniques in this class achieve a
similar effect implicitly. This is done by distorting the pairwise instance
similarities or distances which form the input to many ML algorithms
by means of calculations which take the structure and knowledge of the
ontology into account.

Model class: For this class of approaches, the knowledge about the depen-
dencies of entities in the ontology becomes part of the overall ML model,
e.g. in the form of constraints on the solution space or in the form of
probabilistic dependencies between instances and features.

Algorithm: For this class of techniques, the knowledge encoded in the ontology
enters the overall machine learning technique only on the algorithmic level.

Table 1 visualizes the approaches that will be covered in this chapter along
these dimensions. We will take up this classification in the respective sections.
Clearly, this structure covers only some of the relevant aspects and the dis-
tinction between two classes along these dimensions may sometimes not be
as crisp as our exposition suggests. At the same time, this chapter does not
claim to provide an exhaustive review of all relevant approaches. On the con-
trary, the choice of techniques to be covered is certainly biased by the research
interests of the authors. However, the analysis provides some intuition on how
the overall research landscape is structured.

The topics of this chapter are arranged as follows: In Sect. 3, we sketch a
number of approaches to exploit background knowledge encoded in ontologies
within Text Mining applications. In this context, ontologies support the gen-
eration of informative features for the use with classical Text Mining (TM)
algorithms. This section is more comprehensive and detailed than the other
sections, which, as a tribute to the limited space, can only sketch some of
the main ideas and point to further sources of information for the interested
reader. In Sect. 4, we review a number of approaches from the area of Similar-
ity Measures that make use of semantic knowledge representation mechanisms.
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Table 1. Landscape of relevant approaches at the intersection of ML and SW
covered in this chapter

Objects of interest

“Ordinary” data
(e.g. texts)

Ontology entities Ontologies
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Feature rep-
resentation

Ontologies for text
mining
Sect. 3

Link-based object
classification
Sect. 5

Graph classification
Sect. 5

Similarities
and distances

Semantic smoothing
kernels
Sect. 4

Similarities and
kernel functions for
ontological entities
Sect. 4

Graph kernels

Graph matching
Sect. 5

Model ←− Statistical Relational Learning −→
Sect. 6

Algorithms – Social network
analysis of
ontologies
Sect. 5

Inductive Logic
Programming
Sect. 6

–

In particular we also cover an exciting field of modern ML research, Kernel
Methods, that make use of a specific class of such similarity measures. In
Sect. 5, we survey a field of ML research called Link Mining which addresses
various learning tasks on data that exhibits a link structure. Then we sketch
how this work can be adapted to ontological data. In Sect. 6, we introduce the
field of Statistical Relational Learning that naturally lends itself to application
to SW data and sketch its relations to the somewhat more traditional field of
Inductive Logic Programming. We conclude with a short summary in Sect. 7.

3 Ontologies for Text Mining

The term Text Mining (TM) was first phrased by Feldman and Dagan [26] in
1995 to describe a new field of data analysis. Text Mining comprises various
facets but in general it refers to the application of methods from Machine
Learning to textual data. An overview over the topic is given by Hotho et al.
[43]. Some subfields of Text Mining go beyond the detection of patterns from
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texts as wholes but rather focus on the extraction of factual knowledge from
them – a field which is known as Information Extraction (IE) covered in
chapter “Information Extraction” in this volume. Text Mining is distinguished
primarily by special preprocessing methods to prepare the textual data for the
analysis by Machine Learning techniques. It is not surprising that Text Mining
as a field naturally overlaps with other computer science disciplines that deal
with the processing of natural language such as Information Retrieval (IR)
[2], Web Mining [14] as well as Natural Language Processing (NLP) [59].

From the data mining perspective, Text Mining mainly targets three dif-
ferent application areas. On the one hand, Text Clustering is of interest to
allow for a better way to explore huge text collections and to add structure
for navigation. On the other hand, Text Classification aims at learning mod-
els that enable the assignment of thematic categories to unseen texts, e.g. to
support news providers by classifying their incoming news, but also for spam
detection. The survey by Sebastiani [75] provides a good overview of the topic.
Finally, the visualization of large text corpora for fast and simple exploratory
inspection is a nontrivial task which is often necessary to get first insights into
huge and otherwise hardly usable textual resources [27,86].

Ontologies represent additional background knowledge which can be ex-
ploited to better solve typical Text Mining tasks [8]. In the context of our
classification of approaches to Machine Learning with ontologies in Sect. 2,
the techniques we report on fall into the class of approaches that deal with
arbitrary instances outside the ontology structure. At the same time, all of
these approaches mainly aim at a modified feature representation paradigm.
In Sect. 4, we will shortly look at an alternative technique, namely the mod-
ification of the underlying similarity measures by means of an appropriate
kernel function.

3.1 Preprocessing

In this part, we shortly sketch both the conventional and the ontology-
enhanced representation of text data for ML settings.

Text Representation

In Text Mining, documents are typically represented as so called Bag-of-Words
vectors as originally proposed by Salton [72] for IR. This means that one
counts words of documents independently of their order resulting in a vector
representation. Every document is represented as a vector d which consist of
the frequencies of every word in the document. For example, in Fig. 1 the word
“oil” appears twice in the text. The dimension of the resulting vector space
is given by the number of distinct words of the corpus. Figure 1 illustrates
this situation for a document from the well-known Reuters-21578 corpus [55].
On the left side the original document is depicted which results in the bag of
words vector next to the document.
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Fig. 1. Bag of words example

Non-descriptive words, so called stopwords, are often removed from this
representation based on stopword lists.2 One linguistic property of words in
text is their morphological variability. For text mining, it is necessary to have
the same word in the same spelling to be able to compute a meaningful simi-
larity. To address this issue, words are usually not used in their inflected form,
but only as their stem. For example, the stemming algorithm introduced by
Porter [67] is the most often used heuristics for the English language.

Term weighting techniques, such as TFIDF weight tf , the frequency of a
word in a document, with idf , a factor that discounts its importance when it
appears in many documents in the corpus. It is defined as:

tfidf(d, t) := log(tf(d, t) + 1) ∗ log
(

|D|
df(t)

)
,

where df(t) is the document frequency of term t that counts in how many doc-
uments term t appears. See Amati et al. [1] for a discussion of such measures.
Detection of multi-word expressions, names and abbreviations are examples
of further preprocessing steps which may or may not be of interest for a par-
ticular application. For general information on preprocessing, the interested
reader is referred to the surveys by Sebastiani [75] and Hotho et al. [43].

Incorporating Background Knowledge from Ontologies

The background knowledge we will exploit further on is encoded in an on-
tology. The ontological background knowledge is incorporated into the vector
space model by applying additional preprocessing steps. After deriving the
typical bag of words representation, the vector dimensions are mapped to
concepts of a given ontology or knowledge base.

Enriching the term vectors with explicit concepts from the ontology has
two benefits. First it resolves synonyms; and second it introduces more gen-
eral concepts which help to identify related topics and provides some kind of
2 The stopword list of the SMART project which is available at ftp://ftp.cs.

cornell.edu/pub/smart/english.stop is commonly used for English.
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connection between documents which addresses the same or a very similar
topic with different words. For instance, a document about beef may not be
related to a document about pork by the cluster algorithm if there are only
“beef” and “pork” in the term vector. But if the more general concept “meat”
is added to both documents, their semantic relationship is revealed. We have
investigated the influence of three different strategies for adding or/and re-
placing terms by concepts on the clustering/classification performance [41].
By mapping words to concepts we compute a new concept vector. The first
strategy uses all available information by performing the mining on both vec-
tors together. The second strategy removes all words of the word vector which
could be mapped on a concept. The last strategy bases the analysis only on
the concept vector. A mapped vector for our example document of Fig. 1 is
given next to the bag of words vector. Only concepts which are found in the
given ontology (in this case Wordnet was used) are present in the vector.

For our purpose, a knowledge base needs a lexical component to allow for
an appropriate mapping of the words of the text documents to the concepts of
the ontology. Obviously, this mapping yields new challenges like the handling
of the emerging concept vector and the detection of the meaning of a word to
find the right concept. In this context, an important problem is to find the right
concept for a word in a given context which have more than one meaning. This
is the word sense disambiguation problem [45]. A perfectly mapped resource
seems to be helpful for clustering text [18], but the current state of the art does
not reach this level. First studies show the need of word sense disambiguation
for clustering [41], but a detailed analysis on the clustering performance of
correctly disambiguated word senses does not exist yet.

The mapping of words to concepts solves also the synonymy problem.
Adding additional hypernyms/super concepts allows for relating very sim-
ilar topics which are the content of different documents but which a user
would expect in the same cluster. By changing the document representation
in a way that different words of the vector are mapped to the same (super)
concept, to represent the same or a very similar topic by a common repre-
sentation, the clustering algorithm should be better able to group such doc-
uments together. By adding more super-concepts we start to add noise and
in result the performance will drop because topics become related which have
not so much in common. The rightmost vector in Fig. 1 illustrates the exten-
sion of the concept “oil” by the two super-concepts “lipid” and “compound”.
In this small example, the super-concepts have the same count as oil but
this could change if other sub-concepts of, e.g. lipid would be present in the
document.

3.2 Approaches for Different Learning Tasks

We now focus on some of our own results that use ontologies to improve
clustering and classification tasks [41, 9, 7].
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Text Clustering

Text document clustering methods can be used to find groups of documents
with similar content. The result of a clustering is typically a partition of the
set of documents. Each cluster consists of a set of documents. Usually the
quality of a clustering is considered better if the contents of the documents
within one cluster are more similar and between the clusters more dissimi-
lar. Most clustering methods group the documents only by considering their
distribution in document space (for example, in the vector space model for
text documents). A good survey can be found in [4] and a discussion of the
performance of different Text Clustering approaches in [78].

We illustrate the integration of background knowledge into the text cluste-
ring process by results of Hotho et al. [41] and Hotho [42] using a variant of the
popular k-means clustering algorithm. In these experiments, we applied the
usual preprocessing steps on the Reuters-21578 corpus [55], the FAODOC cor-
pus and a small Java corpus. As a lexical ontology, WordNet [61], a lexical on-
tology of the English language, was used. It provides not only a morphological
component which significantly improves the preprocessing but also contains
synonymy, hypernym/super-concept and frequency information about polyse-
mous words. The main outcome of our experiment was the following: TFIDF
weighting improves the text clustering performance significantly and is also
helpful to integrate the background knowledge as it gives a good weight to
the concepts. Word sense disambiguation is necessary during the mapping of
words to concepts. There are indications that the “add strategy”, which uses
both words and concepts equally, outperforms all other integration strategies.
The integration of super-concepts into the concept vector additional improves
the performance of the text clustering approach.

Not only the performance of Text Clustering can be improved by using
background knowledge. The integration of super-concepts provides also a very
good basis for clustering visualization. Hotho et al. [44] use Formal Concept
Analysis (covered in chapter “Formal Concept Analysis” of this volume) to
compute the visualization. The resulting concept lattice makes the exploration
of a new corpus easier then inspecting unrelated clusters as it provides a good
overview over the different topics of the corpus by relating clusters to each
other. High level concepts from the ontology are used to describe the common-
alities of different clusters. The structure of the lattice helps also to drill down
to very specific clusters while maintaining a clear relation to a major topic.

To date, the work on integrating background knowledge into text cluster-
ing is quite heterogeneous. Green [32] uses WordNet to construct chains of
related synsets from the occurrence of terms for document representation and
subsequent clustering. Green does not evaluate performance and scalability of
his approach as compared to standard BOW-based clustering of documents.
Also Kushal Dave [50] has explored WordNet. He did not perform word sense
disambiguation and only found that WordNet synsets decreased clustering
performance in all his experiments.
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Text Classification

The automatic process of learning a model, based on a given set of training ex-
amples, which is then able to predict the class label of a new text document is
known as Text Classification. Early methods that produced good results were
Rocchio, k-Nearest Neigbhour (kNN) or neural networks in the middle of the
1990s. Meanwhile, more advanced Machine Learning approaches like Support
Vector Machines (SVMs) or Boosting show very impressive Text Classification
performance. A good survey is presented by Sebastiani [75]. As an example,
Fig. 2 illustrates the general classification model of linear classifiers like the
Perceptron or Support Vector Machines.

In this section, we report the main idea of integrating formally represented
knowledge into the learning step with the goal to improve the prediction per-
formance. We follow the presentation of our work in [9], where we showed how
background knowledge in form of simple ontologies can improve Text Classifi-
cation results by directly addressing the problems of multi-word expressions,
synonymous words, polysemous words, and the lack of generalization. We used
a hybrid approach for document representation based on the common term
stem representation which is enhanced with concepts extracted from the used
ontologies as introduced above. For the actual classification, we suggested to
use the AdaBoost algorithm using decision stumps as base classifiers which
has been proved to produce accurate classification results in many experi-
mental evaluations and seems to be well suited to integrate different types of
features. Evaluation experiments on three text corpora, namely the Reuters-
21578, OHSUMED and FAODOC collections showed that our approach lead
to improvements in all cases. We also showed that in most cases the improve-
ment can be traced back to two distinct effects, one being situated mainly on
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Linear classifiers are defined by discrimi-
nant functions of the form:

f(x) = sign(〈x, w〉 + b).

Given a set of input examples, training al-
gorithms for linear classifiers try to esti-
mate optimal parameter w (normal vector)
b (bias). The resulting decision boundary is
given by a hyperplane (here a straight line
in 2D). Each side of the hyperplane cor-
responds to a particular classification deci-
sion. Popular training algorithms for linear
classifiers are the Perceptron [71] or Support
Vector Machines (SVMs) [13, 76].

Fig. 2. Excursus: Linear Classification
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the lexical level (e.g. detection of multi-word expressions) and the generaliza-
tion on the conceptual level (resolving synonyms and adding super-concepts).

Other results from similar settings including background knowledge are
reported in [74] and [84]. Ureña Lóez et al. [82] and de Buenaga Rodrguez et al.
[18] show a successful integration of WordNet for a document categorization
task, but the result is based on manually designed synset vectors. They use
the Reuters corpus for evaluation and improve the classification results of the
Rocchio and Widrow-Hoff algorithms by 20 percent points. This result can
be seen as an upper bound as the manual word sense disambiguation can be
considered as perfect.

3.3 Related Approaches

A number of other approaches have varied the basic settings we have reported
in the previous section. Beside the usual preprocessing of text, several other
approaches like classification on n-grams or smoothing with Latent Semantic
Indexing (LSI) were investigated to improve the performance in selected Text
Mining settings. In the following, we report on two particularly interesting
directions.

Text Mining with Automatically Learned Ontologies

So far, the ontological structures employed for the classification and cluster-
ing task are created manually by knowledge engineers which requires a high
initial modelling effort. Research on Ontology Learning (covered in chapter
“Ontology Learning” of this volume) has started to address this problem by
developing methods for the automatic construction of conceptual structures
out of large text corpora mostly in an unsupervised process. To reduce the
modelling effort, the next step is to first learn an ontology from text which
perfectly matches with the topics of the corpus and then add this newly ex-
tracted knowledge to the mining process as described in the previous sections.
This approach was undertaken by Bloehdorn et al. [7], where we compared
results both (1) to the baseline given by the BOW representation alone and
(2) to results based on the MeSH (Medical Subject Headings) Tree Structures
as a manually engineered medical ontology. We could show that conceptual
feature representations based on a combination of learned and manually con-
structed ontologies outperformed the BOW model, and that results based on
the automatically constructed ontologies are highly competitive with those of
the manually engineered MeSH Tree Structures.

Using Background Knowledge from Ontologies in Information
Retrieval

Several researchers have reported positive results concerning query expansion
in the context of IR applications. In early work on the topic, Salton and Lesk



Ontologies for Machine Learning 647

[73], found that expansion with synonyms improved performance, while using
broader or narrower terms produced too inconsistent results for being actu-
ally useful. Wang et al. [85] report that a variety of lexical–semantic relations
improved retrieval performance. A comprehensive study by Voorhees [83] in-
dicated that query expansion is especially useful when queries are relatively
short. Gonzalo et al. [31] compare indexing id disambiguated words and in-
dexing of WordNet synsets and show that the first variant improves upon the
plain term vector model but performs worse than the second variant.

4 Similarities and Kernel Functions for Knowledge
Structures

Various Machine Learning algorithms can be designed in such a way that
the only required input is a matrix of pairwise similarities or distances among
the input items. The definition of appropriate similarity and dissimilarity mea-
sures is a topic that plays a key role in different areas of Artificial Intelligence.
This chapter deals with a selection of approaches for defining appropriate
similarity or dissimilarity measures in the context of Machine Learning with
Ontologies. In the context of the classification provided in Table 1, the group
of techniques reported here corresponds to the second row.

In the simplest case, algorithms can work with an arbitrary similarity
function which is usually only required to be positive, reflexive and symmetric.
Algorithms that work with distances rather than similarities often require
that the distance (i.e. dissimilarity) measures comply with the requirements
of a metric. Examples of algorithms that pose only minor requirements on
the properties of the employed measures are the k-Nearest Neighbour (kNN)
algorithm for classification or agglomerative clustering techniques. Classical
similarity measures defined on feature vectors are the inner product or the
cosine, and the corresponding canonical dissimilarity measure is the Euclidean
distance as e.g. required for k-means clustering.

Most naturally, there are strong relations between feature representations
and (dis-)similarity measures: Changes to the feature representation may im-
ply different measures and changes to the measures may implicitly correspond
to a modified feature representation. A particularly interesting class of similar-
ity measures are kernel functions. Kernel functions compute the similarities of
data instances in such a way that the result is equivalent to an inner product in
some (possibly unknown) vector space. Formally, any function κ : X×X → R

that for all x, z ∈ X satisfies κ(x, z) = 〈φ(x), φ(z)〉 is a valid kernel, whereby
X is some input domain under consideration and φ is a mapping from X to a
feature space F . It can be shown that the class of such functions can be char-
acterised as the class of functions which are positive semi-definite. The reason
for the large interest in kernel methods is the fact that the correspondence to a
vector space makes it possible to use kernel functions together with many Ma-
chine Learning algorithms whose models are tied to a geometric interpretation
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within the corresponding vector space without representing objects explicitly
in this space. An example would be the notion of a separating hyperplane in
the case of classification with linear classifiers as described in Fig. 2, e.g. in the
case of classification with SVMs. These models can usually be better analysed
in terms of their statistical behaviour and usually lead to superior general-
ization performance. At the same time, the explicit construction of a feature
vectors can be avoided and would often be practically impossible due to the
large number of dimensions involved. Kernel methods thus form an interesting
group of methods for dealing with complex and structured data, such as data
embedded in an ontology structure [33]. For more details on the theory of
kernel functions, the interested reader is referred to the introductory article
by Müller et al. [64] or to the book by Shawe-Taylor and Cristianini [76].

4.1 Ontology-Based Kernel Functions for Semantic Smoothing

Semantic Smoothing Kernels are a technique for incorporating ontological
background knowledge into a kernel function for vector representations of
textual data. This kernels implicitly mimic parts of the effects of the explicit
feature transformations we have investigated in the previous section. Semantic
smoothing kernels were initially proposed by Siolas and d’Alche Buc [77] and
subsequently revisited in [3,6,60]. These kernels still work on standard vecto-
rial data but try to incorporate information about the semantic dependencies
between the dimensions of the vector space. This approach is interesting in
those cases where the dimensions of the vector space can not be regarded as
mutually orthogonal dimensions as, e.g. in the standard bag-of-words repre-
sentation used in text mining settings. In their basic form, these kernels are of
the type k(x, y) = x′Qy, whereby Q is a symmetric and positive semi-definite
smoothing matrix that encodes the similarity of the respective attributes.
Specifically, an off-diagonal entry Qij specifies the similarity between two
features i an j, e.g. two similar terms like “beef” and “pork” as discussed
earlier. In most approaches, the design of the smoothing matrix Q is guided
by the arrangement of the entities corresponding to the vector dimensions
(e.g. terms) in an ontological structure. The positive semi-definiteness of the
smoothing matrix Q implies a possible decomposition as Q = PP′, thereby
revealing the underlying feature mapping as a linear transformation into a dif-
ferent space, usually a concept space similar to the one introduced in Sect. 3.

Advanced approaches have exploited the property that kernels can be com-
bined and embedded in one another. As an example, Bloehdorn and Moschitti
[10, 11] have combined ontology-based semantic smoothing kernels with Tree
Kernels [15] defined on the syntactic structure of sentences, yielding powerful
combined kernels.

4.2 Similarities and Dissimilarities for Ontology Entities

A general framework for similarity measures in ontologies is proposed by Ehrig
et al. [24]. The framework is based on distinguishing several layers of similarity,
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namely the data layer which takes into account similarities of the involved data
types, the ontology layer which corresponds to measures that use the ontology
structure and the context layer which takes into account how ontology entities
are used in some external context.

Bernstein et al. [5] as well as Hefke et al. [37] provide software frame-
works for computing semantic similarity measures according to a wide range
of similarity measures. As an exemplary application, Kiefer et al. [47] use
the similarity framework reported by Bernstein et al. [5] to mine software
repositories.

D’Amato et al. [16, 17] provide a set of similarity and dissimilarity mea-
sures for concept descriptions in the description logic ALC. The measures are
based both on the syntax and on the semantics of the descriptions including
extensions for involving individuals and for evaluating their dissimilarity.

4.3 Kernel Functions for Ontology Entities

Most of the work on kernels for structured data is rooted in the influential
work on convolution kernels by Haussler [36]. The relevance of this kind of
research towards ontologies and metadata becomes obvious when looking at
learning problems where the instances are described in the knowledge repre-
sentation language of interest. Such an approach is taken by Frasconi et al.
[28], where objects are described using a simple knowledge representation lan-
guage consisting of a type hierarchy, relations between objects and attributes.
The kernel, which is set up in a similar way as the convolution kernel and is
motivated by mereotopological considerations, is capable of improving classifi-
cation accuracy on a biomedical dataset compared to state-of-the art Inductive
Logic Programming (ILP) learning algorithms.

Gärtner et al. [35] have proposed a logic-based kernel on instances rep-
resented as (closed) terms in the typed higher-order logic of Lloyd [58]. Ne-
glecting the technicalities of the approach, this logic essentially allows the
construction of complex types such as sets or lists out of other types, in-
cluding standard types as, e.g. natural numbers. The work presents a kernel
defined on terms in the associated logic including a proof that the kernel is
positive definite on all basic terms. This work can be seen as the first princi-
pled framework for defining kernel functions on data items represented in a
declarative knowledge representation formalism.

A first endeavour to investigate the use of kernels for actual Semantic
Web data is presented by Bloehdorn and Sure [12]. The paper introduces a
framework for kernel computations on instance data that makes use of var-
ious layers of instance similarity. These layers exploit the similarity of the
type structure, the similarity of data property extensions as well as common
object properties. Experiments on a classic Semantic Web dataset, the SWRC
ontology [80], show that the design of effective kernels within this framework
requires only little conceptual overhead.
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In a different spirit, Raedt and Passerini [68] have proposed a kernel on
Prolog proof trees. In this setting, the individuals are described in the con-
text of global ontological background knowledge in first-order logic. In con-
trast to the approaches mentioned previously, the ontological descriptions are
not investigated and incorporated into the kernel computation directly, but
rather indirectly by means of traces left in a Prolog reasoner. Specifically,
the idea of this kernel is then to measure the similarity of two individuals by
means of the similarity of the proof trees of a special logic program, called
the visitor program. The proof trees are compared using standard tree kernels
as mentioned above while the visitor program is designed to probe certain
characteristics of the individuals that may be of interest for the domain and
learning task at hand. Experiments using this kernel, for example on Bongard
scenes and Protein Fold classification, show promising results. In contrast to
other approaches, this kernel allows to exploit background knowledge in a
principally different way whereby the problem of kernel design is shifted from
the explicit design of kernels to operate on the instance data to the design of
appropriate visitor programs.

On the schema-level, Fanizzi and d’Amato [25] propose a declarative ker-
nel for concept descriptions in the description logic ALC. The kernel is struc-
turally based on the convolution kernel but takes into account the semantics of
the overall logic by describing classes in terms of their (known) instantiations.

5 Link Mining

In many ways, ontological data can be seen as a collection of linked resources.
Typically, as in the case of RDF or OWL, they form heterogeneous networks
with many resource and link types, whereby the type information itself is again
arranged in a linked structure, e.g. a subsumption hierarchy. But also datasets
that are not explicitly encoded according to SW standards may exhibit a cer-
tain level of semantics that is present within a link structure. As an example,
consider bibliographic data linking publications, authors, and venues.

Link mining refers to data mining techniques that explicitly consider such
links when building predictive or descriptive models of linked data. A good
survey over the field is given by Getoor and Diehl [30]. Typical link mining
tasks include group detection, classification of links and resources, prediction
of (missing) links and subgraph discovery. Link mining constitutes a research
field taking influences from different communities such as social network anal-
ysis, hypertext mining, graph mining and web analysis. The term link mining
was chosen to put a special emphasis on the links as main subject of analysis.
In the following, we review some link mining subfields that relate to ontologies
and the Semantic Web. In the classification of techniques we have proposed
above, the techniques in this section mainly relate to learning from ontological
entities, represented as nodes or edges in the ontology graph, or from whole
ontologies as such, i.e. whole graphs or parts of it.
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5.1 Semantic Network Analysis of Ontologies

Since the last decade, the social network analysis community has started to
discover the Internet and the Web as fruitful application domains for their
techniques (e.g. analysing the link structure of the Internet [48]). The use of
network analysis techniques for the analysis of Semantic Web type data has
been undertaken by Hoser et al. [40]. The paper illustrates the benefits of
applying such techniques to ontologies and the Semantic Web. In particular,
it discusses how different notions of centrality describe the core content and
structure of an ontology. From the rather simple notion of degree centrality
over betweenness centrality to the more complex eigenvector centrality based
on Hermitian matrices [39], the paper illustrates the insights these measures
can provide on ontologies.

Ding et al. [20] has developed an algorithm for ranking the importance
of Semantic Web objects at three levels of granularity: documents, terms,
and RDF graphs of the semantic web search engine Swoogle. The proposed
OntoRank approach applies mainly the idea of PageRank [65] on Semantic
Web documents and the links between them.

5.2 Link-Based Object Classification

This group of techniques refers to algorithms that directly exploit the link
structure in a graph (e.g. in an ontology) to classify objects (e.g. ontological
entities). A good overview of this kind of approaches is given in [30, Sect. 4]
for a wide range of methods and possible applications. Referring back to the
field of kernel methods introduced in Sect. 4, the diffusion kernel presented
of Kondor and Lafferty [49] constitutes an example of such a technique. In
this case the diffusion kernel tries to exploit local relations which imply global
information by using exponentials of the matrix power series on the kernel
matrix.

5.3 Subgraph Detection and Graph Matching

This topic builds upon subgraph mining techniques to find frequent or
informative substructures in graph instances. An example of the utilization of
such algorithms on Semantic Web data is given by Ramakrishnan et al. [69],
which describes methods for discovering interesting subgraphs in an RDF
graph based on semantic information associated with edges. The main focus
is to relate entities of the graph with other entities given the underlying RDF
graph structure.

Graph matching refers to techniques that try to detect similar substruc-
tures in pairs of graphs. Seen in the context of the Semantic Web, this field
immediately evokes thoughts about the field of Ontology Mapping . Work in
this area includes Doan et al. [21] who presents GLUE, a system which is
able to use different sources to learn the similarities for the mapping process.
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Interesting recent work in this direction that explicitly takes into account
the interaction between mining the structure of the ontologies to be aligned
and checking the semantics of the resulting mappings is reported by Udrea
et al. [81]. The paper presents the Integrated Learning In Alignment of Data
and Schema (ILIADS) algorithm that is based on an interleaving of a hier-
archical clustering algorithm with an incremental logical inference algorithm.
Clustering entities creates new relationships among the entities; these new
relationships may have logical consequences in OWL Lite.

5.4 Graph Classification

Unlike link-based object classification, which attempts to mine the nodes in a
graph, graph classification is a learning problem in which the goal is to classify
an entire graph as a positive or negative example in a classification setting. A
typical approach to address this problem is to discover features on the input
graphs, thereby building on subgraph mining techniques to find frequent or
informative substructures in the graph instances. The detected substructures
are then used for transforming the overall graphs into vectorial data, and then
traditional classifiers are used for classifying the instances. However, finding
all frequent substructures is usually computationally prohibitive.

Again, kernel methods have been designed to efficiently work on graph
data, but these approaches have usually been restricted to specific kinds of
graphs (e.g. trees). Kernels for arbitrary graphs have proved to be more diffi-
cult to design. Approaches in this direction are reported in [34].

6 Statistical Relational Learning

In this section we start with a short review of Inductive Logic Programming
approaches and relate them to Semantic Web paradigms. Then we focus on the
upcoming new research area Statistical Relational Learning which combines
logic and probabilistic learning approaches. We will give some references to
this area and discuss connections to Semantic Web. In the context of our
overview of the research landscape, these approaches can deal with various
types of input items but do so mainly on the level of modifying the learning
model or modifying the actual learning algorithms.

6.1 ILP and the Semantic Web

Inductive Logic Programming (ILP), a term phrased by Muggleton [63], is
a research area formed at the intersection of Machine Learning and Logic
Programming. Good introductions are given by Lavrač and Džeroski [52],
Muggleton and Raedt [62] as well as by Dzeroski [23]. ILP uses logic as the
uniform representation for examples, background knowledge and hypotheses,
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typically in the context of classification tasks. Given a first-order logic encod-
ing of the background knowledge and a dataset represented as a set of logical
axioms, ILP systems try to derive an logic program which explains all the
positive but none of the negative examples in classification setting. ILP sys-
tems are centred around techniques for refining and generalizing hypotheses
that do not yet fully explain the data and are thus based on a search process
through a partially ordered space of inductive hypotheses. A unifying theory
of ILP is built up around lattice-based concepts such as refinement, least gen-
eral generalization, inverse resolution and most specific corrections. Successful
applications areas for ILP systems include the learning of structure-activity
rules for drug design, prediction of protein structure and fault diagnosis rules
for technical systems.

As Semantic Web standards are largely built upon the foundations of first-
order logic, the application of ILP techniques to learn on Semantic Web data
is a natural step. Lisi [56] shows that current ILP systems could serve the
learning purpose if they were more compliant with the standards of represen-
tation for ontologies and rules in the Semantic Web and/or inter-operable with
well-established Ontological Engineering tools that support these standards.

ILP systems tuned towards learning in description logics (which form the
basis of most Semantic Web endeavours, particularly OWL) are presented by
Lisi and Esposito [57] and Lehmann and Hitzler [54]. A crucial issue to apply
ILP techniques successfully is the definition of generality orders for inductive
hypotheses. This issue is investigated in detail by Lehmann and Hitzler [53].
The paper presents a study on desirable properties of the employed refinement
operators in description logics and shows that ideal refinement operators do
not exist, as an indication of the hardness inherent in learning in descrip-
tion logics. The authors also show how the set of desirable properties can be
constrained to make learning feasible.

6.2 Combination of Probabilistic and Logic-Based Learning
Approaches

Statistical Relational Learning (SRL) is a relatively young research area which
focuses on the combination of probabilistic and logic models with the goal
to be better able to describe real world phenomena. Traditional statistical
machine learning is able to capture uncertainty, but only within one rela-
tion – whereas traditional ILP and relational learning approaches are able
to work on multiple relations, but cannot handle noise. The combination of
both approaches tries to overcome these limitations, which is a critical point
when working with heterogeneous and richly interlinked Semantic Web data.
Methods developed in this area are applied to richly structured data which
is available for, e.g. hypertext classification, topic prediction of bibliographic
entries, or in any kind of social networks. Other applications areas for SRL
includes communication data, customer networks, collaborative filtering, trust
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networks, biological data, sensor networks, and natural language data. The
book by Getoor [29] provides a good introduction to this area.

There are four distinct areas which are the starting points of SRL research:
(1) ILP, (2) statistical learning as well as (3) probabilistic and (4) logical in-
ference. Researchers from these areas extended in the last years well known
approaches to bridge the gap between logical and probabilistic approaches.
One example is the extension of the popular propositional rule learning algo-
rithm CN2 to ICL (Inductive Constraint Logic) in [51]. ICL is now able to
work on data represented in first-order logic while CN2 works one relation
only. The resulting combined approach shows the strength of newly emerging
SRL field.

6.3 Statistical Relational Learning Challenges and Applications
on the Semantic Web

There exist many application areas for SRL. We focus here on applications
with relation to the Semantic Web. The emergent field of Statistical Relational
Learning offers a variety of methods to overcome existing Semantic Web prob-
lems; E.g. the logic used in the Semantic Web was not designed to deal with
uncertainty but SRL has made first steps to combine logic and uncertainty.
On the other hand these problems cause new challenges for the Statistical
Relational Learning community as new kind of data arises. In the rest of this
section we will shortly review first solutions combining both areas.

Statistical relational learning techniques are well suited to knowledge-
intensive learning, because they allow input knowledge to be expressed in
a rich relational language, while being able to handle noise in this input. In
general, many different types of knowledge can potentially be integrated into
SRL. First steps towards an automatic knowledge integration are reported
by Domingos et al. [22]. In an endeavour to design such a system that is
able to support the building of large knowledge bases by mass collaboration,
[70] have designed an architecture for incorporating knowledge from a large
number of sources into a learner. The learner uses SRL techniques to handle
inconsistency among different sources and high variability in source quality.
The system uses a Bayesian Logic Programs representation [46] to extract a
Bayesian network which in turn is used to answer given queries. The approach
was successfully applied in a printer troubleshooting domain (cf. Domingos
et al. [22]).

Many good examples of applications of SRL techniques to the Semantic
Web come from the area of ontology mapping. Given initial mappings between
knowledge structures from different sources, one can learn generalizations of
them using SRL techniques like the content learner and the name learner,
both utilizing the well know naive Bayes classifier on a bag of tokens. Amongst
others, Doan et al. [21] as well as Dhamankar et al. [19] have reported such
experiments for XML data and for SW ontologies.
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Popescul et al. [66] present an extension of a typical text classification
approach which is related to the work of Sect. 3. It uses a richer set of features
from a relational database like the concepts in the text mining setting which
allows for an improvement of the learned predictive model over a typical
propositional one. Features include not only typical textual ones, but also
exploit the semantic links between documents based on citing and author
information.

7 Conclusion and Outlook

In this paper, we have reviewed contributions from different communities to
the emerging field of Semantic Web Mining by discussing Machine Learn-
ing techniques that directly or indirectly use ontologies or related declarative
knowledge representation paradigms. At this point, the work in this area is
highly scattered among various subfields of Machine Learning theory and
practice and among current Semantic Web research efforts. All these areas
continue to evolve and are likely to undergo various transformations in the
years to come.

We have introduced Inductive Logic Programming in Sect. 6.1 as the pre-
decessor of today’s Semantic Web mining efforts which continually evolves
to accommodate more and more of the current Semantic Web development.
From a theoretical perspective, the kernel methods paradigm and the tech-
niques from the field of statistical relational learning we presented in Sects. 4
and 6, respectively, are likely to have the highest impact on modern Seman-
tic Web mining efforts. From a practical perspective, the fields of text min-
ing, presented in Sect. 3, and link mining, presented in Sect. 5 already show
ontology-enhanced applications actually working or – in the case of link min-
ing – point to practical approaches that show substantial potential to be
applied and transferred to the field of the Semantic Web.
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34. Thomas Gärtner. Kernels for Structured Data. PhD thesis, University of Bonn,
Germany, 2005.
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Summary. Information Extraction (IE) addresses the intelligent access to
document contents by automatically extracting information relevant to a given
task. This chapter focuses on how ontologies can be exploited to interpret the
textual document content for IE purposes. It makes a state of the art of IE systems
from the point of view of IE as a knowledge-based NLP process. It reviews the dif-
ferent steps of NLP necessary for IE tasks: named entity recognition, term analysis,
semantic typing and identification specific relations. It stresses on the importance of
ontological knowledge for performing each step and presents corpus-based methods
for the acquisition of the required knowledge.

This chapter shows that IE is an ontology-based activity and argues that future
effort in IE should focus on formalizing and reinforcing the relation between the
text extraction and the ontology model. The discussion gives authors’ insights on
the integration of ontological knowledge in IE systems from a formal and pragmatic
point of view.

Examples in this chapter are taken from IE tasks for biology since this domain at-
tracts a large community of IE specialists and provides a large number of ontological
resources.

1 Introduction

As the volume of textual information is exponentially increasing, it is more
than ever a key issue for knowledge management to develop intelligent tools
and methods to give access to document content and extract relevant infor-
mation. Information Extraction (IE) is one of the main research fields that
attempt to fulfill this need. It aims at automatically extracting well-defined
and domain specific data from free or semi-structured textual documents. The
extraction of instances of appointments from on-line news is a typical exam-
ple. IE interprets “Yesterday, Mr. Smith as been appointed as Chief Executive
Officer of AAACompany Inc.” into the knowledge structure: Appointment
(Smith, AAACompany, CEO, Yesterday) where the arguments respectively
play the role of person, company, title and date of the appointment. Once
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formalised in such a way, the content of the document may support formal
calculus or logical inference as needed by knowledge management applications.

The relation between IE and ontologies can be considered in two non-
independent manners. As IE can extract ontological information from
documents, it is exploited by ontology learning and population methods
for enriching ontologies. This issue is specifically discussed in chapter “On-
tology Learning”. Conversely, this chapter focuses on how ontologies can be
exploited to interpret the textual document content for IE purposes. We will
show here that IE is an ontology-based activity and we will argue that future
effort in IE should focus on formalising and reinforcing the relation between
the text extraction and the ontology model.

Examples from the biology domain will illustrate the presentation of IE
concepts. Biology is a relevant application domain because of the importance
of text-mining for the biology community, the availability of structured re-
sources such as document collections and nomenclatures, the clear expression
of application requirements and finally, the amount of evaluation material
(e.g. Genia [44], BioCreative [24, 45], LLL [34], TREC [21]). This paper first
introduces Information Extraction (Sect. 2), then an example of a knowledge-
based IE system is presented in Sect. 3. On the basis of that example, we assert
the fact that IE is an ontology-based process. This statement is developed in
the following sections that detail the role of the various knowledge resources
in IE (Sects. 4–7). The last section (Sect. 8) discusses open and challenging
issues for IE.

2 What Is IE?

2.1 Definition

The IE field was initiated by the DARPA MUC program (Message Under-
standing Conference) in 1987 [16]. MUC has originally defined IE as the task
of (1) extracting specific, well-defined types of information from the text of ho-
mogeneous sets of documents in restricted domains and (2) filling pre-defined
form slots or templates with the extracted information.

A typical IE task is illustrated by Fig. 1 in functional genomics, a sub-field
of biology. IE process recognises two names, GerE and cotA, as protein and
gene names respectively. It also recognises a genic interaction relation between
them and fills the form accordingly.

In the simplest case, extracted textual fragments fill the form slots and
no more text pre-processing is required. However IE cannot be reduced to

Sentence: ‘‘GerE stimulates the expression of cotA.’’

Genic interaction form

Agent: Protein(GerE)

Target: Gene(cotA)

Fig. 1. IE example
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simple keyword filtering. Any fragment must be interpreted with respect to
its context and its expected role in the form. In the example above, GerE must
be understood as a genic interaction protein agent and background knowledge
about molecular biology is necessary to carry out this interpretation.

IE systems were initially designed as shallow text-understanding systems ,
which relied on targeted and local techniques of text exploration rather than
in-depth semantic analysis of the text. Then the limitations of the first IE
systems called for new approaches more deeply and more formally relying on
text analysis and ontological knowledge.

2.2 IE Overall Process

Operationally, IE relies on document pre-processing and extraction rules (typ-
ically regular expressions or patterns) to identify and interpret the target text.
The extraction rules specify the conditions the preprocessed text must match
and how the relevant textual fragments can be interpreted to fill the forms.
Figure 2 gives an example of a rule that can extract the genic interaction
information of Fig. 1.

The rule assumes that gene and protein names occurring on both sides
of an interaction verb denote a genic interaction between the corresponding
protein and gene.

A typical IE system includes three processing steps [22]:

1. Text analysis: From text segmentation into sentences and words in the
simplest case to full linguistic analysis. In the example from Figs. 1 and 2,
the linguistic analysis should segment the text into words, identify the
gene and protein names as well as the interaction verb and derive the
successor relation from the word order. Section 2.3 details these Natural
Language Processing (NLP) steps.

2. Rule selection: Information extraction rules are associated with triggers,
usually keywords. The presence of trigger items activates the checking of
the conditional parts of the corresponding rules. For instance, the rule of
Fig. 2 could be triggered by the occurrence of gene and protein names.

3. Rule application: Once a rule has been triggered, all contextual conditions
of the rules are checked and the form is filled according to the conclusions
of the matching rules. The result may be a filled form as in Fig. 1 or an
annotated text.

The rules are usually declarative but they may be expressed in different ways.
The rule example of Fig. 2 is represented in a first-order logic formalism. The
simplest rules extract simple slot values (i.e. dates, person names) whereas

genic interaction(X,Y) :-

protein name(X), gene name(Y), interaction verb(Z),

successor(Z,X), successor(Z,Y)

Fig. 2. Extraction rule example
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more complex ones extract several related values at the same time. This is
referred to as multi-slot extraction, which requires a relational formalism [14].

Forms of increasing complexity are taken into consideration [46]:

• Entity form filling requires to identify items in the text that represent
domain referential entities (e.g. protein and gene names).

• Domain event form filling requires to extract events that represent ac-
tual relations between entities (e.g. the agent role of a protein in a genic
interaction).

• Merging forms issued from different parts of the text that provide infor-
mation about a same entity or event.

• Scenario forms relate several event and entity forms that, considered to-
gether, describe a temporal or logical sequence of actions and events.

2.3 Text Processing

From the very beginning, the main issue in IE appeared to be the design of
efficient extraction rules able to extract all relevant information pieces and
only the relevant ones. The difficulty comes from the intrinsic richness and
complexity of natural language where a given word or phrase may have dif-
ferent meanings (polysemy) and several formulations may express the same
information (paraphrases). If the rules rely on surface clues (i.e. the presence
of a given specific lexical item, the word distance or order), a whole set of
very specific rules must be designed for each new IE application.

If the text is pre-analysed, information extraction rules can be expressed
in a more abstract and powerful way. In that case, the rules apply on the re-
sult of the pre-analysis, which is a normalised representation of the text. For
instance, the successor relations of the rule of Fig. 2 are replaced in the rule of
Fig. 3 by the subject and object syntactic dependencies. The rule is then more
general and easier to interpret in terms of domain knowledge. Syntactic de-
pendencies are independent of the word order and reflect the agent and target
semantic roles more accurately. The same rule applies to sentences in passive
voice such as CotA is activated by GerE. Usual linguistic analysis steps in-
clude morphology, syntactic and semantic analysis. The morphology analysis
focuses on the form of textual units, usually referred as words. It includes the
segmentation of the character stream into a sequence of words based on char-
acter separators (e.g. spaces, punctuation signs). In specific cases one must
rely on linguistic hints: some poly-lexical units such as “Bacillus subtilis” in

genic interaction(X,Y) :-

protein name(X), gene name(Y),

interaction verb(Z)

subject(Z,X), object(Z,Y)

Fig. 3. Abstract extraction rule example
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biology can be considered as single words, while a single token can be viewed
as the contraction of several words. The lemmatisation associates a normalised
form (the lemma) to each word (infinitive form for verbs, singular form for
nouns and pronouns) by removing marks that bear flexional features. The
morphological tagging associates morphological features (tense, number, gen-
der, presence of non-alphabetical characters and case) to words. The syntactic
analysis performs two dependent tasks. The part-of-speech (POS) tagging as-
signs a syntactic category to words (e.g. noun, verb, adverb).

The parsing identifies the sentence structure by grouping words into
phrases. Depending on the parser, syntactic dependencies between words or
phrases (e.g. subject-verb dependency) may also be computed.

The semantic analysis builds a formal representation of the text meaning.
In IE, the semantic analysis is traditionally restricted to (1) the identification
of the semantic textual units (named entities and terms) that refer to the
relevant domain objects, (2) the semantic typing that associates concepts
to those semantic units, and (3) the tagging of domain specific relations
between them.

The text analysis process relies on linguistic and domain knowledge. The
most traditional lexical resource is the named entity dictionary, a nomencla-
ture of the names of domain entities, such as genes and proteins in biology,
but other resources can also be exploited. We will show in the following that
IE is an ontology-driven approach to text analysis that heavily relies on lexical
and ontological resources.

2.4 IE as a Text-Ontology Mapping

The overall process of IE aims at mapping text to ontology. IE selects and
interprets relevant pieces of the input text in terms of form slot values. The
form slot values are derived from the semantic analysis while the form itself
represents an ontological knowledge structure.

This mapping can be formalised into the annotation of the text by the on-
tology, as shown in Fig. 4. The text fragments are tagged with ontological con-
cepts and relations according to the IE goals: the ontological concepts protein,
negative interaction and gene are linked to the semantic units GerE, inhibits
and sigK respectively. The ontological relations agent(protein, interaction)
and target(gene, interaction) are instantiated by agent(GerE, inhibits) and
target(sigK, inhibits).

Protein Negative
interaction Gene

ofThe GerE protein inhibits transcription in vitro the sigK gene

Fig. 4. Example of semantic annotation
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Most approaches rely on the assumption that semantic units are denoted
by noun phrases, that relations are denoted by predicates (verbs or verb nom-
inalisations) and that predicate arguments can be identified through neigh-
bourhood relations or syntactic dependency paths. However in the general
case, linking a text to an ontology is not as straightforward as these methods
assume [8,35]. The text and the conceptual model are fundamentally different
and cannot be directly mapped to each other and that calls for intermediate
levels of knowledge.

The lexical knowledge plays the role of mediator. Various types of lexical
resources can be exploited in IE, from the named entity dictionaries to the
domain terminologies or ontological thesauri. The lexical mediation between
the text and the ontology is complex to formalise. First, there is no one-to-one
relation neither between text fragments and lexicon entries nor between those
entries and ontological entities due to linguistic phenomena, like variation,
polysemy and ellipsis. We will show in the following sections that the lexica
are associated to sets of rules that govern the recognition or disambiguation
of the lexicon items. They contribute to building links between the text and
the lexicon on the one hand, and between the lexicon and the ontology on the
other hand. The various types of knowledge are traditionally considered as
distinct resources although they partially overlap, maintaining the coherence
between them remains an open question.

The importance of lexical resources has raised the problem of their acqui-
sition. Indeed the development of applications in specific domains generally
requires the adaptation of available knowledge resources needed for the var-
ious linguistic processing. Thus the issues of the re-usability, the acquisition
and the formalisation of knowledge become central.

2.5 IE State of the Art

In the 1990s, IE quickly became operational for extracting simple information
pieces from short and homogeneous documents such as conference announce-
ments. But extracting relational information (e.g. gene–protein interaction)
from free texts (e.g. abstracts of scientific papers) remained challenging.

The IE field then evolved since the beginning of the 2000s toward semantic
processing, knowledge acquisition and ontologies. This has led to the devel-
opment of a new generation of IE systems (e.g. [3, 41]).

Two major phenomena have made this progress possible:

• An increasing number of operational linguistic tools, and even whole inte-
grated NLP pipelines, are available for people outside the NLP field. These
tools achieve deeper and sounder linguistic analysis. They are now widely
used by IE research. Section 3 presents an example of these NLP-based IE
systems.

• Since knowledge resources are scarcely available in specific domains, knowl-
edge acquisition has become an important issue in IE since 1998 [30].
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Corpus-based Machine Learning (ML) was soon recognised by the IE field
as a relevant alternative to costly manual knowledge acquisition and adap-
tation in particular for the acquisition of information extraction rules and
ontologies [13]. In fact, various kinds of knowledge (named entities, terms,
types, semantic relations and properties) can be acquired with specifically
designed learning methods and training corpora (see Sects. 4–7).

Current IE systems therefore evolved to sophisticated platforms that com-
bine various NLP and ML steps, [4, 17]. For example, tools are available to
extract named entities, even in domains where many unknown variant forms
are frequent like in biology. Extraction of relational information has also be-
come operational [34,39]. However, these systems have often been specifically
designed for a given application. The NLP and ML processes and the under-
lying data model used to integrate them are chosen on an ad hoc basis, which
hinders the genericity and the re-usability of the systems. An open challenge
is the design of a formalised and integrated approach of IE where the whole
process is properly decomposed into elementary tasks and where the role of
the various knowledge resources is made explicit. We argue that a precise de-
composition of processes and resources is necessary to achieve a generic IE
architecture that would be reusable and tunable for many IE tasks.

3 IE as a Knowledge-Based NLP Process

This section describes IE as a knowledge-based NLP process in more detail
by outlining a generic IE architecture.

3.1 Architecture of a Linguistic-Enabled IE System

We illustrate the role of text and ontology processing in IE by the Alvis seman-
tic analysis pipeline.1 Alvis provides a software framework to develop domain
specific distributed semantic search engines. The semantic analysis is based
on the NLP platform Ogmios that generates ontological-based representations
of textual documents [32]. It is suitable for developing various textual-based
applications, including IE as well as IR, QA and more generally any applica-
tion relying on semantic annotation of documents. Comparable architectures
have been proposed to manage text processing over the last decade: GATE
[7], KIM [36] or UIMA[15], to mention only generic ones. As other platforms,
Ogmios is configurable and designed to integrate various existing NLP tools
in an operational way. Considerable attention has been paid to scalability and
efficiency, so that Alvis is able to process large and heterogeneous collections
of documents [19].

Figure 5 outlines Alvis pipeline architecture. The different NLP steps are
operated by distinct modules denoted by the boxes on the top layer, each one
1 http://cosco.hiit.fi/search/alvis.html
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SKD

Fig. 5. Alvis NLP pipeline architecture

carrying out a specific process. Each module relies on the information pro-
duced by previous components and produces information that contributes to
the interpretation of the document. The information is represented as anno-
tations recorded in an XML stand-off format [31].

3.2 Semantic-Based Text Analysis

The linguistic steps that were presented in Sect. 2.3 are implemented in Alvis
NLP pipeline. We illustrate in Table 1 the linguistic data produced by the lin-
guistic analysis of the example of Fig. 4 represented in a logic-based language.

Relevant named entities or terms are first identified as semantic units
by the dotted line-framed components of Fig. 5. Pre-processing steps of seg-
mentation into documents, paragraphs, sentences and words, morphological
analysis and syntactic category tagging are required for semantic unit recogni-
tion. Once the semantic units are identified, they are typed with fine-grained
concepts and associated by domain-specific relations (bold line-framed boxes)
from the ontology. This latter task requires syntactic dependency or neigh-
bourhood relation analysis.

This process is knowledge intensive. The components use linguistic re-
sources as figured by the middle layer boxes. They are typically domain-
dependent and application-driven. The clear distinction between the process
and the knowledge bases (KB) reduces the adaptation to new domains to
the revision of the following knowledge bases: named entity dictionaries, ter-
minologies, ontologies and IE rules. Two specialised versions of the Ogmios
platform have been deployed to develop IR applications for scientific papers
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Table 1. Example of linguistic analysis result

Words:
word(the), word(GerE), word(protein),word(inhibit), ...

Named entities:
entity(GerE), entity(sigK), entity(sigma K)

Syntactic categories:
cat(the, determinant), cat(GerE, noun), cat(inhibit, verb), ...

Terminology:
term(GerE protein), term(in vitro) term(sigK gene)

Syntactic dependencies:
subject(GerE, inhibit), object(transcription, inhibit), ...

in biology2 and patents in agro-biotechnologies.3 Their development did not
require any adaptation of the pipeline components themselves except for
syntactic parsing.4

3.3 Coupling Semantic Annotation and Knowledge Acquisition

Acquisition methods are closely integrated into the Alvis pipeline as figured
by the bottom layer of Fig. 5.

The Alvis pipeline is self-feeding since the training data needed for the ac-
quisition of the resource of a given component is derived from the documents
enriched with annotations of preceding components. For instance, the acquisi-
tion of a terminology requires a training corpus of segmented POS-tagged text
that is achieved by the three first components of the pipeline. The pipeline is
therefore exploited in two different modes.

In production mode the pipeline is applied to a corpus in order to feed
an external application, typically IE or IR with annotated documents. The
components and the KB are stable and their choice is driven toward this
application. In that mode, the pipeline is a critical element of an external
service and usually processes massive amounts of data, so it must be reliable,
stable, fast and scalable.

In acquisition mode, relevant components of the pipeline are applied to a
corpus in order to build training examples for an ML algorithm that aims
at acquiring the KB of other components. As the amount of documents pro-
cessed in acquisition mode is typically smaller than in production mode scal-
ability and speed performance are less vital. However, the flexibility and the
2 http://search.cpan.org/~thhamon/Alvis-NLPPlatform-0.3/
3 https://www.epipagri.org/index.cgi?rm=mode\_sr
4 Link Grammar Parser has been tuned to parse biological texts [38].
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modularity of the pipeline are critical, since KB acquisition requires several
experiments and fine tuning of the intermediate representations of the training
corpus.

The following sections explain the role of the various types of knowledge
in IE by detailing how they are exploited in the text annotation process of
the Alvis IE system and how they are acquired.

4 Handling Named Entities

In its usual meaning, the term named entity (NE) designates proper nouns
but it is also often used for other types of invariant terms (e.g. dates and
chemical formulae). The proper names are rigid designators that designate a
referential entity in an unambiguous way [25]. More generally, the named en-
tities are linguistic expressions that denote ontological objects in documents.
They are important to identify because they act as referential anchors from an
informational point of view. Their role in IE and more generally in text under-
standing is widely acknowledged [35]. For instance, it is easier to guess what a
document is about if one knows that it mentions Hiroshima and 1945, which
are both named entities. NE are also exploited as extraction rule triggers as
they are often quite easy to identify.

Named entity recognition (NER) identifies the named entities in texts and
associates a canonical form and a semantic category to them. A canonical
form is a unique representative of a set of forms denoting the same entity. The
semantic type is a rough ontological knowledge about the NE. NER relies on
named entity dictionaries often tuned for a specific domain and a specific type
of documents.

In the general language, variant and ambiguous NE frequently occur and
even more in sub-languages of technical and scientific domains. For instance,
Paris is ambiguous since it alternatively refers to entities belonging to different
semantic categories: either a person or a place. The gene name cat may also
refer either to a protein or to the mammalian. Many different name variation
types can be observed: acronyms (chloramphenicol acetyltransferase /CAT ),
abbreviations (Bacillus subtilis /B. subtilis), ellipses (EPO mimetic pep-
tide /EPO), typographic variations (sigma K / sigma(K) / sigma-K ), syn-
onymy due to renaming (SpoIIIG / sigma G). Each type of variation is handled
differently [37,43].

4.1 Named Entity Recognition

Because of the ambiguities and variations, named entity tagging cannot be
achieved by simple dictionary matching; it also involves matching of the
context of the candidate NE by NER rules. On one hand, disambiguation
rules specify in which context a given NE candidate should be interpreted as
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belonging to a given category. On the other hand, variation rules enrich the
dictionary with lists of synonyms or are applied on the fly to recognise variant
forms.

Active domains constantly produce documents containing new concepts
and new NE, thus dictionaries are quite hard to keep fully up to date. Addi-
tional recognition rules are able to palliate the NE dictionaries incompleteness.
These rules exploit the morphology of the candidate NE and various contex-
tual clues in documents.

The respective roles of the dictionary and the rules are illustrated by one
experiment we did in biology [33] where the NER performance increased from
75% of recall and precision with simple dictionary mapping to 93% with dis-
ambiguation and recognition rules.

In Alvis, NE tagging is a two-step process. The first one only involves
matching dictionary entries on the text to identify known NE. This tagging
is used afterwards for word and sentence segmentation to avoid the interpre-
tation of abbreviation dots as sentence separators (e.g. Bacillus sp. BT1 ).
The second NER step is achieved after documents have been segmented and
lemmatised and word morphology have been analysed. The conditions of the
NER rules are checked for each candidate phrase, then NE are disambiguated
and associated with their semantic type. Dictionary-based annotations are re-
moved when they correspond to ambiguous NE and new NE annotation are
added.

4.2 Corpus-Based Acquisition of Named Entities

Supervised ML methods can be applied to automatically acquire disambigua-
tion and recognition rules in order to improve existing NE dictionaries. The
reference training corpus is pre-annotated using existing NE dictionaries, then
manually reviewed by human experts. Negative examples are automatically
generated under the closed world assumption. The main features computed
to describe the training examples of NE are usually typographic (length, case,
presence of symbols and digits). Non-typographic features are based on neigh-
bourhood words. In Alvis this acquisition is performed in two steps: feature
selection, then induction of a decision tree by C4.5 from the Weka library [33].
Variation rules acquisition is done in a similar way: annotation of synonym
pairs in a training corpus and application of supervised learning.

The Alvis experiment on biology has shown that the quality of the man-
ual annotation is critical for NER rule learnability. NE and non-NE should be
clearly distinguished in the training corpus and the frontier should be strictly
defined [10] in annotation guidelines in order to achieve a high annotation
quality. The fuzzy frontier between entities denoted by proper nouns and by
terms is an important source of errors: some technical terms are so detailed
that they definitely designate an entity in the context of the document al-
though their morphology is not a proper noun one (see for instance the term
spore coat protein A which is synonym of the NE CotA). The recognition of
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these terms as entities raises the question of how detailed must be a term
to be considered as a named entity, which is often not easy to answer. A
second related problem is the undetermined generality level of the objects to
be recognised (instances vs. concepts). A proper noun may define a family
of instances or a general concept and not a single instance (e.g. ABC trans-
porters). The well-known problem of name boundaries is a third source of
errors. NE often occur with their synonyms in an apposition or adjective role,
as in “monoclonal antibodies (mAb)”, or with roles and properties, like in
“mouse synaptophysin gene”. It is important to distinguish NE from their
roles, properties and alternate names because it facilitates manual annotation
and considerably increases machine learning performance as demonstrated by
our experiments [33].

5 Term Analysis

Less widely acknowledged than NE recognition, term recognition is neverthe-
less crucial for further linguistic and semantic processing because terms often
denote ontological concepts. Terminological analysis is a traditional step in
sub-language analysis. It helps to identify the most relevant semantic units
and it reduces the wording diversity.

5.1 Term Tagging

In Alvis, term tagging consists in the projection of the terminology on the
corpus. The text fragments that correspond to a given term are tagged with a
canonical form, but no semantic category. Only flexion variations are possible
at that stage (e.g. plural transformation). The simpler the tagging process is,
the richer the resource must be. This calls for powerful acquisition methods.

5.2 The Role of Terminologies

A terminology is a knowledge source that describes the specific vocabulary of
a given domain. It is composed of a list of terms, single or multi-word lexical
units. For instance, the well-known medical terminological resource MeSH the-
saurus (Medical Subject Headings)5 contains the terms: amino acid, protein
and DNA-binding protein. Simple term lists are not sufficient for most ter-
minological applications because term surface forms may vary incredibly fol-
lowing morpho-syntactic rules. For instance, two terms are morpho-syntactic
variants of each other if one is an inflected or derived form of the other (Aor-
tic stenosis / Stenosis of the aorta) or if one can be altered to the other, via
a regular set of transformation rules, such as permutation (Aortic Subvalvu-
lar Stenosis / Subvalvular Aortic Stenosis) [12]. Morpho-syntactic variations

5 http://www.nlm.nih.gov/mesh/
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apart flexions are pre-computed in the terminologies, that explicitly list term
variants. The term variation problem is not handled in the same manner as for
named entities because the morpho-syntactic variation rules are not reliable
enough for recognising new terms on the fly as they can be for NE.

For a given domain, there are as many terminologies as application goals.
Although specific, terms of scientific and technical terminologies hardly ever
match the actual document text. For instance we observed that MeSH and
Gene Ontology (GO) lexicons, although useful and widely recognised biomed-
ical resources, have a very poor coverage on our corpus of 16,000 sentences of
PubMed paper abstracts: less than 1% of the GO and MeSH terms. The rea-
son is that existing terminologies have often been designed for other purposes
than automatic text analysis and do not reflect writing usages in corpora.

5.3 Term Acquisition

Terminological knowledge acquisition tools have been proposed since the 1990s
[9]. Term identification methods generally exploit linguistic information like
chunk boundaries (e.g. punctuation), morpho-syntactic patterns (noun noun
or adjective noun) and more often statistic criteria to filter incidental terms.
YaTeA, the Alvis term extractor, performs the acquisition of term candidates
from corpora on the basis of POS tags and endogenous disambiguation [6].

The results of term extractors remain noisy, however. Expert knowledge
is necessary to filter out irrelevant terms and to validate the most relevant
ones. For instance, YaTeA extracts the two terms “heterologous polypeptide”
and “suitable polypeptide” from biological documents. Both terms match the
same morpho-syntactic pattern adj noun, but the second one must be filtered
out by manual validation, because the adjective “suitable” does not convey
additional relevant information to “polypeptide”.

The automatic acquisition of term variants greatly increases existing ter-
minological resource coverage on the corpora. In the same way as for candidate
terms, candidate variants must be validated. The term list is then organised
into synonym classes of term variants (similar to WordNet synsets) and the
most representative of them is chosen as the canonical form. We have inte-
grated a separate term variation computing tool, FASTR [23] into Alvis. In
our biology experiments, FASTR increases the terminology size from 7,000 to
10,000 valid terms, gathered into 5,272 classes.

6 Semantic Typing with Conceptual Hierarchies

Once the semantic units (named entities and terms) have been identified, they
must be related to the concepts of an ontology by semantic tagging and the
concepts play the role of semantic types. Compared to NE broad typing, finer-
grained ontological categories are considered in this task. In the case where
concepts are organised into generality hierarchies, semantic tagging selects
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the generality level relevant to a given application. The tagging should both
highlight contrasts among critical objects (e.g. protein and genes in genomics)
and attenuate or remove unessential differences (e.g. rhetoric or stylistic con-
siderations in scientific documents, the result indicates or the result shows).

6.1 The Lexicon-Ontology Mapping

In the simplest case, ontology concept labels can be mapped to the text se-
mantic units (e.g. protein as a concept maps to protein as a word) or through a
one-to-one relation with a term or named entity lexicon entry. However, this
process is not straightforward because some semantic units are ambiguous
and can be assigned different ontological types. A typical example is star that
denotes both an astronomical object and a famous actor. Contextual disam-
biguation rules associate the concepts of the ontology to the relevant lexical
knowledge, in a similar way to NE type disambiguation rules. Various strate-
gies involve various degrees of linguistic analysis and ontological inference in
order to build the relevant context.

Available ontologies are scarcely used for automatic text analysis. They
are usually designed for domain modelling and inference, without the task of
text analysis in mind so they are hardly usable for that purpose. In the best
case, ontologies are used for manual text indexing such as MeSH indexing
of MedLine abstracts or gene annotation by Gene Ontology entries [5]. For
instance, the GO label, “negative regulation of translation in response to
oxidative stress” is very explicit, specific and useful for manual annotation of
biological processes. However, it never occurs literally in scientific documents
where the expressions which mean the same, “important antioxidant involved
in the stress response” and “negative role for these stress response factors in
this translational control” are preferred. This observation does not stand only
for biology, but more generally for technical and scientific domains that tend
to use complex vocabulary.

6.2 Semantic Type Disambiguation

Disambiguation rules mainly rely on two types of contextual information: sets
of neighbour words or syntactic dependencies. In the first case, each alternative
meaning of an ambiguous term is attached to a set of usual neighbour words.
An occurrence of this term is then interpreted according to the closest set.
For instance, for disambiguating the word tiger in Flickr legends of photos as
being a name of mammal or of a Mac OS version, word sets such as (mac,
apple, OSX, computer / animal, cat, zoo, Sumatra) can be mapped to its
context [27]. This strategy fails when fine-grained tagging is required or when
the alternative meanings are too close.

Finer disambiguation is achieved by taking into account the syntactic
relations that connect the ambiguous term to its context. In the Alvis pipeline,
disambiguation rules take advantage of the results of a syntactic depen-
dency parsing that must match constraints defined along with ontology nodes.
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Fig. 6. Word sense disambiguation of CAT

For instance, the word cat has many different meanings in biology, among
which, a mammalian species or a gene name, though both senses are not
found in the same contexts. Given the relevant ontology, in the sentence of
Fig. 6, myopathy would be first semantically annotated as disease. Then a
Noun of Noun complement dependency is computed between myopathy and
cat. cat can be correctly assigned to mammalian by verifying the constraint
Noun of Noun(diseases, mammalian) that states that mammalians can have
diseases while this constraint does not apply to genes.

This strategy greatly improves the quality of the disambiguation compared
to simple neighbourhood-based strategies. However syntactic parsing is hardly
applicable to very large datasets for computational performance reasons. It is
appropriate for rather small specific collections.

6.3 Acquisition of Conceptual Hierarchies

Corpus-based learning methods assist the acquisition of ontological hierar-
chies and disambiguation rules. Two main classes of acquisition methods
can be applied: distributional semantics and lexico-syntactic patterns (see
chapter “Ontology Learning”).

Distributional semantics identifies sets of terms frequently occurring in
similar contexts in the training corpora. The definitions of context are the
same as used in disambiguation: either word windows or syntactic dependen-
cies. Various distance metrics have been proposed, all of which are based on
co-occurrence frequency measures. Sets of close terms are supposed to be se-
mantic classes and the generality relation is derived from set inclusions. The
learning result must be manually validated; it happens that the distance does
not denote a semantic proximity but a weaker relation. Linguistic phenomena
like metonymy and ellipsis are typical sources of erroneous classes. Distribu-
tional semantics is considered robust on large corpora such as Web collections,
but machine learning is more efficient when applied to homogeneous corpora
with a limited vocabulary, reduced polysemy and limited syntactic variabil-
ity. In the case of heterogeneous corpora, syntactic context is preferred over
neighbourhood because the generated classes are of higher quality [18]. In-
deed syntactic dependencies constitute a more homogeneous feature set and
the shared syntactic contexts of a resulting class can be easily converted into
semantic annotation disambiguation rules.

Research on lexico-syntactic patterns is largely inspired by traditional ter-
minological methods [42], popularised by Hearst’s work on pattern design for
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identifying hyperonymy relations from free text [20]. Among the many pat-
terns, the apposition and copula are classics:

• Indefinite apposition: the pattern “SU(X), a SU(Y)” where SU means
semantic unit, gives X as an instance of Y, if Y is a concept. From the
sentence “csbB, a putative membrane-bound glucosyl transferase”, csbB
is interpreted as an instance of transferase because csbB is a named entity
and transferase is defined as a concept.

• Copula construction: “SU(X) be one of SU(Y)” or “SU(X), e.g. SU(Y)”.
The fact that the NE abrB is an instance of gene concept is extracted
from “to repress certain genes, e.g. abrB”.

The quality of the relations depends on the patterns. Pattern matches may be
rare and precise (e.g. X also known as Y ) as well as frequent and weak (e.g. X
is a Y may denote a property of X instead of a specialisation relation between
X and Y ). Dedicated corpora such as textbooks, dictionaries or on-line ency-
clopedia are more productive although smaller than large Web document sets.
The patterns may be automatically learnt from training examples annotated
by hand or by bootstrapping learning from known pairs [1].

Pattern-based approaches are less productive than distributional semantics
approaches, because of the low number of patterns matches in the corpus while
distributional semantics potentially relate all significant words and phrases of
the domain. However, the type of the relation is better specified and easier to
interpret.

Corpus-based learning is an efficient and operational way to assist the ac-
quisition of lexicon-based ontologies. The synonymy and hyperonymy links
extracted from text represent important lexical knowledge. But their mod-
elling into the ontology strongly requires human interpretation and valida-
tion. One has to decide what should be considered as a property or a class
(e.g. is four wheels vehicle a property or a type of vehicle?). The distinction
between instances and abstract concepts cannot be automated. The indepen-
dent knowledge bits must be properly integrated (e.g. if X is a Y and X is a
Z, what can be said about the relationship between X and Y ?). Moreover
the methods rely on the assumption that the learnt concepts are represented
by explicit semantic units and that the formulation variations can be handled
at the lexicon level. They are not applicable if the link between the text and
the ontology is more complex and requires the application of inference rules
at the ontology level.

7 Identification of Ontological Specific Relations

Information extraction of events consists in identifying domain specific onto-
logical relations in documents between instances of concepts represented by
semantic units. The domain specific relations are defined in the ontology and
reflected by the IE template slots (see for instance, the slot Interaction Agent
in Fig. 1 and the Agent relation in Fig. 4).
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The recognition of the relation instances in the text consists in first check-
ing the actual occurrence of candidate arguments in the text: there should
be semantic units in the text with the same semantic types as the relation
arguments (e.g. protein and gene in the interaction relation) The second step
checks the presence of a relation between them by using IE rules as described
in Sect. 2.2. Thus it does not consist in just tagging the text with entity couples
that are known to hold a given relation.

7.1 Designing Relation Extraction Rules

In complex cases, the arguments are not well-defined semantic units in a
way that contextual explanations and evidence can be easily provided [11].
The definition of the argument results from a complex interpretation, to the
point that no argument can be declaratively defined although the relation is
observed. In the same way, relations themselves may not be supported by local
and delimited lexical or textual fragments such as verbs (e.g. “stimulates” in
Fig. 1). In both cases, it is out of the scope of current IE methods to produce
a consistent semantic abstraction of the text on which pure semantic rules
could apply and the interpretation could be fully formalised.

Then conditions of the IE rules usually include clues difficult to inter-
pret in terms of ontological knowledge. For example, neighbourhood does not
necessarily denote semantics but may capture some shallow knowledge that
is useful in certain limited contexts. Rules often combine various matching
conditions that pertain to different levels of text annotation (e.g. mixing con-
ceptual, typographic, positional and syntactic criteria as in the examples of
Figs. 2 and 3).

The design of efficient IE rules becomes a complex problem that remains
open after many years of active research. Manual design is tedious, rarely com-
prehensive and unreliable (Sect. 7.1). Acquiring extraction rules by Machine
Learning from training corpora saves expert time but was limited to rather
simple cases until recently. Learning relational extraction rules remains chal-
lenging (Sect. 7.2) but the availability of new text analysis tools promises a lot
of progress. The recent progress in performance and availability of syntactic
dependency parsers had also a very positive effect on the system abstraction
ability. When syntactic parsing conditions are combined with ontology-based
semantic types, it may be easier to relate the rule conditions to the ontological
definition of the objects [34] as illustrated in the example of Figs. 2 and 3.

7.2 IE Rule Learning

Learning IE rules for identifying specific domain relations is done by super-
vised learning applied on a training corpus where the target information was
manually tagged. The abstraction degree of the learnt rules strictly depends
on the representation of the training examples. Their features are derived
from the linguistic analysis of the training corpus. The number of errors in
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abstract features like syntactic dependencies tends to be higher than in low
level information such as word segmentation. The Machine Learning methods
(e.g. ILP) applied to complex representations such as relational representation
are also more sensitive to the errors occurring in the example description as
opposed to statistics-based methods.

Pre-processing the training examples by feature selection or more complex
inference may reduce the number of errors, while preserving discriminant fea-
tures. This is the track followed by LP-Propal method based on the Propal
algorithm [2]. LP-Propal takes as input the corpus after full processing by the
linguistic pipeline of Fig. 5. Then, given a declarative list of linguistic prop-
erties, LP-Propal selects the relevant features for the training example repre-
sentation [28]. For instance, the term expression can be neglected in biology,
when it occurs in “A activates the expression of B”, because “A activates B”
is fully equivalent with respect to the IE task. This sentence simplification
reduces data sparseness and improves the homogeneity of the training corpus.

The application of LP-Propal to one of the LLL6 challenge dataset on genic
interaction extraction yields 89.3% recall and 89.6% precision [29], which is
very promising with respect to previous LLL results [34] and comparable to
BioCreative results [24]. The positive role of the syntactic parsing has been
experimentally measured by applying LP-Propal to the same dataset with the
neighbourhood relation instead of the syntactic dependencies. It yields a poor
precision (22.8%) and recall (34.7%), which confirms the importance of a deep
linguistic analysis for IE.

8 Discussion

As mentioned above, IE has made significant progress and powerful IE systems
are now operational. The previous sections have described on which principles
a generic and modular IE system should be founded. This last section focuses
on the key issues that remain to be solved in order to fully ground IE on
ontologies.

8.1 Beyond the Development of NLP Toolboxes

By acknowledging the needs for domain-specific applications, the IE field has
been exploring horizons outside the frame of MUC, which was rather general-
ist. This called for a more sophisticated linguistic analysis to take into account
the diversity of sub-language formulations and to improve the richness and
reliability of the extracted information. The IE performances greatly improve
in consequence as shown in Sect. 7.2. The NLP underlying analysis is more
expensive in term of computational time, but the IE is also more robust.

6 Learning Language in Logic.
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The availability of NLP toolboxes and pipelines helped IE system designers
to achieve these results by exploiting and integrating various natural language
processes into a unique IE system. An important effort in software integration
was necessary, because NLP tools are usually developed independently by dif-
ferent teams and may have partially overlapping roles. For instance syntactic
taggers, such as the popular TreeTagger, perform their own word segmenta-
tion and lemmatisation. The integration of a POS tagger with a third-party
segmenter raises complex token alignment problems. The integration of each
processing step in the NLP pipeline raises similar questions that should be
properly solved for avoiding concurrent annotations and inconsistencies.

However, focus has been put on software integration rather than on
knowledge integration and several problems remain to be addressed. More
fundamentally, IE approaches correspond to a relatively narrow form of text-
understanding:

• The analysis is mostly limited to the scope of sentences. IE does not
take the whole document discourse into consideration to the exception
of anaphora resolution that extends the analysis to neighbour sentences.

• Sophisticated ontology-based inference models beyond generality tree
climbing are rarely involved. The conditions of the extraction rules are
usually considered as independent.

8.2 Lexical Knowledge as a Mediator Between Text and Ontology

We have argued in Sect. 2.3 that for text interpretation the lexical knowledge
plays a necessary role of mediator between the text and the conceptual model.

We have shown that a lexical base is composed of a lexicon and a set
of rules. Their relative importance varies from one source to the other. The
terminology represents the simplest case where the variants are listed in the
lexicon and no rule is used. The domain specific relations represent an opposite
case where the lexicon is quasi-absent, all the knowledge being embodied in
the rules.

To be fully operational, maintainable and reusable, this complex knowl-
edge structure should be properly represented in expressive knowledge repre-
sentation languages. Lexicon and ontology representations have drawn a lot
of attention the last years [8,11,26,40], while their link with the various con-
textual rules was less comprehensively studied. Integrating both knowledge
types in an operational IE system remains challenging.

8.3 Toward Formalised and Integrated Knowledge Resources

With the progress of formalisation, IE research cannot longer consider on-
tologies as organised vocabulary or hierarchies of terms as thoroughly demon-
strated in chapter “Ontology and the Lexicon”.
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While formal languages for ontology representation have made great
advances, there are few formal or operational proposals to tie ontologies to
linguistic knowledge. This gap severely hinders the progress of IE and more
generally of all textual content analysis technologies (e.g. IR, Q/A, summaris-
ing). As illustrated in Sect. 3, sophisticated and operational IE pipelines are
available for developing new applications. However the cost of maintaining
and reconfiguring them exponentially increases with the complexity of the
linguistic knowledge. The field would gain a lot in moving the focus from
software integration to knowledge integration.

Another open question comes from the partial overlap between the various
types of knowledge, which are traditionally considered as distinct resources.
For instance, it is sometimes difficult to distinguish named entities and terms.
From an ontological point of view, they have different status. NE correspond
to instance labels while terms correspond to concepts and concept labels.
NE rather appear in the leaves of the ontology, while terms appear in internal
nodes. The distinction is also useful from a pragmatic operational point of view
but it is not sound from a linguistic point of view. In the same manner, NE
dictionaries and ontologies often overlap, because NE dictionaries include NE
semantic types that should be related to the ontology. Developing a coherent
set of knowledge source or integrating these various knowledge sources into
a single knowledge base (KB) requires that the specific scope of each one is
clearly defined.

A third problem concerns the integration the learnt lexical knowledge into
the available knowledge bases. This question is particularly critical for ontolo-
gies as reflected by the ontology population and ontology alignment issues.

From a research point of view, the IE field has quickly evolved towards the
integration of research results from natural language processing, knowledge
acquisition and ontology domains. The results on ontology formalisation and
the development of new representation languages has a very positive effect
on IE modelling effort while linguistic processing and knowledge acquisition
methods increase the operationality of IE systems.
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Summary. Semantic Web is a medium for knowledge exchange, where knowledge
produced by one agent is consumed by another agent who may extend or modify it.
Semantic Web also affords novel opportunities for acquiring knowledge – including
approaches favoring automated selection, reuse and integration of external, just-in-
time gathered semantic resources. As semantic resources are no longer specifically
developed for a single purpose, their re-contextualization within other web resources
(e.g., web pages) is becoming a more pressing challenge. In this chapter, we look at
the case when external semantic resources discovered in the web-sized corpus are
re-contextualized to enhance the user experience of an arbitrary web content vis-
ited by a particular user. We first review different approaches showcasing different
facets of semantic browsing and define the notion of ‘semantic browsing’ in general
terms. Next, we share our experiences with Magpie, an in-house semantic web brows-
ing framework, and illustrate new functional features such a semantically-enriched
browsing tool may offer on the example of introducing additional user interaction
modalities and developing a capability to work with multiple background knowledge
models simultaneously. In the discussion we re-visit the defining tenets of ‘semantic
browsing’ and look at how the reuse of just-in-time discovered and applied semantic
resources really addresses the issue of enabling the user to re-contextualize semantic
data for the purposes of text analysis, data interpretation, relationship discovery,
and knowledge validation.

1 Introduction

The Web is often seen as one of the fundamental inventions of the twenti-
eth century, which helped to shape the notion of the networked resources,
networked economy, and ultimately networked world. The Web matured and
became a fairly user-oriented information space – mainly as an effect of emerg-
ing interactive applications collectively known as “Web 2.0”. Although Social
Web and Web 2.0 are not subjects of this chapter (for interesting insights,
see, e.g., [1]), it is useful to note the growth in the volume of structured data
these applications produce, and also the population of users creating, brows-
ing, or otherwise involved in resource networking is reaching a billion. In its
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own right, services like MySpace or Second Life have active user bases equiv-
alent to well-sized countries, and majority of these users interact with the
Web through browsing online web pages, publishing new information, new
connections and introducing ever more links into this vast information space.

Despite this vast user base, the Web (and also its recent social enrich-
ment) has some limitations – most of them related to the issues of conveying
knowledge (rather than merely data) and interpreting it (rather than merely
retrieving). To address this limitation the vision of Semantic Web [2] as a “Web
of Data” has emerged since early 2000s. In this vision, web resources are anno-
tated with semantic markup, using knowledge representation languages such
as RDF(S) [3] or OWL [4]. One rationale for the semantic markup considers
the nature of connections one can express. Unlike standard HTML, semantic
markup languages allow expressing not only ad-hoc, generic links between the
resources, but also formal statements about the interesting properties of the
web resources, about external entities, and their conceptual, i.e., named rela-
tionships. To enable meaningful knowledge sharing and inter-operability, such
markup needs to be based on some ontologies [5] – knowledge-level models
that capture some shared and agreed on understanding of the parties that
want to collaborate or otherwise make use of knowledge.

Once such conceptual commitments are established, one gains an opportu-
nity to request much richer information from the Web (here “the Web” is used
as a large-scale data repository). For instance, instead of merely finding a list
of typically collocated key words, thanks to semantic markup and conceptual
models, one would be able to tell that “carbohydrates” are a specific group
of “organic compounds”, and as such they share some generic characteristics
of all organic materials, but at the same time “sugars” or “sugar acids” are
narrower and conceptually more specific terms. Admittedly, this is a fairly
trivial enrichment, but this neighbourhood of conceptually related terms may
be used, e.g., to expand the user’s original search query. In a different domain,
instead of merely retrieving a list of articles containing term “user modelling”
among keywords, we can combine the conceptual annotations and data from
several ontological models, so as to obtain, for example, a list of leading ex-
perts publishing on that topic or a list of publishing outlets where such topic
may be appearing.

However, there is a certain three-way tension between (1) the dependence
of the Semantic Web on semantic annotations (done on a large scale), (2) the
cost and complexity of providing these semantic annotations, and (3) the cog-
nitive complexity for human user to interact with the semantic annotations.
In this chapter we briefly touch on the third aspect of this tension; with an
emphasis given to the user aspects. We consider how a user can interact with
semantic mark-up – by means of turning it into web-browseable resources
and by means of combining it with standard web pages or other (textual)
documents: If a user cannot or does not know how to access knowledge that
takes form of those rich conceptual connections that form Semantic Web, as
described above, then the knowledge has very little value.
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In this chapter, we touch on the issue of semantic navigation on three
levels. First, we look at recent approaches to semantic browsing and navigation
in general, trying to identify four families of user interaction styles. Second,
we sum up our experiences with a tool from one of the reviewed families
– Magpie, and highlight what functional features are valuable from the end
user’s viewpoint. Finally, we devote the rest of the chapter to exploring the
future of semantic navigation on the Web.

2 Existing Semantic Web Browsing Applications

We start by looking at characteristics and evolution of Semantic Web brows-
ing tools in general. In terms of desired functionality, Quan and Karger [6]
suggested that the primary purpose of a browser for the Semantic Web is “to
separate the content – the proper purview of the publisher serving the infor-
mation, from the presentation – an issue in which the end user or their local
application should have substantial say”. Let us therefore briefly look at how
their requirement was addressed in early Semantic Web browsing tools.

2.1 Early Semantic Web Browsing Approaches

First prototypes of tools that claimed to support some aspects of Semantic
Web browsing appeared around year 2002–2003. One common trait of these
early tools was a close relationship with the Web. Indeed, in the absence of
the key ingredient – semantic markup – these tools looked to the available
web pages and featured a range of entity recognition algorithms [7]. For ex-
ample, Knowledge and Information Management (KIM) [8] was a platform
for automatic semantic annotation, web page indexing and retrieval. It could
recognize named entities (such as job titles or geographic names) in text, and
use the findings to assign ontological definitions to the entities in the text
and thus to capture semantic relationships between terms mentioned. KIM
extended the GATE platform [9], which was built into KIM proxy, and thus
enabled on-the-fly annotation of web pages.

Another system, this time getting inspired by the hypertext and the web
browsing paradigm, COHSE [10] implemented semantic markup using so-
called open hypermedia approach. Early versions of COHSE recognized enti-
ties in a web page, semantically marked these entities, and enabled the user
to click on any of these dynamic hyperlinks to navigate to other web pages
tagged with the same term. Thus, an idea here was to add to the author-
defined hyperlinks also dynamic links, which may reflect user’s interest in
certain terms. Similarly as KIM, the markup capability was embedded in a
COHSE proxy, but unlike KIM, COHSE enabled some tuning of this proxy,
e.g., by picking up a different “bag of terms” to drive entity recognition.
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2.2 Recent Advances in Semantic Web Browsing

More recent approaches to facilitating access to semantic markup explored a
wide range of other metaphors reused from other domains. In particular, style
sheets became one of such approaches that inspired several tools supporting
Semantic Web browsing. For example, PiggyBank [11] and Exhibit [12] are
two champions of the idea to let users publish structured data on standard
web servers with no installation, database administration, and little program-
ming. The structure of semantic markup gets exploited and mapped onto some
specific (user selected) visual and/or interactive widgets. Thus, unlike tools
mentioned earlier in Sect. 2.1, the emphasis shifted from acquiring conceptual
data to exposing it.

Another user interaction metaphor that got exploited when the amount
of semantic data reached larger proportions was faceted navigation [13]. The
key principle of this metaphor was that large data collections (e.g., libraries
or galleries) have many dimensions according to which data can be viewed,
searched or navigated. Thus, faceted navigation is a user interaction style
whereby users filter an appropriate set of data records by progressively, step-
by-step selecting from valid dimensions of a particular classification. The idea
was originally used to expose standard databases – e.g., the Flamenco demon-
strator [13]. Recent achievements in semantic faceted browsing include, e.g.,
Browse RDF [14], a generic RDF browser, or /facet [15], an RDF browser
used in a manner similar to Flamenco, but for the Dutch cultural heritage data
that were annotated semantically rather than merely stored in a database.

Some other ideas that got explored included the metaphor of “seman-
tic overlays”, or semantic layering, as it was introduced by the authors of
Magpie [16–18]. The idea was visually similar to KIM and COHSE from
Sect. 2.1, but rather than linking to other web pages annotated with a similar
term, a semantic menu was suggested as a container for several semantically
annotated relationships or properties, which the user could invoke. Thus, the
approach supported named relationships on top of standard, anonymous hy-
perlinks; later, the relationships were generalized to cover semantic services
(as a procedural way to uncover or compute a particular relationship). AK-
Tive Document [19] later extended Magpie’s viewing metaphor to the world
of text and data authoring.

Further details on different metaphors and tools are provided in the sub-
sequent sections – here we tried to sketch how the idea of accessing semantic
markup started and evolved. Also, a differently scoped review and human–
computer interaction focused analysis of tools for navigating the ontologies
and other semantic content can be found in our other publications [20,21].

2.3 What Is Semantic Web Browsing?

We have mentioned Quan and Karger’s view on this topic earlier, but the
requirement to separate content from its presentation is more of a philosophy
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than an actual definition. If we wanted to define what Semantic Web browsing
is about, we suggest the following:

Semantic Web browsing (or navigation) is a family of user interaction
styles that rely on techniques for rendering all information that can be
found in semantic markup data stores about a specific resource for the
purpose of exposing the information space(s) or context(s) around a
specific resource. In addition to this generic and abstract definition, a
few specific points apply:

• Data is usually expressed in a standard, web-compatible formalism,
such as RDF(S) or OWL (the same can be extended to techniques
that are usually expressed in formalisms like SOAP or WSDL).

• Data is usually meant as a combination of schema/ontology-level
model and assertions about specific facts.

• Information space is usually equivalent to Data – Link – Data
structures that can be dereferenced to hyperlinks comprehensible to
standard web servers.

Based on our experiences and feedback we obtained with the demonstra-
tors of Magpie technology, we suggested in [20] some additional criteria. From
the four criteria mentioned in [20], the navigation using the markup commit-
ted to ontologies is covered by the above definition, but we argued for an
additional pragmatic requirement, namely the capability to expose data and
navigate across multiple ontologies.

Before continuing let us briefly say what applications do not satisfy the
definition above. First, tools like IsaViz or CropCircles are schema visualiza-
tion techniques, not semantic browsers per se: (1) they mainly visualize the
schema but not the data, and (2) they consider hierarchical links (as in “a
category of all lions is classified under category of mammals”). Second, tools
like Flickr1 are tag (cloud) browsers, not semantic browsers per se: (1) the
links between data items are established based on co-occurrence and are thus
anonymous, with no committed meaning and (2) the focus is on the data,
schemas are largely not considered.

Third, there are other approaches to accessing Semantic Web data that
may feed into browsing, but are, in principle, different user interaction
paradigms. For example, a data store can be queried (with a user formulating
a query in SPARQL, RDQL, etc.), and appropriate data rendered (e.g., with a
style sheet). This is a more controlled user interaction, whereas browsing has
an element of serendipity (cf. with searching and browsing on the Web [22,23]).
Obviously, as with the standard Web, results of querying can be browsed to
access further information, which may not have been retrieved in the original
query.
1 Flickr (http://www.flickr.com) is a registered trademark of Yahoo!
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The research addressing the above criteria is ongoing and new tools are
produced. In terms of user interaction, while there are XML style sheet for-
malisms applicable also to Semantic Web languages, more generic challenge of
how a human user can (and wants to) interact with the Semantic Web content
is only now getting a more significant attention. The issue of using multiple
ontological frames to open up the interpretation choices is even less devel-
oped. Nevertheless, let us consider a few specific user interaction metaphors
that satisfy the above definition and can be seen as browsers for semantically
marked up data.

In this overview, we consider three dimensions of data presentation, as
defined in a broader framework for classifying semantic search tools:2 (1) data
selection, (2) data organization, and (3) user feedback. These dimensions form
the basis for describing four distinct families of tools as follows:

Navigation in graph structures: the focus is on the organization of nested data
in a form of trees or graphs with expansible and clickable nodes.

Faceted navigation: primary feature here is the opportunity for a continuous
query refinement and step-by-step formulation of the user need.

Navigation with templates: primary feature of this family is (1) strong focus
on selecting data properties, and (2) using a rich repertoire of visualization
metaphors to present nested data records.

Navigation with semantic overlays: primary feature here is (1) data selection
being dynamic and relying on a loaded schema, and (2) data organization
done in a form of embedding data into a plain text (e.g., web page).

2.4 Navigating in Semantic Graphs

Tabulator [24] is one possible form of a browser for semantically linked data.
It started as a project and tool to demonstrate the serendipitous re-use and
to address the “explore vs. analyze” tension in user interface design in an
open-world of interlinked semantic data. Tabulator is a generic browser for
linked data, without the expectation of providing domain-specific interfaces.
However, it permits domain-specific functionality (such as calendar, money or
address book management) to be loaded transparently from the web.

Unlike in tools discussed in Sects. 2.6 or 2.7, where the web documents are
primary and the semantic layers or annotations secondary, for the Tabulator
the logical, semantic graph is the primary source of data; the web documents
are optional and secondary. Hence, the user can explore the graph of data as
a conjunction of all the graph documents that have been read (in a particular
browsing session). While this approach may not allow directly browsing the
documents, it allows the user to check the provenance or source of any piece
of information included in the browseable graphs.

2 For background and the schema see section “Example” in http://swuiwiki.

webscience.org/swuiwiki/index.php?title=Semantic Search Survey
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Fig. 1. An outline view of a simple set of triples related to organizational knowledge

Tabulator (Fig. 1) operates in two modes: exploration and analysis. In the
exploration (open world) mode it allows the user to interact with a large data
graph composed of several partial graphs. This is achieved without the user
having to provide all the data – Tabulator implicitly follows links that may
contain RDF data about relevant nodes. Linked data is typically presented
using a graph metaphor; i.e., as nodes and arcs, which in Tabulator are called
outline views. When Tabulator is in the analysis mode, the user may select
some nodes or arcs to define patterns of a query, which is then executed by
the tool against the available data graphs. Query results may be displayed in
different views and may be mashed together.

One interesting proposal coming from the Tabulator project is about the
requirement to include some form of user interface “tips” in the ontologies
that can be interpreted by generic applications, such as Tabulator, effectively
choose appropriate and most useful user interaction components to data from
unfamiliar domains.

2.5 Faceted Navigation

Large datasets (e.g., libraries or museums) have many dimensions along which
they can be browsed, searched or navigated. One interaction strategy for such
data – in addition to simple searching and browsing – is faceted browsing,
where users filter an item sub-set by progressively selecting from valid dimen-
sions of an appropriate classification. On a non-semantic level, the strategy
was piloted in Flamenco [13] that used metadata to guide users through the
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choices of views, thus helping them to organize the underlying collection.
Although without ontological support, Flamenco used the notion of lateral
links to complement the standard hierarchies.

A number of data-centric semantic browsers draw on a popular metaphor
of faceted browsing. For RDF data, Longwell [25] from SIMILE Project is
an out-of-the-box faceted browser intended to be used for viewing arbitrary,
complex RDF datasets in an user-friendly way. It was deployed in various
contexts both domain independent and dependent [26]. One of its most im-
portant features is the facet extraction from RDF literals and support for
inference, which lends it a capability to adapt the views to the changing RDF
content. A similar approach can be seen in /facet – a browser for hetero-
geneous RDF data that handles collections of different types of items unlike
most other, more specialized faceted browsers. It explores the facets of items
related in a taxonomic manner (i.e., by following subClassOf relation, by
collapsing facets related through subPropertyOf relation, and by support of
their intersections.

Another generic suite of faceting techniques originating in mSpace [27] is
more tightly linked to ontologies – an ontology in mSpace acts as the only
source of facet classification. The user is then left with selecting suitable brows-
ing pathways (i.e., sequences of facet dimensions that fit their preferences). In
mSpace, Semantic Web is seen as a rich, multidimensional hypertext system.
mSpace thus extends the faceted browsing paradigm and its functional oper-
ations like slicing, sorting, swapping, adding, or subtracting to semantic data
sets – one of its many demonstrators is in Fig. 2. It supports direct manipula-
tion of the ontology content and the selection of instances associated with the
current configuration of facet sequences. Its logic also provides for automatic
reasoning to ensure that only meaningful attribute ordering/selection occurs.
In addition to traditional facets, mSpace adds a few experimental semantic
add-ons – e.g., its numeric volume indicators used as predictors of what to
expect after choosing given facet, or their early adoption of geographic maps
as a visualization medium.

2.6 Navigation Using Styles and Templates

This approach to browsing emerged from the fact that much information
present on the Web is already stored in relational form, in the database-driven
web sites. Therefore, another way to resolve the aforementioned knowledge ac-
quisition bottleneck is to take advantage of the structural clues of this struc-
tured web content to re-create the original information stored in the databases
backing this content.

Thresher [28] is a system build on top of the Haystack platform [29], which
allows non-technical users, rather than content providers, to “unwrap” the se-
mantic structures buried inside human-readable Web. It provides users with an
interface to “demonstrate” the extraction of semantic meanings, and through
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Fig. 2. A multi-faceted view on an mSpace demonstrator used as a conference
delegate management system

such demonstrations it learns mappings between the regularities in the doc-
ument structure and the semantics. Thresher then automatically applies the
mappings to similar documents. Thus, extraction of semantic data is sepa-
rated from its presentation (see Quan and Karger’s criterion in Sect. 2), and
is accessible for further reuse via the Haystack platform.

A notable trend related to templates is the push away from the heavy
clients towards lightweight clients – often in a form of plugins or bookmarklets.
A lightweight equivalent of Haystack is PiggyBank [11], which runs as a
browser plugin, allowing the user to collect and browse found semantic in-
formation. Solvent, another web browser plugin, performs Thresher’s role for
PiggyBank, allowing the user to visually annotate the document with com-
mon vocabularies (e.g., Doublin Core) and generate “scrapers” that extract,
convert and store in PiggyBank the “unwrapped” semantic information.

Once information has been extracted, one way to reuse it is to re-publish it
back to the Web. Here, Exhibit, another tool from the same family as the above
tools, is a JavaScript-based approach that exposes structured data to the Web
using styles and templates. Rather than directly showing graph structures,
Exhibit, PiggyBank and others emphasize the need to make the semantic
content human-friendly – hence, templates and styles serve to “prettify” the
graphs and show them in a variety of familiar metaphors (e.g., timelines, maps,
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tables, etc.) One shortcoming of this approach is its focus on presenting simple
annotations – they rely on the fact that inference support and additional
personalization by the users are not needed in most browsing scenarios.

2.7 Semantic Layering and Service-Based Navigation

Semantic layering is a notion that was introduced in connection with seman-
tic browsing and navigation by Magpie [16,17]. This metaphor has been used
previously by annotating and entity discovery algorithms (e.g., [9]) to present
outcomes of text analysis. In the context of Magpie (Fig. 3), its browser ex-
tension (plugin) highlights the entities from a particular, loaded ontology in
the current web page. In contrast with tools like COHSE and KIM that share
a similar data presentation strategy, the Magpie approach to layering gives
user the control over what ontology (i.e., layering perspective) is chosen – the
functionality is also moved to the user-facing web browser rather than being
in a proxy. Tools like ViEWS, KIM, or Magpie go beyond linking web pages
annotated with same terms, and put more emphasis on accessing data (and
“data-properties” clusters).

To illustrate the notion of semantic layering take Magpie, as a web browser
plugin it has to be initialized with a user-selected (or downloaded) lexicon.
Lexicon- or gazetteer-based parsing is one of the approaches to an entity

Fig. 3. A web page related to climate science with Magpie plug-in highlighting
concepts relevant from the perspective of climatology course
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recognition task [7]; in case of Magpie it helps keeping the time overheads
of calculating a semantic layer (even for data sets with thousands of data
nodes and lengthy web pages) comparable to those for network latency. Once
semantic layer has been matched to the web page, the user can (de-)activate
the view of different categories. This activation presents a semantic layer over
the original document. This approach to visualizing semantic data as layers
puts the users in control of what knowledge is visible at any time, which in turn
reduces the problem of overwhelming the users with too much information.

Annotated and highlighted concepts become hotspots that allow the user
to request a menu with a set of actions (formally coded as web services )
for a relevant item. Here it suffices to say that web service choices depend
on the ontological classification of a particular concept in the selected ontol-
ogy and on what services are available for a given ontology. Magpie plugin is
wrapping a user’s click (i.e., the request for a particular service) into a URI,
which is then unwrapped to communicate with the actual web service using
SOAP over HTTP. The results from the individual web service may be con-
structed based on data retrieval (Fig. 4a), knowledge-level inference (Fig. 4b),
statistical correlation, or their combination (Fig. 4c).

One feature of this approach to semantic navigation is the notion of on-
tological perspective and its selection by the user. It can be seen in other
tools of this family; e.g., VIeWs [30] enables visitors of an information portal
to choose between several, ontology-grounded perspectives, which, in turn,
inform what knowledge will be made available to them. VIeWs emphasizes
knowledge customization for different audiences – e.g., tourists vs. business
visitors to a region. In chronological overview, we also mentioned AKTive
Document [19] as a way to use the layering metaphor to create, share, import
and reuse annotations from multiple sources, e.g., of other team members.

3 Semantic Web Browsing: Experiences with Magpie

In the previous publications (e.g., [18]) we used Magpie as a dynamic educa-
tional tool for undergraduate students at The Open University(UK). In this
scenario, Magpie facilitated to the students a course-specific perspective on
scientific texts, analyses and publications. A screenshot of the climate science
demonstrator was shown in Fig. 3. Since Magpie is a generic framework, other
demonstrators were built with different ontologies (or ontology mashups) and
with different sets of semantic web services and inference shortcuts. In one
such example Magpie reuses a 50,000 term large thesaurus of terminology
related to agriculture from the Food and Agriculture Organization of the
United Nations.3 Web services developed for FAO include term translations
(in conceptual and natural languages, shown in Fig. 4a) and the conceptual
navigation through semantically close entities (entities in Agrovoc are added
in evolutionary rather than systemic or taxonomic manner).
3 Further details about this thesaurus are at http://www.fao.org/agrovoc
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Fig. 4. Some Magpie services: (a) data retrieval for Agrovoc term translation,
(b) inferencing the characterization of a person’s, and (c) inference combined with
statistical analysis providing a list of experts for a given topic

Since most of our evaluation work has been done with Magpie, we sum-
marize the experiences and performance of this tool, which we then propose
to address in coming research activities.

3.1 Positive Experiences with Magpie

As shown in previous publications, Magpie is a generic and flexible semantic
browser – in terms of supporting any ontological viewpoint the user is willing
to commit to and interpret or annotate web pages. In Fig. 3 Magpie presents
climatology as a science closely related to physics and other base sciences. In
another demo (services of which are shown in Fig. 4b,c) ontological viewpoints
reflect two styles of making sense of an ill-defined area, and use them in the
domain of training young researchers.

One feature that came out of evaluations as positive was the opportunity
for the user to access data even in situations, which would otherwise require
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the user to formulate a complicated and lengthy query. Second aspect that
affected users’ performance in our tests was the actual support for navigation;
i.e., semantic data was not only retrieved, the framework enabled composing
partial data retrieval services into a more complex service that showed the
user how to apply analytic or synthetic compositions to obtain more valuable
information. When compared with established techniques, such as Google
Scholar in the domain of academic support, the value of semantically enriched
platform showed in identifying similar researchers or topics, in identifying
groups of researchers formed around a theme rather than explicitly joining
any specific mailing list, discussion board, or working group.

Another positive aspect is the capability to interact with the user via se-
mantic web services – these can even be derived automatically based on a
given ontology. Services can be obviously composed, and thus a more natu-
ral and richer user experience can be achieved. For example, the content of
service response in Fig. 4b comprises inferences of several independent web
services (e.g., community of practice in terms of people and in terms of topics
addressed). Hence, a user’s single click gives access to a more comprehensive
result, which would normally require more complex, manual composition of
partial results, their interpretation, etc. The degree of sophistication of the
web services is independent of the Magpie architecture.

Semantic shortcutting is also useful – merely highlighting concepts from a
user-selected lexicon (which may be built by combining chunks from several
ontologies) in a text gives an indication of its relevance. Combining this with
services acting as an inference shortcut, even fairly sophisticated data rela-
tionships can be accessed with a single click. While this might not be useful
for every user, in analytic and synthetic tasks (such as compilation of exper-
tise sources on a given topic), Magpie shortcuts can cut the processing time
from hours to a few seconds (for other analyses see also [31]).

3.2 Shortcomings of the Magpie Approach

Although the “single ontology = single interpretative perspective” paradigm
used by Magpie reduces the size of the problem space, this reduction is not
always helpful. Although it focuses the user’s attention (as intended), it also
unduly restricts the breadth of the acquired knowledge (this was clearly not
intended). For instance, during a study session a student may come across a
few similar but semantically not entirely identical study materials. This means
that at each page, the student would benefit from minor tuning of the used on-
tology, glossary and/or service menu. These tunings reflect slight shifts within
a broader problem space, which is a fairly common tactic we use everyday to
deal with the open situations. Thus, Magpie’s design actually features a gap
between the inherent notion of a single, formal, sound but ‘semantically closed
ontology guaranteeing a certain precision within the domain, and the desire
to open up the interaction by supporting multiple services, as well as multiple
ontologies (at the same time, without explicit user’s reloading step).
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Another shortcoming of the “layering” in Magpie was the limitation of cat-
egories fitting the screen estate – hence, most Magpie applications were limited
to between four and seven top-level categories (buttons) and six to eight web
services forming a menu. Since, screen limits are unlikely to change, new ap-
proaches to presenting semantic data need to be explored; in particular, when
one extends the “single ontology” perspective to multiple ontologies, more
content becomes available, more services may be found and invoked. Yet, ex-
ploration without guidance and tracking may quickly degrade to chaotic and
blind clicking.

4 Future of Semantic Browsing

As we highlighted in Sect. 2, out of the four criteria for an application enabling
the user to browse the Web using the semantic links, the least advanced is the
second – the capability to apply multiple ontological perspectives in multiple
user contexts. Therefore, we first touch on the issue of acquiring ontologies
from an open, distributed environment of the Web. Then we suggest how
multiple ontologies may be interacted with on the level of user interfaces.

4.1 Finding Distributed Ontologies

Coping with multiple ontologies on the user level depends, to some extent,
on an infrastructure supporting quick and efficient selection of ontologies.
However, as the number of ontologies and semantically marked up data is
growing at a rapid pace, it outpaced our understanding of the quality of this
generated and designed content in the distributed Semantic Web resources.
Our recent advances in infrastructure known as Watson [32] enable access
to networked ontologies while enriching them with information about their
quality and dependencies on other ontologies. This gives us insights into the
nature of Semantic Web content, so that the new generation of Semantic Web
applications (e.g., more flexible semantic web browsers) access the needed
content in a more efficient way.

Watson offers a scalable infrastructure for discovering and selecting
ontologies distributed over the Web. It is a stand-alone (i.e., semantic brows-
ing independent) infrastructure with several benefits over similar tools. For
instance, Swoogle [33] – a well-known ontology search engine, has a broad
coverage of semantic content, but suffers from its index not reflecting any
deeper sense of “ontology quality” and also, index is driven by term occur-
rence, little semantic structure is taken into account.4 Swoogle’s approach
to semantic resources is akin to Google’s PageRank; i.e., reflecting ontology

4 Swoogle’s “web” view leads to semantic duplicates or near-duplicates, i.e., files
with different URLs but semantically equivalent. Not taking semantic duplication
into account may skew the performance of applications like semantic browsers.
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popularity rather than more practical aspects such as domain coverage or
similarly.

For the purpose of browsing on the open Web, the added value of infras-
tructures like Watson is in the fact that semantic and qualitative analysis of
the harvested content is done independently of the semantic browser – on
the infrastructural level. In addition to basic analytic information (e.g., data
format or expressiveness), one can learn from Watson about the topological
and networked relationships among ontologies and semantic data sets. All this
helps us to acquire a heterogenous volume of semantic content applicable to
any given web page; next, we briefly describe how the support for multiple
ontological frames can be realized on the user level.

4.2 Semantic Browsing Using Multiple Ontologies

Our new semantic browser (“PowerMagpie”) relies on the generic Watson
framework introduced in Sect. 4.1. Watson extends our semantic layering tech-
nique (Sect. 2.7) by feeding multiple ontologies to it. Thus, PowerMagpie may
make different use of the retrieved ontologies, based on their quality, topic
coverage, or expressiveness, rather than merely finding any semantic content
containing a given keyword.

Unlike the previous versions of Magpie that were restricted to semantic
layering based on categories specific to a single ontology, the new framework
is more flexible. Apart from offering multiple ontologies for any web page,
PowerMagpie can discover additional semantically related content, which is
not directly or indirectly referred by the user-selected ontology. This capability
uses the fact that each ontology models a certain aspect of the world, from
a particular, non-exhaustive perspective. Hence, it makes sense to view one
ontology in the context, i.e., in a relation with other ontologies on the Web.

The strategy of finding semantic similarities is common, e.g., in query ex-
pansion, but not in search engines. The majority of search engines bases the
similarity on the lexical proximity of resources, which, in turn, draws upon the
underlying search index. When such a similarity-computing service is imple-
mented outside the search engine scope – i.e., it cannot exploit the document
index to explore the resource neighbourhood – a dynamic, document-specific
descriptive vector of terms needs to be computed. In our framework, this ca-
pability is referred to as document fingerprint, and it is somewhat resembling
a summary of the document, a set of key defining concepts. The fingerprint
terms are submitted to the Watson Semantic Web Gateway (Sect. 4.1). The
key idea of interfacing Watson rather than generic engines, such as Google,
is to reuse already formalized and represented conceptual commitments cap-
tured in numerous ontologies that Watson harvested on the Web.

The technique is inherently iterative: the web browser plugin starts with
an initial document fingerprint and tests its conceptual fitness against the ex-
isting ontologies. From the most relevant ontologies one can calculate semantic
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neighbours of the matched concepts, which, when returned to the PowerMag-
pie plugin serve as candidate fingerprint extensions. The plugin attempts to
find matches to these fingerprint extensions, thus disambiguating between the
different perspectives in which a document might be interpreted.

Different ontologies not only facilitate different navigational paths for the
document interpretation, they also offer opportunities for an implicit annota-
tion of the page and for an implicit ontology population. In many semantic
web browsers in the past, annotations were merely visual and transient. Now,
with discovering new ontologies it makes sense to store the annotations locally.
One formalism that has been recently agreed upon to facilitate this reuse is
RDFa [34], which supports either ad-hoc or ontology-driven annotation in an
easily parsed and reusable style – e.g., for the purposes of social semantic
annotations or tagging applications.

4.3 Functional Overview

PowerMagpie is implemented as a web browser bookmarklet,5 which allows for
a simple installation, invocation, and “at-the-glass”6 integration with existing
semantic extensions (e.g., the aforementioned RDFa visualizers). The proto-
type comprises two complementary components: the User Interface and the
Back-end Service. The former extends a web browser and acts as the key
element for user interaction. The back-end, on the other hand, facilitates on-
tology discovery, selection and matching services. The functions performed by
the prototype include the following:

Term selection and ranking exploits the structure of a web page. For ex-
ample, assigning the term appearing in the title or in a heading more weight
than to a term randomly found in a document paragraph. This traditional
filtering technique is extended by a calculation of weights from the popular-
ity and frequency of these terms and of lexically similar terms in the actual
ontology index maintained by Watson and Yahoo search engine.

Web page processing is very simple: upon invocation, the document object
model (DOM) of the page is serialized into XML and shared with the back-
end. The back-end carries out term extraction using TF/IDF7 weighing [35]
against the existing Watson indexes. During this process the actual lexicon
is compiled from found entities and is checked against Yahoo for yielding
additional lexical signatures of the document.

5 A bookmarklet is a small application stored as a bookmark URL in a web browser
or as a hyperlink on a web page.

6 This is a common strategy in portal development, where small sub-applications
can be quickly linked to create more complex applications, and our formalism of
choice, RDFa, allows this kind of integration client-side.

7 TF/IDF or “term frequency/inverse document frequency” is a well-known method
for weighing terms in a text corpus.
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Ontology selection draws on the generic Watson Semantic Web Gateway,
which pre-computes ontological indexes and thus simplifies and accelerates
the selection process. There are several challenges on this level, due to the
requirement on the web browser to respond to the user’s requests in real
time. Hence, ontology selection and processing must be also done in real time.

Semantic matches are then returned to the web browser, where every
matched entity is associated with a location in the web page and is expressed
as an XPath expression [36]. This uniquely identifies concept occurrences in
the text, and is a precursor for semantic disambiguation.

Semantic layering is basically a visualization of matches in the web
browser. For example, one can see the matches on the level of entire on-
tologies or on the level of concepts shared by the discovered ontologies but
conceptualized differently. These different visual views on the semantic con-
tent then create a dedicated semantic layer (or a skin) over the web page, and
three types of visualized content are shown in Fig. 5a,b.

Fig. 5. “PowerMagpie” prototype of a Semantic Web browser with skins implement-
ing three distinct views of the concept “Natural Language”: a conceptual view (a),
an ontological view (b) and a navigational graph visually superimposed on text (c)
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Semantic browsing reflects further exploration of connected concepts that
is permitted by the discovered ontologies. A prototype visualization8 of ontol-
ogy coverage and relationships is shown in Fig. 5c. The highlighted ontology-
concept link represents the user’s annotation of the ontology choice for that
particular web page.

5 Discussion

The Semantic Web is gaining momentum and more semantic data is available
online. This has an impact on the application development strategies. The
original Magpie as described in the previous edition of this book [16] came out
in the era before the aforementioned momentum in the Semantic Web became
visible, so its assumption of no or little semantic mark-up available is now
obsolete. The momentum implies that the new generation of Semantic Web
application needs to work with more heterogeneous and distributed semantic
data. Hence, another design principle (a single ontology) is challenged by this
environment consisting of distributed and networked ontologies.

The idea of exploiting the Web (and the Semantic Web) as a large source
of background knowledge has appeared in several recent works concerning
generic tasks (e.g., sense disambiguation or ontology matching). For example,
Alani proposed a method for ontology learning that relies on reusing ontology
modules from online ontologies relevant to keywords from a user query [37].
Similarly, the use of the open Web as background knowledge for ontology
mapping is reported in [38].

The use of Semantic Web at large as a resource in its own right intro-
duces several new challenges. For example, in the open Semantic Web, it is
unlikely that all ontologies and various lexicons derived from those ontologies
would reside at the same location. Ontological resources are geographically
dispersed, networked and richly interlinked. Given this, it is no longer suf-
ficient for the user to choose ontology. Users may want to create their indi-
vidual viewpoint from many networked ontological components. They may
want to do it dynamically and without bringing any knowledge engineers into
the loop.

Moreover, one may need to combine semantic mark-up available within
the web page with external semantic assertions coming, e.g., from third-party
ontologies discovered by Watson Gatewayor similar engines. As we suggest in
this chapter, tools like “PowerMagpie” may benefit from this emergence of
a large body of semantic content [39]: the existing mark-up (e.g., created by
the document authors) can be maintained/evolved using the automatically
discovered ontologies. A new challenge would then arise from the need to
reconcile the differences and to combine these multiple sources in a manner

8 A joint work with Takayuki Goto, Knowledge-as-Media Research Group, National
Institute of Informatics and University of Tokyo.
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that is transparent and useful for the end user. In our prototypes this has been
piloted using the metaphor of “skinning” the web page with a set of views
each supporting a particular form of semantic navigation.

5.1 Benefits of Using Multiple Ontologies

The key issue with older version of Magpie (and also other semantic web
browsing tools) is the requirement upon the user to select, load and activate
an ontology that would drive the application. For instance, in Magpie this
has been achieved by means of ontology-derived lexicons, from which the
application toolbar and semantic menus were created. The shortcoming is
that such an approach assumes the user knows which ontology to use and
where to load it from. Obviously, loading an inappropriate ontology would
yield false positives (e.g., identifying terms in text such as “Cork” being an
instance of “Tropical Wood” rather than “City” and a part of “Ireland”).

Moreover, the user rarely has suitable means to assess the fitness of a par-
ticular ontology to the semantic annotation and interpretation of any given
web page. Hence, the approach of combining Watson ontology discovery, anal-
ysis and access engine (Sect. 4.1) with an iterative matching between the doc-
ument and the ontologies (Sect. 4.2) automates these key decision tasks for
the user. The automation is achieved by means of:

• Ranking terms in the resource with an intention to produce an initial
document fingerprint with semantic commitments

• Selecting ontologies by matching the set of key descriptive terms identified
in the previous step to the index of harvested semantic content

• Ordering discovered ontologies to assist the user with assessing their fitness
in terms of domain coverage, richness, and expressiveness

• Creating dynamic semantic layers based on serializing selected semantic
content from the discovered ontologies and visualizing it in text

Semantic browsing is promoted in this chapter as a process of constructing
and using semantic layers that are expressive and flexible in nature. Rather
than using solely instances for semantic browsing (as, e.g., in faceted browsers
and in semantic layering approaches), the proposed approach reminds the
skins that visually amend user interfaces of many software applications. The
“skinning” approach to semantic browsing embeds semantics onto any back-
ground text and thus supports advanced semantic analyses; for example:

• On the level of ontologies it supports the identification of different perspec-
tives and their role in facilitating different routes in semantic browsing.

• On the level of conceptual entities the technique enables the user to com-
pare what are the different meanings (and implications) of particular com-
mitments in different ontologies.

• On the level of concept links the technique shifts the user’s attention away
from singular entities and presents ontological relationships among the
entities in the web document.
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• On the level of instances it supports ontology population and extension
by mashing up and merging conceptual commitments from several sources
into one (possibly persistent) skin representation.

5.2 Advances in Semantic Browsing

The idea of interlinking semantic annotation, semantic browsing and seman-
tic services is gaining popularity. Annotation is no longer a separate objective
in its own right; new annotation tools aim to offer additional services, e.g.,
validation or consistency checking. A major challenge in the domain of seman-
tic browsing stems from the need to make the association between semantic
services and semantic mark-up more open and more flexible. Furthermore, a
good motivator with usable semantic browsing techniques are needed to make
semantic browsing a mainstream user activity.

A potentially interesting input is likely to come from the deployment of
modular ontologies and specialized services as opposed to monolithic ontolo-
gies with tightly integrated web services. The modular approach allows some
of the services to be involved in evolving general knowledge captured on the
Semantic Web. Some methods may use statistical techniques, whereas other
services may rely more on social trust. It seems that knowledge evolution
may provide a good test case and a motivator for semantic browsing tools –
whether it is a formal evolution of knowledge within specific ontologies or
repositories or a social, user-driven evolution based on the annotations and
tags of users relying on similar ontologies in their browsing.

Another motivator for semantic browsing tools might stem from a rise of
new techniques for information extraction, text analysis, knowledge validation
or relationship discovery. While the low-level techniques rapidly change and
become outdated, semantic browsers with sufficiently flexible architectures
may benefit from those changes – a web browser is a very low-cost tool to
be upgraded by ordinary users. Thus, the visual components of a semantic
browser may hide the flux of underlying technologies – one would be able to use
the latest knowledge technologies without any major re-design of the existing
user interaction techniques. Semantic browsers may thus become a bridge to
enable a shift from closed, single perspective application development to a
smarter, on-demand knowledge construction.
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Summary. Within Computer Science and Artificial Intelligence, the term ontolo-
gies was coined in the Knowledge Sharing and Reuse Effort, for efficient engineering
of (distributed, cooperating) knowledge-based systems. It is not surprising that it
soon entered the Knowledge Management (KM) area: Sharing and reuse of personal,
group, and organizational knowledge are among the central goals aimed at in most
KM projects. In this chapter we introduce the main ideas of KM, as well as the role
of and requirements for information technology (IT) in KM. We discuss the potential
of ontologies as elements in IT support for KM. We characterize their current role
in research and practice, derive a working focus for the near future, and conclude
with an outlook on trends in KM software and their implications on ontologies.

1 Information Technology for Knowledge Management

Knowledge Management is an interdisciplinary topic with roots in Economics,
Information Technology, Pedagogy, Psychology, and Organization Theory
(cp. [20,33]). We can define Knowledge Management as a:

• Systematically managed organizational activity
• Which views implicit and explicit knowledge as a key strategic resource of

an organization, and thus
• Aims at improving the handling of knowledge at the individual, team,

organization, and inter-organizational level
• In order to achieve organizational goals such as better innovation, higher

quality, more cost-effectiveness, or shorter time-to-market
• By employing tools, techniques, and theories from manifold areas such as

IT, strategic planning, change management, business process management,
innovation management, human resource management, and others

• In order to achieve a planned impact on people, processes, technology, and
culture in an organization

S. Staab and R. Studer (eds.), Handbook on Ontologies, International Handbooks 713
on Information Systems, DOI 10.1007/978-3-540-92673-3,
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From the very beginning of KM, two streams of research and applications
could be identified, following the process-centered and the product-centered
view on KM, respectively.1

(1) The process-centered view mainly understands KM as a social com-
munication process. It assumes that the most important knowledge source of
an organization are its employees, and that solving wicked problems [18] is
merely a process of achieving social commitment than one of problem solving.
Consequently, knowledge exists, is created, and is further developed in the
interaction among people and tasks – such that the focus of IT should be to
enable, to facilitate, and to support communication and collaboration.

Technical solutions in this area comprise, e.g., yellow page and expert-
finder systems for determining the right communication partner, Computer-
Supported Collaborative Work (CSCW) systems for effective collaboration
between geographically separated people, or Skill Management systems
for the systematic and planned acquisition and development of human
skills.

In this view, organizational measures play a particularly important role,
e.g., the installation of expert networks, the running of training courses, the
facilitation of virtual teams and communities of practice, and all kinds of
cultural KM support.

(2) The product-centered view assumes that knowledge can exist outside of
people and can be treated as an object within IT systems. It focuses on knowl-
edge documents, their creation, storage, and reuse in computer-based organi-
zational memories (OMs). It is based on the idea of explicating, documenting,
and formalizing knowledge in order to have it as a tangible resource, and on
the idea of supporting the user’s individual knowledge development/usage by
presenting the right information sources at the appropriate time.

The transition from intangible (implicit and tacit) to tangible (explicit)
knowledge in the form of standardized processes and templates, of FAQs,
lessons learned, best practices documents, etc., allows a company to enhance
its structural capital to some extent – maybe at the price of reducing creativ-
ity and flexibility. Basic techniques for this approach come from Document
Management, Knowledge-Based and Information Systems.

In this view, organizational measures aim at fostering the use and improv-
ing the value of information systems by bonuses, or by installing organizational
roles/processes for high-quality knowledge-content management.

Figure 1 illustrates the typical software support for both approaches to
KM. By analyzing the landscape of IT support for KM (cp. [42]), one may
identify the following four types of KM applications:

1 The same dichotomy was also called personalization vs. codification strategy, or-
ganic vs. mechanistic approach, or community model vs. cognitive model view,
see [1, 44].
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Fig. 1. Software support for the product and the process approach to KM

Type 1 Applications: Conventional Software Basis

Type 1a Applications: Standard Software Applications. Especially the early
success stories of KM were – although IT-enabled and heavily IT-dependent –
not building upon any new IT solution; they just employed conventional tech-
nology like databases or discussion boards. This should not be underestimated
in practice. However, it is not interesting in the context of this book.
Type 1b Applications: Integrated Standard Software. The first generation of
dedicated KM tools is characterized by the deep integration of manifold as-
pects of KM support in one software suite, hence incorporating both prod-
uct and process aspects of KM. Typical representatives are the big KM tool
suites successful in the market. Tools like Livelink, Lotus Notes, Autonomy’s
or Inxight’s products, usually combine (1) many types of synchronous and
asynchronous communication and coordination for collaboration and process
management, with (2) functionalities for document and web-content man-
agement, many individual and organization-wide information management
functions (push and pull services, Intranet portal functionalities, etc.) and (3)
advanced document classification and information retrieval (IR, enterprise and
Internet search) technology.

Figure 2 depicts an abstract, comprehensive KM tool architecture which:

• Incorporates data and information from manifold sources
• Organizes it according to a common corporate knowledge map
• Provides collaboration and discovery services working upon these organi-

zational knowledge sources
• Feeds these services through a common knowledge portal into operational

business processes and into KM processes

Type 1 applications often do not maintain a knowledge-rich, explicit on-
tological basis; nevertheless, the box “Knowledge Map” in the middle of the
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Fig. 2. Abstract KM system architecture, adapted from OVUM

picture points out the central role of a shared language to connect people to
people, people to information, and information to information, in an orga-
nization. This is the target area for more “heavy-weight,” knowledge-based
approaches in order to improve KM systems and services by ontologies.

Type 2 Applications: Intelligent Software Basis

Type 2a Applications: Intelligence-Enhanced Solutions. While Type 1 applica-
tions are based on “conventional” IT, we here subsume applications based on
Artificial Intelligence methods, including ontologies as a core enabler. Figure 3
gives some examples arranged according to their role in different KM core
processes. Type 1 represents the current, product-based, state of practice in
(mainly, big) industries and administrations, whereas Type 2 comprises many
mature prototypes, as well as niche-products offered by small or medium-sized,
leading-edge companies, with operational solutions mostly deployed for early
adopters.2 Type 2a applications are today’s most important field of ontology
usage in KM. Ontology-supported tools and functionalities comprise:

• Intelligent Search and Retrieval in Intranet and Internet
• Information Gathering, Information Extraction and Information Integra-

tion with ontologies as target data structure
• Semantic Community Web Portals
• Expert Systems and Intelligent Advisor Systems

2 For concrete software products it is sometimes difficult to clearly distinguish
Type 1 and Type 2. But, for the purpose of this book, it is sufficient to clarify
whether an application is based on explicit, formal ontologies, or not.
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Fig. 3. Traditional vs. knowledge-based KM technology (i.e., type 1 vs. type 2
applications), adapted from [77]

We will discuss these fields in more detail in Sect. 3 below.

Type 2b Applications: Enhanced Solutions Integrated. KM is by definition
boundary spanning, i.e., bridging the gaps between departments and orga-
nizations, between people and information, and between different kinds of
software services; so, it is both a challenge and a chance of KM software de-
sign to try capturing “the whole picture,” i.e., integrate the product and the
process view, and cover the whole architecture sketched in Fig. 2. Because
they aim at exactly this goal, Type 1b applications are the first tools which
deserve the dedicated name “KM software.” Now, the interesting, but hardly
ever posed, question for Type 2 applications is how different knowledge-based
functions in a comprehensive KM application can exploit synergies. We will
sketch some approaches in Sect. 4 below.

While the first generation KM success stories typically were built on
type 1a, or, seldom, type 2a applications – like a Lessons Learned database, an
Expert System, or a Yellow Page system – the big commercial KM toolboxes
are comprehensive type 1b approaches which integrate manifold complemen-
tary functionalities. Seen from the IT – or, AI – point of view, the interesting
questions are to which extent 1a services can be improved towards ontology-
based 2a approaches, and what possibilities arise when thinking about inte-
grated type 2b applications. Before we come to these questions, we will shortly
discuss some general requirements for KM software and their implications for
the use of ontologies.

2 Requirements for KM Software and Ontologies

We discuss three major KM requirements and their implications for the ontol-
ogy topic, namely (1) minimalization of upfront knowledge engineering, (2)
integration of KM support with everyday work procedures and tools, as well
as (3) integration of heterogeneous kinds of information.
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R1: Minimalization of Upfront Knowledge Engineering

Since KM is considered an additional organizational task, orthogonal to the
“productive” work, expensive start-up activities would be a major barrier for
successful KM initiatives. On the other hand, it seems clear that no ontology-
based approach can be introduced without an explicit commitment of all peo-
ple involved and without their contributions to ontology engineering. Hence,
all topics dealing with a smooth and cost-efficient introduction of ontology-
based applications are particularly important for ontology-based KM:

• Method-Driven Ontology Engineering. There are many far-developed ontol-
ogy modeling and management tools.3 Knowledge Management provides
significant difficulties for such a framework: The ontology shall (often) be
built and maintained for a community-spanning use, seen from different
perspectives, in an evolving domain, by non-Knowledge Engineers. So, we
expect (in the ideal case) not only incorporation of legacy structures and
text analysis results, plus technical solutions for the distributed creation
and use of an ontology, but also a convincing methodological approach (see
chapter “Ontology Engineering Methodology” of this book) built into the
ontology tool suite for guiding and supporting the user. We expect com-
munity concepts like distributed discussion support, versioning concepts,
help for managing the informal-formal transition in a group discussion pro-
cess for ontology building,4 and, in the optimum solution, an integrated
support for all steps of a business-oriented KM methodology. There are
several approaches in this spirit, for instance:
– In the DECOR, the PROMOTE, and the SPEDE approaches in the

realm of Business-Process Oriented Knowledge Management, top-level
business-process analysis is intertwined with (and, actually, provides
the overall frame for) knowledge acquisition for ontology engineering
[1, 19,36].

– In the OPAL ontology-modeling framework, business-specific terms are
offered to the “not-ontology-expert” modeler as modeling templates
[49].

• Ontology learning. At least the “first cut” ontologies to start with in an
organization should avoid the typical “cold start” problems by building as
much as possible upon structures already explicit in the organization or
hidden in the organization’s text documents. The use of machine learning
and text analysis algorithms for ontology structuring and population is
discussed in this book in chapters “Ontology Learning” and “Information
Extraction.”

• Ontology reuse. Regarding cross-organizational ontology reuse, not only
technical and methodological provisions must be made (cp. chapters

3 Like, for instance, the NeOn toolkit (http://www.neon-toolkit.org/), KAON
(http://kaon.semanticweb.org), or Protégé (http://protege.stanford.edu),
cp. [29].

4 Cp. Tadzebao, WebODE, or DILIGENT [29,75].
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“Ontology Engineering Methodology” and “Ontology Mapping” in this
book), it is also a “political” and economic challenge to bring together
a significant number of companies – typically competitors – to embark
upon creating a shared ontology of their application domain. So, the
main success stories are driven by public efforts and/or research scien-
tists, like medicine, biology/lifesciences (cp. chapter “Application of On-
tologies in Bioinformatics” in this book), and genetics [51,58]. Other areas
with good chances for reuse concern broadly shared concepts in product
and business modeling required for e-commerce and product-data sharing,
as well as areas dominated by few global players, like the insurance sec-
tor (cp. http://www.acord.org). In such sectors, ontologies or, at least
shared data models, have been motivated by data-exchange and resource-
integration scenarios; but these sectors could profit even more from com-
prehensive KM. Regarding organization-internal reuse, the problem is ob-
viously much smaller such that a company strongly dedicated to ontology-
based applications might profit much from internally reusing ontologies
and ontology modules – provided the organization structure and processes
foster and support that.

R2: Integration of KM Support with Everyday Work Procedures/Tools

In order to achieve a good user acceptance and to realize a maximum effect
on knowledge workers’ task performance, it is useful to integrate KM software
as seamlessly as possible with the tools already in use for daily work. Several
research prototypes and industrial case studies address this goal by coupling
knowledge storage and retrieval with workflow enactment which controls the
operational business process [1, 36]. Here, the ontology is the “glue” between
operative tasks and KM tasks, on one hand (describing task-specific knowl-
edge needs expressed in terms of an application domain ontology), and the
Organizational Memory System, on the other hand (annotating knowledge
resources semantically with ontology-based metadata).

The authors of [34] go a step further: they propose an ontological founda-
tion of all business modeling based upon (1) a static ontology (the things in
the world their attributes and relationships); (2) a dynamic ontology (states,
state transitions, and processes); (3) a social ontology (agents, positions, roles,
organization forms); and (4) an intentional ontology (believes, goals, etc., of
agents). Such a comprehensive semantics-based business model could be the
basis for powerful KM services and systems. The EULE system presented by
[54] formally represents and enacts even more task knowledge:

• Process aspects (temporal and causal relationships)
• Normative aspects (deontic knowledge)
• Terminological aspects (concepts and their relationships)

are modeled in an insurance application, in order to realize partially au-
tomatic problem-solving and knowledge-based information retrieval. Such



720 A. Abecker and L. van Elst

heavy-weight approaches are promising in domains (1) which are strongly
regulated by law, norms, and regulations, such that (2) a high degree of for-
malization can be achieved, and (3) where once-formalized knowledge can be
employed in manifold different applications (cp. [13,71]). Another application
domain with similar characteristics are medical guidelines [52].

R3: Dealing with Heterogeneous Kinds of Information

Looking for a practical definition of “knowledge” (in contrast to data and
information), it seems important that knowledge is always oriented towards
action – this aspect is already treated above; other aspects concern the fact
that knowledge is strongly related to context and that it has a network char-
acter – showing how pieces belong together. Technically, this leads to the
requirement that KM applications often have to process data, information,
and information sources created for capturing knowledge (like lessons-learned
entries or best-practice documents) in a highly integrated manner. As a solu-
tion approach, such knowledge documents are annotated with metadata which
can be processed automatically and set into relation with application data.
Hence, a KM application should be built upon an Information Ontology [1]
which defines:

• Which types of documents occur.
• What metadata attributes they have and which ontologies determine the

value ranges of these attributes, where:
– This may differ from document type to document type: a lesson learned

may have a pointer to the project it was created in and the question
how successful this project was; whereas a technical report may have
an attribute for the location of the hardcopy of the document in the
library, or links to experts for the technology described.

– Such metadata attributes may also be application specific; e.g., in an
e-Learning application (which can be seen as a specific KM task) it
might be important to specify how difficult to understand a document
is and which prior knowledge is required; whereas in a Knowledge Trad-
ing scenario [4] attributes for pricing models, IPR issues and contract
models might be required.

• What relationships between documents are represented; linking logically
related documents is a powerful mechanism for representing context; for
example, in the EULE system knowledge with different degree of formaliza-
tion is linked together (e.g., formal inference rules and their textual expla-
nations [54]); discourse representation and group decision support systems
implement in a somehow “hardwired” manner an information ontology by
providing different kinds of message types (e.g., issues, arguments, ques-
tions) and relationships (e.g., explains, corroborates, contradicts) for docu-
menting argumentation structures in meetings or discussion processes [46];
in an e-learning system specific relations may describe that some lessons
require other lessons as (mandatory or useful) prior knowledge, or that an
example illustrates some definition.
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These ideas have been applied in the field of Experience Management
in Software Engineering where sophisticated domain-specific information on-
tologies have been developed in order to identify those facets of a software-
development experience which are important for assessing its later reusability
in another situation [74]. Other areas which employ case-based reasoning ap-
proaches for reuse of, e.g., technical designs, go into similar directions (cp.
[56]). Another area which can be seen a part KM or, at least, pretty close
to KM, is eLearning – where also many sophisticated information ontologies
exist already and are used mainly for personalization purposes (see, e.g., [31]).

Of course, real-world KM applications (and their ontology aspects) have
not only to meet the requirements described above, but also hold a rigorous
cost-benefit analysis. A detailed analysis of an expected ontology life cycle
can be a powerful guide to achieve an optimal level of formalization in terms
of costs and benefits. Likewise an explicit handling of an ontology’s sharing
scope helps minimizing negotiation costs as well as the complexity of revision
processes in case of ontology evolution (these dimensions and their trade-offs
are theoretically discussed in [69]). After these design considerations, we show
some practical examples in the following sections.

3 Ontologies in Intelligence-Enhanced Applications

O’Leary characterizes the role of IT in KM as “converting and connecting”
[47], with the following specific functions:

• Conversion of data and text into knowledge
• Conversion of individual and group’s knowledge into accessible knowledge
• Connection of people and knowledge to other people and other knowledge
• Communication of information between users
• Collaboration between different groups
• Creation of new knowledge that would be useful to the organization

Typical ontology-based KM applications to support these functions are:

(1) Knowledge Portals for Communities of Practice. A Community of Prac-
tice (CoP) is a, typically, informal, self-organizing group of individuals with
an interest in a particular practice, for example the group of people in a com-
pany who do the same (or partially overlapping) jobs [6]. The CoP might be
contained within an organization, or spread across several. The CoP members
have in common a desire to develop their competence, either for pleasure or
pride in their ability, or for improving their work efficiency. CoP members typ-
ically exchange “war stories,” insights or advice on specific problems, or tasks
connected with their common practice. A CoP can act as a part of the or-
ganizational memory, transfer best practice, provide mechanisms for situated
learning, and act as a focus for innovation.
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Knowledge Portals, or Community Portals act as an information intermedi-
ary which structures all aspects relevant to a given, specific topic, in order
to allow a community of users to flexibly and easily access a huge amount
of information in different formats (today, usually text documents) related
to this topic, to exchange information and communicate about the topic in
quest, and to maintain and extend the content base accessed via this Internet
(or, Intranet) portal [61]. Normally, such a portal comprises browsing and
searching mechanisms for documents, as well as community services like on-
line forums, mailing lists and news articles. Examples comprise the OntoWeb
Semantic Web community portal [60], or the RiboWeb portal for molecular
biology [7].

(2) Organizational Memories. An Organizational Memory Information Sys-
tem OMIS, or, for short, Organizational Memory OM [1, 23] – or, as a spe-
cialization, a Project Memory [28] – is a computer system within an organi-
zation which continuously gathers and actualizes knowledge and information
(from within and from outside the organization) and provides it to the end
user in a context-dependent and task-specific, manner, thus offering proac-
tive assistance to a knowledge worker dealing with knowledge-intensive tasks.
The OMIS collects manifold types of information, such as best practice and
lessons learned documents, news articles, document templates, company regu-
lations and manuals, CAD drawings, minutes of meetings, etc. Typical OMIS
functionalities comprise integration of knowledge with different degree of for-
malization, intelligent problem-solving assistance by automatic generation of
partial problem solutions [54], and context-aware, task-specific retrieval of
information [1].

(3) Lessons Learned Archives. A Lesson Learned (LL) is a piece of knowledge
gained through experience, which if shared, would benefit the work of oth-
ers.5 It is typically generated from a customer project in a debriefing step, or
created by an innovation or adverse experience which lead to some shareable
insight to promote repeated application, or avoid reoccurrence, respectively.
Lessons Learned systems are typically used in Consulting firms [48], large tech-
nology companies, or in big government institutions, like military. Technolog-
ically, the challenge in LL systems lies in finding (and filling) an appropriate
metadata schema (or, information ontology) which allows to precisely assess
the potential value of a given LL as a reuse candidate in a new situation [76].
As a related problem, the question of matchmaking arises (compare stored LL
metadata with characteristics of the current situation to estimate whether the
application of the LL will be useful) which is today often addressed by CBR
(Case-Based Reasoning) methods. The authors of [72] distinguish four types
of LL systems according to the way the systems capture their input (passive
vs. (semi-)automatic) and according to the way the LLs are published to the
users (push vs. pull).

5 See http://www.aic.nrl.navy.mil/~aha/lessons/, cp. [76].
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(4) Expert Finder and Skill Management Systems. Since tacit and not (yet)
explicated knowledge is at least as important for KM as explicit, documented
knowledge, the “classical” means for connecting people to people – yellow
page systems, simple expert directories, and personal web pages – are typical
“quick win” applications for KM (cp. [9]).
More advanced approaches for expert finders (e.g., for project-team configu-
ration, specific technical questions, or strategic knowledge-development plans
in the organization) try to avoid the manual creation and continuous main-
tenance of skill profiles; instead, existing explicit information is analysed, like
documents created by a person, documented trainings and formal qualifica-
tions, project membership, collaboration or co-authorship relations, informa-
tion flows, etc. [78]. Further improvements comprise sophisticated matching
functions for skill profiles (compare an employee’s skills with a job’s required
skill profile) [11,64]. In the ideal case, such functionalities are integrated into
the personal and organizational skill and Human Resource management func-
tions for planning, monitoring, staffing, etc. [11]. Further extensions comprise
additional value-adding services like automatic scheduling of appointments
for knowledge exchange between users, provision of extra information during
interactions, negotiation support for knowledge exchange planning, etc.
Ontologies are normally used to structure the area of competencies, some-
times also to structure the environment in which competencies were acquired,
used and further developed, i.e., projects, publications, etc. Most important,
ontologies provide the background knowledge for knowledge-based matching
functions and complex similarity measures for comparing skill profiles. Ex-
amples for ontology-based skill management include the SwissLife case study
from the insurance sector [39], the OntoProper case in the software sector [64],
or the DaimlerChrylser case [11].

3.1 Usage and Benefits of Ontologies

In the above mentioned, major knowledge-based KM applications, ontologies
are mainly used for the following three general purposes (see also [21]):

O1: Ontologies Support Knowledge Search, Retrieval, and Personalization

The most important application of ontologies in KM – besides browsing in-
terfaces in Knowledge Portals – is certainly to improve search and retrieval of
documents by exploiting ontological background knowledge about the appli-
cation domain.

In [43], the basic ideas are described how to use taxonomies for increasing
recall of information retrieval (IR) when browsing and querying. Normally, in
the case of an empty or small answer set, taxonomic knowledge is used for
extending the query by sub-concepts or super-concepts.
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In the Electronic Fault Recording system for structured documentation
and retrieval of maintenance experiences for a complex and large mechanical
device,6 the retrieval of potentially useful documented experience is not only
supported by a detailed machine-model in terms of is-a and has-part relations;
similarity of potentially useful situations can also be assessed using modeled
links for hydraulic and electrical connections between machine parts, as well
as analogy relationships between similarly constructed machines [10].

The authors of [40] propose a declarative search-heuristics language in an
ontology-based skill management prototype: Potentially useful information is
inferred via graph-traversal following domain-specific links in the knowledge-
base, e.g., about project-team membership. Similarly, rules about relationship
instantiations are used in [64] for skill inferencing.

In general, the more specifically a domain is described, the more powerful
inferences for query expansion and query reformulation are possible; however,
detailed models are expensive to acquire and maintain, such that we have the
typical KM trade-off asking for economic rationality when deciding between
“high-tech” and “low-tech” approaches.

While the approaches above usually increase recall of IR, precision is not
so often treated explicitly. The KonArc prototype (for storage and retrieval of
experience in a database for software-solution designs) used domain-specific
information about incompatibilities of search constraints (e.g., between oper-
ating systems and specific software packages) for early detecting empty an-
swers sets (and also explaining the contradictions to the user) [59]. For yellow
pages and product catalogues, it is shown in [30] that an ontology coupled with
a linguistic knowledge-base can increase both recall and precision, because it
supports query disambiguation for polysemous query terms.

The so-far discussed approaches all describe information pull situations; of
course, ontologies are also a means to provide the vocabulary for expressing
personal interest profiles for information push services which automatically
deliver knowledge and information for categories a user is interested in – be
it in personalized knowledge portals that are offered by many KM tool-suite
vendors, in KM-oriented RSS feeds, or in mobile KM scenarios which need a
proactive knowledge supply. An example is the myPlanet system which creates
personalized news with the help of an ontology-based user profile [35].

In general, the issues of sophisticated, ontology-based representations and
processing of (life and work) context, user profiles, and user activities in or-
der to realize high-precision retrieval, proactive, context-dependent knowledge
supply, personalization of retrieval and presentation, collaborative retrieval,
usage mining, proactive knowledge collection, group-knowledge sharing, etc.,
are still active and promising research topics in the intersection of KM and
ontology research.

6 Log entries of maintenance experience comprise fault events, maintenance
measures, repair actions, etc.
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O2: Ontologies Serve as the Basis for Information Gathering, Integration,
and Organization

KM deals with knowledge resources of different degree of formality, often in-
formal text documents. On the other hand, the more formally represented
information we have, the more and better formal inferences are possible –
for query answering and passage retrieval, for derivation of new knowledge,
or for comparing and integrating facts and documents from different sources.
More formalized information (i.e., facts related to a predefined schema) al-
lows, e.g., to partially automate problem solving or to integrate IR results
into operative business applications. The basis for such inferences are the in-
formation ontology structuring the metadata of informal knowledge sources,
and the domain ontologies structuring the content area of documents and pro-
viding background knowledge for inferences. This background knowledge may
comprise information search knowledge as well as domain-specific application
knowledge. Information Extraction (IE) algorithms (see chapter “Information
Extraction” in this book) for (semi-)automatically annotating metadata to
documents and Text Categorization techniques [57] for finding semantic con-
tent indexes map informal sources to values of formal metadata attributes.

For realizing Business Intelligence applications in a KM context, domain
ontologies provide the target data structures for gathering information from
different sources in the Internet or a corporate Intranet. For example, in [47]
a Price Waterhouse Coopers application is described that fills information
frames about management changes in companies by analyzing a stream of
business news articles. Similar applications are reported for filtering specific
events out of news articles about economy or politics, for analyses in the mil-
itary sector, and for fact extraction from personal web pages or publication
web pages (see [38] for a technology survey). The authors of [5] describe an
ontology-based application which creates narrative biographical sketches of
artists based upon information automatically gathered, extracted and inte-
grated from Web pages.

The Ontobroker [22] showed early how formal inferences can support re-
trieval and analysis of distributed information in the WWW. Prototype sys-
tems like PowerAqua, AquaLog or ORAKEL show how advanced ontology-
based Semantic Web methods, natural-language processing, and machine
learning can be combined in systems that lift document retrieval to real ques-
tion answering from distributed resources (see, for instance, [12,41]). In [68],
an overview of the state of the art is given regarding semantic document an-
notation and metadata extraction – which is an indispensable prerequisite
to make full use of Semantic Web retrieval and processing technologies; the
authors also discuss KM requirements and unsolved issues in this respect.

O3: Ontologies Support Knowledge Visualization

Different aspects of visualization for information search have been discussed
in the literature on Human–Computer Interaction (HCI) and in the Digital
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Library community (see, e.g., [37]). With the advent of the Internet society,
such methods gain growing interest (cp. [16]) for surveying and analyzing
big amounts of information with complex interconnections. A survey about
applicable visualization methods is given by [32], including (1) basic graph
layout approaches (like H-tree layouts, balloon views, radial views, tree-maps,
cone trees, hyperbolic views, etc.); (2) navigation and interaction techniques
(such as zoom-and-pan, focus+context techniques like fisheye distortion, and
approaches to incremental exploration); and (3) clustering for grouping data
based on a chosen semantics and reducing the number of shown nodes or the
complexity of the created view by methods like ghosting, hiding, or grouping.

Such methods can be used for inspecting the metadata and content de-
scriptions of knowledge stocks in order to create new knowledge by analy-
sis and recombination of existing knowledge. In such cases visualization may
help to illustrate structure (e.g., content density) and distribution of content
in a document corpus, as well as relationships between specific metadata at-
tributes (like time or geographic relationships regarding document content or
document creation, as well as co-authorship relations between people). Visual-
ization of content structures can even be useful for intra-document analysis for
long documents like government reports, classical literature, socio-economic
almanacs, etc. – in order to get a rough overview of topics discussed, of their
textual manifestation, and their interrelationships, or in order to have a quick,
topics-based access to document parts. Visualization is also valuable for find-
ing useful knowledge items in vaguely specified search situations where (par-
tially) exploring the information space is a part of problem-solving and helps
clarifying the problem specification and/or its solution space.

In the meanwhile, visualization for topic-oriented document access went
into commercial practice.7 A number of commercial companies offer tools for
knowledge and information visualization, for instance:

• USU AG (http://www.usu.de) or intelligent views GmbH (http://www.
i-views.de/), among others, use a semantic network interface for brows-
ing, navigating, and exploring the major topics and topic interrelationships
in a collection of text documents, in combination with a search engine or
for enterprise knowledge portals.

• ADUNA (http://www.aduna-software.com/) offers a visualization of
hierarchically classified objects which can be used to show instantiated

7 One enabling factor for commercially successful visualization suites for knowl-
edge organization and access, may have been the IEEE Topic Map standard,
see http://www.topicmaps.org/. Topic maps are often seen a competitor to
ontologies because they serve partially similar purposes, but have different roots,
some incompatible basic design decisions, a different research community. How-
ever, they have partially similar goals and application areas and complementary
strengths to the mainstream ontology approaches – in particular, the design for
human understanding and manipulation – such that the authors see them allies
in the long term, rather than competitors.
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taxonomies or ontologies – this is used, e.g., to display how search results
of a desktop search can be grouped according to their relevance for certain
keywords and keyword combinations [63].

• Ontopia or empolis provide generic topic map software for different pur-
poses, including a topic map navigator (see also http://www.topicmap.
com/).

Altogether, visual approaches can be a great support for understanding,
searching, and investigating huge amounts of information and metadata. An
overview of research and practice of visualization for the Semantic Web (e.g.,
RDF Graph visualization) can be found in [27]. However, in the authors’
opinion, the economically valid use cases and scenarios should be better un-
derstood; analysing the quantifiable value-added of visual approaches as well
as their critical success factors still seems to be a promising field for applied
computer science.

Independent from the question which visualization approach is used (even
with a simple, tree-structured browsing interface), KM usually deals with
sharing complex knowledge content between people with quite different back-
ground and interests; this may often lead to the requirement that multiple
views onto the same knowledge base should be provided. This is to some
extent contradicting to the goal of creating a widely shared ontology for en-
abling communication between people; nevertheless, this requirement should
not be neglected in practice – in particular, regarding the future trends of more
distributed KM scenarios (see Sect. 5). Preliminary considerations about the
technical support for such scenarios are presented in [59], based on the idea
that specific, user-oriented GUI views can be created from special presenta-
tion ontologies created by selection and transformation operations from one
(or more) system-internal ontologies.

3.2 Challenges for Ontologies in KM

Since Type 2A applications more or less represent the state-of-the-art in using
ontologies for KM, we summarize some challenges which we see for the near
future of research and technology transfer in this area:

Evaluation: It is already an indispensable need for KM applications to show
their economic benefits to the project sponsors – which is not easy. In order
to be successful, we have to find success criteria and develop metrics to
assess whether ontology-based applications are more useful than solutions
with “low tech” approaches. Although there exist already methodologies
for ontology-based KM projects (for instance [65]), the aspects of bench-
marking or quantitative performance criteria are rarely tackled.

Evolution: Since we are talking about long-living systems in dynamic envi-
ronments, also ontological structures must be evolved cost-effectively to
avoid decreasing system performance. A maintenance methodology for
Case-Based Reasoning systems which might be transferable to KM, has
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been proposed by [55]. Its prerequisite are quantitative quality and perfor-
mance indicators for the KM system. A well-structured analysis of the field
of change discovery for ontologies distinguishing between structure-driven
(obvious structural deficiencies of the ontology), data (instance) driven,
and usage-driven indicators for required changes, was given by [62]. Con-
crete, usage-driven ontology evolution processes with the example of user
interactions on an ontology-based e-business portal, were illustrated in [8].

Inference: As already argued, exploiting the power of inferences would show
the usefulness of knowledge-rich approaches in contrast to, e.g., taxonomy-
based ones. We should search for domains requiring powerful reasoning
mechanisms and expressive domain descriptions. This may include aspects
not yet fully adopted in ontology-based KM systems, such as the use of
manifold link types [67], the representation of uncertainty and vagueness
in domain modeling, or the definition of similarity on top of ontologies as
it is demonstrated in CBR systems.

4 Ontologies Towards Enhanced Integrated Solutions

We mentioned already that exploiting synergy effects between different ap-
plications in the complex KM scenario can be an interesting source of inno-
vation – for both new ideas and improved effectiveness of existing software
functionalities. This area – especially with respect to ontologies – is not yet
explored very well; but, we give some examples for work into this direction:

• We reported in [2] on performance improvements for document analysis
(DA) and information extraction from paper documents by using expec-
tations generated taking into account open workflow instances. The link
between workflow system and DA is established by process, domain and
DA ontologies and their mutual mappings. Similarly, task-specific IR is
realized by coupling IR needs to workflow tasks.

• ONTOCOPI [6] is a tool for identifying potential members of a (hidden)
Community of Practice by uncovering informal relationships between peo-
ple trough traversal of instantiations of ontologically described formal re-
lationships, like is-coauthor-of. Recommender systems learn about user
preferences over time for realizing precise information push (cp. chapter
“Ontology-Based Recommender System”). It is described in [45] how both
systems can mutually benefit using the same ontological basis as the link
between them.

• Typical software systems for supporting the process-view on KM comprise
groupware (CSCW) and workflow systems. If, on the other hand, personal
interest and skills are described formally on an ontological basis, group-
ware and CSCW support can be improved using this information. Ex-
amples for more intelligent CSCW support are more knowledgeable task
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assignment to employees in a workflow application, more knowledgeable
project staffing when configuring a new team, or better informed briefing
of participants before a virtual meeting.

5 Future Trends

Comprehensive KM frameworks emphasize that Knowledge Management can
take place at the individual, the group, organizational, and interorganizational
level. The software functionalities discussed in Sects. 3 and 4 are mostly used to
support the group and organizational level. Focussing on the personal and the
interorganizational level, are logical next steps. Economically, the transition
to interorganizational KM is driven by the movements towards the Extended
Enterprise which tries to integrate logistics and production processes along
the whole production chain (cp. [50]), and towards the Virtual Enterprise
which is configured ad-hoc for specific projects from independent small units,
in order to dynamically establish a temporary value-creation chain. One can
easily see that such scenarios provide both more chances and more challenges
to KM than traditional enterprise-internal scenarios.

Technically, the concepts of Distributed Organizational Memory (DOM)
[3,69] and Agent-Mediated Knowledge Management (AMKM, [24,26,70]) have
been introduced to deal with highly dynamic and highly distributed environ-
ments. Projects and systems like NAUTICUS, Jasper II, COMMA, FRODO,
KDE, or EDAMOK identified KM-specific functionalities to be provided in
an AMKM scenario by different kind of electronic agents or agent societies;8

examples are collaborating agents for knowledge capture, retrieval, summa-
rization, and user-profile refinement, or agent sub-societies to support anno-
tation, ontology management and maintenance, metadata and user manage-
ment, as well as matchmaking and retrieval. Such approaches often maintain
process and role models as first-order citizens of their framework and often ad-
dress issues such as sophisticated user-context acquisition and usage (typically,
working context on the desktop) for offering high-precision, task-oriented KM
services. In general, the issue of context in OMs is still a challenging research
area [14].

A possible approach to realize AMKM or DOMs, is Peer-to-Peer technol-
ogy (P2P, [15, 66]). For instance, in [14, 69] it is suggested to engineer social
order/social mechanisms (like rights and obligations) into P2P KM systems
for coordinating agents’ activities. One essential problem behind is how to
balance private issues and organizational issues in a complex and dynamic
scenario.

Some other recent trends, only enumerated in a sketchy manner:

8 Due to space limitations, we cannot include references for all the named systems;
but they can be found in [70].
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• The idea the semantic desktop is to use ontology-based, topic-oriented
structuring mechanisms in the background for organizing and finding
information from everyday-applications in the personal, private informa-
tion space. The idea of the social semantic desktop transcends this from the
personal towards the group information space. The NEPOMUK project
investigates how such mechanisms can be used for personal and for commu-
nity knowledge management (http://nepomuk.semanticdesktop.org/).

• Folksonomies exploit the power of large user communities with lightweight
semantic technologies to achieve nevertheless a good quality of indexing
for information retrieval. The transition between such lightweight social
software approaches and more heavyweight, ontology-based approaches is
an open question with a particular importance for KM because it addresses
the trade-off between costs and quality.

• Process knowledge slowly becomes a topic of interest in KM, and in ad-
vanced, ontology-based information management projects. On one hand,
business tasks and business processes are a source of context for knowledge
creation and search; on the other hand, process and task execution knowl-
edge itself may be a shareable, reusable asset in an organization; lastly,
knowledge workers’ productivity depends much on sensible task manage-
ment support. Hence, manifold research topics can be found in this area
and its combination with more traditional information management issues
(see, for example, [17,53]).

• Last but not least, there is some technological as well as methodologi-
cal convergence visible between several complementing and overlapping
areas: In particular, skill and human resource management, e-Learning,
and KM. Technically, first integrative works address ontological founda-
tions of many affected fields (cp. the PALETTE project [73]) and more
integrations of process-view and product-view tools for KM, like OM and
groupware/social software (cp. [25]).
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Sorensen C, Fägerlind H, Lindroth T, Magnusson M, Östlund C (eds) Proc
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Summary. The use of ontologies has become a mainstream activity within bioinfor-
matics. In a largely descriptive science such as biology, the need to have a common
understanding of things described is obvious. The need to be able to apply com-
putational methods to the large quantities of data being produced also suggests a
computational requirement to standardise descriptions in biology.

As a mechanism for describing the categories of entities and their characteris-
tics, ontologies offer many of the features that can support a descriptive science.
The main use of ontologies in bioinformatics has been the delivery of controlled
vocabularies. In this chapter we explore this use of ontology, but also other uses,
especially those that have a deeper computational aspect. We take a broad view
of ontology to include many ontology-like resources and classify the uses of ontol-
ogy and ontology-like artifacts. We present a series of case studies and conclude by
describing the current state and future directions for bio-ontologies.

1 Introduction

In this chapter, we explore the uses within bioinformatics of ontologies
and other ontology-like artefacts, some of which were described in chapter
“Ontologies for Formal Representation of Biological System”. That chapter
provided a motivation for the use of an ontology and described the range now
available. In the first edition of this volume, we explored why bioinformati-
cians have become so interested in the development and use of ontologies [44].
This interest has become consolidated to the point that the development and
use of ontologies has become mainstream. Yet, as we will see in this chapter,
the different kinds of uses of ontologies within bioinformatics is quite narrow,
while the potential uses are more wide ranging. We will see that the initial
goal of ontology has been basic data integration for use by humans. Ontologies
should offer the means to drive computational use of biological data and it is
this aspect that we wish to investigate further in this chapter.

The production of data in biology has become industrialized; so, therefore,
must its analysis. The lack of the laws or grand theories of physics means that
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much inference in bioinformatics is still reliant on the processing of factual
data – the knowledge we have about the entities in the biological world. A
common understanding of what is described by the data collected is obviously
a great help in such an endeavor. The primary means of delivering such a com-
mon understanding in bioinformatics1 is by talking about the same entities
in the same way – controlling the vocabulary used for representing informa-
tion in the data resources. Delivery of controlled vocabulary for a “de facto
integration” [46] is still the primary use of bio-ontologies.

The need for a common reference for the functional attributes of gene
products, by the genome projects for different organisms motivated the
development of the Gene Ontology (GO) [46]. A common understanding re-
quires agreement upon those categories, for example, of molecular functions
that exist. The labels chosen for those categories provides a vocabulary (an
ontology is not a vocabulary but can deliver one). The control arises from
the commitment to use that ontology delivered vocabulary to describe the
attributes of classes of gene products in cross-species and community-wide
resources. As described in Sect. 3, this has great utility not only in querying
resources, but also in their analysis.

Doing a Google search with “define: ontology” gives an answer with
approximately 20 slightly different definitions. These do, however, cluster into
two distinct definitions:

1. A discipline of philosophy concerned with the description of that which
exists

2. A shared understanding of what a community understands about a do-
main that allows machine reasoning

In essence, these are both concerned with descriptions of the “things” in the
world or the description of those entities as they appear within information.
The emphasis of the second, however, is that of the shared use of the descrip-
tion and its use by computers. As we will see, defining what it is to be a
member of a class, then agreeing the label for that class assists both human
and computers in data processing. In a knowledge-based discipline, such as
bioinformatics, having a machine-processable form of knowledge to allow a
wide range of scientific inferences is vital. We claim, however, that descrip-
tion for the sake of description, without including the computer is potentially
highly restrictive.

An ontology, according to the philosophers who coined the term, is a de-
scription of the categories and membership criteria of those things which ex-
ist. Computer scientists have latterly taken this term and shifted its meaning
somewhat [18]. An ontology still describes things, but the emphasis is on
the shared understanding of conceptualizations. The goal of a computer sci-
ence ontology is to enable machines to manipulate symbolic representations
1 Here we take a broad definition of bioinformatics to mean the storage, manage-

ment and analysis of biological data by computational means to answer biological
questions.
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of knowledge. Whether or not a broad or narrow view of ontology is taken,
ontologies and ontology-like artefacts are all about description of the world
or human understanding of the world. This can range from an attempt to
record the true account of reality through thesauri, vocabularies, classifica-
tion schema to glossaries. Irrespective of the representation and the level of
reasoning supported, they all provide some description and/or definition of
things in the world. Within bioinformatics it is possible to find many different
kinds of knowledge artifact described as ontologies [10]. In this chapter we
will take the broader view of ontology and explore how those descriptions are
used within bioinformatics applications.

In Sect. 2 we classify the uses to which ontologies have been put within
bioinformatics. Then in Sect. 3 we look at some case studies of these uses. In
Sect. 4 we discuss the current state and future directions for ontologies within
bioinformatics.

2 Classifying Uses of Bio-Ontologies

Ontologies, whether from the computer science or philosophical perspective,
are all about description. The applications of ontologies within biology are
therefore all rooted in description. Figure 1 shows a classification scheme
(very deliberately not an ontology) for the uses of ontology and ontology-
like artefacts within biology. Obviously describing the world is a use in itself

Fig. 1. A classification scheme for the uses of ontology and ontology-like artefacts
within biology
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and consequently all the uses are narrower uses of description. Potential uses
of ontology have previously been categorized [48]. These categorizations are
still within ours, but we wished to emphasize the role of description, the inter-
relatedness of these uses and also to present those uses at a finer granularity.
We have already mentioned one of the principle uses of such descriptions in
bioinformatics – using the labels of the concepts for the delivery of a controlled
vocabulary.

Other uses of ontologies exploit the structure of the relationships between
the concepts. Having annotated data with a controlled vocabulary, the struc-
ture of the ontology can be used to query instance data or navigate instance
data. To move from a shared understanding which is fit for humans to use
towards one exploitable by machines, it is necessary to introduce a more strict
semantics (a precise description of the relationships between concepts) and is
facilitated by a richer expressivity (the ability to express different kinds of rela-
tionships). Additional semantic strictness and expressivity does not necessar-
ily enable new uses per se, but can allow more extensive uses in the same area.

The uses to which ontological description can be put include, but are not
limited to:

Reference ontology: Defining the classes of entities within a domain, hopefully
both logically and in a human orientated fashion can be of utility in its
own right. Simply affording a community of discourse an encyclopædia
of that which is known acts as a reference source for that domain. The
Foundational Model of Anatomy [11, 38] can be seen in this light. Even
when there is a lack of consensus about a self-styled reference ontology,
it can still form a basis for discourse, as it is often easier to argue about
definitions of entities than it is to argue about mere words that are used
as labels for entities. For the modeler and others, the act of modeling
itself can offer insights. The act of making knowledge explicit can force
questioning of assumptions that are often implicit in domain discourse.

Controlled vocabulary: An ontology describes categories of instances in the
world or the concepts people use to describe a world. There is a world
of instances and humans put these into categories (classes, types, etc.).
Humans also decide on labels for those categories and these provide the
vocabulary by which humans talk about the categories of instances. Un-
fortunately, humans decide on lots of different labels for the same category
and often use the same labels for different categories. This heterogeneity
massively complicates any query or analysis of data which relies on ma-
nipulations of what is known about biology. By agreeing upon the labels
for a category and by committing to use that vocabulary for the categories
defined by the ontology then a controlled vocabulary has been developed.
The development and examples of controlled vocabularies in biology is
described in Sect. 3.

Schema and value reconciliation: Not only do humans disagree on the labels
given to categories, but they also disagree on the categories themselves.
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There are many legitimate ways to describe the world; models are, after
all, virtually neither complete nor wholly correct. This can be due to dif-
ferent perspectives on the same issues, e.g., taking either a developmental
or structural view of anatomy will give different categories [41]. Other de-
scriptions will either be partial or skewed due to some application bias [21].
Many databases exist within bioinformatics that represent similar or over-
lapping extents [42]. Thus to get a complete coverage of a domain of
interest these data need to be pooled. Unfortunately, differing conceptu-
alizations for the data from different datasets mean that these datasets
cannot be compared without reconciliation. A community agreement on
the categories and their definitions, in the form of an ontology, can provide
a common data model which can drive reconciliation of both the differ-
ing schema and values. These ontologies can define either an intentional
definition of the constraints to which an instance must comply or provide
a template for the attributes of the instances. This use of an ontology
to specify a model to drive both schema and value reconciliation is com-
mon both within and without bioinformatics [26]. This use is explored in
Sect. 3.3.

Consistent query: Obviously once there is a common conceptualization, a
common set of labels for the concepts and the instances all comply with
that ontology, then the querying and analysis of data can be greatly eased.
Different ontological representations afford different kinds of query fa-
cility [55]. Simply using a controlled vocabulary allows better querying
by exact matching. Using the taxonomic structure of an ontology allows
queries to retrieve “instances of this class” that implies all the instances
of the subclasses (as these are instances of the query class). Querying
data in some way is a prime motivation of much work in bioinformatics,
consequently query pervades Sect. 3.

Knowledge acquisition: Having described the classes of instances in a domain,
a practitioner will often want to describe instances of those classes. On-
tologies can either specify templates for the attributes that instances of
a class must be given or describe what is known about an instance, ex-
plicitly stated or not [50]. As a result, ontologies can be used to generate
forms by which instances are gathered or acquired [16]. Similarly, data can
be transformed to comply with the ontology to generate a knowledge base
(the combination of ontology and instances of the classes in the ontology).
Several examples of these have been seen in bioinformatics [2,24,39] and
were described in the first edition of this handbook [44]. The ontology then
offers the means by which those instances can be queried and otherwise
exploited in a sophisticated manner.

Clustering and similarity: Rather than straight-forward querying, an ontol-
ogy can be used to cluster data items. For example, if the genes detected
by a microarray chip are annotated with Gene Ontology terms, one can
take differentially expressed genes and cluster them against the aspects
of the Gene Ontology. For instance, the set of up-regulated genes on a
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chip could be clustered about the GO biological process ontology. Tak-
ing the lowest common subsumer – the most specific term that all the
genes of interest share – provides the analyst with an idea of what might
be happening in the condition under investigation [13, 46]. The degree of
similarity shared by the members of a cluster remains a question. In bioin-
formatics, we are well used to the notion of sequence similarity and how it
is to be interpreted [3]. Recently, as the amount of semantically annotated
data has risen, the notion of semantic similarity has become prominent.
Following the introduction of this notion into bioinformatics [33], the pos-
sibility has been realised for querying data at a semantic level in the style
of “these two entities have an 42% functional similarity”. The use of de-
scription to enable clustering and measures of semantic similarity will be
explored in Sect. 3.2.

Indexing and linking: As already described, ontologies and ontology -like
artefacts can provide structured, controlled vocabularies. These are often
used to describe data objects. One consequence of this is to index those
data. Just as with a traditional book index, this is a mechanism for quick
retrieval. This has an obvious closeness to querying and searching. Per-
haps the most prominent example of indexing the biomedical arena is the
use of MeSH (Medical Subject Headings) [32] to index PubMed abstracts.

Results representation: One of the more recent uses of ontologies, is in the de-
scription of primary results before they are lodged in a publicly available
resource. For example, the MGED Ontology [51] enables the description
of microarray experiments and their results. This use of ontologies at the
time of publication of the experiment differs from post-hoc, interpreta-
tive annotation that, for example, the Gene Ontology provides. Since the
MGED ontology, this use has become more widespread in the proteomics
community [22] and finally for all biomedicine with the Ontology for Bio-
Medical Investigations (OBI), previously known as FUGO [52].

Classifying instances: An ontology describes the classes of instances in a do-
main. Definitions of those classes provide knowledge of how to recognize
a domain instance as a member of a particular class. Given a set of facts
about instances the ontology can be used to classify those instances to
place them into categories or classes. This use is described in Sect. 3.4.

Text analysis / linguistic roles: Ontologies and ontology-like resources are
widely used in text-mining applications [9]. Thesauri, such as Word-
Net [15], have uses in determining word types, synonyms, spelling variants,
etc., that have obvious relevance to text-mining applications. Ontologies,
as already described, provide vocabularies and these are very helpful in
text-mining applications. Finally, the structure of ontologies can help in
offering “possibilities” for associations between words or concepts and
the classification of word types to broad ontological distinctions such as
Event, Role, Process, etc. Text mining is very important in bioinformatics
[4], but the role of ontology in this large area is beyond the scope of this
chapter.
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Guidance and decision trees: Ontologies, by capturing knowledge about a do-
main and encapsulating constraints about class membership, can offer
guidance around a domain and support decision making processes. In
query formulation, for instance, an ontology can inform an application
or human operator information about what can be said about an en-
tity [2,17]. So when querying about transcription complexes, for instance,
an ontology might offer information about transcription factors, binding
sites in promoters, polymerases, etc., but not about entities relevant to
replication and other possibly irrelevant processes. The constraints in an
ontology can reduce the space of possibilities, which is useful in a large
and complex domain such as biology and bioinformatics. Similarly, given
a set of facts about symptoms, an ontology can prompt a user to provide
more discriminating facts to distinguish between classes [30].

There are a range of potential uses for bio-ontologies within bioinformatics.
We have presented a simple classification scheme of their uses in order to help
orientation and navigation within the field. All uses can be traced back to the
description of entities in a domain which is an end in and of itself. Many of the
uses are minor variations on major themes of controlled vocabulary, controlled
structure and the querying that such knowledge models support. In the next
section we take examples from biomedicine to illustrate this scheme.

3 Case Studies

3.1 Using Controlled Vocabulary

The single most common use of ontology in bioinformatics is to provide a
controlled vocabulary, which is then used to provide annotation for database
entries. The pre-eminent example for this is the Gene Ontology (GO) [46]. This
project started around 1998 as a collaboration between a number of model
organism databases [46]. GO was created to address the considerable difficulty
of inter-operability between the different genome databases; to search sequence
data cross-species was and still is straight-forward but, at this time, diversity
in the nomenclature for genes and their products meant that similar searches
over the knowledge of biology were difficult or impossible.

The Gene Ontology is focused on describing three features or aspects of
biology: the molecular function defined as the biochemical (or molecular) ac-
tivity of a gene; the cellular component defined the location in the cell that
a gene product is active; and the biological process defined as the biologi-
cal objective, or the series of events to which the molecular function con-
tributes [47].2

2 http://www.geneontology.org
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Each ontology is structured as a set of terms linked together with two
relationships, is-a and part-of. This representation can be represented and is
frequently described as a Directed Acyclic Graph (DAG).3 The simplicity of
this representation has been one significant reason for the success of GO [5],
as it has proven to be straight-forward for many biologists.

As well as the ontology, there are also a large number of annotations –
database records describing various gene products (generally proteins or genes
as proxies for proteins). At the time of writing, there were around 3,000,000
Uniprot [12] proteins, with some 19,000,000 annotations.4 A protein sequence
or its database entry may be annotated with one or more terms from the
three aspects of GO. The exact relationship between the protein described
by the database record and the GO term depends on the aspect of GO to
which the term belongs. For example, for Molecular Function an annotation
means that a given molecule of the protein has the propensity to act in the
way defined by the GO Term [8], in a given set of contexts. It does not mean
that all molecules of that protein either will or are always capable of behaving
in this way.

For a GO annotation, the association between a term and the proteins is
supplemented with “Evidence Codes”; this is a term from an additional con-
trolled vocabulary that describe the kind of evidence that was used to suggest
the association. These range from “TAS” or traceable author statement; in
paraphrase this means that the evidence came From a statement in a review
paper, rather than a primary research paper, which suggests that it is well
enough acknowledged in the community. Other codes, such as IEP – Inferred
from Expression Pattern – describe the kind of experimental evidence that
has been used.

The success of the Gene Ontology has spawned a large number of tools
for its use. Perhaps the best known of these are Amigo – a website which
functions as a browser for the Gene Ontology, shown in Fig. 2. This tool is
backed by the GODatabase, a relational schema and set of associated code
that allows rapid search and query over the Gene Ontology.

Perhaps the most common use of GO or its annotations is for the analy-
sis of microarray results.5 Annotation of data in databases is still the largest
activity in the bio-ontology sector. The Open Biomedical Ontologies (OBO)
ontologies cover a range of topics within biology (see http://obo.sf.net).
This reflects a basic need within the discipline to overcome the vast hetero-
geneity in their databases and permit broader analyses across their data. This
technically simple application has had profound effects on bioinformatics.

3 The less common term “poset” or partially ordered set is also used.
4 http://www.geneontology.org/GO.current.annotations.shtml
5 At least judged by the number of tools available; microarray tools form the largest

subsection of related tools on the GO website (http://www.geneontology.org/
GO.tools.shtml).
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Fig. 2. Amigo

3.2 Statistical Uses of Ontologies

We now describe the application of statistics applied to and with the Gene
Ontology.6 In microarray experiments, more genes are found that show in-
teresting expression patterns than can be reasonably examined by hand. A
scientist will often wish to understand what kind of processes these genes
display. There are a number of different tools available which perform this
analysis, including GOMiner [56] and GOstat [7]. Of these, GOMiner uses
Fisher’s two-sided exact test to determine whether a “category” (that is, the
proteins annotated with a given GO term or any of its children) is over-
represented among the set of genes of interest (that are, for example, over- or
under-expressed according to the microarray results).

The continued development of GO means that it now has around 24,000
terms. This large ontological structure has meant that GO has become difficult
to present to users, particularly in the context of an expanded hierarchical
viewer. The GO consortium’s response to this was the introduction of “GO
Slims” – defined subsets of GO. As well as a general purpose slim (the Generic
GO slim), there are others tailored for specific purposes; for example the yeast
and plant GO slim focuses on those terms which are important for the given
organism; both contain “cell wall”, (GO:0005616) for example, while only the
plant slim contains “thylakoid”, (GO:0009579). While these provide a partial
6 In this section, we will talk exclusively about GO, as it is the ontology which has

been statistically analysed most widely. Most of the techniques could also apply
to other ontologies.
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solution to the problem, they retain difficulties; mostly that the size of the
subset they provide is fixed; it cannot be changed to suit the purpose (although
a new GO Slim could be created).

One standard solution to automate the sub-setting of GO is to use a
“level”. By using terms, say 1 deep from the root of molecular function, a
small number (18 at the time of writing) of GO terms can be used to summa-
rize the others. This is unsatisfying, firstly from a theoretical perspective, GO
is structured as a DAG not a tree – it does not really have levels as there are
multiple paths to many terms; additionally, it is not clear that levels actually
represent specificity. For example, “ice binding”, (GO:0050825) is three lev-
els below molecular function, while “high-affinity tryptophan transmembrane
transporter activity”, (GO:0005300) is 10 levels deep. One solution to this
is provided by the GO Partition Database [1]. This uses information theory
to determine how specific a GO term is; the notion is familiar from inter-
net search engines – common words have low information content (IC) and
are not useful for searching, unusual words are much more so. The IC of a
term is given by − ln2(pTn) where pTn is the probability of a term (or any
of its children) occurring in any particular annotation. Therefore, “molecular
function” (GO:0003674) has a probability of 1, since every time a (molecular
function) term occurs, it must be a child of this GO term. A set of terms with
similar information contents, therefore, implicitly defines a set of terms of
similar specificity. One thing to note, is that this knowledge is based on a cor-
pus – a body of GO annotations. Therefore, for example, the IC based on the
Saccaromyces Gene Database (SGD) [14] annotation would differ somewhat
from that of Uniprot. Choosing the correct corpus is, therefore, likely to be
important in obtaining relevant results.

As well as summarizing GO, there are many applications that need a
numerical measure of the semantic similarity between two GO terms or, in
more common use, two entities annotated with one or more GO terms. Ini-
tial attempts to develop these measures came from WordNet [15], a electronic
lexicon, and used variations on path distance between terms as their mea-
sure [25, 34]. We call these structural measures; related techniques have been
applied directly to the Gene Ontology [23]. These techniques have some of
the problems described earlier with ontology levels as a mechanism for speci-
ficity; different edges in GO, for example, do not necessarily have the same
weight. Information Content based measures have also been applied; initially
to WordNet [36], but later specifically to the Gene Ontology [33]. These mea-
sures use the IC (− ln2(pTn)) of the common parents of the terms of interest.
As GO is a DAG, this will normally be a set of parents, in which case the
term with the lowest IC is used. These measures were strongly correlated with
sequence similarity [27], and gene expression [49] and, therefore, do appear to
be related to the underlying biology. Since this time, they have found a vari-
ety of applications, including the prediction of gene function [45], validating
functional networks [37].
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3.3 Schema Reconciliation

There is great heterogeneity in how bioinformatics data are organized – that
is, the schema of the databases differ. Complete integration of resources nec-
essarily involves reconciliation at the level of data and the schema in which
the data are held. Ontologies can be used with great effect to provide a struc-
ture for how data should be organized. In schema reconciliation, the general
idea is that the differing representations of the data are re-modeled to fit with
the ontological description of the data. Again, this is the general idea of a
shared description of an understanding of what exists in a domain and the
community members committing to use that description.

One widely used and current examples of schema reconciliation in bioinfor-
matics using ontology is the BioPAX project [29]. Biological pathway exchange
or BioPAX has the general goal of enabling the exchange of the vast quanti-
ties of pathway data. The BioPAX consortium oversees the development of a
rigorous, open-source standard for the representation of all forms of biological
pathways. It does this by providing a common conceptual framework, a set of
common terms and a common format for exchange and integration.

There are two top level classes in the BioPAX ontology: entity and utility-
Class. Entities describe the biology while the utility classes record knowledge
about the pathway data such as cross-references to other databases, evidence
codes, and experimental conditions. Pathways are a subclass of entity , along
with two sibling classes, interaction and physicalEntity . A pathway has com-
ponents that are of the class pathwayStep, a utility class. Each pathwayStep
contains a set of stepInteractions that describe the physical interactions, such
as catalysis, modulation, biochemical reaction, complex assembly, and trans-
port that make up that step in the pathway, or another pathway. A path-
way , such as glycolysis (the conversion of glucose to pyruvate), MAPK (the
intra-cellular transmission of growth factor signals), or apoptosis (biochem-
ical events leading to a programmed cell death)is composed of instances of
interactions. Interactions can occur between entities so that interactions of
interactions and interactions of pathway can be represented.

Figure 3 shows how the interactions from one step in the glycolysis pathway
are mapped to the entity class hierarchy as defined in the BioPAX ontology. A
biochemical reaction (across figure at bottom) is mapped to the BioPAX root
class entity (top of the figure). In this biochemical reaction, there are three
instances of the class physicalEntity , of these, two are instances of the class
smallMolecule, β-d-glucose-6-phosphate and d-fructose-6-phosphate, and one
an instance of the class protein, phosphoglucose isomerase, (enzyme is not
explicitly represented as a subclass of protein in BioPAX). This biochemical
reaction converts β-d-glucose-6-phosphate into d-fructose-6-phosphate. The
reaction itself is controlled by the enzyme phosphoglucose isomerase and is
part of the glycolytic pathway.

Once the physicalEntities that participate in the reactions are identified,
together with the interaction roles they play in the reaction, we can represent
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Fig. 3. Image showing the BioPAX ontology and a reaction from the glycolysis
pathway

them in BioPAX. Thus in BioPAX, an instance is created of biochemical-
Reaction with the property LEFT7 filled with β-d-glucose-6-phosphate, the
property RIGHT8 filled by d-fructose-6-phosphate, and E.C.#9 property
filled with 5.3.1.9. An instance of the catalysis class is created with prop-
erty CONTROLLER filled with phosphoglucose isomerase, and the property
CONTROLLED with the reaction name PGLUCISOM-RXN.

Each physical interaction has participants which are instances of one of
the subclasses of PhysicalInteraction or instances of the class physicalEn-
tityParticipant. The class physicalEntityParticipant is also a utilityClass
and is used to describe a physical entity in the context of an interaction.
A Physical Entity Participant specifies the physicalEntity in the context
of an interaction by adding the properties CELLULAR-LOCATION and
STOICHIOMETRIC-COEFFICIENT.

For each database, committing to the BioPAX ontology, a converter is
made that maps that resource to elements of the ontology. The BioPAX on-
tology is general enough in how it models the elements of pathways to cap-
ture a wide range of the existing resources. It does this by modeling at a
high level of abstraction. BioPAX does not attempt to make a canonical view
of bio-pathways – a standard view, for instance, of glycolysis. Rather it de-
scribes the elements of pathways, their steps, types of interaction and so on.
This means the actual pathways, enzymes, small molecules, and so on, are in-
stances of these classes. This works in practice, although it is not ontologically
rigorous [28].
7 The left-hand side of the reaction.
8 The right-hand side of the reaction.
9 The enzyme classification number.
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The mapping in Fig. 3 is not actually formed for the values as described,
but for the schema of the client resource. The BioPAX ontology, therefore, only
reconciles at the level of schema [28]. The values or instances held within the
schema are not reconciled. For example, all the metabolic pathway resources
contain adenosine triphosphate (ATP) as part of their descriptions. ATP
would be mapped to Small molecule in BioPAX, but the vocabulary used to
state that it is “ATP” can still vary. Another level of reconciliation is needed at
the value or instance level to allow full inter-operability at this level [28]. This
returns to the basic use of ontology within bioinformatics – that of providing a
controlled vocabulary for describing entities within bioinformatics databases.
Nevertheless, the BioPAX ontology, despite its flaws [28], does provide a sig-
nificant step in reconciling an important collection of bioinformatics data.

It is clear that not every resource to be mapped into BioPAX will have
a schema element equivalent to all classes in the ontology. Here, the con-
straint based nature of OWL can help. An OWL class describes what is
known about instances of that class. Simply asserting an instance to be a
member of that class implies that the restriction on that class apply to the
instance. So, for example, BioPAX states that all PhysicalEntity have a Cel-
lularLocation, but if a client database does not give cellular location, it is
simply assumed to exist. OWL’s ability to describe under-specified knowledge
in this way is of great utility for this kind of modeling as it means resources
can be compliant without over-committing [43]. Ontologies describe the things
described by the data, rather than just providing a description of the data.
This extra level of abstraction affords a level of flexibility in mapping from
data-oriented languages. The relative richness of the modeling permitted in
ontologies, the constraints, allow precision and accuracy in the description of
the entities being represented in the data and a consequently higher fidelity
in the mapping.

Once data are mapped into a common schema, it provides another level of
query. The BioPAX initiative is rare within bioinformatics for being schema
reconciliation as an end in itself. Schema reconciliation as described for
BioPAX is a common factor in many systems, but is rarely done purely for
the sake of schema reconciliation. TAMBIS (see Sect. 3.4) uses an ontology as
a common schema, integrating through queries diverse and distributed bioin-
formatics data resources. Here, the schema reconciliation is part of the query
answering process. Similarly, in the work of the Health Care and Life Sci-
ences working group of the W3C10 an ontology is built to which instances
are imported from client resources [40]. The individual mappings to the on-
tology bring all the data instances together in a common representation or
description of the domain. Schema and data reconciliation are an inherent
part of bioinformatics and ontologies are a standard technique for tackling
the problem in computer science that is widely applied in bioinformatics.

10 http://www.w3.org/2001/sw/HCLS
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3.4 Classifying Instances

Ontologies are description and definitions of instances in the world and we
have already seen their utility in de facto integration with increased recall
and precision in queries across diverse resources. In this section, we take this
theme further by looking at broader ways of using ontologies to query data in
the form of instances described by an ontology and to enable the recognition
of the types of instances present. These are both forms of classification:

1. An ontological class has an extent of instances. By creating a class, a set
of instances is being described. A query also describes a set of instances.
In this way, a query classifies instance – a query puts instances into a
class.

2. A defined class captures the properties that are sufficient to recognize
an instance as being a member of that class [35], that is, an instance is
classified against the ontology.

In this section we will concentrate on the second form of classification. Our
chapter in the first edition [44] described systems such as TAMBIS [17] and
RiboWeb [2] that describe querying of data. In the case of TAMBIS, classes
were dynamically constructed against an ontology and re-written to retrieve
instances from external resources. With RiboWeb, the ontology was used to
guide data acquisition and analysis to form a knowledge base that could then
be queried.

In the second form of classification, we are moving much more towards
ontology capturing knowledge for computational use. As described, the most
straight-forward way of doing this is to recognise when an instance belongs to
a particular class.

Bioinformatics is rich with tools designed to detect features on proteins and
DNA sequences. From the features detected, a human bioinformatician is given
clues by which data can be interpreted and classified. Typical of this is the
classification of protein sequences by the presence of a certain configuration
of features that, for example, suggest a certain catalytic or other behavior.
Tools such as InterPro and InterProScan [31] provide a bioinformatician with
a set of sequence features for a protein, but it is up to a human to interpret
this information as to which class of protein sequences a particular protein
sequence belongs. Ontologies offer a mechanism for capturing the knowledge
by which humans recognize collections of features to draw conclusions.

We are beginning to see examples of this very general technique in the
bioinformatics arena. For example, genome complements of protein phos-
phatases have been classified [54]. In this work, an ontology written in OWL
describing a class of enzymes called protein phosphatases was constructed,
with some fifty classes of protein phosphatase defined in terms of the sets of
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Class: TyrosineRreceptorProteinPhosphataseSequence

EquivalentTo: ProteinSequence That

hasdomain SOME ProteinTyrosinePhosphataseDomain

and hasdomain EXACTLY 1 TransmembraneDomain

Class: R2AProteinPhosphataseSequence

EquivalentTO: ProteinSequence That

hasDomain EXACTLY 2 ProteinTyrosinePhosphataseDomain

and hasdomain EXACTLY 1 TransmembraneDomain

and hasdomain EXACTLY 4 FibronectinDomains

and hasDomain EXACTLY 1 ImmunoglobulinDomain

and hasDomain EXACTLY 1 MAMDomain

and hasDomain EXACTLY 1 Cadherin-LikeDomain

and hasdomain ONLY (TyrosinePhosphataseDomain

or TransmembraneDomain or

FibronectinDomain or ImnunoglobulinDomain

or Clathrin-LikeDomain or

ManDomain)

Fig. 4. Definitions written in OWL for two classes of protein phosphatase. The
definitions describe those protein features that are sufficient to recognise a particular
class of phosphatase. Note that for TyrosineRreceptorProteinPhosphataseSequence
only two features are asserted, but others may be present without affecting the
classification. For the R2AProteinPhosphataseSequence, however, all features are
specified; any others being present would mean that an instance is not a member of
this class

sequence features11 both necessary and sufficient to recognize membership of
a particular class of protein phosphatase. This used a qualified cardinality re-
striction, which states the numbers of a particular sequence feature required
to be present [53] (see Fig. 4 for two examples).

The proteins from a genome were analyzed with InterProScan to detect
their sequence features. The scan results were processed and transformed to
produce a collection of OWL individuals for each named protein, along with
assertions as to which protein sequence features were present.

The instances are classified against the ontology, producing a catalog of the
phosphatases present in the genome. Note that in Fig. 4, that the description
of the R2A phosphatase is closed (the

hasDomain ONLY

clause) – it defines the class in terms of the sequence features that must be
present and only those features that can be present. If any more features are
present it cannot be a member of that class. Similarly, the definition of a recep-
tor tyrosine phosphatase is open, it describes what features must be present,
11 The sequence of amino acid residues in a protein determine how the protein

“folds” into a three-dimensional shape. This shape determines the functionality of
the protein. Biologists have determined some patterns of amino acid residue that
indicate certain features of these “shapes” that are diagnostic for functionality.
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but leaves it open as to which others can be present. The presence of the
catalytic feature and the transmembrane feature are sufficient, irrespective of
other features present, to recognize membership of this class. The classifica-
tion takes advantage of this openness, with local closure to classify instances
as far as possible. Any instance classifying part way down the hierarchy is,
in effect, a protein phosphatase whose complete description is not yet in the
ontology – that is, a putative new class of phosphatase.

FungalWeb [6] takes a related, but much broader approach to classifying
instances. FungalWeb also brings in the factor of data integration across mul-
tiple resources via an ontology in order to classify instances of enzymes of
interest from fungal biochemistry. The FungalWeb ontology draws together
fungal species, genes, protein families, enzymes, the reactions they catalyze,
functions, processes and commercial applications of those enzymes. The ontol-
ogy is derived from database schema for bioinformatics databases; pre-existing
ontologies; and de novo ontology development. Instance data are drawn from
domain literature and client databases.

In FungalWeb, the instances are: The species of fungus; named proteins,
as individuals, are classified by their reaction; chemical names represent in-
dividuals of enzyme substrate and product; and industrial applications of
enzymes were modeled as individuals. Properties from the ontology allows
these individuals to be related by assertions. An example set of individuals
can be seen in Fig. 5, where the concept Enzyme is linked by able to modify
to the concept Substrate, where the instance Pectin is specified. Enzyme is
also linked to Commercial Enzyme Product by the role usedInProduct (which
is negated). Lastly Enzyme is linked to the concept Fungi by the role has
been reported to be found in. The tabulated results show two columns of En-
zyme and Fungi instances arranged in nine rows. The instances represent all
enzymes not used in commercial products, where the enzyme is known to act
on the substrate pectin. The corresponding fungus known to produce such an
enzyme (pectolase) is listed.

Fig. 5. A query from the FungalWeb OntoIQ tool for finding enzymes not currently
used to act on pectin
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FungalWeb used the NRQL language with the Racer reasoner [19] to clas-
sify instances in order to answer queries. An example query given (taken
from [6]) is to find enzymes with oxygen as an electron acceptor that have
an industrial use. The ontology has a class of enzyme, whose membership
definition is to have oxygen as an electron acceptor. As with the phosphatase
example earlier, instances can be classified according to such criteria. Simi-
larly, a class of industrial process can be described as using a particular class
of enzyme – in this case “coal liquefaction”. FungalWeb also uses NRQL [20]
to find, for example, enzymes not known to take part in a particular industrial
process. The utility of NRQL in this case is to pose a locally closed query on
the open world A-box.

Both these examples show ontologies written in OWL being used to rea-
son over bioinformatics data in the form of OWL instances. In the case of
the phosphatases, an ontology has been used to drive biological discoveries.
OWL ontologies provide a method, through their necessary and sufficient con-
ditions on classes, by which the features for recognition of class membership –
domain knowledge – can be computationally encoded. Bioinformatics, through
tools such as InterProScan, provide the computational means for recognizing
features on data. If we have the means to encode first, those features in an
ontology; second, the class definitions in terms of those features by which an
individual can be recognized to be a member of a class; and third, the means
by which features can be detected an encoded as OWL individuals; then we
have a general mechanism for classifying data.

4 Discussion

We see many inter-related uses of ontological description of entities in the
world. The overwhelming use of ontologies in bioinformatics is still the anno-
tation of data to provide a common way of describing these data and then
to enable the querying, clustering and further analysis of these data. This
has been enormously powerful. It has enabled a large range and quantity of
biological queries and insights to be gained. It has made the very expensively
generated biological data much more useful.

Whilst an ontological description of a domain is useful as a way to capture
knowledge and stimulate thinking about a domain, a more exciting prospect is
the opportunity to capture domain knowledge such that we can make compu-
tational use of knowledge in a symbolic form. The mass annotation of biologi-
cal data has begun this action with clustering for the analyses of experimental
data. Statistical measures over the annotated data, exploiting the structure
in which the ontology terms are held provides more sophisticated analysis of
these data.

Drawing together diverse data into a common setting at both the level of
schema and value, whether transiently or in a more sustained fashion, enables
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richer queries and analysis. The richness of and high-fidelity of ontological
description makes it a good candidate for such reconciliation.

Within the life-sciences, real computational use of knowledge is still in its
infancy. Bioinformatics still has much to gain from basic annotation of its data
with names supplied by an ontology. So much is enabled by this simple device
that more complex analyzes from reasoning over symbolic knowledge are not
yet demanded by biologists themselves. We have seen the beginnings of such
computational use and it will test the scalability of current Semantic Web
technologies and languages. All the current activities, however, are laying the
foundation for a much deeper exploitation of bioinformatics data through the
application of ontologies.
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Summary. Cultural heritage is a promising application domain for semantic web
technologies due the semantic richness and heterogeneity of cultural content, and
the distributed ways in which the content is created in memory organizations and
by citizens. This chapter overviews issues and research related to creating semantic
portals for publishing cultural heritage collections and other content on the web.

1 Benefits of Cultural Semantic Portals

Cultural content on the web is available in various forms (documents, images,
audio tracks, videos, collection items, learning objects, etc.), concern vari-
ous topics (art, history, handicraft, etc.), is written in different languages, is
targeted to both laymen and experts, and is provided by different indepen-
dent memory organizations (museums, archives, and libraries) and individuals.
The difficulty of finding and relating information in this kind of heterogenous
content provision and data format environment creates an obstacle for end-
users of cultural contents, and a challenge to organizations and communities
producing the contents.

Portals try to ease these problems by collecting content of various publish-
ers into a single site [50]. Portal types include service portals collecting a large
set of services together (e.g., Yahoo! and other “start pages”), community
portals [53] acting as virtual meeting places of communities, and informa-
tion portals [43] acting as hubs of data. Much of the semantic web content
will be published using semantic information portals [38, 43]. Such portals
are based on semantic web standards1 and machine “understandable” con-
tent, i.e., metadata, ontologies, and rules, in order to improve structure, ex-
tensibility, customization, usability, and sustainability of traditional portal
designs.

1 http://www.w3.org/2001/SW/
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Cultural heritage is a promising application domain for semantic portals
[3,4,6,25,26,48,57]. They are useful from the end-users’ view point in several
ways:

• Global view to heterogeneous, distributed contents. The contents of different
content providers can accessed through one service as a single, seamless,
and homogenous repository [25]. Only a single user interface has to be
learned.

• Automatic content aggregation. Satisfying an end-user’s information need
often requires aggregation of content from several information providers
[26,50], a task suitable for semantic web technologies. For example, when
looking for data about an artist, relevant information may be provided by
museum collections, libraries, archives, authority records, ontologies, and
other sources.

• Semantic search. In traditional portals, search is usually based on free text
search (e.g., Google), database queries, and/or a stable classification hier-
archy (e.g., Yahoo! and dmoz.org). Semantic content makes it possible to
provide the end-user with more “intelligent” facilities based on ontological
concepts and structures, such as semantic search [10], semantic autocom-
pletion [24], and faceted search [19, 21,27,42,47].

• Semantic browsing and recommendations. Semantic content also facilitates
semantic browsing [17] (cf. chapter “Browsing and Navigation in Seman-
tically Rich Spaces: Experiences with Magic Applications”) and recom-
mendations [58] (cf. chapter “Ontology-based Recommender Systems”).
Here semantic associations between search objects can be exposed to the
end-user as recommendation links, possibly with explicit explanations.

• Other intelligent services. Also other kind of intelligent services can be
created based on machine interpretable content, such as knowledge and
association discovery [49], personalization [2, 4], and semantic visualiza-
tions based on, e.g., historical and contemporary maps and time lines [36].

Semantic portals are very attractive from the content publishers view-
point, too:

• Distributed content creation. Portal content is usually created in a central-
ized fashion by using a content management system (CMS). This approach
is costly and not feasible if content is created in a distributed fashion by
independent publishers, e.g., by different museums and other memory or-
ganizations. Semantic technologies can be used for harvesting and aggre-
gating distributed heterogenous content (semi-)automatically into global
content portals [25].

• Automated link maintenance. The problems of maintaining links up-to-
date is costly from the portal maintenance viewpoint. In semantic portals,
links can be created and maintained automatically based on the metadata
and ontologies.
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• Shared content publication channel. In the cultural domain the publishers
usually share the common goal of promoting cultural knowledge in public
and among professionals. A semantic portal can provide the participating
organizations with a shared, cost-effective publication channel [28].

• Enriching each other’s contents semantically. Interlinking content between
collaborating organizations enriches the contents of everybody “for free”.

• Reusing aggregated content. The content aggregated into a semantic portal
can be reused in different applications and cross-portal systems [59].

A cultural semantic information portal includes several major compo-
nents. First, we need a content model for representing cultural metadata,
ontologies, and rules. Second, a content creation system is needed for creat-
ing and harvesting content. Third, the portal publishes semantic services for
(1) human end-users as intelligent user interfaces and possibly for (2) other
portals and applications as web services. In the following these components
are explained in more detail.

2 Content Models for Semantic Cultural Portals

The semantic web “layer cake model” makes the distinction between a syn-
tactic data level based on XML2, and semantic levels above it:

• Metadata level. The RDF data model3 (cf. chapter “Resource Description
Framework”) is used for representing metadata about cultural resources.

• Ontology level. The RDF Schema and web ontology language OWL4

(cf. chapter “Web Ontology Language: OWL”) are used for represent-
ing ontologies [14] (cf. chapter “Ontologies for Cultural Heritage”) that
describe vocabularies and concepts concerning the real world and our con-
ception of it.

• Logic level. Logic rules (cf. chapter “Ontology and Rules”) can be used for
deriving new facts and knowledge based on the metadata and ontologies.

• Trust level. At the highest conceptual level issues of trustworthiness of
content, copyrights, etc., are of concern.

In the following, metadata, ontology, and logic layers are considered from
the viewpoint of semantic cultural portals. Issues related to trust on the se-
mantic web in the cultural heritage domain have thus far not been discussed
much in the literature.

2 http://www.w3.org/XML/
3 http://www.w3.org/RDF/
4 http://www.w3.org/2004/OWL/
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2.1 Metadata Schemas

Cultural content in museum collections, libraries, and other content repos-
itories is usually described using metadata schemas (also called annotation
schemas or annotation ontologies). These templates specify a set of oblig-
atory and optional elements, i.e., properties, by which the metadata for
content items should be described. For example, the Dublin Core (DC)
Metadata Element Set5 lists 15 standardized6 elements, such as dc:title,
dc:creator, and dc:subject, with additional elements and element refinements.
Encoding guidelines tell how to express the elements in RDF/XML and us-
ing HTML/XHTML meta and link elements. Qualifiers, such as encoding
schemes, enumerated lists of values, and other processing clues are used to
provide more detailed information about a resource. For example, “date” is
a DC element that can further be specified as “date published” or “date last
modified”. The core elements can be extended in an interoperable way by
using the “dumb-down” principle. It means that in any use of a qualified DC
element, the qualifier may be dropped and the remaining value of the element
should still be a term that is useful for discovery, although with less precision.

DC is used as a basis in more detailed cultural metadata schemas, such
as the Visual Resource Association’s (VRA) Core Categories.7 Its element
set provides a categorical organization for the description of works of visual
culture as well as the images that document them. Most VRA elements are
defined as subproperties of corresponding DC elements. An example of an
instance of VRA metadata in the CHIP portal [2, 4] is given below in RDF
Turtle notation.8 The schema has properties such as vra:type (the type of
the art-work as a reference to the VRA vocabulary), vra:title (literal title of
the art-work), vra:creator, vra:subject, vra:culture, and vra:material. Element
values with a namespace are references to underlying ontologies.

rijks:artefactSK-C-K
vra:type vra:Work ;
vra:title "The Night Watch" ;
vra:date "1642" ;
vra:creator: 500011051 ; # Rembrandt
vra:subject iconclass:45F31 ; # Call to arms
vra:culture tgn:7006952 ; # Amsterdam
vra:material aat:30015050 . # Oil paint

A metadata schema makes it possible to specify relevant aspects of the
search objects, such as the “author”, “title”, and “subject” of a document, and
focus search according to these. Sharing a metadata schema between different
content providers facilitates, for example, multi- or metasearch.9 Here the user
types in a query in a metaportal. The query is then distributed to underlying
5 http://dublincore.org/documents/1998/09/dces/
6 NISO Standard Z39.85-2001 and ISO Standard 15836-2003.
7 http://www.vraweb.org/
8 http://www.dajobe.org/2004/01/turtle/
9 http://en.wikipedia.org/wiki/Metasearch_engine
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systems and the results are aggregated for the end-user. Protocols such as
Z39.5210 and Search and Retrieve via URL (SRU)11 of the Library of Congress
can be used here. For example, the Australian Museums and Galleries Online12

and Artefacts Canada13 are multi-search engines over nation-wide distributed
cultural collections.

Another approach to creating metaportals is to first harvest the content
into a global database, and search the global repository. Protocols such as
Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH)14 can
be used for distributed content publishing and harvesting.

Schema definitions tackle the problems of syntactic and semantic inter-
operability of content objects. Syntactic interoperability can be obtained by
harmonizing encoding conventions (e.g., a date format) and other structural
forms for representing data (e.g., an XML schema). Semantic interoperabil-
ity is obtained by shared conventions for interpreting the syntactic repre-
sentations, e.g., that the property dc:subject describes the subject matter of
a document as a set of keywords taken from a thesaurus. Making different
metadata schemas semantically interoperable includes two subtasks. First, se-
mantic interoperability of element values has to be addressed using (shared)
vocabularies and ontologies, and second, if multiple metadata schemas are
involved, interoperability problems between different schema elements has to
be solved. In below, these two issues are discussed in more detail.

2.2 Vocabularies and Ontologies

Metadata schemas specify data formats but do not tell how to fill the el-
ement values in the formats. Additional standards and guidelines are nec-
essary to guide the choice of terms or words (data values) as well as the
selection, organization, and formatting of those words (data content). Data
value standards have been traditionally specified by constructing controlled
vocabularies and thesauri [1, 15]. Examples of cultural thesauri include the
Thesaurus for Graphic Materials I (TGM I)15 for indexing pictorial materials,
ICONCLASS16 for art, the Art and Architecture Thesaurus (AAT)17 for fine
art, architecture, decorative arts, archival materials, and material culture, the
Union List of Artist Names (ULAN),18 the Thesaurus of Geographic Names

10 http://www.cni.org/pub/NISO/docs/Z39.50-brochure/
11 http://www.loc.gov/standards/sru/
12 http://www.collectionsaustralia.net/
13 http://www.chin.gc.ca/
14 http://www.openarchives.org/
15 http://www.loc.gov/rr/print/tgm1/
16 http://www.iconclass.nl/
17 http://www.getty.edu/research/conducting_research/vocabularies/aat/
18 http://www.getty.edu/vow/ULANSearchPage.jsp
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(TGN),19 the Library of Congress Authority Files,20 and the terminologies
and standards of the MDA (formerly Museum Documentation Association).21

An example of a data content standard is the Cataloging Cultural Objects
(CCO) guidelines.22

Many cultural thesauri have been transformed [55,56] into SKOS format23

to be used in cultural semantic portals [48,57]. However, although a syntactic
transformation into SKOS is useful, it is not always enough from a semantic
viewpoint. The fundamental problem with traditional thesauri is that its se-
mantic relations have been constructed mainly to help the indexer in finding
indexing terms, and understanding the relations needs implicit human knowl-
edge. Unless the meaning of the semantic relations of a thesaurus is made
more explicit and accurate for the computer to interpret, the SKOS version is
equally confusing to the computer as the original thesaurus, even if semantic
web standards are used for representing it.

For example, there are many problems in utilizing the Broader Term (BT)
relations of thesauri [30]: (1) BT relations do not necessarily structure the
terms into a full-blown hierarchy that would be useful, e.g., in faceted search,
but into a forest of small subhierarchies. (2) The semantics of the BT rela-
tion is ambiguous: it may mean either subclass-of-relation, part-of relation
(of different kinds, cf. [13]), or instance-of relation. As a result, the BT rela-
tion cannot, e.g., be used for property inheritance. (3) The transitivity of the
BT relation chains is not guaranteed from the instance-class-relation point
of view. If x is an instance of class A whose broader term is B, then it is
not necessarily the case that x is an instance of B, although this a basic
assumption in RDFS and OWL. For example, assume that x is an instance
of “make-up mirror”, whose broader term is “mirror”, and that its broader
term is “furniture”. When searching with the concept “furniture” one would
expect that instances of furniture are retrieved, but in this case the result
would include confusingly make-up mirrors, too, if transitivity is assumed. A
solution to these fundamental problems is to actually refine and reorganize
the semantic structures of a thesaurus into a light-weight ontology, e.g., along
the lines proposed in [31].

Several domain ontologies are used in describing cultural metadata. This
raises up the problem of making ontologies mutually interoperable. There
are solution approaches for this, such as ontology mapping and alignment [18]
(cf. chapter “Ontology Mapping”), sharing common foundational logical prin-
ciples like in DOLCE24 (cf. chapter “Foundational Choices in DOLCE”), and
using shared horizontal top ontologies, such as the IEEE SUMO.25 It is likely,

19 http://www.getty.edu/research/conducting_research/vocabularies/tgn/
20 http://authorities.loc.gov/
21 http://www.mda.org.uk/stand.htm
22 http://www.vraweb.org/ccoweb/cco/index.html
23 http://www.w3.org/2004/02/skos/
24 http://www.loa-cnr.it/DOLCE.html
25 http://suo.ieee.org/
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that in many cases several identifiers (URIs) will be in use for denoting a single
concept even if this is not desirable in general. For example, registries of same
geographical locations are maintained at different countries and by different
service providers using their own identifiers. In such cases, dereferencing ser-
vices will be needed to map resource identifiers denoting same concepts with
each other.

2.3 Metadata Schema Interoperability

If a portal aggregates cultural contents described using different kind of
schemas (e.g., for artifacts, music, maps, books, cultural sites), the schema
element structures have to be made interoperable in one way or another,
including the element values. If the element structures in the schemas refine
each other, then using subproperties and the dumb-down principle of DC ap-
plications may be applied. In other cases, the metadata schemas can be made
interoperable by transforming them into a shared underlying form.

An approach to this is the CIDOC Conceptual Reference Model (CIDOC
CRM) [11] (cf. chapter “Ontologies for Cultural Heritage”), an annotation
ontology standard26 developed as an underlying schema into which other
metadata schemas in the cultural domain can be transformed for interop-
erability. This model “provides definitions and a formal structure for describ-
ing the implicit and explicit concepts and relationships used in cultural her-
itage documentation”.27 The framework includes 81 classes, such as crm:Man-
Made Object, crm:Place, and crm:Time-Span, and a large set of 132 proper-
ties relating the entities with each other, such as crm:HasTime-Span and
crm:IsIdentifiedBy.

Another approach to semantic metadata schema interoperability has been
developed in the CultureSampo portal28 [26,45]. The cultural content types
in this system include a wide variety of cultural objects, such as artifacts,
paintings, photographs, videos, music, biographies, epics, cultural sites, and
historical events. The original metadata from the content providing memory
organizations use several schemas, including DC, ULAN, and CIDOC CRM.
In the 2007 version of this portal [45], content integration was performed
by transforming content into a light-weight knowledge base describing the
domain world based on events and their thematic roles [52], such as agent,
goal, and place. For example, the DC metadata of a painting tells that there
has been a painting event with the value of dc:creator in the agent role. This
event instance can be used for enriching the painter’s biography, that is also
represented in terms of underlying events, such as the painter “being born”
at a certain place—another event that can be derived from the relational
embedded meaning of the relation ulan:birthPlace used in ULAN. In contrast
to CIDOC CRM, the events and thematic role values are based on large shared

26 Since 2006, CIDOC CRM has been an official ISO standard 21127:2006.
27 http://cidoc.ics.forth.gr/
28 http://www.kulttuurisampo.fi/



764 E. Hyvönen

domain ontologies of tens of thousands of concepts, and only few thematic and
other relationships between them. The domain ontologies are used not only
for explicating relational meaning of metadata schemas in an interoperable
way, but also for making element values semantically interoperable, an issue
not addressed by the CIDOC CRM standard. The homogenized event-based
knowledge can be used, e.g., as a basis for semantic recommendations [46].

2.4 Logic Rules for Cultural Heritage

A collection of cultural metadata and related ontologies constitute a knowl-
edge base. On the logical level, rules can be used for deriving new facts and
knowledge based on the repository, i.e., for explicating the implicit content of
the repository, and enriching the content semantically. Some examples illus-
trating different ways of using rules in semantic cultural portals and systems
are given below:

• Explicating content of metadata schemas. Many metadata formats contain
implicit knowledge embedded, e.g., in the relational meaning of the element
names. In [45] rule sets for three cultural metadata schemas are presented
for explicating such knowledge in terms of events.

• Enriching semantic content. Common sense rules may be used for en-
riching annotations, thus extending the machine’s understanding about
culture. In [27], for example, family relation rules (and others) we used
to explicate implicit family relations, such as “grand father of”, between
persons in order to link photographs of relatives together while browsing
the repository.

• Semantic recommendations with explanations. In [25] some 300 rules and
associations, such as “doctoral hats are related to academic ceremonies”
or “distaffs are related to spinning events”, were used to represent simple
common sense knowledge and associations between ontological concepts.
A semantic recommendation service was then established that, based on
additional logical rules, could (1) dynamically find out chained semantic
associations between cultural objects based on ontologies and the common
sense relations, and (2) at the same time construct literal explanations of
why the association would be of interest. In [32] semantic process descrip-
tions of cultural processes, such as traditional farming and fishing, were
used as basis for relating cultural objects with each in meaningful ways.

• Projecting search facets. In faceted search, rules can be used for
constructing facet hierarchies based on ontological structures, such as
the subclass-of and part-of-relations. Furthermore, rules can be used to
solve the problem of projecting search items to facet categories, which may
be complicated [27, 29, 58]. From a software engineering viewpoint, using
logic rules for projections separates facets from the annotation ontolo-
gies and annotations, which makes it possible to apply the same faceted
search engine to knowledge bases based on different kind of ontologies and
annotation schemas [39].
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• Association discovery. Association discovery can be based on rules trying
to find paths between resources in a knowledge base [26,48,49].

3 Cultural Content Creation

Several kinds of content need to be created for a semantic portal, including
ontologies, terminologies, and semantic annotations. Also creating rules for,
e.g., semantic recommendations can be seen as a form of content to be created.
In below, ontology, terminology, and annotation creation are discussed in some
more detail.

The core of a semantic cultural heritage portal is typically a set of domain
ontologies that are used for annotating cultural contents. Many vocabularies
and ontologies, such as AAT, are used for defining universals, i.e., general
concepts, classes, or types of individuals, such as “chair” (artifact ontology),
“wood” (material ontology), “painter” (actor types), or “city” (geographi-
cal concepts). In creating ontologies, it is advisable to try to reuse existing
ontologies or transform existing thesauri into semantic web formats, as dis-
cussed earlier. The ontologies can also be created or enhanced manually using
an ontology editor such as Protégé.29

Another basic type of ontologies are instance-rich ontologies or registries
of individuals. Such ontologies include, for example, geo-ontologies, such as
TGN, and actor ontologies (persons and organizations), such as ULAN. This
kind of ontologies of individuals are based on a (usually small) ontology of
classes (universals), such as “city” or “person”, that is populated with individ-
uals from, e.g., a database. This kind of instance ontologies can be used for
annotating content (e.g., used as dc:creator values), but the instances may, at
the same time, be used as a content type of its own value in the portal (e.g.,
a biography).

The terminology used in a portal is typically defined by associating onto-
logical resources with preferable and alternative labels (e.g., using properties
rdfs:label or skos:altLabel). Resource identifiers (URIs) of concepts, used by
the machine, refer to concepts that are in principle language independent.
However, labels used by humans can be multi-lingual, based on XML markup
(e.g., xml:lang). This is essential when creating multilingual portals.

The content providers often use different literal terms to refer to the same
resources when describing metadata in legacy systems. For example, literals
“United States” and “US” may be used to refer to the same country. This
problem of synonymy can be approached by using alternative labels. On the
other hand, the same term may be used to refer to different concepts, such as
river “bank” and financial “bank”. In order to eliminate such homonymy in
terminology, it is advisable that an ontology uses a unique labeling of terms for
concepts (e.g., “bank (financial)”). However, this does not solve the problem
disambiguating meanings of terms occurring in natural language descriptions.
29 http://protege.stanford.edu/
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Content in memory organizations is usually available as relational legacy
databases, whose annotations are literal terms and free text descriptions. Such
annotations are often intended for human usage, use various syntactic con-
ventions, are often semantically ambiguous, and may contain syntactic typing
errors. When transforming legacy metadata into semantic web formats, a key
problem is how to map textual descriptions in the metadata with ontolog-
ical concepts, e.g., how to determine that the string “bank” in a dc:subject
description of a photograph refers to the concept “river bank” and not “fi-
nancial bank”. In below, the task of transforming literal element values used
in legacy systems into ontological references needed on the semantic web is
discussed. The semantic portal MuseumFinland [25] and its content creation
model [28] is used as a concrete example of the more general problem.

Metadata in this system originates from different DC like metadata
schemas used in three museums, represented in different kind of database ta-
bles using different cataloging database systems. These tables are transformed
into an RDF repository in two steps depicted in Fig. 1: First, the heterogenous
relational tables in each museum are harmonized by transforming them into
an XML metadata schema format that is shared by the co-operating content
providers. This transformation ensures syntactic interoperability among all
data sources, and partial semantic interoperability in terms the meaning of
the metadata schema elements, since a single element set is used. Second, se-
mantic interoperability between metadata sources is obtained by transforming
the XML descriptions into the final RDF metadata schema format used by
the portal. During this XML-to-RDF transformation the essential task is to
move from term space into concept space by changing literal terms, used at
the XML level as element values, into corresponding concept URIs referring to
seven underlying domain ontologies (e.g., Artifacts, Places). The URIs created
in this phase connect metadata RDF with domain ontology RDF, resulting
into a single large semantic RDF triple store used for querying and as a basis
for logical reasoning.

A major problem in the RDF transformation above is how to disambiguate
the meanings of homonyms (e.g., “bank”) that may occur as keywords, free
indexing terms, or in free text descriptions in different element values. Several
methods can be applied here. For example, the type of the metadata element
in which a homonymous expression is used, can often be used for seman-
tic disambiguation effectively [28]. However, when dealing with the dc:subject

Fig. 1. Transforming legacy museum collection data from database tables into RDF
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element (or similar ones) that can have values taken from different vocabular-
ies, such contextual disambiguating information is not available, and human
decision help is more often needed.

Another practical problem is spelling errors in metadata, and the vari-
ance of synonyms and correct syntactic encoding practices used at differ-
ent organizations at different times, in different languages, and even by
different catalogers. For example, the name of Ivan Ayvazovsky (Russian
painter, 1817–1900) has 13 different labels in ULAN (Ajvazovskij, Aivazovski,
Aiwasoffski, etc.), and the first, middle, and last names can be ordered and
shortened in many different ways.

Still another problem of transforming literals into URIs is complicated free
text descriptions that may be used as element values, such as the material de-
scription “cow leather with decorations”. Free text descriptions in metadata
are in general difficult to search for due their syntactic variance, and for the
same reason, difficult to transform into URI references automatically. The
problem can be approached by using in indexing controlled vocabularies or
ontologies. However, even then the problem remains when dealing with free
indexing terms. These terms are, by definition, legal keywords of a thesaurus
that are not listed as entries. For example, plant and animal types as well
as person and location names can be used as free indexing terms. When en-
countering such a term, it cannot usually be associated with the underlying
ontologies without human help.

In a distributed content creation environment, free indexing concepts pose
a challenge for ontology maintenance, too. In many cases new concepts should
to populated into the ontologies and be shared, too. For example, when a
painting of a new, formerly unknown artist is cataloged in a museum, the
other catalogers and organizations should be made aware of her/him in order
to prevent creation of multiple identifiers for the artist and later confusion of
identities.

A solution approach to this is to connect annotation creation tools to cen-
trally maintained ontology library services that provide the clients with up-
to-date information about the vocabulary resources available, and facilitates
creation and sharing of new resources collaboratively. An implementation of
such a service is the ONKI Ontology Server30 [31,59] that can be used for cre-
ating mash-up annotation applications in a way analogous to creating Google
Maps mash-ups.

Sharing unique URIs for concepts is preferable on the semantic web, but
in practice there will be multiple URIs referring to a single resource. Creation
of multiple identifiers for free indexing concepts cannot be eliminated totally
in practice, and multiple identifiers will be created purposefully, too. Global
dereferencing services will be needed in the future telling, e.g., that the concept
of “London” in UK refers to the same thing as “Londres” in France.

30 http://www.seco.tkk.fi/services/onki/
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After creating semantically interoperable RDF metadata, content harvest-
ing and aggregation can be done either (1) off-line before starting the portal
or (2) on-line dynamically when answering end-user queries. The on-line ap-
proach is more dynamic. However, from the viewpoint of creating intelligent
end-user services, the off-line approach seems more promising: (1) By creating
a global knowledge base first off-line, reasoning can be easily done at the global
scale across local contents, which facilitates, e.g., generation of recommenda-
tion links between the content of different content providers. (2) Knowledge
can be compiled and critical reasoning tasks performed off-line beforehand for
faster response times. For example, the rdf:type instance-class-relations can be
explicated as RDF-triples based on the transitive closures of the subclass-of
hierarchies. (3) The portal is independent of the content providers’ possibly
unreliable web services when running the system.

4 Semantic Portal Services

The goal of semantic information portals for cultural heritage is to provide the
end-user with intelligent services for finding and learning the right information
based on her own preferences and the context of using the system. In the
following, some possibilities of providing the end-users with intelligent services
using semantically annotated metadata are shortly explored.

4.1 Semantic Search

In information retrieval [5] search is usually based on finding occurrences of
words in documents. On the semantic web, search can be based on finding
the concepts related to the documents at the metadata and ontology levels, in
addition to the actual text or other features of the data. With concept-based
methods document meanings and queries can be specified more accurately
which usually leads to better recall and precision, especially if both the query
and the underlying content descriptions are concept-based.

With non-textual cultural documents, such as paintings, photographs, and
videos, metadata-based search techniques are a must in practice, although
also content-based information retrieval methods [44] (CBIR) and multimedia
information retrieval (MIR) [37] can be used as complementary techniques.
Here the idea is to utilize actual document features (at the data level), such
as color, texture, and shape in images, as a basis for information retrieval. For
example, an image of Abraham Lincoln could be used as a query for finding
other pictures of him, or a piece of music could be searched for by humming it.
Bridging the “semantic gap” between low level image and multimedia features
and semantic annotations is an important but challenging research theme
[23]. Still another approach to do semantic search is to analyze and build
search on the content using linguistic and/or statistical methods, without
using annotated semantic metadata [8].
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A key problem of semantic search is mapping the literal search words,
used by humans, to underlying ontological concepts, used by the computer.
Depending on the application, only meaningful queries expressed by terms
that are relevant to the domain and content available, other queries result
in frustrating “no hits” answers. A way to solve the problem is to pro-
vide the end-user with a vocabulary as a subject heading category tree, a
facet, as in Yahoo! and dmoz.org. By selecting a category, related documents
are retrieved. Faceted search [19, 21, 27, 42, 47] is a natural generalization of
this, where the user can make several simultaneous selections from multiple
orthogonal facets. They are exposed to the end-user in order to (1) provide
her with the right query vocabulary, and (2) for presenting the repository
contents and search results and the amounts of hits in facet categories. The
result set can be presented to the end-user according to the facet hierarchies
for better readability. This is in contrast with traditional search where results
are typically presented as a list in decreasing relevence order. The number of
hits resulting from a category selection is always shown to the user before the
selection. This eliminates queries leading to “no hits” dead-ends, and guides
the user in making next constraining selections on the facets.

Faceted search has been integrated with the idea of ontologies and the
semantic web [27]. The facets can be constructed algorithmically from a set of
underlying ontologies that are used as the basis for annotating search items.
Furthermore, the mapping of search items onto search facets can be defined
using logic rules. This facilitated more intelligent semantic search of indi-
rectly related items. A method for ranking the search results in faceted search
based on fuzzy logic is presented in [22], and [54] presents a card sorting
approach for specifying and using end-user facets independently from the in-
dexing ontologies.

The faceted search paradigm is based on facet analysis [41], a classification
scheme introduced in information sciences by S.R. Ranganathan already in
the 1930s. The idea of faceted search has been invented and developed in-
dependently by several research groups, and is also called view-based search
[42] and dynamic taxonomies [47]. Several semantic cultural heritage portals
make use of faceted search, such as [21, 25]. However, faceted search is not a
panacea for all information retrieval tasks. Google-like keyword search inter-
face is usually preferred if the user is capable of expressing her information
need terms of accurate keywords [12].

4.2 Semantic Autocompletion

Keyword search can be integrated with semantic search by extending search to
the labels of ontological resources or facet categories. For example, in [25] key-
word search is integrated with faceted search in the following way: First, search
keywords are matched against category names in the facets in addition to text
fields in the metadata. The result set of hits is shown containing all objects
in any of the categories matched in addition to all objects whose metadata
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directly contains the keyword. The hits are grouped by the categories found.
Second, a new dynamic facet is created in the user interface for disambiguat-
ing the different possible ontological interpretations and roles of the keyword.
This facet contains all facet categories whose name (or other property values)
matches the keyword. They tell the end-user the different interpretations and
roles of the keyword. For example, the keyword “Nokia” matches in the por-
tal with the mobile phone company resource in the “Manufacturer” facet role,
with the city of Nokia in the facet roles “Place of manufacturing” and “Place
of usage”, and with some other resources that have the string in their name.
By selecting one of the interpretations, the user is able to disambiguate the
meanings easily and constrain search further.

The idea of searching ontologies and facet categories for disambiguating
intended meanings and roles has been generalized into the notion of semantic
autocompletion [24]. The idea here is to generalize traditional text autocomple-
tion by trying to guess, based on ontologies and reasoning, the search concept
the user is trying to formulate after each input character in an input field.
For example, the user may type in the query in French and the semantic au-
tocompletion service finds the possible intended search concepts in English
after each input character.

Autocompletion has become a popular way to find meaningful keywords
in large search vocabularies after Google Suggest31 was released. The idea is
applied in several semantic cultural portals, such as [26,33,48,57].

4.3 Semantic Browsing and Recommending

In addition to semantic search, semantic content facilitates semantic browsing.
Faceted search is already a kind of combination of searching and browsing
because search is based on selecting links on facets. However, in semantic
browsing the general idea is not to constrain the result set but rather to
expand it by trying to find objects of potential interest outside of the hit list.
The idea is to support browsing documents through associative links that are
created based on the underlying metadata and ontologies, not on hardwired
anchor links encoded by humans in HTML pages.

A simple form of a semantic browser are RDF browsers and tabulators
[7]. Their underlying idea has been explicated as the “linked data”32 principle
proposing that when an RDF resource (URI) is rendered in a browser, the
attached RDF links to related resources should be shown. When one of these
links is selected, the corresponding a new resource is rendered, and so on.

A more developed related idea is recommendation systems [9]. Here the
logic of selecting and recommending of related resources can be based on also
other principles than the underlying RDF graph. For example, collaborative
filtering [20] is based on browsing statistics of other users. Also logic rules on

31 http://www.google.com/webhp?complete=1&hl=en
32 http://www.w3.org/DesignIssues/LinkedData.html



Semantic Portals for Cultural Heritage 771

top of an RDF knowledge base can be used for creating semantic recommen-
dation links [58] and, at the same time, explanations telling the end-user why
the recommendation link was selected in this context. In [2, 4] explanations
for recommended art works can be obtained based on a user profile of interest
and features of the artworks. In [32] ontological models of narrative stories
and processes in the society, such as fishing or slash farming, were used as
a basis for creating recommendation links between cultural resources. Still
another approach to create recommendation links with explanations is to use
similarity measures of event-based annotations [46].

4.4 Relational Search

Semantic recommending is related to relational search, where the idea is to try
to search and discover serendipitous semantic associations between different
content items [26, 48, 49]. The idea is to make it possible for the end-user to
formulate queries such as “How is X related to Y ” by selecting the end-point
resources, and the search result is a set of semantic connection paths between
X and Y . For example, in Fig. 2 the user has specified two historical persons,
the Finnish artist Akseli Gallen-Kallela (1865–1931) and the French emperor
Napoleon I (1769–1821) in the CultureSampo portal [26]. The underlying
knowledge base contains an ontologized version of the ULAN vocabulary in
RDF with over 100,000 persons and organizations, and semantic autocomple-
tion is used for finding the right query resources. The system has discovered
an association chain between the persons based on “patronOf”, “teacherOf”,
“knows”, and “studentOf” properties.

4.5 Personalization and Context Awareness

In many occasions the functioning of a semantic portal should not be static
but adapt dynamically according to the (1) personal interests of the end-user

Fig. 2. An example of relational search in [26] using the ULAN vocabulary and
database
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and (2) the context of usage, such as time and location [51]. Visitors in se-
mantic cultural portals, like in physical museums, are usually not interested
in everything found in the underlying collections, and would like to get infor-
mation at different levels of detail. An important aspect of a semantic cultural
portal is then adaptation of the portal to different personal information needs
and interests. An example of a personalized cultural semantic portal is [2, 4],
where user profiling and personalization is based on metadata obtained by
asking the users about her interests by rating pieces of artworks.

An example of location-based adaptability is the mobile phone user inter-
face of [25]. By pushing a special button on the interface, collection artifacts
either manufactured or used nearby can be retrieved based on a geolocation
service proving the coordinate information of the phone. It can be envisioned
that this kind of location-based and navigational services will be available
in future cultural portals based on phones supporting GPS positioning and
radio-frequency identification (RFID) tags.

Also time is an important parameter for contextualizing portal services.
For example, recommending the end-user to visit a site in the nature during
winter may not be wise due to snow, or to direct her to a museum when it
happens to be closed.

4.6 Visualization and Mash-Ups

Visualization is an important aspect of the semantic web dealing with se-
mantically complicated and interlinked contents [16]. In the cultural heritage
domain, maps, time lines, and methods for visualizing complicated and large
semantic networks are of special interest.

Maps are useful in both searching content and in visualizing the results. A
widely used approach to using maps in portals is to use mash-up map services.
For example, [36] presents a mash-up combining Google Maps33 and a seman-
tic cultural portal [25]. The map interface is used for showing the places of the
underlying location ontology on the map as interactive buttons (e.g., cities,
villages). By selecting one of them, a query is executed by which all museum
collection items manufactured or used in the selected place are retrieved. At
the same time, additional search links to seven different traditional portals
are shown. For example, by selecting the Wikipedia link, an article about the
location (if available) is opened.

In the cultural heritage domain, historical maps are of interest of their own.
For example, they depict old place names and borders not available anymore in
contemporary maps. An approach to visualize historical changes is developed
in the Temp-O-Map system [34, 36] that makes it possible to lay old maps
semi-transparently on top of the contemporary maps and satellite images of
Google Maps. To demonstrate the idea, the Karelia region of Finland was
selected as a test case. This region was annexed to Soviet-Union as a result of

33 http://maps.google.com/
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the Second World War, after which most old Finnish place names in the region
were changed into Russian ones making it difficult to the end-user to bridge
the semantic gap between old and new names and locations. The system is
connected into an ontology modeling over 1,000 regional changes of Finnish
municipalities in 1860–2007. Historical municipalities of different time periods
are available as facets for finding historical places on the maps. By selecting a
category, the tool focuses the map view to the center point of the region [35].

Another important dimension for visualizing cultural content is time. A
standard approach for temporal visualization is to project search objects on
a time line, as in [26, 48]. A generic mash-up tool for creating time lines is
the Simile time line.34 A time line can be used both for querying and for
visualizing search results.

4.7 Cross-Portal Reuse of Content

Portal contents can be reused in other web applications and portals due to
semantic web standards. Reusing semantic content in this way is a kind of gen-
eralization of the idea of “multi-channel publication” of XML, where a single
syntactic structure can be rendered in different ways. In a similar vein, seman-
tic metadata can be reused without modifying it through multi-application
publication.

One possibility to facilitate cross-portal reuse is to merge triple stores,
and provide services to end-users based on the extended knowledge base. For
example, the learning object video portal [33] is able to provide recommenda-
tion links to the cultural museum collection portal [25] in this way. Another
way of reusing content is to keep the portals separate and publish their func-
tionalities as web services to be used by other semantic portals [59]. Both
traditional web services or light-weight mash-ups based on the REST princi-
ple can be used. Here portal functionalities can be used in other portals on
the HTML user interface level with just a pair of additional Javascript code
added on the HTML level. This approach is related to the idea of using Google
AdSense35 advertisements, but generalized on a semantic level and used for
publishing portal services. For example, there is a semantic widget for reusing
the semantic search functionality and contents of the portal [25] in external
web pages [40]. If a page, for instance, contains information about skating,
then the widget can query and show dynamically, using AJAX, images and
semantic links to skates and related objects in the museum collection portal.

5 Conclusions

Cultural heritage provides a semantically rich application domain in which
useful vocabularies and collection contents are available, and where the or-
ganizations are eager to make their content publicly accessible. A major
34 http://simile.mit.edu/timeline/
35 http://www.google.com/adsense/
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application type in the area has been semantic portals, often aggregating
content from different collections, thus providing cultural organizations with
a shared cost-effective publication channel and the possibility of enriching
collaboratively the contents of each other’s collections. For the end-user, new
kinds of intelligent semantic services and ways of visualizing content can be
provided. It can be envisioned that in the near future ever larger cultural se-
mantic portals crossing geographical, cultural, and linguistic barriers of con-
tent providers at different countries will be developed, such as Europeana36.
Also more systems for enriching the collections by end-user created content
and tagging in the spirit of Web 2.0 will be seen, such as Steve Museum37 and
Powerhouse Museum38.

A major practical hinder for publishing cultural content on the seman-
tic web is that current legacy cataloging system do not support creation
of ontology-based annotations. If semantic annotations cannot be created in
memory organization when cataloging content, then costly manual work is
needed when transforming and disambiguating literal legacy metadata into
ontological references in semantic portals. A solution approach to this funda-
mental problem is to provide ontologies as publicly available ontology services,
and to reuse them—as well as semantically annotated portal contents—as
ready-to-use functionalities (widgets) in legacy systems using mash-up tech-
niques [31,59].
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Summary. We present an overview of the latest approaches to using ontologies
in recommender systems and our work on the problem of recommending on-line
academic research papers. Our two experimental systems, Quickstep and Foxtrot,
create user profiles from unobtrusively monitored behaviour and relevance feedback,
representing the profiles in terms of a research paper topic ontology. A novel profile
visualization approach is taken to acquire profile feedback. Research papers are clas-
sified using ontological classes and collaborative recommendation algorithms used to
recommend papers seen by similar people on their current topics of interest. Onto-
logical inference is shown to improve user profiling, external ontological knowledge
used to successfully bootstrap a recommender system and profile visualization em-
ployed to improve profiling accuracy.

In a specific case study we report results from two small-scale experiments, with
24 subjects over 3 months, and a large-scale experiment, with 260 subjects over an
academic year, are conducted to evaluate different aspects of our approach. The over-
all performance of our ontological recommender systems are favourably compared
to other systems in the literature.

1 Introduction

The mass of content available on the World-Wide Web raises important ques-
tions over its effective use. Information on the web is largely unstructured,
with web pages authored by many people on a diverse range of topics. This
often makes simple browsing too time consuming to be practical. The emer-
gence of e-commerce sites means many vendors are offering potentially great
deals on very similar products. Web information filtering has thus become
necessary for most web users in order to find the things they really need.

Recommender systems have emerged as one successful approach that can
help tackle the problem of information overload. They exploit patterns in item
metadata and reviews posted by groups of people to find new items that might

S. Staab and R. Studer (eds.), Handbook on Ontologies, International Handbooks 779
on Information Systems, DOI 10.1007/978-3-540-92673-3,
c© Springer-Verlag Berlin Heidelberg 2009



780 S.E. Middleton et al.

be of interest to a user. Ontologies are increasingly being used within the field
of recommender systems, allowing knowledge-based techniques to supplement
classical machine learning and statistical approaches.

1.1 Recommender Systems

People find articulating exactly what they want difficult, but they are good at
recognizing it when they see it. This insight has led to the utilization of relevance
feedback, where people rate items as interesting or not interesting and the
system tries to find items that match the “interesting”, positive examples and
do not match the “not interesting”, negative examples. With sufficient positive
and negative examples, modern machine learning techniques can classify new
pages with impressive accuracy. Recommender systems can recommend many
types of item, including web pages, new articles, music CDs and books.

Unobtrusive monitoring provides positive examples of what the user is
looking for, without interfering with the user’s normal work activity. Heuris-
tics can also be applied to infer negative examples from observed behaviour,
although generally with less confidence. This idea has led to content-based
recommender systems, which unobtrusively watch user behaviour and recom-
mend new items that correlate with a user’s profile.

Another way to recommend items is based on the ratings provided by other
people who have liked the item before. Collaborative recommender systems do
this by asking people to rate items explicitly and then recommend new items
that similar users have rated highly. An issue with collaborative filtering is
that there is no direct reward for providing examples since they only help
other people. This leads to initial difficulties in obtaining a sufficient number
of ratings for the system to be useful, a problem known as the cold-start
problem [15].

Hybrid systems, attempting to combine the advantages of content-based
and collaborative recommender systems, have also proved popular to-date.
The feedback required for content-based recommendation is shared, allowing
collaborative recommendation as well.

1.2 User Profiling

User profiling is typically either knowledge-based or behaviour-based.
Knowledge-based approaches use static models of users and dynamically
match users to the closest model. Questionnaires and interviews are often
employed to obtain this user knowledge. Once a model is selected for a user,
specialist domain knowledge for that user type can be applied to help the
user. Behaviour-based approaches use the user’s behaviour as a model, com-
monly using machine-learning techniques to discover useful patterns in the
behaviour. Behavioural logging is employed to obtain the data necessary from
which to extract patterns. Kobsa [9] provides a good survey of user modelling
techniques.
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The user profiling approach used by most recommender systems is
behavioural-based, commonly using a binary class model to represent what
users find interesting and not interesting. Machine-learning techniques are
then used to find potential items of interest in respect to the binary model,
recommending items that match the positive examples and do not match the
negative examples. There are a lot of effective machine learning algorithms
based on two classes. A binary profile does not, however, lend itself to sharing
examples of interest or integrating any domain knowledge that might be
available. Sebastiani [19] provides a good survey of current machine learning
techniques.

1.3 Ontologies

An ontology is a conceptualisation of a domain into a human-understandable,
but machine-readable format consisting of entities, attributes, relationships,
and axioms [8]. Ontologies can provide a rich conceptualisation of the working
domain of an organisation, representing the main concepts and relationships
of the work activities. These relationships could represent isolated information
such as an employee’s home phone number, or they could represent an activity
such as authoring a document, or attending a conference. Part III contains
examples of the types of ontology that are in use today, such as chapter
“COMM: A Core Ontology for Multimedia Annotation”.

Ontologies help extend recommender systems to a multi-class environment,
allowing knowledge-based approaches to be used alongside classical machine
learning algorithms. Section 2 provides an in-depth overview of how ontolo-
gies are integrated into the techniques used for recommendation. Part IV of
this book contains details on the current best practice for supporting infras-
tructures and for ontologies, especially chapters “Ontology Repositories” and
“Ontology Mapping”.

1.4 Chapter Structure

In this chapter we show how ontologies are used in recommender systems to-
day, providing an overview of the technology space and some further reading
on specific approaches. We then examine in some depth a case study of two
recommender systems that were among the first to adopt ontological tech-
niques. In these case studies the problem domain, algorithms and results are
detailed along with a discussion that highlights some of the practical difficul-
ties experienced running a recommender system for real.

2 Ontology Use in Recommender Systems

Ontologies are now used routinely in recommender systems in combination
with machine learning, statistical correlations, user profiling and domain spe-
cific heuristics. Commercial recommender systems generally either maintain
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simple product ontologies (e.g. books) that they can then utilize via heuristics
or have a large community of users actively rating content (e.g. movies) suit-
able for collaborative filtering. More research oriented recommender systems
use a much wider variety of techniques that offer advantages such as improved
accuracy coupled with constraints such as requiring explicit relevance feedback
or intrusive monitoring of user behaviour over prolonged periods of time.

Recommendation of new items to users can be performed by looking at
item to item similarity (content-based filtering), item reviews within a com-
munity of users (collaborative filtering), semantic relationships between items
(heuristic-based recommendation) or a hybrid approach. In many cases the
type of approach adopted will depend heavily on how much metadata is avail-
able about the items and how much user feedback is available, both implicit
and explicit. Content-based techniques work well if training data is available
in advance. Collaborative techniques work well when a system has a large
community of users. There are, however, no definitive rules to decide on an
approach and normally experience and expertise is required to pick the best
approach for a given problem domain.

2.1 Content-Based Recommendation

Early recommender systems used content-based binary classification ap-
proaches looking at training sets of what was, and what was not interesting
to a specific user. Machine learning techniques were employed to perform
supervised learning based on sets of observed training examples that a user
labelled either as “good” or “bad”. A classic example of a content-based rec-
ommender system is Fab [1], which uses a binary class k-Nearest Neighbour
classifier. Other binary class examples include personal assistant agents such
as NewsDude [2], using a naive Bayes classifier, and NewsWeeder [11], using
a TF-IDF based classifier, which profile individual user interests and try to
find items of interest.

To enhance binary classification domain ontologies were introduced allow-
ing multi-class classification and hence multi-class recommendation. Typically
the classes in a domain ontology, such as a product ontology defining all the
products of an e-commerce website, would be used to classify the previously
observed products / web pages a user had purchased / viewed. A good exam-
ple of multi-class recommendation is RAAP [4], which uses a simple set of
categories to represent individual user profiles.

Once a domain has been classified in terms of ontological concepts the
relationships defined by the domain ontology can be used to infer interest and
relevance of one concept from observed interest in another. A knowledge-based
system can use expert system rules to infer probabilistic interest in classes of
item with a semantic connection to an observed item of interest. Typically the
semantic distance (number of relationships away one topic is from another) is
used to calculate semantic similarity, and this is used to weight likely interest.
Entre [3] is a restaurant recommender system that uses a knowledge-base
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and heuristic rules for recommendation. Where users articulate queries via a
web interface the query criteria can drive a knowledge-based decision tree for
advanced query refinement. The CWAdvisor [5] system is an example of such
an approach where a finite state model is used to refine queries for available
financial service products that match the user’s stated requirements.

2.2 Clustering and Topic Diversification

Some domains do not have well identified classes of item from which content
can be classified. In these cases recommender systems have employed cluster-
ing techniques to identify within groups of items potentially similar classes.
Hierarchical clustering has been used to categorize document collections for
recommender algorithms [18] and sub-divides into either distance-based clus-
tering or concept-based clustering.

Distance-based clustering [21] takes either a top-down (partitioning) or
bottom-up (agglomerative) approach to building a hierarchical class tree. A
distance function is defined to compute similarity between documents, often
based on the similarity of frequency of the words within the document. The
clustering algorithm iterates, either dividing super-clusters or merging small
clusters into larger ones, until the final concept tree is formed.

Concept-based clustering takes items represented as attribute-pairs and
builds relationships based on the probability of occurrence of attribute-pairs
within nodes. An early example of concept-based clustering is the COBWEB
[6] algorithm. Nodes are created in a top-down approach where nodes are split
or merged according to a category utility value; category utility is a measure
of differentiation power of that node.

Often recommender systems will recommend clusters of items that are very
similar, or variants of the same item (e.g. different formats of the film/DVD).
To avoid this topic diversification [22] can be employed to ensure each rec-
ommendation is on a well defined concept, hopefully increasing the useful-
ness of a set of recommendations to the user. Algorithms to perform topic
diversification will compute a dissimilarity ranking and merge this with the
recommendation ranking. Semantic distance and super-class relationships can
be used to compute dissimilarity between item sets.

2.3 Collaborative Filtering

Collaborative filtering works by using the ratings provided by a community of
users to recommend items for a specific user. There are two complementary
approaches available, user-based or item-based collaborative filtering. User-
based collaborative filtering is where similar users are found and items recom-
mended that these similar users also liked. Item-based collaborative filtering
is where items are grouped if people rate them similarly.

In order to perform collaborative filtering a user profile must be created
from the available historical records of what items people have reviewed and
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rated. Often a 5-point scale is used for ratings (very good to very bad).
A common user profile representation is a weighted vector if interest with
as many dimensions as the domain has classes. Vectors can also be used
for item to item similarity. Domains where item metadata is not accessi-
ble as ontological terms will usually apply pre-processing techniques to com-
pute word/document/metadata term frequencies, remove common words and
merge similar words using a thesaurus like WordNet.

User-based collaborative filtering is the most popular recommendation al-
gorithm due to its simplicity and excellent quality of recommendation. First
neighbourhoods are formed using a similarity metric, such as a statistical
correlation metric like Pearson-r correlation. Second a set of rating predic-
tions are created using profiles that are within the same neighbourhood as
the user’s own profile. Recommendations are created from the top-N items.
The GroupLens project [10] is an early exploiter of user-based collaborative
filtering.

Item-based collaborative filtering has become popular in the last 5 years
since it decouples the model computation from the prediction process; Amazon
[13] have used this technique successfully. Just as in user-based similarity
items are compared on the basis of how many users rank them similarly. The
neighbourhoods computed are therefore collections of items that are similar.
This technique scales well since new items will be added to neighbourhoods
as users rate them without the need for explicit ontology maintenance.

Sometimes a recommender system will have to compare items from differ-
ent domain ontologies, such as two product lists. In these cases an ontology
can be created for both domains in a common language (such as OWL) and
the mapping between them formulated, either manually or using a automated
technique [12] such as a Bayesian belief network. Once concepts are success-
fully mapped the normal approaches for recommendation can be applied.

2.4 Use of the Semantic Web and Web 2.0 Approaches

Recent work has also used some of the emerging Web 2.0 resources from the
Semantic Web to help identify classes of item. One such system [20] has used
an internet movie database that contains extensive information about actors,
movies, etc., and mapped this semantic information to user behaviour on a
movie recommendation website. Tag clouds are created based on the keyword
frequencies behind the items they have rated. Data mining techniques [4] can
also be coupled with ontological knowledge to improve similarity matching
and recommendation within historical usage data.

3 Case Study: Two Ontological Recommender Systems

For a case study two experimental recommender systems are presented, Quick-
step and Foxtrot, that explored the novel idea of using an ontological approach
to user profiling in the context of recommender systems. Representing user
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interests in ontological terms involves losing some of the fine grained informa-
tion held in the raw examples of interest, but in turn allows inference to assist
user profiling, communication with other external ontologies and visualization
of the profiles using ontological terms understandable to users. Figure 1 shows
the general approach taken by both our recommender systems. Quickstep im-
plements only the basic recommendation interface, while Foxtrot implements
all the shown features.

A research paper topic ontology is shared between all system processes, al-
lowing both classifications and user profiles to use a common terminology. The
ontology itself contains is-a relationships between appropriate topic classes; a
section from the topic ontology is shown in Fig. 2. The Quickstep ontology was

Fig. 1. Quickstep and Foxtrot recommender system data flow

Fig. 2. Section from the Foxtrot research paper topic ontology
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based on the open directory project’s [7] computer science topic classification,
while the Foxtrot ontology was based on the CORA [14] digital library paper
classification; manual enhancements were made to each ontology to better
reflect some of the more specialist sub-topics researchers required. Reusing
existing classifications saves time and provides a source for training examples,
especially with the CORA digital library, which contained many pre-classified
research papers.

3.1 Classification Using a Research Paper Topic Ontology

Sharing training examples, within the structure of an ontology, allows for
much larger training sets than would be possible if a single user just pro-
vided examples of personal interest. Larger training sets improve classifier
accuracy. However, multi-class classification is inherently less accurate than
binary class classification, so the increased training set size has to be weighed
along with the reduction in accuracy that occurs with every extra class the
system supports.

Both the Quickstep and Foxtrot recommender systems use the research
paper topic ontology to base paper classifications upon. A set of labelled
example papers is manually provided for each class within the ontology, and
then used by the classifier as a labelled training set. In the Quickstep system
users can add new examples of papers as time goes by, allowing the training
set to reflect the continually changing needs of the users.

In addition to larger training sets, having users share a common ontology
enforces a consistent conceptual model, which removes some of the subjective
nature of selecting categories for research papers. A common conceptual model
also helps users to understand how the recommender system works, which
helps form reasonable user expectations and assists in building trust and a
feeling of control over what the system is doing.

3.2 Ontological Inference to Assist User Profiling

Ontological inference is a powerful tool to assist user profiling. An ontology
could contain all sorts of useful knowledge about users and their interests, such
as related research subjects, technologies behind each subject area, projects
people are working on, etc. This knowledge can be used to infer more interests
than can be seen by just observation.

Our two experimental recommender systems both use ontological inference
to enhance user profiles. Is-a relationships within the research paper topic
ontology are used to infer interest in more general, super-class topics. We add
50% of the interest in a specific class to the super-class. This inference has
the effect of rounding out profiles, making them more inclusive and attuning
them to the broad interests of a user.
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Fig. 3. Profiling algorithm

The profiling algorithm used is shown in Fig. 3. A time-decay function is
applied to the observed behaviour events to form the basic profile. Inference is
then used to enhance the interest profile, with the 50% inference rule applied
to all ontological is-a relationships, up to the root class, for each observed
event.

The event interest values were chosen to balance the feedback in favour
of explicitly provided feedback, which is likely to be the most reliable. The
50% inference value was chosen to reflect the reduction in certainty you get
the further away from the observed behaviour you move. Determining optimal
values for these parameters would require further empirical evaluation.

3.3 Bootstrapping with an External Ontology

Recommender systems suffer from the cold-start problem [15], where the lack
of initial behavioural information significantly reduces the accuracy of user
profiles, and hence recommendations. This poor performance can deter users
from adopting the system, which of course prevents the system from acquiring
more behaviour data; it is possible that a recommender system will never be
used enough to overcome its cold-start.

In one of our experiments we take an external ontology containing publi-
cation and personnel data about academic researchers and integrate it with
the Quickstep recommender system. The knowledge held within the external
ontology is used to bootstrap initial user profiles, with the aim of reducing the
cold-start effect. The external ontology uses the same research topic ontology
as the Quickstep system, providing a firm basis for communication. The exter-
nal ontology contains publications and authorship relationships, projects and
project membership, staff and their roles and other such knowledge. Knowl-
edge of publications held within the external ontology is used to infer histori-
cal interests for new users, and network analysis of ontological relationships is
used to discover similar users whose own interests might be used to bootstrap
a new user’s profile.

The two bootstrapping algorithms used in our experiment are shown
in Figs. 4 and 5. The new-system initial profile algorithm takes all the
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publications of a user and creates a profile of historical interests. The as-
sumption is that a user’s previous publications indicate that user’s interests.
The new-user initial profile algorithm takes a set of similar users, obtained via
network analysis of the external ontologies project membership and inter-staff
relationships, and includes these users interests into the bootstrap profile. His-
torical publication interests from the new user are also added as before. The
parametric values shown in Figs. 4 and 5 were empirically determined after
several experimental runs using test data.

In addition to using the ontology to bootstrap the recommender system,
our experiment uses the interest profiles held within the recommender system
to continually update the external ontology. Interest acquisition is a problem-
atic task for ontologies that are based on static knowledge sources, and this
synergistic relationship provides a useful source of personal knowledge about
individual researchers.

Fig. 4. New-system initial profile algorithm

Fig. 5. New-user initial profile algorithm
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Fig. 6. Foxtrot profile visualization interface

3.4 Profile Visualization Using Ontological Concepts

Since users can understand the topics held within the ontology, the user pro-
files can be visualized. These visualizations allow users to see what the sys-
tem thinks they are interested in and hence allow them to gain an insight
into how the system works. Profile visualization thus provides users with a
conceptual model of how the profiling algorithm works, allowing users to gain
trust in the system and providing users with a feeling of control over what’s
going on. With a better conceptual model user expectations should be more
realistic.

The Foxtrot recommender system visualizes profiles using a time/interest
graph. In addition to simply visualizing profiles, a drawing package metaphor
is used to allow users to draw interest bars directly onto the time/interest
graph. This allows the system to acquire direct profile feedback, which can be
used by the profiler to improve profile accuracy and hence recommendation
accuracy. Figure 6 shows the profile visualization interface.

4 Case Study: Experimentation Results

We have conducted three experiments with our two recommender systems.
The Quickstep recommender system is used to measure the performance gain
seen when using profile inference, and the reduction in the cold-start seen when
an external ontology is used for bootstrapping. The Foxtrot recommender sys-
tem is used to measure the effect profile visualization has on profile accuracy,
and to perform a large-scale assessment of our overall ontological approach to
recommender systems.
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A more in-depth statistical investigation of this approach has been per-
formed using the datasets gathered in our user trials (260 subjects, 15,792
documents) and is published in [17].

4.1 Using Ontological Inference to Improve Recommendation
Accuracy

Our first experiment used the Quickstep recommender system to compare
subjects whose profiles were computed using ontological inference with sub-
jects whose profiles did not use ontological inference. Two identical trials were
conducted, the first with 14 subjects and the second with 24 subjects, both
over 1.5 months; some interface improvements were made for the second trial.
Subjects were taken from researchers in a computer science laboratory and
split into two groups; one group used a topic ontology and profile inference
while the other group used an unstructured flat list of topics with no profile
inference. An overall evaluation of the Quickstep recommender system was
also performed. This experiment is published in more detail in [16].

This experiment found that ontological profile users provided more
favourable feedback and had superior recommendation accuracy. Figures 7
and 8 shows these results. Users provide feedback on their individual recom-
mendations, rating them as “interesting”, “uninteresting” or “no comment”.
Good topics are defined as those not rated as “uninteresting” by users. A
jump is where the user jumps to a recommended paper by opening it via the
web browser. Jumps are correlated with topic interest feedback, so a good
jump is a jump to a paper on a good topic. Recommendation accuracy is the

Fig. 7. Good topics to total topics ratio

Fig. 8. Recommendation accuracy
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ratio of good jumps to recommendations, and is an indication of the quality
of the recommendations being made as well as the accuracy of the profile.

The ontology groups from the two trials have a 7% and 15% higher topic
acceptance. In addition to this trend, the first trial ratios are about 10% lower
than the second trial ratios, probably as a result of the interface improvements
that made the feedback options less confusing. There is a small 1% improve-
ment in recommendation accuracy by the ontology group. Both trials show
between 7% and 11% recommendation accuracy.

Since 10 recommendations were provided at a time, a recommendation
accuracy of 10% means that on average there was one good recommendation in
each set presented to the user. We regard providing one good recommendation
upon each visit to the recommendation web site as demonstrating significant
utility.

While not statistically significant due to sample size, the results suggest
how using ontological inference in the profiling process results in superior
performance over using a flat list of unstructured topics. The ontology users
tended to have more “rounder” profiles, including topics of interest that were
not directly browsed. This increased the accuracy of the profiles, and hence
usefulness of the recommendations.

4.2 Ontological Bootstrapping to Reduce the Cold-Start Problem

Our second experiment integrated the Quickstep recommender system with
an external ontology to evaluate how using ontological knowledge could reduce
the cold-start problem . The external ontology used was based on a publication
database and personnel database, coupled with a tool for performing network
analysis of ontological relationships to discover similar users. The behavioural
log data from the previous experiment was used to simulate the bootstrapping
effect both the new-system and new-user initial profiling algorithms would
have. This experiment is published in more detail in [15].

Subjects were selected from those in the previous experiment who had
entries within the external ontology. We selected nine subjects in total and
their URL browsing logs were broken up into weekly log entries. Seven weeks
of browsing behaviour were taken from the start of the Quickstep trials, and
an empty log created to simulate the very start of the trial where no behaviour
has yet been recorded.

Two bootstrapping algorithms were tested, the new-system and new-user
initial profile algorithms described earlier. As the new-system algorithm boot-
straps a completely cold-start we tested from week 0 to week 7. The new-user
algorithm requires the system to have been running for a while, so we added
the new user on week 7, after the new-system cold-start was over.

Two measurements were made to measure the reduction in the cold-start.
The first, profile precision, measures how many topics were mentioned in both
the bootstrapped profile and benchmark profile. Profile precision is an indi-
cation of how quickly the profile is converging to the final state, and thus



792 S.E. Middleton et al.

Fig. 9. Bootstrapping algorithm performance

how quickly the effects of the cold-start are overcome. The second, profile er-
ror rate, measures how many topics appeared in the bootstrapped profile that
did not appear within the benchmark profile. Profile error rate is an indication
of the errors introduced by the two bootstrapping algorithms. Figure 9 shows
the precision results. The new-user result appears on week 0 to indicate the
first week for the new-user, even though the system itself had been running
for 7 weeks.

The new-system algorithm produced profiles with a low error rate of 0.06
and a reasonable precision of 0.35. This reflects that previous publications
are a good indication of users current interests, and so can produce a good
starting point for a bootstrap profile. The new-user algorithm achieved good
precision of 0.84 at the expense of a significant 0.55 error rate.

This experiment suggests that using an ontology to bootstrap user pro-
files can significantly reduce the impact of the recommender system cold-
start problem. It is particularly useful for the new-system cold-start problem,
where the alternative is to start with no information at all and hence a profile
precision of zero.

4.3 Visualizing Profiles to Improve Profile Accuracy

Our third experiment used the Foxtrot recommender system to compare sub-
jects who could visualize their profiles and provide profile feedback with sub-
jects who could only use traditional relevance feedback. An overall evaluation
of the Foxtrot recommender system was also performed.

This experimental trial took place over the academic year 2002, starting
in November and ending in July. Of the 260 subjects registered to use the
system, 103 used the web page, and of these 37 subjects used the system three
or more times. All 260 subjects used the web proxy and hence their browsing
was recorded and daily profiles built. By the end of the trial the research paper
database had grown from 6,000 to 15,792 documents as a result of subject web
browsing.
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Subjects were divided into two groups. The first “profile feedback” group
had full access to the system and its profile visualization and profile feedback
options; the second “relevance feedback” group were denied access to the
profile interface. A total of nine subjects provided profile feedback.

Towards the end of the trial an additional email feature was added to the
recommender system. This email feature sent out weekly emails to all users
who had used the system at least once, detailing the top three papers in their
current recommendation set. Email notification was started in May and ran
for the remaining 3 months of the trial.

Recommendation accuracy, profile accuracy and profile predictive accuracy
was measured. Profile accuracy measures the number of papers jumped to or
browsed that match the top three profile topics each day. This is a good
measure of the accuracy of the current interests within a profile at any given
time. Profile predictive accuracy measures the number of papers jumped to or
browsed that match the top three profile topics in a 4-week period after the
day the profile was created. This measures the ability of a profile to predict
subject interests. Figures 10 and 11 show these results.

The “profile feedback” group outperformed the “relevance feedback” group
for most of the metrics, and the experimental data revealed several trends.
Email recommendation appeared to be preferred by the “relevance feedback”
group, and especially by those users who did not regularly check their web
page recommendations. A reason for this could be that since the “profile
feedback” group used the web page recommendations more, they needed to
use the email recommendations less. There is certainly a limit to how many
recommendations any user needs over a given time period; in our case nobody
regularly checked for recommendations more than once a week. The overall
recommendation accuracy was about 1%, or 2–5% for the profile feedback
group.

This third experiment shows that both profile visualization and pro-
file feedback can significantly improve the profiling accuracy and the

Fig. 10. Recommendation accuracy
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Fig. 11. Profile accuracy and predictive profile accuracy

recommendation process. Our ontological approach makes this possible be-
cause user profiles are represented in terms the users can understand.

5 Case Study: Conclusions

Through our three experiments we have demonstrated that using an onto-
logical approach to user profiling offers significant benefits to recommender
systems.

Ontological inference, even simple inference such as using is-a relationships
to infer general interests, can improve profiling process and hence the recom-
mendation accuracy of a recommender system. We achieve a 7–15% increase
recommendation accuracy using just is-a relationships, and we feel it is clear
that a more complete domain ontology, with more informative relationships,
could perform significantly better.

External ontologies can be used to reduce significantly the cold-start prob-
lem recommender systems face. We have shown that a bootstrap profile preci-
sion of 35% is achievable given the right ontological knowledge to drawn upon.
While further experimentation is required to determine exactly how good a
bootstrap profile needs to be before a cold-start is avoided, it is clear that
external knowledge sources offer a practical way to achieve this.

Most recommender systems hold user profiles in cryptic formats gener-
ated by techniques such as neural networks or Bayesian learners. Using an
ontological approach to user profiling allows the visualization of user profiles
using ontological terms users understand, and hence a way to elicit feedback
on the profiles themselves. This profile feedback can be used to adjust pro-
files, improving their accuracy significantly. We have demonstrated increases
in profiling accuracy of up to 50% of that which is achievable by traditional
relevance feedback.
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These three features are implemented in our two experimental recommender
systems. Overall recommendation accuracy, for individual recommendations,
of 7–11% for a laboratory based subject group and 2–5% recommendation
accuracy for a larger department based group is demonstrated. This gives an
average of one good recommendation per set of recommendations provided
for the small group of about 20 users, and one every other set for the larger
group of about 200 users. Both these systems compare favourably with other
systems in the literature when the problem domains are taken into account.
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Grüninger, Michael, 423
Gridinoc, Laurian, 687
Grimm, Stephan, 382
Guarino, Nicola, 1
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work (GORF), 555
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Incoherence, 297
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Information content, 744
Information extraction, 479
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Rdfs:Resource, 75, 79
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Relational search, 771
Relationship ontology, 455
Relevance feedback, 780, 782
Representation, 303
Requirement engineering, 598
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Semantic Web application, 687
Semantic Web Mining, 638
Semantic Web Research Community

ontology, 119
Semantic Web Rules Language, 112
Semantic web service, 697, 699, 706
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SHIQ−, 542
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Similarity measure, 647
simple, 271, 287
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Simple interpretation, 77
Skill Management, 144, 723, 724
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SOAP over HTTP, 697
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Stage theory, 366
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Structural transformation, 534
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Subsumption, 511
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810 Subject Index

Synonymy, 275
Synset, 271
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View-based search, 769
Virtual organization , 154
Visualization, 789
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Web service discovery, 620
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Web Service Modeling Ontology, 618
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Web services, 619
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WordNet, 271, 644, 740, 744, 784
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XML Schema datatype, 77
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