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Abstract. A graph G = (V, E) is said to admit a system of μ collective
additive tree r-spanners if there is a system T (G) of at most μ spanning
trees of G such that for any two vertices u, v of G a spanning tree T ∈
T (G) exists such that the distance in T between u and v is at most r
plus their distance in G. In this paper, we examine the problem of finding
“small” systems of collective additive tree r-spanners for small values of r
on circle graphs and on polygonal graphs. Among other results, we show
that every n-vertex circle graph admits a system of at most 2 log 3

2
n

collective additive tree 2-spanners and every n-vertex k-polygonal graph
admits a system of at most 2 log 3

2
k+7 collective additive tree 2-spanners.

Moreover, we show that every n-vertex k-polygonal graph admits an
additive (k + 6)-spanner with at most 6n − 6 edges and every n-vertex
3-polygonal graph admits a system of at most 3 collective additive tree 2-
spanners and an additive tree 6-spanner. All our collective tree spanners
as well as all sparse spanners are constructible in polynomial time.

1 Introduction

A spanning subgraph H of G is called a spanner of G if H provides a “good”
approximation of the distances in G. More formally, for r ≥ 0, H is called an
additive r-spanner of G if for any pair of vertices u and v their distance in H is
at most r plus their distance in G [19]. If H is a tree then it is called an additive
tree r-spanner of G [24]. (A similar definition can be given for multiplicative
t-spanners [9, 22, 23] and for multiplicative tree t-spanners [6].) In this paper,
we continue the approach taken in [10, 12, 13, 14, 18] of studying collective tree
spanners. We say that a graph G = (V, E) admits a system of μ collective
additive tree r-spanners if there is a system T (G) of at most μ spanning trees
of G such that for any two vertices u, v of G a spanning tree T ∈ T (G) exists
� This work was supported by the European Regional Development Fund (ERDF)

and by NSERC.

H. Broersma et al. (Eds.): WG 2008, LNCS 5344, pp. 110–121, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Additive Spanners for Circle Graphs and Polygonal Graphs 111

such that the distance in T between u and v is at most r plus their distance in
G (see [14]). We say that system T (G) collectively +r-spans the graph G and
that G is (collectively) +r-spanned by T (G). Clearly, if G admits a system of μ
collective additive tree r-spanners, then G admits an additive r-spanner with at
most μ × (n − 1) edges (take the union of all those trees), and if μ = 1 then G
admits an additive tree r-spanner.

Collective tree spanners were investigated for a number of particular graph
classes, including planar graphs, bounded chordality graphs, bounded genus
graphs, bounded treewidth graphs, AT-free graphs and others (see [10, 12, 13,
14, 18]). Some families of graphs admit a constant number and some admit a
logarithmic number of collective additive tree r-spanners, for small values of r.

One of the motivations to introduce this concept stems from the problems of
designing compact and efficient distance and routing labeling schemes in graphs.
A distance labeling scheme for trees is described in [21] that assigns each vertex
of an n-vertex tree an O(log2 n)-bit label such that, given the labels of two
vertices x and y, it is possible to compute in constant time, based solely on
these two labels, the distance in the tree between x and y. A shortest path
routing labeling scheme for trees is described in [27] that assigns each vertex
of an n-vertex tree an O(log2 n/ log log n)-bit label such that, given the label
of a source vertex and the label of a destination, it is possible to compute in
constant time, based solely on these two labels, the neighbor of the source that
heads in the direction of the destination. Hence, if an n-vertex graph G admits
a system of μ collective additive tree r-spanners, then G admits an additive r-
approximate distance labeling scheme with the labels of size O(μ log2 n) bits per
vertex and an O(μ) time distance decoder. Furthermore, G admits an additive r-
approximate routing labeling scheme with the labels of size O(μ log2 n/ log log n)
bits per vertex. Once computed by the sender in O(μ) time (by choosing for a
given destination an appropriate tree from the collection to perform routing),
headers of messages never change, and the routing decision is made in constant
time per vertex (see [13, 14]).

Other motivations stem from the generic problems of efficient representation
of the distances in “complicated” graphs by the tree distances and of algorithmic
use of these representations [1, 2, 5, 16]. Approximating a graph distance dG by
simpler distances (in particular, by tree–distances dT ) is useful in many areas
such as communication networks, data analysis, motion planning, image process-
ing, network design, and phylogenetic analysis (see [3,4,6,9,19,20,22,23,25,26]).
An arbitrary metric space (in particular a finite metric defined by a graph) might
not have enough structure to exploit algorithmically.

In this paper, we examine the problem of finding “small” systems of collective
additive tree r-spanners for small values of r on circle graphs and on polygonal
graphs. Circle graphs are known as the intersection graphs of chords in a circle
[17]. For any fixed integer k ≥ 2, the class of k-polygonal graphs can be defined as
the intersection graphs of chords inside a convex k-polygon, where the endpoints
of each chord lie on two different sides [15]. Note that permutation graphs are
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exactly 2-polygonal graphs and any n-vertex circle graph is a k-polygonal graph
for some k ≤ n. Our results are the following.

– For any constant c, there are circle graphs that cannot be collectively +c-
spanned by any constant number of spanning trees.

– Every n-vertex circle graph G admits a system of at most 2 log 3
2

n collective
additive tree 2-spanners, constructible in polynomial time.

– There are circle graphs on n vertices for which any system of collective
additive tree 1-spanners will require Ω(n) spanning trees.

– Every n-vertex circle graph admits an additive 2-spanner with at most
O(n log n) edges.

– Every n-vertex k-polygonal graph admits a system of at most 2 log 3
2

k + 7
collective additive tree 2-spanners, constructible in polynomial time.

– Every n-vertex k-polygonal graph admits an additive (k + 6)-spanner with
at most 6n−6 edges and an additive (k/2+8)-spanner with at most 10n−10
edges, constructible in polynomial time.

– Every n-vertex 4-polygonal graph admits a system of at most 5 collective
additive tree 2-spanners, constructible in linear time.

– Every n-vertex 3-polygonal graph admits a system of at most 3 collective
additive tree 2-spanners and an additive tree 6-spanner, constructible in
linear time.

2 Preliminaries

All graphs occurring in this paper are connected, finite, undirected, loopless and
without multiple edges. In a graph G = (V, E) the length of a path from a
vertex v to a vertex u is the number of edges in the path. The distance dG(u, v)
between vertices u and v is the length of a shortest path connecting u and v. For
a vertex v of G, the sets NG(v) and NG[v] = NG(v) ∪ {v} are called the open
neighborhood and the closed neighborhood of v, respectively. For a set S ⊆ V , by
NG[S] =

⋃
v∈S NG[v] we denote the closed neighborhood of S and by G(S) the

subgraph of G induced by vertices of S. Let also G \ S be the graph G(V \ S)
(which is not necessarily connected).

An graph G is called a circle graph if it is the intersection graph of a finite
collection of chords of a circle [17] (see Fig. 1 for an illustration). Without loss
of generality, we may assume that no two chords share a common endpoint. For
any fixed integer k ≥ 3, the class of k-polygonal (or k-gon) graphs is defined as
the intersection graphs of chords inside a convex k-polygon, where the endpoints
of each chord lie on two different sides [15] (see Fig. 2 for an illustration). Per-
mutation graphs can be considered as 2-gon graphs as they are the intersection
graphs of chords between two sides (or sides of a degenerate 2-polygon). Again,
without loss of generality, we may assume that no two chords share a common
endpoint. Clearly, if a graph G is a k-gon graph, it is also a k′-gon graph with
k′ > k, but the reverse is not necessarily true.

Let G = (V, E) be a permutation graph with a given permutation model Π .
Let L′ and L′′ be the two sides of Π . A vertex s of G is called extreme if at



Additive Spanners for Circle Graphs and Polygonal Graphs 113

least one endpoint of the chord of Π , corresponding to s, is the leftmost or the
rightmost endpoint either on L′ or on L′′. The following result was presented
in [13]:

Lemma 1. [13] Let G be a permutation graph and let s be an extreme ver-
tex of G in some permutation model. Then, there exists a BFS(s)-tree of G,
constructible in linear time, which is an additive tree 2-spanner of G.

Since an induced cycle on 4 vertices is a permutation graph, permutation graphs
cannot have any additive tree r-spanner for r < 2. Clearly, given any BFS(s)-
tree Ts of G, dTs(x, s) = dG(x, s) holds for any x ∈ V .

3 Additive Spanners for Circle Graphs

In this section, we show that every n-vertex circle graph G admits a system of
at most 2 log 3

2
n collective additive tree 2-spanners. This upper bound result is

complemented also with two lower bound results.
We start with the main lemma of this section which is also of independent

interest.

Lemma 2. Every n-vertex (n ≥ 2) circle graph G = (V, E) has two vertices a
and b such that S = NG[a, b] is a balanced separator of G, i.e. each connected
component of G \ S has at most 2

3n vertices.

Proof. Consider an intersection model φ(G) of G and let C be the circle in that
model. Let also P := (p1, p2, . . . , p2n) be the sequence in clockwise order of the
2n endpoints of the chords representing the vertices of G in φ(G). We divide
the circle C into three circular arcs B (bottom), L (left) and R (right) each
containing at most � 2

3n� consecutive endpoints (see Fig. 1 for an illustration).
We say that a chord of φ(G) is an XY -chord if its endpoints lie on arcs X and Y
(X, Y ∈ {B, L, R}) of C. If v is an XY -chord then let vX and vY be its endpoints
on X and Y , respectively.

Let X be an arc from the set of arcs {B, L, R}. Since G is a connected graph,
for any X , there must exist a chord in φ(G) with one endpoint in X and the
other endpoint not in X . Moreover, since we have three arcs (B, L, R), there
must exist an arc X in {B, L, R} which has both types of chords: between X
and Y ∈ {B, L, R} \ {X} and between X and Z ∈ {B, L, R} \ {X, Y }. Assume,
without loss of generality, that X = B. Let p be the point of C separating arcs L
and R (see Fig. 1). Now choose a BL-chord a in φ(G) with endpoint aL closest
to p and choose a BR-chord b in φ(G) with endpoint bR closest to p. By a, b we
also denote the vertices of G which correspond to chords a and b.

Points aB, aL, bR and bB of C divide C into four arcs. We name these four arcs
AU , AR, AD and AL. The arc AU := (aL, bR) is formed by all points of C from aL

to bR in clockwise order. If chords a and b intersect, then we set AR := (bR, aB),
AD := (aB , bB), and AL := (bB, aL) (all arcs begin at the left arc-endpoint and
go clockwise to the right arc-endpoint). If chords a and b do not intersect, then
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Fig. 1. A circle graph with an intersection model and two special chords a and b. A
balanced separator S = NG[a, b] and the connected components of G\S are also shown.

set AR := (bR, bB), AD := (bB, aB), and AL := (aB , aL). We consider these arcs
as open arcs, i.e., the points aB, aL, bR and bB do not belong to them.

By our choices of a and b, we guarantee that φ(G) has no chords with one
endpoint in AU and the other one in AD (regardless of the adjacency of a and
b). Denote by VY all chords from φ(G) (vertices of G) whose both endpoints
are in AY , where Y is either U , or R, or D, or L. Then, it is easy to see that
in G, the set S := NG[a, b] separates vertices of VY from vertices of VY ′ , where
Y, Y ′ ∈ {U, R, D, L}, Y 	= Y ′. Now, since AL is a sub-arc of arc B ∪ L, AU is a
sub-arc of arc L∪R, AR is a sub-arc of arc R∪B, AD is a sub-arc of arc B, and
arcs AU , AR, AD and AL do not contain points aB, aL, bR and bB, we conclude
that |AL ∩P| ≤ 4

3n, |AU ∩ P| ≤ 4
3n, |AR ∩P| ≤ 4

3n and |AD ∩P| ≤ 2
3n. Hence,

the number of arcs in φ(G) whose both endpoints are in AL (respectively, in AU ,
AR, AD), and therefore the number of vertices in VL ((respectively, in VU , VR,
VD), is at most 2

3n. ��

In [12], a large class of graphs, called (α, γ, r)-decomposable graphs, was defined,
and it was proven that any (α, γ, r)-decomposable graph G with n vertices admits
a system of at most γ log1/α n collective additive tree 2r-spanners. Let α be a
positive real number smaller than 1, γ be a positive integer and r be a non-
negative integer. We say that an n-vertex graph G is (α, γ, r)–decomposable if
n ≤ γ or there is a separator S ⊆ V in G, such that the following three conditions
hold:
- the removal of S from G leaves no connected component with more than αn

vertices;
- there exists a subset D ⊆ V such that |D| ≤ γ and for any vertex u ∈ S,

dG(u, D) ≤ r;
- each connected component of G \ S is an (α, γ, r)–decomposable graph, too.

Since, any subgraph of a circle graph is also a circle graph, and, by Lemma 2,
each n-vertex circle graph G = (V, E) admits a separator S = NG[D] (where
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D = {a, b}, a, b ∈ V ), such that no connected component of G\S has more than
2
3n vertices, we immediately conclude.

Corollary 1. Every circle graph is (2
3 , 2, 1)−decomposable.

Theorem 1. Every n-vertex circle graph G admits a system T (G) of at most
2 log 3

2
n collective additive tree 2-spanners.

Note that such a system of spanning trees T (G) for a n-vertex m-edge circle
graph G, given together with an intersection model φ(G), can be constructed in
O(m log n) time, since a balanced separator S = NG[a, b] of G can be found in
linear O(m) time (see [12] for details of the construction).

Taking the union of all these spanning trees in T (G), we also obtain a sparse
additive 2-spanner for a circle graph G.

Corollary 2. Every n-vertex circle graph G admits an additive 2-spanner with
at most 2(n − 1) log 3

2
n edges.

We complement our upper bound result with the following lower bounds.

Proposition 1. There are circle graphs on n vertices for which any system of
collective additive tree 1-spanners will require Ω(n) spanning trees.

Proof. Since complete bipartite graphs are circle graphs, we can use the lower
bound shown in [14] for complete bipartite graphs. It says that any system of
collective additive tree 1-spanners will need to have Ω(n) spanning trees for each
complete bipartite graph on n vertices. ��

Proposition 2. For any constant c, there are circle graphs that cannot be col-
lectively +c-spanned by any constant number of spanning trees.

In [7] the authors show that a similar proposition holds for weakly chordal
graphs. In fact, the same proof works for circle graphs.

4 Additive Spanners for k-Gon and for 3-Gon Graphs

4.1 Additive Spanners for k-Gon Graphs

In this section, among other results, we show that every n-vertex k-gon graph
G admits a system of at most 2 log 3

2
k + 7 collective additive tree 2-spanners, an

additive (k + 6)-spanner with at most 6n − 6 edges, and an additive (k/2 + 8)-
spanner with at most 10n− 10 edges. We will assume, in what follows, that our
k-gon graph G is given together with its intersection model. Let P be the closed
polygonal chain (the boundary) of the k-polygon in that model. The vertices of
the k-polygon will be called the corners. The idea of the construction here is
similar to the one used in Theorem 1. Yet, here we operate with the corners of
the model rather than with the endpoints of the chords. More precisely, one can
show that there are vertices a and b in the graph, such that NG[a, b] forms a
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Fig. 2. A 6-gon graph with an intersection model and two special chords a and b. A
balanced separator S = NG[a, b] and the connected components of G\S are also shown.

balanced (with respect to the number of corners) separator of G, similar to the
one in Lemma 2 (see Fig. 2 for an illustration).

It is an easy observation that each of the so-created connected components is
itself again a k′-gon graph for some k′ < k. By applying this separator property
recursively, we end up with a set of separators and some permutation graphs.
By Lemma 1, permutation graphs have good additive tree spanners. We can put
these trees together appropriately and can thereby show the following theorem
(see [11] for details).

Theorem 2. Every n-vertex m-edge k-gon graph G admits a system of at most
2 log 3

2
k +7 collective additive tree 2-spanners, constructable in O(m log k) time.

Moreover, every 3-gon graph admits a system of no more than 3 collective addi-
tive tree 2-spanners, and every 4-gon graph admits a system of no more than 5
collective additive tree 2-spanners.

Similar to Corollary 2, we can merge the edges of all the spanning trees to create
a single spanning graph.

Corollary 3. Every n-vertex k-gon graph G admits an additive 2-spanner with
at most (2 log 3

2
k + 7)(n − 1) edges. Moreover, every 3-gon graph admits an

additive 2-spanner with at most 3(n − 1) edges, and every 4-gon graph admits
an additive 2-spanner with at most 5(n − 1) edges.

Instead of using the recursive separation algorithm all the way to permutation
graphs, one can also stop at an earlier stage. By using properties of k-gon graphs
(see [15]) and some general results on spanners of graphs with bounded length
of largest induced cycle (see [8]) we can show the following theorem.

Theorem 3. Every n-vertex m-edge k-gon graph G admits an additive
(2((2

3 )�k + 4(1 − (2
3 )�)) + 1)-spanner with at most 2(� + 1)(n − 1) edges, for

each 0 ≤ � ≤ log3/2 k + 3. Moreover, such a sparse spanner is constructable in
O(m log k) time.
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Finally, when choosing � equal to 0, 1, 2, 3 or 4 in Theorem 3, we obtain:

Corollary 4. Every n-vertex k-gon graph G admits an additive (2k+1)-spanner
with at most 2n−2 edges, an additive (4

3k+4)-spanner with at most 4n−4 edges,
an additive (8

9k + 6)-spanner with at most 6n − 6 edges, an additive (16
27k + 7)-

spanner with at most 8n − 8 edges, and an additive (32
81k + 8)-spanner with at

most 10n − 10 edges.

4.2 Additive Tree Spanners for 3-Gon Graphs

In this section, we show that any connected 3-gon graph G admits an additive
tree 6-spanner constructible in linear time. Due to space restrictions we have
to omit some parts of the proof here, and refer instead the reader to [11] for a
complete proof of this result. Note that, since an induced cycle on 6 vertices is a
3-gon graph, 3-gon graphs cannot have any additive tree r-spanner for r < 4. The
idea of the construction is as follows. The algorithm will identify permutation
graphs in each of the 3 corners of the 3-gon and use the algorithm presented in
Lemma 1 to construct effective tree spanners of each of these subgraphs. These
3 tree spanners are incorporated into a tree spanner for the entire graph by
analyzing the structure in the “center” of the given 3-gon graph.

Fig. 3. A 3-gon intersection model Δ with special chords a, b, αu and βu

Let G = (V, E) be a connected 3-gon graph. We may assume that G is not a
permutation graph. Consider a 3-gon intersection model Δ of G and fix an ori-
entation of Δ. Denote by L (left), R (right) and B (bottom) the corresponding
sides of the 3-gon Δ, and by CL, CR and CU the left, right and upper corners of
Δ. We say that a chord of Δ is an XY -chord if its endpoints lie on sides X and
Y of Δ. If v is an XY -chord then let vX and vY be its endpoints on X and Y ,
respectively. Since G is not a permutation graph, we must have all three types
of chords in Δ: LR-chords, LB-chords and RB-chords. Let a be the LB-chord
of G whose endpoint on L is closest to the upper corner CU of Δ. Let b be the
RB-chord of G whose endpoint on R is closest to the upper corner of Δ (see the
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left 3-gon in Fig. 3 for an illustration). Note that a and b may or may not cross.
By a, b we also denote the corresponding vertices of G.

Let VU be the subset of LR-chords of Δ (of vertices of G) with endpoints in
segments (aL, CU ) and (bR, CU ). We will add at most two more LR-chords to
VU to form a permutation graph named GU . Choose (if it exists) an LR-chord
αu in Δ such that αu

L belongs to segment (CL, aL) of L, αu
R belongs to segment

(CU , bR) of R and αu
R is closest to the corner CU . Clearly, if αu exists then it must

intersect a (but not b). Analogously, choose (if it exists) an LR-chord βu in Δ
such that βu

R belongs to segment (CR, bR) of R, βu
L belongs to segment (CU , aL)

of L and βu
L is closest to the corner CU . Again, if βu exists then it must intersect

b (but not a). Note that, if VU 	= ∅, then at least one of {αu, βu} must exist (since
otherwise, G is not connected), and if both chords exist then they must intersect
each other. See the right picture in Fig. 3. Now, we define our permutation graph
GU to be the subgraph of G induced by vertices VU ∪ {αu, βu}, assuming that
VU 	= ∅ (see Fig. 4 for an illustration). If VU = ∅, then we set GU to be an empty
graph.

Fig. 4. Permutation graph GU extracted from G

Define su to be a vertex from {αu, βu} as follows: if both αu and βu exist, then
if αu has a neighbor in VU which is not a neighbor of βu, set su := αu; otherwise,
set su := βu. Since GU is a permutation graph and su is extreme, by Lemma
1, GU has a linear time constructable BFS(su)-tree TU such that dTU (x, y) ≤
dGU (x, y) + 2 and dTU (x, su) = dGU (x, su) for any x, y in VU ∪ {αu, βu}.

Let VL be the subset of all chords of Δ (of vertices of G) with endpoints in
segments (CL, aL) and (CL, aB)∩(CL, bB). We will add at most two more chords
to VL to form a permutation graph named GL. Choose (if it exists) a chord α�

in Δ such that one endpoint of α� belongs to segment (CL, aL) of L, the other
endpoint belongs to R∪ (aB, CR)∪ (bB, CR) and α�

L is closest to the corner CL.
Equivalently, among all chords of Δ intersecting a or b, α� is chosen to be the
chord with an endpoint α�

L in (CL, aL) closest to CL. Note that α� may or may
not cross b. Also, choose (if it exists) an RB-chord β� in Δ such that β�

R belongs
to segment (CR, bR) of R, β�

B belongs to segment (CL, aB) ∩ (CL, bB) of B and
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β�
B is closest to the corner CL. Notice, if β� exists then it must intersect both a

and b. Furthermore, if VL 	= ∅, then at least one chord from {α�, β�} must exist
(since, otherwise, G is not connected). Now, we define our permutation graph
GL. If VL = ∅, then set GL to be an empty graph. Otherwise, GL is set to be
the subgraph of G induced by vertices VL ∪{α�, β�} with one extra edge (α�, β�)
added if it was not already an edge of G (see Fig. 5 for an illustration).

Fig. 5. Permutation graph GL obtained from G

Define s� to be a vertex from {α�, β�} as follows: if both α� and β� exist, then
if α� has a neighbor in VL which is not a neighbor of β�, then set s� := α�;
otherwise, set s� := β�. Since GL is a permutation graph, by Lemma 1, GL has
a linear time constructable BFS(s�)-tree TL such that dTL(x, y) ≤ dGL(x, y)+2
and dTL(x, s�) = dGL(x, s�) for any x, y in VL ∪ {α�, β�}.

Taking symmetry into account, similar to α�, β� and GL, we can define for
the corner CR of Δ two specific chords αr , βr and a permutation graph GR. We
will have βr adjacent to both a and b, and αr adjacent to a or b. Define sr to be
a vertex from {αr, βr}, and if both αr and βr exist, then if αr has a neighbor
in VR which is not a neighbor of βr, then set sr := αr; otherwise, set sr := βr.
Again, by Lemma 1, there is a linear time constructable BFS(sr)-tree TR of
GR such that dTR(x, y) ≤ dG(x, y) + 2 and dTR(x, sr) = dG(x, sr) for any x, y in
VR ∪ {αr, βr}.

Now we create a spanning tree T of G from the trees TU , TL and TR as follows.
Initially, T is just the union of TU , TL and TR. We know that {β�, βr, αu} ⊆
NG(a) and {β�, βr, βu} ⊆ NG(b). Make vertex a adjacent to αu and vertex b
adjacent to βu in T , and denote M := {α�, β�, αr, βr}. If M ⊆ NG(a), then make
vertex a adjacent in T to each vertex in M . If M \ NG(a) 	= ∅ but M ⊆ NG(b),
then make vertex b adjacent in T to each vertex in M . If neither M ⊆ NG(a) nor
M ⊆ NG(b), then make vertices α�, β� adjacent in T to a common neighbor in
{a, b} and vertices αr, βr adjacent in T to a common neighbor in {a, b}. Remove
from T the edge (α�, β�) (it was a part of tree TL if both α� and β� existed) and
the edge (αr, βr) (it was a part of tree TR if both αr and βr existed).
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Fig. 6. Trees TL, TR and TU connected via NG[a, b] to form a tree spanner of G

If a and b are adjacent in G, then add edge (a, b) to T . If a is not adjacent to
b in G but dG(a, b) = 2, then choose a common neighbor z of a and b in NG[a, b]
and add edges (a, z) and (b, z) to T . In these cases, i.e., when dG(a, b) ≤ 2,
remove the possible edge (αu, βu) from T (it was a part of the tree TU if both
αu and βu existed). If dG(a, b) > 2 then dG(a, b) = 3, chords β�, βr do not exist
and the edge (αu, βu) from TU goes to T if both chords αu and βu exist. If one of
these chords does not exist, then there must be two vertices x, y that are adjacent
in G, with x ∈ NG(b) and y ∈ NG(a) (see [11] for details) and we put the edge
(x, y) into T . Finally, make all vertices from NG(a) \ {α�, β�, αu, βu, αr , βr, b, z}
adjacent to a in T and all remaining vertices from NG(b) (i.e., those that are
not adjacent to a in T ) adjacent to b; see Fig. 6 for an illustration. Clearly, T
constructed this way is a spanning tree of G. Using a careful analysis, we can
show that T is an additive tree 6-spanner of G (see [11] for the complete proof).

Theorem 4. Any connected 3-gon graph G admits an additive tree 6-spanner
constructible in linear time.
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7. Corneil, D.G., Dragan, F.F., Köhler, E., Xiang, Y.: Lower Bounds for Collective
Additive Tree Spanners (in preparation)

8. Chepoi, V.D., Dragan, F.F., Yan, C.: Additive Sparse Spanners for Graphs with
Bounded Length of Largest Induced Cycle. Theoretical Computer Science 347,
54–75 (2005)

9. Chew, L.P.: There are planar graphs almost as good as the complete graph. J. of
Computer and System Sciences 39, 205–219 (1989)
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