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Preface

The 34th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG 2008) took place in Van Mildert College at Durham University,
UK, 30 June – 2 July 2008. The approximately 80 participants came from vari-
ous countries all over the world, among them Australia, Brazil, Canada, Chile,
Czech Republic, France, Greece, Hungary, Israel, Italy, Japan, The Netherlands,
Norway, Poland, Spain, Switzerland, UK and the USA.

WG 2008 continued the series of 33 previous WG conferences. Since 1975,
the WG conference has taken place 21 times in Germany, four times in The
Netherlands, twice in Austria as well as once in Italy, Slovakia, Switzerland, the
Czech Republic, France, Norway and now in the UK.

The WG conference traditionally aims at uniting theory and practice by
demonstrating how graph-theoretic concepts can be applied to various areas in
computer science, or by extracting new problems from applications. The goal is
to present recent research results and to identify and explore directions of future
research.

The continuing interest in the WG conferences was reflected in the number
and quality of submissions; 76 papers were submitted and in an evaluation pro-
cess with four reports per submission, 30 papers were accepted by the Program
Committee for the conference. Due to the high number of submissions and the
limited schedule of 3 days, various good papers could not be accepted.

There were excellent invited talks by Giuseppe Di Battista (Università Roma
Tre, Italy) on algorithmic aspects of (un)-stable routing in the Internet, by Leszek
Gąsieniec (University of Liverpool, UK) on memory-efficient graph exploration,
and by Martin Grohe (Humboldt-Universität zu Berlin, Germany) on algorithmic
meta theorems.

The WG 2008 Best Student Paper Award was awarded to the paper “Faster
Exact Bandwidth” by Marek Cygan and Marcin Pilipczuk.

We are grateful to all those who contributed to WG 2008, especially the au-
thors for submitting so many good papers, the numerous referees, the speakers
and the Program Committee. We would also like to thank the London Math-
ematical Society (LMS) and the Engineering and Physical Sciences Research
Council (EPSRC) for financial support and INFO.RO for sponsoring the Best
Student Paper Award.

October 2008 Hajo Broersma
Thomas Erlebach

Tom Friedetzky
Daniel Paulusma
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(Un)-Stable Routing in the Internet: A Survey
from the Algorithmic Perspective

Luca Cittadini, Giuseppe Di Battista, and Massimo Rimondini

Roma Tre University
{ratm,gdb,rimondin}@dia.uniroma3.it

Abstract. The Internet is a huge and complex network in which Inter-
net Service Providers (ISPs) compete for revenue. In order to support
the establishment of commercial agreements, routing in the Internet must
therefore allow each ISP to autonomously set up its own routing policies
while ensuring global connectivity. The Border Gateway Protocol (BGP)
allows to achieve both these goals, and is the currently adopted protocol
for Internet routing.

It can be shown that the interaction of not-so-unlikely BGP config-
urations adopted at different ISPs can cause permanent oscillations of
routing. Several models and algorithms have been proposed in the liter-
ature to study routing oscillations. The goal of this paper is to provide
a survey of state of the art contributions in this field with an emphasis
on the algorithmic aspects.

1 Introduction

Internet interdomain routing relies on the Border Gateway Protocol (BGP).
BGP [1] allows each Internet Service Provider (ISP) to autonomously set up
its own routing policies while ensuring global connectivity. ISPs negotiate com-
mercial and political agreements and subsequently connect and configure BGP
routers to exchange reachability information to establish paths to a set of
destinations.

Each ISP owns an Autonomous System (AS ) that comprises all the equip-
ments it administrates. Roughly speaking, BGP works as follows. An AS (say
AS0) tells (announces) its neighboring ASes of its existence. Its neighbors, ac-
cording to the commercial agreements of their ISPs, propagate this information
to other ASes, that, in turn, do the same. In this way, after a while, the entire
Internet knows about the existence of AS0.

While the announcement about AS0 is propagated through the Internet, each
traversed AS adds (prepends) its identifier to the announcement. In this way an
announcement carries in itself the entire path to reach AS0. Each AS, according
to its policies, can choose to discard some announcements and can select its
favorite one.

Unfortunately, it can be shown that the interaction of not-so-unlikely BGP
configurations adopted at different ISPs can cause permanent oscillations of
Internet routing (see, e.g., [2,3]).

H. Broersma et al. (Eds.): WG 2008, LNCS 5344, pp. 1–13, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 L. Cittadini, G.D. Battista, and M. Rimondini

In this paper we first introduce a well known formulation of the BGP routing
stability problem, based on commonly adopted models to capture BGP routing
dynamics. We then propose a classification of significant instances of the stabil-
ity problem according to their convergence properties. Algorithms for computing
stable states are then described, together with sufficient conditions that lead to
guaranteed stability. We also discuss the relationships between the classical mod-
els for stability and other variants that accommodate link costs or account for
the existence of commercial relationships in the routing system. Very recent re-
sults have been obtained by studying the stability problem with a game theoretic
approach. These results are also presented.

Section 2 discusses models for BGP. Section 3 considers configurations that
may admit multiple stable states and conditions for guaranteed convergence.
Section 4 presents algorithms for computing stable states. Section 5 shows the
interplay between stability and real world constraints. Conclusions are drawn in
Section 6. Most of the presented results come from the literature, while some
are original contributions.

A way to read this survey is to look at Fig. 3, which provides an at-a-glance
view of the relationships between classes of instances with different convergence
properties.

2 Models for BGP and the Stability Problem

Several approaches have been proposed to model BGP and to study its stability.
A pioneering work on this subject is in [4], that proposed the return graph, while
algebraic models have been shown in [5,6,7]. In this paper we adopt the Simple
Path Vector Protocol (SPVP) model [8], that is the reference point of most of
the scientific contributions on BGP stability.

We now define an SPVP instance. Let G = (V, E) be an undirected graph,
with vertex set V = {0, 1, . . . , n} and edge set E. The graph G is used to encode
the AS-level topology of the network under consideration, in such a way that
vertices correspond to ASes and edges correspond to adjacency relationships
between ASes (also called peerings by operators).

A path P in G is a sequence of k +1 vertices P = (vk vk−1 . . . v1 v0), vi ∈ V ,
such that (vi, vi−1) ∈ E for 0 < i ≤ k. Vertex vk−1 is the next hop of vk in
P . We denote the empty path by ε. The concatenation of two nonempty paths
P = (vk vk−1 . . . vi), k ≥ i, and Q = (vi vi−1 . . . v0), i ≥ 0, denoted as PQ,
is the path (vk vk−1 . . . vi vi−1 . . . v0). We assume that Pε = εP = ε. In the
SPVP model each vertex in V − {0} attempts to establish a path to a single
vertex 0. Note that, since BGP manages each destination separately, this is not
a limitation. Each vertex u ∈ V is assigned a set of permitted paths Pu. All the
paths in Pu are simple (i.e., no repeated vertices), start from u and end in 0,
and represent the paths that u can use to reach 0. The empty path represents
unreachability of 0 and is permitted at each vertex u �= 0. Let P0 = {(0)} and
P =

⋃
u∈V Pu.
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For each vertex u ∈ V , a ranking function λu : Pu → N determines the
relative level of preference λu(P ) assigned by u to path P . If P1, P2 ∈ Pu and
λu(P2) < λu(P1), then P2 is preferred over P1. Let Λ = {λu|u ∈ V }. Ranking
functions in Λ describe the BGP routing policies.

According to the model in [2], the following conditions hold on the paths, for
each vertex u ∈ V − {0}:

i. ∀P ∈ Pu, P �= ε: λu(P ) < λu(ε) (unreachability is the last resort);
ii. ∀P1, P2 ∈ Pu, P1 �= P2 : λu(P1) = λu(P2) ⇒ P1 = (u v)P ′

1, P2 = (u v)P ′
2,

(strict ranking is assumed on all the paths but those with the same next
hop).

An instance S of SPVP is a triple (G,P , Λ). See an example in Figure 2(a).
The graphical convention adopted throughout the paper is the same as in [2],
namely each vertex u is equipped with a list of paths representing Pu sorted
by increasing values of λu. The empty path and P0 are omitted for brevity. We
assume that the size of S is the size of P .

A path assignment π is a function that maps each vertex u ∈ V to a permitted
path π(u) ∈ Pu. This represents the fact that vertex u is using path π(u) to
reach 0. We have that π(0) = (0) and, if π(u) = ε, then u cannot reach vertex 0.

In SPVP vertices asynchronously exchange messages containing paths to 0.
We assume that edges introduce a finite delay on message delivery. Each ver-
tex u keeps in a routing information base ribt(u) the path it adopts at time t
to reach vertex 0. If a vertex u receives from a neighbor w at time t an an-
nouncement containing a path P , first of all u checks whether (u)P is permit-
ted, namely if (u)P ∈ Pu. If this is the case, u puts (u)P into a data structure
called rib-int(u ⇐ w), which is used to store the latest path received from w.
If (u)P is not permitted, u puts ε in rib-int(u ⇐ w). Then, u checks whether
the currently selected path, stored in ribt−1(u), is the currently available best
path. If this is not the case, u selects the best ranked path among those in all
its rib-int data structures and stores it in ribt(u). We refer to such a path as
bestt(u) = argmin

v|(u,v)∈E

λu(rib-int(u ⇐ v)). Afterwards, u announces bestt(u) to all

its neighbors v | (u, v) ∈ E.
An activation sequence [8] σ = (A0 A1 . . . Ai . . . ) is a (possibly infinite)

sequence where At is a set containing an ordered pair (u, v)|(u, v) ∈ E for each
vertex v that processes a message from u at time t. We say that edge (u, v)
is activated at time t. Since the delay introduced by edges is finite, messages
are eventually delivered. An activation sequence is fair if any edge (u, v) ∈ E is
eventually activated whenever u sends a message to its neighbors. In a real world
scenario, all those messages that are not filtered by explicitly configured policies
are never discarded. Therefore, in the following we will be mostly considering
fair activation sequences.

As SPVP operates within the network, the routing evolves through differ-
ent path assignments πt, where πt(u) = ribt(u), until a stable path assign-
ment is reached (we say that SPVP converges to that path assignment). A path
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assignment πt is stable if, for each u ∈ V , πt(u) = bestt(u). Once a stable path
assignment is reached, no further messages are generated in the network.

Obviously, the existence of a stable path assignment is a crucial requirement
for a network running BGP. For this reason the Stable Paths Problem has been
defined in [2] as follows:

Problem 1 (Stable Paths Problem). Given an instance S of SPVP, does S admit
a stable path assignment?

Theorem 1. The Stable Paths Problem is NP-complete [2].

If a stable path assignment exists for S, it is a solution for the problem. We
define Solvable (Unsolvable) as the set of SPVP instances that admit (do not
admit) a solution.

For example, instance Good-Gadget (Fig. 2(a)) belongs to Solvable since
it admits a stable path assignment. In fact, it is easy to check that the path
assignment π(1) = (1 3 0), π(2) = (2 0), π(3) = (3 0), π(4) = (4 2 0) is stable.
On the other hand, instance Bad-Gadget (Fig. 2(b)) belongs to Unsolvable.
In fact, in any stable path assignment π there must be at least one vertex that
picks the direct path to 0. Assume that π(2) = (2 0). For π to be stable, we must
have π(3) = (3 2 0), which in turn implies π(1) = (1 0). Note that now (2 0)
is not the best available path at vertex 2, hence no path assignment can have
π(2) = (2 0). The same argument applies symmetrically to the other vertices.

Throughout this paper we shall discuss other notable classes of SPVP in-
stances besides Solvable and Unsolvable. The relationships between those classes
are illustrated in Fig. 3.

3 Multiple Stable States and Guaranteed Convergence

One might ask the question whether there are SPVP instances that admit more
than one solution. Let Unique be the class of SPVP instances that have exactly
one solution. We have that Good-Gadget belongs to Unique.

Theorem 2. Unique ⊂ Solvable.

Proof. Instance Disagree [9] (Fig. 2(c)) has two solutions. It is easy to see that
both π(1) = (1 0), π(2) = (2 1 0) and π′(1) = (1 2 0), π′(2) = (2 0) are stable
path assignments.

Property 1. There are instances of SPVP with an exponential number of
solutions.

Proof. An instance that contains n distinct and independent Disagree struc-
tures has 2n solutions.

Property 2. For each non-negative integer k there exists an instance of SPVP
with k solutions.
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Fig. 1. An instance of SPVP with k + 1 solutions

Proof. This is clearly true for k = 0 and k = 1. In fact, Bad-Gadget and
Good-Gadget are examples of instances with no solutions and with only one
solution, respectively. Fig. 1 shows the structure of a generic SPVP instance with
k+1 solutions. The idea is to stack several Disagree gadgets, each of which adds
a new stable path assignment to the SPVP instance. In particular, each triple
of vertices (vi,1, vi,2, vi−1,2), with i > 0 and v0,2 = 0, forms a Disagree. Each
vertex vi,j can reach 0 by using a direct path (vi−1,2 vi−2,2 . . . 0). However, vi,1
prefers the path via vi,2, and vi,2 prefers the path via vi,1. With this construction,
if a Disagree (vi,1, vi,2, vi−1,2) stabilizes on πt(vi,1) = (vi,1 vi−1,2 vi−2,2 . . . 0)
and πt(vi,2) = (vi,2 vi,1)πt(vi,1) at time t, then there exists a time t′ > t af-
ter which the vertices of any other Disagree (vj,1, vj,2, vj−1,2), j > i perma-
nently select the empty path ε. On the other hand, if a Disagree stabilizes on
πt(vi,1) = (vi,1 vi,2)πt(vi,2) and πt(vi,2) = (vi,2 vi−1,2 . . . 0), then the following
Disagree (vi+1,1, vi+1,2, vi,2) (if any) has two stable path assignments, and a
similar argument can be applied.

In this way, every Disagree acts as a switch that can enable or disable the
subsequent Disagree in the stack. The last Disagree (vk,1, vk,2, vk−1,2) can
arbitrarily reach one of its two stable states without influencing further gadgets.
It is easy to check that this SPVP instance has exactly k + 1 stable states.

Even if an instance has a stable state, there may still be activation sequences
that give rise to oscillations [10]. From the point of view of a network operator,
it is interesting to know whether a given BGP configuration is guaranteed to
converge to a stable state, regardless of any possible message orderings. Hence,
we define the Safety problem [10,11]:

Problem 2 (Safety). Given an SPVP instance S, does S admit only finite fair
activation sequences?

Theorem 3. Safe ⊂ Solvable.

Proof. Disagree (Fig. 2(c)) is Solvable but not Safe. An infinite fair activation
sequence σ = (A0 . . . Ai . . . ) can be constructed as follows. Vertices 1 and 2
first learn the direct path to zero A0 = {(0, 1), (0, 2)}. Then they periodically
exchange information in a synchronous way, i.e. At = {(1, 2), (2, 1)}, ∀t ≥ 1. It
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is easy to see that vertex 1 keeps selecting alternately paths πt(1) = (1 0) and
πt+1(1) = (1 2 0) at time t = 2n. Symmetric considerations apply to vertex 2.

Theorem 4. Safe ∪ Unique ⊂ Solvable.

Proof. Disagree is neither Safe nor Unique.

Theorem 5. Safe ∩ Unique �= Unique.

Proof. Instance Naughty-Gadget [10] (Fig. 2(d)) has a unique stable state but
a persistent oscillation. The unique solution is the same as in Good-Gadget,
while the persistent oscillation works in a similar way as in Bad-Gadget

(see [12,2]).

In [2,10] it has been shown that, when an SPVP instance has multiple solutions,
then a cyclic dependence on the ranking of paths can be identified. Even though
this does not imply the existence of an infinite activation sequence, we were not
able to find an SPVP instance that is Safe but not Unique. We therefore state
the following:

Conjecture 1. Safe ∩ Unique = Safe.

The safety of SPVP has also been studied from a game theoretic perspective [13]
in the so called convergence game. All the vertices but 0 are players. When al-
lowed to play, a vertex selects the best path among those offered by its neighbors
(best-reply dynamics). The payoff of vertex u is λu(P ) if u selects path P . The
game has infinite rounds. SPVP safety translates to the convergence of best-
reply dynamics in the convergence game. In this framework the following result
has been proved:

Theorem 6. The safety problem is PSPACE-complete [13].

However, interpreting Theorem 6 from the SPVP point of view requires some
care. First, [13] only considers activation sequences where vertices are activated
one after the other. It is unclear whether an instance that is Safe in this model
is also Safe in the more general model introduced above. Second, players of the
convergence game can select a neighbor instead of a path.

4 Algorithms That Search for Stable States

In this section we restate and discuss a polynomial time Greedy algorithm that
has been proposed in [2] to check if an SPVP instance has a solution. Greedy

attempts to grow a solution by iteratively building a stable path assignment. If
the algorithm terminates successfully, the path assignment defines a spanning
tree that is a solution for the given instance. Otherwise, Greedy is only able to
identify a stable path assignment for a subset of the vertices.

The algorithm maintains a stable set of vertices for which there exists one
permitted path that will be in every stable path assignment. The stable set at
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iteration i of the algorithm is denoted by Vi. Vertex 0 is always in the stable set,
therefore let V0 = {0}. As the stable set grows, a path assignment π defined on
the vertices in Vi is iteratively built.

We say that a path P is compatible with a path assignment π if P = P1(u v)P2,
where P1 does not contain vertices in Vi, (u, v) ∈ E, v ∈ Vi, and P2 = π(v).

Algorithm Greedy is as follows. At iteration i, let Pv be the path with
minimum λv(P ) among the paths at v compatible with π. If such a path does
not exist, let Pv = ε. If there exists a vertex v /∈ Vi−1 such that Pv has a next
hop in Vi−1, then construct Vi by adding v to Vi−1 and set π(v) = Pv. If such a
vertex v does not exist, then stop.

Intuitively, at each iteration vertex v is stabilized because its best compatible
path directly reaches an already stabilized vertex. Observe that the algorithm
terminates after at most |V | iterations. A solution to the SPVP instance exists
if, after k iterations, we end with Vk = V . The solution is given by π.

We define Greedy-Solvable as the set of SPVP instances that have a so-
lution that is found by Greedy. It is easy to see that Good-Gadget ∈
Greedy-Solvable. In fact, at the first iteration vertex 3 enters the stable set V1, and
π(3) = (3 0). At the second iteration, the best path at vertex 1 is then directly
connected to a stable node, hence 1 enters the stable set V2, with π(1) = (1 3 0).
Observe that this makes path (2 1 0) not compatible with π. Hence, the best
compatible path at 2 is directly attached to a stable vertex (0), so 2 enters V3,
and π(2) = (2 0). Finally, vertex 4 has now a best path which is directly attached
to 2, so it enters V4 with π(4) = (4 2 0). Since V4 = V , the algorithm successfully
terminates.

Theorem 7. Greedy-Solvable ⊂ Safe ∩ Unique.

Proof. Part 1 (⊆): If an SPVP instance S is successfully solved by Greedy,
then S has a unique solution [2] and it is safe [12].

Part 2 (⊂): A safe SPVP instance that has a unique solution and that Greedy

is unable to solve is Di-Safe-gree (Fig. 2(e)). The instance is safe since any
fair activation sequence of SPVP is finite. In fact, in any fair activation sequence
vertices 1, 2, and 3 learn about the direct path to 0. After that, edge (3, 2) is
eventually activated, and 2 learns about (2 3 0). Henceforth, vertex 2 will be
permanently unable to select (2 0), in turn preventing vertex 1 from choosing
(1 2 0). Finally, after edge (1, 2) is activated, 2 switches to its best path (2 1 0)
and SPVP terminates, as no other message is further generated. Therefore any
fair activation sequence is forcedly finite, and SPVP cannot oscillate on this
instance.

We now walk through the execution of Greedy on Di-Safe-gree. At the
first iteration, vertex 3 enters the stable set V1, and π(3) = (3 0). At the second
iteration, the algorithm forcedly stops. In fact, path (2 1 0) is compatible with
π because 2, 1 /∈ V1, 0 ∈ V1, π(0) = (0), and (1, 0) ∈ E. However, even if (2 1 0)
is the best compatible path at vertex 2, its next hop is not in V1. A similar
argument applies to path (1 2 0). Therefore, no new vertex can be added to the
stable set and the algorithm stops without finding a solution, since V1 �= V .
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A recent contribution [12] presents an improved Greedy algorithm that is able
to solve a larger number of instances, including Di-Safe-gree.

Most of the sufficient conditions [14,15,16,2,10,17] to ensure safety are based
on the so called dispute wheels. A dispute wheel [10] Πk = (U , Q, R) of size k
is a sequence of vertices U = u0, u1 . . . uk−1 and sequences of nonempty paths
Q = Q0, Q1 . . . Qk−1 and R = R0, R1 . . . Rk−1 such that:

i. Ri is a path from ui to ui+1
ii. Qi ∈ Pui

iii. RiQi+1 ∈ Pui

iv. λui(Qi) ≥ λui(RiQi+1)

We define No-Dispute-Wheel as the set of SPVP instances that do not have a
dispute wheel. In [13] it is observed that testing the absence of dispute-wheels
is coNP-complete.

Theorem 8. No-Dispute-Wheel ⊂ Greedy-Solvable.

Proof. Part 1 (⊆): If an instance S of SPVP has no dispute wheel, then Greedy

successfully solves S [2].
Part 2 (⊂): As shown in [10], instance Bad-Backup (Fig. 2(f)) has a dispute

wheel. However, it is easy to see that it is solved by Greedy. In fact, at iteration
1 path (4 0) is compatible with π because (4, 0) ∈ E, 0 ∈ V0, and π(0) = (0). Since
(4 0) is also highest ranked at vertex 4, we have that V1 = {0, 4} and π is updated
setting π(4) = (4 0). At iteration 2 vertex 3 enters the stable set. In fact, (3 4 2 0)
is not compatible with π since π(4) �= (4 2 0), while (3 0) is compatible with π.
Therefore, we set V2 = {0, 4, 3} and π(3) = (3 0). At iteration 3 vertex 1 enters
the stable set, because (1 3 0) is the best ranked path compatible with π. We set
V3 = {0, 4, 3, 1} and π(1) = (1 3 0). Last, at iteration 4 also vertex 2 can enter
the stable set, since (2 1 0) is the not compatible with π, making (2 0) the best
compatible path. Hence, we have that V4 = {0, 4, 3, 1, 2} = V and π(2) = (2 0).

5 Link Costs and Commercial Relationships

In this section we discuss the interplay between the stability of SPVP instances
and several real-life constraints.

5.1 Cost-Consistent Instances

In computer networks quite often links have a cost. Hence, it is natural to rank
the paths according to their cost. Consider an SPVP instance (G,P , Λ) and
suppose that the edges of G have a cost. Let the cost function c be such that
no cycle exists with a nonpositive cost and suppose that the paths are ranked
by Λ according to their cost. We say that (G,P , Λ) is cost-consistent with c. We
define Cost-Consistent as the set of SPVP instances that are cost-consistent with
at least one cost function [10].
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Theorem 9. Cost-Consistent ⊂ No-Dispute-Wheel.

Proof. Part 1 (⊆): The absence of dispute wheels in cost-consistent instances is
proved in [10].

Part 2 (⊂): Incoherent (Fig. 2(g)), a simplification of an instance pre-
sented in [10], is an example of instance that has no dispute wheel and is not
cost-consistent with any cost function. Assign variables to edges according to
Fig. 2(g). Since path (3 2 1 0) is preferred over (3 2 0), the cost function must
be such that a + b + d < a + c. Also, since (2 0) is preferred over (2 1 0) we have
c < b + d, yielding a contradiction.

5.2 Modeling Commercial Relationships

From the economic perspective, relationships between ASes can be classified as
customer-provider or peer-peer. In order to implement these agreements, routing
policies must obey several constraints. In [11] it has been observed that an SPVP
instance (G,P , Λ) modeling these constraints must be as follows.

The neighbors of each vertex of G can be partitioned into three sets: cus-
tomers, providers, and peers, such that: (i) Each path of P is valley-free: provider-
customer and peer-peer edges can only be followed by provider-customer edges.
(ii) Function Λ is such that, for each vertex of G, paths through customers
are ranked better than paths through peers that, in turn, are ranked better
than paths through providers (prefer-customer ranking). (iii) Relationships are
acyclic.

In [18] it is shown that the valley-free condition can be tested efficiently:

Theorem 10. Given an SPVP instance it takes polynomial time to test whether
the neighbors of each vertex of G can be partitioned into three sets: customers,
providers, and peers, such that each permitted path is valley-free [18].

Good-Gadget (Fig. 2(a)) and Incoherent (Fig. 2(g)) are examples of in-
stances that admit a valley-free assignment of commercial relationships such
that the path rankings are prefer-customer. Two such assignments are shown in
Figs. 2(h) and 2(i), where edges go from customers to providers. The layering
emphasizes the customer-provider hierarchy.

Theorem 11. Customer-Provider ∩ Cost-Consistent �= Cost-Consistent.

Proof. We have already shown in the proof of Theorem 9 that Incoherent

(Fig. 2(g)) is not cost-consistent with any cost function. On the other hand, the
policies in Incoherent are compatible with the customer-provider hierarchy
depicted in Fig. 2(i).

Theorem 12. Customer-Provider ∩ Cost-Consistent �= Customer-Provider.

Proof. It is easy to check that Costomer (Fig. 2(j)) is cost-consistent with the
edge cost function which is presented in the figure. We now show that Costomer

is not compatible with any customer-provider hierarchy. Consider edge (6, 7). We
have three possibilities:
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(k) Nocust-Nolowest-omer.

Fig. 2. Interesting instances of SPVP
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i. 6 is a provider of 7. Since λ7((7 6 5 0)) < λ7((7 8 5 0)) < λ7((7 6 0)), 8 must
be a provider of 7 as well. Then path (8 7 6 0) contains a valley.

ii. 6 is a peer of 7. As above, 8 is also a peer of 7, and path (8 7 6 0) contains
two consecutive peer-peer edges.

iii. 6 is a customer of 7. Applying the same argument as above, we conclude
that 7 is a provider of 8. By looking at the path ranking at 8 we have that
λ8((8 7 6 0)) < λ8((8 5 6 0)) implies that 5 is also a provider of 8. Then
path (7 8 5 0) forms a valley.

Theorem 13. Customer-Provider ⊂ No-Dispute-Wheel.

Proof. Part 1 (⊆): Customer-provider instances cannot have a dispute wheel [19].
Part 2 (⊂): Costomer (Fig. 2(j)) has no dispute wheel, since it is cost-

consistent with an edge cost function. On the other hand, from the proof of
Theorem 12 we have that Costomer �∈ Customer-Provider.

Theorem 14. Customer-Provider ∪ Cost-Consistent ⊂ No-Dispute-Wheel.

Proof. It is possible to merge Costomer and Incoherent together, obtaining
Nocust-Nolowest-omer (Fig. 2(k)). Since the building blocks are completely
independent and do not form a dispute wheel, then Nocust-Nolowest-omer ∈
No-Dispute-Wheel. On the other hand, the proofs of Theorems 9 and 13 ensure
that the instance is neither in Cost-Consistent nor in Customer-Provider.

6 Concluding Remarks

In this paper we have presented a survey on the state of the art knowledge
about BGP stability, relating existing results by means of some new original
contributions.

Many other contributions have been proposed in the literature on the BGP
stability problem, but they do not fit the scope of this paper. For example,
several proposals have been presented to modify BGP in such a way to improve
its convergence properties [20,21,22,23,24,25,26,27,28]. Also, there are modeling
contributions on I-BGP, that is the part of the BGP protocol that is run by
ISPs inside the ASes [29,30]. Interestingly, the SPVP model can be applied also
in this context [14,17,31]. Further, [19] studies the robustness of BGP defined as
the guaranteed convergence under any combination of link failures.

Besides deep methodologies, the BGP stability field shows several open prob-
lems. For example, referring to the classes of Fig. 3, the following questions
come naturally. Does it exist an SPVP instance that belongs to Safe but is not
in Unique? Is it possible to explore the gap between the Greedy-Solvable and
the Safe classes introducing further algorithms and/or conditions that better
characterize safety? Is it possible to check if an SPVP instance belongs to the
Customer-Provider class in polynomial time?



12 L. Cittadini, G.D. Battista, and M. Rimondini

Fig. 3. Relationships between the classes of SPVP instances. Black dots with letters
represent instances from Fig. 2. The black dot with a question mark indicates that an
instance of that subset has not been found yet.
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Abstract. Efficient exploration of unknown or unmapped environments has
become one of the fundamental problem domains in algorithm design. Its ap-
plications range from robot navigation in hazardous environments to rigorous
searching, indexing and analysing digital data available on the Internet. A large
number of exploration algorithms has been proposed under various assumptions
about the capability of mobile (exploring) entities and various characteristics of
the environment which are to be explored. This paper considers the graph model,
where the environment is represented by a graph of connections in which discrete
moves are permitted only along its edges. Designing efficient exploration algo-
rithms in this model has been extensively studied under a diverse set of assump-
tions, e.g., directed vs undirected graphs, anonymous nodes vs nodes with distinct
identities, deterministic vs probabilistic solutions, single vs multiple agent explo-
ration, as well as in the context of different complexity measures including the
time complexity, the memory consumption, and the use of other computational
resources such as tokens and messages. In this work the emphasis is on mem-
ory efficient exploration of anonymous graphs. We discuss in more detail three
approaches: random walk, Propp machine and basic walk, reviewing major rele-
vant results, presenting recent developments, and commenting on directions for
further research.

1 Introduction

A graph is a crucial combinatorial notion used for modeling complex systems in
various application domains including communication, transportation and computer
networks, manufacturing, scheduling, molecular biology and peer-to-peer networks.
Models based on graphs often involve mobile entities which can move throughout the
graph from node to node along the edges. We call such entities agents. An agent can be
a robot servicing a hazardous environment, or a software process navigating the Internet
in search for some information. Graph exploration refers to problems of designing algo-
rithms (protocols) for an agent, or a group of agents, to traverse a graph in a systematic
and efficient way.

In recent years the research on efficient graph exploration gathered a new momen-
tum, generated to large extent by the theory and the applications coming ever closer
together. The demand for efficient practical solutions has increased as systems of soft-
ware agents moving through a large network of computers have become reality. Another
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example is the relevance of efficient graph exploration algorithms for efficiency of the
Internet search engines. The current applications indicate that the relative importance
of various aspects of graph exploration has been changing, and those changes become
reflected in the theoretical research.

In the broad context of algorithmic agent design we distinguish two main models:
the geometric model where the search environment is represented by two- or higher-
dimensional space (see, e.g., [11,28,59]) and the graph model, considered in this paper,
where the environment is represented by a finite or infinite graph supported by discrete
moves permitted only along its edges. The design of efficient exploration algorithms in
the graph model has been extensively studied under many different assumptions, e.g.,
directed vs undirected graphs, anonymous nodes vs nodes with distinct identities, or
deterministic vs probabilistic solutions, as well as with different performance objec-
tives in mind including optimal time complexity, memory consumption, or use of other
resources, see [1,6,9,29,30,31,34,41,56]. Different studies may also consider different
aims of exploration. The aim of exploration can be to visit each node in the network, or
each edge, and terminate. Alternatively, one may drop the termination requirement and
ask only for perpetual exploration and a guarantee that each node is visited infinitely
many times, or perhaps a stronger guarantee that the nodes are being visited with similar
frequencies.

If nodes have distinct identities (given as O(log n)-bit words), the graph stays un-
changed (a static graph), and the size of the memory available to the agent (counted in
words) is linear in the number of nodes of the graph, then the depth-first search (DFS)
procedure gives linear time exploration. However, in many applications one or more
of these assumptions might not hold. The nodes may not have unique identities; for
example, if the nodes represent very simple devices (anonymous graphs). The graph
may keep changing; for example, if it models a growing peer-to-peer network (dynamic
graphs). Finally, the agents may have very limited memory, which may be sufficient
for storing only few node identities. For example, software agents moving through a
computer network from host to host might not be allowed to carry too much data with
them. This survey is mainly concerned with exploration of anonymous graphs by agents
equipped with bounded memory.

In graph exploration algorithms, the memory utilisation refers actually not only to
the memory of the agents (“carried” by them when they move from node to node),
but also to any extra memory required in the graph environment. The latter may store
some (pre-computed) additional information about the graph to guide the exploration,
or may allow the agent to leave marks at nodes or to move tokens as it traverses. The
demand for simple and cost effective agents as well as the desire to design exploration
algorithms that are suitable for rigorous mathematical analysis imply the importance
of limiting the local memory of agents and their ability to manipulate the explored
environment. One of the most challenging problems in the theory of computation is
to look at the far ends, border cases, of the considered models. In case of algorithmic
agent design such a border case may refer to the size of the agent’s memory, where one
can limit the memory of an agent to a constant number of bits. This case is very often
modeled as graph exploration by a finite state automaton and it has been extensively
studied already in the 1970’s [15,54,58,61]. Probably the strongest result in this setting
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is due to Cook and Rackoff [19]. They proved that a fixed group of finite automata, that
can permanently cooperate and that can use "teleportation" to move from their current
location to the location of any other automaton, cannot explore all graphs. See [42]
for some recent results about limits of graph exploration with finite automata. These
results imply that we either have to allow the agents to use larger memory, or to divert
to randomization, or to provide the agents with extra structural information that restricts
the set of graphs they have to traverse.

It has been known for some time that if we do not place strict restrictions on the local
memory, then a single pebble is sufficient to explore an anonymous undirected graph.
This result was extended to directed graphs by Bender et al. [8]. Note however that a
good upper bound on the number of nodes must be known to avoid an exponential-time
solution. Moreover, even if such a bound is known, the time complexity, while polyno-
mial, remains impractically high. Another possibility is to drop determinism and to look
for randomized solutions. It is known, e.g., that a random walk of length O(n3 log n)
visits all nodes of an arbitrary n-node graph with high probability [3]. Attempts to re-
gain determinism included research on derandomization of random walks and the main
approach was universal traversal sequences [3] that provide guidance in deterministic
traversal of all graphs in a given class. Several important results have been achieved
[4,7,46,60] including Reingold’s [60] recent asymptotically optimal O(log n)-space
deterministic algorithm for the undirected st-connectivity problem based on a novel
O(log n)−bit navigation mechanism. However, note that the exploration time given by
this algorithm is a polynomial of a rather high degree.

Research closely related to the setting adopted in this paper assumes some struc-
tural information about the explored environment. Such additional information allows
improvements in the time or memory complexity of graph traversal. The first results,
concerning exploration of a labyrinth using a compass, are due to Blum and Kozen
[12]. Later, Flocchini et al. [39] introduced a more general notion of sense of direction
and proved that traversal can be performed using O(n) messages/agent moves in this
model [38]. Fraigniaud et al. [40] have shown that interval routing scheme can be used
to achieve the same goal. In fact, given a spanning tree, the graph can be traversed using
O(n) moves. Pelc and Panaite [56] studied the impact of having a map of the graph on
the efficiency of graph exploration. Finally Cohen et al. studied efficient navigation in
graphs with nodes marked with a constant number of colors, see [18].

In this paper we focus on three graph traversal methods. We start with the probabilis-
tic random walk method and then discuss its recently proposed deterministic counter-
part known as the Propp machine, which requires some (small) memory at the nodes of
the graph. We conclude this survey with presentation of an alternative traversal method
based on the basic walk, in which a small amount of memory is provided to an agent
and a certain type of graph preprocessing is permitted. These three methods have sev-
eral interesting combinatorial properties and one might say that they have already set
certain standards in agent based anonymous graph exploration.

2 The Graph Model

In this survey we consider environments represented by undirected (symmetric) graphs.
We denote by G = (V, E) the graph which is to be explored, and assume that it is
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connected, unless stated otherwise. It will sometimes be convenient to view G as a di-
graph

←→
G obtained by replacing each undirected edge with two arcs pointing in opposite

directions. We consider graphs (environments) that are anonymous, i.e., the nodes in the
graphs are neither labeled nor marked in any other way. However, the ends of edges in-
cident to each node v are ordered and often labeled by consecutive integers 1, . . . , dv

called port numbers, where dv is the degree of v.
If an agent is in the current step at a node v, then the standard assumptions are that

it knows dv, the label of the port through which it has entered v and any information
about the graph that it might have gathered in previous steps and has been able to (has
been allowed to) store in its internal limited memory. The agent decides on the basis
of this knowledge which port it should take to move in the next step to a neighbour
of v. Agents do not have prior knowledge about the topology of the network. The exact
details about the resources and abilities of the agents as well as about the objectives of
exploration may vary from problem to problem. The number of nodes and the number
of edges in G are denoted by n and m, respectively, but note that these parameters might
not be known to the exploring agents.

3 The Random Walk

A random walk on an (undirected, connected) graph G starting at a node v0 is an (infi-
nite) random sequence (v0, v1, v2, . . .) of nodes in G such that for each i ≥ 1, node vi

is selected randomly and uniformly from all neighbours of node vi−1. Using the graph
exploration terminology, we say that an agent moves in step i from node vi−1 to its
random neighbour vi. To implement such random exploration of an arbitrary n-node
graph, the agent has to be able to select a random neighbour of the current node, so it
needs O(log n)-bit memory and access to log n random bits per step.

The (node) cover time of graph G from a node v is the expected number of steps
Cv(G) the random walk starting from node v takes to visit all nodes of the graph.
The cover time C(G) of graph G is defined as the maximum Cv(C) over all nodes
v ∈ V . Thus the cover time is the worst-case (over all starting nodes) expected time
of exploring the whole graph. For graphs of some special types, the cover time can
be easily estimated, or even calculated exactly. For example, it is easy to show that the
cover time of the graph Pn which is an n-node simple path is equal to C(Pn) = (n−1)2,
by solving a simple recurrence relation for the number expected number of steps Hi

required to reach the end of the path starting from its i-th node. Calculation of the cover
time of the n-node clique Kn is the coupon collector problem: at step i select randomly
and uniformly one of the n coupons/nodes and wait until all coupons have been seen,
with a slight modification that the next coupon/node has to be different from the one just
selected. If we have already seen exactly i distinct nodes, then the probability that in the
next step we will see a new node is equal to (n− i)/(n− 1), so the expected number of
steps before a new node is encountered is equal to (n − 1)/(n − i) and the cover time
C(Kn) is equal to

∑n−1
i=1 (n − 1)/(n − i) = (n − 1)

∑n−1
i=1 1/i = n(ln n + O(1)).

Random walks became an important tool in algorithm design and complexity the-
ory when Aleliunas et al. [3] showed in 1979 that the cover time of every graph is
polynomial, or more specifically, at most 2m(n− 1). Since then general techniques for
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bounding the cover times have been developed and bounds for the cover times for vari-
ous families of graphs have been derived. An agent using a random walk on an n-node
graph with the cover time bounded by T (n) = poly(n) should have an O(log n)-bit
counter to count T (n) steps to terminate with the knowledge that the whole graph has
been explored with constant probability, or to count T (n)p logn steps to terminate with
the knowledge the whole graph has been explored with the high probability of at least
1 − 1/np. Thus a good bound T (n) on the cover time is required not to expand unnec-
essarily the exploration time, and we review below the main known bounds. Observe
that an agent implementing a random walk needs memory for two purposes. It needs
O(log ∆) bits to implement individual moves from the current node to a random neigh-
bour, where ∆ ≤ n is a bound on the degree of a node, and O(log n) bits to count the
moves. If we do not require that the agent terminates, than the total of O(log ∆) bits
suffices. In particular, constant-size memory is sufficient for the randomized perpetual
exploration of any constant degree graph.

Feige [36,35] showed the following tight bounds on the range of the cover times of
n-node graphs:

(1 − o(1))n ln n ≤ C(G) ≤ (1 + o(1))
4
27

n3.

Thus Kn is an example of a graph with the cover time achieving the lower bound,
while it can be shown that the n-node lollipop graph given in Figure 1 has the cover
time achieving the upper bound. A quadratic O(n2) upper bound on the cover time
of regular graphs was first shown by Kahn, Linial, Nisan and Saks in 1989, and the
best know bound of 2n2 is due to Feige [37]. This worst-case upper bound for regular
graphs should be contrasted with Rubinfeld’s [62] O(n log n) bound on the cover time
of regular expander graphs, and with Cooper and Frieze’s [20] recent result showing
that the cover time of a random d-regular graph is (1 + o(1))d−1

d−2 n ln n with high

probability. The cover time of the 2-dimensional
√

n × √
n grid is Θ(n log2 n), with

the upper bound due to Chandra et al. [17] and the lower bound due to Zuckerman [65].
Aldous [2] showed that the cover time of the n-node k-dimensional grid is Θ(n log n),
for k ≥ 3.

Aleliunas’ et al. [3] polynomial upper bound on the cover time of an arbitrary graph
was an important result for the computational complexity theory as it showed that the
undirected s-t connectivity problem can be solved by a randomised log-space algo-
rithm. This started a vast body of research with the goal to settle the conjecture that

Fig. 1. The n-node lollipop graph: (n/3)-node path connected to n-node clique
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this problem can be solved by a deterministic log-space algorithm, and, ultimately, the
more general conjecture that any problem solvable by a randomised log-space algo-
rithm can be solved by a deterministic log-space algorithm. A natural approach to settle
the first conjecture was to de-randomise random walks. In this framework the objec-
tive was to produce an explicit universal traversal sequence (UTS), i.e., a sequence
p1, . . . , pk of port labels, such that the path guided by this sequence visits all edges
of any graph of a given size. It is known that, with high probability, a sequence of
length O(n3d2 log n), chosen uniformly at random, guides a walk in any d-regular (con-
nected) n-node graph [3]. Unfortunately, explicit short UTS are known only for special
families of graphs, including 2-regular graphs [7,13,16,50,53], 3-regular graphs [49],
cliques [51], and expanders [46]. Some of these sequences can be constructed in log-
space, providing exploration with O(log n)-bit memory. Kouckỳ [52] introduced the
notion of a universal exploration sequence (UXS), i.e., a sequence q1, . . . , qk such that
the agent leaves the current node x via port p + qi at the ith step, where p is the label of
the port through which the agent entered node x. This notion allows to construct simpler
and shorter sequences, for example, 1n is a UXS for n-node cycles, and (10)n is a UXS
for n-node cliques. Reingold [60] has recently showed that a UXS for general graphs
is log-space constructible, providing a deterministic log-space algorithm for undirected
s-t connectivity and settling the first of the above two conjectures. Note that both UTS
and UXS require a priori knowledge of the size of the network. If an agent uses an UTS
or UXS for exploration, with stopping, of graphs (of some type) of size at most n, then
it does not know at the termination whether the graph has at most n nodes, or whether
it is larger and possibly not fully explored.

A random walk on a graph is an example of a finite-state Markov chain and has
often been studied within this general context, with its central issue of the stationary
distribution and the rate of convergence to this distribution. If a random walk starts at a
node s (v0 = s), then the i-th node vi on the walk is the random variable with distribu-
tion πi

s, where πi
s(v) = Prob(vi = v). The stationary distribution π is the probability

distribution on the set of nodes defined by π(v) = limi→∞ πi
s(v), if these limits exist

and are independent of the starting node s. The stationary distribution exists for every
connected non-bipartite graph, and is equal to π(v) = deg(v)/(2m). (For a bipartite
graph, since there is no odd-length cycle, a random walk can visit a given node v ei-
ther only in even steps, or only in odd steps, so limi→∞ πi

s(v) is not defined. Not to
exclude bipartite graphs, the inconvenience of not having an odd length cycle is usu-
ally dealt with by allowing the walk to stay at the current node with, say, probability
1/2, or, equivalently, by adding self-loops to the graph.) The rate of convergence to the
stationary distribution is usually measured by the mixing time, defined as the first step
t when the distribution πt

s of the random variable vt is guaranteed to be close to the
stationary distribution π. More precisely, the mixing time is the minimum t such that
maxs,v∈V {|πt

s(v) − π(v)|} ≤ 1/n3, though other definitions of the distance between
two distributions, and degrees of closeness other than 1/n3 have also been used. The
random walk is rapidly mixing, if the mixing time is short, say O(nε) for a small con-
stant ε. Among the constant degree graphs, expanders have the best possible O(log n)
mixing time.
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The advantage of a random walk as a strategy for exploring a graph is its simplic-
ity and low memory requirements. Its main drawback is the time required to complete
the exploration, which is given by the cover time and can be as high as Ω(n3). Thus
a natural question is to reduce the cover time, if possible, for example by consider-
ing nonuniform transition probabilities, or by allowing the walking agent to gather,
and use, some limited information about the graph. Ikeda et al. [47] considered the
nonuniform probabilities p(v, u) of moving from a node v to its neighbour u such that
p(v, u′)/p(v, u′′) = (deg(u′)/ deg(u′′))1/2, for any two neighbours u′ and u′′ of node
v. They showed that these transition probabilities lead to an O(n2 log n) bound on the
cover time of any graph. This quite remarkable reduction from the O(n3) bound of the
uniform random walk, comes unfortunately with a cost. To implement this non-standard
random walk, each node of the graph has to store information about the degrees of its
neighbours, or the agent has to visit first all neighbours to gather this information. Ikeda
et al. [47] showed also that the O(n2 log n) bound is close to the best what we can hope
for, since for any transition probabilities defined on an n-node path, the cover time is
Ω(n2).

If we are looking for graph exploration with k ≥ 2 agents, then we would like to
know good bounds on the cover time by k random walks: the expected number of steps
until each node has been visited by at least one random walk (assuming all agents move
simultaneously in synchronised steps). Observe that it may be, and indeed is, crucial
what are the relative positions of the starting nodes of the walks. Broder et al. [14] con-
sidered k independent random walks starting from the stationary distribution (the start-
ing node of walk i is a node v with probability π(v)) and showed an O((m2 log3 n)/k2)
bound on the cover time. Thus, for example, for constant degree graphs, the speed-up
(the ratio of the cover times of a single random walk and k random walks) can be
Ω(k2/ log3 n). Recently Alon et al. [5] showed bounds on the speed-up of k indepen-
dent random walks starting from the same node, including a Θ(log k) speed-up for
n-node cycles, if log k = O(n), and an Ω(k) speed-up for n-node expanders, if k ≤ n.
Cooper et al. [22] considered k independent random walks on random regular graphs,
and analysed the cover time and the time required to achieve certain interaction between
the agents.

Random walks have been also applied in the context of exploring dynamic graphs.
Cooper and Frieze [21] considered a random walk on a dynamic graph growing accord-
ing to some random process, and analysed the expected proportion of visited vertices.
Law and Siu [55] and Cooper et al. [23] used graph exploration with random walks to
create new, random edges in a process of building and maintaining a well connected
network.

4 The Propp Machine

We consider now a type of graph exploration where the agents have no operational
memory and the whole steering mechanism is provided within the environment. Thus
the agents may actually be viewed as mere tokens which are being moved around the
graph. We discuss the deterministic mechanism of the rotor-router model, which was
introduced by Priezzhev in [57], further popularised by James Propp, and now known
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also as the Propp machine. In this model each node of the graph G is equipped with a
small marker indicating the exit port (the edge) to be taken by an agent on the conclu-
sion of the next visit to this node. After the agent leaves the node, the marker is moved
immediately to the next port in the cyclic order. The rotor-router model has been intro-
duced as a deterministic alternative to the random walk method. Its advantages include
the balanced usage of exit ports at each node, replacing the “coupon collector” nature
of the usage of ports by the random walk method.

The research on this model splits naturally into two directions associated with finite
and infinite graphs. The main question for finite graphs is about properties of the peri-
odic tour that has to be eventually adopted by the agent. For infinite graphs the Propp
machine model was mainly investigated in the context of balancing schemes for even
distribution of workload in networks.

Finite Graphs. Note that if an agent follows the rotor-router mechanism in the Propp
machine defined on a finite graph, the agent must eventually lock itself in a tour of
limited size. This is a straightforward consequence of the fact that the number of con-
figurations based on positions of markers on exit ports and location of the agent is
bounded by n(dmax)n, where dmax is the maximum degree of a node. However, and
rather surprisingly, following the rotor-router mechanism leads to a periodic tour that
corresponds to an Euler tour defined on

←→
G [10]. Moreover this periodic phenomenon

starts occurring very early, namely within O(|E|·n) steps, independently of the original
configuration of the port numbers and markers as well as the agent’s location. Yanovski
et al. [64] improved this bound by showing that in fact 2|E| ·D steps suffice to form an
Euler tour, where D is the diameter of G. On the other hand a lower bound Ω(|E| · D)
can be obtained on a lollipop graph (of a general structure as in Figure 1) in which exit
ports and markers in the clique with Ω(|E|) edges are set to form an Euler tour, and
markers on the external path of length D are placed on ports leading towards the clique.

Yanovski et al. [64] studied also behaviour of a multi-agent system of explorers in
the Propp machine where the agents cooperate via shared markers. When l agents want
to exit from the same node in the same step, then they all leave this node in this step
through the next l consecutive ports (according to an arbitrary assignment of the agents
to these l ports, and sending multiple agents through the same ports, if l is greater than
the degree of the node). They proved that for a team of k agents, the numbers of edge
visits in the networks are balanced up to a factor of two within at most 2(1 + 1

k )|E|D
steps.

Infinite Graphs. In the context of infinite graphs the rotor-router has been mostly stud-
ied as a deterministic analogue of the random walk approach to balancing the workload
in a network, and the main question has been how similar these two processes are. The
agents are now tokens, which are initially distributed among the nodes in some, possibly
uneven, way (for example, they all may be initially piled up on one node). The random
walk approach balances the load of tokens among nodes by sending them along inde-
pendent random walks of the same length t. Let Et(v) denote the expected number of
tokens which end up at a node v. The rotor-router process starting with the same ini-
tial distribution of tokens and executing t (deterministic) steps reaches a configuration
with at(v) tokens at node v. The question of similarity of these two processes is the
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question of analysing the node discrepancies |at(v)−Et(v)|. In particular, Cooper and
Spencer [24] studied this question for d-dimensional grids and showed that all node
discrepancies are bounded by a constant, which depends on d, but does not depend on
the initial configuration, the total time t and the initial rotor settings. For example, they
showed a bounding constant for d = 1 which is ≈ 2.3. This work was followed by a
detail study of the 2-dimensional grid by Doerr and Friedrich [33]. They provided evi-
dence that the exact (constant) value of the maximum node discrepancy depends on the
choice of rotor sequences. The situation is different in the case of k-ary trees: for any
number D, there exists an initial configuration of tokens, a number t and a node v such
that after t steps of the rotor-router process node v has at least D tokens more than it is
expected to get in the random walk process [25].

5 The Basic Walk

The basic walk method is based on an observation that one can cover a graph G =
(V, E), or more precisely its symmetric digraph counterpart

←→
G , by a collection of di-

rected cycles. The cycles are formed according to a simple rule. At any node v with the
degree dv , the incoming arc incident via a port i becomes the predecessor of the outgo-
ing arc incident via port (i mod dv) + 1. Note that since each arc in the digraph has
a unique predecessor as well as a unique successor a collection of arc-disjoint cycles
containing all arcs in the digraph is formed. Figure 2 shows an example.
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Fig. 2. The formation of cycles

Note also that a certain arrangement of the port numbers may lead to a cycle that
visits all nodes in the graph (symmetric digraph), see Figure 3. We call such a cycle a
witness cycle, see [32]. The presence of a witness cycle is very convenient in the context
of graph exploration, since it can be used by a very simple mobile entity to periodically
visit all nodes in the graph.

We consider two types of graph traversal based on the basic walk method. In the
oblivious model an agent has no operational memory. It is equipped with a simplest
possible mechanism that allows it to follow a single cycle in the collection of cycles
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Fig. 3. A witness cycle

covering the input graph. In this model the main task is to provide port labeling to the
input graph such that a witness cycle is formed. Moreover one is interested in forming
a shortest possible witness cycle. Note that in this model an agent traverses indefinitely
along the chosen cycle since its has no memory to make any decisions and no state to
stop. In the adaptive model an agent is provided with small (constant number of bits)
memory that allows the agent to switch between different cycles in order to shorten
the route covering all nodes in the graph. Such an agent is often modeled as Mealy au-
tomaton, where the output (outgoing port number) depends on the input (incoming port
number) and the state of the automaton. More formally the automaton has a transition
function f and a finite number of states governing the actions of the agent. When the
agent enters a node v of degree dv through port i, it switches to state s′ and exits the
node through port i′, where (s′, i′) = f(s, i, dv), see [44] for more detail description.

Oblivious Traversal. The oblivious traversal based on the basic walk method was first
proposed by Dobrev et al. in [32]. The authors claimed that there exists a port label-
ing, such that the oblivious agent requires at most 10n steps to visit all n nodes of a
graph in a periodic manner. While the stated problem and several combinatorial ob-
servations, in particular merging and exchanging contents of cycles, attracted attention
in the community, the bound of 10n on their port labeling turned out to be incorrect.
Very recently Czyzowicz et al. in [27] proposed a polished version of the previous ar-
gument supported by a new combinatorial structure of a three-layer partition of graphs.
This led to the first provably correct port labeling inducing a linear tour of length 4 1

3n.
Moreover, the labeling based on the three-layer partition can be performed in the opti-
mal O(|E|)−time. The authors proposed also a non-trivial class of graphs in which one
can select a spanning tree such that each node is incident to some edge outside of the
spanning tree. For this class of graphs one can construct a labeling that forms a witness
cycle of length ≤ 2n − 2. An example of formation of the witness cycle in this class of
graphs is presented in Figure 4.

Unfortunately the problem of deciding whether the input graph has a spanning tree
with the required property is NP-hard since this problem corresponds to selection of a
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a) b)

d) e)

c)

f)
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Fig. 4. Formation of a witness cycle: a) an input graph, b) a spanning tree with external edges
at each node is formed, c) excessive external edges are dropped, d) the spanning tree edges are
doubled, e) the parity of nodes is repaired starting from leaves in the tree, f) remaining double
(non-bridging) edges are dropped and a witness cycle is formed
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Fig. 5. A feasible solution in which each edge must be used in two directions

Hamiltonian path in 3-regular graphs, which is known to be hard. The authors in [27]
give also an n-node graph, shown in Figure 5, in which the witness cycle must contain
all arcs in

←→
G and therefore cannot be shorter than 2.8n.

It is worth mentioning that the explicit labeling of ports in G is not essential in the
oblivious graph traversal. In fact, it is enough to provide a periodic ordering of ports at
each node in G. The agent when arrives at some node v via some port must know only
its successor in the periodic order to continue the walk along the chosen cycle.

Adaptive Traversal. In [48] David Ilcinkas noted that the tour used by an agent to visit
all nodes in the graph can be shortened to 4n − 2 if the agent is provided with a 2-bit
operational memory. The extra memory translated to a larger number of states allows
the agent to perform context sensitive decisions including switching between the cycles
available in the basic walk method. More precisely, Ilcinkas noticed that using a certain
type of port labeling cycles and the extra memory bits, one can force the agent to follow
an Euler tour defined on a chosen spanning tree T in G. The spanning tree contains a
unique root edge er = (vr , wr) that bears port number 1 at its both ends. Apart from vr
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and wr every node u in G has a parent which is reachable from u via port 1. In fact one
can also interpret that vr is a parent of wr and vice versa. All children of any node v in G
(including root nodes) are reachable from v via ports 2 through cv + 1, where cv is the
number of children of v in the spanning tree T . When the agent traverses along the
Euler tour down in the tree it follows consecutive arcs of some cycle provided by
the basic walk method. This process is terminated when for two consecutive nodes
on the cycle v1 and v2, the node v2 is entered via port different from 1, meaning that v2
is not a child of v1 in T. In this case the agent returns first to v1 and then to the parent v
of v1, concluding that there are no more children of v1 to be visited in T . The traversal
is then continued along some other cycle starting at the next child (if any) of v. The
edge (v1, v2) is called a penalty edge since it does not belong to T and it contributes an
extra two agent moves in the tour that visits all nodes in the graph. The total length of
the tour can be bounded by 2n − 2 moves along edges in the spanning tree (each edge
has to be visited in two directions) and 2n moves along the penalty edges (each node
including root nodes may have incident edges not forming a part of the spanning tree
T ). Thus the total length of the tour is bounded by 4n − 2. Ilcinkas claimed also that
4n − 2 is the exact bound for all agents equipped with a small (constant size) memory.

This claim was later disproved by Gąsieniec et al. in [44] where they showed that the
length of the tour could be shortened to 3.75n − 2. The improvement was possible due
to the observation that visits to penalty edges could be avoided at the fraction 1

8 of the
nodes. They proved that one can construct port labeling in which either a large fraction
of nodes is saturated (all incident edges to these nodes are present in the spanning tree)
or there are large clusters of sibling leaves and extended leaves (paths of length 2)
located at the bottom of the spanning tree. Within each cluster the penalty edges are
visited only at the first sibling, while visiting all other siblings in the same cluster is
penalty free. This result was recently further improved in [27] to 3.5n − 2 with help of
the three-layer partition and sham edges that pretend to be penalty edges while serving
as proper edges in the spanning tree.

Note here that while the explicit labeling of ports in G is not essential in the adaptive
graph traversal at least one port at each node has to be distinguished in order to form
the hierarchical structure of the spanning tree T. More precisely the marked ports play
the same role as ports 1 in the explicit labeling setting.

6 Conclusion

The standard random walks are memoryless in the sense that the selection of the next
node does not depend on the past. This assumption is important from the point of view
of the probabilistic methods used in the theoretical analysis. Simulations show that the
performance of random walks may be improved for some types of graphs, if the agents
are allowed to remember, and use, some very limited information about the past. It
would be very interesting to develop some theoretical analysis of such processes.

Further work on the random walk approach should include further efforts on deran-
domisation with limited random access memory, ideally considering also the secondary
objective of minimizing the time complexity. An interesting aspects of random walks
can be considered in the context of efficiency of pseudo-random number generators. A



26 L. Gąsieniec and T. Radzik

pseudo-random number generator can be seen as a deterministic steering mechanism of
an agent and the efficiency of such a generator may be expressed as the efficiency of
exploration in arbitrary graphs.

Research on the rotor-router mechanism started only very recently and further results
on comparing this approach with random walks should be coming in near future. One
possible interesting question is whether the results for infinite graphs can be used to ob-
tain implications for their finite counterparts. Also better understanding of Euler tours
formed by the rotor-router mechanism by single and multiple robots would be highly
appreciated. Another direction for studies of this model is graph exploration by agents
granted dynamic port labeling mechanism. This would refer to creation of various geo-
metrical shapes and surfaces.

Finally, in the context of the basic walk approach, further understanding of witness
cycles as well as tours used by agents equipped with a small memory is required. There
is also very little known so far about the case when the ports at each node form a random
permutation.
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Abstract. Algorithmic meta theorems are algorithmic results that ap-
ply to whole families of combinatorial problems, instead of just spe-
cific problems. These families are usually defined in terms of logic and
graph theory. An archetypal algorithmic meta theorem is Courcelle’s
Theorem [1], which states that all graph properties definable in monadic
second-order logic can be decided in linear time on graphs of bounded
tree width. More recent examples of such meta theorems state that all
first-order definable properties of planar graphs can be decided in linear
time [2] and that all first-order definable optimisation problems on classes
of graphs with excluded minors can be approximated in polynomial time
to any given approximation ratio [3].

In my talk, I gave an overview of algorithmic meta theorems and the
main techniques used in their proofs. Reference [4] is a comprehensive
survey of the material.
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Abstract. We look for graph polynomials which satisfy recurrence re-
lations on three kinds of edge elimination: edge deletion, edge contrac-
tion and edge extraction, i.e., deletion of edges together with their end
points. Like in the case of deletion and contraction only (J.G. Oxley and
D.J.A. Welsh 1979), it turns out that there is a most general polyno-
mial satisfying such recurrence relations, which we call ξ(G, x, y, z). We
show that the new polynomial simultaneously generalizes the Tutte poly-
nomial, the matching polynomial, and the recent generalization of the
chromatic polynomial proposed by K.Dohmen, A.Pönitz and P.Tittman
(2003), including also the independent set polynomial of I. Gutman and
F. Harary, (1983) and the vertex-cover polynomial of F.M. Dong, M.D.
Hendy, K.T. Teo and C.H.C. Little (2002). We give three definitions of
the new polynomial: first, the most general recursive definition, second,
an explicit one, using a set expansion formula, and finally, a partition
function, using counting of weighted graph homomorphisms. We prove
the equivalence of the three definitions. Finally, we discuss the complex-
ity of computing ξ(G, x, y, z).

1 Introduction

There are several well-studied graph polynomials, among them the chromatic
polynomial, [Big93, GR01, DKT05], different versions of the Tutte polynomial,
[Bol99, BR99, Sok05], and of the matching polynomial, [HL72, LP86, GR01],
which are known to satisfy certain linear recurrence relations with respect to
deletion of an edge, contraction of an edge, or deletion of an edge together
with its endpoints, which we call extraction of an edge. The generalization of
the chromatic polynomial, which was introduced by K.Dohmen, A.Pönitz and
P.Tittman in [DPT03], happens to satisfy such recurrence relation as well. The
question that arises is, what is the most general graph polynomial that satisfies
similar linear recurrence relation.

In this paper1 all the graphs are unlabeled ; multiple edges and self loops are
allowed. We denote by G = (V, E) the graph with vertex set V and edge set E.
� Partially supported by the Israel Science Foundation for the project “Model Theo-

retic Interpretations of Counting Functions” (2007–2010) and by a grant of the Fund
for Promotion of Research of the Technion–Israel Institute of Technology.

�� Corresponding authors.
1 A preliminary version of this paper has been posted as [AGM07].
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Our investigation is motivated by the approach of J.G. Oxley and D.J.A.
Welsh, [OW79], in defining a most general graph polynomial in five variables
which satisfies a recurrence relation based on edge deletion and edge contraction,
for which they show, that up to a simple prefactor, the resulting polynomial is
the Tutte polynomial. Here we shall look for a most general polynomial which
satisfies a recurrence relation based on three edge elimination operations: edge
deletion, edge contraction and edge extraction.

1.1 Recursive Definitions of Graph Polynomials

Edge Elimination. We define three basic edge elimination operations on multi-
graphs:

– Deletion. We denote by G−e the graph obtained from G by simply removing
the edge e.

– Contraction. We denote by G/e the graph obtained from G by unifying the
endpoints of e. Note that this operation can cause production of multiple
edges and self loops.

– Extraction. We denote by G†e the graph induced by V \ {u, v} provided
e = {u, v}. Extraction removes also all the edges adjacent to e.

Additionally, we require the polynomial to be multiplicative for disjoint unions,
i.e., if G1⊕G2 denotes disjoint union of two graphs, then the polynomial P (G1⊕
G2) = P (G1) ·P (G2). This is justified by the fact that the polynomials occurring
in the literature are usually multiplicative. The initial conditions are defined
for an empty set (graph without vertices, usually, P (∅) = 1) and for a single
point P (E1). With respect to these operations, we recall the known recursive
definitions of graph polynomials:

The Matching Polynomial. There are different versions of the matching poly-
nomial discussed in the literature, for example matching generating polynomial
g(G, λ) =

∑n
i=0 aiλ

i and matching defect polynomial µ(G, λ) =
∑n

i=0(−1)iai

λn−2i, where n = |V | and ai is the number of i-matchings in G. We shall use
the bivariate version that incorporates the both above:

M(G, x, y) =
n∑

i=0

aix
n−2iyi (1)

The recursive definition of The matching polynomial satisfies the initial condi-
tions M(E1) = x and M(∅) = 1, and the recurrence relations

M(G) = M(G−e) + y · M(G†e)
M(G1 ⊕ G2) = M(G1) · M(G2) (2)

The Tutte Polynomial. We recall the definition of classical two-variable Tutte
polynomial (cf. for example B.Bollobás [Bol99]):
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Definition 1. Let G = (V, E) be a (multi-)graph. Let A ⊆ E be a subset of
edges. We denote by k(A) the number of connected components in the spanning
subgraph (V, A). Then two-variable Tutte polynomial is defined as follows

T (G, x, y) =
∑
A⊆E

(x − 1)k(A)−k(E)(y − 1)|A|+k(A)−|V | (3)

The Tutte polynomial satisfies the initial conditions T (E1) = 1 T (∅) = 1 and
has linear recurrence relation with respect to the operations above:

T (G, x, y) =

⎧⎨⎩
x · T (G/e, x, y) if e is a bridge,
y · T (G−e, x, y) if e is a loop,
T (G/e, x, y) + T (G−e, x, y) otherwise

T (G1 ⊕ G2, x, y) = T (G1, x, y) · T (G2, x, y) (4)

However, we shall use in this paper the version of the Tutte polynomial used by
A.Sokal [Sok05], known as the (bivariate) partition function of the Pott’s model:

Z(G, q, v) =
∑
A⊆E

qk(A)v|A| (5)

The partition function of the Pott’s model is co-reducible to the Tutte polynomial
via

T (G, x, y) = (x − 1)−k(E)(y − 1)−|V |Z(G, (x − 1)(y − 1), y − 1). (6)

It satisfies the initial conditions Z(E1) = q and Z(∅) = 1, and satisfies a recur-
rence relation which does not distinguish whether the edge e is a loop, a bridge,
or none of the two:

Z(G, q, v) = v · Z(G/e, q, v) + Z(G−e, q, v)
Z(G1 ⊕ G2, q, v) = Z(G1, q, v) · Z(G2, q, v) (7)

The Bivariate Chromatic Polynomial. K.Dohmen, A.Pönitz and P.Tittman in
[DPT03] introduced a polynomial P (G, x, y) as follows: there is two disjoint sets
of colors Y and Z, and a generalized proper coloring of a graph G = (V, E) is a
map φ : V �→ (Y � Z) such that for all {u, v} ∈ E, if φ(u) ∈ Y and φ(v) ∈ Y ,
then φ(u) �= φ(v) (The set Y is called therefore “proper colors”). For two positive
integers x > y, the value of the polynomial is the number of generalized proper
colorings by x colors, y of them are proper. To make this definition meaningful
for graphs with multiple edges we require that a vertex with a self-loop can
be colored only by a color in X \ Y and that a multiple edge does not affect
colorings.

Proposition 1. The polynomial P (G, x, y) satisfies the initial conditions P (E1)
= x and P (∅) = 1, and the following recurrence relation:

P (G, x, y) = P (G−e, x, y) − P (G/e, x, y) + (x − y) · P (G†e, x, y)
P (G1 ⊕ G2, x, y) = P (G1, x, y) · P (G2, x, y) (8)
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Proof. Let G = (V, E) be a graph, and P (G, x, y) be the number of generalized
colorings defined above. Let v ∈ V be any vertex. We denote by P v(G, x, y) the
number of generalized colorings of G, when v is colored by an ”improper” color,
i.e. φ(v) ∈ X \ Y . Observing that a vertex v can have any color in X \ Y , and
the coloring of V − {v} does not depend on the color of v, we get:

Lemma 2. P v(G, x, y) = (x−y)·P (G−v, x, y), where G−v denotes the subgraph
of G induced by V \ {v}.
Let e = {u, v} ∈ E be any edge of G, which is not a self-loop and not a multiple
edge. Consider the number of colorings of G−e. Any such coloring is either a
coloring of G, or a coloring of G/e, when the vertex u = v, which is produced by
the contraction, is colored by a proper color. Together with Proposition 2, that
raises:

P (G, x, y) = P (G−e, x, y) − P (G/e, x, y) + (x − y) · P (G†e, x, y) (9)

One can easily check that this equation is satisfied also for loops and multiple
edges. Together with the fact that a singleton can be colored by any color, and
the fact that the number of colorings is multiplicative, this completes the proof.

1.2 A Most General Edge Elimination Polynomial

Recursive Definition. Inspired by the characterization of the Tutte polynomial
given in [OW79], see also [Bol99], Theorem 2 of Chapter 10, we look for the most
general linear recurrence relation2, which can be obtained on unlabeled graphs
by introducing new variables, and which does not distinguish between local prop-
erties of the edge e which is to be eliminated3. To assure that the polynomial so
defined is unique, we have to prove that its definition is not dependent on the
order in which the edges are removed.

We start with the initial conditions ξ(E1) = x and ξ(∅) = 1, and recurrence
relation

ξ(G) = w · ξ(G−e) + y · ξ(G/e) + z · ξ(G†e)
ξ(G1 ⊕ G2) = ξ(G1) · ξ(G2) (10)

We prove:

Theorem 3. The recurrence relation (10) defines for each graph G a unique
polynomial ξ(G) if and only if one of the following conditions are satisfied:

z = 0 (11)
w = 1 (12)

2 The first paper to study general conditions under which linear recurrence relations
define a graph invariant is D.N.Yetter [Yet90].

3 It is conceivable that recurrence relations with various case distinctions depending
on local properties of e and more variables give other “most general” polynomials.
This is the reason why we speak of “a most general” edge elimination polynomial in
the title of the paper.
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Under condition (12), which allows a more general graph polynomial to be ob-
tained, the recurrence relation (10) is restricted to

ξ(G, x, y, z) = ξ(G−e, x, y, z) + y · ξ(G/e, x, y, z) + z · ξ(G†e, x, y, z)
ξ(G1 ⊕ G2, x, y, z) = ξ(G1, x, y, z) · ξ(G2, x, y, z)

ξ(E1, x, y, z) = x;
ξ(∅, x, y, z) = 1; (13)

Remark 4. From this theorem one sees immediately that ξ(G, x, y, z) gives, by
choosing appropriate values for the variables and simple prefactors, the partition
function of the Pott’s model, the bivariate matching polynomial and the bivariate
chromatic polynomial with all their respective substitution instances, including
the classical chromatic polynomial, the Tutte polynomial and the independent set
polynomial, [DHTL02, GH83]. The latter two polynomials are already substitu-
tion instances of the bivariate chromatic polynomial P (G, x, y) of [DPT03]. The
following table summarizes these observations.

Pott’s model Z(G, q, v) = ξ(G, q, v, 0)

Bivariate Tutte polynomial T (G, x, y) = (x − 1)−k(E) · (y − 1)−|V |·
ξ (G, (x − 1)(y − 1), (y − 1), 0)

Bivariate matching polynomial M(G, x, y) = ξ(G, x, 0, y)
Bivariate chromatic polynomial P (G, x, y) = ξ(G, x,−1, x − y)

Explicit definition. We now give an explicit form of the polynomial ξ(G, x, y, z)
using 3-partition expansion4:

Theorem 5. Let G = (V, E) be a (multi)graph. Then the edge elimination poly-
nomial ξ(G, x, y, z) can be calculated as

ξ(G, x, y, z) =
∑

(A�B)⊆E

xk(A�B)−kcov(B) · y|A|+|B|−kcov(B) · zkcov(B) (14)

where by abuse of notation we use (A � B) ⊆ E for summation over subsets
A, B ⊆ E, such that the subsets of vertices V (A) and V (B), covered by respective
subset of edges, are disjoint: V (A) ∩ V (B) = ∅; k(A) denotes the number of
spanning connected components in (V, A), and kcov(B) denotes the number of
covered connected components, i.e. the connected components of (V (B), B).

Remark 6. From Theorem 5 one can see that ξ(G, x, y, z) is a polynomial de-
finable in Monadic Second Order Logic, with quantification over sets of edges
(MSOL2), where an order over vertices is to be used for stating “number of
connected sets”, but the final result is order-independent. We shall not use logic
in the sequel of the paper. For details the reader is referred to [Mak05].
4 A more precise name would be “Pair of two disjoint subsets expansion”. We chose

the name 3-partition expansion, as any two disjoint subsets induce a partition into
three sets.
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Counting Weighted Graph Homomorphisms. Another common way to define
graph polynomials is counting weighted graph homomorphisms. Let the weighted
graph H = (VH , EH) be defined as follows:

– H is obtained by joining 3 cliques with all loops: H = KA
x 
� KB

p 
� KI
p ,

such that KA
x has x vertices, KB

p and KI
p have p vertices each.

– We denote by V A the vertices of KA, by V B the vertices of KB and by V I

the vertices of KI

– The weight function w = (α, β): α : VH �→ R and β : EH �→ R

– α(v) =
{

1 if v ∈ (V A ∪ V B)
−1 otherwise

– β(u, v) =
{

y + 1 if (u = v) ∧ (u, v ∈ (V A ∪ V B))
1 otherwise

In [AGM08] the following is shown:

Theorem 7. Let ZH(G) be a homomorphism function of a graph G = (V, E)
into a weighted graph H above.

ZH(G) =
∑

h : V �→ VH
homomorphism

∏
v∈V

α(h(v))
∏

(u,v)∈E

β(h(u), h(v))

Then, for all nonnegative integers x and p and all y ∈ R, we have

ξ(G, x, y, p · y) = ZH(G)

Remark 8. A general characterization of graph parameters which can be ob-
tained from homomorphism functions by choosing appropriate weights is given
in [FLS07]. This characterization requires that the weights α are positive reals.
However, in Theorem 7, we use negative values for α.

2 The Most General Recurrence Relation

We are looking for the most general linear recurrence relation with respect to
edge deletion, edge contraction and edge extraction operation that can be ob-
tained by introducing new variables. Recall that we are interested in a graph
invariant, e.i. the resulting function should not depend on the order of graph
deconstruction. Moreover, this invariant should be a multiplicative graph poly-
nomial.

From this consideration alone we obtain the initial condition ξ(∅) = 1; and
the product rule:

ξ(G1 ⊕ G2) = ξ(G1) · ξ(G2)

Indeed, the disjoint union with an empty set gives the same graph, so the re-
sulting function should also remain the same.
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We now formulate the edge elimination rule introducing a new variable wher-
ever we can. We set

ξ(G, x, y, z, t) = t · ξ(G−e, x, y, z, t) + y · ξ(G/e, x, y, z, t) + z · ξ(G†e, x, y, z, t)
ξ(E1, x, y, z, t) = x; (15)

Let G be a graph as presented on Fig. 1. Note that the subgraphs H1, H1−u,
H2 and H2−w can be different and have (in general) different ξ. Since we are

Fig. 1. Testing order invariance of edge removal

looking for a graph invariant, we must obtain the same result by applying the
edge elimination rule first on the edge e1 and then on the edge e2, as in case
when we apply the edge elimination rule first on the edge e2 and then on the
edge e1.

ξ(G) = t · ξ(G−e1) + y · ξ(G/e1) + z · ξ(G†e1 ) =
= t · ξ(H1) · [x · t · ξ(H2) + y · ξ(H2) + z · ξ(H2−w)] +

y ·
[
t · ξ(H1)ξ(H2) + y · ξ(G/e1/e2) + z · ξ(H1−u)ξ(H2−w)

]
+

z · ξ(H1−u)ξ(H2) (16)

On the other hand,

ξ(G) = t · ξ(G−e2) + y · ξ(G/e2) + z · ξ(G†e2 ) =
= t · ξ(H2) · [x · t · ξ(H1) + y · ξ(H1) + z · ξ(H1−u)] +

y ·
[
t · ξ(H1)ξ(H2) + y · ξ(G/e1/e2) + z · ξ(H1−u)ξ(H2−w)

]
+

z · ξ(H2−w)ξ(H1) (17)

Solving the above two equations, we get:

tz · ξ(H1)ξ(H2−w) + z · ξ(H1−u)ξ(H2) = tz · ξ(H1−u)ξ(H2) + z · ξ(H1)ξ(H2−w)

Hence, we have the following necessary condition:

z = 0 or (18)
t = 1 or (19)
ξ(H1)ξ(H2−w) = ξ(H1−u)ξ(H2) for any H1 and H2 (20)

Under condition (20) we get the polynomial ξ(G) = x|V (G)| which we also get
under the assumption z = 0 or t = 1. In case of z = 0 it can be easily seen that
the resulting function is a substitution instance of the Pott’s model:
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ξ(G, x, y, 0, t) = t|E| · Z(G, x,
y

t
) (21)

Since the partition function of the Pott’s model can be also obtained when t = 1,
the latter case is considered more general. That brings us back to the recurrence
relation (13). To complete the proof of Theorem 3, we need now to show that
any two steps of the graph decomposition using (13) are interchangeable. This
involves two parts,

– Edge elimination and disjoint union, and
– Decomposition of a graph by elimination of any two edges in different order.

The proof of the first part is simple. Let G be a disjoint union of two graphs: G =
H1⊕H2. Without loss of generality, assume that the edge e, which is being elimi-
nated, is in E(H1). Then use the linearity of our recurrence relation to show that

ξ(G) =
(
ξ(H1−e) + y · ξ(H1/e) + z · ξ(H1†e)

)
· ξ(H2) =

= ξ(H1−e) · ξ(H2) + y · ξ(H1/e) · ξ(H2) + z · ξ(H1†e) · ξ(H2)

The second part requires analyzing of three possible cases:

Fig. 2. Different cases to check order invariance of edge removal

– Case 1: Two the edges have no common vertices (graphs G1, G2, G3);
– Case 2: Two the edges have one common vertex, and at least one exclusive

vertex (graphs G4, G5);
– Case 3: Two the edges have no exclusive vertices (graphs G6, G7).

The detailed analysis of these cases is straightforward.

3 The Explicit Form of ξ(G)

We need to show that the expression (14) satisfies the initial conditions of (13),
that it is multiplicative and that it also satisfies the edge elimination rule of (13).
Then by induction on the number of edges in G the theorem holds.
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The first fact is trivial; the second one can be easily checked by reader. Indeed,
the summation over subsets of edges of G(V, E) = G1(V1, E1) ⊕ G2(V2, E2) can
be regarded as a summation over the subsets of E1, and then independently over
the subsets of E2. Therefore, we just need to prove that

Lemma 9. The explicit expression given by (14) satisfies the edge elimination
rule of (13).

Proof. Let G = (V, E) be the (multi)graph of interest. Let N(G) be defined as

N(G, x, y, z) =
∑

(A�B)⊆E

xk(A�B)−kcov(B) · y|A|+|B|−kcov(B) · zkcov(B) (22)

where k(A) denotes the number of connected components in (V, A), and kcov(B)
denotes the number of the connected components of (V (B), B), where V (B) ⊆ V
are the vertices covered by the edges of B. Let e be the edge we have chosen to
reduce. Any particular choice of A and B can be regarded as a vertex-disjoint
edge coloring in 2 colors A and B, when part of the edges remains uncolored.
We divide all the coloring into three disjoint cases:

– Case 1: e is uncolored;
– Case 2: e is colored by B, and it is the only edge of a colored connected

component;
– Case 3: All the rest. That means, e is colored by A, or e is colored by B but

it is not the only edge of a colored connected component.

In case 1, we just sum over colorings of G−e:

N1(G) =
∑

(A�B)|= Case 1

xk(A�B)−kcov(B) · y|A|+|B|−kcov(B) · zkcov(B) = N(G−e)

In case 2, the edge e is a connected component of (V (B), B). Therefore, if we
analyze now N(G†e), we will get

– The number of edges colored by A is the same;
– The number of edges colored by B is reduced by one;
– The total number of colored connected components is reduced by one;
– The number of covered connected components colored B is reduced by one;

This gives us

N2(G) =
∑

(A�B)|= Case 2

xk(A�B)−kcov(B) · y|A|+|B|−kcov(B) · zkcov(B) = z · N(G†e)

And finally, in case 3, e is a part of a bigger colored connected component, or
it is alone a connected component colored by A. In this case, we analyze the
colorings of G/e:
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– Either |A| or |B| is reduced by 1, the other remained the same;
– The total number of colored connected components remained the same;
– The number of covered connected components colored B remained the same.

According to the above,

N3(G) =
∑

(A�B)|= Case 3

xk(A�B)−kcov(B) · y|A|+|B|−kcov(B) · zkcov(B) = y · N(G/e)

which together with N(G) = N1(G) + N2(G) + N3(G) completes the proof.

4 Computational Complexity of ξ(G)

In this section we consider the complexity of computation of ξ(G). In general, this
polynomial is �P-hard to compute, as every instance stated in the Remark 4 is
�P-hard. Moreover, C. Hoffmann proves in [Hof08] that at every point (x, y, z) ∈
Q, with x �= 0, z �= −xy, (x, z) �∈ {(1, 0), (2, 0)}, y �∈ {−2,−1, 0}, evaluating
ξ(G, x, y, z) is �P-hard.

Recall that, according to Remark 6, the formula (14) can be used to give an
order invariant definition in Monadic Second Order Logic, with quantification
over sets of edges, and an auxiliary order. Hence, from the general theorem from
[Mak05, Mak04], we immediately get that ξ(G) is polynomial time computable
on graphs of tree-width at most k where the exponent of the run time is inde-
pendent of k. The drawback of the general method of [Mak05, Mak04] lies in the
huge hidden constants, which make it practically unusable. However, an explicit
dynamic algorithm for computing the polynomial ξ(G) on graphs of bounded
tree-width, given the tree decomposition of the graph, where the constants are
simply exponential in k, can be constructed along the same ideas as presented
in [Tra06, FMR08, MRAG06].

5 Conclusions and Open Questions

We have introduced a new graph polynomial ξ(G, x, y, z) from which the Tutte
polynomial, the matching polynomial and the bivariate chromatic polynomial
can be obtained by simple evaluations. We have given three equivalent defini-
tions of this polynomial, and we have shown that it is the most general graph
polynomial satisfying a recurrence relation (without case distinctions) with re-
spect to three edge elimination operations.

There are still some challenging open questions.

Recursive Definitions with Case Distinctions. Contrary to the approach in
[OW79], we have avoided case distinctions in the recurrence relation. This was jus-
tified because it still gives the Tutte polynomials as special cases. Alternatively we
couldhave introduced a polynomial inmore variableswhichdoes incorporate a case
distinction with respect to some local properties of an edge, such as being a bridge
or a loop, or we could have allowed the deletion of single vertices, and distinguish
between cases where they are isolated with or without loops, etc.
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Question 1. Does one get essentially stronger polynomials if one allows also dele-
tion of single vertices and takes into account case distinctions?

Distinctive Power. We know that the polynomial ξ(G) has at least the same dis-
tinctive power as the Tutte polynomial and the bivariate chromatic polynomial
together, but more than every one of them individually. Indeed, since T (G, x, y)
and P (G, x, y) are both substitution instances of ξ(G), if ξ(G) coincides for two
graphs, so do T (G, x, y) and P (G, x, y). On the other hand, we do not know
whether ξ(G) has more distinctive power.

Question 2. Are there two graphs G1, G2 such that for all x, y we have
T (G1, x, y) = T (G2, x, y) and P (G1, x, y) = P (G2, x, y), but such that for some
x, y, z ξ(G, x, y, z) �= ξ(G2, x, y, z)?

Complexity on Graph Classes of Bounded Clique-Width. We have noted that
for graphs of tree-width at most k computing the edge reduction polynomial
ξ(G) is fixed parameter tractable (FPT) in the sense of [DF99, FG06]. Another
graph parameter, introduced in [CO00] and discussed there is the clique-width. It
was stated as an open problem whether the Tutte polynomial is fixed parameter
tractable for graphs of clique-width at most k, [GHN05, MRAG06]. Very recently,
F. Fomin, P. Golovach, D. Lokshtanov and S. Saurabh [FGLS08] showed that
computing the chromatic number of graphs of clique-width at most k is W [1]-
hard, and therefore not fixed parameter tractable. It follows from this that it is
also true for evaluating the Tutte polynomial and our polynomial ξ(G). Further
more, this shows that the results on the complexity of evaluating the chromatic
polynomial in [MRAG06] are optimal.

Acknowledgments. We would like to thank B. Courcelle, T. Kotek and to the
anonymous referees, for their comments on early versions of this paper.
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Abstract. Given a metric graph G = (V, E) of n vertices, i.e., a com-
plete graph with an edge cost function c : V × V → R≥0 satisfying
the triangle inequality, the metricity degree of G is defined as β =
maxx,y,z∈V

˘ c(x,y)
c(x,z)+c(y,z)

¯
∈

ˆ
1
2
, 1

˜
. This value is instrumental to estab-

lish the approximability of several NP-hard optimization problems defin-
able on G, like for instance the prominent traveling salesman problem,
which asks for finding a Hamiltonian cycle of G of minimum total cost.
In fact, this problem can be approximated quite accurately depending on
the metricity degree of G, namely by a ratio of either 2−β

3(1−β)
or 3β2

3β2−2β+1
,

for β < 2
3

or β ≥ 2
3
, respectively. Nevertheless, these approximation al-

gorithms have O(n3) and O(n2.5 log1.5 n) running time, respectively, and
therefore they are superlinear in the Θ(n2) input size. Thus, since many
real-world problems are modeled by graphs of huge size, their use might
turn out to be unfeasible in the practice, and alternative approaches re-
quiring only O(n2) time are sought. However, with this restriction, all
the currently available approaches can only guarantee a 2-approximation
ratio for the case β = 1, which means a 2β2

2β2−2β+1
-approximation ratio

for general β < 1. In this paper, we show how to enhance –without af-
fecting the space and time complexity– one of these approaches, namely
the classic double-MST heuristic, in order to obtain a 2β-approximate
solution. This improvement is effective, since we show that the double-
MST heuristic has in general a performance ratio strictly larger that 2β,
and we further show that any re-elaboration of the shortcutting phase
therein provided, cannot lead to a performance ratio better than 2β.

Keywords: Traveling Salesman Problem, Metric Graphs, NP-hardness,
Linear-time Approximation Algorithms.

1 Introduction

The Traveling Salesman Problem (TSP, for short) is one of the most promi-
nent and studied combinatorial optimization problems. It is defined as follows:
Given a complete, undirected graph G = (V, E) of n vertices, with an edge
cost function c : V × V → R≥0, find a Hamiltonian cycle H = (V, E(H)) of
G (i.e., a simple cycle that spans all the vertices of G) of minimum total cost
c(H) =

∑
e∈E(H) c(e).

H. Broersma et al. (Eds.): WG 2008, LNCS 5344, pp. 43–54, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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The TSP is intractable and does not admit any polynomial-time constant-
ratio approximation algorithm, unless P = NP. On the other hand, when the edge
cost function induces a metric on G (i.e., for any x, y, z ∈ V, c(x, z) ≤ c(x, y) +
c(y, z)), things improve sensibly. More specifically, in such a case the problem
is known as the metric TSP, and it can be approximated by the Christofides
algorithm [4] within an approximation factor of 3/2, but still it remains NP-
hard to find an approximate solution for it within a factor better than 220/219
[9]. In some special metric cases, however, the approximability of the problem
becomes really effective. For instance, when vertices of G are actually points in
a fixed-dimension Euclidean space, and the edge cost function is their Euclidean
distance, then the problem (also known as geometric TSP) admits a polynomial-
time approximation scheme [1].

Getting back to the general metric case, it is interesting to notice that one
can define suitable approximation algorithms depending on the metricity degree
of G, which is defined as β = maxx,y,z∈V

{
c(x,y)

c(x,z)+c(y,z)

}
∈
[1
2 , 1
]
. More pre-

cisely, for 1
2 ≤ β ≤ 2

3 , there exists a 2−β
3(1−β) -approximation algorithm [2],1 while

for 2
3 < β ≤ 1, the best approximation algorithm is still the Christofides’ one,

with a ratio of 3β2

3β2−2β+1 . In the following, we will therefore assume that the
input graph is β-metric (i.e., its metricity degree is equal to β), and the metric
TSP with this additional parameter will be correspondingly named the β-metric
traveling salesman problem (β-MTSP for short, also known as strengthened-
metric TSP).

Both the aforementioned best-known approximation algorithms for the β-
MTSP have a shortcoming, however: their time complexity is superlinear in the
input size. Indeed, the former runs in O(n3) time,2 while the latter runs in
O(n2.5 log1.5 n) time [8]. From a practical point of view, this might result in a
severe drawback, since often the input graph is massive. For instance, the well-
known benchmark TSPLIB of TSP instances [10] contains several input graphs
with order of 105 vertices (most of them coming from roadmaps, and then most
likely metric), for which these algorithms become computationally expensive. In
such a case, a linear-time approximation algorithm would be desirable, even if a
(possibly small) price in terms of performance ratio has to be paid. In this paper,
we exactly aim at this goal. We emphasize that insisting on this trade-off is not
completely novel, and linear-time constrained approximation algorithms have
been already developed in the past, but as far as we know, this was done only
for high-degree polynomial-time solvable problems (e.g., the weighted matching
problem [6] and the watchman route problem [11]).

1 Notice that for β = 1/2, all the graph edges have the same cost, and the problem
becomes trivial.

2 This bound can be obtained after conditioning the costs of the input graph G in
such a way that the problem of determining a minimum-cost cycle cover of G, which
represents the core procedure of the algorithm in [2], reduces to that of finding a
maximum-cost simple 2-matching in the transformed graph, which can be solved in
O(n3) time [7].
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Actually, designing a linear-time approximation algorithm for the β-MTSP
starting from the efficient implementation given in [8] of the Christofides algo-
rithm sounds prohibitive, since this uses the very efficient O(n2.5 log1.5 n) time
approximate minimum-cost perfect matching algorithm as a brick for construct-
ing a feasible solution (and in the worst case such an algorithm runs on a graph
having Θ(n) vertices). The same holds for the algorithm of Böckenhauer et
al. [2], which makes use of the long-standing O(n3) time procedure for com-
puting a maximum-cost perfect 2-matching. Thus, a different approach needs to
be used.

A well-known approximation algorithm for the metric TSP is the double-
tree shortcutting algorithm, which works as follows: first, construct a Minimum
Spanning Tree (MST, for short) T of G; after, construct a Eulerian tour D
on the multigraph G′ = T ∪ T , and finally return a Hamiltonian cycle H
from D by shortcutting in G repeated vertices in the Eulerian tour. This al-
gorithm (which we will call Double-MST shortcut in the rest of the paper) is
easily seen to guarantee a 2-approximation ratio, and then it turns out to be
a 2β2

2β2−2β+1 -approximation algorithm for the β-MTSP [2].3 As a matter of fact,
it is then always outperformed by its super-linear counterparts. In an effort
of improving this gap, by maintaining the linear-time constraint, we therefore
develop an easy modification of such an algorithm, which allows us to obtain,
by means of an accurate analysis, a 2β-approximate solution, thus beating the
Double-MST shortcut for any 1/2 < β < 1. This improvement is effective, since
as a side result, we show that for any 1/2 < β < 1, the performance ratio of
the Double-MST shortcut is strictly larger than 2β. As a matter of fact, the
reduction of the theoretical gap with respect to the superlinear approximation
algorithm is significant: for instance, for all 1/2 < β ≤ 3/4, our algorithm is only
about 5% away from it in the worst case, while for the Double-MST shortcut
this gap raises to about 26%.

It is worth noticing that the Double-MST shortcut approach is at the basis
of one of the best-performing heuristics available for the TSP, namely that de-
veloped by Deineko and Tiskin[3,5]. This heuristic computes in O(4dn2) time
(where d denotes the maximum node-degree in T ) the minimum cost Hamil-
tonian cycle that can be obtained using the Double-MST shortcut approach.
From now on, we will call this heuristic with Double-MST Min-weight shortcut.
Extensive computational experiments have shown that this strategy allows very
good approximations, often better that those obtained with heuristics derived
by the Christofides algorithm, although it requires a running time which might
be exponential. However, despite its high performances registered in practice, no
theoretical approximation guarantee better than that of Double-MST shortcut
was exhibited in [5]. Our analysis immediately shows that the algorithm given
in [5] has actually an approximation ratio of 2β, for any β < 1. Moreover, we
also prove that this ratio is asymptotically tight. Due to the practical relevance

3 This ratio results from the fact that if A is an α-approximation algorithm for the
metric TSP, then A is an α·β2

β2+(α−1)(1−β)2
-approximation algorithm for the β-MTSP

(see [2] for further details).
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of heuristics based on the minimum-weight shortcutting of D, we see this as a
noteworthy consequence of our results.

The rest of the paper is organized as follows: in Section 2 we show that
the Double-MST shortcut algorithm does not return a 2β-approximate solu-
tion; in Section 3 we present an enhanced version of the previous algorithm
and prove it computes a 2β-approximate solution; in Section 4 we prove that
Double-MST Min-weight shortcut does not compute a solution within a con-
stant factor smaller than 2β, thus proving that no algorithm based on the
Double-MST shortcut approach can be significantly better than the one pre-
sented in the previous section. Finally, in Section 5, we provide a graphical
comparison (in terms of approximation ratio) between our algorithm and its
counterparts.

2 Double-MST Shortcut Is Not a 2β-Apx Algorithm

From now on, we will assume that the input graph G = (V, E) is an instance of
the β-MTSP. Moreover, paths and cycles will be expressed explicitly throughout
the sequence of constituting vertices. The Double-MST shortcut algorithm does
not prescribe how to shortcut repeated vertices in the Eulerian cycle obtained
by merging the two copies of the MST. An easy to state and widely used rule,
is to perform shortcut according to the visiting order of vertices in a depth-first
search of the MST. Applying this rule, the Double-MST shortcut algorithm can
be stated as follows:

Algorithm 1. An implementation of the Double-MST shortcut algorithm
Input: A β-metric graph G = (V, E).
Step 1. Construct an MST T of G.
Step 2. Perform a depth-first search on T starting from an arbitrary vertex v0. Let

v0, v1, . . . , vn−1 be the sequence of vertices in the order they are visited.
Output: Return the cycle H = v0v1 . . . vn−1v0 of G.

As said in the introduction, this algorithm turns out to be a 2β2

2β2−2β+1 -approxi-
mation algorithm for the β-MTSP. Although this ratio has not been proven to
be tight, in the following we provide an input instance showing that the cost of
the Hamiltonian cycle computed by Double-MST shortcut can be strictly larger
than 2β times the optimal one.

For a given 1
2 < β < 1, let G = (V, E) be a β-metric graph with vertex set

V = {v0, x1, y1, z1, . . . , xh, yh, zh}, and such that the edge costs are defined as
follows:

– c(v0, xi) = 1, c(v0, yi) = β
1−β , c(v0, zi) = 2β, ∀1 ≤ i ≤ h;

– c(yi, v) = β
1−β , ∀1 ≤ i ≤ h and ∀v ∈ V \ {yi};

– c(xi, xj) = 2β, ∀1 ≤ i, j ≤ h;
– c(zi, zj) = 2β, ∀1 ≤ i, j ≤ h;
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– c(xi, zj) = 1, ∀1 ≤ i ≤ j ≤ h;
– c(xi, zj) = 2β2 + β, ∀1 ≤ j < i ≤ h.

An MST T of G is formed by edges (v0, xi), (xi, yi), (xi, zi), for each 1 ≤ i ≤
h.In Figure 1 the MST for the case h = 3 is depicted. Assume now that the
Double-MST shortcut algorithm takes v0 as root of T , and performs a depth-
first search visiting yi before zi, for all 1 ≤ i ≤ h. Then, the algorithm builds
the solution H = v0x1y1z1x2y2z2 . . . xhyhzhv0, having cost (see Figure 2 for the
case h = 3)

1

y1 z1

x1
β

1−β 1
β

1−β 1
β

1−β

x2

y2 z2

x3

y3 z3

v0

111

Fig. 1. An MST of G

c(H) =
1

1 − β

(
h(3β + β2 − 2β3) + 1 − 3β2 + 2β3) .

Consider the solution H∗ = y1y2 . . . yhv0xhzhxh−1zh−1 . . . x1z1y1 which has cost
(see Figure 2 for the case h = 3)

c(H∗) =
1

1 − β
(h(2 − β) + β) .

2β2 + β

1
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β

1−β z1
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2β2 + β

x3

β
1−βy2 z2 y3

β
1−β z3
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y2 z2 y3 z3

β
1−β

β
1−β

β
1−β

1

11111

x1 x2

β
1−β

H∗H

Fig. 2. The solution H constructed by the Double-MST shortcut algorithm on the left,
and the solution H∗ on the right

Therefore, if Opt denotes an optimal solution, we have

c(H)
c(Opt)

≥ c(H)
c(H∗)

=
h(3β + β2 − 2β3) + 1 − 3β2 + 2β3

h(2 − β) + β
> 2β,

where the last inequality holds whenever h > 2
β(1−β) − 1−β

β .
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3 The 2β-Approximation Algorithm

In this section we provide a refinement of Double-MST shortcut which returns a
2β-approximate solution for the β-MTSP (its pseudo-code is given in Algorithm
2). In the following, given a vertex v of the considered rooted tree T , we denote
by Tv the subgraph of T induced by v and by its children in T . We say that
v′ ∈ Tv is a closest child of v if c(v, v′) ≤ c(v, v′′), ∀v′′ ∈ Tv.

Algorithm 2. The Refined Double-MST shortcut algorithm
Input: A β-metric graph G = (V, E).
Step 1. Construct an MST T of G.
Step 2. Root T at any arbitrary vertex of degree 1. Starting from the root, do a careful

depth-first search of T , i.e., a depth-first search with the following additional rule:
when the visit of an internal vertex of T begins, choose one of its closest children
as the next vertex to visit. Let v0, v1, . . . , vn−1 be the sequence of vertices in the
order they are visited.

Output: Return the cycle H = v0v1 . . . vn−1v0 of G.

3.1 Algorithm Analysis

In this section we prove that Refined Double-MST shortcut returns a 2β-appro-
ximate solution. The core idea of the proof is to use properties of a careful depth
first search together with the fact that in β-metric graphs, the cost of a direct
edge between two vertices u and v is never larger than β times the cost of any
other path between u and v. More formally, a simple proof by induction shows
that

Lemma 1. Let P = v0v1 . . . vk be a simple path in G of length k ≥ 3. Then

c(v0, vk) ≤ β c(P ) − (1 − β)
k−2∑
j=1

(
βj

k−1−j∑
i=0

c(vi, vi+1)

)
.

��
Let us denote by A the set of edges of T belonging to H , and by B = E(H) \A
the remaining edges in H . The following lemma holds:

Lemma 2. For every non-leaf vertex vj of T , we have that |A ∩ E(Tvj )| = 1.

Proof. Clearly, the lemma holds for j = 0. Hence, assume that j > 0. There
are exactly two edges in E(H) incident to vj . One of them connects vj to vj−1,
so it does not belong to Tvj (indeed, for the depth-first search properties, vj−1
cannot be a descendent of vj). If vj is not a leaf, one of its children is visited
immediately after vj , hence (vj , vj+1) ∈ E(Tvj ). ��

Observe that edges in A are exactly edges of the form (u, v), where u is an
internal node of T while v is a closest child of u. Moreover, observe that since
the root v0 has degree 1, then edges (v0, v1), (v1, v2) always belong to A. For any
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edge e ∈ E(H), let Pe denote the unique path in T joining the two endpoints of
e (notice that if e ∈ A, then Pe consists of e). Because of the depth-first search
properties, it is not hard to see that, for any e ∈ E(T ), there are exactly two
edges of H , say e1, e2, that cover e, i.e., e ∈ E(Pe1 ) and e ∈ E(Pe2).

Let us denote by Opt an optimal solution and by e∗ an edge of Opt of
maximum cost. As Opt minus e∗ is a spanning tree of G, we can claim that
c(Opt) ≥ c(T ) + c(e∗). In the remaining part of this section we will prove that
c(H) ≤ 2β

(
c(T ) + c(e∗)

)
, thus proving that c(H) ≤ 2β c(Opt). The idea of the

proof is to charge the cost of H to the edges in T plus e∗ in such a way that
each of these edges will be charged with at most 2β times its cost. This can be
done in a simple way because every edge f in H is associated with Pf , a path
in T . Therefore, it is quite natural to start charging the cost of f to the edges
of Pf according to the formula in Lemma 1. Let e be an edge of T , and let
e1, e2 ∈ E(H) be such that Pe1 , Pe2 cover e. Using the formula in Lemma 1, we
can observe the following

– if e �∈ A then e is charged with at most 2β times its cost, as both Pe1 , Pe2

are different from e;
– if e ∈ A then e is charged with at most 1 + β times its cost, as either Pe1 or

Pe2 must be different from e.

Therefore, the unique problem to solve is how to uncharge edges in A and
still keep every other edge with a charge of 2β times its cost. By the careful
depth-first search, we know that A contains only edges of the form (u, v), where
u is an internal node of T while v is a closest child of u. By definition of closest
child, we have that c(u, v) ≤ c(u, v′), ∀(u, v′) ∈ E(Tu). Moreover, it is possible to
prove that c(e) ≤ c(e∗), ∀e ∈ E(T ). Finally, in β-metric graphs, with 1

2 ≤ β < 1,
two adjacent edges f, f ′ satisfies c(f) ≤ β

1−β c(f ′) (see [2]). Since from Lemma 1,
some edges may be charged with less than 2β times their cost, we can therefore
uncharge (u, v) using the quantities we are saving on its adjacent edges in T plus
e∗ using the above rules. In what follows, we will prove that this can always be
done in such a way that each edge of T plus e∗ will be charged by at most 2β times
its cost. The quality of the solution computed by Refined Double-MST shortcut
is better than the one computed by Double-MST shortcut because, whenever an
edge (u, v′) ∈ E(Tu) has been charged with (2β−δ)c(u, v′), thanks to the careful
depth-first search, we can uncharge (u, v) by δ c(u, v) instead of uncharging it
by the smaller value 1−β

β δ c(u, v). Before providing a formal proof of the above
idea, we point out that the restriction of having a vertex of degree 1 as the root
of T is only for the purpose of avoiding technicalities. All the results contained
in this section can be extended to the general case in which T is rooted at any
arbitrary vertex.

For any e ∈ E(H), with Pe = x0x1 . . . xk, we define Ve as the set of vertices
{x1, x2, . . . , xk−2}, and V ′ =

⋃
e∈E(H),|E(Pe)|≥3 Ve. The following holds:

Lemma 3. Let e = (vj , vj+1) ∈ E(H) be such that Pe = x0x1 . . . xk, with
x0 = vj, xk = vj+1, and assume that k ≥ 3. Then, for 1 ≤ i ≤ k − 1, xi is the
parent in T of xi−1.
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Proof. Since Pe is a simple path in T , all the vertices in Pe but one, say xh,
have their parent in T contained in Pe. Suppose by contradiction that h < k−1.
Then xk is a descendent of xh+1 in T . It follows that xh+1 is visited after x0
and before xk. But this is not possible since (x0, xk) ∈ E(H) implies that xk is
visited immediately after x0. Therefore, it must be either h = k − 1 or h = k. In
both cases, this implies that xk−1 is the parent of xk−2 in T , which in its turn
is the parent of xk−3 in T , and so on. From this, the claim follows. ��

Let L denote the set of leaves of T . We have that

Lemma 4. V ′ = V \ (L ∪ {v0, v1}).

Proof. Lemma 3 implies that V ′ cannot contain any of the vertices in L∪{v0, v1}.
Hence, in order to prove the claim, it is enough to show that any internal vertex
vj of T but v0 and v1 belongs to Ve, for some e ∈ E(H). As vj is an internal
vertex and because of the depth-first search properties, there is an edge in H ,
say e = (vh−1, vh modn), with h − 1 > j, such that vh−1 is a proper descendent
of vj while vh mod n is not a descendent of vj . Then, in order to conclude that
vj ∈ Ve, it suffices to observe that from the depth-first search properties, vh mod n

cannot be the parent of vj in T . ��

From now on, we will denote by A′ the set of edges in A but (v0, v1), (v1, v2).
Moreover, we define a function σ : A′ → V ′ which maps each edge e ∈ A′ into
the endpoint of e which is the parent in T of the other endpoint. From the above
lemma and from Lemma 2, it is easy to derive that σ is a bijective function. We
can now prove the following

Lemma 5. For every e ∈ B such that Pe = x0x1 . . . xk contains k ≥ 3 edges,
we have that

k−2∑
j=1

(
βj

k−1−j∑
i=0

c(xi, xi+1)

)
≥
∑
x∈Ve

c(σ−1(x)). (1)

Proof. Grouping together terms with respect to the edge costs, the left-hand
side of (1) becomes

k−2∑
j=1

βjc(x0, x1) +
k−2∑
i=1

k−1−i∑
j=1

βjc(xi, xi+1). (2)

By suitably rearranging its terms, (2) can be rewritten as

k−2∑
i=1

⎛⎝k−1−i∑
j=1

βjc(xi−1, xi) + βk−1−ic(xi, xi+1)

⎞⎠ . (3)

Now we bound the i-th term of the external summation in (3) with respect
to the cost of edge σ−1(xi). Recall that (see [2]) for any two adjacent edges
e1, e2 of G, it is c(e1) ≤ β

1−β c(e2). Then, for each xi ∈ Ve it is c(σ−1(xi)) ≤
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β
1−β c(xi, xi+1). Moreover, c(σ−1(xi)) ≤ c(xi−1, xi), since σ−1(xi) and (xi−1, xi)
are both edges of Txi . Then we have

(3) ≥
k−2∑
i=1

⎛⎝k−1−i∑
j=1

βjc(σ−1(xi)) + βk−2−i(1 − β) c(σ−1(xi))

⎞⎠
=

k−2∑
i=1

⎛⎝k−2−i∑
j=1

βj + βk−2−i

⎞⎠ c(σ−1(xi))

≥
k−2∑
i=1

⎛⎝k−2−i∑
j=1

1
2j

+
1

2k−2−i

⎞⎠ c(σ−1(xi)) =
k−2∑
i=1

c(σ−1(xi)) =
∑
x∈Ve

c(σ−1(x))

where the last inequality holds because β ≥ 1
2 . ��

We are now ready to give our main result:

Theorem 1. The Refined Double-MST shortcut algorithm is a 2β-approxi-
mation algorithm for the β-MTSP.

Proof. Let us start by setting B =
⋃

2≤i≤n Bi, where Bi = {e ∈ B s.t. |E(Pe)| =
i}. For any e ∈ E(H), let Pe = xe

0x
e
1 . . . xe

k. We can bound the total cost of H with

c(H) =
∑
e∈A

c(e) +
∑

e∈B2

c(e) +
n∑

k=3

∑
e∈Bk

c(e) ≤
∑
e∈A

c(e) + β
∑

e∈B2

c(Pe)+

+
n∑

k=3

∑
e∈Bk

⎛⎝β c(Pe) − (1 − β)
k−2∑
j=1

(
βj

k−1−j∑
i=0

c(xe
i , x

e
i+1)

)⎞⎠
≤
∑
e∈A

c(e) + β

n∑
k=2

∑
e∈Bk

c(Pe) − (1 − β)
n∑

k=3

∑
e∈Bk

∑
x∈Ve

c(σ−1(x))

where the first inequality holds from the β-metricity of G and from Lemma 1,
while the last inequality holds from Lemma 5. Since each edge of T is covered
by exactly two edges of H , then

n∑
k=2

∑
e∈Bk

c(Pe) =
∑
e∈A

c(e) + 2
∑

e∈E(T )\A

c(e).

By definition, observe that each e ∈ E(H) for which Ve ⊆ V ′ is in Bj for some
j ≥ 3. From this fact and because σ is bijective we can derive

n∑
k=3

∑
e∈Bk

∑
x∈Ve

c(σ−1(x)) ≥
∑
x∈V ′

c(σ−1(x)) =
∑
f∈A′

c(f)

(in fact, here we could prove that equality holds, since e �= e′ ⇒ Ve ∩ Ve′ = ∅).
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To conclude the proof, let e∗ be a maximum-cost edge of any optimal solution
Opt. Observe that, c(e) ≤ c(e∗) for every e ∈ E(T ). Indeed, let us consider the
cut induced by the removal of e from T , and let e′ ∈ E(H) be an edge traversing
that cut. Then, since T is an MST, we have c(e) ≤ c(e′) ≤ c(e∗). Using previous
observations we have

c(H) ≤ c(v0, v1) + c(v1, v2) +
∑
e∈A′

c(e)

+ β

⎛⎝c(v0, v1) + c(v1, v2) +
∑
e∈A′

c(e) + 2
∑

e∈E(T )\A

c(e)

⎞⎠− (1 − β)
∑
e∈A′

c(e)

= 2β

⎛⎝∑
e∈A′

c(e) +
∑

e∈E(T )\A

c(e)

⎞⎠+ (1 + β)
(
c(v0, v1) + c(v1, v2)

)

≤ 2β

⎛⎝∑
e∈A′

c(e) +
∑

e∈E(T )\A

c(e)

⎞⎠+ c(v0, v1) + c(v1, v2) + 2β c(e∗)

≤ 2β c(T ) + 2β c(e∗) ≤ 2β c(Opt)

where the last but two inequality holds because c(e∗) ≥ c(e), ∀e ∈ E(T ), the
last but one inequality holds because β ≥ 1

2 , and the last inequality follows from
the fact that by removing e∗ from Opt, one obtains a spanning tree. ��

4 Lower Bound for Double-MST Min-Weight Shortcut

In the introduction we have mentioned one of the best heuristics available for
the TSP, i.e., the heuristic we called Double-MST Min-weight shortcut [3,5].
We said that this heuristic computes in O(4dn2) time (where d denotes the
maximum node-degree in T ) the minimum cost Hamiltonian cycle that can be
obtained using the Double-MST shortcut approach. It is worth noticing that
the result proved for the algorithm we proposed in Section 3 immediately im-
plies that Double-MST Min-weight shortcut is a 2β-approximation algorithm.
In this section we prove that Double-MST Min-weight shortcut cannot compute
an approximate solution within a factor which is significantly better than 2β.
As a consequence, 2β is an asymptotic lower bound for the approximation ra-
tio of all the algorithms based on the Double-MST shortcut approach. Hence,
the Refined Double-MST shortcut is one of the best approximation algorithms
based on this approach.

Consider the β-metric graph of n+1 vertices given in Figure 3. All the internal
vertices of the MST T represented with solid edges have degree

√
n. A feasible

solution is given by the
√

n dotted paths arbitrarily linked one another and with x
to form a Hamiltonian cycle. As the cost of each dotted path is

√
n−1 and as the

cost of any other edge is at most 2β, we have that the cost of an optimal solution
Opt is upper bounded by c(Opt) ≤

√
n(

√
n − 1) + 2β(

√
n + 1) ≤ n + 2β

√
n.
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x

Fig. 3. A β-metric graph of n + 1 vertices showing the asymptotic lower bound of 2β
on the approximation ratio of Double-MST Min-weight shortcut. Both solid and dotted
edges have cost 1, while the cost of missing edges is 2β. An MST T is given by the set
of solid edges The degree of all the internal vertices of the MST is

√
n.

3/2

approximation ratio

β

2

1

1/2 2/3 1

4/3

Fig. 4. The approximation ratio of our algorithm (solid line), as compared to that
provided by the Double-MST shortcut (dotted) and the currently best-known approx-
imation algorithm (dashed)

Concerning the solution built by Double-MST Min-weight shortcut, first of
all notice that no Hamiltonian cycle contains more than 2

√
n solid edges, as these

edges are all incident to the
√

n internal vertices of T but x, and the degree of
every vertex in a Hamiltonian cycle is 2. Now, observe that every dotted edge
is a shortcut of some path in D = T ∪ T containing 2 solid edges which are
incident to x. As the degree of x in D is 2

√
n, we have that every solution

built by Double-MST Min-weight shortcut contains at most
√

n dotted edges.
As a consequence, the solution computed by Double-MST Min-weight shortcut
contains at least n + 1 − 3

√
n edges of cost 2β. As c(Opt) ≤ n + 2β

√
n, we

therefore have that Double-MST Min-weight shortcut does not return a (2β−ε)-
approximate solution, for every ε > 0.
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5 Conclusion

In Figure 4, we provide a comparison between the approximation algorithms for
the β-MTSP discussed in this paper, namely the Double-MST shortcut, that
obtained by composing the algorithms given in [4,2], and finally our one. It is
worth noticing that our algorithm induces a significant improvement in the gap
with respect to the superlinear approximation algorithm: for instance, for all
1/2 < β ≤ 3/4, our algorithm is only about 5% away from it in the worst
case, while for the Double-MST shortcut this gap raises to about 26%. Thus,
especially for this range of values of β, from a practical point of view one can
make use of our very simple linear-time algorithm—instead of pursuing a very
complicate implementation of the superlinear algorithm—by only paying a little
bit more in terms of approximation ratio.
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Abstract. To control possible spills in liquid or gas transporting pipe
systems, the systems are usually equipped with shutoff valves. In case
of an accidental leak these valves separate the system into a number of
pieces limiting the spill effect. In this paper, we consider the problem, for
a given edge-weighted network representing a pipe system and for a given
number of valves, to place the valves in the network in such a way that
the maximum possible spill, i.e. the maximum total weight of a piece,
is minimized. We show that the problem is NP-hard even if restricted
to any of the following settings: (i) for series-parallel graphs and hence
for graphs of treewidth two; (ii) if all edge weights equal one. If the
network is a simple path, a cycle, or a tree, the problem can be solved
in polynomial time. We also give a pseudo-polynomial time algorithm
and a fully polynomial approximation scheme for networks of bounded
treewidth.

Keywords: Valve location problem; computational complexity; bounded
treewidth; dynamic programming; binary search.

1 Introduction

In this paper, we consider a combinatorial problem that arose from a number
of applications connected to operations and maintenance of a broad variety of
transportation systems; for applications related to the long oil and gas pipelines
see e.g. [10]; for applications in water supply engineering see [15]; for applications
in electrical grid maintenance see [7]. Let us briefly discuss the related problem
arising in oil and gas transportation. A pipeline is the most efficient and envi-
ronmentally friendly way to transport hazardous liquids and gases, e.g. crude oil
or natural gas, over land. In normal daily operations, pipelines do not produce
any pollution. However, due to external factors or pipe corrosion, accidents on
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pipelines sometimes happen and the accidental damage can be substantial. To
control possible spills, every pipe system is usually equipped with special shut-
off valves. Whenever the pipe system is depressurized, the valves automatically
and instantly separate the pipe system into pieces. Therefore, the quantity of
hazardous liquid or gas potentially leaving the system equals the total length
of the pipes in the damaged piece of the system separated by shutoff valves. In
the application at hand, there is a given edge-weighted network representing a
pipe system and a given number of valves that can be placed in the vertices of
the network. We want to solve the following problem: find a valve location in
the network that minimizes the maximum total weight of a piece separated by
shutoff valves.

This paper is organized as follows. In Section 2, we give a precise graph the-
oretic formulation of the problem. In Section 3, we show that using dynamic
programming the problem can be solved in polynomial time on simple network
topologies: paths, cycles and trees. In Section 4, we consider a more general
case, namely the graphs of bounded treewidth. For these graphs, we give a
pseudo-polynomial time dynamic programming algorithm, and then we turn this
algorithm into a fully polynomial approximation scheme (FPTAS). Finally, in
Section 5, we discuss the complexity of the problem. Here, we show that the prob-
lem is NP-hard even for series-parallel graphs and hence for graphs of treewidth
at most two. We also show that the unweighted version of the problem, i.e. the
problem where all edge weights equal one, is also NP-hard.

2 Graph Theoretic Formulation

The problem can be formulated in graph theoretic terms in a natural way. Let
G = (V, E) be an undirected graph representing a pipe network. Edges of the
graph represent pipes. Let ωe ∈ Z+ denote the length of pipe e ∈ E. Vertices
of the graph represent connection points between the pipes. Let k be a number
of valves to be installed. We assume that a valve can be located in any vertex
v ∈ V .

Consider a set of vertices V ′ ⊆ V . If we use V ′ as valve locations, we use |V ′|
valves, and partition G into pieces as follows. The set of edges E is partitioned
into sets with two edges in the same set of the partition if and only if they are
on a path in G that does not contain a valve. Thus, E is partitioned into subsets
E1, E2, . . . , ES where edges in Es, 1 ≤ s ≤ S, form a connected component in
G called a piece, and for any two subsets, Es and Et, the set of endpoints in
Es intersects the set of endpoints in Et only in elements of V ′. The cost of V ′,
denoted Wmax(V ′), is

Wmax(V ′) = max
1≤s≤S

∑
e∈Es

ωe,

i.e., the maximum total length of a piece or the maximum spill.
The valve location problem then is to find a subset V ′ of vertices in G

such that |V ′| ≤ k and the cost Wmax(V ′) is minimized. In other words, we have
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to find a k-elementary separator in G such that the maximum length connected
component is minimized. We consider also the unweighted version of the problem
where ωe = 1 for all e ∈ E.

Throughout the paper, n denotes the number of vertices in G, ωmax the max-
imum length of an edge:

ωmax = max
e∈E

ωe,

and ωΣ the total length of all edges:

ωΣ =
∑
e∈E

ωe.

Clearly, the maximum spill is yet another network vulnerability measure. This
concept is very close to many other known vulnerability measures, e.g. vertex
integrity of a graph defined as I(G) = min{|S| + m(G − S) : S ⊂ V }, where
m(H) denotes the maximum order of a component of H , see [2,3]; minimum
balanced separator defined as a minimum order separator S such that the maxi-
mum component in G−S contains at most βn vertices for a given 0 < β < 1, see
[1,8,14]; and some other, see e.g. [13]. The key difference between the maximum
spill and the known vulnerability measures is that the maximum spill measures
vulnerability of a graph in terms of the total edge weight (or length) of a com-
ponent when all other measures are related to the maximum order (number of
vertices) in a component. Of course, practical suitability of a certain measure
depends heavily on applications.

Throughout the paper, we measure run time of the algorithms using the widely
accepted convention that we can do an addition or multiplication of two integers
in O(1) time. If we want to count bit operations, we must multiply run times by
a factor log ωΣ.

3 Simple Networks: Paths, Cycles and Trees

In this section, we give dynamic programming algorithms to solve the problem
in simple network topologies: paths, cycles and trees.

3.1 The Valve Location Problem on a Path

We first consider the valve location problem on a path. This simple case
appears frequently in the practical settings of the long oil pipelines, and thus is
of practical relevance; see [10]. We have two different exact algorithms. One uses
‘text book’ dynamic programming.

Proposition 1. The valve location problem on a path can be solved by dy-
namic programming in O(kn2) time.

The other algorithm is obtained by using a binary search for the optimal spill
value and by checking feasibility of each spill value with a greedy algorithm.
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Proposition 2. Given a path and a value L, we can decide in O(n) time if
there is a solution to the valve location problem with k valves with cost at
most L.

The same idea also gives the minimum number of valves needed to guarantee a
cost that is at most L. Using binary search for the optimal value in the range of
integers between 0 and ωΣ , we directly obtain the following result.

Corollary 1. For a given path, we can solve the valve location problem in
O(n log ωΣ) time.

It is also possible to construct a fast 2-approximation algorithm using a greedy
strategy for paths.

Proposition 3. The valve location problem on a path admits a 2-approxi-
mation algorithm that uses O(n) time.

Finally, we can sharpen Proposition 3 when ωmax ≥ 3Ap.

Proposition 4. Consider the valve location problem on a path. Let k be the
number of valves. If ωmax ≥ 3ωΣ/(k + 1), then the optimal solution has cost
ωmax. An optimal solution can be found in this case in O(n) time.

3.2 Cycles

If G is a cycle, then we can obtain exact and approximate solutions for the valve

location by using variants to the algorithms for paths.

Proposition 5. The valve location problem on a cycle admits a 2-approxi-
mation algorithm that uses O(n) time.

Proposition 6. Consider the valve location problem on a cycle. Let k be
the number of valves. If ωmax ≥ 3ωΣ/k, then the optimal spill equals ωmax. An
optimal valve location can be found in this case in O(n) time.

Theorem 1. The valve location problem on a cycle can be solved by solving
O(n/k) valve location problems on paths of length at most n.

Corollary 2. The valve location problem on a cycle can be solved in O(n min
{logωΣ , n/k}) time.

3.3 Trees

Very recently, see [7], we became aware of the fact that the valve location

problem on trees is an important modern research topic in electrical engineering.
Whenever a regional power supply network (a tree) should be maintained, the
engineers are shutting down some small subtree and they are interested in an
optimal location of switchers. This application brings us to the valve location

in trees. Surprisingly enough, already this special case of the problem is quite
complicated: according to [7], a typical modern approach to the problem is a
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genetic algorithm. In this section, we present a nontrivial algorithm that solves
the problem on trees in polynomial time. More specifically, we show:

Theorem 2. The valve location problem on a tree can be solved in O(nk2

log(nωmax)) time.

The global structure of the algorithm is a binary search on the optimal value in
the range of integers between 0 and nωmax. Thus, we directly obtain Theorem 2
as a corollary of the next result.

Proposition 7. Given a tree, and an integer L, we can decide in O(nk2) time
if we can place k valves with maximum piece size at most L.

Proof. We choose an arbitrary vertex vr as root of the tree. For rooted subtrees
T ′, and integers i, 0 ≤ i ≤ k, we define

AT ′,L(i) = the minimum over all possible ways to put at most i valves
in T ′ such that no piece in T ′ has a total length of more than L, of
the total length of the piece that contains the root node of T ′.

AT ′,L(i) = 0, if there is a way to put at most i valves in T ′ such that
no piece in T ′ has a total length of more than L, such that there is a
valve in the root node of T ′.

AT ′,L(i) = ∞, if there is no possible way to put at most i valves in T ′

such that no piece in T ′ has a total length of more than L.
PT ′,L(i) = true if and only if AT ′,L(i) = 0, i.e. if we can put at most i

valves in T ′ such that no piece in T ′ has a total length of more than
L, such that there is a valve in the root node of T ′.

We will compute tables AT ′,L and PT ′,L for several subtrees of T :

– For each vertex v in T except vr, we compute a table for the subtree, con-
sisting of the parent of v in T , v, and all the descendants of v. The root of
this subtree is the parent of v. Call this subtree T +

v .
– For each vertex v in T : if v has i children w1, w2, . . . , wi, then for each j,

0 ≤ j ≤ i, we compute a table for the subtree, consisting of v, w1, . . . , wj ,
and all descendants of w1, w2, . . . , wj . Vertex v is the root of this subtree.
Call this subtree Tv,j. For the case j = i, write Tv = Tv,i; this is the tree
consisting of v and all its descendants.

The following two lemmas give recursive formulations that show how to com-
pute these tables.

Lemma 1. Let T be obtained by taking the union of trees T ′ and T ′′ such that
the root r of T ′ and T ′′ is the only vertex that belongs to both trees. Let 0 ≤ i ≤ k.

1. PT,L(i), if and only if there are i′, i′′ with i′ + i′′ = i − 1, 0 ≤ i′ ≤ k,
0 ≤ i′′ ≤ k, such that PT ′,L(i′) and PT ′′,L(i′′).

2. If PT,L(i), then AT,L(i) = 0.
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3. If not PT,L(i), then

AT,L(i) = min
i′,i′′,i′+i′′=i,0≤i,i′

AT ′,L(i′) + AT ′′,L(i′′)

if this term is at most L, otherwise AT,L(i) = ∞.

Lemma 2. Let T be a tree with root r, and let T + be obtained by adding an edge
{r, r′} to a new vertex r′ with length 
. Let r′ be the root of T +. Let 0 ≤ i ≤ k,
and L be an integer.

1. PT+,L(i) holds if and only if i > 0 and AT,L(i − 1) + 
 ≤ L.
2. If PT+,L(i), then AT+,L(i) = 0.
3. If not PT+,L(i), then AT+,L(i) = AT+,L(i)+ 
, if this term is at most L, and

AT+,L(i) = ∞ otherwise.

Using Lemmas 1 and 2, we can compute all desired tables. Recall that L is
fixed during the computation. Now, for all vertices in the tree, in postorder, we
compute all values ATv ,L(i), and PTv ,L(i), for all i, 0 ≤ i ≤ k. This is done
in the following way. If v is a leaf of T , then computing these values is trivial.
Otherwise, suppose v has s children, say w1, w2, . . . , ws. For all j, 1 ≤ j ≤ s, we
compute all values ATv,j ,L(i), and PTv,j ,L(i) for all i, 0 ≤ i ≤ k. In case j = 1,
we note that Tv,1 is the same subtree as T +

w1
. Thus, using Lemma 2, we can

compute the values ATv,1,L(i), and PTv,1,L(i) from the already earlier computed
tables ATw1 ,L and PTw1 ,L. For 2 ≤ j ≤ s, we note that Tv,j is the union of Tv,j−1
and T +

wj
. Thus, we first compute the tables AT+

wj
, L and PT+

wj
, L given the tables

ATwj
,L and PTwj

,L using Lemma 2. Then, we compute the tables ATv,j ,L and
PTv,j ,L from the tables AT+

wj
,L, PT+

wj
,L, ATv,j−1 ,L and PTv,j−1,L, using Lemma 1.

Finally, note that Tv,s = Tv. When we have the tables ATvr ,L and PTvr ,L, we
can easily decide whether we can place k valves in T with maximum piece size
at most L, using the following simple observation.

Proposition 8. Let vr be the root of T . There is a solution to the valve lo-

cation problem with k valves and cost at most L if and only if ATvr ,L(k) < ∞.

If T has n vertices, then we compute O(n) tables: O(1) per edge in T . Each table
can be computed in O(k2) time. This can be easily observed from Lemmas 1 and
2. Simply, iterate over all possible values of k and k′, and compute the necessary
value of k′′. Each step involves O(1) computations. Actually, the step that uses
Lemma 2 needs only O(k) time. This finishes the proof of Proposition 7. ��

Notice that for trees, a result similar to Propositions 4 and 6 holds. However,
in this case, this does not lead to an approximation algorithm with constant
performance guarantee.

Proposition 9. Consider the valve location problem on a tree. Let k be the
number of valves. If ωmax ≥ 3ωΣ/k, then the optimal spill equals ωmax.
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4 Algorithms for Graphs of Bounded Treewidth

In practice, most of the transportation systems are more complicated than trees.
This makes the problem more difficult from algorithmic perspective. Fortunately,
real-life networks in majority of applications (e.g., for oil and gas pipeline trans-
portation) are outerplanar or, taking this more generally, the corresponding
graphs have bounded treewidth; see e.g. [5,6,11]. For this type of networks we
have the following results.

Theorem 3. The valve location problem on graphs of treewidth q admits a
dynamic programming algorithm running in time (nωmax)

O(q).

This dynamic programming algorithm follows the lines of several algorithms for
other problems on graphs of bounded treewidth. For easier description, we use
a nice tree decomposition of width at most q; for definition see below.

As a first step, we must find a tree decomposition of width at most q. This
can be done in O(n) time for fixed q; see [4]. At this point, we would like to
make a remark concerning practical implementations. The algorithm in [4] has
such a large hidden constant, that it is not of use in a practical setting. Fortu-
nately, there are several heuristics that often give good bounds. Also, there are
fast algorithms that construct tree decompositions of optimal width for graphs
of treewidth at most three (including outerplanar graphs), see e.g. [6] for a dis-
cussion.

Given a tree decomposition, in O(n) time one can transform it to a nice tree
decomposition [12] with the same width. We now give the definition of a nice
tree decomposition.

A nice tree decomposition of a graph G = (V, E) is a rooted binary tree
T = (I, F ), where each node i ∈ I is a subset Xi ⊆ V , called bag, such that

1.
⋃

i∈I Xi = V .
2. For all {v, w} ∈ E, there exists an i ∈ I, with v, w ∈ Xi.
3. For all v ∈ V , the set {i ∈ I | v ∈ Xi} forms a subtree of T .
4. If i ∈ I has two children j1, j2, then Xi = Xj1 = Xj2 (Join Node).
5. If i ∈ I has one child j, then either there is a v ∈ Xi with Xj ∪ {v} = Xi

(Introduce Node) or there is a v ∈ Xj with Xi ∪ {v} = Xj (Forget

Node).
6. If i ∈ I is a leaf in T , then |Xi| = 1 (Leaf Node).

The width of a nice tree decomposition is maxi∈I |Xi| − 1.
In our dynamic programming algorithm, we compute in postorder for each

node of T a table. Associate to node i ∈ I the subgraph Gi = G[Vi], induced by
the set of vertices in Xi or a bag Xj with j a descendant of i: Vi =

⋃
Xj, with

the union taken over all j in the subtree of T rooted at j.
A placement of valves on the vertices of Gi has a characteristic, which is a

5-tuple (j, Z, L, f,∼), consisting of
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– The number j of used valves in Gi.
– The subset Z ⊂ Xi of the vertices in Xi that contain a valve.
– The maximum length of a piece in Gi.
– A function f : Xi → N, giving for each vertex v ∈ Vi the total length of the

piece that contains v; if there is a valve on v, then f(v) = 0.
– An equivalence relation ∼ on Xi, with for all v, w ∈ Xi, v ∼ w, if and only

if there is a path from v to w in Gi that does not contain a vertex with a
valve.

In the table of i, we store all possible characteristics of all placements of valves
in Gi. Note that in this way, tables have a size that is bounded by (nωmax)

O(q).
A somewhat tedious case analysis, typical for dynamic programming algo-

rithms on graphs of bounded treewidth, shows that we can compute for each of
the four types of nodes the table of all characteristics for a node, given such a
table for each of the children of the node, in time polynomial in the table size.

Then, computing these tables for all nodes in postorder gives an algorithm
computing the table for the root node, and as Gr for the root node r equals G,
we obtain the optimal valve location from this table.

We remark that the described dynamic programming is only a pseudo-poly-
nomial time algorithm for the weighted version of the valve location problem
on graphs of bounded treewidth. Using standard scaling arguments, we derive
the following corollary.

Corollary 3. The valve location problem on graphs of bounded treewidth
admits a fully polynomial approximation scheme.

5 Complexity Results

In this section, we show that two restricted versions of the valve location

problem are NP-hard. For general networks it is strongly NP-hard as even the
unweighted version of the problem is NP-hard, while for series-parallel graphs
(a special case of graphs of treewidth at most two) the problem is weakly NP-
hard. Note that this complements the result that the problem is solvable in
pseudo-polynomial time on graphs of bounded treewidth.

Theorem 4. The valve location problem is NP-hard even if ωe = 1 for all
e ∈ E.

The proof of Theorem 4 is quite straightforward and it is based on a reduction
from the strongly NP-hard problem 3-partition.

The second complexity result is less trivial. For this result let us remind a
definition of a series-parallel graph. A series-parallel graph is a graph G = (V, E)
with two special vertices, called its terminals, often denoted s and t, that can be
formed with the following operations:

– A graph consisting of a single edge {s, t} between its terminals is a series-
parallel graph.



The Valve Location Problem in Simple Network Topologies 63

– If G and H are terminal graphs, with terminals sG, tG, and sH and tH , then
the series composition of G and H is a series-parallel graph. In the series
composition, we take the disjoint union, then identify tG and sH , and take
sG and tH as terminals of the resulting graph.

– If G and H are terminal graphs, with terminals sG, tG, and sH and tH ,
then the parallel composition of G and H is a series-parallel graph. In the
parallel composition, we take the disjoint union, then identify sG and sH

and identify tG and tH . The two vertices obtained by identification are the
terminals of the resulting graph.

Theorem 5. The valve location problem is weakly NP-hard for series-
parallel graphs.

Proof. We show that the valve location problem is weakly NP-hard for the
following graphs: we have two vertices s and t, and a number of internally disjoint
paths from s to t of length exactly five.

We use a reduction from partition; see e.g. [9]. Suppose we are given positive
integers a1, a2, . . . , an. The partition problem asks if these integers can be
partitioned into two sets with equal sum, i.e. we look for two sets, each of sum
B =

∑n
i=1 ai/2. We may assume B is integer, as if

∑n
i=1 ai is odd, the partition

problem trivially has no solution.
As the corresponding instance for the valve location problem, we take n

disjoint paths from s to t. Each of these paths has length five, i.e., four inter-
mediate vertices, which we call vi,1, vi,2, . . . , vi,4. The successive lengths of the
edges on the ith path are 1, ai, B − ai + n, ai, 1. Call the resulting graph G, see
Figure 1.

Proposition 10. Set A = {a1, a2, . . . , an} can be partitioned into two sets, both
of sum B, if and only if we can place at most 2n valves in G such that each part
has total length at most B + n.

s

t

v1,1

v1,2

v1,3

v1,4

v2.1

v2,2

v2,3

v2,4

v3,1

v3,2

v3,3

v3,4

vn,1

vn,2

vn,3

vn,4

11

1
1

a1

a1

B − a1 + n

an

an

B − an + n

1
1

1 1

a2 a3

a3a2

B − a2 + n
B − a3 + n

Fig. 1. The series-parallel graph constructed in Theorem 5
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The NP-hardness of the valve location problem on series-parallel graphs now
follows, by noting that G is series-parallel: a path can be constructed by a se-
quence of series compositions, and by parallel compositions, we can identify the
endpoints of the paths. ��

As series-parallel graphs have treewidth two, the results of the previous sec-
tion show that (unless P=NP), the problem on series-parallel graphs cannot
be strongly NP-hard. Moreover, Theorem 5 excludes the possibility for fixed-
parameter tractability of the problem with respect to the parameter ”graph
treewidth”.

6 Conclusions

In this paper we presented fast algorithms for several practically relevant classes
of instances of the valve location problem. Moreover, applying literally the
same techniques to the vertex integrity problem, we can tackle this later problem
as well.
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Abstract. We consider the problem of finding a spanning tree that max-
imizes the number of leaves (MaxLeaf). We provide a 3/2-approximation
algorithm for this problem when restricted to cubic graphs, improving
on the previous 5/3-approximation for this class. To obtain this approx-
imation we define a graph parameter x(G), and construct a tree with at
least (n − x(G) + 4)/3 leaves, and prove that no tree with more than
(n − x(G) + 2)/2 leaves exists. In contrast to previous approximation
algorithms for MaxLeaf, our algorithm works with connected dominat-
ing sets instead of constructing a tree directly. The algorithm also yields
a 4/3-approximation for Minimum Connected Dominating Set in cubic
graphs.

Keywords: approximation algorithm, maximum leaf, connected domi-
nating set, cubic graph.

1 Introduction

The problem MaxLeaf is defined as follows: given a connected graph G, find
a spanning tree of G that maximizes the number of leaves. This problem is NP-
hard, even for cubic graphs [14]. Cubic graphs are graphs in which every vertex
has degree 3. This problem is closely related to the problem MinCD-Set, which
asks for a smallest possible connected dominating set or CD-set, which is a set
S ⊆ V (G) such that G[S] is connected, and every vertex of G is either in S or
adjacent to S (a dominating set). Observing that the non-leaves of a spanning
tree form a CD-set, it is easily seen that G has a spanning tree with at least k
leaves if and only if G has a CD-set of size at most |V (G)| − k (provided that
G �= K2), and that these can be constructed from each other in polynomial time.

These problems have many theoretical and practical applications; in partic-
ular, recently they have received a lot of attention due to their importance in
wireless networks [3]. Therefore it is not surprising that they have been con-
sidered from many different viewpoints, such as purely combinatorial settings
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(see below), and using most of the different algorithmic paradigms for solving
hard problems, such as approximation algorithms (see below), fixed parameter
tractable algorithms [2,7] and fast exact algorithms [8]. Generalizations such as
to directed graphs have been studied [6]. Restrictions to different graph classes
have also been considered. Motivated by the wireless networking applications,
unit disk graphs have been widely studied [3]. In this paper, we study the two
problems when restricted to cubic graphs, which was done before in [4,10,14,15].
Let n(G) denote |V (G)|, and let δ(G) and ∆(G) denote the minimum and max-
imum degree of G, respectively. If there is no cause for confusion we will simply
write n, δ and ∆.

With regard to the approximability of MaxLeaf, it is known that a polyno-
mial time approximation scheme is unlikely to exist, since the problem is known
to be MAX SNP-complete [9]. A 3-approximation was given by Lu and Ravi [16],
and later a 2-approximation was given by Solis-Oba [18], which is the current best
approximation ratio for general graphs. Loryś and Zwoźniak initiated the study
of approximation algorithms for MaxLeaf in cubic graphs, and gave a 7/4-
approximation for this class [15]. This was recently improved to 5/3 by Correa
et al [4]. In this paper, we will give a 3/2-approximation for MaxLeaf for cubic
graphs. From an approximation viewpoint MaxLeaf and MinCD-Set behave
quite differently: Guha and Khuller [12] showed that it is unlikely that constant
factor approximation algorithms exist for MinCD-Set for general graphs. The
current best approximation is 2 + ln ∆(G), given by Ruan et al [17]. For cubic
graphs our algorithm will approximate MinCD-Set with a guarantee of 4/3.

In another branch of research, a number of tight lower bounds is given for the
maximum number of leaves that can be obtained, for (connected) graphs from
different classes. Linial and Sturtevant first proved that every graph with δ ≥ 3
has a spanning tree with at least n/4 + 2 leaves (unpublished). A short proof
appears in [13], where it is also shown that in graphs with δ ≥ 4, 2n/5 + 8/5
leaves can be obtained. For graphs with δ ≥ 5, n/2 + 2 leaves are possible [11].
The n/4+2 bound is also tight for cubic graphs, but when in addition diamonds
are forbidden as subgraphs, Griggs et al [10] showed that n/3 + 4/3 leaves can
be obtained. A diamond is a K4 minus one edge. Recently it was shown that
when in addition to diamonds, a certain subgraph on seven vertices is forbidden,
the n/3 + 4/3 bound also holds for graphs with δ ≥ 3 [2,19]. This generalizes
an earlier result [1] that proves the same bound for graphs with δ ≥ 3 without
triangles. However, because of some useful features (see Section 2), it is this
earlier result that we will apply in this paper. In [19], a number of these bounds
and similar bounds have been generalized to graphs with arbitrary degrees. Even
though the algorithmic viewpoint is not stressed in the results mentioned above,
all proofs easily give polynomial time algorithms that construct a tree satisfying
the bounds.

This leads us back to approximation algorithms. For instance, note that the
n/4 + 2 lower bound trivially gives a 4-approximation when MaxLeaf is re-
stricted to graphs with δ ≥ 3. It is straightforward to show that spanning trees
in cubic graphs have at most n/2 + 1 leaves. Combined with the n/4 + 2 lower
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bound, this then gives a 2-approximation for cubic graphs. (Note that these
bounds in terms of CD-sets show that any CD-set in a cubic graph contains
at least n/2 − 1 vertices, and that a CD-set with at most 3n/4 − 2 vertices
can be constructed. So for CD-sets in cubic graphs these bounds give a 3/2-
approximation.) The 5/3-approximation given by Correa et al [4] is based on a
more sophisticated version of this idea which we will now treat in more detail,
since we use a similar strategy.

The goal of [4] was to match the upper bound n/2 + 1 for the number of
leaves in cubic graphs with the lower bound n/3 + 4/3 for cubic graphs without
diamonds. To make this work, only diamonds have to be treated in some way.
This was done by defining a graph parameter c(G) that depends on the number
and positions of diamonds in G: for a subgraph H of G, the internal vertices
of H are those with only neighbors in H . Note that diamonds in cubic graphs
always have two internal vertices. The parameter c(G) now denotes the number
of components obtained when removing all internal vertices of diamonds from
G. Using the bound from [10], it was shown that a spanning tree with at least
(3n− 2c(G) + 17)/10 > 3

10 (n − 2c(G) + 4) leaves can be constructed, and it was
shown that any spanning tree has at most (n − 2c(G) + 4)/2 leaves. Together
this gives a 1

2/ 3
10 = 5

3 approximation. It was also conjectured in [4] that a 3/2-
approximation algorithm is possible for MaxLeaf.

Our contribution. We prove this conjecture by providing a 3/2-approximation
for MaxLeaf in cubic graphs. The algorithm itself is very simple, although the
analysis is more involved. It is necessary to extend the study of problematic
structures further, beyond only diamonds. This is indicated by the examples
from [4]: there it is shown that graphs G with c(G) = 0 exist that have no
spanning tree with more than �(3n + 17)/10� leaves, hence considering only the
parameter c(G) is not good enough. We consider all triangles of G, identify
different types of them, and use their positions in G to define a number of graph
parameters. This is done in Section 3. Then in Section 4, we state the algorithm,
and prove it yields at least (n − x(G) + 4)/3 leaves, where x(G) is a function
of the defined graph parameters. In Section 5 we prove that spanning trees in
cubic graphs have at most (n − x(G) + 2)/2 leaves. Together, this yields the
3/2-approximation for MaxLeaf, and the 4/3-approximation for MinCD-Set

(see Section 6). We believe that the two bounds we prove, and the identified
graph parameters are interesting in their own right, showing exactly in which
cases diamonds and triangles make it hard or even impossible to find spanning
trees with at least n/3 + 4/3 leaves in graphs with δ ≥ 3.

Unlike the previous algorithms, our algorithm is in fact an algorithm that
constructs a CD-set instead of a tree. In [1] it was proved that in graphs with
δ ≥ 3 without triangles, any CD-set S that satisfies some simple properties has
|S| ≤ 2n/3− 4/3. We observe that this bound can be generalized to graphs with
triangles, but with a correction term that (sloppily speaking) depends on the
number of triangles in G[S]. Our algorithm constructs S such that it contains at
most x(G) triangles, such that the bound yields |S| ≤ (2n + x(G) − 4)/3. This
in turn gives the bound for spanning trees mentioned above. More details on the
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bounds for CD-sets are given in Section 2, together with some basic definitions.
We end in Section 7 with a discussion. The easier proofs are omitted because of
space constraints.

2 Preliminaries

Basic notations and terminology. For basic graph theoretic notions we refer
to [5]. We assume all graphs to be simple (i.e. without parallel edges and loops),
with the exception that we allow edge contractions to yield parallel edges and
loops. When applying edge contractions, edges are assumed to be labeled, that
is, edge identities are preserved even if the labels of their end vertices change.

The set resulting from removing element v from S is denoted by S − v, and
adding an element is denoted by S + v. The number of components of a graph
G is denoted by cc(G). Internal vertices of a subgraph H of G are those vertices
that only have neighbors in H . Let Int(H) denote the set of internal vertices of
H (with respect to its supergraph G). We say that a subgraph H of G is a block
of G if it is a maximal 2-connected subgraph. The vertex degree of v ∈ V (G) is
denoted by dG(v), or d(v) if possible.

Minimal CD-sets. A CD-set S is called a 2-CD-set if every vertex in V (G)\S
has at most two neighbors in S. Formulated just for cubic graphs, the results
in [1] yield the following bound.

Theorem 1. Let G = (V, E) be a connected cubic graph. Let S be a minimal
2-CD-set of G where G[S] contains no triangles, and let S′ ⊆ S be a minimal
CD-set of G. Then |S′| ≤ (2n(G) − 4)/3.

This theorem can be applied to graphs without triangles, in that case it holds
for any minimal 2-CD-set. But when considering the proof in [1], it can be seen
that actually the following stronger statement is proved.

Theorem 2. Let G = (V, E) be a connected cubic graph. Let S be a minimal
2-CD-set of G where G[S] has b∆ blocks that contain triangles, and let S′ ⊆ S
be a minimal CD-set of G. Then |S′| ≤ (2n(G) + b∆(S′) − 4)/3.

The strength of Theorem 2 lies not in the combination of the bound and the
graph class itself (as we remarked in the introduction, in that sense it is strength-
ened and generalized for instance by the bound from [2]), but in the fact that it
holds for any minimal 2-CD-set. This allows us to first construct a 2-CD-set S∗

that satisfies some useful properties, namely that it contains few triangles, and
then consider a minimal 2-CD-set S ⊆ S∗.

3 Subgraphs Obtained by Removing Triangles

The operations and notions defined in this section are illustrated in Figure 1.
This figure introduces the example of G that we will use to illustrate most proofs
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f1(G):

0

1 0

2

1

3

f2(G):

2

2

1

1

cc2(G) = 2

: T-bridge

: V ∆(G)

cc(f1(G)) = 2 ⇒ cc1(G) = 1
cc(f2(G)) = 4⇒

G:

Fig. 1. An example of G, f1(G) and f2(G)

in the paper. For a graph G with ∆(G) ≤ 3, let V ∆(G)⊆ V (G) be those vertices
of G that are part of a triangle.

We distinguish a number of triangle types of G. First we distinguish between
triangles of G that are part of diamonds, and those that are not. From now
on, when we talk about triangles of G, we mean those triangles that
are not part of diamonds, except when explicitly noted otherwise. Note that
since ∆(G) ≤ 3, all diamonds of G are pairwise vertex disjoint, and all triangles
of G are pairwise vertex disjoint (since they are not part of diamonds). We say
that a triangle or diamond H of G is of type i if it is incident with i edges that
have an end vertex not in V ∆(G). So triangles can be of type i for i ∈ {0, 1, 2, 3},
and diamonds can be of type i for i ∈ {0, 1, 2}. Let Ti(G) (Di(G)) denote the
number of triangles (diamonds) of type i in G. In Figure 1, the numbers next to
the triangles and diamonds of G indicate their types.

An edge uv of G is a triangle bridge or T-bridge if u, v ∈ V ∆(G) but u and v
are not part of the same triangle or diamond. The graph f1(G) is obtained by
deleting all vertices of G that are part of type 0 triangles or type 0 diamonds,
and in addition deleting all T-bridges. The graph f2(G) is obtained from G by
deleting all vertices in V ∆(G), so f2(G) is a subgraph of f1(G).

Let cc1(G)= cc(f1(G))−cc(G), and let cc2(G)= cc(f2(G))−cc(f1(G)). We will
always consider G to be connected, so cc1(G) ≥ −1, and this is only an equality
when V ∆(G) = V (G). Since every component of f1(G) contains a vertex not in
V ∆(G), we have cc2(G) ≥ 0. We remark that the graph parameter x(G) that we
mentioned in the introduction can now be defined as x(G) = 2cc1(G)+ cc2(G)+
D0(G) + T0(G). If the graph in question is clear, we will also write cc1 and T0
etc. instead of cc1(G), T0(G), etc.

4 Constructing and Bounding the CD-Set

In this section we present our algorithm to construct a minimal 2-CD-set S, and
prove an upper bound for the number of triangles in G[S] (Theorem 3), which
gives a suitable upper bound for the size of any minimal CD-set S′ ⊆ S using
Theorem 2. The algorithm is shown in Algorithm 1. Note that the algorithm is
non-deterministic in the sense that in every step many choices are possible. For
any of these choices the bound we prove will hold.
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Algorithm 1. An algorithm for finding small CD-sets in cubic graphs
INPUT: A connected, cubic graph G.
OUTPUT: A minimal CD-set S′ (which is a subset of a minimal 2-CD-set S)

(Stage 1:)
S1 := V (G).
while ∃ T-bridge uv in G[S1] s.t. S1 − u − v is a CD-set of G do

S1 := S1 − u − v.
(Stage 2:)
S2 := S1.
repeat

if ∃ type 3 triangle T with V (T ) ⊆ S2 s.t. S2\V (T ) is a CD-set of G then
S2 := S2\V (T ).

if ∃ type 2 diamond D with V (D) ⊆ S2 s.t. S2\Int(D) is a CD-set of G then
S2 := S2\Int(D).

until no change was made.
(Stage 3:)
S := S2.
Remove vertices (possibly pairwise) from S until it is a minimal 2-CD-set of G.
S′ := S.
Remove vertices from S′ until it is a minimal CD-set of G.

The idea of the algorithm is that we try to minimize the number of triangles
and diamonds that are present in the final CD-set S, since this makes the bound
from Theorem 2 stronger. The stages reflect the priorities; a single change in
Stage 1 can remove two triangles or diamonds from the current CD-set. In Stage
2, we can only remove one triangle or diamond per change. After these stages
no further gain can be made, and we simply find minimal sets S and S′ in order
to apply Theorem 2.

Lemma 1. Algorithm 1 has a polynomial time implementation, and yields a
minimal 2-CD-set S of G and minimal CD-set S′ ⊆ S of G.

Theorem 3. Let S be a minimal 2-CD-set of G constructed by Algorithm 1.
Then the number of triangles plus the number of diamonds in G[S] is at most
2cc1(G) + T0(G) + D0(G) + cc2(G).

Proof: First we analyze Stage 1. Let S1 denote the set S1 as it is when Stage 1
has finished. We will show that the number of triangles of type 0, 1 and 2 plus
the number of diamonds of type 0 and 1 with all vertices still in S1 is bounded
by 2cc1 + T0 + D0. In particular, if V ∆ = V (G), the number of triangles and
diamonds with all vertices in S1 is bounded by T0 + D0 − 2.

The following definitions are illustrated in Figure 2. A T-bridge uv of G is
called an S1-bridge if u, v ∈ S1. Let nB(S1) denote the number of S1-bridges
in G[S1]. A bridge is an edge for which the removal increases the number of
components. We can observe the following.
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G:

: S1-bridge

G′:G[S1]:

: removed from S1

Fig. 2. The set S1 after Stage 1 and G′ obtained from G[S1] by deleting S1-bridges

Claim 1. An S1-bridge uv is a bridge of G[S1].

Let G′ be the subgraph of G[S1] obtained by removing all S1-bridges. The com-
ponents of G′ are of two types: those that are part of components of f1(G),
and those that are part of the type 0 triangles and diamonds of G. Hence G′ has
1+cc1+T0+D0 components. (Note that because of the way vertices are removed
from S1 during Stage 1, for every f1(G) component and every type 0 triangle or
diamond, at least one vertex remains in S1.) Since all S1-bridges are bridges of
G[S1] (Claim 1), contracting every edge of G[S1] that is not an S1-bridge gives
a tree on cc(G′) vertices, so the number of S1-bridges is

nB(S1) = cc1 + T0 + D0.

Let Ti,j (Di,j) denote the number of type i triangles (diamonds) of G that contain
j vertices of S1. By counting the number of S1-bridges that every such triangle
or diamond is incident with, we obtain

T2,3 + T1,2 + 2T1,3 + T0,1 + 2T0,2 + 3T0,3 + 2D0,4 + D0,3 + D1,4 ≤ 2nB(S1).

Using the above two inequalities, we can bound the number of type 0, 1, 2
triangles and type 0, 1 diamonds of G that are still fully part of G[S1]:

T0,3 + T1,3 + T2,3 + D0,4 + D1,4 ≤

2nB(S1) − 2T0,3 − T0,1 − 2T0,2 − T1,2 − T1,3 − D0,4 − D0,3 =

2cc1 + 2T0 + 2D0 − 2T0,3 − T0,1 − 2T0,2 − T1,2 − T1,3 − D0,4 − D0,3 =

2cc1 + T0 + D0 − T0,3 − T0,2 − T1,2 − T1,3 ≤ 2cc1 + T0 + D0.

Here we used T0 = T0,1 + T0,2 + T0,3 and D0 = D0,3 + D0,4.

Now we will analyze Stage 2. Let S2 denote the set S2 as it is when Stage
2 has finished. Type 3 triangles T with V (T ) ⊆ S2 are called S2-triangles, and
type 2 diamonds D with V (D) ⊆ S2 are called S2-diamonds. We will show that
the number of S2-triangles plus the number of S2-diamonds is at most cc2.

The following arguments are illustrated in Figure 3 (which is not based on the
graph G that we have used as example earlier). For a component C of f1(G),
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the number of components of f2(G) that are part of C is cc2(C) + 1. We will
first show that the number of S2-triangles plus the number of S2-diamonds in
C is at most cc2(C). In the example of Figure 3, cc(f2(C)) = 5, so cc2(C) = 4,
and there are two S2-triangles and one S2-diamond.

G′:G[S2]:

S2-triangle or S2-diamond
: cut vertex in an

C:

during Stage 2.
: removed from S2

: V (C)\V ∆(G) : V (C)\V ∆(G)

Fig. 3. A component C of f1(G), the set S2 after Stage 2, and G′

Consider an S2-triangle T in C. The set S2 still contains all vertices of
V (G)\V ∆, so since T is of type 3, after removing V (T ) from S2, the set would still
be a dominating set of G. Therefore, since V (T ) was not removed during Stage
2, G[S2\V (T )] is not connected. Since T is a triangle and G is cubic, this implies
that V (T ) contains at least one cut vertex of C. Similarly, for S2-diamonds it
also holds that they contain a cut vertex of C (two actually).

Consider the graph G′ defined as follows. For every S2-triangle and every S2-
diamond in C, we add a black vertex to G′, and for every f2(G) component in C
we add a white vertex to G′. When an S2-triangle or S2-diamond is adjacent to
an f2(G) component, we add an edge between the corresponding vertices. This
gives a bipartite graph G′ with cc2(C) + 1 white vertices. Note that since every
S2-triangle and every S2-diamond contains a cut vertex of C, all black vertices
are cut vertices of G′. Using a simple induction argument it then follows that
the number of black vertices of G′ is at most the number of white vertices minus
one, hence is bounded by cc2(C).

Every S2-triangle and S2-diamond of G is part of some component C of f1(G).
In addition, if C is the set of components of f1(G), then cc2(G) =

∑
C∈C cc2(C).

It follows that the number of type 3 triangles plus the number of type 2 diamonds
in S2 is at most cc2(G).

Since S is a subset of S1 and of S2, we know that the number of type 0, 1,
2 triangles plus the number of type 0, 1 diamonds of G that are fully in S is
also bounded by 2cc1 + T0 + D0, and that the number of type 3 triangles plus
the number of type 2 diamonds of G that are fully in S is bounded by cc2. Now
all types of triangles and diamonds of G have been considered, which proves the
statement. �
The number of triangles and diamonds in G[S] is an upper bound for the number
of blocks of G[S] that contain triangles (here we do also mean triangles that
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are part of diamonds): since S is a minimal 2-CD-set, it is not possible that a
diamond of G is not fully part of S but three of its vertices that together form a
triangle are. So by combining Lemma 1, Theorem 2 and Theorem 3 we obtain:

Theorem 4. In polynomial time, Algorithm 1 returns a CD-set S′ of G with
|S′| ≤ (2n(G) + 2cc1(G) + cc2(G) + T0(G) + D0(G) − 4)/3.

5 An Upper Bound for the Number of Leaves

We only have to prove the upper bound for trees of the following form.

Proposition 1. A spanning tree T of G with maximum number of leaves exists
that contains two edges of every type 0, 1 and 2 triangle of G, and contains
either zero or two edges of every type 3 triangle of G.

G′: T ′: T ′′:

: E(T ) : E(G)

G and T :

Fig. 4. The graphs G, T , G′, T ′ and T ′′ from the proof of Theorem 5

Theorem 5. Let T be a spanning tree of a cubic graph G. Then T has at most
(n(G) − 2cc1(G) − cc2(G) − D0(G) − T0(G) + 2)/2 leaves.

Proof: We will assume T has the properties stated in Proposition 1. The following
constructions are illustrated in Figure 4. Let G′ be the graph obtained from
G by contracting every diamond and every triangle into a single black vertex,
and by contracting every component of f2(G) into a single white vertex. Let B
(W ) denote the set of black (white) vertices of G′. We construct the following
spanning subgraph T ′ of G′. An edge of G′ is added to T ′ if and only if for the
corresponding edge e ∈ E(G):

– e ∈ E(T ), and
– e is not incident with a leaf of T that is part of a triangle or diamond.

Type 3 triangles that contain three leaves of T will correspond to isolated ver-
tices v of T ′ at this point. To ensure that T ′ is connected, in addition we add
one arbitrary edge of G′ incident with v to T ′. Using the assumptions from
Proposition 1, the following claims about T ′ can be proved.

Claim 2. T ′ is connected.



A 3/2 Approximation for Finding Leafy Trees in Cubic Graphs 75

Claim 3. If a black vertex v has degree i in T ′, then the corresponding subgraph
Hv of G contains at least i − 1 vertices that have degree 2 in T .

Since T ′ is connected (Claim 2), we have |E(T ′)| ≥ |V (T ′)| − 1 = |B|+ |W | − 1.
Note that all edges of G′ are incident with at least one black vertex. Con-
sider the subgraph T ′′ of T ′ that has vertex set V (G′) again, but only contains
those edges of T ′ that are incident with at least one white vertex. Note that
cc(T ′′) ≥ D0(G) + T0(G) + cc1 + 1. When we add the edges of T ′ one by one
until T ′ is obtained, clearly every edge addition can only decrease the number of
components by at most one. Hence cc(T ′′) − 1 is a lower bound for the number
of edges of T ′ that are incident with two black vertices. The degree sum of black
vertices in T ′ is then at least the number of edges of T ′ plus the number of edges
of T ′ incident with two black vertices. This yields the following bound.∑

v∈B

(dT ′(v) − 1) ≥ |E(T ′)| + (cc(T ′′) − 1) − |B| ≥

|B| + |W | − 1 + D0 + T0 + cc1 − |B| = 2cc1 + cc2 + D0 + T0.

For the last equality we used |W | = cc1 + cc2 + 1. Since vertices of T ′ with
degree 2 account for at least one vertex of degree 2 in T , and vertices of degree
3 account for at least two such vertices (Claim 3), the above number is also a
lower bound for the number of degree 2 vertices in T .

Now let di denote the number of vertices of T with degree i, and n = V (T ).
So d1 + d3 = n− d2. For trees with ∆ ≤ 3 it is easy to see that d3 = d1 − 2. This
yields 2d1 = n− d2 + 2 ≤ n − (2cc1 + cc2 + D0 + T0) + 2, which gives the stated
bound. �

6 The Approximation Guarantee

Theorem 6. Algorithm 1 is a 4/3-approximation for MinCD-Set in cubic
graphs, and gives a 3/2-approximation for MaxLeaf in cubic graphs.

Proof: Let x(G) = 2cc1(G) + cc2(G) + T0(G) + D0(G) and n = n(G). Let S′

be the minimal CD-set returned by the algorithm, and let S∗ be a minimum
CD-set of G. By Theorem 4, |S′| ≤ (2n + x(G) − 4)/3 ≤ 2(n + x(G) − 2)/3. By
Theorem 5, any spanning tree of G has at most (n − x(G) + 2)/2 leaves, so any
CD-set of G, in particular S∗, has |S∗| ≥ n−(n−x(G)+2)/2 = (n+x(G)−2)/2.
It follows that

|S′|/|S∗| ≤ 2(n + x(G) − 2)
3

/
(n + x(G) − 2)

2
= 4/3.

Similarly, using S′, a spanning tree T with lA ≥ n − (2n + x(G) − 4)/3 =
(n − x(G) + 4)/3 leaves can easily be constructed in polynomial time. Since an
optimal spanning tree has at most l∗ ≤ (n − x(G) + 2)/2 < (n − x(G) + 4)/2
leaves, the approximation guarantee for MaxLeaf is

l∗/lA <
(n − x(G) + 4)

2
/
(n − x(G) + 4)

3
= 3/2.
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7 Discussion

It would be interesting to know if the 3/2-approximation ratio can be improved.
We expect however that this will be hard to do by extending our method: the
upper bound is tight for many values of cc1 and cc2, and it also seems hard
to improve the lower bound (see also [10]). Many additional graph structures
would need to be taken into account beyond those that we considered. A more
promising and important goal is to establish the MAX SNP-completeness of
MaxLeaf for cubic graphs, which was also asked in [4].

Another question that remains is whether the 2-approximation for general
graphs [18] can be improved. The approximability of MaxLeaf generalized to
directed graphs has also been studied recently. This problem seems much harder;
already much effort is needed to prove a

√
OPT-approximation [6]. We expect

however that there is still room for improvement for directed graphs. Is it even
possible to prove a constant factor approximation ratio for directed graphs?

We used the novel approach of [4] of defining a (polynomial time computable)
graph parameter x(G), and proving upper and lower bounds in terms of x(G). An
algorithm is given that attains the lower bound, and combining the bounds gives
the approximation ratio. This works well for MaxLeaf in cubic graphs, since
known bounds without such a parameter already give a good approximation
ratio. For which other problems does this approach work well?
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Abstract. We study the parameterized complexity of the pseudo-
achromatic number problem: Given an undirected graph and a parame-
ter k, determine if the graph can be partitioned into k groups such that
every two groups are connected by at least one edge. This problem has
been extensively studied in graph theory and combinatorial optimization.
We show that the problem has a kernel of at most (k − 2)(k +1) vertices
that is constructable in time O(m

√
n), where n and m are the number

of vertices and edges, respectively, in the graph, and k is the parame-
ter. This directly implies that the problem is fixed-parameter tractable.
We also study generalizations of the problem and show that they are
parameterized intractable.

Keywords: pseudo-achromatic number, parameterized complexity, ker-
nel, fixed-parameter tractability.

1 Introduction

The pseudo-achromatic number problem is to determine whether an undi-
rected graph G can be partitioned into k groups/classes (G1,G2, . . . ,Gk) such
that every two groups Gi and Gj , 1 ≤ i < j ≤ k, are connected by at least one
edge. The problem is also referred to in the literature as the graph complete

partition problem, and is formally defined as follows:

Definition 1. Let G be an undirected graph. The pseudo-achromatic number
of G is the largest integer p such that there exists a surjective function f :
V (G) → {1, . . . , p} satisfying: for all i, j, where 1 ≤ i, j ≤ p and i �= j, there
exist u ∈ f−1(i), v ∈ f−1(j) such that (u, v) ∈ E(G), where f−1(h) denotes the
preimage set of h under f .

The pseudo-achromatic number problem is:

pseudo-achromatic number. Given a graph G and a positive integer
k, determine if the pseudo-achromatic number of G is at least k.

H. Broersma et al. (Eds.): WG 2008, LNCS 5344, pp. 78–89, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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We will be using the informal definition more frequently than the formal one.
It is easy to see that the pseudo-achromatic number problem is a variation

of the graph coloring problem (or the achromatic number problem), the latter
problem requiring the groups in the partition to be independent sets.

The pseudo-achromatic number problem was first introduced by Gupta
in 1969 [11], and since then it has been studied extensively [1,2,3,4,9,12,13]. The
problem is NP-complete even on restricted classes of graphs [3,9,12].

Kortsarz et al. [12] studied the approximability of the pseudo-achromatic

number problem. It was proved in [12] that the problem has a randomized
polynomial-time approximation algorithm of ratio O(

√
lg n), which can be de-

randomized in polynomial time. This upper bound on the approximation ratio
was shown to be asymptotically tight under the randomized model.

The pseudo-achromatic number problem was also considered from the
extremal graph-theoretic point of view on special classes of graphs [2,4,13,14,15].
Balsubramanian et al. [1] gave a complete characterization of when the pseudo-
achromatic number of the join of two graphs is the sum of the pseudo-achromatic
numbers of the two graphs.

In the current paper we study the parameterized complexity of the pseudo-

achromatic number problem. We show that the problem has a kernel of size
at most (k − 2)(k + 1) vertices that is computable in time O(m

√
n), where n

and m are the number of vertices and edges, respectively, in the graph. This
kernelization result directly gives an algorithm for the pseudo-achromatic

number problem running in time O(kk2−k+2 + m
√

n), thus showing that the
problem is fixed-parameter tractable. The upper bound on the kernel size is
obtained by developing elegant and highly non-trivial structural results, that
are of independent interest.

We also study generalizations of the pseudo-achromatic number prob-
lem and prove that they are parameterized intractable. In particular, we con-
sider the vertex grouping problem, in which an input instance has the form
(G, H, k), where G and H are two graphs, and k = |V (H)|. The problem asks
for the existence of a surjective function f : V (G) −→ V (H) satisfying the
property that ∀u, v ∈ V (H), if (u, v) ∈ E(H) then there exists x ∈ f−1(u), y ∈
f−1(v) such that (x, y) ∈ E(G). The pseudo-achromatic number problem
is a special case of the vertex grouping problem in which the graph H is
the complete graph on k vertices. The vertex grouping problem falls into the
category of clustering problems, where a clustering of the graph G into |V (H)|
clusters is sought such that the inter-cluster properties are imposed by the graph
H . We prove some (parameterized) intractability results for the vertex group-

ing problem. For example, we show that the problem is W [1]-hard, even when
the graph H is the h-star graph (i.e., K1,h−1).

2 Preliminaries

The reader is referred to Downey and Fellows’ book [8] for more details about
parameterized complexity theory.
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A parameterized problem is a set of instances of the form (x, k), where x ∈ Σ∗

for a finite alphabet set Σ, and k is a non-negative integer called the parameter.
A parameterized problem Q is fixed parameter tractable, or simply FPT, if there
exists an algorithm A that on input (x, k) decides if (x, k) is a yes-instance of Q
in time f(k)nO(1), where f is a recursive function independent of n = |x|. In anal-
ogy to the polynomial time hierarchy, a hierarchy for parameterized complexity,
called the W-hierarchy, has been defined. At the 0th level of this hierarchy lies
the class FPT of fixed-parameter tractable problems. The class of all problems
at the i-th level of the W-hierarchy (i > 0) is denoted by W [i]. A parameterized-
complexity preserving reduction (FPT-reduction) has been defined as follows.
A parameterized problem Q is FPT-reducible to a parameterized problem Q′ if
there exists an algorithm of running time f(k)|x|c that on an instance (x, k) of
Q produces an instance (x′, g(k)) of Q′ such that (x, k) is a yes-instance of Q if
and only if (x′, g(k)) is a yes-instance of Q′, where the functions f and g depend
only on k, and c is a constant. A parameterized problem Q is W [i]-hard if every
problem in W [i] is FPT-reducible to Q. Many well-known problems have been
proved to be W [1]-hard including: clique, independent set, set packing,
dominating set, hitting set and set cover. The parameterized complexity
hypothesis, which is a working hypothesis for parameterized complexity theory,
states that W [i] �= FPT for every i > 0.

The notion of the fixed-parameter tractability of a problem turns out to be
closely related to the notion of the problem having a good data reduction (or
preprocessing) algorithm. Formally speaking, a parameterized problem Q is ker-
nelizable if there exists a polynomial-time reduction that maps an instance (x, k)
of Q to another instance (x′, k′) of Q such that: (1) |x′| ≤ g(k) for some recursive
function g, (2) k′ ≤ k, and (3) (x, k) is a yes-instance of Q if and only if (x′, k′)
is a yes-instance of Q. The instance x′ is called the kernel of x. It was shown
that a parameterized problem is fixed-parameter tractable if and only if it is
kernelizable [10].

For a graph G we denote by V (G) and E(G) the set of vertices and edges of
G, respectively. A matching M in a graph G is a set of edges such that no two
edges in M share an endpoint. A matching M of G is said to be maximum if
the cardinality of M is maximum over all matchings in G. For a vertex v and a
set of vertices Γ in G, we say that v is connected to Γ if v is adjacent to some
vertex in Γ . Similarly, for two sets of vertices Γ and Γ ′ in G, we say that Γ is
connected to Γ ′ if there exists a vertex in Γ that is connected to Γ ′. For a vertex
v ∈ G we denote by N(v) the set of neighbors of v in G. For a set of vertices Γ
in G we denote by N(Γ ) the set of neighbors of all the vertices of Γ in G, i.e.,
N(Γ ) =

⋃
v∈Γ N(v). We denote by Sh the (h + 1)-star graph (i.e., K1,h). The

vertex of degree h in Sh is referred to as the root of the star, and the other h
vertices are referred to as the leaves of the star. The size of the star Sh is the
number of vertices in it, which is h+1. We say that a graph G contains Sh if Sh

is a subgraph (not necessarily induced) of G. For a background on network flows
we refer the reader to [7], or to any standard book on combinatorial optimization.
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3 The Kernel

In this section we show how to construct a kernel of size (number of vertices)
at most (k − 2)(k + 1) for the parameterized pseudo-achromatic number

problem. We start by presenting some structural results that are essential for
the kernelization algorithm, and that are of independent interest on their own.

3.1 Structural Results

The following lemma ascertains that graphs with large matchings have large
pseudo-achromatic number.

Lemma 1. If a graph G contains a matching of size at least (k−1)k/2, then the
instance (G, k) is a yes-instance of the pseudo-achromatic number problem.

Proof. Assuming that G contains a matching of at least (k−1)k/2 edges, we show
how to group the vertices of G into k groups (G1,G2, . . . ,Gk) so that every pair of
groups is connected. For every pair of groups (Gi,Gj) where 1 ≤ i < j ≤ k, we use
a distinct edge (u, v) of the matching to connect the two groups by mapping the
vertex u to Gi and v to Gi. The remaining vertices of G are mapped arbitrarily
to the groups. Since there are exactly (k − 1)k/2 pairs of groups and at least
(k − 1)k/2 edges in the matching, every pair of groups is connected under this
mapping. It follows that (G, k) is a yes-instance of the pseudo-achromatic

number problem.

Lemma 2. If a graph G contains a set of k − 1 (mutually) vertex-disjoint stars
of sizes 2, . . . , k, respectively, then the instance (G, k) is a yes-instance of the
pseudo-achromatic number problem.

Proof. Let S = {s1, . . . , sk−1} be a set of vertex-disjoint stars in G, where si

is the star graph Si. We will map the vertices in S to k groups (G1,G2, . . . ,Gk)
such that every pair of groups is connected.

For i = 1, . . . , k − 1, we map the root of si to group Gi+1, and we map its
leaves, in a one-to-one fashion, to groups (G1,G2, . . . ,Gi). The remaining vertices
in G are mapped arbitrarily to the groups. Since there is no overlap between the
vertices of any two stars in S, this mapping is well defined. It is easy to verify now
that every two distinct groups in (G1,G2, . . . ,Gk) are connected under the defined
mapping. It follows that (G, k) is a yes-instance of the pseudo-achromatic

number problem.

Lemma 3. If a graph G contains a collection of (mutually) vertex-disjoint stars
each of size at least 2 and at most k+1, and such that the total number of vertices
in all the stars is more than (k − 2)(k + 1), then the instance (G, k) is a yes-
instance of the pseudo-achromatic number problem.

Proof. Suppose that G contains a collection P of vertex-disjoint stars, each con-
taining at least two vertices and at most k + 1 vertices, and such that the total
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number of vertices of the stars in P is more than (k−2)(k+1). Assume, to get a
contradiction, that (G, k) is a no-instance of the pseudo-achromatic number

problem.
Let s be the star graph Sh and s′ be the star graph Sh′ such that s and s′ are

vertex-disjoint. By merging s and s′ we mean creating the star graph Sh+h′ by
identifying the roots of s and s′. Note that the size of the merged star is 1 less
than the size of s plus the size of s′.

We construct from P a sequence of vertex-disjoint stars S = 〈sk−1, . . . , sr〉,
for some integer r ≥ 1, such that si has size at least i+1, for r ≤ i ≤ k− 1. The
procedure that constructs these stars is as follows.

For i = k − 1 down to 1 do: if the largest star in P is an Sj , where j ≥ i,
assign it to si, and remove it from P ; otherwise, recursively merge the two stars
of largest size in P and add the resulting star to P until either there is only one
star left in P , and in which case the procedure halts, or the largest star in P is
an Sj, where j ≥ i, and in which case we assign it to si, remove it from P , and
proceed to the next value of i in the for loop.

If a star si in S was created without merging stars in P , we call si a single
star, otherwise, we call si a merged star.

Note the following: if si is a merged star created from merging a collection
of stars, and if si is used to produce a valid grouping of G, then clearly the
stars that si was merged from can replace si to produce a valid grouping of G.
Therefore, assuming that (G, k) is a no-instance of the pseudo-achromatic

number problem, the last star sr constructed by the above procedure before
halting must satisfy r ≥ 2. Otherwise, the sequence S would contain a set of
k − 1 vertex-disjoint stars of sizes 2, . . . , k, and by Lemma 2, the instance (G, k)
would be a yes-instance of the problem, contradicting our assumption.

Now assume that the above procedure halts after constructing a sequence of
vertex-disjoint stars S = 〈sk−1, . . . , sr〉, such that si has size at least i + 1, for
2 ≤ r ≤ i ≤ k − 1.

We define a monotone subsequence of S to be a consecutive subsequence
〈si, si−1 . . . , sj〉 of S such that either si, si−1 . . . , sj are all single stars, or they
are all merged stars. A monotone subsequence 〈si, si−1 . . . , sj〉 of S is maximal
if it is maximal under containment.

Let 〈si, si−1 . . . , si−�+1〉, 
 ≥ 1, be a maximal monotone subsequence of S, and
note that i−
+1 ≥ 2 (since r ≥ 2). We will show that the total number of vertices
in the stars of P that were used to form the subsequence 〈si, si−1 . . . , si−�+1〉 is
at most 2(i + (i − 1) + . . . + (i − 
 + 1)). We distinguish two cases:

– Case 1. 〈si, si−1, . . . , si−�+1〉 consists of single stars. We distinguish two
subcases:
• Subcase 1.1. i = k − 1. Since every single star contains at most k + 1

vertices by the statement of the lemma, the total number of vertices in
the stars in the subsequence is bounded by 
(k + 1) ≤ 2(k − 1 + k − 2 +
. . . + k − 
). The last inequality is true because ((k − 1) − 
 + 1) ≥ 2.

• Subcase 1.2. i < k − 1. By the maximality of the subsequence, si+1 is
a merged star. Since si is a single star, it is easy to verify that si has size
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exactly i+1. The total number of vertices in the stars in the subsequence
is bounded by 
(i+1) ≤ 2(i+ i−1+ . . .+ i− 
+1) because i− 
+1 ≥ 2.

– Case 2. 〈si, si−1, . . . , si−�+1〉 consists of merged stars. Let sj be any star
in this subsequence, and suppose that sj was constructed by merging stars
t1, . . . , tq in P . By the construction of sj , the total number of leaves in the
stars t1, . . . , tq−1 is less than j (otherwise these stars would be sufficient
to produce sj), and the size of tq is not larger than any of the sizes of
t1, . . . , tq−1. Therefore, we have:

|t1| − 1 + |t2| − 1 + . . . + |tq−1| − 1 ≤ j − 1, (1)

and

|tq| ≤ (|t1| + |t2| + . . . + |tq−1|)/(q − 1). (2)

Combining Inequality (1) with Inequality (2), and noting that q ≤ j, we
obtain:

|t1| + |t2| + . . . + |tq| ≤ 2j. (3)

Inequality (3) shows that the total number of vertices in the stars of P forming
sj is at most 2j. By applying this inequality to each star sj in the maximal
monotone subsequence 〈si, si−1, . . . , si−�+1〉 of merged stars, and by the linearity
of addition, we obtain that the total number of vertices of P used to form the
stars in 〈si, si−1, . . . , si−�+1〉 is at most 2(i + (i − 1) + . . . + (i − 
 + 1)).

It follows from the above that, for any maximal monotone subsequence
〈si, si−1, . . . , si−�+1〉 of S, the total number of vertices of P used to form the
stars in this subsequence is at most 2(i+(i−1)+ . . .+(i− 
+1)). Applying the
above bound to every maximal monotone subsequence of S, and by the linearity
of addition, we conclude that the total number of vertices in P forming all the
stars in S is at most (k − r)(k + r − 1).

Noting that the number of remaining non-empty stars in P cannot form an
sr−1, the total number of leaves in the remaining stars is at most r − 2, and
consequently, the total number of vertices in the remaining stars is at most
2(r − 2). Therefore, the total number of vertices in P is at most (k − r)(k + r −
1) + 2(r − 2) = k2 − k − (r2 − 3r + 4). Since r ≥ 2, P has the maximum number
of vertices when r = 2. It follows that the total number of vertices in P is at
most (k − 2)(k + 1), contradicting the hypothesis of the lemma.

This completes the proof.

3.2 The Auxiliary Flow Network and the Graph Pseudo-achromatic
Number

Let G be a graph with pseudo-achromatic number at least k, and let H be a
vertex grouping that partitions the vertices of G into k groups such that every
pair of groups is connected.
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We will show a nice relationship between the pseudo-achromatic number of a
graph and graph matchings.

Let M be a maximum matching in G. Let I = V (G) \ V (M), and note that
I is an independent set. For a vertex u ∈ V (M) we denote by NI(u) the set
N(u)∩ I. Let M2 be the set of edges in M whose both ends are connected to I.

Lemma 4. Let (u, v) be an edge in M2. Then NI(u) = NI(v) and |NI(u)| = 1.

Proof. By definition, both NI(u) and NI(v) are nonempty. Therefore, either
NI(u) �= NI(v) or |NI(u)| > 1 would imply the existence of two different
vertices w1 ∈ NI(u) and w2 ∈ NI(v). However, this would give an augment-
ing path (w1, u, v, w2) with respect to M , contradicting the maximality of the
matching M .

Let NI(M2) be the set N(V (M2))∩I, and let D = I \NI(M2). We partition the
edges of M \M2 into two sets M1 and M0, where M1 consists of all the edges in
M \ M2 that have exactly one end connected to D, and M0 = M \ (M2 ∪ M1).
Note that the edges in M0 ∪ M2 have no end connected to D (however, an edge
in M0 or in M1 may have an end connected to NI(M2)).

The vertices in V (M1) are further partitioned into R and L, such that R is the
set of vertices in V (M1) that are connected to D, and L is the set of remaining
vertices in V (M1). By definition, each edge in M1 has exactly one end in R and
one end in L. Moreover, by the definition of the set M0 and by Lemma 4, the
vertices in the set D can only be connected to vertices in R (note that D is an
independent set).

Let J be the subgraph of G with vertex set R ∪ D and edge set {(u, v) | u ∈
R and v ∈ D}. We construct a flow network Jk from J as follows. Convert each
undirected edge (u, v) in J , where u ∈ R and v ∈ D, into a directed edge 〈u, v〉
of capacity 1. Add a source s and a sink t. For each vertex u ∈ R, add a directed
edge 〈s, u〉 of capacity k − 1; and for each vertex v ∈ D, add a directed edge
〈v, t〉 of capacity 1.

Let f∗ be an integer-valued maximum flow in Jk. In case of no confusion, we
will identify the vertices and edges in Jk − {s, t} with their counterparts in G.

For a vertex u, denote by f∗
u the flow through u, i.e., the total outgoing flow

from u. Let Tk = {u | u ∈ D and f∗
u = 0}. We have the following theorem whose

proof is omitted due to the lack of space. The proof can be found in [6].

Theorem 1. The instance (G, k) is a yes-instance of the pseudo-achromatic

number problem if and only if (G − Tk, k) is a yes-instance of the pseudo-

achromatic number problem.

The above theorem shows that the vertex set Tk can be safely removed from the
graph G. Moreover, the graph G − Tk has the following nice property.

Lemma 5. The vertices in the graph G′ = G − Tk can be decomposed into a
collection P of vertex-disjoint stars, each star of size at least 2 and at most
k + 1.



On the Pseudo-achromatic Number Problem 85

Proof. We will exhibit the collection of vertex-disjoint stars P in G′. We will
denote by VP the set of vertices of the stars in the collection P , and by EP the
set of edges of the stars in P .

The set of vertices of G′ consists of the vertices in the matching M , the vertices
in NI(M2), and the vertices in D with a non-zero flow value. For a vertex u in R,
let S(u) be the star graph formed by the incident edge to u in M1, together with
the set of saturated edges in G′ incident on u. Clearly, each such star S(u) has
size at least 2 and at most k + 1 since the capacity of u in Jk is k − 1. Moreover,
for any two vertices u and v in R, the two star graphs S(u) and S(v) share no
vertices; otherwise, there would be a shared vertex w ∈ S(u)∩S(v) of capacity 1
in Jk with two saturated edges incident on it, contradicting the flow properties.
We add all such stars S(u) to the collection P .

We also include in P a maximal set of disjoint S2 stars such that the root of
each S2 star is a vertex in NI(M2) and its leaves are the end points of the same
edge in M2. Moreover, for every edge in M2 whose endpoints are not yet in VP ,
we include it in P as an S1 stars. Finally we include in P the matching edges in
M0 as S1 stars.

It is clear that all the stars included in P are vertex-disjoint, and that each
star has size at least 2 and at most k + 1.

We claim that VP contains all the vertices of G′. First observe that VP contains
the endpoints of all the edges in M . Second, since every vertex v in D − Tk

is incident on a saturated edge in G′, v is included in P . Moreover, since by
definition every vertex u ∈ NI(M2) forms an S2 star with two vertices w and v,
where (w, v) is an edge in M2, and since by Lemma 4 no other vertex in NI(M2)
can form a star with the vertices w and v, it follows from the construction of P
that u ∈ VP . Therefore, every vertex u in NI(M2) is in P , and VP contains all
the vertices of G′ as desired.

3.3 Putting It All Together: The Kernelization Algorithm

Consider the decomposition of G defined in Subsection 3.2, and let M and Tk

be as defined in Subsection 3.2. The kernelization algorithm is given in Figure 1.

Algorithm PseudoAchromaticNumberKernel

Input: (G, k)
Output: (G′, k′)
1. construct a maximum matching M of G;
2. if |M | ≥ (k − 1)k/2 then return yes;
3. compute the set Tk of vertices as described in Subsection 3.2; G′ = G − Tk;
4. if |V (G′)| > (k − 2)(k + 1) then return yes;
5. return (G′, k′ = k);

Fig. 1. The kernelization algorithm
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Theorem 2. Given an instance (G, k) of the pseudo-achromatic number

problem, the algorithm PseudoAchromaticNumberKernel either decides the
instance (G, k) correctly, or returns an instance (G′, k′) of the problem such that
G′ is a subgraph of G, k′ ≤ k, and (G, k) is a yes-instance if and only if (G′, k′)
is. Moreover, the algorithm runs in time O(m

√
n), where n and m are the number

of vertices and edges, respectively, in G.

Proof. If the size of the maximum matching M in G is at least (k−1)k/2, then by
Lemma 3.1, G is a yes-instance of the pseudo-achromatic number problem.
Therefore, the algorithm PseudoAchromaticNumberKernel makes the right
decision in step 2.

By Theorem 1, (G, k) is a yes-instance of the pseudo-achromatic number

problem if and only if (G′, k′) is.
It suffices to argue that if |V (G′)| > (k − 2)(k + 1) (note that k′ = k), then

(G′, k′), and hence (G, k), is a yes-instance of the pseudo-achromatic number

problem, and the algorithm makes the right decision in step 4.
By Lemma 5, the set V (G′) can be decomposed into a collection of vertex-

disjoint stars P , each star of size at least 2 and at most k + 1. Since |V (G′)| >
(k−2)(k+1), it follows that the number of vertices in P is more than (k−2)(k+1).
Consequently, P satisfies the statement of Lemma 3, and (G′, k′) is a yes-instance
of the pseudo-achromatic number problem.

Finally, to see that the algorithm PseudoAchromaticNumberKernel runs
in time O(m

√
n), note first that the maximum matching M can be computed

in O(m
√

n) time by a standard maximum matching algorithm [7]. Noting that
the flow network Jk is a bipartite graph with at most O(n) vertices and O(m)
edges, the maximum flow f∗ in Jk can be computed in time O(m

√
n) [7]. All

other steps can be performed in time O(m), and the theorem follows.

Corollary 1. The pseudo-achromatic number problem has a kernel of at
most (k − 2)(k + 1) vertices that is computable in time O(m

√
n), where n and

m are the number of vertices and edges, respectively, in the graph, and k is the
parameter.

Using the (k−2)(k+1) upper bound on the kernel size, we can solve the pseudo-

achromatic number problem by enumerating all possible assignments of the
vertices in the graph to the k groups, then checking whether any such assignment
yields a valid grouping. We have the following corollary:

Corollary 2. The pseudo-achromatic number problem can be solved in time
O(kk2−k+2 + m

√
n), and hence is fixed-parameter tractable, where n and m are

the number of vertices and edges, respectively, in the graph.

Proof. Given an instance (G, k) of the pseudo-achromatic number problem,
where G has n vertices and m edges, we apply the algorithm PseudoAchromat-
icNumberKernel to (G, k). The algorithm runs in O(m

√
n) time and either

accepts the instance (G, k) correctly, or returns a kernel (G′, k) where G′ has
at most (k−2)(k+1) vertices. Now if G′ can be partitioned into k groups that are
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mutually connected, then every vertex in G′ must belong to one of the k groups.
Therefore, there are at most k(k−2)(k+1) ways to partition G′ into k groups.
For each such partitioning, we can check whether the corresponding groups are
mutually connected; this can be done in time O(k4). If we do not succeed in
finding a valid partitioning then clearly the algorithm can reject the instance;
otherwise, the algorithm returns a valid partitioning. The total running time of
the algorithm is O(k4 · k(k−2)(k+1) + m

√
n), which is O(kk2−k+2 + m

√
n).

4 Hardness Results for the Vertex Grouping Problem

Recall from Section 1 that in the vertex grouping problem we are given
an instance (G, H, k), where G and H are two graphs, and k = |V (H)|, and
the problem asks for the existence of a surjective function f : V (G) −→ V (H)
satisfying the property that for all u, v ∈ V (H), if (u, v) ∈ E(H) then there exist
x ∈ f−1(u) and y ∈ f−1(v) such that (x, y) ∈ E(G). The vertex grouping

problem can be defined more intuitively as follows.
Let G be an undirected graph. We define an operation on G, called vertex

grouping, applied to a subset of vertices S as follows: remove all the vertices in
S from G, add a new vertex w, and connect w to all the neighbors of S in G−S.
The vertex grouping problem is:

vertex grouping: Given two graphs G and H , where H is a graph of
k vertices, and k is the parameter, decide if H can be obtained from G
by a sequence of vertex grouping operations.

If H in the above definition is the complete graph on k vertices, then the vertex

grouping problem becomes the pseudo-achromatic number problem, and
hence is fixed parameter tractable. The following theorem shows that the vertex

grouping problem is parameterized intractable in general.

Theorem 3. The vertex grouping problem is W [1]-hard.

Proof. We reduce the W [1]-hard problem independent set to the vertex

grouping problem.
Let (G, k) be an instance of the independent set problem. Construct a

graph G′ by adding a new vertex w to G and connecting w to every vertex in G.
Let H be a (k +1)-star with root rH . Define the mapping π that, on an instance
(G, k) of independent set, produces the instance (G′, H, k + 1) of vertex

grouping. Clearly, the mapping π is computable in polynomial time, and hence
π is an FPT-reduction. We show that (G, k) is a yes-instance of independent

set if and only if (G′, H, k + 1) is a yes-instance of vertex grouping.
In effect, suppose that (G, k) is a yes-instance of independent set, and let I

be an independent set in G of size k. Consider the function f : V (G′) −→ V (H)
that maps the k vertices of I in G′ to the k leaves of the star H , in a one-to-one
fashion, and maps all other vertices of G′ to the root rH of H . Then it is easy
to verify that H is a vertex grouping of G′ under the function f .
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Conversely, suppose that H is a vertex grouping of G′ under a function f .
Consider any set of vertices I in G of cardinality k satisfying f(I) = V (H)\{rH}.
Clearly, such a set I exists by the definition of the vertex grouping. Note that f
is a bijection from I to V (H)\{rH}. Now for any two distinct vertices u and v of
I, u and v are not adjacent in G, otherwise, by the definition of vertex grouping,
f(u) and f(v) would be adjacent in H . It follows that I is an independent set
of size k in G. This completes the proof.

The Exponential Time Hypothesis (ETH) states that many NP-hard problems
including 3-sat, independent set, and vertex cover, cannot be solved in
time 2o(n) (n is the number of variables for 3-sat, and the number of vertices for
independent set and vertex cover). ETH has become a working hypothesis
for many researchers in the area of exact and parameterized algorithms. It was
shown in [5] that, unless ETH fails, independent set cannot be solved in time
no(k). It was also shown in [5] that if a parameterized problem Q is reducible to
a parameterized problem Q′ by an FPT reduction, called linear fpt-reduction,
that preserves the order of the parameter and does not increase the size of the
instance by more than a polynomial factor, and if Q cannot be solved in time
no(k) then it follows that Q′ cannot be solved in time no(k). Clearly, the reduction
from independent set to vertex grouping, given in the proof of Theorem 3,
is a linear fpt-reduction. Therefore, we have the following theorem:

Theorem 4. Unless ETH fails, the vertex grouping problem cannot be solved
in time no(k), where n and k are the number of vertices in G and H, respectively.

We illustrate a relationship between the graph isomorphism problem and the
vertex grouping problem. Let G1 and G2 be two graphs on n vertices. We
are interested in knowing how “similar” G1 and G2 are, under the notion of
vertex grouping defined above. For this purpose, we introduce the following
parameterized problem:

graph structural similarity: given two graphs G1 and G2 on n
vertices, and a parameter k, decide if there exists a graph H of k vertices
such that both (G1, H, k) and (G2, H, k) are yes-instances of the vertex

grouping problem.

Intuitively, the graph structural similarity measures the degree of similarity (i.e.,
k) between two graphs under the notion of vertex grouping. In particular, if
k = n, then the graph structural similarity problem is equivalent to the
graph isomorphism problem.

Theorem 5. The graph structural similarity problem is W [1]-hard.

Proof. As was shown in Theorem 3, the vertex grouping problem is W [1]-
hard when the graph H is a star. An FPT-reduction can be constructed that
takes an instance (G, H, k), where G has n vertices and H is a k-star, of the ver-

tex grouping problem to an instance (G1, G2, k) of the graph structural

similarity problem, where G1 = G and G2 is the n-star. Observing that any
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sequence of vertex grouping operations that are applied to G2 can only result in
a star graph, the W [1]-hardness of graph structural similarity follows.

The reduction described in the proof of the above theorem is clearly a linear
fpt-reduction. Therefore, it follows from Theorem 4 that:

Theorem 6. Unless ETH fails, the graph structural similarity problem
cannot be solved in time no(k), where n is the number of vertices in G1 and G2,
and k is the parameter.
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Abstract. In this paper, we study the problem of ecologically coloring a graph.
Intuitively, an ecological coloring of a graph is a role assignment to the nodes of
the graph, such that two nodes surrounded by the same set of roles must be as-
signed the same role (Borgatti and Everett, 1992). We prove that, for any simple
undirected graph G with nG distinct neighborhoods and for any integer k with
1 ≤ k ≤ nG, G admits an ecological coloring which uses exactly k roles, and
that this coloring can be computed in polynomial time. Our result strongly con-
trasts with the NP-completeness result of the regular coloring problem, where it is
required that two nodes with the same role must be surrounded by the same set of
roles (Fiala and Paulusma, 2005). Hence, we conclude that not only the ecolog-
ical coloring is easier to understand as a model of social relationships (Borgatti
and Everett, 1994), but it is also feasible from a computational complexity point
of view.

1 Introduction

One of the main goals of the analysis of a social network consists of determining pat-
terns of relationships and interactions among social actors (such as persons and groups)
in order to identify the social structure of the network [4,5]. To this aim, a social net-
work is usually represented as a graph, whose nodes denote the network members and
whose edges denote their relationships, which is analyzed from a structural point of
view by means of methods that broadly fall into one of the following two categories:
relational analysis methods that are often used in order to identify central members or
to partition the graph into clusters, and positional analysis methods that examine the
similarity between the connection of two network members with the other members.
Role assignment is one of the main positional analysis methods, whose goal consists of
classifying the members of a social network, so that members which are equally clas-
sified can be considered to behave in a similar way or to play a similar role [9]. If the
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number of roles is limited, this kind of classification can turn out to be extremely useful
while trying to understand the overall structure of very complex social networks.

Different kinds of role assignment have been introduced in the literature. A strong
structural role assignment, for example, imposes that if two actors play the same role,
then they must have the same neighborhood [10], while a regular role assignment im-
poses that if two actors play the same role, then they must be surrounded by the same
set of roles [1,12]. In this paper we are interested in another kind of role assignment,
that is, ecological role assignments, according to which if two network members are
surrounded by the same set of roles, then they must play the same role: in other words,
the role played by a social actor is completely determined by the roles played by its
neighbors [2]. The relationship imposed by an ecological role assignment is the oppo-
site of the one imposed by a regular role assignment: a role assignment that satisfies
both constraints is called perfect [3]. As stated by Borgatti and Everett, an ecological
role assignment is easier to understand as a model of social relationships, in which a
member’s neighborhood tends to shape this member into that or this kind.

Computing a role assignment for a given network is equivalent to computing a col-
oring of the network nodes, such that the constraint imposed by the role assignment is
satisfied by the colors assigned to the nodes. For instance, an ecological coloring of a
graph is an assignment of colors to the nodes of the graph such that if two nodes “see”
the same set of colors, then they are assigned the same color. Our main contribution is
proving that, for any simple undirected graph G with nG distinct neighborhoods and
for any integer k with 1 ≤ k ≤ nG, G admits an ecological coloring which uses ex-
actly k colors, and that this coloring can be computed in polynomial time by means of
a bottom-up approach and by making use of some combinatorial properties of graphs
whose nodes have all distinct neighborhoods.

Our results strongly contrast with the results obtained in [7,11] according to which
deciding whether a graph can be regularly colored with k colors is NP-complete, for any
k ≥ 2. This somehow implies that an ecological role assignment not only is easier to
understand but it is also more useful from a computational point of view than a regular
role assignment, since it can be always efficiently computed. This allows the network
analyzer to reduce the size of complex social networks to a desired size: this feature
is extremely important in network analysis for which different aspects can be studied
depending on network dimension (for example, the degree of relevance in information
retrieval and the degree of relationship in e-communities discovery).

The paper is structured as follows. In the rest of this section, we give some prelim-
inary definitions and results concerning the regular and the ecological coloring of a
graph. In Section 2 we introduce the notion of twin-free graph [6,8], we prove how we
can restrict our attention to this kind of graphs and we show some properties of these
graphs that will be useful for designing the main algorithm. In Section 3 we prove our
main result, that is, that any graph can be ecologically colored by using any reasonable
number of colors. Finally, in Section 4 we conclude by stating our main open question.

1.1 Preliminaries

In the following, the term ‘graph’ will always denote a simple (that is, with no self-
loops and multiple edges) undirected graph (unless otherwise specified). Given a graph
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G = (V, E), for any node u ∈ V , N(u) denotes the neighborhood of u. A coloring
of G which uses k colors is a surjective function r : V → [k].1 Given a coloring r of
G which uses k colors, the colorhood of a node u ∈ V with respect to r is defined as
the set

Cr(u) =
{
i ∈ [k] : ∃v ∈ N(u) [r(v) = i]

}
A coloring r of a graph G = (V, E) is regular [1] if, for any u, v ∈ V ,

r(u) = r(v) ⇒ Cr(u) = Cr(v).

Observe that a graph can be regularly colored with one color if and only if either it
contains no isolated nodes or its nodes are all isolated. Furthermore, any graph can
be regularly colored with n colors, where n is the number of nodes of the graph. The
k-REGULAR ROLE ASSIGNMENT (in short, k-RERA) decision problem consists in
deciding whether a graph G admits a regular coloring which uses k colors: in [7,11] it
is proved that k-RERA is NP-complete for any k ≥ 2.

A coloring r of a graph G = (V, E) is ecological [2] if, for any u, v ∈ V ,

Cr(u) = Cr(v) ⇒ r(u) = r(v).

Observe that any graph can be ecologically colored with one color. However, it is not
true that any graph can be ecologically colored with n colors, where n is the number
of nodes of the graph (see the results of Section 2). In general, an ecological coloring
is not necessarily regular and a regular coloring is not necessarily ecological. The k-
ECOLOGICAL ROLE ASSIGNMENT (in short, k-ECRA) decision problem consists in
deciding whether a graph G admits an ecological coloring which uses k colors.

2 Twin-Free Graphs

According to the definition of an ecological coloring, two nodes with the same neigh-
borhood must be colored with the same color. The number of distinct neighborhoods
contained in a graph is thus an upper bound on the number of colors that can be used by
any ecological coloring. The following definition and results formalize this statement.

Definition 1 ([6,8]). A graph G = (V, E) is twin-free if, for any u, v ∈ V , N(u) �=
N(v).

Observe that any twin-free graph with n nodes can clearly be ecologically colored with
n colors.

Given a graph G = (V, E), we define an equivalence relation ρN on the vertices of
G as follows: two vertices u, v ∈ V are equivalent if and only if N(u) = N(v). The
neighborhood graph corresponding to G is the twin-free graph GN = (VN , EN ) where
VN is the set of equivalence classes with respect to the relation ρN , and2 (x, y) ∈ EN

if all nodes in the equivalence class x are adjacent to all nodes in the equivalence class
y. The neighborhood degree nG of G is defined as the number of nodes in GN . The
following two results can be easily proved.

1 In the following, for any positive integer n, [n] will denote the set {1, 2, . . . , n}.
2 In the following, we will indicate an edge of a graph by using brackets instead of curly brackets,

in order to avoid confusion with other two-elements sets.
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Theorem 1. A graph can be ecologically colored with k colors if and only if its neigh-
borhood graph can be ecologically colored with k colors.

Corollary 1. Each graph G can be ecologically colored with nG colors and it cannot
be ecologically colored with k > nG colors.

The following structural property of twin-free graphs has been independently proved
in [6]: for the sake of completeness, we include our self-contained proof in the Appendix.

Theorem 2. Let G = (V, E) be a twin-free graph with n nodes. Then, there exists a
node u ∈ V , such that the graph induced by V − {u} is a twin-free graph with n − 1
nodes.

The previous theorem allows us to prove the following result, which will be used as a
subroutine within the second phase of the general ecological coloring algorithm (see
line 9 of Figure 3).

Theorem 3. Let G = (V, E) be a twin-free graph with n nodes. Then, G can be eco-
logically colored with n − 1 colors.

Proof. Let G = (V, E) be a twin-free graph with n nodes. From Theorem 2 it follows
that there exist two nodes u and v such that the graph Gu,v induced by V − {u, v} is a
twin-free graph with n−2 nodes. Let r be any coloring of G that assigns n−2 different
colors to the nodes of Gu,v and that assigns the same new color to u and v. In order
to prove that r is ecological, we proceed by contradiction and assume that there exist
two nodes p and q such that r(p) �= r(q) and Cr(p) = Cr(q). We then distinguish the
following cases.

1. {p, q} = {u, v}. In this case, r(p) = r(q), and, hence, we get a contradiction.
2. {p, q} ⊆ V −{u, v}. In this case, since Gu,v is twin-free and since all its nodes are

colored with different colors, Cr(p) must be different from Cr(q), and, hence, we
get a contradiction.

3. p ∈ {u, v} ∧ q ∈ V − {u, v}. In this case, since all the nodes of Gu,v are colored
with different colors and since Cr(p) = Cr(q), we have that N(p)∩(V −{u, v}) =
N(q)∩(V −{u, v}). Moreover, p and q cannot be adjacent, since otherwise r(q) ∈
Cr(p) − Cr(q), contradicting the fact that Cr(p) = Cr(q). Since G is twin-free,
exactly one node among p and q must be adjacent to the node in {u, v} − {p}: this
implies that either r(p) ∈ Cr(p)−Cr(q) or r(p) ∈ Cr(q)−Cr(p), and, hence, we
get a contradiction.

4. p ∈ V − {u, v} ∧ q ∈ {u, v}. This case is symmetric to the previous one. ��

We conclude this section by stating two other interesting properties of twin-free graphs.
The first one is formalized in the following result.

Lemma 1. Let G = (V, E) be a twin-free graph of n nodes and let I = {I1, . . . , Ih}
be a partition of V into h non-empty independent sets with 2 ≤ h < n. Then, there exist
p, q ∈ [h] such that the pair of sets Ip and Iq induces a non-complete bipartite graph
with at least one edge.
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Proof. The proof proceeds by contradiction. Assume that all pairs of independent sets
in I induce either a complete bipartite graph or an independent set. This, in turn, implies
that, since h < n and, hence, at least one independent set is not a singleton, there must
exist at least two nodes u and v in the same independent set which, for any i ∈ [h],
are adjacent either to all nodes or to no node in Ii. That is, u and v have the same
neighborhood, thus contradicting the twin-free property of G. ��

In order to state the last property of twin-free graphs that we will use in the next section,
we need the following definition.

Definition 2. Let G = (V, E) be a graph and I = {I1, . . . , Ih} be a partition of V
into h ≥ 1 non-empty sets such that I1, . . . , Ih−1 are independent sets. We say that I is
an ecological family for G of size h if either h = 1 or, for any i, j ∈ [h] with i �= j and
for any u ∈ Ii and v ∈ Ij , there exists t ∈ [h] such that u is adjacent to some node in
It and v is not adjacent to any node in It.

Lemma 2. Let G = (V, E) be a twin-free graph of n nodes and let I = {I1, . . . , Ih}
be an ecological family for G of size h < n. Then, there exists an ecological family I′

for G of size h + 1 or h + 2. Furthermore, I ′ can be computed in polynomial time.

Proof. If Ih is not an independent set, then let Ih1 be a maximal independent set for the
subgraph of G induced by Ih, Ih2 = Ih − Ih1 and I ′ = I − {Ih} ∪ {Ih1, Ih2}. For
any i ∈ [h − 1] and for any j ∈ [h] such that i �= j, let u ∈ Ii ∈ I and v ∈ Ij ∈ I
and let It ∈ I be such that u is adjacent to some node in It and v is not adjacent to any
node in It: clearly, this is still true in I ′ with It possibly replaced by Ih1 or by Ih2. If,
instead, i = h1 and j = h2, that is, u ∈ Ih1 and v ∈ Ih2, then, since Ih1 is a maximal
independent set for the subgraph of G induced by Ih, v has to be adjacent to some node
in Ih1 while u is not adjacent to any other node in Ih1.

Assume now that Ih is an independent set. In this case, from Lemma 1 it follows
that there exist p, q ∈ [h] such that the subgraph of G induced by Ip ∪ Iq is not an
independent set and is not bipartite complete. We now find a partition of Ip into Ip1∪Ip2
and a partition of Iq into Iq1∪Iq2 such that Ip1 �= ∅, Iq1 �= ∅, Ip2∪Iq2 �= ∅ and Ip1∪Iq1
is an independent set. Since, the subgraph of G induced by Ip∪Iq is not an independent
set and is not a bipartite complete graph, it has to contain two adjacent nodes, u1 ∈ Ip

and v1 ∈ Iq , and two non-adjacent nodes u2 ∈ Ip and v2 ∈ Iq . Notice that they are
not necessarily distinct, that is, it could happen that either u1 ≡ u2 or v1 ≡ v2 (but not
both). Without loss of generality assume that u1 �≡ u2. Let Iq1 = {x ∈ Iq : (u2, x) �∈
E}, Ip1 = {x ∈ Ip : ∀y ∈ Iq1[(x, y) �∈ E]}, Ip2 = Ip − Ip1 and Iq2 = Iq − Iq1: notice
that u2 ∈ Ip1 and v2 ∈ Iq1. Furthermore, if v1 ≡ v2 then u1 ∈ Ip2, otherwise v1 ∈ Iq2.
Finally, Ip1 ∪ Iq1 is an independent set by construction. Notice that Iq2 could be empty:
this happens if no node in Iq is adjacent to u2, that is, only if u2 is an isolated node in
the subgraph induced by Ip ∪ Iq .

We now define I ′ as follows.

1. I ′ = I − {Ip, Iq} ∪ {Ip1, Ip2, Iq1, Iq2} if Iq2 �= ∅ and Ip2 �= ∅.
2. I ′ = I − {Ip, Iq} ∪ {Ip1, Ip2, Iq1} if Iq2 = ∅.
3. I ′ = I − {Ip, Iq} ∪ {Ip1, Iq1, Iq2} if Ip2 = ∅.
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It remains to show that I ′ is an ecological family for G. To this aim, consider a pair of
nodes u ∈ Ii ∈ I and v ∈ Ij ∈ I with i �= j and let It ∈ I be such that u is adjacent
to some node in It and v is not adjacent to any node in It. This is still true in I ′ with
It eventually replaced by one set out of Ip1, Ip2, Iq1, Iq2. Hence, assume i = j. One of
the following cases may occur.

– u ∈ Ip1 and v ∈ Ip2: in this case, by construction, u is not adjacent to any node in
Iq1 and v has to be adjacent to some node in Iq1 (otherwise, v should be contained
in Ip1).

– u ∈ Iq1 and v ∈ Iq2: this case is similar to the previous one.

Hence, I ′ is an ecological family for G and its size is either h + 1 or h + 2. ��

3 The Ecological Coloring Algorithm

In this section we prove the existence of ecological colorings with any feasible number
of colors. According to Theorem 1 we can state our main result in terms of twin-free
graphs.

Let G = (V, E) be a twin-free graph of n nodes and k < n the number of colors
we are interested in. Our algorithm works in two phases. During the first phase, an
ecological family for G of size either k − 1 or k is computed by using Lemma 2. If
the size of such a family is k an ecological coloring is directly derived from the family.
Conversely, if the size of the ecological family is smaller than k then the second phase
is started and the informations conveyed by the ecological family are used to compute
the k-ecological coloring of G. The algorithm is described in Figure 1.

Input: A twin-free graph G = (V, E) with |V | = n and integer k with 1 ≤ k ≤ n.
Output: An ecological coloring r for G which uses k colors.
1: Phase 1: apply Algorithm Partitioning with input G and k to compute an ecological

family I for G of size h ≤ k;
2: if h = k then
3: for (i ← 1; i ≤ k; i ← i + 1) do
4: ∀u ∈ Ii: r(u) ← i;
5: else
6: Phase 2: apply Algorithm Refining with input I and k to compute an ecological color-

ing r for G which uses k colors;

Fig. 1. The ecological coloring algorithm

In the next two subsections the two phases are detailed and the proof that they are
in fact correct is drawn. This allows us to prove our main result, stated in the following
theorem.

Theorem 4. For any twin-free graph G = (V, E) with n nodes and for any k ∈ [n], G
admits an ecological coloring which uses k colors. Such a coloring can be computed in
polynomial time.
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Proof. Lemma 3 insures that Algorithm Partitioning computes indeed an ecolog-
ical family I for G. If |I| = k, lines 2–4 are executed. We now show that they compute
an ecological coloring for G. Let u and v be two nodes such that r(u) = p �= r(v) = q.
Hence, u ∈ Ip ∈ I and v ∈ Iq ∈ I. Since I is an ecological family for G, then there
exists t such that u is adjacent to some node in It and v is not adjacent to any node in
It. Since r(x) = t if and only if x ∈ It, Cr(u) �= Cr(v). Hence, r is an ecological
coloring of G. Conversely, if the else statement is executed then the computed coloring
is ecological by Lemma 4. ��

3.1 Phase 1: Computing an Ecological Family

This phase iteratively applies Lemma 2 in order to construct an ecological family for
G. More formally, Algorithm Partitioning performing this task is described in
Figure 2.

Input: A twin-free graph G = (V, E) with |V | = n and integer k with 1 ≤ k ≤ n.
Output: An ecological family I for G of size at most k.
1: I ← {V };
2: while |I| < k − 1 do
3: Let I′ the ecological family for G obtained by applying Lemma 2 to I;
4: I ← I′;

Fig. 2. Partitioning: Phase 1 of the ecological coloring algorithm

Lemma 3. Let G be a twin-free graph with n nodes and k a positive integer such that
k ≤ n. Algorithm Partitioning computes an ecological family for G of size either
k − 1 or k.

Proof. The condition of the while loop (line 2)requires |I| < k − 1: since k ≤ n,
then Lemma 2 can be actually applied to set I at each iteration. The algorithm ends by
computing an ecological family for G of size either k − 1 or k. ��

3.2 Phase 2: The Last Refinement

In order to describe this phase, we need to introduce the notion of color graph. Given
a coloring r of a graph G = (V, E) which uses k colors, the color graph CG,r =
([k], EG,r) includes the edge (i, j) if and only there exist u, v ∈ V such that r(u) = i,
r(v) = j and (u, v) ∈ E (note that, in general, a color graph is not simple). If Phase
1 ends with an ecological family for G of size k − 1, the second phase is started and
the ecological family for G of size (k− 1) is used to compute the k-ecological coloring
of G. Algorithm Refining shown in Figure 3 first tries to increase by 1 the size of
the ecological family (according to Lemma 2) in order to color it in the same way as in
lines 2–4 of the Algorithm in Figure 1. If this is not possible, then it both increases the
size of I by 2 (always according to Lemma 2) and it computes a (k − 2)-coloring r2 of
I. In order to perform the last step, it builds the color graph CG,r1 of G with respect to
the (k − 1)-coloring r1 deriving from I and applies to it Theorem 2: observe that this
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Input: An ecological family I = {I1, I2, . . . , Ik−1} for a twin-free graph G = (V, E) with
|V | = n, and a positive integer k ≤ n .

Output: An ecological coloring r of G which uses k colors.
1: Let r1 be the coloring according to which all nodes in Ii are colored with color i, i =

1, . . . , k − 1;
2: if ∃1 ≤ p ≤ k − 1 and u, v ∈ Ip such that Cr1(u) 
= Cr1(v) then
3: Ip1 ← {x ∈ Ip : Cr1(x) = Cr1(u)};
4: ∀u 
∈ Ip1, r(u) ← r1(u); ∀u ∈ Ip1, r(u) ← k;
5: else
6: Let Ip, Iq ∈ I such that Ip ∪ Iq is not an independent set and induces a non-complete

bipartite graph with at least two nodes in Ip and at least two nodes in Iq;
7: Partition Ip into Ip1, Ip2 and Iq into Iq1, Iq2 such that all of them are not empty, Ip1 ∪ Iq1

is an independent set, and both Ip1 ∪ Iq2 and Ip2 ∪ Iq1 are not independent sets (see proof
of Lemma 2);

8: CG,r1 ← color graph of G with respect to r1;
9: Color CG,r1 with k − 2 colors by applying Theorem 3: let r2 be such a coloring;

10: Transform r2 into a coloring r3 of G: ∀I ∈ CG,r1∀u ∈ I : r3(u) ← r2(I);
11: ∀u 
∈ Ip1 ∪ Iq2 : r(u) ← r3(u); ∀u ∈ Ip1 : r(u) ← k − 1; ∀u ∈ Iq2 : r(u) ← k;

Fig. 3. Refining: Phase 2 of the ecological coloring algorithm

is possible since CG,r1 is simple because nodes with the same color belong to the same
independent set. Finally, by exploiting both r2 and the ecological family of size k + 1,
it computes the ecological coloring r for G that uses k colors.

Lemma 4. Let G be a graph and I an ecological family for G of size k − 1. Then,
Algorithm Refining computes an ecological coloring of G with k colors.

Proof. Notice that the coloring computed at line 1 is the same as that computed at
line 3 of the algorithm in Figure 1 and, hence, it is ecological. When the if statement is
executed (line 2), the partition I −{Ip}∪{Ip1, Ip2} computed at line 3 is ecological by
Lemma 2. Hence, the coloring r computed at line 4 can be easily proved to be ecological
by the same arguments in the proof of Lemma 3.

Conversely, assume the else statement is executed (lines 5–11). In this case, from
Lemma 1 it follows that there exists a pair of independent sets Ip and Iq that does not
induce either an independent set or a complete bipartite graph. Moreover, since each
pair of nodes in Ip (respectively, Iq) has the same colorhood, then Ip (respectively,
Iq) contains at least two nodes. It hence follows that line 6 successfully terminates its
execution. By the same arguments used in the proof of Lemma 2 it also follows that the
partition described at line 7 can be computed and results into an ecological partition for
G of size k + 1. In turn, this corresponds to a (k + 1)-coloring of G.

Hence, it is now needed to decrease the number of colors. To this aim, the color
graph CG,r1 is considered. Observe that, since r1 is ecological, CG,r1 is a twin-free
graph with k − 1 nodes. From Theorem 3 it follows that CG,r can be ecologically
colored with k − 2 colors: hence, coloring r2 of line 9 can be computed. Line 10 then
computes a new coloring r3 of G which uses k − 2 colors as follows: for any node
x of G, r3(x) = r2(r1(x)). It is easy to prove that r3 is ecological. Indeed, since all
nodes contained in the same independent set have the same colorhood, then for any
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node u ∈ V it holds that Cr3(u) = Cr2(r1(u)). As a consequence, since for any
u, v ∈ V such that r3(u) �= r3(v) it holds that r2(r1(u)) �= r2(r1(v)) and r2 is
ecological, hence Cr3(u) = Cr2(r1(u)) �= Cr2(r1(v)) = Cr3(v). Finally, coloring r is
computed by modifying r3 at line 11. Nodes u ∈ Ip1 are assigned color r(u) = k − 1
and nodes u ∈ Iq1 are assigned color r(u) = k; colors of all the remaining nodes are
left unchanged. This still results in an ecological coloring for G. In order to prove this
last assertion, let us consider two nodes u and v such that r(u) �= r(v) and prove that
Cr(u) �= Cr(v).

If u, v �∈ Ip∪Iq , then the assertion follows since Cr3(x) ⊆ Cr(x) for any x �∈ Ip∪Iq .
The same reasoning applies if u, v ∈ Ip∪Iq and r3(u) �= r3(v). Finally, if u, v ∈ Ip∪Iq

and r3(u) = r3(v), then (without loss of generality) u ∈ Ip1 and v ∈ Iq2: in this case
assume by contradiction that Cr(u) = Cr(v). This might happen only if, in the graph
induced by Ip ∪ Iq , u is adjacent only to nodes in Iq1 and v is adjacent only to nodes in
Ip2: this is not possible, since Ip1 ∪ Iq1 is an independent set. ��

4 Conclusions and Open Questions

In this paper we have proved that any graph can be ecologically colored in polynomial-
time by making use of any reasonable number of colors. A rough analysis of the color-
ing algorithm yields a O(k3n2) time complexity. Indeed, Algorithm Partitioning
requires O(k3n2) time: this is due to the fact that the most expensive step of this al-
gorithm is searching for the two independent sets Ip and Iq defined in the proof of
Lemma 2. The time complexity of Algorithm Refining, instead, is dominated either
by the execution of line 6 of the algorithm, which requires O(k2n2), or by the execution
of the application of Theorem 3 to the color graph, which contains k−1 nodes: it is easy
to verify that this latter step requires time O(k4 log k). Hence, the overall time com-
plexity of the coloring algorithm is O(max{k3n2, k2n2, k4 log k}) = O(k3n2). We
think that, by using more sophisticated data structures, this analysis could be slightly
improved.

It is easy to verify that different ecological colorings can be produced for a given
graph and for a given number of colors. The ECRA(R) decision problem consists in
deciding whether a graph G admits an ecological coloring whose color graph is R;
it is easy to prove that ECRA(K3) is NP-complete. It is then a very interesting open
question to look for a complete classification of the complexity of the ECRA(R) problem
similar to the one proposed in [7].
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A Proof of Theorem 2

The proof of the theorem immediately follows from the following result.

Lemma 5. Let F = {N1, . . . , Nn} be a family of n distinct subsets of [n]. Then, there
exists i ∈ [n] such that, for any pair Nj , Nk ∈ F , Nj �= Nk ∪ {i}.

Proof. The proof is by contradiction. Assume that, for any i ∈ [n], there exists a pair
of two distinct sets Li, Si ∈ F such that Li = Si ∪ {i}: if there exist more than one
such pairs of sets, then we arbitrarily choose one of them as the only one associated
with i. Observe that, for any distinct i, j ∈ [n], Li �= Lj or Si �= Sj since otherwise the
distinctness between Li and Si would imply that i = j.

Let us define a directed graph GF = (F , AF ) as follows. For any h, k ∈ [n],
(Nh, Nk) ∈ AF if and only if there exists i ∈ [n] such that Si = Nh and Li = Nk.
Clearly, GF is acyclic, since otherwise there would exist a sequence X0, . . . , Xh−1 of
h distinct subsets of [n] such that Xi ⊂ Xi+1 for 0 ≤ i < h − 1 and Xh−1 ⊂ X0: this
would imply that X0 ⊂ X0.

We now prove that also the undirected graph corresponding to GF does not contain
any cycle. This implies that GF contains at most n − 1 arcs: since, for any distinct
i, j ∈ [n], Li �= Lj or Si �= Sj , this contradicts the fact that there must be exactly n arcs
in GF , thus proving that there must exist i ∈ [n] such that, for any pair Nj , Nk ∈ F ,
Nj �= Nk ∪ {i}.

Assume, by contradiction, that the undirected graph corresponding to GF contains a
cycle X0, . . . , Xh−1 with h ≥ 3. Then, there must exist r with 0 ≤ r ≤ h− 1 such that
(Xr, Xr−1) ∈ AF ∧(Xr, Xr+1) ∈ AF (in the following, we assume that all operations
are performed modulo h). Indeed, either r = 0 or there exists an incoming arc incident
to X0: in this latter case, we can follow the chain of incoming arcs starting from X0
and, since GF is acyclic, we certainly encounter a node Xr with no incoming arcs (see,
for example, the cycle in Figure 4 for which r = 4).

Let i ∈ [n] be the element such that i ∈ Xr−1 ∧ i �∈ Xr and let us prove that i ∈ Xs,
for any s �= r with 0 ≤ s ≤ h − 1. This is due to the fact that if i ∈ Xt, for some t
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X4i 
∈ X4 j 
∈ X4

X3i ∈ X3

X2X2 ⊂ X3 ⇒ i ∈ X2

X1X1 = X2 ∪ {k 
= i} ⇒ i ∈ X1 X0 X0 ⊂ X1 ⇒ i ∈ X0

X6 X6 ⊂ X0 ⇒ i ∈ X6

X5
X5 ⊂ X6 ⇒ i ∈ X5
j ∈ X5

Fig. 4. The proof of Lemma 5

with 0 ≤ t ≤ h − 1, and (Xt, Xs) ∈ AF or (Xs, Xt) ∈ AF , then i ∈ Xs. Indeed, if
(Xt, Xs) ∈ AF , then Xt ⊂ Xs; otherwise, if (Xs, Xt) ∈ AF , then Xt − Xs �= {i}
since s �= r and, for any i ∈ [n], there exist only two adjacent nodes of GF whose
difference is equal to {i}. Hence, in both cases we have that i ∈ Xs. We then have
that i ∈ Xr+1 (see, for example, the cycle in Figure 4 where i �∈ X4 ∧ i ∈ X5).
On the other hand, there must exist j �= i such that j ∈ Xr+1 ∧ j �∈ Xr: hence,
Xr+1 −Xr ⊇ {i, j} which contradicts the fact that (Xr, Xr+1) ∈ AF (in the example,
we have that X5−X4 ⊇ {i, j}). This completes the proof of the fact that the undirected
graph corresponding to GF is acyclic and, hence, the proof of the lemma. ��
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Abstract. We deal with exact algorithms for Bandwidth, a long stud-
ied NP-hard problem. For a long time nothing better than the trivial
O∗(n!) exhaustive search was known. In 2000, Feige an Kilian [4] came
up with a O∗(10n)-time algorithm. Since then there has been a grow-
ing interest in exponential time algorithms but this bound has not been
improved.

In this paper we present a new and quite simple O∗(5n) algorithm.
We also obtain even better bound in some special cases.

1 Introduction

In this paper we focus on exact exponential-time algorithms for the Bandwidth

problem. Let G = (V, E) be an undirected graph, where n = |V | and m =
|E|. For a given one-to-one function π : V → {1, 2 . . . , n} (called ordering) its
bandwidth is the maximum difference between positions of adjacent vertices, i.e.
maxuv∈E |π(u) − π(v)|. The bandwidth of the graph, denoted by bw(G), is the
minimum bandwidth over all orderings. The Bandwidth problem asks to find
an ordering with bandwidth bw(G).

Bandwidth problem seems to be hard from many perspectives. Although on
special families of graphs bw(G) can be computed in polynomial time [1,6], in
general Bandwidth is NP-hard even on some subfamilies of trees [5,7]. More-
over Unger [9] showed that Bandwidth problem does not belong to APX even
in a very restricted case when G is a caterpillar, i.e. a very simple tree. It is
also hard for any fixed level of the W hierarchy [2]. The best known polynomial-
time approximation, due to Feige [3], has O(log3 n

√
log n log log n) approxima-

tion guarantee.
From now on, we assume that the input for our problem contains additionally

an integer b, 1 ≤ b < n. An ordering of V with bandwidth at most b will be
called a b-ordering. We focus on checking if there exists a b-ordering and if that
is the case, finding it. Note that once we can do it in some time bound T , using
binary search we can also find an optimal ordering in O(T log bw(G)) time. This
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approach is also used by two exact algorithms for Bandwidth problem for
general graphs. First of them, due to Saxe [8] is a nontrivial O(nb+1)-time and
-space dynamic programming. It works well when b is small, in particular for
b ≤ n

lg n the time becomes O∗(2n). For arbitrary b, the best result we are aware
of is a O∗(10n)-time algorithm due to Feige and Kilian [4].

The main result of this paper is an algorithm for arbitrary b that works in
O∗(5n) time and O∗(2n) space (see Section 4). Moreover, in Section 3 we present
an approach that works more efficiently for large b, in particular we give:

– O∗(22n−b) = O(2.83n) time and O(2n−b) = O(1.42n) space algorithm for
b ≥ n

2 ,
– O∗(4n) time and O(2b) = O(1.42n) space algorithm for n

3 ≤ b < n
2 .

Note that these algorithms approach the problem from the different side than
the Saxe’s one. Saxe’s algorithms works efficiently for small b, whereas presented
algorithms cope better with big b.

It is worth mentioning that exponential space in our algorithms is no prob-
lem for practical implementations, since in every case space bound is less than
square root of the time bound, thus space will not be a bottleneck in a real life
applications, at least considering today’s proportions of computing speed and
fast memory size.

2 Preliminaries

For v ∈ V by N(v) we denote a set of vertices adjacent to v, analogously for
S ⊂ V we define N(S) =

⋃
v∈S N(v).

We will often view an ordering π as a sequence of vertices (π−1(1), . . .,
π−1(n)). Also, for a given ordering π length of edge uv is |π(u) − π(v)|.

3 Algorithms for b ≥ n
3

In this section we describe simple algorithms for cases where b is relatively big
(comparing to n). Understanding these cases gave us more intuition about Band-

width and enabled us to develop algorithm for arbitrary b.

3.1 Algorithm for b ≥ n
2

In this section we assume that b ≥ n
2 and G = (V, E) is an arbitrary undirected

graph. Within this limitation we provide O∗(22n−b) time and O(2n−b) space
algorithm.

The general idea is to consider all partitions of V into V1 and V2, |V2| = b, and
for each such partition verify whether there exists a b-ordering π with π(v1) <
π(v2) for any v1 ∈ V1 and v2 ∈ V2. Obviously every edge connecting vertices
from the same group (V1 or V2) is not longer than b since b ≥ n

2 , thus we only
need consider edges between V1 and V2.
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Let us focus on the first group and consider some permutation of V1 (w.l.o.g.
v1, v2, . . . , vn−b). We would like to have some criterion to check whether there
exists some b-ordering with prefix (v1, v2, . . . , vn−b). To achieve it we claim the
following lemma:

Lemma 1. Assume that V = V1 ∪ V2, |V1| = s, |V2| = n − s, s ≤ b, n − s ≤ b,
then a permutation (v1, . . . , vs) of V1 is a prefix of some b-ordering of G iff for
every 1 ≤ k ≤ s we have |

⋃k
i=1 N(vi) \ V1| ≤ k + b − s.

Proof. It is easy to see that given condition is necessary, because if (v1, . . . , vs) is
a prefix of some b-ordering say (v1, . . . , vn), then for every k(1 ≤ k ≤ s) we have
(
⋃k

i=1 N(vi) \ V1) ⊂ {vs+1, vs+2, . . . , vk+b}, thus |
⋃k

i=1 N(vi) \ V1| ≤ (k + b)− s.

k

1 ... k

b

(k+b)-s

Fig. 1. First k vertices can have at most (k + b) − s neighbors in V2

To show that given condition is sufficient, assume that the condition holds for
every k. Let us define function left : V \ V1 → IN ∪ ∞, where for j > s we put
left(vj) = min{i : i ≤ s∧(vi, vj) ∈ E}. For vj not adjacent to any vertex among
V1 we put left(vj) = ∞. In other words, left(vj) is the index of the leftmost
neighbor of vj in the set V1 = {v1, v2, . . . , vs}. We can sort rest of the vertices
V2 = V \ V1 according to the function left (breaking ties arbitrarily) and get
some ordering (w.l.o.g. (v1, . . . , vn)) of G. If this is a b-ordering we are done,
otherwise let jmin be the minimum j, such that vj is adjacent to some vertex vx,
where x > j + b. As x ≤ n and n − s ≤ b, so j ≤ s. Since vertices V2 are sorted
according to left, thus for every y, s+1 ≤ y ≤ x, vertex vy is adjacent to some
vertex among {v1, . . . , vjmin}. Therefore {vs+1, vs+2, . . . , vx} ⊂ (

⋃jmin
i=1 N(vi)\V1)

and we have |
⋃jmin

i=1 N(vi) \ V1| ≥ x − s > jmin + b − s, contradiction.

As a consequence of Lemma 1 we have the following lemma:

Lemma 2. Let V = V1 ∪ V2, V1 ∩ V2 = ∅, |V2| = b. There is a O∗(2n−b)-time
and -space algorithm which finds a b-ordering which assigns vertices of V1 before
the vertices of V2, or states that no such ordering exists.

Proof. We use dynamic programming over subsets of V1 to check whether there
exists a permutation of V1, which realizes condition from Lemma 1. More pre-
cisely, for every subset A ⊂ V1 we compute a boolean value T (A) which is true
iff vertices from A can be ordered as (v1, . . . , v|A|) in such a way that for all k,
1 ≤ k ≤ |A|, we have |

⋃k
i=1 N(vi) \ V1| ≤ (k + b) − (n − b).
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We note that equivalently, T (A) is true iff |N(A)\V1| ≤ (|A|+b)−(n−b) and
for some v ∈ A, T (A \ {v}) is true. This allows for using dynamic programming
in O∗(2n−b) time. Obviously, using standard techniques we can also find the
relevant permutation of V1 if T (V1) turns out to be true. Then the ordering of
V2 can be found as described in the proof of Lemma 1.

Clearly there are
(

n
n−b

)
< 2n possible partitions from Lemma 2, which can be

found in O∗(2n) time and polynomial space. Hence we get following conclusion:

Theorem 3. For b ≥ n
2 we can find b-ordering in O∗(22n−b) = O∗(2

3n
2 ) =

O(2.83n) time and O(2n−b) = O(2
n
2 ) = O(1.42n) space, or state that no such

ordering exists.

3.2 Algorithm for n
3 ≤ b < n

2

In this section we assume that n
3 ≤ b < n

2 and G = (V, E) is an arbitrary
undirected graph. Within this limitation we provide O∗(4n) time and O(2b)
space algorithm.

Here we simply apply Lemma 1 twice. Let s = �n−b
2  . Let (v1,v2,. . .,vn) be

an ordering of V and let V1 = {v1, . . . , vs}, V2 = {vs+1, . . . , vs+b} and V3 =
{vs+b+1, . . . , vn}. Then |V1| = s ≤ n−b

2 ≤ 1
3n ≤ b and |V3| = n − b − s ≤

n−b+1
2 ≤ b, and obviously |V2| = b. Note that the only edges that matter are

those between V2 and V1 ∪ V3 and that if this is a b-ordering, there must be no
edge between V1 and V3.

Our algorithm generates all such partitions and verifies whether there exists
a b-ordering π, with π(v1) < π(v2) < π(v3) for any v1 ∈ V1, v2 ∈ V2 and v3 ∈ V3.
From Lemma 1 applied to V2 ∪ V3 and V1 ∪ V2 (in the second case we apply
Lemma for reversed ordering), we have the following Corollary:

Corollary 4. An ordering (vs+1, vs+2, . . . , vs+b) of V2 is a prefix of some b-
ordering of V2 ∪ V3 iff for every k, 1 ≤ k ≤ b: |

⋃k
i=1 N(vs+i) ∩ V3| ≤ k.

The same ordering of V2 is a suffix of some b-ordering of V1 ∪V2 iff for every
k, 1 ≤ k ≤ b: |

⋃k−1
i=0 N(vs+b−i) ∩ V1| ≤ k.

Therefore the ordering of V2 is a contiguous subsequence from positions s + 1
to s+ b of some b-ordering of V iff both aforementioned conditions are satisfied.

Corollary 4 tells us how to find an ordering compatible with a given partition
if one exists. Similarly as in Section 3.1 for every A ⊂ V2 we compute boolean
values pref(A) and suf(A), where pref(A) is true iff |N(A) ∩ V3| ≤ |A| and
suf(A) is true iff |N(V2 \A) ∩ V1| ≤ b− |A|. Then we find a sequence of subsets
∅ = A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ Ab = V2 such that for each i, 0 ≤ i < b, we have
|Ai+1| − |Ai| = 1 and for each i, 0 ≤ i ≤ b both pref(Ai) and suf(Ai) are true.
This sequence implies the ordering of V2, (v1, . . . , vb), such that Ai+1\Ai = {vi}.
As before, the ordering of the remaining vertices, i.e. V1 and V3 is obtained by
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Lemma 1. Clearly, the dynamic programming described above takes O∗(2b) time
and O(2b) space.

There are at most
(
n
b

)(
n−b

s

)
partitions of V , which can be generated in poly-

nomial space; for each of them we use DP with O(2b) = O(2
n
2 ) space and O∗(2b)

time, but
(
n
b

)(
n−b

s

)
2b ≤ 2n2n−b2b = 4n, thus we can claim following theorem:

Theorem 5. For n
3 ≤ b < n

2 we can find a b-ordering in O∗(4n) time and
O(2b) = (1.42n) space, or state that no such ordering exists.

4 Algorithm O∗(5n)

In this section, we assume that G is a connected undirected graph (if G is not
connected we may find b-orderings of each connected component of G in an
independent manner).

Imagine that we divide positions {1, . . . , n} into � n
b+1� segments of length

roughly b + 1 elements (if b + 1 � n then the last segment has (n mod (b + 1))
elements). The first segment contains positions {1, . . . , b+1}, the second segment
contains positions {b + 2, . . . , 2b + 2}, and so on.

Proposition 6. In every b-ordering adjacent vertices are either in the same
segment or in neighboring segments.

Our algorithm consists of two phases. During the first phase we generate several
assignments of vertices into segments, in such a way that if there exists a b-
ordering, its corresponding assignment will certainly be generated. Each of the
generated assignments will be considered by the second phase independently.

The above general scheme of our algorithm follows the approach of Feige and
Kilian [4]. However, our segments are of length b+1 instead of Feige and Kilian’s
b
2 and, more importantly, second phase in our algorithm is completely different
from Feige and Kilian’s second phase.

4.1 Partitioning V among Segments of Size b + 1

Let D be any spanning tree of G. Let (v1, v2, . . . , vn) be any root-to-leaf order
of vertices in D, i.e. if vj is a parent of vi in D then j < i. Note that v1 is the
root of D. We can generate requested assignments in the following way:

1. Place root v1 in one of the � n
b+1� segments, in every possible way.

2. For every i = 2, 3, . . . n, do:
– Let vj be the parent of vi in D. Since j < i, vj has already been assigned

to some segment.
– Assign vi to a segment distant by at most one from the segment that vj

has been assigned to, in every possible way.

Proposition 7. There are at most 3n−1n generated assignments.
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4.2 Depth First Search over the Subsets of V

For each assignment generated by the previous phase we would like to check
whether there exists a b-ordering compatible with the given assignment. First
we check whether for each segment its length equals the number of assigned
vertices. Second we check whether there are no edges between segments that are
at distance greater than one. If both conditions are satisfied we may proceed
further.

Obviously edges between vertices inside the same segment are not important,
since each segment has at most b + 1 elements, thus we may assume that edges
in G connect vertices from neighboring segments only.

Now we may assign vertices to each position one by one, but the main idea of
our algorithm is the order in which we fill in positions. For every position i, let
segment(i) = � i

b+1� be the segment number of this position, and let color(i) =
((i−1) mod (b+1))+1 be the index of the position in its segment, which we will
call the color of this position. Note that the color of position is the remainder of
this number modulo b + 1, but in the range [1, b + 1] instead of [0, b].

Let us sort positions lexicographically according to pairs (color(i),
segment(i)). To each of those positions we assign a vertex, in exactly this order.
We will call this ordering the color order of positions.

1 2 3 45 6 7 89 10 1112 13 14

b + 1 b + 1 b + 1

Fig. 2. Color order of positions for n = 14 and b = 3

The following lemma is the key observation in our algorithm.

Lemma 8. Ordering π, compatible with the generated segment assignment, is a
b-ordering iff for every edge uv if segment(π(u)) < segment(π(v)) then color
(π(u)) > color(π(v)).

Proof. Since π is compatible with the generated segment assignment, for every
edge uv we have |segment(π(u)) − segment(π(v))| ≤ 1. If segment(π(u)) =
segment(π(v)) then uv is not longer than b. Otherwise, suppose w.l.o.g. that
segment(π(u)) + 1 = segment(π(v)). Note that the distance between positions
with the same color in neighboring segments is b + 1, so uv is not longer than b
iff u has greater color than v (see Figure 3).

Corollary 9. Ordering π, compatible with generated segment assignment, is a
b-ordering iff for every edge uv with segment(π(u)) + 1 = segment(π(v)) vertex
u is assigned to greater position in the color order than vertex v.

Now we can describe our algorithm.
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b + 1 b + 1 b + 1

b b

Fig. 3. Picturable proof of the Lemma 8

Definition 10. By state in our algorithm we will denote a subset of vertices
A ⊂ V satisfying:

– Vertices of A can be assigned to the first |A| positions in the color order,
compatibly with the generated segment assignment.

– There is no edge uv with u ∈ A, v /∈ A and v assigned to segment with
greater number than u.

Note, that Corollary 9 implies the following lemma.

Lemma 11. The following equivalence holds:

1. Let π be a b-ordering compatible with the generated segment assignment. For
every 0 ≤ k ≤ n by Ak we will denote the set of vertices assigned in π to the
first k positions in the color order. Then Ak is a state.

2. Let ∅ = A0 ⊂ A1 ⊂ . . . ⊂ An = V be a sequence of states with {vi} =
Ai \ Ai−1. Then ordering π assigning vertex vi to the position ordered i-th
in the color order is a b-ordering.

Proof. Point 1 is an obvious corollary from condition stated in Corollary 9.
In Point 2 note that π is compatible with the generated segment assignment.
Suppose that π is not a b-ordering. From Corollary 9 we know that there ex-
ists an edge uv with segment(π(u)) + 1 = segment(π(v)) and color(π(u)) ≤
color(π(v)). Then u is before v in the color order, so there exists k such that
u ∈ Ak and v /∈ Ak. However, this contradicts with the assumption that Ak is a
state.

The algorithm is very simple now. By depth first search we seek for a path
of states from the state ∅ to the state V . Being at state A we try to extend
set A by one vertex v from appropriate segment in such a way that A ∪ {v} is
still a state. Note that finding all possible extensions to state A can be done
in polynomial time. Lemma 11 ensures that we find such a path iff there exists
a b-ordering compatible with the generated segment assignment. Note, that if
the algorithm finds the path of states, it can easily reproduce the corresponding
b-ordering using the DFS stack.

Note that this algorithm needs O∗(2n) memory to keep track of visited states.
It runs in O∗(2n) time for every generated assignment. There are at most 3n−1n
assignments, which leads to O∗(6n) time bound. In the next section we will prove
O∗(5n) time bound.
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4.3 O∗(5n) Time Bound

In this section we will prove the following theorem:

Theorem 12. The algorithm described in the previous sections in all generated
assignments visits at most 2n5n−1 states.

Proof. Let us recall the arbitrary spanning tree D which we used to generate all
possible segment assignments. Let v1, v2, . . . , vn be an order in which we assigned
vertices to segments, with v1 being the root of D. Let us look at a state A ⊂ V in
some fixed generated segment assignment. The root v1 can be assigned into any
of � n

b+1� ≤ n segments. Every other vertex can be assigned to the same segment
as its parent or to one of the neighboring segments. Let us call such vertex same
if it was assigned to the same segment as its parent, left if it was assigned to the
segment with smaller positions, and right if it was assigned to the segment with
greater positions. Moreover, every vertex can be black (in state A) or white (not
in state A).

Let v be a vertex with parent u. Note that if u is white (u /∈ A) then, as A
is a state, v cannot be both black and left. Similarly if v is black (u ∈ A) then v
cannot be both white and right.

Therefore every non-root vertex has only 5 possibilities. Since the root of D
can be assigned to any segment and be either white or black, we conclude that
our algorithm will visit at most 2n5n−1 = O∗(5n) states.

Note, that checking if a subset A ⊂ V is a state and trying to extend one
state in the DFS step can be done in polynomial time. Therefore we can claim
the main result of this paper:

Theorem 13. For arbitrary b, 1 ≤ b < n we can find a b-ordering or state that
it does not exist in O∗(5n) time and O∗(2n) space.

Acknowledgments. We would like to thank Jakub Radoszewski and Filip
Wolski for patience while listening to the very first version of our algorithm.
Later on, Lukasz Kowalik and Pawel Gawrychowski gave us a lot of extremely
valuable comments and remarks.
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Abstract. A graph G = (V, E) is said to admit a system of µ collective
additive tree r-spanners if there is a system T (G) of at most µ spanning
trees of G such that for any two vertices u, v of G a spanning tree T ∈
T (G) exists such that the distance in T between u and v is at most r
plus their distance in G. In this paper, we examine the problem of finding
“small” systems of collective additive tree r-spanners for small values of r
on circle graphs and on polygonal graphs. Among other results, we show
that every n-vertex circle graph admits a system of at most 2 log 3

2
n

collective additive tree 2-spanners and every n-vertex k-polygonal graph
admits a system of at most 2 log 3

2
k+7 collective additive tree 2-spanners.

Moreover, we show that every n-vertex k-polygonal graph admits an
additive (k + 6)-spanner with at most 6n − 6 edges and every n-vertex
3-polygonal graph admits a system of at most 3 collective additive tree 2-
spanners and an additive tree 6-spanner. All our collective tree spanners
as well as all sparse spanners are constructible in polynomial time.

1 Introduction

A spanning subgraph H of G is called a spanner of G if H provides a “good”
approximation of the distances in G. More formally, for r ≥ 0, H is called an
additive r-spanner of G if for any pair of vertices u and v their distance in H is
at most r plus their distance in G [19]. If H is a tree then it is called an additive
tree r-spanner of G [24]. (A similar definition can be given for multiplicative
t-spanners [9, 22, 23] and for multiplicative tree t-spanners [6].) In this paper,
we continue the approach taken in [10, 12, 13, 14, 18] of studying collective tree
spanners. We say that a graph G = (V, E) admits a system of µ collective
additive tree r-spanners if there is a system T (G) of at most µ spanning trees
of G such that for any two vertices u, v of G a spanning tree T ∈ T (G) exists
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such that the distance in T between u and v is at most r plus their distance in
G (see [14]). We say that system T (G) collectively +r-spans the graph G and
that G is (collectively) +r-spanned by T (G). Clearly, if G admits a system of µ
collective additive tree r-spanners, then G admits an additive r-spanner with at
most µ × (n − 1) edges (take the union of all those trees), and if µ = 1 then G
admits an additive tree r-spanner.

Collective tree spanners were investigated for a number of particular graph
classes, including planar graphs, bounded chordality graphs, bounded genus
graphs, bounded treewidth graphs, AT-free graphs and others (see [10, 12, 13,
14, 18]). Some families of graphs admit a constant number and some admit a
logarithmic number of collective additive tree r-spanners, for small values of r.

One of the motivations to introduce this concept stems from the problems of
designing compact and efficient distance and routing labeling schemes in graphs.
A distance labeling scheme for trees is described in [21] that assigns each vertex
of an n-vertex tree an O(log2 n)-bit label such that, given the labels of two
vertices x and y, it is possible to compute in constant time, based solely on
these two labels, the distance in the tree between x and y. A shortest path
routing labeling scheme for trees is described in [27] that assigns each vertex
of an n-vertex tree an O(log2 n/ log log n)-bit label such that, given the label
of a source vertex and the label of a destination, it is possible to compute in
constant time, based solely on these two labels, the neighbor of the source that
heads in the direction of the destination. Hence, if an n-vertex graph G admits
a system of µ collective additive tree r-spanners, then G admits an additive r-
approximate distance labeling scheme with the labels of size O(µ log2 n) bits per
vertex and an O(µ) time distance decoder. Furthermore, G admits an additive r-
approximate routing labeling scheme with the labels of size O(µ log2 n/ log log n)
bits per vertex. Once computed by the sender in O(µ) time (by choosing for a
given destination an appropriate tree from the collection to perform routing),
headers of messages never change, and the routing decision is made in constant
time per vertex (see [13, 14]).

Other motivations stem from the generic problems of efficient representation
of the distances in “complicated” graphs by the tree distances and of algorithmic
use of these representations [1,2, 5, 16]. Approximating a graph distance dG by
simpler distances (in particular, by tree–distances dT ) is useful in many areas
such as communication networks, data analysis, motion planning, image process-
ing, network design, and phylogenetic analysis (see [3,4,6,9,19,20,22,23,25,26]).
An arbitrary metric space (in particular a finite metric defined by a graph) might
not have enough structure to exploit algorithmically.

In this paper, we examine the problem of finding “small” systems of collective
additive tree r-spanners for small values of r on circle graphs and on polygonal
graphs. Circle graphs are known as the intersection graphs of chords in a circle
[17]. For any fixed integer k ≥ 2, the class of k-polygonal graphs can be defined as
the intersection graphs of chords inside a convex k-polygon, where the endpoints
of each chord lie on two different sides [15]. Note that permutation graphs are
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exactly 2-polygonal graphs and any n-vertex circle graph is a k-polygonal graph
for some k ≤ n. Our results are the following.

– For any constant c, there are circle graphs that cannot be collectively +c-
spanned by any constant number of spanning trees.

– Every n-vertex circle graph G admits a system of at most 2 log 3
2

n collective
additive tree 2-spanners, constructible in polynomial time.

– There are circle graphs on n vertices for which any system of collective
additive tree 1-spanners will require Ω(n) spanning trees.

– Every n-vertex circle graph admits an additive 2-spanner with at most
O(n log n) edges.

– Every n-vertex k-polygonal graph admits a system of at most 2 log 3
2

k + 7
collective additive tree 2-spanners, constructible in polynomial time.

– Every n-vertex k-polygonal graph admits an additive (k + 6)-spanner with
at most 6n−6 edges and an additive (k/2+8)-spanner with at most 10n−10
edges, constructible in polynomial time.

– Every n-vertex 4-polygonal graph admits a system of at most 5 collective
additive tree 2-spanners, constructible in linear time.

– Every n-vertex 3-polygonal graph admits a system of at most 3 collective
additive tree 2-spanners and an additive tree 6-spanner, constructible in
linear time.

2 Preliminaries

All graphs occurring in this paper are connected, finite, undirected, loopless and
without multiple edges. In a graph G = (V, E) the length of a path from a
vertex v to a vertex u is the number of edges in the path. The distance dG(u, v)
between vertices u and v is the length of a shortest path connecting u and v. For
a vertex v of G, the sets NG(v) and NG[v] = NG(v) ∪ {v} are called the open
neighborhood and the closed neighborhood of v, respectively. For a set S ⊆ V , by
NG[S] =

⋃
v∈S NG[v] we denote the closed neighborhood of S and by G(S) the

subgraph of G induced by vertices of S. Let also G \ S be the graph G(V \ S)
(which is not necessarily connected).

An graph G is called a circle graph if it is the intersection graph of a finite
collection of chords of a circle [17] (see Fig. 1 for an illustration). Without loss
of generality, we may assume that no two chords share a common endpoint. For
any fixed integer k ≥ 3, the class of k-polygonal (or k-gon) graphs is defined as
the intersection graphs of chords inside a convex k-polygon, where the endpoints
of each chord lie on two different sides [15] (see Fig. 2 for an illustration). Per-
mutation graphs can be considered as 2-gon graphs as they are the intersection
graphs of chords between two sides (or sides of a degenerate 2-polygon). Again,
without loss of generality, we may assume that no two chords share a common
endpoint. Clearly, if a graph G is a k-gon graph, it is also a k′-gon graph with
k′ > k, but the reverse is not necessarily true.

Let G = (V, E) be a permutation graph with a given permutation model Π .
Let L′ and L′′ be the two sides of Π . A vertex s of G is called extreme if at
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least one endpoint of the chord of Π , corresponding to s, is the leftmost or the
rightmost endpoint either on L′ or on L′′. The following result was presented
in [13]:

Lemma 1. [13] Let G be a permutation graph and let s be an extreme ver-
tex of G in some permutation model. Then, there exists a BFS(s)-tree of G,
constructible in linear time, which is an additive tree 2-spanner of G.

Since an induced cycle on 4 vertices is a permutation graph, permutation graphs
cannot have any additive tree r-spanner for r < 2. Clearly, given any BFS(s)-
tree Ts of G, dTs(x, s) = dG(x, s) holds for any x ∈ V .

3 Additive Spanners for Circle Graphs

In this section, we show that every n-vertex circle graph G admits a system of
at most 2 log 3

2
n collective additive tree 2-spanners. This upper bound result is

complemented also with two lower bound results.
We start with the main lemma of this section which is also of independent

interest.

Lemma 2. Every n-vertex (n ≥ 2) circle graph G = (V, E) has two vertices a
and b such that S = NG[a, b] is a balanced separator of G, i.e. each connected
component of G \ S has at most 2

3n vertices.

Proof. Consider an intersection model φ(G) of G and let C be the circle in that
model. Let also P := (p1, p2, . . . , p2n) be the sequence in clockwise order of the
2n endpoints of the chords representing the vertices of G in φ(G). We divide
the circle C into three circular arcs B (bottom), L (left) and R (right) each
containing at most � 2

3n� consecutive endpoints (see Fig. 1 for an illustration).
We say that a chord of φ(G) is an XY -chord if its endpoints lie on arcs X and Y
(X, Y ∈ {B, L, R}) of C. If v is an XY -chord then let vX and vY be its endpoints
on X and Y , respectively.

Let X be an arc from the set of arcs {B, L, R}. Since G is a connected graph,
for any X , there must exist a chord in φ(G) with one endpoint in X and the
other endpoint not in X . Moreover, since we have three arcs (B, L, R), there
must exist an arc X in {B, L, R} which has both types of chords: between X
and Y ∈ {B, L, R} \ {X} and between X and Z ∈ {B, L, R} \ {X, Y }. Assume,
without loss of generality, that X = B. Let p be the point of C separating arcs L
and R (see Fig. 1). Now choose a BL-chord a in φ(G) with endpoint aL closest
to p and choose a BR-chord b in φ(G) with endpoint bR closest to p. By a, b we
also denote the vertices of G which correspond to chords a and b.

Points aB, aL, bR and bB of C divide C into four arcs. We name these four arcs
AU , AR, AD and AL. The arc AU := (aL, bR) is formed by all points of C from aL

to bR in clockwise order. If chords a and b intersect, then we set AR := (bR, aB),
AD := (aB , bB), and AL := (bB, aL) (all arcs begin at the left arc-endpoint and
go clockwise to the right arc-endpoint). If chords a and b do not intersect, then
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Fig. 1. A circle graph with an intersection model and two special chords a and b. A
balanced separator S = NG[a, b] and the connected components of G\S are also shown.

set AR := (bR, bB), AD := (bB, aB), and AL := (aB , aL). We consider these arcs
as open arcs, i.e., the points aB, aL, bR and bB do not belong to them.

By our choices of a and b, we guarantee that φ(G) has no chords with one
endpoint in AU and the other one in AD (regardless of the adjacency of a and
b). Denote by VY all chords from φ(G) (vertices of G) whose both endpoints
are in AY , where Y is either U , or R, or D, or L. Then, it is easy to see that
in G, the set S := NG[a, b] separates vertices of VY from vertices of VY ′ , where
Y, Y ′ ∈ {U, R, D, L}, Y �= Y ′. Now, since AL is a sub-arc of arc B ∪ L, AU is a
sub-arc of arc L∪R, AR is a sub-arc of arc R∪B, AD is a sub-arc of arc B, and
arcs AU , AR, AD and AL do not contain points aB, aL, bR and bB, we conclude
that |AL ∩P| ≤ 4

3n, |AU ∩ P| ≤ 4
3n, |AR ∩P| ≤ 4

3n and |AD ∩P| ≤ 2
3n. Hence,

the number of arcs in φ(G) whose both endpoints are in AL (respectively, in AU ,
AR, AD), and therefore the number of vertices in VL ((respectively, in VU , VR,
VD), is at most 2

3n. ��

In [12], a large class of graphs, called (α, γ, r)-decomposable graphs, was defined,
and it was proven that any (α, γ, r)-decomposable graph G with n vertices admits
a system of at most γ log1/α n collective additive tree 2r-spanners. Let α be a
positive real number smaller than 1, γ be a positive integer and r be a non-
negative integer. We say that an n-vertex graph G is (α, γ, r)–decomposable if
n ≤ γ or there is a separator S ⊆ V in G, such that the following three conditions
hold:
- the removal of S from G leaves no connected component with more than αn

vertices;
- there exists a subset D ⊆ V such that |D| ≤ γ and for any vertex u ∈ S,

dG(u, D) ≤ r;
- each connected component of G \ S is an (α, γ, r)–decomposable graph, too.

Since, any subgraph of a circle graph is also a circle graph, and, by Lemma 2,
each n-vertex circle graph G = (V, E) admits a separator S = NG[D] (where
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D = {a, b}, a, b ∈ V ), such that no connected component of G\S has more than
2
3n vertices, we immediately conclude.

Corollary 1. Every circle graph is (2
3 , 2, 1)−decomposable.

Theorem 1. Every n-vertex circle graph G admits a system T (G) of at most
2 log 3

2
n collective additive tree 2-spanners.

Note that such a system of spanning trees T (G) for a n-vertex m-edge circle
graph G, given together with an intersection model φ(G), can be constructed in
O(m log n) time, since a balanced separator S = NG[a, b] of G can be found in
linear O(m) time (see [12] for details of the construction).

Taking the union of all these spanning trees in T (G), we also obtain a sparse
additive 2-spanner for a circle graph G.

Corollary 2. Every n-vertex circle graph G admits an additive 2-spanner with
at most 2(n − 1) log 3

2
n edges.

We complement our upper bound result with the following lower bounds.

Proposition 1. There are circle graphs on n vertices for which any system of
collective additive tree 1-spanners will require Ω(n) spanning trees.

Proof. Since complete bipartite graphs are circle graphs, we can use the lower
bound shown in [14] for complete bipartite graphs. It says that any system of
collective additive tree 1-spanners will need to have Ω(n) spanning trees for each
complete bipartite graph on n vertices. ��

Proposition 2. For any constant c, there are circle graphs that cannot be col-
lectively +c-spanned by any constant number of spanning trees.

In [7] the authors show that a similar proposition holds for weakly chordal
graphs. In fact, the same proof works for circle graphs.

4 Additive Spanners for k-Gon and for 3-Gon Graphs

4.1 Additive Spanners for k-Gon Graphs

In this section, among other results, we show that every n-vertex k-gon graph
G admits a system of at most 2 log 3

2
k + 7 collective additive tree 2-spanners, an

additive (k + 6)-spanner with at most 6n − 6 edges, and an additive (k/2 + 8)-
spanner with at most 10n− 10 edges. We will assume, in what follows, that our
k-gon graph G is given together with its intersection model. Let P be the closed
polygonal chain (the boundary) of the k-polygon in that model. The vertices of
the k-polygon will be called the corners. The idea of the construction here is
similar to the one used in Theorem 1. Yet, here we operate with the corners of
the model rather than with the endpoints of the chords. More precisely, one can
show that there are vertices a and b in the graph, such that NG[a, b] forms a
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Fig. 2. A 6-gon graph with an intersection model and two special chords a and b. A
balanced separator S = NG[a, b] and the connected components of G\S are also shown.

balanced (with respect to the number of corners) separator of G, similar to the
one in Lemma 2 (see Fig. 2 for an illustration).

It is an easy observation that each of the so-created connected components is
itself again a k′-gon graph for some k′ < k. By applying this separator property
recursively, we end up with a set of separators and some permutation graphs.
By Lemma 1, permutation graphs have good additive tree spanners. We can put
these trees together appropriately and can thereby show the following theorem
(see [11] for details).

Theorem 2. Every n-vertex m-edge k-gon graph G admits a system of at most
2 log 3

2
k + 7 collective additive tree 2-spanners, constructable in O(m log k) time.

Moreover, every 3-gon graph admits a system of no more than 3 collective addi-
tive tree 2-spanners, and every 4-gon graph admits a system of no more than 5
collective additive tree 2-spanners.

Similar to Corollary 2, we can merge the edges of all the spanning trees to create
a single spanning graph.

Corollary 3. Every n-vertex k-gon graph G admits an additive 2-spanner with
at most (2 log 3

2
k + 7)(n − 1) edges. Moreover, every 3-gon graph admits an

additive 2-spanner with at most 3(n − 1) edges, and every 4-gon graph admits
an additive 2-spanner with at most 5(n − 1) edges.

Instead of using the recursive separation algorithm all the way to permutation
graphs, one can also stop at an earlier stage. By using properties of k-gon graphs
(see [15]) and some general results on spanners of graphs with bounded length
of largest induced cycle (see [8]) we can show the following theorem.

Theorem 3. Every n-vertex m-edge k-gon graph G admits an additive
(2((2

3 )�k + 4(1 − (2
3 )�)) + 1)-spanner with at most 2(
 + 1)(n − 1) edges, for

each 0 ≤ 
 ≤ log3/2 k + 3. Moreover, such a sparse spanner is constructable in
O(m log k) time.
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Finally, when choosing 
 equal to 0, 1, 2, 3 or 4 in Theorem 3, we obtain:

Corollary 4. Every n-vertex k-gon graph G admits an additive (2k+1)-spanner
with at most 2n−2 edges, an additive (4

3k+4)-spanner with at most 4n−4 edges,
an additive (8

9k + 6)-spanner with at most 6n − 6 edges, an additive (16
27k + 7)-

spanner with at most 8n − 8 edges, and an additive (32
81k + 8)-spanner with at

most 10n − 10 edges.

4.2 Additive Tree Spanners for 3-Gon Graphs

In this section, we show that any connected 3-gon graph G admits an additive
tree 6-spanner constructible in linear time. Due to space restrictions we have
to omit some parts of the proof here, and refer instead the reader to [11] for a
complete proof of this result. Note that, since an induced cycle on 6 vertices is a
3-gon graph, 3-gon graphs cannot have any additive tree r-spanner for r < 4. The
idea of the construction is as follows. The algorithm will identify permutation
graphs in each of the 3 corners of the 3-gon and use the algorithm presented in
Lemma 1 to construct effective tree spanners of each of these subgraphs. These
3 tree spanners are incorporated into a tree spanner for the entire graph by
analyzing the structure in the “center” of the given 3-gon graph.

Fig. 3. A 3-gon intersection model ∆ with special chords a, b, αu and βu

Let G = (V, E) be a connected 3-gon graph. We may assume that G is not a
permutation graph. Consider a 3-gon intersection model ∆ of G and fix an ori-
entation of ∆. Denote by L (left), R (right) and B (bottom) the corresponding
sides of the 3-gon ∆, and by CL, CR and CU the left, right and upper corners of
∆. We say that a chord of ∆ is an XY -chord if its endpoints lie on sides X and
Y of ∆. If v is an XY -chord then let vX and vY be its endpoints on X and Y ,
respectively. Since G is not a permutation graph, we must have all three types
of chords in ∆: LR-chords, LB-chords and RB-chords. Let a be the LB-chord
of G whose endpoint on L is closest to the upper corner CU of ∆. Let b be the
RB-chord of G whose endpoint on R is closest to the upper corner of ∆ (see the
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left 3-gon in Fig. 3 for an illustration). Note that a and b may or may not cross.
By a, b we also denote the corresponding vertices of G.

Let VU be the subset of LR-chords of ∆ (of vertices of G) with endpoints in
segments (aL, CU ) and (bR, CU ). We will add at most two more LR-chords to
VU to form a permutation graph named GU . Choose (if it exists) an LR-chord
αu in ∆ such that αu

L belongs to segment (CL, aL) of L, αu
R belongs to segment

(CU , bR) of R and αu
R is closest to the corner CU . Clearly, if αu exists then it must

intersect a (but not b). Analogously, choose (if it exists) an LR-chord βu in ∆
such that βu

R belongs to segment (CR, bR) of R, βu
L belongs to segment (CU , aL)

of L and βu
L is closest to the corner CU . Again, if βu exists then it must intersect

b (but not a). Note that, if VU �= ∅, then at least one of {αu, βu} must exist (since
otherwise, G is not connected), and if both chords exist then they must intersect
each other. See the right picture in Fig. 3. Now, we define our permutation graph
GU to be the subgraph of G induced by vertices VU ∪ {αu, βu}, assuming that
VU �= ∅ (see Fig. 4 for an illustration). If VU = ∅, then we set GU to be an empty
graph.

Fig. 4. Permutation graph GU extracted from G

Define su to be a vertex from {αu, βu} as follows: if both αu and βu exist, then
if αu has a neighbor in VU which is not a neighbor of βu, set su := αu; otherwise,
set su := βu. Since GU is a permutation graph and su is extreme, by Lemma
1, GU has a linear time constructable BFS(su)-tree TU such that dTU (x, y) ≤
dGU (x, y) + 2 and dTU (x, su) = dGU (x, su) for any x, y in VU ∪ {αu, βu}.

Let VL be the subset of all chords of ∆ (of vertices of G) with endpoints in
segments (CL, aL) and (CL, aB)∩(CL, bB). We will add at most two more chords
to VL to form a permutation graph named GL. Choose (if it exists) a chord α�

in ∆ such that one endpoint of α� belongs to segment (CL, aL) of L, the other
endpoint belongs to R∪ (aB, CR)∪ (bB, CR) and α�

L is closest to the corner CL.
Equivalently, among all chords of ∆ intersecting a or b, α� is chosen to be the
chord with an endpoint α�

L in (CL, aL) closest to CL. Note that α� may or may
not cross b. Also, choose (if it exists) an RB-chord β� in ∆ such that β�

R belongs
to segment (CR, bR) of R, β�

B belongs to segment (CL, aB) ∩ (CL, bB) of B and
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β�
B is closest to the corner CL. Notice, if β� exists then it must intersect both a

and b. Furthermore, if VL �= ∅, then at least one chord from {α�, β�} must exist
(since, otherwise, G is not connected). Now, we define our permutation graph
GL. If VL = ∅, then set GL to be an empty graph. Otherwise, GL is set to be
the subgraph of G induced by vertices VL ∪{α�, β�} with one extra edge (α�, β�)
added if it was not already an edge of G (see Fig. 5 for an illustration).

Fig. 5. Permutation graph GL obtained from G

Define s� to be a vertex from {α�, β�} as follows: if both α� and β� exist, then
if α� has a neighbor in VL which is not a neighbor of β�, then set s� := α�;
otherwise, set s� := β�. Since GL is a permutation graph, by Lemma 1, GL has
a linear time constructable BFS(s�)-tree TL such that dTL(x, y) ≤ dGL(x, y)+2
and dTL(x, s�) = dGL(x, s�) for any x, y in VL ∪ {α�, β�}.

Taking symmetry into account, similar to α�, β� and GL, we can define for
the corner CR of ∆ two specific chords αr , βr and a permutation graph GR. We
will have βr adjacent to both a and b, and αr adjacent to a or b. Define sr to be
a vertex from {αr, βr}, and if both αr and βr exist, then if αr has a neighbor
in VR which is not a neighbor of βr, then set sr := αr; otherwise, set sr := βr.
Again, by Lemma 1, there is a linear time constructable BFS(sr)-tree TR of
GR such that dTR(x, y) ≤ dG(x, y) + 2 and dTR(x, sr) = dG(x, sr) for any x, y in
VR ∪ {αr, βr}.

Now we create a spanning tree T of G from the trees TU , TL and TR as follows.
Initially, T is just the union of TU , TL and TR. We know that {β�, βr, αu} ⊆
NG(a) and {β�, βr, βu} ⊆ NG(b). Make vertex a adjacent to αu and vertex b
adjacent to βu in T , and denote M := {α�, β�, αr, βr}. If M ⊆ NG(a), then make
vertex a adjacent in T to each vertex in M . If M \ NG(a) �= ∅ but M ⊆ NG(b),
then make vertex b adjacent in T to each vertex in M . If neither M ⊆ NG(a) nor
M ⊆ NG(b), then make vertices α�, β� adjacent in T to a common neighbor in
{a, b} and vertices αr, βr adjacent in T to a common neighbor in {a, b}. Remove
from T the edge (α�, β�) (it was a part of tree TL if both α� and β� existed) and
the edge (αr, βr) (it was a part of tree TR if both αr and βr existed).
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Fig. 6. Trees TL, TR and TU connected via NG[a, b] to form a tree spanner of G

If a and b are adjacent in G, then add edge (a, b) to T . If a is not adjacent to
b in G but dG(a, b) = 2, then choose a common neighbor z of a and b in NG[a, b]
and add edges (a, z) and (b, z) to T . In these cases, i.e., when dG(a, b) ≤ 2,
remove the possible edge (αu, βu) from T (it was a part of the tree TU if both
αu and βu existed). If dG(a, b) > 2 then dG(a, b) = 3, chords β�, βr do not exist
and the edge (αu, βu) from TU goes to T if both chords αu and βu exist. If one of
these chords does not exist, then there must be two vertices x, y that are adjacent
in G, with x ∈ NG(b) and y ∈ NG(a) (see [11] for details) and we put the edge
(x, y) into T . Finally, make all vertices from NG(a) \ {α�, β�, αu, βu, αr , βr, b, z}
adjacent to a in T and all remaining vertices from NG(b) (i.e., those that are
not adjacent to a in T ) adjacent to b; see Fig. 6 for an illustration. Clearly, T
constructed this way is a spanning tree of G. Using a careful analysis, we can
show that T is an additive tree 6-spanner of G (see [11] for the complete proof).

Theorem 4. Any connected 3-gon graph G admits an additive tree 6-spanner
constructible in linear time.
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3. Barthélemy, J.-P., Guénoche, A.: Trees and Proximity Representations. Wiley, New
York (1991)

4. Bhatt, S., Chung, F., Leighton, F., Rosenberg, A.: Optimal simulations of tree
machines. In: FOCS 1986, pp. 274–282 (1986)

5. Charikar, M., Chekuri, C., Goel, A., Guha, S., Plotkin, S.: Approximating a Finite
Metric by a Small Number of Tree Metrics. In: FOCS 1998, pp. 379–388 (1998)

6. Cai, L., Corneil, D.G.: Tree spanners. SIAM J. Discrete Math. 8, 359–387 (1995)



Additive Spanners for Circle Graphs and Polygonal Graphs 121
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10. Corneil, D.G., Dragan, F.F., Köhler, E., Yan, C.: Collective tree 1-spanners for
interval graphs. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 151–162.
Springer, Heidelberg (2005)
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Abstract. In this paper we consider the problem of characterizing the directed
graphs that admit an upward straight-line embedding into every point set in con-
vex or in general position. In particular, we show that no biconnected directed
graph admits an upward straight-line embedding into every point set in convex
position, and we provide a characterization of the Hamiltonian directed graphs
that admit upward straight-line embeddings into every point set in general or in
convex position. We also describe how to construct upward straight-line embed-
dings of directed paths into convex point sets and we prove that for directed trees
such embeddings do not always exist. Further, we investigate the related prob-
lem of upward simultaneous embedding without mapping, proving that deciding
whether two directed graphs admit an upward simultaneous embedding without
mapping is NP-hard.

1 Introduction

A straight-line embedding of a graph into a point set P is a mapping of each vertex to a
point of P and of each edge to a straight-line segment between its end-points such that
no two edges intersect. The problem of constructing straight-line embeddings of graphs
into planar point sets is well-studied from both a combinatorial and an algorithmic point
of view and comes in several different flavours within the Graph Drawing literature.

Gritzmann et al. [12] proved that a graph admits a straight-line embedding into ev-
ery point set in general position if and only if it is an outerplanar graph. From an
algorithmic point of view, an O(n log3 n)-time algorithm [1] and a Θ(n log n)-time al-
gorithm [2] are known for constructing straight-line embeddings of outerplanar graphs
and trees into given point sets in general position, respectively. Cabello [4] proved that
the problem of deciding whether a planar graph admits a straight-line embedding into a
given point set is NP-hard. If edges are not required to be straight, then by the results
of Kaufmann and Wiese [13], every planar graph admits a planar drawing with at most
two bends per edge into every point set and such a bound can not be improved.

Several problems ask for embedding more graphs on the same point set. Determining
the minimum cardinality f(n) of a set of points P such that every n-vertex planar
graph admits a straight-line embedding into an n-point subset of P is a well-know and
widely-open problem [5,6,14,15]. Recently, the problem of constructing simultaneous
embeddings without mapping, i.e., straight-line planar drawings of n-vertex graphs on
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the same set of n points, has been considered. Brass et al. [3] proved that a planar
graph and any number of outerplanar graphs admit a simultaneous embedding without
mapping. Whether every two planar graphs admit a simultaneous embedding without
mapping is still unknown.

Surprisingly, less attention has been devoted to the directed versions of such prob-
lems. When visualizing a directed graph, one usually requires an upward drawing, i.e.,
a drawing such that each edge monotonically increases in the y-direction. Giordano et
al. [11] show a directed counterpart of the results in [13], namely that every upward
planar digraph has an upward planar embedding with at most two bends per edge into
every point set. As a directed counterpart of the results in [3], the same authors show
that any number of trees admit an upward simultaneous embedding without mapping.

In this paper we study additional directed versions of some of the problems cited
above. In Section 3, we consider the problem of determining which directed graphs
admit a planar straight-line upward embedding into every point set in general or in
convex position. We show that no biconnected directed graph with more than three
vertices has a straight-line upward embedding into every point set in convex position.
We also characterize the Hamiltonian directed graphs that admit a straight-line upward
embedding into every point set in convex or in general position. We prove that every
directed path admits a straight-line upward embedding into every point set in convex
position and that every directed tree of diameter at most four admits a straight-line
upward embedding into every point set in general position. Finally, we prove that not
all directed trees admit a straight-line upward embedding into every point set in convex
position.

In Section 4, answering a question of Giordano et al. [11], we show two upward
planar directed graphs that do not admit any upward simultaneous embedding with-
out mapping. Further, we prove that deciding if two upward planar digraphs admit an
upward simultaneous embedding without mapping is NP-hard.

Several proofs are omitted or sketched, due to space limitations. Full proofs of each
statement can be found in the extended version of the paper [9].

2 Preliminaries

An upward planar directed graph is a directed graph that admits a planar drawing such
that each edge is represented by a curve monotonically increasing in the y-direction.
Every upward planar digraph admits a straight-line upward planar drawing [7], i.e., an
upward planar drawing in which every edge is represented by a segment. The under-
lying graph of a directed graph G is the undirected graph obtained by removing the
directions on the edges of G. In the following we refer to directed paths, directed cy-
cles, directed trees, directed outerplanar graphs, meaning upward planar directed graphs
whose underlying graphs are paths, cycles, trees, and outerplanar graphs, respectively.
A Hamiltonian directed graph G is a directed graph containing a path (v1, v2, · · · , vn)
passing through all vertices of G such that edge (vi, vi+1) is directed from vi to vi+1,
for each 1 ≤ i < n. A source (resp. sink) in a directed graph G is a vertex having only
outgoing edges (resp. having only incoming edges).
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A set of points in the plane is in general position if no three points lie on the same
line. The convex hull of a set of points P is the set of points that can be obtained as a
convex combination of the points of P . A set of points is in convex position if no point
is in the convex hull of the others.

An upward straight-line embedding of an n-vertex directed graph G into a set P
of n points is a mapping of each vertex of G to a point of P providing a straight-line
upward planar drawing. An upward simultaneous embedding without mapping of two
n-vertex upward planar directed graphs G1 and G2 is a pair of upward planar straight-
line drawings in which the vertices of G1 and G2 are placed on the same set of n points.

In order to deal with upward embeddings of directed graphs into point sets, we as-
sume that no two points of any point set have the same y-coordinate1. Then, the points
of any point set can be totally ordered by increasing y-coordinate. Hence, we refer to
the i-th point as to the point such that exactly i − 1 points have smaller y-coordinate.
The first and the last point of a point set P are denoted by pm(P ) and pM (P ), respec-
tively. In a convex point set P , two points are adjacent if the segment between them
is on the border of the convex hull of P . Points {v1, v2, · · · , vk} in a convex point set
P are consecutive if vi and vi+1 are adjacent, for each 1 ≤ i < k. We call a one-side
convex point set any convex point set P in which pM (P ) and pm(P ) are adjacent.

3 Graphs with Upward Straight-Line Embeddings into Every
Point Set

In this section we consider the problem of determining which directed graphs admit an
upward straight-line embedding into every point set in general or in convex position.

3.1 Biconnected Directed Graphs and Hamiltonian Directed Graphs

First, we show that no biconnected directed graph with more than three vertices has an
upward straight-line embedding into every point set in convex position, and hence into
every point set in general position. The following two lemmata are well-known:

Lemma 1. Let C be any directed cycle. The number of sources in C is equal to the
number of sinks.

Lemma 2. Let O be a straight-line embedding of a directed graph into a point set in
convex position. Then O is an outerplanar embedding.

We now observe the following lemmata.

Lemma 3. Let G be a directed graph containing a cycle C. Suppose that C has at least
two vertices u and v that are sources in C. Then there exists a convex point set P such
that G has no upward straight-line embedding into P .

1 Such an assumption is not a great loss of generality as every point set can be turned into
one without two points having the same y-coordinate, by rotating the Cartesian axes by an
arbitrarily-small angle. Further, assuming that no two points have the same y-coordinate avoids
trivial counter-examples and the a priori impossibility of drawing an edge between two speci-
fied points of the point set.
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Fig. 1. (a)–(b) Illustrations for the proofs of Lemmata 3 and 4, respectively. Dotted segments
represent paths connecting two vertices. (c) A graph belonging to the family G11 of Hamiltonian
directed graphs with 11 vertices that admit upward straight-line embeddings into every point set.

Proof. Consider any one-side convex point set P . Let s1 and s2 be two sources in C.
Suppose, w.l.o.g., that the point on which s1 is drawn has y-coordinate smaller than
the one on which s2 is drawn. Since s2 is a source in C, there exist edges (s2, v1) and
(s2, v2) going out of s2 and belonging to C. Suppose, w.l.o.g., that the point on which
v1 is drawn has y-coordinate smaller than the one on which v2 is drawn. Since C is a
cycle, there exist two disjoint paths connecting v1 and s1. One of these paths does not
contain s2 and v2 and hence it crosses edge (s2, v2); see Fig. 1.a. �

Lemma 4. Let G be a directed graph containing a cycle C. Suppose that C has exactly
one source s and one sink t. Suppose also that each of the two directed paths P1 and P2
of C connecting s and t has at least one node different from s and t. Then there exists a
convex point set P such that G has no upward straight-line embedding into P .

Proof. Consider any one-side convex point set P . Consider any drawing Γ of G into
P and let p(s) and p(t) be the points of P where s and t are drawn in Γ , respectively.
Consider the subset Pk of P whose points have y-coordinates greater or equal than the
one of p(s) and less or equal than the one of p(t). Since Γ is straight-line and upward,
both P1 and P2 lie inside the convex hull Hk of Pk. As P1 and P2 touch the border of
Hk in at least one point different from p(s) and p(t), P1 and P2 cross; see Fig. 1.b. �

Theorem 1. There exists no biconnected directed graph with more than three vertices
that admits an upward straight-line embedding into every point set in convex position.

Proof. Consider any biconnected directed graph G with more than three vertices. Con-
sider any one-side convex point set P1. By Lemma 2, any embedding Γ of G into P1
is outerplanar, hence all vertices of G are incident to the outer face of G. Since G is bi-
connected, the outer face of G is a simple cycle C. Hence, C is a cycle passing through
all vertices of G. By Lemma 3, C contains exactly one vertex s that is source in C
and hence, by Lemma 1, exactly one vertex t that is sink in C. Let P1 and P2 be the
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directed paths of C connecting s and t. By Lemma 4, one out of P1 and P2, say P1, is
a Hamiltonian directed path and the other one, say P2, is edge (s, t). Now consider any
convex point set P2 in which the line l through pm(P2) and pM (P2) determines two
half-planes both containing points of P2. Such a point set exists if n ≥ 4. Since P1 is a
Hamiltonian directed path between s and t, there is a vertex of P1 in each point of P2.
Then, there is at least one edge of P1 crossing l and hence crossing (s, t). �
Next, we characterize those Hamiltonian directed graphs that admit an upward straight-
line embedding into every point set in general position and into every point set in convex
position. Let Pn = (v1, v2, · · · , vn) be an n-vertex directed path, where edge (vi, vi+1)
is directed from vi to vi+1, for 1 ≤ i ≤ n − 1. Let Gn be the family of n-vertex
Hamiltonian directed graphs defined as follows: Each graph G ∈ Gn can be obtained
by adding to Pn a set of edges E, where each edge of E is directed from a vertex vi to
a vertex vi+2, for some 1 ≤ i ≤ n − 2, and no two edges (vi, vi+2) and (vi+1, vi+3)
belong to E, for any 1 ≤ i ≤ n − 3; see Fig. 1.c.

Theorem 2. An n-vertex Hamiltonian directed graph admits an upward straight-line
embedding into every point set in general position if and only if it belongs to Gn.

Proof. First, we prove the necessity. Suppose that there exists an Hamiltonian directed
graph G that admits an upward straight-line embedding into every point set and that
does not belong to Gn. If Pn = (v1, v2, · · · , vn) is the Hamiltonian directed path of G,
then either G contains an edge (vi, vj), with i + 2 < j ≤ n, for some 1 ≤ i ≤ n − 3,
or it contains two edges (vi, vi+2) and (vi+1, vi+3), for some 1 ≤ i ≤ n − 3.

Suppose G contains edge (vi, vj), with i + 2 < j ≤ n. Consider any convex point
set P with the following property. Let l be the line through the i-th and the j-th point
of P . Then the (i + 1)-th point and the (i + 2)-th point of P are on different sides of
l. For the upward constraint, the k-th vertex of Pn is drawn on the k-th point of P ,
for k = 1, · · · , n. Hence, edge (vi+1, vi+2) crosses edge (vi, vj). Suppose G contains
two edges (vi, vi+2) and (vi+1, vi+3), for some 1 ≤ i ≤ n − 3. Consider any one-side
convex point set P . For the upward constraint, the k-th vertex of Pn is drawn on the
k-th point of P , for k = 1, · · · , n. Then, edge (vi, vi+2) crosses edge (vi+1, vi+3).

We prove the sufficiency. Consider any n-vertex Hamiltonian directed graph G in
Gn and any point set P in general position. Draw Pn = (v1, v2, · · · , vn) into P as a
y-monotone path. Draw edges (vi, vi+2) belonging to G. Since the drawing is straight-
line, edge (vi, vi+2) intersects or overlaps only those edges intersecting the open
horizontal strip S delimited by the horizontal lines through vi and vi+2. By the defi-
nition of Gn, the only edges that have intersections with S are (vi, vi+1), (vi, vi+2) and
(vi+1, vi+2). Since P is in general position, then vi, vi+1, and vi+2 are not on the same
line and edges (vi, vi+1), (vi, vi+2) and (vi+1, vi+2) do not intersect or overlap. �

3.2 Directed Paths and Directed Trees

We show how to construct upward straight-line embeddings of directed paths into point
sets in convex position. We observe the following:

Lemma 5. Let P be any one-side convex point set with n points and let P = (v1, v2,
· · · , vn) be any n-vertex directed path. If edge (v1, v2) is directed from v1 to v2 (resp.
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Fig. 2. (a) Illustration for the proof of Theorem 3, when (va, va+1) is directed from va to va+1,
and (va+1, va+2) is directed from va+2 to va+1. (b) Illustration for the proof of Theorem 3, when
(va, va+1) is directed from va to va+1, and (va+1, va+2) is directed from va+1 to va+2.

from v2 to v1), then there exists an upward straight-line embedding of P into P in which
v1 is on pm(P ) (resp. v1 is on pM (P )).

Proof sketch. The argument uses induction on the number of points of P (and of ver-
tices of P). If n = 1 the statement trivially follows. Consider any one-side convex
point set P with n points, and any n-vertex directed path P = (v1, v2, · · · , vn). Sup-
pose that (v1, v2) is directed from v1 to v2, the other case being analogous. Consider
the point set P ′ = P \ {pm(P )} which is a one-side convex point set. By induction
P ′ = (v2, · · · , vn) admits an upward straight-line embedding into P ′ in which v2 is
either on pM (P ′) or on pm(P ′) (depending on the direction of edge (v2, v3)). In both
cases v1 can be mapped to pm(P ) and edge (v1, v2) can be drawn as a segment. The
resulting drawing Γ is easily shown to be straight-line, upward, and planar. �

Theorem 3. Every n-vertex directed path admits an upward straight-line embedding
into every convex point set with n points.

Proof sketch. Let P = (v1, v2, · · · , vn) be any directed path and let P be any convex
point set with n points. Let A and B be the subsets of P to the left and to the right,
respectively, of the line through pM (P ) and pm(P ). Let |A| = a and |B| = b. Consider
edges (va, va+1) and (va+1, va+2).

If edge (va, va+1) is directed from va to va+1 and (va+1, va+2) is directed from
va+2 to va+1 (see Fig. 2.a), apply Lemma 5 to construct an upward straight-line em-
bedding of path P1 = (va, va−1, · · · , v1) into A in which va is placed either on pM (A)
or on pm(A), and apply Lemma 5 to construct an upward straight-line embedding of
path P2 = (va+1, va+2, · · · , vn) into B∪{pM (P ), pm(P )} in which va+1 is placed on
pM (P ). The resulting drawing Γ is easily shown to be straight-line, upward, and pla-
nar. An upward straight-line embedding of P into P can be constructed analogously if
(va, va+1) is directed from va+1 to va and (va+1, va+2) is directed from va+1 to va+2.

If (va, va+1) is directed from va to va+1 and (va+1, va+2) is directed from va+1
to va+2 (see Fig. 2.b), let h be the smallest index such that edge (vi, vi+1) is directed
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Fig. 3. (a) Illustration for Theorem 4. (b)–(c) A tree T and a point set P such that T does not
admit any upward straight-line embedding into P .

from vi to vi+1, for i = h, h + 1, . . . , a, and let k be the greatest index such that
edge (vi, vi+1) is directed from vi to vi+1, for i = a, a + 1, . . . , k − 1. Consider path
P1 = (vh−1, vh−2, · · · , v1) and consider the point set A′ ⊆ A composed of the first
h − 1 points of A. Apply Lemma 5 to construct an upward straight-line embedding of
P1 into A′ such that vh−1 is placed either on pM (A′), or on pm(A′). Consider path
P2 = (vk+1, vk+2, · · · , vn) and consider the point set B′ ⊆ B composed of the last
n − k points of B. Apply Lemma 5 to construct an upward straight-line embedding of
P2 into B′ such that vk+1 is placed either on pM (B′), or on pm(B′). Consider path
P3 = (vh, vh+1, · · · , vk) and consider the point set C′ ≡ P \ {A′ ∪ B′}. Construct an
upward straight-line embedding of P3 into C′ such that the i-th vertex of P3 is placed
on the i-th point of C′, for i = h, · · · , k. The resulting drawing Γ is easily shown to be
straight-line, upward, and planar. An upward straight-line embedding of P into P can
be constructed analogously if (va, va+1) is directed from va+1 to va, and (va+1, va+2)
is directed from va+2 to va+1. �
Directed trees of diameter at most four, i.e., in which the maximum number of edges in
any path is at most four, admit upward straight-line embeddings into every point set in
convex or in general position, as in the following theorem, whose constructive proof is
shown in Fig. 3.a and detailed in the full version of the paper [9].

Theorem 4. Every directed tree with diameter at most four admits an upward straight-
line embedding into every point set in general position.

Next, we show that not all directed trees admit a straight-line upward embedding into
every point set in convex position (and hence into every point set in general position).
The proof uses as main tool the following lemma. Consider any tree T and any convex
point set P . Let u be any node of T and let T1, T2, · · · , Tk be the subtrees of T obtained
by removing u and its incident edges from T .

Lemma 6. In any upward straight-line embedding of T into P , the vertices of Ti are
mapped into a set of consecutive points of P , for each i = 1, 2, · · · , k.

Assume n is odd and greater or equal than 5. Consider a directed tree T composed of:
(i) one vertex r of degree three, (ii) three paths of n vertices P1 = (u1, u2, · · · , un),
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where (ui, ui+1) is directed from ui+1 to ui, P2 = (v1, v2, · · · , vn), where (vi, vi+1)
is directed from vi to vi+1, and P3 = (w1, w2, · · · , wn), where (wi, wi+1) is directed
from wi to wi+1, and (iii) edge (r, u1) directed from r to u1, edge (r, v1) directed from
v1 to r, and edge (r, w1) directed from w1 to r; see Fig. 3.b. Let P be a convex point
set with 3n + 1 points such that a set Q of (3n − 1)/2 points q1, q2, · · · , q(3n−1)/2 are
to the left and a set R of (3n − 1)/2 points r1, r2, · · · , r(3n−1)/2 are to the right of
the line connecting pM (P ) and pm(P ). Assume that y(pm(P )) < y(q1) < y(r1) <
y(q2) < y(r2) < · · · < y(q(3n−1)/2) < y(r(3n−1)/2) < y(pM (P )); see Fig. 3.c. It is
not difficult to show that T does not admit any upward straight-line embedding into P .

Theorem 5. For every n odd greater or equal than 5, there exists a (3n + 1)-vertex
directed tree T and a (3n + 1)-point convex point set P such that T does not admit a
straight-line upward embedding into P .

4 Upward Simultaneous Embeddings of Directed Graphs

First, we show two n-vertex upward planar directed graphs that do not admit any up-
ward simultaneous embedding without mapping. Let G1

n be the graph with n ≥ 5
vertices u1

1, u
1
2, · · · , u1

n, with a Hamiltonian directed path P1 = (u1
1, u

1
2, · · · , u1

n), with
edges (u1

1, u
1
3), (u

1
1, u

1
4), (u

1
1, u

1
5), (u

1
2, u

1
4), and (u1

2, u
1
5), and with any other set of edges

such that G1
n is still upward planar. Let G2

n be the graph with n vertices u2
1, u

2
2, · · · , u2

n,
with a Hamiltonian directed path P2 = (u2

1, u
2
2, · · · , u2

n), with edges (u2
1, u

2
3), (u2

1, u
2
4),

(u2
1, u

2
5), (u2

2, u
2
4), and (u2

3, u
2
5), and with any other set of edges such that G2

n is still
upward planar. It is not difficult to show that G1

n and G2
n do not admit any upward

simultaneous embedding without mapping.

Theorem 6. For every n ≥ 5, there exist two n-vertex upward planar directed graphs
that do not admit a simultaneous embedding without mapping.

Next, we show that deciding whether two upward planar directed graphs G1 and G2
admit a simultaneous embedding without mapping is an NP-hard problem (in the fol-
lowing called UPWARD SIMULTANEOUS EMBEDDING WITHOUT MAPPING).
In order to prove the NP-hardness of such a problem, we perform a reduction from
3-PARTITION [10]. An instance of 3-PARTITION consists of a set A of 3m ele-
ments, a bound B ∈ Z+, and a size s(a) ∈ Z+ for each element a ∈ A, such that
B/4 < s(a) < B/2 and such that

∑
a∈A s(a) = mB. The 3-PARTITION problem is

to decide whether A can be partitioned into m disjoint sets A1, A2, . . . , Am such that,
for 1 ≤ i ≤ 3 and 1 ≤ j ≤ m,

∑
ai∈Aj

s(ai) = B.
We describe how to construct an instance of UPWARD SIMULTANEOUS EMBED-

DING WITHOUT MAPPING from an instance of 3-PARTITION.
Graph G1 (see Fig. 4.a) contains m directed paths Pi = (ui,1

1 , ui,2
1 , . . . , ui,2B

1 ) of
2B vertices, with 1 ≤ i ≤ m. Edge (ui,j

1 , ui,j+1
1 ) is directed from ui,j

1 to ui,j+1
1 , for

1 ≤ j ≤ 2B − 1 and 1 ≤ i ≤ m. Further, G1 has an edge directed from vertex ui,2B
1

to vertex ui+1,2B
1 , for each i odd such that 1 ≤ i ≤ m − 1, and an edge directed from

vertex ui+1,1
1 to vertex ui,1

1 , for each i even such that 2 ≤ i ≤ m−1. Finally, G1 has two
vertices w1 and z1 such that, for every vertex ui,j

1 , with 1 ≤ i ≤ m and 1 ≤ j ≤ 2B,
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Fig. 4. (a)-(b) Graphs G1 and G2. In order to improve readability, edges incident to vertices w1,
z1, w2, and z2 are not shown. Labels are shown only for the first and the last vertex of paths Pi

of G1 and for the first and the last vertex of the paths of each component Gi
2. An edge (a, b) is

oriented from a to b if, in the figure, the y-coordinate of b is greater than the one of a.

there exists an edge from ui,j
1 to z1 and an edge from w1 to ui,j

1 . It is easy to see that
G1 has only one upward planar embedding, up to a flip of the whole graph. Further,
the subgraph P of G1 induced by the all the vertices of G1 except for w1 and z1 is a
directed path. We say that two vertices ui1,j1

1 and ui2,j2
1 of G1 are consecutive in G1 if

they are adjacent in P .
Graph G2 (see Fig. 4.b) has a triconnected component Gi

2 for each element ai ∈ A
(except for the elements ai such that s(ai) = 1 to which biconnected components Gi

2
correspond). All the Gi

2’s share two vertices w2 and z2. Graph Gi
2 has 2 · s(ai) + 2

vertices, where 2 · s(ai) vertices form a directed path (ui,1
2 , ui,2

2 , · · · , ui,2·s(ai)
2 ) such

that edge (ui,j
2 , ui,j+1

2 ) is directed from ui,j
2 to ui,j+1

2 , for 1 ≤ j ≤ 2 · s(ai) − 1. For
every 1 ≤ i ≤ 3m and 1 ≤ j ≤ 2 · s(ai), there is an edge directed from ui,j

2 to z2

and an edge directed from w2 to ui,j
2 . Notice that, an embedding of G2 is completely

specified by a left-to-right order of the Gi
2’s, up to flip of some Gi

2’s. We say that two
vertices ui1,j1

2 and ui2,j2
2 of G2 are consecutive in G2 if i1 = i2 and j2 = j1 ±1. Notice

that, in any upward simultaneous embedding of G1 and G2, vertex w1 of G1 must be
mapped to vertex w2 of G2 and vertex z1 of G1 must be mapped to vertex z2 of G2. We
observe the following:

Lemma 7. Let ui,j
2 and ui,j+1

2 be two consecutive vertices of G2, for some 1 ≤ i ≤ 3m
and 1 ≤ j ≤ 2 · s(ai)− 1. In any upward simultaneous embedding without mapping of
G1 and G2, vertices ui,j

2 and ui,j+1
2 are mapped to consecutive vertices of G1.

Corollary 1. Consider any upward simultaneous embedding without mapping of G1
and G2 in which two vertices ui1,j1

1 and ui2,j2
1 of G1 have been mapped to two vertices

of the same component Gk
2 of G2. All vertices between ui1,j1

1 and ui2,j2
1 in P have been

mapped to vertices of Gk
2 .

Lemma 8. In any upward simultaneous embedding without mapping of G1 and G2
there exists no component Gi

2 of G2 which has two vertices mapped to vertices uj,2B
1

and uj+1,2B−1
1 , for every j odd, and there exists no component Gi

2 of G2 which has two
vertices mapped to vertices uj,1

1 and uj+1,2
1 , for every j even.

We obtain the following:

Theorem 7. UPWARD SIMULTANEOUS EMBEDDING WITHOUT MAPPING is
NP-hard.
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Proof. The reduction described at the beginning of the section can clearly be performed
in polynomial time. In fact, 3-PARTITION is NP-hard in the strong sense, hence it
is NP-hard even if 2mB, which is the size of the constructed instance of UPWARD
SIMULTANEOUS EMBEDDING WITHOUT MAPPING, is bounded by a polyno-
mial in m. We show that an instance of 3-PARTITION admits a solution if and only
if the corresponding instance of UPWARD SIMULTANEOUS EMBEDDING WITH-
OUT MAPPING admits a solution.

Consider any instance A of 3-PARTITION admitting a solution A1, A2, . . . , Am

such that, for 1 ≤ i ≤ 3 and 1 ≤ j ≤ m,
∑

ai∈Aj
s(ai) = B. We show how to map

the vertices of G2 to the vertices of G1. For each i = 1, · · · , m, consider components
Gx

2 , Gy
2 , and Gz

2 of G2 corresponding to elements ax, ay , and az of Ai, respectively.
Since Gk

2 has 2 · s(ak) vertices different from w2 and z2, then Gx
2 , Gy

2 , and Gz
2 have

exactly 2B vertices different from w2 and z2. Map vertex ux,j
2 of Gx

2 to vertex ui,j
1 of

G1, for each 1 ≤ j ≤ 2 · s(ax); map vertex uy,j
2 of Gy

2 to vertex u
i,2·s(ax)+j
1 of G1, for

each 1 ≤ j ≤ 2 · s(ay); map vertex uz,j
2 of Gz

2 to vertex u
i,2·s(ax)+2·s(ay)+j
1 of G1, for

each 1 ≤ j ≤ 2 · s(az). It is easy to see that G2, when its vertices are mapped to the
vertices of G1 as described above, is a subgraph of G1. Hence, an upward simultaneous
embedding of G1 and G2 is obtained by any upward straight-line drawing of G1.

Now consider any upward simultaneous embedding (Γ1, Γ2) of G1 and G2. We show
how to construct a solution A1, A2, . . . , Am for the corresponding instance A of 3-
PARTITION. We claim that the vertices of three components Gx,i

2 , Gy,i
2 , and Gz,i

2 of G2,
except for w2 and z2, have been mapped to all and only the vertices of path Pi of G1,
for each i = 1, 2, · · · , m. The claim directly implies the existence of a solution to the in-
stance of 3-PARTITION, since the claim implies that |Gx,i

2 |+ |Gy,i
2 |+ |Gz,i

2 | = 2B and
hence, by construction, the three elements of A corresponding to Gx,i

2 , Gy,i
2 , and Gz,i

2
sum up to B. Consider the component Gx,1

2 of G2 which has a vertex mapped to u1,1
1 .

By Corollary 1, the vertices of Gx,1
2 are mapped to consecutive vertices of G1, hence

they are mapped to the vertices of P from u1,1
1 to u

1,|Gx,1
2 |

1 . Analogously, the component

Gy,1
2 of G2 which has a vertex mapped to u

1,|Gx,1
2 |+1

1 has vertices mapped to vertices of

P from u
1,|Gx,1

2 |+1
1 to u

1,|Gx,1
2 |+|Gy,1

2 |
1 . Observe that |Gx,1

2 | + |Gy,1
2 | < 2B, since each

component of G2 has less than B vertices (by the assumption that s(ai) < B/2). Hence,

there exists a component Gz,1
2 of G2 which has a vertex mapped to u

1,|Gx,1
2 |+|Gy,1

2 |+1
1 .

By Corollary 1, the vertices of Gz,1
2 are mapped to consecutive vertices of G1. Suppose

that |Gx,1
2 | + |Gy,1

2 | + |Gz,1
2 | > 2B. Since each of |Gx,1

2 |, |Gy,1
2 |, and |Gz,1

2 | is even,
|Gx,1

2 | + |Gy,1
2 | + |Gz,1

2 | is even, as well, hence Gz,1
2 has a vertex mapped to u2,2B−1

1 .
By Lemma 8, (Γ1, Γ2) is not an upward simultaneous embedding without mapping of
G1 and G2. Now suppose that |Gx,1

2 |+ |Gy,1
2 |+ |Gz,1

2 | < 2B. Then, there exists a com-

ponent Gw,1
2 that is mapped to u

1,|Gx,1
2 |+|Gy,1

2 |+|Gz,1
2 |+1

1 . By Corollary 1, the vertices
of Gw,1

2 are mapped to consecutive vertices of G1. Further, by construction and by the
assumption that s(ai) > B/4, |Gx,1

2 | + |Gy,1
2 | + |Gz,1

2 | + |Gw,1
2 | > 2B. Hence, since

|Gx,1
2 | + |Gy,1

2 | + |Gz,1
2 | + |Gw,1

2 | is even, Gw,1
2 has vertices mapped both to u1,2B

1 and
to u2,2B−1

1 . By Lemma 8, (Γ1, Γ2) is not an upward simultaneous embedding without
mapping of G1 and G2. It follows that |Gx,1

2 | + |Gy,1
2 | + |Gz,1

2 | = 2B. The previous
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argument can be iterated to show that the vertices of three components Gx,i
2 , Gy,i

2 , and
Gz,i

2 of G2, except for w2 and z2, have been mapped to all and only the vertices of path
Pi of G1, for each i = 1, 2, · · · , m, proving the claim and hence the theorem. �

5 Conclusions and Open Problems

In this paper we have shown combinatorial and complexity results regarding the prob-
lem of constructing upward straight-line embeddings of directed graphs into point sets.

We have shown families of directed graphs that admit a straight-line upward em-
bedding into every point set in convex or in general position, and families that do not.
However, the problem of characterizing those graphs admitting a straight-line upward
embedding into every point set in general or in convex position is still open. With this
in mind we note that if an upward planar directed graph admits an upward straight-line
embedding into every point set in general or in convex position, not all its subgraphs, in
general, admit an upward straight-line embedding into every point set in general or in
convex position; see Fig. 5. However, the necessary conditions of Lemmata 2, 3, and 4
strongly restrict the class of upward planar directed graphs to investigate. The follow-
ing two problems naturally arise from the results of this paper: (1) Does every directed
path admit a straight-line upward embedding into every point set in general position?
(2) Does every directed caterpillar admit a straight-line upward embedding into every
point set in convex/general position?

Deciding whether a directed graph admits an upward straight-line embedding into a
given point set in general position is likely to be NP-hard, since the same problem is
NP-hard in its undirected version [4]. However, we do not know the time complexity
of testing whether a directed graph admits an upward straight-line embedding into a
given point set in convex position. The same problem can be solved in linear time for
undirected graphs as a graph admits a straight-line embedding into a given point set in
convex position if and only if it is outerplanar, which can be tested in linear time [16].

We proved that deciding whether two upward planar directed graphs admit an up-
ward simultaneous embedding without mapping is NP-hard. We observe that the same
problem is polynomial-time solvable for trees [11]. Hence, it would be interesting to
solve the problem for subclasses of planar digraphs richer than directed trees, e.g., out-
erplanar digraphs and series-parallel digraphs.

A final open problem is to find the minimum cardinality f(n) of a set of points
P in the plane such that every n-vertex planar digraph admits an upward straight-line

(a) (b)

Fig. 5. (a) An upward planar directed graph G1 that, by Theorem 1, does not admit an upward
straight-line embedding into every 4-point point set in convex position. (b) An upward planar
directed graph G2 that admits an upward straight-line embedding into every 5-point point set in
convex position and that contains G1 as a subgraph.
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embedding in which the vertices are drawn at points of P . While this is the directed
version of one of the most studied Graph Drawing problems [5,6,14,15], the only known
result is that the minimum size of any grid into which every planar digraph can be drawn
is exponential [8], hence a polynomial upper bound for f(n) would be interesting.
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Abstract. Packing coloring is a partitioning of the vertex set of a graph
with the property that vertices in the i-th class have pairwise distance
greater than i. We solve an open problem of Goddard et al. and show
that the decision whether a tree allows a packing coloring with at most
k classes is NP-complete.

We accompany this NP-hardness result by a polynomial time algo-
rithm for trees for closely related variant of the packing coloring problem
where the lower bounds on the distances between vertices inside color
classes are determined by an infinite nondecreasing sequence of bounded
integers.

Keywords: Packing coloring, computational complexity, graph algo-
rithm, chordal graph.

1 Introduction

The concept of packing coloring comes from the area of frequency planning in
wireless networks. This model emphasizes the fact that some frequencies might
be used more sparely than the others.

In graph terms, we ask for a partitioning of the vertex set of a graph G
into disjoint classes X1, . . . , Xk (representing frequency usage) according to the
following constraints. Each color class Xi should be an i-packing i.e. a set of
vertices with the property that any distinct pair u, v ∈ Xi satisfies dist(u, v) > i.
Here dist(u, v) is the distance between u and v, i.e. the length of a shortest path
from u to v and it is declared to be infinite when u and v belong to distinct
components of connectivity.

Such partitioning into k classes is called a packing k-coloring, even though
it is allowed that some sets Xi can be empty. The smallest integer k for which
exists a packing k-coloring of G is called the packing chromatic number of G,
and it is denoted by χp(G). The notion of the packing chromatic number was
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established by Goddard et al. [7] under the name broadcast chromatic number.
The term packing chromatic number was introduced by Brešar et al. [3].

Determining the packing chromatic number is difficult, even for special graph
classes. For example, Sloper [11] showed that for trees of maximum degree three
the the upper bound is seven, while χp is unbounded already on trees of max-
imum degree four. Goddard et al. [7] provided polynomial time algorithms for
cographs and split graphs.

The packing chromatic number of the hexagonal grid is also seven as was
shown by Brešar et al. [3] (the lower bound) and by Fiala and Lidický [personal
communication] (the upper bound). Goddard et al. [7] also showed that the χp

of the infinite two-dimensional square grid lies between 9 and 22. On the other
hand, Finbow and Rall [10] proved that the packing chromatic numbers of the
triangular infinite lattice as well as of the infinite three-dimensional square grid
are unbounded.

The following decision problem arises naturally:

Packing Coloring

Instance: A graph G and a positive integer k.
Question: Does G allow a packing k-coloring?

Goddard et al. [7] showed that the Packing Coloring problem is NP-
complete for general graphs and k = 4. They also asked about the computational
complexity of this problem for trees. It was suggested by Brešar et al. [3] that
the problem for trees can be difficult. Our main result is an affirmative proof of
this conjecture:

Theorem 1. The Packing Coloring problem is NP-complete for trees.

In contrary, the existence of a packing k-coloring can be expressed by a formula
in Monadic Second Order Logic (MSOL), when k becomes fixed. It follows from
work of Courcelle [4] that the Packing Coloring problem is solvable in poly-
nomial time for bounded treewidth graphs when k is fixed. In addition, we get
the following corollaries for closely related graph classes:

Corollary 1. The Packing Coloring problem is fixed parameter tractable for
chordal graphs with respect to the parameter k.

Proof. If the given chordal graph G has a clique of size greater than k, then
no packing k-coloring exists, since vertices of the clique have to be colored by
distinct colors.

Otherwise, G has bounded clique size. Consequently it has also bounded
treewidth and the result follows. ��

Consequently, even in the case when k is not fixed, the Packing Coloring

problem becomes easy for special tree-like graphs:

Corollary 2. The Packing Coloring problem is solvable in polynomial time
for graphs of bounded treewidth and of bounded diameter.
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Proof. Let us consider the following maximization problem: for a given graph G
and a positive integer d we ask for some induced subgraph G′ of G of maximum
size that allows a packing d-coloring. By the results of Arnborg et al. [1] this
problem can be solved by a linear algorithm on graphs of restricted treewidth
for any fixed d, if the tree decomposition is given. (Also follows from a result of
Courcelle et al. [5] on an adaptation of MSOL for optimization problems.)

Suppose that d is the upper bound on diameters of the considered graph class.
If k ≤ d, then the Packing Coloring problem can be solved in polynomial
time. Otherwise any color c > d can be used on at most one vertex of G.
Therefore, χp(G) = d+|VG\VG′ |, where G′ is an optimal solution of the auxiliary
maximization problem. ��

Finally, we focus our attention to the more general concept of S-packing coloring
introduced by Goddard et al. [7] as a generalization of packing coloring which
provides more realistic model for the frequency assignment. Let S = (s1, s2, . . . )
be an infinite nondecreasing sequence of positive integers. In this new setting,
vertices in the i-th class Xi are required to have distance greater than si. For
example, the concept of the ordinary packing coloring is the S-packing coloring
for S = (1, 2, . . . ). We address the following decision problem:

S-Packing Coloring

Parameter: A nondecreasing sequence S.
Instance: A graph G and a positive integer k.
Question: Does G allow an S-packing coloring with at most k color
classes?

We show that the minimum number of color classes can be determined in
polynomial time when the sequence S is bounded from above. To our knowledge
the machinery of MSOL developed by Courcelle et al. [5] cannot be used directly
for problems of such kind. On the other hand, this problem belongs to the class
of regular combination problems considered by Borie [2], who proved that these
problems can also be solved in polynomial time for graphs of bounded treewidth.
Hence, we have the following corollary.

Corollary 3. If S is a nondecreasing sequence with values bounded by a con-
stant, then the S-Packing Coloring problem can be solved in polynomial time
on graphs of bounded treewidth.

For completeness, we provide a short description of an explicit algorithm for the
S-Packing Coloring problem to prove Theorem 2.

Theorem 2. For nondecreasing sequences S with values bounded by a constant
t the S-Packing Coloring problem can be solved for trees on n vertices by an
algorithm with running time O(n2t+3).

Our algorithm involves dynamic programming to evaluate all partial colorings for
the initial classes with si < t while minimizing the maximal number of uncolored
vertices that are pairwise at distance at most t (i.e. the number of remaining
color classes).
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2 Proof of Theorem 1

For integers a ≤ b we define discrete intervals as [a, b] := {a, a + 1, . . . , b}.

2.1 Auxiliary constructions

We first construct a gadget where some vertices are forced predetermined colors
in an arbitrary packing k-coloring.

Construction 1. Let t ≤ k be a positive integer. Construct a tree St with three
levels as follows: The only vertex v0 of the first level, called the central vertex, is
of degree t− 1, and all its neighbors v1, v2, . . . , vt−1 are of degree k. The vertices
v0, v1, . . . , vt−1 are called the inner vertices of St.

Lemma 1. For every packing k-coloring of St the inner vertices are colored by
distinct colors. Also for every subset I of [1, k] of size at least t, a packing k-
coloring of St exists such that the inner vertices are colored by distinct colors
from I.

Proof. If a packing k-coloring of St exists, then none of vertices vi, i ∈ [1, t−1] is
colored by color 1, since it would be impossible to find k distinct colors in [2, k]
to color the neighbors of vi. Hence, the colors of all inner non central vertices
are greater or equal to 2, and each may present at most once as the maximal
distance on the inner vertices is two. The central vertex (which can be colored by
1) is adjacent to other inner vertices and therefore must be colored by a different
color.

For the second claim we construct the packing k-coloring from I as follows:
Use elements of I bijectively on the inner vertices with the rule that the central
vertex is colored by 1, if it is present in I. All leaves in the third level are colored
by the color 1. ��

Given some tree St, choose one of its leaves arbitrarily and call it the root of St.
To simplify some expressions we involve an auxiliary parameter d := 28.

Construction 2. For an odd k > d and any i ∈ [d + 1, k] we construct the tree
Ti as follows:

1. Take a copy of the tree Si with the root u3.
2. If i < k, then add a copy of Sk and join u3 with the root of Sk by a path

u3, u4, . . . , uk−3 of length k − 6.
3. If i < k − 2, then for each odd j such that i < j < k we add two copies of

the tree Sj. The root of one of the two copies of Sj, called the top copy, is
joined by a path of length � j

2� − 3 to the vertex u�j/2�. The root of the other
one, called the bottom copy, is joined to the same u�j/2� by a path of length
� j

2� − 4.
4. Finally, if i < k − 1 and i is odd, we add an extra copy of Si+1 and join its

root to u� i
2 � by a path of length � i

2� − 3.
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uk−3 u3

Sk−2

Sk−4

Sk−6

Sk Sk−8

Sk−7

Sk−6

Sk−4

Sk−2

u
k/2�

Fig. 1. The tree Tk−8

Denote by U the set of inner vertices of the copy of Si in Ti. We choose the
root of Ti as some leaf in the copy of Si that is at distance four from u3.

The construction of the tree Tk−8 is depicted in Figure 1.

Lemma 2. If i and k satisfy the assumptions of Construction 2, then

1. the vertices of U are colored by different colors from the set [1, i] in any
packing k-coloring of Ti;

2. the tree Ti admits a packing k-coloring such that the vertices colored by a
color c ∈ [i+1, k] are at distance more than c from the root of Ti. Moreover,
the root of Ti is colored by the color 1, and vertices colored by the colors
i, i − 1, i − 2 are at distance at least three from the root.

Proof. Assume first that a packing k-coloring of Ti is given. By Lemma 1 the
inner vertices of Sk are colored only by colors [1, k], which proves the lemma in
the case i = k.

We now determine the maximal distances between the inner vertices of used
copies of Sj . They are summarized in Table 1.

Any color j′ > j cannot be used on the bottom copy of Sj , since they are used
either on the top copies of Sj′−1 — for even j′ — or on the bottom copies of Sj′

— for odd j′. The two copies of Sk−2 have to be considered separately, but in
that case we consider the copy of Sk at distance k − 1. Hence, by Lemma 1 the
interval [1, j] is used on any bottom copy of Sj .

For the top copies of Sj an analogous argument can be used, considering the
close distance to copies of Sj′ with j′ > j. In addition, the color j is forbidden
there, since it is used on the bottom copy of Sj and the distance is at most j.
Again, by Lemma 1 the set [1, j + 1] \ {j} is used on the inner vertices of Sj .

The cases of Si+1 and Si are treated in the same way.
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Table 1. Maximal distances between the inner vertices of used copies of Sj

From To Max. distance
top Sj Sk 3 + � j

2
� − 3 + (k − 3 − � j

2
�) + 3 = k

top S′
j , j

′ > j � j
2
� + j′−j

2
+ � j′

2
� = j′ + 1

bottom S′
j , j

′ > j � j
2
� + j′−j

2
+ � j′

2
� − 1 = j′

bottom Sj Sk � j
2
� − 1 + (k − � j

2
�) = k − 1

top S′
j , j

′ > j � j
2
� + j′−j

2
+ � j′

2
� = j′ + 1

bottom S′
j , j

′ > j � j
2
� + j′−j

2
+ � j′

2
� − 1 = j′

top Sj � j
2
� + � j

2
� − 1 = j

Si+1 Sk � i
2
� + (k − � i

2
�) = k

top Sj � i
2
� + j−i

2
+ � j

2
� = j + 1

bottom Sj � i
2
� + j−i

2
+ � j

2
� − 1 = j

Si Sk 3 + k − 6 + 3 = k

top Sj � j
2
� + � j

2
� = j + 1

bottom Sj � j
2
� + � j

2
� − 1 = j

Si+1 � i
2
� + � i

2
� = i + 1

Now we describe a packing k-coloring of Ti which satisfies the second claim.
On each copy of Sj we use the coloring with colors from [1, j], such that the
center and all leaves are colored by the color 1, and the neighbor of the root of
Si is colored by 2. In addition, the neighbor of the root of Ti is colored by 3. We
continue with the part of the tree around vertices u
k/2�, . . . , u�i/2�. The periodic
coloring pattern is depicted in Fig. 2 and uses only colors from the interval [1, 9].
What remains yet uncolored are paths, each of length at least eight. Along these
paths we use pattern 1, 2, 1, 3, 1, 2, . . . with possible appearance of the color 4
so the path coloring fits well with the coloring determined so far. By careful
observation of distances between inner sets of trees Sj one can verify that we
get a valid packing k-coloring. Moreover, vertices colored by the color j > i are
at distance more than j from the root of Ti as it was required. ��

Construction 3. Given L ⊂ [d+1, k] of at most three elements we construct a
tree TL as follows. Take a copy of the tree Sd+1, and choose an inner non central
vertex u arbitrarily. For every j ∈ [d + 1, k] \L take an extra copy of the tree Tj

and connect its root with a unique leaf neighbor of u by a path of length j − 6
(i.e., use different neighbors of u for different trees Tj).

The root of TL is any leaf of Sd+1 that is at distance three from u.

Lemma 3. If L and k satisfy assumptions of Construction 3, then

1. for every packing k-coloring of TL the inner vertices of Sd+1 are colored by
different colors from the set [1, d] ∪ L;

2. for every packing k-coloring of TL at least one inner vertex of Sd+1 is colored
by the color from the set L;

3. for every set I ⊂ [1, d]∪L, |I| = d+1, the tree TL admits a packing k-coloring
such that
– the inner vertices of Sd+1 are colored by the colors from I,



140 J. Fiala and P.A. Golovach

2 2 2 2 2 23 3 34 4 45 56 67 7

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 23 3 3

2 2 2 2 2 2 2 2 2 2 2 23 3 38 8

9 9

1 1

2 2

1 1

2 2

8

9

1 4

u
k/2�

Fig. 2. The periodic coloring pattern used for the central part of Ti

– vertices colored by the color j for j ∈ [d + 1, k] \ I are at distance more
than j from the root of TL, and

– vertices colored by the colors from L are 3-distant from the root.

Proof. The first two claims follow immediately from the Lemmas 2 and 1.
For the proof of the third claim we construct the required packing k-coloring

of TL as follows: All vertices adjacent to the inner vertices of Sd+1 are colored
by the color 1. If 1 ∈ I, then the central vertex of Sd+1 is also colored by 1 as
well. Consequently, t = |L| inner vertices of Sd+1 which are different from the
central vertex and from u, and that are not adjacent to the root, are chosen and
colored by the colors from L. The remaining inner vertices of Sd+1 are colored
by the remaining colors from I. The vertices of trees Tj are colored according to
the second claim of Lemma 2. Finally, every path between the root of some Tj

and u is colored by colors 1, 2, 3, with possible one appearance of the color 4. ��

2.2 Polynomial Reduction

We proceed with reduction of the well known NP-complete 3-Satisfiability

problem [6, problem L02, page 259] to our Packing Coloring problem for
trees.

Let Φ be a boolean formula in conjunctive normal form with variables
x1, x2, . . . , xn and clauses c1, c2, . . . , cm. Each clause consists of three literals.
We choose k := 4n+2d−1 and r := 2(d+n−1). For every variable xi we define
the set Xi := {2i + r, 2i + r + 1}.

For every clause cj a three element set Cj ⊂ [1, k] is constructed as follows:
If the clause cj contains the literal xi, then the integer 2i + r is included to the
set Cj . On the other hand, if xi ∈ cj , then 2i + r + 1 ∈ Cj .

Construction 4. We construct the final tree TΦ from the disjoint union of trees
TXi over all variables xi together with trees TCj over all clauses cj. In addition
we insert an extra new vertex u and join it to the roots of trees TX1 , TX2 , . . . , TXn

by paths of length d − 3. We also join u with the roots of TC1, TC2 , . . . , TCm by
paths of length �k

2� − 3.
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Lemma 4. The tree TΦ has a packing k-coloring if and only if the formula Φ
can be satisfied.

Proof. Suppose that a packing k-coloring of TΦ exists. According to the second
claim of Lemma 3 at least one element of the set Xi is used for among colors of
the inner vertices of Sd+1 in any TXi (in the sequel we denote this set of inner
vertices by Ui). If the color 2i + t is used, then we set xi := false, and xi := true
otherwise.

For every j ∈ [1, m] at least one color c ∈ Cj is used on an inner vertex of Sd+1
in TCi (this set we denote by Wj). Suppose that c = 2i + t for some i ∈ [1, n].
In such a case the clause Cj contains the literal xi. Since vertices of Wj and Ui

are at distance at most d + �k
2 � = 2n+ 2d ≤ 2i+ 2(d + n− 1) = 2i+ r, the color

2i + r is not on the set Ui, and the variable xi has to be assigned true.
Analogously, if c = 2i + r + 1 for some i ∈ [1, n], then the clause cj contains

literal xi. By the same arguments as before, the color 2i + r + 1 is not used on
Ui, and xi = false.

Assume that a satisfying assignment of variables x1, x2, . . . , xn for the formula
Φ exists. For every i ∈ [1, n] on any tree TXi we use the coloring described in the
third statement of Lemma 3 arranged such that the vertices of Ui are colored
by the set [1, d] ∪ {2i + r + 1} if xi = true, and by the set [1, d] ∪ {2i + r} in the
case when xi = false.

Note that the distance between different sets Ui is least 2d − 4. Also, if some
color c ∈ [d + 1, k] is used among the sets Ui, then it is used only for a single
vertex in a single set. Suppose that given clause Cj is satisfied by positively
evaluated literal xi = true. Now the vertices of Wj are colored by the colors of
the set [1, d] ∪ {2i + r} as described in Lemma 3. If Cj is satisfied by a literal
xi = true, then vertices of Wj are colored by [1, d] ∪ {2i + r + 1}.

The distance between different sets Wi is least 2�k
2 � − 4, and by Lemma 3

vertices of different sets Wj which are colored by the colors from [d + 1, k] are
at distance 2�k

2� > k = 4n + 2d − 1 = 2n + 1 + r ≥ 2i + 1 + r for any i ∈ [1, n].
Also if a color c ∈ [d + 1, , k] is used for coloring of vertices of Wj , then it can
not be used on any set Ui.

Finally, we complete the packing k-coloring of TΦ on the vertex u and the
vertices from the paths between u and trees TXi and TCj . We proceed similarly
as in the previous constructions — color u by 4, and use pattern 1, 2, 1, 3, 1, 2, . . .
on the paths, with possible one more appearance of the color 4, if necessary. ��

Since trees Si have O(k2) vertices, and trees Ti have O(k3) vertices, the final
tree TΦ has O(n4(n + m)) vertices. Hence our reduction is polynomial and the
proof of Theorem 1 is finished.

3 Proof of Theorem 2

Without loss of generality assume that sr is the last element of S smaller than t.
For every k ≤ r the S-packing coloring problem can be solved polynomially
for trees (and for graphs of restricted treewidth), e.g., by the machinery of MSOL.
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We construct a dynamic programming algorithm under assumptions that k >
r and s2 > 1. (If s2 = 1, then two color classes always suffices for any tree; one
class can be used only if the tree has only one vertex.)

Assume that T is a rooted tree on n vertices. If W is a subset of children of
some node v, then we denote by Tv,W subtree of T rooted in v and containing
all vertices from W together with all their descendants.

For a tree Tv,W we explore all its partial (s1, . . . , sr)-packing colorings with
respect to the following parameters:

– the distances di between the root v and the closest vertex from the i-th class
for every i ∈ [1, r]; it’s only essential to know the distance only when di ≤ si,

– the numbers pj of uncolored vertices that are at distance at most j ≤ t from
v for every j ∈ [0, t].

We encode these two sets of parameters by sequences D = (d1, d2, . . . , dr−1) such
that di ∈ [0, si]∪{∞}, and P = (p0, p1, . . . , pt) such that 0 ≤ p1 ≤ p2 ≤ · · · ≤ n.

Among those partial colorings that provide the same parameters we identify
the maximal number of uncolored vertices that are pairwise at distance smaller
than t and choose the coloring that minimizes this value. In particular, our
algorithm computes for each triple Tv,W , D, P the minimal integer c(Tv,W , D, P )
such that there is a partition of V (Tv,W ) into sets X1, . . . , Xr, Y for which the
following conditions are fulfilled:

– for every i ∈ [1, r] the set Xi is an Si packing in Tv,W ,
– for every i ∈ [1, r] : di = min{dist(v, z) : z ∈ Xi, dist(v, z) ≤ si};

it is assumed that di = ∞ if no such z exists,
– for every j ∈ [0, t] : pj = |{z ∈ Y : dist(v, z) ≤ j}|,
– for every Z ⊂ Y , satisfying u, v ∈ Z : dist(u, v) ≤ t, holds that |Z| ≤

c(Tv,W , D, P ).

If no such partition exists, then we define c(Tv,W , D, P ) = ∞.
The sequences D are used to properly extend partial packing colorings, while

sequences P allow us to determine the maximum size of the set Z. In other
words Z induces a clique in the t-th power of T . (In the t-th power vertices are
adjacent if and only if they are at distance at most t in the original graph). Here
we strongly rely on the well known fact that powers of trees are chordal [8,9],
and their chromatic numbers are equal to the size of their maximum clique.

The algorithm consists from three subroutines. The first subroutine Leaf is
called if Tv has only one vertex v (i.e. v is a leaf of T ).

The subroutine NewRoot is called for a vertex v with a child w, and it computes
c(Tv,{w}, D, P ) from the values of c(Tw,N(w), D

′, P ′). Here N(w) stands for the
set of children of w.

The last subroutine Join is called for vertices of T which are not leaves. It
computes from the tables of values c(Tv,Wi , Di, Pi) for two subtrees Tv,W1 and
Tv,W2 with a unique common vertex v, which is the root of the trees, the value
of c(Tv,W , D, P ) for the union of these trees Tv,W , where W = W1 ∪ W2.
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Subroutine Leaf(Tv , D, P );
if d1 = d2 = · · · = dr = ∞ and p0 = p1 = · · · = pt = 1 then

c(Tv,∅, D, P ) := 1;

else
if ∃i ∈ [1, r] such that di = 0 and dj = ∞ for all j ∈ [1, r] \ {i},

and p0 = p1 = · · · = pt = 0 then
c(Tv,∅, D, P ) := 0;

else
c(Tv,∅, D, P ) := ∞;

Return c(Tv,∅, D, P )

Subroutine NewRoot(Tv,{w}, D, P );
c(Tv,{w}, D, P ) := ∞;
if ( ∃i ∈ [1, r] such that di = 0 and dj > 0 for all j ∈ [1, r] \ {i}, and p0 = 0 )

or ( dj > 0 for all j ∈ [1, r] and p0 = 1 ) then
for j := 1 to t do

p′
j−1 := pj;

J := {j ∈ [1, r] : dj = 0 or dj = ∞};
forall j ∈ [1, r] \ J do

d′
j := dj − 1;

for p′
t := p′

t−1 to n do
P ′ := (p′

0, p
′
1, . . . , p

′
t);

for every choice d′
j ∈ {sj , ∞} for all j ∈ J do

D′ := (d′
1, d

′
2, . . . , d

′
r);

if c(Tv,{w}, D, P ) > c(Tw,N(w) , D
′, P ′) then

c(Tv,{w}, D, P ) := c(Tw,N(w), D
′, P ′);

Return c(Tv,{w}, D, P )

Our algorithm starts from leaves of the tree T and constructs for them ta-
bles of values c(Tv,∅, D, P ) by the subroutine Leaf. If v is not a leaf, then we
use the subroutine NewRoot if it has only one child. If v has more children
w1, w2, . . . , wl, then the subroutine NewRoot is used for the construction of aux-
iliary tables for values c(Tv,{wi}, D, P ) for all i ∈ [1, l]. Consequently, we use
the subroutine Join and construct consecutively tables for trees Tv,{w1,w2,...,wi}
for i = 2, 3, . . . , l. Finally, table is constructed for the root u. If there are D
and P for which c(Tu,N(u), D, P ) + r > k, then the tree T allows an S-packing
k-coloring. Otherwise no such coloring exists.

Now we estimate the time complexity. Since the sequence S is fixed, there is
a constant number of sequences D. There are O(nt+1) sequences P and all such
sequences can be listed in time O(nt+2). Note that we have to list these sequences
only once. The construction of the tables with all values c(Tv,∅, D, P ) for leaves
of T by the subroutine Leaf demands O(nt+2) operations, since T has no more
than n leaves. Each call of the subroutine NewRoot takes O(n) operations. Since
we use this subroutine for every edge of T , the total number of operations is
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Subroutine Join(Tv,W1 , Tv,W2 , D, P );
c(Tv,W , D, P ) := ∞;
if ∃i ∈ [1, r] such that di = 0 and dj > 0 for all j ∈ [1, r] \ {i}, and p0 = 0 then

forall P1 := (p(1)
0 , p

(1)
1 , . . . , p

(1)
t ) and P2 := (p(2)

0 , p
(2)
1 , . . . , p

(2)
t )

such that p
(1)
j + p

(2)
j = pj for all j ∈ [0, t] do

forall D1 := (d(1)
1 , d

(1)
2 , . . . , d

(1)
r ) and D2 := (d(2)

1 , d
(2)
2 , . . . , d

(2)
r )

such that di = min{d
(1)
j , d

(2)
j } for all j ∈ [1, r],

and d
(1)
j + d

(2)
j > sj for all j ∈ [1, r] \ {i} do

m := max{c(Tv,W1 , D1, P1), c(Tv,W2 , D2, P2)};
for j := 0 to t do

if m < p
(1)
j + p

(2)
t−j then m := p

(1)
j + p

(2)
t−j;

if c(Tv,W , D, P ) > m then c(Tv,W , D, P ) := m;

if di > 0 for all i ∈ [1, r] and p0 = 1 then
forall P1 := (p(1)

0 , p
(1)
1 , . . . , p

(1)
t ) and P2 := (p(2)

0 , p
(2)
1 , . . . , p

(2)
t )

such that p
(1)
j + p

(2)
j = pj for all j ∈ [1, t] and p

(1)
0 = p

(2)
0 = 1 do

forall D1 := (d(1)
1 , d

(1)
2 , . . . , d

(1)
r ) and D2 := (d(2)

1 , d
(2)
2 , . . . , d

(2)
r )

such that di = min{d
(1)
j , d

(2)
j } and d

(1)
j + d

(2)
j > sj for all j ∈ [1, r] do

m := max{c(Tv,W1 , D1, P1), c(Tv,W2 , D2, P2)};
for j := 0 to t do

if m < p
(1)
j + p

(2)
t−j − 1 then m := p

(1)
j + p

(2)
t−j − 1;

if c(Tv,W , D, P ) > m then c(Tv,W , D, P ) := m

Return c(Tv,W , D, P )

O(nt+2). At every call of the subroutine Join all possible sequences P1, P2, D1
and D2 are considered. For any sequence P there are O(nt+1) such sequences,
and all such sequences for all P can be listed in time n2t+3. We can use this
table of sequences for the all calls of the subroutine. Every call of the subroutine
demands O(nt+1) operations, and the table of all values of c(Tv,W , D, P ) can be
constructed in time O(n2t+2). The total number of such tables is no more than
the number of edges of T . Correspondingly, the total number of operations is
O(n2t+3).

4 Conclusion and Open Problems

We have shown that for bounded sequences the S-Packing Coloring problem
is solvable in polynomial time for trees. On the other hand, Theorem 1 shows
that it is NP-complete for the sequence (1, 2, 3, . . . ). It would be interesting to
classify computational complexity of the S-Packing Coloring problem for
different sequences. It can be easily seen that the proof of Theorem 1 can be
extended for sequences S = (s1, s2, s3, . . . ) of different positive integers such
that si = Θ(ic) for some constant c.
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As a consequence of a result of Sloper [11] and Corollary 1 the packing chro-
matic number can be computed polynomially for trees of maximum degree three.
This raises the question whether χp can be determined efficiently for bounded
degree trees.
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Abstract. A set of planar graphs share a simultaneous embedding if they
can be drawn on the same vertex set V in the Euclidean plane without
crossings between edges of the same graph. Fixed edges are common edges
between graphs that share the same simple curve in the simultaneous
drawing. Determining in polynomial time which pairs of graphs share a
simultaneous embedding with fixed edges (SEFE) has been open.

We give a necessary and sufficient condition for whether a SEFE exists
for pairs of graphs whose union is homeomorphic to K5 or K3,3. This
allows us to characterize the class of planar graphs that always have a
SEFE with any other planar graph. We also characterize the class of bi-
connected outerplanar graphs that always have a SEFE with any other
outerplanar graph. In both cases, we provide efficient algorithms to com-
pute a SEFE. Finally, we provide a linear-time decision algorithm for
deciding whether a pair of biconnected outerplanar graphs has a SEFE.

1 Introduction

In many practical applications including the visualization of large graphs and
very-large-scale integration (VLSI) of circuits on the same chip, edge crossings
are undesirable. A single vertex set can be used with multiple edge sets that
each correspond to different edge colors or circuit layers. While the pairwise
union of all edge sets may be non-planar, a planar drawing of each layer may be
possible, as crossings between edges of distinct edge sets are permitted. Finding
such drawings is the basic problem of simultaneous embedding (SE) and this can
be viewed as a generalization of the notion of planarity to multiple graphs.

Without restrictions on the types of edges, any number of planar graphs can
be drawn on the same fixed set of vertex locations [13]. However, difficulties
arise once straight-line edges are required. This is the problem of simultaneous
geometric embedding (SGE). If edge bends are allowed, then having common
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Fig. 1. The path and planar graph in (a) do not have a SGE with straight-line edges [2],
but have a SEFE in (b). The two outerplanar graphs in (c) do not have a SEFE, but
have a SE in (d) if the edge (b, e) is not fixed.

edges drawn in the same way using the same simple curve preserves the “mental
map”. Such edges are called fixed edges leading to the problem of simultaneous
embedding with fixed edges (SEFE). Since straight-line edges between a pair of
vertices are also fixed edges, any graph that has a SGE also has a SEFE, but the
converse is not true; see Fig. 1 that shows SGE ⊂ SEFE ⊂ SE.

Deciding whether two graphs have a SGE is NP-hard [6], while deciding
whether three graphs have a SEFE is NP-complete [9]. However, deciding whether
two graphs have a SEFE in polynomial-time remains open. We give a necessary
condition in terms of forbidden minors for when pairs of graphs can have a SEFE.
This leads to a polynomial-time decision algorithm in the restricted case of pairs
of biconnected outerplanar graphs. We also characterize the class of biconnected
outerplanar graphs that always have a SEFE with any other outerplanar graph.
Finally, we characterize the graphs that always have a SEFE with any planar
graph and compute a SEFE when possible.

1.1 Related Work

Any number of stars, two caterpillars (trees whose removal of all leaves gives a
path) and two cycles always have a SGE, whereas three paths and two trees may
not [2,10]. Which graphs always have a SGE with a path, a caterpillar, a tree,
or a cycle remains unknown. For the case of SEFE, a planar graph and a tree
always have a SEFE, whereas two outerplanar graphs do not [8]. This shows that
the topological problem of SEFE is less restricted than the geometric problem
of SGE. Note that this is unlike standard planarity where the sets of topological
and geometric planar graphs are identical [5]. Planar graphs are characterized in
terms of the forbidden graphs, K5 and K3,3, which form two minimum examples
of non-planarity [12,14]. No similar characterization for SEFE in terms forbidden
pairs has been given until now, even for restricted pairs of planar graphs.

1.2 Our Contribution

1. We show there exist three paths without a SEFE. We provide a necessary
and sufficient condition in terms of 17 minimal forbidden pairs for when a
pair of graphs whose union forms a subdivided K5 or K3,3 has a SEFE.
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(b) (c) (e)(d)(a)

Fig. 2. Forests in (a), circular caterpillars (removal of all degree-1 vertices yields a
cycle) in (b), K4 in (c) and subgraphs of K3-multiedges (an edge with any number
of incident edges) in (d) have a SEFE with any planar graph. K3-cycles (n-cycles with
chords that form 3-cycles with the n-cycles) as in (e) have a SEFE with any outerplanar
graph.

2. Using this condition, we characterize the class of planar graphs that have a
SEFE with any planar graph to be the set of (i) forests, (ii) circular cater-
pillars, (iii) K4, and (iv) subgraphs of K3-multiedges; see Fig. 2(a)–(d). We
efficiently compute a SEFE in each case. We show that any other graph not
in this class contains a subgraph homeomorphic to a cycle and a disjoint
edge. We provide a similar characterization for the class of biconnected out-
erplanar graphs that always share a SEFE with any outerplanar graph; see
Fig. 2(e). Table 1 summarizes our results.

3. We determine which pairs of biconnected outerplanar graphs can have a
SEFE using a forbidden outerplanar pair. This leads to a linear-time decision
algorithm for this restricted case.

1.3 Preliminaries

Let P be a set of n distinct points in the plane R2. A planar drawing of G(V, E)
with |V | = n on P consists of a bijection σ : V → P with a simple curve for
each edge (u, v) ∈ E drawn in the plane R2 connecting the points σ(u) and σ(v)
with curves that only intersect at endpoints. Let G = {G1(V, E1), G2(V, E2), . . .,
Gk(V, Ek)}. G has a simultaneous embedding (SE) if there exist planar drawings
of Gi(V, Ei) with the same bijection σ : V → P . If each edge is a straight-
line segment, then G has a simultaneous geometric embedding (SGE). If every

Table 1. Old and new results for SGE and SEFE pairs. The shaded pairs are new.

SGE SEFE

Path Tree Forest Circular K4 K3- K3-
caterpillar multiedge cycle

Path � [2] ? � [8] � [8] � [8] � [8] � [8]
Caterpillar � [2] ? � [8] � [8] � [8] � [8] � [8]
Tree ? ✗ [10] � [8] � [8] � [8] � [8] � [8]
Outerplanar ? ✗ [10] � � � � �
Planar ✗ [2] ✗ [2,10] � � � � ✗
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common edge in G connecting a pair of vertices uses the same simple curve, then
G has a simultaneous embedding with fixed edges (SEFE).

In a graph G(V, E), subdividing an edge (u, v) ∈ E replaces edge (u, v) with
the pair of edges (u, w) and (w, v) in E by adding w to V . A subdivision of
G is obtained through a series of edge subdivisions. Contraction of edge (u, v)
replaces the vertices u and v with the vertex w that is adjacent to all the vertices
that were adjacent to either u or v. A minor H of G is obtained through a series
of edge contractions and edge deletions. A graph G(V, E) is isomorphic to a
graph G̃(Ṽ , Ẽ) if there exists a bijection f : V → Ṽ such that (u, v) ∈ E if and
only if

(
f(u), f(v)

)
∈ Ẽ. A graph G(V, E) is homeomorphic to a graph G̃(Ṽ , Ẽ)

if the subdivisions of G and G̃ are isomorphic.

2 Forbidden Simultaneous Embeddings with Fixed Edges

We begin with Kuratowski’s and Wagner’s planar graph theorems [12,14].

Theorem 1 (Kuratowski, Wagner). A graph is non-planar if and only if it
has a subgraph homeomorphic to K5 or K3,3 or has K5 or K3,3 as a minor.

2.1 Forbidden Triples of Paths and Cycles

Next we show that the triples without a SGE of three paths in [2] and three
cycles in [1] extend to the case of SEFE.

Theorem 2. There exist three paths on 9 vertices and three cycles on 6 vertices
without a SEFE.

Proof. Consider the three paths g--d--h--c--e--a--f--b--i, h--d--i--b--e--c--f--a--g,
and i--d--g--a--e--b--f--c--h and the three cycles a--d--c--f--b--e--a,
a--e--c--d--b--f--a, and a--f--c--e--b--d--a shown in Fig. 3. In both cases, the
union forms a subdivided K3,3 and any drawing must have a crossing by
Theorem 1. Each edge in the union belongs to two paths (or two cycles). Such
a crossing must be between two pairs of paths (or cycles). Since there are only
three paths (or three cycles) and fixed edges are being used, one path (or cycle)
must self-intersect. ��

d

g

a b c

eh
i

f

(a) 3 paths on 9 vertices

cba

ed f
(b) 3 cycles on 6 vertices

Fig. 3. Two graph triples without a SEFE
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(e)(d)(c)(b)(a) (g)(f)
G1 � G2G1 ∩ G2G1 ∪ G2 G2 \ G1G1 \ G2

Fig. 4. Removing extraneous edges from (a) gives (b). Unsubdividing degree-2 vertices
in (b) gives (c) that can be partitioned into the four subgraphs in (d)–(g).

2.2 Minimal Forbidden Pairs

Suppose a pair of graphs G1(V, E1) and G2(V, E2) does not have a SEFE as in
Fig. 4(a). If deleting any edge from either graph allows a SEFE, then G1 and G2
are edge minimal as in Fig. 4(b). If a degree-2 vertex v (adjacent to u and w)
in the union of G1 and G2 is not a degree-1 vertex in either G1 or G2, then we
can unsubdivide the vertex by deleting v and replacing edges (u, v) and (v, w)
with the edge (u, w) in G1 and/or G2. A pair of graphs for which this can no
longer be done is vertex minimal as in Fig. 4(c). A minimal forbidden pair does
not have a SEFE and is edge and vertex minimal.

We define the union G1 ∪ G2 and the intersection G1 ∩ G2 as having edge
sets E1 ∪ E2 and E1 ∩ E2, respectively; see Fig. 4(c)–(d). Suppose then that
G1 ∪ G2 is homeomorphic to a graph G with no degree-2 vertices. Let u � v
in G1 ∪ G2 be the path corresponding to the subdivided edge (u, v) in G. Path
u � v is incident to x � y in G1 ∪ G2 if and only if (u, v) is incident to (x, y)
in G. An alternating edge is a u � v path in which the edges strictly alternate
between being in either G1 or G2; see Fig. 4(e). An exclusive edge is a u � v
path composed of the edge (u, v) that is only in G1 or G2; see Fig. 4(f)–(g), while
an inclusive edge is composed of the fixed edge (u, v) in G1 ∩ G2; see Fig. 4(d).

Lemma 3. Any pair of graphs G1(V, E1) and G2(V, E2) can be reduced to a pair
in which every u � v path is either an inclusive, exclusive, or alternating edge.

Proof. We examine each u � v path p in G1 ∪ G2. If path p is in G1 ∩ G2, we
replace p with a single inclusive edge (u, v) in both G1 and G2. If p is in Gi but
is missing edges in Gj for i �= j, we replace it with the single exclusive edge (u, v)
in Gi. If p is missing an edge from each graph, we make p into an alternating
edge by deleting edges from p in either G1 or G2 until each edge along p is no
longer in G1 ∩G2. Then we unsubdivide p until it is strictly alternating. We can
always avoid crossings along edges of u � v paths contained in G1 ∩G2 reduced
in this way. Hence, neither operation changes whether the pair has a SEFE. ��

Suppose G1 and G2 are a reduced pair, which is a pair of graphs where all u � v
paths have been reduced. The alternating edge subgraph, G1!G2, is the subgraph
of G1 ∪ G2 consisting only of alternating edges. The exclusive edge subgraph of
G1, G1 \ G2, is the subgraph of G1 ∪ G2 consisting of exclusive edges from G1,
where G2 \ G1 is defined analogously. Hence, edges of G1 ∪ G2 are partitioned
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into G1 ∩G2, G1 !G2, G1 \G2, and G2 \G1; see Fig. 4(d)–(g). Next we see why
we only need to consider crossings between non-incident edges.

Observation 4. Crossings between incident edges in a non-planar drawing can
be removed without affecting the number of crossings of non-incident edges.

This can be done by swapping the simple curves from the incident vertex to
the first intersection point p. Separating the curves at p by a small distance
eliminates the crossing without affecting the rest of the drawing. Repeating
this process removes all crossings of incident edges. Hence, we only need to
consider crossings of non-incident edges in a simultaneous drawing with fixed
edges. Removing an edge from either K5 or K3,3 of Theorem 1, allows a planar
embedding. Only one crossing needs to be introduced when replacing the edge,
since there is at most one edge separating any pair of faces in the embedding.
This fact along with Observation 4 gives the next corollary.

Corollary 5. (a) Every drawing of K5 or K3,3 has a crossing between non-
incident edges. (b) K5 or K3,3 can be drawn with only one crossing between any
pair of non-incident edges.

We use this corollary to produce a sufficient condition for SEFE.

Lemma 6. Suppose the union G1 ∪G2 of a reduced pair (G1, G2) is homeomor-
phic to K5 or K3,3. Let u � v and x � y be non-incident paths in G1 ∪ G2 but
not in G1 ∩ G2. If either path belongs to G1 ! G2 or one belongs to G1 \ G2 and
the other belongs to G2 \ G1, then G1 and G2 have a SEFE.

Proof. By Corollary 5(b), a K5 or a K3,3 can always be drawn so that only (u, v)
and (x, y) cross. Hence, there is a SEFE in which an alternating edge in G1 !G2
only crosses an edge in either G1 \ G2 or G2 \ G1. Likewise, an edge in G1 \ G2
can cross any non-incident edge in G2 \ G1. ��

With Lemma 6 we determine when a K5 or a K3,3 pair has a SEFE.

Corollary 7. Suppose the union G1 ∪ G2 of a reduced pair (G1, G2) is homeo-
morphic to K5 or K3,3. The pair (G1, G2) has no SEFE if and only if (i) every
non-incident edge of an alternating edge in G1 !G2 is in G1 ∩G2 and (ii) every
non-incident edge of an exclusive edge in G1 \ G2 is in G1.

Proof. For necessity, suppose the pair (G1, G2) does not have a SEFE. Consider
an x � y path in G1 ∪ G2 that is non-incident to an alternating edge u � v in
G1 !G2 in which x � y is not in G1 ∩G2. By Lemma 6, the pair (G1, G2) would
have a SEFE since u � v is in G1 ! G2 and neither path is in G1 ∩ G2. Next
consider an x � y path in G1 ∪ G2 that is non-incident to an exclusive edge
(u, v) in G1 \ G2 in which x � y is not in G1. By Lemma 6, the pair (G1, G2)
again would have a SEFE since x � y either is in G1 ! G2 or is in G2 \ G1.

For sufficiency, suppose conditions (i) and (ii) hold. Since the union forms a
subdivided K5 or K3,3, by Corollary 5(a) at least one pair of non-incident paths
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u � v and x � y cross. If either is in G1 ∩ G2, then there must be a crossing
in G1 or G2. If either is in G1 ! G2, then by (i) the other would be in G1 ∩ G2,
again giving a crossing in G1 or G2. If both are in Gi \ Gj for i �= j, then there
is a crossing in Gi. Finally, (ii) prevents one edge being in G1 \G2 and the other
edge being in G2 \ G1. Hence, G1 and G2 do not have a SEFE. ��

Theorem 8. There are 17 minimal forbidden pairs with a union homeomorphic
to K5 or K3,3.

Proof. Let Gi,j denote the 17 pairs of graphs for i ∈ {1, . . . , 17} and j ∈ {1, 2} in
Figs. 5 and 6. One can verify that all the non-incident edges of any alternating
edge are in the intersection and every edge non-incident to an exclusive edge of
Gi,1 is also in Gi,1. This satisfies Corollary 7 implying that none of these pairs
has a SEFE. Removing any edge means either (i) the union no longer forms a K5
or a K3,3 or (ii) the intersection does not contain all the non-incident edges of
Gi,1 !Gi,2 or of Gi,1 \Gi,2 (other than those already in Gi,1) so that Corollary 7
is no longer satisfied. This implies that all 17 forbidden pairs are minimal.

We next show that our 17 pairs are the only minimal forbidden pairs homeo-
morphic to K5 or K3,3. Assume w.l.o.g. (G1, G2) is a reduced minimal forbidden
pair whose union forms a K5 or a K3,3 where G2 has at least as many edges as
G1. We consider all the possibilities for edges to be in G1 \ G2 or G1 ! G2.

Pairs (G1,1, G1,2), (G2,1, G2,2), (G12,1, G12,2), and (G13,1, G13,2) are the only
possibilities in which there is one exclusive edge in G1 or one alternating edge
in G1 ! G2. Two non-incident alternating edges would violate Corollary 7. The
other case of two non-incident edges that are exclusive in G1 is given by pairs
(G6,1, G6,2) and (G14,1, G14,2). Three non-incident edges are only possible in a
K3,3, but adding all of their non-incident edges implies that G1 is a K3,3.

For the case of G1 ∪ G2 homeomorphic to K5, the pairs (G3,1, G3,2),
(G4,1, G4,2), and (G5,1, G5,2) give the three possibilities of two incident edges
that are exclusive and/or alternating. Two incident exclusive edges with a third
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exclusive or alternating edge cannot happen since G3,1 has seven edges with two
incident exclusive edges. Adding another exclusive or alternating edge along with
its non-incident edge would imply that |G2 \G1| = |G1 ∪G2|− |G1|− |G1 \G2| =
10 − 7 − 2 = 1. This contradicts our assumption of G2 having at least as many
edges as G1.

Two non-incident exclusive edges with a third incident alternating edge is
given by the pair (G7,1, G7,2). Two or three alternating edges that are all incident
with another exclusive or alternating edge are given by the pairs (G8,1, G8,2),
(G9,1, G9,2) and (G10,1, G10,2), respectively. The last possibility of three alter-
nating edges that are only pairwise incident is given by pair (G11,1, G11,2) in
which all the non-incident edges of each alternating edge is in the intersection.

For the case of G1 ∪ G2 homeomorphic to K3,3, if there are two incident
exclusive and/or alternating edges, then the third incident u � v edge in the
union is the only edge that can be in G2 \G1. This is because edges non-incident
to u � v are also in G1 implying that G2 \ G1 can only contain the edge (u, v).
Hence, |G1 \ G2| < |G2 \ G1| = 1. Pairs (G15,1, G15,2) with one exclusive edge
and one alternating edge and (G16,1, G16,2) with two alternating edges are the
only possibilities for two incident edges. However, u � v could be an alternating
edge. The pair G16,2 already has one exclusive edge with two incident alternating
edges. This leaves three alternating edges that are all incident given by pair
(G17,1, G17,2) as the final possibility. ��

Unlike standard planar graphs in which the set of forbidden minors is identical
to the set of forbidden subdivisions by Theorem 1, the same is not true for SEFE.
Fig. 7 shows three pairs with the same minor pair (G7,1, G7,2) in Fig. 7(a). Each
pair is obtained by “uncontracting” vertex d to form the fixed edge (d1, d2) in
Figs. 7(b)–(d). Fig. 7(b)–(c) are forbidden pairs, whereas, Fig. 7(d) is not.

Figs. 7(c)–(d) are examples in which a new fixed edge (a, d) is created from
the exclusive edges (a, d1) in G1 \G2 and (a, d2) in G2 \G1 by contracting edge
(d1, d2) to vertex d in Fig. 7(a). To avoid this, we define a fixed edge minor
pair as a minor pair (H1, H2) of (G1, G2) that is obtained by only contracting
edges in which no new fixed edges are created. Fig. 7(b) is an example in which
Fig. 7(a) forms a fixed edge minor pair. This leads to the following corollary.
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Fig. 7. The pair (G7,1, G7,2) in (a) is a minor pair of the two forbidden pairs in (b)
and (c), which have no SEFE, as well as the pair in (d), which has the given SEFE

Corollary 9. Pair (G1, G2) has no SEFE if the pair has a fixed edge minor pair
(H1, H2) isomorphic to one of the 17 minimal forbidden pairs of Theorem 8.

This forms a necessary condition for SEFE, but is insufficient since Fig. 7(c) does
not have a SEFE, nor does it have any of the 17 fixed edge minor pairs.

3 Characterizing SEFE with Planar Graphs

We next determine the graphs that always have a SEFE with any planar graph
and produce simultaneous drawings. Let P be the set of planar graphs and PSEFE

be the subset of P containing forests, circular caterpillars (removal of all degree-1
vertices yields a cycle), K4, and the subgraphs of K3-multiedges (edge (x, y) with
the incident edges (x, z) and/or (y, z) for each z ∈ V \ {x, y}).

Lemma 10. G is in PSEFE if and only if G does not contain a subgraph home-
omorphic to a K3 and a disjoint edge.

Proof. First, we show necessity. Let G ∈ PSEFE and let H be the graph consisting
of a K3 and a disjoint edge. A forest has no cycles unlike H . While a circular
caterpillar has a cycle, all the other edges are incident to the cycle. A K4 has
four vertices while H has five. Finally, every subgraph of a K3-multiedge with a
cycle, either has a 3-cycle, x � y � z � x, or a 4-cycle, x � z1 � y � z2 � x,
if there is no edge (x, y). In either case, every other edge is part of the cycle or
is incident to x or y.

Let G̃ ∈ P \PSEFE. Showing that G̃ has a subgraph homeomorphic to H gives
sufficiency. The graph G̃ must have a cycle since otherwise it would be a forest.
Let C be a cycle in G̃ of maximum length, and let e be any edge in G̃\C. Either
the edge e is incident to C or the graph G̃ contains a subgraph homeomorphic
to H . If the edge e forms a chord of C where C is a k-cycle for some k > 4, then
there is a cycle C′ formed by a path in C and the edge e. Thus, C would have
a non-incident edge from the cycle C′ so that G̃ would be homeomorphic to H .

Hence, all cycles in G̃ are 3-cycles or 4-cycles. Suppose C is a 3-cycle with
another cycle C′ in G̃. Either C and C′ share an edge giving a longer cycle
(contradicting the maximality of C) or C′ has an edge non-incident to C. Hence,
C must be a 4-cycle if G̃ has multiple cycles. If two 4-cycles C and C′ only share
a vertex or a single edge, then C would have a non-incident edge in C′. Hence,
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C and C′ must share two edges. If the two edges are non-incident, then C1 and
C2 form a K4. Thus, G̃ either forms a K4 or all the 4-cycles share a common
path consisting of the two incident edges (x, z) and (y, z). Thus, all 3-cycles have
the common edge (x, y) if it exists. Any non-cycle edge e must be incident to all
the cycles implying that e is either (x, z) or (y, z) for some vertex z of degree 1.
Thus, if G̃ has multiple cycles but is not a K4, then G̃ is a subgraph of some
K3-multiedge. Finally, if C is the only cycle, then all the vertices not in C have
degree 1 so that G̃ is a circular caterpillar. ��

Together Corollary 9 and Lemma 10 allow us to determine when a graph always
has a SEFE with any planar graph with the following lemma:

Lemma 11. A graph G has a SEFE with any planar graph if only if G ∈ PSEFE.

Proof. We prove necessity by showing that each G1 ∈ P \PSEFE does not have a
SEFE with every G2 ∈ P . In all the 17 pairs of Theorem 8, both graphs have a
subgraph homeomorphic to G1,1 that is a K3 and a disjoint edge; see Fig. 5(a).
By Lemma 10, we know that that G1 contains a subgraph homeomorphic to
G1,1. Thus, (G1, G2) cannot have a SEFE by Corollary 9 in which G2 contains a
subgraph homeomorphic to G1,2 ∈ P .

To show sufficiency, we must show that every graph in G ∈ PSEFE has a
SEFE. We do this by showing how to efficiently compute a SEFE for the class
of graphs in PSEFE. Frati [8] gave an algorithm that finds a SEFE for forests
and planar graphs without explicitly bounding the number of bends per edge.
Our algorithm computes a SEFE by drawing each edge with a modification of
the optimal Euclidean shortest path algorithm that runs in O(n log n) time [11].
The modification is to determine the shortest path among a set of line segments
(that do not intersect except at endpoints) in the plane in which at least a
distance (of arbitrarily small) ε is always left between the path and the endpoint
of any segment. This can be done using Minkowski sums such that the minimum
distance from each endpoint is 2n/iε in step i for i ∈ [1..n].

For each step i, a new bend bi,k is either caused by an endpoint pk of an edge
or a bend bj,k from a previous step 2 ≤ j < i. However, for each such bend bi,k

only at most two points in the set {pk, b2,k, . . . bi−1,k} (the inner and outer ones)
contribute—bends added more recently hide bends caused by the original point
pk in previous steps. Hence, each time we add edges, at most O(n) new bends
are being introduced. Since the size of the vertex set grows by O(n) for each
step, this gives an overall running time of

∑n
i=1 O(i · n log i · n) = O(n2 log n).

Let G1 ∈ PSEFE and G2 ∈ P . First, we draw G2 in O(n) time. We then find
an embedding of G2 and draw G2 on an (n−2)× (n−2) grid, both done in O(n)
time [3,5]. Some of the edges of G1 were drawn with G2. We can ignore the edges
in G2\G1 as we draw the rest of G1. For a forest or a circular caterpillar in which
the cycle has not yet been drawn, there is a single face giving a shortest Euclidean
path between any two vertices. For a circular caterpillar with the cycle already
drawn, the remaining points either lie inside or outside of the cycle. All edges
are incident to the cycle. Hence, a Euclidean path always exists from vertices of
the cycle to vertices of degree 1. For a graph with multiple cycles, it is a K4 or
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a subgraph of a K3-multiedge with a 4-cycle C that has two vertices x and y of
degree greater than 2. We finish drawing C. For K4, one chord is drawn inside
of C, while the other chord is drawn outside of C. For a K3-multiedge, any path
from x to y is either the edge (x, y) or the path x � z � y from some degree-2
vertex z. The edge (x, y) can drawn inside of C to start. For the other paths,
there must always exist Euclidean paths from x and y to the common vertex z
that lies inside some cycle drawn so far. Any remaining edges must be incident
to x or y in which a Euclidean path must also exist. ��
Lemmas 10 and 11 together imply the following characterization:

Theorem 12. The following two statements are equivalent: A graph has a SEFE
with any planar graph if only if
– it does not contain a subgraph homeomorphic to a K3 and a disjoint edge.
– it is either (i) a forest, (ii) a circular caterpillar, (iii) a K4, or (iv) a subgraph

of a K3-multiedge.

4 Characterizing SEFE with Outerplanar Graphs

We next determine which biconnected outerplanar graphs always have a SEFE
with any other outerplanar graph. A K3-cycle is an n-cycle C with chords such
that every chord forms a 3-cycle with edges from C; see Fig. 2(e).

The following lemma provides an analogous result for biconnected outerpla-
nar graphs with respect to the outerplanar graphs O that Lemma 10 does for
the planar graphs P . The omitted proof can be found in [7]. The set OSEFE of
K3-cycles is shown to be the set of biconnected outerplanar graphs that do not
contain (G14,1, G14,2) as a fixed edge minor pair. This is the only pair of Theo-
rem 8 in which both graphs are biconnected and outerplanar. The graphs G14,1
and G14,2 are both isomorphic to a 6-cycle with a chord that forms two 4-cycles.

Lemma 13. G is in OSEFE if and only if G does not contain a subgraph home-
omorphic to G14,1.

The omitted proof of the following lemma also appears in [7]. The key idea is to
use Euclidean shortest paths again to draw each edge that is not in the inter-
section. Special care is taken for pairs of edges (x, z) and (y, z) when the chord
(x, y) is in the intersection. First, the edge (y, z) is routed to x and then both
edges proceed within a small distance of each other from vertex z. Remaining
chords can always be drawn inside the outerface of the K3-cycle since each has
a degree-2 vertex z on the outerface that is adjacent to both endpoints.

Lemma 14. A biconnected outerplanar graph G has a SEFE with any outerpla-
nar graph if only if G ∈ OSEFE.

Lemmas 13 and 14 together give the following characterization:

Theorem 15. The following two statements are equivalent: A biconnected out-
erplanar graph has a SEFE with any outerplanar graph if only if
– it does not contain a subgraph homeomorphic to G14,1.
– it is a K3-cycle.
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Fig. 8. Two biconnected outerplanar graphs with a common chord (a,m) do not have
a SEFE in (a) given that (a,m) and its adjacent endpoints match the forbidden labeling
of (G14,1, G14,2). The same pair in (b) has a SEFE since this is not the case.

5 Deciding SEFE for Biconnected Outerplanar Graphs

Corollary 9 provided a necessary but insufficient condition for the SEFE of two
planar graphs. However, for the restricted case of two biconnected outerplanar
graphs, we can give a necessary and sufficient condition.

Lemma 16. The biconnected outerplanar graph pair (G1, G2) has a SEFE if and
only if G1 and G2 does not have the fixed edge minor pair (G14,1, G14,2).

The omitted proof found in [7] compares the labelings of the two outerfaces and
the chords in the intersection to see if they match the forbidden labeling of the
outerplanar graphs of (G14,1, G14,2); see Fig. 8. If so, the pair does not have a
SEFE. Otherwise, an algorithm that runs in O(n2 log n) time is given to produce
a SEFE in which the cycles involving common chords in each graph are closed
in such a way as to avoid any crossings.

Theorem 17. Deciding whether a pair of biconnected outerplanar graphs
(G1, G2) has a SEFE can be done in O(n) time.

The omitted proof found in [7] uses the conditions on the common chords in the
intersection in the proof of Lemma 16. This condition can be checked in linear
time, which yields a linear-time decision algorithm.

6 Conclusion

We gave a necessary condition for whether two graphs can have a SEFE in terms
of 17 fixed edge minor pairs. This allowed us to characterize the graphs that
always have a SEFE with any planar graph. We also characterized the class of
biconnected outerplanar graphs that have a SEFE with any outerplanar graph.
For the restricted case of two biconnected outerplanar graphs, deciding whether
they have a SEFE can be done in linear-time.

While our results may be helpful in solving bigger open problems, there are
still no known algorithms for testing whether a pair of planar graphs has a
SEFE in polynomial time. Finding all fixed edge minor pairs of planar graphs
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would give a sufficient condition for their SEFE. This may lead to a polynomial-
time decision algorithm, an improvement over the ILP crossing minimization
algorithm in [4].
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A Lower Bound on the Area Requirements of
Series-Parallel Graphs
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Abstract. We show that there exist series-parallel graphs requiring
Ω(n log n) area in any straight-line or poly-line grid drawing. Such a
result is achieved by proving that, in any straight-line or poly-line draw-
ing of K2,n, one side of the bounding box has length Ω(n).

1 Introduction

A planar graph is a graph that can be drawn in the plane so that no two edges
intersect, except, possibly, at common endpoints. Planar graphs are nicely char-
acterized to be those graphs excluding K5 and K3,3 as minors [15]. Determin-
ing asymptotic bounds for the area requirements of straight-line and poly-line
drawings of planar graphs is one of the classical topics in the Graph Drawing lit-
erature. Groundbreaking works of the end of the eighties have shown that every
n-vertex planar graph admits a planar straight-line drawing in a O(n) × O(n)
grid [5,7,12]. It turns out that such a bound is worst-case optimal, even for poly-
line drawings [7,9]. Hence, it is natural to search for interesting subclasses of
planar graphs admitting sub-quadratic area drawings.

Concerning outerplanar graphs, i.e., graphs excluding K4 and K2,3 as minors,
Biedl [2] has shown how to construct poly-line drawings in O(n log n) area, and Di
Battista and Frati [8] presented an algorithm for obtaining straight-line drawings
in O(n1.48) area. Concerning trees, i.e., graphs excluding K3 as a minor, the h-v
drawing algorithm in [6] allows to construct drawings in O(n log n) area. Both
for outerplanar graphs and for trees, no super-linear area lower bound is known.

Another class of planar graphs that has been widely investigated in the Graph
Theory and Graph Drawing literature is the one of series-parallel graphs (see,
e.g., [14,10,1]). A series-parallel graph is a graph excluding K4 as a minor.
In [3] Biedl proved that every series-parallel graph admits a poly-line draw-
ing in O(n3/2) area. However, no sub-quadratic area upper bound is known in
the case of straight-line drawings. In the same paper, Biedl proved a Ω( n log n

log log n )
area lower bound for straight-line drawings of series-parallel graphs.

The Ω( n log n
log log n ) area lower bound for straight-line drawings of series-parallel

graphs is a direct consequence of the results in [4], where Biedl, Chan, and López-
Ortiz, settling in the positive a conjecture of Felsner et al. [11], proved that no
linear-area straight-line drawing of K2,n can achieve constant aspect ratio., i.e.,
constant ratio between the longest and the smallest side of the bounding box of
the drawing. More precisely, Biedl, Chan, and López-Ortiz proved the following:

H. Broersma et al. (Eds.): WG 2008, LNCS 5344, pp. 159–170, 2008.
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Theorem 1. (Biedl et al. [4]) Every planar straight-line drawing of K2,n in
a W × H grid with W ≥ H satisfies W log H ∈ Ω(n).

Corollary 1. (Biedl et al. [4]) Every planar straight-line drawing of K2,n in
a W × H grid satisfies max{W, H} ∈ Ω(n/ log n).

Biedl et al. ask whether the log H factor in Theorem 1 can be eliminated and
whether the same lower bound holds even in the case of poly-line drawings.

In this paper we answer both the questions in the affirmative. Namely, we
prove the following:

Theorem 2. Every planar straight-line or poly-line drawing of K2,n in a W ×H
grid satisfies max{W, H} ∈ Ω(n).

As a main consequence of Theorem 2, we obtain a Ω(n log n) lower bound on
the area requirements of poly-line and straight-line drawings of series-parallel
graphs. We remark that no super-linear area lower bound was previously known
for poly-line drawings of series-parallel graphs and that Ω( n log n

log log n ) was the best
known area lower bound for straight-line drawings of series-parallel graphs [3].

Theorem 3. There exist series-parallel graphs requiring Ω(n log n) area in any
straight-line or poly-line drawing.

Proof. Consider any series-parallel graph S containing K2,(n/2−2) and a (n/2)-
node complete ternary tree as subgraphs. A complete ternary tree that has height
h +1 cannot be drawn on h parallel grid lines [11,13]. Since an n-node complete
ternary tree has height log3(2n + 1), it follows that both sides of the drawing of
a (n/2)-node complete ternary tree have length Ω(log n). Hence, in any straight-
line or poly-line drawing of S both sides have length Ω(log n) and, by Theorem 2,
one side has length Ω(n). The theorem follows. �

2 Preliminaries

A grid drawing of a graph is a mapping of each vertex to a distinct point of
the plane with integer coordinates and of each edge to a Jordan curve between
the endpoints of the edge. A planar drawing is such that no two edges intersect
except, possibly, at common endpoints. In the following we always refer to pla-
nar grid drawings. A straight-line drawing is such that all edges are rectilinear
segments. A poly-line drawing is such that the edges are sequences of rectilinear
segments. In a poly-line drawing a bend is a point in which an edge changes its
slope, i.e., a point common to two consecutive segments in the sequence of seg-
ments representing the edge. In a grid drawing bends have integer coordinates.

The bounding box of a drawing Γ is the smallest rectangle with sides parallel
to the axes that covers Γ completely. The height (width) of Γ is the height (resp.
width) of its bounding box. The area of Γ is the height of Γ times its width.

A poly-line drawing of the complete bipartite graph K2,n can be thought as a
drawing of n paths that start and end at the same two vertices, in the following
denoted by a and b, and that do not share any other vertex. In the following we
will refer to such paths as to the paths of K2,n.
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3 Lemmata on the Geometry of K2,n

In this section we show some lemmata that will be used to prove Theorem 2.

Lemma 1. Consider any poly-line drawing of K2,n, any path π of K2,n, and
any vector v = (v1, v2). There exists a grid point p ∈ π such that v · p ≥ v · p′,
for any point p′ ∈ π.

Proof. If v · a ≥ v · p′ or v · b ≥ v · p′, for every point p′ ∈ π, the lemma follows.
Otherwise, consider the part π′ of π starting at a and ending at the first point p
in which v · p ≥ v · p′, for every point p′ ∈ π (see Fig. 1.a). Since each point p′ of
π′ has v · p′ < v · p, then there exists a small disk D centered at p such that the
part of π′ enclosed in D is increasing in the direction determined by v, when π′

is oriented from a to p. On the other hand π, when oriented from a to b, cannot
be increasing immediately after p in the direction determined by v, otherwise
there would exist a point p′′ such that v · p′′ > v · p. It follows that π changes
slope at p and, by definition of poly-line grid drawing, p is a grid point. �

v
b

a

p
l

a

b

a

b

(a) (b) (c)

Fig. 1. (a) Illustration for the proof of Lemma 1. Disk D is the small shaded region.
(b) Illustration for the proof of Lemma 2. (c) Drawing the maximum number of paths
in a convex polygon with vertices (drawn as black circles) having integer coordinates.

Lemma 2. Consider any drawing of K2,n. Let l be any line that does not inter-
sect or contain the open segment (a, b). There exist no three paths π1, π2, and π3
of K2,n such that: (i) π1, π2, and π3 do not intersect each other; (ii) π1, π2, and
π3 are entirely contained in the closed half-plane delimited by l and containing
a and b; (iii) each of π1, π2, and π3 touches l at least once.

Proof. Suppose, for a contradiction, that three paths π1, π2, and π3 of K2,n with
the above properties exist. Paths π1 and π2 form a cycle C. Line l is external
to C and separates a from b in the exterior of C (see Fig. 1.b). Consider any
path π3 between a and b. If π3 is internal to C, then it can not touch l unless it
intersects C. If π3 is external to C, then it intersects l. If π3 is part internal and
part external to C, then it intersects C. In any case we have a contradiction. �
Let P be any convex polygon in the plane with vertices having integer coordi-
nates. Let G be the set of grid points in the interior or on the border of P . Let a
and b be two distinct vertices of P . Let π∗

1 and π∗
2 be the two paths that connect

a and b and that compose P . At least one out of π∗
1 and π∗

2 , say π∗
1 , is different
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from segment ab. Let M be the maximum number of paths connecting a and b
that can be drawn as non-crossing polygonal paths inside or on the border of P .

Lemma 3. There exists a drawing of M non-crossing polygonal paths connect-
ing a and b such that each path is completely contained inside or on the border
of P and one of such paths is drawn as π∗

1 .

Proof. Consider any drawing Γ of M non-crossing polygonal paths connecting
a and b and contained inside or on the border of P . If a path of Γ is drawn as π∗

1 ,
there is nothing to prove. Otherwise, observe that no two distinct paths πi and
πj can pass through points of π∗

1 , otherwise πi and πj would cross. Hence, Γ has
at most one path π passing through points of π∗

1 . Remove π from Γ , if π exists,
and draw a path in Γ as π∗

1 . Since no path different from π passes through a
point of π∗

1 , the resulting drawing is planar, hence proving the lemma. �

Lemma 4. There exists a drawing of M non-crossing polygonal paths connect-
ing a and b such that each path is completely contained inside or on the border
of P and such that one of the paths is represented by segment ab.

Proof. We prove the claim by induction on M . If M = 1, then drawing a path
as segment ab proves the claim. Suppose M ≥ 2. By Lemma 3, there exists a
drawing Γ of M non-crossing polygonal paths connecting a and b such that each
path is inside or on the border of P and one of such paths, say π, is drawn as
π∗

1 . Remove π from Γ and all the grid points π passes through, except for a and
b, from G. Consider the convex closed polygon P ′ that is the convex hull of the
resulting grid point-set G′. The vertices of P ′ have integer coordinates. Further,
P ′ is such that M − 1 non-crossing polygonal paths connecting a and b can be
drawn with each path inside or on the border of P ′. In fact Γ is a drawing having
such a property. Hence, the inductive hypothesis applies and M − 1 paths can
be drawn so that each path is inside or on the border of P ′ and so that one of
the paths is represented by segment ab. Considering the drawing of such M − 1
paths together with the drawing of π as π∗

1 proves the lemma. �
Now assume that a and b are consecutive vertices of P (see Fig. 1.c). Let G be the
set of grid points in the interior or on the border of P . As before, let π∗

1 and π∗
2

be the two paths that connect a and b and that compose P , where π∗
1 is different

from segment ab. Let also M be the maximum number of paths connecting a
and b that can be drawn as non-crossing polygonal paths completely contained
inside or on the border of P . We iteratively draw paths π1, π2, · · · , πN connecting
a and b inside or on the border of P as follows. Path πi is drawn when the current
convex grid polygon is Pi containing in its interior or on its border a set Gi of
grid points. At the first step P1 = P and G1 = G. If Pi does not coincide with
segment ab, draw path πi as the polygonal line that connects a and b, that lies
on Pi, and that is different from segment ab. Remove the grid points that lie on
Pi, except for a and b, from Gi, obtaining a new set of grid points Gi+1. Then,
Pi+1 is the convex hull of Gi+1. If Pi coincides with segment ab, draw the path
πi as segment ab. We observe the following:
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Lemma 5. Paths π1, π2, · · · , πN are non-crossing polygonal lines that connect a
and b and that completely lie inside or on the border of P . Further, N = M .

Proof. The first part of the statement is trivial. We prove that N = M by
induction on M . If M = 2, then the claim trivially holds, since π1 is drawn
as π∗

1 and π2 as ab. Suppose M ≥ 3. By Lemma 3, there exists a drawing Γ
of M non-crossing polygonal paths connecting a and b such that each path is
completely contained inside or on the border of P and one of such paths, say
π1, is drawn as π∗

1 . Remove π1 from Γ and all the grid points π1 passes through
from G. Consider the convex closed polygon P ′ that is the convex hull of the
resulting grid point-set G′. Clearly, the vertices of P ′ have integer coordinates.
Further, P ′ is such that M − 1 non-crossing polygonal paths connecting a and
b can be drawn such that each path is completely contained inside or on the
border of P ′. In fact Γ is a drawing having such a property. Hence, the inductive
hypothesis applies and the drawing algorithm described before the statement of
the lemma draws M − 1 non-crossing polygonal paths inside or on the border
of P ′. Considering such paths together with the drawing of π1 as π∗

1 proves the
lemma. �

4 Proof of Theorem 2

By definition, a straight-line drawing is also a poly-line drawing. Hence, it suffices
to prove Theorem 2 for poly-line drawings. Consider any poly-line drawing of
K2,n. Let R be the minimum closed axis-parallel rectangle enclosing a and b (see
Fig. 2.a). Let la,b be the line through a and b. Suppose, w.l.o.g., that y(a) ≤ y(b).
Suppose also that the slope of la,b is greater or equal than 0, the case in which
the slope of la,b is less than 0 being analogous. Let c and d be the upper left
corner and the lower right corner of R, respectively. Let ha and va (hb and vb)
be the horizontal and vertical lines through a (resp. through b), respectively.
For any line l, denote by H+(l) (resp. by H−(l)) the closed half-plane delimited
by l and containing the normal vector of l increasing in the y-direction (resp.
decreasing in the y-direction). If l is a vertical line, then H+(l) (resp. H−(l))
denotes the closed half-plane delimited by l and containing the normal vector of
l increasing in the x-direction (resp. decreasing in the x-direction). Let d1 and
d2 be the horizontal and vertical distance between a and b, respectively. The
width W and the height H of the drawing are such that W ≥ d1 and H ≥ d2.

Consider the half-plane H+(hb). By Lemma 1 with v = (0, 1), for each path
π intersecting H+(hb), there exists a grid point p ∈ π whose y-coordinate is
maximum among the points of π. Clearly, p belongs to H+(hb). Hence, p belongs
to an horizontal grid line l that does not intersect or contain the open segment
(a, b). By Lemma 2, at most two paths of K2,n have their points with greatest
y-coordinate belonging to l. It follows that, if a linear number of paths of K2,n

intersects H+(hb), then their points with greatest y-coordinate belong to a linear
number of distinct horizontal grid lines and hence H ∈ Ω(n).

Similar arguments show that, if a linear number of edges intersect H−(ha),
H+(vb), or H−(va), then H ∈ Ω(n), W ∈ Ω(n), or W ∈ Ω(n), respectively. If
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Fig. 2. (a) Illustration of the notation for the proof of Theorem 2. (b) Paths
π1, π2, · · · , πM1 in Π .

there exists no linear number of edges intersecting H+(hb), H−(ha), H+(vb), or
H−(va), then a linear number of edges is completely inside R. We show that this
implies that max{d1, d2} ∈ Ω(n), and hence that max{W, H} ∈ Ω(n).

Let M be the maximum number of paths of K2,n that can be drawn inside
R. By Lemma 4, there exists a drawing of M paths connecting a and b, and
completely lying inside R, such that one of the paths is drawn as segment ab.
Since M ∈ Ω(n), then either a linear number of paths of K2,n is contained in the
triangle T1 having a, b, and c as vertices, or a linear number of paths of K2,n is
contained in the triangle T2 having a, b, and d as vertices. Suppose that a linear
number of paths is contained into T1, the other case being symmetric.

Let M1 ∈ Ω(n) be the maximum number of paths of K2,n that can be drawn
inside T1, and let G1 be the set of grid points inside or on the border of T1. By
Lemma 5, a sequence of M1 non-crossing paths Π = (π1, π2, · · · , πM1) connecting
a and b and completely inside or on the border of T1 can be drawn by repeating
the following two operations, for 1 ≤ i < M1: (1) consider the current convex
grid polygon Pi (when i = 1 then P1 = T1); let Gi be the set of grid points
inside or on the border of Pi; draw path πi as the part of Pi that connects a and
b, and that is different from segment ab; (2) delete from Gi the grid points πi

passes through, obtaining a set of grid points Gi+1. Closed convex polygon Pi+1
is the convex hull of Gi+1. Path πM1 is drawn as segment ab. See Fig. 2.b.

In order to prove that M1 ∈ Ω(n) implies max{d1, d2} ∈ Ω(n), we study paths
π1, π2, · · · , πM1 . Such a study reveals interesting properties of the grid that we
skecth here and detail in the following. First, we observe that each path in Π
is composed by two or three segments, i.e., each path has one or two bends.
A sequence of paths that are consecutive in Π and that are each composed by
three segments is such that all the “second segments” of the paths have the same
slope. We show that, in a sequence of paths such that the second segments of
the paths have the same slope, all the bends lie on two lines, having slopes one
greater and one less than the slope of segment ab. The more sequences of three-
segments-paths that are consecutive in Π are considered, the more the slope of
the first, of the second, and of the third segment of the paths approaches to the
slope of segment ab. Consider a sequence of paths such that the second segments
of the paths have the same slope s1

s2
. Then, the bends of such paths lie on two

lines with slopes, say, s3
s4

and s5
s6

, such that s3 + s5 = s1 and s4 + s6 = s2.
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Fig. 3. (a) Sequences S1,0 and S0,1. (b) Path πk+1 is a polygonal line composed of
segments ap1,0

k , p1,0
k p0,1

k , p0,1
k b, for k = 1, 2, · · · , min{i1, j1}.

Further, the next sequence of paths whose second segments have the same slope
is such that the bends of such paths lie on two lines with slopes s1

s2
and s3

s4
(or s1

s2

and s5
s6

), and the second segments of such paths have slope s1+s3
s2+s4

(resp. s1+s5
s2+s6

).
We subdivide Π into disjoint subsequences Π1, Π2, · · · , Πf and we argue that
Π1 has at most max{d1, d2} paths and that Πi has at most max{d1, d2}/2i−2

paths, for 2 ≤ i ≤ f ; such bounds lead to conclude that, as long as M1 ∈ Ω(n),
max{d1, d2} ∈ Ω(n).

Path π1 is composed of segments ac and cb. Let p1 be the point one vertical
unit below and one horizontal unit to the right of c. Consider the following two
sequences of grid points (see Fig. 3.a). Sequence S1,0 is composed of points:

p1,0
1 = p1,

p1,0
2 = (x(p1), y(p1) − 1),

p1,0
3 = (x(p1), y(p1) − 2),

· · · ,
p1,0

i1
= (x(p1), y(p1) − (i1 − 1)),

where i1 is the maximum such that point (x(p1), y(p1) − (i1 − 1)) is contained
inside T1. Sequence S0,1 is composed of points:

p0,1
1 = p1,

p0,1
2 = (x(p1) + 1, y(p1)),

p0,1
3 = (x(p1) + 2, y(p1)),

· · · ,
p0,1

j1
= (x(p1) + (j1 − 1), y(p1)),

where j1 is the maximum such that point (x(p1) + (j1 − 1), y(p1)) is contained
inside T1. Notice that the points of S1,0 lie on a line with slope 1

0 = ∞ and the
points of S0,1 lie on a line with slope 0

1 = 0. In the following, we show that a
subsequence Π1 of Π , starting at π2 and composed of paths consecutive in Π ,
“consumes” the points in S1,0 and in S0,1, i.e., each point in S1,0 and each point
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in S0,1 is traversed by a path in Π1; further, each path in Π1 passes through a
distinct point of the one of S1,0 and S0,1 that has the greater number of points.

We claim that path πk+1 is a polygonal line composed of segments ap1,0
k ,

p1,0
k p0,1

k , p0,1
k b, for k = 1, 2, · · · , min{i1, j1} (notice that p1,0

1 = p0,1
1 = p1, hence

π2 is composed by only two segments). The claim directly implies that the second
segment of path πk+1, for k = 2, 3, · · · , min{i1, j1}, has slope 1

1 = 1. We prove
the claim by induction on k. Let l1,0

k , l1,1
k , and l0,1

k , be the lines through a and
p1,0

k , through p1,0
k and p0,1

k , and through p0,1
k and b, respectively.

In the base case k = 1. Observe that H+(l1,0
1 ) and H+(l0,1

1 ) do not contain
grid points that are inside or on the border of T1, and that do not belong to π1,
except for p1. Hence, π2 is composed by segments ap1 and p1b, proving the claim
in the base case. Suppose that the claim holds for paths π2, π3, · · · , πk. Then, πk

is a polygonal line composed of segments ap1,0
k−1, p1,0

k−1p
0,1
k−1, p0,1

k−1b. We prove that
the claim holds for path πk+1 (see Fig. 3.b). It is easy to see that H+(l1,0

k ) and
H+(l0,1

k ) do not contain grid points internal to polygon πk ∪ ab, except for p1,0
k

and for p0,1
k , respectively. Further, no grid point is contained inside quadrilateral

(p0,1
k−1, p

1,0
k−1, p

1,0
k , p0,1

k ). Namely, any grid point of the plane lies on a line with
slope 1

1 , and the line that has slope 1
1 , that contains grid points internal to

πk ∪ ab, and that is closer to l1,1
k−1 is line l1,1

k through p1,0
k and p0,1

k . Hence, path

πk+1 is composed by segments ap1,0
k , p1,0

k p0,1
k , p0,1

k b, proving the claim.
Three cases have to be considered, namely i1 = j1, i1 < j1, and i1 > j1. If

i1 = j1, we claim that there is no grid point internal to polygon πi1+1 ∪ ab.
Observe that, since a is one unit to the left of the vertical line on which the
points of S1,0 lie, and since b is one unit above the horizontal line on which the
points of S0,1 lie, then, if there is any grid point internal to polygon πi1+1 ∪ ab,
either point p1,0

i1+1 = (x(p1), y(p1) − i1) or p0,1
j1+1 = (x(p1) + j1, y(p1)) is internal

to πi1+1 ∪ ab (see Fig. 4.a). However, by the maximality of i1 and j1, both p1,0
i1+1

and p0,1
j1+1 are outside or on the border of T1, and hence they are not internal to

πi1+1 ∪ ab. Since there is no grid point internal to polygon πi1+1 ∪ ab, then the
only path of K2,n after πi1+1 = πj1+1 in Π is segment ab.

Now consider the case in which i1 < j1 (the case in which i1 > j1 is analogous).
Sequence S1,0 is “over”, i.e., there is a path πi passing through each point of
S1,0. Let S1,1 be the sequence defined as follows (see Fig. 4.b):

p1,1
1 = p0,1

i1+1,

p1,1
2 = (x(p0,1

i1+1) − 1, y(p0,1
i1+1) − 1),

p1,1
3 = (x(p0,1

i1+1) − 2, y(p0,1
i1+1) − 2),

· · · ,
p1,1

i2
= (x(p0,1

i1+1) − (i2 − 1), y(p0,1
i1+1) − (i2 − 1)),

where i2 is the maximum such that point ((x(p0,1
i1+1)−(i2−1), y(p0,1

i1+1)−(i2−1))
is contained inside T1. Sequence S1,1 “replaces” sequence S1,0, namely path
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Fig. 4. (a) When i1 = j1, no grid point is internal to πi1+1 ∪ ab. (b) Sequence S1,1.

πi1+k+1, with 1 ≤ k ≤ min{i2, j1 − i1}, is a polygonal line composed of segments
ap1,1

k , p1,1
k p0,1

i1+k, p0,1
i1+kb (the proof of such a claim is analogous to the proof that

πk+1 is composed by segments ap1,0
k , p1,0

k p0,1
k , p0,1

k b, for k = 1, 2, · · · , min{i1, j1}).
Notice that the bends of such paths lie on two lines with slope 1

1 = 1 and 0
1 = 0,

while the second segments of such paths lie on lines with slope 1+0
1+1 = 1

2 .
Again, three cases have to be considered. In the first case, we have i2 = j1−i1.

Hence, path πj1+1 passes through the last point of S1,1 and through the last point
of S0,1. Then no grid point lies inside polygon πj1+1 ∪ ab (the proof of such a
claim is analogous to the one that there is no grid point internal to polygon
πi1+1 ∪ab when i1 = j1), and hence the only path of K2,n after πi1+i2+1 = πj1+1
in Π is segment ab. Otherwise, one of the two sequences S1,1 and S1,0 ends before
the other. Suppose that sequence S1,1 ends before S0,1. Then S1,1 is replaced by
a sequence S1,2 of points lying on a line with slope 1

2 . Namely, such points have
coordinates:

p1,2
k =

(
x(p0,1

i1+i2+1) − 2(k − 1), x(p0,1
i1+i2+1) − (k − 1)

)
,

for 1 ≤ k ≤ i3, where i3 is the maximum index such that point (x(p0,1
i1+i2+1) −

2(i3 − 1), x(p0,1
i1+i2+1) − (i3 − 1)) is internal to T1. Each path πi1+i2+k+1, with

1 ≤ k ≤ min{i3, j1 − i1 − i2}, passes through point p1,2
k and through point

p0,1
i1+i2+k, and the second segment of each of such paths has slope 1+0

2+1 = 1
3 .

The above argument iterates while sequence S0,1 is not over, i.e., while there
are points of S0,1 that are not traversed by paths in Π . From the above dis-
cussion, all paths that come after π1 in Π pass through distinct points of S0,1,
while sequence S0,1 is not over. Hence, supposing i1 ≤ j1 (the case in which
j1 ≤ i1 being analogous), Π1 = (π2, π3, · · · , πj1+1) is the desired subsequence
of Π passing through all points of S1,0 and through all points of S0,1. Further,
there exists an index l ≥ 1 such that: (1) every point in S1,i is traversed by a
path in Π1, for 0 ≤ i < l, and (2) some points of S1,l are eventually traversed
by a path in Π1.

After drawing path πj1+1 (that passes through the last point of S0,1), either
sequence S1,l is simultaneously over, i.e., j1 = i1+i2+· · ·+il, or S1,l still contains
points internal to T1 and not traversed by any path in Π1. In the former case we
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Fig. 5. The case in which sequence S1,l still contains at least one point after drawing
path πj1+1. In this example l = 2. To improve the readability of the drawing, only the
second segments of the paths in Π1 are drawn, but for path πj1+1, which is entirely
drawn. The arrow shows the first point of S1,2 that is not traversed by a path in Π1.

have that no grid point is internal to polygon πj1+1 ∪ {ab} and hence the only
path of K2,n after πj1+1 in Π is segment ab. In the latter case, more than one
path could exist in Π after πj1+1. Namely, sequence S0,1 is now replaced by a
sequence S1,l+1, whose points lie on a line with slope 0+1

1+l = 1
l+1 passing through

the first point of S1,l that is not traversed by a path in Π1 (see Fig. 5).
The whole argument is now repeated again. Namely, we search for a subse-

quence Π2 of Π such that Π2 “consumes” the points in S1,l and the points in
S1,l+1, i.e., such that each point in S1,l that is not traversed by a path in Π1
is traversed by a path in Π2 and such that each point in S1,l+1 is traversed by
a path in Π2; further, each path in Π2 passes through a point of the one out
of S1,l and S1,l+1 that has the greater number of points. Again, Π2 is generally
found in several steps, where at each step two sequences Sy1,x1 and Sy2,x2 of
grid points are considered (at the first step such sequences are S1,l and S1,l+1,
where the points of S1,l that are traversed by paths in Π1 are not considered).
At each step, the smallest between Sy1,x1 and Sy2,x2 is consumed by the paths
in a subsequence of Π2 and is replaced by a sequence of points lying on a line
with slope y1+y2

x1+x2
, hence starting a new step. After a certain number of steps,

all points in S1,l and in S1,l+1 are traversed by a path in Π2. When the last
path of Π2 is drawn, either the currently considered sequences Sy∗

1 ,x∗
1

and Sy∗
2 ,x∗

2

are simultaneously over, or there are still points, not traversed by any path in
Π2, in the one out of Sy∗

1 ,x∗
1

and Sy∗
2 ,x∗

2
that is different from both S1,l and

in S1,l+1. In the former case, no grid point is inside the polygon composed of
the last drawn path and of ab, and hence the only path of K2,n after the last
path of Π2 in Π is segment ab. In the latter case, the one between Sy∗

1 ,x∗
1

and
Sy∗

2 ,x∗
2

that is over, say Sy∗
2 ,x∗

2
, is replaced by a sequence Sy∗

1+y∗
2 ,x∗

1+x∗
2
, whose

grid points lie on a line with slope y∗
1+y∗

2
x∗
1+x∗

2
, and the whole argument is repeated

again, searching for a subsequence Π3 of Π such that Π3 consumes the points
in Sy∗

1 ,x∗
1

and the points in Sy∗
1+y∗

2 ,x∗
1+x∗

2
. Clearly, there exists an index f such

that Π = {π1} ∪ Π1 ∪ Π2 ∪ · · ·Πf ∪ {ab}.
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We now compute how many paths exist in Π , as a function of d1 and d2.
Denote by Syi

1,xi
1

and by Syi
2,xi

2
the sequences of grid points that are consumed

by Πi, where the grid points in Syi
1,xi

1
lie on a line with slope yi

1/xi
1 and the

grid points in Syi
2,xi

2
lie on a line with slope yi

2/xi
2. Notice that, with the above

notation, Sy1
1,x1

1
= S1,0 and Sy1

2,x1
2

= S0,1, and, if i1 ≤ j1, Sy2
1,x2

1
= S1,l, and

Sy2
2,x2

2
= S1,l+1. It is easy to prove that xi

1, y
i
1, x

i
2, y

i
2 ≥ 2i−2, for i ≥ 2. Notice

that we already observed that such a claim holds when i = 2. From the above
discussion, we have that yi

1 is obtained as the sum of the numerators yi−1
a and

yi−1
b of the slopes of two lines containing grid points traversed by paths in Πi−1.

Inductively, yi−1
a + yi−1

b ≥ yi−1
1 + yi−1

2 ≥ 2i−3 + 2i−3 ≥ 2i−2. Analogously
yi
2, x

i
1, x

i
2 ≥ 2i−2.

The number of paths in Πi is the number of grid points in the one out of
Syi

1,xi
1

and Syi
2,xi

2
with the greater number of points. When i = 1, each of S1,0

and S0,1 has at most max{d1, d2} grid points. Further, for i ≥ 2, Syi
1,xi

1
and

Syi
2,xi

2
lie on lines with slopes whose numerators and denominators are greater

or equal than 2i−2. Hence, each of such sequences has at most max{d1,d2}
2i−2 + 1

grid points. Hence, the total number of paths in Π is at most

1︸︷︷︸
π1

+ max{d1, d2}︸ ︷︷ ︸
paths in Π1

+
f∑

i=2

(
max{d1, d2}

2i−2 + 1
)

︸ ︷︷ ︸
paths in Πi, for 2 ≤ i ≤ f

+ 1︸︷︷︸
ab

≤

max{d1, d2} + 2 max{d1, d2} + log2(max{d1, d2}) + 2 < 4 max{d1, d2} + 2.

Since the number of paths in Π is Ω(n), then max{d1, d2} ∈ Ω(n) and hence
max{W, H} ∈ Ω(n). Theorem 2 follows.

Table 1. Summary of the best known area bounds for straight-line and poly-line
drawings of planar graphs and their subclasses

Straight-line Poly-line

Graph Class UB. Ref. LB. Ref. UB. Ref. LB. Ref.

Planar Graphs O(n2) [7,12] Ω(n2) [9,7] O(n2) [7,12] Ω(n2) [9,7]

Series-Parallel Graphs O(n2) [7,12] Ω(n log n) this paper O(n3/2) [3] Ω(n log n) this paper

Outrplanar Graphs O(n1.48) [8] Ω(n) trivial O(n log n) [2] Ω(n) trivial

Trees O(n log n) [6] Ω(n) trivial O(n log n) [6] Ω(n) trivial

5 Conclusions and Open Problems

In this paper we have shown that there exist series-parallel graphs requiring
Ω(n log n) area in any straight-line or poly-line drawing. As far as we know
the best upper bound for the area requirements of poly-line drawings of series-
parallel graphs is O(n3/2) [3], while no sub-quadratic area upper bound is known
in the case of straight-line drawings. Hence, in both cases, the gap between the
upper and the lower bound is large.
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We remark that, for outerplanar graphs and trees, no super-linear area lower
bound is known, hence the determination of the area requirements for straight-
line and poly-line drawings of such graph classes still requires further research.
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4. Biedl, T.C., Chan, T.M., López-Ortiz, A.: Drawing K2,n: A lower bound. Inf.
Process. Lett. 85(6), 303–305 (2003)

5. Chrobak, M., Nakano, S.: Minimum-width grid drawings of plane graphs. Comput.
Geom. 11(1), 29–54 (1998)

6. Crescenzi, P., Di Battista, G., Piperno, A.: A note on optimal area algorithms for
upward drawings of binary trees. Comput. Geom. 2, 187–200 (1992)

7. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41–51 (1990)

8. Di Battista, G., Frati, F.: Small area drawings of outerplanar graphs. In: Healy, P.,
Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 89–100. Springer, Heidelberg
(2006)

9. Dolev, D., Leighton, T., Trickey, H.: Planar embeddings of planar graphs. Advances
in Computing Research 2, 147–161 (1984)

10. Eppstein, D.: Parallel recognition of series-parallel graphs. Inf. Comput. 98(1),
41–55 (1992)

11. Felsner, S., Liotta, G., Wismath, S.K.: Straight-line drawings on restricted integer
grids in two and three dimensions. J. Graph Algorithms Appl. 7(4), 363–398 (2003)

12. Schnyder, W.: Embedding planar graphs on the grid. In: Proc. 1st ACM-SIAM
Sympos. Discr. Alg., pp. 138–148 (1990)

13. Suderman, M.: Pathwidth and layered drawings of trees. Int. J. Comp. Geom.
Appl. 14(3), 203–225 (2004)

14. Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs.
SIAM J. Comput. 11(2), 298–313 (1982)

15. Wagner, K.: Uber eine Eigenschaft der ebenen Komplexe. Math. Ann. 114, 570–590
(1937)



On Independent Sets and Bicliques in Graphs�

Serge Gaspers1, Dieter Kratsch2, and Mathieu Liedloff2

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway
serge@ii.uib.no

2 Laboratoire d’Informatique Théorique et Appliquée,
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Abstract. Bicliques of graphs have been studied extensively, partially
motivated by the large number of applications. One of the main algo-
rithmic interests is in designing algorithms to enumerate all maximal
bicliques of a (bipartite) graph. Polynomial-time reductions have been
used explicitly or implicitly to design polynomial delay algorithms to
enumerate all maximal bicliques.

Based on polynomial-time Turing reductions, various algorithmic prob-
lems on (maximal) bicliques can be studied by considering the related
problem for (maximal) independent sets. In this line of research, we im-
prove Prisner’s upper bound on the number of maximal bicliques [Combi-
natorica, 2000] and show that the maximum number of maximal bicliques
in a graph on n vertices is exactly 3n/3 (up to a polynomial factor). The
main results of this paper are O(1.3642n) time algorithms to compute the
number of maximal independent sets and maximal bicliques in a graph.

1 Introduction

Bicliques. Let the vertex sets X and Y be independent sets of a graph G =
(V, E) such that xy ∈ E for all x ∈ X and all y ∈ Y . The subgraph of G induced
by X ∪ Y is called a biclique of G. Furthermore depending on the context and
the application area, one also calls the pair (X, Y ) or the vertex set X ∪ Y a
biclique. From a graph-theoretic point of view it is natural to consider a biclique
of a graph G as a complete bipartite induced subgraph of G. For technical
reasons, we prefer to consider a biclique B ⊆ V of a graph G = (V, E) as a
vertex set inducing a complete bipartite subgraph of G.

Maximal bicliques. A biclique B ⊆ V of G is a maximal biclique of G if B is
not properly contained in another biclique of G. A lot of the research on maxi-
mal bicliques and in particular on algorithms to enumerate all maximal bicliques
of (bipartite) graphs with polynomial delay is motivated by the various appli-
cations of bicliques in (bipartite) graphs. Applications of bicliques in automata
and language theory, graph compression, artificial intelligence and biology are

� A large part of the research was done while Serge Gaspers was visiting the University
of Metz.

H. Broersma et al. (Eds.): WG 2008, LNCS 5344, pp. 171–182, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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discussed in [2]. An important application in data mining is based on the formal
concept analysis [10] where each concept is a maximal biclique of a bipartite
graph.

Previous work. The complexity of algorithmic problems on bicliques has been
studied extensively. First results were mentioned by Garey and Johnson [9],
among them the NP-completeness of the balanced complete bipartite subgraph
problem. The maximum biclique problem is polynomial for bipartite graphs [3],
and NP-hard for general graphs [25]. The maximum edge biclique problem was
shown to be NP-hard by Peeters [20].

Approximation algorithms for node and edge deletion biclique problems are
given by Hochbaum [12]. Enumerating maximal bicliques has attracted a lot of
attention in the last decade. The algorithms in [17,18] enumerate all maximal
bicliques of a bipartite graph as concepts during the construction of the concept
lattice. Nowadays there are polynomial delay enumeration algorithms for maxi-
mal bicliques in bipartite graphs [5,15] and general graphs [4,15]. There are also
polynomial delay algorithms to enumerate all maximal non-induced bicliques of
a graph [1,5].1

Prisner studied various aspects of bicliques in graphs. Among others, he
showed that the maximum number of maximal bicliques in a bipartite graph
on n vertices is 2n/2. He established a lower bound of 3n/3 and an upper bound
of 1.6181n (up to a polynomial factor) on the maximum number of maximal
bicliques in a graph on n vertices [21].

Our Results. We use a simple polynomial-time Turing reduction to transform
results on maximal independent sets into results on maximal bicliques. We also
improve upon Prisner’s upper bound and give a simple proof that the maximum
number of maximal bicliques in a graph on n vertices is at most n · 3n/3. Our
main result is a O(1.3642n) time algorithm to count all maximal independent
sets in a graph, which is established by using the Measure & Conquer technique
(see e.g. [7]). No such algorithm was known prior to our work. We show how to
use it to count all maximal bicliques of a graph within the same time bound and
also provide a lower bound for the running time of this algorithm.

2 Preliminaries

All graphs in this paper are simple and undirected. For a graph G = (V, E), we
let n = |V | and m = |E|. An edge between vertices u and v is denoted by uv.
The set of neighbors of a vertex v ∈ V is the set of all vertices adjacent to v,
denoted by N(v). The closed neighborhood of a vertex v is N [v] = {v} ∪ N(v).
The distance between two vertices u, v is the length of the shortest path from
u to v. We denote by Nk(v) the set of all vertices at distance k from v, and by

1 When the condition that X and Y are independent sets in the definition of a biclique
is dropped, then (X, Y ) is called a non-induced biclique of G. In this case a different
maximality notion is used. See e.g. [1].
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Nk[v] the set of all vertices at distance at most k from v. The degree of a vertex
v is d(v) = |N(v)|. A clique is a set of vertices that are all pairwise adjacent,
and an independent set is a set of vertices that are all pairwise non-adjacent. An
independent set is maximal if it is not properly contained in another independent
set. The subgraph of G induced by a vertex set A ⊆ V is denoted by G[A]. A
graph is called bipartite if its vertex set can be partitioned into two independent
sets V and W . The bipartite complement of a bipartite graph G = (V, W, E) is
a bipartite graph having the vertices of G as its vertex set and the non-edges of
G with an endpoint in V and another in W as its edge set.

3 Polynomial-Time Reductions

There is a natural relation between independent sets (and cliques) on one hand
and bicliques on the other hand. Thus it is not surprising that polynomial-time
Turing reductions (in fact mainly Karp reductions) have been used in various
hardness proofs for problems on bicliques [9]. The famous polynomial delay al-
gorithm of Johnson and Papadimitriou to enumerate all maximal independent
sets [14] is used explicitly or implicitly in polynomial delay algorithms to enu-
merate maximal (non-induced) bicliques in (bipartite) graphs [1,4,5].

The first reduction simply recalls an often used argument.

Lemma 1 (Property A). Let G = (V, E) be a bipartite graph. Let H be the
bipartite complement of G. Then B is a (maximal) biclique of G if and only if
B is a (maximal) independent set of H.

The above lemma implies, among others, that any algorithm enumerating all
maximal independent sets within delay f(n) can be transformed into an algo-
rithm enumerating all maximal bicliques of a bipartite graph within delay f(n).
The known tight bound of 2n/2 for the maximum number of maximal bicliques
in a bipartite graph given in [21] follows easily from Property A and the corre-
sponding bound for maximal independent sets in [13]. Based on this property,
Yannakakis observed that the problem of finding a maximum biclique in a bi-
partite graph is solvable in polynomial time [25].

The following property is central for our paper.

Lemma 2 (Property B). Let G = (V, E) be a graph. For every v ∈ V , the
graph Hv is the graph with vertex set V (Hv) = N(v)∪N2(v). Its edge set E(Hv)
consists of the following edges:

– xy ∈ E(Hv) if xy ∈ E and x, y ∈ N(v),
– xy ∈ E(Hv) if xy ∈ E and x, y ∈ N2(v),
– xy ∈ E(Hv) if xy /∈ E, x ∈ N(v) and y ∈ N2(v).

Then B ⊆ V is a (maximal) biclique of G if and only if B − v is a (maximal)
independent set of a graph Hv for some v ∈ B.



174 S. Gaspers, D. Kratsch, and M. Liedloff

Proof. Let B be a (maximal) biclique of G. Take some v ∈ B. Then B ⊆
{v} ∪ N(v) ∪ N2(v) in G, where the independent sets X and Y of the biclique
B satisfy X ⊆ N(v) and Y ⊆ {v} ∪ N2(v). Since B is a biclique and by the
construction of Hv, we obtain that B − v is an independent set of Hv. On the
other hand, if B′ is a (maximal) independent set of Hv, for some v ∈ V , then
B′ ∩ N(v) is an independent set of G[N(v)] and B′ ∩ N2(v) is an independent
set of G[N2(v)]. Hence B′ is a biclique of G− v and B′ ∪ {v} is a biclique of G.

Finally, due to the correspondence between bicliques and independent sets,
this also holds for maximality by inclusion of vertices. ��

The corresponding Turing reduction does not increase the number of vertices,
since |V (Hv)| ≤ |V | − 1. Thus this reduction is useful for exponential-time algo-
rithms.

Corollary 1. Given an algorithm to find a maximum independent set (respec-
tively to count all independent sets of size k) of a graph in time cnnO(1), there
exists an algorithm to find a maximum biclique (respectively to count all bicliques
of size k) of a graph in time cnnO(1).

Proof. To find a maximum biclique of a graph G = (V, E), compute a maximum
independent set for each Hv, v ∈ V , constructed according to Property B and
return the largest set of vertices found. To count all bicliques of size k of a graph
G = (V, E) on n vertices, order the vertices of G: V = {v1, v2, . . . , vn}. For
i = 1, . . . , n, compute the number of independent sets of size k − 1 of Hi

vi
where

Hi
vi

is obtained from Gi = G[V \ {v1, v2, . . . , vi−1}] using Property B. Adding
up the results gives the number of bicliques of size k of G. ��

By this corollary and the algorithms in [22,24], a maximum biclique of a graph
can be found in time O(1.2109n) and all maximum bicliques of a graph can be
counted in time O(1.2377n).

Note that Corollary 1 is not directly applicable to use an algorithm for count-
ing maximal independent sets to count the maximal bicliques of a graph. The
issues are that double-counting has to be avoided at the same time as the max-
imality of each counted biclique has to be ensured.

4 Improving Prisner’s Bound

The maximum number of maximal bicliques in a graph on n vertices has been
studied by Prisner [21]. He settled the question for bipartite graphs. The maxi-
mum number of maximal bicliques in a bipartite graph on n vertices is precisely
2n/2. For general graphs the question remained open. He established a lower
bound of 3n/3 and an upper bound of (1.618034n + o(1)) ·n5/2 for the maximum
number of maximal bicliques in a graph on n vertices. We settle the question
via an elegant proof based on Property B.

Theorem 1. The maximum number of maximal bicliques in a graph is at most
n · 3n/3.
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Proof. Let n be a positive integer and let G be any graph on n vertices. Applying
Property B, for every vertex v ∈ V , there is a one-to-one correspondence between
the maximal bicliques B of G satisfying v ∈ B and the maximal independent
sets B − v of the graph Hv. By a well-known theorem of Moon and Moser [16],
the maximum number of maximal independent sets in a graph on n vertices is
3n/3. Thus the number of maximal bicliques containing vertex v is at most 3n/3

for each v ∈ V . Consequently G has at most n · 3n/3 maximal bicliques. ��

Corollary 2. The maximum number of maximal bicliques in a graph is 3n/3

(up to a polynomial factor).

5 Counting Algorithms

A problem related to enumerating all maximal bicliques of a graph is to compute
the number of maximal bicliques of a graph; faster than by simply enumerating
all of them. By property B, an algorithm to count all maximal independent sets
of a graph could be a cornerstone to design such an algorithm. However no non-
trivial algorithm for counting maximal independent sets is known. It is known
that the counting problem for maximal independent sets is #P-complete even
when restricted to chordal graphs [19]. Hence our goal is to construct a fast
exponential-time algorithm solving this problem.

5.1 Algorithm to Count All Maximal Independent Sets

Let G = (F, M, E) be a marked graph which are the graphs dealt with by our
algorithm. Vertices of F are called free and vertices of M are called marked. Let
u be a vertex of F ∪ M . The degree of u is the number of neighbors in F ∪ M
and is denoted by d(u). Given a set D ⊆ (F ∪ M), the set N(u) ∩ D is denoted
by ND(u) and its cardinality is denoted by dD(u).

The following notions are crucial for our algorithm. A set S ⊆ F is a maximal
independent set (or shortly, MIS) of a marked graph G = (F, M, E) if S is a
MIS of G[F ]. We say that the MIS S of G = (F, M, E) satisfies property Π if
each vertex of M has a neighbor in S.

Given a marked graph G, our algorithm computes the number of MISs of
G = (F, M, E) satisfying Π . Thus, a marked vertex u is used to force that each
MIS S of G counted by the algorithm contains at least one free neighbor of
u. This is particularly useful to guarantee that only maximal independent sets
of the input graph are counted. In the remainder of this section, we suppose
that G is a connected graph, otherwise the algorithm is called for each of its
connected components, and the product of the results gives the number of MISs
of G satisfying Π .

Given a simple graph G′ = (V, E), #MaximalIS
(
G = (V, ∅, E)

)
returns the

number of maximal independent sets of G′. (See the next page for the description
of the algorithm.)

We emphasize that all the halting ((H1)–(H2)) and reduction ((R1)–(R7))
rules are necessary for our running time analysis (see Subsection 5.3). The
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Algorithm #MaximalIS
`
G = (F, M, E)

´

Input: A marked graph G = (F, M, E).
Output: The number of MISs of G satisfying Π.
// Reduction rules
if G is empty then

return 1 (H1)

if there exists u ∈ M s.t. dF (u) = 0 then
return 0 (H2)

if there exists u ∈ M s.t. NF (u) = {v} then
return #MaximalIS

`
G = (F \ N [v], M \ N(v), E)

´
(R1)

if there exists u ∈ F s.t. dF (u) = 0 then
return #MaximalIS

`
G = (F \ N [u], M \ N(u), E)

´
(R2)

if there exists u, v ∈ M s.t. {u, v} ∈ E then
return #MaximalIS

`
G = (F, M, E \ {u, v})

´
(R3)

if there exists u, v ∈ F s.t. N [u] = N [v] then
count ← #MaximalIS

`
G = (F \ {v}, M, E)

´

Let MISu be the number of MISs computed by
#MaximalIS

`
G = (F \ {v}, M, E)

´
containing u

return MISu + count (R4)

if there exists u ∈ M and v ∈ N(u) s.t. N [v] ⊆ N [u] then
return #MaximalIS

`
G = (F, M \ {u}, E)

´
(R5)

if there exists u, v ∈ M s.t. N(u) = N(v) then
return #MaximalIS

`
G = (F, M \ {v}, E)

´
(R6)

if there exists u ∈ F ∪ M and v ∈ F s.t. N(u) = N(v) then
return #MaximalIS

`
G = (F \ {v}, M, E)

´
(R7)

// Branching rule (B)
if there exists a marked vertex u with d(u) = 2 then

Choose u

else
Choose a vertex u ∈ (F ∪ M) such that

(i) u has minimum degree among all vertices in F ∪ M
(ii) among all vertices fulfilling (i), u has a neighbor of maximum degree
(iii) among all vertices fulfilling (ii), u has maximum dual degree (i.e. the
sum of the degrees of its neighbors)

Let BL(u) ← [v1, . . . , vdF (u)] be an ordered list of NF (u) such that:
(i) v1 is a vertex of NF (u) having a minimum number of neighbors in V \N(u)
(ii) append (in any order) the vertices of N(v1) ∩ NF (u) to the ordered list
(iii) append the vertices of NF (u) \ N [v1] ordered by increasing number of
neighbors in V \ N(u)

count ← 0
if u is free then // select u (to be in the current MIS)

count ← #MaximalIS
`
G = (F \ N [u], M \ N(u), E)

´

foreach vi ∈ BL(u) do // mark each vertex of M ′ and select vi

M ′ ← {vj ∈ BL(u) : 1 ≤ j < i and {vj , vi} 
∈ E}
count ← count+ #MaximalIS

`
G = (F \ (M ′ ∪ N [vi]), (M ∪ M ′) \ N(vi), E)

´

return count
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branching rule (B) selects a vertex u, orders its free neighbors in a list [v1, v2, . . . ,
vdF (u)] and makes a recursive call (i.e. a branching) counting all MISs contain-
ing u, and a recursive call for each i = 1, 2, . . . , dF (u) where it counts all MISs
containing vi but none of v1, v2, . . . , vi−1.

The selected vertex u is chosen according to three criteria (i)–(iii). By (i), u
has minimum degree, which ensures either that the algorithm makes few recur-
sive calls or that many vertices are removed in each branching. By (ii), u has a
neighbor of maximum degree among all vertices satisfying (i). If the degree of
this neighbor is high, then many vertices are removed in at least one recursive
call. If the degree of this vertex is low, every vertex of minimum degree has
no high-degree neighbor. This property is exploited in the analysis of our algo-
rithm, which considers a decrease in the degree of a vertex of small degree more
advantageous than a decrease in the degree of a high-degree vertex. Similarly,
(iii) ensures either many recursive calls where many vertices are removed or a
knowledge on the degrees of the neighbors of a vertex of minimum degree. The
ordered list BL(u) is defined in this way to ensure that for certain configurations
of N2[u], reduction rule (R1) or a (fast) subsequent branching on a marked
vertex of degree 2 is applied in many recursive calls.

5.2 Correctness of #MaximalIS

We show the correctness of the branching and reduction rules of #MaximalIS.
(H1) If the input graph is empty then the only MIS is the empty set. (H2)
If there is a marked vertex u without any free neighbor then there is no MIS
satisfying Π . (R1) If a marked vertex u has only one free neighbor v, the vertex
v has to be in the MIS to satisfy Π . (R2) By maximality, each free vertex
without any free neighbor has to belong to all MISs. (R3) Since marked vertices
cannot belong to any MIS, edges between two marked vertices are irrelevant and
can be removed. (R4) Suppose u, v ∈ F are two free vertices and N [u] = N [v].
Every MIS containing a neighbor of u does not contain v. Moreover, every MIS
containing u can be replaced by one containing v instead of u. Thus, it is sufficient
to remove v and to return the number of MISs containing a neighbor of u plus
twice the number of MISs containing u. (Note that the algorithm can easily be
implemented such that the number of MISs containing u is obtained from the
recursive call. E.g., keep a counter to associate to each free vertex the number
of MISs containing this vertex.) (R5) If u ∈ M has a neighbor v such that all
neighbors of v are also neighbors of u, then every MIS of G − u must contain a
vertex of N [v] \ {u} and thus a neighbor of u in G. (R6) If two marked vertices
have the same neighborhood then one of them is irrelevant. (R7) Let v be a
free vertex and u a vertex such that N(u) = N(v), and thus u and v are non
adjacent. Hence every MIS containing a neighbor of u does not contain v and
every MIS containing u (if u is free) also contains v. Thus the number of MISs
is the same as for G − v.

(B) The algorithm considers the two possibilities that either u or at least
one neighbor of u is in the current MIS. By induction and the fact that N [u]
is removed if the algorithm decides to add u to the current MIS, every MIS
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containing u is counted and it is counted only once. Consider the possibility
that at least one neighbor of u is in the current MIS and let vi be the first such
neighbor in the ordered list BL(u), containing all the free neighbors of u. That no
MIS containing a vertex appearing before vi in BL(u) is counted, is ensured by
either its deletion (because it is a neighbor of vi) or the marking of this vertex.
So, every MIS containing vi but neither u (removed as it is a neighbor of vi) nor
a vertex appearing before vi in BL(u) is counted exactly once.

5.3 Running Time Analysis of #MaximalIS

We analyze the running time of our algorithm using the Measure & Conquer
technique which has recently been used to establish several of today’s best known
exact exponential-time algorithms for NP-hard problems. For some important
results and more details on the technique, we refer to [6,7,8,23]. To analyze the
running time of our algorithm, we use the following measure µ(G) of a marked
graph G.

µ = µ
(
G = (F, M, E)

)
=

n−1∑
i=1

wi|Vi|

The weights wi, 1 ≤ i ≤ n − 1 are real numbers taken from [0, 1] that will be
fixed later. For 1 ≤ i ≤ n−1, Vi denotes the set of vertices of degree i in G. The
following values will be useful in the analysis.

∆wi =
{

wi − wi−1 if 2 ≤ i ≤ n − 1
w1 if i = 1

To further simplify the forthcoming analysis, we assume that wi = 1 (for 4 ≤
i ≤ n− 1), wi−1 ≤ wi (for 2 ≤ i ≤ n− 1), and ∆wi ≥ ∆wi+1 (for 1 ≤ i ≤ n− 1).
It is not hard to see that an application of a reduction rule will not increase
the measure of the marked graph. Furthermore no reduction rule can be applied
more than n times, respectively m times for (R3). Finally, each reduction rule
can be implemented to run in polynomial time, and thus for each subproblem
the running time of our algorithm, excluding the recursive calls by branching
rule (B), is polynomial. Consequently we need to analyze the maximum number
of such recursive calls, i.e. the maximum number of subproblems generated by a
recursive call by (B), during the execution of our algorithm on a marked graph
of measure µ, which we denote by T (µ).

We only have to analyze the changes in measure when applying branching
rule (B).

Case 1: (B) is applied to a marked vertex u with d(u) = 2.
Let v1 and v2 be its two neighbors. By (R3), i.e. since (R3) could not be applied,
v1, v2 ∈ F , and by (R2), d(v1), d(v2) ≥ 2.

(a) Suppose d(v1) = d(v2) = 2. For i ∈ {1, 2}, let xi be the other neighbor
of vi. If d(x1) = d(x2) = 1 then the algorithm deals with a component of
constant size, and the number of MISs of such a component can be com-
puted in constant time. Suppose now that d(x1) ≥ 2. In the first branch
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(or subproblem) u, v1 and x1 are removed. In the second branch u, v2
and x2 are removed. Thus, the corresponding recurrence is majorized by
T (µ) ≤ T (µ − 3w2) + T (µ − w1 − 2w2).

(b) Suppose d(v1) ≥ 3 and d(v2) ≥ 2. In the first branch u, v1 and at least
two other neighbors of v1 are removed. In the second branch u, v2 and the
other neighbors of v2, at least one, are removed. Thus, the corresponding
recurrence is majorized by T (µ) ≤ T (µ− 2w1 −w2 −w3)+T (µ−w1 − 2w2).
Since w2 ≤ w3 and w2 ≤ 2w1 (recall that ∆w1 ≥ ∆w2), it follows that
3w2 ≤ 2w1 + w2 + w3 and thus the solution of the recurrence in case (b) is
not worse than the one of case (a).

Case 2: Vertex u is chosen by the else statement of (B).
Thus u satisfies the conditions (i), (ii) and (iii). Let [v1, . . . , vdF (u)] be the Branch-
ing List, short BL(u), built by the algorithm. Given a vertex vi, 1 ≤ i ≤ dF (u),
of BL(u), we denote by Op(vi) the operation of adding vi to the current MIS, re-
moving N [vi] and marking the vertices v1, . . . , vi−1 that are not adjacent to vi.

Let ∆u denote the gain on the measure obtained by adding u to the current
MIS. Removing u and its neighbors from the graph decreases µ(G) by wd(u) +∑

v∈N(u) wd(v). Moreover, the decrease of the degrees of vertices in N2(u) implies
a gain of

∑
x∈N2(u)(wd(x)−wd(x)−dN(u)(x)). Thus, ∆u = wd(u) +

∑
v∈N(u) wd(v) +∑

x∈N2(u)(wd(x) − wd(x)−dN(u)(x)).
Let ∆Op(vi) denote the gain on the measure when vi ∈ BL(u), 1 ≤ i ≤

dF (u), is selected and added to the maximal independent set. Again, by se-
lecting vertex vi the vertices of N [vi] are removed and thus a gain of wd(vi) +∑

x∈N(vi) wd(x) is obtained. Since neighbors of vertices of N2(vi) have been
removed, we gain

∑
y∈N2(vi)(wd(y) − wd(y)−dN(vi)(y)). The measure further de-

creases whenever among the marked vertices of {v1, . . . , vi−1}, some of them have
only one remaining free neighbor after the deletion of N [vi]. By direct applica-
tion of reduction rule (R1), these vertices and their neighbors are also removed
from the graph. We denote this extra gain by marked1(Op(vi)) Thus, ∆Op(vi) =
wd(vi) +

∑
x∈N(vi) wd(x) +

∑
y∈N2(vi)(wd(y) −wd(y)−dN(vi)(y))+ marked1(Op(vi)).

Putting all together, we obtain the following general recurrence for case 2:

T (µ) ≤ T (µ − ∆u) +
∑

vi∈BL(u)

T (µ − ∆Op(vi))

Finally, we conclude the time analysis by Measure & Conquer. We solve the
corresponding system of linear recurrences and establish an upper bound on the
worst case running time of our algorithm. Moreover, for some cases where a
marked vertex of degree 2 appears, we combine the analysis of the case with
the subsequent branching on this vertex. The key step is to choose the weights
w1, w2 and w3 such that the worst-case solution taken over all recurrences is
minimized (see e.g. [7,8]). Using the weights w1 = 0.8512, w2 = 0.9194 and
w3 = 0.9877, we obtain:

Theorem 2. Algorithm #MaximalIS counts all MISs of a given graph G in time
O(1.3642n), where n is the number of vertices of G.
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Typically using a computer program, first the collection of recurrences that are
obtained for all possible cases of vertices, degrees, etc. in the general recurrence
are computed and then the optimal values of the weights are computed. Although
for our problem the number of recurrences is still rather moderate, due to space
limitations the detailed analysis is not given in this extended abstract.

Remark 1. Given a marked graph of maximum degree 2, #MaximalIS takes ex-
ponential time. A dynamic programming approach can also be used to count
in polynomial time all MISs of a such marked graph. Adding this polynomial
time procedure to #MaximalIS is likely to be of help in implementations of the
algorithm, however it does not improve its worst case running time.

For most non-trivial Branch-and-Reduce algorithms, it is not known whether the
upper bound of the running time provided by the currently available analysis is
tight or not. A lower bound for the worst case running time of such algorithms
is therefore desirable (see e.g. [7,8]).

Theorem 3. There exists an infinite family of graphs for which #MaximalIS
takes time Ω(1.3247n), and thus its worst case running time is Ω(1.3247n).

Proof. The lower bound for the running time of Algorithm #MaximalIS estab-
lished here uses the same family of graphs as the lower bound for an algorithm
computing a minimum independent dominating set [11].

Fig. 1. The graph Gl

Consider the graph Gl of Figure 1. It has n = 2l vertices. Note that none
of the reduction or halting rules are applicable to Gl. The first branching of
#MaximalIS is on vertex u1 or vertex vl. Without loss of generality, suppose the
algorithm always chooses the vertex with smallest index when it has more than
one choice (i.e. it chooses u1 for the first recursive call).

The branching rule (B) then makes recursive calls on graphs with n−3, n−4
and n−5 vertices, not marking any vertex. The structure of all resulting graphs is
similar to Gl: either isomorphic to Gl−2 or equal to Gl \N [u1] or Gl \N [u2]. The
subsequent recursive calls again remove 3, 4 and 5 vertices in each case and do
not mark any vertices. Unless the graph has at most 4 vertices, each application
of branching rule (B) satisfies the recurrence T (n) = T (n−3)+T (n−4)+T (n−5)
for this graph and therefore the running time for this class of graphs is Ω(αn)
where α is the positive root of x−3+x−4+x−5−1 (i.e. 1.3247 < α < 1.3248). ��
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5.4 Algorithm to Count All Maximal Bicliques

Finally, we consider the problem of counting all maximal bicliques of a graph
G = (V, E). Let G′ = (V ′, E′) be a copy of G. Let G′′ = (V ′′, E′′) where
V ′′ = V ∪ V ′ and E′′ = E ∪ E′ ∪ {xy′ : x = y or xy �∈ E}.

Lemma 3. The number of MISs of G′′ equals twice the number of maximal
bicliques of G.

Proof. We show that there is a one-to-one correspondence between the bicliques
of G and the symmetric pairs of independent sets of G′′.

Let X ∪ Y be a biclique of G. Clearly, X, Y are independent sets in G and
their copies X ′, Y ′ are independent sets in G′. Let x ∈ X and y ∈ Y . Then
xy, x′y′ ∈ E′′ and xy′, x′y �∈ E′′. So, X ∪ Y ′ and X ′ ∪ Y are independent sets in
G′′.

Let X, Y ⊆ V be such that X ∪ Y ′ is an independent set in G′′ where X ′, Y ′

are the copies of X, Y . Hence X, Y are independent sets in G. Let x ∈ X and
y′ ∈ Y ′. Then xy ∈ E. So, X ∪ Y is a biclique in G. By the symmetry of G′′,
the independent set X ′ ∪ Y in G′′ also corresponds to the biclique X ∪ Y in G.

Clearly, this correspondence also holds for maximality by inclusion of vertices.
This implies that X ∪ Y is a maximal biclique of G iff X ∪ Y ′, and thus also
Y ∪ X ′, are MISs of G′′. ��

With this construction and the algorithm for counting all MISs of a graph, we
are now able to give an algorithm for counting all maximal bicliques of a graph.

Theorem 4. There is an algorithm that counts all maximal bicliques of a graph
in time O(1.3642n).

Proof. The algorithm simply calls #MaximalIS
(
(V ′′, ∅, E′′)

)
and divides the re-

sult by 2. Notice that G′′ has 2n vertices and that every vertex of G′′ has degree
n. The first application of branching rule (B) makes n + 1 recursive calls and in
each one, n + 1 vertices are removed from the marked graph. Thus the running
time is (n + 1)(cn−1)nO(1) where cnnO(1) is the running time of #MaximalIS on
a graph with n vertices. The constant c = 1.3642 was rounded to derive the
running time for #MaximalIS, and thus the running time of the algorithm to
count maximal bicliques is O(1.3642n). ��
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Abstract. A graph polynomial p(G, X̄) can code numeric information
about the underlying graph G in various ways: as its degree, as one
of its specific coefficients or as evaluations at specific points X̄ = x̄0.
In this paper we study the question how to prove that a given graph
parameter, say ω(G), the size of the maximal clique of G, cannot be a
fixed coefficient or the evaluation at any point of the Tutte polynomial,
the interlace polynomial, or any graph polynomial of some infinite family
of graph polynomials.

Our result is very general. We give a sufficient condition in terms of
the connection matrix of graph parameter f(G) which implies that it
cannot be the evaluation of any graph polynomial which is invariantly
definable in CMSOL, the Monadic Second Order Logic augmented with
modular counting quantifiers. This criterion covers most of the graph
polynomials known from the literature.

1 Introduction

1.1 Graph Parameters and Graph Polynomials

Graph parameters (also called numeric graph invariants) f are functions from
the class of all finite graphs G to some numeric domain which is a commutative
ring with 0 and 1, usually the integers Z, the rational numbers Q or the reals R.
Graph properties are a special case where the value is 0 or 1.

Graph polynomials are functions p from G into a polynomial ring, usually
Z[X̄ ], where X̄ is a fixed finite set of indeterminates. Graph polynomials are a
way to encode infinitely many graph parameters. Every evaluation of the polyno-
mial p(G; X̄) at some point X̄ = x̄0 is a graph parameter. So are the coefficients
of p(G; X̄), the total degree or the degree of monomials where the coefficient
satisfies certain properties, and the zeros of p(G; X̄).

A particular graph polynomial is considered interesting if it encodes many
useful graph parameters. Let G = (V (G), E(G)) be a graph. The characteristic
polynomial P (G, X) of a graph is defined as the characteristic polynomial (in
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the sense of linear algebra) of the adjacency matrix AG of G. The coefficients of
P (G, X) are defined by

det(X · 1 − AG) =
n∑

i=0

ci(G) · X i.

It is well known that n = |V (G)|, −c2(G) = |E(G)|, and −c3(G) equals twice the
number of triangles of G. The second largest zero λ2(G) of P (G; X) gives a lower
bound to the conductivity of G, cf. [GR01]. All these are graph parameters.

The Tutte polynomial of G is defined as

T (G; X, Y ) =
∑

F⊆E(G)

(X − 1)r〈E〉−r〈F 〉(Y − 1)n〈F 〉 (1)

where k〈F 〉 is the number of connected components of the spanning subgraph
defined by F , r〈F 〉 = |V | − k〈F 〉 is its rank and n〈F 〉 = |F | − |V | + k〈F 〉 is its
nullity.

The Tutte polynomial T (G; X, Y ) has remarkable evaluations which count
certain configurations of the graph G, cf. [Wel93].

(i) T (G; 1, 1) is the number of spanning trees of G,
(ii) T (G; 1, 2) is the number of connected spanning subgraphs of G,
(iii) T (G; 2, 1) is the number of spanning forest of G,
(iv) T (G; 2, 2) = 2|E| is the number of spanning subgraphs of G,
(v) T (G; 1 − k, 0) is the number of proper k-vertex colorings of G,
(vi) T (G; 2, 0) is the number of acyclic orientations of G,
(vii) T (G; 0,−2) is the number of Eulerian orientations of G.

All these are also graph parameters which take values in N. More sophisticated
evaluations of the Tutte polynomial can be found in [Goo06, Goo08].

We shall show, 4, that the maximal size of a clique in G, ω(G), is not an
evaluation of the Tutte polynomial. The same can be shown for the number of
cliques of maximal size.

1.2 Coefficients and Evaluation of Graph Polynomials

In this paper we study the question whether a given graph parameter can occur
as specific coefficient or the evaluation of a graph polynomial. We do not deal
with zeros of graph polynomials. We are mostly interested in negative results:
how does one prove that a given graph parameter cannot be a specific coefficient
or the evaluation of a family of graph polynomials?

As a simple example, we look at the graph parameter f which is additive
with respect to the disjoint union, in other words f(G1 �G2) = f(G1) + f(G2).
This is true for |V (G)|, |E(G)| and also for k(G), b(G), number of connected
components and number of blocks (doubly connected components), respectively.
They are evaluations of the graph polynomials
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V (G; X) =
∑

v∈V (G)

X and E(G; X) =
∑

e∈E(G)

X

C(G; X) =
∑

U⊆V (G):U∈Co

X and B(G; X) =
∑

U⊆V (G):U∈Bl

X

respectively, for X = 1. Here Co is the set of connected components, and Bl is
the set of blocks respectively.

On the other hand, many graph polynomials p(G, X̄), like the Tutte poly-
nomial, are multiplicative, i.e., p(G1 � G2, X̄) = p(G1, X̄) · p(G2, X̄). Clearly,
an additive graph parameter cannot be the evaluation of a multiplicative graph
polynomial. If we consider instead the graph parameters 2|V (G)|, 2|E(G)|, we can
see that they are evaluations of the, admittedly uninteresting, multiplicative
graph polynomial X |V (G)| · Y |E(G)|.

More interesting1 integer-valued graph parameters have the following prop-
erty: There exist infinite sequences of graphs (Gi)i∈N, (Hi)i∈N such that

(i) for all (i, j) ∈ N2 f(Gi � Hj) = max f(Gi), f(Hj) or f(Gi � Hj) =
min f(Gi), f(Hj), and

(ii) for all i ∈ N the sequence fj = f(Gi � Hj) is strictly monotone increasing.

An integer-valued graph parameter f which has this property is called maximiz-
ing, respectively minimizing. In the above property we can replace the disjoint
union by the join of two graphs G1 �� G2 and consider the corresponding prop-
erty. In this case we say that f is join-maximizing, respectively join-minimizing.
Similarly we speak of join-additive and join-multiplicative graph parameters.

Example 1. (i) Among the maximizing graph parameters we have: the chro-
matic number χ(G), the edge chromatic number χe(G), and the total color-
ing number χt(G), the size of a maximal clique ω(G), the size of the maximal
degree ∆(G), the tree-width tw(G), and the clique-width cw(G).

(ii) Among the minimizing graph parameters we have: the minimum degree δ(G),
and the girth g(G), which is the minimum length of a cycle in G.

(iii) ω(G) is join-additive and maximizing.
(iv) α(G), the size of the maximal independent set, is additive and join-

maximizing.

How can we decide whether any of these do or do not occur as the evaluation of
a graph polynomial? What about the average degree

d(G) =
1

|V (G)| ·
∑

v∈V (G)

dG(v),

where dG(v) denotes the degree of a vertex v of G, which behaves differently
than the example listed above?
1 Almost all graph parameters discussed are taken from [Die96]. One exception is the

clique-width, which was introduced in [CO00], and, in connection to graph polyno-
mials, in [Mak04].
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1.3 Connection Matrices

In [FLS07] the connection matrix M(f, 0) of a graph parameter f was introduced.
Let (Gi)i∈N be an enumeration of all finite graphs (up to isomorphism). M(f, 0)
is an infinite matrix where the columns and rows are labeled by finite graphs Gi.
Then the entry M(f, 0)i,j is defined by M(f, 0)i,j = f(Gi � Gj). We study the
matrix M(f, 0) as a matrix over the reals R. Similarly, we denote by M(f, ��)
the matrix with entries M(f, ��)i,j defined by M(f, ��)i,j = f(Gi �� Gj). Let us
denote by r(f, 0) and r(f, ��) the rank of M(f, 0), respectively of M(f, ��).

Proposition 1. (i) If f is multiplicative, r(f, 0) = 1.
(ii) If f is additive, r(f, 0) = 2, unless M(f, 0) is the zero matrix.
(iii) If f is maximizing or minimizing, r(f, 0) is infinite.
(iv) Similarly for join-multiplicative, join-additive, join-maximizing and join-

minimizing where the matrix is replaced by M(f, ��).
(v) For the average degree d(G) of a graph, r(d, 0) is infinite.

Proof. The first three statements are easy. For f = d(G) we have

M(d, 0)i,j = 2
|Ei| + |Ej |
|Vi| + |Vj |

.

This contains, for graphs with a fixed number e of edges, the Cauchy matrix
( 2e

i+j )i,j , hence r(d, 0) is infinite. �

In [FLS07] it is stated that for the Tutte polynomial T (G; X, Y ) and integers
m, n the rank r(T (G, m, n), 0) is finite. Therefore, no integer valued graph pa-
rameter f with r(f, 0) infinite is an integer-valued evaluation of the T (G; X, Y ).
What about rational values, like in the case of d(G)? What about other graph
polynomials from the vast literature? Can we extend this argument to infinite
families of graph polynomials P and to all their real evaluations?

In [FLS07], for every k ∈ N a more general connection matrix M(f, k) and
its rank r(f, k) is introduced, and the finiteness of this rank is established for
many graph parameters. We shall discuss this in Section 2. Our goal is to find a
general criterion which allows us to conclude that for a graph parameter f the
rank r(f, k) is finite.

1.4 Main Result

In [Mak04, Mak07], the class of graph polynomials invariantly definable in
Monadic Second Order Logic with Modular Counting, CMSOL, was introduced.
A precise definition is given in Section 3 . For now it suffices to know that the
Tutte polynomial, the matching polynomial, the characteristic polynomial, the
interlace polynomial, and virtually all graph polynomials in the literature, are
invariantly CMSOL-definable.

Theorem 2. Let p(G, X̄) be an invariantly CMSOL-definable graph polynomial
with values in R[X̄ ] with m indeterminates. There are numbers γ(k) ∈ N de-
pending on the polynomial p and k only, and β ∈ N, such that for all x̄0 ∈ Rm,
we have r(p(G, x̄0), k) ≤ γ(k). and r(p(G, x̄0), ��) ≤ β.
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Theorem 3. Let p(G, X̄) be an invariantly CMSOL-definable graph polynomial
with values in R[X̄ ] with m indeterminates X1, . . . , Xm, and let

Xα1
1 · Xα2

2 · . . . · Xαm
m

be a specific monomial of p(G, X̄) with coefficient cα(G), where α =
(α1, . . . , αm).

Then there is an invariantly CMSOL-definable graph polynomial pα(G, X̄)
such that cα(G) is an evaluation of pα(G, X̄).

Remark 1. Theorem 3 is also valid for monomials of the form

X
n1(G)−α1
1 · Xn2(G)−α2

2 · . . . · Xnm(G)−αm
m ,

where ni(G) = |V (G)| or ni(G) = |E(G)|. This can be used to get, for example,
the coefficient of X |V (G)|−3 of the characteristic polynomial.

We want to apply Theorems 2 and 3 to graph parameters which are discussed
in, say, [Die96]. To do so we use Proposition 1.

Corollary 4. The following graph parameters are not a specific coefficient nor
an evaluation of some CMSOL-definable graph polynomial.

(i) d(G), the average rank of a graph G.
(ii) Any graph parameter f which is maximizing, minimizing, join-maximizing

or join-minimizing.

Remark 2. The degree of a graph polynomial is a graph parameter which be-
haves differently than evaluations or coefficients. The degree of the characteristic
polynomial P (G; X) is |V (G)|.

(i) On the other hand, let ωi(G) be the number of induced subgraphs of size
i which are cliques. Consider the polynomial Ω(G; X) =

∑
i ωi(G) · X i.

Then the degree of Ω(G; X) is ω(G). However, ω(G) is maximizing, so by
Theorems 2 and 3, ω(G) cannot be a fixed coefficient or evaluation of any
invariantly CMSOL-definable polynomial.

(ii) Similarly, the size of a maximal independent set α(G), is the degree of the
polynomial Ind(G; X) =

∑
i ind i(G) ·X i where ind i(G) is the number of in-

dependent sets of size i. However, α(G) is join-maximizing, so by Theorems
2 and 3, α(G) cannot be a fixed coefficient or evaluation of any invariantly
CMSOL-definable polynomial.

Both Ω(G; X) and Ind(G; X) are both CMSOL-definable polynomials, as we
shall see in Section 3.

The remainder of the paper is organized as follows: In the next section we discuss
further generalizations of connection matrices and their use, and in Section 3 we
present the necessary material on CMSOL-definable polynomials. In Section 4
we discuss further research.
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2 Connection Matrices M(f, k)

In [FLS07] more general connection matrices M(f, k) are introduced for every
natural number k. Instead of looking at all graphs and their disjoint unions,
they look at graphs with k vertices labeled with distinct labels from the set
[k] = {0, . . . , k − 1}. Let Gk denote the class of k-labeled graphs. On Gk they
define the operation G1 �k G2, which is like the disjoint union, but vertices with
corresponding labels are identified. This may create multiple edges. Let (Gk

i )i∈N

be an enumeration of all graphs from Gk. The matrix M(f, k) now has the entries
M(f, k)i,j = f(Gk

i �k Gk
j ), and r(f, k) denotes its rank.

Example 2. (i) For λ ∈ N+, let χ(G; λ) denote the number of proper λ-colorings
of G. In [FLS07] it is shown that r(χ(G; λ), k) = Bk,λ, where Bk,λ, denotes
the number of partitions of a k-element set into at most λ parts.

(ii) Let ωconn(G) be defined by

ωconn(G) =

{
ω(G) if G is connected
0 else

where ω(G) is the size of the maximal clique of G. It is easy to see that
r(ωconn, 0) = 2, but

ωconn(G0 �1 G1) = max{ωconn(G0), ωconn(G1)},

holds if both G0 and G1 are connected, hence, using Proposition 1,
r(ωconn, 1) is infinite.

(iii) If we replace connected by m-connected, we get a graph parameter ωm−conn

with r(ωm−conn, i) finite for i ≤ m, and infinite otherwise.
This shows that the r(f, k) can switch from finite to infinite at any stage.

Problem 1. What can we say in general about the behavior of r(f, k) as a func-
tion of k?

Definition 1. Let f be a graph parameter. f is k-additive if for all k-labeled
graphs G1, G2 ∈ Gk we have f(G1 �k G2) = f(G1) + f(G2).
Similarly, f is k-multiplicative, k-maximizing or k-minimizing if the correspond-
ing properties hold with the disjoint union replace by �k.

Similarly to Proposition 1 we have

Proposition 5. If f is k-multiplicative, r(f, k) = 1.
If f is k-additive and M(f, k) is not the zero matrix, r(f, k) = 2.
If f is k-maximizing or k-minimizing, r(f, k) is infinite.

Let pm(G) denote the number of perfect matchings of G. In [FLS07], it is
shown that r(pm , k) = 2k. For the proof they define auxiliary graph parameters
pmA(G) for k-graphs as follows: Let A ⊆ [k] be a set of labels. Denote by
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pmA(G) the number of matchings in G that match all the unlabeled vertices
and the vertices with label in A, but not any of the other labeled vertices. Then
we have

pm(G1 �k G2) =
∑

A1∩A2=∅,A1∪A2=[k]

pmA1
(G1) · pmA2

(G2)

We generalize this as follows:

Definition 2. A graph parameter f is weakly (k, γ)-multiplicative, if there ex-
ists a finite set of graph parameters fi : i ≤ γ with i, γ ∈ N with f = f0, and a
matrix Mk ∈ Rγ×γ, such that f0(G1 �k G2) =

∑
i,j fi(G1)Mk

ijfj(G2).
In other words, f(G1 �k G2) is given by a quadratic form defined by Mk

i,j of rank
at most γ. The number γ = γ(k) may depend on k. Similarly we define weakly
(��, γ)-multiplicative, where sqcupk is replaced by the join and the quadratic form
is given by M�
.

Proposition 6. Let f be a graph parameter which is weakly (k, γ)-
multiplicative. Then r(f, k) ≤ γ where γ = γ(k) depends on k.

The following theorem is proven in [Mak04, Theorem 6.4]:

Theorem 7. Let f be a graph parameter which is the evaluation f(G) =
p(G, x̄0) of an invariantly CMSOL definable graph polynomial p(G, X̄). Then f
is weakly (k, γ(k))-multiplicative and weakly (��, β)-multiplicative for γ : N → N
and β ∈ N, which depend on the polynomial p, but not on x̄0.

Remark 3. The function γ(k) may grow super-exponentially. The best general
upper bounds known contains iterated exponentials, cf. [Mak04].

Theorem 2 now follows immediately from Theorem 7 and Proposition 6.

3 CMSOL-Definable Graph Polynomials

In this section we give the definition of invariantly CMSOL-definable polynomi-
als in normal form. A full treatment is given in [Mak04] . There we give a more
general definition of invariantly CMSOL-definable polynomials, and show that
every such polynomial can be written in normal form. The more general defini-
tion makes it easier to verify that a given graph polynomial is indeed invariantly
CMSOL-definable. All we need for the proof of our two main theorems is the
definition of this normal form and Theorem 7.

3.1 The Logic CMSOL

We consider now ordered k-graphs of the form G = (V, E, R,≤, a0, . . . , ak−1),
where V and E are finite sets of vertices and edges, respectively, ≤ is a linear
order on V , and R ⊆ V × E × V is the graph incidence relation. This allows
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us also to have directed graphs with multiple edges. ai : i ∈ [k] are the labeled
elements of V .

We define the logic CMSOL for these graphs inductively. We have first order
variables xi : i ∈ N which range over elements of V ∪ E, and (monadic) second
order variables Ui : i ∈ N, which range over subsets of V ∪E. Terms t, t′, . . . are
either first order variables or one of the constants ai : i ∈ [k]. Atomic formulas
are of the form t = t′, t ≤ t′, R(t, t′, t′′), Ui(t) and have the natural interpreta-
tion. Formulas are built inductively using the connectives ∨,∧,→,↔,¬, and the
quantifiers ∀xi, ∃xi, ∀Ui, ∃Ui with their natural interpretation. Additionally we
have quantifiers Ca,bxi for each a, b ∈ N. The formula Ca,bxiφ(xi) is interpreted
by the statement “the number of elements satisfying φ(xi) equals a modulo b”.

The following can be written as CMSOL-formulas:

Example 3. (i) The formula Φmatch(U) which says that U is a matching.
(ii) The formula Φpm(U) which says that U is a perfect matching.
(iii) The formula Φfconn(U, x) which says that x is the first element of some

connected component of the spanning subgraph [U ]G with edge set U ⊆ E.
(iv) The formula Φeuler which says that every vertex has even degree and the

graph is connected.
(v) The formula Φham(U) which says that U is a Hamiltonian path.

3.2 Simple Invariantly CMSOL-Definable Polynomials

A simple CMSOL-definable polynomial in one indeterminate X is of the form∑
U :Φ(U)

∏
x:U(x)

X

where Φ(U) is an CMSOL-formula. Φ is called an iteration formula. It is invari-
antly CMSOL-definable, if its value does not depend on the ordering ≤ of G.

Remark 4. A formula is order invariant if its truth does not depend on the
specific order. It is easy to see that a formula with quantifiers Ca,b is equivalent
to some order-invariant formula without such quantifiers. For a polynomial to
be invariantly CMSOL-definable, it is not required that the iteration formulas
are all order invariant.

Example 4. (i) The polynomials Ind(G; X) and Ω(G; X), as defined in Remark
2, are CMSOL-definable.

(ii) For Φ = Φpm(U) we get the matching polynomial. For |V | even, its coefficient
of X

|V |
2 is the number of perfect matchings pm(G). Now pm(G) can be

written as ∑
U :Φpm(U)

∏
x:U(x)

1

which is an evaluation of a simple CMSOL-definable polynomial.
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(iii) The polynomial Xk(G), where k(G) is the number of connected components
of G, can be written as ∑

U :U=E

∏
x:Φfconn(U,x)

X

It is an invariantly CMSOL-definable polynomial.

3.3 Invariantly CMSOL-Definable Polynomials in Normal Form

A CMSOL-definable polynomial in indeterminates X1, . . . , X� in normal form
has the form

∑
U1:Φ1(U1)

∑
U2:Φ2(U2)

. . .
∑

U�1 :Φ�1(U�1 )

⎛⎝ ∏
x̄1:φ1(x̄1)

X1

∏
x̄2:φ2(x̄2)

X2 . . .
∏

x̄�:φ�(x̄�)

X�

⎞⎠
where all the formulas Φi and φi are CMSOL-formulas with the iteration vari-
ables indicated. There may be additional parameters in the formulas. However,
Φi may not contain the variables Uj for j > i, and φi may not contain x̄j for
j > i. Both Φi and φi are referred to as iteration formulas. It is invariantly
CMSOL-definable if its values do not depend on the order of G.

Example 5. (i) The Tutte polynomial, as defined by (1), is not given in a good
way to show that it is invariantly CMSOL-definable. We look instead at the
Tutte polynomial in its form as a partition function

Z(G, X, Y ) =
∑

U :U⊆E

Xk[U ]GY |U| =
∑

U :U⊆E

⎛⎝ ∏
x1:Φfconn(U,x1)

X
∏

x2:U(x2)

Y

⎞⎠
which shows that it is invariantly CMSOL-definable. It is related to the
Tutte polynomial by the equation

T (G; X, Y ) = (X − 1)−k(G) · (Y − 1)−|V (G)| · Z(G; (X − 1)(Y − 1), (Y − 1)).

Another way to prove that T (G; X, Y ) is invariantly CMSOL-definable, is
to use its definition via its spanning tree expansion, cf. [Bol99, Chapter 10]
and [Mak05].

(ii) To see that the characteristic polynomial P (G; X) is of the required form,
we need a few definitions. An elementary subgraph of a graph G is a sub-
graph (not necessarily induced) which consists only of isolated vertices and
cycles. If H is an elementary subgraph of G, we denote by k(H) its num-
ber of connected components, and c(H) the number of its cycles. With
this notation we have, [Big93, Proposition 7.4], that the coefficients of
P (G; X) =

∑
i ciX

n−i can be expressed as

ci = (−1)i ·
∑

H:|V (H)|=i

(−1)k(H) · 2c(H)
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where the summation is over all elementary subgraphs H = (V (H), E(H))
of G of size i. Therefore we have

P (G; X) =
∑

V (H)

∑
E(H)

(−1)|V (H)| · (−1)k(H) · 2c(H) ·
∏

v �∈V (H)

X

which is an evaluation of

P̂ (G; W, X, Y, Z) =
∑

V (H),E(H)

⎛⎝W |V (H)| · Y k(H) · Zc(H) ·
∏

v �∈V (H)

X

⎞⎠
at W = −1, Y = −1, Z = 2, and which is CMSOL-definable.

(iii) The interlace polynomial defined in [ABS04] is also a CMSOL-definable
polynomial, but to see this one has to use the quantifier C0,2 which says
that the cardinality of a certain set is even, cf. [Cou].

3.4 Proof of Theorem 3

We are left to prove Theorem 3. Let a graph polynomial p(G; X, Y ) be given
in normal form with two indeterminates X, Y , and two iteration formulas for
summation. The general case is similar.

p(G; X, Y ) =
∑

U1:Φ1(U1)

∑
U2:Φ2(U2)

⎛⎝ ∏
x̄1:φ1(U1,U2,x̄1)

X
∏

x̄2:φ2(U1,U2,x̄2)

Y

⎞⎠
Let Xa · Y b be a monomial with coefficient ca,b. Then we have

ca,b =
∑

U1:Φ1(U1)

∑
U2:Φ2(U2)

⎛⎝ ∑
A:(A=∅)∧ψ1,a(U1,U2)∧ψ2,b(U1,U2)

1

⎞⎠ ,

where ψi,c(U1, U2) says ”There are exactly c many tuples x̄ satisfying
φi(U1, U2, x̄)”. The summation over A = ∅ ensures that the last sum con-
tains at most one summand. Clearly, this is an evaluation of an invariantly
CMSOL−definable polynomial. �

3.5 Not Invariantly CMSOL-Definable Graph Polynomials

Here we give an example of a graph polynomial which is not invariantly CMSOL-
definable.

Definition 3. (i) A proper vertex coloring is harmonious, if each pair of colors
appears at most once along an edge. We denote by χharm(G) the least k such
that G has a harmonious proper k-coloring.

(ii) A proper vertex coloring is complete, if each pair of colors appears at least
once along an edge. We denote by χcomp(G) the largest k such that G has
a complete proper k-coloring.
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(iii) Let χharm(G; k) and χcomp(G; k) denote the number of harmonious, respec-
tively complete proper k-colorings of G.

Proposition 8. (i) χharm(G; k) is a polynomial in k.
(ii) χcomp(G; k) is not a polynomial in k.

Proof. (i) follows from [MZ06], but it is not difficult to prove it directly.
(ii) χcomp(G; k) = 0 for large enough k. �
Theorem 9. χharm(G) and χcomp(G) are graph parameters which are not eval-
uations of invariantly CMSOL-definable graph polynomials.

Proof. χcomp(G) is maximizing, so we can apply Proposition 4.
For χharm(G) we observe that, for stars Sn, a set of n edges which meet all

in one single vertex, we have

χharm(Sn � Sm) = max{χharm(Sm), χharm(Sn)} + 1.

Now the argument proceeds like in the case a maximizing graph parameter.

Theorem 10. χharm(G; k) is not an invariantly CMSOL-definable graph poly-
nomial.

Proof. Let Li denote the graph which consists of i vertex disjoint edges. We
look at M(χharm(G, k), 0) restricted to the graphs Li, i ∈ N, which we denote
by ML(k) and its rank by rL(k). We note that χharm(Li�Lj) = 0 iff i+j >

(
k
2

)
.

Therefore, rL(k) =
(
k
2

)
which is not bounded, contradicting Theorem 2.

Remark 1. It is shown in [EM95], that computing χharm(G) is NP-complete
already for trees. This, together with the fact, proven in [Mak05], that evalu-
ations of invariantly CMSOL-definable graph polynomials are polynomial time
for graphs of tree-width at most k, shows that χharm(G; X) is not invariantly
CMSOL-definable, unless P = NP. Our proof above eliminates the complexity
theoretic hypothesis P = NP.

4 Conclusions and Open Problems

We have shown that many standard graph parameters studied in the literature
cannot appear as evaluations of CMSOL-definable graph polynomials, which
covers most of the graph polynomials studied in the literature, cf. [Mak07]. We
have also exhibited for the first a natural graph polynomial which is not CMSOL-
definable.

In [FLS07] the graph parameters f which can occur as evaluations of partition
functions arising from counting weighted graph homomorphisms are character-
ized as exactly those parameters which are multiplicative, and such that for
all k ∈ N we have that r(f, k) ≤ |V |k and the matrices M(f, k) are positive
semi-definite. It is easy to see that the partition functions are evaluations of
invariantly CMSOL-definable graph polynomials of a very special kind.

It remains a challenging problem to characterize those graph parameters which
do occur as evaluations of invariantly CMSOL-definable polynomials.
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Abstract. Domination problems are one of the classical types of
problems in computer science. These problems are considered in many
different versions and on different classes of graphs. We explore the
boundary between fixed-parameter tractable and W-hard problems on
sparse graphs. More precisely, we expand the list of domination prob-
lems which are fixed-parameter tractable(FPT) for degenerate graphs
by proving that Connected k-Dominating set and k-Dominating

threshold set are FPT. From the other side we prove that there are
domination problems which are difficult (W[1] or W[2]-hard) for this
graph class. The Partial k-dominating set and (k, r)-Center for
r ≥ 2 are examples of such problems. It is also remarked that domi-
nation problems become difficult for graphs of bounded average degree.

Keywords: Parameterized complexity, algorithms, degenerate graphs,
domination.

1 Introduction and Overview of Results

Domination problems are fundamental and widely studied problems in algo-
rithms and complexity theory. This paper deals with parameterized complexity
of different domination problems for sparse graphs (we refer the reader to mono-
graphs [13,14] for general information on parameterized complexity and algo-
rithms). It is well known that these problems are W[1]-complete (like k-Perfect

code [6,12]) or W[2]-complete (like k-Dominating set [11]) for general graphs.
It is then natural to investigate complexity of these problems for restricted graph
classes. By now there is an extensive literature about parameterized complexity
of domination problems for different families of graphs.

Most versions of domination problems becomes fixed-parameter tractable
(FPT) for planar graphs. The first such result was established by Alber et al.
[1]. Later, these results were generalized for other families of sparse graphs. The
newly developed theory of bidimensionality (see e.g. survey [10]) was used for
construction of fixed-parameter algorithms for broad graph classes. By using
this theory it is possible to construct such algorithms for different domination
problems on apex-minor-free graphs. Moreover, these results can be extended
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c© Springer-Verlag Berlin Heidelberg 2008



196 P.A. Golovach and Y. Villanger

to even larger classes of graphs. Particularly, it was proved by Demaine et al.
that the k-Dominating set problem is FPT for H-minor-free graphs [9], (k, r)-
Center if FPT for map graphs [8] and apex-minor-free graphs. By developing
these ideas and applying new branching techniques Amini et al. proved that
Partial k-Dominating set, Partial weighted k-Dominating set and
Partial (k, r)-center are FPT for H-minor-free graphs [3]. Even more gen-
eral results for probelms which can be expressed in the first-order logic were
received by Dawar et al. [7].

A graph G is called d-degenerate (with d being a positive integer) if ev-
ery induced subgraph of G has a vertex of degree at most d. For example,
trees are exactly connected 1-degenerate graphs, and every planar graph is
5-degenerate. Moreover, it is known that all H-minor-free graphs are degenerate
(see [18,19,20]).

An ordering of vertices of a graph G v1, v2, . . . , vn is called a d-degenerate
ordering if every vertex vi has at most d neighbors among the vertices v1, v2, . . . ,
vi−1. It is well known that a graph is d-degenerate if and only if it allows a
d-degenerate ordering of its vertices. By considering vertices in the backward
d-degenerate ordering and using the method of bounded search trees it can be
proved that k-Perfect code [5] is FPT for degenerate graphs. Similar fact can
be easily established for Independent k-dominating set.

In [2] Alon and Gutner proved that k-Dominating set is FPT for
d-degenerate graphs. They used the method of bounded search trees and the
fact that degenerate graphs have bounded average degree. They also have shown
that Weighted k-dominating set is FPT for degenerate graphs. Using same
techniques it can be easily proved that some other domination problems (for
example, Roman k-dominating set) are also FPT for this family of graphs.

All these results lead us to the following question: which domination problems
are FPT for degenerate graphs, and which problems are W[1] or W[2]-hard?

Our results. Building on the ideas of Alon and Gutner we prove that it is
possible to construct FPT-algorithms for some other domination problems with
additional restrictions. Particularly, we prove that Connected k-dominating

set is FPT for degenerate graphs. Because of the additional restrictions (which
is connectivity of the dominating set in this case) it is impossible to apply the re-
sults of [2] directly. By using a similar approach we also show that k-dominating

threshold set is FPT. Next we prove that there are domination problems
which are more difficult for degenerate graphs. For instance we show that Par-

tial k-dominating set is W[1]-hard, and (k, r)-Center is W[2]-hard for this
class. We conclude our paper by the observation that domination problems be-
come difficult for graphs of bounded average degree.

2 Preliminaries

We consider finite undirected graphs without loops or multiple edges. The vertex
set of a graph G is denoted by V (G) and its edge set by E(G) (or simply V and
E if it does not create a confusion). For S ⊆ V (G) we denote by G[S] the



Parameterized Complexity for Domination Problems on Degenerate Graphs 197

subgraph of G induced by S. A set S ⊆ V (G) is called connected if G[S] is a
connected graph.

The open neighborhood of a vertex is denoted by NG(v) = {x : xv ∈ E(G)}.
For a positive integer r we define closed r-neighborhood of a vertex v, denoted
N r

G[v], to be the set of vertices of G at distance at most r from v. If U ⊂ V (G),
then N r

G[U ] denotes the set
⋃

v∈U

N r
G[v]. We use notations NG[v] and NG[U ] for

r = 1. Degree of a vertex v is denoted by degG v, ∆(G) = max{degGv : v ∈
V (G)}. We omit a subscript G if it does not create a confusion. The average
degree of G is defined as 1

|V (G)|
∑

v∈V (G)
deg v = 2|E(G)|

|V (G)| . It is known (end easy to

see) that every d-degenerate graph has the average degree no more than 2d.
It is said that a vertex v is dominated by the vertex u if v ∈ N [u], and it is

said that the vertex v is dominated by set S ⊆ V (G) if v ∈ N [S]. Recall that a
set S ⊆ V (G) is called a dominating set if every vertex of G is dominated by S.

The k-Dominating set is the following problem:

INSTANCE: A graph G.
PARAMETER: A positive integer k.
QUESTION: Is there a dominating set S ⊆ V (G) such that |S| ≤ k?

Recently Alon and Gutner [2] proved k-Dominating set to be FPT on d-
degenerate graphs by proving the proposition below. This proposition will be
required in both the FPT algorithms presented in the next sections. In order
to apply the proposition the problem is rephrased in terms of black and white
vertices. It is supposed that the vertex set V is partitioned into two sets W
(white vertices) and B (black vertices). The goal is to find a set S ⊂ W ∪ B
which dominates B.

Proposition 1. ([2]) Let G = (B ∪ W, E) be a d-degenerate black and white
graph. If |B| > (4d + 2)r, then there are at most (4d + 2)r vertices in G that
dominate at least |B|/r vertices of B.

This proposition enable us to apply the method of bounded search trees for the
k-Dominating set problem.

3 FPT Algorithms on d-Degenerate Graphs

3.1 Connected Domination

This subsection deals with the problem of finding a connected dominating set of
size at most k in a d-degenerate graph which we call Connected k-Dominating

set. Formally we define the problem as follows:

INSTANCE: A d-degenerate graph G.
PARAMETER: Positive integers d and k.
QUESTION: Does there exist a dominating set S ⊆ V such that G[S] is
connected and |S| ≤ k?
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It is well known that finding a connected dominating set of size k is W [2] hard on
general graphs (see e.g. [13]). The rest of this section presents an FPT algorithm
for this problem.

We assume without loss of generality that G is a connected graph with n
vertices and n ≥ k. Like in the paper by Alon and Gutner [2] a new problem in-
stance based on black and white vertices is created. Let (S, W, B, q) be a problem
instance for the graph G, where S contains vertices that must be contained in
the dominating set, the set W ⊆ V \S (white vertices) contains vertices that are
dominated by S, the set B (black vertices) contains the undominated vertices
V \ (S ∪W ), and q = k − |S|. Our goal is to decide if q vertices from W ∪B can
be added to S, such that S becomes a connected dominating vertex set of size k.
The initial problem instance for a graph G will be (S = ∅, W = ∅, B = V, q = k).
Each time a vertex in W ∪ B is moved to S the parameter q will be reduced by
one. From the initial problem instance, we will grow a tree of problem instances,
where the final leafs either contains a solution, or claims that the choices made
on the path from the root to the leaf is not consistent with any solution.

Connected or not, every vertex set of cardinality q in W ∪ B that dominates
B, contains a vertex that dominates at least |B|/q of the vertices in B. By
Proposition 1, |B| ≤ (4d+2)q or there exists at most (4d+2)q vertices in W ∪B
that dominate at least |B|/q vertices in B. As long as |B| > (4d+2)q, add a leaf
(S∪{u}, W∪(N(u)∩B)\{u}, B\N [u], q−1) to the problem instance (S, W, B, q)
for every vertex u ∈ W ∪ B where |N [u] ∩ B| ≥ |B|/q. By Proposition 1 we can
now conclude that problem instance (S, W, B, q) contains a solution if and only
if one of the added leafs contains a solution. Thus, the initial problem instance
(S, W, B, q) can be ignored from this point on. This process of reducing the size
of the problem instance by creating several new problem instances where one of
them contains a solution if and only if the initial problem instance contained a
solution will be referred to as branching. The number of new problem instances
is called the degree of the branching.

Like the algorithm for dominating set on d-degenerate graphs [2] we branch on
the at most (4d + 2)q vertices that dominates |B|/q vertices in B, until q = 0 or
|B| ≤ (4d + 2)q. If q = 0 and S is a connected dominating set, return the vertex
set S as the solution, otherwise mark the problem instance with no solution.

Let us now consider the case, where q ≥ 1 and |B| ≤ (4d + 2)q. Denote by
v1, v2, ..., vq the vertices of the connected dominating set, which are not contained
in S. Clearly, the subgraph of G induced by vertices from S and v1, v2, ..., vq must
have some spanning tree T . Label the vertices of S and v1, v2, ..., vq in any order,
this makes T into a labeled spanning tree. We will now extend the our problem
instance by adding a labeled tree containing k vertices. By Cayley’s theorem the
number of labeled spanning trees containing k vertices is kk−2. Add kk−2 leafs
to the problem instance (S, W, B, q), one for each possible labeled tree T over k
vertices. Notice that one of these will be equal to the labeled tree obtained by
the spanning tree of a connected dominating set and the labelling assigned to S
and v1, v2, ..., vq. From now on a problem instance (S, W, B, q, T ) is considered.
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In any connected dominating set of size k, the neighborhood of vi in v1, v2, ...,vq

will define a subset Vi of B which is dominated by vi. Branch on the no more
than q(4d+2)q different ways of putting the vertices of B into the q vertex sets
V1, V2, ..., Vq (some sets can be empty).

Now a dynamic programming algorithm is used to find vertices v1, v2, . . . , vq

or prove that there are no such vertices. Choose a vertex z of T as a root of the
tree. This induces a parent-child relation in the tree, which defines the set of leafs.
For every vertex x ∈ V (T ) a vertex set U(x) is defined. For every leaf x of T , the
vertex set U(x) = {x} if x ∈ S and U(x) = {v ∈ W ∪ B : Vi ⊆ NG[v]} if x = vi

for i ∈ {1, 2, ..., q}. Assume now that x in T has children y1, y2, . . . , yt such that
U(yi) is defined for i ∈ {1, 2, . . . , t}. There are two cases, let us first assume that
x ∈ S. If NG[x] ∩ U(yj) �= ∅ for all j ∈ {1, 2, . . . , t} then U(x) = {x}, otherwise
U(x) = ∅. Let us now assume that x = vi for i ∈ {1, 2, ..., q}. Then, U(x) = {v ∈
W ∪ B : Vi ⊆ NG[v] and NG[v] ∩ U(yj) �= ∅ for all j ∈ {1, 2, . . . , t}}. If U(z) = ∅
then the considered problem instance has no solution, and if U(z) �= ∅ then by the
dynamic programming it is easy to chose vertices from U(v1), U(v2), . . . , U(vq)
so that they together with vertices of S compose a connected dominating set
of cardinality no more than k. Note that it is possible that same vertices are
chosen from different sets U(vi), but it only means that we have a connected
dominating set of lesser cardinality.

The properties of our algorithm are summarized in the following theorem.

Theorem 1. The described algorithm decides in O(kO(dk) · nO(1)) time if a d-
degenerate graph contains a connected dominating set of size k.

Proof. The correctness of the algorithm follows from the description above. From
the initial problem instance the algorithm above create a branching tree, which
has the following properties. For every internal vertex of the branching tree, there
exists a child that has a solution if and only if the parent contains a solution.
For every leaf instance, we can decide in O(nO(1)) time if there exists a solution
to the instance, and every problem instance is created in O(nO(1)) time.

It remains to bound the number of instances in the branching tree, let us
count them. At most ((4d+2)k)k problem instances are created when branching
on vertices that dominates at least |B|/k of the vertices in B. There exists kk−2

trees containing k vertices, and these trees can be listed with complexity O(kk−1)
[15]. At most k(4d+2)k problem instances are created when distributing vertices
of B into the vertex sets V1, V2, ..., Vk. Total number of created problem instances
is obtained by multiplying these numbers, which give the total O(kO(dk)). Thus,
the running time is O(kO(dk) · nO(1)).

3.2 Dominating Threshold Set

For a given graph G = (V, E), and integers k and r, a vertex set S ⊂ V is
a dominating threshold set if the closed neighborhood N [v] contains at least r
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vertices in S for every vertex v ∈ V . Formally the k-Dominating threshold

set problem is defined as follows:

INSTANCE: A graph G and a positive integer r.
PARAMETER: A positive integer k.
QUESTION: Is there a set S ⊆ V (G) such that |S| ≤ k and for every vertex
u ∈ V (G) |N [u] ∩ S| ≥ r?

This problem can be solved on d-degenerate graphs in a similar way as the
Connected k-dominating set problem was solved on d-degenerate graphs.

We assume that n = |V | and k ≤ n. If r > d + 1 or r > k then the graph has
no dominating threshold set. So we suppose that r ≤ min(d + 1, k).

Let us rephrase the problem in terms of black and white vertices. Consider the
problem instance (S, W, B, q), where S are vertices in the dominating threshold
set, W are vertices that are dominated by at least r vertices in S, B = V \ W ,
and q = k−|S|. Notice that even vertices in S has to be dominated by r vertices,
so adding a vertex v to S, do not enable us to remove it from B. The initial
problem instance will be (S = ∅, W = ∅, B = V, q = k).

Dominating threshold set are also dominating sets, so Proposition 1 applies
here as well. Thus, |B| ≤ (4d + 2)q or there exists at most (4d + 2)q vertices in
W ∪B that dominates at least |B|/q of the vertices in B. While |B| ≥ (4d + 2)q
we branch and create one new problem instance (S∪{u}, W ∪U, B \U, q−1) for
each vertex u ∈ (W ∪ B) \ S that dominates at least |B|/q vertices in B, where
U is the set of vertices in N [u] ∩ B that are dominated by r − 1 vertices in S.
Repeat this branching until q = 0 or |B| ≤ (4d + 2)q. If q = 0 and B = ∅ return
S as the solution, otherwise if B �= ∅ then mark the problem instance with no
solution.

Consider now the case where |B| ≤ (4d + 2)q. It is not enough to find a
dominating set of B in this case since every vertex requires r neighbors in S. Like
the connected domination set problem we define the vertex sets V1, V2, ..., Vq ⊆
B, but this time every vertex of B can be added to several sets. The reason for
this is that it might be missing more than one dominator.

Now, branch on the at most q(4d+2)qr different ways of adding the at most
(4d + 2)q vertices of B to the vertex sets V1, V2, ..., Vq in such a way that for
every vertex v ∈ B |{i : v ∈ Vi}| + |{u ∈ S : v ∈ N [u]}| ≥ r. If there are no such
sets then the problem instance has no solution. Otherwise for every new instance
we are trying to add to our set S vertices v1, v2, . . . , vq such that vi dominates
exactly set Vi.

Define Ui = {w : w ∈ (W ∪ B) \ S and Vi = N [w] ∩ B} for i ∈ {1, 2, . . . , q}.
Clearly there is no solution if some vertex set Ui is empty. Also if Vi �= Vj then
Ui ∩ Uj = ∅. Let si = |{j : Vj = Vi}| for every i ∈ {1, 2, . . . , q}. If |Ui| < si

for some i ∈ {1, 2, . . . , q} then the problem instance has no solution. Otherwise
we consider all pairwise different sets Ui. From every such set Ui we chose si

different vertices and add them to the set S.

Theorem 2. The described algorithm decides in O(kO(dkr) · nO(1)) time if a
d-degenerate graph contains a dominating r-threshold set of size k.
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Proof. The correctness of the algorithm follows from the description above. From
the initial problem instance the algorithm create a branching tree, which has the
following properties. For every internal vertex of the branching tree, there exists
a child that has a solution if and only if the parent contains a solution. For every
leaf instance, we can decide in O(nO(1)) time if there exists a solution to the
instance, and every instance is created in O(nO(1)) time.

It remains to bound the number of instances in the branching tree. At most
((4d+2)k)k problem instances are created when branching on vertices that dom-
inates at least |B|/k of the vertices in B. There exists no more than k(4d+2)kr =
kO(dkr) different ways of adding vertices from B to the vertex sets V1, V2, ..., Vq.
The total number of created problem instances is then O(kO(dkr)). Thus, the
running time is O(kO(dkr) · nO(1)).

4 Partial Domination

Here we consider a variant of domination problem, in which it is not necessary
to dominate all vertices of a graph, but at least the given number of vertices.
The Partial k-dominating set problem is formulated as follows:

INSTANCE: A graph G and a positive integer N .
PARAMETER: A positive integer k.
QUESTION: Is there a set S ⊆ V (G) such that |S| ≤ k and which dominates
at least N vertices?

It can be easily seen that this problem is W[2]-complete on general graphs(if N =
|V (G)| then Partial k-dominating set is the k-Dominating set problem).
Note that here N is a part of the instance, but is not a parameter of the problem.
If N is supposed to be a parameter of the problem then it is FPT [17]. Recall that
Amini et al. proved that Partial k-dominating set is FPT for H-minor-free
graphs [3]. We prove that Partial k-dominating set is difficult for degenerate
graphs.

Theorem 3. Partial k-dominating set is W[1]-hard for 2-degenerate graphs.

Proof. We reduce the k-Perfect code problem. A perfect code in a graph G
is a set of vertices S ⊆ V (G) with the property that for every vertex v ∈ V (G),
there is exactly one vertex from S in N [v]. The k-Perfect code is the following
problem:

INSTANCE: A graph G.
PARAMETER: A positive integer k.
QUESTION: Is there a perfect code S ⊆ V (G) of size k?

It is known [6,12] that this problem is W[1]-complete.
Let G be a graph with n vertices and m edges. It can be assumed without

loss of generality that this graph is connected and has at least 2 vertices. We
construct graph G′ starting with the vertex set V = V (G). Let t = n3 and
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r = ∆(G)2t. If vertices u, v ∈ V are adjacent in G or are at distance 2 in
this graph then u and v are joined by t paths of length two. Then for every
vertex v ∈ V add r − t(|N2

G[v]| − 1) adjacent pendant vertices. Denote by U
the set of vertices of degree 1 or 2 which were included to the vertex set of G′

at this stage of our construction. Now for every vertex v ∈ V we execute the
following operation: for every two different vertices x, y ∈ NG[v] a x, y-path of
length two is added to G′. Denote by W (v) the set of vertices of degree 2 which
were added during this operation for the vertex v, and let W =

⋃
v∈V

W (v). Note

that some vertices can be joined by several paths after these operations for all
vertices of V , but since any two different vertices of V can belong to closed
neighborhoods of no more than n vertices, the number of such paths is no more
than n. Then |W | ≤ n2(n−1)

2 . Clearly G′ is 2-degenerate, and our construction
of G′ is polynomial. Now we define N = (r + 1)k + 2m.

Suppose that S ⊆ V (G) is a perfect code in G. It can be easily seen that
NG′ [S]∩V = S. Since S is a perfect code, vertices of S are at distance at least 3
in the graph G. It follows immediately that |NG′ [S]∩ U | = kr. For every vertex
v ∈ V exactly one vertex x ∈ NG[v] belongs to S. Then NG′ [S]∩W (v) = NG′(x)∩
W (v), and |NG′(x)∩W (v)| = degG v. So |NG′ [S]∩W | =

∑
v∈V

degG v = 2m. Now

|NG′ [S]| = |NG′ [S] ∩ V | + |NG′ [S] ∩ U | + |NG′ [S] ∩ W | = (1 + r)k + 2m = N .
Assume now that S ⊆ V (G′), |S| ≤ k and |NG′ [S]| ≥ N . Suppose that

|S| < k. Then |NG′ [S]| = |NG′ [S]∩ (V ∪U)|+ |NG′ [S]∩W | ≤ |S|(r +1)+ |W | ≤
|S|(r + 1) + n2(n−1)

2 < (|S| + 1)(r + 1) ≤ N . So |S| = k. If the set S contains
a vertex from U ∪ W then |NG′ [S]| = |NG′ [S] ∩ (V ∪ U)| + |NG′ [S] ∩ W | ≤
(k − 1)(r + 1) + |W | + 3 ≤ (k − 1)(r + 1) + n2(n−1)

2 + 3 < k(r + 1) ≤ N . This
contradiction means that S ⊆ V . Suppose that S contains vertices that are
adjacent or 2-distant in G. In this case |NG′ [S]| = |NG′ [S]∩ (V ∪U)|+ |NG′ [S]∩
W | ≤ k(r + 1) − t + |W | ≤ k(r + 1) + n2(n−1)

2 − t < k(r + 1) ≤ N , and we
conclude that for every v ∈ V NG[v] contains no more than one vertex from S.
If there is a vertex v ∈ V such that there are no vertices from S in NG[v] then
|NG′ [S]| = |NG′ [S]∩ (V ∪U)|+ |NG′ [S]∩ W | ≤ k(r + 1) + 2m− degG v < N . It
follows immediately that S is a perfect code of the size k in G.

5 (k, r)-Center Problem

The (k, r)-Center (see e.g. [4] for the background of this problem) is another
example of domination problem which becomes difficult for degenerate graphs.
Let r be a positive integer. The set S ⊆ V (G) is called a r-center if N r[S] =
V (G). The (k, r)-Center is the following problem:

INSTANCE: A graph G.
PARAMETER: Positive integers k and r.
QUESTION: Is there a r-center S ⊆ V (G) such that |S| ≤ k?
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Clearly k-Dominating set is a special case of this problem for r = 1, hence
(k, r)-Center is W[2]-hard for general graphs. We prove that for r ≥ 2 results
by Amini et al. [3] can not be extended for degenerate graphs if FPT �= W[2].

Theorem 4. For any r ≥ 2 the (k, r)-Center is W[2]-hard for 2-degenerate
graphs.

Proof. We reduce k-Dominating set problem. Let G be a connected nonempty
graph, and V = V (G). Every edge of G is replaced by the path of length r. We
call a vertex x of such a path the central vertex if it is at distance � r

2 from
one of endpoints (if r is even every path has one central vertex, and there are
two central vertices if r is odd). Then a new vertex u is introduced and joined
by paths of length � r

2� + 1 with all central vertices. At the final stage of the
construction a vertex v is added and joined with u by the path P of length r.
Denote the obtained graph by G′. Clearly G′ is 2-degenerate.

We prove that G has a dominating set of a size at most k if and only if G
has a r-center of a size at most k + 1. Suppose that S is the dominating set
in G and |S| ≤ k. It can be easily seen that S ∪ {u} is a r-center of G′ and
|S| ≤ k + 1. Assume now that S′ is a r-center of G′ and |S′| ≤ k + 1. At least
one vertex of the path P is included to S′. Without loss of generality we can
assume that u is a unique vertex of this path which belongs to S′. Note that
V (G′) \ V = N r

G′ [u]. Let S = S′ \ {u}. Suppose that there is a vertex x ∈ S
such that x /∈ V . Then either x is a vertex of the path which replaced some edge
ab ∈ E(G) or it belongs to the path which connects u with the central vertex of
such a path. Only vertices a and b in V are at distance at most r from x. Then
we can replace x in S by a or b. It means that we can assume that S ⊆ V . It
can be easily seen that S is a dominating set of G, and |S| ≤ k.

6 Domination Problems for Graphs of Bounded Average
Degree

It is known that some graph covering problems (like k-Independent set) are
FPT for graphs of bounded average degree, but it can be simply proved that
domination problems are W[1] or W[2]-hard for this class.

Proposition 2. The k-Dominating set problem is W[2]-hard for graph of
bounded average degree.

Proof. We reduce k-Dominating set for general graphs. Let G be a graph with
n vertices and m edges. Define G′ as a union of G and a star K1,r for r = n2. The
average degree of G′ is equal to 2m+2r

n+r+1 ≤ 3n2

n2 = 3, i.e. this graph has bounded
average degree. It can be easily seen that G has a dominating set of a size k if
and only G′ has a k + 1-element dominating set.

By same reduction it can be easily proved that k-Perfect code is W[1]-hard
for graphs of bounded average degree and Independent k-dominating set

is W[2]-hard for this class. For connected dominating set reduction is slightly
different.
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Proposition 3. The Connected k-dominating set problem is W[2]-hard for
graph of bounded average degree.

Proof. We reduce k-Dominating set for general graphs. Let G be a graph with
n vertices and m edges. Suppose that V (G) = {v1, v2, . . . , vn}. We introduce two
copies of the set V (G): U = {u1, u2, . . . , un} and W = {w1, w2, . . . , wn}. Vertices
ui and wj are joined by an edge if i = j or vivj ∈ E(G). Then a new vertex
z is added and joined by edges with all vertices of W . At the final stage of the
construction n2 pendant vertices adjacent to z are added. Denote the obtained
graph G′. The average degree of G′ is equal to 4m+2n+2n2

2n+1+n2 ≤ 4, i.e. this graph
has bounded average degree. It can be easily seen that G has a dominating set
of a size k if and only G′ has a k + 1-element connected dominating set. If S is
a dominating set in G then S′ = {wi : vi ∈ S} ∪ {z} is a connected dominating
set in G′. Suppose that S′ is a connected dominating set in G′ of size at most
k + 1. Clearly, z ∈ S′, and we can assume that all other vertices of this set
belong to U ∪ W . If some vertex ui ∈ S′ then it can be replaced by wi in our
dominating set. So we can also assume that S′ \ {z} ⊆ W . We have only note
that S = {vi ∈ V (G) : wi ∈ S′ \ {z}} is a dominating set in G.

7 Conclusion

We proved that the k-domination problem remains FPT for degenerate graphs,
even if additional restrictions like connectivity or a threshold boundary is added.
On the other side the k-domination problem becomes W[1] or W[2]-hard on
degenerate graphs, when a partial or r-center domination is required. It could
be interesting to obtain a sharper boundary between the FPT and W-hardness
for different classes of sparse graphs. For example, it easily follows from the
results of [3] that the Partial k-vertex cover problem is FPT for degenerate
graphs, but this problem is W[1]-complete for general graphs [16]. By using the
same reduction as in Theorem 2, the Partial k-vertex cover is W[1]-hard
for graphs of bounded average degree. At the same time it is well known that the
k-Independent set which is W[1]-hard for general graphs is FPT for this class.
Another interesting problem is a construction of more efficient FPT-algorithms
for domination problems on d-degenerate graphs.
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Abstract. A set X of vertices of an acyclic graph is convex if any vertex
on a directed path between elements of X is itself in X. We construct an
algorithm for generating all input-output constrained convex (IOCC) sets
in an acyclic digraph, which uses several novel ideas. We show that our
algorithm is more efficient than algorithms described in the literature
in both the worst case and computational experiments. IOCC sets of
acyclic digraphs are of interest in the area of modern embedded processor
technology.

1 Introduction

In this paper we consider an algorithm for generating all input-output con-
strained convex sets in an acyclic digraph N . There is an immediate application
for this algorithm in the field of embedded systems design. One of the major de-
sign choices for any new processor is the selection of the machine instruction set.
In an embedded system, the processor will only execute a single fixed program
during its lifetime, and significant efficiency gains can be made by choosing the
machine instruction set, and associated hardware, to support the program that
will be executed.

In particular there exist extensible general purpose processors such as the
ARM OptimoDE, the MIPS Pro Series and the Tensilica Xtensa that can be
customized for specific applications by the addition of custom-designed machine
instructions and supporting hardware. The approach is to choose a set of ap-
plication specific machine instructions by examination of the target program;
candidate instructions are likely to involve the combination of several basic com-
putations. For example, a program solving simultaneous linear equations may
find it useful to have a single instruction to perform matrix inversion on a set of
values held in registers.

Candidate instruction identification is carried out on data dependency graphs
(DDGs), which are obtained from the application program by first splitting it
into basic blocks, regions of sequential computation with no control transfer into
their bodies, and then creating vertices for each instruction. There is an arc to
each vertex u from those vertices whose instructions compute input operands
of u. The resulting DDGs are acyclic and any convex subset of vertices is a
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candidate for a custom instruction which could be implemented in hardware.
(A vertex set X is convex if it has the property that any vertex which lies on a
path between vertices in X is itself in X , and convexity ensures that all of the
inputs for the proposed instruction are available at the start of the instruction
execution.)

We have given [4] an algorithm which efficiently finds all the connected con-
vex vertex sets of an acyclic digraph N . However, in practice a given hardware
application will have specific, and usually small, input and output constraints.
This significantly reduces the size of the solution space and thus presents an
opportunity for a more efficient enumeration algorithm. Furthermore, certain
instructions, such as writes to main memory, cannot be combined into a custom
instruction, thus certain vertices in the acyclic digraph can be designated as
forbidden from the point of view of inclusion in a candidate set. Thus we are in-
terested in finding all convex sets which have specified bounds, nin and nout, on
the numbers of input and output vertices and which do not contain any vertices
from a specified forbidden set F . For a convex set S, a vertex i ∈ V (N) − S
(o ∈ S) is called an input vertex (output vertex) if there is an arc from i to a
vertex in S (there is an arc from o to a vertex not in S).

Bonzini and Pozzi [1] and Chen, Maskell and Sun [2] proved that with the
two constraints above there are only polynomial number, O(nnin+nout), of valid
convex sets in an acyclic digraph N with n vertices provided nin and nout are
constants (as they are in practice). The algorithm given in [1], the BP algorithm,
has running time O(nnin+nout+1). For an acyclic digraph N with unique source
s (which is a vertex of in-degree zero) and a vertex set Q, a vertex set C is a
generalized dominator of Q if each path from s to Q passes through a vertex in
C, and for each vertex c ∈ C there is a path from s to Q which contains only
c and no other members of C. It was observed in [1] that if C is a generalized
dominator of B in N then there is a convex set S in N with the set of input
vertices C and the set of output vertices containing B. However, the converse it
not true and, as a result, the BP algorithm does not generate all valid convex
sets (in our experiments up to 25% of all valid convex sets were not generated
by the BP algorithm); for a more detailed discussion, see [6].

Moreover, the BP algorithm is efficient only when the number c(N) of valid
convex sets in N is close to Θ(nnin+nout). In practice many acyclic digraphs
N have significantly fewer valid convex sets. In such cases our valid convex set
generation algorithm A described below, which is of time complexity O(m ·
n2

in(c(N) + nnout) + m), is significantly faster (m is the number of arcs in N)
than the BP algorithm. More importantly, A generates all valid convex sets.

In computational experiments, we have compared A with the state-of-the-
art algorithm of Chen, Maskell and Sun [2] (CMS algorithm) and the well-
known algorithm of Atasu, Pozzi and Ienne [5] (API algorithm). Our experiments
clearly demonstrate that A is significantly faster than both the CMS and API
algorithms.

For more information on modern embedded processors technology and convex
set generating algorithms, see, e.g. [1,2,3,4,5].
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In what follows, N denotes the acyclic digraph under consideration and F0
is the initial set of forbidden vertices. By adding extra vertices to N and F0 if
necessary, without loss of generality we shall assume that N has a unique vertex
s (source) with in-degree zero and a unique vertex t (sink) with out-degree zero.
We assume that s, t ∈ F0. Thus, every vertex lies on a directed path between
two elements of F0.

For a fixed pair nin, nout of positive integers and a set F of forbidden vertices,
we say that a convex set S is valid if S ∩ F = ∅ and the numbers of its input
and output vertices are at most nin and nout, respectively. For vertex sets Y, Z,
an arc yz with y ∈ Y and z ∈ Z is called an (Y, Z)-arc and a path (walk)
starting in a vertex of Y and terminating in a vertex of Z is called a (Y, Z)-path
((Y, Z)-walk). In this paper, all walks (and, thus, paths and cycles) are directed.

2 Preliminary Results

Let O be an arbitrary set of vertices such that |O| ≤ nout and the following
holds: for every vertex o ∈ O there is an (o, F )-path in N − (O − {o}). The
condition guarantees that there is no convex set containing O with the output
set O′ ⊂ O.

Definition 1. For a set Y of vertices in a digraph D, the convex closure Y cl
D

(or just Y cl if D is clear from the context) is defined as Y cl
D = {u | ∃(u, Y ) −

path & (Y, u) − path}. That is, Y cl
D contains all vertices with a path in D into

Y and a path in D from Y . In particular Y ⊆ Y cl.

Let X and F be arbitrary sets of vertices in N , such that Ocl
N ⊆ X , F0 ⊆ F

and X ∩ F = ∅. We will give a recursive algorithm that finds all convex sets
S with O as the output vertices, with at most nin input vertices and with
X ⊆ S ⊆ V (N)−F . However, before doing this we need the following definitions
and lemmas.

Definition 2. Given the above definitions, let N∗ be obtained from N by delet-
ing all arcs out of the vertices in O. Let D be obtained from N∗ by coloring every
arc xy ∈ A(N∗) red and adding the blue-colored arc yx.

Given a multiset B of arcs in D, let DB denote the directed multigraph with
V (DB) = V (D) and A(DB) = B. Note that B may contain several copies of the
same arc in D and DB may therefore contain parallel arcs.

Definition 3. A multiset W of arcs in D is (D; F, X)-feasible if the following
conditions hold.

(i) d+
DW

(f) ≥ d−DW
(f) for all f ∈ F ;

(ii) d−DW
(x) ≥ d+

DW
(x) for all x ∈ X;
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(iii) d−
DW

(y) = d+
DW

(y) for all y ∈ V (DW) − F − X;
(iv) No distinct red arcs in DW have the same initial vertex;
(v) There are no 2-cycles in DW .

Define R(W) as follows.

R(W) =
∑
f∈F

(d+
DW

(f) − d−
DW

(f)) =
∑
x∈X

(d−
DW

(x) − d+
DW

(x))

Definition 4. Let W be a (D; F, X)-feasible multiset of arcs in D and let W =
w1w2 . . . wk be a walk in D. Let R denote all vertices in D with a red arc out of
them in W and let RED(D) denote all red arcs in D. A vertex wi ∈ V (W ) is said
to be either (W , W )-special, (W , W )-normal or (W , W )-forbidden depending on
the following.

(a) wi is (W , W )-special if and only if 1 < i < k, wiwi−1 ∈ W ∩ RED(D) and
wiwi+1 ∈ RED(D).

(b) wi is (W , W )-normal if and only if wi is not (W , W )-special and the fol-
lowing holds: i = k or wiwi+1 �∈ RED(D) or wi+1wi ∈ W or wi �∈ R.

(c) wi is (W , W )-forbidden if it is not (W , W )-special or (W , W )-normal.
In other words, wi is (W , W )-forbidden if and only if i < k and wiwi−1 �∈
W ∩ RED(D) (or i = 1) and wiwi+1 ∈ RED(D) and wi+1wi �∈ W and
wi ∈ R.

We now define a (D;W ; F, X)-feasible walk, W , in D as any (F, X)-walk where
for every vertex x ∈ V (D), x appears at most once on W as a (W , W )-special
vertex, it appears at most once on W as a (W , W )-normal vertex and it does
not appear at all as a (W , W )-forbidden vertex.

Lemma 1. Let W be a (D; F, X)-feasible multiset of arcs in D and let W =
w1w2 . . . wk be an (F, X)-walk in D. If no vertex on W is (W , W )-forbidden then
there exists a (D;W ; F, X)-feasible walk, W ′, in D from w1 to wk.

Proof: Assume without loss of generality that W is the shortest walk from w1 to
wk in D without any (W , W )-forbidden vertices. For the sake of contradiction
assume that W is not a (D;W ; F, X)-feasible walk, which implies that some
vertex x ∈ V (D) appears on W at least twice as a (W , W )-special vertex or at
least twice as a (W , W )-normal vertex.

First assume that x = wi = wj and 1 < i < j < k and both wi and wj are
(W , W )-special. This means that w1w2 . . . wiwj+1wj+2 . . . wk is a walk from w1
to wk containing no (W , W )-forbidden vertices (as wi is still (W , W )-special and
no other vertex changes status). This contradicts the minimality of W .

So now assume that x = wi = wj and 1 ≤ i < j ≤ k and both wi and
wj are (W , W )-normal. Again we note that W ′ = w1w2 . . . wiwj+1wj+2 . . . wk

is a walk from w1 to wk containing no (W , W )-forbidden vertices (if j = k,
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then W ′ = w1w2 . . . wi). This again contradicts the minimality of W . These
contradictions imply that W is a (D;W ; F, X)-feasible walk. ��

Corollary 1. Let W be a (D; F, X)-feasible multiset of arcs in D. If W =
w1w2 . . . wk and W ′ = wkwk+1 . . . wl are (D;W ; F, X)-feasible walks in D, then
there exists a (D;W ; F, X)-feasible walk from w1 to wl in D.

Proof: Let W ∗ = w1w2 . . . wkwk+1 . . . wl. As wk is not a (W , W ∗)-forbidden
vertex on W ∗ (as otherwise wk would be (W , W ′)-forbidden on W ′) we note that
there are no (W , W ∗)-forbidden vertices on W ∗. We are now done by Lemma 1.

��
Recall that if W is a multiset of arcs and W is a walk, then if some arc appears
i times in W and j times in A(W ) then it appears i + j times in A(W ) ∪ W.

Lemma 2. Let W be a (D; F, X)-feasible multiset of arcs in D and let W be
a (D;W ; F, X)-feasible walk in D. Let W ′ be obtained from A(W ) ∪ W after
deleting pairs xy, yx of arcs until there is no 2-cycles anymore. Then W ′ is a
(D; F, X)-feasible multiset of arcs in D with R(W ′) = R(W) + 1.

Proof: Let W ′ be defined as in the statement of the lemma and let W ′′ =
A(W ) ∪ W . As W is a walk from F to X we note that (i), (ii) and (iii) in
Definition 3 hold for W ′′ and R(W ′′) = R(W)+1. However this implies that (i),
(ii) and (iii) in Definition 3 also hold for W ′ and R(W ′) = R(W)+1, as deleting
2-cycles have no effect on d−(y) − d+(y) for any y ∈ V (D). By the definition of
a (D;W ; F, X)-feasible walk in D we note that (iv) in Definition 3 holds for W ′

(as the only way a vertex can increase the number of red arcs leaving it is if x
is a (W , W )-normal vertex in W and x did not have any red arcs leaving it in
W). By the construction of W ′ we also note that (v) in Definition 3 holds for
W ′. ��
We say that a set S = {Q1, Q2, . . . , Qp} of paths and cycles in a directed multi-
graph M is a decomposition of M if each arc of M belongs to exactly one element
of S.

Lemma 3. Let W be a (D; F, X)-feasible multiset of arcs in D. Then DW can
be decomposed into W1, W2, . . . , WR(W), C1, C2, . . . , Ck (for some k ≥ 0), such
that Wi is a path from F to X in DW for all i = 1, 2, . . . , R(W) and Cj is a
cycle in DW for all j = 1, 2, . . . , k.

Proof: If R(W) = 0, DW is eulerian and it is well-known that DW can be
decomposed into a number of cycles. So assume that R(W) > 0. We will use
induction on |A(DW)|. Let u1 ∈ F be any vertex with d+

DW
(u1) > d−DW

(u1).
Starting at u1 and moving to a successor vertex until we reach an already visited
vertex, in which case we obtain a cycle, or we reach a vertex in X , in which case
we obtain an (F, X)-path in DW . Remove the arcs of this cycle or path from
W and use induction if R(W) > 0 or the above case when R(W) = 0. It is not
difficult to see that this results in the desired decomposition, with exactly R(W)
(F, X)-paths in DW . ��
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Lemma 4. Let W be a (D; F, X)-feasible multiset of arcs in D, such that R(W)
≤ nin. Assume that Ocl

N ⊆ X and that for every vertex o ∈ O there is an (o, F )-
path in N − (O −{o}). Let Q be a set of vertices such that X ⊆ Q ⊆ V (D)−F .
If there is no (D;W ; V (D) − Q, Q)-feasible walk in D then Q is a convex set
in N satisfying the input and output constraints. Furthermore, O is the set of
output vertices of Q.

Proof: Let Q be defined as stated in the lemma. Assume that Q is not convex,
implying that there is a w �∈ Q such that there exists a (w, Q)-path, P , in N
and a (Q, w)-path, P ′, in N . Let P ′′ be the reverse of P ′ and note that if no
vertex of P ′ belongs to O, then P ′′ is a blue path in D from w ∈ V (D) − Q to
Q. As there is no (D;W ; V (D) − Q, Q)-feasible walk in D we must have that
some vertex on P ′ does indeed belong to O. Let o1 ∈ V (P ′) ∩ O be arbitrary.

Let p be the terminal vertex of P and note that p ∈ Q. As there is a path,
P ∗, in N from p to F (recall that there exist (u, F )-paths for all u ∈ V (N)), we
get a blue path from F to Q unless some vertex on the P ∗ belongs to O. Let this
vertex be o2 ∈ V (P ∗) ∩ O. By the above construction, we have an (o1, w)-path
in N and an (w, o2)-walk in N (by merging P and part of P ∗). However this
implies that w ∈ Ocl

N ⊆ X ⊆ Q, a contradiction.
We will now prove that the input and output constraints are satisfied. Assume

that there is some arc, xy, out of Q in N where x �∈ O. Thus, yx is a blue arc in
D and yx is a (D;W ; V (D) − Q, Q)-feasible walk in D, a contradiction. So the
only arcs out of Q in N come from O. Let o ∈ O be arbitrary and recall that
there is an (o, F )-path in N − (O −{o}), which implies that some vertex on this
path is an output vertex for Q. Therefore, this vertex must be o, so we have now
shown that O is exactly the output vertices for Q.

Assume that the input constraint is not satisfied and that {x1, x2, . . . , xr} is a
set of vertices in V (N)−Q with arcs into Q in N and r > nin. Let {y1, y2, . . . , yr}
be defined such that xiyi is an (V (D) − Q, Q)-arc in N for all i ∈ {1, 2, . . . , r}.
By Lemma 3 let W1, W2, . . . , WR(W), C1, C2, . . . , Ck be a decomposition of W ,
such that Wi is a path from F to X in DW for all i = 1, 2, . . . , R(W) and Cj is
a cycle in DW for all j = 1, 2, . . . , k.

Assume that there is some xi ∈ {x1, x2, . . . , xr} such that there is no red
(xi, Q)-arc in W . If there is no red arc out of xi in W at all, then the arc xiyi

contradicts the fact that there is no (D;W ; V (D)−Q, Q)-feasible walk in D. So
let xiu be a red arc in W where u �∈ Q. However the path uxiyi again contradicts
the fact that there is no (D;W ; V (D) − Q, Q)-feasible walk in D. So for every
vertex in {x1, x2, . . . , xr} there exists a red (xi, Q)-arc in W . Without loss of
generality we may assume that {y1, y2, . . . , yr} was chosen such that xiyi is red
and xiyi ∈ W for all i = 1, 2, . . . , k. If for some i ∈ {1, 2, . . . , k} the arc xiyi

belongs to a cycle Ca ∈ {C1, C2, . . . , Ck}, then there is a (Q, V (D) − Q)-arc,
uv, in Ca. However, the path vu is a (D;W ; V (D) − Q, Q)-feasible walk in D, a
contradiction.

As r > nin ≥ R(W) there must be some path in {W1, W2, . . . , WR(W)} that
contains at least two arcs from {x1y1, x2y2, . . . , xryr}. Without loss of generality
assume that x1y1 is the first such arc on W1 and x2y2 is the second such arc
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on W1. This implies that there is a walk from y1 ∈ Q to x2 �∈ Q, containing a
(Q, V (D) − Q)-arc, uv. However the path vu is a (D;W ; V (D) − Q, Q)-feasible
walk in D, a contradiction. This contradiction against r > nin implies that the
input constraint is satisfied. ��

Lemma 5. Let W be a (D; F, X)-feasible multiset of arcs in D, such that R(W)
> nin. Then there is no convex set of vertices, Q, in N , such that X ⊆ Q ⊆
V (D) − F and Q satisfies the input constraint and has O as its output vertices.

Proof: For the sake of contradiction assume that there exists a convex set of
vertices, Q, in N , such that X ⊆ Q ⊆ V (D) − F and Q satisfies the input
constraint and has O as its output vertices. Let I = {i1, i2, . . . , ir} be the input
vertices for Q and r ≤ nin. By Lemma 3 let W1, W2, . . . , WR(W), C1, C2, . . . , Ck

be a decomposition of W , such that Wi is a path from F to X in DW for all
i = 1, 2, . . . , R(W) and Cj is a cycle in DW for all j = 1, 2, . . . , k. As r ≤ nin <
R(W) there must be some path Wi, without loss of generality say W1, which
does not contain a red arc out of any vertex in I (as each vertex in I has at most
one red arc out of it in W). Let uv be a (V (D) − Q, Q)-arc on W1. If uv is a
red arc then u �∈ I, contradicting the fact that I is the set of input vertices. So
uv is a blue (V (D) − Q, Q)-arc in D. Hence u ∈ N∗ and v ∈ O contrary to the
definition of N∗. ��

Lemma 6. Let W be a (D; F, X)-feasible multiset of arcs in D. In time O(|V (N)
|+|A(N)|) we can find a (D;W ; F, X)-feasible walk in D if it exists or determine
that it does not exist. If it does not exist we can also determine the following two
sets:

S = {u | there is a (D;W ; F, {u})-feasible walk in D}
T = {v | there is a (D;W ; {v}, X)-feasible walk in D}

Proof: We will define a digraph D′ as follows. Let R contain all vertices in D
which have a red arc out of them in W . Let the vertex set of D′ be V (D′) =
V (D)∪{r′ | r ∈ R} (that is we duplicate all vertices in R). For all arcs uv ∈ A(D)
add the following arcs to D′.

(R1) If uv is red and vu �∈ W and u ∈ R, then add u′v to D′.
(R2) If uv is red and vu ∈ W or u �∈ R, then add uv to D′.
(B1) If uv is blue and vu ∈ W , then add uv and uv′ to D′.
(B2) If uv is blue and vu �∈ W , then add uv to D′.

Now use any algorithm such as depth (or breadth) first search to find an
(F, X)-path in D′ if it exists (we start and end in vertices of the form u and not
u′). First assume that such a path P ′ = x1x2 . . . xk exists. Replacing vertices
of the form u′ with u, we obtain a walk W = w1w2 . . . wk in D, which we will
show is a (D;W ; F, X)-feasible walk. If xi = w′

i then, since there are no arcs of
the form y′z′ in D′, we must have xi−1 = wi−1 and xi+1 = wi+1. Thus, it is
not difficult to see that wi a (W , W )-special vertex in W . Whereas if wi = xi then
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either i = k or R2, B1 or B2 holds for wiwi+1 and so wi is (W , W )-normal in
W . Thus, since P ′ is a path, W is indeed a (D;W ; F, X)-feasible walk in D.

Now assume that some (D;W ; F, X)-feasible walk, W , in D exists. Let W =
w1w2w3 · · ·wl. If wi is (W , W )-special in W then change it to w′

i in D′. After
doing this for all special vertices we note that we get a path from F to X in
D′. So we have now shown that there exists a (D;W ; F, X)-feasible walk in D
if and only if there exists an (F, X)-path in D′. This gives us the correct time
complexity as |V (D′)| ≤ 2|V (D)| and |A(D′)| ≤ 2|A(D)|.

If there is no (F, X)-path in D′ then it is not difficult to find the set of vertices
Z ⊆ V (D′), such that there is an (F, z)-path in D′ if and only if z ∈ Z. Now
let S = {u ∈ V (D) | u ∈ Z} (note that {u ∈ V (D) | u ∈ Z or u′ ∈ Z} is an
equivalent definition of S). It is not difficult to see that S is the set of vertices
in V (D) for which there exists a (D;W ; F, {s})-feasible walk in D. Analogously
we can find T . ��

3 The Algorithm

The algorithm A(N, F ) described below makes a call to B(∅, F, X) for all possible
output sets O (see A.2) where X = Ocl

N . The procedure B(W, F, X) will then find
all convex sets, Q, satisfying the input constraint and having O as the output
vertices and satisfying X ⊆ Q ⊆ V (N) − F .

Lemma 7. The sets saved by A(N, F ) are precisely the valid convex sets of N
and furthermore no such set is saved more than once.

Proof: We only save solutions in B.4 or B.5.2. In both cases, using Corollary 1
and Lemma 4, it can be seen that the saved set is a valid convex set.

Now let Q′ be a valid convex set. Let O′ be the output vertices of Q′. Assume
that for some o′ ∈ O′ there is no (o′, F )-path in N−(O′−{o′}). Let y ∈ N+

N (o′) be
arbitrary and assume that y �∈ Q′. However there is no (y, F )-path in N − (O′ −
{o′}) but there is a (y, F )-path in N . This implies that there is a (y, O′ −{o′})-
path in N . Therefore y ∈ Q′ (as Q′ is convex), a contradiction. So for every
o′ ∈ O′ there is a (o′, F )-path in N − (O′ − {o′}). Note that X = (O′)cl

N ⊆ Q′,
as Q′ is convex and we will make a call to B(∅, F, X) in A.2.3 of A(N, F ).

If we return in B.1, then we did not have X ⊆ Q′ ⊆ V (D) − F , by Lemma 5.
If we make recursive calls in B.3, then the desired recursive call is B(W, F, (X ∪
{u})cl

N) if u ∈ Q′ (note that if X∪{u} ⊆ Q′ and Q′ is convex, then (X∪{u})cl
N ⊆

Q′) and B(W, F ∪{u}, X) if u �∈ Q′. Now assume that T is saved in B.4. We note
that S ∩ V (Q′) = ∅ by Lemma 5 (as otherwise we obtain a (D; F, Q′)-feasible
multiset, W ′, with R(W ′) > nin, by adding a (D;W ; F, {s})-feasible walk to W ,
where s ∈ S ∩ V (Q′)). Analogously T − V (Q′) = ∅ by Lemma 5 (as again we
obtain a (D; V (D)−Q′, Q′)-feasible multiset, W ′, with R(W ′) > nin, by adding
a (D;W ; {t}, X)-feasible walk to W , where t ∈ T − V (Q′)). Therefore Q′ = T
and Q′ is saved.
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Algorithm A(N, F )
A.1 Find an acyclic order u1, u2, . . . , un of the vertices in N (that

is, if uiuj ∈ A(N) then i < j).
A.2 For all sets O ⊆ V (N), where for every vertex o ∈ O there is

an (o, F )-path in N−(O−{o}) and |O| ≤ nout do the following.
A.2.1 Find N∗ and D as in Definition 2.
A.2.2 Let X = Ocl

N (see Definition 1).
A.2.3 Make a call to B(∅, F, X) (see below).

Algorithm B(W, F, X)
B.1 If R(W) > nin or if X ∩ F �= ∅, then there is no solution so return.
B.2 Use Lemma 6 to determine if there is a (D;W; F,X)-feasible walk in D.

If there is and R(W) ≤ nin then add it to W using the approach in Lemma
2 and go to B.1. Otherwise determine S and T as in Lemma 6.

B.3 If V (D) �= S ∪ T then let u ∈ V (D) − S − T be arbitrary. Now make
recursive calls B(W, F, (X ∪ {u})cl

N ) and B(W, F ∪ {u}, X) and return.
B.4 If R(W) = nin, then by B.3 we have V (D) = S ∪ T . In this case save T

as a solution and return.
B.5 If R(W) < nin then consider the following possibilities. Note that V (D) =

S ∪ T .
B.5.1 If X �= T then let ua ∈ T − X be chosen such that a is minimum.

Make the recursive calls B(W, F, (X∪{ua})cl
N ) and B(W, F ∪{ua}, X) and

return.
B.5.2 If X = T , then save T as a solution. Let i1, i2, . . . , ik be the vertices

in V (D)−T with red arcs into T in D. Make the following recursive calls.
B(W, F, (X ∪ {i1})cl

N ),
B(W, F ∪ {i1}, (X ∪ {i2})cl

N ),
B(W, F ∪ {i1, i2}, (X ∪ {i3})cl

N ),....,
B(W, F ∪ {i1, i2, . . . , ik−1}, (X ∪ {ik})cl

N ).

If we make recursive calls in B.5.1, then the desired recursive call is B(W, F,
(X ∪{ua})cl

N) if ua ∈ Q′ and B(W, F ∪ {ua}, X) if ua �∈ Q′. If we perform B.5.2,
then we return Q′ if {i1, i2, . . . , ik} ∩ Q′ = ∅. If {i1, i2, . . . , ik} ∩ Q′ �= ∅ then let
j be the minimum index such that ij ∈ {i1, i2, . . . , ik} ∩ Q′ and note that the
desired recursive call is B(W , F ∪ {i1, i2, . . . , ij−1}, (X ∪ {ij})cl

N ).
We have shown that Q′ will be saved and we will now prove that Q′ cannot

be saved twice. As we only consider sets O with the property that for every
vertex o ∈ O there is an (o, F )-path in N − (O − {o}), we note that Q′ cannot
be saved in two distinct calls in A.2.3 (only when O is exactly the output set of
Q′). Furthermore as all recursive calls either add a vertex to the forbidden set
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or that same vertex to X the same set cannot be saved in two different recursive
calls (in B.5.2. we noted above exactly in which recursive call Q′ would be saved
if {i1, i2, . . . , ik} ∩ Q′ �= ∅ and otherwise it would not be saved in any recursive
call, but only in the current call). ��

We omit proof of the following due to the limited space.

Lemma 8. If N is a connected acyclic digraph of order n, size m and containing
c(N) valid convex sets, then A(N, F ) has time complexity O(m · N2

in(c(N) +
nNout) + m).

The last two lemmas imply the following:

Theorem 1. Let N be an acyclic digraph with n vertices and m arcs. The algo-
rithm A(N, F ) finds all valid convex sets in N in time O(m ·n2

in(c(N)+nnout)+
m), where c(N) is the number of valid convex sets.

4 Experiments

We have implemented A and tested it against the state-of-the-art algorithm of
Chen, Maskell and Sun [2] (the CMS algorithm) and the well-known algorithm
of Atasu, Pozzi and Ienne [5] (the API algorithm) using both synthetic examples
and DDGs generated from real world applications. The source of the CMS imple-
mentation was kindly provided by its authors. All algorithms were implemented
in C++ and experimental data were produced using Dual Core AMD Opteron
265 1.8GHz processors with 4Gbyte of RAM, running 64-bit SUSE Linux 10.2.

Figure 1 shows the performance of these algorithms on synthetic tree and
acyclic lattice digraphs with nin = 3 and nout = 2. In both cases, algorithm A
consistently outperforms the current state of the art with the performance of
CMS only slightly superior to the API algorithm on tree-like graphs.

Table 1 shows results from five real world C++ programs in the MiBench
benchmark suite [3]. We selected a large (150–1800 lines of intermediate code)
basic block from within a critical loop of each program: typically the compiler will
have unrolled this block to some degree. The resulting DDGs were augmented
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Table 1. Comparative performance on real world examples

Input nin nout c(N) Time Time Time Calls Calls Calls
sets CMS API06 A CMS API06 A

bf

2 1 482 0.04 2.78 0.01 24,009 796,775 631
4 1 1,920 0.07 15.71 0.04 34,084 4,467,923 3,507
6 1 7,669 0.11 34.61 0.17 55,374 9,816,778 15,005
3 2 7,831 0.35 91.51 0.15 176,631 25,169,197 12,302
5 2 40,714 0.79 352.95 0.92 383,570 101,091,122 75,376
4 3 105,599 2.31 DNF 2.81 1,122,520 DNF 189,037
6 3 570,197 7.02 DNF 14.57 3,342,391 DNF 1,085,505
8 3 2,155,103 17.37 DNF 71.95 8,329,766 DNF 4,253,251

cjpeg

2 1 406 0.02 0.10 0.00 21,907 61,832 694
4 1 544 0.02 0.10 0.00 22,003 70,216 970
6 1 550 0.01 0.11 0.00 22,003 70,216 982
3 2 41,363 0.61 13.86 0.28 677,813 9,880,064 76,889
5 2 113,611 0.82 19.30 1.02 875,155 13,460,590 220,929
7 2 140,335 0.94 20.15 1.53 896,688 13,721,462 274,377
4 3 2,201,568 20.50 DNF 18.78 18,454,621 DNF 4,236,388

rijndael

2 1 1241 2.79 51.43 0.05 697778 5473096 1636
4 1 4,787 3.51 253.30 0.17 786,732 27,471,175 8,728
6 1 15,236 4.09 DNF 0.59 878,083 DNF 29,626
3 2 75,241 83.96 DNF 3.98 11,575,641 DNF 145,477
5 2 648,748 201.41 DNF 23.88 31,777,459 DNF 1,207,733

sha

2 1 1,546 3.76 DNF 0.13 300,752 DNF 1,632
4 1 4,372 4.23 DNF 0.24 345,994 DNF 7,284
6 1 10,152 5.30 DNF 0.49 432,350 DNF 18,844
3 2 78,132 85.14 DNF 6.75 6,450,724 DNF 117,159
5 2 293,259 164.97 DNF 15.37 12,652,418 DNF 494,521

md5

2 1 893 1.54 DNF 0.04 329,373 DNF 969
4 1 2,304 1.66 DNF 0.08 342,133 DNF 3,791
6 1 3,546 1.70 DNF 0.12 349,486 DNF 6,275
3 2 54,476 51.45 DNF 3.24 6,109,809 DNF 102,389

with forbidden vertices, which represent values external to the basic block to give
the following examples: the BlowFish encryption algorithm (bf) with 467 vertices
of which 134 are forbidden; JPEG image compression (cjpeg) with 152 vertices,
34 forbidden; AES encryption (rijndael) with 1237 vertices, 391 forbidden; secure
message digest hashing (sha) with 1811 vertices, 351 forbidden; and MD5 with
1170 vertices, 353 forbidden.

The API algorithm is not competitive with either A or CMS for these graphs,
supporting the conclusions in [2]. Although the CMS algorithm performs better
on some small to medium examples, on large examples the effect of the better
asymptotic complexity is clear — on the rijindel, sha and md5 benchmarks, A
clearly has a performance advantage. We also note that in every case, the number
of recursions made by A was significantly lower.
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Abstract. We give a linear-time algorithm to compute the cutwidth
of threshold graphs, thereby resolving the computational complexity of
cutwidth on this graph class. Although our algorithm is simple and in-
tuitive, its correctness proof relies on a series of non-trivial structural
results, and turns out to be surprisingly complex. Threshold graphs are
a well-studied subclass of interval graphs and of split graphs, both of
which are unrelated subclasses of chordal graphs. To complement our
result, we show that cutwidth is NP-complete on split graphs, and con-
sequently also on chordal graphs. In addition, we show that cutwidth
is trivial on proper interval graphs, another subclass of interval graphs.
The cutwidth of interval graphs is open, and only very few graph classes
are known so far on which polynomial-time cutwidth algorithms exist.
Thus we contribute to define the border between graph classes on which
cutwidth is polynomially solvable and on which it remains NP-complete.

1 Introduction

The cutwidth problem asks, given a graph G, and a positive integer k, whether
there exists a linear layout of the vertices of G so that any line inserted between
two consecutive vertices of the layout cuts (intersects with) at most k edges. The
cutwidth of the input graph is the smallest integer for which the question can
be answered positively. This important graph layout problem was first proposed
as a model to minimize the number of channels in a circuit [1,19], and more
recently it has found applications in areas like protein engineering [3], network
reliability [16], automatic graph drawing [21], information retrieval [4], and as a
subroutine in the cutting plane algorithm for TSP [14].

Like many other interesting graph problems, cutwidth is NP-complete [8], even
when input graphs are restricted to planar graphs of maximum degree three [20],
unit disk graphs, partial grids [9], and consequently bipartite graphs.

Coping with the NP-completeness of the problem has been mainly chan-
neled via approximation algorithms and fixed parameter algorithms. There is a
polynomial-time O(log2 n)-approximation algorithm for general graphs [17], and
a polynomial-time constant factor approximation algorithm for dense graphs [2].
The best known parameterized algorithm for cutwidth so far runs in linear time
(but of course exponential in the parameter k) [22].

H. Broersma et al. (Eds.): WG 2008, LNCS 5344, pp. 218–229, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Polynomial-time algorithms for the exact computation of cutwidth are known
only for very few graph classes. For certain trivial graph classes, like meshes or
complete p-partite graphs, there exist closed formulas for their cutwidth (see
[10]). The cutwidth of trees can be computed in O(n log n) time by a sophisti-
cated and technical algorithm [24] (see also [6]). The cutwidth of graphs both
of whose treewidth and maximum degree can be bounded by constants, can be
computed in polynomial time by advanced methods [23]. The computational
complexity of cutwidth on threshold graphs has been open until now [10].

In this paper, we present an O(n)-time algorithm for computing the cutwidth
of threshold graphs with n vertices. Threshold graphs are a well-studied graph
class with a variety of theoretical applications [18], and they are both split graphs
and interval graphs [5,12]. Split and interval graphs are two unrelated subclasses
of the widely-known class of chordal graphs. Before presenting our algorithm for
threshold graphs, we show that the cutwidth problem remains NP-complete on
split graphs (even on a very restricted type of split graphs), and hence also on
chordal graphs. As a complementary result, we show that for another subclass
of interval graphs, proper interval graphs, the cutwidth problem has a trivial
solution, which does not work for interval graphs in general or for threshold
graphs. Our findings are summarized in Figure 1.

The algorithm that we present for threshold graphs is simple and intuitive,
and interestingly its execution does not at all depend on properties of threshold
graphs; thus it can also be run on general graphs as a heuristic. For the proof
of correctness of this algorithm on threshold graphs, we study the properties of
a possible minimal counterexample through a series of structural results, and
we show that the assumption of the existence of such a counterexample leads
to a contradiction. (In this extended abstract some proofs have been omitted.)
Although threshold graphs can be viewed as a quite restricted graph class, de-
signing an algorithm for their cutwidth and proving its correctness proved to
be a much more challenging task than expected. Extending our results even to
trivially perfect graphs, which is a superclass of threshold graphs and a subclass
of interval graphs, seems to be a non-trivial problem.

split
NPC

interval
?

proper interval
P

threshold
P

chordal
NPC

Fig. 1. The graph classes studied in this paper, and the complexity of cutwidth on each
class according to our results. P means polynomial and NPC means NP-complete. The
arrow represents the subset relation.

2 Preliminaries

We consider labeled undirected finite graphs with no loops or multiple edges. For
a graph G = (V, E), we denote its vertex and edge set by V and E, respectively,
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with n = |V |. Every vertex v ∈ V has a distinct label, label(v), between 1 and
n. We say that a vertex u is smaller than v if label(u) < label(v). For a vertex
subset S ⊆ V , the subgraph of G induced by S is denoted by G[S]. Moreover,
we denote by G − S the graph G[V \ S] and by G− v the graph G[V \ {v}]. We
write G − uv to denote the graph (V, E \ {uv}).

The neighborhood of a vertex x of G is NG(x) = {v | xv ∈ E}. The closed
neighborhood of x is NG[x] = NG(x)∪{x}. The degree of x is ∆G(x) = |NG(x)|.
If S ⊆ V , then NG(S) =

⋃
x∈S NG(x) \ S. We define the cut of S to be δG(S) =

{uv ∈ E | u ∈ S, v /∈ S}, and the cut size of S to be dG(S) = |δG(S)|. Vertex x
is universal if NG[x] = V and isolated if NG(x) = ∅. We will omit the subscripts
and superscripts when there is no ambiguity. A graph is connected if there is
a path between any pair of vertices. A connected component of a disconnected
graph is a maximal connected subgraph of it. A clique is a set of pairwise adjacent
vertices, while an independent set is a set of pairwise non-adjacent vertices.

Given a graph G = (V, E), a layout L is a one-to-one mapping L : V →
{1, . . . , n}. We will also denote a layout L by < v1, v2, · · · vn > such that L(vi) =
i. For an integer i between 1 and n we define the set Vi to be {v1, · · · , vi}. We
say that u is before v in L, or u <L v, if L(u) < L(v). The cut of G at the ith
gap in a given layout L is defined as δL(i) = δG(Vi) and dL(i) = dG(Vi). The
cutwidth of a layout L of G is cwL(G) = max1≤i≤n dG(Vi). The cutwidth of G is
cw(G) = minL{cwL(G)} where L is any possible layout of G. In this paper, an
optimal layout of G is a layout L such that cw(G) = cwL(G).

The bisection width of G, denoted by bw(G), is the minimum cut size of any
set S ⊂ V on �n

2  vertices. Since δ(S) = δ(V \ S) it follows that bw(G) is is the
minimum cut size of S of any set S on �n

2  or �n
2 � vertices. It should be clear

that bw(G) gives a lower bound for cw(G), that is, bw(G) ≤ cw(G) [10]. We will
use the close connection between cutwidth and bisection width actively in some
of our proofs. A useful observation is that the cutwidth of a subgraph G cannot
exceed the cutwidth of G [10].

A graph is a split graph if its vertex set can be partitioned into a clique C and
an independent set I, where (C, I) is called a split partition. Threshold graphs
are a subset of split graphs, and for their original definition we refer to [12,18].
We will use as definition the following characterization: A graph is a threshold
graph if and only if it has a split partition (C, I) such that vertices of the I (and
equivalently the vertices of C) can be ordered by neighborhood inclusion [18].

In fact, if a split partition of G satisfies the above property, then all split
partitions of G satisfy it [12,18]. For a graph G with split partition (C, I), if
there is a vertex x of C which is not adjacent to any vertex of I then clearly
(C \ {x}, I ∪ {x}) is also a split partition of G. For our purposes, we will
always assume that every vertex of C has a neighbor in I. For a threshold
graph G, we refine the sets I and C as follows, and call it a threshold partition:
(I0, I1, I2, ..., I�) is a partition of I such that I0 is the set of isolated vertices, and
N(I1) ⊂ N(I2) ⊂ . . . ⊂ N(I�), where 
 is largest possible. Thus all vertices in Ij

have the same degree for 0 ≤ j ≤ 
. This also defines a partition (C1, C2, ..., C�)
of C, where C1 = N(I1) and Cj = N(Ij) \ N(Ij−1) for 2 ≤ j ≤ 
. Again, all
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vertices in Cj have the same degree for 1 ≤ j ≤ 
. We say that vertices of Cj and
Ij belong to the ith level of the clique and of the independent set, respectively.
By construction, the sets Ci and Ii are nonempty for every 1 ≤ i ≤ 
. For a
vertex v, define level(v) to be the level that v belongs to. Threshold graphs can
be recognized, and their threshold partition can be computed, in linear time [12].

Lemma 1 ([13]). Let G be a threshold graph with threshold partition ((C1,
. . . , C�), (I1, . . . , I�)). Let uv be an edge such that u ∈ Ij and v ∈ Cj for some
j. Then G − uv is a threshold graph.

3 Cutwidth of Split Graphs

Theorem 1. The cutwidth problem is NP-complete on split graphs.

Proof. The reduction is from an arbitrary instance of the cutwidth problem.
Given an arbitrary graph G = (V, E) with n vertices and m edges, we construct
a split graph G′ as follows. To start with, G′ is a complete graph on V . Let
k = n2 + 1. For every edge uv ∈ E we add k more vertices to G′, making each
new vertex adjacent to u and v in G′. We say that these vertices of G′ correspond
to the edge uv of G. Observe that G′ has n+km vertices where the n vertices of
V induce a clique in G′. The remaining km vertices are only adjacent to vertices
of this clique. Hence G′ is a split graph. Moreover the whole construction can
be carried out in polynomial time. We now prove that for any 1 ≤ c ≤ n2 we
have cw(G) ≤ c if and only if cw(G′) < k(c+1). (Note that n2 is a trivial upper
bound on the cutwidth of any graph on n vertices.)

If cw(G) ≤ c then consider a layout L for which cwL(G) ≤ c. We create
a layout L′ of G′ by ordering the vertices in V in the same order that they
have in L. Every vertex x of G′ that corresponds to an edge uv of G is placed
in an arbitrary position between u and v in L′. Observe that x has degree 2
and is placed between its neighbors, dL′(L′(x) − 1) = dL′(L′(x)), and thus,
to compute cwL′(G′) it is sufficient to consider maximum dL′(L′(v)) over all
v ∈ V . From the construction of L′ it follows that for every vertex v in V ,
δL′(L′(v)) contains at most k ·dL(L(v)) edges between vertices in V and vertices
corresponding to edges of G, and at most n2 edges between pairs of vertices in
V . Thus dL′(L′(v)) ≤ k ·dL(L(v))+n2 and k ·dL(L(v))+n2 < kc+k = k(c+1)
and cw(G′) ≤ cwL′(G′) < k(c + 1) follows.

Let L′ be a layout of G′ for which cwL′(G′) < k(c+1). ¿From L′ we construct a
layout L of G by ordering the vertices of V in the same order that L′ orders them.
We prove that cwL(G) ≤ c. For a given vertex x we observe that for every edge
uv ∈ δL(L(x)) and vertex y of G′ corresponding to the edge uv, either the edge yu
or the edge yv must be in δL′(L′(x)). Thus, k ·dL(L(x)) ≤ dL′(L′(x)) < k(c+1).
By dividing both sides by k we obtain dL(L(x)) < c + 1. Since we chose x
arbitrarily, cwL(G) ≤ c and the result follows.

The above proof shows that cutwidth is NP-complete even on split graphs where
each vertex of I of the split partition (C, I) has degree 2.
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4 Cutwidth of Threshold Graphs

In this section we give an algorithm that computes the cutwidth of threshold
graphs in linear time. This algorithm constructs a layout L =< v1, v2, . . . , vn >
by appending at step i the vertex vi that minimizes the cut δ(Vi−1 ∪ {vi}). For
a given graph G = (V, E) and a set S ⊆ V , we define the rank of a vertex v
with respect to S to be rankG

S (v) = |NG(v)∩ (V \S)|− |NG(v)∩S| (superscript
G is omitted when not needed). Observe that if v /∈ S then d(S ∪ {v}) =
d(S) + rankS(v). At step i, we select a vertex of V \ Vi−1 of lowest rank with
respect to Vi−1. If there is a tie, the algorithm picks a vertex with the highest
degree. If there still is a tie, the algorithm picks the vertex with the smallest
label. The intuition behind the highest-degree tie-breaking is that when we add
v to S, the ranks of all v’s neighbors with respect to S decrease by 2, while the
ranks of v’s non-neighbors remain unchanged. Since we want the rank of the
vertices we pick to be as small as possible, it is good to decrease the rank of as
many vertices as possible. The details of the algorithm called MinCut are given
below.

Algorithm: MinCut

Input: A graph G = (V, E).
Output: A layout L =< v1, v2, · · · , vn > of G

V0 := ∅;
for i = 1 to n do

vi := the vertex in V \ Vi−1 with smallest label;
for every vertex v in V \ Vi−1 ordered by increasing label do

if rankVi−1(v) < rankVi−1(vi) then vi := v
else if rankVi−1(v) = rankVi−1(vi) and ∆(v) > ∆(vi) then vi := v

Vi := Vi−1 ∪ {vi};
L(vi) := i;

Before reaching the details of why Algorithm MinCut produces optimal layouts
when the input is a threshold graph, we need to study how the layouts produced
by the algorithm look. Observe first that if G has isolated vertices, then these
can be placed in arbitrary positions in any optimal cutwidth layout, and our
algorithm places them in the beginning of the output layout. We assume that G
has been labeled in a manner such that every vertex in I has smaller label than
every vertex in C, for every pair u and v of vertices in I, level(u) < level(v)
implies label(u) < label(v) and for every pair u and v of vertices in C, level(u) <
level(v) implies label(u) < label(v). This can be achieved through an O(n)-time
preprocessing step, using the threshold partition of G.

For the statements of the following results in this section, we let L =<
v1, . . . , vn > be the layout computed by Algorithm MinCut when run on a thresh-
old graph G with threshold partition (C, I) = ((C1, . . . , C�), (I1, . . . , I�)).

Given two vertices u and v of G such that u ∈ I and v ∈ C, we define the
vertex set over(u, v) to contain all vertices x ∈ I such that label(x) < label(u)
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and all vertices y ∈ C such that label(y) < label(v). The essence of the following
lemma is that the algorithm picks vertices at lower levels before proceeding to
higher levels, and that it starts with a vertex of I.

Lemma 2. For any i ∈ {1, . . . , n} and k ∈ {1, . . . , 
}:

(a) If Vi ∩ Ik �= ∅ then Ik′ ⊆ Vi, for every 1 ≤ k′ < k.
(b) If Vi ∩ Ck �= ∅ then Ck′ ⊆ Vi, for every 1 ≤ k′ < k.
(c) If Vi ∩ Ik = ∅ then Vi ∩ Ck = ∅.

As a direct consequence of Lemma 2 (a) and (b), for any i between 1 and n, if
u ∈ I ∩ Vi and v ∈ C ∩ Vi then over(u, v) ⊆ Vi.

Lemma 3. Let u ∈ I and v ∈ C. Then u <L v if and only if u and v are
non-adjacent or rankover(u,v)(u) < rankover(u,v)(v).

We say that the algorithm covers a vertex set S if there is an index i such that
Vi = S. If the algorithm covers S then we also say that S is covered.

Lemma 4. Let u, u′ ∈ I with label(u′) = label(u) + 1, and let v, v′ ∈ C with
label(v′) = label(v) + 1. Then over(u′, v′) is covered if and only if u <L v′ and
v <L u′.

We are now equipped with most of the tools that are necessary to work with
layouts produced by Algorithm MinCut. All that remains before we move on to
proving the correctness of the algorithm are a couple of simple observations.

Observation 5. For each integer i ≤ n − 1, rankVi(vi+1) ≥ rankVi−1(vi) − 2.
Furthermore, if ∆(vi+1) > ∆(vi) then rankVi(vi+1) ≥ rankVi−1 (vi) − 1

Observation 6. For every level k ≤ 
 and every triple of vertices u, v ∈ Ck and
w /∈ Ck, u <L w if and only if v <L w.

4.1 Correctness of Algorithm MinCut

In this subsection, we show that Algorithm MinCut produces optimal layouts
when the input is a threshold graph. We assume for contradiction that there is
a threshold graph G = (V, E) with threshold partition ((C1, . . . , C�), (I1, . . . , I�))
on which Algorithm MinCut outputs layout L =< v1, . . . , vn > such that
cwL(G) > cw(G). We call such a threshold graph a counterexample, and we
say that a counterexample is minimal if it is has the smallest value of |V | + |E|
among all counterexamples. A bad set of counterexample G is a set S ⊆ V that
is covered by the algorithm and for which d(S) > cw(G). A locally worst bad set
is a bad set S = Vi such that d(S) ≥ d(Vi+1) and d(S) ≥ d(Vi−1). Observe that
rankVi−1(vi) must be non-negative and rankVi(vi+1) must be non-positive for
Vi to be locally worst. Observation 5 then implies that rankVi−1 (vi) is 2, 1 or 0.
This means that if vi ∈ C1 then i is �n

2  ,
n
2 or �n

2 � respectively. Another thing
to notice about locally worst bad sets is that if both Vi and Vi−1 are bad sets
with d(Vi−1) ≥ d(Vi) then some locally worst bad set is a strict subset of Vi.
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The main idea of the proof is to show that if there is a counterexample G,
then there must be another counterexample G′ that either has at most 2 levels,
or exactly 3 levels and a very specific structure. We complement this result by
showing that the algorithm produces optimal layouts on all graphs with at most
2 levels, and on all graphs with 3 levels and the mentioned structural properties.
This yields that cwL(G) = cw(G) for every threshold graph G.

Lemma 7. Let G be a threshold graph on exactly 1 level. Then cwL(G) =
cw(G).

Proof. Let (C, I) be a threshold partition of G. Observe that every vertex of
I is adjacent to every vertex of C. The algorithm lays out � |I|

2  vertices of I,
then all of C, followed by the remaining vertices of I. By inspection, cwL(G) =
�n

2  · �n
2 � − � |I|

2  · � |I|
2 �. Since all non-edges of G are between vertices in I,

bw(G) = �n
2  · �

n
2 �− � |I|

2  · � |I|
2 �. Thus cwL(G) = bw(G) ≤ cw(G) ≤ cwL(G) and

cwL(G) = cw(G) follows.

Already for threshold graphs with 2 levels, the correctness proof for Algorithm
MinCut is more complicated. Before we go on to this proof we need more tools
to work with locally worst bad sets.

For the statements of all the remaining results and definitions in this section,
whenever we mention a counterexample G, we let ((C1, . . . , C�), (I1, . . . , I�)) be
is its threshold partition. The output of Algorithm MinCut is always denoted by
L =< v1, . . . , vn >.

Lemma 8. Every locally worst bad set S of a counterexample G satisfies (i)
C1 ∩ S �= ∅, (ii) I1 ⊆ S, (iii) C� ∩ S = ∅, and (iv) I� \ S �= ∅.

Lemma 9. Let G be a threshold graph on exactly 2 levels. Then cwL(G) =
cw(G).

From this it follows that any counterexample has at least 3 levels. Over the
next few lemmas, we show how any counterexample can be transformed into
a counterexample with exactly 3 levels. The first observation is that in every
minimal counterexample all parts of the graph participate in making the graph
a counterexample.

Definition 1. A counterexample has the extremal property if it has a bad set
S such that I \ I� ⊆ S and S ∩C ⊆ C1. In this case, S is called an extremal bad
set.

Lemma 10. Every minimal counterexample G has the extremal property, and
every locally worst bad set of G is an extremal bad set.

Lemma 11. If there is a counterexample, then there is a counterexample with
the extremal property and at most 3 levels.
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Proof. We start by showing that if there is a counterexample G on at least 4
levels with an extremal bad set S such that the sets I ∩S, I \S, C ∩S and C \S
are non-empty, then there is a counterexample G′ with G ⊂ G′, such that (C, I)
is a threshold partition of G′ and S is an extremal bad set of G′.

Let u and v be the vertices in I ∩S and C ∩S with the highest labels, and let
u′ and v′ be the vertices in I \ S and C \ S with the lowest labels respectively.
Now, S = over(u′, v′) so by Lemma 4 u <L v′ and v <L u′. We choose x to be
the vertex of I2 with highest label and y to be the vertex if C3 with the lowest
label. We add the edge xy to G to obtain a new threshold graph G′. (C, I) is
a threshold partition of G′ and G ⊂ G′. Furthermore δG′

(S′) = δ(S) ∪ {xy} so
dG′

(S) = d(S) + 1 > cw(G) + 1 ≥ cw(G∪ {xy}). Also, in G′ u′ is adjacent to all
vertices of C and v is a universal vertex. Let L′ be the layout L′ produced by
Algorithm MinCut when run on G′. To prove that S is an extremal bad set of
G′ it is sufficient to show that L′ covers S. However, S = over(u′, v′) both in G
and G′ and none of u, u′, v and v′ are incident to the new edge xy so u <L′ v′

and v <L′ u′. By Lemma 4 L′ covers S.
We can now proceed to prove the lemma. Without loss of generality, G is a

minimal counterexample. By Lemma 10 G has an extremal locally worst bad set
S. By Lemma 8 the sets I ∩ S, I \ S, C ∩ S and C \ S are non-empty. Thus, if
G has at most 3 levels we are done, otherwise by the discussion in the previous
paragraph, there is a counterexample G′ with G ⊂ G′, such that (C, I) is a
threshold partition of G′ and S is an extremal bad set of G′. If G′ has at most 3
levels we are done, otherwise we can again apply the discussion above to G′ and
S to get yet another counterexample G′′ with G ⊂ G′ ⊂ G′′, such that (C, I) is
a threshold partition of G′′ and S is an extremal bad set of G′′. Reiterating this
argument we can continue producing counterexamples on more and more edges.
Since the clique is not a counterexample, this process must stop at some point.
The graph at hand at this point is a counterexample with at most 3 levels and
with S as an extremal bad set.

Definition 2. A counterexample has the super extremal property if it has an
extremal bad set S, such that either I� ∩ S �= ∅ or S ∩ C ⊂ C1. Then S is called
a super extremal bad set.

Lemma 12. There are no counterexamples with the super extremal property.

Lemmas 10, 11, and 12 allow us to concentrate on counterexamples on exactly
3 levels with the extremal property, but without the super extremal property.

Definition 3. We say that a counterexample with 3 levels and the extremal
property has the snake property if (i) u <L v, where u is the vertex of I2 with
highest label and v is the vertex of C1 with highest label, and (ii) u′ <L v′, where
u′ is the vertex of I3 with lowest label and v′ is the vertex of C2 with lowest label.

Lemma 13. If there is a counterexample with 3 levels with the extremal property
then there is a counterexample with 3 levels with the extremal and the snake
properties.



226 P. Heggernes et al.

Lemma 14. In a counterexample with 3 levels with the extremal and snake prop-
erties, n is even, |C| and |I| are odd, |C1| = |C2|+ |C3|+1, |I3| = |I1|+ |I2|+1,
and |I1| + |I2| + |C1| = n

2 .

At this point all that remains is to analyze how a counterexample on 3 levels
and the extremal and snake properties looks, and to show that in such a graph
G, cwL(G) ≤ bw(G) ≤ cw(G). Now we are ready to show our main result.

Theorem 2. For any threshold graph G, cwL(G) = cw(G).

Proof. Suppose for contradiction that there is a counterexample. Then, by Lem-
mas 7, 9, 10, 11 and 13 there is a counterexample G on 3 levels with the snake
and extremal properties. Since Lemma 12 implies that G does not have the super
extremal property, I1∪I2∪C1 is a bad set of G. By Lemma 14, n is even, |C| and
|I| are odd, |C1| = |C2|+ |C3|+1, |I3| = |I1|+ |I2|+1, and |I1|+ |I2|+ |C1| = n

2 .
Let S be a vertex set on n

2 vertices that minimizes d(S), that is, with d(S) =
bw(G). Notice that δ(S) = δ(V \S). Thus, without loss of generality |S∩I| > |I|

2 .
We view the set S as a set of n

2 pebbles that have been placed on distinct vertices
of G. We can move pebbles from I3 to C1 and keep optimality of S, unless one of
the following is true: (i) There are no pebbles on vertices of I3, (ii) All vertices
of C1 have pebbles on them, (iii) Moving a pebble from a vertex in I3 to a vertex
in C1 increases d(S).

Moving a pebble from a vertex x to a vertex y increases d(S) by rankS\{x}(y)−
rankS\{x}(x). Thus, if there is a pebble on a vertex x in I3 and a free spot on
a vertex y in C1, moving a pebble from x to y does not increase d(S) if and
only if rankS\{x}(y) − rankS\{x}(x) = 1 − (|C \ S| − |C ∩ S|) ≤ 0. Rearranging
terms yields that moving a pebble from x to y does not increase d(S) if and
only if |C ∩ S| < |C \ S|. In addition, one should notice that if there are no
pebbles on vertices of I3 then |C ∩ S| > |C \ S| because |I3| = |I1| + |I2| + 1.
Similarly, if all vertices of C1 have pebbles on them then |C∩S| > |C\S| because
|C1| = |C2| + |C3| + 1.

By our choice of S, before we start moving any pebbles, |I∩S| > |I \S|. Since
|S| = n

2 this means that |C ∩ S| < |C \ S|. Therefore, by the discussion in the
previous paragraph we can move pebbles from I3 to C1, preserving minimality
of d(S) until the inequality flips from |C ∩ S| < |C \ S| to |C ∩ S| > |C \ S|. At
this point, |C ∩S| = � |C|

2 � = |C1| and |I ∩S| = |I1|+ |I2|. Let α, β and γ be the
ranks of a vertex in I1, I2 and I3 with respect to S.

If α ≤ γ and β ≤ γ we can move pebbles from I3 to I1 and I2 keeping
optimality of S. Since exactly |I1| + |I2| pebbles are placed on vertices of I,
after the move every vertex of I1 ∪ I2 has a pebble on it, and no pebbles are on
vertices in I3. Now we can safely move all pebbles in C2 and C3 to C1, keeping
optimality of S. Since exactly |C1| pebbles are placed on vertices of C, after the
move every vertex of C1 has a pebble on it, and no pebbles are on vertices in
C2 ∪ C3. But this means that S = I1 ∪ I2 ∪ C1 and d(S) ≤ bw(G) ≤ cw(G)
contradicting that I1 ∪ I2 ∪ C1 is a bad set of G.

If α ≥ γ and β ≥ γ we can move all pebbles from I1 and I2 to I3 keeping
optimality of S. Since exactly |I1| + |I2| pebbles are placed on vertices of I,
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after this move all but one vertex of I3 has a pebble on it, and no pebbles are on
vertices in I1 ∪ I2. Now we can safely move pebbles in C1 to C2 and C3, keeping
optimality of S. Since exactly |C1| pebbles are placed on vertices of C, after this
move exactly one vertex of C1 has a pebble on it, and all vertices of C2∪C3 have
pebbles on them. Let x be the vertex in I3 without a pebble and y be the vertex
in C1 with a pebble. After the moves, rankS\{y}(x) = rankS\{y}(y) = 1, so we
can move the pebble on y to x, keeping optimality of S. However d(I1∪I2∪C1) =
d(V \ S) = d(S) ≤ bw(G) contradicting that I1 ∪ I2 ∪ C1 is a bad set of G.

If α ≤ γ ≤ β we can move pebbles from I2 and I3 to I1 maintaining optimality
until each vertex of I1 has a pebble on it. If any pebbles remain in I2 we can
move these pebbles to I3. Since there are |I1|+ |I2| pebbles in I there are exactly
|I2| vertices in I3 that have pebbles on them. Now, we can move all pebbles in
C2 to C3 and C1 maintaining optimality until there are no pebbles left in C2.
If |I1| ≥ |I2| we can move all pebbles from C3 to C1 maintaining optimality.
After this move, the set of vertices in C with pebbles on them is exactly C1.
Thus we can move all pebbles in I3 to I2 maintaining optimality. In this case,
S = I1 ∪ I2 ∪ C1, but d(S) ≤ bw(G) contradicting that I1 ∪ I2 ∪ C1 is a bad set
of G.

If |I1| < |I2| we can move pebbles from C1 to C3 until all vertices of C3 have
pebbles on them. After this move there are exactly |C1|−|C3| pebbles on vertices
in C1. We consider d(S) and compare it to d(I1 ∪ I2 ∪ C1) = |C1|(|C2| + |C3|) +
|I2||C2| + |I3||C1|. Counting the edges of d(S) we obtain d(S) = |C1|(|C2| +
|C3|)+ |I1||C3|+ |I2|(|C1|− |C3|)+(|I3|− |I2|)|C1|+ |I2|(|C2|+ |C3|). Simplifying
yields d(S) = |C1|(|C2| + |C3|) + |I1||C3| + |I3||C1| + |I2||C2|. But this means
that d(I1 ∪ I2 ∪ C1) < d(S) ≤ bw(G) contradicting that S is a bad set of G.

Finally, suppose α ≥ γ ≥ β. Since d(S) = d(V \ S) we can move all pebbles
over to vertices that do not have pebbles and preserve optimality. There are now
exactly |I3| pebbles in I and |C1| + |C2| pebbles in |C|. Since |I3| > |I1| + |I2|
there is a pebble on a vertex x in I3. Also, since |C1| > |C2| + |C3| there is a
vertex y with no pebble in C1. At this point, rankS\{x}(x) = rankS\{x}(y) = 1,
so we can move a pebble from x to y and again obtain a set S with pebbles on
|I1|+|I2| vertices in I and |C1| vertices in C. In addition if α′, β′ and γ′ are the
ranks of a vertex in I1, I2 and I3 with respect to S, we see that α′ = −α − 2,
β′ = −β − 2 and γ′ = −γ − 2, so at this point α′ ≤ γ′ ≤ β′ and the discussion
in the previous paragraphs applies. This concludes the proof.

Theorem 3. The cutwidth of a threshold graph on n vertices can be computed
in O(n) time.

Proof. We describe an implementation of Algorithm MinCut that runs in O(n)
time. Let (C, I) = ((C1 ∪C2 · · ·∪C�), (I1 ∪I2 · · ·∪I�)) be the threshold partition
of the input graph. By Lemma 2 we know that Algorithm MinCut picks vertices
of I by increasing label and the vertices of C by increasing label. Therefore we
keep track of the not yet picked vertices u ∈ I and v ∈ C with the lowest labels.
We also keep track of the ranks of u and v with respect to over(u, v), that is
ru = rankover(u,v)(u) and rv = rankover(u,v)(u). At each step of the algorithm we
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pick the one of u and v with the lowest rank (and highest degree if their rank is
equal, lowest label if both rank and degree is equal). We now need to update the
variables u, v, ru and rv. Lemma 2 guarantees that u and v are adjacent, so if we
pick u we reduce rv by 2 and if we pick v we reduce both ru and rv by 2. Finally,
if we picked u, we need to correct ru for the fact that the next vertex in I could
be in a higher level, and similarly we need to correct rv. If the algorithm picked
u, let u′ be the vertex in I with label(u) + 1 = label(u′). If level(u′) > level(u)
we increase ru by |Clevel(u′)| because Lemma 2 guarantees that no vertices of
Clevel(u′) have been picked yet. Similarly, if the algorithm picked v, let v′ be the
vertex in C with label(v)+1 = label(v′). If level(v′) > level(v) we increase rv by
|Ilevel(v) | because Lemma 2 guarantees that all vertices of Ilevel(v) have already
been picked. For each new vertex to be picked the algorithm does O(1) work so
the total time complexity is O(n).

5 Concluding Remarks: Cutwidth of Interval Graphs

A natural open question and a future research direction is resolving the compu-
tational complexity of cutwidth on interval graphs. A graph is interval if sets of
consecutive integers (intervals) can be assigned to its vertices such that two ver-
tices are adjacent if and only if their intervals overlap. Some inherently difficult
graph problems, like bandwidth, are polynomially solvable on interval graphs
[15], whereas others, like optimal linear arrangement, are NP-complete [7]. Opti-
mal linear arrangement can be seen as sum-bandwidth or sum-cutwidth, equiv-
alently (see [10] for definitions). Simple examples exist to show that Algorithm
MinCut can produce a layout with cutwidth that is a factor of O(n) larger than
cw(G) when G is an interval graph, or even a proper interval graph. An interval
graph is proper interval if it has an interval model where no interval properly
contains another. Interestingly, for proper interval graphs a trivial O(n)-time
approach solves the cutwidth problem:

Theorem 4. Let G be a proper interval graph and let L be an ordering of the
vertices of G by increasing right endpoint of their corresponding intervals. Then
cwL(G) = cw(G).

Note that an increasing right endpoint order is not necessarily an optimal lay-
out for a threshold graph; a star is a simple counterexample. Finally, even the
cutwidth of trivially perfect graphs seems to be an interesting open problem.
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The Rank-Width of the Square Grid
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Abstract. Rank-width is a graph width parameter introduced by Oum
and Seymour. It is known that a class of graphs has bounded rank-width
if and only if it has bounded clique-width, and that the rank-width of G
is less than or equal to its branch-width.

The n × n square grid, denoted by Gn,n, is a graph on the vertex set
{1, 2, . . . , n}×{1, 2, . . . , n}, where a vertex (x, y) is connected by an edge
to a vertex (x′, y′) if and only if |x − x′| + |y − y′| = 1.

We prove that the rank-width of Gn,n is equal to n − 1, thus solving
an open problem of Oum.

Keywords: rank-width, grid graph.

1 Basic Terminology

A cut in a graph G = (V, E) is a partition of its vertex set into two nonempty
disjoint parts X, Y . The two sets X and Y will be called the parts of the cut. A
set of vertices is called monochromatic if it is a subset of X or a subset of Y .

The adjacency matrix of a cut (X, Y ) is the 0-1 matrix whose rows are indexed
by X , columns are indexed by Y , and the entry in row i and column j is equal
to 1 iff i and j are connected by an edge of G. The rank of a cut is the Z2-rank
of its adjacency matrix.

The rank-decomposition of a graph G is a ternary tree T whose leaves corre-
spond bijectively to the vertices of G. Every edge in the decomposition defines
a cut, whose two parts correspond to the leaves of the two subtrees determined
by the edge. The weight of the edge is the rank of the associated cut. The
weight of the decomposition is the maximum weight of its edges. An optimum
decomposition of G is a rank-decomposition with the smallest possible weight.
The rank-width of G, denoted by rwd(G), is the weight of its optimum rank-
decomposition.

Rank-width has been introduced by Oum and Seymour [6] in 2004 (see also [2]).
It is known that a family of graphs has bounded rank-width if and only if it has
bounded clique-width, and that the rank-width of a graph G does not exceed its
branch-width [5]. A summary of recent results on rank-width, as well as other
related graph parameters, can be found in the survey by Hliněný et al. [1].
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Let Gm,n denote the grid with m rows and n columns, defined as a graph
on the vertex set {1, . . . , m} × {1, . . . , n}, where a vertex (x, y) is connected
by an edge to (x′, y′) if and only if |x − x′| + |y − y′| = 1. In this paper, we
determine the rank-width of the n × n grid Gn,n, thus solving an open problem
raised by Oum [4]. Previous results [3] have established the inequalities �2n/3� ≤
rwd(Gn,n) ≤ n−1. We close the gap by providing the lower bound rwd(Gn,n) ≥
n − 1, thus proving the following main result.

Theorem 1. The square grid Gn,n has rank-width equal to n − 1.

Throughout this paper, we let Vn denote the vertex set of Gn,n.

2 The Proof

The basis of our approach is to estimate the rank of a cut (X, Y ) using the
size of a matching with suitable properties. To make this specific, we need more
terminology. Let G be a graph, let (X, Y ) be a cut. An (X, Y )-edge is an edge
of G that connects a vertex in X to a vertex in Y . An (X, Y )-matching is a set
of pairwise disjoint (X, Y )-edges. If the cut (X, Y ) is clear from the context, we
will use the term ‘cut-edge’ and ‘cut-matching’.

To an (X, Y )-matching M , we associate an edge-adjacency graph AM , which
is a directed graph whose vertices correspond to the edges of M , and if e = {x, y}
and e′ = {x′, y′} are two distinct edges of M such that x, x′ ∈ X and y, y′ ∈ Y
then AM has a directed edge from e to e′ if and only if y is adjacent to x′ in
G. We say that a cut-matching is acyclic if its edge-adjacency graph does not
contain any directed cycle (not even a directed cycle of length two).

All our lower-bounds on ranks of cuts are based on the following lemma.

Lemma 1. The rank of a cut (X, Y ) in a graph G is greater than or equal to
the size of the largest acyclic (X, Y )-matching.

Proof. Let M = {e1, . . . , ek} be an acyclic cut-matching. Assume that the edges
in M are ordered in such a way that if i > j then there is no directed edge from
ei to ej. Such an ordering exists since the edge-adjacency graph is acyclic. The
2k vertices covered by the matching M then induce in the incidence matrix of
(X, Y ) a k × k submatrix which (after an appropriate reordering of rows and
columns) has all the diagonal entries equal to 1, and all the entries above the
main diagonal equal to 0. This matrix is regular, showing that the rank of the
cut is at least k. ��

To prove our main result, we need to find sufficient conditions that guarantee
that a cut has a large acyclic cut-matching. The first step in this direction is the
following lemma.

Lemma 2. Let G = Gm,n be a grid with m rows and n columns, and assume
that m < n. Let (X, Y ) be a cut in G with the property that no row of G is
monochromatic. Then G has an acyclic (X, Y )-matching of size m.
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We omit the proof of this lemma, due to space constraints.

Corollary 1. Let (X, Y ) be a cut in G = Gn,n such that at most one row of G
is monochromatic. Then the cut (X, Y ) has an acyclic matching of size n − 1.

Proof. By removing a single row from G, we may obtain two rectangular grids
(one of them may be empty) that together have n − 1 rows, and none of these
rows is monochromatic. Applying Lemma 2 to each of these grids, we obtain
two acyclic matchings that have together n − 1 edges. The union of these two
matchings is easily seen to be an acyclic matching in G. ��

Of course, the corollary above holds even when ‘row’ in the statement is replaced
with ‘column’.

Let T be an optimum rank-decomposition of Gn,n. Each edge of T determines
a cut (X, Y ). If the cut has at most one monochromatic row, or at most one
monochromatic column, then its rank is at least n− 1 by Corollary 1, hence the
rank-width of Gn,n is at least n − 1 as well, and we are done.

Assume now, that for every edge, the corresponding cut (X, Y ) has at least two
monochromatic rows as well as at least two monochromatic columns. Necessarily,
all the monochromatic rows and columns then belong to the same part of the
cut. This motivates the following definition.

Definition 1. Let X be a set of vertices of Gn,n. We say that X is large if X
contains the union of two rows and two columns of Gn,n.

Clearly, at most one part of a cut can be large. On the other hand, by Corollary 1,
a cut with no large part has rank at least n − 1.

Let T be again an optimum rank-decomposition of Gn,n. Assume that every
edge of T determines a cut that has a large part. Let (X, Y ) be the cut corre-
sponding to an edge η of T . We will turn η into a directed edge pointing towards
the component of T − η whose leaves form the large set. Each edge of T has a
well defined direction. Since T is a tree, it has no directed cycle, hence it must
contain a vertex v of outdegree 0. Such a vertex cannot be a leaf, since a sin-
gleton set is never large. The three components of T − v determine a partition
of Vn into three disjoint sets X, Y, Z, with the property that the union of each
two of these sets is a large set. Thus, to prove Theorem 1, it suffices to prove
the following proposition, which implies that at least one edge adjacent to v has
width at least n − 1.

Proposition 1. Assume that the vertex set of Gn,n is partitioned into three
nonempty disjoint sets X, Y, Z, and that the union of any two of these sets is a
large set. Then at least one of the three cuts (X, Y ∪Z), (Y, X∪Z) and (Z, X∪Y )
has an acyclic matching of size at least n − 1.

The rest of this paper is devoted to the proof of Proposition 1.
From now on, let us write G instead of Gn,n. For a set W ⊆ Vn, let G[W ]

denote the subgraph of G induced by W . A matching whose edges all belong to
the cut (W, Vn \ W ) will be called a matching adjacent to W .
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Our proof of Proposition 1 proceeds by contradiction. Assume that we are
given three sets X, Y, Z satisfying the assumptions of Proposition 1, and that
none of the three sets has an adjacent acyclic matching of size n − 1. From now
on, the three sets X, Y, Z will be called parts, and we will use the term cut-edge
to refer to any edge whose endpoints belong to two distinct parts.

We will also use the term component of G to refer to a connected component of
any of the three graphs G[X ], G[Y ], G[Z]. Among all possible counterexamples to
Proposition 1, let us choose a counterexample X, Y, Z with the smallest number
of components.

Lemma 3. In a minimal counterexample described above, the three graphs
G[X ∪ Y ], G[X ∪ Z] and G[Y ∪ Z] are all connected.

Proof. Let us prove the lemma for G[X ∪ Y ]. Since X ∪ Y is large, G[X ∪ Y ]
must have a (unique) connected component whose vertex set is large. Assume
that G[X∪Y ] has another connected component C. Let us remove all the vertices
of C from the sets X, Y and add them to Z. Let XNEW, YNEW, and ZNEW denote
the sets obtained from X , Y and Z by this modification.

The three new sets still satisfy the assumptions of Proposition 1. Further-
more, any acyclic matching adjacent to XNEW, YNEW or ZNEW is also an acyclic
matching adjacent to X , Y or Z. Thus (XNEW, YNEW, ZNEW) is a counterexam-
ple to Proposition 1, and it has fewer components than (X, Y, Z). ��

The four vertices of degree 2 in G will be called corners. The components con-
taining the corners will be called corner components. Notice that no two corners
can belong to the same component, because the complement of every component
must be a large set. We will draw the graph G in the plane in the natural way,
with the vertex (a, b) drawn as the point with Cartesian coordinates (a, b), and
the edges drawn as horizontal or vertical unit segments. Thus, the vertex (1, 1)
is the bottom-left corner, and (n, 1) is the bottom-right corner.

Let v�, v�, v� and v� be the four corner vertices (1, 1), (1, n), (n, 1) and (n, n),
and let C�, C�, C� and C� be the corresponding corner components.

Our main tool is the following technical lemma, whose proof is omitted due
to space constraints.

Lemma 4. Let X, Y, Z be a partition of Vn, such that the union of any two
parts is large and induces a connected subgraph of G. Let P be a path in G that
connects the vertex v� to the vertex v�. Let d1 and d2 be two vertices of P (we
will call them “defects”), and assume that the following conditions hold:

– All the vertices of P , except possibly the two defects, belong to X ∪ Y .
– No vertices of P , except possibly the two defects, belong to C�∪C�. In other

words, the path P connects two diagonally opposite corners, while avoiding
(up to the defects) the remaining two corner components.

Under these assumptions, at least one of the two sets X, Y has an adjacent
acyclic matching of size n − 1.
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The following simple criterion will be helpful in proving acyclicity of cut-
matchings.

Lemma 5. Let W ⊆ Vn be a set of vertices, and let M be a matching adjacent
to W . If the edge-adjacency graph AM has no directed cycle of length two, and
if all the vertical edges in M have a vertex of W below a vertex from Vn \ W ,
then M is acyclic.

Proof. Assume for contradiction that the edge-adjacency graph AM has a di-
rected cycle C of length k > 2, whose vertices are the edges {e1, . . . , ek} ⊆ M ,
indexed in such a way that the edge-adjacency graph has an arc from ei to ei+1
for every i ∈ {1, . . . , k} (we evaluate the indices modulo k whenever appropriate).
Let us write ei = {xi, yi} with xi ∈ W and yi ∈ Vn \ W .

Let C∗ be a cycle in G of length 2k formed by the edges {xi, yi} and {yi, xi+1},
for i ∈ {1, 2, . . . , k}. Let us direct these edges from xi to yi and from yi to xi+1,
so that C∗ becomes a directed cycle. Assume without loss of generality that C∗

is directed clockwise in our fixed drawing G.
Let c be the rightmost column of G intersected by C∗. Since AM has no cycle

of length two, we may easily see that c must contain at least one vertical edge
of M ∩ C∗. Since C∗ is directed clockwise, this edge must be directed towards
the bottom, which means that it has a vertex from W at the top, contradicting
our assumptions about M . ��

For i ∈ {2, . . . , 2n}, let Di be the set {(a, b) ∈ Vn : a + b = i}. We will call Di

the i-th decreasing diagonal. Similarly, for i ∈ {1−n, . . . , 0, . . . , n− 1} we define
the i-th increasing diagonal Ii = {(a, b) ∈ Vn : a − b = i}.

Definition 2. For a corner component C ∈ {C�, C�} the height of C is the
number of decreasing diagonals intersected by C. For a corner component C ∈
{C�, C�}, the height of C is defined as the number of increasing diagonals that
intersect C.

The notion of height is motivated by the following Lemma.

Lemma 6. A corner component C of height k is adjacent to an acyclic matching
of size k.

Proof. Let us prove the lemma for the component C�, the other cases are sym-
metric. See Fig. 1. Assume that C� has height k, i.e., it intersects k decreasing di-
agonals D2, D3,. . . , Dk+1. Fix a vertex (a, b) ∈ Dk+1∩C�. For each i = 1, . . . , a,
let xi be the topmost vertex of C� in column i. Note that xi does not belong
to the topmost row, because the complement of C� is a large set. Let yi be the
vertex directly above xi, and let ei be the cut-edge {xi, yi}.

Similarly, for j = 1, . . . , b−1, let x′
j be the rightmost vertex in row j belonging

to C�, let y′
j be the vertex to the right of x′

j , and let e′j be the edge connecting
these two vertices. Define M = {e1, . . . , ea, e′1, . . . , e

′
b−1}.

Clearly |M | = a + b − 1 = k. Let us show that the edges in M are disjoint.
Assume that ei intersects e′j in a vertex v = (i, j). By construction, none of the
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(a, b)ei

e′j
C�

Dk+1

Fig. 1. Illustration of the proof of Lemma 6

vertices above v and none of the vertices to the right of v belong to C�. Since the
vertex (a, b) is to the right and above v, it can not belong to the same component
as v�, contradicting our assumptions. Thus, M is a matching adjacent to C�.
By Lemma 5, M is acyclic. ��

Note that if C and C′ are two distinct corner components which are both subsets
of the same part (C ∪C′ ⊆ X , say) and if M and M ′ are two acyclic matchings
adjacent to C and C′ respectively, then M ∪ M ′ large set, so the shortest path
between C and C′ has at least three edges. This means that an edge of M cannot
intersect an edge of M ′, and in the edge-adjacency graph of the matching M∪M ′,
there can be no arc between an edge of M and an edge of M ′.

We now have all the necessary ingredients to prove Proposition 1. For a ver-
tex (a, b) ∈ Vn, let χ(a, b) ∈ {X, Y, Z} be the part containing (a, b). We will
now distinguish several cases, depending on the parts containing the four corner
vertices. For convenience, we will represent the parts of the four corners by a
matrix T =

(
χ(v�) χ(v�)
χ(v�) χ(v�)

)
.

Up to symmetry and renaming of the parts, there are six possibilities for T :
( X Z

Y X ), ( X X
Y Z ), ( Y X

X Y ), ( Y Y
X X ), ( X X

X Y ), and ( X X
X X ). We deal with the first and

the second type separately, and then we present an argument that works for the
remaining four types.

The case T = ( X Z
Y X ). Since the graph G[Y ∪ Z] is connected, it contains a

path P from v� to v�, and we may apply Lemma 4.
The case T = ( X X

Y Z ). In this case, the argument is more complicated. The
sum of heights of C� and C� is at most n−2, otherwise we could find an acyclic
matching of size n − 1 adjacent to X . Thus, without loss of generality, we may
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assume that C� has height not exceeding �(n − 2)/2 . In particular, no vertex
(a, b) ∈ Vn with min{a, b} ≤ (n + 1)/2 belongs to C�.

If there is a path P from v� to v� that avoids C� and has at most two vertices
from Y , we may apply Lemma 4 and we are done. Assume now, that there is
no such path. In such case, we will prove that there is a large acyclic matching
adjacent to Y . Let R be a path in G[X ∪ Z] that connects v� with v�, and let
R′ be a path of G[X ∪ Z] that connects v� with v�. These paths exist, because
G[X ∪Z] is connected. Let us choose the two paths in such a way that they have
as few vertices outside of C� as possible. In particular, as soon as any of the two
paths enters into C�, it remains in C� until it reaches v�.

Note that the two paths cannot intersect outside of C�, otherwise we could
find a path from v� to v� in (X ∪ Z) \ C�, which we assumed does not exist.

We define, for every i = 1, . . . , �(n + 1)/2 , an auxiliary path

Qi = (i, n), (i, n − 1), . . . , (i, i + 1), (i, i), (i + 1, i), (i + 2, i), . . . , (n − 1, i), (n, i).

Note that Qi avoids C�, and that both R and R′ intersect Qi. We define a pair
of paths Pi and P ′

i : the path Pi starts in v� and follows R, until it first reaches
Qi. It then follows Qi in the direction towards (n, i), until it reaches the first
vertex of Y . Similarly, P ′

i starts in v�, follows R′, then follows Qi towards (i, n)
until it reaches a vertex of Y . Note that both these paths must eventually reach
a vertex of Y , otherwise they would meet, forming path in G[X ∪ Z \ C�] from
v� to v�. Let ei be the last edge of Pi and e′i the last edge of P ′

i . These two
edges are cut-edges adjacent to Y . Let M = {ei : 1 ≤ i ≤ �(n + 1)/2 } and
M ′ = {e′i : 1 ≤ i ≤ �(n + 1)/2 }.

We claim that M ∪ M ′ is an acyclic matching. To see this, note first that
an edge ei ∈ M cannot intersect an edge e′j ∈ M ′, otherwise we could combine
Pi and P ′

j into a single path from v� to v� with at most one vertex from Y ,
and then apply Lemma 4. For the same reason, the edge-adjacency graph of
the matching M ∪ M ′ has no arc between ei and e′j . It thus suffices to check
that both M and M ′ are acyclic matchings, which follows from Lemma 5. Since
|M ∪ M ′| ≥ 2�(n + 1)/2 ≥ n, this completes the case T = ( X X

Y Z ).
The case when all corners belong to X ∪ Y . It remains to deal with the most

complicated case, when all the four corners belong to at most two distinct parts
X and Y . Let us say that two corner components C and C′ are linked if G[X∪Y ]
has a path that connects C to C′ and avoids the remaining two corner compo-
nents. We say that C and C′ are almost linked if G has a path between C and
C′ that avoids the remaining two corner components and has at most one vertex
from Z.

If any two diagonally opposite corners are almost linked, then we are done by
Lemma 4. Assume now that this is not the case. Since G[X ∪ Y ] is connected,
at least three pairs of corners must be linked. Assume without loss of generality
that all the non-diagonal pairs except possibly the bottom pair (C�, C�) are
linked. We distinguish two subcases, depending on whether (C�, C�) is almost
linked or not.

First subcase: the pair (C�, C�) is not almost linked. Let P be a path in
G[X ∪ Y ] from v� to v� that avoids C� ∪ C�. Such a path exists, since C� and
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C� are linked. Choose P in such a way that it has as few vertices outside of
C�∪C� as possible. Let P ′ be a path that links C� to C�, chosen analogously
to P . The two paths P and P ′ are disjoint, and no vertex of P may belong to
the same component as a vertex of P ′, otherwise we could find a link between
diagonally opposite corners.

For every row i = 1, . . . , n let vi be the leftmost vertex of P that belongs to
row i, and let v′i be the rightmost vertex of P ′ in row i. Note that vi is to the
left of v′i. Let W0 = {v1, . . . , vn} and W ′

0 = {v′1, . . . , v′n}. Assume without loss of
generality that at least n vertices in W0∪W ′

0 belong to X and write W = W0∩X
and W ′ = W ′

0 ∩X . We now create an acyclic matching of size |W ∪W ′| adjacent
to X . For each vertex vi ∈ W let ei be the leftmost horizontal cut-edge in row
i to the right of vi. Note that such a cut-edge must exist, otherwise vi and v′i
would belong to the same component.

Symmetrically, for v′i ∈ W ′, let e′j be the rightmost horizontal cut-edge in row
j to the left of v′j . Let M = {ei : vi ∈ W} and M ′ = {e′j : v′j ∈ W ′}.

We claim that M ∪M ′ is an acyclic matching. To see this, it suffices to prove
that any two edges ei ∈ M and e′j ∈ M ′ are disjoint and non-adjacent in the
edge-adjacency graph of M ∪M ′. If vi ∈ C� and v′j ∈ C� then the claim follows
from the fact that Y ∪ Z is large, and hence there are at least two columns
separating C� from C�. If, on the other hand, vi �∈ C�, then an adjacency or
an intersection of ei and e′j implies that C� is almost linked to either C� or C�,
which is impossible. If vi ∈ C� and v′j �∈ C� we get a contradiction in the same
way. Since both M and M ′ are clearly acyclic matchings, M ∪ M ′ is an acyclic
matching of size n adjacent to X . This completes the first subcase.

Second subcase: the pair (C�, C�) is almost linked. For a corner component
C, let h(C) be the height of C. We claim that either h(C�) + h(C�) < n − 1 or
h(C�)+h(C�) < n−1. If there are two diagonally opposite corners that belong to
the same part, then this claim follows directly from the remark below Lemma 6.
If each two diagonally opposite corners belong to distinct parts, then there are
two corners belonging to X and two corners belonging to Y . By Lemma 6 and the
discussion below, we know that the four corner components have total height at
most 2n−4. Thus, there must be a pair of diagonally opposite corner components
whose combined height is at most n − 2.

Without loss of generality, assume that h(C�) + h(C�) ≤ n − 2. Assume, fur-
thermore, that every path from v� to v� that avoids C�∪C� has at least three
vertices from Z, otherwise we may apply Lemma 4. Our aim now will be to find
a large acyclic matching adjacent to Z. Similarly to the second case, we will do
this by constructing a collection P1, . . . , P
(n+1)/2� of paths that connect v� with
a vertex of Z, and taking the last edge of each Pi as a matching edge ei. Then, we
construct a similar collection of matching edges e′i from paths starting in v� and
prove that the whole collection of edges forms an acyclic matching adjacent to Z.

Let us describe the construction in detail. Let R1 be a path in G[X ∪ Y ] that
connects v� to v� and avoids C� ∪ C�. Let R2 be a path in G from v� to v�
that avoids C�∪C� and has at most one vertex in Z (recall that C� and C�
are almost linked). Choose R1 and R2 to have as few vertices outside the corner
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components as possible. Let z be the vertex in Z ∩R2; if Z ∩R2 is empty, define
z to be any vertex of R2. Symmetrically, we define R′

1 and R′
2 to be the paths in

G[X∪Y ] connecting v� to v� and v� respectively, subject to the same minimality
assumptions. No two of these four paths may intersect outside of the four corner
components, since this would imply that a pair of diagonally opposite corner
components is almost linked.

Let us say that an increasing diagonal is free if it does not intersect C�∪C�.
Recall that at least n+1 increasing diagonals are free. Note that any two adjacent
free diagonals induce a path that avoids C�∪C�, and that every free diagonal
is intersected by R1 or by R2. Let us match the free diagonals into at least
�(n + 1)/2 disjoint pairs of adjacent diagonals. If the number of free diagonals
is odd, one of them will be unmatched. Let Q1, . . . , Q
(n+1)/2� be the paths
induced by the matched pairs of diagonals.

For every i ∈ {1, . . . , �(n + 1)/2 }, we define a path Pi in the following way:
first, we follow either R1 or R2, whichever leads to Qi, until we reach a vertex
from Qi. From this point on, we follow Qi (in the increasing direction) until we
reach the first vertex of Z. We then define the edge ei to be the last edge of
Pi. As a special exception, if the last vertex of Pi is the vertex z defined above,
we leave ei undefined. If ei is defined, it is a subset of Qi, hence all the edges
we defined in this way are disjoint. Let M be the matching consisting of all the
edges ei defined this way. By Lemma 5, M is acyclic.

Symmetrically, we define the path P ′
j , by following either R′

1 or R′
2 until we

reach Qj , and then following Qj downwards, until we reach a vertex from Z. Let
e′j be the last edge of P ′

j , and let M ′ be the acyclic matching of all the edges e′j ,
for j = 1, . . . , �(n + 1)/2 .

We will now show that no two edges ei ∈ M and e′j ∈ M ′ intersect or induce
an arc in the edge-adjacency graph of M ∪ M ′. If this were the case we could
combine Pi with P ′

j into a path with at most two defects (one of them being the
vertex z, the other resulting from the intersection or adjacency of the two edges)
and apply Lemma 4.

We conclude that M ∪ M ′ is an acyclic matching adjacent to Z. Since |M ∪
M ′| ≥ 2�(n + 1)/2 − 1 ≥ n − 1, Proposition 1 is proved.

This completes the proof of Theorem 1.
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Improved Upper Bounds for
Partial Vertex Cover�

Joachim Kneis, Alexander Langer, and Peter Rossmanith

Dept. of Computer Science, RWTH Aachen University, Germany

Abstract. The Partial Vertex Cover problem is to decide whether
a graph contains at most k nodes covering at least t edges. We present
deterministic and randomized algorithms with run times of O∗(1.396t)
and O∗(1.2993t), respectively. For graphs of maximum degree three, we
show how to solve this problem in O∗(1.26t) steps. Finally, we give an
O∗(3t) algorithm for Exact Partial Vertex Cover, which asks for at
most k nodes covering exactly t edges.

1 Introduction

The widely known problems Vertex Cover and Dominating Set are among
the most important graph-theoretical optimization problems: Find a small set
of nodes that cover all edges, or dominate the whole graph, respectively. These
NP-complete problems are well studied with respect to approximability [13,16],
exact algorithms [8, 18], and parameterized complexity [6, 7]. Recently, partial
variants of these and similar problems came into a broader research focus [2, 3,
4, 5, 9, 10, 11, 12, 14, 15]: Instead of covering all edges or dominating all nodes,
it is sufficient to cover t edges or dominate t nodes, where t is an additional
parameter. Being generalizations of Vertex Cover and Dominating Set,
these problems are NP-complete.

In this paper, we study the complexity of Partial Vertex Cover defined as:

Input: A graph G = (V, E), positive integers k, t
Question: Is there a C ⊆ V , |C| ≤ k, such that C covers at least t edges?

The best known constant approximation factor with respect to k is 2 and
there are several algorithms that achieve an approximation factor of 2− o(1) [2,
4, 9, 11, 12]. Since this coincides with the best result for Vertex Cover (see,
e.g., [16]), a significant improvement seems to be unlikely. With respect to t, it
is easy to see that a simple greedy algorithm already has an approximation ratio
of at least 2.

We can expect that Partial Vertex Cover is a harder problem than Ver-

tex Cover: Many algorithms exploit the fact that if each edge {u, v} must
be covered, one of u or v must be part of the solution. This simple observa-
tion already gives us a 2-approximation and an O∗(2k) algorithm.1 In the partial
� Supported by the DFG under grant RO 927/7-1.
1 The O∗ notation suppresses polynomial factors.

H. Broersma et al. (Eds.): WG 2008, LNCS 5344, pp. 240–251, 2008.
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case, however, one does not know if an edge is being covered at all. Thus, the
2-approximation factor for Partial Vertex Cover is harder to prove, and
we cannot expect an O∗(f(k)) algorithm for Partial Vertex Cover, as this
implies FPT = W[1] [10].

The more interesting question is whether there is an fpt algorithm for the
case that t rather than only k is small, i.e., an algorithm with run time bounded
by f(t)poly(n). Bläser answered this question positively even for Partial Set

Cover [3], which is a generalization of Partial Vertex Cover. His random-
ized algorithm is based on color coding, achieving a run time of O∗(5.437t),
and can be derandomized into a deterministic algorithm. The base in the expo-
nential function is rather huge, though. A faster and much simpler randomized
algorithm developed recently [14] achieves a run time of O∗(2.09t). While this is
a significant improvement, derandomizing it would result in a time complexity
that is not exponential in t.

In this paper, we present a deterministic algorithm with run time bounded by
O∗(1.396t), which even beats the best known randomized methods. As the latter
are based on the many witnesses paradigm, they cannot directly be efficiently
derandomized. We overcome this obstacle by a new method that scans the pos-
sible witnesses in a special order. This way, either a good witness is found early
on or the time spent on false witnesses is small. For graphs of maximum degree
three, we devise a special algorithm with run time O∗(1.26t).

Moreover, we present a randomized algorithm for Partial Vertex Cover

with a run time bounded by O∗(1.2993t) improving all previous results. While
the algorithm is very simple — it basically selects either a node of maximum
degree or two of its neighbors— the analysis is rather involved.

We also consider the variant of Partial Vertex Cover, where exactly t
edges must be covered and introduce the new technique of random orientations.
A randomized algorithm based on this technique solves this variant with a run
time bounded by O∗(3t).

Due to space constraints, some of the proofs are omitted in the paper.

2 Preliminaries

Let G = (V, E) be a graph and U = {v1, . . . , vu} ⊆ V . For v ∈ V , the set
of neighbors of v is denoted by N(v), and N [v] := N(v) ∪ {v}. By deg(U)
we denote the degree sequence (d1, . . . , du) = (deg(vi1 ), deg(vi2), . . . , deg(viu)),
where (i1, . . . , iu) is a permutation of (1, . . . , u), such that d1 ≥ d2 ≥ · · · ≥ du.
By E(U) we denote the set of edges that are incident to some v ∈ U , and
||U || := |E(U)|. We call C ⊆ V a (t, k)-vertex cover for G iff |C| ≤ k and
||C|| ≥ t. We define the relation % on all instances of Partial Vertex Cover

as (G, k, t) % (G′, k′, t′) iff t > t′ or t = t′ ∧ |G| > |G′|.
A branching vector (x1, x2, · · · , xl) is a short notation for a recursive function

T (n) of the form T (n) = T (n − x1) + T (n − x2) + · · ·+ T (n − xl) for n > 1 and
T (n) = 1 for n ≤ 1. The corresponding branching number c can be used to bound
T (n) by O(cn) and can easily be computed using characteristic polynomials.
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For more information about branching vectors and the corresponding branching
numbers, see [17].

Let s = (s1, . . . , sl) and t = (t1, . . . , tl) be two branching vectors. We say s
dominates t (denoted by s � t or t 	 s), iff si ≥ ti for 1 ≤ i ≤ l. If s � t, then the
branching number for s is smaller than the branching number for t.

Let u, v ∈ V be adjacent nodes of degree at least two. If N [v] ⊆ N [u], we
say u dominates v. We call G reduced, if there are no such nodes in G. For
Partial Vertex Cover, we can assume G is reduced without loss of generality,
otherwise the operation depicted in Figure 1 can be applied.

v u v uv′

Fig. 1. Domination in graphs can be resolved by small modifications

The following lemmata can easily be deduced from a simple node exchange
argument.

Lemma 1. Let G = (V, E) a graph and v a node of maximum degree d. If
v �∈ C for any (t, k)-vertex cover C ⊆ V , then for each (t, k)-vertex cover C
holds i := |C ∩ N(v)| > d − di + 1, where deg(C ∩ N(v)) = (d1, . . . , di).

Lemma 2. Let G be a graph, v be a node of maximum degree d and N(v) =
{v1, . . . , vd}, such that deg(v1) ≥ · · · ≥ deg(vd). If there is some i, such that for
all (t, k)-vertex cover C we have C ∩ {v, v1, . . . , vi} = ∅, but deg(vi) ≤ i, then G
does not contain any (t, k)-vertex cover at all.

Lemma 3. Let G be a graph, v be a node of maximum degree d and C a (t, k)-
vertex cover for G. Let N(v) = {v1, . . . , vd} with deg(v1) ≥ · · · ≥ deg(vd).
If there is no (t, k)-vertex cover containing any node from v, v1, . . . , vd−2, then
there is a (t, k)-vertex cover C′ for G containing both vd−1 and vd and we have
deg(vd−1) + deg(vd) > d.

3 A Fast Algorithm on Graphs of Maximum Degree
Three

In this section, we present a new deterministic algorithm for Partial Ver-

tex Cover on graphs of maximum degree three with a run time bounded by
O∗(1.26t). The algorithm always branches on a node of degree three and some
of its neighbors, thereby avoiding any node that has three neighbors of degree
three if possible. Since we are only forced to select such a node in a three-regular
graph, this can be avoided in any but the first step.
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The branching itself depends on the degree of the neighbors and the edges
between them, leading to a large case distinction. In order to increase the read-
ability, we do not present the algorithm explicitly, but describe its behavior
in the upcoming lemmata. Lemma 4 shows the possible branching operations if
there is some triangle containing a node of degree three. Lemma 5 establishes the
branching operations needed in triangle-free graphs of maximum degree three.

v

u1 u2

u3

v

u1 u2

u3

v

u1 u2

u3

Fig. 2. Possible neighborhoods of a node v of maximum degree three being part of a
triangle

Lemma 4. Let G be a reduced graph of maximum degree three and v be a node
of maximum degree that is part of a triangle (v, u1, u2). Then there is a branching
with a branching vector of at least (3, 3).

Proof. Let u3 be the remaining third neighbor of v. Since G is reduced, every
node is part of at most one triangle, and each triangle does not contain any node
of degree two. Therefore, the neighborhood of v is one of the three cases depicted
in Figure 2.

Since v is of maximum degree, either v or some of its neighbors belong to some
(t, k)-vertex cover, if such a cover exists. If v does not belong to any (t, k)-vertex
cover, each cover C covers at least four edges with nodes from N(v), because
otherwise we could replace C ∩ N(v) with {v}. Thus, at least two nodes from
N(v) must be part of a (t, k)-vertex cover, if v is not.

– Let deg(u3) = 1 and C be a (t, k)-vertex cover. Without loss of generality,
u3 /∈ C. If {u1, u2} ⊆ C but v /∈ C, C ∪ {v} \ {u2} is a valid (t, k)-vertex
cover. Thus, we can safely add v to C and no branching is necessary.

– Let deg(u3) = 2 and C be a (t, k)-vertex cover containing u1 and u3 but
neither v nor u2. Then C ∪ {v} \ {u3} covers t edges with k nodes. If C
contains only {u1, u2}, we can replace u2 by v. Therefore, either v is part of
some (t, k)-vertex cover for G, or all nodes in {u1, u2, u3} belong to such a
cover, which results in a branching vector of (3, 7).

– Let deg(u3) = 3. Similar to previous case, a cover containing only {u1, u2}
can be replaced by a cover containing {u1, v}. Hence, either v or u3 is part
of an optimal solution, which yields the branching vector (3, 3).

Lemma 5. Let G be a graph of maximum degree three that is not three-regular
and v a node of maximum degree that has a neighbor of degree two. Then there is a
branching on nodes from N [v] which yields a branching vector of at least (3, 3).
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Proof. Recall that if no (t, k)-vertex cover contains v, at least two nodes from
N(v) are part of any (t, k)-vertex cover, since v is of maximum degree. Let
furthermore ∆i := |{ u ∈ N(v) | deg(u) = i }|.
– If ∆1 ≥ 1 and ∆3 ≤ 1, v must be part of some (t, k)-vertex cover. Since

|N(v) ∩ C| ≥ 2, at least one neighbor of degree at most two must be part
of some (t, k)-vertex cover. Thus, Lemma 1 implies that there exists a (t, k)-
vertex cover containing all neighbors of v, and since at least one ui is of
degree one, we can replace it with v.

– Let ∆1 = 1 and ∆3 = 2. Then both neighbors of degree three are contained
in some (t, k)-vertex cover, because otherwise the node with degree one would
be part of some (t, k)-vertex cover. But then, this node could be replaced by
v. This implies a branching vector of (3, 6).

– In the following we can assume that no node in N(v) is of degree one. Let
∆2 = 3. Since v is not part of any (t, k)-vertex cover, Lemma 1 implies that
N(v) belongs to some (t, k)-vertex cover. Again, we obtain the branching
vector (3, 6).

– Now let 1 ≤ ∆2 ≤ 2 and ∆3 = 3 − ∆2. Let u1 ∈ N(v) be a node of degree
three. Either we have directly u1 is part of some (t, k)-vertex cover or both
other neighbors. But since one of these is of degree two, Lemma 1 implies
that u1 is part of some (t, k)-vertex cover too. Therefore, the corresponding
branching vector is (3, 3).

Combining these lemmata, we obtain a run time bound of O∗(1.26t).

Theorem 1. Partial Vertex Cover on graphs of maximum degree three can
be solved in O∗(1.26t).

Proof. Let us first consider the case that G is a connected graph of maximum de-
gree three. If G is not three-regular, it is easy to see that applying the branching
operations or the reduction rule does not lead to a connected three-regular graph.
Even more, if the branching operation splits the graph into several components,
each of these components is not three-regular as well. Hence, the three-regular
case can only occur at the beginning. A simple branch for each v ∈ V , where
membership in the (t, k)-vertex cover is tested, increases the run time by a factor
n, but leaves us with a graph that is not three-regular.

The algorithm always chooses a node of degree three with at least one neighbor
of degree two or less. Thus, by Lemma 4 and Lemma 5, its branching vector is
at least (3, 3) in t, i.e., its running time is in O∗(1.26t).

If G is not connected, let G0, . . . , Gs be its components. For each component
Gj and each k′ ≤ k we compute the maximum number tj,k′ of edges that can be
covered in Gj with k′ nodes. Each component Gj is connected, hence t calls of
the branching algorithm with parameter 0 ≤ t′ ≤ t are sufficient per component.
We can then use dynamic programming to compute the maximum number of
edges t1···j,k′ , 2 ≤ j ≤ n that can be covered with k′ nodes, if only nodes from
components G1, . . . , Gj are allowed: For each 2 ≤ j ≤ s and each 0 ≤ k′ ≤ k, we
have

t1···j,k′ := min{ t1···(j−1),p + tj,q | p + q = k′ }.
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The branching algorithm takes time 1.26t · poly(n), and is called s · t ·k times.
Dynamic programming takes O(s ·k2) steps, hence we obtain an overall run time
bound of O∗(1.26t) for arbitrary graphs of maximum degree three.

If we replace the actual branching with a randomized selection of the respective
branching node(s), we obtain a simple randomized version of above algorithm.

Corollary 1. There is a randomized algorithm RPVC3 deciding Partial Ver-

tex Cover on graphs of maximum degree three with success probability of at
least (1/1.26)t.

4 A Deterministic Algorithm

In this section, we introduce a deterministic algorithm for arbitrary graphs. This
algorithm, shown in Table 1, basically behaves as follows. A node of maximum
degree is tested for membership in the (t, k)-vertex cover. If this test fails, one
of its neighbors must be part of the solution, and the algorithm tests them in
the decreasing order of their degrees.

Table 1. A deterministic algorithm for Partial Vertex Cover

Algorithm PVC(G, k, t):
Input: Graph G, k, t
select a node v of maximum degree d
let N(v) = {v1, . . . , vd} and deg(v1) ≥ . . . ≥ deg(vd)
if deg(v) ≤ 3 then apply branching rules for graphs of maximum degree three
else for i = 1, . . . , d − 1 do

if i ≥ deg(vi) then return “no”
else if (i < d − 1) and PVC(G − {v}, k − 1, t − d) then return “yes”
else return PVC(G − {vd−1, vd}, k − 2, t − deg(vd−1) − deg(vd))

Theorem 2. Partial Vertex Cover can be solved in at most O∗(1.396t)
steps by Algorithm PVC.

Proof. Let G be a graph of maximum degree d. By Lemmata 2 and 3, Algorithm 1
solves Partial Vertex Cover. As for the run time, we first note that each
recursive call only takes polynomial time. Now, we bound the number of recursive
calls by a function of t. To do so, we measure how t decreases in each branch
and evaluate the corresponding branching vectors. If d ≤ 3, Partial Vertex

Cover can be solved in O∗(1.26t) by Theorem 1. The corresponding branching
vector is (3, 3). If d > 3, either the ith recursive call in the loop returns “yes”
and we obtain the branching vector(

d, deg(v1), . . . , deg(vi−1)
)

�
(
d, i, . . . , i

)
�
(
i + 1, i, . . . , i

)
.

Otherwise, each of these calls returns “no”, so i = d and we obtain the branch-
ing vector(

d, deg(v1), . . . , deg(vd−2), deg(vd−1) + deg(vd)
)

�
(
i, i, . . . , i, i + 1

)
.
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For i ≥ 5, we may estimate the branching with the simpler branching vector(
i, . . . , i︸ ︷︷ ︸
i times

)
	
(
i + 1, i, . . . , i︸ ︷︷ ︸

i−1 times

)
.

The characteristic polynomial of this vector is zi − i with largest positive real
root i1/i ≤ 51/5 ≤ 1.38. For i < 5, we obtain the branching numbers 1.325 for
the vector (5, 4, 4, 4) and 1.396 for the vector (4, 3, 3) by a short computation.
Thus, the number of recursive calls in Algorithm 1 is bounded by 1.396t.

5 A Randomized Algorithm

In this section, we present a randomized algorithm for Partial Vertex Cover.
Again, a node v of maximum degree is chosen deterministically, but either v or
two of its neighbors are added to the (t, k)-vertex cover with certain probabilities.
This technique leads to a polynomial-time algorithm with success probability of
at least 1/1.2993t.

Fix α = (
√

41−1
20 )1/5 > 1/1.2993 and let pd = αd for each d ∈ N. The al-

gorithm, see Table 2, is straight-forward and handles a only small number of
border cases. We begin with an estimation that will be required later.

Lemma 6. For d = 4 and 3 ≤ i ≤ d, and for each 5 ≤ d ∈ N and each i ∈ N,
such that 2 ≤ i ≤ d, we have

(1 − αd)
(

i

2

)
≥ α2d−2i+4

(
d

2

)
.

Proof. It is sufficient to show that

1 ≤ g(d, i) := (1 − αd)α2i−2d−4 i(i − 1)
d(d − 1)

for all relevant d, i. For d = 4 and i ∈ {3, 4} this is easily confirmed. Hence, fix
5 ≤ d ∈ N. We first consider the cases g(d, 2) and g(d, d). The function

h1(z) :=
1

z(z − 1)
α−2z

is strictly increasing on [5,∞), since

d

dz
ln
( 1

z(z − 1)
α−2z

)
= −1

z
− 1

z − 1
− 2 lnα > 0

for z ≥ 5. This implies

h2(z) := g(z, 2) = (1 − αz)
2

z(z − 1)
α−2z = 2(1 − αz)h1(z)
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Table 2. A randomized algorithm for (t, k)-vertex cover

Algorithm RPVC(G, k, t):
Input: Graph G, k, t
if k < 0 then return “no”
if t ≤ 0 then return “yes”
if G is not connected then

Compute optimal solutions for all t′ ≤ t for every component of G.
Combine the solutions using dynamic programming.
Return whether there is a global solution for G.

if G has maximum degree three then return RPVC3(G, k, t)
if G is four-regular then

choose arbitrary v ∈ V
if “yes” ∈ { RPVC(G − u, k − 1, t − 4) | u ∈ N [v] } then return “yes”
else return “no”.

else choose v ∈ V of maximum degree d, so that deg(N(v)) 
= (4, 4, 4, 4)
X :=

`
N(v)

2

´

if deg(N(v)) = (4, 4, 4, 3) then
X := { x ∈ X | deg(x) = (4, 4) }

else if deg(N(v)) = (4, 4, 3, 3) then
X := { x ∈ X | deg(x) 
= (3, 3) }

Uniformly choose C ∈ X.

Return

(
RPVC(G − v, k − 1, t − d) with probability pd

RPVC(G − C, k − 2, t − ||C||) with probability 1 − pd

is strictly increasing on [5,∞). Furthermore, h2(5) ≥ 1 — with equality for d =
5— and therefore g(d, 2) ≥ 1 for each 5 ≤ d ∈ N. Similarly, let

h3(z) := g(z, z) = (1 − αz)α−4.

Here, α−4 ≈ 2.849, and αz ≤ 1
2 for z ≥ 5. Hence h3(z) = g(z, z) > 1 for z ≥ 5.

What remains to show is that g(d, i) ≥ 1 for i ∈ (2, d). We consider

fd(z) := ln g(d, z) = ln
(
(1 − αd)α2z−2d−4 z(z − 1)

d(d − 1)

)
.

Of course g(d, i) ≥ 1 iff fd(i) ≥ 0. However, fd(z) is convex on [2, d], because

f ′′
d (z) = − 1

z2 − 1
(z − 1)2

< 0.

With fd(2) = ln g(d, 2) ≥ 0 and fd(d) = ln g(d, d) ≥ 0, we conclude fd(z) ≥ 0 on
[2, d] and hence g(d, i) ≥ 1 for all i ∈ N with 2 ≤ i ≤ d.

The correctness of RPVC and its success probability is due to the following
lemma.

Lemma 7. Let G = (V, E) a graph. RPVC(G, k, t) runs in polynomial time. If
there is no (t, k)-vertex cover for G, then RPVC(G, k, t) answers “no”. Otherwise
RPVC(G, k, t) answers “yes” with probability at least αt.
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Proof. If there is no (t, k)-vertex cover for G, then RPVC(G, k, t) clearly an-
swers “no”. Otherwise, we use induction over the order % on instances.

For t = 0, RPVC(G, k, t) answers “yes” with probability 1 = α0. If t > 0 and
G is not connected, let G0, . . . , Gs be its components, and let (k0, t0), . . . , (ks, ts),
such that k0 + · · · + ks = k, t0 + · · · + ts = t, and for each 0 ≤ i ≤ s there is
a (ti, ki)-vertex cover for Gi. For all 0 ≤ i ≤ s, we have (G, k, t) % (Gi, ki, ti).
Hence, by hypothesis RPVC(Gi, ki, ti) answers “yes” with probability at least
αti . Therefore, with probability at least

αt0αt1 · · ·αts = αt

the dynamic programming approach is successful and RPVC(G, k, t) answers
“yes”. For correctness and run time of the dynamic programming approach, see
the proof of Theorem 1.

From now, we assume G is connected. If G has maximum degree three, by
Corollary 1 RPVC3(G, k, t) answers “yes” with probability at least (1/1.26)t >
αt.

If G is four-regular, let v be the node chosen by the algorithm. We know that
there is a solution containing at least one u ∈ N [v]. Calling RPVC(G − u, k −
1, t − 4) for each u ∈ N [v] adds factor of five to the run time. Similar to the
three-regular case, it is easy to see that the respective G will be four-regular at
most once on any path in the recursive call tree.

If otherwise G is not four-regular, but contains a node of degree four or larger,
let v be the node of maximum degree d > 3 that was chosen by the algorithm.
Note that it is always possible to choose v with deg(N(v)) �= (4, 4, 4, 4), since
G is not four-regular. Let C be a (t, k)-vertex cover with v ∈ C, then there is a
(k−1, t−d)-vertex cover for G−v. With probability αd the algorithm chooses v
and calls RPVC(G−v, k−1, t−d). Hence, by induction hypothesis, the algorithm
answers “yes” with probability at least αdαt−d = αt.

If otherwise there is no (t, k)-vertex cover containing v, we know that |C ∩
N(v)| ≥ 2 for each (t, k)-vertex cover C. Fix such a (t, k)-vertex cover C for G
and let D := C ∩ N(v), i := |D|, and deg(D) = (d1, . . . , di). By Lemma 1, we
know i ≥ d − di + 2, or di ≥ d − i + 2. We begin with the two special cases that
are distinguished by the algorithm:

1. If d = 4 and deg(N(v)) = (4, 4, 4, 3), then

deg(D) ∈ { (4, 4), (4, 4, 3), (4, 4, 4), (4, 4, 4, 3)}.

With probability (1 − α4) we do not choose v, and with probability at least 1/3
we find the correct nodes v1, v2 ∈ N(v). These nodes cover at least seven edges,
and hence the probability to answer “yes” is, by induction, at least

(1 − α4)
1
3
αt−7 =

αt−7 − αt−4

3
> αt.

2. If d = 4 and deg(N(v)) = (4, 4, 3, 3), then

deg(D) ∈ { (4, 4), (4, 3, 3), (4, 4, 3, 3)},
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i.e., we know at least one node of degree four is in any (t, k)-vertex cover. If i = 2,
then deg(D) = (4, 4), and we furthermore know that there is no edge between
these neighbors (otherwise we can construct a (t, k)-vertex cover containing v, a
contradiction). Hence, at least eight edges are being covered, and the probability
to answer “yes” is, by induction, at least

(1 − α4)
1
5
αt−8 =

αt−8 − αt−4

5
> αt.

If otherwise 3 ≤ i ≤ 4, we can only guarantee that six edges are being covered,
but we gain an improved probability to pick two neighbors in D. We obtain a
probability to answer “yes” of at least

(1 − α4)
1
5

(
i

2

)
αt−6 =

αt−6 − αt−2

5

(
i

2

)
> αt.

The remaining cases are d ≥ 5, or d = 4 and

deg(N(v)) �∈ { (4, 4, 3, 3), (4, 4, 4, 3), (4, 4, 4, 4) }.

The latter enforces i = |D| ≥ 3 due to the minimum degree di in D. With
probability (1 − αd), the algorithm does not choose v. With probability

(
i
2

)
/
(
d
2

)
the algorithm chooses two correct nodes v1, v2 ∈ D ⊆ N(v). Furthermore, v1 and
v2 cover at least 2(d − i + 2) edges: This is clear if v1 and v2 are not connected
or neither v1 nor v2 are of degree d − i + 2. However, if at least one node, say
v1, is of degree d− i + 2, and v1 and v2 are connected, then a (t, k)-vertex cover
containing v can be constructed from C by replacing v1 with v—a contradiction.

By induction, the probability that RPVC(G − {v1, v2}, k − 2, t − 2(d − i +
2)) returns “yes” is at least αt−2(d−i+2). Therefore, the success probability of
RPVC(G, k, t) is at least

(1 − αd)
i(i − 1)
d(d − 1)

αt−2(d−i+2) ≥ α2(d−i+2)αt−2(d−i+2) = αt,

using the estimation from Lemma 6.

6 Exact Partial Vertex Cover

We define the parameterized problem Exact Partial Vertex Cover as
follows:

Input: A graph G = (V, E), positive integers k, t
Question: Is there a C ⊆ V , |C| ≤ k, such that C covers exactly t edges?

The algorithms from the previous sections cannot be adapted to solve this
problem, since there are solutions that do contain neither a node of maximum
degree nor any of its neighbors.
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While the first algorithm for Partial Vertex Cover by Bläser [3] might
be modified to solve Exact Partial Vertex Cover as well, the random sep-
aration method by Cai, Chan, and Chan [5] solves this problem more efficiently
in O∗(2k+t) = O∗(4t) steps.

We use a similar and—to our best knowledge—new technique that we call
random orientation: First randomly choose an orientation for each edge {v, u}:
v → u (to u), v ← u (to v), or v −− u (undirected). An inner node v is a node
such that all edges incident to v are either undirected or point to v. An inner
component U is a minimal, nonempty set U of inner nodes, such that u ← v for
each edge {u, v} with u ∈ U and v /∈ U .

Theorem 3. Let G = (V, E) be a graph and C a solution of the Exact Partial

Vertex Cover instance (G, k, t). Then C is a union of some inner components
for a random orientation of E with probability at least 3−t.

After randomly choosing an orientation for a graph, compute all inner compo-
nents. Note that no edge is incident to more than one inner component, thus
we can use dynamic programming to test, whether some of these components
contain together at most k nodes and cover exactly t edges. The overall run time
is polynomial in t, k, and G. Obviously, the success probability is at least 3−t.
We easily obtain the following result:

Theorem 4. Exact Partial Vertex Cover can be solved by a randomized
algorithm in O∗(3t) with constant error probability.

Note that this algorithm can be derandomized by using t-independent hash
functions [1] yielding a run time of O∗(ct) for some constant c.

The method of random orientation can easily be used for other variants of
Partial Vertex Cover, including several weighted problems. However, note
that some variants are W [1] hard, especially if we look for a (t, k)-vertex cover
whose weight is exactly a given number (by a reduction from Subset Sum).
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Abstract. Starting point of our work is a previous paper by Flarup,
Koiran, and Lyaudet [5]. There the expressive power of certain fami-
lies of polynomials is investigated. Among other things it is shown that
polynomials arising as permanents of bounded tree-width matrices have
the same expressiveness as polynomials given via arithmetic formulas. A
natural question is how expressive such restricted permanent polynomi-
als are with respect to other graph-theoretic concepts for representing
polynomials over a field K. One such is representing polynomials by for-
mulas in conjunctive normal form. Here, a monomial occurs according to
whether the exponent vector satisfies a given CNF formula or not. We
can in a canonical way assign a graph to such a CNF formula and speak
about the tree-width of the related CNF polynomial.

In this paper we show that the expressiveness of CNF polynomials of
bounded tree-width again gives precisely arithmetic formulas. We then
study how far the approach of evaluating subclasses of permanents effi-
ciently using a reduction to CNF formulas of bounded tree-width leads.
We show that there does not exist a family of CNF polynomials of
bounded tree-width which can express general permanent polynomials.
The statement is unconditional. An analoguous result for CNF polyno-
mials of bounded clique-width is given, this time under the assumption
that #P 
⊆ FP/poly.

The paper contributes to the comparison between classical Boolean
complexity and algebraic approaches like Valiant’s one.

1 Introduction

An active field of research in computational complexity is devoted to the design
of efficient algorithms for subclasses of problems which in full generality likely are
hard to solve. It is common in this area to define such subclasses via bounding
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some significant problem parameters. Typical such parameters are the tree- and
clique-width if a graph structure is involved in the problem’s description.

In the present paper we consider a graph-theoretic approach in order to deal
with problems that are related to families of polynomials. These families are
given in a particular manner through certain Boolean formulas in conjunctive
normal form, shortly CNF formulas. More precisely, we consider functions of the
form

f(x) =
∑

e∈{0,1}n

ϕ(e)xe, x ∈ {0, 1}n , for some n ∈ N, (∗)

where ϕ is a CNF formula in n Boolean variables. We are interested in the
question how expressive such a representation of polynomials is and under which
additional conditions f(x) can be evaluated efficiently. Fischer, Makowsky, and
Ravve [4], extending earlier results from [2], have shown that the counting SAT
problem, i.e. computing

∑
e∈{0,1}n

ϕ(e) for a CNF formula ϕ can be solved in time

O(n ·4k) if a certain bipartite graph Gϕ canonically attached to ϕ is of bounded
tree-width k.

Our first main result precisely characterizes the expressive power of functions
of form (∗) when Gϕ is of bounded tree-width. It is shown that the class of these
polynomials equals both the class of polynomials representable by arithmetic
formulas of polynomial size and the class of functions obtained as permanents
of matrices of bounded tree-width and polynomially bounded dimension. Here,
equality of the latter two concepts was known before due to a result of Flarup,
Koiran, and Lyaudet [5].

Recall that in Valiant’s algebraic model of computation for families of polyno-
mials the permanent is VNP complete and thus likely not efficiently computable.
Though an unconditional proof of this conjecture seems extremely difficult we
next show that at least trying to obtain an efficient algorithm for computing
permanents through formulas of type (∗) with Gϕ of bounded tree-width must
fail. This result is unconditioned in that it does not rely on any open conjecture
in complexity theory.

Next, we pose the corresponding question for CNF formulas of bounded clique-
width. Using another result from [4] we show that expressing the permanent of
an arbitrary matrix by formulas of type (∗), this time with Gϕ of bounded
clique-width would imply #P ⊆ FP/poly and thus is unlikely.

The paper is organized as follows. In Section 2 we recall basic definitions as
well as the needed results from [4] and [5]. Section 3 first shows how permanents
of matrices of bounded tree-width can be expressed via polynomials of form∑
e∈{0,1}n

ϕ(e)xe with Gϕ of bounded tree-width. Then, we extend a result from

[4] to link such polynomials to arithmetic formulas. The results in [5] now imply
equivalence of all three notions. In Section 4 the above mentioned negative results
concerning expressiveness of (general) permanents by CNF formulas of bounded
tree- or clique-width are proven.
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Our results contribute to the comparison of Boolean and algebraic complexity.
In particular, we consider it to be interesting to find more results like Theorem
8 below which states that certain properties cannot be expressed via (certain)
graphs of bounded tree-width.

2 Basic Definitions

We start briefly collecting basic definitions and results that are needed below.

2.1 Arithmetic Circuits

Definition 1. a) An arithmetic circuit is a finite, acyclic, directed graph. Ver-
tices have indegree 0 or 2, where those with indegree 0 are referred to as
inputs. A single vertex must have outdegree 0, and is referred to as output.
Each vertex of indegree 2 must be labeled by either + or ×, thus represent-
ing computation. Vertices are commonly referred to as gates. By choosing as
input nodes either some variables x or constants from a field K a circuit in
a natural way represents a multivariate polynomial over K.

b) An arithmetic formula is a circuit for which all gates except the output have
outdegree 1 (therefore, reuse of partial results is not allowed in arithmetic
formulas).

c) The size of a circuit is the total number of gates in the circuit.

2.2 Tree- and Clique-Width

Treewidth for undirected graphs is defined as follows:

Definition 2. Let G = 〈V, E〉 be a graph. A k-tree-decomposition of G is a tree
T = 〈VT , ET 〉 such that:

(i) Each t ∈ VT is labelled by a subset Xt ⊆ V of size at most k + 1.
(ii) For each edge (u, v) ∈ E there is a t ∈ VT such that {u, v} ⊆ Xt.
(iii) For each vertex v ∈ V the set {t ∈ VT |v ∈ XT } forms a (connected) subtree

of T .

The tree-width of G is then the smallest k such that there exists a k-tree-decom-
position for G.

Next we recall the clique-width notion.

Definition 3. A graph G has clique-width at most k iff there exists a set of k
labels S such that G can be constructed using a finite number of the following
operations:

i) verta, a ∈ S (create a single vertex with label a);
ii) φa→b(H), a, b ∈ S (rename all vertices having label a to have label b);
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iii) ηa,b(H), a, b ∈ S, a �= b (add edges between all vertices having label a and all
vertices having label b);

iv) H1 ⊕ H2 (disjoint union of graphs).

To each graph of clique-width k we can attach a (rooted) parse-tree whose leaves
correspond to singleton graphs and whose vertices represent one of the operations
above. The graph G then is represented at the root.

2.3 Permanent Polynomials

Definition 4. The permanent of an (n, n)-matrix M = (mi,j) is defined as

perm(M) :=
∑

σ∈Sn

n∏
i=1

mi,σ(i) , where Sn is the symmetric group.

We are interested in representing polynomials via permanents. If M above has
as entries either variables or constants from some field K, then f = perm(M) is
a polynomial with coefficients in K (in Valiant’s terms f is a projection of the
permanent polynomial). One main result in [5] characterizes arithmetic formulas
of polynomial size by certain such polynomials. The tree-width of a matrix M =
[mij ] is defined to be the tree-width of the graph we get by including an edge
(i, j) iff mij �= 0.

Theorem 1. ([5]) Let (fn)n∈N be a family of polynomials with coefficients in a
field K. The following properties are equivalent:

(i) (fn)n∈N can be represented by a family of polynomial size arithmetic formulas.
(ii) There exists a family (Mn)n∈N of polynomial size, bounded tree-width ma-

trices such that the entries of Mn are constants from K or variables of fn,
and fn = perm(Mn).

2.4 Clause Graphs

One of our goals is to relate Theorem 1 to yet another concept, namely CNF
formulas of bounded tree-width. The latter will be defined in this subsection.
Our presentation follows closely [4].

Definition 5. Let ϕ be a Boolean formula in conjunctive normal form with
clauses C1, . . . , Cm and Boolean variables x1, . . . , xn.

a) The signed clause graph SI(ϕ) is a bipartite graph with the xi and the Cj

as nodes. Edges connect a variable xi and a clause Cj iff xi occurs in Cj .
An edge is signed + or − if xi occurs positively or negated in Cj .

b) The incidence graph I(ϕ) of ϕ arises from SI(ϕ) by omiting the signs +,−.
c) The primal graph P (ϕ) of ϕ has only the xi’s as its nodes. An edge connects

xi and xj iff both occur commonly in one of the clauses.
d) The tree- or clique-width of a CNF formula ϕ is defined to be the tree- or

clique-width of I(ϕ), respectively.
If below we want to speak about the tree-width of P (ϕ) we mention this
explicitly.
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Theorem 2. ([4]) a) Given ϕ and a tree-decomposition of I(ϕ) of width k one
can compute the number of satisfying assignments

∑
x∈{0,1}n

ϕ(x) of ϕ in 4kn

arithmetic operations.
b) Given a CNF formula ϕ and a parse-tree for the signed clause graph SI(ϕ)
of clique-width ≤ k the number

∑
x

ϕ(x) of satisfying assignments of ϕ can be

computed in O(n2ck) many arithmetic operations.

Below, we extend the algorithm proving Theorem 2 a) in order to relate CNF
formulas to arithmetic formulas and Theorem 1. Note that similar results to
those of part a) of Theorem 2 have independently been obtained in [9].

2.5 Non-deterministic OBDDs

The final notion we need to introduce is that of deterministic and non-determi-
nistic Ordered Binary Decision Diagrams OBDDs. For a more extensive presen-
tation of OBDDs see [10].

Definition 6. a) A binary decision diagram or BDD is a rooted directed acyclic
graph having two kinds of nodes. Output nodes are nodes with no outgoing edge
and are labeled with a Boolean constant from {0, 1}. Inner nodes are labeled with
an element from some variable set {x1, . . . , xn}. They have two outgoing edges
one of which is labeled by 0 and the other by 1. The size of a BDD is the number
of nodes of the underlying graph.

b) A BDD is ordered (denoted OBDD) if there is an ordering of the variables
such that they occur along each path from the root to an output node according
to the ordering.

c) Each OBDD computes a Boolean function f : {0, 1}n → {0, 1} in the
following way. Given an assignment for the Boolean variables x1, . . . , xn one
follows starting from the root at each node labeled xi that edge which is labeled
with the value of xi. The result obtained is the label of the output node reached.

d) An OBDD is non-deterministic if it contains an additional type of nodes
labeled as guess nodes. Such a node has two outgoing edges that are unlabeled.
Each such edge can be followed by an input. The non-deterministic OBDD com-
putes the result 1 for input x iff there is at least one path leading to a leaf labeled
by 1 that can be followed for input x.

A non-deterministic OBDD O with n variables can be seen as a deterministic
OBDD Õ working on m additional inputs Θ. Then O(x) = 1 ⇔ ∃ Θ ∈
{0, 1}m s.t. Õ(x, Θ) = 1 .

3 Expressiveness of CNF Polynomials of Bounded
Tree-Width

In this section we prove our first main result. We study how expressive poly-
nomials pn are which are given via CNF formulas ϕn of bounded tree-width.
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It turns out that permanents of bounded tree-width matrices are captured by
such CNF polynomials, whereas the latter in turn are captured by arithmetic
formulas. Given the equivalence stated in Theorem 1 all three concepts have the
same expressive power.

3.1 From Permanents to Clause Graphs

Theorem 3. Let M = [mij ] be an n × n matrix such that the corresponding
directed weighted graph GM = (VM , EM ) is of tree-width k. Then there is a CNF
formula ϕ of tree-width O(k2) and of size polynomially bounded in n such that

perm(M) =
∑
e,θ

ϕ(e, θ) · me.

Here, e = {ei,j} denotes variables representing the edges of GM , m = {mi,j}

denotes the entries of M and me :=
∏
i,j

m
ei,j

i,j , where m
ei,j

i,j =
{

mi,j if ei,j = 1
1 if ei,j = 0 .

For every e there exists θ such that ϕ(e, θ) = 1 if and only if e is a cycle cover
of GM ; in this case, the corresponding θ is unique.

Moreover, the number of additional variables θ is of order O(n). Finally, a
tree decomposition of I(ϕ) of width O(k2) can be obtained from a decomposition
of GM in time O(n).

Remark 1. In the above CNF polynomial
∑
e,θ

ϕ(e, θ) ·me there are no monomials

corresponding to θ. Formally one could introduce another block y of variables
and add to each monomial me another factor yθ. Then perm(M) is obtained
as a projection (in Valiant’s sense) of a CNF-polynomial

∑
e,θ

ϕ(e, θ) · me · yθ by

plugging in for each y-variable the value 1.

Proof. Let (T, {Xt}t) be a tree decomposition of width k for GM . Without loss of
generality T is a binary tree. The CNF formula ϕ to be constructed contains two
blocks of variable vertices, one being the edge-variables ei,j of GM and another
block θ of auxiliary variables to be explained below. The tree decomposition
(T, {X ′

t}t) that we shall construct for ϕ uses the same underlying tree T as the
tree decomposition of GM , but the boxes X ′

t will be different from the boxes Xt

in the initial decomposition.
A straightforward set of clauses to describe cycle covers in GM is the following

collection:

(i) for each vertex i ∈ VM clauses Outi and Ini containing as its literals all
outgoing edges from and all incoming edges into i, respectively;

(ii) for each i ∈ VM and each pair of outgoing edges ei,j , ei,l a clause ¬ei,j ∨¬ei,l;
similarly for incoming edges to i.
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A tree decomposition of the resulting formula then is obtained from T by taking
the same tree and joining in a box X ′

t for every i ∈ Xt all vertices resulting from
(i) and (ii). However, due to the conditions under (ii) this might not result in a
decomposition of bounded width.

To resolve this problem for each box t ∈ T and each i ∈ VM we add additional
variables checkt

i+, checkt
i−. Fix t and the subtree Tt of T that has t as its root.

For any assignment of the ei,j indicating which edges in GM have been chosen for
a potential cycle cover a condition checkt

i+ = 1 indicates that an edge starting
in i has already been chosen with respect to those vertices of GM occuring in
the subtree Tt.

Further clauses are introduced to guarantee that each i finally is covered
exactly once for a satisfying assignment of ϕ(e, θ), where θ is the collection of
all check variables. More precisely, we proceed bottom up. Let t be a leaf of T.
For every i ∈ Xt in addition to the variable vertices checkt

i+, checkt
i− introduce

clause variables representing the following clauses:

(1)
∨

j∈Xt

ei,j ∨ ¬checkt
i+;

Interpretation: if none of the ei,j’s where chosen yet, then checkt
i+ = 0.

(2) ¬ei,j ∨ ¬ei,l for all j, l ∈ Xt;
Interpretation: at most one outgoing edge covers i.

(3) ¬ei,j ∨ ¬checkt
i+ for all j ∈ Xt;

Interpretation: if an ei,j was chosen (i.e. ei,j = 1), then checkt
i+ = 1.

Analogue clause variables are added for checkt
i−.

For the box X ′
t in the decomposition of I(ϕ) that corresponds to box Xt of T

all variable vertices ei,j , checkt
i+, checkt

i−, i, j,∈ Xt as well as the clause variables
resulting from (1)-(3) above are included. These are O(k2) many elements in X ′

t.
Now T ′ is constructed bottom up. The check variables propagate bottom up the
information whether a partial assignment for those ei,j that already occured in
a subtree can still be extended to a cycle cover of GM . At the same time, the
width of the new boxes of T ′ constructed will not increase too much. Suppose
in T there are boxes t, t1, t2 such that t1 is the left and t2 the right child of t.
Let i ∈ Xt ∩ Xt1 ∩ Xt2 . The case where i only occurs in two or one of the boxes
is treated similarly. Assuming X ′

t1 , X
′
t2 already been constructed the following

clauses are included in Xt :

(1′)
∨

j∈Xt\{Xt1∪Xt2}
ei,j ∨ checkt1

i+ ∨ checkt2
i+ ∨ ¬checkt

i+;

Interpretation: if all new ei,j ’s and the previous check variables are 0, then
the new check variable checkt

i+ is 0 as well;
(2′) ¬x∨¬y for all x, y ∈ {ei,j : j ∈ Xt\{Xt1∪Xt2}}∪{checkt1

i+, checkt2
i+}; x �= y

Interpretation: at most one among the old check variables and the new edge
variables gets the value 1;

(3′) ¬x ∨ ¬checkt
i+ for all x ∈ Xt \ {Xt1 ∪ Xt2} ∪ {checkt1

i+, checkt2
i+};

Interpretation: if one among the values ei,j or checkt1
i+, checkt2

i+ is 1, then
checkt

i+ = 1.
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Again, analogue clauses are added for the ingoing edges to i. Box X ′
t contains

all related edge vertices ei,j for the new j ∈ Xt \ {Xt1 ∪ Xt2}, the six check
vertices and the O(k2) many clause vertices resulting from (1’)-(3’).

This way (T, {X ′
t}t) is obtained. Finally, for each i ∈ T two new clauses

containing the single literals checkr
i+ and checkr

i−, respectively, are included in
that box Xr which represents the root r of the subtree of T generated by all
boxes that contain i. This is to guarantee that i is covered in both directions.

Clearly, (T, {X ′
t}t) is a binary tree with each X ′

t containing at most O(k2)
many vertices. Let θ denote the vector of all check variables. It is obvious from
the construction that

∃θ ϕ(e, θ) ⇔ e represents a cycle cover

(via those ei,j that have value 1). Moreover, for each assignment of e∗ giving
a cycle cover there is precisely one assignment θ∗ such that ϕ(e∗, θ∗) because
e∗ uniquely determines which check variables have to be assigned the value 1.
Therefore

perm(M) =
∑
e,θ

ϕ(e, θ) · me.

Finally, it remains to show that (T ′, {X ′
t}t) actually is a tree decomposition of

the graph I(ϕ). Vertices resulting from check variables at most occur in two
consecutive boxes of T ′ and thus trivially satisfy the connectivity condition.
Clause vertices related to one of the construction rules (1), (3), (1′) − (3′) for a
fixed t ∈ T only occur in the single box X ′

t. Finally, an edge variable ei,j occurs
in a box X ′

t iff both i and j occur in Xt. Thus, the fact that (T, {Xt}t) is a
tree decomposition implies that the connectivity condition also holds for these
vertices and (T ′, {X ′

t}t). ��

3.2 From Clause Graphs to Arithmetic Formulas

In the next step we link CNF polynomials to arithmetic formulas. More precisely,
the next theorem shows the latter concept to be strong enough to capture the
former.

Theorem 4. Let K be a field. Let {ϕn}n be a family of CNF formulas of bounded
tree-width k and with n variables, SI(ϕn) the related signed clause graphs and
(Tn, {Xt}t) a tree decomposition of I(ϕn). Then there is a family {fn}n of poly-
nomials with coefficients in K such that {fn}n can be represented by a family of
polynomial size arithmetic formulas and for all x ∈ Kn,

fn(x) =
∑

z∈{0,1}n

ϕn(z) · xz

The proof is based on an extension of results in [4] and shall be given in the full
paper. Theorems 1, 3 and 4 imply.
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Theorem 5. Let (fn)n∈N be a family of polynomials with coefficients in a field
K. The following properties are equivalent:

(i) (fn)n∈N can be represented by a family of polynomial size arithmetic formulas.
(ii) There exists a family (Mn)n∈N of polynomial size, bounded tree-width ma-

trices such that the entries of Mn are constants from K or variables of fn,
and fn = perm(Mn).

(iii) There exists a family (ϕn)n∈N of CNF formulas having polynomial size
in n and of bounded tree-width such that fn(x) can be expressed as the
projection: fn(x) =

∑̃
e

ϕn(ẽ) · zẽ. Here, projection means that the zi’s can

be taken either as constants from K or as variables among the xj ’s. ��

4 Lower Bounds

Given Theorem 3 together with the efficient algorithm resulting from Theorem 4
the following question arises: How far does the approach of reducing permanent
computations to computations of the form

∑
e,θ

ϕ(e, θ) · me lead when ϕ comes

from a clause graph of bounded tree-width?
More precisely, we ask whether there exist polynomial size CNF formulas

ϕn(e, θ) of bounded tree-width such that ϕn(e, θ) = 1 iff e ∈ {0, 1}n×n is a
permutation matrix and for each permutation matrix e there is exactly one θ
such that ϕ(e, θ) = 1.

In this section we prove that such formulas do not exist. A negative an-
swer could be expected since Theorem 4 would otherwise imply that the per-
manent can be represented by polynomial size arithmetic formulas. The point
is that Theorem 8 below is unconditional (and does not even need the unique-
ness assumption on θ). A second (conditional) result shows that when replacing
tree- by clique-width a formula with the above properties does not exist unless
#P ⊆ FP/poly.

The unconditional statement concerning tree-width relies on two results by
Ferrara et al. [3] on the one side and by Krause et al. [8] on the other. The former
relates clause graphs to OBDDs (ordered binary decision diagrams), whereas the
latter gives lower bounds on the size of non-deterministic OBDDs deciding the
property of being a permutation matrix.

Let us first recall these results.

Theorem 6. ([3]) Let ϕ be a CNF formula with n variables and P (ϕ) the cor-
responding primal graph of ϕ. If P (ϕ) has tree-width k, then there is an OBDD
representation of ϕ which has size polynomial in n and exponential in k.

Due to the additional block θ of variables introduced in the transformation
constructed in the proof of Theorem 3, an application of the above theorem
leads to non-deterministic OBDDs.

Theorem 7. ([8,6]) For n ∈ N define PERMn : {0, 1}n2 → {0, 1} to be the
characteristic function for permutation matrices, i.e. for e ∈ {0, 1}n×n we have
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PERMn(e) = 1 iff e is a permutation matrix. Then 2Ω(n) is a lower size bound
for any non-deterministic OBDD computing PERMn.

The technical result below allows to apply Theorem 6 the way we need it. Note
that the theorem assumes the primal graph P (ϕ) to be of bounded tree-width,
whereas we want to deal with the incidence graph I(ϕ).

Proposition 1. Let ϕ = C1 ∧ . . . ∧ Cm be a CNF formula with n variables
x1, . . . , xn such that its incidence clause graph I(ϕ) has tree-width k. Then there
is a CNF formula ϕ̃(x, y) such that the following conditions are satisfied:

– each clause of ϕ̃ has at most O(k) many literals;
– the primal graph P (ϕ̃) has tree-width O(k). A tree-decomposition can be con-

structed in linear time from one of I(ϕ);
– the number of variables and clauses in ϕ̃ is of order O(n · m);
– for all x∗ ∈ {0, 1}n ϕ(x∗) holds true iff there exists y∗ such that ϕ̃(x∗, y∗).

Moreover, such a y∗ is unique.

Proof. Let (T, {Xt}t) be a (binary) tree-decomposition of I(ϕ). The construction
below combines the use of check variables in the proof of Theorem 3 with the
usual way of reducing a general CNF formula instance to one with bounded
number of literals in each clause. Let C be a clause of ϕ and TC the subtree of
T induced by C. We replace C bottom up in TC by introducing O(n) many new
variables and clauses. More precisely, start with a leaf box Xt of TC . Suppose
it contains k variables that occur in literals of C, without loss of generality
say x1 ∨ . . . ∨ xk. The case where additional clause variables occur in Xt is
treated similarly. Introduce a new variable yt together with O(k) many clauses
expressing the equivalence yt ⇔ x1 ∨ . . . ∨ xk. Each of the new clauses has at
most k +1 many literals. Next, consider an inner node t of TC having two childs
t1, t2. Suppose x′

1, . . . , x
′
k to be those variables in Xt that occur as literals in C,

again without loss of generality in the form x′
1 ∨ . . . ∨ x′

k. If yt1 , yt2 denote the
new variables related to C that have been introduced for Xt1 , Xt2 , for Xt define
a new variable yt together with clauses expressing yt ⇔ yt1 ∨ yt2 ∨ x′

1 ∨ . . .∨ x′
k.

Again, there are at most O(k) new clauses containing O(k) literals each. Finally,
if t is the root of TC we define yt as before and add a clause saying yt = 1.

Do the same for all clauses of ϕ. This results in a CNF formula ϕ̃ which
depends on O(m · n) additional variables y and contains O(m · n · k) many
clauses. The construction guarantees that ϕ(x) iff there exists a y such that
ϕ̃(x, y) and in that case y is unique.

A tree-decomposition of the primal graph P (ϕ̃) is obtained as follows. For
each occurence of a clause C in Xt of T replace the clause vertex by the newly
introduced y variables related to the clause and the box Xt. In addition, for
boxes Xt, Xt1 , Xt2 such that t1, t2 are sons of t include the variables yt1 , yt2 also
in the upper box Xt. The xi variables that previously occured are maintained.
Since for a single box Xt at most three yj are included for each clause, and since
there are at most k+1 clause vertices in an original box, the tree-width of P (ϕ̃) is
≤ 4(k+1). The decomposition satisfies the requirements of a tree-decomposition
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since we did not change occurences of the xi’s and the only yt-variables that occur
in several boxes occur in two consecutive ones. ��
As consequence we get

Theorem 8. There does not exist a family {ϕn}n of CNF formulas ϕn(e, θ)
such that I(ϕn) is of bounded tree-width, the size of ϕn is polynomially bounded
in n, and ∃θ ϕn(e, θ) iff e ∈ {0, 1}n×n is a permutation matrix.

Proof. Suppose to the contrary that such a family exists. Then by Proposition
1 we can assume without loss of generality that the primal graphs P (ϕn) are of
bounded tree-width as well. Moreover, the number of new variables and clauses
introduced by applying the proposition remians polynomially bounded; they can
formally be added to the θ variables of the statement.

Now Theorem 6 implies the existence of an OBDD representation of ϕn(e, θ) of
polynomial size in n. Taking into account the role the θ variables are playing this
OBDD is a non-deterministic polynomial-size OBDD for computing the function
PERMn. However, the existence of such an OBDD contradicts Theorem 7. ��

The question answered negatively by Theorem 8 for tree-width can be posed
as well in relation to the clique-width parameter. That is: Can the permanent
function be described via CNF formulas of bounded clique-width and polyno-
mial size? Next we relate this question to Theorem 2 b) and show that such a
representation is only possible if the conjecture #P �⊆ FP/poly fails to be true.

Theorem 9. Suppose there is a family {ϕn}n of CNF formulas of polynomial
size such that all I(ϕn) are of clique-width at most k for some fixed k and for
each Y ∈ {0, 1}n2

we have that ϕn(Y ) holds iff Y is a permutation matrix. Then
#P ⊆ FP/poly.

Proof. Suppose {ϕn} is given as in the assumption. For a matrix X ∈ {0, 1}n2

we shall construct from ϕn and a parse-tree of it (given as non-uniform advice)
another CNF formula ψX

n (Y ) of bounded clique-width together with a parse-tree
for ψX

n such that
Perm(X) =

∑
Y ∈{0,1}n2

ψX
n (Y ).

Theorem 2 b) then implies that the latter can be computed in polynomial
time. Given #P -completeness of the permanent function on 0-1-matrices the
claim follows. The construction of ψX

n works as follows. We have Perm(X) =∑
Y ∈{0,1}n2

ϕn(Y ) · XY , where XY =
∏
i,j

x
yi,j

i,j and x
yi,j

i,j =
{

xi,j if yi,j = 1
1 if yi,j = 0 . We

replace the monomial XY by the conjunctions
∧
i,j

(xi,j ∨¬yi,j). The clause graph

I(ψn) of the CNF formula

ψn(X, Y ) ≡ ϕn(Y ) ∧
∧
i,j

(xi,j ∨ ¬yi,j)
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can easily be seen to have clique-width ≤ k + 2. Each time when in the clique-
width construction of I(ϕn) along the parse-tree a node yi,j is created, in the
corresponding construction for I(ψn) two new nodes for xi,j and the clause
Di,j := xi,j ∨ ¬yi,j are created with an own label each. Then Di,j is connected
to both xi,j and yi,j (respecting the necessary signs of the edges). Finally the
labels for Di,j and xi,j are removed again.

Now for a fixed given matrix X we plug the values of the xi,j into the CNF
formula ψn(X, Y ). Clauses that are satisfied by the assignment are removed. In
clauses that are not satisfied by the assignment all occurences of xi,j literals are
removed. That way a new CNF formula ψX

n is obtained. The clause graph I(ψX
n )

results from I(ψn) by removing certain nodes, namely the xi,j as well as some
clause nodes. This operation clearly does not increase the clique-width. ��
The result holds as well if we allow additional variables in ϕn(Y ) as in the
statement of Theorem 8. It remains an open question whether Theorem 9 can
be strengthened to hold unconditionally:

Conjecture:There is no family {ϕn}n of CNF formulas of polynomial size with
all I(ϕn) of bounded clique-width such that ϕn(Y ) ⇔ Y is a permutation matrix.

We will show in the full version of this paper that Theorem 8 holds even
without the polynomial size hypothesis on ϕn.
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Abstract. The Planar Feedback Vertex Set problem asks, whether
an n-vertex planar graph contains at most k vertices meeting all its cy-
cles. The Face Cover problem asks, whether all vertices of a plane
graph G lie on the boundary of at most k faces of G. Standard tech-
niques from parameterized algorithm design indicate, that both prob-
lems can be solved by sub-exponential parameterized algorithms (where
k is the parameter). In this paper, we improve the algorithmic analysis
of both problems by proving a series of combinatorial results, relating
the branchwidth of planar graphs with their face cover. Combining this
fact with duality properties of branchwidth, allows us to derive analo-
gous results on feedback vertex set. As a consequence, it follows that
Planar Feedback Vertex Set and Face Cover can be solved in
O(215.11·

√
k + nO(1)) and O(210.1·

√
k + nO(1)) steps, respectively.

1 Introduction

In this paper, we offer improved algorithmic analysis for two widely studied
combinatorial problems on planar graphs. The first is the planar version of
Feedback Vertex Set that asks, given a graph and a non-negative integer
k, whether all cycles of G can be blocked by a set of at most k vertices. The
second is the Face Cover that asks, given a plane graph G and a non-negative
integer k whether the boundary of at most k faces contains all the vertices of G.
Our aim is to show that both problems are closely related and to use this fact
to improve the analysis of algorithms for both problems.

The Feedback Vertex Set, as well as its directed version, are one of the
most studied NP-complete problems, mainly due to their numerous applications
(see [12]). A wide range of algorithmic results on Feedback Vertex Set have
been proposed including approximation algorithms [5,18,17], exact algorithms
[14] and heuristics [21].
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In our study, we focus our attention on the parameterized complexity of both
Planar Feedback Vertex Set and Face Cover. In a parameterized prob-
lem the input is being seen as a pair (I, k), where I is the main part of the
problem and k is a parameter. A fixed parameter algorithm (or simply FPT-
algorithm) is one that solves the problem in O(f(k) · |I|O(1)) steps where f is a
function depending exclusively on the parameter k (for more on parameterized
complexity and algorithms, see [13,22]). For both Feedback Vertex Set and
Face Cover, we consider their parameterized versions, where k is the param-
eter. Many FPT-algorithms were proposed for Feedback Vertex Set. The
best current results in this direction are the O(4kkn) step probabilistic algo-
rithm in [1] and the O(5kkn2) step algorithm in [4] (throughout the paper and
for both problems, we denote by n the size of the input graph).

When restricted to planar graphs, both Planar Feedback Vertex Set and
Face Cover are solvable by subexponential FPT-algorithms, i.e. algorithms
running in O(2o(k) · nO(1)) steps. The first results of this kind were given by
Kloks et al. in [20] for both problems. Furthermore, Fernau and Juedes proved
that Face Cover can be solved in O(224.551

√
k · n) steps [11]. All previous re-

sults can be improved using the win/win meta-algorithmic framework emerging
from the bidimensionality theory in [6]. In this paper, we proceed to a “taylor
made” analysis of the complexity of both Planar Feedback Vertex Set and
Face Cover. In fact, we unify the analysis of both problems, by exploiting a
duality relation between them. As a consequence, we prove that Planar Feed-

back Vertex Set and Face Cover can be solved in O(215.11·√k ·n + n3) and
O(210.1·√k ·n+n3) steps, respectively. Our analysis resides in a thorough analy-
sis of the structure of face covers in planar graphs, which leads to combinatorial
bounds of independent interest.

The presentation of the paper is divided in two parts. First, in Section 2, we
present the main algorithmic techniques, as well as our approach for proving
the claimed complexity bounds. Next, in Section 3, we prove the combinatorial
bounds supporting the results of Section 2. Finally, in Section 4, we conclude
with some open problems.

2 The Algorithms

Definitions and preliminaries. We consider graphs that may have loops or mul-
tiple edges. If a graph has no multiple edges or loops we call it simple. Given a
graph G, we denote as V (G) its vertex set and as E(G) its edge multiset. For
any set S ⊆ V (G), we denote as G[S] the subgraph of G induced by the vertices
in S. We also denote as G \ S the graph G[V (G) − S] and if v ∈ V (G) we also
write G \ v instead of G \ {v}. Finally, if e ∈ E(G), we write G \ e instead of
(V (G), E(G) − {e}).

We use the term plane graph for a planar graph along with an embedding of it
in the sphere S0 without crossings. To simplify notations, we do not distinguish
between a vertex of the graph and the point of S0 used in the drawing to represent
the vertex or between an edge and the open line segment representing it. We



266 A. Koutsonas and D.M. Thilikos

denote as F (G), the set of faces of this embedding, i.e. the connected components
of S0 \ G, (that are open sets of S0). We also use the notation G∗ to denote an
embedding of the dual graph of G.

Given a plane graph G with at least one edge, we define its radial graph RG as
the plane graph whose vertex set is V (G) ∪ V (G∗) and whose edges are defined
as follows: Let C = {C1, . . . , Cr} be the connected components of S0 \ (G ∪ G∗)
and observe that for i = 1, . . . , r Ci is an open set whose boundary contains
one vertex, say vi, from V (G) and one vertex, say ui, from V (G∗). The edge
set of RG is the set E(RG) = {{vi, ui}, i = 1, . . . , r} where edge {vi, ui} has
multiplicity 1 if both vi and ui have degree at least 2 in G and G∗ respectively,
otherwise its multiplicity is 2 (clearly, {vi, ui} can be seen as a subset of the open
set Ci). Notice that RG = (V (G) ∪ F (G), E(RG)) is a bipartite graph, whose
parts are the vertex and face sets of G, respectively.

A vertex set S ⊆ V (G) is a feedback vertex set of a graph G, if the graph G\S
is acyclic. The feedback vertex set number of a graph G, denoted as fvs(G), is the
minimum size of a feedback vertex set of G. A Face Cover of a plane graph G is
a set R ⊆ F (G) of faces, such that all vertices of G are lying on the boundary
of some face in R. We define the face cover number of a plane graph G, as the
minimum size of a face cover of G and we denote it as fc(G). We consider the
following two parameterized problems.

Planar Feedback Vertex Set

Instance: A planar graph G and a non-negative integer k
Parameter: k
Question: fvs(G) 
 k?
Face Cover

Instance: A plane graph G and a non-negative integer k
Parameter: k
Question: fc(G) 
 k?

Branch decompositions. Let G be a graph on n vertices. A branch decomposi-
tion (T, µ) of a graph G consists of an unrooted ternary tree T (i.e. all internal
vertices are of degree three) and a bijection µ : L → E(G) from the set L of
leaves of T to the edge set of G. We define for every edge e of T the middle
set ω(e) ⊆ V (G), as follows: Let T1 and T2 be the two connected components of
T \ e. Then, let Gi be the graph induced by the edge set {µ(f) : f ∈ L ∩ V (Ti)}
for i ∈ {1, 2}. The middle set is the intersection of the vertex sets of G1 and
G2, i.e. ω(e) = V (G1)∩V (G2). The width of (T, µ) is the maximum order of the
middle sets over all edges of T (in case T has no edges, then the width of (T, µ)
is equal to 0). An optimal branch decomposition of G is defined by the tree T
and the bijection µ which give the minimum width, the branchwidth, denoted by
bw(G). Given two graphs H and G, we write H 
 G, when H can occur from
a subgraph of G after a series of edge contractions. It is known from [23], that
if H 
 G, then bw(H) 
 bw(G). The following theorem follows from Theorem
(7.2) of [24] and will be useful for our analysis.
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Theorem 1. Let G be a non-ayclic planar graph and G∗ be a dual of G. Then,
the branch-width of G is equal to the branch-width of G∗.

In Section 3, we prove the following theorem on the relation between the branch-
width of a plane graph and the branchwidth of its radial.

Theorem 2. For any plane graph G containing a vertex of degree at least 2, it
holds that bw(RG) 
 2 · bw(G).

The Win/Win approach. The standard technique for the design of subexponen-
tial parameterized algorithms for graph parameters on planar graphs, relies on
two conditions: the existence of a sublinear combinatorial bound for the branch-
width in terms of the parameter and dynamic programming on branch decom-
positions. In particular, we refer to any graph parameter p, for which there exist
two positive real numbers α and β, such that:

(a) For any planar graph G, bw(G) ≤ α ·
√

p(G).
(b) For every planar graph G and given an optimal branch decomposition (T, µ)
of G, p(G) can be computed in O(2β·bw(G) · n) steps.

Theorem 3 ([10, Theorem 1]). If conditions (a) and (b) above are satisfied
for some parameter p and some α and β, then one can construct an an algorithm
that checks whether p(G) = k in O(2α·β·√kn) steps.

As proved in [24] and [19], there is an algorithm computing an optimal branch
decomposition of planar graphs in O(n3) steps. Thus whenever we apply Theo-
rem 3 without assuming the existence of an optimal branch decomposition, we
should add an additive overhead of O(n3) steps.

According to the results in [6], conditions (a) and (b) are satisfied for both
fvs and fc. Therefore Theorem 3 can be applied for these parameters. We define
αfvs (αfc) and βfvs (βfc) as the minimum values for α and β, for which Con-
dition (a) and (b), respectively, holds for fvs (fc). In what follows, we provide
bounds to these constants towards improving the time analysis of the algorithm
in Theorem 3.

Estimating βfvs and βfc. Regarding Condition (b), and in case of fvs, it is known
that given an optimal branch decomposition of a n-vertex planar graph G, there
is a dynamic programming algorithm that computes fvs(G) in O(23.56bw(G) · n)
steps [8]. We conclude, that condition (b) holds for βfvs 
 3.56.

To estimate βfc, we use the well known reduction of the Face Cover problem
to the following problem:

Planar Blue-Red Dominating Set

Instance: A planar bipartite graph G with parts B and R and a non-negative
integer k.
Parameter: k
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Question: Is there a vertex set D ⊆ R where |D| 
 k and such that every vertex
in B has a neighbour in D?

Observe that (G, k) is a yes-instance of Face Cover, if and only if (RG, k)
is a yes-instance of Planar Blue-Red Dominating Set (set B = V (G) and
R = F (G)) (see also [11]). From [9, Theorem 2.3.2], Planar Blue-Red Dom-

inating Set can be solved in O(21.19·bw(G) · |V (G)|) steps, provided that an
optimal branch decomposition is given. Combining this fact with Theorem 2, we
can derive that Condition (b) is satisfied for βfc 
 2.38.

Easy bounds for αfvs and αfc. Condition (a) follows directly from the the-
ory of bidimensionality introduced in [6]. Applying the meta-algorithmic result
of [6] (Theorem 4.14) for both parameters fvs and fc, condition (a) holds for
αfvs, αfc 
 8. This implies the existence of an O(228.48·√k ·n+n3) step algorithm
for the Planar Feedback Vertex Set problem (to our knowledge, no other
exact bound for this problem exists) and the existence of an O(219.04·√k ·n+n3)
step algorithm for the Face Cover problem (improving the constants of [11]
for the same problem).

The above estimations for αfvs and αfc can be easily further improved using
known results. Kloks et al. [20] proved that for any planar graph G, there is a
planar graph H containing G as a subgraph such that ds(H) 
 fvs(G) (here by
ds(H) we denote the minimum size of a dominating set of H). Moreover it holds
that for any planar graph H , bw(H) 
 6.364

√
ds(H) [15]. As bw(G) 
 bw(H),

we obtain that bw(G) 
 6.364
√

fvs(G) and this yields Condition (a) for αfvs 

6.364. For αfc, we need to make the following observation: Suppose that a plane
graph G has a face cover U ⊆ F (G) of size 
 k. Let H be the graph obtained
from G, if for each f ∈ U we draw a vertex vf inside f and connect it with
the vertices incident to f . Notice that the new vertices constitute a dominating
set of H , of size at most k. Again, from the result of [15], we conclude that
bw(G) 
 bw(H) 
 6.364 ·

√
k, thus αfc 
 6.364.

According to the above, there is an O(222.66·√k · n + n3) step algorithm for
the Planar Feedback Vertex Set problem and an O(215.15·√k ·n+n3) step
algorithm for the Face Cover problem. To our knowledge, these are the fastest,
so far, algorithms for these problems.

Better bounds for αfvs and αfc. In order to find better bounds for αfvs and αfc,
we should focus our attention to the structure of the corresponding parameters.
In fact, face cover and planar feedback vertex set are closely related in dual
graphs. Informally speaking, the “dual” version of the face cover number is
upper bounded by the vertex feedback set number. In particular we observe the
following:

Lemma 1. Let G and G∗ be dual plane graphs that are not forests. Then,
fc(G∗) 
 fvs(G).

Proof. Let S ⊆ V (G) be a feedback vertex set in G, with |S| 
 k. As the
boundary of any face f ∈ F (G) contains a cycle of G, it also contains a vertex
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v ∈ S. This implies that any vertex f∗ ∈ V (G∗) of G∗ is in the boundary of
some face v∗ of S∗, where S∗ ⊆ F (G∗) is the set of the duals of the vertices in
S. Therefore S∗ is a face cover of G∗.

The above lemma, combined with the duality of branchwidth (Theorem 1), yields
that bw(G) = bw(G∗) 
 αfc

√
fc(G∗) 
 αfc

√
fvs(G) ⇒ αfvs 
 αfc (we exam-

ine the non-trivial case where G is not a forest). Therefore, any improvement
in the estimation of αfc reflects to αfvs as well. Section 3 will be devoted to
the improvement of the bound for αfc. In particular (in Section 4) we prove the
following Theorem.

Theorem 4. For any planar graph G, bw(G) ≤ 2 ·
√

4.5 ·
√

fc(G).

Theorem 4, implies that αfvs 
 αfc 
 4.243. This fact leads to the main result
of this paper:

Theorem 5. Planar Feedback Vertex Set and Face Cover can be solved
in O(215.11·√k · n + n3) and O(210.1·√k · n + n3) steps, respectively.

We stress, that according to Bodlaender [2] (see also [3]) there exists a polyno-
mial algorithm producing a O(k3) size kernel for the Feedback Vertex Set

problem, when parameterized by k (i.e. an equivalent instance of the problem
where the input graph has at most O(k3) vertices). Combining this fact with
Theorem 5, we derive the existence of an O(215.11·√k)+nO(1) algorithm for Pla-

nar Feedback Vertex Set. For the Face Cover, a O(k2) kernel has been
reported in [20]. Therefore, Face Cover can be solved in O(210.1·√k) + nO(1)

steps.

Planar cycle packing. Our combinatorial bounds can be useful for computing
other parameters that can be bounded by the face cover or the feedback ver-
tex set. An example of such a parameter is the cycle packing number, denoted
as cp(G), that is the maximum number of disjoint cycles in a graph G. Ac-
cording to the results of [9,8], computing cp(G) on planar graphs can be done in
O(22.78·bw(G) ·n) steps. Therefore, Condition (b) holds for cp when β 
 2.78. Re-
call that in Section 2 we proved that for any planar G, bw(G) 
 2·

√
4.5 · fvs(G).

According to Kloks et al. in [20], for any planar graph G, it holds that fvs(G) 

5 · cp(G). We conclude that for any planar G, bw(G) 
 2 ·

√
4.5 · 5 · cp(G) and

thus Condition (a) holds for cp for α 
 9.49. By Theorem 3, the Planar Cycle

Packing can be solved in O(226.347·√k · n) steps.

3 Bounding Branchwidth

Given a sphere S0 and a subset ∆ ⊆ S0, the closure of ∆ is denoted by ∆, and
the boundary of ∆ is ∆̂ = ∆ ∩ S0 − ∆. Given a graph G = (V, E) drawn in S0,
we call noose, a Jordan curve in S0 that meets the drawing only in vertices of
G. For a noose N passing through vertices v1, v2, . . . , vn we will use the same
notation we use for a cycle of a graph, i.e. N = v1v2 . . . vnv1. The length |N | of
a noose N is the number of vertices it meets.
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Plane graphs and hypergraphs. Hypergraphs will be an important ingredient of
the proofs of this section. Our first step is to extend some of the basic concepts
previously defined, for the case of hypergraphs. Let us, before that, denote the
number of the vertices of a hyperedge as the arity of the hyperedge. We insist in
still calling edges, hyperedges of arity equal to two (i.e. those that have only two
endpoints). Notice that the definition of branch decomposition and branchwidth
applies directly for hypergraphs. Therefore, we use the notation bw(H), also
when H is a hypergraph. We call plane hypergraph, any hypergraph H whose
vertices are those of a plane graph G, and whose hyperedges are some of the
edges of G, plus some new pairwise distinct hyperedges, each containing the
boundary vertices of some of the faces of G. By construction, H has an embed-
ding in S0 that copies the one of G and where hyperedges are drawn inside the
corresponding faces of G.In this case, we say that the plane graph G generates
the plane hypergraph H . The proof of the following lemma is easy.

Lemma 2. Let G be a plane graph and let H be a hypergraph generated by G.
Then bw(G) 
 bw(H).

Given a plane hypergraph H , we define its dual H∗ as the hypergraph whose
vertices are the faces of H and where each hyperedge e of H corresponds to a
hyperedge e∗ of H∗ whose endpoints are the faces of H that are incident to e.
By drawing each vertex of H∗ inside the corresponding face of H , one can see
that H∗ is also a plane hypergraph.

In the rest of this section, we will consider only plane hypergraphs generated
by simple 2-connected planar graphs. This permits us to consider the hyper-
edges of a plane hypergraph as closed disks whose boundary vertices are their
endpoints. To simplify notations, while working with plane hypergraphs we will
not distinguish between a vertex of the graph and the point of the sphere S0
used in the drawing to represent the vertex, or between a edge (hyperedge) and
the closed line segment (closed disk) representing it in the embedding. Using
this convention, we can define the set of faces of a hypergraph H as the set of
connected components of S0 − H . It is now clear that the notion of a face cover
naturally extends for plane hypergraphs.

Let G be a 2-connected plane graph and let RG be its radial graph. Notice
that, as G is 2-connected, all faces of RG are squares (i.e. their boundaries are
cycles of length 4). We define R̃G as the plane hypergraph generated by RG, if
we remove all the edges of RG and add a hyperedge for each face of RG. The
proof of the following Lemma is omitted.

Lemma 3. For any 2-connected plane graph G, bw(R̃G) 
 2 · bw(G).

Notice that Lemmata 2 and 3 imply Theorem 2 claimed in Section 2.

Normalization. Given a plane graph G and a face cover SG of it, we will refer to
the faces in SG ⊆ F (G) as FC-faces. We say that two FC-faces f1 and f2 touch
if , f̂1 ∩ f̂2 �= ∅. Two vertices will be called a pair, if they are adjacent and lie
on the same FC-face. We call a face of G triangle if its boundary is a cycle of
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length 3. We call an edge of G bridge if there are FC-faces f1 and f2 such that
e it is the unique edge whose endpoints belong in the boundaries of f1 and f2.

Let f1, f2 be two FC-faces and let x1, x2, y1, y2 be four vertices, such that
xi, yi ∈ f̂i, i = 1, 2); a noose of the form x1y1x2y2x1, will be called a 4-noose. As
a Jordan curve, a 4-noose N bounds two closed discs. If one of them contains
exactly one hyperedge, whose endpoints are the vertices of N , then we refer to
such a 4-noose as trivial. We proceed to the first lemma on the structure of the
graph (the proof is omitted).

Lemma 4. Let G be a simple 3-connected plane graph, such that fc(G) 
 k.
Then, there exists a (plane) graph G′ and a face cover SG′ of G′, such that: (a)
bw(G) 
 bw(G′), (b) |SG′ | 
 k, (c) G′ is simple and 3-connected, (d) No two
different FC-faces touch, (e) G′ does not contain any bridge, and (f) A face of
G′ is either a FC-face, or a square whose boundary contains two pairs of two
different FC-faces, or a triangle incident to three different vertices, that in turn
are incident to three different FC-faces.

We call a face of a plane hypergraph H degenerate, if it is bounded by exactly
two hyperedges of H .

Lemma 5. Let G be a 3-connected simple graph such that fc(G) 
 k. Then,
there exists a hypergraph H and a face cover SH of H with size at most k, such
that: (a) bw(G) 
 bw(H), (b) No two different FC-faces touch. (c) H contains
no edges and each hyperedge of H has arity 4 and contains two disjoint pairs
that are incident to two different FC-faces. (d) A face of H is either a non-
degenerate FC-face or a degenerate face or a triangle incident to three different
vertices that in turn are incident to three different FC-faces.

Proof. Let G′ be a planar hypergraph and SG′ a face cover of G′, as in Lemma 4.
Let also H be the plane hypergraph generated by G′, if we remove all edges and
add a hyperedge for each square of G′. It is not hard to verify that H is the
required plane hypergraph. ��

A plane hypergraph H with a face cover SH , satisfying properties (b) - (d) of
Lemma 5, will be characterized, from now on, as normalized. The proof of the
following lemma is in the Appendix.

Lemma 6. Let H be a normalized hypergraph with face cover SH and let N
a non-trivial 4-noose bounding the closed discs ∆1, ∆2. Let also Hi, (i = 1, 2)
be the subgraph of H containing all vertices and edges included in ∆i, plus the
edge ẽ with endpoints the four vertices the 4-noose passes through. Then, Hi (for
i = 1, 2) is a normalized graph with fc(Hi) 
 fc(H) and less vertices than H.

Prime hypergraphs. A normalized hypergraph H will be denoted as prime, if
every 4-noose is trivial. Let H be a prime hypergraph and SH a face cover
of H with |SH | � 3. We define its reduced graph red(H) as follows: There is
a bijection φv : SH → V (red(H)) and a bijection φe : E(H) → E(red(H)), such
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that two vertices in x, y ∈ V (red(H)) are joined by an edge in E(red(H)), if
and only if there is a hyperedge with vertices lying on the faces φ−1

v (x) and
φ−1

v (y). The proof of the next lemma is omitted.

Lemma 7. Let H be a prime hypergraph with fc(H) � 3. Then, the graphs H∗

and R̃red(H) are isomorphic.

Corollary 1. If H is a prime hypergraph, then bw(H) 
 2 ·
√

4.5 · fc(H).

Proof. If fc(H) = 2, then H is the graph of 6 vertices - three on each disk -
with 3 hyperedges of arity of four between these vertices. It is bw(H) = 4 

2 ·

√
4.5 · 2. Suppose now, that SH is a face cover of H where 3 
 |SH | = fc(H)

and notice that red(H) contains |SH | vertices. From the main result in [16],
any n-vertex plane graph has branchwidth bounded by

√
4.5 · n. Applying this

result on red(H) we have that bw(red(H)) 

√

4.5 · fc(H). Also, applying [24,
Theorem (7.2)] on H and H∗ it follows that bw(H) = bw(H∗). From Lemmata 3
and 7, we obtain that bw(H) = bw(H∗) = bw(R̃red(H)) 
 2 · bw(red(H)) 

2 ·
√

4.5 · fc(H). ��

Applying inductively Lemma 6 and using Corollary 1 along with [15, Lemma 3.1]
we can prove the following (the full proof is omitted).

Lemma 8. Let H be a normalized graph. Then bw(H) 
 2 ·
√

4.5 · fc(H).

We are now ready to prove the main combinatorial result of this paper.

Proof (of Theorem 4). We can assume that fc(G) � 2, as otherwise G is either a
forest or an outerplanar graph, implicating that bw(G) 
 2 yielding trivially the
result. Also, we can assume that G is simple as the removal of loops or multiples
edges may reduce the branchwidth of a graph by at most 2 and this only in the
case where the resulting graph is a forest. We will use induction on |V (G)|. For
the smallest graph with fc(G) at least two, namely the K4, the upper bound is
true. We assume the same for any graph with less than n > 4 vertices and we
show that it holds also for any n-vertex graph. If the graph G is 3-connected,
then by Lemmata 4 and 5, there is a hypergraph H where fc(H) 
 fc(G) and
bw(G) 
 bw(H) and the result follows from Lemma 8. Let us assume that G is
not 3-connected. Then it has a separator of at most two vertices. We will describe
the case where the minimum separator has two vertices x and y as, otherwise,
the result follows by applying Lemma [15, Lemma 3.1] to the (bi-)connected
components of G. Let C be some of the connected components of G[V (G) −
{x, y}]. We set G1 = G[V (C) ∪ {x, y}] and G2 = G[V (G) − V (C)] and we add
in both G1 and G2 the edge e = {x, y} (if its does not already exists). Notice
that Gi 
 G, therefore fc(Gi) 
 fc(G). By the induction hypothesis, bw(Gi) 

2 ·
√

4.5 · fc(Gi) and the result follows applying Lemma [15, Lemma 3.1] for G1
and G2. ��
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4 Conclusion

According to the Win/win approach, the algorithmic analysis of all problems
examined in this paper is reduced to the problem of bounding the decompos-
ability of a planar graph (i.e. the branchwidth) by a sublinear function of the
parameter. While such general (but not optimal) upper bounds are provided by
bidimensionality theory [6] better constants (and thus faster algorithms) have
been achieved by a “tailor made” analysis of the parameter in the cases of vertex
cover, edge dominating set, and dominating set (see [7,15]). Our results for feed-
back vertex set, face cover, and cycle packing offer to the same line of research.
Furthermore, specific combinatorial similarities between our proofs in Section 3
and the proofs in [7,15], make us believe, that a generic technique for wider
families of problems may exist.
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Abstract. An (h, s, t)-representation of a graph G consists of a collec-
tion of subtrees {Sv |v ∈ V (G)} of a tree T , such that (i) the maximum
degree of T is at most h, (ii) every subtree has maximum degree at most
s, and (iii) there is an edge between two vertices in the graph if and only
if the corresponding subtrees in T have at least t vertices in common.
For example, chordal graphs correspond to [∞, ∞, 1] = [3, 3, 1] = [3, 3, 2]
graphs (notation of ∞ here means that no restriction is imposed).

We investigate the complete bipartite graph K2,n and prove new theo-
rems characterizing those K2,n graphs that have an (h, s, 2)-representation
and those that have an (h, s, 3)-representation.

We characterize [3, 2, 4] graphs as equivalent to the 4-flower-free
[2, 4, 4] graphs and give a recognition algorithm for [2, 3, 4] graphs.

Based on these characterizations, we present new results that confirm
that weakly chordal graphs, as opposed to chordal graphs, can not be
characterized within the [h, s, t] framework. Furthermore, we show a hi-
erarchy of families of graphs between chordal and weakly chordal within
the [h, s, t] framework.

1 Introduction and Motivation

A graph is chordal if it contains no chordless cycle of size greater than 3. The
chordality of a graph plays a fundamental role in graph theory. The class of
chordal graphs is widely investigated. One of the reasons is that the class has
a natural intersection model as the intersection graph of subtrees of a tree [2],
[4], [13] and hence a concise tree representation. A tree representation can be
constructed in linear time, called a clique tree, where each node of the tree
corresponds to a maximal clique of the chordal graph.

In many real world applications, the intersection representation of a graph is
more important than the graph itself. In [11], [12], the intersection representation
of a graph on a tree is generally defined as follows. An (h, s, t)-representation
of G consists of a collection of subtrees {Sv|v ∈ V (G)} of a tree T , such that
(i) the maximum degree of T is at most h, (ii) every subtree has maximum
degree at most s, and (iii) there is an edge between two vertices in G if and
only if the corresponding subtrees in T have at least t vertices in common. The
class of graphs that have an (h, s, t)-representation is denoted by [h, s, t]. We say

H. Broersma et al. (Eds.): WG 2008, LNCS 5344, pp. 275–286, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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that G is sharply contained in [h, s, t] if G is an [h, s, t]-graph and G is not an
[h′, s′, t]-graph for any h′ < h or s′ < s, which we denote by G # ∈ [h, s, t].

Thus, chordal graphs correspond to [∞,∞, 1], and was strengthened in [10]
and [11], respectively, to be equivalent to [3, 3, 1] and [3, 3, 2]. The notation ∞
here means that no restriction is imposed. Interval graphs, by definition, are the
[2, 2, 1] graphs. There are other papers that study [h, s, t] graphs, for specific
values of h, s and t, although without using this notion. For example, the edge
intersection graphs of paths in a tree [6] (EPT graphs) are the [∞, 2, 2] graphs,
and the vertex intersection graphs of paths in a tree [5], [9] (VPT graphs or path
graphs) are the [∞, 2, 1] graphs.

A graph is weakly chordal if neither the graph nor its complement contains a
chordless cycle of size greater than 4. The class of weakly chordal graphs is also
well studied and has a number of known applications. Our main motivation in
this paper was to determine if there is an [h, s, t] class of graphs that corresponds
to weakly chordal graphs. By studying the complete bipartite graph, which are a
subfamily of weakly chordal graphs, we are able to confirm that weakly chordal
graphs can not be characterized within [h, s, t] framework.

In particular, in this paper, we investigate the complete bipartite graph K2,n,
where one part of the bi-partition has two vertices and the other part has n ver-
tices. In [11], [12], a function f(h, s, t) is given, such that for any n > f(h, s, t),
the K2,n graph has no (h, s, t)-representation. We strengthen their results and
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prove new theorems characterizing those K2,n graphs that have an (h, s, 2)-
representation and those that have an (h, s, 3)-representations. In [7], the follow-
ing theorem characterizing [4, 4, 2] graphs was given.

Theorem 1 ([7]). A graph G is a weakly chordal (K2,3, 4P2, P2 ∪ P4, P6,
H1, H2, H3)-free graph (see Fig. 1) if and only if the graph G has a (4, 4, 2)-
representation.

In this paper, we characterize the family of [4, 3, 2] graphs and prove that [4, 3, 2]
graphs are equivalent to 4-flower-free [4, 4, 2] graphs. We also provide a polyno-
mial time recognition algorithms for the class [4, 3, 2].

Based on the characterizations of K2,n and [4, 3, 2] graphs, we present new
results that confirm that weakly chordal graphs, as opposed to chordal graphs,
can not be characterized within the [h, s, t] framework. Furthermore, we show
a hierarchy of families of graphs between chordal and weakly chordal within
the [h, s, t] framework. We also show a hierarchy of graphs between chordal and
weakly chordal graphs.

The paper is organized as follows. We investigate the (h, s, t)-representations
of the K2,n graphs in Sect. 2. In Sect. 3 we give a recognition algorithm for
[4, 3, 2] graphs. In Sect. 4 we deal with the hierarchy of chordal, weakly chordal
and [h, s, t] graphs. We also prove that the weakly chordal graphs can not be
characterized within [h, s, t] framework.

2 The (h, s, t)-Representations of K2,n

Jamison and Mulder [11], [12] have investigated the intersection graph of subtrees
of a tree by studying the representations of the complete bipartite graph K2,n.
They found an upper bound for the size of n as a function of s and t, but as
they have mentioned this bound is far from being optimal. We summarize their
results as follows:

Let R(s, t) denote the complete balanced rooted tree whose root has s children,
internal nodes have s − 1 children and all leaves are at distance t − 1 from the
root. Let γ(s, t) be the number of subtrees R(s, t) which have exactly t nodes
and which contain the root.

Jamison and Mulder prove [11] the following:

Theorem 2 ([11]). Let h,s and t be integers with h ≥ s, and let n be an integer
with n > γ(s, t)(t + 1), then K2,n is not an [h, s, t] graph.

Our work started by looking at specific values of the parameter t. In this section,
we will improve the bound of Jamison and Mulder for t = 2 and t = 3. These
results will also be used in section 4 for particular separation examples in the
hierarchy shown in Fig. 4.

Theorem 3. K2,s# ∈ [2s, s, 2].

Corollary 4. K2,n is an [h, s, 2]-graph if and only if h ≥ 2s and s ≥ n.
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Fig. 2. The K2,n representability diagram for t = 2

Figure 2 shows the (shaded) area in which K2,n is representable for a fixed s
and t = 2.

Theorem 5. K2,f(s)# ∈ [2s − 1, s, 3], where f(s) = 2(s − 1)2 + 2(s − 1).

Corollary 6. The graph K2,n is an [h, s, 3] graph if and only if h ≥ 2s − 1 and
s ≥ 2(n − 1)2 + 2(n − 1).

3 Recognition of [4, 3, 2] Graphs

In this section, we give a characterization and a polynomial time recognition
algorithm for the class of [4, 3, 2] graphs. These results are based in part on the
previous results of [7] for the class [4, 4, 2].

We start with the following definition of the family of 4-flower graphs:

Definition 7. Let GQ be a graph with the vertex set Q = {qij |1 ≤ i < j ≤ 4}
and edges as follows. We denote Qi={qjk|j = i or k = i, 1 ≤ j < k ≤ 4}. Each
vertex set Qi is a clique in GQ.

A 4-flower graph consists of:

1. A vertex r.
2. An induced subgraph GQ′ of GQ, such that |Q′

i| ≥ 2, for every 1 ≤ i ≤ 4,
where Q′

i=Qi ∩ Q′. The vertex r is adjacent to all vertices in Q′.
3. Four distinct sets of vertices P1, . . . , P4, where Pi is either a single vertex

that is adjacent to at least two elements of Q′
i or an edge that is adjacent to

at least two elements of Q′
i. The vertex r is adjacent to at least one vertex

in each Pi.

Figures 3(a) and 3(b) show examples of 4-flowers. A 4-flower is an example of a
graph which is [4, 4, 2], but is not [4, 3, 2] as we will show in Lemma 8.

Lemma 8. 4-flower # ∈ [4, 4, 2].

Corollary 9. The family of [4, 3, 2] graphs is strictly contained in the family of
[4, 4, 2] graphs.

We now present a new recognition algorithm Recognize (4, 3, 2)-representa-
tion. The algorithm is robust since it either answers that the input graph is not
a [4, 3, 2] graph or finds a certificate: a (4, 3, 2)-representation of the input graph.
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Fig. 3. Examples of a 4-flower graph and their (4,4,2)-representations

Definition 10. Let 〈S,T 〉 be an (h, s, t)-representation of G. Let GU be the
induced subgraph of G such that every vertex in GU corresponds to a subtree in
〈S,T 〉 that contains the vertex u ∈ T . The collection of subtrees SU corresponds
to the vertex set of GU . Every subtree in SU is called a core subtree, and the
other subtrees in 〈S,T 〉 are called non-core subtrees. A core edge in T is one that
is contained only in core subtrees, and the other edges in T are called non-core
edges.

A two-pair in a graph G is a pair of vertices {x, y}, such that every chordless path
between x and y contains exactly two edges. Clearly, the common neighborhood
of a two-pair {x, y} is a minimal (x, y)-separator, which we denote by Sep(x, y).
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Recognize (4, 3, 2)-representation
input: a graph G
output: ‘no’ (if G is not a [4, 3, 2] graph) or a (4, 3, 2)-representation 〈S ,T 〉 of G

1 if G is not weakly chordal (verify using one of the known algorithms, for example
[1]) then

return ‘no’ ;

2 if G has an induced subgraph isomorphic to one of {K2,3, 4P2, P2 ∪ P4, P6, H1, H2,
H3, 4-flower} then

return ‘no’;

3 〈S ,T 〉 ← Construct (4, 4, 2)-representation(G) (given in [7]);
4 while ∃ a vertex u ∈ T , such that ∃ subtree S ∈ 〈S ,T 〉 with degree 4 at u do

〈S ,T 〉 ← Subtree-degree-reduce4(〈S ,T 〉,u);

Subtree-degree-reduce4 procedure
input: a (4, 4, 2)-representation 〈S ,T 〉 of G and a vertex u ∈ T at which there is a
subtree of degree 4
output: a (4, 4, 2)-representation 〈S ′,T ′〉 of G with fewer vertices with a subtree of
degree 4, such that u has no subtree with degree 4

5 〈S ,T 〉 ← PreprocessingA(〈S ,T 〉, u);
6 find the induced subgraph GU ;
7 if GU is a clique then

〈S ′,T ′〉 ← TransformationB(〈S ,T 〉, u);
end procedure;

//GU is not a clique
8 find a two-pair {x, y} in GU and Sep(x, y);
9 if Sep(x, y) is a clique then

〈S ′,T ′〉 ← TransformationC-subtree(〈S ,T 〉, u, Sx);
end procedure;

//Sep(x, y) is not a clique
10 find {Cij}, 1 ≤ i < j ≤ 4 and C5 in GU by Definition 13;
11 MultiColoringD ←MultiColoringD-subtree(〈S ,T 〉, u, {Cij}, C5);
12 〈S ′,T ′〉 ← TransformationD-subtree(〈S ,T 〉, u, MultiColoringD);

Theorem 11. [3] A graph G is weakly chordal if and only if every induced
subgraph of G either has a two-pair or is a clique.

We now present the algorithm. After verifying that G is weakly chordal (Step
1) and contains none of the forbidden subgraphs (Step 2), the algorithm then
initializes a (4, 4, 2)-representation (Step 3) using the algorithm of [7]. The heart
of our algorithm is the iterative loop (Step 4), refining the representation at each
stage by reducing the degree of the subtrees at a vertex u.

The following Lemma 12 is needed to prove the correctness of the algorithm
and the characterization Theorem 17.

Lemma 12. Let 〈S,T 〉 be a (4, 4, 2)-representation of a 4-flower-free graph G.
If 〈S,T 〉 is an input to Subtree-degree-reduce4(〈S,T 〉, u), then the output is
a (4, 4, 2)-representation of G with fewer vertices with a subtree of degree 4,
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PreprocessingA procedure
input: 〈S,T 〉, u; output: 〈S,T 〉
//let v1, . . . , v4 be the neighbors of u in T ;

1 foreach star edge (vi, u) do
find S(vi, u), which is the collection of subtrees in S that contains only the edge
(vi, u) among (v1, u), . . . , (v4, u);
if S(vi, u) 
= ∅ then split the edge (vi, u) into two edges, by adding a dummy
vertex w such that:
foreach subtree S ∈ S(vi, u) do

replace (vi, u) by the edge (vi, w) in S (thus making w the endpoint of S);

foreach subtree S /∈ S(vi, u) and (vi, u) is contained in S do
replace (vi, u) by the two edges (vi, w) and (w, u) in S.

2 find S ′ ⊂ S the collection of subtrees such that each contains exactly three edges
among (v1, u), . . . , (v4, u);

3 if S ′ 
= ∅ then
foreach subtree Sv ∈ S ′ do

add the non-existing edge (vi, u) to Sv;

TransformationB procedure
input: 〈S,T 〉, u; output: 〈S ′,T ′〉
split the edge (v1, u) into two edges by adding a dummy vertex w;
remove the edge (v2, u);
add the edge (v2, w) such that:
foreach subtree S ∈ SU that contains the edge (vi, u), i = 1, 2, do

replace (vi, u) by the two edges (vi, w) and (w, u) in S;

TransformationC-Subtree procedure
input: 〈S,T 〉, u, Sx; output: < S ′,T ′ >
//Suppose Sx contains the star edges (v1, u) and (v2, u) ;
split the edge (v1, u) into two edges by adding a dummy vertex w;
replace (v1, u) by (v1, w), (w, u) in every subtree containing it;
replace (v2, u) by (v2, w), (w, u) in every subtree containing it;

MultiColoringD-Subtree procedure
input: 〈S,T 〉, u, {Cij} for 1 ≤ i < j ≤ 4, C5

output: MultiColoringD (C(e) ∀e ∈ T and C(S) ∀ non-core subtree S)
define seven colors {cλ}, λ = {12, 13, 14, 23, 24, 34, 5}, such that each cλ corresponds
to Cλ;
multicolor each edge e ∈ T with all colors cλ, such that e is contained in a core
subtree in Cλ;
repeat

if an edge e ∈ T is contained in a non-core subtree S with an edge colored cλ

then color the edge e with color cλ;
until no further coloring is possible;
for all edges e ∈ T , C(e) ← the set of colors of e;
for all non-core subtrees S, C(S) ← ∪{C(e)|e is contained in S};

TransformationD-subtree procedure
input: 〈S,T 〉, u, MultiColoringD; output:〈S ′,T ′〉

4 find 1 ≤ pivot ≤ 4, such that Svpivot is empty;
5 〈S,T 〉 ← MovePivot(〈S,T 〉, u, MultiColoringD, Tvpivot);
6 foreach subtree Sv, v ∈ C5 do

Remove the edge (u, vpivot) and its edges in Tvpivot from Sv;
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MovePivot procedure
input: 〈S ,T 〉, u, MultiColoringD, Tv; output: 〈S ,T 〉
foreach core edge e = (v, a) ∈ Tv, c5 ∈ C(e) do

〈S ,T 〉 ← MovePivot(〈S ,T 〉, MultiColoringD, Ta);

while ∃ a non-core edge e = (v, a) ∈ Tv, c5 ∈ C(e) do
E← {e} ∪ {e′ = (v, a′) ∈ Tv| e′ is a non-core edge and C(e′) = C(e)};
find star edge e′′ 
= (u, vpivot) and C(e′′) ⊇ C(e);
split the star edge e′′ into two edges, by adding a dummy vertex w;
replace the star edge e′′ by the two edges in every core subtree containing it;
add a dummy edge (w′, w);
foreach edge (v, v′) ∈ E do

replace (v, v′) by (w, w′), (w′, v′) in every core subtree containing it;
replace (v, v′) by (w′, v′) in every non-core subtree containing it;
delete the edge (v, v′) from T ;

and such that u has no subtree of degree 4. Moreover, no subtree in 〈S,T 〉 has
increased its maximal degree in the output representation.

Proof. By Theorem 1, G is a weakly chordal (K2,3, 4P2, P2 ∪ P4, P6, H1, H2,
H3)-free graph. We justify each Step of the procedure with a Claim.

Step 1. The procedure PreprocessingA(〈S,T 〉, u) finds a (4, 4, 2)-representa-
tion of G, such that every subtree in S either uses no edges with the endpoint
u or uses two edges or four edges with the endpoint u according to Claim 3(i).
Moreover, the number of vertices in T contained in a subtree with degree 4
remains the same.

Step 2. We find the induced subgraph GU , where each vertex in GU corresponds
to a subtree that contains the vertex u in T . By the hereditary property, the
induced subgraph GU is also a weakly chordal graph.

Step 3. According to Theorem 11, the subgraph GU is either a clique or has
a two-pair. If GU is a clique, then at Step 3 we call TransformationB(〈S,T 〉,
u) and Subtree-degree-reduce4 ends. The output is a (4, 4, 2)-representation
of G with fewer vertices with subtree of degree 4, such that u has no subtree
with degree 4 according to Claim 3(ii). Moreover, no subtree has increased its
maximal degree in the output representation.

Otherwise, at Steps 4-8 we assume that GU is not a clique and therefore has
a two-pair.

Step 4. We find a two-pair {x, y} and the set Sep(x, y).

Step 5. If Sep(x, y) is a clique, then we perform TransformationC-subtree
(〈S,T 〉, u, Sx), and

Subtree-degree-reduce4 ends. By Claim 3(iii), this finds a (4, 4, 2)-representa-
tion of G with fewer vertices with subtree of degree 4, such that u has no subtree
of degree 4. Moreover, the maximal degree of each subtree does not increase in
the output representation.
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Fig. 4. The hierarchy

Otherwise, at Step 6-8 we assume that Sep(x, y) is not a clique.

Step 6. We find the sets Cij , 1 ≤ i < j ≤ 4, and C5 in GU by Definition 13.

Step 7. We call MultiColoringD-subtree(〈S,T 〉, u, Cij for 1 ≤ i < j ≤ 4, C5)
to obtain MultiColoringD, which has the properties proved in Claim 3.

Step 8. We call TransformationD-subtree(〈S,T 〉, u, MultiColoringD) and
according to Claim 3 obtain a (4, 4, 2)-representation with fewer vertices with
subtree of degree 4, such that u has no subtree with degree 4. Moreover, the
maximal degree of each subtree does not increase in the output representation.

��

Claim. Let 〈S,T 〉 be a (4, 4, 2)-representation of G and let u be a vertex with
neighbors v1, . . . , v4 in T :
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(i) By performing PreprocessingA we obtain a (4, 4, 2)-representation of G,
such that every subtree in S either uses no edges with the endpoint u or uses
two or four edges with the endpoint u. Moreover, the number of vertices in T
contained in a subtree with degree 4 remains the same.
(ii) If GU is a clique and there exists a subtree of degree 4 at u, then the output
of TransformationB is a (4, 4, 2)-representation of G with fewer vertices with
subtree of degree 4, such that u has no subtree with degree 4. Moreover, the
maximal degree of each subtree does not increase.
(iii) If Sep(x, y) is a clique, then the output of TransformationC-subtree is
a (4, 4, 2)-representation of G with fewer vertices with subtree of degree 4, such
that u has no subtree of degree 4. Moreover, the maximal degree of each subtree
does not increase in the output representation.

Definition 13. Let v1, . . . , v4 be the neighbors of u ∈ T . For 1 ≤ i < j ≤ 4,
we define the cliques Cij={v ∈ GU |Sv contains exactly two of the star edges
(vi, u) and (vj , u)} . In addition, C5={v|v ∈ GU − {Cij}, 1 ≤ i < j ≤ 4}. Note
that these seven cliques partition SU and, by Claim 3, each subtree Sv, v ∈ C5,
contains (v1, u), . . . , (v4, u).

Definition 14. In MultiColoringD, a non-core subtree S touches a color c ∈
C(S) if S shares an edge with at least one core subtree corresponding to color c.
Let Tvi be the subtree rooted at vi ∈ T , obtained by removing the vertex u from
T . Let Svi , 1 ≤ i ≤ 4, be the collection of non-core subtrees S that are contained
in Tvi , such that c5 ∈ C(S) and |C(S)| > 2. For any vertex a ∈ Tvi , we further
define the subtree Ta of Tvi to be rooted at a.

Claim. In the output of MultiColoringD-subtree the following hold:

I. Suppose there exists i, such that Svi �= ∅.
(i) ∃S ∈ Svi that touches at least two colors.
(ii) At least one of the following holds:

(a) ∃S ∈ Svi that touches c5 and touches at least two other colors.
(b) ∃S, S′ ∈ Svi such that S and S′ share an edge in T , and S ∪ S′

touches c5 and at least two other colors.
II. ∃i, such that Svi = ∅.

III. Let e be a non-core edge, such that c5 ∈ C(e) and e is contained in a sub-
tree Tvi , where Svi = ∅. Then there exists a star edge (u, vj), such that
C(e) ⊆ C((u, vj)) where i �= j.

Consider TransformationD-subtree procedure. In Step 1, a pivot is chosen
according to Claim 3(II). In Step 2, the recursive procedure MovePivot is
used to modify the representation by identifying and moving a rooted subtree of
Tvpivot to some other Tvj . In Step 3, we remove edges of Tvpivot from each core
subtree corresponding to C5.

Claim. In the output representation 〈S,T 〉 of MovePivot the following hold:
(i) There is no non-core edge e, C5 ∈ C(e) in Tvpivot .
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(ii) Every dummy edge (w, w′) ∈ T is contained in core subtrees with edges
colored with c5 and at most one color of {cij}.
(iii) The output representation is a (4, 4, 2)-representation of G. Moreover, the
maximal degree of each subtree does not increase in the output representation.

Theorem 15. The hierarchy represented in Fig. 4 is complete.

Claim. The output of TransformationD-subtree is a (4, 4, 2)-representation
of G with fewer vertices with subtree of degree 4, such that u has no subtree of
degree 4. Moreover, the maximal degree of each subtree does not increase in the
output representation.

Corollary 16. Let G be a 4-flower-free [4, 4, 2] graph, then Recognize (4, 3, 2)-
representation algorithm finds a (4, 3, 2)-representation of G.

Theorem 17. G is [4, 3, 2] if and only if G is 4-flower-free [4, 4, 2] graph.

Proof. If G is a [4, 3, 2] graph, then it is certainly a [4, 4, 2] graph. Moreover, G
does not contain a 4-flower graph by Lemma 8. Conversely, if G is a 4-flower-free
[4, 4, 2] graph, then by Corollary 16, G is a [4, 3, 2] graph. ��

4 The Hierarchy

In this section, we investigate the relationship between various [h, s, t]-graphs
and the well-known families of chordal and weakly chordal graphs. Specifically,
we demonstrate the results illustrated in the complete hierarchy shown in Fig.
4. We also prove that the class of weakly chordal graphs is incomparable with
[h, s, t] graphs for t > 2 or t = 2 and h ≥ 5.

We say that a hierarchy is complete, when all containment relationships are
given. That is, (1) classes that appear in the same box are equivalent, (2) a
downward edge from class A to class B indicates that class A contains class B,
(3) an example appearing along the edge between two classes is a separating
example for those classes, (4) the lack of a hierarchical (containment) relation
indicates that the classes are incomparable.

We now state the main result in this section:

Theorem 18. The class of [h, s, t] graphs for any fixed h, t is incomparable with
the class of weakly chordal graphs if and only if either t > 2 or t = 2 and h ≥ 5.

Proof. (⇐) Let [h, s, t] be a class of graphs with fixed t ≥ 2. Then by Theorem
2, the graph K2,n, n > γ(s, t)(t + 1), is not an [h, s, t] graph but is weakly
chordal. The graph C5 is not weakly chordal, but is an [∞, 2, 2] graph and by
containment is an [h, s, t] graph. Therefore, [h, s, t] is incomparable with weakly
chordal graphs.

(⇒) Let [h, s, t] be a class of graphs which is incomparable with the weakly
chordal graphs. Then t ≥ 2, since the [h, s, 1] graphs are chordal by [4], and
therefore are contained in the weakly chordal graphs. Suppose t = 2. We con-
sider all possibilities for h < 5. The graph classes [4, 4, 2], [4, 3, 2], [4, 2, 2], [3, 3, 2],
[3, 2, 2] are weakly chordal by Theorem 15. The graph class [2, 2, 2] are the in-
terval graphs which are weakly chordal. Therefore, h ≥ 5. ��
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Abstract. We investigate the Induced Subgraph Isomorphism prob-
lem with non-standard parametrization, where the parameter is the dif-
ference |V (G)| − |V (H)| with H and G being the smaller and the larger
input graph, respectively. Intuitively, we can interpret this problem as
“cleaning” the graph G, regarded as a pattern containing extra vertices
indicating errors, in order to obtain the graph H representing the ori-
ginal pattern. We show fixed-parameter tractability of the cases where
both H and G are planar and H is 3-connected, or H is a tree and G is
arbitrary.

1 Introduction

Problems related to graph isomorphisms play a significant role in algorithmic
graph theory. The Induced Subgraph Isomorphism problem is one of the ba-
sic problems of this area: given two graphs H and G, find an induced subgraph
of G isomorphic to H , if this is possible. In this general form, Induced Sub-

graph Isomorphism is NP-hard, since it contains several well-known NP-hard
problems, such as Independent Set or Longest Induced Path.

As Induced Subgraph Isomorphism has a wide range of important appli-
cations, polynomial time algorithms have been given for numerous special cases,
such as the case when both input graphs are trees [16] or 2-connected outerpla-
nar graphs [14]. However, Induced Subgraph Isomorphism remains NP-hard
even if H is a forest and G is a tree, or if H is a path and G is a cubic planar
graph [10]. In many fields where researchers face hard problems, parameterized
complexity theory (see e.g. [7] or [9]) has proved to be successful in the analysis
and design of algorithms that have a tractable running time in many applica-
tions. In parameterized complexity, a parameter k is introduced besides the input
I of the problem. A parameterized problem is fixed-parameter tractable (FPT)
if it admits an algorithm with running time O(f(k)|I|c) where f is an arbitrary
function and c is a constant independent of k.

Note that Induced Subgraph Isomorphism is trivially solvable in time
O(|V (G)||V (H)||V (H)|2) on input graphs H and G. As H is typically much
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smaller than G in applications related to pattern matching, the usual paramet-
rization of Induced Subgraph Isomorphism is to define the parameter to be
|V (H)|. FPT algorithms are known if G is planar [8], has bounded degree [3], or
if H is a log-bounded fragmentation graph and G has bounded treewidth [11].

We consider another parametrization of Induced Subgraph Isomorphism,
where the parameter is the difference |V (G)|− |V (H)|. Considering the presence
of extra vertices as some kind of error or noise, the problem of finding the original
graph H in the “dirty” graph G containing errors is clearly meaningful. In other
words, the task is to “clean” the graph G containing errors in order to obtain H .
For two graph classes H and G we define the Cleaning(H,G) problem: given a
pair of graphs (H, G) with H ∈ H and G ∈ G, find a set of vertices S in G such
that G−S is isomorphic to H . The parameter associated with the input (H, G)
is |V (G)| − |V (H)|. For the case when G or H is the class of all graphs, we will
use the notation Cleaning(H,−) or Cleaning(−,G), respectively.

In the special case when the parameter is 0, the problem is equivalent to the
Graph Isomorphism problem, so we cannot hope to give an FPT algorithm
for the general problem Cleaning(−,−). Thus, we consider two special cases.
We give FPT algorithms for the problems Cleaning(Tree,−) and Cleaning(3-
Connected-Planar, Planar) where Tree, Planar, and 3-Connected-Planar denote
the class of trees, planar graphs, and 3-connected planar graphs, respectively.
Note that these problems differ from the Feedback Vertex Set and the Mini-

mum Apex problems, where the task is to delete a minimum number of vertices
from the input graph to get an arbitrary acyclic or planar graph, respectively.
Both these problems are FPT [2,15].

Without parametrization, Cleaning(Tree,−) is NP-hard because it con-
tains Longest Induced Path, and we show NP-hardness for Cleaning(3-
Connected-Planar, 3-Connected-Planar) too. A polynomial time algorithm is
known for Cleaning(Tree, Tree) [16], and an FPT algorithm is known for
Cleaning(Grid,−) where Grid is the class of rectangular grids [5].

2 Notation

We write [n] for {1, . . . , n}. The set of the neighbors of x ∈ V (G) is NG(x),
and for some X ⊆ V (G) we let NG(X) =

⋃
x∈X NG(x). The degree of x in G

is dG(x) = |NG(x)|. If Z ⊆ V (G) and G is clear from the context, then we let
NZ(x) = NG(x) ∩ Z and NZ(X) = NG(X) ∩ Z. For some X ⊆ V (G), G − X
is obtained from G by deleting X , and G[X ] = G − V (G − X). For a subgraph
H of G, let G − H = G − V (H). By contracting a vertex of degree 2, we mean
deleting it and adding an edge between its neighbors.

A plane graph is a planar graph together with a planar embedding. For a
subgraph H of a plane graph G, an edge e ∈ E(H) is called an outer edge of
(H, G) if G has a face Fe incident to e which is not in H . In this case, Fe is
an outer face of e w.r.t. (H, G). An isomorphism from H into G is a bijection
ϕ : V (H) ∪ E(H) → V (G) ∪ E(G) preserving incidency. For a subgraph H ′ of
H , ϕ(H ′) consists of the images of the vertices and edges of H ′.
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3 The Cleaning(3-Connected-Planar, Planar) Problem

In this section, we present an algorithm for Cleaning(3-Connected-Planar, Pla-
nar). Since 3-connected planar graphs can be considered as “rigid” graphs in the
sense that they cannot be embedded in the plane in essentially different ways,
this problem seems to be easy. However, Theorem 1 shows that it is NP-hard.

Theorem 1. Cleaning(3-Connected-Planar, 3-Connected-Planar) is NP-hard.

Proof. We give a reduction from the NP-complete Planar 3-Colorability

problem [10]. Let F be the planar input graph given. W.l.o.g. we assume that
F is connected. We construct 3-connected planar graphs H and G such that
Cleaning(3-Connected-Planar, 3-Connected-Planar) with input (H, G) is solv-
able if and only if F is 3-colorable.

The gadgets we construct are shown in Fig. 1. For every x ∈ V (F ) we
set an integer 9|V (F )| ≤ b(x) ≤ 10|V (F )| such that b(x) �= b(y) for any
x �= y ∈ V (F ). For every vertex x ∈ V (F ) we build a node-gadget Nx in G by
taking vertices ax, bx

1 , . . . , bx
6b(x) and cx

1 , . . . , cx
3b(x) and edge set {axbx

j , bx
j bx

j+1 | j ∈
[6b(x)]} ∪ {cx

j bx
2j−1, c

x
j bx

2j, c
x
j bx

2j+1|j ∈ [3b(x)]} where bx
6b(x)+1 = bx

1 . The node-
gadget Nx can be considered as a plane graph, supposing that the vertices
bx
1 , bx

2 , . . . , bx
6b(x) (and so cx

1 , cx
2 , . . . , cx

3b(x)) are embedded in a clockwise order
around ax. We define the j-th block Bx

j of Nx to be (cx
3j−2, c

x
3j−1, c

x
3j), for every

j ∈ [b(x)]. The type of cx
j can be 0, 1 or 2, according to the value of j modulo 3.

We set Cx = {cx
j |j ∈ [3b(x)]}.

For each edge xy ∈ E(F ) we build a connection Exy in G that uses 9-9 conse-
cutive blocks from Nx and Ny, say Bx

i , . . . , Bx
i+8 and By

j , . . . , By
j+8. These blocks

are the base blocks for Exy, and we also define b(x, y) = (i, j). Note that since
b(x) ≥ 9|V (F )| > 9dF (x), we can define connections such that no block is a base
block for different connections. To build Exy with b(x, y) = (i, j), we introduce
three new vertices dxy

1 , dxy
2 , dxy

3 and edges {cx
3(i+8)−6m+�d

xy
m , cy

3j−2+6m−�d
xy
m |m ∈

[3], 
 ∈ [6]}∪{cx
3i+6c

y
3j+18, c

x
3i+2c

y
3j+20, c

x
3i−2c

y
3j+22} (see Fig. 1). By choosing the

base blocks for each connection in a way that the order of the connections around
a node-gadget is the same as the order of the corresponding edges around the
corresponding vertex for some fixed planar embedding of F , we can give a planar
embedding of G. Moreover, it is easy to see that G is also 3-connected.

To construct H , we make a disjoint copy Ḡ of G, and delete some edges and
vertices from it as follows. For the copy of cx

j (ax, Cx, etc.) we write c̄x
j (āx,

C̄x, etc. respectively). To get H , we delete from Ḡ the three edges connecting
vertices of C̄x and C̄y for every x �= y, and vertices c̄x

3j−2 and c̄x
3j−1 for every x ∈

V (F ), j ∈ [b(x)]. Clearly, H is planar, and observe that it remains 3-connected.
Now, we prove that if Cleaning(3-Connected-Planar, 3-Connected-Planar)

has a solution S for the input (H, G), then F is 3-colorable. Let ϕ be an iso-
morphism from H to G − S. First, observe that since b(x) �= b(y) if x �= y, and
the integers {b(x)|x ∈ V (F )} are large enough, ϕ must map āx to ax because of
its degree. For each x ∈ V (F ), the vertices in Cx \ S must have the same type,
so let the color of x be this type. If xy ∈ E(F ), then the color of x and y must
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Fig. 1. A node-gadget and a connection for the proof of Theorem 1

differ, otherwise one of the edges cx
3i+6c

y
3j+18, c

x
3i+2c

y
3j+20, c

x
3i−2c

y
3j+22 would be

in G − S where b(x, y) = (i, j), as for every type t, one of these edges connects
two vertices of type t. Thus the coloring is proper.

For the other direction, let t : V (F ) → {1, 2, 3} be a coloring of F . For each
x ∈ V (F ), let S contain those vertices in Cx whose type is not t(x) modulo 3.
Let ϕ map āx and d̄xy

m (for every meaningful x, y, m) to ax and dxy
m , respectively,

and let ϕ map c̄x
j to cx

j+t(x)−3 (in a cyclic order). By adjusting ϕ on the vertices
b̄x
i in the natural way, we can prove that ϕ is an isomorphism. It is clear that

the restriction of ϕ on N̄x is an isomorphism. Note that the only vertex of
Bx

j present in G − S is cx
3j+t(x)−3 = ϕ(c̄x

3j), so independently from t(x) and
t(y), the neighborhood of d̄xy

m is also preserved. We only have to check that the
edges connecting Cx and Cy are not present in G − S. This is implied by the
properness of the coloring, as all such edges connect vertices of the same type,
but for xy ∈ E(F ) the types of the vertices in Cx \ S and Cy \ S differ. ��

We present an FPT algorithm for Cleaning(3-Connected-Planar, Planar)
where the parameter is k = |V (G)| − |V (H)| for input (H, G). We assume
n = |V (H)| > k + 2 as otherwise we can solve the problem by brute force.
We also assume that H and G are simple graphs.

Let S be a solution. First observe that if C is a set of at most 2 vertices such
that G − C is not connected, then there is a component K of G − C such that
G−S is contained in G[V (K)∪C]. Clearly, |V (K)| ≥ n− 2, and it is unique by
n > k + 2. Since such a separating set C can be found in linear time [12], K can
also be found in linear time. If no component of G − C has size at least n − 2,
the algorithm outputs ’No’, otherwise it proceeds with G[V (K) ∪ C] as input.

So we can assume that G is 3-connected. First the algorithm determines a
planar embedding of H and G. Every planar embedding determines a circular
order of the edges incident to a given vertex. Two embeddings are equivalent, if
these orderings are the same for each vertex in both of the embeddings. It is well-
known that a 3-connected planar graph has exactly two planar embeddings, and
these are reflections of each other (see e.g. [6]). Let us fix an arbitrary embedding
θ of H . By the 3-connectivity of G, one of the two possible embeddings of G
yields an embedding of G − S that is equivalent to θ. The algorithm checks
both possibilities. From now on, we regard H and G as plane graphs, and we are
looking for an isomorphism ϕ from H into G−S which preserves the embedding.
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In a general step of the algorithm, we grow a partial mapping, which is a
restriction of ϕ. We assume that ϕ is already determined on a subgraph D of
H having at least one edge, such that the vertices of H − D are embedded in
the unbounded face of D. As implied implicitly, ϕ(V (D)) ∩ S = ∅, so if at some
point the algorithm would have to delete vertices from ϕ(D), it outputs ’No’.

The algorithm grows the subgraph D on which ϕ is determined step by step.
At each step, it chooses an outer edge e of (D, H), and either deletes some vertices
of G−ϕ(D) or adds to D an outer face F of e w.r.t. (D, H). This implies that the
outer edges of (D, H) correspond to the outer edges of (ϕ(D), G). Moreover, the
algorithm chooses e and F in a way such that after the first step it will always
hold that the outer edges of (D, H) form a cycle. We refer to this as choosing
an appropriate face. This method ensures that every vertex in V (H) \ V (D) is
embedded in the unique unbounded region determined by the border of D in H .
(The border of D in H is the subgraph formed by the outer edges of (D, H)).
Note that it also follows that the vertices of V (G) \ ϕ(V (D)) are embedded in
the unique unbounded region determined by the border of ϕ(D) in G.

To find an initial partial mapping, we try to find a pair of edges ab and a′b′

in H and G, respectively, such that ϕ(a) = a′ and ϕ(b) = b′. To do that, the
algorithm fixes an arbitrary edge ab in H and guesses ϕ(a) and ϕ(b). This yields
2|E(G)| possibilities. After this, the algorithm applies one of the following steps.

3-connectivity test. As we can delete vertices from G, it may happen that G
ceases to be 3-connected. This can be handled as described above, by finding a
separating set C of size at most 2, and determining the component K of G − C
with at least |V (H)| − 2 vertices. If no such component exists, or if it does not
include ϕ(D), then the algorithm outputs ’No’, otherwise it deletes V (G−C−K).

Common neighbors test. Let M = {ϕ(v)|v ∈ V (D), dH(v) < dG(ϕ(v))}.
First, note that every vertex in M must have a neighbor in S, thus if |M | > 2k,
then some vertex in S is adjacent to at least three vertices in M . As the vertices
of S ⊆ V (G) \ ϕ(V (D)) are embedded in the unbounded region determined by
the border of ϕ(D) in G, the vertices of M lie on this border. The algorithm
checks every vertex q having at least three neighbors on the border of ϕ(D) in
G, and determines whether q ∈ S, using Lemma 1. If no such vertex of S can be
found in spite of |M | > 2k, then the algorithm outputs ’No’.

Lemma 1. Let q in V (G) \ ϕ(V (D)) be adjacent to different vertices x, y and
z on the border of ϕ(D) in G. Then q ∈ S if and only if there is no vertex
p ∈ V (H) \ V (D) which is a common neighbor of ϕ−1(x), ϕ−1(y) and ϕ−1(z).

Proof. For contradiction, let us assume q ∈ S and let a vertex p exist as de-
scribed. As D is connected and ϕ preserves the embedding, the outer edges of
(ϕ(D), G) and the edges ϕ(p)x, ϕ(p)y and ϕ(p)z cut the plane into four regions,
and the only region among these containing all three of x, y and z is the bounded
region determined by the outer edges of (ϕ(D), G). But as no vertex in S can
be embedded in this region (by our assumption on D), q cannot be adjacent to
all of x, y and z, a contradiction. On the other hand, if there is no vertex in
V (H) \ V (D) adjacent to ϕ−1(x), ϕ−1(y) and ϕ−1(z), then q ∈ S is trivial. ��
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Examining an outer face. In this step, the algorithm takes an outer edge
e = xy of (D, H) with an appropriate outer face F in H , and the corresponding
outer face F ′ of ϕ(e) w.r.t. (ϕ(D), G). If the algorithm finds that V (F ′)∩S = ∅
must hold because of a sufficient condition given in Lemma 2, then it extends ϕ
by adding F to D. Otherwise, V (F ′) may contain vertices in S, so the algorithm
branches into a bounded number of directions.

In the branch assuming V (F ′) ∩ S = ∅, the extension of ϕ is performed. In
the branches when V (F ′) ∩ S �= ∅ is assumed, the algorithm tries to find and
delete the first vertex s on the border of F ′ in S, and branches according to the
choice of s. Lemma 2 bounds the possibilities to choose s.

Lemma 2. Let e = t0tf be an outer edge of (D, H) and F its outer face w.r.t.
(D, H) such that its vertices in clockwise ordering are t0, t1, . . . , tf . Similarly, let
F ′ be an outer face of ϕ(e) w.r.t. (ϕ(D), G), where the vertices of F ′ in clockwise
ordering are t′0 = ϕ(t0), t′1, . . . , t

′
f ′−1 and t′f ′ = ϕ(tf ). Let also R = {j | 0 ≤ j ≤

min(f, f ′), dH(tj) �= dG(t′j)} and let the indices in R be r1 < . . . < r|R|.

(1) If |R| ≤ 1 and f = f ′, then V (F ′) ∩ S = ∅ and ϕ(ti) = t′i for every i ∈ [f ].
(2) If V (F ′) ∩ S �= ∅ and t′i∗ is the first vertex on the border of F ′ that is in S,

then i∗ − 1 ∈ {rj | j ∈ [min(|R|, 2k + 1)]}.

Proof. Let ei = titi−1 for every i ∈ [f ], so ei+1 is followed by ei in the clockwise
circular order of the edges incident to ti. Now, if e′i+1 is followed by ϕ(ei) in
the clockwise circular order of the edges incident to ϕ(vi) and e′i+1 ∈ E(G − S),
then ϕ(ei+1) = e′i+1 as ϕ preserves the embedding. Thus if V (F ′) ∩ S = ∅, then
applying this argument iteratively, from ϕ(t0tf ) = t′0t

′
f ′ we can deduce ϕ(ti) = t′i

for every i ∈ [f ].
Now, if V (F ′) ∩ S �= ∅ and t′i∗ is the first vertex on the border of F ′ that

is in S, then the vertices t′0, . . . , t′i∗−1 are not in S, so by applying the above
argument we get ϕ(t�) = t′� for all 
 < i∗. But t′i∗−1 has a neighbor in S, hence
dG(t′i∗−1) > dG−S(t′i∗−1) = dG−S(ϕ(ti∗−1)) = dH(ti∗−1). This implies i∗−1 ∈ R.
Letting j∗ to be the last vertex on the border of F ′ that is in S, and using f = f ′

and the same argument as above, we get j∗ + 1 ∈ R. Clearly i∗ − 1 < j∗ + 1,
so V (F ′) ∩ S �= ∅ would imply |R| ≥ 2. Hence, the conditions of (1) imply
V (F ′) ∩ S = ∅, proving also ϕ(ti) = t′i for every i ∈ [f ].

To prove (2), suppose V (F ′) ∩ S �= ∅. As i∗ − 1 ∈ R, if 
∗ is the last index in
R such that for any 
 ≤ r�∗ + 1 the vertex t′� is not in S, we get i∗ − 1 = r�∗+1.
We claim 
∗ ≤ 2k, which clearly implies i∗ − 1 ∈ {rj | j ∈ [min(|R|, 2k + 1)]}.
To see the claim, suppose 
 ≤ 
∗. Since dH(tr�

) �= dG(t′r�
) but ϕ(tr�

) = t′r�
, we

get that t′� is adjacent to a vertex s ∈ S, and by the definition of 
∗ we know
that s /∈ V (F ′), so s is not in the region of G corresponding to the face F of H .
Note that in a 3-connected graph no three vertices on the border of a single face
can also lie on the border of another face, so no three vertices in V (F ′) can be
adjacent to the same s ∈ S. Using this we obtain 
∗ ≤ 2|S| = 2k. ��

Now let us describe the key mechanism of our algorithm. The essential work is
done by a recursive algorithm that we call GrowSolution, described in Fig. 2.
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GrowSolution(H,G, D, ϕ)

1. If k = |V (G)| − |V (H)| < 0 then output(’No’).
2. Perform the 3-connectivity test.
3. If D equals H then output(’Yes’).
4. Perform the common neighbors test.
5. Examine an outer face. If for the chosen pair (F, F ′) of faces |V (F )| = |V (F ′)|

and |R| ≤ 1, then extend ϕ on F , and go to Step 3. Otherwise branch as follows:
– for all j ∈ [2k + 1]: let i∗ = rj + 1 and call GrowSolution(H,G − t′i∗ , D, ϕ).
– if |V (F )| = |V (F ′)| then extend ϕ on F and call GrowSolution(H,G, D, ϕ).

Fig. 2. The algorithm GrowSolution

The input of GrowSolution is a 4-tuple (H, G, D, ϕ), where H and G are plane
graphs, H is 3-connected, D is a subgraph of H which is either an edge (in
the first step) or the union of faces whose border in H is a cycle, and ϕ is an
embedding preserving isomorphism from D to an induced subgraph of G, such
that the border of ϕ(D) in G is also a cycle. The algorithm finds out whether
there is an S ⊆ V (G) such that ϕ can be extended to map H to G − S while
remaining an isomorphism that preserves embedding. In each call, GrowSolution
may stop or branch into a few directions. According to this, we will speak of
terminal and branching calls. In each branch of a branching call, GrowSolution
either deletes a vertex from G, or extends ϕ by adding a new face to D. If at
the end of a branch a vertex is deleted, then this is a deletion branch, otherwise
it is an extension branch. (Actually, the algorithm may extend ϕ also in the
deletion branches before performing the deletion.) At the end of each branch,
GrowSolution calls itself recursively with the modified input.

In a single call, the algorithm first checks whether |V (G)| < |V (H)|, and if so,
then correctly outputs ’No’. Next, it handles the case when G is not 3-connected.
If D equals H , then Step 3 outputs ’Yes’. Then it searches for common neighbors,
as described above. Now, if the algorithm does not stop or delete vertices, it
examines an outer face. If for the chosen pair of faces (F, F ′) the conditions of
(1) in Lemma 2 are fulfilled, then we know V (F ′) ∩ S = ∅, so the algorithm
proceeds by extending ϕ on F according to the lemma. When GrowSolution
performs this extension, it also adds F to D, and checks whether ϕ is still an
isomorphism on D, and if not, outputs ’No’. This is correct by Lemma 2. This
extension step is iterated until either a vertex is deleted or the algorithm stops
in Step 3, 4 or 5, or the conditions of (1) in Lemma 2 do not hold.

In the last case, we don’t know whether V (F ′) ∩ S is empty or not, so the
algorithm branches into at most 2k+2 directions. First we assume V (F ′)∩S �= ∅,
in this case statement (2) of Lemma 2 implies that i∗ ∈ {rj + 1 | j ∈ [min(2k +
1, |R|)]} where t′i∗ is the first vertex on the border of F ′ being in S. The algorithm
branches on these at most 2k+1 possibilities to delete t′i∗ . The last branch is an
extension branch corresponding to the case V (F ′) ∩ S = ∅. Here, GrowSolution
performs the extension of ϕ on F as described above. Note that this branch is
only necessary if |V (F )| = |V (F ′)|.
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Observe that the correctness of the algorithm directly follows from Lemmas 1
and 2. Although GrowSolution only answers the decision problem, it is straight-
forward to modify it in order to output the set S.

To analyze the running time of the algorithm, we assign a search tree T (I) to
a run of GrowSolution with a given input I. The nodes of this tree correspond
to the calls of GrowSolution. The leaves represent the terminal calls and the
internal nodes represent branching calls. The edge(s) leaving a node represent
the branch(es) of the corresponding call of GrowSolution, so e heads from x to y
if y is called in the branch represented by e in the call corresponding to x. The
parameter of a node with input I = (H, G, D, ϕ) is kI = |V (G)| − |V (H)|. The
parameter clearly decreases in a deletion branch, which cannot happen more
than k + 1 times. However, in the extension branches this is not true, which
seems to make it problematic to bound the size of the search tree. The following
lemma shows that this problem does not arise, thanks to Step 4 of the algorithm.

Lemma 3. The size of T (I) is bounded by a function f(k) where k = kI .

Proof. Let E∗ denote the edges in T (I) that correspond to extension branches.
The value of the parameter decreases in each deletion branch, and it can only
be negative in a leaf. Thus a path P leading from the root to a leaf in T (I)
can include at most k + 1 edges which are not in E∗. Let Q = v0v1 . . . vq be a
subpath of P containing only edges in E∗.

First, we observe the fact that given a set L of vertices in a simple 3-connected
planar graph G and a set F of faces each having at least 2 vertices from L on
their border, we have |F| ≤ 6|L|−12. To see this, we define the planar graph G′

such that V (G′) = L and for each face F ∈ F there is an edge in G′ connecting
two vertices in V (F )∩L. As G is 3-connected, every edge in G′ has multiplicity
at most 2, so the planarity of G′ yields |E(G′)| ≤ 2(3|L| − 6). For each face in
F we defined an edge in G′, so |F| ≤ |E(G′)| ≤ 6|L| − 12.

For a node w representing a call with input (H, G, D, ϕ), we define M(w)
to be the set containing those vertices ϕ(t) on the border of ϕ(D) in G such
that dH(t) < dG(ϕ(t)). As |M(vi)| can only decrease after the deletion of some
vertices, we get M(vi−1) ⊆ M(vi) for every i ∈ [q]. Observe that in Step 5 of
the branch represented by the edge vi−1vi, a face is added to ϕ(D) that has at
least two vertices in M(vi) ⊆ M(vq). This follows because the conditions of (1)
in Lemma 2 cannot hold in this step, and so the set R ⊆ M(vi) in Step 5 has
cardinality least 2. By Step 4 of the algorithm, |M(vq)| ≤ 2k. As shown above,
there can be at most 12k − 12 faces in G that are adjacent to at least 2 vertices
in M(vq), so the number of extensions branches in Q, i.e. the length of Q is
at most 12k − 12. This enables us to bound the length of P , which is at most
k + 1 + (k + 1)(12k − 12) < 13k2. As every node in T (I) has at most 2k + 2
children, the number of nodes in T (I) is at most f(k) = (2k + 2)13k2

. ��

By careful implementation, it can be assured that the amount of work done when
extending ϕ on a face F is linear in |V (F )|, as we only spend constant time at
a given vertex. This implies that the consecutive iteration of Steps 3, 4, and 5
can be performed in a total of linear time in |V (G)|. As other steps also can
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3-Connected Planar Cleaning (H,G)

1. Perform the 3-connectivity test.
2. Let Hθ denote an embedded version of H , and let Gθ1 and Gθ2 be the two

possible embedded versions of G. For i = 1, 2 do:
3. Let xy ∈ E(H) be arbitrary. For all (a, b) where ab ∈ E(G) do:

4. Let ϕa,b denote the function mapping x to a and y to b.
Output(’Yes’) if GrowSolution(Hθ, Gθi , xy,ϕa,b) returns ’Yes’.

5. Output(’No’).

Fig. 3. The algorithm solving Cleaning(3-Connected-Planar, Planar)

be performed in time linear in |V (G)|, by Lemma 3 we can conclude that the
running time of GrowSolution on input (H, G, D, ϕ) is O(f(k)|V (G)|) for some
function f , where k = |V (G)| − |V (H)|.

As a result, there is an algorithm that solves Cleaning(3-Connected-Planar,
Planar) in FPT time. The steps of the decision version of this algorithm are
described in Fig. 3. Its correctness easily follows from the discussion above. As
it calls GrowSolution at most 4|E(G)| times, we can conclude:

Theorem 2. The Cleaning(3-Connected-Planar, Planar) problem on input
(H, G) can be solved in time O(f(k)n2), where n = |V (H)| and |V (G)| = n + k.

4 The Cleaning(Tree,−) Problem

The aim of this section is to present an FPT algorithm for Cleaning(Tree,−).
Note that since Cleaning(Tree,−) contains the Longest Induced Path prob-
lem, the standard parametrization where the parameter is |V (H)| yields a W[2]-
hard problem [4].

W.l.o.g. we can assume that G is simple, n = |V (T )| > k (otherwise we can
solve the problem by a brute force algorithm) and e = |E(G)| = O(kn) (as we
can automatically refuse instances where e > n − 1 + k(n + k − 1)). Let S be a
fixed solution, i.e. let G − S = TS be a tree isomorphic to T . Throughout the
run of the algorithm, we can assume that G is connected, since by n > k it is
trivial to find the unique connected component of G containing TS .

4.1 Preprocessing

First, we introduce two kinds of reductions, each deleting some vertices from G
which must be included in S.

Reduction A: cycles with one common vertex. If for some vertex x ∈ V (G)
there exist cycles C1, C2, . . . , Ck+1 such that V (Ci)∩V (Cj) = {x} if i �= j, then
x must be included in any solution. To see this, observe that if x is not in the
solution S, then S must contain at least one vertex from each cycle Ci, but this
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would imply |S| ≥ k + 1. For each x, we can find such cycles by solving a flow
problem in an appropriately defined directed graph. Since we need to find flows
with value at most k + 1, this can be done in time O(ke) for a single vertex x.
This means that Reduction A can be performed in time O(ken) = O(k2n2).

Reduction B: disjoint paths between two vertices. Let x, y ∈ V (G) be
vertices such that there exist at least k + 2 paths from x to y which are disjoint
apart from their endpoints. Then x or y must be included in any solution S of size
at most k, as assuming x, y /∈ S implies the existence of a cycle through x and y in
G−S. Using standard flow techniques we can check in time O(ke) whether (x, y)
is such a pair of vertices, so finding such a pair takes time O(ken2) = O(k2n3).
Given such a pair of vertices yields two possibilities for a reduction, so the
algorithm branches in two directions. Since |S| = k, we can apply Reduction B
at most k times, which means a total of at most 2k branches.

Now denote by K the minimal connected subgraph of G containing every
cycle of G. Note that K is unique, and is an induced subgraph of G. We can
construct K from G easily in linear time, as the 2-connected components of a
graph can be determined in linear time, e.g. by applying depth first search. Let
K3 denote the vertices of K whose degree in K is at least 3.

Lemma 4. If Reduction A and B cannot be applied, then dK(x) ≤ k2 + k for
every x ∈ V (K − S) and |K3| < g(k) = 2k3(k + 1) + 3k = O(k4).

Proof. Let us assume that x ∈ V (K − S) has neighbors v1, v2, . . . , vk2+k+1 in
K. Then the edges xvi (for i ∈ [k2 + k + 1]) can be extended to innerly disjoint
paths in K starting from x and ending in a vertex of S. As |S| ≤ k, there must
exist a vertex s ∈ S such that at least �(k2 + k + 1)/k� = k + 2 of these paths
end in s. These paths form at least k + 2 innerly disjoint paths between x and
s, yielding a possibility for Reduction B, a contradiction.

We claim that given a tree T ′ with maximum degree d and a set Z ⊆ V (T ′)
with cardinality at least pd+2, there always exists a set P of p+1 disjoint paths
connecting vertices of Z. This is easy to see if we regard T ′ as a rooted tree and
we always choose a new path to put in P such that its distance from the root
is the largest possible. For a vertex s ∈ S, let Ts denote the unique minimal
subtree of K −S containing Zs = NV (K−S)(s). Suppose |Zs| ≥ k(k2 + k)+ 2 for
some s. As every vertex in Ts has maximum degree k2 + k by the first claim of
the lemma, we get that there are k + 1 disjoint paths in Ts connecting vertices
of Zs. These paths together with s form k + 1 cycles whose only common vertex
is s, contradicting our assumption that Reduction A is not applicable.

Thus, we get |Zs| ≤ k(k2 + k) + 1 = k2(k + 1) + 1 for each s ∈ S. Let L
denote the leaves of K − S. Every vertex in L has a neighbor in S, so L ⊆
NV (K−S)(S) =

⋃
s∈S Zs, implying |L| ≤ |NV (K−S)(S)| ≤ k3(k + 1)+ k. Observe

that every vertex in K3 \ (S ∪NV (K−S)(S)) has degree at least 3 also in K − S.
Since the number of vertices in the tree K−S having degree at least 3 is less than
the number |L| of leaves, we get |K3| < |S| + |NV (K−S)(S)| + |L| ≤ |S| + 2|L|,
implying |K3| < 2k3(k + 1) + 3k. ��
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4.2 Growing a Mapping

From now on, we assume that Reductions A and B cannot be applied. Let φ
denote the isomorphism from T to TS that we are looking for. As in Sect. 3,
we try to grow a partial mapping from T to TS, which is always a restriction
of φ. To begin, the algorithm chooses an arbitrary starting vertex r0 in T , and
branches on the choice of φ(r0) in G, which means |V (G)| possibilities.

Assume now that the algorithm has a subtree D of T on which φ is already
known. The algorithm proceeds step by step, at each step choosing a leaf r of
D not yet examined. For the chosen vertex r, it determines φ on NT (r). This
means also that it adds NT (r) to D, deletes NG(φ(r)) ∩ S from G and checks
whether φ is still an isomorphism. When determining φ on NT (r), the algorithm
may branch into a bounded number of branches, or may proceed with a single
branch. Accordingly, we distinguish between branching and simple cases.

Let us describe the details of a single step of the algorithm. Let t1, . . . , tn1

denote the neighbors of r in T not in D, and let Ti be the tree component of
T − r containing ti. Similarly, let t′1, . . . , t

′
n2

be the neighbors of r′ = φ(r) not in
φ(D) that are connected to r′ by edges not in K. Let T ′

i denote the component
of G − r′ that includes t′i. Observe that either T ′

i is a tree, or r′ /∈ V (K) and T ′
i

contains K. Finally, let n3 be the number of vertices in NG(r′) not in φ(D) that
are connected to r′ by edges in K. Clearly, n1 ≤ n2 + n3, and the equality holds
if and only if NG(r′) ∩ S = ∅.

First, let us observe that if the tree Ti is isomorphic to T ′
j for some i and j,

then w.l.o.g. we can assume that φ(Ti) = T ′
j . As the trees of a forest can be

classified into equivalence classes with respect to isomorphism in time linear in
the size of the forest [1,13], this case can be noticed easily. Given two isomorphic
trees, an isomorphism between them can also be found in linear time, so the
algorithm can extend φ on Ti, adding also Ti to the subgraph D. Hence, we only
have to deal with the following case: no tree Ti (i ∈ [n1]) is isomorphic to one of
the graphs T ′

j (j ∈ [n2]). This argument makes our situation significantly easier,
since every graph T ′

j must contain some vertex from S. Therefore n2 ≤ |S| = k.
By Lemma 4, r′ can have degree at most k2 + k in K, so we get n3 ≤ k2 + k,
implying also n1 ≤ n2 + n3 ≤ k2 + 2k. If these bounds do not hold in some step,
then the algorithm outputs ’No’.

The algorithm faces one of the following two cases at each step.

Simple case: n2 + n3 ≤ 1. In this case n1 ≤ 1. If n2 + n3 = 0 then the
algorithm proceeds with the next step. Otherwise, let v be the unique vertex in
NG(r′)\V (φ(D)). If n1 = 0 then v must be in S, otherwise φ(t1) = v. According
to this, the algorithm deletes v or extends φ on t1, adding also t1 to D.

Branching case: n2 + n3 ≥ 2. In this case, the algorithm branches on ev-
ery possible choice of determining φ on NT (r). Guessing φ(v) for a vertex
v ∈ NV (T−D)(r) can result in at most n2 + n3 possibilities, so the number
of possible branches in a branching step is at most (n2 +n3)n1 ≤ (k2 +2k)k2+2k.
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We claim that in a single branch of a run of the algorithm on a solvable input,
there can be at most g(k)+ 2k− 2 branching steps. Observe that n3 ≥ 2 implies
that r′ is either the first vertex in φ(D) that is in K or r′ ∈ K3, so n3 ≥ 2 can
happen at most |K3| + 1 ≤ g(k) times, by Lemma 4. If n2 ≥ 2, then G − φ(D)
has more connected components containing vertices of S than G−φ(D− r) has.
It is easy to see that this can be true for only at most |S| − 1 such vertex r, so
this case can happen at most k − 1 times. Finally, let S∗ denote those vertices
of S that are not contained in K. Clearly, if s ∈ S∗, then |NV (TS)(s)| ≤ 1. Now,
if n2 = n3 = 1, then r′ ∈ V (K) and the edge r′t′1 must be one of the edges that
connect to K a tree in G − K containing a vertex in S∗. Observe that there
can be at most |S∗| ≤ k − 1 such edges, thus the claim follows. Therefore, the
algorithm only executes at most g(k) + 2k − 2 branching steps.

At each vertex the algorithm uses time at most linear in |V (G)|. The num-
ber of steps performed is at most |V (T )|. As both the number of branching
cases and the number of branches in a branching case is bounded by a function
of k, the algorithm needs quadratic time after choosing φ(r0) for the starting
vertex r0. Trying all possibilities on φ(r0) enhances this to a cubic time. Reduc-
tions A and B can also be executed in cubic time, as argued before, so we can
conclude:

Theorem 3. The Cleaning(Tree,−) problem on input (T, G) can be solved in
time O(f(k)n3), where n = |V (T )| and |V (G)| = n + k.
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Abstract. Traffic grooming is a major issue in optical networks. It refers
to grouping low rate signals into higher speed streams, in order to re-
duce the equipment cost. In SONET WDM networks, this cost is mostly
given by the number of electronic terminations, namely Add-Drop Mul-
tiplexers (ADMs for short). We consider the unidirectional ring topology
with a generic grooming factor C, and in this case, in graph-theoretical
terms, the traffic grooming problem consists in partitioning the edges of
a request graph into subgraphs with at most C edges, while minimizing
the total number of vertices of the decomposition.

We consider the case when the request graph has bounded degree ∆,
and our aim is to design a network (namely, place the ADMs at each
node) being able to support any request graph with maximum degree at
most ∆. The existing theoretical models in the literature are much more
rigid, and do not allow such adaptability. We formalize the problem, and
we solve the cases ∆ = 2 (for all values of C) and ∆ = 3 (except the case
C = 4). We also provide lower and upper bounds for the general case.

Keywords: optical networks, SONET over WDM, traffic grooming,
ADM, graph decomposition, cubic graph, bridgeless graph.

1 Introduction

Traffic grooming is the generic term for packing low rate signals into higher speed
streams (see the surveys [3,9,16,18,22]). By using traffic grooming, it is possible
to bypass the electronics at the nodes which are not sources or destinations
of traffic, and therefore reducing the cost of the network. Typically, in a WDM
(Wavelength Division Multiplexing) network, instead of having one SONET Add
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Drop Multiplexer (ADM) on every wavelength at every node, it may be possible
to have ADMs only for the wavelengths used at that node (the other wavelengths
being optically routed without electronic switching).

The so called traffic grooming problem consists in minimizing the total number
of ADMs to be used, in order to reduce the overall cost of the network. The
problem is easily seen to be NP-complete for an arbitrary set of requests. See
[1, 11, 12] for hardness and approximation results of traffic grooming in rings,
trees and star networks.

Here we consider unidirectional SONET/WDM ring networks. In that case
the routing is unique and we have to assign to each request between two nodes a
wavelength and some bandwidth on this wavelength. If the traffic is uniform and
if a given wavelength can carry at most C requests, we can assign to each request
at most 1

C of the bandwidth. C is known as the grooming ratio or grooming factor.
Furthermore if the traffic requirement is symmetric, it can be easily shown (by
exchanging wavelengths) that there always exists an optimal solution in which
the same wavelength is given to a pair of symmetric requests. Then without loss
of generality we will assign to each pair of symmetric requests, called a circle,
the same wavelength. Then each circle uses 1

C of the bandwidth in the whole
ring. If the two end-nodes are i and j, we need one ADM at node i and one at
node j. The main point is that if two requests have a common end-node, they
can share an ADM if they are assigned the same wavelength.

The traffic grooming problem for a unidirectional SONET ring with n nodes
and a grooming ratio C has been modeled as a graph partition problem in
both [2] and [15] when the request graph is given by a symmetric graph R. To a
wavelength λ is associated a subgraph Bλ ⊂ R in which each edge corresponds
to a pair of symmetric requests (that is, a circle) and each node to an ADM. The
grooming constraint, i.e. the fact that a wavelength can carry at most C requests,
corresponds to the fact that the number of edges |E(Bλ)| of each subgraph Bλ

is at most C. The cost corresponds to the total number of vertices used in the
subgraphs involved in the partition, and the objective is therefore to minimize
this number.

This problem has been well studied when the network is a unidirectional
ring [3,4,7,8, 9, 13, 15, 14, 16,20,21]. With the all-to-all set of requests, optimal
constructions for a given grooming ratio C were obtained using tools of graph
and design theory, in particular for grooming ratio C = 3, 4, 5, 6 and C ≥ N(N −
1)/6 [3].

Most of the research efforts in this grooming problem have been devoted
to finding the minimum number of ADMs required either for a given set of
connection requests (typically a uniform all-to-all communication pattern) or
for a general traffic pattern. In all this articles the traffic pattern has been
considered as an input for the problem of placing the ADMs. In this paper we
consider the traffic grooming problem from a different point of view: assuming
a given network topology, it would be desirable to place the minimum number
of ADMs as possible at each node in such a way that they could be configured



302 X. Muñoz and I. Sau

to handle different traffic patterns or graphs of requests. One cannot expect to
change the equipment of the network each time the traffic requirements change.

Without any restriction on the graph of requests, the number of required
ADMs is given by the worst case, i.e. when the Graph of Requests is the complete
graph. However, in many cases some restrictions on the graph of requests might
be assumed. From a practical point of view, it is interesting to design a network
being able to support any request graph with maximum degree not exceeding
a given constant. This situation is usual in real optical networks, since due to
technology constraints the number of allowed communications for each node
is usually bounded. This flexibility can also be thought from another point of
view: if we have a limited number of available ADMs to place at the nodes of the
network, then it is interesting to know which is the maximum degree of a request
graph that our network is able to support, depending on the grooming factor.
Equivalently, given a maximum degree and a number of available ADMs, it is
useful to know which values of the grooming factor the network will support.

The aim of this article is to provide a theoretical framework to design such
networks with dynamically changing traffic. We study the case when the physical
network is given by an unidirectional ring, which is a widely used topology (for
instance, SONET rings). In [6] the authors consider this problem from a more
practical point of view: they call t-allowable a traffic matrix where the number
of circuits terminated at each node is at most t, and the objective is also to
minimize the number of electronic terminations. They give lower bounds on the
number of ADMs and provide some heuristics.

In addition, we also suppose that each pair of communicating nodes establishes
a two-way communication. That is, each pair (i, j) of communicating nodes in
the ring represents two requests: from i to j, and from j to i. Thus, such a pair
uses all the edges of the ring, therefore inducing one unity of load. Hence, we
can use the notation introduced in [4] and consider each request as an edge, and
then again the grooming constraint, i.e. the fact that a wavelength can carry at
most C requests, corresponds to the fact that the number of edges |E(Bλ)| of
each subgraph Bλ is at most C. The cost corresponds to the total number of
vertices used in the subgraphs involved in the partition.

Namely, we consider the problem of placing the minimum number of ADMs in
the nodes of the ring in such a way that the network could support any request
graph with maximum degree bounded by a constant ∆. Note that using this
approach, as far as the degree of each node does not exceed ∆, the network can
support a wide range of traffic demands without the installation of additional
electronic switches at the nodes. The problem can be formally stated as follows:
Traffic Grooming in Unidirectional Rings with Bounded-Degree

Request Graph

Input: Three integers n, C, and ∆.
Output: An assignment of A(v) ADMs to each node v ∈ V (Cn), in such a

way that for any undirected request graph R with maximum degree at
most ∆, it exists a partition of E(R) into subgraphs Bλ, 1 ≤ λ ≤ Λ,
such that:
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(i) |E(Bλ)| ≤ C for all λ; and
(ii) each vertex v ∈ V (Cn) appears in at most A(v) subgraphs.

Objective: Minimize
∑

v∈V (Cn) A(v), and the optimum is denoted A(n, C, ∆).

When the request graph is restricted to belong to a subclass of graphs C of the
class of graphs with maximum degree at most ∆, then the optimum is denoted
A(n, C, ∆, C). Obviously, for any subclass of graph C, A(n, C, ∆, C) ≤ A(n, C, ∆).

In this article we solve the cases corresponding to ∆ = 2 and ∆ = 3 (giving
a conjecture for the case C = 4), and give lower bounds for the general case.
The remainder of the article is structured as follows: in Section 2 we give some
properties of the function A(n, C, ∆), to be used in the following sections. In
Section 3 we focus on the case ∆ = 2, giving a closed formula for all values of C.
In Section 4 we study the case ∆ = 3, solving all cases except the case C = 4,
for which we conjecture the solution. Finally, Section 5 is devoted to conclusions
and open problems.

2 Properties of A(n, C, ∆)
In this section we describe some properties of the function A(n, C, ∆).
Lemma 1. The following statements hold:

(i) A(n, C, 1) = n.
(ii) A(n, 1, ∆) = ∆n.
(iii) If C′ ≥ C, then A(n, C′, ∆) ≤ A(n, C, ∆).
(iv) If ∆′ ≥ ∆, then A(n, C, ∆′) ≥ A(n, C, ∆).
(v) A(n, C, ∆) ≥ n for all ∆ ≥ 1.
(vi) If C ≥ n∆

2 , A(n, C, ∆) = n.

Proof. (i) The request graph can consist in a perfect matching, so any solution
uses 1 ADM per node.

(ii) A ∆-regular graph can be partitioned into n∆
2 disjoint edges.

(iii) Any solution for C is also a solution for C′.
(iv) If ∆′ ≥ ∆, the subgraphs with maximum degree at most ∆ are a subclass

of the class of graphs with maximum degree at most ∆′.
(v) Combine (i) and (iv).
(vi) In this case all the edges of the request graph fit into one subgraph.

Since we are interested in the number of ADMs required at each node, let us
consider the following definition:

Definition 1. Let M(C, ∆) be the least positive number M such that, for any
n ≥ 1, the inequality A(n, C, ∆) ≤ Mn holds.

Lemma 2. M(C, ∆) is a natural number.

Proof. First of all, we know by Lemma 1 that, for any C ≥ 1, A(n, C, ∆) ≤
A(n, 1, ∆) = ∆n. Thus A(n, C, ∆) is upper-bounded by ∆n. On the other hand,
since any vertex may appear in the request graph, A(n, C, ∆) is lower-bounded
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by n. Suppose now that M is not a natural number. That is, suppose that
r < M < r + 1 for some positive integer r. Therefore, there must be at least
(r+1−M)n vertices with at most r ADMs each. For each n, let Vn,r be the subset
of vertices of the request graph with at most r ADMs. Then, since r+1−M > 0,
we have that limn→∞ |Vn,r| = ∞. In other words, there is an arbitrarily big
subset of vertices with at most r ADMs per vertex. But we can consider a
request graph with maximum degree at most ∆ on the set of vertices Vn,r, and
this means that r ADMs per node is enough, a contradiction with the optimality
of M .

If the request graph is restricted to belong to a subclass of graphs C of the class of
graphs with maximum degree at most ∆, then the corresponding positive integer
is denoted M(C, ∆, C). Again, for any subclass C, M(C, ∆, C) ≤ M(C, ∆).
We provide now a lower bound on M(C, ∆).

Proposition 1 (General Lower Bound). M(C, ∆) ≥
⌈

C+1
C

∆
2

⌉
.

Proof. Erdös and Sachs [10] proved that for any integer k there exist k-regular
graphs with arbitrary large girth. For each value of C and ∆, let G be a ∆-
regular graph with girth at least C + 1, and let n = |V (G)|. Clearly all the
subgraphs (with at most C edges) involved of the partition of the ∆n/2 edges
of G are trees. Therefore, the total number of vertices of any partition is at
least ∆(C+1)

2C n (this can be easily seen using that the function (x + 1)/x with
1 ≤ x ≤ C is minimized when x = C). Then necessarily a vertex must occur in
at least ∆(C+1)

2C subgraphs, yielding the desired bound.

Let a ∆-graph be a graph with maximum degree at most ∆. By Lemma 2,
A(n, C, ∆) is of the form A(n, C, ∆) = M(C, ∆)n−α(C, ∆), where M(C, ∆) and
α(C, ∆) are natural numbers depending only on C and ∆. Since the network must
be designed in order to support any ∆-graph, if there exists a ∆-graph H that
requires strictly more than M(C, ∆) ADMs at some vertex of the network, then
by considering the same graph H on different subsets of vertices of the network,
we could force at least M(C, ∆)+ 1 ADMs in Ω(n) nodes of the network, which
would be in contradiction with the definition of M(C, ∆). That is, each vertex
can appear in at most M(C, ∆) subgraphs.

In other words, for each value of C and ∆, the problem reduces to finding the
least positive integer M such that the edges of any ∆-graph can be partitioned
into subgraphs with at most C edges, in such a way that each vertex appears in
at most M subgraphs.
Due to the above discussion, in the sequel we focus on determining the parameter
M(C, ∆) for each value of C and ∆. Observe also that any ∆-graph H is a
subgraph of some ∆-regular graph G (with possible more vertices). Note also
that if we restrict a partition of G to the vertices of H , the number of occurrences
of the vertices cannot increase. Said otherwise, to determine the value of M(C, ∆)
it is enough to consider ∆-regular graphs.

Lemma 3. The following statements hold trivially:
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(i) M(C, 1) = 1 for all C ≥ 1.
(ii) M(1, ∆) = ∆ for all ∆ ≥ 1.
(iii) If C′ ≥ C, then M(C′, ∆) ≤ M(C, ∆).
(iv) If ∆′ ≥ ∆, then M(C, ∆′) ≥ M(C, ∆).
(v) M(C, ∆) ≤ ∆ for all C, ∆ ≥ 1.

3 Case ∆ = 2

In this case we provide not only the value of M(C, 2), but also the exact expres-
sion of the cost function A(n, C, 2).

Proposition 2. A(n, C, 2) = 2n − (C − 1).

Proof. Consider the case when the request graph is 2-regular and has girth
greater than C (such a graph exists by [10]). Then, a feasible solution is ob-
tained by placing 2 ADMs at each vertex. We count in how many vertices we
can assure that we can place only one ADM.
Let us see first that we cannot use 1 ADM in more than C − 1 vertices. Suppose
this, i.e. that we have 1 ADM in C vertices and 2 in all the others. Then, consider
a set of requests given by a cycle H of length C +1 containing all the C vertices
with 1 ADM inside it, and other cycles containing the remaining vertices. In this
situation, we are forced to use 2 subgraphs for the vertices of H , and at least 2
vertices of H must appear in both subgraphs. Hence we will need more than 1
ADM in some vertex that had initially only 1 ADM.

Now, let us see that we can always save C − 1 ADMs. Let {a0, a1, . . . , aC−2}
be the set of vertices with only 1 ADM, that we can choose arbitrarily. We will
see that we can decompose the set of requests in such a way that the vertices
ai always appear with degree 2 in some subgraph, covering in this way both
requests of each vertex with only 1 ADM. Indeed, suppose first that two of these
vertices (namely, ai and aj) do not appear consecutively in one of the disjoint
cycles of the set of requests. Let bi be the nearest vertex to ai in the cycle
in the direction of aj , and conversely for bj (bi may be equal to bj if ai and
aj are separated by exactly one vertex). Then, consider two paths (eventually,
cycles) of the form {bi, ai, . . .} and {bj, aj , . . .}, to assure that both ai and aj

lie in the middle of the subgraph. We do the same construction for each pair of
non-consecutive vertices.

Now, consider all the vertices {a0, . . . , ai, . . . , at−1} which are adjacent in the
same cycle of the request graph, with t ≤ C − 1. Let b0 be the nearest vertex
to a0 different from a1, and let bt−1 be the nearest vertex to at−1 different
from at−2. Then, consider a subgraph with the path (or cycle, if b0 = bt−1)
{b0a0a1 . . . at−1bt−1}.

4 Case ∆ = 3

We study the cases C = 3 and C ≥ 5 in Sections 4.1 and 4.2, respectively. We
discuss the open case C = 4 in Section 5.
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4.1 Case C = 3

We study first the case when the request graph is a bridgeless cubic graph, and
then the case of a general request graph.

Bridgeless Cubic Request Graph. We will need some preliminary graph
theoretical concepts. Let G = (V, E) be a graph. For A, B ⊆ V , an A-B path in
G is a path from x to y, with x ∈ A and y ∈ B.

If A, B ⊆ V and X ⊆ V ∪ E are such that every A-B path in G contains
a vertex or an edge from X , we say that X separates the sets A and B in G.
More generally we say that X separates G if G−X is disconnected, that is, if X
separates in G some two vertices that are not in X . A separating set of vertices
is a separator.

A vertex which separates two other vertices of the same component is a cut-
vertex, and an edge separating its ends is a bridge. Thus, the bridges in a graph
are precisely those edges that do not lie on any cycle. A set M of independent
edges in a graph G = (V, E) is called a matching. A matching that covers all
the vertices in V is called perfect. A k-regular spanning subgraph is called a
k-factor. Thus, a subgraph H ⊆ G is a 1-factor of G if and only if E(H) is a
perfect matching of V . Such a matching is also called perfect matching.

We recall a well known result from matching theory proved by Petersen in
1891 [17]:

Theorem 1 ( [17]). Every bridgeless cubic graph has a 1-factor.

If we remove a 1-factor from a cubic graph, what it remains is a disjoint set of
cycles.

Corollary 1. Every bridgeless cubic graph has a decomposition into a 1-factor
and disjoint cycles.

An example of a decomposition of a bridgeless cubic graph into disjoints cycles
and a 1-factor is depicted in Fig. 1a.

Proposition 3. Let C be the class of cubic graphs with a perfect matching. Then,

M(3, 3, C) = 2.

Proof. Let us proof that we can always partition the request graph into paths
with 3 edges in such a way that each vertex appears in 2 paths. To do so, we take
the decomposition given by Proposition 1, together with a clockwise orientation
of the edges of each cycle. With this orientation, each edge of the 1-factor has
two incoming and two outgoing edges of the cycles. For each edge of the 1-factor
we take its two incoming edges, and form in this way a path of length 3. It is
easy to verify that this is indeed a decomposition into paths of length three. For
instance, if we do this construction in the graph of Fig. 1a, and we label the
edges of the 1-factor as {A,B,. . . ,G} and the ones of the cycles as {1,2,. . . ,14}
(see Fig. 1b), we obtain the following decomposition:

{1, A, 6}, {5, B, 2}, {3, C, 8}, {7, D, 9}, {14, E, 11}, {10, F, 12}, {4, G, 13}
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a) b)

u vw

c)

Fig. 1. a) Decomposition of a bridgeless cubic graph into disjoints cycles and a 1-
factor. b) Decomposition of a bridgeless cubic graph into paths of length 3. c) Cubic
bridgeless graph used in the proof of Proposition 3.

Now let us see that we cannot do better, i.e. with 2n−1 ADMs. If such a solution
exists, there would be at least one vertex with only 1 ADM, and the average of
the number of ADMs of all the other vertices must not exceed 2. In order to see
that this is not always possible, consider the cubic bridgeless graph on 10 vertices
of Fig. 1c. Let w be the vertex with only 1 ADM. This graph has no triangles
except those containing w. Since we can use only 1 ADM in w, we must take all
its requests in one subgraph. It is not possible to cover the 4 remaining requests
of the nodes u and v in one subgraph, and thus without loss of generality we will
need 3 ADMs in u. With these constraints, one can check that the best solution
uses 20 ADMs, that is 2n > 2n − 1.

General Request Graph. It turns out that when the request graph is not
restricted to be bridgeless we have that M(3, 3) = 3.

Proposition 4. M(3, 3) = 3.

Proof. By (ii) and (iii) of Lemma 3 we know that M(3, 3) ≤ 3. We shall exhibit
a counterexample showing that M(3, 3) > 2, proving the result. Consider the
cubic graph G depicted in Fig. 2a. We will prove that it is not possible to
partition the edges of G into subgraphs with at most 3 edges in such a way that
each vertex appears in at most 2 subgraphs.

Indeed, suppose the opposite, i.e. that we can partition the edges of G into
subgraphs B1, . . . , Bk with |E(Bi)| ≤ 3 in such a way that each vertex appears
in at most 2 subgraphs, and let us reach a contradiction.

Following the notation illustrated in Fig. 2a, let A1, A2, A3 be the connected
components of G \ {e1, e2, e3}. Let also, with abuse of notation, ai = Ai ∩ ei,
i = 1, 2, 3, and a0 = e1 ∩ e2 ∩ e3.

Claim. There exist an index i∗ ∈ {1, 2, 3} and a subgraph Bk∗ containing a0,
such that Bk∗ ∩ Ai∗ = {ai∗}.

Proof. Among all the subgraphs B1, . . . , Bk involved in the decomposition of
G, consider the 
 subgraphs Bj1 , . . . , Bj�

covering the edges {e1, e2, e3}. If 
 =
1, then the subgraph Bj1 is a star with three edges and center a0, and then
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Fig. 2. a) Cubic graph G that can not be edge-partitioned into subgraphs with at
most 3 edges in such a way that each vertex appears in at most 2 subgraphs. b)
Graph that cannot be partitioned into 2 connected subgraphs with at most 3 edges. c)
Counterexample of Proposition 4 showing that M(3, 3) = 3.

Bj1 ∩ Ai = {ai} for each i = 1, 2, 3. If 
 ≥ 3, then the vertex a0 appears in
3 subgraphs, a contradiction. Hence it remains to handle the case 
 = 2. If
the claim was not true, it would imply that for each i = 1, 2, 3 it would exist
jf(i) ∈ {j1, j2} such that Bf(i) ∩Ai contains at least one edge. In particular, this
would imply that the graph depicted in Fig. 2b could be partitioned into two
connected subgraphs with at most three edges, which is clearly not possible.

Suppose without loss of generality that the index i∗ given by Claim 4.1 is equal
to 1. Thus, a1 appears in a subgraph Bk∗ that does not contain any edge of A1.
Therefore, the edges of A1 must be partitioned into connected subgraphs with at
most 3 edges, in such a way that a1 appears in only 1 subgraph, and all its other
vertices in at most 2 subgraphs, each. Let us now see that this is not possible,
obtaining the contradiction we are looking for.

Indeed, since a1 has degree 2 in A1 and it can appear in only one subgraph, it
must have degree two in the subgraph in which it appears, i.e. in the middle of a
P3 or a P4, because A1 is triangle-free. It is easy to see that this is equivalent to
partitioning the edges of the graph H depicted in Fig. 2c into subgraphs with
at most 3 edges, in such a way that the thick edge e appears in a subgraph with
at most 2 edges, and each vertex appears in at most 2 subgraphs. Observe that
H is cubic and triangle-free. Let n1 be the total number of vertices of degree 1 in
all the subgraphs of the decomposition of H . Since each vertex of H can appear
in at most 2 subgraphs and H is cubic, each vertex can appear with degree 1 in
at most 1 subgraph. Thus, n1 ≤ |V (H)| = 6.

Since we have to use at least 1 subgraph with at most 2 edges and |E(H)| = 9,
there are at least 1 +

⌈9−2
3

⌉
= 4 subgraphs in the decomposition of H . But each

subgraph involved in the decomposition of H has at least 2 vertices of degree 1,
because H is triangle-free. Therefore, n1 ≥ 8, a contradiction.

4.2 Case C ≥ 5

For C ≥ 5 we can easily prove that M(C, 3) = 2, making use of a conjecture
made by Bermond et al. in 1984 [5] and proved by Thomassen in 1999 [19]:



Traffic Grooming in Unidirectional WDM Rings 309

Theorem 2 ( [19]). The edges of a cubic graph can be 2-colored such that each
monochromatic component is a path of length at most 5.

A linear k-forest is a forest consisting of paths of length at most k. The linear
k-arboricity of a graph G is the minimum number of linear k-forests required to
partition E(G), and is denoted by lak(G) [5]. Theorem 2 is equivalent to saying
that, if G is cubic, then la5(G) = 2.

Let us now see that Theorem 2 implies that M(C, 3) = 2 for all C ≥ 5. Indeed,
all the paths of the linear forests have at most 5 edges, and each vertex will
appear in exactly 2 linear 5-forests, so the decomposition given by Theorem [19]
is a partition of the edges of a cubic graph into subgraphs with at most 5 edges,
in such a way that each vertex appears in at most 2 subgraphs. In fact the result
of [19] is stronger, in the sense that G can be any graph of maximum degree at
most 3. Thus, we deduce that

Corollary 2. For any C ≥ 5, M(C, 3) = 2.

Thomassen also proved [19] that 5 cannot be replaced by 4 in Theorem 2. This
fact do not imply that M(4, 3) = 3, because of the following reasons: (i) the
subgraphs of the decomposition of the request graph are not restricted to be
paths, and (ii) it is not necessary to be able to find a 2-coloring of the subgraphs of
the decomposition (a coloring in this context means that each subgraph receives
a color, and 2 subgraphs with the same color must have empty intersection).

5 Conclusions

We considered the traffic grooming problem in unidirectional WDM rings when
the request graph belongs to the class of graph with maximum degree ∆. This
formulation allows the network to support dynamic traffic without reconfiguring
the electronic equipment at the nodes. We formally defined the problem, and we
focused mainly on the cases ∆ = 2 and ∆ = 3, solving completely the former
and solving all the cases of the latter, except the case when the grooming value
C equals 4. We proved in Section 4.1 that M(3, 3) = 3, and in Section 4.2 that
M(C, 3) = 2 for all C ≥ 5. Proposition 3 states that M(4, 3, C) = 2, C being the

Table 1. Values of M(C, ∆). The case C = 4, ∆ = 3 is a conjectured value.

C|∆ 1 2 3 4 5 6 . . . ∆

1 1 2 3 4 5 6 . . . ∆

2 1 2 3 ≥ 3 ≥ 4 ≥ 5 . . . ≥
˚

3∆
4

ˇ

3 1 2 3 ≥ 3 ≥ 4 ≥ 4 . . . ≥
˚

2∆
3

ˇ

4 1 2 2? ≥ 3 ≥ 4 ≥ 4 . . . ≥
˚

5∆
8

ˇ

5 1 2 2 ≥ 3 ≥ 3 ≥ 4 . . . ≥
˚

3∆
5

ˇ

. . . . . . . . . . . . . . . . . . . . . . . . . . .

C 1 2 2 ≥ 3 ≥
˚

C+1
C

5
2

ˇ
≥ 4 . . . ≥

˚
C+1

C
∆
2

ˇ
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class of cubic graph with a perfect matching. Because of the integrality of M(C, ∆)
and Lemma 3, M(4, 3) equals either 2 or 3. We conjecture that M(4, 3) = 2.

We also deduced lower and upper bounds in the general case (any value of C
and ∆). Table 1 summarizes the values of M(C, ∆) that we obtained.

This problem can find wide applications in the design of optical networks us-
ing WDM technology. It would be interesting to continue the study for larger
values of ∆, which will certainly rely on graph decomposition results. Another
generalization could be to restrict the request graph to belong to other classes
of graphs for which there exist powerful decomposition tools, like graphs with
bounded tree-width, or families of graphs excluding a fixed graph as a minor.

Acknowledgement. The authors want to thank the anonymous referees for
very helpful remarks that have substantially improved the paper.
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4. Bermond, J.-C., Coudert, D., Muñoz, X.: Traffic grooming in unidirectional WDM
ring networks: the all-to-all unitary case. In: The 7th IFIP Working Conference
on Optical Network Design & Modelling – ONDM 2003, pp. 1135–1153 (February
2003)

5. Bermond, J.-C., Fouquet, J.-L., Habib, M., Péroche, B.: On linear k-arboricity.
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Abstract. In the cops and robber game, two players play alternately by
moving their tokens along the edges of a graph. The first one plays with
the cops and the second one with one robber. The cops aim at capturing
the robber, while the robber tries to infinitely evade the cops. The main
problem consists in minimizing the number of cops used to capture the
robber in a graph. This minimum number is called the cop-number of
the graph. If the cops and the robber have the same velocity, 3+ 3

2
g cops

are sufficient to capture one robber in any graph with genus g (Schröder,
2001). In the particular case of a grid, 2 cops are sufficient.

We investigate the game in which the robber is slightly faster than
the cops. In this setting, we prove that the cop-number of planar graphs
becomes unbounded. More precisely, we prove that Ω(

√
log n) cops are

necessary to capture a fast robber in the n × n square-grid. This proof
consists in designing an elegant evasion-strategy for the robber. Then,
it is interesting to ask whether a high value of the cop-number of a
planar graph H is related to a large grid G somehow contained in H . We
prove that it is not the case when the notion of containment is related
to the classical transformations of edge removal, vertex removal, and
edge contraction. For instance, we prove that there are graphs with cop-
number at most 2 and that are subdivisions of arbitrary large grids. On
the positive side, we prove that, if a planar graph H planar a large grid as
an induced subgraph, then H has large cop-number. Note that, generally,
the cop-number of a graph H is not closed by taking induced subgraphs
G, even if H is planar and G is an distance-hereditary induced-subgraph.

Keywords: Cops and robber, planar graph, minor, subdivision, grid.

1 Introduction

Introduced by Nowakowsky and Winkler [NW83], and by Quilliot [Qui83], cops
and robber game is a two player game in a graph G (see [Als04] for a survey).
The first player, C, plays with the cops that are aiming at capturing the robber,
played by the second player R. First, C chooses a subset of vertices of G and
places his cops on these vertices. Then, R places his robber on some vertex of G.
Then, C and R play alternately. At each step, C chooses a subset of his cops and
move each of them along some path of length at most vcop ≥ 1 edges. Then, R
moves his robber along some path of length at most vrobber ≥ 1 edges. Note that
� Authors acknowledge the support of CONICYT via Anillo en Redes ACT08.

H. Broersma et al. (Eds.): WG 2008, LNCS 5344, pp. 312–323, 2008.
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both players have perfect knowledge of the position(s) of their adversary. The
robber is caught as soon as it occupies the same vertex as a cop. The purpose
of C is to capture the robber, while R tries to infinitely avoid being caught. In
the following, we refer to vcop and vrobber as the cops’ speed and the robber’s
speed, respectively. For any graph G, the (p, q)-cop-number, denoted cp,q(G), is
the smallest number of cops with speed p sufficient to capture any robber with
speed q in G.

The case p = q = 1 has received particular attention in the literature, and
c1,1(G) is generally called the cop-number of the graph G. The main result
in [NW83, Qui83] is a characterization of the graphs with cop-number one, called
cop-win graphs. In particular, trees, chordal graphs and, more generally, graphs
with chordality at most 4 are cop-win [Far87, AF88, Che97]. This characteriza-
tion also allowed Hahn and MacGillivray [HM06] to design an algorithm decid-
ing in time O(nk) if the cop-number of a n-node graph is at most k ≥ 1 (see
also [BI93]). Goldstein and Reingold [GR95] prove that the problem of comput-
ing the cop-number of a directed graph (in this setting, the cops and the robber
are constrained to follow the orientation of the arcs) is EXPTIME-complete.
This problem is EXPTIME-complete as well in undirected graphs when cops
and robber are given their initial positions [GR95].

From a combinatorial point of view, the cop-number of bounded genus graphs
has been widely studied. In [AF84], Aigner and Fromme proved that the cop-
number of any planar graph is at most three. In particular, the cop-number of
any grid is two. The result of Aigner and Fromme is based on the simple following
Proposition 1.

Proposition 1. [AF84] In any graph G and for any shortest path P of G, after
a finite number of steps, a single cop can prevent the robber with speed one from
entering P .

Then, Aigner and Fromme [AF84] prove that it is possible to recursively divide
any planar graph using three shortest paths chosen in such a way that the
area accessible to the robber only decreases. Using the same kind of techniques,
Quilliot [Qui85] proves that the cop-number of any graph with genus g ≥ 0 is at
most 3 + 2g. Schröder [Sch01] improves this bound to 3 + 3

2g. Proposition 1 is
also essential in the proof of the fact that the cop-number of any H-minor-free
graph is upper-bounded by the number of edges of H [And86].

It is noticeable that very few lower bounds on the cop-number of graphs have
been proved. Aigner and Fromme [AF84] prove that the cop-number of any graph
with girth at least 5 is lower-bounded by its minimum degree. Frankl [Fra87]
improves this bound to dt for any graph with girth at least 8t− 3 and minimum
degree d+1. Note also that, for any k ≥ 3 and n ≥ 1, it exists a k-regular graph
with cop-number at least n [And84].

We investigate the cops and robber game in planar graphs when the robber
is slightly faster than the cops, i.e., vrobber > vcop. It is easy to be convinced
that Proposition 1 becomes false as soon as the robber is faster than the cops.
In particular, we prove that allowing the robber to be faster than the cops may
drastically increase the number of cops necessary to capture it in a square-grid.
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We then generalize this result to a larger class of planar graphs. More precisely,
we propose a certificate that is sufficient to decide that “many” cops are necessary
to capture a fast robber. We leave as an open question, if our certificate is also
a necessary condition.

For ease of description, in this paper, we consider that the robber’s speed is
two while the cops’ speed is one, and we refer to c1,2(G) as the cop-number of the
graph G. However our results can easily be generalized for any vrobber/vcop > 1.

1.1 Our Results

Our main result consists in proving that the cop-number of square-grids is not
bounded. We prove that the cop-number of a n × n square-grid is at least
Ω(

√
log n). The proof is constructive since we give a simple and explicit evasion-

strategy for the robber. More precisely, we prove that, for any k ≥ 1, there are
two constants a > 0 and b > 2, such that, one robber with speed 2 can infinitely
evade k cops with speed one in any n × n square-grid with n ≥ 4 akbk(k+1)/2 =
f(k).

A natural question is then to ask whether this lower bound still holds for
planar graphs somehow containing a large grid. In other words, is a high value of
the cop-number of a planar graph H related to a large grid G somehow contained
in H? On the negative side, the classical transformations of edge removal, vertex
removal, and edge contraction do not preserve “small” cop-number. For instance,
for any k ≥ 1, we design a subdivision H of a n × n square-grid with n ≥ f(k),
such that the cop-number of H is at most 2. The converse also holds: we prove
that the cop-number of a planar graph may drastically decrease by contracting
edges incident to degree-2 vertices. This confirms the intuition according to which
the cop-number of a graph is more related to the distances rather than to the
connectivity of the graph.

On the other hand, we prove that if a planar graph H contains a large grid as
an induced subgraph, then H has large cop-number. More precisely, any planar
graph H that contains a n × n square-grid G with n ≥ 2f(k) as an induced
subgraph has cop-number at least k. Note that this latter result is not trivial
because the cop-number of a graph is generally not closed by taking induced
subgraphs, even if H is planar and G is a distance-hereditary induced-subgraph.
Indeed, consider the cycle C4, and let H be the graph obtained from C4 by
adding a universal vertex. The cop-number of H equals one, whereas it equals
two in C4.

2 A Fast Robber in Large Grid

This section is devoted to prove the following theorem.

Theorem 1. For any grid G of size n, c1,2(G) = Ω(
√

log(n)).

To prove Theorem 1, we propose an evasion strategy for the robber. This strategy
is formally described in section 2.2. The proof of its correctness mainly follows
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Lemma 3. Lemmata 1 and 2 are technical results that allow us to prove Lemma 3.
Due to lack of space, most of the proofs are omitted and can be found in [NS08].

2.1 Definitions

We consider a robber that is slightly faster than the cops running in a square
grid. A square grid G on n × n vertices is the graph where the vertices can be
naturally assigned to the points of positive integer coordinates in the square
n × n of the plane, with edges joining each vertex to its closest neighbors (with
respect to the Euclidean metric). We say that the size of G is n. In order to prove
that the number of cops needed to capture the robber is unbounded, for each
number k of cops, we will construct a grid G(k) of size f(k), and a corresponding
strategy, by which the robber can infinitely evade the cops.

Given the number of cops k and the corresponding grid G = G(k), a key to
our analysis lies in fixing a recursive partition of the grid into gradually smaller
subgrids of levels k down to 0. Each level i corresponds to the game played on a
subgrid of size sizei, with only i cops taken into consideration. At each step s,
the subgrid of level i, or i-subgrid, currently occupied by the robber is denoted
by Ri

s. Let us fix an ordering of the cops: cop1, . . . , copk. The sizes of subgrids
are chosen such that there is a strategy allowing the robber to successfully evade
i cops in the i-subgrid Ri around him, and to move to neighboring i-subgrids
fast enough not to let other cops enter into Ri. And that is for each i between
0 and k. Let us introduce some notation that we use in order to describe the
above mentioned strategy on the graph G = G(k).

zoom = (zoom1, · · · , zoomk) is a sequence of scaling factors, that is, an i-
subgrid contains zoomi × zoomi vertex disjoint (i − 1)-subgrids. This means
that sizei is equal to zoomi × sizei−1, where we fix size0 = 2 as a starting
point. We say that an i-subgrid Hi is adjacent to a j-subgrid F j if there is
an edge in G incident to a vertex in each of them. When i is clear from the
context, an (i − 1)-subgrid relative to an i-subgrid is called a square on a board.
A path of squares is a sequence of squares such that any square is adjacent to its
predecessor, and its length is simply the number of squares. In this way, we can
notice a fractal-like structure of G, with the grid topology of squares on boards
of corresponding levels. Let us introduce a coordinate system for subgrids at each
level. The coordinates of an i-subgrid H are (absH , ordH ), which correspond to
the row (bottom-up) and column (left-right) occupied by H in the partition of
G into subgrids of sizei. In other words, a vertex v is in H iff the abscissa of v is
between (absH − 1) ∗ sizei +1 and absH ∗ sizei, and the ordinate of v is between
(ordH − 1) ∗ sizei + 1 and ordH ∗ sizei.

margin = (margin1, · · · , margink) is a sequence of safety distances. Given
an i-subgrid Hi, we note by around(Hi) the subgrid induced by the i-subgrids
that are near Hi. More formally, around(Hi) is the subgrid induced by the i-
subgrids H , such that |ordHi − ordH | ≤ 1 and |absHi − absH | ≤ 1. Similarly, we
define the margin of Hi, denoted by margin(Hi), as the subgrid induced by the
i-subgrids H , such that |ordHi − ordH | ≤ mi and |absHi − absH | ≤ mi.
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For any i, a configuration in which copi is outside the subgrid around(Ri−1)
(i.e., copi does not occupy any vertex of it), where Ri−1 is the square occupied
by the robber, is a valid position at level i. If moreover, the cop copi is also
outside margin(Ri−1) and margin(Ri−1) is a subgraph of Ri, the position of
the robber is called a nice position at level i.

Definition 1. The robber occupies an i-nice position if it occupies a nice posi-
tion at level j, for all 1 ≤ j ≤ i.

Suppose the robber is in a nice position at level i. If copi occupies a square
adjacent to the margin, we say that the cop is blocking a side. If copi occupies
a square in a corner (adjacent to two other squares blocking different sides), we
say that the cop is blocking a corner.

detour = (detour1, · · · , detourk) is a sequence of extra distances. At level i,
detouri is an upper bound on the additional distance that the robber needs to
travel in order to evade copi. More precisely, starting from a nice position at
level i, the length of the path of squares that the robber will follow to go into
a nice position in a neighboring board is upper-bounded by zoomi + detouri.
Notice that zoomi is the minimum number of squares that the robber needs to
cross in order to get from the left extreme (resp., up extreme) of a board Hi to
the board F i next to the right (resp., down) of Hi.

time = (time0, · · · , timek) is a sequence of numbers of rounds. At level i,
timei is an upper bound on the time needed by the robber in order to get
from a nice position on a board Hi to a nice position on a neighboring board
F i. Moreover, we set the sequence velocity = (velocity0, · · · , velocityk), with
velocityi = sizei/timei, as the “relative” speed of the robber at level i. Since
the robber has speed velocity0 = 2, which is its “absolute” speed, and size0 = 2,
we get time0 = 1.

2.2 Informal Description of the Robber’S Strategy

In this section we give an intuitive description of the robber’s strategy in order
to explain the relations between the sequences defined in the previous section.

Let 1 ≤ i ≤ k. Recall that a square denotes an (i − 1)-subgrid and a board
denotes an i-subgrid.

Let us first describe our induction hypothesis at level i − 1. Let Ri−1 be the
square occupied by the robber. We assume that if all of the cops copj , i− 1 < j,
remain outside around(Ri−1), and if the initial position of the robber is (i− 1)-
nice, then the robber can reach an (i−1)-nice position in any square adjacent to
Ri−1, in at most timei−1 < sizei−1 rounds. Let us describe the robber’s strategy
that ensures that the induction hypothesis remains valid at the level i.

Let Ri be the board that is occupied by the robber. We assume that all of the
cops copj , j > i, remain outside around(Ri) during the whole game that we will
describe. Moreover, let us assume that, for any 1 ≤ j ≤ i, the initial position
of the robber is nice at level j. In other words, the robber occupies an i-nice
position. In particular, it means that copi is outside the subgrid margin(Ri−1)
and margin(Ri−1) is a subgraph of Ri, where Ri−1 denotes the (i − 1)-subgrid
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initially occupied by the robber. Let Di be a board that is a neighbor of Ri. We
describe a strategy for the robber that ensures that (1) the robber reaches an
i-nice position in Di in at most timei < sizei steps, and (2) copi remains outside
around(Ri−1) during the whole game.

For ease of description, we assume that Di is below Ri (i.e., Di has smaller
ordinate than Ri). This strategy is depicted in Figure 1. In Figures 1(a), 1(b),
and 1(c), the hatched zone corresponds to the path of squares covered by the
robber during the game.
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Fig. 1. Strategy performed by the robber if (a) copi never blocks a side of margin(Ri
s),

(b) copi blocks any but the bottom side of margin(Ri
s), and (c) copi blocks the bottom

side of margin(Ri
s)

At each step s ≥ 0 of the game, let Ri−1
s and Ci−1

s be the squares occupied by
the robber and copi respectively. Roughly speaking, the strategy consists in the
following. While copi is outside margin(Ri−1

s ) and does not block neither a side
nor a corner of margin(Ri−1

s ), the robber goes down, that is, it goes to the square
Hi−1 that is the below-neighbor of Ri−1

s . By applying the induction hypothesis,
the robber reaches an (i − 1)-nice position in Hi−1 in at most timei−1 steps. If,
performing that way, the robber reaches a square Hi−1 such that margin(Hi−1)
is a subgraph of Di, we are done. Moreover, it has taken at most zoomi∗timei−1
steps. This strategy is illustrated in Figure 1(a). If at some step f of the game,
copi is blocking a side or a corner of margin(Ri−1

f ), we consider different cases
according to which side or corner of margin(Ri−1

f ) is blocked.

– Let us first assume that copi blocks a side or a corner above margin(Ri−1
f ).

That is, Ci−1
f has greater ordinate than any square in margin(Ri−1

f ). Then,
the strategy remains the same: the robber goes down (cf. Figure 1(a)). The
robber traverses a square in at most timei−1 < sizei−1 steps, whereas copi

needs sizei−1 steps. By Lemma 1, sizei−1 > ti−1. Therefore, each time
the robber moves to a new square Ri−1

s , copi is outside margin(Ri−1
s ). In
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particular, this is the case at the step when margin(Ri−1
s ) is contained in

Di for the first time. Then the strategy achieves.
– Let us now assume that copi blocks a side or a corner at the left (resp.

at the right) of margin(Ri−1
f ). That is, Ci−1

f has smaller (resp., greater)
abscissa than any square in margin(Ri−1

f ). Again, the strategy consists in
going down. However, this time, after the first step when margin(Ri−1

s )
is a subgraph of Di, the robber continues going down along a path of di

extra squares in Di. This is because the cop may enter in margin(Ri−1
s )

during this passage, and we want to have it outside the margin in the
end. This strategy is illustrated in Figure 1(b). di corresponds to an ex-
tra distance that the robber must cover in order to avoid copi. detouri

will be taken equal to an upper bound of this extra distance in any of
the strategies described below. For our strategy to be valid, we must en-
sure two properties. First, in order to apply the induction hypothesis, copi

must permanently remain outside around(Ri−1
s ). Second, at some step s ≤

timei, the robber must reach an i-nice position in Di, that is, copi must
be outside margin(Ri−1

s ) while margin(Ri−1
s ) is a subgraph of Di. In or-

der to ensure the above two properties, we set several inequalities between
sizei−1, zoomi, margini, detouri, timei−1, velocityi−1 and timei.
• For the first property to be satisfied, it is sufficient to ensure that, if

Ci−1
f is blocking the left-bottom corner of margin(Ri−1

f ) and copi goes
to the right while the robber is going down, then copi cannot enter
around(Ri−1

s ). Indeed, one can observe that the cop occupying this po-
sition yields the worst possible case of blocking a side or a corner. Let
N be the minimum number of steps that are necessary for the cop to
intercept the robber, and let M be the maximum number of steps that
are necessary for the robber to cross the place of this hypothetical in-
terception. In other words, we want that M < N . Recall that sizei−1 is
the minimum number of steps for a cop to traverse a square (from one
of its sides to cross the opposite one), whereas timei−1 is the maximum
number of steps for the robber to cover the same distance. By looking at
Figure 2(a), it is easy to be convinced that N > (margini − 1)sizei−1,
and M < (4 + margini)timei−1. In Figure 2(a), M1 = 4 + margini

and N1 = margini − 1. Hence, we get our first inequality. For any i,
1 ≤ i ≤ k:

margini ≥ �4 + velocityi−1

velocityi−1 − 1
� (1)

• For the second property to be satisfied, it is sufficient to ensure that,
if the step f is such that the squares of margin(Ri−1

f ) with the great-
est ordinate are still in Ri and all the other squares of it are in Di,
and Ci−1

f is the left-bottom corner of margin(Ri−1
f ), then copi is above

margin(Ri−1
h ) at the last step h of the game, and margin(Ri−1

h ) is a
subgraph of Di. Again, this position of Ri−1

f leads to the worse possi-
ble configuration of this case. Let N be the minimum number of steps
that are necessary for the cop to reach margin(Ri−1

h ), and let M be the
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maximum number of steps that are necessary for the robber to reach
Ri−1

h . Again, we want that M < N . Moreover, h ≤ ti. Looking at Fig-
ure 2(b), it is easy to be convinced that N > (di−2∗margini−2)sizei−1,
and M < di ∗ timei−1. Hence, we get our second equation. For any i,
1 ≤ i ≤ k:

di ≥ � (2 ∗ margini + 2)velocityi−1

velocityi−1 − 1
� (2)

For the final position of the robber to be nice, we also need margin(Ri−1
h )

to be a subgraph of Di, that is:

di + 2margini + 1 < zoomi

Finally, the whole game must take at most timei < sizei steps, therefore:

(zoomi + di)timei−1 < (zoomi + detouri)timei−1 ≤ timei < sizei
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Fig. 2. Illustration of Inequality 1 and 2: (a) copi must never enter in around(Ri
s), and

(b) the robber must reach a nice position, i.e., copi must not enter in margin(Ri
h)

– It remains the case when copi blocks a side below margin(Ri−1
f ). That is,

Ci−1
f has smaller ordinate than any square in margin(Ri−1

f ). In this case, the
robber chooses the right side, if Ri−1

f is closest to this side of Ri, and the left
side otherwise. W.l.o.g., let the robber choose the right side. Then, the
robber first goes to the right, along a path of di squares. Let Ri−1

r be the
last of these squares, at which the robber arrives at step r. Note that, by
Inequality 1, copi never enters around(Ri−1

s ) during this phase. Moreover,
by Inequality 2, at step r, copi is to the left of margin(Ri−1

r ). Starting from
step r, the strategy is the same as in the previous case: the robber goes down,
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and after the first step when margin(Ri−1
s ) is a subgraph of Di, the robber

continues going down along a path of di extra squares in Di. This strategy
is illustrated in Figure 1(c). Again, by applying Inequalities 1 and 2, we get
that copi never enters around(Ri−1

s ) during the whole game, and, at the last
step h, copi is outside margin(Ri−1

h ). In order to ensure margin(Ri−1
h ) to

be a subgraph of Di, we need the following inequality:

di + 2 ∗ margini + 1 < zoomi/2 (3)

Finally, the whole game must take at most timei < sizei steps, therefore:

(zoomi + 2di)timei−1 ≤ (zoomi + detouri)timei−1 ≤ timei < sizei (4)

In the following, we turn Inequalities 1 and 2 into equalities, we set detouri =
2di, and we prove that, for a sequence zoom well chosen, Inequalities 3 and 4
are satisfied.

2.3 Proof of Theorem 1

We first prove that there are two constants a > 0 and b > 2, such that to set
zoomi = abi (for all i ≤ k) ensures that Inequalities 3 and 4 are valid.

Let k ≥ 1 and velocity0 = 2. We will now precisely define the sequence zoom,
and define the relations between the sequences zoom, margin, detour, time, size
and velocity. For any 1 ≤ i ≤ k, let us turn Inequalities 1 and 2 into equalities:

margini = �4 + velocityi−1

velocityi−1 − 1
�,

and, detouri = 2di = 2 ∗ � (2 ∗ margini + 2)velocityi−1

velocityi−1 − 1
�.

(5)

We also set:
timei = (zoomi + detouri)timei−1 (6)

From Equations 5, 6 and the fact that velocityi = sizei/timei, we get that
velocityi = zoomi

zoomi+detouri
∗ velocityi−1 ≥ βi ∗ velocityi−1, where βi is defined by:

βi =
zoomi

zoomi + 2 ∗ (
(2∗( 4+velocityi−1

velocityi−1−1+1)+2)velocityi−1

velocityi−1−1 + 1)

=
zoomi

zoomi +
2+4∗velocityi−1+14∗velocity2

i−1
(velocityi−1−1)2

Finally, let us assign some values to the sequence zoom, in order to satisfy
Inequalities 3 and 4. For this purpose, let us set 2 > α > 1, and let a = � 20

(α−1)2 �∗
� 2

ln(velocity0/α)� and let b be an integer such that b > max{2, ln(velocity0/α)
2 }. For

any 1 ≤ i ≤ k, we set
zoomi = abi. (7)

Due to lack of space, formal proofs of Lemmata 1 2 and 3 are omitted and
can be found in [NS08].
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Lemma 1. Inequality 4 is satisfied. That is, for any 0 ≤ i ≤ k, velocityi =
sizei/timei > 1.

Sketch of the Proof. We prove by induction on i, 0 ≤ i ≤ k, that 2 ≥
velocityi > α. This induction allows us to prove that 1/βi < 1+1/( 2

ln(velocity0/α)∗
bi). Then, the result follows from some calculations. ��
Lemma 2 is straightforward from Equality 5 and Lemma 1.

Lemma 2. Inequality 3 is satisfied. That is, for any 1 ≤ i ≤ k, detouri + 4 ∗
margini + 2 < zoomi

Both previous Lemmata allow us to prove the following:

Lemma 3. Let i, 1 ≤ i ≤ k. Let us assume that the robber occupies an i-nice
position in a level-i subgrid Ri in G. Moreover, let us assume that, all of the
cops copj, j > i, permanently remain outside around(Ri). Let Di be any level-i
subgrid adjacent to Ri.

The strategy described in section 2.2 ensures that

1. the robber reaches an i-nice position in Di in at most timei < sizei steps
2. copi remains outside around(Ri−1) during the whole game.

Sketch of the Proof. The proof is by induction on i, 0 ≤ i ≤ k. To prove both
items, it is sufficient to follow the description of the strategy (section 2.2), and
to use Lemmata 1 and 2. ��
We are now able to prove Theorem 1

Proof of Theorem 1. More precisely, we prove that, for any k ≥ 1, one robber
with speed velocity0 = 2 can infinitely evade k cops with speed one in any grid
of size more than 4akbk(k+1)/2, where a and b are defined as previously.

Let G be the grid of size 2∗sizek = 2∗size0∗
∏

1≤i≤k zoomi = 4∗ak∗bk(k+1)/2.
Note that, if one robber can infinitely evade k cops in G, it can perform the same
strategy and evade k cops as well in any bigger grid. It remains to prove that the
strategy described in Section 2.2 enables the robber to infinitely evade k cops
in G.

Now, let us assume that k cops are placed on vertices of G. G is divided into 4
vertex-disjoint subgrids of size sizek (i.e., level-k subgrids). Let us fix an ordering
of the cops (cop1, . . . , copk). Choose one of the level-k subgrids not occupied by
copk, and denote it by Rk. Notice that, by Equation 3, Rk contains at least four
(k−1)-subgrids Rk−1

1 , . . . , Rk−1
1 such that margin(Rk−1

i ), 1 ≤ i ≤ 4, are disjoint
and entirely contained in Rk. Any position inside these subgrids is nice at level
k. Recursively, choose one not occupied by copk−1 to be Rk−1, and proceed until
finding R0. Any position inside R0 is k-nice and we may pick it as the initial
position for the robber. The top level strategy consists in traversing the four
level-k subgrids of G along the cycle given by their adjacencies. Lemma 3 (by
taking i = k) proves that, starting from a k-nice position in some level-k subgrid
Rk, the robber can reach a k-nice position in any level-k subgrid adjacent to
Rk, without being caught by the cops. By repeating this process infinitely, the
robber can infinitely evade k cops in G, which proves Theorem 1. ��
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Corollary 1. For any grid G of size n, and for any 1 ≤ p < q, cp,q(G) >

Ω(
√

log(n)).

Proof. Let 0 < α < 1. By setting, size0 = q, a = � 2+4q+14q2

(p+α−1)2 �, and b >

max{2, ln(q/(p+α))
2 }, the proof the corollary follows the proof of Theorem 1.

3 Fast Robber Cop-Number with Respect to Graph
Containment

We have seen that the number of cops needed to capture a fast robber in a grid
G may be arbitrarily large. It would be interesting to see if a high value of the
cop-number of a planar graph H is related to a large grid G somehow contained
in H . On the negative side, the classical transformations of edge removal, vertex
removal, and edge contraction do not preserve bounded cop-number. Moreover,
there are graphs of arbitrarily large tree-width [Bod98] (that is, somehow con-
taining a large grid) and cop-number two. Due to lack of space, the formal proof
of the following proposition is omitted and can be found in [NS08].

Proposition 2. For any k ≥ 1, there is a planar graph H with c1,2(H) ≤ 2,
such that a graph G with c1,2(G) ≥ k can be obtained from H by contracting
edges (resp., by removing edges, resp., by removing vertices).

Sketch of the Proof. We sketch the proof for G obtained from H by contracting
edges. Let k ≥ 1. Let G be a grid of size n ≥ f(k). Let P be a column (vertical
path) of G, and let H be the graph obtained by replacing each vertical edge but
those of P by a path of length 6n. Roughly, the strategy for two cops consists in
moving along P from one line to another, until they occupy two consecutive lines
while the robber is occupying a path P ′ of length 6n between those two lines.
Then, one cop moves to block the robber’s way back, and the other cop moves
to block the other end of P ′. The length of P ′ is such that once the robber’s
way back is blocked, it can not reach the other end of P ′ before the other cop
blocks it. ��

Nevertheless, we can define a larger family of planar graphs of high cop-number
than the grids themselves. Due to lack of space, the formal proof of the following
theorem is omitted and can be found in [NS08].

Theorem 2. Let H be a planar graph containing a grid G of size 4 ∗ sizek as
an induced subgraph, then c1,2(H) ≥ k.

Sketch of the Proof. A theorem of Whitney (see Theorem 4.3.2 of [Die05])
proves that G admits a unique embedding in the sphere. This allows to prove
that H contains a subgrid G′ of size sizek as a distance-hereditary induced-
subgraph. The evasion strategy described in section 2.2 can be easily adapted to
H , with the robber restricted to stay in G′. Since the correctness of this strategy
is mainly based on the distance between the robber and the cops, it is easy to
adapt the proof of Theorem 1 to H . ��
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From a Circular-Arc Model to a Proper
Circular-Arc Model

Yahav Nussbaum
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Abstract. We are given a circular-arc graph, represented by a circular-
arc model; our goal is to decide whether the graph is a proper circular-arc
graph. We do so in time linear in the number of vertices of the graph,
regardless of the number of edges which may be quadratic in the number
of vertices. For every input graph, we either provide a proper circular-arc
model for the graph, or a forbidden subgraph induced in the graph.

1 Introduction

A circular-arc graph (see Fig. 1(a)) is the intersection graph of arcs on the circle.
Every vertex in the graph is mapped to an arc on the circle, such that two arcs
intersect if and only if the corresponding vertices are adjacent. The set of arcs
on the circle constitutes a circular-arc model (see Fig. 1(b)). Circular-arc graph
are used to represent objects of circular or periodical nature. For an overview
on circular-arc graphs, see the books by Golumbic [2] and Spinrad [16].

A circular-arc model is a representation of a circular-arc graph. Given a
circular-arc model which represents a graph, we can easily answer the question
“Is there an edge between u and v?”, by examining the arcs which represent u
and v in the model. The representation of a circular-arc graph by a circular-arc
model is more space-efficient than general graph representations such as adja-
cency matrix or adjacency list, since the model does not represent the edges of
the graph explicitly. For a graph G with n vertices and m edges, the amount of
space that a general representation requires depends on n and m, while the space
that a circular-arc model uses depends only n, even for dense graphs where m
is quadratic in n. For an overview of efficient representation of graphs see [16].
Given a representation of a graph by its vertices and edges, it takes O(n + m)
time to construct a circular-arc model representation for the same graph [8,13].

A circular-arc model representation of circular-arc graph is not efficient just
in space. This representation also allows an efficient implementation of sev-
eral graph algorithms. For example the problems of maximum independent set
[3,5,11,12], maximum clique cover [5] and minimum dominating set [5] can all
be solved in O(n) time on a circular-arc model, while computing them on an
adjacency list representation of the same graph would take O(n + m) time.

A proper circular-arc model (see Fig. 1(c)) is a circular-arc model in which
no arc contains another arc. A circular-arc graph which can be represented by a

H. Broersma et al. (Eds.): WG 2008, LNCS 5344, pp. 324–335, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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(a) Vertices and edges

a b

cd
e

(b) A circular-arc model
(not proper)

a b

cd
e

(c) A proper circular-arc
model

Fig. 1. Three representations of the same graphs

proper circular-arc model is a proper circular-arc graph. Given a representation
of a graph by its vertices and edges, it takes O(n+m) time to construct a proper
circular-arc graph which represents the same graph [1,7].

In this paper, we present an algorithm that gets a circular-arc model as input
and produces a proper circular-arc model which represents the same graph. If no
such a model exists, then our algorithm provides one of the forbidden subgraphs
of Tucker [17] induced in the input circular-arc model. The running time of the
algorithm is O(n), this running time is better than the time required to construct
a proper circular-arc model without a circular-arc model as an input, as it does
not depend on the number of edges in the graph, which might be as large as
Θ(n2). In addition, if the input model represents a proper interval graph, then
our algorithm produces a proper interval model, even if the input model is not
an interval model.

A representation by proper circular-arc model has several advantages over a
representation by a circular-arc model. For example, for routing on ring networks
we require a coloring algorithm to color a circular-arc graph which represents a
network. While coloring a circular-arc graph in NP-complete, coloring a proper
circular-arc model takes polynomial time [15]. Another example is using circular-
arc model to represent periodic scheduling, such as of traffic lights or of staff shift
work. A proper circular-arc model can be transformed into a unit circular-arc
model in O(n) time [9] for an equal scheduling.

Our algorithm uses tools similar to the algorithm of Joeris et al. [6], which
produces a Helly circular-arc model from a given circular-arc model in O(n)
time. Other related results are Lin and Szwarcfiter [9] and Lin et al. [10] which
produces a unit circular-arc model and a proper Helly circular-arc model from
a proper circular-arc model in O(n) time, as well as algorithms such as those
mentioned above [3,5,11,12,15] which run in O(n) time or other time bounds
lower than O(n + m) on circular-arc models.

2 Preliminaries

We consider a finite, simple, circular-arc graph G. We denote the number of
vertices in G by n. We denote the complement of a graph H by H .

A circular-arc model is a set of arcs on a circle. The graph G is represented
by a circular-arc model M . Note that M is not necessarily the only circular-arc
model which represents G. For convenience, we refer to the clockwise direction
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of a circle as right and to the counterclockwise direction of a circle as left, as we
view them if we stand in the center of the circle. We may assume that no two
endpoints of arcs in a circular-arc model coincide, since otherwise this can be
fixed by a slight shift of the endpoints. We also assume that no single arc covers
the entire circle of a circular-arc model, because such an arc can be replaced by
an arc whose right endpoint is immediately to the left of its left endpoint.

Every vertex in G is represented by an arc in M . We do not distinguish in
our notation between a vertex x in G and the arc x which represents it in M .
Thus, we may use equivalent terms such as “the vertices x and y are adjacent”
and “the arcs x and y intersect” interchangeably. Each arc x has two endpoints
we denote the left endpoint by �(x) and the right endpoint by r(x).

A circular-arc model is represented by a cyclic (doubly-linked) list of all end-
points of all arcs in the model. Since G has n vertices, every circular-arc model
of G has 2n endpoint. Another possible representation for a circular-arc model
is by storing for each arc the positions of its endpoints in the cyclic list of end-
points. It is easy to convert each of these two representation to the other in O(n)
time. These representations of circular-arc models require Θ(n log n) bits, while
adjacency matrix representation of a graph requires Θ(n2) bits and adjacency
list representation takes Θ(m log n) bits.

Two arcs x and y in a circular-arc model may either be disjoint or intersect
each other. If x intersects y then x may contain y, be contained in y, (left or
right) cross y, or double overlap y. Given the endpoints of two arcs in a circular-
arc model, we can determine the type of intersection between the arcs from
the relative order of their endpoints. We say that x can contain y if there is a
circular-arc model in which x contains y, and there is an arc z which intersects
x but not y. This property depends on the graph, and not on the specific model.
The arcs x and y double overlap in some circular-arc model only if every arc
which is disjoint from x in this model, is contained in y. A universal arc is an
arc which intersects every other arc in the model.

A proper circular-arc model is a circular-arc model in which no arc contains
another arc. An interval model is a set of intervals on the line, equivalently it is
a circular-arc model in which the circle is not covered by the union of the arcs.
A model which is both a proper circular-arc model and an interval model is a
proper interval model. A graph which can be represented by a proper circular-arc
(interval, proper interval) model is a proper circular-arc (respectively: interval,
proper interval) graph.

We say that an endpoint e is between an endpoint e1 and an endpoint e2, if
when we traverse the cyclic list of endpoints starting at e1 and going right, we
encounter e before e2.

3 Forbidden Subgraphs

Tucker [17] gave a characterization of proper circular-arc graphs using forbidden
induced subgraphs. If G is not a proper circular-arc graph, then our algorithm
finds one of these forbidden subgraphs. Since our input graph is a circular-arc
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(a) H1 (b) H2 (c) H3

(d) H4 (e) H5 (f) C∗
3 = K1,3

Fig. 2. Complements of forbidden subgraphs

graph, we use only part of the forbidden subgraphs which Tucker showed. These
forbidden subgraphs are H1, H2, H3, H4, H5, and C∗

i for odd i ≥ 3, where Hj

are as described in Fig. 2 and C∗
i is an induced cycle of i vertices with an isolated

vertex. The graph C∗
3 (Fig. 2(f)) is also called K1,3.

Our algorithm provides one of the forbidden subgraphs induced in the input
circular-arc model M . The subgraph is provided as a set of arcs in M . The sub-
graphs H1, H2, H3, H4, H5 are of constant size and therefore it takes constant
time to verify that the arcs represent an induced subgraph. The family of sub-
graphs C∗

i is made of a universal vertex and the complement of a cycle of odd
length. Tucker [18] showed that there is only one way to order the endpoints of
a complement of a cycle of odd length in a circular-arc model (see the set W on
Sec. 6). Therefore, it takes time linear in the size of the model to verify that the
arcs represent a complement of a cycle of odd length and a universal vertex.

4 Function on Arcs

Let X and Y be two sets of arcs in a circular-arc model, not necessarily disjoint.
Joeris et al. [6] show a family of functions which can be computed in O(|X |+|Y |)
time for every x ∈ X . The functions of [6] are, for every x ∈ X : find y ∈ Y which
is contained in x such that r(y) is closest to r(x) from the left; find y ∈ Y which
is disjoint from x such that �(y) is closest to r(x) from the right; find y ∈ Y
which right crosses x such that r(y) is farthest to the right from r(x); and find
y ∈ Y which right crosses x such that r(y) is closest to r(x) from the right. The
symmetric functions obtained by exchanging left and right are also defined.

Using the functions of [6] we define more similar functions which can also be
computed in O(|X | + |Y |) time. For every x ∈ X : find y ∈ Y which is disjoint
from x such that �(y) is farthest to the right from r(x); find y ∈ Y which double
overlaps x such that r(y) is closest to �(x) from the right. We refer to this
collection of functions as Functions on Arcs.

Functions on Arcs allow us to determine for every arc x whether there exists
an arc y such that x contains (is disjoint from, double overlaps) y, in O(n) time.
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Algorithm 1. Implement all possible arc containments in a model M .
1. Split M into blocks. For each arc determine the blocks of its two endpoints.
2. For every block of right endpoint B, order the right endpoints inside B such that

r(x) is to the right of r(y) if and only if �(x) is to the left of �(y) when we traverse
M starting at B.

3. Repeat the previous step symmetrically for every block of left endpoints.

Algorithm 2. Eliminate arc containments in a circular-arc model M .
1. Split M into blocks. For each arc determine the blocks of its two endpoints.
2. For every block of right endpoint B, order the right endpoints inside B such that

r(x) is to the right of r(y) if and only if �(x) is to the right of �(y) when we traverse
M starting at B.

3. Repeat the previous step symmetrically for every block of left endpoints.

A block [4,6] is a maximal sequence of consecutive endpoints of the same side
(all right or all left) in a circular-arc model. Changing the order of endpoints
inside a block in a circular-arc model does not change the graph which is repre-
sented by the model. Therefore, a circular-arc graph can be also represented by
a cyclic order of blocks of endpoints rather than a cyclic order of endpoints.

Hsu [4] and Joeris et al. [6] define Algorithm 1. In the circular-arc model
resulting from this algorithm, for every pair of arcs x and y, if x can contain
y then x contains y [4]. This is because if x crosses y in some model, but can
contain y, then x and y have one of their endpoints in the same block. We define a
similar algorithm, Algorithm 2 which eliminates arc containments in the circular-
arc model, for arc x which contains arc y such that x and y have an endpoint
in the same block. Algorithms 1 and 2 can be implemented in O(n) time using
radix sort. Algorithm 3 is a linear-time implementation of an algorithm given
in [4], using Functions on Arcs (a similar algorithm is also defined by [6]). Note
that this algorithm is defined only for circular-arc models without universal arcs.
Let M ′ be a model produced by Algorithm 3. Every pair of arcs x and y which
double overlap in some circular-arc model of the same graph, double overlap in
M ′ [4], this is because if x does not double overlap y, then there is an arc which
is disjoint from x and not contained in y.

Golumbic and Hammer [3] give Algorithm 4 which checks whether a circular-
arc model is a proper circular-arc model. If the model is not a proper circular-arc
model, Algorithm 4 provides a pair of arcs such that one contains the other.

5 The Algorithm

In this section we present an algorithm which transforms M into a proper
circular-arc model, if G is a proper circular-arc graph. Using Functions on Arcs
we can detect all universal arcs in M in O(n) time and remove them from the
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Algorithm 3. Stretch arcs in a circular-arc model M without universal arcs.
1. Apply Algorithm 1 on M .
2. For every right endpoint r(x), let y be the arc which is disjoint from x such that

�(y) is closest to r(x) from the left. Move r(x) to be immediately to the left of �(y).
3. Repeat steps 1 and 2 symmetrically for every left endpoint.

Algorithm 4. Find arc containment in a circular-arc model M .
1. Let Q be an empty queue. For each arc x of M we store a value that indicates

whether x is in Q. Let e be an arbitrary point on M .
2. Traverse the circle of M twice, starting at e and going right. Process the endpoints

as follows – For every left endpoint �(z), add z to the tail of Q. For every right
endpoint r(z), if z is in Q, remove x from the head of Q, if x 
= z then the arc x
contains the arc z.

model. In the next section we show how to embed these arcs back. Let M0 be
the model M without universal arcs.

Algorithm 2 eliminates arc containments in the circular-arc model, only for
arc x which contains arc y such that x and y have an endpoint in the same block.
Intuitively, this algorithm lets a contained arc stretch outside of the containing
arc, if there is no arc which obstructs it. Assume that in a model which was
produced by Algorithm 2, arc x contains arc z. Then, since the endpoints of x
and z are not in the same blocks, there is an endpoint r(u) between �(x) and
�(z) and an endpoint �(w) between r(z) and r(x). The arcs u and w are in one
of three possible relations – they might be disjoint, cross each other, or be the
same arc – we denote the configurations of x, z, u and w in these three cases by
Nd, NX and N= respectively (see Fig. 3).

The arcs in Nd are K1,3, and therefore a model which contains an Nd does
not represent a proper circular-arc graph. But, the configurations NX and N=
might be avoided by moving the endpoints of the model between the blocks. The
change is made by stretching and shrinking the arcs of M . We stretch an arc by
making it cover larger part of the circle, without changing the intersections in the
model. We shrink an arc by making it cover smaller part of the circle, without
changing the intersections in the model. Intuitively, the stretching eliminates
any NX while the shrinking eliminates any N=.

Algorithm 3 stretches the arcs of the model as far as possible. Let M1 be the
result of applying Algorithm 3 on M0.

A set of arcs X is a clique module if for every x ∈ X the set of arcs which x
intersects, including x itself, is identical. If x and x′ are members in the same
clique module, then their endpoints are in the same blocks in M1 because x
intersects x′ and is disjoint from any arc which has an endpoint in the block left
to the block of �(x) or right to the one of r(x). We detect all clique modules in
M1 in O(n) time by radix sorting the arcs, using the blocks which contain the
endpoints of the arcs as indices. For every clique module, we remove all but one
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Fig. 3. Arc containments after applying Algorithm 2

of its arcs from the model, let x be this arc. We can embed back the removed arcs
to any proper circular-arc model, by putting all the left endpoints next to �(x)
and all the right endpoints next to r(x), in the same order. We denote the graph
and model without universal arcs and clique modules larger than one by G′ and
M2. Note that a forbidden subgraph which is induced in G′ is also induced in
G. The next lemma shows that the stretching of arcs eliminated any NX in M2.

Lemma 1. If G’ is a proper circular-arc graph, then M2 does not contains an
NX .

Proof. Assume that M2 contains arcs x, z, u and w as in Fig. 3(b). We show
how to find a forbidden induced subgraph in G′.

Since M2 is obtained by Algorithm 3, we know that every pair of arcs which
can double overlap in some model, double overlaps in M2. The arcs u and w do
not double overlap x. So, there is an arc r which is disjoint from x and is not
contained in u and an arc t which is disjoint from x and is not contained in w.
Since u (w) does not contain r (t) then there is an arc p (q) which intersects r
(t) but not u (w).

Assume that we can choose r = t. If both p and q disjoint from x then
{x, z, u, w, p, q} are H1. If p or q intersects x but not z then {x, z, u, p} or
{x, z, w, q} are K1,3. Else, if only one of p and q intersects both x and z then
{x, z, u, r, w, p, q} are H3. If both intersect x and z then either {x, z, u, w, r, p, q}
are H5 (p and q intersect) or {x, z, u, w, p, q} are C∗

5 (otherwise).
Assume that no such r = t exist. In this case u contains t. If p is disjoint from

x then {w, x, p, t} are K1,3. If p intersects x but not z, then {x, z, u, p} are K1,3.
If p intersects both x and z then {x, z, u, w, r, t, p} are H2. ��

We run Algorithm 1 on M2 and get a new model of G′ which we denote by M3.
For every two arcs x and y, if x can contain y then x contains y on M3. Since
Algorithm 1 changes the order of endpoints only within blocks, if M2 does not
contain an NX then the same is true for M3.

Even if G′ is a proper circular-arc graph, then the model M3 may still contain
an N=. Since we removed universal arcs, having an N= in the model is equivalent
to having a pair of arcs that double overlap each other. Every proper circular-arc
graph has a proper circular-arc model without such pair of arcs [17,2,7].

We eliminate any N= in M3 by shrinking arcs of the model. The shrinking
process should keep three invariants true on the model at any stage – Represen-
tation Invariant (IR) The model represents G′; Containment Invariant (IC) If
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Fig. 4. Moving r(x) causes a violation of one of the three invariants

x can contain y, then x contains y in the model; and NX Invariant (IX) The
model does not contain any NX . If G′ is a proper circular-arc graph then the
three invariants are valid in M3.

Intuitively, IR is required for the correctness of the algorithm. The invariant
IC is required for the linear time bound, we can keep IC since if by shrinking an
arc x which contains an arc p we both eliminate an N= and the containment of
p in x, then we create an NX (see Fig. 4(a)). The invariant IX promises that we
do not replace an N= by an NX .

We shrink an arc by moving its right endpoint in the left direction. Let r(x)
be a right endpoint, and let e be the endpoint immediately to the left of r(x).

If e is a right endpoint of an arc p (see Fig. 4(a)) then x contains p, and we
do not move r(x) to the left, to avoid violation of IC .

Assume that e is a left endpoint of an arc p (see Fig. 4(b)). Only if x and p
double overlap, then we can move r(x) to be on the left side of e = �(p) without
violating IR, since after the move x and p will still intersect. Moreover, in this
case x double overlaps any arc which has an endpoint in the same block as e,
since any such arc contains p. So, we can move r(x) to be on the left of the block
which contains e, without violating IR. We also do not violate IC in this move,
since we do not change the relative order of left endpoints or of right endpoints.
If x and p do not double overlap, then we do not move r(x), to keep IR.

To keep IX , we should detect when the moving of r(x) will create an NX .
Assume that x double overlaps some arc y. There is an arc w which is disjoint
from x and contained in y. If there is an arc p, such that p right crosses x, does
not double overlap y, and is disjoint from w (see Fig. 4(c)), then by moving r(x)
to the left of �(y), we create an NX in which y contains w, and the arcs x and p
cross y from both sides. In this case we say that x is not for shrink. Even though
x is not for shrink, we may still be able to shrink y. Another case is when there
is an arc p which crosses y such that p is contained in x (see Fig. 4(a)), then
moving r(x) beyond r(p) violates IX , in this case we cannot move r(x) by IC .

Let x be an arc which double overlap some other arc. Let yx be the arc which
double overlap x such r(yx) is closest to �(x) from the right. Let wx be the arc
which is disjoint from x such that wx is farthest to the right from r(x). We define
x′ as the arc whose left endpoint is immediately to the right of r(yx) and its
right endpoint is immediately to the right of r(x). Let px be the arc of M3 which
right crosses x′, such that r(px) is closest to r(x′) from the right.
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If the arc px exists, then it right crosses x and does not double overlap yx. So,
if px is disjoint from wx, then x is not for shrink. On the other hand, if x is not
for shrink, then the arc px exists and is disjoint from wx, by the way we choose
yx, wx, and px to be closest or farthest from the endpoints of x.

The discussion above gives us a way to shrink a single arc of M3. Now we
define an algorithm to shrink all arcs of M3 as much as possible.

Let X be the set of arcs which double overlap other arcs in M3. We find X and
detect for every arc x ∈ X if it is not for shrink, in O(n) time using Functions on
Arcs. For every x ∈ X we can find wx and yx as above using Function on Arcs
on the model M3. Let M ′

3 be the model which contains the arcs of M3, and in
addition the arc x′ for every x ∈ X . If we should put two endpoints in M ′

3 in the
same place, then we order them arbitrarily. The number of arcs in M ′

3 is O(n).
So, we find px, for every x, in O(n) time using Functions on Arcs. For x ∈ X , if
px is defined and is disjoint from wx, then x is not for shrink.

We split M3 into blocks. For each arc we keep the blocks of its two endpoints.
We keep the blocks in a cyclic doubly-linked list, and for each block we keep
pointers to the leftmost and the rightmost endpoints in the block.

Let s be an arc which does not contain any other arc. The arc s also does not
overlap any other arc, since if u double overlaps s then u is universal arc. Let S
be the block of right endpoints which contains r(s). We start with B = S.

Let r(x) be the leftmost endpoint in B (when B = S, the arc x is s). The
endpoint immediately to the left of r(x) is a left endpoint, let it be �(y). If x
is not marked as ‘not for shrink’, and x double overlaps y, then we move r(x)
to be the rightmost endpoint in the block of right endpoints that is left to the
block which is left to B.

We repeat this step and try to move the leftmost endpoint in B as long as we
can move it. If B became empty, then we combine the two blocks next to B into
a single block of left endpoints.

Let D be the block of right endpoints which is right to the block which is
right of B. If D = S then we are done shrinking. Note that we never remove
S from the model, since we cannot move s. Otherwise, we repeat the shrinking
process with B = D.

Let M4 be the model that we obtain. The arc s is always the leftmost endpoint
of S, since we cannot move it, so we consider any right endpoint at most once. So,
we find M4 in O(n) time since it takes constant time to move a single endpoint.

The model M4 keeps the three invariants, since we move r(x) as described
above for the move of a single endpoint. Also, we cannot move any endpoint r(x)
in M4, since any such endpoint must be the leftmost endpoint in its block and
it was also this way when our algorithm considered the block. The next lemma
shows that if G′ is a proper circular-arc graph then there is no N= in M4.

Lemma 2. If G′ is a proper circular-arc graph, then no pair of arcs double
overlaps in M4.

Proof. (Sketch) If x and y double overlap in M4, then moving r(x) or r(y) left
will cause violation of one of the three invariants. Each of the three invariants
defines a type of an obstacle for moving the endpoints. For each of the three
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possible types of obstacles for r(x) and each of these three for r(y), we can
obtain a forbidden induced subgraph in the model, using the arcs which define
the obstacles. ��
Now, we apply Algorithm 2, which eliminates some arc containments, on M4.
Denote the result by M5. Since Algorithm 2 only changes the order of endpoints
within blocks, it does not create any new NX or N=.

Theorem 1. The graph G′ is a proper circular-arc graph if and only if M5 is a
proper circular-arc model.

Proof. The model M0 that we start with is a circular-arc model of G′. Our
algorithm changes the order of endpoints in the model, but does not change the
intersections, so M5 is a model of G′. Therefore, if M5 is a proper circular-arc
model then G′ is a proper circular-arc graph.

On the other hand, assume that M5 is not a proper circular-arc model. Then,
since we called Algorithm 2, we know that M5 contains one of the configurations
Nd, NX or N=. If M5 contains an Nd then the arcs of then Nd induce a forbidden
K1,3 in G′. If M5 contains an NX , then this NX exists also in M4, and by IX , it
exists also in M3 and M2. By Lemma 1 we get that G′ is not a proper circular-arc
graph. If M5 contains an N= then this N= exists also in M4. By Lemma 2 we
get that G′ is not a proper circular-arc graph. ��

We use Algorithm 4 to check if M5 is a proper circular-arc model. If M5 is not
a proper circular-arc model then we get two arcs x and z such that x contains
z. We traverse M5 to the left from �(z) until we find a right endpoint r(u) such
that u is disjoint from z. If u double overlaps x then M5 has an N=. Otherwise
we find w to the right of z, symmetrically to u. The four arcs x, z, u and w
forms an Nd or an NX . By the proof of Theorem 1 (in Lemma 1 and Lemma 2),
we can find a forbidden induced subgraph in G using these arcs.

Last, we discuss the case where G′ is a proper interval graph. In this case,
the model M does not have to be an interval model. However, the model M5
which we produce is a proper interval model. Assume otherwise, and let c be the
minimum number of arcs required to cover the circle in M5. By Lemma 2, we
know that c > 2. If c > 3, then G′ contains an induced cycle of size c and so G′

is not a proper interval graph [14]. If c = 3, then since there are no universal arcs
in M5, it contains either an induced cycle of length 4 or an induced H1, both
are not a proper interval graph [14]. When the model M is an interval model,
then Algorithm 2 by itself is enough to produce a proper interval model, since
NX and N= configurations are not possible.

6 Universal Arcs

In the previous section, we showed how to find a proper circular-arc model for
a circular-arc model which has no universal arc. In this section we show how
to embed a universal arc into a proper circular-arc model. It is enough to show
the embedding of a single universal arc, since the set universal arcs is a clique
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module. We begin with the model M5 which is a proper circular-arc model of
G′. We denote the universal arc which we embed by u.

First, we remove from M5 any arc which can contain another arc. We can
detect these arcs in M4 and using Functions on Arcs, since M4 keeps IC . Let
MW be the model we get by removing the arcs from M5 and let W be the set
of arcs in this model.

Assume that we embed u into MW such that �(u) is immediately to the right
of the endpoint e� and r(u) is immediately to the left of er. Then, we can place
the endpoints of u next to the same endpoints also in M5. This way, u will
intersect every arc of M5, since every such arc is either in W or contains an arc
of W . Moreover, u does not contain any arc in M5, since u does not contain any
arc in MW . Therefore, it is enough to show how to embed u into MW .

We index the arcs of W = {w0, w1, . . . , wp−1} according to the order of their
left endpoints, starting at an arbitrary endpoint �(w0) and going right. Arith-
metic on the subscripts of arcs of W is modulo p where p = |W |.

If p = 0 then G is made only from universal arcs, constructing a proper
circular-arc model is then trivial. If p = 1 then there is a single arc w0, which
every arc contain, in this case w0 is a universal arc, but this cannot happen since
we removed universal arcs from G′. So, we assume p ≥ 2.

The following properties of the model MW were given by Golumbic and Ham-
mer [3]. The model MW is a cyclic list of alternating left and right endpoints,
since if endpoints of two arcs share the same block then one of the arcs can con-
tain the other. The endpoint �(w0) is to the left of some right endpoint r(wp−k)
in MW . Because no arc can contain another arc in MW and because every left
endpoint is to the left of a right endpoint, we get that �(wi) is to the left of
r(wi−k) for every wi ∈ W . Note that if k = 0 then W is an independent set.

If k ≥ p−1
2 then every arc of W intersects any other arc. This contradicts the

fact that G′ does not contain universal arcs.
If k ≤ p−3

2 then G′ contains Cq for some odd 3 ≤ q ≤ p. We can find this
complement of a cycle in O(n) time, and together with u we get C∗

q as a forbidden
induced subgraph.

We are left with the case where k = p−2
2 . In this case, we put �(u) between

�(w0) and r(wp−k) and r(u) between r(w1) and �(wk+1). In this place, the arc u
crosses every arc from wp−k = w(p/2)+1 to wk+1 = wp/2 which are all arcs of W .

Finally, we put �(u) to the right of �(w0) also in M5 and r(u) to the left of
r(w1). We also place back the arcs of clique modules that we removed earlier,
including the universal arcs other than u. The resulting model, which we denote
by M6, is a proper circular-arc model of G.

Last, we discuss the case where G is a proper interval graph. As we noted
above, M5 is a proper interval graph in this case. Therefore, the set W is an
independent set, and k = 0. If p > 2 then G is not an interval graph since
{u} ∪ W contains K1,3. If p = 2, then we can choose w0 such that the circle
is not covered between r(w1) and �(w0) in M5. This way, the same part of the
circle is not covered also in M6, and therefore it is a proper interval model.
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Abstract. We consider graph searching games on directed graphs and corre-
sponding digraph decompositions. In particular we show that two important
variants of these games – underlying DAG- and Kelly-decompositions – are
non-monotone.

Furthermore, we explore the limits of algorithmic applicability of digraph
decompositions and show that various natural candidates for problems, which
potentially could benefit from digraphs having small “directed width”, remain
NP-complete even on almost acyclic graphs.

1 Introduction

The seminal work of Robertson and Seymour in their graph minor project has focused
much attention on graph decompositions and associated measures of graph connectivity
such as tree- or path-width. Aside from the interest in graph structure theory, these
notions have also proved fruitful in the development of algorithms.

Intuitively, tree-width measures the similarity of a graph to a tree. Thus trees have
tree-width one and graphs of small tree-width can be decomposed into parts with at most
tree-width (plus one) vertices in a tree-like manner. Similarly to trees, tree-decompositi-
ons allow for recursive algorithms, whose running time is linear in the size of the un-
derlying graph – but exponential in its width. Together with linear time parameterized
algorithms for constructing tree-decompositions, this implies that a huge number of
NP-complete problems become tractable on graph classes of bounded tree-width (see
[8,7] for a survey on tree-width).

Graph Searching Games. Closely related to tree-width (and path-width) are so called
graph searching games. Graph searching games are played by two players, the searcher
and the fugitive, that simultaneously place tokens on the vertices of a graph. Whereas
the fugitive has only one token and is restricted to move along paths in the graph that
are not occupied by a searcher, the searcher controls an arbitrary amount of tokens and
is free to move them anywhere on the graph. The aim of the searcher is to capture the
fugitive, i.e. to force him into a position where he is not able to move any more. The
minimum number of tokens needed by the searcher to capture the fugitive defines a
natural graph invariant.

Within this general framework, there exist a range of variants defined by different
abilities for both players. In particular one distinguishes between the visible and in-
visible variant. In the visible case, the searchers can see the fugitive and can adapt
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their strategy accordingly. In the invisible case, the fugitive’s position is hidden from
the searcher. Concerning the abilities of the fugitive one distinguishes between the so
called inert variant, where the fugitive is only allowed to move if a searcher is placed
on his current position, and the dynamic variant, where the fugitive can move in any
step of the play. Combining this yields four main variants of which only three will be
considered in this paper: visible and dynamic (vis), invisible and inert (inert), and invis-
ible and dynamic (invis). The forth variant, visible and inert has recently been studied
by Richerby and Thilikos [24].

An important concept in the theory of graph searching games is monotonicity. A
game is monotone, if whenever k searchers can catch a fugitive on a graph they can
do so without allowing the fugitive to re-occupy vertices. In general, restricting the
searchers to monotone strategies may require additional searchers. LaPaugh [18] gave
a first proof of monotonicity for a graph searching game. Since then, monotonicity has
been intensely studied and a large number of monotonicity results have been estab-
lished. See e.g. [3,6,9,12,13,18,19,27] or the survey [2] and references therein.

The importance of monotonicity in the context of graph decompositions results from
the observation that many decompositions, like tree- and path-decompositions, can be
defined in terms of monotone winning strategies for the searcher. Monotonicity for a
game is often established through duality theorems for the underlying decomposition.
Strategies for the fugitive provide the dual notion for the existence of a decomposition
and yield natural obstructions for graphs having small decompositions. For example,
the notion of a bramble is a natural formalisation of a winning strategy for the fugitive
and provides an important obstruction for small tree-width (see [11,20]).

Despite the considerable interest and the large number of results in this field, two
cases have so far resisted any attempts to solve the monotonicity problem – the graph
searching game with a visible, dynamic fugitive and the game with an invisible, inert
fugitive, both played on digraphs. It is these games that are closely related to DAG- and
Kelly-decompositions [4,15]. In this paper,we solve the problems by showing that both
games are non-monotone.

Digraph decompositions. In recent years, attempts have been made to generalise the
notion of tree-decompositions and their algorithmic applications to directed graphs.
Clearly, we can define the tree-width of a directed graph as the tree-width of the undi-
rected graph we get by ignoring the direction of edges, a process which leads to some
loss of information. This loss may be significant, if the algorithmic problems we are
interested in are inherently directed. A good example is the problem of detecting Hamil-
tonian cycles. While we know that this can be solved easily on graphs with small tree-
width, there are directed graphs with very simple connectivity structure which have
large tree-width. Therefore, several proposals have been made to extend the notions of
tree-decompositions and tree-width to directed graphs (see [3,5,15,16,23,25]). In par-
ticular, Reed [23] and Johnson, Robertson, Seymour, and Thomas [16] introduce the
notion of directed tree-width and they show that Hamiltonicity can be solved for graphs
of bounded directed tree-width in polynomial time.

Following this initial paper, several alternative definitions of directed graph decom-
positions have been proposed, with the aim of overcoming some shortcomings of the
original definition. Berwanger, Dawar, Hunter and Kreutzer [4] and Obdržàlek [22]
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introduce the notion of DAG-width and Hunter and Kreutzer [15] introduce the notion
of Kelly-width. All three proposals are supported by algorithmic applications and vari-
ous equivalent characterisations in terms of obstructions, elimination orderings, and, in
particular, variants of graph searching games on directed graphs. However, so far the
algorithmic applications are restricted to few classes of problems, in particular the prob-
lem of finding disjoint paths, Hamiltonian-cycles and similar linkage problems, and
certain problems in relation to combinatorial games (parity games) played on graphs
motivated by the theory of computer-aided verification. Whereas the tree-width of undi-
rected graphs has been employed to solve a huge number of problems on graphs of
small tree-width, the algorithmic theory of directed graph decompositions is not nearly
as rich.

It is an obvious question whether this is due to the fact that digraph decompositions
are a relatively new field of research, where the fundamental machinery first needs to
be developed, or whether this is due to a general limitation of this approach to algo-
rithms on digraphs. In this paper we systematically explore the range of algorithmic
applicability of digraph decompositions. For this, we look at typical NP-hard problems
on graphs – as they can be found in [14], for instance – and identify those that are
“suitable” for this approach, where by “suitable” we mean that the problems should be
NP-hard in general but tractable on acyclic digraphs. The reason for the latter is that all
digraph decompositions proposed so far measure in some way the similarity of a graph
to being acyclic. In particular, acyclic graphs have small width in all of these measures.
Hence, if a problem is already hard on acyclic digraphs, there is no point in studying the
effect of digraph decompositions on this problem. We then identify representatives for
the various types of “suitable” problems and ask whether they can be solved in polyno-
mial time on graphs of small directed tree-, Kelly- or DAG-width or of small directed
path-width.

The results we present in Section 4 show that the border for algorithmic applicability
of digraph decompositions is rather tight. Essentially, as far as classical graph theo-
retical problems are concerned, disjoint paths and Hamiltonian-cycles can be detected
efficiently on graphs of small directed tree-width, but all other problems we considered
such as Minimum Equivalent Subgraph, Feedback Vertex Set (FVS), Feedback Arc Set,
Graph Grundy Numbering, and several others are NP-complete even on graphs with a
very low global connectivity and thus very low directed path or tree-width.

Organisation. The paper is organised as follows. In Section 2 we briefly recall basic
notions from graph and game theory needed later. In Section 3 we give a formal de-
scription of graph searching games and present the first main result of this paper, the
non-monotonicity of the two types of games mentioned above. In Section 4 we explore
the algorithmic boundaries of the digraph decompositions known so far by showing
NP-completeness for a number of problems on digraphs with bounded “width”. We
conclude and state some open problems in Section 5.

2 Preliminaries

We use standard notation from graph theory as can be found in, e.g., [10]. All graphs
and directed graphs in this paper are finite and simple.
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Let G be a (directed) graph. We denote the vertex set of G by V (G) and the edge set
of G by E(G). For X ⊆ V (G) we denote by G[X ] the subgraph of G induced by X
and by G \ X the subgraph of G induced by V (G) \ X . Similarly for Y ⊆ E(G) we
set G \ Y to be the subgraph of G obtained by deleting all edges in Y .

Finally, if X is a set and k ∈ N, we denote by [X ]≤k the set of all subsets of X of
cardinality ≤ k.

3 Graph Searching Games

In this section we show non-monotonicity of two important variants of graph searching
on directed graphs, namely the variants underlying DAG- and Kelly-decompositions.

Graph searching games are played by two players – the searcher and the fugitive –
placing tokens on the vertices of a graph. Whereas the fugitive has only one token and
can only move along paths in the graph that are not blocked by a searcher, the searcher
controls an arbitrary amount of tokens and is free to move them anywhere on the graph.
That is, in any step of the play, the searchers can place new tokens or remove existing
tokens from the board. A play begins with the fugitive choosing his initial position. In
each step, the searchers first announce their intended move. The fugitive can then react
to this by choosing his new position, as long as there is a path from his current to the
new position that does not contain a vertex occupied by a searcher remaining on the
board.

The aim of the searcher is to capture the fugitive, i.e. to force him into a position
where he is not able to move any more. The minimum number of tokens needed by the
searcher to capture the fugitive defines the graph invariant that we are interested in.

More formally, let G be an undirected graph. A position in the game is a pair (X, r),
with X ⊆ V (G) and r ∈ V (G), and a play is a sequence of positions ((X1, r1), . . . ,
(Xn, rn)), such that X1 = ∅ and a move from one position to another is legal, if there
is a path from ri to ri+1 in G \ (Xi ∩ Xi+1). A play is winning for the searcher if
rn ∈ Xn, otherwise it is winning for the fugitive.

Within this general framework, there exist a range of variants defined by different
abilities for both players. In particular one distinguishes between the visible and in-
visible variant. In the visible case, the searchers can see the fugitive and can adapt
their strategy accordingly. In the invisible case, the fugitive’s position is hidden from
the searcher. Concerning the abilities of the fugitive one distinguishes between the so
called inert variant, where the fugitive is only allowed to move if a searcher is placed
on his current position, and the dynamic variant, where the fugitive can move in any
step of the play. Combining these variants yields four main variants of which only three
will be considered in this paper: visible and dynamic (vis), invisible and inert (inert),
and invisible and dynamic (invis).

We are mainly interested in the type of strategies the searcher can employ. One can
easily verify that strategies in these games only depend on the current position in the
game, i.e. are deterministic and positional. Basically, there exist two types of strategies
for the searcher, depending on whether or not the fugitive is visible. In the visible case,
the searcher can take the position of the fugitive into account and thus a strategy is a
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function f : (X, r) → X ′ assigning a new position X ′ to the searcher depending on the
current position (X, r) in the game. In the invisible case, a strategy can simply be seen
as a sequence of positions for the searcher. A strategy for the searcher is winning if all
plays consistent with this strategy are, i.e. plays where the searcher always chooses the
move defined by the strategy.

Let P = ((X1, r1), · · · , (Xn, rn)) be a play. We define the search-width of P , de-
noted by sw(P ), to be sw(P ) := max1≤i≤n|Xi|. Similarly, we define the search-width
of a strategy to be the maximum search-width of all plays consistent with that strategy
and the search-width of a graph G, to be sw(G) := min{sw(f) : f is a winning strat-
egy on G}. Thus the search-width of a graph defines the graph invariant that we are
interested in.

We are now ready to define two important properties of a graph searching game
namely fugitive- and searcher-monotonicity. We say a play is fugitive-monotone if the
fugitive is not able to reach a vertex from which he has previously been expelled. Thus
in a fugitive-monotone play the set of vertices that the fugitive can reach is not in-
creasing. A play is searcher-monotone if the searcher never reoccupies a previously
vacated vertex. On undirected graphs, both notions are closely related: every searcher-
monotone play that is winning for the searcher is also fugitive-monotone and for every
fugitive-monotone play that is winning for the searcher there is a searcher-monotone
play that uses the same amount of searchers. It is thus not always necessary to distin-
guish between both notions and we say a play is monotone if it is both fugitive- and
searcher-monotone.

The notion of monotonicity directly applies to strategies for the searcher, so we
say that a strategy is fugitive-monotone, searcher-monotone or just monotone, if all
plays consistent with that strategy are. Let G be a graph. We define mon-sw(G) :=
min{sw(f) : f is monotone and winning on G} and say that a game is monotone, if
mon-sw(G) := sw(G) for all graphs G.

On undirected graphs all three variants we consider in this paper are monotone and
satisfy:

1. vis-sw(G) = inert-sw(G) = tw(G) + 1, for every graph G, where tw(G) denotes
the tree-width of G (see [11] and [9]).

2. invis-sw(G) = pw(G)+1, for every graph G, where pw(G) denotes the path-width
of G (see [6]).

Depending on how one translates the notion of an undirected path to the directed set-
ting, i.e. whether one regards it as a directed path from source to destination or as two
directed paths, one in each direction, there are two natural variants of this game on di-
rected graphs. We refer to the first variant, where the fugitive is allowed to move along
(searcher-free) directed paths, as reachability variant (reach), and to the second one,
where the fugitive is only allowed to move when there exist a path in each direction, as
strongly connected component (scc) variant, as in this case the fugitive is only allowed
to move in strongly connected components.

Combining these two ways of defined games on directed graphs with the variants
discussed for the undirected setting yields a number of interesting games on directed
graphs of which the following have been discussed in literature: strongly connected
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component, visible and dynamic (scc-vis); reachability, visible and dynamic (reach-
vis); reachability, invisible and dynamic (reach-invis); and reachability, invisible and
inert (reach-inert). We briefly relate these games to the corresponding digraph decom-
positions and recall what is known about monotonicity.

scc, visible, and dynamic. This variant is closely related to directed tree-width as it
is known that scc-vis-sw(D) − 1 ≤ dtw(D) ≤ 3 · scc-vis-sw(D) + 5, for every
digraph D, where dtw(D) is the directed tree-width as defined in [16]. It has been
shown to be neither fugitive- nor searcher-monotone [1,16]. However, although not
explicitly stated, [16] gives an upper bound for the monotonicity costs with respect
to fugitive-monotonicity. It remains an interesting open question whether this holds
for the searcher-monotone variant as well.

reachability, invisible, and dynamic. This variant defines directed path-width and
has been shown to be monotone in [3].

reachability, visible, and dynamic. The monotone version of this variant defines
DAG-width [4,22]. We therefore refer to these games as DAG-games and write
dag-sw(D) and mon-dag-sw(D) for the non-monotone and monotone search-width
of a graph D, with respect to this variant.

reachability, invisible, and inert. The monotone version of this variant defines
Kelly-width [15]. We therefore refer to these games as Kelly-games and write
kelly-sw(D) and mon-kelly-sw(D) for the non-monotone and monotone search-
width of a graph D, with respect to this variant.

We are now ready to state our main results of this section, proving that DAG- and Kelly-
Games are non-monotone.

3.1 Non-monotonicity of DAG-Games

Theorem 3.1. For every p ≥ 2 there exists a digraph Dp with mon-dag-sw(Dp) =
4p − 2 and dag-sw(Dp) = 3p − 1.

proof. A schematic overview of Dp is given in Figure 1. The graph consists of three
main parts with 2p − 1 vertices each. C0 and C2 are cliques on 2p − 1 vertices, C2

1 is a
clique on p − 1 vertices and C1

1 forms an independent set having p vertices. A directed

C
11

C2

C
21

C0

Fig. 1. The graph Dp with dag-sw(Dp) 
= mon-dag-sw(Dp)
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edge between two parts A and B means that there are edges from every vertex in A to
every vertex in B. Undirected edges mean that there are edges between A and B in both
directions. Thus there are edges in both directions between C1

1 and C2
1 , and between C0

and C1
1 ∪ C2

1 . Furthermore there are edges from C0 to C2, and edges from C2 to C1
1 .

It is easy to see that dag-sw(Dp) ≥ 3p−1 since the vertices in C0∪C2
1 together with

a vertex of C1
1 form a clique of size 3p−1. To show that dag-sw(Dp) ≤ 3p−1 consider

the following strategy for 3p−1 searchers on Dp. In the first move the searchers occupy
C0 ∪ C1

1 . If the fugitive plays to C2 the searchers capture him by playing on C1
1 ∪ C2.

Otherwise, if the fugitive plays to C2
1 the searchers move to C0 ∪ C2

1 . Now the fugitive
has to be on a vertex v ∈ C1

1 . Since the vertices in C1
1 form an independent set the

fugitive is now captured by playing to {v} ∪ C2
1 ∪ C0.

It remains to show that mon-dag-sw(Dp) = 4p − 2. It is easy to see that 4p − 2
searchers can capture the fugitive on Dp by playing C0 ∪C2 and then C0 ∪C1

1 ∪C2
1 . To

show that mon-dag-sw(Dp) ≥ 4p− 2 we give a strategy for the fugitive against 4p − 3
searchers playing monotonously on Dp.

First the fugitive stays in C0 until the searchers occupy all vertices of C0. There are
two cases to consider.

1. The searchers occupy (at least) C0 ∪ C1
1 . In this case there is a vertex v ∈ C2

1
which is not occupied by a searcher and which the fugitive can reach from his
current position in C0. Since every v ∈ C2

1 has an edge to every other vertex in
C0 ∪C1

1 ∪C2
1 the searcher cannot capture the fugitive monotonously with less than

4p − 2 searchers.
2. The searchers occupy ( at least ) C0 and there is at least one vertex in C1

1 which is
not occupied by a searcher. Then there exists a vertex v ∈ C2 which is not occupied
by a searcher and which the fugitive can reach from his current position in C0. Since
from every vertex in C2 there is a path to every other vertex in the graph (as long as
there is at least one vertex in C1

1 not occupied by a searcher) the fugitive can stay
in C2 until the searchers occupy all vertices in C1

1 . And if they do the fugitive can
move to a vertex in C2

1 and play as in the first case. ��

3.2 Non-monotonicity of Kelly-Games

We now consider Kelly-games. Recall that in a Kelly-game, the fugitive is invisible.
Hence, a strategy must be independent of the current position of the fugitive. We can
therefore represent a searcher-strategy in a digraph D by a sequence (X1, . . . , Xn) of
searcher-positions. Furthermore fugitive-monotone strategies can simply be given by a
sequence of vertices (v1, . . . , v|D|), reflecting the order in which the vertices become
cleared by the searcher. Note also that since Kelly-games are also inert, the notion of
searcher-monotonicity cannot be applied.

Theorem 3.2. For every p ≥ 2 there exists a digraph Dp with kelly-sw(Dp) = 6p and
mon-kelly-sw(Dp) = 7p.

proof. A schematic overview of Dp is given in Figure 2. The graph consists of five
cliques with |C0| = p, |C2| = |C1| = |X1| = 2p, |X2| = 3p. An edge between two
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X

C1 C0 X1 X2C2

C

Fig. 2. The graph Dp with kelly-sw(Dp) 
= mon-kelly-sw(Dp)

parts A and B means that there are edges from every vertex in A to every vertex in B,
where again an undirected edge between A and B means that there are edges in Dp in
both directions.

The following strategies show that mon-kelly-sw(Dp) ≤ 7p and kelly-sw(Dp) ≤
6p. For the monotone game we use the strategy (X ∪ C0, X2 ∪ C0 ∪ C1, X1 ∪ C0 ∪
C1, X1∪C), i.e. the searchers first occupy all of X and C0, then proceed to X2∪C0∪C1,
and X1 ∪ C0 ∪ C1 and finally move to X1 ∪ C. For the non-monotone case we use
(X ∪ C0, X2 ∪ C0 ∪ C1, X1 ∪ C1, X1 ∪ C1 ∪ C2, X, X ∪ C0).

To see that kelly-sw(Dp) ≥ 6p note that C0 ∪ X is a clique of size 6p. It re-
mains to show that mon-kelly-sw(Dp) ≥ 7p. Suppose mon-kelly-sw(Dp) < 7p
and let S = (v1, · · · , v|V (Dp)|) be a searcher-strategy witnessing this. For each part
Y ∈ {C0, C1, C2, X1, X2, C, X} of Dp let I(Y ) be the greatest index of a vertex in Y ,
i.e. vI(Y ) is the last vertex of Y which is searched by S. Then the following statements
hold:

1. I(X) < I(C1) and I(X) < I(C2). For the sake of contradiction, suppose I(X) >
I(C1) and let v = vI(X). Hence, when the searchers clear v, they have already
cleared all vertices in X other than v and all vertices in C1. As v has edges to every
other vertex in C1 ∪ X , the searchers need to occupy all of (C1 ∪ X) \ {v} before
they can place a token on v. But this requires 7p searchers.
The case of I(X) < I(C2) is analogous.

2. I(C0) < I(C1). Again, assume the contrary, i.e. I(C0) > I(C1). Hence, when
clearing vI(C1) there is a free vertex v ∈ C0 through which the fugitive can reach all
of X . As I(X) < I(C1), the searchers needs to occupy at least (X∪C1)\{vI(C1)}
before clearing vI(C1), which yields the contradiction.

3. I(C1) < I(C2). With a similar reasoning as before we obtain that otherwise the
searchers have to occupy X ∪ C2 when searching vI(C2), using 7p searchers.

The statements (1)-(3) imply I(X) < I(C0) < I(C1) < I(C2) but now the searcher
needs to occupy |C2 ∪C1 ∪C0 ∪X1| = 7p vertices in order to search vI(C2). So S uses
at least 7p searchers. ��
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4 Limits of Algorithmic Applications

In [16] it has been shown that the k-disjoint path problem as well as related problems,
including the Hamiltonian-path problem, are solvable in polynomial time on graphs of
bounded directed tree-width. However, up to now only few other problems are known
to be solvable with the help of digraph decompositions, a further example being par-
ity games, which are tractable on graphs of bounded DAG- and Kelly-width [4,15].
As directed tree-width is the most general of these width-measures, tractability results
for directed tree-width directly extend to all other measures. The converse is not true,
for example it is not known whether parity games are tractable on graphs of bounded
directed tree-width.

In this section we explore the algorithmic boundaries of the digraph measures in-
troduced so far. In our analysis we focus on NP-complete problems that are explicitly
directed. All analysed problems are solvable in polynomial time on digraphs whose
underlying undirected graph has bounded tree-width – but as mentioned in the intro-
duction, tree-width is not a good measure for the global connectivity of a digraph. Fur-
thermore, we discard problems that are not tractable on acyclic graphs, as all measures
defined so far are bounded on acyclic graphs. As representatives for various types of the
remaining problems, we have considered the following problems: Minimum Equivalent
Subgraph, Directed Feedback Vertex / Arc Set, Graph Grundy Numbering, and Kernel.

It turns out that all of these problems remain NP-complete even on digraphs that have
very low global connectivity, i.e. digraphs that can be decomposed into components of
constant size just by removing a small number of vertices. In particular, these graphs
have low width with respect to all digraph decompositions defined so far, i.e. small
directed path width, small DAG-, Kelly-, and directed tree-width, small Entanglement
and D-width. In order to state the proofs in their most general way we define the class
CONN j

i as follows:

Definition 4.1. Let i and j be integers. We define CONN j
i to be the class of digraphs,

such that for every digraph D ∈ CONN j
i there exists a vertex set X ⊆ V (D) with

|X | ≤ j, such that every component in D \ X has at most i vertices.

As mentioned above it is easy to see that:

Proposition 4.2. For all i and j the class CONN j
i has bounded directed path-width,

directed tree-width, D-width, DAG-width, Kelly-width and Entanglement 1.

4.1 Minimum Equivalent Subgraph

The Minimum Equivalent Subgraph (MES)-problem is the problem to compute in a
given digraph D an edge-minimal subgraph D′ ⊆ D that preserves reachability in D.

Definition 4.3. Let D be a digraph and k ∈ N. MES is the problem to decide, if there
exists a set E′ ⊆ E(D) with |E′| ≤ k, such that the digraph D′ = (V (D), E′) contains
a path between two vertices if, and only if, such a path exists in D, i.e. D and D′ have
the same transitive closure.

1 An upper bound for all given width parameters is i + j.
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MES is NP-complete for arbitrary digraphs (see [14]), but is known to be solvable
in polynomial time for acyclic and undirected graphs. In [21] it is also shown that it
suffices to consider MES on connected digraphs. There MES is equivalent to a general-
isation of the directed hamiltonian cycle problem, the so-called round-trip-problem, in
which vertices can be used more than once. This is particularly interesting because the
directed hamiltonian cycle problem is a special case of the k-linkage problem, which
can be solved in polynomial time on digraphs of bounded directed tree-width.

Definition 4.4. Let D be a connected digraph. A round-trip R = (v1, · · · , vk, v1) is a
sequence of k + 1 vertices of D, such that (vi, vi+1) ∈ E(D) and R visits every vertex
of D at least once. The size of R equals the number of distinct edges used by R.

Lemma 4.5. [21] Let D be a connected digraph and k a natural number. Then D has
a MES of size less than k if, and only if, D has a round-trip of size less than k.

The NP-completeness of MES for digraphs in CONN 1
3 follows from a reduction of

3-SAT to the problem of finding a minimum round-trip in a connected digraph. Due to
space restrictions the proof is deferred to the appendix.

Theorem 4.6. The MES-problem is NP-complete even when restricted to digraphs in
CONN 1

3.

4.2 Feedback Vertex Set / Feedback Arc Set

The Feedback Vertex/Arc Set (FVS/FAS)-problem is the problem to find a minimum set
of vertices (edges) in a digraph D, whose removal leaves D acyclic. Both problems
are known to be NP-complete on arbitrary digraphs (see [17]). Trivially both problems
become efficiently solvable on acyclic graphs.

We prove the NP-completeness of FVS/FAS on digraphs in CONN 1
4 respectively

CONN 2
8 by reducing to it a special variant of 3-SAT namely 3-SAT-2, which we intro-

duce now.

Definition 4.7. 3-SAT-2 is the variant of 3-SAT, so that every literal is used in at most
two clauses.

3-SAT-2 is NP-complete. As before the proofs can be found in the appendix.

Theorem 4.8. FVS respectively FAS are NP-complete even when restricted to digraphs
in CONN 1

4 respectively CONN 2
8.

4.3 Graph Grundy Numbering and Kernel

Definition 4.9. Graph Grundy Numbering is the problem to decide for a digraph D, if
there exists a function f : V (D) → N, such that for all v ∈ V (D), f(v) is the smallest
natural number not contained in {f(u) : u ∈ V (D), (v, u) ∈ E(D)}.

Definition 4.10. Kernel is the problem to decide in a digraph D, if there exists V ′ ⊆
V (D), such that
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1. there is no edge between two vertices in V ′, i.e. V ′ is an independent set.
2. for every v ∈ V (D) \ V ′ there exists a u ∈ V ′ with (v, u) ∈ E(D).

Observe, that on undirected graphs the maximisation version of Kernel is the Inde-
pendent Set-problem, whereas the minimisation version of Graph Grundy Numbering
equals Vertex-Colouring. In contrast to the undirected case, where every graph has an
Independent Set and a Vertex Colouring, not every digraph has a Kernel or a Graph
Grundy Numbering and it is already NP-complete to decide whether a Kernel or a
Graph Grundy Numbering do exist [26]. A simple example of a digraph that neither
has a Graph Grundy Numbering nor a Kernel is the directed cycle with three vertices.
Nevertheless it is easy to see that Kernel and Graph Grundy Numbering are trivially
solvable on acyclic graphs. We are now ready to prove the NP-completeness for Graph
Grundy Numbering on digraphs in CONN 0

4 - again the proofs are deferred to the
appendix.

Theorem 4.11. Graph Grundy Numbering and Kernel are NP-complete even when re-
stricted to digraphs in CONN 0

4.

5 Conclusion and Open Problems

In this paper we considered graph searching games on directed graphs and established
non-monotonicity for two important variants of these games. Our examples show that
the monotonicity costs for these games cannot be bounded by an additive term, i.e. for
any k there are digraphs where at least k additional searchers are required to catch
a robber with a monotone strategy. However, so far there is no upper bound for the
monotonicity costs involved. It is conceivable that there is a constant c ∈ N such that
whenever n searchers suffice to catch a robber on a digraph D in any of the two variants,
than c · n searchers suffice for a monotone strategy. This, however, is left as an open
problem.

A different trait we explored in this paper are the limits of an algorithmic theory
based on directed graph decompositions. We showed that while there are interesting
and important examples for natural problems that become tractable on digraphs of small
width, many other natural problems remain NP-complete even if the digraphs have very
low global connectivity.
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Abstract. Graph searching problems are described as games played on
graphs, between a set of cops and a fugitive. Variants of the game restrict
the abilities of the cops and the fugitive and the corresponding search
numbers (the least number of cops that have a winning strategy) are
related to several well-known parameters in graph theory. We study the
case where the fugitive is visible (the cops’ strategy can take into ac-
count his current position) and lazy (he moves only when the cops move
to his position). Our results are stated and proven in a general setting
where the fugitive’s speed (i.e., the lengths of paths he can move along)
can be unbounded or bounded by some constant. We give a min-max
characterization of the corresponding parameters, which we show to be
computable in polynomial time for fugitivess with unbounded speed and
speed at most 3 and to be NP-complete for all other finite speeds. This is
in contrast to the other standard versions of the game, where the param-
eters corresponding to fugitives with unbounded speed are NP-complete.
Several consequences of our results are also discussed.

1 Introduction

Graph searching games are played between a group of cops and a fugitive, on
the vertices and edges of a graph. The cops aim to capture the fugitive, while
the fugitive tries to escape capture. The rules by which the players move lead to
several variants of the game. While the definition and study of such games dates
back to the late 1970s [18, 19], they have recently been studied widely, mainly
due to numerous applications in security problems in networks [1,4, 10, 11].

There are several basic variants of the game and we consider only those where
the cops and the fugitive reside on the vertices of the graph. At any one time,
the fugitive occupies some vertex of the graph but each cop, independently, may
be either on a vertex of the graph or out of play. In node search games, the cops
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are moved either by placing them on or removing them from vertices; in the
more general setting of mixed search, a cop may, in addition, slide along an edge
from the endpoint he occupies to the other, vacant, endpoint. In both variants,
the fugitive moves along cop-free paths in the graph. The fugitive is captured if
a cop moves to the vertex he occupies and he has no path along which to escape.
If the fugitive is captured, the cops win; if he remains on the run forever, he
wins. (We do not consider edge search, where the fugitive resides on edges of the
graph, as this can be reduced to mixed search by standard techniques.)

Further variants of the game come from altering the properties of the fugitive.
He may be either visible to the cops, in which case the cops may use the fugitive’s
current position to choose their moves, or invisible, in which case the cops do
not know where he is and their moves may be specified in advance. He may also
be lazy, in which case he moves only when a cop moves to his vertex, or active,
in which case he may move at every round of the game.

Each variant of the game generates a graph parameter that is the minimum
number of cops that have a winning strategy in a given graph. In this paper,
we concentrate mostly on node search. For the visible–active and invisible–lazy
cases, the node search number is known to be one greater than the treewidth
of the graph; for the invisible–active case, it is one greater than the graph’s
pathwidth. Similar parameters can be defined for mixed search [5, 20, 23, 24].
The decision problems associated with these graph parameters are known to be
NP-complete.

In this paper, we study the remaining case, where the fugitive is visible and
lazy, which does not seem to have been considered before. Generalizing, we
parameterize the game by the speed s of the fugitive, i.e., the maximum length
of paths along which he may move. We write, respectively, vlnss and vlmss for
the node- and mixed-search numbers for a fugitive with speed s, with s = ∞
denoting a fugitive with unbounded speed. Our main result is a min-max theorem
for the two parameters, for any speed s ∈ N ∪ {∞}. In particular, we give
a characterization in terms of the existence of specific obstructing structures,
which we call hide-outs, that guarantee an escape strategy for the fugitive.

We also introduce two hierarchies of graph parameters, defined in terms of
layouts, which we write δs and δs

m. These parameters are equivalent, respectively,
to vlnss and vlmss. The min-max theorem implies that our search parameters,
in the case of a fugitive with unbounded speed, can be computed in polynomial
time, which is quite unexpected, since all other variants of the game discussed
above lead to NP-complete parameters. The parameters can also be computed
in polynomial time for fugitives with speed at most 3; for other finite speeds,
they are NP-complete. The known results for fugitives of unbounded speed are
summarized in Table 1.

δs is a natural generalization of the classical graph parameter of degeneracy,
defined as δ∗(G) = max {δ(H) | H ⊆ G}, where δ(H) is the minimum degree of
H ’s vertices. It is known from folklore that δ∗(G) = δ1(G) [17, 6] and δ∗(G) + 1
is also known as the graph’s colouring number, since there is an easy greedy
algorithm that colours a graph G with that many colours [9].
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Table 1. Graph node-search variants (for fugitives with unbounded speed), their cor-
responding graph parameters and their complexities

node search Visible Invisible
Lazy δ∞ + 1, in P [this paper] tw + 1 [8], NP-c [2]

Active tw + 1 [22], NP-c [2] pw + 1 [5,14], NP-c [2]

We prove that each of vlnss and vlmss defines a nontrivial hierarchy of
parameters: for any r and s with 3 
 r < s < ∞, there are graphs with
vlnsr(G) < vlnss(G) < vlns∞(G) and similarly for mixed search.

To give a lower bound for treewidth, Bodlaender, Koster and Wolle define the
contraction degeneracy of a graph G to be δC(G), the maximum δ(H) over non-
trivial minors H of G [15,25,6]. We extend contraction degeneracy by replacing
the term δ(H) with δs(H) and show that the extension δ∞C(G), where δ(H)
is replaced with δ∞(H), approximates treewidth, in the sense that there is a
function f such that, for all graphs, δ∞C(G) 
 tw(G) 
 f(δ∞C(G)). This
improves on contraction degeneracy, which is known to provide only a lower
bound for treewidth.

The remainder of the paper is organized as follows. Section 2 gives basic
definitions. The searching model for a visible, lazy fugitive is formally described
in Section 3. Our main results appear in Section 4, where we define hide-outs
and our generalization of graph degeneracy and state the min-max theorem. We
also give the the corresponding algorithm and determine its complexity. The
nontriviality of the hierarchies defined is shown in Section 5. In Section 6, we
generalize contraction degeneracy and we make concluding remarks and present
some open problems in Section 7.

2 Preliminaries

We write N for the set {1, 2, . . .} and N+ for N ∪ {∞}. Given a set S and an
object x, we write S + x and S − x for S ∪ {x} and S \ {x}, respectively.

All graphs considered in this paper are finite, simple and undirected. To avoid
trivial exceptions, we assume that all graphs contain at least one edge.

We write V (G) and E(G), respectively, for the vertex set and edge set of a
graph G and xy for the undirected edge {x, y}. For X ⊆ V (G), G[X ] is the
subgraph of G induced by the vertices in X and, for Y ⊆ E(G), G − Y =
(V (G), E(G)\Y ). Given a vertex x ∈ V (G), we let EG(x) be the set of all edges
of G incident with x. We write G − x for the graph G[V (G) − x] and δ(G) and
∆(G) for the minimum and maximum degree of G’s vertices, respectively.

The operation of dissolving a vertex x ∈ V (G) of degree two is the removal
of x from G and the addition of an edge connecting its two former neighbours.
A graph H is a topological minor of G if it can be made from some subgraph
of G by dissolving vertices of degree two. A graph H is a minor of G if it can
be made from a subgraph of G by contracting edges (i.e., identifying the two
endpoints of the edge and deleting the resulting loop).
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A tree decomposition of a graph G is a pair (X, T ) where T is a tree and
X = {Xi | i ∈ V (T )} is a collection of subsets of V (G) such that:

–
⋃

i∈V (T ) Xi = V (G);
– for each edge xy ∈ E(G), {x, y} ⊆ Xi for some i ∈ V (T ); and
– for each x ∈ V (G), {i | x ∈ Xi} induces a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ V (T )}, T ) is defined to be
maxi∈V (T ) {|Xi|}− 1 and the treewidth of a graph G is the minimum width over
all tree decompositions of G. If we restrict the tree T to be a path, then we define
the notions of path decomposition and pathwidth. We write tw(G) and pw(G),
respectively, for the treewidth and pathwidth of a graph G.

3 The Searching Model

In this section, we define a model for the graph search game against a visible,
lazy fugitive. The players have complete information about each other’s position
and may use this to decide their next move. The cops’ goal is to capture the
fugitive who tries, of course, to evade capture. Initially, there are no cops in the
graph but, at any moment before his capture, the fugitive is on some vertex. The
fugitive is lazy, in that he may move only when a cop is moved to his current
vertex. When he moves, he does so with speed s ∈ N+; that is, he moves along
cop-free paths of length at most s.

A play of the game consists of a sequence of rounds, with each round being
composed of three parts, as follows.

Announcement. The cops announce their intended move to the fugitive. This
can be: the placement of a cop on a vertex x, not currently occupied by a
cop; the removal of a cop from an occupied vertex x; or sliding a cop from
one end x of an edge xy to the other, which is initially not occupied.

Avoidance. If a cop is to be placed on or slid to the fugitive’s current vertex,
the latter may move along any cop-free path of length at most s. In the case
of placement to x, that vertex is not considered blocked at this round; for
sliding from x to y, the edge xy is considered blocked but the vertices x and
y are not.

Realization. The cops carry out the announced action.

The fugitive is captured if a cop moves to his vertex and he has no move to escape.
We may assume that the fugitive has full knowledge of the cops’ strategy and
will take the optimal decision towards avoiding capture. The fugitive is visible,
so the cops’ moves take his position into account and the game is interactive.

We denote the position of the fugitive in the graph at the ith round by a
vertex vi ∈ V (G). Since, at any time, there is at most one cop on eacy vertex,
we may represent the position of the cops after the ith move as a set Si ⊆ V (G).

We say that a finite or infinite sequence S0, S1, . . . of subsets of V (G) is
consistent if, for all i � 0, G[Si � Si+1] is either a single vertex or a two-clique.
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Thus, the sequence corresponds to a sequence of cop positions in a play of the
game and either Si+1 = Si + x for some x /∈ Si (placement to x), Si+1 = Si − x
for some x ∈ Si (removal from x) or Si � Si+1 is an edge of G (sliding from the
unique vertex in Si \ Si+1 to the unique vertex in Si+1 \ Si).

Given two consecutive sets S and S′ of a consistent sequence, we say that a
path P in G is (S, S′)-avoiding if its internal vertices avoid S ∩ S′ and its edges
avoid the edge e = S � S′, in the case that |e| = 2.

Let k ∈ N and s ∈ N+. A (k, s)-play of the game on a graph G is a finite or
countably infinite sequence of alternating vertex sets and vertices

〈Si, vi | 0 
 i < κ〉

for some κ ∈ N+, such that:

– S0 = ∅;
– the sequence S0, S1, . . . is consistent;
– |Si| 
 k for all i; and
– for each i with 0 < i < κ, either

• vi−1 /∈ Si and vi = vi−1 (the cops did not move to the fugitive’s vertex
so he did not move);

• vi−1 ∈ Si, there is an (Si−1, Si)-avoiding path of length at most s from
vi−1 to vi and vi /∈ Si (the cops moved to the fugitive’s vertex and he
ran along a cop-free path of length at most s); or

• i = κ − 1, vi = vi−1 ∈ Si and there are no (Si−1, Si)-avoiding paths
from vi (we are at the last move of a finite play, a cop has moved to
the fugitive’s vertex and he has no cop-free path on which to escape: the
fugitive has been captured).

Each move made by the cops may depend both on their current position and
that of the fugitive. A (k, s)-strategy is a function

µ : V (G)[�k] × V (G) → V (G)[�k],

whose inputs are the position S of the cops and the position v of the fugitive and
whose output is S′, the new position of the cops, which is reached by a single
placement, removal or sliding move and with |S′| 
 k. The strategy is to be
used against a fugitive who has speed s ∈ N+. (A consequence of our min-max
theorem is that we do not need to consider more general notions of strategy,
where the cops’ move may depend on the whole history of the game, in addition
to the current position.)

Given a (k, s)-strategy µ, a µ-play is any (k, s)-play 〈Si, vi : 0 
 i < κ〉 where
Si+1 = µ(Si, vi) for all i. A strategy µ is said to be winning for the cops against
a fugitive with speed s if every µ-play is finite (i.e., results in the capture of the
fugitive). We define the visible, lazy mixed search number against a fugitive with
speed s for a graph G to be

vlmss(G) = min {k | there is a winning (k, s)-strategy for G} .
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G H

Fig. 1. The graph H is a minor of G, however vlns∞(G) = 4, while vlns∞(H) = 7.
The vertices of degree six in H form a (6, ∞)-hide-out, as shown by the bold paths (see
Section 4).

Applying the same definitions but allowing only placement and removal moves
(i.e., |Si � Si+1| = 1 for all i), gives the analogous visible, lazy node search
number against a fugitive with speed s for a graph G, vlnss(G).

The following lemma gives key properties of the defined parameters.

Lemma 1. For any graphs G and H and any s ∈ N+,

1. δ(G) + 1 
 vlnss(G) 
 ∆(G) + 1 and δ(G) 
 vlmss(G) 
 ∆(G);
2. vlmss(G) 
 vlnss(G) 
 vlmss(G) + 1;
3. if H ⊆ G, then vlnss(H) 
 vlnss(G) and vlmss(H) 
 vlmss(G);
4. if H is a topological minor of G, then we have vlns∞(H) 
 vlns∞(G) and

vlms∞(H) 
 vlms∞(G).

Thus, vlns∞ and vlms∞ are closed under taking subgraphs and topological
minors. However, they are not closed under taking minors, since every graph G
is a minor of some graph H with ∆(H) 
 3. G may have arbitarily large search
numbers but, by Lemma 1.1, vlns∞(H) 
 4 and vlms∞(H) 
 3. Lemma 1.4
cannot be extended to vlnss or vlmss for finite s. For s ∈ N, there are graphs G
with topological minors H such that vlnss(H) > vlnss(G) = 3 or vlmss(H) >
vlmss(G) = 2: for example, take H to be any clique and replace the edges with
independent (s + 1)-paths to make G. (See also Figure 1.)

Variants of the above model have already appeared in the literature, for fugi-
tives of unbounded speed. The version where the fugitive is visible and active is
due to Seymour and Thomas [22], who show that the corresponding node-search
number is tw(G) + 1; the node-search number is the same for an invisible, lazy
fugitive [8]. Finally, the version with an invisible, active fugitive was introduced
by Kirousis and Papadimitriou [14] and studied further by Bienstock and Sey-
mour [5]. In this case, the node-search number is pw(G) + 1 [13, 14]. It follows
immediately that determining any of the above search numbers is NP-complete
and the same can also be shown for the mixed search variants of all of these
games. However, we prove that the parameters vlns∞(G) and vlms∞(G) are
polynomial-time computable. These results are summarized in Table 1.
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y Y

w

Xx

Fig. 2. An example graph with δs(G) = 2 for any s ∈ N+

4 Degeneracy and Hide-Outs

Let G be a graph, x ∈ V (G) and X ⊆ V (G) − x. For any s ∈ N+, we say that a
set A ⊆ V (G)−x is an (s, x, X)-separator if G−A contains no path from x to X
of length at most s. Define seps

G(x, X) to be the minimum size of any (s, x, X)-
separator in G. For example, for the graph G in Figure 2, sep∞

G (x, X) = 1, as w is
a cut vertex. However, seps

G(x, X) = 0 for any s < 4. Moreover, sep3
G(x, Y ) = 2

and sep2
G(x, Y ) = sep1

G(x, Y ) = 1.
For s 
 3 and s = ∞, seps

G(x, X) is the maximum cardinality of any set of
x–X paths of length at most s that are vertex-disjoint apart from the common
endpoint x. This is immediate from Menger’s theorem in the case s = ∞ and can
be shown by a simple modification to the proof of Lovász et al. [16, Theorem 3]
for s 
 3. On the other hand, for finite s � 4, there are graphs where seps(x, X)
is greater than the maximum number of disjoint s-paths from x to X [16].

Lemma 2. Let s ∈ N+. Given a graph G, x ∈ V (G), X ⊆ V (G)− x and k ∈ N,
the problem of determining whether seps

G(x, X) 
 k is in polynomial time for
s ∈ {1, 2, 3,∞} and is NP-complete for all other s.

Proof. The case s = ∞ is immediate from the max-flow min-cut theorem and
the existence of polynomial-time algorithms for computing maximal flows. For
finite values of s, the result follows from [12] and [16]. ��

In fact, for any fixed s � 4, it is NP-hard even to approximate seps(x, X) to
within a constant factor of 1.1377 [3].

Let G be a graph, k ∈ N and s ∈ N+. A (k, s)-layout of G is an ordering
v1, . . . , vn of V (G) such that, for every i ∈ {1, . . . , n}, seps

G(vi, {v1, . . . , vi−1}) 

k. We define the s-degeneracy of G to be δs(G), the least k for which G has
a (k, s)-layout. Notice that the 1-degeneracy is identical to the classical graph-
theoretic parameter of degeneracy.

A (k, s)-hide-out in a graph G is any set R ⊆ V (G) such that, for every
x ∈ R, seps

G(x, R − x) � k. In Figure 1, the set of vertices in H of degree six is
a (6,∞)-hide-out; one of the sets of paths is shown in bold.

The s-degeneracy of a graph and the presence or absence of (k, s)-hide-outs
within it are closely linked with the node search number for a visible, lazy fugi-
tive. We now adapt these two concepts for mixed-search. First, set

mseps
G(x, X) = min {seps

G−Y (x, X) | Y ⊆ EG(x) and |Y | 
 1} .
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Algorithm 1. check-s-degen: check whether δs(G) 
 k

Input: an n-vertex graph G and an integer k � 1.
Output: if δs(G) 
 k, a (k, s)-layout; if not, a (k, s)-hide-out.

S ← V (G).
for i = n, . . . , 1,

if there is x ∈ S with seps
G(x,S − x) 
 k then vi ← x;

else output “δs(G) � k + 1, witnessed by hide-out S.”
S ← S − vi.

Output “δs(G) 
 k, witnessed by layout v1, . . . , vn.”

That is, Y can be either empty, or a singleton containing one edge incident with
x. Notice that msep1

G(x, X) + 1 = sep1
G(x, X) = dG[X+x](x). Also, for s � 2,

mseps
G(x, X) 
 seps

G(x, X) 
 mseps
G(x, X) + 1.

For example, in graph G of Figure 2, we have sep3
G(x, Y ) = msep3

G(x, Y ) = 2,
while sep3

G(y, Y ) = 2 = msep3
G(y, Y ) + 1.

Lemma 3. Let s ∈ N+. Given a graph G, x ∈ V (G), X ⊆ V (G)− x and k ∈ N,
the problem of determining whether mseps

G(x, X) 
 k is in polynomial time for
s ∈ {1, 2, 3,∞} and is NP-complete for all other s.

Proof (sketch). Let z be a new vertex, that does not appear in G. It can be
shown that mseps

G+xz(x, X +z) = seps
G(x, X) and the result is then immediate

from Lemma 2. ��

Let G be a graph, k ∈ N and s ∈ N+. A mixed (k, s)-layout is an order-
ing v1, . . . , vn of V (G) such that mseps

G(vi, {v1, . . . , vi−1}) 
 k for every i ∈
{1, . . . , n}. Let the mixed s-degeneracy of G be δs

m(G), the least k for which G
has a mixed (k, s)-layout. In Figure 2, δ1

m(G) = 1 and δs
m(G) = 2 for s � 2.

We define a mixed (k, s)-hide-out in a graph G to be any set R ⊆ V (G) such
that for every x ∈ R, mseps

G(x, R − x) � k. In the graph G of Figure 2, the
black vertices form a mixed (2, s)-hide-out for any s � 2.

We are now ready to give our min-max characterizations for both vlnss(G)
and vlmss(G) for all s ∈ N+.

Theorem 4. For any graph G and any s ∈ N+,

vlnss(G) − 1 = δs(G) = max {k | G contains a (k, s)-hide-out}
vlmss(G) − 1 = δs

m(G) = max {k | G contains a mixed (k, s)-hide-out} .

It follows that Algorithm 1 can be used to compute δs(G) for any s ∈ N+.
The algorithm attempts to construct a (k, s)-layout of G greedily, which would
show that δs(G) 
 k. If this fails, a (k, s)-hide-out of G has been detected
and, since the hide-out itself has no (k, s)-layout, nor does G. A straightforward
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modification of the algorithm, replacing seps with mseps, determines whether
δs
m(G) 
 k, giving either a mixed (k, s)-layout or a mixed (k, s)-hide-out. By

Lemmata 2 and 3, both variants of the algorithm run in polynomial time for
s = ∞ and s 
 3.

Theorem 5. Let s ∈ N+. Given a graph G and k ∈ N, the problem of determin-
ing whether vlnss(G) 
 k (respectively, vlmss(G) 
 k) is computable in time
polynomial in |V (G)| if s ∈ {1, 2, 3,∞} and is NP-complete otherwise.

Proof (sketch). The polynomial-time cases are covered above. The remaining
cases for node search are in NP because the fact that vlnss(G) 
 k is witnessed
by a (k, s)-layout v1, . . . , vn, along with an (s, vi, {v1, . . . , vi−1})-separator of size
at most k for each i ∈ {1, . . . , n} and the validity of such a witness can be checked
in polynomial time. NP-completeness is proven by reduction from the problem of
determining whether seps

G(x, X) 
 k. The mixed search versions are similar. ��

The strategies we have considered only allow the cops to choose their next move
based on the current position in the game. A consequence of Theorem 4 is that
we do not need to consider more general forms of strategy: if there is no (k, s)-
strategy for a graph, then there is a hide-out and the existence of this hide-out
allows the fugitive to escape from any kind of k-cop strategy.

5 Comparisons

In this section, we show that increasing the speed of the fugitive, even by just
one, or moving from bounded to unbounded speed or from a lazy fugitive with
unbounded speed to an active one can increase the search number of a graph by
an arbitrary amount. We analyse the simpler node-search parameters but the
same conclusions can be derived for mixed search using the same ideas.

Proposition 6. For any G, δ1(G) 
 δ2(G) 
 δ3(G) 
 · · · 
 δ∞(G) 
 tw(G).

Proof. Immediate from the game characterizations. From left to right, the fugi-
tive becomes stronger: from lazy with unit speed, through lazy with increasing
bounded speed, to lazy with unbounded speed and, finally, active with unbounded
speed. ��

Thus, the existence of a (k,∞)-hide out can provide easy lower bounds for the
treewidth of graphs. For instance, the graph H in Figure 1 contains a (6,∞)-
hide-out, so tw(H) � δ∞(H) � 6. Since H is a minor of G, we have tw(G) � 6.
It is easy to see that seven cops have a winning node search strategy on G against
a visible, active fugitive, so tw(G) < 7 and we conclude that tw(G) = 6.

The main result of this section is the following.

Theorem 7. Let 3 
 d1 
 d2 
 · · · 
 dr 
 dr+1 
 dr+2. There is a connected
graph G such that δs(G) = ds for s 
 r, δ∞(G) = dr+1 and tw(G) = dr+2.
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6 Extending Contraction Degeneracy

A popular approach to estimating treewidth is to look for algorithms or heuristics
that compute lower bounds for it. By Proposition 6, degeneracy gives such a lower
bound but, by considering variants of grid graphs with degree at most three, it
is easily seen that there are graphs G of arbitrary treewidth but with δ1(G) = 3.

Bodlaender, Koster and Wolle [6,25,15] define the contraction degeneracy of
a graph to be

δC(G) = max {δ1(H) | H is a non-trivial minor of G} .

Contraction degeneracy seemed to be a good lower bound for treewidth — notice
that δ1(G) 
 δC(G) 
 tw(G). Bodlaender et al. prove the problem of determin-
ing, given G and k, whether δC(G) = k is NP-complete and propose heuristics
for computing the parameter [6].

We have defined the hierarchy δs for s ∈ N+, which can be seen as an extension
of degeneracy. As δ1(G) 
 δ∞(G) 
 tw(G), δ∞ is, itself, a better lower bound
for treewidth than degeneracy and is still polynomial-time computable, though
the same examples as before show that there are graphs G with δ∞(G) = 3 and
arbitrary treewidth. However, we can follow the approach of Bodlaender at al.
and define, for any s ∈ N+, the parameter

δsC(G) = max {δs(H) | H is a non-trivial minor of G} .

Note that δ1C(G) = δC(G). The following is immediate from Proposition 6.

Proposition 8. For any graph G,

δ1C(G) 
 δ2C(G) 
 δ3C(G) 
 · · · 
 δ∞C(G) 
 tw(G) .

Thus, one can expect δ∞C(G) to give a better lower bound for treewidth than
contraction degeneracy. Unfortunately, δ∞C(G) can, itself, be shown to be NP-
complete — the proof is almost identical to the proof for contraction degeneracy
in [6]. However, treewidth is bounded above by a function of δ∞C(G), while
contraction degeneracy gives only a lower bound, because δC(G) 
 5 for any
planar G [6] but tw(G) can be arbitrarily large.

Theorem 9. There is a function f : N → N such that, for all graphs G,
δ∞C(G) 
 tw(G) 
 f(δ∞C(G)).

If a planar graph does not contain the k×k grid as a minor, then tw(G) 
 O(k)
[21]. Therefore, for planar G, tw(G) 
 O((δ∞C(G))3/2). The same observation
can be extended to any class of graphs with an excluded minor [7].

7 Concluding Remarks

We have studied the number of cops required to catch a lazy, visible fugitive mov-
ing with bounded or unbounded speed in a graph, using node search and the
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more general mixed search. We have shown that the associated search numbers
correspond to graph parameters that are generalizations of the classical notion of
degeneracy and characterized these parameters in terms of forbidden substruc-
tures, which we call hide-outs. Most parameters associated with graph searching
are NP-complete in the case of fugitives with unbounded speed. However, our
parameters are polynomial-time computable for fugitives with unbounded speed
or speed at most three, and NP-complete for all other finite speeds.

For most other graph searching parameters, an important issue for proving
membership in NP is proving monotonicity of the game [11]. In the monotone
versions of the games, the cops are only allowed to use strategies that gradually
restrict the fugitive to smaller regions of the graph such that, once he has been
cut off from a vertex in the graph, he can never return there. A game is said to
be monotone if restricting the cops to using montone strategies does not increase
the number of cops required on any graph. This is not required in the cases of
vlns∞ and vlms∞ since our complexity bounds are proven by other means.
Monotonicity is a natural property of graph searching games in its own right
and it is natural to ask whether the games we have defined are equivalent to
monotone versions. However, in the case of a visible, lazy fugitive with bounded
speed, it is not obvious how one should define montonicity and we leave this as
an open issue.

We have shown that δ∞ can serve as a lower bound for treewidth and path-
width and that δ∞C approximates treewidth. It would be interesting to know
whether there are graph classes where δ∞ approximates treewidth or pathwidth
or on which δ∞C serves as a good approximation.
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Abstract. We generalize the linear-time shortest-paths algorithm for
planar graphs with nonnegative edge-weights of Henzinger et al. (1994)
to work for any proper minor-closed class of graphs. We argue that their
algorithm can not be adapted by standard methods to all proper minor-
closed classes. By using recent deep results in graph minor theory, we
show how to construct an appropriate recursive division in linear time
for any graph excluding a fixed minor and how to transform the graph
and its division afterwards, so that it has maximum degree three. Based
on such a division, the original framework of Henzinger et al. can be
applied. Afterwards, we show that using this algorithm, one can imple-
ment Mehlhorn’s (1988) 2-approximation algorithm for the Steiner tree
problem in linear time on these graph classes.

1 Introduction

The single-source shortest-paths problem with nonnegative edge-weights is one
of the most-studied problems in computer science, because of both its theoretical
and practical importance. Dijkstra’s classical algorithm [1] has ever since its dis-
covery been one of the best choices in practice. Also from a theoretical point of
view, until very recently, it had the best running time in the addition-comparison
model of computation, namely O(m+n log n) using Fibonacci heaps [2] (we use n
to denote the number of vertices of a graph and m for its number of edges). Pet-
tie and Ramachandran [3] improved the running time in undirected graphs for
the case when the ratio r between the largest and smallest edge-weight is not too
large. They achieve a running time of O(mα(m, n) + min{n log n, n log log r}),
where α(m, n) is the very slowly growing inverse-Ackermann function. Gold-
berg [4] proposed an algorithm that runs on average in linear time. For the
case of integer edge-weights, Thorup [5] presented a linear-time algorithm in
the word RAM model of computation, where the bit-manipulation of words in
the processor is allowed. Hagerup [6] extended and simplified Thorup’s ideas
to work for directed graphs in nearly linear time. But the question whether
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the standard addition-comparison model allows shortest-paths computation in
worst-case linear-time is still open.

For planar graphs, Henzinger et al. [7] presented the first linear-time algo-
rithm to calculate shortest-paths with nonnegative edge-weights. Their algo-
rithm works on directed graphs. It is based on Frederickson’s [8,9] work who
gave an O(n

√
log n)-time algorithm for this case and whose idea was in turn

based on planar separators [10] to decompose the graph. Henzinger et al. first
decompose the graph into a recursive division and then use this division to relax
the edges in a certain order that guarantees linear running time. They claim that
their algorithm can be adapted to work for any proper minor-closed family of
graphs where small separators can be found in linear time. Recently, Reed and
Wood [11] improved the quadratic-time separator of Alon et al. [12] and showed
that all proper minor-closed graph classes can be separated in linear time; so,
we should be done. However, both Frederickson’s algorithm and Henzinger et
al.’s algorithm assume that the graph has maximum degree 3; while this property
can be achieved easily for planar graphs, we argue that it can not be achieved
by standard methods for arbitrary minor-closed classes (in particular, it can not
be applied to apex graphs, i.e. planar graphs augmented by a “super-source”;
these graphs have frequent application in the literature). We show how to build
an appropriate recursive division of a graph from a proper minor-closed family
in linear time by a non-trivial extension of the algorithm in [7]. Our algorithm
works for graphs with arbitrary degrees. But even after having the recursive di-
vision, the shortest paths algorithm in [7] depends on the assumption that the
graph has bounded degree (and contains only a single source labeled initially
with distance zero, cf. apex graphs). Using our recursive division, we show how
to transform the graph and its division to have maximum degree 3, so that Hen-
zinger et al.’s shortest-paths algorithm can be applied. Our modifications lead to
the first linear-time shortest-paths algorithm for all proper minor-closed classes
of graphs in the addition-comparison model of computation.

We also consider the Steiner tree problem, namely finding the shortest tree
that connects a given set of terminals in an undirected graph. The Steiner tree
problem is also one of the most fundamental problems in computer science and
of the first problems shown to be NP-complete [13]. The best known approxima-
bility/inapproximability results are 1.55 + ε (shown in [14]) and 1.01053 (shown
in [15]), respectively. There exists a well-known 2-approximation algorithm for
this problem [16,17] and Mehlhorn [18] showed how to implement it in time
O(m + n log n). No better time complexity for such an approximation is known
even for planar graphs. We show how to implement this algorithm in linear time
on all proper minor-closed graph classes. An important observation that we made
to improve this running time is that Mehlhorn’s distance network is a minor of
the given graph and thus, its minimum spanning tree can be calculated in linear
time with the algorithm of Mares [19].

The area of graph minor theory has been constantly evolving ever since the
graph minor theorem of Robertson and Seymour [20] was announced in 1988.
Many important algorithms and meta-algorithms have been presented for large
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problem families on minor-closed graph classes and numerous theoretical con-
cepts have been developed to handle them. We present the first linear-time al-
gorithms for two fundamental graph-theoretic problems in these classes.

In Section 2, we review some needed concepts and previous work; in Section 3,
we present our main result about shortest paths and in Section 4, the application
to Steiner tree approximation.

2 Preliminaries

In this section, we review some concepts and some previous results that are
needed in this work. These include graph minors, vertex partitioning, graph
decomposition, and an overview of Henzinger et al.’s [7] single-source shortest-
paths algorithm.

2.1 Graph Minors

A minor of a graph G is a graph that is obtained from a subgraph of G by con-
tracting a number of edges. A class of graphs is minor-closed if it is closed under
building minors. It is called a proper class if it is neither empty nor the class of
all graphs. Examples of proper minor-closed graph families are planar graphs,
bounded-genus graphs, and apex graphs. The seminal theorem of Robertson and
Seymour [20] states that any proper minor-closed class of graphs can be charac-
terized by a finite set of excluded minors. This is a very broad generalization of
Kuratowski’s theorem about planar graphs. Note that for a proper minor-closed
class of graphs, we can always consider the number of vertices 
 of the smallest
excluded minor and conclude that the complete graph K� is a particular ex-
cluded minor of the class. Thus, the class of K�-minor-free graphs includes the
considered minor-closed class of graphs. In the rest of this work, we work with
K�-minor-free graphs, where 
 is a fixed constant.

It follows from a theorem of Mader [21] that K�-minor-free graphs have con-
stant average degree, for some constant depending on 
. This, in turn, implies
that these classes of graphs are sparse, i.e. we have m = O(n). For planar graphs,
we know by Euler’s formula that the number of edges is at most only 3n − 6.

2.2 Vertex Partitioning

In [8], Frederickson presented a simple algorithm called FindClusters, based
on depth-first search, that given a parameter z and an undirected graph with
maximum degree 3, partitions its vertices into connected components each hav-
ing at least z and at most 3z vertices. Note that since the algorithm gives us
connected components, we can contract each one of them and get a minor of
the input graph with at most n/z vertices. He used this algorithm to derive fast
algorithms for the minimum spanning tree and shortest-paths [9] problems. If a
weighted graph does not have maximum degree 3, one can apply the following
transformation: replace a vertex v of degree d(v) with a zero-weight cycle of
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length d(v), such that each edge incident to v is now incident to exactly one ver-
tex of the cycle (a similar transformation can be applied to directed graphs, too).
If the given graph is embedded in a surface, one can order the edges around a
cycle in the same way they were ordered around the corresponding vertex in the
given embedding. This way, the transformed graph will also be embedded in the
same surface. However, for an arbitrary minor-closed class of graphs (e.g. apex
graphs), it might not always be possible to remain in the class after transform-
ing the graph this way, see Section 3. But Frederickson’s FindClusters depends
on the graph having bounded degree. Any constant bound would suffice for our
purposes but in general such a bound does not exist for arbitrary minor-closed
graph families.

Reed and Wood [11] introduced an alternative partitioning concept that can
be applied to a graph G = (V, E) with arbitrary degrees excluding a fixed minor.
Consider some partitioning P = {P1, . . . , Pt} of the vertex set V . Let H =
(VH , EH) be the graph obtained by collapsing every part Pi of G into a single
vertex vi ∈ VH (1 ≤ i ≤ t) and removing loops and parallel edges. This way,
there is an edge between two vertices vi and vj of H if and only if there is an
edge between a vertex of Pi and a vertex of Pj in G (1 ≤ i < j ≤ t). We say P
is a connected H-partition of G if vivj ∈ EH if and only if there is an edge of
G between every connected component of Pi and every connected component of
Pj . Reed and Wood proved the following lemma1:

Lemma 2.1 ([11]). There is a linear-time algorithm that given a constant z
and a graph G excluding a fixed K�-minor, outputs a connected H-partition P =
{P1, . . . , Pt} of G such that t ≤ n/z, and |Pi| < c0 · z for all 1 ≤ i ≤ t, where c0
is a constant depending on 
. ��

Note that by contracting each connected component of each Pi in G to a single
vertex, one gets a graph that contains an isomorphic copy of H as a subgraph
and so, H is a minor of G and in particular, is also K�-minor-free. Hence, when
dealing with graphs with no bounded degree, Lemma 2.1 can be used instead of
FindClusters to partition the graph and reduce its size while keeping it free of
some fixed minor.

2.3 Graph Decomposition

A balanced node-separation of a graph G = (V, E) is given by two sets A and B,
such that A ∪ B = V , there is no edge between A \ B and B \ A, and each one
of A and B contains at most an α-fraction of the nodes (for some 1/2 ≤ α < 1).
The size of the separation is |A∩B|. For a function f , a subgraph-closed class of
graphs is said to be f -separable if every n-node graph in the class has an O(f(n))-
size separator. Reed and Wood [11] showed that all K�-minor-free graphs are
f -separable in linear time for f(n) = O(n2/3). For planar graphs, one can use
the original planar separator theorem of Lipton and Tarjan [10] that delivers an
O(

√
n)-separator in linear time.

1 In their lemma, we substitute c0 := 2�2+� and z := 2k/c0.
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An (r, s)-division of an n-node graph is a partition of the edges of the graph
into O(n/r) regions, each containing rO(1) nodes and each having at most s
boundary nodes (i.e. nodes that occur in more than one region). For a nondecreas-
ing positive integer function f and a positive integer sequence r = (r0, r1, . . . , rk),
an (r, f)-recursive division of an n-node graph is defined as follows: it contains
one region RG consisting of all of G. If G has more than one edge and r is not
empty, then the recursive division also contains an (rk, f(rk))-division of G and
an (r′, f)-recursive division of each of its regions, where r′ = (r0, r1, . . . , rk−1).
A recursive division can be represented compactly by a recursive division tree,
a rooted tree whose root represents the whole graph and whose leaves represent
the edges of the graph. Every internal node represents a region, namely, the
region induced by all the leaves in its subtree. The children of a node of the tree
are its immediate subregions in the recursive division.

Using Frederickson’s partitioning [8] and division [9] methods, Henzinger et
al. [7] present a linear-time algorithm to find certain recursive divisions in planar
graphs: they determine a vector r and an (r, cf)-recursive division of the graph
for some constant c, such that the inequality

ri

f(ri)
≥ 8if(ri−1) log ri+1(

i+1∑
j=1

log rj) (1)

is satisfied for all ri’s exceeding a constant. The obtained recursive division tree
has O(n) nodes and its depth is roughly O(log� n).

2.4 Single-Source Shortest-Paths on Planar Graphs

Henzinger et al. prove the following theorem:

Theorem 2.2 ([7]). Let a graph G with maximum in-/outdegree 2 and, for
some constant c, an (r, cf)-recursive division tree of G be given, such that in-
equality (1) is satisfied for all ri’s exceeding a constant. Then, the single-source
shortest-paths problem with nonnegative edge-weights can be solved on G in lin-
ear time. ��

To prove this theorem, they use a complicated charging scheme that also depends
on the graph having a single source and bounded degree. Together with the result
from the previous subsection, it follows that single-source shortest-paths with
nonnegative edge-weights can be calculated in linear-time on planar graphs.

3 Single-Source Shortest Paths on Minor-Closed Graph
Classes

In this section, we prove our main theorem about shortest paths:

Theorem 3.1. In every proper minor-closed class of graphs, single-source short-
est-paths with nonnegative edge-weights can be calculated in linear time.
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First, we argue that the degree requirement of Henzinger et al.’s algorithm can
not be fulfilled by standard methods for arbitrary minor-closed classes of graphs.
By “standard methods” we mean splitting a vertex using zero-weight edges until
the desired degree bound is reached. In Subsection 2.2 we discussed a particular
way of splitting vertices that can be applied to embedded graphs. In this section,
we show that there exist K�-minor-free graphs, so that no matter how we split the
vertices, the resulting graph will include a minor whose size can not be bounded
by a function in 
. The key lies in the observation that splitting an apex might
introduce arbitrarily large minors. This is a well-known fact in graph minor
theory [22]. For the sake of completeness, we include a short proof below. Apices
are a fundamental part of minor-closed graph classes as is demonstrated by the
powerful graph-decomposition theorem of Robertson and Seymour [22]. This
theorem shows, in a sense, that at most a bounded number of apices are allowed
in these classes; and intuitively, splitting an apex with unbounded degree might
result in an unbounded number of apices and is thus not allowed in general.

Proposition 3.2. For every k ∈ N, there exists a K6-minor-free graph Gk, so
that, if the vertices of Gk are split in any way to achieve a maximum degree of
3, the resulting graph G′

k includes a Kk-minor.

Proof (sketch). We define Gk to be a sufficiently large planar grid-graph aug-
mented by an apex as follows: consider a sequence S of numbers between 1 and
k, so that each possible pair of these k numbers is at least once adjacent in S.
Let t < k2 be the length of this sequence. Choose a set W of t vertices in the grid
that are sufficiently far away from each other and add an apex v0 connected to
these t vertices. This completes the definition of Gk, which is clearly K6-minor-
free. Now, no matter how we split the vertices of Gk, the apex v0 will become
a path of t vertices, each one connected to exactly one vertex of W . This path
imposes an order on the vertices in W . We label the vertices in W according to
this order using the sequence S. Let Wi be the set of vertices in W labeled by
i (1 ≤ i ≤ k). For each i, construct a tree Ti that connects the vertices of Wi

in the planar grid. Note that if the grid is sufficiently large and the vertices in
W are sufficiently far away from each other, it is easily possible to choose the
trees Ti to be all disjoint. Let U be the set of edges connecting the vertices in
W with the path resulted from splitting v0. Now, if we contract the trees Ti and

1 12 3 4 5 3 4 2 51

1 1 12 3 4 5 3 4 2 5

(a) (b) (c) (d)

Fig. 1. A simplified example for the proof of Proposition 3.2: the apex of the graph in
(a) is split, resulting in the graph (b); the vertices are labeled and connected according
to the disjoint trees in (c); contracting the thick edges in (b) results in a K5-minor (d)
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the edges in U and delete redundant edges, what remains is a Kk-minor (see
Fig. 1). ��

Now we proceed with our modified algorithm and its proof of correctness.

3.1 Our Generalized Recursive Division Algorithm

The idea of Henzinger et al.’s[7] algorithm is as follows: first, iteratively reduce
the size of the graph by partitioning the vertices of the graph and building
minors; then, working backwards, find (r, s)-divisions of the smaller graphs (for
appropriate values of r and s), imposing divisions on the larger graphs and
at the same time building the recursive division tree. Since the time-consuming
calculation of (r, s)-divisions is done on the smaller graphs, they succeed to prove
that the overall time complexity is linear.

We present our modified algorithm in Alg. 1. Our modifications are only in
three places but as we already discussed, they are essential to make the algorithm
work for all proper minor-closed graph classes. These modifications along with
the proof of correctness are presented in the following theorem:

Theorem 3.3. There is a linear-time algorithm that given a K�-minor-free
graph G, finds an (r, f)-recursive division of G that satisfies inequality (1) for
all ri exceeding a constant and whose recursive division tree has O(n) nodes.

Proof. Consider Alg. 1 and let ni be the number of vertices of Gi. Our modifi-
cations are as follows:

(i) In the first part of the algorithm, Henzinger et al. used Frederickson’s
FindClusters [8] to partition the graph into connected components and contract
each one to obtain a minor Gi+1 for each given Gi. We use instead Reed and
Wood’s connected H-partition [11] to achieve a similar effect without depending
on the graph to have bounded degree; the only difference is that we have to
deal with larger constants: the graph Gi+1 will be a minor of Gi having at most
ni/zi vertices, each representing at most c0z vertices of Gi (cf. Subsection 2.2
and Lemma 2.1).

(ii) In the second part, the original algorithm makes use of the (r, s)-division
procedure of Frederickson [9], which is based on the O(

√
n)-planar separator

of Lipton and Tarjan [10]. We replace the planar separator in this procedure
with Reed and Wood’s linear-time O(n

2
3 )-separation algorithm for K�-minor-

free graphs. The Divide procedure takes parameters G, S, r, and 
 and has
now the following modified properties (see the journal version of this paper for
a proof): it divides the edges of an n-node graph G and a node-subset S into at
most c2(|S|/r

2
3 + n

r ) regions, each one having at most r nodes and at most c1r
2
3

boundary nodes, where the nodes in S are counted as boundary nodes, too, and
c1 and c2 are constants. The parameter 
 is taken to indicate the excluded minor.
If the input graph G has n nodes, the Divide procedure takes time O(n log n).

(iii) Finally, the definition of the sequence zi also has to change. For the
proof of inequality (1) to work, we need to reduce the exponent in the recursive
definition of the zi to 1

7 , i.e. define zi+1 = 14z
(1/7)
i . Note that the choice of 14
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Algorithm 1. Generalized Recursive Division Algorithm
Input : An undirected graph G = (V, E) excluding a K�-minor.
Output: A recursive division tree T for G satisfying inequality (1) for all ri

exceeding a constant.
begin

// partition and contract the graph recursively
let G0 := G, z0 := 2, i := 0;
while the number of nodes in Gi > n

log n
do

let Gi+1 := H-Partition(Gi, zi, �);

let zi+1 := 14z
(1/7)
i , i := i + 1;

let I := i − 1;

// divide the graphs and build recursive division tree
let vG be the root of T ;
let DI+1 be the trivial division of GI+1 consisting of a single region;
for i := I downto 0 do

for each region R of Di+1 do
let SR be the boundary-nodes of R in the division Di+1;
let DR := Divide(R,SR, zi, �);
for each region R′ of DR do

expand R′ into a region R′′ of Gi by expanding every vertex;
assign each boundary edge to one of the regions it occurs in;
create a child vR′′ of vR in T ;

let Di be the decomposition of Gi consisting of the regions R′′ above;

// add the leaves
for each edge e of each region R of D0 do

create a child ve of vR in T ;
return T ;

end

as the base of the exponentiations above (and the choice of 7 in the original
algorithm) is not arbitrary; these are the smallest values that ensure that the
defined sequences grow (very rapidly) towards infinity.

With the changes given above, the proof of the correctness of the algorithm
and all the calculations therein can be carried out in a similar way as is done
in [7]; a number of subtle details have to be adapted, as is shown in the journal
version of our work. The proof has four parts: First, it is shown that each region of
the division Di has at most O(z2

i ) vertices and at most O(z
5
3
i ) boundary vertices.

Second, the number of regions in each division Di is shown to be O(ni/z2
i ). Third,

it is proven that the algorithm takes linear time and finally, the correctness of
inequality (1) is asserted. In this version of the paper, we only present the proof
of the last statement, namely, the correctness of (1):

First, note that combining the inequalities ni+1 ≤ ni/zi, we obtain ni ≤
n/
∏

j<i zj. Note moreover that each node of Gi expands to at most
∏

j<i c0zj

nodes of G. Consider the division Di of Gi, and the division it induces on G.
The division Di consists of O(ni/z2

i ) regions (see above), each having O(z2
i )
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vertices and O(z
5
3
i ) boundary vertices. This induces O(ni/z2

i ) regions in G, each

consisting of O(z2
i

∏
j<i c0zj) vertices and O(z

5
3
i

∏
j<i c0zj) boundary vertices.

Let ri = z2
i

∏
j<i zj and define f(ri) = z

5
3
i

∏
j<i c0zj. Then, the induced division

of G has O(n/ri) regions each with O(ric
i
0) vertices and O(f(ri)) boundary

vertices. Since ci
0 = O(

∏
j≤i zj), we get that the number of vertices per region is

O(r2
i ).

We have ri

f(ri)
= z2

i

z
5
3
i ci−1

0

= z
1
3
i

ci−1
0

. Using the definition of zi, one can

verify that zi−1 = θ(log7zi) and
∏

j<i zj = O(log8zi). Hence f(ri−1) =

ci−2
0 z

5
3
i−1
∏

j<i−1 zj = ci−2
0 O(log

35
3 zi log8 log zi). We also have

log ri+1 = log(z2
i+1

∏
j≤i

zj) = O(log(z2
i+1 log8 zi+1)) = O(log zi+1) = O(z

1
7
i )

and consequently
∑i+1

j=1 log rj = O(z
1
7
i ). For a sufficiently large constant i0, we

have for all i ≥ i0,

8if(ri−1) log ri+1(
i+1∑
j=1

log rj) ≤ 8ici−2
0 O(log

35
3 zi log8 zi)O(z

1
7
i )O(z

1
7
i )

= 8ici−2
0 O(z

2
7
i log20 zi) ≤ z

1
3
i

ci−1
0

=
ri

f(ri)
,

(2)

since the zi grow much faster than any exponential function having a constant
in the base; specifically, a simple calculation shows that z

1
21
i ≥ gi

0 log20 zi for any
constant g0 ≥ 0 if i is larger than a constant. So, inequality (1) is fulfilled for all
ri exceeding the constant ri0 . ��

3.2 Establishing the Degree Requirement

After having computed a recursive division, we still have to transform the graph
to have maximum degree 3; otherwise, Lemma 2.2 can not be applied, see Sub-
section 2.4. We can achieve this, using our recursive division, by the following
lemma. Note that according to Proposition 3.2 the resulting graph might not be
K�-minor-free but it will still serve our purpose of finding shortest paths in linear
time, since it is now accompanied by a recursive division satisfying equation (1).

Lemma 3.4. Let G be an edge-weighted directed graph excluding a fixed minor
and let T be a recursive division tree representing an (r, f)-recursive division of
G. Then one can replace every vertex of G with a zero-weight cycle to obtain
a graph G′ and at the same time modify T into a tree T ′, so that G′ has in-
/outdegree at most 2 and T ′ represents an (r, f)-recursive division of G′. This
modification takes linear time.
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(a) (b)

Fig. 2. (a) a given graph with 3 regions indicated by different line-styles and shaded
boundary nodes; (b) the transformed graph, such that every node has degree at most
3; the number of boundary nodes of each region has exactly doubled

Proof. Recall that the leaves of T represent the edges of G and that internal
nodes of T correspond to regions of G, namely, the region induced by all the
leaves in the subtree of that node. We modify G and T at the same time. An
in-order traversal of T induces an order on the edges of G. Replace each vertex
of G with a zero-weight cycle, so that the edges around each cycle are ordered
according to this order. For a splitted copy v′ of a vertex v, add the outgoing
edge of v′ in the zero-weight cycle as a sibling of the original edge adjacent to v′

to T . This gives a complete definition of G′ and T ′. They can be computed by
a single in-order traversal of T in linear time.

Now consider an internal node q′ of T ′. It represents a region R′ of G′ and
corresponds to a node q of T , representing a region R of G. R has rO(1) vertices
and O(f(r)) boundary-nodes. The number of edges of R′ is at most 3-times as
much as in R and the number of vertices is proportional to the number of edges
of R. But R is a subgraph of G, excludes the same fixed minor and thus, the
number of its edges is linear in the number of its vertices. Hence, R′ still has
rO(1) vertices and edges. Also, since R is represented by the subtree rooted at
q, its edges were traversed in order while building T ′ and G′. So, every vertex v
in R is replaced by a path vi, vi+1, . . . , vj with 1 ≤ i ≤ j ≤ d(v) in R′. Thus, if
v is a boundary node of R, then instead, we have vi and vj as boundary nodes
of R′. So R′ has at most twice as many boundary nodes as R, i.e. still O(f(r))
(see Fig. 2). So, T ′ represents an (r, f)-recursive division of G′. ��

Proof (Proof of Theorem 3.1). Note that up to the choice of the start- and
endvertex inside the zero-weight cycles of G′, shortest paths in G and G′ corre-
spond one-to-one to each other. G′ fulfills all the requirements of Theorem 2.2
and combining this with Theorem 3.3, and Lemma 3.4, we obtain our main the-
orem, namely, Theorem 3.1. ��

4 Steiner Tree Approximation

Theorem 4.1. There is a linear-time algorithm that calculates a 2-approxi-
mation for the Steiner minimum tree problem in any proper minor-closed class
of graphs.



370 S. Tazari and M. Müller-Hannemann

Due to space constraints, we leave the full proof of Theorem 4.1 for the journal
version of this paper. The basic idea is to implement Mehlhorn’s algorithm [18]
in linear time using Theorem 3.1 together with the following observation:

Observation 4.2. The distance network defined in [18] is a minor of the input
graph.

As far as we know, this observation has not been stated in the literature yet,
not even for planar graphs. Mehlhorn constructs this distance network using a
single-source shortest-paths computation and then determines and returns its
minimum spanning tree, requiring O(n log n) time in total. Using Theorem 3.1,
the construction of the network takes linear time on minor-closed graph classes
and by Observation 4.2, its minimum spanning tree can also be calculated in
linear time using the algorithm of Mares [19].
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Abstract. We investigate the problem of locally coloring and construct-
ing special spanners of location aware Unit Disk Graphs (UDGs). First
we present a local approximation algorithm for the vertex coloring prob-
lem in UDGs which uses at most four times as many colors as required
by an optimal solution. Then we look at the colorability of spanners of
UDGs. In particular we present a local algorithm for constructing a 4-
colorable spanner of a unit disk graph. The output consists of the spanner
and the 4-coloring. The computed spanner also has the properties that
it is planar, the degree of a vertex in the spanner is at most 5 and the
angles between two edges are at least π/3. By enlarging the locality dis-
tance (i.e. the size of the neighborhood which a vertex has to explore in
order to compute its color) we can ensure the total weight of the spanner
to be arbitrarily close to the weight of a minimum spanning tree.

We prove that a local algorithm cannot compute a bipartite spanner
of a unit disk graph and therefore our algorithm needs at most one color
more than any local algorithm for the task requires. Moreover, we prove
that there is no local algorithm for 3-coloring UDGs or spanners of UDGs,
even if the 3-colorability of the graph (or the spanner respectively) is
guaranteed in advance.

1 Introduction

In the case of ad hoc networks, where there is no global entity which could
assign channels (colors) to the nodes, we are interested in local algorithms. The
decision about what color a local algorithm assigns to a vertex v depends only
on the vertices which are a constant number of hops (edges) away from v (with
the constant being independent of the size of the network). This ensures that
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messages do not propagate uncontrollably far through the network. Locality is
advantageous in dynamically changing networks, since if only local changes occur
we do not have to recompute the entire solution, but only parts of it. E.g. in
the event of a disaster recovery we can take advantage of the fact that we can
recover parts of the solution without having to repeat the computation for the
entire graph.

Unit Disk Graphs (UDGs) are widely used for modeling wireless networks. In
these graphs connectivity between two nodes is established if and only if their
Euclidean distance is not larger than one unit, i.e. we assume that the wireless
devices have an identical transmission range. In the graph model used in this
paper we also assume that each node knows about its geographic position in the
plane, e.g. from a GPS receiver or from virtual coordinates assigned by another
source.

1.1 Related Work

Graph coloring is a well studied subject in the literature. For general graphs it
is NP -complete and even approximating it within a constant ratio is NP -hard
[16]. It is even true that for any ε > 0, the problem cannot be approximated to
within O

(
n1−ε

)
(where n is the number of nodes) unless the complexity classes

NP and ZPP coincide [9].
For unit disk graphs the problem remains NP -complete [6], even when it is

restricted to a fixed number of colors k ≥ 3 [11]. However, for UDGs it can be
approximated within a constant factor. Marathe et al. [17] present an offline-
coloring algorithm with an approximation factor of 3 and an online-coloring
algorithm with an approximation ratio of 6. Both algorithms do not need the
embedding of the graph as part of the input. In [11] it is stated that Peeters
in [21] has shown that this method applied to a “lexicographic” vertex ordering
colors a unit disk graph G with at most 3ω(G) − 2 colors (where ω(G) is the
clique number of G).

Gräf et al. present a factor 3 approximation algorithm [11] for the case where
the embedding of the graph is known. Their algorithm exploits the topology of
the graph. For the setting of location aware nodes no algorithm has been known
which outperforms the online algorithm mentioned above (whose idea could be
applied in this setting).

The problem of constructing spanning subgraphs (spanners) of geometric
graphs has been studied widely in the literature. There are many optimization
results for trade-offs between size, diameter, maximum degree and stretch factor
of the computed spanner, e.g. Eppstein [8], Arya et al. [2], Narasimhan and Smid
[20] and Bose et al. [3]. However, all these algorithms are global, i.e. they need
the whole graph as the input.

Linial introduced the model of local computation in [15] and proved bounds
for local vertex coloring algorithms. In [19] Naor and Stockmeyer provide a
framework for local algorithms for Locally Checkable Labeling Problems (LCL).
Vertex coloring is an LCL problem. When looking for local algorithms for con-
structing spanners of unit disk graphs, Bose et al. [4] address this problem by
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constructing a planar spanner using the Gabriel test [10]. Li et al. [12] present a
local algorithm which computes a planar spanner with constant stretch factor.
In [22,13] Li and Wang introduce local algorithms which compute planar span-
ners with constant stretch factor and a constant maximum degree. However, the
resulting maximum degree can be up to 20 and the weight of the edges can be
much higher than in a minimum spanning tree (MST). Li et al. [14] present a
local algorithm which computes a planar spanner of a unit disk graph with a
node degree bounded by 6. Chavez et al. [5] further analyzed this algorithm when
operating on quasi unit disk graphs, proved an upper bound for the weight of the
spanner in comparison with an MST, and improved the maximum node degree
to 5 for the case of unit disk graphs. Every planar graph and therefore every
planar spanner of a unit disk graph can be colored with at most 4 colors due to
the well known Four-Color-Theorem [1]. However, the algorithm presented there
cannot be implemented as a local algorithm. Czyzowicz et al. [7] present a local
algorithm which colors a given planar spanner of a unit disk graph with at most
7 colors.

1.2 Main Results and Outline of the Paper

In this paper we present a local algorithm with polynomial processing time which
colors the vertices of a unit disk graph and needs at most most 4 times as many
colors as an optimal coloring requires. It is the first local algorithm for this task.
Its approximation ratio is better than the ratio of 6 which is guaranteed by the
online algorithm [17], but a bit higher than the performance ratio of 3 which is
achieved by the best global polynomial time algorithms [17,11]. We also have a
local algorithm which uses at most 3 times the optimal number of colors but it
requires exponential processing time.

We also present a local algorithm which computes a 4-colorable spanner of a
unit disk graph as well as a 4-coloring for the spanner. By employing the local
algorithm presented in [5] for preprocessing, we can guarantee that our spanner
is planar, the maximum node degree is bounded by 5 and any angle between two
edges is at least π/3. As described in [5] we can also ensure its weight to be at
most (k+1)/(k−1) times the weight of a minimum spanning tree for an arbitrary
large k. The locality distance (the size of the neighborhood which a vertex has
to explore in order to compute its color) of the algorithm is 136 + k. This is
the first local algorithm which computes a spanner of a unit disk graph while
computing a coloring for it. Using at most 4 colors, we need fewer colors than
the local 7-coloring algorithm in [7] which colors an arbitrary planar spanner of a
unit disk graph. It is possible to reduce the locality distance of our algorithm to
34 + k by using one additional color while still ensuring the properties discussed
above.

Further we show that there is no local algorithm for computing 2-colorable
(i.e., bipartite) spanners, even if we do not compute the coloring but only the
spanner itself. We also show that there is no local algorithm for coloring 3-
colorable unit disk graphs or 3-colorable spanners of unit disk graphs using at
most 3 colors.
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Due to the space constraints we cannot give full proofs of all our theorems.
For all details we refer to the technical report [23] and give sketches of the proofs
instead.

2 Preliminaries

All algorithms presented in this paper are local algorithms for unit disk graphs.
An undirected graph G = (V, E) is a unit disk graph if there is an embed-
ding in the plane for G such that two vertices u and v are connected by an
edge if and only if the Euclidean distance between them is at most 1. The
graph G we consider for all our algorithms is a connected unit disk graph. For
two vertices u and v let d(u, v) be the hop-distance between u and v, that is
the number of edges on a shortest path between these two vertices. Denote by
N r(v) = {u ∈ V | d(u, v) ≤ r} the r-th neighborhood of a vertex v. For ease of
notation we set N0(v) := {v}, N(v) := N1(v) and for a set V ′ ⊆ V we define
N(V ′) =

⋃
v′∈V ′ N(v′). Note that v ∈ N(v). We define the diameter of a set

of vertices V ′ ⊆ V as diam(V ′) := maxu,v∈V ′ d(u, v). It is assumed that in all
our algorithms an embedding for G is given. For a vertex v we denote by vx its
x-coordinate and by vy its y-coordinate. We denote by ht(G) the height of G,
defined by ht(G) := maxu,v∈V {uy − vy}.

We denote by the locality distance (or short the locality) of an algorithm
the minimum α such that the status of any vertex v (e.g. its color, whether
or not it is in a computed set etc.) depends only on the vertices in Nα(v). In
the graph model which we use we assume that each vertex v is aware of its
geographic position in the plane. We also assume that each vertex v can find out
the geographic position of the vertices which are at most α hops away from v
by message passing.

A coloring of a graph G is a map color : V → {1, ..., c} such that (v1, v2) ∈
E ⇒ color(v1) �= color(v2). For ease of notation we define |color| := c. We denote
by χ(G) the chromatic number of G. That is the minimum number of colors that
is needed for a coloring of G. We define ω(G) to be the clique number, i.e. the
size of the largest clique in G.

We denote by ((G) the maximum degree of a node in G. If G is a geometric
graph, we define cost(G) as the sum of Euclidean lengths of the edges of G. For
a graph G we denote by E(G) the set of its edges and by V (G) the set of its
vertices. For a set of vertices V ′ we denote by G[V ′] the subgraph of G induced
by V ′. If an embedding of G is given, then for a rectangle R in the plane we
denote by G[R] the subgraph of G induced by the vertices in R.

3 Local 4 · χ(G) Vertex Coloring

In this section we present a local approximation algorithm for vertex coloring in
a unit disk graph G. We prove that it achieves a competitive ratio of 4 and that
the processing time for each vertex is bounded by a polynomial. We employ a
result by Grf et al. [11] that enables us to use an algorithm by Mhring [18] as a
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subroutine which colors a unit disk graph optimally in polynomial time when its
height is at most

√
3/2. Before we present the algorithm we introduce a tiling of

the plane that we are going to use.

3.1 Tiling of the Plane

We divide the plane into rectangles and assign a class number to each rectangle.
The tiling achieves the following properties:

– Each vertex of G is in exactly one rectangle.
– The height of each rectangle is smaller than

√
3/2.

– Each rectangle has a class number between 1 and 4.
– The Euclidean distance between any two points in two different rectangles

with the same class number is strictly greater than one.

We achieve these properties as follows: We divide the plane into a grid where
each grid cell is a rectangle with height 1/2 + ε and width 1 + ε. We choose ε
such that 0 < ε ≤ 1

64 . We place tiles of rectangles into the grid. Figure 1 shows
one tile. The rectangles of class 1 have the size of 1 grid cell, the rectangles of
classes 2, 3 and 4 have the size of 5 grid cells (later, we use the different sizes of
rectangles in order to achieve a lower locality distance in our algorithm). The
class numbers of the rectangles are assigned according to Figure 1 (white=class
1, black=class 2, dark gray=class 3 and light gray=class 4). We tile the whole
plane with such tiles, starting at an arbitrary position. Figure 2 shows a part of
this tiling.

1 + ε

1/2 + ε

1

1 2

31

4

Fig. 1. One tile of the tiling. The numbers in the rectangles indicate the class number
of the respective rectangle.

Each vertex of G is contained in exactly one rectangle. Ambiguities caused
by vertices on the border of a rectangle are resolved by assigning them to the
rectangle with the lowest class number which contains them. From the construc-
tion it follows that two different rectangles of the same class have an Euclidean
distance of strictly more than one. So we conclude that two vertices in different
rectangles of the same class are not adjacent. We also observe that every vertex
can determine its class number in constant time by only using its coordinates.

3.2 The Algorithm

Now we present our algorithm. The main idea is to solve the coloring problem
optimally for the rectangles of each class separately. First we color the vertices
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1
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4
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Fig. 2. A part of the tiling of the plane used in Algorithm 1

in all class 1 rectangles optimally. Then we solve the problem for each connected
component C in each class 2 rectangle R optimally under the condition that we
are not allowed to use colors that have been used by vertices which are adjacent
to any vertex in C. Then we do the same for all class 3 rectangles and then for
all class 4 rectangles.

Now we present our algorithm in detail. We start with a coloring color defined
by color(v) := 0 for all v ∈ V . For i := 1, 2, 3, 4 we do the following: Consider a
connected component C in a rectangle R of class i and denote its vertices by VC .
Denote by GC the subgraph induced by VC . By construction of the tiling the
height of R is smaller than

√
3/2 and thus ht(GC) ≤

√
3/2. In [11] Grf et al. state

an algorithm which computes an optimal coloring for a unit disk graph GC in
time O

(
|VC |ω (GC)2

)
if ht (GC) ≤

√
3/2 (they call such graphs

√
3/2-stripes).

We use this algorithm to compute an optimal coloring colorC for GC . We might
not be able to use the assignment of colors in colorC directly in the coloring
color which has been computed so far since a vertex v ∈ C might be adjacent to
a vertex v′ (in another rectangle) such that colorC(v) = color(v′). Let c be the
highest number of a color that has already been assigned to any vertex in N(VC)
by color (i.e. c = maxv∈N(VC) color(v)). We define color(vC) := colorC(vC) + c
for all vC ∈ VC . We do this for all connected components in all rectangles of class
i. As two vertices in two different connected components in rectangles of the same
class number are not adjacent the order in which the connected components are
being processed does not matter. We output the coloring color. We refer to the
above as Algorithm 1.

In the following theorem we prove that Algorithm 1 is a local algorithm that
computes a valid coloring with a competitive ratio of 4.

Theorem 1. Algorithm 1 has the following properties:

1. The computed coloring is a valid coloring for G.
2. It holds that |color| ≤ 4 · χ(G).
3. The color of a vertex v depends only on the vertices which are at most 71

hops away from v, i.e. Algorithm 1 is local.
4. The processing time for a vertex v is bounded by a cubic polynomial in the

number of vertices which are at most 71 hops away from v.
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Proof. Due to the lack of space we just give a sketch here. For each rectangle
we compute an optimal coloring. Then we skip all colors that have already been
used in adjacent vertices. Therefore, the overall coloring is valid. Since we have
four different classes of rectangles we obtain an approximation ratio of 4. The
diameter of a connected component in a rectangles is bounded. Using this it is
possible to prove that the locality distance of Algorithm 1 is at most 71. The pro-
cessing time is dominated by the computation of the colorings for the rectangles.
Using the algorithm stated in [11] this can be done in time O

(
|VC |ω (GC)2

)
.

3.3 Local 3 · χ(G) Vertex Coloring

Using the tiling technique which we are going to present in Section 4 we can
construct a local algorithm for vertex coloring which uses at most 3 ·χ(G) colors
and has a locality distance of 42. However, its processing time is exponential
in the number of vertices at most 42 hops away from a given vertex. (We omit
details for lack of space.)

4 Local Construction of 4 Colorable Spanners

In this section we present a local algorithm for computing a 4-colorable spanner
of a given unit disk graph. It computes the spanner and the 4-coloring for it.
For preprocessing the graph we employ the local algorithm presented in [5,14].
This ensures that the resulting spanner is planar, it does not contain any angle
smaller than π/3 and the degree of any node is at most 5. For arbitrarily large
k this subroutine can also guarantee the weight of the spanner to be at most
k+1
k−1 times the weight of a minimum spanning tree. The locality distance of the
algorithm is in O(k).

We consider a unit disk graph G = (V, E). We compute a set E′ ⊆ E such
that G′ = (V, E′) forms a spanner for G. We also compute a coloring color :
V → {1, 2, 3, 4} for G′. The algorithm has three steps:

1. A planar spanner Gk of G is created using the algorithm presented in [5,14].
2. The plane is divided into rectangles. A bipartite spanner for the vertices in

each rectangle is computed and the vertices are colored with colors 1 and 2.
3. Collisions (two adjacent vertices with the same color) between vertices in

different rectangles are being resolved by using two more colors.

4.1 The Algorithm

We consider a unit disk graph G = (V, E). First we present the tiling of the plane
which we are going to use. Then we present the three steps of the algorithm as
outlined above. We will compute a set E′ ⊆ E such that G′ = (V, E′) forms a
spanner for G with certain properties. We will also compute a coloring color for
G′ with |color| ≤ 4.
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Tiling of the Plane. The plane is divided into tiles of rectangles. Figure 3 (left)
shows one tile. A class number between 1 and 3 is assigned to each rectangle
as shown in Figure 3 (left). The whole plane is tiled with such tiles, starting
at an arbitrary position. Figure 3 (right) shows a part of this. The width of
each rectangle is 6 + ε, the height of each rectangle is 3 + ε for any fixed ε
with 0 < ε ≤ 1

128 . Each vertex is assigned to the rectangle which contains it.
Ambiguities caused by vertices on the edge of rectangles are being resolved by
assigning them to the rectangle with the smallest class number which contains
them (any other resolving method works as well). We observe that two rectangles
of the same class have a Euclidean distance of strictly more than three. So we
conclude with the following propositions:

6 + ε

3 3 + ε1

2

Fig. 3. One tile for the tiling of the plane and an extract of the whole tiling of the
plane

Proposition 1. Two vertices in different rectangles of the same class are not
adjacent.

Proposition 2. For a rectangle R let R+ denote the area of R plus a surround-
ing belt of width one. Let R1 and R2 be two rectangles of the same class. Then
there is no edge in G which connects two vertices in G[R+

1 ] and G[R+
2 ].

Each vertex can compute the rectangle that it belongs to from its coordinates
in the plane.

Step 1: Computing the Spanner Gk. In this step fix an integer k ≥ 2 and
compute a spanner Gk for G (the value of k which we choose will determine
the weight of our spanner in comparison with a minimum spanning tree for G).
This routine is taken from [5,14]. As the spanner which we output later will be
a subgraph of Gk, our spanner will inherit some properties from Gk. First we
need to define an ordering on the edges of G.

Definition 1. (Compatible Linear Order). Each edge (u, v) is assigned a 5-tuple
(|u, v|, x1, y1, x2, y2), where |u, v| is the Euclidean length of the edge, x1, y1 and
x2, y2 are the coordinates of the endnodes of the edge with either x1 > x2 or
both x1 = x2 and y1 > y2. Clearly this gives a unique 5-tuple to any edge, and
5-tuples assigned to any two edges are distinct. The linear order ≺ is defined
using the lexicographic ordering of the assigned 5-tuples.
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A graph may have several minimum spanning trees (MST) when the Euclidean
length of the edges is the cost function. However, if we break the ties when an
edge is chosen in the MST-algorithm (e.g. in Kruskal’s algorithm) by the linear
order ≺, then the graph has a unique MST (which can be computed for example
by Kruskal’s algorithm).

In step 1 of our algorithm we do the following: First we fix an integer k ≥
2. Then we compute the spanner Gk as explained in the description of the
algorithm. It was originally presented in [5,14].

Step 1 of Algorithm 2: Computing a planar spanner with certain properties
// Algorithm is executed independently by each node;1

// the parameter k is fixed2

Learn your distance k neighborhood Nk(v);3

Constuct locally the unique MST T k(v) of Nk(v);4

Broadcast in Nk(v) the edges of N1(v) which have been retained in T k(v) (i.e.5

N1(v) ∩ T k(v));
The output spanner Gk is defined as follows: an edge is selected into Gk if and6

only if it was retained by both of its incident nodes;

Step 2: Bipartite Spanner for each Rectangle. We compute a set E′ and a
map color : V → N. Note that after this step the map color will not necessarily
be a valid coloring for G′ = (V, E′).

From now on, only edges that are part of Gk are considered. All other edges
are ignored. Let R be a rectangle. Let G[R] be the restriction of G to the vertices
in R. For each connected component C in G[R] we do the following: Compute a
spanning tree TC and a two-coloring colorC for TC which uses only colors 1 and
2. Assign all edges in TC to E′. Define color(v) := colorC(v) for all vertices v in
C. Do this for all rectangles R which contain vertices of G. Finally we assign all
edges to E′ which connect vertices in different rectangles.

Step 3: Resolving Collisions. By a collision we denote an edge whose adjacent
vertices have the same color. From the size of the rectangles in the tiling of the
plane we conclude that such an edge must connect two vertices which are in
adjacent rectangles (as the length of an edge is at most one). We first resolve
all collisions where vertices in rectangles of class 1 are involved (step 3a). For
that we need one additional color. Then we resolve collisions between vertices in
rectangles of class 2 and 3 (step 3b). We use a fourth color for this.

We start with step 3a. Consider a rectangle R of class 1. Denote by V ′′ all
vertices which are adjacent to at least one vertex in R. Denote by V ′ vertices in R
which are adjacent to vertices in V ′′. Denote by Gcoll[R] the subgraph induced
by V ′ ∪ V ′′. For each connected component Ccoll[R] in Gcoll[R] we compute
a spanning tree Tcoll[R]. We compute a two-coloring colorT for Tcoll. Assume
colorT uses the colors T 1 and T 2. For all vertices v with colorT (v) = T 1 we
define color(v) := 3. Then we remove all edges E(Ccoll[R])\E(Tcoll[R]) from E′.
Do this for all rectangles of class 1.
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Resolving collisions between vertices in class 2 and 3 rectangles in step 3b
works similarly: Consider a rectangle R of class 2. Denote by V ′′ all vertices in
rectangles of class 3 which are adjacent to at least one vertex in R. Denote by V ′

vertices in R which are adjacent to vertices in V ′′. Denote by Gcoll[R] the sub-
graph induced by V ′∪V ′′. For each connected component Ccoll[R] in Gcoll[R] we
compute a spanning tree Tcoll[R]. We compute a two-coloring colorT for Tcoll[R].
Assume colorT uses the colors T 1 and T 2. For all vertices v with colorT (v) = T 1
we define color(v) := 4. Then we remove all edges E(Ccoll[R]) \E(Tcoll[R]) from
E′. Do this for all rectangles of class 2. This ensures the connectivity of the span-
ner while only using four colors to color it. We summarize the whole algorithm
in Algorithm 2.

Algorithm 2. Local Algorithm for computing a spanner and a 4-coloring
for the spanner
Fix an integer k ≥ 2;1

Compute the spanner Gk;2

For all vertices v compute color(v) and compute the spanner E′ according to step3

2;
For all vertices v check whether color(v) is changed in step 3 and what edges of4

E′ remain after step 3;

We prove the correctness of Algorithm 2 and the properties of the computed
spanner G′ and the coloring color in Theorem 2.

Theorem 2. Let k ≥ 2 be the integer which was fixed at the beginning of Algo-
rithm 2. For the computed spanner G′ = (V, E′) and the computed coloring color
it holds that

1. color is a valid coloring for G′ which uses at most 4 colors
2. G′ is connected,
3. G′ is planar, ((G′) ≤ 5, and no angle between two edges in G′ is smaller

than π/3,
4. for a minimum spanning tree T for G it holds that cost(G′) ≤ k+1

k−1 · cost(T )
and

5. the locality distance of Algorithm 2 is bounded by 136 + k, i.e. Algorithm 2
is local.

Proof. Due to space constraints we refer for the proof to our technical report[23].

4.2 Local Construction of 5 Colorable Spanners

Using a similar technique as described above we can find a local algorithm with a
locality of 34+k which constructs a 5-colorable spanner of a unit disk graph and
a 5-coloring for it. The spanner has the same additional properties (planarity,
bounded degree, angles greater than π/3 and weight at most k+1

k−1 times the
weight of a minimum spanning tree) as the spanners constructed by Algorithm 2.
(We omit details here for lack of space.)
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5 Impossibility Results

In this section we investigate the limits of local algorithms in terms of possible
approximation ratios for vertex coloring and the numbers of colors of needed for
a computed spanner. Due to the lack of space we give only the statements of the
theorems and refer to our technical report [23] for the full proofs.

Theorem 3. There is no local algorithm for computing connected bipartite span-
ners of unit disk graph.

Theorem 4. Let A be a local algorithm for vertex coloring. The approximation
ratio of A is at least 3/2.

Theorem 5. There is no local algorithm for coloring 3-colorable unit disk graphs
using at most 3 colors. Moreover, there is no local algorithm for coloring 3-
colorable planar spanners of unit disk graphs with at most 3 colors.
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