
The Valve Location Problem

in Simple Network Topologies

Hans L. Bodlaender1, Alexander Grigoriev2, Nadejda V. Grigorieva3,
and Albert Hendriks1

1 Institute of Information and Computing Sciences, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, the Netherlands

hansb@cs.uu.nl, alberthendriks@gmail.com
2 Department of Quantitative Economics, Maastricht University,

P.O. Box 616, 6200 MD Maastricht, The Netherlands
a.grigoriev@ke.unimaas.nl

3 Institute of Power Resources Transport (IPTER),
144/3, pr. Octyabrya, Ufa-450055, Russia

n grigorieva@yahoo.com

Abstract. To control possible spills in liquid or gas transporting pipe
systems, the systems are usually equipped with shutoff valves. In case
of an accidental leak these valves separate the system into a number of
pieces limiting the spill effect. In this paper, we consider the problem, for
a given edge-weighted network representing a pipe system and for a given
number of valves, to place the valves in the network in such a way that
the maximum possible spill, i.e. the maximum total weight of a piece,
is minimized. We show that the problem is NP-hard even if restricted
to any of the following settings: (i) for series-parallel graphs and hence
for graphs of treewidth two; (ii) if all edge weights equal one. If the
network is a simple path, a cycle, or a tree, the problem can be solved
in polynomial time. We also give a pseudo-polynomial time algorithm
and a fully polynomial approximation scheme for networks of bounded
treewidth.

Keywords: Valve location problem; computational complexity; bounded
treewidth; dynamic programming; binary search.

1 Introduction

In this paper, we consider a combinatorial problem that arose from a number
of applications connected to operations and maintenance of a broad variety of
transportation systems; for applications related to the long oil and gas pipelines
see e.g. [10]; for applications in water supply engineering see [15]; for applications
in electrical grid maintenance see [7]. Let us briefly discuss the related problem
arising in oil and gas transportation. A pipeline is the most efficient and envi-
ronmentally friendly way to transport hazardous liquids and gases, e.g. crude oil
or natural gas, over land. In normal daily operations, pipelines do not produce
any pollution. However, due to external factors or pipe corrosion, accidents on

H. Broersma et al. (Eds.): WG 2008, LNCS 5344, pp. 55–65, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

56 H.L. Bodlaender et al.

pipelines sometimes happen and the accidental damage can be substantial. To
control possible spills, every pipe system is usually equipped with special shut-
off valves. Whenever the pipe system is depressurized, the valves automatically
and instantly separate the pipe system into pieces. Therefore, the quantity of
hazardous liquid or gas potentially leaving the system equals the total length
of the pipes in the damaged piece of the system separated by shutoff valves. In
the application at hand, there is a given edge-weighted network representing a
pipe system and a given number of valves that can be placed in the vertices of
the network. We want to solve the following problem: find a valve location in
the network that minimizes the maximum total weight of a piece separated by
shutoff valves.

This paper is organized as follows. In Section 2, we give a precise graph the-
oretic formulation of the problem. In Section 3, we show that using dynamic
programming the problem can be solved in polynomial time on simple network
topologies: paths, cycles and trees. In Section 4, we consider a more general
case, namely the graphs of bounded treewidth. For these graphs, we give a
pseudo-polynomial time dynamic programming algorithm, and then we turn this
algorithm into a fully polynomial approximation scheme (FPTAS). Finally, in
Section 5, we discuss the complexity of the problem. Here, we show that the prob-
lem is NP-hard even for series-parallel graphs and hence for graphs of treewidth
at most two. We also show that the unweighted version of the problem, i.e. the
problem where all edge weights equal one, is also NP-hard.

2 Graph Theoretic Formulation

The problem can be formulated in graph theoretic terms in a natural way. Let
G = (V, E) be an undirected graph representing a pipe network. Edges of the
graph represent pipes. Let ωe ∈ Z

+ denote the length of pipe e ∈ E. Vertices
of the graph represent connection points between the pipes. Let k be a number
of valves to be installed. We assume that a valve can be located in any vertex
v ∈ V .

Consider a set of vertices V ′ ⊆ V . If we use V ′ as valve locations, we use |V ′|
valves, and partition G into pieces as follows. The set of edges E is partitioned
into sets with two edges in the same set of the partition if and only if they are
on a path in G that does not contain a valve. Thus, E is partitioned into subsets
E1, E2, . . . , ES where edges in Es, 1 ≤ s ≤ S, form a connected component in
G called a piece, and for any two subsets, Es and Et, the set of endpoints in
Es intersects the set of endpoints in Et only in elements of V ′. The cost of V ′,
denoted Wmax(V ′), is

Wmax(V ′) = max
1≤s≤S

∑

e∈Es

ωe,

i.e., the maximum total length of a piece or the maximum spill.
The valve location problem then is to find a subset V ′ of vertices in G

such that |V ′| ≤ k and the cost Wmax(V ′) is minimized. In other words, we have

The Valve Location Problem in Simple Network Topologies 57

to find a k-elementary separator in G such that the maximum length connected
component is minimized. We consider also the unweighted version of the problem
where ωe = 1 for all e ∈ E.

Throughout the paper, n denotes the number of vertices in G, ωmax the max-
imum length of an edge:

ωmax = max
e∈E

ωe,

and ωΣ the total length of all edges:

ωΣ =
∑

e∈E

ωe.

Clearly, the maximum spill is yet another network vulnerability measure. This
concept is very close to many other known vulnerability measures, e.g. vertex
integrity of a graph defined as I(G) = min{|S| + m(G − S) : S ⊂ V }, where
m(H) denotes the maximum order of a component of H , see [2,3]; minimum
balanced separator defined as a minimum order separator S such that the maxi-
mum component in G−S contains at most βn vertices for a given 0 < β < 1, see
[1,8,14]; and some other, see e.g. [13]. The key difference between the maximum
spill and the known vulnerability measures is that the maximum spill measures
vulnerability of a graph in terms of the total edge weight (or length) of a com-
ponent when all other measures are related to the maximum order (number of
vertices) in a component. Of course, practical suitability of a certain measure
depends heavily on applications.

Throughout the paper, we measure run time of the algorithms using the widely
accepted convention that we can do an addition or multiplication of two integers
in O(1) time. If we want to count bit operations, we must multiply run times by
a factor log ωΣ.

3 Simple Networks: Paths, Cycles and Trees

In this section, we give dynamic programming algorithms to solve the problem
in simple network topologies: paths, cycles and trees.

3.1 The Valve Location Problem on a Path

We first consider the valve location problem on a path. This simple case
appears frequently in the practical settings of the long oil pipelines, and thus is
of practical relevance; see [10]. We have two different exact algorithms. One uses
‘text book’ dynamic programming.

Proposition 1. The valve location problem on a path can be solved by dy-
namic programming in O(kn2) time.

The other algorithm is obtained by using a binary search for the optimal spill
value and by checking feasibility of each spill value with a greedy algorithm.

58 H.L. Bodlaender et al.

Proposition 2. Given a path and a value L, we can decide in O(n) time if
there is a solution to the valve location problem with k valves with cost at
most L.

The same idea also gives the minimum number of valves needed to guarantee a
cost that is at most L. Using binary search for the optimal value in the range of
integers between 0 and ωΣ , we directly obtain the following result.

Corollary 1. For a given path, we can solve the valve location problem in
O(n log ωΣ) time.

It is also possible to construct a fast 2-approximation algorithm using a greedy
strategy for paths.

Proposition 3. The valve location problem on a path admits a 2-approxi-
mation algorithm that uses O(n) time.

Finally, we can sharpen Proposition 3 when ωmax ≥ 3Ap.

Proposition 4. Consider the valve location problem on a path. Let k be the
number of valves. If ωmax ≥ 3ωΣ/(k + 1), then the optimal solution has cost
ωmax. An optimal solution can be found in this case in O(n) time.

3.2 Cycles

If G is a cycle, then we can obtain exact and approximate solutions for the valve
location by using variants to the algorithms for paths.

Proposition 5. The valve location problem on a cycle admits a 2-approxi-
mation algorithm that uses O(n) time.

Proposition 6. Consider the valve location problem on a cycle. Let k be
the number of valves. If ωmax ≥ 3ωΣ/k, then the optimal spill equals ωmax. An
optimal valve location can be found in this case in O(n) time.

Theorem 1. The valve location problem on a cycle can be solved by solving
O(n/k) valve location problems on paths of length at most n.

Corollary 2. The valve location problem on a cycle can be solved in O(n min
{logωΣ , n/k}) time.

3.3 Trees

Very recently, see [7], we became aware of the fact that the valve location
problem on trees is an important modern research topic in electrical engineering.
Whenever a regional power supply network (a tree) should be maintained, the
engineers are shutting down some small subtree and they are interested in an
optimal location of switchers. This application brings us to the valve location
in trees. Surprisingly enough, already this special case of the problem is quite
complicated: according to [7], a typical modern approach to the problem is a

The Valve Location Problem in Simple Network Topologies 59

genetic algorithm. In this section, we present a nontrivial algorithm that solves
the problem on trees in polynomial time. More specifically, we show:

Theorem 2. The valve location problem on a tree can be solved in O(nk2

log(nωmax)) time.

The global structure of the algorithm is a binary search on the optimal value in
the range of integers between 0 and nωmax. Thus, we directly obtain Theorem 2
as a corollary of the next result.

Proposition 7. Given a tree, and an integer L, we can decide in O(nk2) time
if we can place k valves with maximum piece size at most L.

Proof. We choose an arbitrary vertex vr as root of the tree. For rooted subtrees
T ′, and integers i, 0 ≤ i ≤ k, we define

AT ′,L(i) = the minimum over all possible ways to put at most i valves
in T ′ such that no piece in T ′ has a total length of more than L, of
the total length of the piece that contains the root node of T ′.

AT ′,L(i) = 0, if there is a way to put at most i valves in T ′ such that
no piece in T ′ has a total length of more than L, such that there is a
valve in the root node of T ′.

AT ′,L(i) = ∞, if there is no possible way to put at most i valves in T ′

such that no piece in T ′ has a total length of more than L.
PT ′,L(i) = true if and only if AT ′,L(i) = 0, i.e. if we can put at most i

valves in T ′ such that no piece in T ′ has a total length of more than
L, such that there is a valve in the root node of T ′.

We will compute tables AT ′,L and PT ′,L for several subtrees of T :

– For each vertex v in T except vr, we compute a table for the subtree, con-
sisting of the parent of v in T , v, and all the descendants of v. The root of
this subtree is the parent of v. Call this subtree T +

v .
– For each vertex v in T : if v has i children w1, w2, . . . , wi, then for each j,

0 ≤ j ≤ i, we compute a table for the subtree, consisting of v, w1, . . . , wj ,
and all descendants of w1, w2, . . . , wj . Vertex v is the root of this subtree.
Call this subtree Tv,j. For the case j = i, write Tv = Tv,i; this is the tree
consisting of v and all its descendants.

The following two lemmas give recursive formulations that show how to com-
pute these tables.

Lemma 1. Let T be obtained by taking the union of trees T ′ and T ′′ such that
the root r of T ′ and T ′′ is the only vertex that belongs to both trees. Let 0 ≤ i ≤ k.

1. PT,L(i), if and only if there are i′, i′′ with i′ + i′′ = i − 1, 0 ≤ i′ ≤ k,
0 ≤ i′′ ≤ k, such that PT ′,L(i′) and PT ′′,L(i′′).

2. If PT,L(i), then AT,L(i) = 0.

60 H.L. Bodlaender et al.

3. If not PT,L(i), then

AT,L(i) = min
i′,i′′,i′+i′′=i,0≤i,i′

AT ′,L(i′) + AT ′′,L(i′′)

if this term is at most L, otherwise AT,L(i) = ∞.

Lemma 2. Let T be a tree with root r, and let T + be obtained by adding an edge
{r, r′} to a new vertex r′ with length �. Let r′ be the root of T +. Let 0 ≤ i ≤ k,
and L be an integer.

1. PT+,L(i) holds if and only if i > 0 and AT,L(i − 1) + � ≤ L.
2. If PT+,L(i), then AT+,L(i) = 0.
3. If not PT+,L(i), then AT+,L(i) = AT+,L(i)+ �, if this term is at most L, and

AT+,L(i) = ∞ otherwise.

Using Lemmas 1 and 2, we can compute all desired tables. Recall that L is
fixed during the computation. Now, for all vertices in the tree, in postorder, we
compute all values ATv ,L(i), and PTv ,L(i), for all i, 0 ≤ i ≤ k. This is done
in the following way. If v is a leaf of T , then computing these values is trivial.
Otherwise, suppose v has s children, say w1, w2, . . . , ws. For all j, 1 ≤ j ≤ s, we
compute all values ATv,j ,L(i), and PTv,j ,L(i) for all i, 0 ≤ i ≤ k. In case j = 1,
we note that Tv,1 is the same subtree as T +

w1
. Thus, using Lemma 2, we can

compute the values ATv,1,L(i), and PTv,1,L(i) from the already earlier computed
tables ATw1 ,L and PTw1 ,L. For 2 ≤ j ≤ s, we note that Tv,j is the union of Tv,j−1

and T +
wj

. Thus, we first compute the tables AT+
wj

, L and PT+
wj

, L given the tables
ATwj

,L and PTwj
,L using Lemma 2. Then, we compute the tables ATv,j ,L and

PTv,j ,L from the tables AT+
wj

,L, PT+
wj

,L, ATv,j−1 ,L and PTv,j−1,L, using Lemma 1.
Finally, note that Tv,s = Tv. When we have the tables ATvr ,L and PTvr ,L, we
can easily decide whether we can place k valves in T with maximum piece size
at most L, using the following simple observation.

Proposition 8. Let vr be the root of T . There is a solution to the valve lo-
cation problem with k valves and cost at most L if and only if ATvr ,L(k) < ∞.

If T has n vertices, then we compute O(n) tables: O(1) per edge in T . Each table
can be computed in O(k2) time. This can be easily observed from Lemmas 1 and
2. Simply, iterate over all possible values of k and k′, and compute the necessary
value of k′′. Each step involves O(1) computations. Actually, the step that uses
Lemma 2 needs only O(k) time. This finishes the proof of Proposition 7. �	

Notice that for trees, a result similar to Propositions 4 and 6 holds. However,
in this case, this does not lead to an approximation algorithm with constant
performance guarantee.

Proposition 9. Consider the valve location problem on a tree. Let k be the
number of valves. If ωmax ≥ 3ωΣ/k, then the optimal spill equals ωmax.

The Valve Location Problem in Simple Network Topologies 61

4 Algorithms for Graphs of Bounded Treewidth

In practice, most of the transportation systems are more complicated than trees.
This makes the problem more difficult from algorithmic perspective. Fortunately,
real-life networks in majority of applications (e.g., for oil and gas pipeline trans-
portation) are outerplanar or, taking this more generally, the corresponding
graphs have bounded treewidth; see e.g. [5,6,11]. For this type of networks we
have the following results.

Theorem 3. The valve location problem on graphs of treewidth q admits a
dynamic programming algorithm running in time (nωmax)

O(q).

This dynamic programming algorithm follows the lines of several algorithms for
other problems on graphs of bounded treewidth. For easier description, we use
a nice tree decomposition of width at most q; for definition see below.

As a first step, we must find a tree decomposition of width at most q. This
can be done in O(n) time for fixed q; see [4]. At this point, we would like to
make a remark concerning practical implementations. The algorithm in [4] has
such a large hidden constant, that it is not of use in a practical setting. Fortu-
nately, there are several heuristics that often give good bounds. Also, there are
fast algorithms that construct tree decompositions of optimal width for graphs
of treewidth at most three (including outerplanar graphs), see e.g. [6] for a dis-
cussion.

Given a tree decomposition, in O(n) time one can transform it to a nice tree
decomposition [12] with the same width. We now give the definition of a nice
tree decomposition.

A nice tree decomposition of a graph G = (V, E) is a rooted binary tree
T = (I, F), where each node i ∈ I is a subset Xi ⊆ V , called bag, such that

1.
⋃

i∈I Xi = V .
2. For all {v, w} ∈ E, there exists an i ∈ I, with v, w ∈ Xi.
3. For all v ∈ V , the set {i ∈ I | v ∈ Xi} forms a subtree of T .
4. If i ∈ I has two children j1, j2, then Xi = Xj1 = Xj2 (Join Node).
5. If i ∈ I has one child j, then either there is a v ∈ Xi with Xj ∪ {v} = Xi

(Introduce Node) or there is a v ∈ Xj with Xi ∪ {v} = Xj (Forget
Node).

6. If i ∈ I is a leaf in T , then |Xi| = 1 (Leaf Node).

The width of a nice tree decomposition is maxi∈I |Xi| − 1.
In our dynamic programming algorithm, we compute in postorder for each

node of T a table. Associate to node i ∈ I the subgraph Gi = G[Vi], induced by
the set of vertices in Xi or a bag Xj with j a descendant of i: Vi =

⋃
Xj, with

the union taken over all j in the subtree of T rooted at j.
A placement of valves on the vertices of Gi has a characteristic, which is a

5-tuple (j, Z, L, f,∼), consisting of

62 H.L. Bodlaender et al.

– The number j of used valves in Gi.
– The subset Z ⊂ Xi of the vertices in Xi that contain a valve.
– The maximum length of a piece in Gi.
– A function f : Xi → N, giving for each vertex v ∈ Vi the total length of the

piece that contains v; if there is a valve on v, then f(v) = 0.
– An equivalence relation ∼ on Xi, with for all v, w ∈ Xi, v ∼ w, if and only

if there is a path from v to w in Gi that does not contain a vertex with a
valve.

In the table of i, we store all possible characteristics of all placements of valves
in Gi. Note that in this way, tables have a size that is bounded by (nωmax)

O(q).
A somewhat tedious case analysis, typical for dynamic programming algo-

rithms on graphs of bounded treewidth, shows that we can compute for each of
the four types of nodes the table of all characteristics for a node, given such a
table for each of the children of the node, in time polynomial in the table size.

Then, computing these tables for all nodes in postorder gives an algorithm
computing the table for the root node, and as Gr for the root node r equals G,
we obtain the optimal valve location from this table.

We remark that the described dynamic programming is only a pseudo-poly-
nomial time algorithm for the weighted version of the valve location problem
on graphs of bounded treewidth. Using standard scaling arguments, we derive
the following corollary.

Corollary 3. The valve location problem on graphs of bounded treewidth
admits a fully polynomial approximation scheme.

5 Complexity Results

In this section, we show that two restricted versions of the valve location
problem are NP-hard. For general networks it is strongly NP-hard as even the
unweighted version of the problem is NP-hard, while for series-parallel graphs
(a special case of graphs of treewidth at most two) the problem is weakly NP-
hard. Note that this complements the result that the problem is solvable in
pseudo-polynomial time on graphs of bounded treewidth.

Theorem 4. The valve location problem is NP-hard even if ωe = 1 for all
e ∈ E.

The proof of Theorem 4 is quite straightforward and it is based on a reduction
from the strongly NP-hard problem 3-partition.

The second complexity result is less trivial. For this result let us remind a
definition of a series-parallel graph. A series-parallel graph is a graph G = (V, E)
with two special vertices, called its terminals, often denoted s and t, that can be
formed with the following operations:

– A graph consisting of a single edge {s, t} between its terminals is a series-
parallel graph.

The Valve Location Problem in Simple Network Topologies 63

– If G and H are terminal graphs, with terminals sG, tG, and sH and tH , then
the series composition of G and H is a series-parallel graph. In the series
composition, we take the disjoint union, then identify tG and sH , and take
sG and tH as terminals of the resulting graph.

– If G and H are terminal graphs, with terminals sG, tG, and sH and tH ,
then the parallel composition of G and H is a series-parallel graph. In the
parallel composition, we take the disjoint union, then identify sG and sH

and identify tG and tH . The two vertices obtained by identification are the
terminals of the resulting graph.

Theorem 5. The valve location problem is weakly NP-hard for series-
parallel graphs.

Proof. We show that the valve location problem is weakly NP-hard for the
following graphs: we have two vertices s and t, and a number of internally disjoint
paths from s to t of length exactly five.

We use a reduction from partition; see e.g. [9]. Suppose we are given positive
integers a1, a2, . . . , an. The partition problem asks if these integers can be
partitioned into two sets with equal sum, i.e. we look for two sets, each of sum
B =

∑n
i=1 ai/2. We may assume B is integer, as if

∑n
i=1 ai is odd, the partition

problem trivially has no solution.
As the corresponding instance for the valve location problem, we take n

disjoint paths from s to t. Each of these paths has length five, i.e., four inter-
mediate vertices, which we call vi,1, vi,2, . . . , vi,4. The successive lengths of the
edges on the ith path are 1, ai, B − ai + n, ai, 1. Call the resulting graph G, see
Figure 1.

Proposition 10. Set A = {a1, a2, . . . , an} can be partitioned into two sets, both
of sum B, if and only if we can place at most 2n valves in G such that each part
has total length at most B + n.

s

t

v1,1

v1,2

v1,3

v1,4

v2.1

v2,2

v2,3

v2,4

v3,1

v3,2

v3,3

v3,4

vn,1

vn,2

vn,3

vn,4

11

1
1

a1

a1

B − a1 + n

an

an

B − an + n

1
1

1 1

a2 a3

a3a2

B − a2 + n
B − a3 + n

Fig. 1. The series-parallel graph constructed in Theorem 5

64 H.L. Bodlaender et al.

The NP-hardness of the valve location problem on series-parallel graphs now
follows, by noting that G is series-parallel: a path can be constructed by a se-
quence of series compositions, and by parallel compositions, we can identify the
endpoints of the paths. �	
As series-parallel graphs have treewidth two, the results of the previous sec-
tion show that (unless P=NP), the problem on series-parallel graphs cannot
be strongly NP-hard. Moreover, Theorem 5 excludes the possibility for fixed-
parameter tractability of the problem with respect to the parameter ”graph
treewidth”.

6 Conclusions

In this paper we presented fast algorithms for several practically relevant classes
of instances of the valve location problem. Moreover, applying literally the
same techniques to the vertex integrity problem, we can tackle this later problem
as well.

Acknowledgments

We thank Alexandr Kostochka for pointing on several very useful references on
graph integrity.

References

1. Alon, N., Seymour, P., Thomas, R.: A separator theorem for graphs with an ex-
cluded minor and its applications. In: Proc. of the 22nd Symposium on Theory of
Computing, STOC 1980, pp. 293–299. ACM Press, New York (1980)

2. Barefoot, C.A., Entringer, R., Swart, H.C.: Vulnerability in graphs: a comparative
survey. J. Comb. Math. Comb. Comput. 1, 12–22 (1987)

3. Barefoot, C.A., Entringer, R., Swart, H.C.: Integrity of trees and the diameter of
a graphs. Congressus Numerantium 58, 103–114 (1987)

4. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25, 1305–1317 (1996)

5. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor.
Comp. Sc. 209, 1–45 (1998)

6. Bodlaender, H.L.: Treewidth: Characterizations, applications, and computations.
In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 1–14. Springer, Heidelberg
(2006)

7. Bouwman, S.: A survey of OR models and techniques for electrical grid companies.
In: Proceedings of the 33rd Conference on the Mathematics of Operations Research,
Lunteren 2008, Landelijk Netwerk Mathematische Besliskunde, The Netherlands
(2008)

8. Feige, U., Mahdian, M.: Finding small balanced separators. In: Proceedings of the
37th Annual Symposium on Theory of Computing, STOC 2006, pp. 375–384. ACM
Press, New York (2006)

The Valve Location Problem in Simple Network Topologies 65

9. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory
of NP-completeness. W. H. Freeman, San Francisco (1979)

10. Grigorieva, N.V., Grigoriev, A.: Optimal valve location in long oil pipelines. Re-
search Memorandum RM/07/007, Maastricht Research School of Economics of
Technology and Organizations (METEOR), Maastricht University, Maastricht,
The Netherlands (2007), http://ideas.repec.org/p/dgr/umamet/2007007.html

11. Hicks, I.V., Koster, A.M.C.A., Kolotoglu, E.: Branch and tree decomposition tech-
niques for discrete optimization. In: Smith, J.C. (ed.) TutORials 2005, INFORMS
Tutorials in Operations Research Series, ch. 1, pp. 1–29. INFORMS Annual Meet-
ing (2005)

12. Kloks, T.: Treewidth. Computations and Approximations. LNCS, vol. 842.
Springer, Berlin (1994)

13. Kratsch, D., Kloks, T., Müller, H.: Measuring the vulnerability for classes of inter-
section graphs. Discrete Applied Mathematics 77(3), 259–270 (1997)

14. Marx, D.: Parameterized Graph Separation Problems. In: Downey, R.G., Fellows,
M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 71–82. Springer, Hei-
delberg (2004)

15. Ozger, S., Mays, L.W.: Optimal location of isolation valves: A reliability approach.
In: Water Supply Systems Security, Digital Engineering Library. McGraw-Hill, New
York (2004), http://dx.doi.org/10.1036/0071455663.CH13

http://ideas.repec.org/p/dgr/umamet/2007007.html
http://dx.doi.org/10.1036/0071455663.CH13

	The Valve Location Problem in Simple Network Topologies
	Introduction
	Graph Theoretic Formulation
	Simple Networks: Paths, Cycles and Trees
	The Valve Location Problem on a Path
	Cycles
	Trees

	Algorithms for Graphs of Bounded Treewidth
	Complexity Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

