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Abstract. We deal with exact algorithms for Bandwidth, a long stud-
ied NP-hard problem. For a long time nothing better than the trivial
O∗(n!) exhaustive search was known. In 2000, Feige an Kilian [4] came
up with a O∗(10n)-time algorithm. Since then there has been a grow-
ing interest in exponential time algorithms but this bound has not been
improved.

In this paper we present a new and quite simple O∗(5n) algorithm.
We also obtain even better bound in some special cases.

1 Introduction

In this paper we focus on exact exponential-time algorithms for the Bandwidth
problem. Let G = (V, E) be an undirected graph, where n = |V | and m =
|E|. For a given one-to-one function π : V → {1, 2 . . . , n} (called ordering) its
bandwidth is the maximum difference between positions of adjacent vertices, i.e.
maxuv∈E |π(u) − π(v)|. The bandwidth of the graph, denoted by bw(G), is the
minimum bandwidth over all orderings. The Bandwidth problem asks to find
an ordering with bandwidth bw(G).

Bandwidth problem seems to be hard from many perspectives. Although on
special families of graphs bw(G) can be computed in polynomial time [1,6], in
general Bandwidth is NP-hard even on some subfamilies of trees [5,7]. More-
over Unger [9] showed that Bandwidth problem does not belong to APX even
in a very restricted case when G is a caterpillar, i.e. a very simple tree. It is
also hard for any fixed level of the W hierarchy [2]. The best known polynomial-
time approximation, due to Feige [3], has O(log3 n

√
log n log log n) approxima-

tion guarantee.
From now on, we assume that the input for our problem contains additionally

an integer b, 1 ≤ b < n. An ordering of V with bandwidth at most b will be
called a b-ordering. We focus on checking if there exists a b-ordering and if that
is the case, finding it. Note that once we can do it in some time bound T , using
binary search we can also find an optimal ordering in O(T log bw(G)) time. This
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approach is also used by two exact algorithms for Bandwidth problem for
general graphs. First of them, due to Saxe [8] is a nontrivial O(nb+1)-time and
-space dynamic programming. It works well when b is small, in particular for
b ≤ n

lg n the time becomes O∗(2n). For arbitrary b, the best result we are aware
of is a O∗(10n)-time algorithm due to Feige and Kilian [4].

The main result of this paper is an algorithm for arbitrary b that works in
O∗(5n) time and O∗(2n) space (see Section 4). Moreover, in Section 3 we present
an approach that works more efficiently for large b, in particular we give:

– O∗(22n−b) = O(2.83n) time and O(2n−b) = O(1.42n) space algorithm for
b ≥ n

2 ,
– O∗(4n) time and O(2b) = O(1.42n) space algorithm for n

3 ≤ b < n
2 .

Note that these algorithms approach the problem from the different side than
the Saxe’s one. Saxe’s algorithms works efficiently for small b, whereas presented
algorithms cope better with big b.

It is worth mentioning that exponential space in our algorithms is no prob-
lem for practical implementations, since in every case space bound is less than
square root of the time bound, thus space will not be a bottleneck in a real life
applications, at least considering today’s proportions of computing speed and
fast memory size.

2 Preliminaries

For v ∈ V by N(v) we denote a set of vertices adjacent to v, analogously for
S ⊂ V we define N(S) =

⋃
v∈S N(v).

We will often view an ordering π as a sequence of vertices (π−1(1), . . .,
π−1(n)). Also, for a given ordering π length of edge uv is |π(u) − π(v)|.

3 Algorithms for b ≥ n
3

In this section we describe simple algorithms for cases where b is relatively big
(comparing to n). Understanding these cases gave us more intuition about Band-
width and enabled us to develop algorithm for arbitrary b.

3.1 Algorithm for b ≥ n
2

In this section we assume that b ≥ n
2 and G = (V, E) is an arbitrary undirected

graph. Within this limitation we provide O∗(22n−b) time and O(2n−b) space
algorithm.

The general idea is to consider all partitions of V into V1 and V2, |V2| = b, and
for each such partition verify whether there exists a b-ordering π with π(v1) <
π(v2) for any v1 ∈ V1 and v2 ∈ V2. Obviously every edge connecting vertices
from the same group (V1 or V2) is not longer than b since b ≥ n

2 , thus we only
need consider edges between V1 and V2.
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Let us focus on the first group and consider some permutation of V1 (w.l.o.g.
v1, v2, . . . , vn−b). We would like to have some criterion to check whether there
exists some b-ordering with prefix (v1, v2, . . . , vn−b). To achieve it we claim the
following lemma:

Lemma 1. Assume that V = V1 ∪ V2, |V1| = s, |V2| = n − s, s ≤ b, n − s ≤ b,
then a permutation (v1, . . . , vs) of V1 is a prefix of some b-ordering of G iff for
every 1 ≤ k ≤ s we have |⋃k

i=1 N(vi) \ V1| ≤ k + b − s.

Proof. It is easy to see that given condition is necessary, because if (v1, . . . , vs) is
a prefix of some b-ordering say (v1, . . . , vn), then for every k(1 ≤ k ≤ s) we have
(
⋃k

i=1 N(vi) \ V1) ⊂ {vs+1, vs+2, . . . , vk+b}, thus |⋃k
i=1 N(vi) \ V1| ≤ (k + b)− s.

k

1 ... k

b

(k+b)-s

Fig. 1. First k vertices can have at most (k + b) − s neighbors in V2

To show that given condition is sufficient, assume that the condition holds for
every k. Let us define function left : V \ V1 → IN ∪∞, where for j > s we put
left(vj) = min{i : i ≤ s∧(vi, vj) ∈ E}. For vj not adjacent to any vertex among
V1 we put left(vj) = ∞. In other words, left(vj) is the index of the leftmost
neighbor of vj in the set V1 = {v1, v2, . . . , vs}. We can sort rest of the vertices
V2 = V \ V1 according to the function left (breaking ties arbitrarily) and get
some ordering (w.l.o.g. (v1, . . . , vn)) of G. If this is a b-ordering we are done,
otherwise let jmin be the minimum j, such that vj is adjacent to some vertex vx,
where x > j + b. As x ≤ n and n − s ≤ b, so j ≤ s. Since vertices V2 are sorted
according to left, thus for every y, s+1 ≤ y ≤ x, vertex vy is adjacent to some
vertex among {v1, . . . , vjmin}. Therefore {vs+1, vs+2, . . . , vx} ⊂ (

⋃jmin
i=1 N(vi)\V1)

and we have |⋃jmin
i=1 N(vi) \ V1| ≥ x − s > jmin + b − s, contradiction.

As a consequence of Lemma 1 we have the following lemma:

Lemma 2. Let V = V1 ∪ V2, V1 ∩ V2 = ∅, |V2| = b. There is a O∗(2n−b)-time
and -space algorithm which finds a b-ordering which assigns vertices of V1 before
the vertices of V2, or states that no such ordering exists.

Proof. We use dynamic programming over subsets of V1 to check whether there
exists a permutation of V1, which realizes condition from Lemma 1. More pre-
cisely, for every subset A ⊂ V1 we compute a boolean value T (A) which is true
iff vertices from A can be ordered as (v1, . . . , v|A|) in such a way that for all k,
1 ≤ k ≤ |A|, we have |⋃k

i=1 N(vi) \ V1| ≤ (k + b) − (n − b).
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We note that equivalently, T (A) is true iff |N(A)\V1| ≤ (|A|+b)−(n−b) and
for some v ∈ A, T (A \ {v}) is true. This allows for using dynamic programming
in O∗(2n−b) time. Obviously, using standard techniques we can also find the
relevant permutation of V1 if T (V1) turns out to be true. Then the ordering of
V2 can be found as described in the proof of Lemma 1.

Clearly there are
(

n
n−b

)
< 2n possible partitions from Lemma 2, which can be

found in O∗(2n) time and polynomial space. Hence we get following conclusion:

Theorem 3. For b ≥ n
2 we can find b-ordering in O∗(22n−b) = O∗(2

3n
2 ) =

O(2.83n) time and O(2n−b) = O(2
n
2 ) = O(1.42n) space, or state that no such

ordering exists.

3.2 Algorithm for n
3

≤ b < n
2

In this section we assume that n
3 ≤ b < n

2 and G = (V, E) is an arbitrary
undirected graph. Within this limitation we provide O∗(4n) time and O(2b)
space algorithm.

Here we simply apply Lemma 1 twice. Let s = 
n−b
2 �. Let (v1,v2,. . .,vn) be

an ordering of V and let V1 = {v1, . . . , vs}, V2 = {vs+1, . . . , vs+b} and V3 =
{vs+b+1, . . . , vn}. Then |V1| = s ≤ n−b

2 ≤ 1
3n ≤ b and |V3| = n − b − s ≤

n−b+1
2 ≤ b, and obviously |V2| = b. Note that the only edges that matter are

those between V2 and V1 ∪ V3 and that if this is a b-ordering, there must be no
edge between V1 and V3.

Our algorithm generates all such partitions and verifies whether there exists
a b-ordering π, with π(v1) < π(v2) < π(v3) for any v1 ∈ V1, v2 ∈ V2 and v3 ∈ V3.
From Lemma 1 applied to V2 ∪ V3 and V1 ∪ V2 (in the second case we apply
Lemma for reversed ordering), we have the following Corollary:

Corollary 4. An ordering (vs+1, vs+2, . . . , vs+b) of V2 is a prefix of some b-
ordering of V2 ∪ V3 iff for every k, 1 ≤ k ≤ b: |⋃k

i=1 N(vs+i) ∩ V3| ≤ k.
The same ordering of V2 is a suffix of some b-ordering of V1 ∪V2 iff for every

k, 1 ≤ k ≤ b: |⋃k−1
i=0 N(vs+b−i) ∩ V1| ≤ k.

Therefore the ordering of V2 is a contiguous subsequence from positions s + 1
to s+ b of some b-ordering of V iff both aforementioned conditions are satisfied.

Corollary 4 tells us how to find an ordering compatible with a given partition
if one exists. Similarly as in Section 3.1 for every A ⊂ V2 we compute boolean
values pref(A) and suf(A), where pref(A) is true iff |N(A) ∩ V3| ≤ |A| and
suf(A) is true iff |N(V2 \A) ∩ V1| ≤ b− |A|. Then we find a sequence of subsets
∅ = A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ Ab = V2 such that for each i, 0 ≤ i < b, we have
|Ai+1| − |Ai| = 1 and for each i, 0 ≤ i ≤ b both pref(Ai) and suf(Ai) are true.
This sequence implies the ordering of V2, (v1, . . . , vb), such that Ai+1\Ai = {vi}.
As before, the ordering of the remaining vertices, i.e. V1 and V3 is obtained by
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Lemma 1. Clearly, the dynamic programming described above takes O∗(2b) time
and O(2b) space.

There are at most
(
n
b

)(
n−b

s

)
partitions of V , which can be generated in poly-

nomial space; for each of them we use DP with O(2b) = O(2
n
2 ) space and O∗(2b)

time, but
(
n
b

)(
n−b

s

)
2b ≤ 2n2n−b2b = 4n, thus we can claim following theorem:

Theorem 5. For n
3 ≤ b < n

2 we can find a b-ordering in O∗(4n) time and
O(2b) = (1.42n) space, or state that no such ordering exists.

4 Algorithm O∗(5n)

In this section, we assume that G is a connected undirected graph (if G is not
connected we may find b-orderings of each connected component of G in an
independent manner).

Imagine that we divide positions {1, . . . , n} into � n
b+1� segments of length

roughly b + 1 elements (if b + 1 � n then the last segment has (n mod (b + 1))
elements). The first segment contains positions {1, . . . , b+1}, the second segment
contains positions {b + 2, . . . , 2b + 2}, and so on.

Proposition 6. In every b-ordering adjacent vertices are either in the same
segment or in neighboring segments.

Our algorithm consists of two phases. During the first phase we generate several
assignments of vertices into segments, in such a way that if there exists a b-
ordering, its corresponding assignment will certainly be generated. Each of the
generated assignments will be considered by the second phase independently.

The above general scheme of our algorithm follows the approach of Feige and
Kilian [4]. However, our segments are of length b+1 instead of Feige and Kilian’s
b
2 and, more importantly, second phase in our algorithm is completely different
from Feige and Kilian’s second phase.

4.1 Partitioning V among Segments of Size b + 1

Let D be any spanning tree of G. Let (v1, v2, . . . , vn) be any root-to-leaf order
of vertices in D, i.e. if vj is a parent of vi in D then j < i. Note that v1 is the
root of D. We can generate requested assignments in the following way:

1. Place root v1 in one of the � n
b+1� segments, in every possible way.

2. For every i = 2, 3, . . . n, do:
– Let vj be the parent of vi in D. Since j < i, vj has already been assigned

to some segment.
– Assign vi to a segment distant by at most one from the segment that vj

has been assigned to, in every possible way.

Proposition 7. There are at most 3n−1n generated assignments.
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4.2 Depth First Search over the Subsets of V

For each assignment generated by the previous phase we would like to check
whether there exists a b-ordering compatible with the given assignment. First
we check whether for each segment its length equals the number of assigned
vertices. Second we check whether there are no edges between segments that are
at distance greater than one. If both conditions are satisfied we may proceed
further.

Obviously edges between vertices inside the same segment are not important,
since each segment has at most b + 1 elements, thus we may assume that edges
in G connect vertices from neighboring segments only.

Now we may assign vertices to each position one by one, but the main idea of
our algorithm is the order in which we fill in positions. For every position i, let
segment(i) = � i

b+1� be the segment number of this position, and let color(i) =
((i−1) mod (b+1))+1 be the index of the position in its segment, which we will
call the color of this position. Note that the color of position is the remainder of
this number modulo b + 1, but in the range [1, b + 1] instead of [0, b].

Let us sort positions lexicographically according to pairs (color(i),
segment(i)). To each of those positions we assign a vertex, in exactly this order.
We will call this ordering the color order of positions.

1 2 3 45 6 7 89 10 1112 13 14

b + 1 b + 1 b + 1

Fig. 2. Color order of positions for n = 14 and b = 3

The following lemma is the key observation in our algorithm.

Lemma 8. Ordering π, compatible with the generated segment assignment, is a
b-ordering iff for every edge uv if segment(π(u)) < segment(π(v)) then color
(π(u)) > color(π(v)).

Proof. Since π is compatible with the generated segment assignment, for every
edge uv we have |segment(π(u)) − segment(π(v))| ≤ 1. If segment(π(u)) =
segment(π(v)) then uv is not longer than b. Otherwise, suppose w.l.o.g. that
segment(π(u)) + 1 = segment(π(v)). Note that the distance between positions
with the same color in neighboring segments is b + 1, so uv is not longer than b
iff u has greater color than v (see Figure 3).

Corollary 9. Ordering π, compatible with generated segment assignment, is a
b-ordering iff for every edge uv with segment(π(u)) + 1 = segment(π(v)) vertex
u is assigned to greater position in the color order than vertex v.

Now we can describe our algorithm.
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b + 1 b + 1 b + 1

b b

Fig. 3. Picturable proof of the Lemma 8

Definition 10. By state in our algorithm we will denote a subset of vertices
A ⊂ V satisfying:

– Vertices of A can be assigned to the first |A| positions in the color order,
compatibly with the generated segment assignment.

– There is no edge uv with u ∈ A, v /∈ A and v assigned to segment with
greater number than u.

Note, that Corollary 9 implies the following lemma.

Lemma 11. The following equivalence holds:

1. Let π be a b-ordering compatible with the generated segment assignment. For
every 0 ≤ k ≤ n by Ak we will denote the set of vertices assigned in π to the
first k positions in the color order. Then Ak is a state.

2. Let ∅ = A0 ⊂ A1 ⊂ . . . ⊂ An = V be a sequence of states with {vi} =
Ai \ Ai−1. Then ordering π assigning vertex vi to the position ordered i-th
in the color order is a b-ordering.

Proof. Point 1 is an obvious corollary from condition stated in Corollary 9.
In Point 2 note that π is compatible with the generated segment assignment.
Suppose that π is not a b-ordering. From Corollary 9 we know that there ex-
ists an edge uv with segment(π(u)) + 1 = segment(π(v)) and color(π(u)) ≤
color(π(v)). Then u is before v in the color order, so there exists k such that
u ∈ Ak and v /∈ Ak. However, this contradicts with the assumption that Ak is a
state.

The algorithm is very simple now. By depth first search we seek for a path
of states from the state ∅ to the state V . Being at state A we try to extend
set A by one vertex v from appropriate segment in such a way that A ∪ {v} is
still a state. Note that finding all possible extensions to state A can be done
in polynomial time. Lemma 11 ensures that we find such a path iff there exists
a b-ordering compatible with the generated segment assignment. Note, that if
the algorithm finds the path of states, it can easily reproduce the corresponding
b-ordering using the DFS stack.

Note that this algorithm needs O∗(2n) memory to keep track of visited states.
It runs in O∗(2n) time for every generated assignment. There are at most 3n−1n
assignments, which leads to O∗(6n) time bound. In the next section we will prove
O∗(5n) time bound.
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4.3 O∗(5n) Time Bound

In this section we will prove the following theorem:

Theorem 12. The algorithm described in the previous sections in all generated
assignments visits at most 2n5n−1 states.

Proof. Let us recall the arbitrary spanning tree D which we used to generate all
possible segment assignments. Let v1, v2, . . . , vn be an order in which we assigned
vertices to segments, with v1 being the root of D. Let us look at a state A ⊂ V in
some fixed generated segment assignment. The root v1 can be assigned into any
of � n

b+1� ≤ n segments. Every other vertex can be assigned to the same segment
as its parent or to one of the neighboring segments. Let us call such vertex same
if it was assigned to the same segment as its parent, left if it was assigned to the
segment with smaller positions, and right if it was assigned to the segment with
greater positions. Moreover, every vertex can be black (in state A) or white (not
in state A).

Let v be a vertex with parent u. Note that if u is white (u /∈ A) then, as A
is a state, v cannot be both black and left. Similarly if v is black (u ∈ A) then v
cannot be both white and right.

Therefore every non-root vertex has only 5 possibilities. Since the root of D
can be assigned to any segment and be either white or black, we conclude that
our algorithm will visit at most 2n5n−1 = O∗(5n) states.

Note, that checking if a subset A ⊂ V is a state and trying to extend one
state in the DFS step can be done in polynomial time. Therefore we can claim
the main result of this paper:

Theorem 13. For arbitrary b, 1 ≤ b < n we can find a b-ordering or state that
it does not exist in O∗(5n) time and O∗(2n) space.
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