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Preface

The Constraint Handling Rules (CHR) language came to life more than 15 years
ago. Since then, it has become a major declarative specification and implementa-
tion language for constraint-based algorithms and applications. In recent years,
the five Workshops on Constraint Handling Rules have spurred the exchange
of ideas within the CHR community, which has led to increased international
collaboration, new theoretical results and optimized implementations.

The aim of this volume of Lecture Notes in Aritificial Intelligence was to
attract high-quality research papers on these recent advances in CHR. The 8
papers in this issue were selected from 11 submissions after careful reviewing and
subsequent revisions. Each paper was reviewd by three reviewers. The accepted
papers represent some of the research teams on CHR around the world. It is not
by accident that the currently most active research group is featured here with
three articles. We also would have liked to see contributions from other CHR
teams, but space is limited and the reviewers took their job seriously.

After an introductory article that foreshadows an upcoming monograph on
CHR, the accepted papers span a range of current research topics in the CHR
community. It goes from extending the CHR language with search facilities and
the related adaptive framework, and from generating rules from specifications
of constraint solvers to implementing abductive probabilistic reasoning. They
cover the theory that is a compositional semantics for CHR and finally describe
efficient implementations of CHR in traditional mainstream programming lan-
guages and compiler optimizations in the context of the refined semantics of
CHR.

We would like to thank the authors of submitted papers and the many review-
ers for their contribution in making this collection of research papers possible.

October 2008 Tom Schrijvers
Thom Frühwirth
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Welcome to Constraint Handling Rules

Thom Frühwirth

University of Ulm,
Germany

www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/

Abstract. Constraint Handling Rules (CHR) is a declarative concurrent
committed-choice constraint logic programming language consisting of
guarded rules that transform multisets of relations called constraints
until no more change occurs. As an introduction to CHR as a general-
purpose programming language we present some small programs using
different programming styles and discuss their properties.

1 Introduction

Constraint Handling Rules (CHR) [Frü98, FA03, AFE05, SF05, Frü08] has not
only cut its niche as a special-purpose language for writing constraint solvers,
but also has been employed more and more as a general-purpose language in
computational logic, reasoning and beyond. This is because CHR can embed
many rule-based formalisms and implement algorithms in a declarative yet ef-
fective way.

CHR was motivated by the inference rules that are traditionally used in com-
puter science to define logical relationships and arbitrary fixpoint computations.
Like automated theorem proving, CHR uses formulae to derive new information,
but only in a restricted syntax (e.g., no negation) and in a directional way (e.g.,
no contrapositives) that makes the difference between the art of proof search
and an efficient programming language.

CHR adapts concepts from term rewriting systems (TRS) [BN98] for pro-
gram analysis, for properties such as confluence [AFM99] and termination (e.g.
[Frü00]). Other influences for the design of CHR were the General Abstract
Model for Multiset Manipulation (GAMMA) [BCM88] and, of course, produc-
tion rule systems like OPS5 [BFKM85], but also integrity constraints and event-
condition-action rules found in relational databases and in deductive databases.

Implementations of CHR are abundant now. CHR does not necessarily impose
itself as a new programming language, but as a language extension that blends
in with the syntax of its host language, be it Prolog, Lisp, Haskell, C or Java.
In the host language, CHR constraints can be posted; in the CHR rules, host
language statements can be included.

The example programs here illustrate different programming styles in CHR.
This paper is based on some example programs of the author’s upcoming book
on CHR [Frü08].

T. Schrijvers and T. Frühwirth (Eds.): Constraint Handling Rules, LNAI 5388, pp. 1–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 T. Frühwirth

2 Preliminaries

A CHR program P is a finite set of rules consisting of constraints. (We do not
discuss declarations for CHR constraints here since they are implementation-
specific.) There are three kinds of rules:

Simplification rule: Name @ H ⇔ G B
[Name ’@’] H ’<=>’ [G ’|’] B.

Propagation rule: Name @ H ⇒ G B
[Name ’@’] H ’==>’ [G ’|’] B.

Simpagation rule: Name @ H1\H2 ⇔ G B
[Name ’@’] H1 ’\’ H2 ’==>’ [G ’|’] B.

Name is an optional, unique identifier of a rule, the (multi-)head (lhs, left hand
side) H (or H1 and H2) is a non-empty conjunction of CHR constraints, the
optional guard G is a conjunction of built-in constraints, and the body (rhs, right
hand side) B is a goal. A goal is a conjunction of built-in and CHR constraints.
If the guard is omitted from a rule, it means the same as “true ”.

Built-in constraints are predefined by the host language, while CHR con-
straints are defined by CHR rules.

Declaratively, a CHR rule logically relates head and body provided the guard
is true. A simplification rule means that the head is true if and only if the
body is true. A propagation rule means that the body is true if the head is
true. A simpagation rule Head1 \ Head2 <=> Body is logically equivalent to
the simplification rule Head1, Head2 <=> Head1, Body.

Basically, rules are applied to an initial conjunction of constraints (syntacti-
cally, a goal) until exhaustion (saturation), i.e. until no more change happens. An
initial goal is called query. The intermediate goals of a computation are stored
in the so-called (constraint) store. A final goal (store), to which no more rule is
applicable, is called answer (constraint) or result (of the computation).

We describe here (sequential) implementations according to the refined opera-
tional semantics [DSdlBH04] of CHR. Parallel or experimental implementations
may apply the rules in different ways, but of course still respect the standard
abstract operational semantics [Abd97].

A CHR constraint is both code and data. Every time a CHR constraint is
posted (added, called, executed, asserted, imposed) as part of a goal, it checks
itself the applicability of the rules it appears in. Such a constraint is called
(currently) active. One tries and applies rules in the order they are written in
the program, i.e. top-down and from left to right.

An active constraint is code which is evaluated like a procedure call. If, at
the moment, no rule is applicable that removes it, the active constraint becomes
passive data in the constraint store. It is called (currently) passive (delayed,
suspended, spleeping, waiting).

Passive constraints may be woken (reconsidered, resumed, re-executed) to
become active code if the environment (context) changes, concretely if their
arguments get more constrained. This is the case if a variable occurring in the
constraint gets more constrained by a built-in constraint.



Welcome to Constraint Handling Rules 3

There are several computational phases when a CHR rule is tried (for ap-
plication) and finally applied (executed, triggered) (then it fires). These phases
correspond to the constituents of a rule, read from left to right:

Head Matching. For each rule, one of its head constraints is matched against the
active constraint. Matching succeeds if the constraint is an instance of the head,
i.e., the head serves as a pattern. If matching succeeded and the rule has more
than one head constraint, the constraint store is searched for partner constraints
that match the other head constraints. Head constraints are searched from left to
right, except that in simpagation rules, the constraints to be removed are tried
before the head constraints to be kept (this is done for efficiency reasons). If the
matching succeeds, the guard is checked. If there are several head constraints that
match the active constraint, the rule is tried for each such matching. Otherwise
the next rule is tried.

Guard Checking. A guard is a precondition on the applicability of a rule. The
guard is basically a test that either succeeds or fails. If the guard succeeds, the
rule applies, one commits to it and it fires. Otherwise the next rule is tried.

Body Execution. If the firing rule is a simplification rule, the matched constraints
are removed from the store and the body of the rule is executed by executing
the constraints in the body from left to right. Similarly for a firing simpagation
rule, except that the constraints that matched the head part preceding ’\’ are
kept. If the firing rule is a propagation rule the body of the rule is executed
without removing any constraints. It is remembered that the propagation rule
fired, so it will not fire again with the same constraints. When the currently
active constraint has not been removed, the next rule is tried. According to rule
type, we say that CHR constraints matching some constraint in the head of the
rule are either kept or removed constraints.

3 Multiset Transformation

The following simple algorithms are similar to the ones found in other rule-
based approaches, namely production rule systems and the GAMMA model of
computation, but in CHR the programs are more concise.

The General Abstract Model for Multiset Manipulation (GAMMA) framework
employs a chemical metaphor. States in a computation are chemical solutions
where floating molecules interact freely according to reaction rules. Reactions can
be performed in parallel provided they involve disjoint sets of molecules. This is re-
ferred to as logical parallelism or declarative concurrency. We can model molecules
as CHR constraints.

These programs consist essentially of one constraint for representing active
data. Pairs of such constraints are rewritten by a single simplification rule. Often,
the rule can be written more compactly as a simpagation rule where one of the
constraints (the catalyst) is kept and the other is removed and possibly replaced
by an updated one. Optimizing CHR compilers will compile this to an efficient
in-place update instead of removing and adding constraints.
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3.1 Minimum

We compute the minimum of a multiset of numbers ni, given as a computation
of the query min(n1), min(n2),..., min(nk). We interpret min(ni) to mean
that the number ni is potentially the minimum, that it is a candidate for the
minimum value.

min(N) \ min(M) <=> N=<M | true.

The simpagation rule takes two min candidates and removes the one with the
larger value. It keeps going until only one, the smallest value, remains as single
min constraint. The program illustrates the use of multi-headed rules instead of
explicit loops or recursion for iteration over data. This keeps the code extremely
compact and easy to analyse. The rule corresponds to the intuitive algorithm
that when we are to find the minimum from a given a list of numbers, we just
cross out larger numbers until one, the minimum, remains.

For example, this computation is possible (where constraints involved in a
rule application are underlined)

min(1), min(0), min(2), min(1)
min(0), min(2), min(1)
min(0), min(1)
min(0)

Program Properties. We used the rule application order of the refined semantics
of CHR implementations, where computation in a query proceeds from left to
right. In the abstract semantics, any order of rule applications is allowed, for
example also:

min(1), min(0), min(2), min(1)
min(1), min(0), min(1)
min(0), min(1)
min(0)

In the two examples above, the answer is the same. Actually, it is easy to
see that the answer will always be the same, i.e. the minimum value, no matter
in which order the rules are applied to which pair of constraints. We call this
property confluence.

The rules can even be applied in parallel to different parts of the query.

min(1), min(0), min(2), min(1)
min(0), min(1)
min(0)

Obviously we arrive at the answer in less computation steps.
The program is obviously terminating, because the rule removes a CHR con-

straint and does not introduce new ones. Therefore the number of rule appli-
cations is one less than the number of min constraints. We can apply a rule in
constant time. Given any two min constraints, we can always apply the rule -
either in one pairing order or in the other. Therefore the complexity of this little
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program is linear in the number of min constraints, i.e. linear in the size of the
initial goal.

We can also stop the computation at any time and observe the current store
as intermediate answer. We can then continue by applying rules to this store
without the need to recompute from scratch and no need to remember anything
about how we arrived at the current store. If we stop again, we will observe
another intermediate answer that is closer to the final answer than the one
before. By closer we mean here that the store has less min constraints, i.e. less
candidates for the final minimum. The intermediate answers more and more
approximate the final answer. This property of a CHR program is called anytime
algorithm property. Note that by this description, an anytime algorithm is also
an approximation algorithm.

Now assume that while the program runs, we add a min constraint. It will
eventually participate in the computation in that the rule will be applied to it.
The answer will be correct, as if the newly added constraint had been there from
the beginning but ignored for some time. This property of a CHR program is
called incrementality or online algorithm property.

Guard Checking. So far we assumed that the min constraints contain given
values. In that case, the guard acts as a test that compares two such values. But
in general, under the abstract standard semantics, even though not necessarily
in a given CHR implementation, the guard is made out of built-in constraints
that hold if they are logically implied by the current store. While in current
practical implementations of CHR, a guard check will give an instantion error or
silently fail if unbound variables occur in it, the same guard check may succeed
under the abstract semantics. For example, the query min(A), min(B), A=<B
will reduce to min(A), A=<B, because we know that A=<B and that is exactly
what the guard asks for. Similarily, the query min(A), min(B), A<B will reduce
to min(A), A<B. Finally, the query min(A), min(A) will reduce to min(A). But
the query min(A), min(B) will not proceed, because we know nothing about
the relationship of the unknown values A and B.

Now consider what happens if we modify the program in that we strenghten
the guard. If we replace N=<M by N<M, multiple occurrences (duplicates) of the
final minimum constraint will no longer be removed. If we replace N=<M by N=M,
we will just remove duplicates. Both rules taken together have the same behavior
as our initial rule, provided we work with known values.

min(N) \ min(M) <=> N<M | true.
min(N) \ min(M) <=> N=M | true.

If values are only partially known, it turns out the the two rules are weaker
than the single initial rule. Consider the previous examples. Most of them still
work, but the query min(A), min(B), A=<B will not reduce at all, because the
built-in constraint A=<B is too weak to imply one of the guards of the two rules,
A<B or A=B. We say that these two programs are not operationally equivalent,
even though logically, they are. (The logical reading of rules as formulae is their
declarative semantics [Abd97].)
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Variations. If we want to use this rule for minimum in a larger program, we
may be faced with some pragmatical issues. We may want to compute several
minima from different sources and need to dinstinguish them. It suffices to add
an identifier to the min constraint and modify the minimum rule so that it refers
only to constraints with the same identifier:

min(Id,N) \ min(Id,M) <=> N=<M | true.

In general, this technique of adding an explicit identifier to each constraint can
be used to localize computations, i.e. to implement local constraint stores.

3.2 Prime Numbers Sieve of Erastosthenes

We implement the algorithm known as Sieve of Erastosthenes, but without any
particular sifting order. Given some numbers, the rule just removes multiples of
each of the numbers.

sift @ prime(I) \ prime(J) <=> J mod I =:= 0 | true.

We give the rule a conjunction of prime number candidates consisting of all
numbers from 2 up to N, i.e., prime(2),prime(3),prime(4),...prime(N). The
candidates react with each other such that each number absorbs multiples of
itself. When we give it all integers up to a given bound starting from 2, all
composite numbers will be removed after exhaustive application of the rule, so
that only prime numbers remain.

For example, this computation is possible

prime(7), prime(6), prime(5), prime(4), prime(3), prime(2)
prime(7), prime(5), prime(4), prime(3), prime(2)
prime(7), prime(5), prime(3), prime(2)

The sift rule is similar to the one for minimum in that it compares two num-
bers and removes one of them. But unlike minimum, the rule is not applicable
to arbitrary pairs of prime number candidates.

As before, the program has the desirable properties that are typical for CHR.
For example, the rule is obviously terminating, since it removes constraints with-
out adding new ones.

Generating Numbers. To generate the prime number candidates, we may use an
auxiliary CHR constraint upto1:

upto(1) <=> true.
upto(N) <=> N>1 | prime(N), upto(N-1).

To the same effect, we can use the prime constraint itself.

prime(N) ==> N>2 | prime(N-1).

Of course, this rule must come before the sift rule. Otherwise a prime number
candidate may be removed before generating its predecessors.
1 For readability, we use arithmetic expressions like N-1 in arguments, while in Prolog,

one may explicitely have to compute the result using is/2.
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Both rule variants generate the prime candidates in descending order. Increas-
ing order is preferable, because smaller prime candidates increase the chance that
the sift rule is applicable. We can easily fix upto by exchanging the recursive
call with the generation of the prime:

upto(N) <=> N>1 | upto(N-1), prime(N).

We cannot fix the variation using prime itself this way.

Primes Sieve in CHR for Java. The following code implements the three rules
for primes in JCK, the first CHR implementation in Java. The syntax of CHR
rules was chosen to be similar to that of the host language Java. For example,
guards are not written between head and body of a rule, but as if expressions
before the head. The rule name comes last. This illustrates that the concrete
syntax of CHR is not fixed, but rather can be adapted to the host language.

handler primes { class java.lang.Integer; class IntUtil;

constraint prime(java.lang.Integer);
constraint upto(java.lang.Integer);

rules { variable java.lang.Integer N, M, I, J;

{upto(1)} <=> {true} ;
if (IntUtil.gt(N,1)) {upto(N)} <=>

{M=IntUtil.dec(N) && prime(N) && upto(M)};

if (IntUtil.modNull(J,I)){prime(I) &\& prime(J)} <=>
{true} sift;

}
}

A more recent implementation of CHR in Java, the K.U.Leuven JCHR sys-
tem, uses the more traditional Prolog-style concrete syntax of CHR, which eases
porting of code between Prolog and Java CHR systems.

handler primes {

constraint upto(int);
constraint prime(int);

rules { variable int N, I, J;

upto(1) <=> true.
upto(N) <=> IntUtil.gt(N,1)|prime(N), upto(intUtil.dec(N)).

sift @ prime(I) \ prime(J) <=> intUtil.modZero(J,I) | true.
}

}
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4 Procedural Algorithms

We now employ a more tradional style of programming, where constraints are
relations that resemble procedures as they are used in imperative programming
languages. Results of a computation are not returned as constraints, but as
values of variables that are bound. As we will already see with our first example
of Fibonacci numbers, CHR supports different programming styles and it is easy
to change between them.

4.1 Fibonacci

The n-th Fibonacci number is defined inductively as follows:

fib(0) = fib(1) = 1; fib(n) = fib(n−1) + fib(n−2) if n ≥ 2

When we implement this definition in CHR, we translate the functional notation
of fib into relational notation, and the equivalence becomes a simplification rule.

Top-Down Evaluation. The CHR constraint fib(N,M) holds if the N-th Fibonacci
number is M.

f0 @ fib(0,M) <=> M=1.
f1 @ fib(1,M) <=> M=1.
fn @ fib(N,M) <=> N>=2 | fib(N-1,M1), fib(N-2,M2), M is M1+M2.

The three rules are a direct translation of the definition. For example, the query
fib(8,A) yields A=89, the query fib(12,233) succeeds, the query fib(11,233)
fails, the query fib(N,233) delays.

As is well known, such a direct implementation has exponential time complex-
ity because of the double recursion that recomputes the same Fibonacci numbers
over and over again in different parts of the recursions.

Tabling and Memorization. We would like to store the results of Fibonacci num-
bers that we already have computed and look them up to avoid computing the
same Fibonacci number several times. Since CHR constraints are both opera-
tions and data, it is easy to change the rules accordingly. We just have to turn
the three simplification rules into propagation rules, so that the left hand side
constraints are kept. In this way the result of the computation will be kept in
the constraint store as data.

The rule for the look-up of already computed Fibonacci numbers has to come
first, so that it is applied before we compute in the usual way using the expensive
recursive definition.

mem @ fib(N,M1) \ fib(N,M2) <=> M1=M2.

f0 @ fib(0,M) ==> M=1.
f1 @ fib(1,M) ==> M=1.
fn @ fib(N,M) ==> N>=2 | fib(N-1,M1), fib(N-2,M2), M is M1+M2.
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The rule mem for look-up enforces the functional dependency between input and
output of the Fibonacci relation, in other words it uses the fact the fib defines
a function. The query fib(8,A) now returns all Fibonacci numbers up to 8:
fib1(0,1), fib1(1,1), fib1(2,2), ..., fib1(7,21), fib1(8,34).

The effect of memorization is dramatic: while the original rules have expo-
nential complexity, the new version has only linear complexity, because each
Fibonacci number is only computed once. When executed from left to right, the
second recursive call is just a lookup using the mem rule. Actually, the mem rule
does more than just looking up computed results, it in effect merges two compu-
tations that must have the same result into one, even if both computations are
still ongoing. To see this, consider a query fib(N,A) with N>=2, where the N-th
Fibonacci number is computed for the first time. The constraint fib(N,A) will
thus try the mem rule in vain and finally the recursive rule fn will apply. Since it
is a propagation rule, the constraint fib(N,A) will not be removed.

If the N-th Fibonacci number is called again, say with fib(N,B), then the
constraint fib(N,B) will try the mem rule, and there it will first try to match the
constraint to the right of \ under the refined semantics. This succeeds and the old
fib(N,A) is found as a partner constraint. The rule applies, the new fib(N,B)
will be removed and instead the variables for the result will be equated using A=B.

Bottom-Up Evaluation. Another way of computing the Fibonacci numbers ef-
ficiently is by using only data and compute larger numbers from smaller ones.
Basically, the idea is to reverse head and body of the rules.

fn @ fib(N1,M1), fib(N2,M2) ==> N2=:=N1+1 | fib(N2+1,M1+M2).

Since reversing the rules f0 and f1 gives ill-formed CHR rules (they do not have
a head), we added the first two Fibonacci numbers in the query, fib(0,1),
fib(1,1). Of course, the resulting computation is infinite, and in order to ob-
serve the results, we have to add a rule in front such as:

fib(N,M) ==> write(fib(N,M)).

Note that if we are only interested in the Fibonacci numbers, we could drop the
first arguments of fib.

The computation can be made finite by introducing an upper bound Max. The
query fib upto(Max) will produce all Fibonacci numbers up to Max. The con-
straint fib upto(Max) is also used to introduce the first two Fibonacci numbers.

f01@ fib_upto(Max) ==> fib(0,1), fib(1,1).
fn @ fib_upto(Max), fib(N1,M1), fib(N2,M2) ==>

Max>N2, N2=:=N1+1 | fib(N2+1,M1+M2).

A version that is faster than any discussed so far can be achieved with a tiny
change in the previous program: we turn the propagation rule into a simpagation
rule that only keeps the (last) two Fibonacci numbers (we do not need more
information to compute the next one).

fn @ fib_upto(Max), fib(N2,M2) \ fib(N1,M1) <=>
Max>N2, N2=:=N1+1 | fib(N2+1,M1+M2).
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We have exchanged the order of the two fib constraints in the head so that the
simpagation rule removes the smaller Fibonacci number.

Procedural Style Version. Since we now keep only the two last Fibonacci num-
bers, we can merge the three constraints of the head of the fn rule into one
constraint, and the same for the three constraints that will be present after the
rule has been applied (the two kept constraints from the head and the new one
from the body). The resulting code is the most efficient:

f01@ fib_upto(Max) <=> fib(Max,1,1,1).
fn @ fib(Max,N,M1,M2) <=> Max>N | fib(Max,N+1,M2,M1+M2).

4.2 Newton’s Method for Square Roots

Newton iteration is an approximation method for the value of polynomial ex-
pressions relying on derivates. We would like to compute the square root. As
can be computed by Newton’s method, the approximations for square roots are
related by the formula Gi+1 = (Gi+X/Gi)/2.

Since CHR programs already implement anytime, i.e. approximation algo-
rithms, the implementation in CHR is straightforward. We assume that the
answer is returned as a CHR constraint. sqrt(X,G) means that the square root
of X is approximated by G. This rule computes the next approximation.

sqrt(X,G) <=> abs(G*G/X-1)>0 | sqrt(X,(G+X/G)/2).

The query is just sqrt(GivenNumber,Guess). Both numbers must be positive,
and if no guess is known, we may take 1. The guard stops its application if
the approximation is exact. Since this is unlikely in practice when floating point
numbers are used and also to improve efficiency by avoiding iterations, we replace
0 in the guard by a sufficiently small positive number ε.

Since the quality of approximation is often in the eye of the beholder, we
may implement a more interesting, demand-driven version of the algorithm. An
approximation step is performed lazily, only on demand, which is expressed by
the constraint improve(Expression).

improve(sqrt(X)), sqrt(X,G) <=> sqrt(X,(G+X/G)/2).

Of course the constraint improve can be extended with a counter or combined
with a check for the quality of the approximation.

5 Graph-Based Algorithms

5.1 Transitive Closure

Transitive closure is an essential operation that occurs in many algorithms, e.g.
for graphs, in automated reasoning and inside constraint solvers. The transitive
closure R+ of a binary relation R is the smallest transitive relation that contains
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R. The relation xR+y holds iff there exists a finite sequence of elements xi such
that xRx1, x1Rx2, . . . , xn−1Rxn, xnRy holds.

For example, if R is the parent relation, then its transitive closure R+ is the
ancestor relation. If R is the relation of cities connected by direct trains, then
its transitive closure also contains cities reachable by changing trains.

We can depict the relation R as a directed graph, where there is a directed
edge (arc) from node (vertex) x to node y iff xRy holds. The transitive closure
then corresponds to all paths in the graph. The length of the path is the number
of edges in the path.

We implement the relation xRy as edge constraint e(X,Y) and its transitive
closure xR+y as path constraint p(X,Y).

e(X,Y) ==> p(X,Y).
e(X,Y), p(Y,Z) ==> p(X,Z).

The implementation in CHR uses two propagation rules that compute the tran-
sitive closure bottom-up. In the first rule, for each edge, a corresponding path is
added. The rule reads: If there is an edge from X to Y then there is also a path
from X to Y. The second rule extends an existing path with an edge in front. It
reads: If there is an edge from X to Y and a path from Y to Z then there is also
a path from X to Z.

For example, the query e(1,2), e(2,3), e(2,4) adds the path constraints
p(1,4),p(2,4),p(1,3),p(2,3),p(1,2). Query e(1,2), e(2,3), e(1,3) will
compute p(1,3) twice, because there are two ways to go from node 1 to node 3,
directly or via node 2.

Termination. The program does not terminate with a cyclic graph. Consider the
query e(1,1), where infinitely many paths p(1,1) are generated by the second
propagation rule. There are various compiler optimizations and options that
avoid the repeated generation of the same constraint in this context, but here
we are interested in a source-level solution that works in any implementation
that follows the refined semantics.

Duplicate Removal. Termination can be restored easily by removing duplicate
path constraints before they can be used. In other words, we would like to enforce
a set-based semantics for path constraints. This is ensures termination, since in
a given finite graph, there can only be a finite number of different paths. This
simpagation rule removes duplicates:

p(X,Y) \ p(X,Y) <=> true.

The rule must come first in the program.

Single-Source Paths. We may specialize the transitive closure rules so that only
paths that reach a given single target node are computed. We simply add the
target node as a constraint:

target(Y), e(X,Y) ==> p(X,Y).
target(Z), e(X,Y), p(Y,Z) ==> p(X,Z).
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However, this does not work if we want to fix the source node in the same
way:

source(X), e(X,Y) ==> p(X,Y).
source(X), e(X,Y), p(Y,Z) ==> p(X,Z).

The reason is that in the second rule we need a path from Y to Z to be extended,
but we only produce paths starting in X. If we exchange the edge and path
constraints in the second rule so that we add an edge at the end of an existing
path, then we can add a restriction to a source node as simply as before:

source(X), e(X,Y) ==> p(X,Y).
source(X), p(X,Y), e(Y,Z) ==> p(X,Z).

Shortest Path Lengths. Let us add an argument to the path constraint that holds
the length of the path. When we adapt the duplicate removal rule, we keep the
shorter path. This also ensures termination. The path propagated from an edge
has length 1. A path of length n extended by an edge has length n + 1.

p(X,Y,N) \ p(X,Y,M) <=> N=<M | true.
e(X,Y) ==> p(X,Y,1).
e(X,Y), p(Y,Z,N) ==> p(X,Z,N+1).

For example, the query e(X,X) reduces to p(X,X,1). For the query e(X,Y),
e(Y,Z), e(X,Z), the answer is
e(X,Y), e(Y,Z), e(X,Z), p(X,Z,1), p(Y,Z,1), p(X,Y,1).

These rules can be easily generalized to compute shortest distances: replace
1 by the additional distance D given in the edge constraint e:

p(X,Y,N) \ p(X,Y,M) <=> N=<M | true.
e(X,Y,D) ==> p(X,Y,D).
e(X,Y,D), p(Y,Z,N) ==> p(X,Z,N+D).

5.2 Ordered Merging and Sorting

We use a binary CHR constraint written in infix notation, A --> B, to represent
a directed edge (arc) from node A to node B. We use a chain of such arcs to
represent a sequence of values that are stored in the nodes, e.g. 0-->2, 2-->5.

Ordered Merging. We assume ordered chains with nodes in ascending order. So
A-->B means that A=<B. We also say that B is the immediate successor of A.

The following one-rule program performs an ordered merge of two chains by
zipping them together, provided they start with the same (smallest) node.

A --> B \ A --> C <=> A<B,B<C | B --> C.

Consider two arcs to which the rule applies. For example, consider the query
0-->2, 0-->5. It will result in 0-->2, 2-->5 after one rule application. Basi-
cally we add the arc B-->C to represent B<C. Thus the arc A-->C now becomes
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redundant due to transitivity and is removed. This rule in a sense undoes tran-
sitive closure. It flattens out a branch in a graph.

The code basically works like a zipper. In the rule, A denotes the current
position where there is a branch. During computation, all nodes up to A have
already been merged, now the successors of A in the two chains are examined.
The arc from A to B, the smaller of the two successor nodes of A, is kept, since B
must be the immediate successor of A. The second arc is replaced by an arc from
B to C. If the first chain is not finished yet, the new branch will be at B now.
The rule applies again and again until there is no more branch left by using up
at least one chain. (The chains can have different length.)

For example, the query 0-->2, 2-->5, 0-->3, 3-->7 will produce the an-
swer 0-->2, 2-->3, 3-->5, 5-->7. (Note that the constraints in the answer
may not necessarily be sorted in that way.)

Termination and Correctness. Applying the rule will not change the number of
arcs and the set of involved nodes, i.e. values. The nodes on the right of an arc
will not change, too. Only a node on the left may be replaced by a larger node.
Since the only rule replaces smaller node values by strictly larger ones without
changing anything else and there is only a finite number of values, the program
terminates. The application of the rule keeps the invariant that the two graphs
are ordered chains.

We can prove correctness by contradiction: If there is an arc whose right node
value is not the immediate successor of the left node value, then the chain is not
ordered or disconnected. During computation the chains will share a longer and
longer common prefix. If no rule is applicable, the two chains have been merged,
there is only one chain, so that chain must be ordered, too.

Duplicate Removal. Note that duplicate values are ignored by the rule due to its
guard, as they occur as arcs of the form A-->A. Also duplicate arcs of the form
A-->B, A-->B are ignored. To remove duplicate values and duplicate arcs, we
may add the two rules:

A --> A <=> true.
A --> B \ A --> B <=> true.

The rule for duplicate arcs can be made redundant when we slightly generalize
its guard of our initial merge rule:

A --> B \ A --> C <=> A<B, B=<C | B --> C.

Concretely, from A-->B, A-->B, where A<B, the sorting rules produces A-->B,
B-->B. The arc B-->B will be removed by the rule for duplicate arcs.

Sorting. We can now perform an ordered merge of two chains that are in as-
cending order. But the merge rule also works with more than two chains. It
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will actually merge them simultaneously. Based on this observation, we can im-
plement a merge sort algorithm. If we want to sort n values, we take n one
length chains starting with the same smallest (dummy) value (in the example it
is 0). Applied repeatedly to a left node, the merge rule will find its immediate
successor. As before, the answer is a single, ordered chain of arcs.

In its generality, the code turns a certain type of ordered tree into an ordered
chain. Actually, any graph of ordered arcs where all nodes can be reached from
a single root node can be sorted. There are no duplicate nodes on the right of
an arc, i.e., no right branches. The branches are on the left nodes of an arc, and
they are removed by our sorting rule.

Our one-rule sorting program has quadratic complexity when the complier
optimisation of indexing is used, an optimal lin-log complexity version is also
possible with just one additional rule.

6 Conclusions

We have introduced CHR by presenting some small programs written in different
programming styles. We also discussed the properties of these programs.
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[FA03] Frühwirth, T., Abdennadher, S.: Essentials of Constraint Programming.
Springer, Heidelberg (2003)
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Abstract. This paper introduces a framework for the specification of
tree search strategies in CHR with disjunction (CHR∨). We support the
specification of common search strategies such as depth-first, breadth-
first and best-first, as well as constrained optimization by means of
branch & bound search. The framework is given as an extension of CHR
with rule priorities (CHRrp) in which each branch of the search tree is
assigned a branch priority. This approach leads to a uniform solution to
execution control in CHR.

1 Introduction

Constraint Handling Rules (CHR) [12] is a high-level rule-based language, de-
signed for the implementation of constraint solvers. It runs on top of a host
language like Prolog [26], Java [4,33], Haskell or Curry [16], which provides a
built-in constraint solver supporting at least a syntactic equality constraint, as
well as the constraints true and false.

CHR aims at being a high-level language for implementing constraint solvers.
Indeed, it is excellent at representing the propagation logic of constraint solvers:
the notion of a constraint propagator corresponds with a CHR rule. The CHR∨

language extension [5] also presents a high-level means to express the search
aspect of constraint solving. However, due to the non-deterministic operational
semantics of these features, CHR is but an abstraction of constraint solving.
Most constraint problems are of too big a size to be naively entrusted to a non-
deterministic solving process. Rather, solving strategies must be specified to
cleverly direct the solving process and prune the search space early and eagerly.
An appropriate solving strategy can indeed reduce the solving cost by many
orders of magnitude and make the difference between an infeasible and practical
approach.

It is for this reason that most state-of-the-art constraint solvers offer the
means to select and/or specify the desired solving strategy. For instance, there
are 18 documented options, many of which are parameterized and/or can be
combined, to influence the strategy of the enumeration predicate labeling/2
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in the clp(fd) library of SICStus Prolog [7]. The solving strategy often falls
apart in two distinct aspects: propagator priorities for conjunctions and search
priorities for disjunctions. Propagator priorities can be specified by means of
rule priorities: these have been studied in CHRrp [10]. In this paper, we add the
missing piece: search priorities.

The main contributions of this paper are the following:

1. We present CHRbrp
∨ , a high-level approach for specifying the control flow

in CHR∨ (Section 3). CHRbrp
∨ extends CHR∨ with both branch and rule

priorities.
2. We show how to express standard tree search strategies such as depth-first,

breadth-first, depth-first iterative deepening and limited discrepancy search
in CHRbrp

∨ (Section 4).
3. We show how conflict-directed backjumping can be realized by extending

our framework with justifications (Section 5). Our work extends [38] by not
restricting the search strategy to left-to-right depth-first, and by addressing
correctness and optimality.

This work is based on previous work in [9]. There are three main improvements.
Firstly, whereas in [9], the search strategy is determined by choosing an ap-
propriate definition of the Split transition, in this work, the search strategy
is determined by the program. This allows using program dependent informa-
tion for informed search, for example for a best-first search strategy. Secondly,
our search framework is based on CHRrp and the ωp semantics, while in [9], it
is based on the more low-level ωr semantics of CHR. Finally, we also consider
constrained optimization, a topic that hitherto has not been tackled.

2 CHR with Rule Priorities and Disjunction

In this section, we introduce both CHRrp, CHR with rule priorities [10]
(Section 2.2), and CHR∨, CHR with disjunctive rule bodies [5] (Section 2.3).
We first review the syntax and semantics of regular CHR in Section 2.1.

2.1 Constraint Handling Rules

Syntax. A constraint c(t1, . . . , tn) is an atom of predicate c/n with ti a host
language value (e.g., a Herbrand term in Prolog) for 1 ≤ i ≤ n. There are
two types of constraints: built-in constraints and CHR constraints (also called
user-defined constraints). The CHR constraints are solved by the CHR program
whereas the built-in constraints are solved by an underlying constraint solver
(e.g., the Prolog unification algorithm).

There are three types of Constraint Handling Rules: simplification rules, prop-
agation rules and simpagation rules. They have the following form:

Simplification r @ Hr ⇐⇒ g | B
Propagation r @ Hk =⇒ g | B
Simpagation r @ Hk \ Hr ⇐⇒ g | B
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where r is the rule name, Hk and Hr are non-empty sequences of CHR con-
straints and are called the heads of the rule, the rule guard g is a conjunction of
built-in constraints, and the rule body B is a multi-set of both CHR and built-in
constraints. Throughout this text, in particular in the descriptions of the oper-
ational semantics, we use the simpagation rule form to denote any type of rule,
where Hk is empty in case of a simplification rule, and Hr is empty in case of a
propagation rule. A program P is a set of CHR rules.

The Theoretical Operational Semantics. Operationally, CHR constraints
have multi-set semantics. To distinguish between different occurrences of syntac-
tically equal constraints, CHR constraints are extended with a unique identifier.
An identified CHR constraint is denoted by c#i with c a CHR constraint and i
the identifier. We write chr(c#i) = c and id(c#i) = i. The theoretical operational
semantics of CHR, denoted ωt, is given in [11] as a state transition system. A
CHR execution state σ is represented as a tuple 〈G, S, B, T 〉n where G is the goal,
a multi-set of constraints that need to be solved; S is the CHR constraint store,
a set of identified CHR constraints; B is the built-in constraint store, a conjunc-
tion of built-in constraints; T is the propagation history, a set of tuples denoting
the rule instances that have already fired; and n is the next free identifier, used
to identify new CHR constraints. The transitions of ωt are shown in Table 1,
where D denotes the built-in constraint theory, ∃̄XY denotes the existential clo-
sure of Y apart from the variables appearing in X , and 	 is the multi-set union
operation which we also use for sets in case a disjoint union is required.

Table 1. Transitions of ωt

1. Solve 〈{c} � G, S, B, T 〉n

ωt�P 〈G, S, c ∧ B, T 〉n where c is a built-in constraint.

2. Introduce 〈{c} � G, S, B, T 〉n

ωt�P 〈G, {c#n} ∪ S, B, T 〉n+1 where c is a CHR
constraint.

3. Apply 〈G, H1 � H2 � S, B, T 〉n ωt�P 〈C � G, H1 ∪ S, θ ∧ B, T ∪ {t}〉n where P
contains a (renamed apart) rule

r @ H ′
1\H ′

2 ⇐⇒ g | C

and a matching substitution θ such that chr(H1) = θ(H ′
1), chr(H2) = θ(H ′

2),
D |= B → ∃̄B(θ ∧ g), and t = 〈id(H1), id(H2), r〉 /∈ T .

The Solve transition solves a built-in constraint from the goal, the Intro-
duce transition inserts a new CHR constraint from the goal into the CHR con-
straint store, and the Apply transition fires a rule instance. A rule instance θ(r)
instantiates a rule with CHR constraints matching the heads, using matching
substitution θ. A state is called final if no transition applies to it.

The Refined Operational Semantics. The refined operational semantics of
CHR, denoted by ωr, is introduced in [11] as a formalization of the execution
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mechanism of most current CHR implementations. The ωr semantics is based on
the concept of an active constraint. The active constraint is a CHR constraint
that is used as a starting point for finding applicable rule instances. To ensure
that all rule instances are eventually tried, all new CHR constraints become
active after they are asserted. CHR constraints that have been active before and
whose variables are affected by a new built-in constraint, are reactivated.

The active constraint tries rules in textual order until either it finds a applica-
ble rule instance or all rules have been tried. When a rule instance fires, its body
is processed from left to right. Every new CHR constraint that is processed, is
activated as soon as it is inserted into the constraint store. Every new built-in
constraint is solved for, and all affected CHR constraints are activated one by
one before processing the next constraint in the body. If the active constraint
has not been removed, then after processing the rule body, it searches for the
next applicable rule instance. Otherwise, processing resumes where it left before
the constraint was activated.

Many programs rely on the execution order imposed by the ωr semantics. In
Section 2.2, we present an alternative to the ωr semantics that offers a more
high-level and flexible form of execution control.

2.2 CHR with Rule Priorities

CHRrp extends CHR with user-defined rule priorities. It is introduced in [10] to
support more high-level and flexible execution control than previously available
in CHR by means of the low-level ωr semantics, while retaining the expressive
power needed for the implementation of general purpose algorithms.

Syntax. The syntax of CHRrp is compatible with the syntax of (regular) CHR.
A CHRrp simpagation rule looks as follows:

p :: r @ Hk \ Hr ⇐⇒ g | B
where r, Hk, Hr, g and B are as defined in Section 2.1. The rule priority p is an
arithmetic expression for which holds that vars(p) ⊆ (vars(Hk) ∪ vars(Hr)), i.e.,
all variables in p also appear in the heads. A rule in which vars(p) = ∅ is called a
static priority rule: its priority is known at compile time and is the same for all its
instances. A rule in which vars(p) = ∅ is called a dynamic priority rule: its priority is
only known at runtime and different instances of the same rule may fire at different
priorities. We say that priority p is higher than priority p′ if p < p′.

The Priority Semantics. The operational semantics of CHRrp is called the
priority semantics and is denoted by ωp. It consists of a refinement of the ωt

semantics with a minimal amount of determinism in order to support rule prior-
ities. The ωp semantics uses the same state representation as the ωt semantics.
It restricts the applicability of the Apply transition with respect to the ωt se-
mantics: this transition is only applicable to states with an empty goal and it
fires a rule instance of priority p in state σ only if there exists no ωt Apply
transition σ

ωt�P σ′ that fires a rule instance with a higher priority. The Solve
and Introduce transitions are unchanged w.r.t. the ωt semantics.



20 L. De Koninck, T. Schrijvers, and B. Demoen

2.3 CHR with Disjunction

Constraint Handling Rules is extended with disjunctions in rule bodies in [5] (see
also [2] and [3, Chapter 5]). The resulting language is denoted by CHR∨. The
syntax of CHR∨ is the same as that of regular CHR, except that rule bodies are
formulas built from atoms by conjunctions and disjunctions. In [9], we define a
theoretical operational semantics ω∨

t for CHR∨, which extends the ωt semantics
of CHR. An ω∨

t execution state is a multi-set Σ = {σ1, . . . , σn} of ωt execution
states. Each element σi ∈ Σ represents an alternative solution. The following
transitions are defined on ω∨

t executions states:

Table 2. Transitions of ω∨
t

1. Derive {σ} � Σ
ω∨

t�P {σ′} � Σ if there exists a transition σ
ωt�P σ′.

2. Split {〈{G1 ∨ . . . ∨ Gm} � G, S, B, T 〉n} � Σ
ω∨

t�P {〈G1 � G, S, B, T 〉n, . . . , 〈Gm �
G, S, B, T 〉n} � Σ.

3. Drop {σ} � Σ
ω∨

t�P Σ if σ = 〈G, S, B, T 〉n is a failed execution state, i.e., D |=
¬∃̄∅B.

The Drop transition is new compared to our description in [9]. It removes
failed alternatives from the search tree and is introduced to support pruning of
the search tree, for example during conflict-directed backjumping (see Section 5).
This pruning respects the declarative semantics of CHR∨ (see [3, Chapter 5]).

Example 1 (4-queens). A solver for the 4-queens problem can be written in
CHR∨ as follows.

queens <=> row(1), row(2), row(3), row(4).

row(R) <=> queen(R,1) ∨ queen(R,2) ∨ queen(R,3) ∨ queen(R,4).

queen(_ ,C1), queen(_ ,C2) ==> C1 =\= C2.

queen(R1,C1), queen(R2,C2) ==> abs(R1 - R2) =\= abs(C1 - C2).

As goal we use {queens}. Here, a queen(R,C) constraint means that there is
a queen placed on the field with row R and column C. The first rule states
that there are four rows. The second rule states that there is a queen in one of
the columns for each row. The remaining two rules ensure that no two queens
are in conflicting positions. The first of them makes sure that there are no two
queens in the same column; the second that there are no two queens on the
same diagonal. The program above can easily be adapted to solve the general
n-queens problem. ��

Search Trees. An ω∨
t derivation can be visualized as a search tree. Such a

search tree consists of a set of nodes and a set of (directed) edges connecting
these nodes. A node is either an internal node or a leaf node. An internal node
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represents a choice point and corresponds to a state in which a Split transition
applies. The root node corresponds to the initial state 〈G, ∅, true, ∅〉1 with G the
initial goal. It can be considered an internal node corresponding to a choice point
with only one alternative. A leaf node represents a successful or failed final ωt

execution state. An edge goes from one node, its start node, to another node, its
end node, and represents the derivation that transforms one of the alternatives
of its start node into its end node, i.e., it consists of a series of execution states
that are linked by Derive transitions. For example, the derivation

{σ0}
ω∨

t�P {σ1, σ2}
ω∨

t�P {σ3, σ2}
ω∨

t�P {σ3, σ4}
ω∨

t�P {σ3, σ5, σ6, σ7}
corresponds to the following search tree:

σ1

σ3

σ0

σ2

σ4

σ5 σ6 σ7

In this example case, the search tree is traversed in left-to-right, depth-first
order. Note that different search trees are possible for the same goal. Consider
for example the initial goal {(G1∨G2), (G3∨G4)}. For this goal, some derivations
apply the Split transition to the subgoal G1 ∨ G2 first, while others apply this
transition first to G3 ∨G4.

3 A Combined Approach

In this section, we combine CHRrp with CHR∨ into a flexible framework for defin-
ing both the search and propagation strategy to be used by the CHR constraint
solver. While our previous work [9] extended the refined operational semantics
of CHR with facilities for search strategy control, this work extends the more
high-level priority semantics of CHRrp.

First, we discuss some issues concerning search strategies and constrained
optimization. A search strategy determines the order in which answers (solu-
tions) to a problem are generated. This order is only relevant if we need a
subset of all answers, in particular if we only need one. If we need all answers,
then a simple sorting of these answers suffices to implement any search strategy.
We assume here that search tree branches are processed independently; but see
Section 5 for a discussion of conflict-directed backjumping, a search technique
that does take into account results from other branches. In the case of naive
optimization, implemented by computing all answers and then choosing the op-
timal one amongst these, the search strategy is of no importance. However, in
a more intelligent form, using for example a branch & bound approach, a good
search strategy may cause considerable pruning of the search tree.
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In [9], the ω∨
r semantics states that only the first answer is derived.1 Other

answers can be retrieved on external request (e.g., from the Prolog toplevel) by
discarding the first answer and continuing search using the ω∨

r Next transition.
Similarly, under the ω∨�

r semantics presented in [38], the derivation stops as
soon as the first answer is found, or the search tree is traversed completely.
Retrieving the other answers is not explicitly supported, but such support can
easily be added to the approach.

3.1 An Intermediate Step: CHRrp
∨

As an intermediate step, we introduce a simple combination of CHRrp with
CHR∨ into the combined language CHRrp

∨ . This language supports execution
control with respect to conjuncts by means of the CHRrp rule priorities, but
leaves the search control undetermined. The syntax of CHRrp

∨ is similar to that
of CHRrp, but also allows disjunction in the rule bodies, like in CHR∨. The
operational semantics of CHRrp

∨ is almost the same as that of CHR∨. The only
difference is that in the Derive transition, ωt is replaced by ωp. In the next
subsection, we extend CHRrp

∨ with branch priorities to support the specification
of search strategies. Finally, in Section 3.3, a correspondence result is given,
relating CHRbrp

∨ programs and derivations to CHR∨ programs and derivations.

3.2 Extending CHRrp
∨ with Branch Priorities

Syntax. The syntax of CHRbrp
∨ extends the syntax of CHRrp

∨ with branch pri-
orities. A CHRbrp

∨ simpagation rule looks as follows:

(bp, rp) :: r @ Hk \ Hr ⇐⇒ g | bp1 :: B1 ∨ . . . ∨ bpm :: Bm

where r, Hk, Hr and g are as defined in Section 2.1. The rule priority rp is as in
CHRrp. The branch priority bp is a term: there is no a priori reason to restrict
the allowed terms. In the examples, we use (tuples of) (lists of) integers and
variables.

The rule body consists of a set of disjuncts Bi, each of which is annotated
with a branch priority bpi (1 ≤ i ≤ m). To simplify the presentation (e.g., of
the correspondence result in Section 3.3), we impose that each disjunct Bi is a
conjunction of constraints. In particular, we do not support nested disjunctions.
If in a rule with a single disjunct, the branch priority of this disjunct equals the
one of its parent branch, then the branch priorities can be omitted, and so each
CHRrp rule is also a syntactically valid CHRbrp

∨ rule.
A CHRbrp

∨ program is a tuple 〈R,BP, bp0,�〉 where R is a set of CHRbrp
∨

rules, BP is the domain of the branch priorities, bp0 ∈ BP is the initial branch
priority, and � is a total preorder relation over elements of BP.2
1 An answer (or solution) is a successful final ωr execution state.
2 We do not require that � is antisymmetric, i.e., x � y∧y � x does not imply x = y.
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Operational Semantics. We extend the ωp states with a branch priority. The
combination is called an alternative and is denoted by bp :: σ where bp is the
branch priority and σ is an ωp execution state.3 An alternative can be marked,
in which case it is written as bp :: σ�. Marking is used to discard a solution in
order to derive a next one.

The operational semantics ω∨
p considers (multi-)sets of alternatives. A total

pre-order � must be defined on their branch priorities, so that an alternative
with the highest priority can be determined. In practice, we most often use a
total order and in the examples, we define � by a logical formula containing
arithmetic expressions. This implies that certain parts of the branch priorities
must be ground. For a set Σ of alternatives, we denote by max bp(Σ) the highest
branch priority of any unmarked alternative in Σ, or in case Σ does not contain
any unmarked alternatives, a branch priority that is smaller than any other
branch priority. The transitions of ω∨

p are given in Table 3.

Table 3. Transitions of ω∨
p

1a. Solve {bp :: 〈{c} � G, S, B, T 〉n} � Σ
ω∨

p

�P {bp :: 〈G, S, c ∧ B, T 〉n} � Σ if
max bp(Σ) � bp and c is a built-in constraint.

1b. Introduce {bp :: 〈{c}�G, S, B, T 〉n}�Σ
ω∨

p

�P {bp :: 〈G, {c#n}∪S, B, T 〉n+1}�
Σ if max bp(Σ) � bp and c is a CHR constraint.

1c. Apply {bp :: 〈∅, H1 � H2 � S, B, T 〉n} � Σ
ω∨

p

�P {bp :: 〈C,H1 ∪ S, θ ∧ B, T ∪
{t}〉n} � Σ if max bp(Σ) � bp and where P contains a rule of priority rp of the
form

(bp′, rp) :: r @ H ′
1\H ′

2 ⇐⇒ g | C

and a matching substitution θ exists such that chr(H1) = θ(H ′
1), chr(H2) =

θ(H ′
2), bp = θ(bp′), D |= B → ∃̄B(θ ∧ g), θ(rp) is a ground arithmetic expres-

sion and t = 〈id(H1), id(H2), r〉 /∈ T . Furthermore, no rule of priority rp′ and
substitution θ′ exists with θ′(rp′) < θ(rp) for which the above conditions hold.

2. Split {bp :: σ} � Σ
ω∨

p

�P {bp1 :: σ1, . . . , bpm :: σm} � Σ if max bp(Σ) � bp and
where σ = 〈{bp1 :: G1∨. . .∨bpm :: Gm}�G, S, B, T 〉n and σi = 〈Gi�G, S, B, T 〉n
for 1 ≤ i ≤ m.

3. Drop {bp :: 〈G, S, B, T 〉n} � Σ
ω∨

t�P Σ if max bp(Σ) � bp and D |= ¬∃̄∅B.

4. Mark {bp :: σ} � Σ
ω∨

p

�P {bp :: σ�} � Σ if max bp(Σ) � bp and no other ω∨
p

transition applies.

The main differences w.r.t. the ω∨
t semantics are the following. The Derive

transition is split up into three transitions corresponding to the ωp transitions
in order to support matching with, and guards involving the branch priority.
3 In the following, we treat states in which the goal contains a disjunction as ωp states,

but we do not call them final states, even if no ωp transition applies to them.
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These three transitions, as well as the Split and Drop transitions, only apply
to the highest priority unmarked alternative. Finally, a new transition called
Mark is introduced, whose purpose is to mark a solution (successful final state)
in order to find a next solution. Given a goal G, we construct an initial ω∨

p state
Σ0 = {bp0 :: 〈G, ∅, true, ∅〉1} where bp0 is the initial branch priority for the
program.

Noteworthy is that the branch priorities presented above, do not change the
shape of the search tree. Instead, they only influence the order in which the
nodes of this search tree are explored. Therefore, the search strategy used is of
importance only in the following cases.
– If we require a subset of all solutions.
– If we combine the search strategy with an intelligent backtracking technique

such as conflict-directed backjumping (see Section 5).
– If we need an optimal solution using a branch & bound or restart optimiza-

tion approach.

In contrast, if we require all solutions and do not apply any pruning based on
previously computed answers, then the search strategy is irrelevant.4

In general, we might be interested in retrieving solutions one at a time. This
is for example supported in the Prolog context by means of the toplevel environ-
ment asking whether more solutions are needed. We define a function find next
that returns, given an ω∨

p state, the first answer (solution) in this state, as well
as the resulting state after marking this solution, which contains the remaining
answers.

find next(Σ) = 〈A, ΣR〉

if there exists a derivation Σ
ω∨

p

�∗
P ΣA

ω∨
p

�P ΣR where the transition from ΣA

to ΣR is a Mark transition and the derivation from Σ to ΣA does not contain
such a transition. In the result, A = B ∧ chr(S) where bp :: 〈∅, S, B, T 〉n is the
highest priority unmarked alternative in ΣA.

Constrained Optimization. As a general approach to constrained optimiza-
tion, we show how both a branch & bound, and restart optimization scheme can
be implemented in CHRbrp

∨ . We consider a goal G whose best solution is to be
returned. This best solution is such that there exists no solution that assigns a
lower value to a given cost function F whose variables appear in G.5 Let there
be given an initial ω∨

p state Σ0 based on the goal G. Under the assumption that
there is a solution, we find the solution that minimizes our cost function F as
find min(Σ0, F ) where find min is defined as

find min(Σ, F ) = let

{
〈A, Σ′〉 = find next(Σ)
Σ′′ = add goal(F < F (A), Σ′)

in if Σ′′ has no solution then A
else find min(Σ′′, F )

4 This is related to the distinction between variable ordering and value ordering in
case all solutions are required, see for example [30].

5 Alternative, one can use a utility function that is to be maximized.
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for branch & bound optimization, and for restart optimization as follows:

find min(Σ, F ) = let

{
〈A, Σ′〉 = find next(Σ)
Σ′′ = add goal(F < F (A), Σ)

in if Σ′′ has no solution then A
else find min(Σ′′, F )

Here add goal(G, Σ) returns the ω∨
p state that results from adding the goal G to

all unmarked alternatives in Σ:

add goal(G, Σ) = {bp :: σ� | bp :: σ� ∈ Σ} 	
{bp :: 〈G 	G′, S, B, T 〉n | bp :: 〈G′, S, B, T 〉n ∈ Σ}

The difference between both approaches is that in branch & bound optimization,
the new bound is added as a goal to all remaining alternatives, whereas in restart
optimization, the new bound is added to the initial state, which is solved for
again.

Dynamic Search Tree Generation. It is not always convenient or even pos-
sible to state at compile time which alternatives are to be created. In general,
we may want to generate alternatives dynamically, at runtime. Let us assume
we can compute, by means of a built-in constraint, a list of all alternatives to
be generated, as well as a list of priorities to be used for the respective al-
ternatives. We can then dynamically generate the alternatives by asserting a
generate_alternatives/2 constraint whose arguments are respectively the list
of priorities and the list of alternatives. Let � ∈ BP be higher than all branch
priorities used for the dynamically generated alternatives. We can then define
the generate_alternatives/2 constraint by the following rules.

(_,1) :: generate_alternatives([P|Ps],[A|As]) <=>

P :: A ∨ � :: generate_alternatives(Ps,As).

(_,1) :: generate_alternatives([],[]) <=> true.

By using the � priority value, we ensure that all alternatives are generated before
the first of them is processed.

3.3 Correspondence

In this subsection, we show that every ω∨
p derivation of a CHRbrp

∨ program P ,
corresponds to an ω∨

t derivation of a corresponding non-deterministic CHR∨

version of this program P . We first show how to create such a non-deterministic
version of a CHRbrp

∨ program. Next, we propose a mapping from ω∨
p states onto

ω∨
t states, and finally, we give the correspondence result.
Given a CHRbrp

∨ program P , we create a CHR∨ program nondet(P ) as follows.
For every rule in P of the form

(bp, rp) :: r @ Hk \Hr ⇐⇒ guard | bp1 :: B1 ∨ . . . ∨ bpm :: Bm
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nondet(P ) contains a rule

r @ Hk \Hr, bp(bp) ⇐⇒ guard | (bp(bp1), B1) ∨ . . . ∨ (bp(bpm), Bm)

and for every rule of the form

(bp, rp) :: r @ Hk \Hr ⇐⇒ guard | body

where body does not contain a disjunction, nondet(P ) contains a rule

r @ bp(bp), Hk \Hr ⇐⇒ guard | body

It is easy to see that given one bp/1 constraint in the initial goal, no state can
be derived in which the CHR constraint store contains more than one such con-
straint. We incorporate the branch priorities of P as constraints into nondet(P )
because they may appear in guards or rule bodies. In the following, we assume
that no constraint identifier is used for the bp/1 constraint and that it is ignored
by the propagation history. This can be realized by a source-to-source trans-
formation in which constraint identifiers and the propagation history are made
explicit.

Now we define a mapping function map from ω∨
p states to ω∨

t states.

map({bp :: σ} 	Σ) = map(bp :: σ) 	map(Σ)

map(bp :: 〈G, S, B, T 〉n) =

{
〈G′, S, B, T 〉n if G consists of a disjunction
〈G, {bp(bp)} ∪ S, B, T 〉n otherwise

where G′ is found by replacing each disjunct
bpi :: Bi in G by a disjunct (bp(bpi), Bi)

Theorem 1 (Correspondence). Given a CHRbrp
∨ program P and the corre-

sponding CHR∨ program nondet(P ), then for each transition Σ
ω∨

p

�P Σ′, there

exists a derivation map(Σ)
ω∨

t�∗
nondet(P ) map(Σ′) and if Σ is a final ω∨

p state, then
map(Σ) is a final ω∨

t state.

Proof. Let there be given a transition Σ
ω∨

p

�P Σ′. Each ω∨
p transition operates

on a single (highest priority, unmarked) alternative bp :: σ, and replaces this
alternative with one or more new alternatives. Let Σ = {bp :: σ} 	 ΣR and let
Σ′ = ΣN 	 ΣR. We also have that map(Σ) = map(bp :: σ) 	 map(ΣR). Now a
transition from Σ to Σ′ can be one of the following:

1a. Solve. σ = 〈{c}	G, S, B, T 〉n with c a built-in constraint, and so map(bp ::
σ) = 〈{c} 	 G, {bp(bp)} ∪ S, B, T 〉n. Therefore, in map(Σ), the ω∨

t Derive
transition is possible since the ωt Solve transition applies to map(bp :: σ).
This results in the ω∨

t state {〈G, {bp(bp)}∪S, c∧B, T 〉n} 	map(ΣR) which
is exactly map({bp :: 〈G, S, c ∧B, T 〉n} 	ΣR).
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1b. Introduce. σ = 〈{c} 	 G, S, B, T 〉n with c a CHR constraint, and so
map(bp :: σ) = 〈{c}	G, {bp(bp)}∪S, B, T 〉n. Therefore, in map(Σ), the ω∨

t

Derive transition is possible since the ωt Introduce transition applies to
map(bp :: σ). This results in the ω∨

t state {〈G, {c#n, bp(bp)}∪S, B, T 〉n+1}	
map(ΣR) which is exactly map({bp :: 〈G, {c#n} ∪ S, c ∧B, T 〉n+1} 	ΣR).

1c. Apply. σ = 〈∅, H1 	 H2 	 S, B, T 〉n and so map(bp :: σ) = 〈∅, {bp(bp)} 	
H1 	H2 	 S, B, T 〉n. P contains a rule of the form

(bp′, rp) :: r @ H ′
1\H ′

2 ⇐⇒ g | C
and there exists a matching substitution θ such that chr(H1) = θ(H ′

1),
chr(H2) = θ(H ′

2), bp = θ(bp′), D |= B → ∃̄B(θ ∧ g), θ(rp) is a ground
arithmetic expression and t = 〈id(H1), id(H2), r〉 /∈ T . Assume C consists of
a disjunction, then nondet(P ) contains a rule of the form

r @ H ′
1\H ′

2, bp(bp′) ⇐⇒ g | C′

where C′ is found by replacing all CHRbrp
∨ disjuncts of the form bpi :: Bi

by CHR∨ disjuncts of the form (bp(bpi), Bi). Given this rule, the ωt Apply
transition applies to state map(bp :: σ). In particular, we can use θ as the
matching substitution. Therefore, the ω∨

t Derive transition applies to state
map(Σ), resulting in the state {〈C′, H1∪S, θ∧B, T∪{t}〉n}	map(ΣR) where
t = 〈id(H1), id(H2), r〉. This corresponds to the state map(Σ′) = map({bp ::
〈C, H1 ∪S, θ ∧B, T ∪ {t}〉n} 	ΣR). The case that C does not contain a dis-
junction is similar. The difference is that the bp/1 constraint is not removed
and the rule body remains unchanged.

2. Split. σ = 〈{bp1 :: G1 ∨ . . . ∨ bpm :: Gm}, S, B, T 〉n and so map(bp :: σ) =
〈{(bp(bp1), G1) ∨ . . . ∨ (bp(bpm), Gm)}, S, B, T 〉n. In map(Σ), the ω∨

t Split
transition applies, resulting in the state {〈{bp(bp1)} 	 G1, S, B, T 〉n, . . . ,
〈{bp(bpm)} 	Gm, S, B, T 〉n} 	map(ΣR). In each of the m first alternatives,
the Introduce transition applies, introducing the bp/1 constraint into the
CHR constraint store. After these introductions, the resulting state equals
{〈G1, {bp(bp1)}∪S, B, T 〉n, . . . , 〈Gm, {bp(bpm)}∪S, B, T 〉n}	map(ΣR). This
state equals map(Σ′) since Σ′ = {bp1 :: 〈G1, S, B, T 〉n, . . . , bpm :: 〈Gm, S, B,
T 〉n} 	ΣR).

3. Drop. σ = 〈G, S, B, T 〉n and D |= ¬∃̄∅B. Since the map function does
not change the built-in constraint store, the ω∨

t Drop transition applies
to map(Σ) resulting in the state map(ΣR). The result of applying the Drop
transition to Σ is the state ΣR and so the resulting states correspond.

4. Mark. This transition does not change the result of the map function and
so map(Σ) = map(Σ′).

This proves the first part of the theorem. For the second part, consider a final ω∨
p

state Σ. Such a state consists of a set of alternatives, each of which is marked. An
alternative is marked only if no other transition applies. This means (amongst
others) that the goal of such an alternative is empty and its built-in constraint
store is consistent. Once an alternative is marked, it remains unchanged. Now
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consider the ω∨
t state map(Σ). If an ω∨

t transition applies to this state, then
this must be a Derive transition because the map function only adds a bp/1
constraint to the CHR constraint store of each alternative with an empty goal
and so the Split and Drop transitions are not applicable. Let σ be the alter-
native in map(Σ) that is replaced by a Derive transition. Since the goal of σ
is empty, the ωt transition corresponding to the Derive transition must be an
Apply transition, firing a rule of the form

r @ H ′
1\H ′

2, bp(bp′) ⇐⇒ g | C′

Let θ(r) be the fired rule instance, then the CHR constraint store of state σ must
contain sets of constraints H1 and H2 matching the heads H ′

1 and H ′
2, as well as

a constraint bp(bp) that matches with bp(bp′). Moreover, the built-in constraint
store of σ entails the guard g in conjunction with the matching substitution
θ. Now, let bp :: σ′ be the ω∨

p alternative in Σ that maps on ωt state σ. By
definition, the CHR constraint store of σ′ contains the constraints in H1 and
H2, and its built-in constraint store and propagation history are equal to the
ones of σ. The CHRbrp

∨ program P contains a rule

(bp ′, rp) :: r @ H ′
1\H ′

2 ⇐⇒ g | C

for which holds that rule instance θ(r) can fire given the branch priority, CHR
and built-in constraint stores and propagation history of ω∨

p alternative bp :: σ′.
Potentially, θ(r) is not the highest priority applicable rule instance in bp :: σ′,
but then another rule instance can fire, and so this also implies that Σ is not a
final ω∨

p state. So we conclude that a non-final ω∨
t state corresponds to a non-

final ω∨
p state, which proves the second part of the theorem. ��

4 Specifying Common Search Strategies

In this section, we show how different search strategies can be implemented
in CHRbrp

∨ . In Section 4.1, we look at uninformed strategies such as depth-
first, breadth-first and depth-first iterative deepening. It is shown that a CHRrp

∨
program (i.e., one without branch priorities) can be automatically translated into
a CHRbrp

∨ program that implements these search strategies. Next, in Section 4.2,
we consider informed search strategies such as best-first search, A∗ and limited
discrepancy search. Finally, in Section 4.3, we show how different strategies can
be combined, with as an example a mixture of depth- and breadth-first search.

4.1 Uninformed Search Strategies

Depth-First and Breadth-First Search. In order to implement depth-first
or breadth-first search, we transform each CHRrp

∨ rule of the form

rp :: Hk \Hr ⇐⇒ guard | B1 ∨ . . . ∨Bn



A Flexible Search Framework for CHR 29

into a CHRbrp
∨ rule

(D, rp) :: Hk \Hr ⇐⇒ guard | (D + 1) :: B1 ∨ . . . ∨ (D + 1) :: Bn

The branch priorities correspond to the depth in the search tree: BP = N and
bp0 = 0. We define the branch priority order � as follows:

– for depth-first search, D1 � D2 ⇔ D1 ≤ D2
– for breadth-first search, D1 � D2 ⇔ D1 ≥ D2

Now, the branch priorities are such that for depth-first search, the deeper alter-
native has a higher priority, whereas for breadth-first search, the more shallow
alternative has a higher priority.

Example 2 (4-queens (ctd.)). The 4-queens solver given in Example 1 can be
extended with branch and rule priorities as follows.

(_,1) :: queens <=> row(1), row(2), row(3), row(4).

(D,2) :: row(R) <=> (D+1) :: queen(R,1) ∨ (D+1) :: queen(R,2) ∨
(D+1) :: queen(R,3) ∨ (D+1) :: queen(R,4).

(_,1) :: queen(_ ,C1), queen(_ ,C2) ==> C1 =\= C2.

(_,1) :: queen(R1,C1), queen(R2,C2) ==> abs(R1 - R2) =\= abs(C1 - C2).

The branch priorities implement depth-first or breadth-first search, depending
on the � order used. The rule priorities ensure that (further) labeling is done
only after consistency checking. The derivation starts with the following initial
CHRbrp

∨ state: {0 :: 〈{queens}, ∅, true, ∅〉1}. ��
The implementation of depth- and breadth-first search given above is still non-
deterministic with respect to alternatives at equal depth. We can implement
a deterministic left-to-right version of depth-first or breadth-first search as fol-
lows. Take as branch priorities sequences of integers (BP = N

∗ and bp0 = ε).
The length of the sequence denotes the depth in the search tree, and the ith

element in the sequence denotes the number of the branch taken at level i.
The order over these priorities is defined as

(D, rp) :: Hk \Hr ⇐⇒ guard | (D ++ [1]) :: B1 ∨ . . . ∨ (D ++ [n]) :: Bn

with

L1 � L2 ⇔
(length(L1) > length(L2)) ∨

(
length(L1) = length(L2) ∧ L1 ≤d L2

)
for depth-first search and

L1 � L2 ⇔
(length(L1) < length(L2)) ∨

(
length(L1) = length(L2) ∧ L1 ≤d L2

)
for breadth-first search. Here ≤d is the lexicographic or dictionary order.
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Depth-Limited Search and Depth-First Iterative Deepening. Depth-
limited search is a variant of depth-first search in which search tree nodes are
only expanded up to a given depth bound. It is an incomplete search in that it
is not able to find solutions beyond this depth bound. Amongst others, depth-
limited search is used in iterative deepening search. It can be implemented in
CHRbrp

∨ by using the depth-first search program given in the previous paragraph,
extended with the following rule:

(D,1) :: limit(D) <=> false.

This rule ensures that any alternative at the depth limit fails. Its rule priority
ensures the rule is tried before any other rule.6 Here, the depth limit is given by
an appropriate limit/1 constraint which is to be added to the initial goal.

Depth-first iterative deepening [21] consists of iteratively running depth-
limited search, increasing the depth limit in each run. Iterative deepening can
be implemented by adding the following rule:

(_,1) :: deepen(D) <=> 1 :: limit(D) ∨ 0 :: deepen(D+1).

Instead of a limit/1 constraint, the goal is extended with a deepen(1) con-
straint. Using the above approach may lead to an infinite loop in which the
depth limit keeps increasing in case the search tree is finite but contains no solu-
tions. The reason is that it is not possible to distinguish between failure because
the depth limit is reached, and failure because the entire search tree has been
traversed and no solutions were found. In Section 5.4 we return to this issue and
show how conflict-directed backjumping can solve this problem. More precisely,
it is shown that if failure is independent of the depth limit, there is no need to
change it.

Iterative Broadening. Iterative broadening [15] works similar to iterative
deepening, but instead of using a depth limit that is iteratively increased, the
number of branches starting at any given node is limited, and this limit increases
over the iterations. The domain of branch priorities BP = {〈D, B〉 | D, B ∈ N}.
A node with branch priority 〈D, B〉 is at depth D in the search tree, and is the
Bth alternative of its parent node. We use as initial branch priority bp0 = 〈0, 1〉
and we define the � relation as follows:

〈D1, 〉 � 〈D2, 〉 ⇔ D1 ≤ D2

Now, the code below implements iterative broadening.

(_,1) :: broaden(B) <=> B < nmax | 〈1,1〉 :: limit(B) ∨ 〈0,1〉 :: broaden(B+1).

(〈_,B〉,1) :: limit(L) <=> L < B | false.

(〈D,_〉,rp) :: r @ Hk \ Hr <=> guard | 〈D+1,1〉 :: B 1 ∨ ... ∨ 〈D+1,n〉 :: Bn.

6 This may require increasing the rule priorities of all other rules by one.
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In the above, nmax is an upperbound on the number of alternatives in a rule
body, and is used to ensure termination. The depth-first strategy ensures that
the sub-tree for a given breadth limit is completely traversed before increasing
this breadth limit (by means of a broaden/1 constraint). The second component
of the branch priorities of the alternatives created by the first rule, is of no
importance, as long as it is less than the breadth limit. We extend the initial
goal with a broaden(1) constraint to start the process.

4.2 Informed Search Strategies

Informed strategies take problem dependent heuristics into account.

Limited and Depth-Bounded Discrepancy Search. The limited discrep-
ancy search (LDS) [19] strategy is similar to best-first search. It is designed for
boolean constraint satisfaction problems in which the values of each variable are
ordered according to some heuristic. The idea behind LDS is that if following
the heuristic does not work, then it is probable that a solution can be found
by violating the heuristic only a limited number of times. Each violation of the
heuristic is called a discrepancy, and the algorithm consists of first trying those
alternatives with at most one discrepancy, then the ones with at most two dis-
crepancies and so on until a solution is found. Let there be given the following
CHRrp

∨ labeling rule:

rp :: domain(X,[V1,V2]) <=> (X = V1) ∨ (X = V2).

where the values in the domain are ordered according to the heuristic, i.e., V1 is
preferred over V2. In CHRbrp

∨ , we can write this labeling rule as follows:

(D,rp) :: domain(X,[V1,V2]) <=> D :: (X = V1) ∨ (D+1) :: (X = V2).

The branch priority represents the number of discrepancies: BP = N. Initially,
there is no discrepancy: bp0 = 0. In each choice point, the discrepancy remains
unchanged if we follow the heuristic, and increased by one if we deviate from
this heuristic. The alternatives with fewer discrepancies are explored first: P1 �
P2 ⇔ P1 ≥ P2.

Note that the description of LDS in [19] uses depth-first search combined with
a limit on the number of discrepancies. Here, we use a form of best-first search
where alternatives with less discrepancies are preferred. A variant of LDS in
which the number of discrepancies is actually bounded, can be expressed in the
same way as how we express depth-limited search, i.e., by introducing a limit/1
constraint and adding a rule

(D,1) :: limit(D-1) <=> false.

Another variant of LDS, called depth-bounded discrepancy search (DDS) [35]
combines LDS with iterative deepening. It is best characterized as a depth-first
search that only allows discrepancies below a certain depth, that is iteratively
increased. As for depth-first search, the branch priority denotes the depth in the
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search tree (BP = N∪ {−1}) and we start at the root (bp0 = 0). The order over
these priorities is the same as for depth-first search.

The original program is transformed to:

(_,1) :: start <=>

0 :: no_discrepancy ∨ -1 :: (allow_discrepancy, deepen(0)).

(_,1) :: deepen(D) <=> 0 :: limit(D) ∨ -1 :: deepen(D+1).

(D,1) :: limit(D), allow_discrepancy <=> force_discrepancy.

(D,rp) :: allow_discrepancy \ domain(X,[V1,V2]) <=>

(D+1) :: (X = V1) ∨ (D+1) :: (X = V2).

rp :: force_discrepancy, domain(X,[_,V2]) <=> no_discrepancy, X = V2.

rp :: no_discrepancy \ domain(X,[V1,_]) <=> X = V1.

Here, the limit/1 constraint represents the current depth limit. Above this
limit any number of discrepancies are allowed (allow_discrepancy/0), while
below the limit no discrepancies are allowed (no_discrepancy/0). It gets com-
plicated when we are at the current depth limit. Let us first focus on the iterative
deepening part. The deepen/1 constraint drives the iterative loop of installing
successively increasing depth limits. The extra element −1 ∈ BP is the minimal
priority, which ensures that we only install the next depth limit after the cur-
rent one has been fully explored. Each successive iteration should only produce
additional solutions, which have not been found in preceding iterations. Hence,
all solutions should exploit the increased depth-limit and have a discrepancy at
that depth. The force_discrepancy/0 constraint makes sure this happens. By
adding the start/0 constraint to the goal, we get the process going.

Similar to the case of depth-first iterative deepening, the depth limit keeps in-
creasing if either the problem is overconstrained, or we require all solutions. Again,
using conflict-directed backjumping remedies this problem. Only if failure hap-
pens in a state in which the constraint store contains a force_discrepancy/0 or
no_discrepancy/0 constraint (justified by a limit/1 constraint), the depth limit
is changed.

A∗ and Iterative Deepening A∗. The A∗ algorithm [18] consists of using
best-first search to find an optimal solution in a constrained optimization prob-
lem. Let the branch priorities be such that p :: σ is better than p′ :: σ′ for

successful final states σ and σ′, if and only if p � p′; and {p :: σ}
ω∨

p�∗
P Σ implies

p � pi for all pi :: σi ∈ Σ. Under these conditions, the first answer found (using
find next) is also an optimal solution.

Example 3 (Shortest path distance). Consider the following program for com-
puting the shortest path distance between two nodes in a directed graph.

(_,1) :: path(V,V) <=> true.

(D,2) :: neighbors(V,CU) \ path(V,W) <=> 1 :: branches(W,D,CU).

(_,1) :: branches(W,D,[C-U|CUs]) <=>

(D+C) :: path(U,W) ∨ 1 :: branches(W,D,CUs).

(_,1) :: branches(_,_,[]) <=> false.
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Here, the neighbors/2 constraints represent the edges of the graph: for each
node V , there exists a neighbors(V ,CUs) constraint with CUs a list containing
a pair C −U for each edge from node V to node U with cost C. The initial goal
consists of a single path/2 constraint whose arguments are the nodes for which
we wish to compute the shortest path distance. The branch priorities denote
the distance between the initial start node and the node represented by the first
argument of the path/2 constraint currently in the store, or, eventually in a
successful final state, the distance between the initial start and end nodes. We
have BP = N, bp0 = 0 and D1 � D2 ⇔ D1 ≥ D2. ��

Iterative deepening A∗ (ID-A∗) is a combination of A∗ and depth-first iterative
deepening. It consists of depth-first search in part of the search tree, only con-
sidering nodes whose cost function does not exceed a certain threshold value. If
no solution is found, the threshold is increased by the minimal amount needed
to include an unseen search tree node. We can easily implement a variant of
ID-A∗ in which the threshold is increased by some fixed amount, similar to how
we implement depth-first iterative deepening. However, increasing the threshold
with the minimal amount needed to include the lowest cost unseen node, falls
outside of the scope of our framework as it requires communication between
different branches of the search tree.

4.3 Combining Search Strategies

Now we show that the CHRbrp
∨ language is expressive enough to formulate com-

plex search strategies. In particular, with an appropriate choice of priorities and
orderings, compositions of the previous search strategies can be expressed. In
this subsection, we give two examples of such strategy compositions.

Example 4. Consider we want to use breadth-first search, but only up to a cer-
tain depth, e.g. so as not to exceed available memory. Beyond the depth limit,
the search should switch to a depth-first strategy.

To implement this more complex strategy, we use the same branch priorities
as the ones used for depth-first and breadth-first search in Section 4.1. The
following definition for the � relation is used

D1 � D2 ⇔ (D2 ≤ T ∧D2 ≤ D1) ∨ (T ≤ D1 ≤ D2)

where T is the depth threshold which is given by the user. In words, beyond the
threshold, the deeper alternative is preferred, whereas below the threshold, the
more shallow alternative is preferred. An alternative whose depth is below the
threshold is preferred over one whose depth is beyond the threshold. ��

In the second example, we show how to traverse the states resulting from some
Split transitions in a depth-first order, and others in a breadth-first order.

Example 5. Let us assume a CHRrp
∨ program containing the following two binary

labeling rules:
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1 :: label_df @ df_domain(X,[V1,V2]) <=> X = V1 ∨ X = V2.

1 :: label_bf @ bf_domain(X,[V1,V2]) <=> X = V1 ∨ X = V2.

Furthermore assume we want the labeling by rule label_df to proceed in depth-
first, and the labeling by rule label_bf in breadth-first order. We define a depth-
first subtree as part of the search tree in which all internal nodes correspond
to depth-first splits. A breadth-first subtree is similarly defined. Comparing al-
ternatives within a depth-first or breadth-first subtree is straightforward. For
alternatives across such subtrees, we proceed as follows.

Let there be two alternatives A1 and A2, let N1 = [N1
1 , . . . , N1

n1
] be the

sequence of nodes on the unique path from the root of the search tree, to (but
excluding) alternative A1, and let N2 = [N2

1 , . . . , N2
n2

] be the sequence of nodes
on the path from the root to alternative A2. Let i1 ∈ {1, . . . , n1 + 1} be the
first index for which holds that node Ni1 corresponds to a breadth-first (depth-
first) split or n1 + 1 if no such index exists. In particular, the nodes in the
subsequence [N1

1 , . . . , N1
i1−1] all correspond to depth-first (breadth-first) splits.

Let i2 ∈ {1, . . . , n2 + 2} be similarly defined. If i1 > i2 (i1 < i2) then alternative
A1 has priority over alternative A2 and if i1 < i2 (i1 > i2) then the opposite
holds. Finally, if i1 = i2, we compare the depths of the first depth-first (breadth-
first) splits in sequences [N1

i1 , . . . , N
1
n1

] and [N2
i2 , . . . , N

2
n2

] and so on until either
the depths are different or there are no more nodes to consider, in which case
both alternatives have an equal priority.

Figure 1 shows an example search tree including its depth-first and breadth-
first subtrees. Node 2 (as well as all alternatives on the edge from Node 1 to Node
2) has priority over Node 1 as both are part of the same depth-first subtree
and Node 2 is deeper than Node 1. Node 1 has priority over Nodes 3 and 4,
even though the latter are deeper in the global search tree. The reasoning is as
follows. The depth of the first breadth-first split in the path from the root node
to respectively Nodes 1, 3 and 4 all equals 2 (for Node 1, there is no such split).
In the remaining subpaths (for Node 1, this path is empty), the depth of the first

DF

BF

BF

DF

1

2

3 4

Fig. 1. Search tree for mixed depth-and-breadth-first search
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depth-first split equals 1 for Node 1, 3 for Node 3 and 2 for Node 4. Therefore,
Node 1 has priority over Nodes 3 and 4. Furthermore, Node 4 has priority over
Node 3. Finally, by transitivity, Node 2 also has priority over Nodes 3 and 4.

In CHRbrp
∨ , we can model the above described preference relation using the

following rules.

(P,1) :: label_df @ df_domain(X,[V1,V2]) <=>

df_child_priority(P) :: X = V1 ∨ df_child_priority(P) :: X = V2.

(P,1) :: label_bf @ bf_domain(X,[V1,V2]) <=>

bf_child_priority(P) :: X = V1 ∨ bf_child_priority(P) :: X = V2.

where the functions df_child_priority and bf_child_priority are imple-
mented as follows:7

df_child_priority(Parent) = Child :-

( length(Parent) mod 2 = 0

-> Child = Parent ++ [2]

; append(Context,[Depth],Parent),

Child = Context ++ [Depth + 1]

).

bf_child_priority(Parent) = Child :-

( length(Parent) mod 2 = 1

-> Child = Parent ++ [2]

; append(Context,[Depth],Parent),

Child = Context ++ [Depth + 1]

).

The initial branch priority is set to ε. We define the order relation � as follows:

L1 � L2 ⇔ L1 �d L2

where

[H1|T1] �d ε

[H1|T1] �d [H2|T2]⇔ H1 > H2 ∨ (H1 = H2 ∧ T1 �b T2)

and

ε �b [H2|T2]

[H1|T1] �b [H2|T2]⇔ H1 < H2 ∨ (H1 = H2 ∧ T1 �d T2)

The branch priority of an alternative is a list of depths of the first depth-first
or breadth-first split in consecutive subpaths from the root to the alternative
as defined earlier.8 For example, in Figure 1, the branch priority equals [2] for
Node 1, [3] for Node 2, [2, 3] for Node 3, and [2, 2, 2] for Node 4. It is assumed
7 We use Mercury syntax here [31], wich supports a functional notation for predicates;

p(X̄, Xn) :− body is equivalent to p(X̄) = Xn :− body .
8 The list is implicitly assumed to end with an infinite sequence ones = [1|ones].
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that the root node is a depth-first node; if necessary, a dummy depth-first split
can be created to ensure this is true. One can now verify that

[3] � [2] � [2, 2, 2] � [2, 3] ��

5 Look Back Schemes: Conflict-Directed Backjumping

In [38], Wolf et al. use justifications and conflict sets to define an extended and
refined operational semantics ω∨�

r , which supports look back schemes like conflict-
directed backjumping (CBJ) [24] and dynamic backtracking [14] as opposed to
standard chronological backtracking. In this section, we show how their approach
can be combined with our framework. More precisely, we propose an extended
version of the ω∨

p semantics that supports conflict-directed backjumping, and
discuss the correctness and optimality of this extension. We note that the benefits
of CBJ are limited when strong constraint propagation and a good variable
ordering heuristic is used (see for example [8]). We have chosen not to support
dynamic backtracking, as it requires changing the shape of the search tree, which
may conflict with the execution order imposed by the rule priorities. Moreover,
for efficiency it requires an adaptive version of CHR [37].

5.1 Justifications and Labels

Justifications are introduced in the CHR context in [37] and used for the purpose
of finding no-goods in conflict-directed backjumping in [38]. In that context,
justifications consist of the choices that caused a given constraint to hold. The
ωp semantics can easily be extended to support justifications by annotating each
constraint in the goal, CHR constraint store, and built-in constraint store with
a justification. A constraint c with justification J is denoted by cJ and we write
just(cJ) = J . The transitions of the extended ωp semantics are given as part of
the extended priority semantics of CHRbrp

∨ in the next subsection.
In case of depth-first search, conflicts can be uniquely described using only

the search tree levels at which the conflicting choices were made. This is the
approach taken in [38]. For more general search strategies, we need a more pre-
cise specification of the choices involved in a conflict. Therefore, we introduce
a labeling scheme for search tree nodes that allows us to distinguish between
such nodes, and to decide whether a given node is a descendant of another. In
general, we can use as labels the branch priorities used in the (deterministic)
left-to-right versions of depth- and breadth-first search proposed in Section 4.1.

5.2 The Extended Priority Semantics of CHRbrp
∨

In analogy with [38], we extend the ω∨
p semantics into the ω∨�

p semantics, whose
states are tuples 〈K, S〉 where K is the conflict set, a set of no-goods, i.e., justifica-
tions of failures; and S is a set of (marked and unmarked) ωp states extended with
a branch priority and branch label: S = {bp1 :: bl1 @ σ1, . . . , bpn :: bln @ σn}.
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By slight abuse of notation, we use bl to refer to just the label, or to the labeled
alternative bp :: bl @ σ, depending on the context.

While in case of depth-first search, backjumping consists of skipping a series of
alternatives, in general, it requires pruning of the search tree. This is because the
alternatives that are skipped with depth-first search are exactly the (remaining)
children of the deepest conflict, while in general, these children may be scheduled
for later resolution when using a different search strategy and hence they cannot
be skipped.

Table 4. Transitions of ω∨�

p

1a. Solve 〈K, {bp :: bl @ 〈{cJ} �G, S, B, T 〉n} �Σ〉
ω∨�

p

� P 〈K, {bp :: bl @ 〈G, S, cJ ∧
B, T 〉n} � Σ〉 if max bp(Σ) � bp and c is a built-in constraint.

1b. Introduce 〈K, {bp :: bl @ 〈{cJ} � G, S, B, T 〉n} � Σ〉
ω∨�

p

� P 〈K, {bp ::
bl @ 〈G, {cJ#n}∪S, B, T 〉n+1}�Σ〉 if max bp(Σ) � bp and c is a CHR constraint.

1c. Apply 〈K, {bp :: bl @ 〈∅, H1�H2�S, B, T 〉n}�Σ〉
ω∨�

p

� P 〈K, {bp :: bl @ 〈CJ , H1∪
S, θ∧B, T∪{t}〉n}�Σ〉 if max bp(Σ) � bp and where P contains a rule of priority
rp of the form

(bp′, rp) :: r @ H ′
1\H ′

2 ⇐⇒ g | C

and a matching substitution θ exists such that chr(H1) = θ(H ′
1), chr(H2) =

θ(H ′
2), bp = θ(bp′), D |= B → ∃̄B(θ∧ g), θ(rp) is a ground arithmetic expression

and t = 〈id(H1), id(H2), r〉 /∈ T . Furthermore, no rule of priority rp′ and substi-
tution θ′ exists with θ′(rp′) < θ(rp) for which the above conditions hold. The
justification J = just(H1) ∪ just(H2) ∪ just(E) where E is a minimal subset of B
for which holds that D |= E → ∃̄E(θ ∧ g).

2. Split 〈K, {bp :: bl @ σ}�Σ〉
ω∨�

p

� P 〈K, {bp1 :: bl1 @ σ1, . . . , bpm :: blm @ σm}�Σ〉
where σ = 〈(bp1 :: G1 ∨ . . . ∨ bpm :: Gm)J ∧ G, S, B,T 〉n, max bp(Σ) � bp, and
σi = 〈GJ∪{bli}

i ∧ G, S, B,T 〉n for 1 ≤ i ≤ m.

3a. Backtrack 〈K, {bp :: bl @ 〈G, S, B, T 〉n}�Σ〉
ω∨�

p

� P 〈K∪{J}, Σ〉 if max bp(Σ) �
bp, D |= ¬∃̄∅B, and there exists at least one alternative in Σ that is a descendant
of the parent of bl . Here, J is the justification of the inconsistency of B.

3b. Backjump 〈K, {bp :: bl @ σ}�Σ〉
ω∨�

p

� P 〈K \K′, {bp :: bl ′ @ 〈∅, ∅, falseJ , ∅〉1}�
Σ′〉 if max bp(Σ) � bp, σ is a failed ωp state, and there exists no other alternative
in Σ that is a descendant of the parent of bl . Let K′ be the justifications in K
that involve bl or one of its siblings. A new no-good J is created by merging
these justifications, removing the labels of bl and its siblings. Now let bl ′ be the
deepest alternative in J . We find Σ′ by removing from Σ all descendants of bl ′.

4. Mark 〈K, {bp :: bl @ σ} � Σ〉
ω∨�

p

� P 〈K, {bp :: bl @ σ�} � Σ〉 if max bp(Σ) � bp
and no other ω∨�

p transition applies.
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The transitions of the extended priority semantics of CHRbrp
∨ are given in

Table 4. The Backjump transition implements what corresponds to a multi-step
backjump in [38]. It works by constructing a new failed alternative as a child
of the node to which is jumped back. If this alternative is the only remaining
child of its parent, then the next applicable transition will again be a Backjump
transition. Otherwise, a Backtrack transition will follow, which just removes the
failed alternative. The latter is treated as a special case in [38], by the single-step
backjump transition.

Example 6 (6-queens). Consider the 6-queens problem where we are labeling the
last row and all previously rows have their queens set as in the figure below.

Q
Q

Q
Q

Q

1
2
3
4
5
6 1 2 34 13

We see that all positions in the last row are conflicting with some previously set
queen. For each position, we have given the first row which contains a conflicting
queen. Note that some positions conflict with more than one queen: for example
for the second column, these are the queens in rows 3 and 4. Because the fifth row
participates in none of the conflicts, we can jumpback to the queen in the fourth row
andmoveher, insteadof consideringalternativeplaces for thequeen in thefifth row.

In CHRbrp
∨ , we can use the following solver for the 6-queens problem:

1 :: queens <=> row(1), ..., row(6).

(D,7) :: row(R) <=> (D+1) :: queen(R,1) ∨ ... ∨ (D+1) :: queen(R,6).

R1 :: queen(R1,C1), queen(_ ,C2) ==> C1 =\= C2.

R1 :: queen(R1,C1), queen(R2,C2) ==> abs(R1 - R2) =\= abs(C1 - C2).

This solver differs from the one in Example 2 in that conflicts with queens in
early rows are preferred above those with queens in later rows. This preference
is imposed by using the row number of the conflicting queen as rule priority.9 It
ensures that we jump back as far as possible.

In the remainder of this example, we use a simplified notation for ω∨�

p states.
More precisely, we represent an alternative of the form bp :: bl @ 〈G, S, B, T 〉n
as bp :: chr(S)∪B, i.e., we do not show the branch label (which is assumed to be
equal to the branch priority), goal, propagation history or next free identifier,
and we represent CHR constraints without their identifier. We assume a depth-
first strategy which implies that it is sufficient to use the depth in the search tree
as branch labels. Now using our simplified representation, the ω∨�

p state right
before labeling the last row looks as follows:

〈K, {(5 :: Q5 ∪ {row(6)∅})} ∪Σ〉
9 A conflict between the queens in rows i and j (i < j) can be detected by a rule

instance of priority i, and a symmetric one of priority j. Only the first one fires.
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where Q4 = {queen(1, 1){1}, queen(2, 3){2}, queen(3, 5){3}, queen(4, 2){4}}, Q5 =
Q4 ∪ {queen(5, 4){5}} and Σ = {(5 :: Q4 ∪ {queen(5, 5){5}, row(6)∅}), (5 :: Q4 ∪
{queen(5, 6){5}, row(6)∅})}∪Σ′. The contents of K and Σ′ is not relevant to our
presentation. The labeling rule replaces this ω∨�

p state by

〈K, {(6 :: Q5 ∪ {queen(6, 1){6}}), . . . , (6 :: Q5 ∪ {queen(6, 6){6}})} ∪Σ〉

Now each of the queens on row 6 conflicts with a queen in an earlier row. These
conflicts lead to failures that are justified by the conflicting constraints’ labels.
After having dealt with columns 1 to 5, the resulting ω∨�

p state is

〈K ∪ {{1, 6}, {3, 6}, {2, 6}, {4, 6}, {3, 6}}, {(6 :: Q5 ∪ {queen(6, 6){6}})} ∪Σ〉

So far, we have only used Backtrack transitions to deal with failures. The last
alternative position on the sixth row again leads to failure, this time with jus-
tification {1, 6}. Now, the Backjump transition applies, which forms a new
justification by merging the ones involving the sixth row. This new justification
equals {1, 2, 3, 4}. The Backjump transition removes all (two) remaining alter-
natives on the fifth row and creates a new failed alternative, resulting in the
state

〈K, {(6 :: false{1,2,3,4})} ∪Σ′〉
after which (in this case) a Backtrack transition follows and the next alternative
on row 4 is tried:

〈K∪{{1, 2, 3, 4}}, Σ′〉 ��

5.3 Correctness and Optimality Issues

We now discuss three issues concerning the correctness and optimality of conflict-
directed backjumping in CHR∨ (and CHR(b)rp

∨ ). Firstly, for correctness, we need
to impose restrictions on the programs for which we can use conflict-directed
backjumping. In particular, we require that a program is confluent with respect
to the ω∨

t semantics. The following theorem states the correctness of the ω∨�

p

semantics.

Theorem 2. For a given program P whose non-deterministic version nondet(P )

is confluent with respect to the ω∨
t semantics, it holds that Σ0

ω∨�

p

� ∗
P Σn with Σn

a final ω∨�

p state, if and only if Σ0

ω∨
p

�∗
P Σn.

Proof (sketch). The main proof obligation consists of showing that the Back-
jump transition is correct, i.e., that it does not discard any solutions. We show
that this is true given that the existence of a failing ω∨

t derivation for a state
map(Σ) in the non-deterministic version nondet(P ) of a program P , implies that
all such derivations fail.
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Fig. 2. Construction of a failing derivation, justifying a backjump

Consider a node N , all of whose children have failed, where the failures are
justified by justifications J1, . . . , Jn. A justification Ji (1 ≤ i ≤ n) is a set of
branch labels. After the last child of N fails, a Backjump transition applies
under ω∨�

p . This transition consists of merging the justifications J1, . . . , Jn into
a new justification J by uniting the respective sets of branch labels, discarding
the labels of children of N .

Let bl be the branch label of the deepest alternative in J . The branch labeled
bl ends in a node, i.e., a state in which a Split transition applies (see Section 2.3),
which is preceded by an Apply transition, firing some rule instance θ(r). Let
bp :: bl @ σ be the alternative right before θ(r) fired. In this alternative and
under the ω∨

t semantics, we can also fire the rule instance that lead to the
creation of node N , say θ′(r′), in state map(bp :: σ) using program nondet(P )
(see Section 3.3). The reasoning is that none of the children of N depend on
constraints derived after state σ as their branch labels would otherwise have
been part of the justification J .

Now there exists a failing derivation D = {map(bp :: σ)} ω∨
t�∗

nondet(P ) ∅ which
consists of first firing rule instance θ′(r′) and then repeating the derivations that
lead to the failure of each of the children of node N . If we have that the existence
of a failing derivation such as D, implies that all derivations starting in the same
state also fail, then we also have that all children of the ending node of branch
bl fail under the ω∨�

p semantics, and so we can safely discard them as is done
in the Backjump transition. We call the above property conflict preservation.
It is a notion weaker than confluence in the sense that all solutions should only
be the same in case one of them is a failure. In practice we can use the notion
of confluence, for which a decidable test exists in case of a terminating program
[1],10 to decide whether or not we can apply conflict-directed backjumping to a

10 This test is defined for the ωt semantics, but can easily be extended towards the ω∨
t

semantics.
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program. Figure 2 shows how the failing ω∨
t derivation D can be constructed,

starting in state map(bp :: σ), and justifying the backjump. ��
The following example shows how solutions can be missed in case a program is
not confluent.

Example 7. Consider the CHRrp
∨ program below, with initial goal {g}.

1 :: a, e <=> false.

1 :: a, f <=> false.

1 :: a, d <=> true.

2 :: g ==> a ∨ b.

3 :: g ==> c ∨ d.

4 :: g ==> e ∨ f.

We have left out branch priorities as they are not needed for the example. As-
sume a first labeling step chooses a, then c is chosen, and finally both e and f
fail due to a and hence regardless of the second choice point (in which c was
chosen). However, we cannot jump back to the first choice, because if we choose
d in the second choice point, the a constraint is ‘consumed’ and both e and f
are consistent. The problem is that the program is not confluent w.r.t. the ω∨

t

semantics. For example, if the constraint store in a given state consists of the
CHR constraints a, e and d, then the result can be either a failed state, or a
state in which the constraint store contains the constraint e. ��
A second issue is concerned with optimality. In general, when it is detected that
a constraint is in conflict with some other constraints, there might be other sets
of conflicting constraints as well. In the conflict-directed backjumping algorithm,
it is assumed that testing for conflicts follows the order in which the variables are
instantiated. In general, we prefer conflicts with constraints that appear closer
to the root of the search tree.

In the 6-queens program of Example 6, we dealt with this issue by giving
conflicts with earlier queens a higher (rule) priority. This approach easily extends
towards other finite domain constraint solvers that do not apply look-ahead
schemes. However, in general, a conflict may involve multiple CHR and built-
in constraints, each of which has its own justification. Therefore, it might not
always be clear which rule instance is preferred. We could for example minimize
the depth of the deepest choice, the number of choices, or the sum of the depths
of the choices involved in a conflict. Some strategies maximize the depth of the
first backjump, while others maximize for example the total number of nodes
skipped.

A final issue is that choice points should preferably be created only after all
constraint propagation and consistency checking is completed. Otherwise, it is
possible that a failure is independent of the last choice made. By assigning a low
rule priority to labeling rules, we reach consistency before further labeling.
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5.4 Iterative Deepening Revisited

In Section 4.1 the iterative deepening strategy is implemented. However, as
noted, there is a problem with termination. In iterative deepening, the depth
limit should only increase if the search tree contains an unexplored subtree. So,
when a depth-limited search fails, we are interested in why it fails. This type of
information is not available in the ω∨

p semantics, but it is available in the ω∨�

p

semantics by means of the conflict set.
When a failure occurs because the depth limit is reached, this failure is due

to the following rule:

(D,1) :: limit(D-1) <=> false.

The justification for the failure hence contains the justification of the limit/1
constraint. If however no failure occurs because the depth limit is reached, then
the justification for the failure does not contain the one of the limit/1 constraint
and therefore, the second alternative of the rule that generated this constraint,
namely

(_,1) :: deepen(D) <=> 1 :: limit(D) ∨ 0 :: deepen(D+1).

will be pruned by the Backjump transition.
Noteworthy is that the above approach only works if branch priorities are

annotated with justifications themselves, and these justifications are taken into
account when constraints rely on the branch priority. To simplify the presenta-
tion, we have ignored this in our description of the ω∨�

p semantics in Section 5.2.
We note that a constraint, asserted after firing some rule instance θ(r), should
contain the justification of the branch priority only if either the firing of θ(r)
depends on the branch priority, or the branch priority is used in the arguments
of the constraint. If we do not take into account the justifications of the branch
priority, then it may happen that a backjump is made to change the depth limit
if all children of some node fail due to this depth limit, without taking into
account that other nodes may be below the depth limit.

6 Related Work

Adding different search strategies to declarative languages, and in particular
Constraint (Logic) Programming languages, has been done before. For a more
thorough overview, see for example [13,28]. In [29] it is shown how search tree
states can be encapsulated in the multi-paradigm language Oz. The encapsula-
tion is implemented using a variable scoping mechanism and local versions of the
constraint store, and allows the implementation of different search strategies. A
generalization of this work is presented for the functional logic programming lan-
guage Curry in [17]. An important aspect there is that the encapsulated search
tree states are evaluated lazily.

Much related to our work is the OPL modeling language [32] in which search
strategies consist of three parts: the exploration strategy, the limit strategy and
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the selection strategy. The exploration strategy consists of an evaluation func-
tion that assigns a score to search tree nodes, much like our branch priorities,
combined with a procedure to decide when to switch to another node. The limit
strategy imposes bounds on the time and space used for searching. Finally, the
selection strategy determines which solutions are returned and can be used for
instance to implement constrained optimization.

Constraint Logic Programming systems such as ECLiPSe [34] or SICStus
Prolog’s clp(fd) [7] are usually limited by Prolog’s built-in depth-first search
mechanism.11 However, using language features such as the findall/3 predicate
or blackboard primitives, other strategies can be implemented. For example, in
Ciao Prolog [20], breadth-first and depth-first iterative deepening search are
supported using a source transformation. In [6], the blackboard primitives of
SICStus Prolog are used to implement intelligent backtracking in Prolog.

In all of the above mentioned work, the search strategy is stated indepen-
dently of the program logic and therefore treats all search in a uniform way. Our
approach supports both uniform and rule specific strategies, thereby allowing
the use of different search strategies for different parts of the program.

Related Work in the CHR Context. In the context of CHR∨, Menezes
et al. propose in [22] a CHR∨ implementation for Java in which the search tree
is made explicit and manipulated at runtime to improve efficiency. In particular,
when a rule firing is independent of the choice made in a previous choice point,
the result of this rule firing is valid for all alternatives in that choice point, and
so by reordering the nodes in the search tree, some redundant work is avoided.
In a sense, this reasoning takes into account justifications of constraints, i.e.,
those constraints that caused the derivation of any given constraint.

Justifications are introduced in CHR in the context of adaptive CHR [37],
which extends CHR by supporting the incremental adaption of CHR derivations
in the context of both constraint insertions and deletions. In [36], justifications,
in particular for the built-in constraint false, are used to implement intelligent
search algorithms such as conflict-directed backjumping and dynamic backtrack-
ing. A new operational semantics for CHR∨, called the extended and refined op-
erational semantics ω∨�

r , which formally combines the concept of justifications
with CHR∨, is given in [38]. The semantics in fact implements conflict-directed
backjumping. We extend the work in [38] by also supporting search strategies
different from left-to-right depth-first in combination with conflict-directed back-
jumping, and by discussing optimality and correctness issues.

In [25], it is proposed to transform the disjuncts in CHR∨ into special purpose
constraints which can be dealt with by an external search component. An ex-
ample of such an external search component is the Java Abstract Search Engine
(JASE), which is part of the Java Constraint Kit (JACK) [4], a CHR implemen-
tation for Java. Since Java does not offer native search in contrast with Prolog,
Java-based CHR implementations need to implement their own search support.

11 Search strategies in these systems mostly consist of different ways of shaping the
search tree, with the exploration strategy being fixed to left-to-right depth-first.
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In practice, this often means more flexibility compared to the built-in search
in Prolog. In particular, Prolog only supports a limited way of movement be-
tween nodes of the search tree, whereas in JASE, one can jump from one search
tree node to another by means of trailing, copying or recomputation, as well as
combinations of these methods.

7 Conclusion

To conclude, we summarize our contributions. In Section 3 we combined and
extended two language extensions of CHR, namely CHRrp and CHR∨, into
a flexible framework for execution control in CHR. In this framework, called
CHRbrp

∨ , the propagation strategy is determined by means of rule priorities,
whereas the search strategy is determined by means of branch priorities. In Sec-
tion 4, we have shown how various tree search strategies can be expressed in our
framework. These strategies include uninformed search strategies such as depth-
first, breadth-first and depth-first iterative deepening (Section 4.1), informed
strategies such as limited discrepancy search (Section 4.2), as well as combina-
tions of different strategies (Section 4.3). Finally, in Section 5, we have adapted
the work of [38] which proposes a combination of conflict-directed backjumping
(CBJ) with CHR∨, to our framework, by adding support for search strategies
different from left-to-right depth-first. Moreover, we have established correctness
and optimality conditions for this combination of CBJ with CHRbrp

∨ .

Future Work. A first topic for future work is the (efficient) implementation
of our search framework in CHR systems. In particular, it is worth considering
adding such search support to systems that currently do not offer search facili-
ties like the K.U.Leuven JCHR [33] and CCHR [39] systems. Some issues that
an optimized implementation should deal with are the use of specialized prior-
ity queues for e.g. depth-first and breadth-first search, and the choice between
copying, trailing and recomputation (as well as combinations of these) for the
task of jumping between search tree nodes (see also [27]).

It would also be interesting to have a high-level way to combine different
search strategies. The approach we have taken in Section 4.3 is rather ad hoc,
and in general it remains unclear what the priority domain, order relation, and
priority assignments should look like.

Finally, we have already shown how information from successes (e.g., branch
& bound in Section 3.2) and failures (e.g., conflict-directed backjumping in Sec-
tion 5) in other branches of the search tree can be used to speed up the con-
straint solving process. It would be interesting to see how similar approaches
can be used, for example to implement iterative deepening A∗ or the dynamic
variable ordering technique proposed in [23]. The latter consists of changing the
variable to be labeled next after a backjump, taking into account the reason for
the backjump.
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Frühwirth, T. (eds.) Constraint Handling Rules. LNCS (LNAI), vol. 5388, pp.
48–69. Springer, Heidelberg (2008)

39. Wuille, P., Schrijvers, T., Demoen, B.: CCHR: The fastest CHR implementation.
In: In Khalil Djelloul, C., Duck, G.J., Sulzmann, M. (eds.) 4th Workshop on Con-
straint Handling Rules, pp. 123–137. U.Porto (2007)



Adaptive CHR Meets CHR∨

An Extended Refined Operational Semantics for CHR∨

Based on Justifications

Armin Wolf1, Jacques Robin2, and Jairson Vitorino2
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Abstract. Adaptive constraint processing with Constraint Handling
Rules (CHR) allows the application of intelligent search strategies to
solve Constraint Satisfaction Problems (CSP), but these search algo-
rithms have to be implemented in the host language of adaptive CHR
which is currently Java. On the other hand, CHR∨ enables to explic-
itly formulate search in CHR, using disjunctive bodies to model choices.
However, a naive implementation for handling disjunctions, in particu-
lar chronological backtracking (as implemented in Prolog), might cause
“thrashing” due to an inappropriate order of decisions. In order to avoid
this, a first combination of adaptive CHR and CHR∨ is presented to of-
fer a more efficient embedded search mechanism to handle disjunctions.
Therefore, the refined operational semantics of CHR is extended for dis-
junctions and adaptation.

1 Introduction

Constraint Handling Rules (CHR) [4,5] define a rule-based formalism which is
primarily designed to specify constraint solvers on a rather abstract, declarative
level. Secondly, it is also an executable, Turing-complete, committed choice, high-
level programming language [8,14] that allows elegant and efficient formulations
of algorithms, e.g. optimal union-find [13].

There are several extensions of the ‘original’ CHR: probabilistic CHR for
probabilistic reasoning [3], adaptive CHR [18] that allows adaptation of CHR
reasoning in dynamic environments and – last but not least – CHR∨ [1] handling
disjunctions of constraints.

With respect to constraint solving, adaptive CHR and CHR∨ offer helpful
features concerning search. In general (systematic) search is the most appropri-
ate method to determine solutions of constraint problems because most of these
problems, e.g. various scheduling problems, are NP-complete [6].1 On the one

1 Alternatively, guessing is another but less appropriate method: e.g. the existence of
a solution is not decidable.
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hand, adaptive CHR justifies all derived constraints – especially false – enabling
the implementation of intelligent search algorithms [17] like dynamic backtrack-
ing [7] or conflict directed backjumping [11]. Currently, these search algorithms
have to be implemented in Java, the host language of adaptive CHR [16]. There-
fore, the programmer has to be familiar with both languages: CHR which is logic-
and rule-based and Java which is object-oriented and imperative. On the other
hand, CHR∨ allows the formulation of disjunctive choices within CHR and thus
the explicit formulation of search in CHR. The chosen decisions span a (virtual)
decision/search tree concerning CHR∨’s operational semantics in [1]: There, the
introduced Split computation step branches CHR∨ derivations, i.e. “The step
leads to branching in the computation in the same way as we had it for SLD
resolutions. So we will again get a tree rather than a chain of states.” This
means that search in CHR∨ does not require any knowledge about the host lan-
guage. However, any naive implementation of the CHR∨ operational semantics
may cause trees of exponential size due to the combinatorial explosion of the
choices. While chronological backtracking, systematic depth-first search (as in
Prolog) is efficient in space, it is in general not efficient in time. So the idea
arises to combine both extensions of CHR retaining the declarative formulation
of search within CHR itself from CHR∨ and using intelligent strategies enabled
by adaptive CHR while performing search.

The paper is organized as follows: Initially, we introduce CHR as well as its ex-
tension CHR∨ by examples. Then we present a refined operational semantics for
CHR∨. This operational semantics is further extended using the mechanism de-
veloped for adaptive CHR to realize conflict-directed backjumping. Its advantages
with respect to efficiency are shown by a detailed example. Additionally some the-
oretical results are provided showing that the further extended operational seman-
tics is sound with respect to the refined operational semantics of CHR∨. Finally a
conclusion is drawn and the next steps of future work are outlined.

2 Adaptive CHR and CHR∨ by Example

Figure 1 shows CHR that handle graph-coloring problems with at most three
colors where any two nodes connected by a common edge must have different
colors. Some constraints represent the edges between the nodes of a graph while
others define the domains of these nodes, i.e. their possible colors. The CHR
constraint edge(A, B) means that there is an undirected edge between the nodes
A and B. The CHR constraint neq(A, B) means that the nodes A and B must
have different colors. The CHR constraint indomain(A, L) means that the node A
may be colored with one of the values in the list L.2

In general, there are three kinds of rules: simplifications, propagations and
simpagations. Simplifications and propagations are special cases of simpagations.
The general form of a simpagation rule is (cf. [2]):

r @ H1\H2 ⇐⇒ G | B
2 The lists of colors are represented explicitly to be independent of some Prolog-specific

built-ins like member/2.
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symmetry @ edge(X,Y)1 <=> neq(X,Y), neq(Y,X).

notEqual @ neq(X,X)2 <=> false.

ground1stOf3 @ indomain(X,[X,B,C])3 <=> true.

ground2ndOf3 @ indomain(X,[A,X,C])4 <=> true.

ground3rdOf3 @ indomain(X,[A,B,X])5 <=> true.

ground1stOf2 @ indomain(X,[X,B])6 <=> true.

ground2ndOf2 @ indomain(X,[A,X])7 <=> true.

prune1stOf3 @ neq(X,Y)9 \ indomain(X,[Y,B,C])8 <=> indomain(X,[B,C]).

prune2ndOf3 @ neq(X,Y)11 \ indomain(X,[A,Y,C])10 <=> indomain(X,[A,C]).

prune3rdOf3 @ neq(X,Y)13 \ indomain(X,[A,B,Y])12 <=> indomain(X,[A,B]).

prune1stOf2 @ neq(X,Y)15 \ indomain(X,[Y,B])14 <=> X=B.

prune2ndOf2 @ neq(X,Y)17 \ indomain(X,[A,Y])16 <=> X=A.

Fig. 1. A CHR program for graph-coloring problems with at most 3 colors

where r is the rule’s optional name. If the rule’s name is omitted, then the
delimiter ‘@’ is omitted, too. H1 as well as H2 are possibly empty sequences of
CHR constraints: the head constraints. Either H1 or H2 might be empty but
not both. If one is empty, then the delimiter ‘\’ is omitted. If H1 is empty, then
the rule is a simplification rule. If H2 is empty, then the rule is a propagation
rule. In order to discriminate these both rule types, the symbol ‘⇐⇒’ is replaced
by ‘=⇒’ in case of propagations. G is a possibly empty conjunction of built-in
constraints: the guard constraints. In case of an empty guard the delimiter ‘|’ is
omitted or the guard is made explicit to be true. B is a possibly empty sequence
of CHR or built-in constraints: the body constraints. An empty sequence of body
constraints is considered as true, too. Finally, a sequence of CHR is called a CHR
program. For its operational semantics (cf. [2]) the head constraints in the rules
are uniquely numbered top-down, right-to-left with the integers 1, 2, . . ., etc.3

Example 1. In Fig. 1 only special instances of two out of three kinds of rules are
presented: simplification rules, e.g. like ground1stOf3 and simpagation rules,
e.g. like prune2ndOf2. The intended semantics of the first rule is that if a node X
is colored by the first value in its domain then the domain information is redun-
dant because the node’s color is determined. Operationally, this means that
such domain constraints are removed from the constraint store, e.g. the con-
straint indomain(red, [red, green, blue]) is removed. The intended meaning of the
second rule is that if there is an edge from node X to node Y and the node Y is
labeled with the second color in the domain of node X , then X must be labeled
with the first color in its domain because it must have a different color, i.e. the
domain constraint is replaced by a simple equation.

Adaptive CHR annotates each constraint with a justification, i.e. a finite set
of integral identifiers. Any application of a CHR unites the justifications of all
involved constraints, i.e. of the head constraints and the built-in constraints

3 This order prefers simplification over propagation (cf. [2]).



Adaptive CHR Meets CHR∨ 51

necessary for head matching and guard entailment. Then, the body constraints
are justified (i.e. annotated) by these unions (cf. [18] for the details). – The
following example illustrates how these unions are computed:

Example 2. The CHR program

cleanup @ gcd(0) <=> true.
reduce @ gcd(N) \ gcd(M) <=> 0<N, N=<M, L is M mod N | gcd(L).

computes the greatest common divisor of some positive integer numbers
n1, . . . , nk if they are represented by CHR constraints gcd(n1), . . . , gcd(nk). The
program will terminate with exactly one CHR constraint gcd(m) containing the
result m. It is worth noticing that the assignment (“. is .”) is considered as a
built-in constraint in the guard. It is entailed if the left-hand-side is a free local
variable, i.e. neither occurring in the head constraints nor being constrained oth-
erwise, and if the right-hand-side is an evaluable arithmetic term, i.e. all variables
are bound to numbers.

Now, let the justified CHR constraints gcd(X){1}, gcd(Y ){2} and the built-in
constraints (X = 5){3}, (Y = 15){4} be given. Here {1}, {2} are the justifications
of the CHR constraints and {3}, {4} are the justifications of the syntactical
equations.

It holds that the CHR constraints are matching the head constraints of the
rule reduce in the given order. So head matching is determined by the union
{1} ∪ {2} = {1, 2}. In detail, head matching results in the justified equations
(N = X){1}, (M = Y ){2}. Considering guard entailment, the first inequality
0 < N is entailed because (N = X){1} and (X = 5){3} hold. Furthermore, this
entailment ist justified by the union of their justifications, namely {1} ∪ {3} =
{1, 3}. Analogously, the entailment of N ≤ M is justified by {1, 2, 3, 4} and the
assignment L is 15 mod 5 is justified by {1, 2, 3, 4} resulting in the justified
equation (L = 0){1,2,3,4}. Finally, the derived CHR constraint gcd(L) is justified
by the union of all head matching and guard entailment justifications, i.e. it
holds gcd(L){1,2,3,4} or even gcd(0){1,2,3,4} if the local variable L is eliminated
by projection (cf. [15]).

In particular justification of inconsistencies is illustrated by the following
example:

Example 3 (continuation of Example 1). Let two justified constraints be given:
neq(P, blue){1} and indomain(P, [green, blue]){3,5} justified by {1} and {3, 5} re-
spectively. Then the application of the rule prune2ndOf2 to these both con-
straints replaces them by the equation (P = green){1,3,5} justified by the
union {1} ∪ {3, 5}. Now if there are additional constraints neq(P, Q){2} and
(Q = green){4} then the rule notEqual applies yielding an inconsistency,
i.e. false{1,2,3,4,5}, justified by the union {2} ∪ {1, 3, 5} ∪ {4}.
In CHR∨ the body C of a rule r @ H1\H2 ⇐⇒ G | C is a possibly empty sequence
of subsequences of CHR or built-in constraints: a choice of (conjunctions of)
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constraints separated by the delimiter ‘;’. Thus any CHR program is a CHR∨

program, too.4

Example 4. The CHR program introduced in Fig. 1 extended by the CHR∨ rules

label3 @ label(X)19, indomain(X,[A,B,C])18 <=> X=A; X=B; X=C.
label2 @ label(X)21, indomain(X,[A,B])20 <=> X=A; X=B.

is a CHR∨ program that allows to solve graph-coloring problems. It replaces
for any variable X (representing a node) “declared” to be labeled via the
constraint label(X) its domain constraint by a disjunction that equals this
variable with the colors in the domain. For instance, the CHR constraints
label(N), indomain(N, [red, green, blue]) will be replaced by the disjunction of
equations N = red; N = green; N = blue. Then these alternatives for the vari-
able’s labeling are tried in separate branches of the derivation tree (cf. Sect. 3).

The label/1 constraint and its according rules are introduced last in the pro-
gram in order to trigger the search process after the propagation/simplification
of all other constraints, i.e. after all other rules are tried. Furthermore, this
approach supports the selection of the “next” variable to be labeled and thus
variable ordering heuristics like the first-fail principle, i.e. choose a not yet la-
beled variable with smallest domain.

3 The Refined Operational Semantics ω∨
r of CHR∨

In this section a refined tree-based operational semantics of CHR∨ is given with-
out determining the order how this tree has to be traversed. A more sophisti-
cated semantics using a depth-first or breadth-first strategy is presented in [9,10].
Based on the refined operational semantics ωr of CHR [2] the following notions
are adopted:

An identified CHR constraint c#i is a CHR constraint c associated with some
unique integer i. This number serves to differentiate among clones of the same
constraint. The defined functions chr and id on identified CHR constraint with
chr(c#i) = c and id(c#i) = i are extended to sequences and sets canonically,
e.g. chr(c#i, d#j) = c, d and id({c#i, d#j}) = {i, j}.

An occurrenced identified CHR constraint c#i : j indicates that only matches
with the j-th occurrence of constraint c should be considered when the constraint
is active. For instance, an active edge(P, Q)#i : 1 is matched against the head
of the symmetry rule in Fig. 1.

A choice (a1; . . . ; an) is a tuple of sequences a1, . . . , an of constraints, e.g. ai =
ci1 , . . . , cik

.5

4 Here, for simplicity and without loss of generality, it is assumed that the body con-
straints are in disjunctive normal form.

5 Only finite sequences are considered using the notation e1, . . . , ek and U ◦ V for
the concatenation of two sequences U and V . Any single entity e is considered as a
sequence, too. It is the topmost entity in e ◦ V . The empty sequence is represented
by λ.
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An execution state is a tuple σ = 〈A, S, B, T 〉m in ω∨
r . Additionally in CHR∨

there might be alternative execution states [σ1 | . . . | σn] (n > 0). Further,
the execution stack A is a sequence of constraints, choices, identified CHR con-
straints, and of occurrenced identified CHR constraints. In the stack A only the
top-most entity is active.

The CHR constraint store S is a set of identified CHR constraints containing
candidates that can be matched with rules in a CHR∨ program.

The built-in constraint store B is an internal representation of all built-in
constraints passed to the underlying built-in solver, i.e. “. . . an abstract logical
conjunction of constraints.” [2]

The propagation history T is a set of tuples containing the identifiers of iden-
tified CHR constraints which fired a rule and the rule’s uniquely defined name.6

– The maintenance of the propagation history avoids multiple identical applica-
tions of a propagation rule to the same sequence of CHR constraints and prevents
trivial non-termination. Finally the integral number m is the next integer that
has not yet been used to identify a CHR constraint.

The initial states in ω∨
r are the same as in ωr: 〈A, ∅, true, ∅〉1 having empty

constraint stores and histories, and where the constraints to be handled, i.e. the
goals, are in the execution stack. Here, each goal is either a constraint c or a
choice (a1; . . . ; an). Just as in ωr, execution proceeds by exhaustively applying
transitions to an initial state until the built-in store of the resulting state is
inconsistent, i.e. the built-in constraint store is equivalent to false or no further
transitions are applicable. These states are called final states.

We assume that the transitions Solve, Activate, Reactivate, Drop, Simplify,
Propagate and Default in ωr are based on a CHR program where all rules are
uniquely named. Now, if σ � σ′ holds for two states σ and σ′ in ωr, it also holds
in ω∨

r . Vice-versa, if σ � σ′ holds for those transitions and two states σ and σ′

in ω∨
r , then it holds in ωr, too.

For handling choices in the execution stack there is an additional transition
splitting choices into separate branches, i.e. σ � [σ′

1 | . . . | σ′
k] for some states

σ, σ′
1, . . . , σ

′
k. So these transitions define derivation trees accordingly:

– each initial state is the root node of a derivation tree, i.e. the unique state
at the root level 0 of such a tree.

– any state σ′ is a node of a derivation tree at level l + 1 if there is a (pre-
decessor) state/node σ at level l in this tree and there is either a transition
σ � σ′ or σ � [σ′

1 | . . . | σ′ | . . . | σ′
k]

It is worth noticing that derivation trees are not necessarily finite and that the
leaves of finite branches are final states and final states are only leaves.

Split: If there is no inconsistency and the next goal is a choice, then the derivation
is split into several branches: one branch for each alternative (conjunction of)
constraint(s) to be handled in a subsequent state:

6 In the following we assume that each rule has such a name.
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〈(a1; . . . ; an) ◦A, S, B, T 〉m � [〈a1 ◦A, S, B, T 〉m | . . . | 〈an ◦A, S, B, T 〉m]

if the built-in store is consistent, i.e. B = false.
Now, let [σ1 | . . . | σn] be the states at some level l in the derivation tree

and σij � σ′
ij

hold for a subsequence σi1 , . . . σik
of σ1, . . . , σn in ω∨

r , especially
if σ′

ij
= [θ1 | . . . | θq] is the result of a split. Further, let σp be final for each

p ∈ {1, . . . , n} \ {i1, . . . ik}. Then, [σ1 | . . . | σn] � [σ′
i1
| . . . | σ′

ik
] holds in ω∨

r

defining the next level l+1 in the derivation tree (cf. [1] for the ‘.| . . . |.’ notation).7

Example 5 (continuation of Example 4). Take the CHR program in Fig. 1 ex-
tended by the CHR∨ rules label2 and label3 presented in Example 4. Then
let the goal be A0 = (edge(X1, X2) ◦A1) with

A1 = (edge(X2, X3), . . . , edge(Xn−1, Xn), edge(U, V ), edge(V, W ), edge(W,U),

indomain(X1, [red, green, blue]), . . . , indomain(Xn, [red, green, blue]),

indomain(U, [red, green]), indomain(V, [red, green]), indomain(W, [red, green]),

label(X1), . . . , label(Xn), label(U), label(V ), label(W )) .

So the initial state roots in a single branch where the edge/2 constraints are
replaced by neq/2 constraints:

〈edge(X1, X2) ◦ A1, ∅, true, ∅〉1
�Activate 〈edge(X1, X2)#1 : 1 ◦ A1, {edge(X1, X2)#1}, true, ∅〉2
�Simplify 〈neq(X1, X2) ◦ neq(X2, X1) ◦ A1, ∅, true, ∅〉2 � . . .

Then the label/1 constraints will span a derivation tree that will initially
have 3 siblings – one for each possible color of X1. Each of these siblings will
be the root of a binary subtree that will represent all possible combinations
of the remaining colors of X2, . . . , Xn, U, V , and W , e.g. in the subtree where
X1 = blue holds, these remaining colors are red and green. Obviously all leaves of
these subtrees will be inconsistent states because all bindings of the variables U ,
V and W with the available colors red and green will result in an inconsistency
because there must be at least 3 different colors for these variables to be labeled
with pairwise different values – however, there are only two.

Due to the unfortunate circumstances that the variables U , V , and W are
labeled last, the detection of the inconsistency of the coloring problem requires
the consideration of the whole derivation tree of size O(2n). So the necessary
computation effort is at least O(2n), too.

Soundness and Completeness: The operational semantics of CHR∨ presented
in [1] is a canonical extension of the of the theoretical operational semantics ωt

defined in [2]. Furthermore, the Split transition presented here is a canonical
adaptation of the Split transition given in [1]. So it follows that Theorem 1
(Correspondence) in [2] still holds for the extended theoretical operational se-
mantics ω∨

t and the extended operational semantics ω∨
r .

7 Nested brackets, i.e. ‘[. . . |[. . .]| . . .]’, are flattened, i.e. inner brackets are omitted.
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4 The Extended and Refined Operational Semantics ω∨�

r

In this section we propose an extended operational semantics of CHR∨ that re-
alizes conflict-directed backjumping (CBJ). Computation on this semantics only
derives one final state. However, this state is only inconsistent if there is no
consistent final state in the whole (virtual) derivation tree. We focus on CBJ
because we discovered that it performs very well in collaboration with a Boolean
CHR solver (cf. [17]) on SAT problems, i.e. an important problem class of high
practical relevance. Examinations showed that CBJ compared to chronological
backtracking reduces the runtime in general one to two orders of magnitude even
if the overhead for maintaining the justifications of adaptive CHR is considered.

Based on the previously defined operational semantics ω∨
r an extended exe-

cution state is a tuple (l, W, K, σ) where l ∈ N is a level indicator within the
(virtual) derivation tree spanned by the CHR∨ rules, W is a sequence of choices,
K is a conflict set, i.e. an integer set, containing the identifiers of decisions that
causes an inconsistency at the current level. The tuple σ = 〈A, S, B, T 〉m is an
execution state in ω∨

r . A choice l : (a1; . . . ; an)J consists of a sequence a1, . . . , an

of sequences of constraints, e.g. ai = ci1 , . . . , cik
at a level indicated by an integer

value l, annotated by a justification J , i.e. a set of integral identifiers. Further,
any (sequence of) constraint(s) c may be annotated by a justification, too: cJ .
By convention, if a justification is missing, it is assumed to be the empty set.
In detail, identified CHR constraints as well as occurrenced identified CHR con-
straints are justified, too. Thus, an identified CHR constraint cJ#i is a CHR
constraint c annotated by a justification J and associated with some unique iden-
tifier i. Further, it holds chr(cJ#i) = c and id(cJ#i) = i for the already defined
functions. These functions are also extended to sequences and sets canonically,
e.g. chr(cJ#i, dI#j) = c, d and id({cJ#i, dI#j}) = {i, j}.

An occurrenced identified CHR constraint cJ#i : j is accordingly defined.
The built-in constraint store B contains an abstract justified logical conjunc-

tion of constraints resulting from an underlying solver. In the case of an in-
consistency the built-in store becomes falseF . Then the justification F contains
identifiers of constraints chosen from choices that are responsible for this incon-
sistency.

The initial states are of the form (0, λ, ∅, 〈A, ∅, true, ∅〉1) having empty se-
quences of choices, conflict sets, constraint stores and histories. The constraints
to be handled, i.e. the goals, are in the execution stack. Again, goals are either
constraints c∅ or choices (a1; . . . ; an)∅. Here it is assumed that they are always
justified by the empty set – in general any justifications are possible.8

Similar but not identical to ωr, execution proceeds by exhaustively applying
transitions to an initial state until the built-in store of the resulting state is either
inconsistent, i.e. the built-in constraint store is equivalent to false and neither
Backtrack nor Backjump transitions (defined later in this section) are applicable,
or no other transition is applicable. These states are called final states.9

8 However, the identifiers have to be disjoint to the level indicators.
9 So inconsistent states are not necessarily final states.
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We assume that the transitions Solve, Activate, Reactivate, Drop, Simplify,
Propagate and Default in ωr are based on a CHR program where all rules are
named and that the annotated justifications are maintained as in [18]. Now, if
(and only if) σ � σ′ holds for these transitions, we have the analogous extended
transitions:

(l, W, K, σ) � (l, W, K, σ′) ,

where any annotated justifications of the constraints or choices are passed with-
out consideration, except within the Simplify and Propagate transitions. Here
the union of the justifications of all constraints necessary for these transitions
justifies the body constraints and the equations in the required substitutions.
Therefore, we define the function just that unites the justifications of sets and
conjunctions of justified constraints, i.e. just(cJ1

1 ∧ . . . ∧ cJn
n ) = J1 ∪ . . . ∪ Jn

and just({cJ1
1 , . . . , cJn

n }) = J1 ∪ . . . ∪ Jn. In detail, the transitions Simplify and
Propagate work as follows:

Simplify: Perform the derivation step

(l, W, K, 〈(cI#i : j ◦A, {cI#i} 	H1 	H2 	H3 	 S, B, T 〉m)
� (l, W, K, 〈CJ ◦A, H1 	 S, θJ ∧B, T 〉m)

if B = falseF for any justification F and the jth occurrence of the CHR predicate
of c in a new rule variant in P is r @ H ′

1 \ H ′
2, dj , H

′
3 ⇐⇒ G | C and there exists

a matching substitution θ such that c = θ(dj), chr(H1) = θ(H ′
1), chr(H2) =

θ(H ′
2), chr(H3) = θ(H ′

3), and B = E∧B′ such that D |= E −→ ∃E(θ∧G) holds.
Concerning the justifications, J = I ∪ just(H1)∪ just(H2)∪ just(H3)∪ just(E)
holds, where E is an appropriate (e.g. minimal) sub-conjunction of the built-in
store B entailing head matching and the guard conditions (as required).

So if there is no inconsistency and the active constraint occurs in the currently
considered position in the heads to be removed of a rule variant in a CHR
program P and there is a matching substitution for all kept and removed heads
that is entailed by the built-in store as well as the rule’s guard, then the rule is
applied. The added body constraints as well as the syntactical equations in the
substitution are justified by all constraints that are necessary to apply this rule.

It is worth noticing that there is neither the necessity to consider the history T
nor to extend it because the considered constraint cI#i is “consumed”.

Propagate: Perform the derivation step

(l, W, K, 〈(cI#i : j ◦A, {cI#i} 	H1 	H2 	H3 	 S, B, T 〉m)
� (l, W, K, 〈CJ ◦ cI#i : j ◦A, {cI#i} 	H1 	H2 	 S, θJ ∧B, T ′〉m)

under almost the same preconditions as Simplify, i.e. if B = falseF for any justifi-
cation F and the jth occurrence of the CHR predicate of c in a new rule variant
in P is r @ H ′

1, dj , H
′
2 \ H ′

3 ⇐⇒ G | C and there exists a matching substitution θ
such that c = θ(dj), chr(H1) = θ(H ′

1), chr(H2) = θ(H ′
2), chr(H3) = θ(H ′

3), and
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B = E ∧ B′ such that D |= E −→ ∃E(θ ∧ G) holds. Additionally it must hold
that the tuple (id(H1)◦i◦id(H2)◦id(H3)◦r) ∈ T , i.e. it is not in the propagation
history T .

Concerning the justifications, it holds J = I∪just(H1)∪just(H2)∪just(H3)∪
just(E), where E is an appropriate (e.g. minimal) sub-conjunction of the built-
in store B entailing head matching and the guard conditions (as required). In
order to avoid re-application of the same rule to the same CHR constraints,
the propagation history T is extended by the tuple of their identifiers: T ′ =
T ∪ {(id(H1) ◦ i ◦ id(H2) ◦ id(H3) ◦ r)}.

So if there is no inconsistency and the active constraint occurs in the cur-
rently considered position in the heads to be kept of a rule variant in a CHR
program P and there is a matching substitution for all kept and removed heads
that is entailed by the built-in store as well as the rule’s guard, then the rule is
applied. The added body constraints as well as the syntactical equations in the
substitution are justified by all constraints that are necessary to apply this rule.

Additionally there are the following transitions to handle choices:

Choose: Perform the derivation step

(l, W, K, 〈(a1; . . . ; an)J ◦A, S, B, T 〉m)

� (l + 1, l : (a2; . . . ; an)J ◦W, K, 〈aJ∪{l}
1 ◦A, S, B, T 〉m)

if B = falseF for any justification F . So if there is no inconsistency and the next
goal is a choice, then the first alternative constraint is chosen and its justification
is extended by the level indicator. This justified constraint replaces the whole
alternative in the goal. The remaining alternatives are stored under the level
indicator for any presumable backtracking or backjumping in the future. Finally
this indicator is increased.

Backtrack: Perform the derivation step

(l + 1, l : (ai; . . . ; an)J ◦W, K, 〈A, S, falseF , T 〉m)

� (l + 1, l : (ai+1; . . . ; an)J ◦W, K ∪ (F \ {l}), 〈aJ∪{l}
i ◦A′, S′, B′, T ′〉m)

if (l + 1, l : (ai; . . . ; an)J ◦ W, K, 〈aJ∪{l}
i−1 ◦ A′, S′, B′, T ′〉m is the most recent

consistent state (with B′ = falseF ′
for any justification F ′) of that kind in the

derivation performed so far.10

In the special case where only one alternative is left and (l + 1, l : (an)J ◦
W, K, 〈aJ∪{l}

n−1 ◦A, S′′, B′, T ′〉m is the most recent state of that kind in the deriva-
tion performed so far, it holds:

(l + 1, l : (an)J ◦W, K, 〈A, S, falseF , T 〉n)
� (l + 1, l : () ◦W, K ∪ (F \ {l}), 〈aJ∪{l}

n ◦A′, S′, B′, T ′〉m)

10 This state is computable via adaptation(cf. [16]).
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In both cases, the conflict set K is extended by the identifiers of previously
chosen constraints that are responsible for the occurred inconsistency.

So if any chosen alternative constraint results directly in an inconsistency,
i.e. no other Choose transition is applicable11 and there are remaining alterna-
tives, then the consequences of the chosen constraint are discarded and the next
alternative constraint is chosen.

Single-Step-Backjump: Perform the derivation step

(l + 1, l : () ◦ · · · ◦ h : (ai; . . . ; an)J ◦W, K, 〈A, S, falseF , T 〉m)
� (h + 1, h : (ai+1; . . . ; an)J ◦W, (K ∪ (F \ {l})) \ {h},

〈aJ∪{h}
i ◦A′, S′, B′, T ′〉m)

if K ∪ (F \ {l}) = ∅, h = max(K ∪ (F \ {l})) hold, and (h + 1, h : (ai; . . . ; an)J ◦
W, K ′, 〈aJ∪{h}

i−1 ◦A′, S′, B′, T ′〉m) is the most recent consistent state (with B′ =
falseF ′

for any justification F ′) of that kind in the derivation performed so far.
The conflict set K is extended by the identifiers of previously chosen (con-

junctions of) constraints that are responsible for the currently occurred incon-
sistency because some previous choices at levels > l are already inconsistent:
for each alternative b1 . . . , bm at level l inconsistencies were already derived:
¬(A1 ∧ b1), . . . ,¬(Am ∧ bm) for some conjunctions of constraints A1, . . . , Am

at levels > l. Thus ¬(A1 ∧ b1) ∧ . . . ∧ ¬(Am ∧ bm) ∧ (b1 ∨ . . . ∨ bm) implies
¬(A1 ∧ . . . ∧Am). – Otherwise, if K ∪ (F \ {l}) = ∅ holds, no further transition
is applicable, i.e. there is no consistent final state.

This means that if all chosen alternative constraints result directly in inconsis-
tencies, i.e. no further Choose transition was applied, processing “jumps back”.
It returns to the most recently performed Choose transition that is involved in
one of these inconsistencies, i.e. its level indicator is the maximum of the actual
conflict set. This conflict set is the union of the justifications of the inconsisten-
cies resulting from all alternatives at level l. If there are remaining alternatives
at the maximum level h < l, then the already chosen is replaced by the next.
Otherwise, if the actual conflict set is empty, any alternative will result in an
inconsistency, i.e. this transition is not applicable.

Multi-Step-Backjump: Perform the derivation step

(l + 1, l : () ◦ · · · ◦ h : () ◦W, K, 〈A, S, falseF , T 〉m)

� (h + 1, h : () ◦W, (K ∪ (F \ {l})) \ {h}, 〈A′, S′, falseF\{l}, T ′〉m)

if K∪(F \{l}) = ∅, h = max(K∪(F \{l})) hold and (h+1, h : ()◦W, K ′, 〈aJ∪{h}◦
A′, S′, B′, T ′〉m) is the most recent consistent state (with B′ = falseF ′

for any
justification F ′) of that kind in the derivation performed so far. Again, the con-
flict set K is extended by the identifiers of previously chosen (conjunctions of)

11 Otherwise the level indicator would be greater than l + 1.
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constraints that are responsible for the occurred inconsistency except the identi-
fier of the current level because there another alternative is chosen. Additionally
the justification of false is adapted, too, i.e. identifiers greater than the resulting
level h are removed because the accompanying decisions are discarded. Other-
wise, if K ∪ (F \ {l}) = ∅ holds, no further transition is applicable.

This means that if all necessary preconditions for a Single-Step-Backjump tran-
sition hold, except that no remaining alternatives are left at level h, it will “jump
back” to level h′ < h with remaining alternatives. Otherwise, if there are no re-
maining alternatives, nothing is performed.

Example 6 (Continuation of Example 5). For n = 2 the initial state is σ0 =
(0, λ, ∅, 〈A0, ∅, true, ∅〉1) with the initial goals

A0 = (edge(X1, X2)∅, edge(U, V )∅, edge(V, W )∅, edge(W,U)∅,

indomain(X1, [red, green, blue])∅, indomain(X2, [red, green, blue])∅,

indomain(U, [red, green])∅, indomain(V, [red, green])∅, indomain(W, [red, green])∅,

label(X1)∅, label(X2)∅, label(U)∅, label(V )∅, label(W )∅) .

These goals model a graph coloring problem that consists of an arc between X1
and X2 and a separate subgraph that connects U, V, W with each other. After
processing the CHR program in Fig. 1 on the edge/2 and indomain/2 constraints
of the initial goals it holds σ0 � · · ·� (0, λ, ∅, 〈Aa, Sa, true, ∅〉18) = σa, where

Aa = (label(X1)∅, label(X2)∅, label(U)∅, label(V )∅, label(W )∅)

Sa = {neq(X1, X2)∅#2, neq(X2, X1)∅#3, neq(U, V )∅#5, neq(V, U)∅#6,

neq(V, W )∅#8, neq(W,V )∅#9, neq(W,U)∅#11, neq(U, W )∅#12,

indomain(X1, [red, green, blue])∅#13, indomain(X2, [red, green, blue])∅#14,

indomain(U, [red, green])∅#15, indomain(V, [red, green])∅#16,

indomain(W, [red, green])∅}#17} .

Continued constraint processing labels variable X1 with color red in two steps:
First, the indomain/2 constraint formulated on X1 is replaced by a choice due
to a Simplify transition. Second, the first alternative is chosen due to a Choose
transition storing the remaining two alternatives at root level 0. The chosen
alternative X1 = red that holds at level 1 is justified by the set {0} because this
decision is made at root level:

σa �Activate (0, λ, ∅, 〈(label(X1)∅#18 : 1, label(X2)∅, label(U)∅, label(V )∅, label(W )∅)

{label(X1)∅#18} ∪ Sa, true, ∅〉19)
�×18

Default (0, λ, ∅, 〈(label(X1)∅#18 : 19, label(X2)∅, label(U)∅, label(V )∅, label(W )∅),

{label(X1)∅#18} ∪ Sa, true, ∅〉19)
�Simplify (0, λ, ∅, 〈((X1 = red; X1 = green; X1 = blue)∅,

label(X2)∅, label(U)∅, label(V )∅, label(W )∅),

Sa \ {indomain(X1, [red, green, blue])∅#13}, true, ∅〉19)
�Choose (1, (0 : (X1 = green; X1 = blue)∅), ∅, 〈((X1 = red){0},
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label(X2)∅, label(U)∅, label(V )∅, label(W )∅),

Sa \ {indomain(X1, [red, green, blue])∅#13}, true, ∅〉19)
�Solve (1, (0 : (X1 = green; X1 = blue)∅), ∅, 〈(neq(X2, X1)∅#3,

label(X2)∅, label(U)∅, label(V )∅, label(W )∅),

Sa \ {indomain(X1, [red, green, blue])∅#13},
((X1 = red){0}), ∅〉19) = σ′

a.

To keep the derivation in this example simple, only the “inactive” constraint
neq(X2, X1)∅#3 was re-introduced in the last Solve transition.

Now, this constraint removes the color red from the domain of X2 after its
re-activation. A Simplify transition replaces the indomain/2 constraint in the
CHR constraint store by a new one on top of the execution stack that is justified
by the set {0} because the transition is justified by the active neq constraint and
the equality X1 = red:

σ′
a �Reactivate (1, (0 : (X1 = green; X1 = blue)∅), ∅, 〈(neq(X2, X1)∅#3 : 1,

label(X2)∅, label(U)∅, label(V )∅, label(W )∅),

Sa \ {indomain(X1, [red, green, blue])∅#13}, ((X1 = red){0}), ∅〉19)
�×8

Default (1, (0 : (X1 = green; X1 = blue)∅), ∅, 〈(neq(X2, X1)∅#3 : 9,

label(X2)∅, label(U)∅, label(V )∅, label(W )∅),

Sa \ {indomain(X1, [red, green, blue])∅#13}, ((X1 = red){0}), ∅〉19)
�Simplify (1, (0 : (X1 = green; X1 = blue)∅), ∅,

〈(indomain(X2, [green, blue]){0},

label(X2)∅, label(U)∅, label(V )∅, label(W )∅),

Sa \ {indomain(X1, [red, green, blue])∅#13,

indomain(X2, [red, green, blue])∅#14},
((X1 = red){0}), ∅〉19) = σb .

For the sake of simplicity let

Sb = Sa \ {indomain(X1, [red, green, blue])∅#13, indomain(X2, [red, green, blue])∅#14} .

Then, the new indomain/2 constraint is inserted into the CHR constraint store:

σb �Activate (1, (0 : (X1 = green; X1 = blue)∅), ∅,
〈(indomain(X2, [green, blue]){0}#19 : 1,

label(X2)∅, label(U)∅, label(V )∅, label(W )∅),

{indomain(X2, [green, blue]){0}#19} ∪ Sb, ((X1 = red){0}), ∅〉20)
�×21

Default (1, (0 : (X1 = green; X1 = blue)∅), ∅,
〈(indomain(X2, [green, blue]){0}#19 : 22,

label(X2)∅, label(U)∅, label(V )∅, label(W )∅),

{indomain(X2, [green, blue]){0}#19} ∪ Sb, ((X1 = red){0}), ∅〉20)
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�Drop (1, (0 : (X1 = green; X1 = blue)∅), ∅,
〈(label(X2)∅, label(U)∅, label(V )∅, label(W )∅),

{indomain(X2, [green, blue]){0}#19} ∪ Sb, ((X1 = red){0}), ∅〉20) = σc .

Further, the next label/1 constraint is activated. It labels variable X2 with
color green in a similar manner as before X1. However, this decision depends on
the labeling of X1:

σc �Activate (1, (0 : (X1 = green; X1 = blue)∅), ∅,
〈(label(X2)∅#20 : 1, label(U)∅, label(V )∅, label(W )∅),

{label(X2)∅#20, indomain(X2, [green, blue]){0}#19} ∪ Sb,

((X1 = red){0}), ∅〉21)
�×20

Default (1, (0 : (X1 = green; X1 = blue)∅), ∅,
〈(label(X2)∅#20 : 21, label(U)∅, label(V )∅, label(W )∅),

{label(X2)∅#20, indomain(X2, [green, blue]){0}#19} ∪ Sb,

((X1 = red){0}), ∅〉21)
�Simplify (1, (0 : (X1 = green; X1 = blue)∅), ∅,

〈((X2 = green; X2 = blue){0},

label(U)∅, label(V )∅, label(W )∅), Sb, ((X1 = red){0}), ∅〉21)
�Choose (2, (1 : (X2 = blue){0}, 0 : (X1 = green; X1 = blue)∅), ∅,

〈((X2 = green){0,1},

label(U)∅, label(V )∅, label(W )∅), Sb, ((X1 = red){0}), ∅〉21)
�Solve (2, (1 : (X2 = blue){0}, 0 : (X1 = green; X1 = blue)∅), ∅,

〈(label(U)∅, label(V )∅, label(W )∅),

Sb, ((X1 = red){0} ∧ (X2 = green){0,1}), ∅〉21) = σd .

For the sake of simplicity, we have not reactivated the constraints containing
X2, i.e. neither neq(X1, X2) nor neq(X2, X1), because they will not trigger any
of the rules in the considered CHR program.

Continuing the derivation process, the variable U is labeled in a similar man-
ner as X1 and X2 before. In contrast to the labeling of X2 the labeling of U is
independent from X1 and X2 due to the graph’s topology.

σd �Activate (2, (1 : (X2 = blue){0}, 0 : (X1 = green; X1 = blue)∅), ∅,
〈(label(U)∅#21 : 1, label(V )∅, label(W )∅), {label(U)∅#21} ∪ Sb,

((X1 = red){0} ∧ (X2 = green){0,1}), ∅〉22)
�×20

Default (2, (1 : (X2 = blue){0}, 0 : (X1 = green; X1 = blue)∅), ∅,
〈(label(U)∅#21 : 21, label(V )∅, label(W )∅), {label(U)∅#21} ∪ Sb,

((X1 = red){0} ∧ (X2 = green){0,1}), ∅〉22)
�Simplify (2, (1 : (X2 = blue){0}, 0 : (X1 = green; X1 = blue)∅), ∅,

〈(U = green; U = blue)∅, label(V )∅, label(W )∅),
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Sb \ {indomain(U, [green, blue])∅#15},
((X1 = red){0} ∧ (X2 = green){0,1}), ∅〉22)

�Choose (3, (2 : (U = blue)∅, 1 : (X2 = blue){0}, 0 : (X1 = green; X1 = blue)∅), ∅,
〈((U = green){2}, label(V )∅, label(W )∅),

Sb \ {indomain(U, [green, blue])∅#15},
((X1 = red){0} ∧ (X2 = green){0,1}), ∅〉22)

�Solve (3, (2 : (U = blue)∅, 1 : (X2 = blue){0}, 0 : (X1 = green; X1 = blue)∅), ∅,
〈(neq(V, U)∅#6, neq(W,U)∅#11, label(V )∅, label(W )∅),

Sb \ {indomain(U, [green, blue])∅#15},
((X1 = red){0} ∧ (X2 = green){0,1} ∧ (U = green){2}), ∅〉22) = σe .

The chosen value of variable U reactivates the two constraints neq(V, U)∅#6 and
neq(W, U)∅#11. Reactivation of the first determines the value of V . Thus, for
Sc = Sb \ {indomain(U, [green, blue])∅#15}, it holds:

σe �Reactivate (3, (2 : (U = blue)∅, 1 : (X2 = blue){0}, 0 : (X1 = green; X1 = blue)∅), ∅,
〈(neq(V, U)∅#6 : 1, neq(W,V )∅#9, label(V )∅, . . .), Sc,

((X1 = red){0} ∧ (X2 = green){0,1} ∧ (U = green){2}), ∅〉22)
�×14

Default (3, (2 : (U = blue)∅, 1 : (X2 = blue){0}, 0 : (X1 = green; X1 = blue)∅), ∅,
〈(neq(V, U)∅#6 : 15, neq(W, V )∅#9, label(V )∅, . . .), Sc,

((X1 = red){0} ∧ (X2 = green){0,1} ∧ (U = green){2}), ∅〉22)
�Simplify (3, (2 : (U = blue)∅, 1 : (X2 = blue){0}, 0 : (X1 = green; X1 = blue)∅), ∅,

〈(V = blue){2}, neq(W, V )∅#9, label(V )∅, . . .),

Sc \ {indomain(V, [green, blue])∅#16},
((X1 = red){0} ∧ (X2 = green){0,1} ∧ (U = green){2}), ∅〉22)

�Solve (3, (2 : (U = blue)∅, 1 : (X2 = blue){0}, 0 : (X1 = green; X1 = blue)∅), ∅,
〈(neq(W, V )∅#9, label(V )∅, . . .), Sc \ {indomain(V, [green, blue])∅#16},
((X1 = red){0} ∧ (X2 = green){0,1} ∧ (U = green){2}

∧ (V = blue){2}), ∅〉22) = σf .

Again, for the sake of simplicity, it is assumed that the constraint neq(W, V )∅#9
will be the first to be reconsidered. Its reactivation results in analogous tran-
sitions as before. This means that the constraint neq(W, V )∅#9 will be re-
activated again. Then the built-in store becomes inconsistent, i.e. for Sd =
Sc \ {indomain(V, [green, blue])∅#16} it holds:

σf �Reactivate . . .

�Solve (3, (2 : (U = blue)∅, 1 : (X2 = blue){0}, 0 : (X1 = green; X1 = blue)∅), ∅,
〈(neq(W,V )∅#9, label(V )∅, . . .), Sd \ {indomain(W, [green, blue])∅#17},
((X1 = red){0} ∧ (X2 = green){0,1} ∧ (U = green){2}

∧ (V = blue){2} ∧ W = blue){2}), ∅〉22)
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�Reactivate (3, (2 : (U = blue)∅, 1 : (X2 = blue){0}, 0 : (X1 = green; X1 = blue)∅), ∅,
〈(neq(W,V )∅#9 : 1, label(V )∅, . . .),

Sd \ {indomain(W, [green, blue])∅#17},
((X1 = red){0} ∧ (X2 = green){0,1} ∧ (U = green){2}

∧ (V = blue){2} ∧ W = blue){2}), ∅〉22)
�Default (3, (2 : (U = blue)∅, 1 : (X2 = blue){0}, 0 : (X1 = green; X1 = blue)∅), ∅,

〈(neq(W,V )∅#9 : 2, label(V )∅, . . .),

Sd \ {indomain(W, [green, blue])∅#17},
((X1 = red){0} ∧ (X2 = green){0,1} ∧ (U = green){2}

∧ (V = blue){2} ∧ W = blue){2}), ∅〉22)
�Simplify (3, (2 : (U = blue)∅, 1 : (X2 = blue){0}, 0 : (X1 = green; X1 = blue)∅), ∅,

〈(false{2}, label(V )∅, . . .),

Sd \ {indomain(W, [green, blue])∅#17, neq(W,V )∅#9},
((X1 = red){0} ∧ (X2 = green){0,1} ∧ (U = green){2}

∧ (V = blue){2} ∧ W = blue){2}), ∅〉22)
�Solve (3, (2 : (U = blue)∅, 1 : (X2 = blue){0}, 0 : (X1 = green; X1 = blue)∅), ∅,

〈(label(V )∅, . . .), Sd \ {indomain(W, [green, blue])∅#17, neq(W,V )∅#9},
(false{2}), ∅〉22) = σh .

The detected inconsistency triggers a Backtrack transition solely justified by the
last decision. Thus the conflict set is not changed. The next chosen labeling leads
to another inconsistency. Again, it is solely justified by this last alternative:

σh �Backtrack (3, (2 : (), 1 : (X2 = blue){0}, 0 : (X1 = green; X1 = blue)∅), ∅,
〈((U = blue){2}, label(V )∅, . . .), Sb \ {indomain(U, [green, blue])∅#15},
((X1 = red){0} ∧ (X2 = green){0,1}), ∅〉22)

�Activate . . .

�Solve (3, (2 : (), 1 : (X2 = blue){0}, 0 : (X1 = green; X1 = blue)∅), ∅,
〈(label(V )∅, . . .), Sd \ {indomain(W, [green, blue])∅#17, neq(W,V )∅#9},
(false{2}), ∅〉22) = σi .

In state σi there is no alternative left for the choice processed at level 2,
i.e. 2 : () holds. So backjumping will be considered. However, any backjump to
another alternative labeling of X2 or X1 is not performed because the conflict
set is empty. This shows that the assignments to the variables X1 and X2 are not
involved in the inconsistency that consists in the subgraph of U, V, W that must
be colored with at least 3 different colors. Consequently CHR processing stops
without superfluous consideration of other – exponentially many – derivations
as in Example 5 when using the semantics ω∨

r .
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5 Relationships between the Presented CHR∨ Semantics

In this section the soundness of the extended and refined operational semantics
ω∨�

r is shown with respect to the refined operational semantics ω∨
r . Due to the

correspondence of the latter semantics with the theoretical operational semantics
ω∨

t the extended and refined operational semantics ω∨�

r is also sound with respect
to ω∨

t . Before proving this important property the following necessary lemma will
be proved:

Lemma 1. Let an ω∨�

r derivation

(0, λ, ∅, 〈A0, ∅, true, ∅〉1)
� · · ·� (l + 1, l : (ai; . . . ; an)J ◦W, K, σ)

for a level indicator l, an index 1 < i ≤ n + 1, a choice (ai; . . . ; an), a justifi-
cation J , a sequence of choices W , a conflict set K and a execution state σ be
given.12 Furthermore, the derivation’s last state, i.e. σ, be consistent.

Then there are a conflict set K�, some constraints a1, . . . , ai−1, an activation
stack A�, a CHR constraint store S�, a built-in constraint store B�, a propagation
history T �, an index m� and a derivation step within this derivation

(l, W, K�, 〈(a1; . . . ; an)J ◦A�, S�, B�, T �〉m�)

� (l + 1, l : (a2; . . . ; an)J ◦W, K�, 〈aJ∪{l}
1 ◦A�, S�, B�, T �〉m�)

which is based on a Choose transition.

Proof. The proposition is proved by induction over the length of the derivation.
Obviously there is at least one derivation step such that the given derivation has
a positive length, i.e. d > 0.

Induction base, i.e. d = 1: Analyzing all defined transitions this derivation
step can only match the pattern of a Choose transition. By its definition there
is an execution stack A such that A0 = (a1; . . . ; an)J ◦A and

(0, λ, ∅, 〈A0, ∅, true, ∅〉1) � (1, 1 : (a2; . . . ; an)J , ∅, 〈aJ∪{l}
1 ◦A, ∅, true, ∅〉1)

hold. Obviously the proposition to be proven holds, too.
Induction step, i.e. d � d + 1: It is assumed that the length of the given ω∨�

r

derivation is d + 1 with d ≥ 1, i.e. it has the structure

(0, λ, ∅, 〈A0, ∅, true, ∅〉1) � · · ·�
(l′, W ′, K ′, σ′) � (l + 1, l : (ai; . . . ; an)J ◦W, K, σ)

Analyzing all defined transitions the last derivation step can match the patterns
of all transitions except Multi-Step-Backjump because σ is consistent.
12 It is assumed that choice (ai; . . . ; an) might be also empty, i.e. (), indicated by

i = n + 1.
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If the last derivation step is either a Solve, Activate, Reactivate, Simplify,
PropagateDrop or Default transition then by definition it holds

(l′, W ′, K ′, σ′) = (l + 1, l : (ai; . . . ; an)J ◦W, K, σ′)

By induction hypothesis there are a conflict set K�, some con-
straints a1, . . . , ai−1, an activation stack A�, a CHR constraint store S�,
a built-in constraint store B�, a propagation history T �, a number m� and a
derivation step within this derivation

(l, W, K�, 〈(a1; . . . ; an)J ◦A�, S�, B�, T �〉m�)

� (l + 1, l : (a2; . . . ; an)J ◦W, K�, 〈aJ∪{l}
1 ◦A�, S�, B�, T �〉m�)

which is based on a Choose transition.
If the last derivation step is a Choose transition, then the state to be proven

holds obviously (cf. induction base). In remaining two cases either a Backtrack or
a Single-Step-Backjump transition is applied. So by definition of these transitions
there are a conflict set K ′′, two constraint ai−2, ai−1, an execution stack A, a
CHR constraint store S, a built-in constraint store B, a propagation history T ,
a number m and an intermediate state

(l + 1, l : (ai−1; . . . ; an)J ◦W, K ′′, 〈aJ∪{l}
i−2 ◦A, S, B, T 〉m)

in the derivation of length d. By induction hypothesis it follow that there are
a conflict set K�, some constraints a1, . . . , ai−3, an activation stack A�, a CHR
constraint store S�, a built-in constraint store B�, a propagation history T �, a
number m� and a derivation step within this derivation

(l, W, K�, 〈(a1; . . . ; an)J ◦A�, S�, B�, T �〉m�)

� (l + 1, l : (a2; . . . ; an)J ◦W, K�, 〈aJ∪{l}
1 ◦A�, S�, B�, T �〉m�)

which is based on a Choose transition. Summarizing, the proposition to be proven
holds in all possible cases. ��
Now the soundness of ω∨�

r with respect to ω∨
r will be proven on the basis of

this lemma. In detail it is shown that for each derivation in ω∨�

r resulting in a
consistent state there is a corresponding path in the virtual derivation tree in
ω∨

r to an ω∨
r state “wrapped” by this ω∨�

r state:

Theorem 1 (Soundness of ω∨�

r with respect to ω∨
r ). Let an ω∨�

r derivation

(0, λ, ∅, 〈A0, ∅, true, ∅〉1) � · · ·� (l, W, K, σ)

be given where (l, W, K, σ), in particular σ, is a consistent state. If the annotated
justifications in σ are omitted, then there is an ω∨

r derivation

〈A0, ∅, true, ∅〉1 � · · ·� [. . . | σ | . . .] .
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Proof. The proposition will be proved by induction over the length d of the given
ω∨�

r derivation.
Induction base, i.e. d = 0: Obviously the proposition holds if the length of the

ω∨�

r derivation is zero, i.e. the initial execution stack A0 is empty.
Induction step, i.e. d � d + 1: It is assumed that the length of the given ω∨�

r

derivation is d + 1 with d ≥ 0, i.e. it has the structure

(0, λ, ∅, 〈A0, ∅, true, ∅〉1) � · · ·� (l′, W ′, K ′, σ′) � (l, W, K, σ)

where (l, W, K, σ), especially σ, is a consistent state.
Now let the derivation step (l′, W ′, K ′, σ′) � (l, W, K, σ) be based on one of

the transitions Solve, Activate, Reactivate, Drop, Simplify, Propagate, or Default.
Then (l′, W ′, K ′, σ′) is a consistent state and there is an ω∨

r derivation

〈A0, ∅, true, ∅〉1 � · · ·� [. . . | σ′ | . . .]
by induction hypothesis. Furthermore, by definition of ω∨�

r it holds that

〈A0, ∅, true, ∅〉1 � · · ·� [. . . | σ′ | . . .] � [. . . | σ | . . .] ,

i.e. the proposition to be proven is valid in those cases.
Now let the derivation step (l′, W ′, K ′, σ′) � (l, W, K, σ) be based on a Choose

transition. Then there are a choice (a1; . . . ; an), a justification J , an execution
stack A, a CHR constraint store S, a built-in constraint store B, a propagation
history T and a counter m such that

σ′ = 〈(a1; . . . ; an)J ◦A, S, B, T 〉m
σ = 〈aJ∪{l}

1 ◦A, S, B, T 〉m
hold. Then by induction hypothesis there is an ω∨

r derivation

〈A, ∅, true, ∅〉1 � · · ·� [. . . | σ′ | . . .]
Omitting the annotated justifications in σ′ and σ, a Split transition is applicable
to σ′. This results in σ′ � [σ | . . . | 〈an◦A, S, B, T 〉m] in ω∨

r proving the asserted
proposition in this case.

Now let the derivation step (l′, W ′, K ′, σ′) � (l, W, K, σ) be based on a
Backtrack transition. Then there are a level indicator l′′, a choice (ai; . . . ; an),
justifications J, F , a sequence of choices W ′′, a conflict set K ′, execution
stacks A, A′, CHR constraint stores S, S′, a built-in constraint store B′, a prop-
agation history T and a number m such that

(l′, W ′, K ′, σ′) = (l′′ + 1, l′′ : (ai; . . . ; an)J ◦W ′′, K ′, 〈A, S, falseF , T 〉m)

(l, W, K, σ) = (l′′ + 1, l′′ : (ai+1; . . . ; an)J ◦W ′′, K, 〈aJ∪{l′′}
i ◦A′, S′, B′, T ′〉m)

hold by definition of a Backtrack transition. Thus, concerning Lemma 1, there
are a conflict set K� and some constraints a1, . . . , ai−1 and a derivation step in
the given derivation

(l′′, W ′′, K�, 〈(a1; . . . ; an)J ◦A′, S′, B′, T ′〉m)

� (l′′ + 1, l′′ : (a2; . . . ; an)J ◦W ′′, K�, 〈aJ∪{l′′}
1 ◦A′, S′, B′, T ′〉m)
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based on a Choose transition. It follows by induction hypothesis that there is an
ω∨

r derivation

〈A0, ∅, true, ∅〉1 � · · ·� [. . . | 〈(a1; . . . ; an) ◦A′, S′, B′, T ′〉m | . . .]
where a Split transition is applicable to 〈(a1; . . . ; an) ◦ A′, S′, B′, T ′〉m. This re-
sults in the derivation

〈A0, ∅, true, ∅〉1 � · · ·� [. . . | 〈(a1; . . . ; an) ◦A′, S′, B′, T ′〉m | . . .]
� [. . . | 〈aJ∪{l′′}

i ◦A′, S′, B′, T ′〉m | . . .] ,

i.e. the proposition to be proven holds in this case.
Finally let the derivation step (l′, W ′, K ′, σ′) � (l, W, K, σ) be based on a

Single-Step-Backjump transition. Then there are level indicators l′′, h, a choice
(ai+1; . . . ; an), a constraint ai, justifications J, F , a sequence of choices W ′′, a
conflict set K ′, execution stacks A, A′, CHR constraint stores S, S′, a built-in
constraint store B′, a propagation history T and a number m such that

(l′, W ′, K ′, σ′)
= (l′′ + 1, l′′ : () ◦ · · · ◦ h : (ai; . . . ; an)J ◦W ′′, K ′, 〈A, S, falseF , T 〉m)

(l, W, K, σ)

= (h + 1, h : (ai+1; . . . ; an)J ◦W ′′, K, 〈aJ∪{h}
i ◦A′, S′, B′, T ′〉m)

hold by definition of a Single-Step-Backjump transition. Thus, concerning
Lemma 1, there are a conflict set K� and some constraints a1, . . . , ai−1 and
a derivation step in the given derivation

(h, W ′′, K�, 〈(a1; . . . ; an)J ◦A′, S′, B′, T ′〉m)

� (h + 1, h : (a2; . . . ; an)J ◦W ′′, K�, 〈aJ∪{h}
1 ◦A′, S′, B′, T ′〉m)

based on a Choose transition. So by induction hypothesis there is an ω∨
r deriva-

tion

〈A0, ∅, true, ∅〉1 � · · ·� [. . . | 〈(a1; . . . ; an) ◦A′, S′, B′, T ′〉m | . . .]
where a Split transition is applicable to 〈(a1; . . . ; an) ◦ A′, S′, B′, T ′〉m. This re-
sults in

〈A0, ∅, true, ∅〉1 � · · ·� [. . . | 〈(a1; . . . ; an) ◦A′, S′, B′, T ′〉m | . . .]
� [. . . | 〈aJ∪{l′′}

i ◦A′, S′, B′, T ′〉m | . . .] ,

i.e. the asserted proposition holds in this case. Further, it holds in all cases under
the considered assumption that the last state is consistent because any derivation
step based on a Multi-Step-Backjump transition results in an inconsistent state.

��
Theorem 1 especially shows that for each derivation in ω∨�

r resulting in a consis-
tent final state it holds that this final state “wraps” a consistent final state in ω∨

r ,
i.e. a solution of the considered constraint problem modeled as the goal A0.
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6 Conclusion and Future Work

The main result of this article is a combination of the flexibility allowed by pro-
viding disjunctions in CHR with the efficiency of a procedure to handle disjunc-
tive bodies based on justifications. We extended the refined operational semantics
of CHR presented in [2] to accommodate several new transitions that makes use
of the mechanism for adaptive CHR to embed conflict-directed backjumping for
handling choices in CHR∨. We presented a detailed example on graph-coloring
to demonstrate empirically the advantages of this approach. Furthermore, this
case-study is amended with an important theoretical result: the soundness of the
extended and refined operational semantics ω∨�

r .
Ongoing theoretical work is on the formulation and proof of an additional

proposition that show that the presented operational semantics correspond to
each other, especially showing that the extended and refined operational seman-
tics ω∨�

r is also complete with respect to ω∨
r [10].

The next practical step will be an implementation realizing the new transitions
of the presented operational semantics. We will conduct this as a sub-task of the
on-going project ROARS [12] which aims to build the first model-driven CHR∨

compiler integrating adaptive CHR and handling of disjunctions.
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Abstract. Developing constraint solvers which are key requisites of con-
straint programming languages is time consuming and difficult. In this
paper, we propose a generic algorithm that symbolically constructs rule-
based solvers from the intensional definition of the constraint. Unlike the
well-established “generate and test” approach, our symbolic construction
approach is capable of generating recursive rules from a recursive con-
straint definition. Combining the two approaches gives better filtering
capabilities than either of the approaches acting alone.

1 Introduction

“Constraint Programming represents one of the closest approaches com-
puter science has yet made to the Holy Grail of programming: the user
states the problem, the computer solves it.” [E. Freuder]

The validity of this statement for a Constraint Logic Programming (CLP) lan-
guage is contingent on the existence of constraint solvers. These associate con-
straints with filtering algorithms that remove variable values which cannot
belong to any solution of the problem.

Constraint Handling Rules (CHR) is a multi-headed guarded and concur-
rent constraint logic programming language. To incorporate constraint solvers
in CHR, a scheme was proposed in [1] to automatically derive the solvers given
the intentional definition of the constraints. The scheme is based on a generate
and test approach where rule candidates are enumerated and tested for validity
against the constraint definition. Although the approach performs an extensive
search for valid rules, given a recursive constraint definition it is unable to gen-
erate recursive rules.

To overcome this, we propose a scheme where valid rules are symbolically
constructed from the clauses of a CLP program defining the constraint. The idea
behind the construction stems from the observation that if in a non-overlapping
CLP program the execution of a clause leads to a solution, the execution of all
other clauses will not. Thus our constructed CHR rules simplify the constraint to
the body of a clause only if all other clauses do not hold. Moreover, we combine
the two schemes to achieve better filtering.

T. Schrijvers and T. Frühwirth (Eds.): Constraint Handling Rules, LNAI 5388, pp. 70–84, 2008.
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Example 1 (Motivation). Consider the lexicographic order constraint [2,3,4].
Given two sequences L1 and L2 of variables of the same length, then lex holds if
L1 is lexicographically smaller than or equal to L2. The following CLP program
defines the lex(L1, L2) constraint:

lex([], [])
lex([X1|T1], [X2|T2]) ← X1<X2

lex([X3|T3], [X4|T4]) ← X3=X4 ∧ lex(T3, T4)

The generate and test approach [1] generates rules that reason about the first
elements of the two lists such as:

lex(L1, L2) ⇒ L1=[X1|T1] ∧ L2=[X2|T2] | X1≤X2 (1)

The symbolic construction approach proposed in this paper generates the fol-
lowing solver:

lex(L1, L2)⇔ L1=[] ∨ L2=[] | L1=[] ∧ L2=[] (2)
lex(L1, L2)⇔ L1=[X1|T1] ∧ L2=[X2|T2] ∧X1 =X2 | X1<X2 (3)
lex(L1, L2)⇔ L1=[X1|T1] ∧ L2=[X2|T2] ∧X1≥X2 | X1=X2 ∧ lex(T1, T2) (4)

Given the query 〈lex([A1, A2, A3], [B1, B2, B3])〉 where the domains of the vari-
ables are defined as follows:

A1={1, 3, 4}, A2={2, 3, 4}, A3={1, 2}
B1={1}, B2={2}, B3={0, 1, 2}

The generate and test approach enforces the constraint A1≤B1, which removes
the values {3, 4} from the domain of A1. The solution becomes:

A1={1}, A2={2, 3, 4}, A3={1, 2},
B1={1}, B2={2}, B3={0, 1, 2},

lex([A1, A2, A3], [B1, B2, B3])

For the symbolic construction approach since A1≥B1, rule (4) is executed en-
forcing equality on the values of A1 and B1 before calling lex recursively on the
remaining list elements. Since A2≥B2 rule (4) is applied again, whereas for A3
and B3 no rule is applicable. The solution becomes:

A1={1}, A2={2}, A3={1, 2},
B1={1}, B2={2}, B3={0, 1, 2},

lex([A3], [B3])

Combining both approaches prunes the domains of the variables further since
rule (1) is applicable to lex([A3], [B3]) and filters the domain of B3. The combined
solution becomes:

A1={1}, A2={2}, A3={1, 2},
B1={1}, B2={2}, B3={1, 2},

A3≤B3, lex([A3], [B3])

We will proceed with the lex constraint in all examples of this paper.
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The paper is a revised and extended version of [5] and is organized as follows. In
section 3, we present the symbolic construction approach and prove soundness
and termination of the constructed solvers. In section 4, we apply post-processing
methods to improve the run-time complexity of the solvers. Finally, section 5
combines the symbolic construction approach with the “generate and test” ap-
proach to achieve better filtering.

2 Preliminaries

2.1 Intentional Definition

Let p be a constraint. A CLP program P defines p if p occurs with the same
arity in the head of all the clauses and all true instances of p are accounted for
(closed world assumption). The program P is of the usual form:

p(t̄1)← C1, p(t̄2)← C2, . . . , p(t̄n) ← Cn

where t̄i stands for a sequence of terms and Ci is a conjunction of built-in and
user-defined constraints. Built-in constraints are those defined by a constraint
theory and for which solvers are available. These solvers are assumed to be
well-behaved (terminating and confluent), closed under negation, and achieve
arc-consistency. User-defined constraints are those for which solvers are needed.
The symbolic construction approach requires that there are no variables in Ci

that are not in t̄i and that all clauses are non-overlapping (i.e. in a computation
at most one clause can lead to a solution).

Definition 1. The logical reading of P denoted by P ∗ is given by its Clark
completion [6]:

∀x̄ (p(x̄)↔
n∨

i=1

∃ȳi (x̄=t̄i ∧ Ci))

where x̄ is a sequence of distinct fresh variables and ȳi is the sequence of vari-
ables in t̄i. The expression x̄=t̄i stands for the conjunction of equations between
respective elements of the sequences x̄ and t̄i.

Example 2 (Clark Completion). The Clark completion of the CLP program
defining lex is:

∀L1, L2 lex(L1, L2) ↔
(L1=[] ∧ L2=[]) ∨
∃X1, X2, T1, T2 (L1=[X1|T1] ∧ L2=[X2|T2] ∧X1<X2) ∨
∃X3, X4, T3, T4 (L1=[X3|T3] ∧ L2=[X4|T4] ∧X3=X4 ∧ lex(T3, T4))

2.2 Constraint Solver

CHR [7] specifies how new constraints interact with the constraint store and is
thus especially suited for writing constraint solvers. It has two main rule types:
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Simplification Rule: H ⇔ G | B
Propagation Rule: H ⇒ G | B

where the head H are user-defined constraints, the guard G are built-in con-
straints and the body constraints B are both.

Definition 2. The logical meaning of a simplification rule is a logical equiva-
lence provided the guard holds:

∀x̄∀ȳ (G→ (H ↔ ∃z̄ B))

where x̄ is the set of variables occurring in H, the variables ȳ are the set occurring
in G but not in H and z̄ are the variables occurring in B only. Similarly, the
logical meaning of a propagation rule is an implication provided the guard holds.

Prompted with a query, applicable rules are executed until a fixpoint is reached
where no more rules can be applied or a contradiction occurs. A rule is applicable
provided that constraints from the query match the head and imply the guard.
Execution of a simplification rule rewrites constraints that match the head by
the body while execution of a propagation rule adds the body constraints to the
constraint store.

2.3 Generate and Test Approach

In this section, we summarize the generate and test approach presented in [1].
Given a CLP program defining the constraint as well as the syntactic form of
the candidate rules defined by the following sets:

– Baselhs contains constraints that must appear in the head of all rules,
– Candlhs contains constraints to be used in conjunction with Baselhs to form

the head, and
– Candrhs contains constraints that may appear in the body.

The generate and test approach generates valid rules as follows. Candidate prop-
agation rules of the form H ⇒ B are enumerated, and subjected to a validity
test based on the observation that a rule is valid if the execution of the goal
H ∧ ¬(B) finitely fails with respect to the CLP program.

Example 3 (Generate and Test Approach). Given the syntactic form of candidate
rules for lex as:

Baselhs={lex(L1, L2)}
Candlhs={L1=[], L2=[], L1=[X1|T1], L2=[X2|T2], X1≤X2, X1>X2, X1<X2, . . .}
Candrhs=Candlhs

The generate and test approach generates (among others) the following rule for
lex:

lex([X1|T1], [X2|T2])⇒ X1≤X2
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The rule is generated since executing the goal 〈lex([X1|T1], [X2|T2]), X1>X2〉
fails as demonstrated by the following derivation tree:

lex([X1|T1], [X2|T2]), X1>X2

�����������������

�� ����������������

[X1|T1]=[], [X2|T2]=[], X1>X2

��

X1<X2, X1>X2

��

X1=X2, lex(T1, T2), X1>X2

��
false false false

3 Symbolic Construction Approach

The symbolic construction approach (Fig. 1) constructs a solver for a constraint
by symbolically transforming the Clark completion of the CLP program defining
the constraint to semantically valid rules. The idea of the transformation stems
from the observation that in a non-overlapping CLP program if the execution
of one clause leads to a solution then the execution of all other clauses will not.
Thus to construct a rule that simplifies the constraint to the body of one clause,
the negation of the bodies of all other clauses is added to the guard. This ensures
that the rule is applicable only when all other clauses are not valid and hence
maintains consistency with the constraint definition.

begin
p: left hand side of the Clark completion
Disjuncts: set of disjuncts of right hand side of the Clark completion
Rules={}: resultant rule set

for each D in Disjuncts do
Other=Disjuncts\{D}
Rules=Rules ∪ {p ⇔ ¬Other | D}

end for
end

Fig. 1. Symbolic Construction Algorithm

3.1 Guard Determination

More formally, given the definition of a constraint p(x̄):

∀x̄
(

p(x̄)↔
n∨

i=1

∃ȳi (x̄=t̄i ∧ Ci)

)
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The symbolic construction algorithm constructs rules of the form:

p(x̄)⇔ ¬
n∨

j=1,j �=i

∃ȳj (x̄=t̄j ∧Cj) | x̄=t̄i ∧ Ci for each i ∈ {1, . . . , n}

where x̄=t̄j stands for the conjunction of equations between respective elements
of the sequences x̄ and t̄j . According to the soundness proof (given in the next
section), this is equivalent to:

p(x̄)⇔
n∧

j=1,j �=i

∀ȳj (x̄=t̄j) ∨ ∃ȳj (x̄=t̄j ∧ ¬Cj) | x̄=t̄i ∧Ci

where x̄ =t̄j stands for the disjunction of negated equations between respec-
tive elements of the sequences x̄ and t̄j and ¬Cj is a disjunction of negated
constraints. The symbolic construction approach distinguishes between the two
cases for negated constraints: Negated built-ins are replaced by the correspond-
ing positive constraints since built-ins are closed under negation. Negated user-
defined constraints are discarded and constructing an entailment checker that
determines if a user-defined constraint does not hold is left for future work. Thus,
the general form of the rules is:

p(x̄)⇔
n∧

j=1,j �=i

|x|+mj∨
k=1

Ek
j | x̄=t̄i ∧Ci

where
Ek

j =∀ȳk
j

(
xk =tkj

)
for k ∈ {1, . . . , |x|},

E
|x|+k
j =∃ȳj

(
x̄=t̄j ∧ ¬ck

j

)
for k ∈ {1, . . . , mj},

the ȳk
j is the sequence of variables in the term tkj and mj is the number of built-in

constraints in Cj .

Example 4 (Symbolic Construction Approach). The lex constraint has three dis-
juncts namely:

D1 : L1=[] ∧ L2=[]
D2 : ∃X1, X2, T1, T2 (L1=[X1|T1] ∧ L2=[X2|T2] ∧X1<X2)
D3 : ∃X3, X4, T3, T4 (L1=[X3|T3] ∧ L2=[X4|T4] ∧X3=X4 ∧ lex(T3, T4))

To construct a rule that simplifies lex to the first disjunct, the negation of the
other two disjuncts is added to the guard:

¬(∃X1, X2, T1, T2 (L1=[X1|T1] ∧ L2=[X2|T2] ∧X1<X2) ∨
∃X3, X4, T3, T4 (L1=[X3|T3] ∧ L2=[X4|T4] ∧X3=X4 ∧ lex(T3, T4)))
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This is equivalent to:

(∀X1, T1(L1 =[X1|T1]) ∨ ∀X2, T2(L2 =[X2|T2]) ∨
∃X1, X2, T1, T2(L1=[X1|T1] ∧ L2=[X2|T2] ∧X1≥X2)) ∧

(∀X3, T3(L1 =[X3|T3]) ∨ ∀X4, T4(L2 =[X4|T4]) ∨
∃X3, X4, T3, T4(L1=[X3|T3] ∧ L2=[X4|T4] ∧X3 =X4))

where negated built-ins are replaced by the corresponding positive constraints
and negated user-defined constraints discarded.

Since the arguments of lex are (ordered) lists, the constraint ∀X, T L =[X |T ]
can be simplified to L=[]. The expression becomes:

(L1=[] ∨ L2=[] ∨ (L1=[X1|T1] ∧ L2=[X2|T2] ∧X1≥X2)) ∧
(L1=[] ∨ L2=[] ∨ (L1=[X3|T3] ∧ L2=[X4|T4] ∧X3 =X4))

Thus the constructed rule is:

lex(L1, L2)⇔
(L1=[] ∨ L2=[] ∨ (L1=[X1|T1] ∧ L2=[X2|T2] ∧X1≥X2)) ∧
(L1=[] ∨ L2=[] ∨ (L1=[X3|T3] ∧ L2=[X4|T4] ∧X3 =X4))
| L1=[] ∧ L2=[]

3.2 The Solver Properties

In this section we prove soundness and termination as well as discuss complete-
ness of the constructed solvers.

Soundness. A simplification rule H ⇔ G | B is valid w.r.t. a CLP program P
and the constraint theory CT iff P ∗ ∪ CT |= ∀x̄ (∃ȳ G → (H ↔ ∃z̄ B)).

Theorem 1 (Soundness). The symbolic construction algorithm constructs
valid simplification rules w.r.t. the CLP program and the constraint theory.

Proof (Soundness). Consider Clark’s completion of the CLP program defining a
constraint p:

∀x̄
(

p(x̄) ↔
(

n∨
i=1

∃ȳi (x̄=t̄i ∧ Ci)

))

For every i ∈ {1, . . . , n}, we therefore have:

∀x̄
⎛
⎝

⎛
⎝¬ n∨

j=1,j �=i

∃ȳj (x̄=t̄j ∧ Cj)

⎞
⎠→ (p(x̄) ↔ ∃ȳi (x̄=t̄i ∧ Ci))

⎞
⎠

and consequently:

∀x̄
⎛
⎝

⎛
⎝ n∧

j=1,j �=i

¬∃ȳj (x̄=t̄j ∧ Cj)

⎞
⎠→ (p(x̄) ↔ ∃ȳi (x̄=t̄i ∧ Ci))

⎞
⎠
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which is the logical reading of a CHR rule:

p(x̄) ⇔ G | x̄=t̄i ∧ Ci

where G is equivalent to:

n∧
j=1,j �=i

¬∃ȳj (x̄=t̄j ∧ Cj)

Recall that ȳj denotes the variables in t̄j and that ȳj is disjoint from x̄.
Therefore, for every j ∈ {1, . . . , n} and every valuation of x̄ such that x̄ = t̄j is
satisfiable, there exists a sequence of terms ūj such that:

(x̄ = t̄j)⇔ (ȳj = ūj)

This observation guarantees the existence of a function uj for each j ∈
{1, . . . , n} that maps from sequences of terms to sequences of terms such that:

(∃ȳj x̄=t̄j) ⇒ ((x̄=t̄j)⇔ (ȳj=uj(x̄)))

and consequently:
(x̄ = t̄j)⇒ (ȳj=uj(x̄))

Using function uj, we have that:

¬∃ȳj (x̄=t̄j ∧ Cj)

is equivalent to:
¬∃ȳj (x̄=t̄j ∧ ȳj=uj(x̄) ∧ Cj)

From there, the substitution property of equality gives us:

¬∃ȳj (x̄=t̄j ∧ Cj [ȳj/uj(x̄)])

We move the negation to the inside of the formula and get:

∀ȳj (x̄ =t̄j ∨ ¬Cj [ȳj/uj(x̄)])

As the variables ȳj do not appear in the formula ¬Cj [ȳj/uj(x̄)], we can move it
outside of the universal quantification:

∀ȳj (x̄ =t̄j) ∨ ¬Cj [ȳj/uj(x̄)]

Applying (A ∨B) ⇔ (A ∨ (¬A ∧B)) gives us:

∀ȳj (x̄ =t̄j) ∨ (∃ȳj (x̄=t̄j) ∧ ¬Cj [ȳj/uj(x̄)])

As the variables ȳj do not appear in the formula ¬Cj [ȳj/uj(x̄)], we can move it
into the scope of their existential quantification:

∀ȳj (x̄ =t̄j) ∨ ∃yj (x̄=t̄j ∧ ¬Cj [ȳj/uj(x̄)])
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According to the definition of the function uj, x̄=t̄j implies ȳj=uj(x̄):

∀ȳj (x̄=t̄j) ∨ ∃yj (x̄=t̄j ∧ ȳj=uj(x̄) ∧ ¬Cj [ȳj/uj(x̄)])

We apply the substitution property of equality again to get:

∀ȳj (x̄=t̄j) ∨ ∃yj (x̄=t̄j ∧ ȳj=uj(x̄) ∧ ¬Cj)

As (x̄=t̄j)⇒ (ȳj=uj(x̄)), this is equivalent to:

∀ȳj (x̄ =t̄j) ∨ ∃yj (x̄=t̄j ∧ ¬Cj)

Therefore, the guard G of the generated CHR rule is equivalent to:⎛
⎝ n∧

j=1,j �=i

(∀ȳj (x̄ =t̄j) ∨ ∃yj (x̄=t̄j ∧ ¬Cj))

⎞
⎠

Termination. In [8] proving the termination of CHR solvers is based on poly-
nomial interpretations where the rank of a term or an atom is defined by a
linear positive combination of the rankings of its arguments. The basic idea is
to prove that the rank of the head of a rule is strictly larger than that of its
body. Moreover, built-in solvers are assumed to be well-behaved (terminating
and confluent) and thus the rank of built-in constraints is defined as 0.

Theorem 2 (Termination). For constraints defined by a CLP program where
the rank of the head of every clause is strictly larger than that of its body, the
symbolic construction approach constructs terminating solvers.

Proof (Termination). If for each clause of the CLP program, the rank of the
head of the clause is strictly larger than that of its body, then the constructed
solver terminates. The head and body of a constructed rule are the same as
the clause and only built-in constraints which are defined as 0 are added to the
guard. Thus the head of a constructed rule is strictly larger than that of its body
and the solver terminates.

Completeness. The constructed solvers can not guarantee propagation com-
pleteness for non-trivial constraints since negated user-defined constraints are
ignored.

4 Solver Optimization

To improve the runtime efficiency of the solvers and readability of the rules,
redundant guard entailment checks are removed. This is achieved by expanding
the guard expressions to disjunctive normal form and splitting each disjunct into
a new rule. Then, we apply the redundant rules removal algorithm of [9] on the
complete rule set. After redundant rules are removed, guards originating from
the same rule are recombined to avoid loss of completeness.
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4.1 Guard Splitting

The symbolic construction approach constructs rules of the form:

p(x̄)⇔
n∧

j=1,j �=i

|x|+mj∨
k=1

Ek
j | x̄=t̄i ∧Ci

where
Ek

j =∀ȳk
j

(
xk =tkj

)
for k ∈ {1, . . . , |x|},

E
|x|+k
j =∃ȳj

(
x̄=t̄j ∧ ¬ck

j

)
for k ∈ {1, . . . , mj},

the ȳk
j is the sequence of variables in the term tkj and mj is the number of built-in

constraints in Cj .
To split the guard into rules (Fig. 2), we distribute the conjunction over the

disjunction and get a formula in disjunctive normal form where the number of
disjuncts is Πn

j=1,j �=i|x| + mj . Then each disjunct is simplified to an equivalent
conjunction of constraints by the available built-in solver and superfluous dis-
juncts removed. These include multiple occurrences of a disjunct (irrespective of
the order of constraints within the disjunct) and false. Each simplified disjunct
is split into a new rule.

begin
Rulesin: initial rule set
Rulesout={}: resultant rule set

while Rulesin �={} do
Remove from Rulesin an element denoted R
R is of the form p ⇔ E | D
G is the cartesian product of the n−1 conjuncts of the guard E

while G�={} do
Remove from G an element denoted Ge

Gsimp: the result of executing Ge by the built-in solver
if Gsimp �=false then

Rulesout=Rulesout ∪ {p ⇔ Gsimp | D}
end if

end while
end while

end

Fig. 2. Guard Splitting
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Example 5 (Guard Splitting). Consider the previously constructed rule of lex:

lex(L1, L2)⇔
(L1=[] ∨ L2=[] ∨ (L1=[X1|T1] ∧ L2=[X2|T2] ∧X1≥X2)) ∧
(L1=[] ∨ L2=[] ∨ (L1=[X3|T3] ∧ L2=[X4|T4] ∧X3 =X4))
| L1=[] ∧ L2=[]

Transforming the guard expression to disjunctive normal form, we get:

(L1=[] ∧ L1=[]) ∨
(L1=[] ∧ L2=[]) ∨
(L1=[] ∧ L1=[X3|T3] ∧ L2=[X4|T4] ∧X3 =X4) ∨
(L2=[] ∧ L1=[]) ∨
(L2=[] ∧ L2=[]) ∨
(L2=[] ∧ L1=[X3|T3] ∧ L2=[X4|T4] ∧X3 =X4) ∨
(L1=[X1|T1] ∧ L2=[X2|T2] ∧X1≥X2 ∧ L1=[]) ∨
(L1=[X1|T1] ∧ L2=[X2|T2] ∧X1≥X2 ∧ L2=[]) ∨
(L1=[X1|T1] ∧ L2=[X2|T2] ∧X1≥X2 ∧ L1=[X3|T3] ∧ L2=[X4|T4] ∧X3 =X4)

To simplify the resultant expression, each disjunct is executed by the built-in
constraints solver and superfluous disjuncts removed. We assume that for the
conjunction of constraints, the built-in solver:

– Removes identical occurrences of constraints
– Simplifies constraints (e.g. L=[]∧L=[X |T ]⇔false and X≥Y ∧X =Y⇔X>Y )
– Propagates new constraints (e.g. L1=[X1|T1] ∧ L2=[X2|T2] ∧ L1=[X3|T3] ∧

L2=[X4|T4]⇒ X1=X3 ∧ T1=T3 ∧X2=X4 ∧ T2=T4)

The expression simplifies to:

(L1=[]) ∨ (L1=[] ∧ L2=[]) ∨ (L2=[]) ∨ (L1=[X1|T1] ∧ L2=[X2|T2] ∧X1>X2)

which splits into the following rules:

lex(L1, L2)⇔ L1=[] | L1=[] ∧ L2=[]
lex(L1, L2)⇔ L1=[] ∧ L2=[] | L1=[] ∧ L2=[]
lex(L1, L2)⇔ L2=[] | L1=[] ∧ L2=[]
lex(L1, L2)⇔ L1=[X1|T1] ∧ L2=[X2|T2] ∧X1>X2 | L1=[] ∧ L2=[]

4.2 Redundant Rules Removal

To remove redundant rules, the algorithm of [9] is used. The idea of the algorithm
is based on operational equivalence of programs. The algorithm (Fig. 3) basically
checks if the computation step due to a rule can be performed by the remainder
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begin
Rulesin: the initial rule set
Rulesout: the resultant rule set without redundancy
Rulesout=Rulesin

while Rulesin �={} do
Remove from Rulesin an element denoted R
lhs: the head and guard of the rule R
S1: the result of executing lhs in Rulesout

Rulesremaining=Rulesout\{R}
S2: the result of executing lhs in Rulesremaining

if S1 is identical to S2 then
Rulesout=Rulesremaining

end if
end while

end

Fig. 3. Redundancy Removal Algorithm

of the program. It determines this by executing the head and guard in both the
program and the program without the rule in it. If the results are identical upto
renaming of variables and logical equivalence of built-in constraints), then the
rule is obviously redundant and can be removed.

Example 6 (Redundant Rules Removal). Consider the following two rules of lex:

lex(L1, L2)⇔ L1=[] | L1=[] ∧ L2=[]
lex(L1, L2)⇔ L1=[] ∧ L2=[] | L1=[] ∧ L2=[]

The second rule is redundant since its operation is covered by the first rule.
Removing the second rule from the rule set and querying the remaining set with
its head and guard 〈A=[] ∧B=[] ∧ lex(A, B)〉, the first rule is applied and gives
the same result 〈A=[] ∧B=[]〉 as the second rule.

After redundant rules are removed, guards originating from the same rule are
recombined to avoid loss of completeness. Further guard optimization techniques
have been addressed in [10].

5 Combined Approach

To improve the filtering capabilities of our constructed solvers, we propose ex-
tending our solvers with rules generated by the orthogonal approach “generate
and test” of [1]. To reduce the search space of the generate and test method, the
symbolic construction algorithm is run first and the constructed rules eliminated
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from the enumeration tree of the generate and test. Moreover, the algorithm of [9]
is used to remove the redundant rules of the combined solver. In general, the
combined solvers are more expressive than the solvers of either approaches.

Example 7 (Combined Approach). The combined solver for lex is given below.
The first three rules represent the solver obtained from the symbolic construction
approach and the last rule is added by the generate and test.

lex(L1, L2)⇔ L1=[] ∨ L2=[] | L1=[] ∧ L2=[] (1)
lex(L1, L2)⇔ L1=[X3|T3] ∧ L2=[X4|T4] ∧X3 =X4 |

L1=[X1|T1] ∧ L2=[X2|T2] ∧X1<X2 (2)
lex(L1, L2)⇔ L1=[X1|T1] ∧ L2=[X2|T2] ∧X1≥X2 |

L1=[X3|T3] ∧ L2=[X4|T4] ∧X3=X4 ∧ lex(T3, T4) (3)
lex([X1|T1], [X2|T2])⇒ X1≤X2 (4)

The solver is sound. All rules are logical consequences of the constraint defi-
nition.

The solver terminates. The interesting case for termination is the recursive
rule (3). The ranking function for lex(L1, L2) is defined as the positive combi-
nation of the rank of its arguments:

rank(lex(L1, L2)) = length(L1) + length(L2)

The length of a list is expressed in the ranking function scheme as:

length([]) = 0
length([H |T ]) = 1 + length(T )

All other constraints in the rule are built-ins and are ranked as 0. The rule
terminates since the rank of the head and guard is greater than that of its body:

rank(lex([X1|T1], [X2|T2])) > rank(lex(T1, T2))

The solver is not propagation complete. In [4] the below complete lex solver
was presented:

lex([], [])⇔ true (5)
lex([X1|T1], [X2|T2])⇔ X1<X2 | true (6)
lex([X1|T1], [X2|T2])⇔ X1=X2 | lex(T1, T2) (7)
lex([X1|T1], [X2|T2])⇒ X1≤X2 (8)

lex([X1, U |T1], [X2, V |T2])⇔ U>V | X1<X2 (9)
lex([X1, U |T1], [X2, V |T2])⇔ U≥V ∧ T1=[ | ] |

lex([X1, U ], [X2, V ]) ∧ lex([X1|T1], [X2|T2]) (10)

The solver consists of three pairs of rules: the first two correspond to base cases
of the recursion, the middle two perform forward reasoning, and the last two



Constructing Rule-Based Solvers for Intentionally-Defined Constraints 83

perform backward reasoning. By comparison we find that the backward rea-
soning rules are not subsumed by our combined lex solver rendering the solver
incomplete.

Consider the query 〈lex([A1, A2, A3, A4], [B1, B2, B3, B4])〉 where the domains
of the variables are defined as follows:

A1={1, 3, 4}, A2={1, 2, 3, 4, 5}, A3={1, 2}, A4={3, 4, 5}
B1={1}, B2={0, 1, 2, 3, 4}, B3={0, 1}, B4={0, 1, 2}

In the case of the combined solver for lex, rule (3) is fired since A1≥B1 enforcing
equality on the values of A1 and B1 before calling lex recursively on the remain-
ing list elements. The relation between A2 and B2 satisfies none of the guards,
thus rule (4) is fired which enforces A2≤B2. The solution becomes:

A1={1}, A2={1, 2, 3, 4}, A3={1, 2}, A4={3, 4, 5},
B1={1}, B2={1, 2, 3, 4}, B3={0, 1}, B4={0, 1, 2},

A2≤B2, lex([A2, A3, A4], [B2, B3, B4])

In the case of the lex solver of [4], rules (8), (7), (10), and (9) are applied in that
order and further constrain the domains of the variables to:

A1={1}, A2={1, 2, 3}, A3={1, 2}, A4={3, 4, 5},
B1={1}, B2={2, 3, 4}, B3={0, 1}, B4={0, 1, 2},

A2<B2, lex([A2, A3], [B2, B3])

6 Conclusion

In this paper we have presented an algorithm that automatically constructs
rule-based solvers from the constraint definition. The algorithm is an orthogonal
approach to the general direction of the work done in the field as it is based
on symbolic construction rather than a generate and test method. Contrary to
other approaches, given a recursive constraint definition the algorithm is able
to generate recursive rules which allow reasoning over arguments of arbitrary
length.

The constructed solvers are a good basis for constraint reasoning and can
be extended manually or with rules generated using other approaches. We have
proposed extending our rules with those generated by the algorithm in [1]. In
general, the solvers generated using the combined approach are more expressive
than those generated by either of the two approaches acting alone.

An interesting direction for future work to improve the expressiveness of the
generated solvers is to incorporate negated user-defined constraints in the sym-
bolic construction approach.

Acknowledgments. We would like to thank Thom Frühwirth, Frank Raiser,
Jon Sneyers and the anonymous reviewers for valuable comments on a prelimi-
nary version of this paper.
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Abstract. A class of Probabilistic Abductive Logic Programs (PALPs)
is introduced and an implementation is developed in CHR for solving
abductive problems, providing minimal explanations with their proba-
bilities. Both all-explanations and most-probable-explanations versions
are given.

Compared with other probabilistic versions of abductive logic pro-
gramming, the approach is characterized by higher generality and a flex-
ible and adaptable architecture which incorporates integrity constraints
and interaction with external constraint solvers.

A PALP is transformed in a systematic way into a CHR program
which serves as a query interpreter, and the resulting CHR code de-
scribes in a highly concise way, the strategies applied in the search for
explanations.

1 Introduction

Logic programs provide a very flexible and general representation scheme for
knowledge about complex and interrelated phenomena. Deductive reasoning, i.e.,
reasoning about what is known, in logic programs may be done within the Prolog
programming language, and various extensions for synthetic reasoning such as
abduction and induction have been developed. Abductive reasoning means to
search for missing world facts, which can explain observations of the state of
affairs. Diagnosis in medicine and fault finding in mechanical or virtual systems
are some of the obvious applications.

In general, abductive reasoning based on logic programs tends to provide too
many and often strange explanations, and integrity constraints, which are for-
malized conditions which must hold in the possible worlds expressed by different
explanations, can be applied for ruling out some of those. Another important is-
sue is that explanations should be minimal, in the sense that they do not contain
information which is not necessary in order to explain the observation.

Finally, adding probabilities to a knowledge representation formalism provides
a way to prioritize among different explanations, giving a measurement of which
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one is better (i.e., more probable) than others. Probabilities may furthermore be
applied to optimize the search for explanations, always going in the most proba-
ble direction, so that investigation of less probable alternatives is suppressed or
postponed.

While a lot of research has been made, and several systems developed, in
logic programming based settings, far less work has been done in combining
with probabilities. We suggest here an implementation of abduction in proba-
bilistic logic programs in Constraint Handling Rules (CHR) which serves two
purposes. Firstly, it overcomes certain limitations of earlier work and provides
a very flexible architecture, which points forward to different extensions such as
interaction with a non-monotonically evolving world. Secondly, it demonstrates
CHR’s suitability as a metalanguage for implementing advanced reasoning pat-
terns, which is a direction we have pursued also in earlier work.

In fact, the major part of the CHR rules that we present expose in a clear
and abstract way, the strategies used in the search for minimal, probabilistic
explanations. In this way, CHR is experienced as a unique metaprogramming
language for an overall methodology, which is to apply CHR’s constraint store
as a pool of pending computational processes, which collectively maintains the
meaning of the observation posted as a query to the system, and where each
process gradually moves towards an explanation, perhaps splitting into other
processes along the way. These processes can be run either exhaustively in the
arbitrary order provided by the underlying CHR system, or using an explicit
scheduling policy such as best-first.

In addition to provide working implementations, our work may also be useful
in a pedagogical context (teaching students what is and how to make proba-
bilistic abduction), and finally it may provide executable specifications for de-
tailed and very efficient implementations in low-level language such as C. In the
present paper, we present implementations in terms of concrete and executable
code, with only very few details left out. Notice that in some cases, we have
given priority to brevity of the code rather than ultimate efficiency.

Overview
Section 2 introduces the language of Probabilistic Abductive Logic Programs
(PALPs) with its logic and probabilistic semantics. PALP programs include dec-
larations of abducibles with prior probabilities, integrity constraints, calls to
external predicates, but no negation. External predicates can be a defined in
Prolog or be constraints for which a solver is given, by additional CHR rules or
otherwise.

In section 3, we provide specifications of auxiliary predicates used in our
subsequent implementations, which define, so to speak, an abstract datatype
for explanations. We consider two alternative implementations (details in ap-
pendix B), a straightforward and efficient one which aborts in case of nonground
abducibles, and another one with full generality.

Our implementation of PALPs is given as a systematic transformation of a
given program into a CHR program which, then, serves as a query interpreter.
Section 4 explains this transformation for a propositional subset of PALPs in
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order to outline the basic principles; two implementations are given, an all-
solutions and a best-first version. Section 5 adds the remaining details to provide
implementations for the full PALP language.

We do not specify in detail the semantics used for CHR in our proofs, but
assume a semantics “as usual”, given by [24]; in our proofs, we argue in a semi-
formal style in terms of an operational semantics for CHR which in most cases
considers it as a nondeterministic rewriting system, and occasionally we need to
refer to CHR’s sequential search for rules to apply and its left-to-right execution
of rule bodies (cf. [22]).

Section 6 indicates further extensions and optimizations, firstly inspired by
Dijkstra’s shortest path algorithm [21] which is relevant in cases where the resid-
ual query in each branch is a single atom, and secondly, by using simplification
techniques [18, 33] to speed up integrity checking. Finally, we consider the ad-
dition of a limited form of negation and we can argue that a logically more
satisfactory version of negation is difficult to handle probabilistically.

Section 7 provides two fully developed example PALP programs, including
diagnosis and finding most the probable path in a network. Both are implemented
in CHR using best-first search, and the second one shows also the Dijkstra
optimization indicated above.

The final section 8 provides for a summary, an overview of related work, and
perspectives for applications and extensions of the present work.

2 Probabilistic Abductive Logic Programs

2.1 Syntax and Logic Meaning

Definition 1. A probabilistic abductive logic program (PALP) is character-
ized by

– a set of predicate symbols, each with a fixed arity, distinguished into four
disjoint classes, abducibles, program defined, external and ⊥,

– for each abducible predicate a/n, a probability declaration of form
abducible(a( 1,. . ., n), p), with 0 < p < 1.

– a set of clauses of form, A0:-A1, . . .,An, of which the following kinds are
possible,
• ordinary clauses where A0 is an atom of a program defined predicate and

none of A1, . . . , An, n ≥ 0, are ⊥,
• integrity constraints in which A0 = ⊥ and A1, . . . , An, n ≥ 1, are ab-

ducible atoms.

As usual, an arbitrary and infinite collection of function symbols, including con-
stants, are assumed and atoms defined in the standard way. �

Notice that ⊥ is a distinguished predicate rather that a representation of falsity.
The relationship |= refers to the usual, completion-based semantics for logic pro-
grams [31, 37]; for external predicates, we assume a semantics independently of
the actual program, and without specifying further, an priori defined truth value
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for |= e is given for any ground external atom e. In practice, external predicates
can be Prolog built-ins or defined by additional Prolog clauses, or constraints
given either by a Prolog library or by additional CHR rules. We need to require
that any call to an external predicate always succeeds at most once; for simplic-
ity, we leave out externals defined as constraints from our formal considerations,
but indicate in the text how they should be treated. The difference is basically
that satisfiability of a constraint depends on the current execution state, which
makes statements about correctness more complicated but adds no conceptual
difficulties.

When no ambiguity arises, a clause is usually an ordinary clause, and integrity
constraints will be referred to as such. In the context of a PALP Π , a formula is
called basic, if it can be rewritten into an equivalent form using the equivalences
defined by the clauses of Π , consisting of conjunctions, disjunctions, negations
and a finite number of ground abducible atoms and⊥. In the following we refer to
different terms or formulas being separated meaning that they have no variables
in common.

The notation [[F1, . . . , Fn]], Fi being formulas, is taken as a shorthand for
∃(F1 ∧ · · · ∧ Fn) ∧ ¬⊥. Notice the following trivial properties,

[[A ∧B]] ≡ [[A]] ∧ [[B]] for separated formulas A and B (1)
[[A ∨B]] ≡ [[A]] ∨ [[B]] for arbitrary formulas A and B. (2)

Example 1. Consider the following PALP.

abducible(some( ),0.1).
some nat:- some(N), nat(N).
nat(0).
nat(s(N)):- nat(N).
loop(N):- some(N), loop(s(N)).

(3)

Here formulas some nat and loop(0) are not basic; nat(s(s(0))) is basic. It
is well-known that natural numbers can be represented by zero and a successor
function, and that addition and multiplication can be implemented by a logic
program. For subsequent examples, we assume the program above extended with
for arithmetic and a predicate sequence/1 with the following properties; the
actual and lengthy definition is left out and n is used as a convenient writing of
sn(0).

sequence(1) ↔ some(1)
sequence(2) ↔ some(2), some(3)
sequence(3) ↔ some(4), some(5), some(6)
...
sequence(n) ↔ some( (n−1)×n

2 + 1), ..., some(n×(n+1)
2 )

...

(4)

�
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Definition 2. A query or goal is a conjunction of non-⊥ atoms; a finite set
(or conjunction) of ground abducible atoms is called a state; a finite set of (not
necessarily ground) abducible atoms is called a state term. In the context of a
PALP Π, we say that state or state term S is inconsistent whenever Π∪∀S |= ⊥
and otherwise consistent. For two separated state terms S1, S2, we say that S1
subsumes S2 and that S1 is more general than S2, whenever

|= ∃S1 ← ∃S2. (5)

Whenever S1 subsumes S2 and vice-versa, we say that they are equivalent; if S1
subsumes S2 and they are not equivalent, we say that S1 strictly subsumes S2;
if neither S1 subsumes S2 nor the reverse, we say that they are incompatible.

Given a PALP Π and a query Q, an explanation for Q is a state term E
such that

Π ∪ ∃E |= [[Q]] (6)

An explanation E for Q is minimal if it is not a subsumed by any other ex-
planation for Q. A finite set of minimal and pairwise separated explanations
E = {E1, . . . En} for Q is complete whenever

Π |= [[Q]]↔ ∃E1 ∨ · · · ∨ ∃En. (7)

�
In practice, an answer for a query to an abductive logic program may include,
in addition to the explanation as defined above, also a variable substitution and
a set of normalized constraints of any external constraint solver applied. These
details, which are straightforward to add, are left out for simplicity.

In non-probabilistic abduction, a preference is often given to explanations
with as few literals as possible, but this is not relevant as we introduce a more
precise measurement for explanations, namely their probabilities.

Example 2. Explanation {a(X)} subsumes {a(1)} as well as {a(1), a(2)}.
Explanation {a(X), a(1)} is equivalent to {a(1)}. However, explanations are

built in an incremental way during the execution of a program (as explained later
in this paper), in which variables may be quantified and bound at different levels.
In the example, {a(X), a(1)} as a partial explanation may be affected by X=2 and
lead to final explanation {a(2), a(1)}. In order words, the replacement of one
explanation by a smaller, equivalent one is only relevant for a final explanation
to a query. �
Example 3. Consider again the PALP of example 1 above. The query some
nat(N) has minimal explanations {some(0)}, {some(1)}, . . . ; loop(N) has no
explanations; sequence(N) has explanations {some(1)}, {some(2), some(3)},
{some(4), some(5), some(6)}, . . . . �
Lemma 1. Whenever E is an explanation for Q in a program Π and X a set
of abducible atoms, E ∪X is an explanation for Q iff E ∪X is consistent. Any
explanation E for Q has a subset which is a minimal explanation for Q.

Proof. Trivial. �
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Lemma 2. The complete set of minimal explanations {E1, . . . , En} for Q in a
PALP Π is unique qua equivalence on individual explanations. When, further-
more, E is an arbitrary explanation for Q, it holds for some i, 1 ≤ i ≤ n, that
Ei subsumes E.

Proof. See appendix A. �

Lemma 3. Let Q be a query to a PALP Π and E1, . . . , En consistent and pair-
wise separated state terms where Ei does not subsume Ej for any i = j. When-
ever

Π |= [[Q]]↔ ∃E1 ∨ · · · ∨ ∃En. (8)

it holds that E1, . . . , En comprise a complete set of explanations for Q.

Proof. See appendix A. �

Example 4. Consider the following PALP, which we call Π0.

abducible(a, 0.5).
abducible(b, 0.5).
abducible(c, 0.5).
p:- a, q.
q:- b.
q:- c.
⊥:- a,b.

(9)

We notice that {a, c} is a minimal explanation for p, and {{a, c}} is complete.
Other the other hand, we have that Π0∪{a, b} |= p, but it is not an explanation
as Π0 ∪ {a, b} |= ⊥ and thus Π0 ∪ {a, b} |= [[p]]. �

2.2 Probability Distributions for PALPs

A probabilistic model for a PALP Π is given by considering any ground abducible
literal1 A as a random variable with two outcomes, true with probability p and
false with probability 1− p, where p is the probability declared in Π for A. Any
two such random variables are considered independent. We consider the outcome
of the probabilistic experiment of giving values to all those variables as the state
of those that come out as true. The joint distribution for a given PALP is defined
formally as follows.

Definition 3. For given PALP Π, the probability distribution PΠ is defined
as follows.

– PΠ(true) = 1
– Whenever abducible(A,p)∈ Π, let PΠ(a) = p for any ground instance a

of A.
1 Notice that this may indicate an infinity of random variables, when an abducible

declarations contain variables. However, for any query to a well-behaved program,
only a finite number of these are actually accessed, and the infinitely many remaining
ones can be ignored.
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– Whenever Π |= A ↔ B, let PΠ(A) = PΠ(B).
– Whenever PΠ(A) = p, let PΠ(¬A) = 1− p.
– Whenever a and b are two distinct ground abducibles, let PΠ(a∧b) = PΠ(a)×

PΠ(b) and PΠ(a ∨ b) = PΠ(a) + PΠ(b)− PΠ(a ∧B).
– Whenever A has an infinite set of ground explanations E1, E2, . . ., let PΠ(A)

= limn→∞ PΠ(E1 ∨ · · · ∨ En). �

We observe, for the last case of the definition, that we need only consider minimal
explanations, and that this part may overlap, but is not in conflict, with the other
cases. Notice the following properties of the probability distribution. Whenever
the program Π is clear from context, we may write P instead of PΠ .

Proposition 1. Let Π be a PALP and PΠ its probability distribution.

– Whenever A is a nonground abducible atom, PΠ(∀A) = 0 and PΠ(∃A) = 1.
– For any basic formula F over Π, P (F ) = 1 iff Π |= F .
– For any formula F over Π, P (F ) = 0 iff Π |= F .
– For any formula F over Π, P (F ) > 0 iff Π ∪ S |= F for some state S. �

The restriction to basic terms is essential in the second case. For example, when
a/1 is an abducible predicate, we have that PΠ(∃xa(x)) = 1 but not necessarily
Π |= ∃xa(x). To see this, assume ∅ is a model Π , but ∅ is not a model of ∃xa(x).
Notice that the exclusion of probabilities 0 and 1 for abducibles is essential for
the proposition.

Example 5. Consider the PALP of example 1. Here we get the following examples
of probabilities for non-basic formulas.

P (∃nsome nat(n)) = 1
P (∃nloop(n)) = 0
P (∃nsequence(n)) = p

where 0.1 < p < 0.1 + (0.1)2 + (0.1)3 + · · · = 0.1111 · · ·
The last example indicates that the limit construction may give a sum different
from one or zero. This conclusion is based on formula (17) below. �

As is customary in formulas of probability theory, comma is used interchangeably
with ∧. Whenever F is a formula with free variables, we let P (F ) be a shorthand
for P (∃F ).

It is crucial for defining a probability distribution with reasonable properties,
that ⊥ is defined as a special predicate rather that falsity; using falsity would
mean that a set of integrity constraints implied a complicated set of dependencies
among the random variables (i.e., they were no longer independent).

Example 6. Consider again the program of example 4. We notice that P (⊥) =
P (a, b) = P (a)×P (b) = 0.25 and thus P (¬⊥) = 0.75. This means the only 75%
of all states are relevant for the search for explanations for, say, p.

The probability P (p) is an uninteresting number as it counts also contributions
from inconsistent states. The probability P ([[p]]) = 0.125 measures p among all
states, and gives here a lower figure than P ([[p]]|¬⊥) = 0.167 which measures
among consistent states only. �
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In the example, we indicated that P ([[Q]]|¬⊥) for some query Q may be more
appropriate than P ([[Q]]) to characterize Q, but we should be aware that P ([[Q]])
is sufficient for comparing the relative order of probabilities, as the two measures
are proportional:

P ([[Q]]|¬⊥) =
P ([[Q]],¬⊥)

P (¬⊥)
=

P ([[Q]])
P (¬⊥)

. (10)

Notice that the introduction of integrity constraints in probability distribution
has an interesting effect on observed probabilities of abducibles.

Example 7. We consider the program of examples 4 and 6. While P (a) = 0.5
according to its declaration, we have the following since state {a, b} is inconsis-
tent.

P ([[a]]|¬⊥) =
P ([[a]])
P (¬⊥)

=
P (a ∧ ¬b)

P (a ∧ ¬b) + P (¬a ∧ b) + P (¬a ∧ ¬b)
(11)

=
0.25

0.25 + 0.25 + 0.25
= 1/3. (12)

In other words, the restriction to consistent states modifies the probability ab-
ducibles. An integrity constraint such as ⊥:- a,b does not conflict with the
basic assumption of a and b being independent. However, [[a]] and [[b]] becomes
dependent. �

The following observations may help to simplify the notation.

P ([[F ]]) = 0 whenever Π ∪ F |= ⊥ (13)
P (F ) = P ([[F ]]) whenever Π ∪ F |= ⊥ (14)

Especially when F is a set of abducibles {a1, ..., an}, we can write [[a1, ..., an]] in
a probabilistic formula to give it same weight as F when consistent (as are, e.g.,
explanations) and 0 otherwise. We notice the following trivial properties.

P ([[A ∧B]]) = P ([[A]] ∧ [[B]]) for separated formulas A and B (15)
P ([[A ∨B]]) = P ([[A]] ∨ [[B]]) for arbitrary formulas A and B. (16)

Notice especially, when E1, . . . , En are separated state terms that we have the
following.

P (E1 ∨ . . . ∨ En) = P (E1) + · · ·+ P (En)
−∑

1≤i1<i2≤n P (Ei1 , Ei2)
+

∑
1≤i1<j2<j3≤n P (Ei1 , Ei2 , Ei3)

...
+(−1)k+1 ∑

1≤i1<···<ik≤n P (Ei1 , . . . , Eik
)

...
+(−1)n+1P (E1, . . . En)

(17)
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P ([[E1 ∨ . . . ∨ En]]) = P ([[E1]]) + · · ·+ P ([[En]])
−∑

1≤i1<i2≤n P ([[Ei1 , Ei2 ]])
+

∑
1≤i1<j2<j3≤n P ([[Ei1 , Ei2 , Ei3 ]])

...
+(−1)k+1 ∑

1≤i1<···<ik≤n P ([[Ei1 , . . . , Eik
]])

...
+(−1)n+1P ([[E1, . . . En]])

(18)

When using (18), we need for each summand P ([[Ei1 , . . . , Eik
]]), to check if the

state comprised by Ei1 , . . . , Eik
together with the integrity constraints can prove

⊥ in which case the result is 0; otherwise, duplicates are removed and probabil-
ities for the abducibles are multiplied.

The following propositions and observation indicate relationships between
probabilities and subsumption.

Proposition 2. Let S1 and S2 be state terms. Whenever S1 subsumes S2 it
holds that P (S1) ≥ P (S2).

When, furthermore, S1 and S2 are ground and subsumption is strict, it holds
that P (S1) > P (S2). �

Proposition 3. Let S1 and S2 be ground state terms with P (S1) ≥ P (S2); then
either S1 subsumes S2 or they are incompatible.

When P (S1) > P (S2), either S1 strictly subsumes S2 or they are incompatible.
�

The first part of proposition 3 does not hold for nonground state terms. For
example, if a(−) and b are abducible, we have with S1 = {a( ), b} and S2 = {b}
that P (S1) = P (S2) = P (b), but S1 does not subsume S2.

3 Specifications of Auxiliary Predicates

The different query interpreters use a common collection of auxiliary predicates
specified as follows; alternative implementations are shown appendix B.

We do not need to specify a representation for explanations here but we
assume there is a notion of a reduced form of representations; we anticipate
representations as lists of abducible literals, and the reduced form meaning no
such literals entailed by others. From a logical point of view, the reduced form is
not interesting, but is useful for efficiency and when presenting final explanations
to the user. We assume a context which includes a PALP so that we can refer
to the notion of consistency and a probability distribution P .

subsumes(E1,E2) ≡ E1 subsumes E2, i.e., |= ∃E2 → ∃E1, when E1, E2 are
consistent and separate state terms.

entailed(A,E) ≡ |= ∀(E → A) when A is an abducible atom and E a consis-
tent state term.
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extend(A,E,P (E),E′,P (E′)) ≡ |= ∀(E′ ↔ A ∧ E) when A is an abducible
atom and E, E′ consistent state terms so that entailed(A,E) does not
hold.

normalize final(E1,E2) ≡ E2 is a normalized explanation such that E1 and
E2 are equivalent.

Notice the different usages of quantifiers. For entailed/2 and extend/5, the
presence of common variables in the arguments is significant, and variables
may be bound later in the computation, whereas subsumes/2 concerns different
final explanations arising in different branches of computation; compare with
example 2.

The normalize final/2 predicate is logically redundant but is used to pro-
vide an intuitively more pleasing appearance of final explanations. We can il-
lustrate the purpose, referring to example 2, above. Here it was argued that
{a(X), a(1)} is equivalent to {a(1)} and also that it is incorrect to replace
{a(X), a(1)} by the smaller one during the execution as X might be bound to
some value. However, in the case {a(X), a(1)} is recognized as an explanation
for the initial query, the situation is different; there is no partial query left to
manipulate X, so we can now replace it by the smaller and logically equivalent
{a(1)}. We leave the predicate out in the detailed descriptions of the interpreters
below as this is anyhow trivial to add and has no influence on the correctness
statements.

The following predicate is used whenever an explanation may be affected by
unifications, which may be a consequence of applying a rule of the given PALP
or executing a call to an external predicate.

recalculate(E,E1,P (E1)) ≡ ∀(E ↔ E1), E1 is in reduced form, when E and
E1 are consistent state terms.

We have introduced this predicate since it can be implemented quite efficiently
by multiplying probabilities for the abducibles in E1. It very seldom pays off
to analyze the detailed effect of a unification in order to reuse the previous
probability.

Finally, we need the following renaming predicates in order to create alter-
native variants of a query when the execution splits in different branches for
alternative clauses of the given PALP.

rename(T1,T2) ≡ T2 is a variant of T1 with new variables that are not used
anywhere else.

Be aware that these predicates, as specified only works when external predicates
exclude constraints of delayed calls. To include constraints, subsumption needs
to be defined as Σ ∪∆ |= ∃E2 → ∃E1 where is Σ refers to the current execution
state and ∆ gives the semantics of the underlying constraint solver. The other
predicates above that refer to |= should be extended in similar ways, and rename
must also add constraints to the state whenever variables in the input argument
are covered by constraints. More details and examples are discussed in section 5.3
below.
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As shown in the appendix, the implementation of subsumption and entailment
can be greatly simplified if it can be guaranteed that the explanations always are
ground. In that case, explanations can be represented as lists sorted by Prolog’s
term ordering (denoted @<) and subsumption test becomes an efficient sublist
test for sorted lists (see appendix B). It is possible to define syntactic restrictions
to ensure that abducibles always are ground so that the efficient implementation
can be used, but our ground version uses runtime checks instead.

Lists of nonground abducibles have, furthermore, also the complication that
a unification induced by a rule application or external predicate can destroy the
sortedness of a list as well as making elements equal (more generally, making
some elements subsumed by others).

4 Query Interpreters for Propositional Programs

We consider firstly a propositional version of probabilistic abductive logic pro-
grams (PPALPs), i.e., all predicates have arity 0. For simplicity we assume also
that PPALPs contain no recursion, and that any non-abducible predicate ap-
pears as the head of at least one clause; furthermore, we exclude integrity con-
straints and external predicates, which means that there are no loops and failures
to worry about.

Example 8. The following is a PPALP which introduces abducibles a, b, c, d,
each with probability 0.5, and three clauses.

abducible(a, 0.5).
abducible(b, 0.5).
abducible(c, 0.5).
abducible(d, 0.5).
g:- a,b.
g:- c.
g:- c,d.

(19)

A set of minimal explanations for g with probabilities is given by P (a, b) = 0.25,
P (c) = 0.5. Using (17), we get P (g) = 0.52 + 0.5− 0.53 = 0.625. �

4.1 Transforming PPALPs into All-Explanations Query Interpreters
in CHR

Here we explain how any given PPALP Π can be transformed into a CHR pro-
gram ΓΠ , which serves as a query interpreter. Such an interpreter takes a query
Q to Π as input and returns a final constraint store, which contains a complete
set of minimal explanation for Q in Π with their probabilities. The best-first in-
terpreters and interpreters for more general classes of programs described later
are all adaptation of what we show for PPALPs here.

We demonstrate the principles for compiling PPALPs into CHR for the pro-
gram of example 8.
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To find explanations for a goal such as g, we call the top-level predicate
explain([g]) which is defined as follows.

explain(G):- explain(G,[],1). (20)

The predicate explain(Q,E,p) is a CHR constraint governed by the rules given
below; its meaning is that the query Q is what remains to be proven in order
to find an explanation for the initial query; E is the partial explanation used so
far in order to get from the initial query to Q, and p is the probability of E; Q
is represented as a list of atomic goals. We do not need to consider the actual
representation of explanations as the auxiliary predicates specified in section 3
provide an abstract datatype for them; the only assumption is that the empty
explanation is represented as [].

The following CHR rule interprets a query whose first subgoal is an abducible,
adds it to the accumulating explanation if necessary (and adjusts the probability
accordingly) and emits a recursive call for the remaining part of the query.

explain( [A|G], E, P) <=> abducible(A,PA) |
(entailed(A,E) -> explain(G, E, P)
;
extend(A,E,P,E1,P1), explain(G, E1, P1) ).

(21)

Each collection of clauses defining a given predicate in the PPALP is transformed
into one CHR rule which produces new calls to explain/3 for each clause. For
our example program there is one such CHR rule.

explain( [g|G], E, P) <=>
explain([a,b|G],E,P),
explain([c|G],E,P),
explain([c,d|G],E,P).

(22)

These clauses are sufficient to produce a complete set of explanations, repre-
sented as a final constraint store consisting of constraints explain([],E,P (E))
where E is an explanation for the initial query.

In order to remove non-minimal explanations, the following CHR rule is added
as a first one to the interpreter program.2

explain([],E1, ) \ explain( ,E2, ) <=>
subsumes(E1,E2) | true.

(23)

Notice that it may discard a branch early as soon as it can be seen that the
possible explanations generated along that branch are deemed non-minimal.

To interpret the query g in the original PPALP, we can now pose the query
explain([g]) to the CHR program described above, which, in accordance with
our expectations, yields the following final constraint store.

explain([],[c],0.5),
explain([],[a,b],0.25)

(24)

2 Logically, rule (23) can be placed anywhere in the CHR program, but having it as
the first rule makes it more effective in discarding irrelevant branches as early as
possible.
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Notice that the constraint explain([d],[c],0.5) has appeared in the con-
straint store during the execution, but discarded by rule (23) and thus never
executed until the end.

Lemma 4. Let Π be a PPALP, Q a query, and Γ the transformation of Π into
a CHR program as described above in this section. Any constraint store which
arises in the execution of explain(Q,[],1) in Γ is of the form

explain(Q1,E1,p1), . . . , explain(Qn,En,pn) (25)

where
Π |= Q ↔ ((Q1 ∧ E1) ∨ · · · ∨ (Qn ∧ En)) (26)

and for all i, 1 ≤ i ≤ n, Π |= (Qi ∧ Ei) → Q and P (Ei) = pi.

Proof. See appendix A. �

Theorem 1. Assume the setting of lemma 4. Whenever explain(Q) is posed
as a query to Γ , the final constraint store is of the form

explain([],E1,p1), . . . , explain([],En,pn) (27)

where E1, . . . , En comprise a complete set of minimal explanations for Q in Π,
and all i, 1 ≤ i ≤ n, P (Ei) = pi.

Proof. See appendix A. �

4.2 Conditional Probabilities

For a typical abductive problem, the probability of a given explanation may be
very small and not very informative to the user. It may be more interesting
to have the interpreter produce instead the conditional probability of each ex-
planation E given the observation Q (i.e., the initial query), which is given as
follows.

P (E|[[Q]]) =
P (E, [[Q]])
P ([[Q]])

=
P (E)

P ([[Q]])
(28)

Probabilities P (E) are those calculated by the CHR program shown above, and
P ([[Q]]) can be calculated from the final constraint store based on formula (17)
(or (18) when we generalize to PALPs). In the example, we get P (g) = 0.625 and
thus, with the hinted extensions to the program, the following final constraint
store.

explain conditional([],[c],0.8),
explain conditional([],[a,b],0.4)

(29)

Notice that the sum of these probabilities is > 1, which comes from the fact
that both minimal explanations subsumes the non-minimal [a,b,c], which has
conditional probability 0.53/0.625 = 0.2.
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Whenever an abdicible a appears in more that one explanation, it may be
interesting to calculate the probability of a given the observation.

P ([[a]]|[[Q]]) =
P ([[a]], [[Q]])

P ([[Q]])
=

P ([[a, Q]])
P ([[Q]])

(30)

This can be found by first calculating P ([[Q]]) as above and then P ([[a, Q]]).
However, with a bit of programming, it is be possible to obtain the value of
P ([[a, Q]]) from the final constraint store used for finding P ([[Q]]), by summing
up probabilities for the explanations that include a (or, in the general case,
entail a).

4.3 Best-First Query Interpreters for PPALPs

For complex abductive problems it can be too cumbersome to calculate all pos-
sible minimal explanations, and instead we may want to calculate a minimal
explanation with highest probability.

We can change the query interpreters shown so far, so they consider the con-
straint store as a priority queue of calls to explain/3, ordered by their current
probabilities. During the process, we select the one with highest probability, al-
lows it to make one step, and put back the derived calls; this continues until an
explanation is found.

To implement this, we may replace explain/3 by two other constraints
queue explain/3 and step explain/3. Whenever queue explain/3 is called,
it means to enter a call into the queue; selecting a queue explain(q,e,P (e))
for execution is done by promoting it to another constraint step explain(q,e,
P (e)), which then makes one step for the first subgoal of q similarly to what we
have seen above.

There will be at most one step explain/3 constraint in the store at a time,
and it is selected either by an explicit call (when it is known by context that a
particular constraint can be selected) or by an explicit search process. Searching
the currently most probable partial explanation is done by posting a constraint
select best/0 implemented by the following rules; max prob/1 is an auxiliary
constraint used in the guard to check that the queue explain/3 constraint in
focus actually is the best one.

queue explain(G,E,P)#W, select best <=> max prob(P) |
step explain(G,E,P)
pragma passive(W).

max prob(P0), queue explain( , ,P1)#W <=> P0 < P1 | fail
pragma passive(W).

max prob( ) <=> true.

(31)

This is clearly not the most efficient way to implement a priority queue, but
has been chosen here for the brevity of the code. See [30, 42] for more detailed
studies of priority queues in CHR. Notice, that while constraints in the guard of
a CHR rule may lead to dubious semantics, the call to max prob in (31) makes
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sense as it does not change the constraint store or bind variables; it is handled
sensibly by most CHR implementations.

We can extend this interpreter so it can generate more explanations in or-
der of decreasing probabilities when requested by the user. This requires that
we store solutions already printed out so that (partial) explanations subsumed
by any of those can be discarded; to this end, we introduce an additional con-
straint printed explain/3 in order to avoid interference with the search for the
currently best among non-printed, partial explanation.

We show the entire query interpreter which is a straightforward adaptation
of the one shown in section 4.1; it encodes the same sample PPALP program as
above (example 8).

explain(G):- step explain([G],[],1).

printed explain([],E1, ) \ queue explain( ,E2, ) <=>
subsumes(E1,E2) | true.

queue explain(G,E,P)#W, select best <=> max prob(P) |
step explain(G,E,P)
pragma passive(W).

step explain([],E,P) <=>
printed explain([],E,P),
write(’Most probably solution: ’), write(E),
write(’, P=’), write(P),nl,
( user wants more -> select best ; true ).

(32)

step explain( [g|G], E, P) <=>
queue explain([a,b|G],E,P),
queue explain([c,d|G],E,P),
step explain([c|G],E,P). % select an arbitrary one

step explain( [A|G], E, P) <=> abducible(A,PA) |
(entailed(A,E) -> explain(G, E, P)
;
extend(A,E,P,E1,P1), explain(G, E1, P1) ).

user wants more:-
Ask user; if answer is y, succeed, otherwise fail.

(33)

The following shows part of the dialogue for the execution of the query q to the
sample program.
| ?- explain(g).
Most probably solution: [c], P=0.5
Another and less probable explanation? y
Most probably solution: [a,b], P=0.25

(34)

Correctness of the best-first query interpreter can be stated and proved similarly
to theorem 1 above. In fact a CHR derivation made by the best-first query inter-
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preter corresponds to one possible derivation performed by the all-explanations
query interpreter (given a nondeterministic operational semantics for CHR).

For any solution found by the query interpreter, it is possible to provide an
estimate3 of the probability of the observation (in the example: g) and thus of the
conditional probabilities considered in section 4.2 above. Assume that the query
interpreter at a given stage of executing a query Q prints a minimal explanation
Ek and that it has already printed E1, . . . , Ek−1, and let Ek+1, . . . , En be the
remaining partial explanations in the store. Then we have

P (E1, . . . , Ek) ≤ P (Q) ≤ P (E1, . . . , En) (35)

The probabilities defining the upper and lower limits can be calculated from the
current constraint store based on formula (17).

5 Programs with Variables, Unification, Integrity
Constraints and External Predicates

We now generalize the construction above to handle general PALPs, including
parameterized abducibles, integrity constraints, and possibly external predicates.

The query interpreters for PPALPs of section 4.1 are straightforward to extend
to handle variables. Whenever a non-abducible subgoal g with continuation c is
rewritten into alternatives corresponding to clauses of the PALP, we produce a
variant with new variables g′, c′ for each alternative; if g′ unifies with the head
of a clause, this alternative is continued, otherwise this branch is discarded (and
thus avoiding failure in the overall process).

As already mentioned, the auxiliary predicates specified in section 3 are pro-
vided in two versions, an efficient one which aborts in case of nonground ab-
ducibles, and a more general and less efficient one which handles nonground
abducibles in a correct way; both are given in appendix B.

5.1 Variables in Queries and Abducibles

Bindings made to variables an a query during its execution should be reported
to the user. We may extend the interpreters with an extra argument for this,
but we can also access the values by introducing a special abducible predicate
for the purpose.

abducible(value of( , ),1). (36)

Stating now a query to a correct query interpreter (such as those introduced
below) in the following way,

query([value of(’X’,X), q(X)]), (37)

3 This is inspired by [34]; our formula is a bit different from that of [34] since the basic
assumptions are different.
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any explanation will be of the form {value of(’X’,v)} ∪ Ev, where v is the
value (if any; otherwise it is returned as a variable) bound to variable X in the
construction of explanation Ev.

Notice that we defined abducibles earlier to have probabilities strictly less that
1 in order to have proposition 1. However, as value of atoms are expected to be
posted in the top-level query only and will remain fixed (but possibly affected by
unifications) throughout the execution and with probability 1, it does not itself
affect the probabilities of the explanations. The intuition that variable bindings
add additional commitments is reflected in the subsumbtion hierarchy.

Example 9. Let E1 = {value of(’X’,X), a(X)} and E2 = {value of(’X’,1),
a(1)} where a is an abducible predicate declared with probability 0.5. Then E1
subsumes E2 and P (E1) = 1 > 0.5 = P (E2). �

5.2 Unification and Failure

We illustrate the general principle by an example. Assume the predicate p/1 is
defined by the following clauses.

p(X):- q(X,Y), r(Y).
p(X):- a(X).
p(1).

(38)

These clauses are compiled into the CHR rule (39) below; notice for a variable
in the head of a clause, that we can propagate this variable into the body rather
than performing an explicit unification; when all arguments in the head are vari-
ables, the unification is deemed to succeed, so a test for failure can be omitted.
The last line shows handling of failure which in this case may arise when the
variable Xr3 has a ground value different from 1. Notice for the last alternative,
that renaming is suppressed since no further usages are made of the variables in
the original query. The pattern (test -> continue ; true) means that a possible
failure of test is absorbed, and the branch continue vanishes rather that pro-
voking a failure in the execution of the CHR rules (that would make the entire
process fail); this technique is also used in [12, 25]. Recalculation of the proba-
bility in the last alternative is needed as the unification might have unified some
variable in the explanation with a value, thus possibly lowering the probability.
explain( [p(X)|G], E, P) <=>

rename([p(X)|G]+E,[p(Xr1)|Gr1]+E1),
explain([q(Xr1,Y),r(Y)|Gr1], E1, P),
rename([p(X)|G]+E,[p(Xr2)|Gr2]+E2),
explain([a(Xr2)|Gr2], E2, P),
(X=1 ->
recalculate(E,Er,Pr), explain(G, Er, Pr)
; true).

(39)

With the version of the auxiliaries that assumes always ground explanations (and
aborts otherwise), the explanations need not be passed through the renaming
and the call to recalculate/3 can be left out.

The rule for accessing abducibles (21) is unchanged.
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An aside Remark on Splitting by Unification of Abducible: Aiming at
explanations that are minimal in the number of abducible atoms, the majority
of non-probabilistic abduction methods [20, 28] tries to unify a new abducible
with existing ones if possible. However, in order not to sacrifice completeness,
two brances of computation are initiated in each such case. For example if a(s)
is added to a partial explanation {a(t), · · ·}, one branch may continue after
unifying s and t, with {a(t), · · ·}, and another one with {a(s), a(t), · · ·} with
the additional constraint that s and t must remain different. Our notion of
minimality is based on subsumption and we avoid this splitting into two brances,
and even we produce minimal explanations.

We have, in fact, two objections to the splitting approach; first of all concep-
tually since the unification of the two abducibles above indicates a commitment
which is not grounded for in the knowledge base (see a detailed argument in [13]),
and secondly, it may result in an exponential explosion in the number of brances
that needs to be investigated.

5.3 External Predicates

External predicates are exported to the underlying Prolog+CHR system by the
following rule; when placed following rules (39,21), there is no need to include a
test that the predicate of the first subgoal (X below) actually is external. Possible
failure of the external predicates is handled as described above, section 5.2.

explain([X|G], E, P) <=> true |
(call(X) ->
recalculate(E,Er,Pr), explain(G,Er,Pr)
; true).

(40)

All other parts of the query interpreters are unchanged, i.e., rules (20,21,23).
In case of external predicates that use constraints or delays, we need to have

the renaming of the current query produce new versions of constraints and other
delayed calls pending on the variables in the query. Implementing a generalized
renaming predicate that takes care of delayed call is quite straightforward pro-
vided that facilities are available for getting access to the delayed calls pending
on specific variables.

Example 10. SICStus Prolog [43] includes a delaying predicate for non-equality,
dif/2. Consider the case when there is a delayed call dif(X,7) for the vari-
able X occurring in a query [p(X),. . .]. When this query is renamed into, say
[p(X1),. . .], we need also produce the new variant dif(X1,7) of the delayed
call in order to provide a correct semantics.

The SICStus built-in predicate frozen(X,C) will assign to C a representation
of all calls delayed on variable X , including C=prolog:dif(X,7) in the example
above. The delayed calls can now have their variables renamed simultaneously
with the query, and the resulting variant calls, say dif(X1,7), can be entered
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into the program state simply by calling them. In this way the semantics is
preserved in the copied query. �

Example 11. The clpr and clpq libraries of SICStus Prolog [9, 43] provide con-
straint solvers over real, resp., rational numbers, which can be used as external
predicates in PALP. It provides a predicate projecting assert by means of
which a clause capturing the constraints on indicated variables can be created
dynamically. Such a clause can be used in a straightforward way to produce the
desired variants of constraints. We illustrate its use by an example; the curly
brackets indicate the syntax for calling the constraint solver. Executing

{X=Y+Z}, projecting assert(aux(p(X,Y,Z))). (41)

creates a clause equivalent with the following,

aux(p(X,Y,Z)):- {X=Y+Z}. (42)

Calling this predicate with new arguments can set up the relevant constraints.
The renaming predicate in appendix B is defined in the following standard way,

rename(X,Y):- assert(aux(X)),retract(aux(Y)). (43)

and we can modify it for clpr and clpq as follows.

rename(X,Y):-
assert(aux(X)),retract(aux(Y)),
projecting assert(aux(X)),
aux(Y), retract((aux( ):- )).

(44)

No more adjustments are needed to incorporate these constraint solvers. �

We have not developed extended definitions (nor implementations) of subsump-
tion and entailment that takes external constraints into account. For exam-
ple, explanations including constraints {a(X), {X>7}} and {a(X)} are consid-
ered equally good; intuitively, the last one should be preferred by a best first
interpreter.

5.4 Correctness of the All-Explanations Query Interpreter for a
PALP

To sum up, the PALPs interpreters are similar to those given for PPALPs in
section 4 except that rules of form (39) replaces those of form (22), and that (40)
is added.

Lemma 5. Let Π be a PALP, Q a query, and Γ the transformation of Π into a
CHR program, including auxiliary definitions, as described above in sections 5.2–
5.3. Any constraint store which arises in the execution of explain(Q,[],1) in
Γ is of the form

explain(Q1,E1,p1), . . . , explain(Qn,En,pn) (45)
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where Q1 + E1, . . . , Qn + En are pairwise separate, and

Π |= [[Q]] ↔ [[Q1, E1]] ∨ · · · ∨ [[Qn, En]] (46)

and for all i, 1 ≤ i ≤ n, Π |= [[Qi, Ei]]→ [[Q]] and P (Ei) = pi.

Proof. See appendix A. �

Theorem 2. Assume the setting of lemma 5. Whenever explain(Q) is posed
as a query to Γ , and the derivation terminates without error messages, the final
constraint store is of the form

explain([],E1,p1), . . . , explain([],En,pn) (47)

where E1, . . . , En comprise a complete set of explanations for Q in Π, and for
all i, 1 ≤ i ≤ n, P (Ei) = pi.

Proof. See appendix A. �

Whether the interpreter terminates depends on the program, and since PALP
is a Turing complete language, termination is undecidable, and we can refer to
general termination proof methods that are based on sufficient conditions.

5.5 Other Variants of the PALP Query Interpreter

The principles for calculation of conditional probabilities and for best-first search
described for the propositional case in sections 4.2 and 4.3 can be incorporated
into the general PALP query interpreter described here with no problems, so we
omit the details.

Any query which terminates correctly for a given PALP in the all-explanations
version will also terminate correctly with the best-first version. Some programs
may terminate with best-first, giving a best solution, but loop with all-solutions.
This may happen when the program has a loop in a branch with lower proba-
bility, or if it has an infinite number of explanations.

There is a small blemish in the best-first interpreter as it may emit non-
minimal explanations containing non-ground abducibles. This comes from the
fact that the search is controlled by probabilities, which means that

queue explain([],[a( ),b], 0.5) (48)

may be selected before

queue explain([Rest],[b],0.5); (49)

and it may be the case the Rest succeeds later without referring to other ab-
ducibles (see also proposition 3 with remarks, above).

The remedy is to hold back final explanations with non-ground abducibles, as
in (48), until there are no subsuming explanations with the same probability as
in (49). In the example, this means that (48) must wait until (49) has transformed
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into c = queue explain([],[b],0.5). Then c would be selected and printed out
before (48), and (48) then immediately eliminated by the subsumption removal
rule (2nd rule of (32) above).

Another efficient, but admittedly ad-hoc approach, is to fake a probability of
0.999 to non-ground abducibles instead of the correct value 1. This may work
correctly in all but extreme cases.

6 Optimizations and Extensions

The architecture of the query interpreters described above provide a flexibility
to plug in different optimizations and extensions, of which we consider some
examples here.

6.1 Optimization à la Dijkstra’s Shortest Path Algorithm

We suggest here an optimization of the best-first query interpreters inspired by
Dijkstra’s shortest path algorithm [21]. Whenever we have two or more processes
with the same remaining subgoal (e.g., for finding a path from the same inter-
mediate node to the terminal node in the shortest path example), we keep only
the best one; in CHR:

queue explain([G],E1,P1) \ queue explain([G],E2,P2) <=>
prority less than(P2,P1) | true.

(50)

This will suppress the partial execution of some branches which are deemed not
to become best in the end.

Notice that we indicated the rest query by a pattern that matches only queries
with a single atom, which means that the rule is quickly bypassed for any query
with two or more atoms. We could in principle have used a variable that matches
any query, but this would lead to slower tests for matching of the two queries
(and which likely fails in most cases).

If, furthermore, an analysis of the PALP under consideration tells which pred-
icate(s) that may appear in singleton queries, we can make the pattern even more
specific. An example of this optimization is given in section 7.2 below.

6.2 Optimizing Integrity Checks by Simpification

We mention also the possibility of applying simplified integrity constraints in spe-
cialized rules for each abducibles predicate. Simplification was suggested by [33]
for database integrity checking; an unfolding of the theoretical foundations and
a powerful method is given by [18]. The overall idea is to assume the database
(here the current explanation) be consistent before an update, and based on
that knowledge, to construct for each possible update a specialized check that
considers only the part of the database which may interfere with the update.
A typical speed up by this technique is an order of magnitude or more, when
compared with a full check.
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Integrity checking in our interpreters shown so far are hidden in the extend
and recalculate auxiliary predicates, which do not take the actual update into
account. Consider, as an example, the integrity constraint

⊥:- a(X), b(X). (51)

Without any special indexing techniques, this needs quadratic time measured in
the size of the explanation E being checked, e.g., by a combination of two calls
to member, member(a(X),E), member(b(X),E). If we know that explanation E
is consistent, we can obtain by simplification for update a(Y) the linear check
member(b(Y),E).

We may now replace the generic rule for handling abducibles by specialized
ones for each abducible predicate, e.g., as follows.

explain([a(X)|G],E,P) <=>
(member(b(X),E) -> true % vanish
;
insert(a(X),E,E1), P1 is P*0.9,
explain(Q,E1,P1)).

(52)

This principle can be further extended with specialized treatment for PALP
clauses with more that one abducible in the body.

6.3 A Note on Negation

A limited form of explicit negation of abducibles can be implemented through
integrity constraints. When a/1 is an abducible predicate, we may let not a/1
stand for the negation of a/1 and define the intended semantics by the integrity
constraint ⊥:- a(X), not a(X).

While this may be practical for many applications, we lack support for the
other axiom for negation, namely a(X) ∨ not a(X). We cannot handle this cur-
rently, as integrity checking becomes considerably more complicated. The extra
axiom will imply that arbitrary logic programs can be encoded in the integrity
constraints; the check, then, amounts to testing satisfiability of such programs,
for which we have no straightforward embedding in CHR. See section 8.2 below
which gives a suggestion for a more satisfactory treatment of negation.

We notice that the approach of [35], described in more detail in section 8.1
below, to probabilistic abduction includes negation with support of both axioms,
but excludes integrity constraints and require any negated call to an abducible
or defined predicate to be ground.

7 Program Examples

7.1 A Standard Diagnosis Case

We consider a power supply network which has one power plant pp, a number
of directed wires wi and connecting nodes ni, which may lead electricity to a
collection of villages vi. The overall structure is as follows.
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pp n1 n2 n3

n4

v4 v5

v1 v2

v3

w1 w2 w3 w4

w5 w6 w7

w8 w9

Probabilistic abduction will be used to predict to most likely damages in the
network given observations about which villages have electricity and which have
not. As abducibles, we use up/1 and down/1 which apply to the power plant
and the wires (for simplicity, the connecting nodes are assumed always to work).
The network structure is represented by the following facts.

edge(w1, pp, n1). edge(w4, n3, v3). edge(w7, n3, v2).
edge(w2, n1, n2). edge(w5, n1, n4). edge(w8, n4, v4).
edge(w3, n2, n3). edge(w6, n2, v1). edge(w9, n4, v5).

(53)

The fact that a given point in the network has electricity, is described as follows.

haspower(pp):- up(pp).
haspower(N2):- edge(W,N1,N2), up(W), haspower(N1).

(54)

As no negation is supported, the program includes also clauses that simulate the
negation of haspower.

hasnopower(pp):- down(pp).
hasnopower(N2):- edge(W, ,N2), down(W).
hasnopower(N2):- edge( ,N1,N2), hasnopower(N1).

(55)

To express that up/1 and down/1 are each other’s negation, we introduce an
integrity constraint, and define probabilities that sum to one.

abducible(up( ), 0.9).
abducible(down( ), 0.1).
⊥:- up(X), down(X).

(56)

The predicate definitions are compiled in CHR as explained above; we show here
the one for the haspower predicate.

step explain( [haspower(N)|G], E, P) <=>
rename([haspower(N)|G], [haspower(Nr1)|Gr1]),
(Nr1=pp -> queue explain([up(pp)|Gr1], E, P) ; true),
queue explain([edge(W2,N12,N),up(W2),haspower(N12)|G],E,P),
select best.

(57)
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The implementation of the extend auxiliary (which is used when a new abducible
is encountered) includes the checking of the integrity constraint. The following
excerpt of a screen dialogue shows how the observation that no village have
electricity is explained by the interpreter.

| ?- explain([hasnopower(v1), hasnopower(v2),
hasnopower(v3), hasnopower(v4), hasnopower(v5)]).

Best solution: [down(w1)]
Prob=0.1
Another solution? y
Best solution: [down(pp)]
Prob=0.1
Another solution? y
Best solution: [down(w2),down(w5)]
Prob=0.01
Another solution? y
Best solution: [down(w3),down(w5),down(w6)]
Prob=0.001
Another solution? y
Best solution: [down(w2),down(w8),down(w9)]
Prob=0.001
Another solution?
...

(58)

It appears that the two intuitively most reasonable hypotheses, namely that
the power plant or the single wire connecting it with the rest of the network
is down, are generated as the first ones with highest probability. Then follow
combinations with lower and lower probability of different wires being down.
The original output indicated insignificant rounding errors in the calculated
probabilities which have been retouched away above.

7.2 Most Probable Path with Dijkstra Optimization

Here we illustrate both the optimization described in section 6.1 above for a
best-first interpreter and an extended syntax for declaration of abducibles. We
consider the problem of finding most probable paths through a network such as
the following.

n0 n1 n4

n2

0.4 0.3

0.6

n3 n5

0.5

0.5 0.5

0.5

0.7

The figures for the outgoing edge of a node indicate the probability for choos-
ing a particular edge from that node. We could in principle declare one nullary
abducible predicate for each edge, but to facilitate writing the PALP, we use
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one common predicate select(n,m) describing the event that the indicated
edge is chosen. We declare it as follows, extending the syntax of definition 1
above.

abducible(select(n0,n1), 0.4).
abducible(select(n0,n2), 0.6).
etc.

(59)

I.e., we have several declarations for the same abducible predicate, specifying
different probabilities for different arguments. The intuitively correct seman-
tics is preserved provided that no two declared abducible atoms can unify. The
implementation needs one single adjustment so that the call to an abducible
predicate, say select(n0,X), launches a new branch for each possible choice
of declaration with which it unifies; this is done analogously to the way that
defined predicates are handled (section 5.2, above). The path program can be
implemented as follows, using the “generic” abducible predicate.

path(N1,N3):- select(N1,N2), path(N2,N3).
path(N,N).

(60)

We may add integrity constraints of the form ⊥:- select(n,x), select(n,y),
for all cases of n → x and n → y being different differet edges going out from n,
but due the best-first search, they are in fact not necessary.

This program is translated into a best-first query interpreter in CHR as de-
cribed above, and we add the following rule in order to prune any initial path
segment, which is less optimal than another such segment ending in the same
node.

queue explain([path(N,M)], ,P1)
\ queue explain([path(N,M)],E,P2)

<=> P2 < P1 | true.
(61)

The query

?- explain(path(n0,n4)). (62)

provides one answer, namely

[select(n0,n2),select(n2,n3),select(n3,n4)], Prob=0.15. (63)

No more answers are produced as rule (61) has removed all segments that could
lead to less optimal paths through the graph. A test print indicates that the
following constraints have been deleted by this rule.

queue explain(path(n1,n4),[select(n0,n2),select(n2,n1)],0.3)
queue explain(path(n3,n4),[select(n0,n1),select(n1,n3)],0.28)
queue explain(path(n4,n4),[select(n0,n1),select(n1,n4)],0.12)

(64)
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8 Conclusion

We have defined a class of Probabilistic Abductive Logic Programs and described
implementations in terms of a systematic transformation into CHR rules. This
framework differs from other approaches to probabilistic logic programming (that
we are aware of) by having both interaction with external constraint solvers
and integrity constraints. We support no general negation in abductive logic
programs, as is done in several methods for non-probabilistic abduction, and we
have argued that (at least our approach to) the probabilistic semantics is difficult
to adapt to negation; we have, however, indicated how a simplified version of
explicit negation can be implemented with integrity constraints.

8.1 Related Work

Abduction in logic programming without probabilities has attracted a lot of
attention, and several algorithms, including metainterpreters written in Prolog
have been made; see [20, 28] for overview and references. We may emphasize an
early work by Console et al [19] from 1991, that explained abductive reasoning
in terms of deductive reasoning in the completion of the abductive logic pro-
gram. This principle was extended into an abstract procedure for abduction by
Fung and Kowalski in 1997 [27], which inspired several implemented systems.
Ignoring the probabilistic part of our own interpreters, they show similarity with
the principle of [19] in the sense that we map abductive programs into CHR,
which is a purely deductive paradigm; as shown in lemmas 4, 5, the execution
state represents at any time the semantics given by the initial query and any
transformation made by a CHR rules can be explained from and respects the
program completion.

Abduction without probabilities has been approached using CHR, initially
by [1] translating abductive logic programs into the dialect called CHR∨ [2]
that features disjunctions in rule bodies. In that approach, abducibles are repre-
sented directly as CHR constraints and integrity constraints as CHR rules, and
predicate definitions are translated into CHR∨ with a disjunct for each clause.
In later work [16], this principle has been modified by representing the clauses
of an abductive logic program directly as their Prolog equivalents, leading to
a very efficient implementation of abduction with no interpretational overhead;
[13] provides an overview of this direction and extends with methods for in-
teraction with arbitrary external constraint solvers, similarly to what we have
explained in the present paper in a probabilistic version. These implementations
could in principles be adapted to top-down (but not best-first) abduction, simply
by calculating the probability for each generated answer when printing it out.
However, integrity constraints would here need to be limited to the sort we use
in the present paper, as an instance of the more general pattern such as a,b ==>
c indicates a probabilistic dependency, which our semantics is not prepared for;
an analogous phenomenon was discussed in 6.3 in relation to negation.

In [16], it is also shown how so-called assumptions can be implemented in a sim-
ilar way with CHR; assumptions are like abducibles, but with explicit creation,
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application (perhaps being consumed) and scope rules; [11, 15, 16, 17] show lin-
guistic applications of logical grammars (as DCGs or bottom-up parsing with CHR)
extended with abduction using CHR. A notion of Global Abduction [40, 41], allow-
ing a sort of destructive non-monotonic updates and interaction between different
processes (or agents) have been implemented in CHR by [12] using the constraint
store as a process pool, as in the present paper.

In [10], a reversal implementation of the proof predicate demo(p,q), meaning
that query q succeeds in program p, is described and implemented using CHR
for the primitive operations within the metainterpreter that defines the proof
predicate. Reversibility means that it can fill in missing parts of the program ar-
gument in order to make specified queries provable, and thus it can also perform
abduction, although no notion of minimality is supported.

Recent approaches to abductive logic programming, e.g., [4, 23, 29], have
studied the interaction with externally defined constraint solvers, but imple-
mentations tend to be specialized to specific constraint solvers. SCIFF [4] is
an approach to abductive logic programming which includes negation, integrity
constraints, external constraints solvers, and other specialized facilities; the ex-
istence of an implementation made with CHR is indicated in [3], but no details
are given which allow for a comparison.

Probabilistic versions of abductive logic programming have not been studied
nearly to the same extent. We can refer to the work by D. Poole [34] considering
probabilistic abduction for a class of Probabilistic Horn Abduction Theories; this
is later [35] generalized into Independent Choice Logic. Abducible predicates are
grouped by so-called disjoint declarations of the form disjoint([a1:p1, . . .,
an:pn]). The intension is that common instances of ai, aj , i = j cannot coexist
in the same explanation, corresponding to integrity constraints ⊥:-ai, aj for all
i = j; other integrity constraints are not possible. Probabilities are given by
P (a′

i) = pi for a ground instance a′
i of ai, and it holds that p1 + · · · + pn =

1. The framework does not assign probabilities to non-ground abducibles. A
metainterpreter written in Prolog is described in [34], which works best-first
using a probability ranked priority queue analogous to what we have described
(however, with a more complicated way of attaching probabilities to items in
the queue). In [35], the appoach is extended for negation as failure of ground
goals G, presupposing that the set of all minimal explanations {Ei}i∈I is finite
and each of those finite and always ground. In such a case, explanations for
the negation of G can be found by regrouping of negated elements of the Ei

explanations; this excludes best-first search as the interpreter needs to keep
track of all explanations.

The PRISM system [38] is a powerful reasoning system, which is based on logic
programming extended with multivalued random variables that work slightly
differently from abducible predicates as descibed in the present paper, but it
is straightforward to rewrite an abductive logic program into a PRISM pro-
gram. PRISM has no support for integrity constraints or interface to external
constraint solvers. PRISM includes a variety of top-level predicates which can
generate abductive explanations, including finding the best ones using a general-
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ized viterbi algorithm. Another central feature of PRISM is its machine learning
capabilities, which means that in can learn probabilities from training data.

Reasoning in Bayesian networks can also be considered an instance of prob-
abilistic abduction, but we will refrain from giving detailed references, since
the knowledge representations are different. Bayesian networks are easily em-
bedded in abductive logic programming and can be simulated in our system as
well as [34, 38]. One of the advantages of Bayesian networks is that there exist
very efficient implementations which can find approximative solution for huge
networks.

Logic programs with associated probability distribution have been used else-
where, including for inductive logic programming, but the issue of abduction
does not seem to have been addressed; e.g., [32, 36].

Probabilistic Constraint Handling Rules are introduced by [26]; probabilities
are assigned to each rule of a program for it to apply and it is defined by a
an operational semantics and implemented by a transformation into CHR; [30]
describes user-defined priorities for CHR.

There is an inherent similarity between answer set programming (ASP) and
abductive reasoning with integrity, which has been noted by many authors; [6]
describes an extension of ASP with probabilities which, thus, is capable of doing
probabilistic abductive reasoning (no implementation is reported, though). How-
ever, this framework excludes programs that exhibit the property illustrated in
example 7, that the probability of abducibles considering consistent states only is
different from the probability defined by the programmer; this means that many
probabilistic abductive programs with integrity constraints are not covered. By
nature, ASP programs can only produce ground abductive explanations.

8.2 Perspectives and Future Work

Obvious applications of our framework seem to be diagnosis and stochastic lan-
guage processing. Relatively efficient methods exist for stochastic context-free
grammars already, but we may approach property grammars [7, 8] which are a
formalism based entirely on constraint satisfaction rather than tree structure; by
nature, these grammars have a very high degree of ambiguity so a probabiistic
approach using best-first search may be relevant.

Probabilistic extensions of Global Abduction (see related work section above)
or similar frameworks may be relevant to apply for applications monitoring and
interacting with the real world. It seems also possible to extend the probabilistic
best-first search strategy to take into account changing probabilities, e.g., pro-
duced by a learning agent or an agent monitoring specific subsystems by means
of, say, a Bayesian network.

The present approach can be immediately generalized for arbitrary mono-
tonic priority functions, e.g., represent some object function to be optimized or
adjusted probabilities; in computational linguistics in may be relevant to use ad-
justed probabilities for partial explanations according to the length of the text
segment they represent. See [14] for an initial publication on this approach; it is
also relevant to compare with [30] that considers CHR with rule priorities.
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In order to extend the approach with negation and maintain a relatively good
efficiency, the principle of compiling a logic program into another one that ex-
presses its negation is under consideration; see [5, 39] for such methods. The
example of section 7.1 showed a trivial and manually produced example of such
a translation.

Finally, we mention that our implementation principle, transforming PALPs
systematically into CHR, can be embedded in a compiler, so that PALPs can
be written in Prolog source files and compiled automatically into CHR. Prolog’s
metaprogramming facilities including the so-called term expansion facilities, see,
e.g., [43], make the implementation of such a compiler a minor task; [11, 16]
explain systems based on CHR implemented in this way.
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A., Frühwirth, T.W., Meister, M. (eds.) W(C)LP. Ulmer Informatik-Berichte,
vol. 2005-01, pp. 111–122. Universität Ulm, Germany (2005)

4. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Ver-
ifiable agent interaction in abductive logic programming: the SCIFF framework.
ACM Transactions on Computational Logic 9(4) (to appear, 2008)

5. Alferes, J.J., Pereira, L.M., Swift, T.: Abduction in well-founded semantics and
generalized stable models via tabled dual programs. Theory and Practice of Logic
Programming 4(4), 383–428 (2004)

6. Baral, C., Gelfond, M., Rushton, J.N.: Probabilistic reasoning with answer sets.
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A Proofs for Important Properties

Proof (lemma 2). Let {E1, . . . , En} be a complete set of minimal explanation
for Q in a PALP Π and E an arbitrary explanation for Q. Since Π ∪ ∃E |= [[Q]]
and Π |= [[Q]] ↔ ∃E1 ∨ · · · ∨ ∃En, both by definition, we have that Π |= ∃E →
∃E1 ∨ · · · ∨ ∃En and thus |= ∃E → ∃E1 ∨ · · · ∨ ∃En. Since E, E1, . . . , E2 are
conjunctions of atoms, this means that |= ∃E → ∃Ei for some Ei, 1 ≤ i ≤ n
which the same as Ei subsumes E.

From this part of the lemma, the uniqueness of complete sets of minimal
explanations follows immediately. �

Proof (lemma 3). It is sufficient to show that every Ei is a minimal explanation.
Clearly Ei is an explanation, and according to lemma 1 there is a minimal
explanation E′

i with E′
i ⊆ Ei. As in the proof of lemma 2, we find that |= E′

i →
E1∨· · ·∨En: By assumption we cannot have |= E′

i → Ej for i = j, which means
that |= E′

i → Ei. In other words Ei ⊆ E′
i and thus Ei = E′

i. �

http://www.sics.se/isl
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Proof (lemma 4). The initial constraint store {explain(Q,[],1)} satisfies the
property. It is straightforward to verify that each of the CHR rules (21,22,23)
preserves the property, so it follows by induction that it holds for any subsequent
constraint store. �

Proof (theorem 1). Termination is guaranteed as a PPALP has no recursion,
and since each step performed by CHR rules (21,22) introduces new explain/3
constraints, each of which represents a step in an SLD derivation in Π∪A where
A is the set of all abducibles.

From lemma 4 and the fact that rule (23) removes any explain( ,Ei, )
constraint for which there is another explain([],Ej, ) with Ej ⊆ Ei, i = j, it
can be seen the final constraint store is of the form

explain([],E1,p1), . . . , explain([],En,pn) (65)

where Ej ⊆ Ei for all i = j. The theorem follows now from lemmas 3 and 4. �

Proof (lemma 5). As in the proof of lemma 4, we notice that the initial constraint
store satisfies the property and that each possible derivation step preserves the
property. It should be noticed that rules (39,21,40) in some cases suppress con-
straints explain(Q,E,p) for which Π |= [[Q, E]]. �

Proof (theorem 2). The arguments are identical to those in the proof of theorem 1
except that we refer to lemma 5 instead of lemma 4. �

B Implementations of Auxiliary Predicates

We describe here the two alternative implementations for the auxiliary predicates
specified in section 3, an effficient one for ground abducibles, and another one
at more general one that can handle nonground abducibles.

B.1 For Ground Abducibles

Here we represent explanations as lists of ground abducibles sorted by Prolog’s
built on term ordering denoted @<.

subsumes(S1,S2):- fastsubset(S2).

fastsubset([],_).
fastsubset([X|Xs],[Y|Ys]):-
X==Y -> fastsubset(Xs,Ys)
; X @> Y -> fastsubset([X|Xs],Ys).

entailed(A,S):- fastmember(A,S).

fastmember(X,[Y|Ys]):-
X==Y -> true
; X @> Y -> fastmember(X,Ys).
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extend(A,S,P,S1,P1):-
extend1(A,S,S1),
\+ inconsistent(S1),
abducible(A,PA), P1 is P*PA.

extend1(X,[],[X]).
extend1(X,[Y|Ys],[X,Y|Ys]):- X@<Y, !.
extend1(X,[Y|Ys],[Y|Ys1]):- extend1(X,Ys,Ys1).

% recalculate/3 not used here

% normalize/2 not relevant here

rename(X,Y):- assert(aux(X)), retract(aux(Y)).

Inconsistency is defined specifically for the PALP at hand. Assume, as an exam-
ple, that it contains the following integrity constraints.

⊥:- a, b.
⊥:- c(X), b(X).

(66)

Then the predicate is defined as follows.

inconsistent(E):- subset([a,b],E).
inconsistent(E):- subset([c(X),b(X)],E).

subset([], ).
subset([X|Xs],S):- member(X,S), subset(Xs,S).

(67)

B.2 For Nonground Abducibles

Sideeffects in terms of unifications can occur which will destroy the term ordering
within a list of nonground abducibles, so we use non-sorted lists instead. We
show here a version which does not take into account possible delayed called or
external constraints pending on the variables of the explanations and abducibles
that are operated on. This is a bit tricky to add but involves no conceptual
difficulties.

subsumes(S1,S2):-
rename(S1,S1copy),
rename(S2,S2sko), numbervars(S2sko,0,_),
subset(S1copy,S2sko).

entailed(A,S):- \+ hard_member(B,S).

extend(A,S,P,[A|S],P1):-
\+ inconsistent([A|S]),
(ground(A) -> P=P1 ; abducible(A,PA), P1 is P*PA).
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recalculate(E,E1,P1):-
remove_dups(E,E1),
prob(E1,P1).

remove_dups([],[]).

remove_dups([A|As], L):-
hard_member(A,As) -> remove_dups(As, L)
; remove_dups(As, L1), L=[A|L1].

hard_member(A,[B|Bs]):-
A==B -> true ; hard_member(A,Bs).

prob([],1).
prob([A|As],P):-

\+ ground(A) -> prob(As,P)
; abducible(A,PA), prob(As,PAs), P is PA*PAs.

% rename/2, as above

% inconsistent/2, as above

% subset/2 as above

The predicate normalize final(E1,E2) is in its present version defined in a
way so it tries out all possible subsets, and selects as E2 a smallest one which is
equivalent to E1.
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Abstract. Constraint Handling Rules (CHR) is a committed-choice declarative
language which has originally been designed for writing constraint solvers and
which is nowadays a general purpose language.

In [7,11] a trace based, compositional semantics for CHR has been defined.
Such a compositional model uses as reference operational semantics the original
“naive” one [9] which, due to the propagation rule, admits trivial non-termination.
In this paper we extend the work of [7,11] by considering a more refined opera-
tional semantics which avoids trivial non-termination.

1 Introduction

Constraint Handling Rules (CHR) is a declarative, committed-choice language which
was originally specifically designed for writing constraint solvers [9] and which is
nowadays a general purpose language. A CHR program consists of a set of guarded
(simplification, propagation and simpagation) rules which allows to transform multisets
of atomic formulas (constraints) into simpler ones. In this way it is rather easy to define
solvers for some specific user-defined predicates and to introduce them in some exist-
ing host language, which is typically Prolog [17] even though several other languages
support CHR implementations, including HAL [12], Haskell [18], Java [2], Curry [13]
and C [20].

According to the original CHR semantics of [9] propagation rules can introduce
trivial infinite computations. In fact, since a propagation rule does not remove any con-
straint from the goal, once such a rule can fire it can fire infinitely many times. In order
to avoid this problem more refined semantics have been defined [1,8] which consider
the history of computation.

All these semantics, as well some other versions defined elsewhere, are not compo-
sitional w.r.t. the conjunctions of atoms in a goal. This was probably due to the fact that
the presence of multiple heads complicates considerably the semantics of the language.
Nevertheless, compositionality is a very desirable feature for semantics, as it permits us
to manage partially defined components and it can be the basis for defining incremental
and modular tools for software analysis and verification. For these reasons in [7,11] a
fix-point, and-compositional semantics for CHR was defined, which allows one to re-
trieve the semantics of a conjunctive query from the semantics of its components. This

T. Schrijvers and T. Frühwirth (Eds.): Constraint Handling Rules, LNAI 5388, pp. 119–160, 2008.
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was obtained by considering as reference semantics the “naive” one of [9] and by using
semantic structures based on traces, similar to those used in the compositional mod-
els of data-flow languages [16], imperative concurrent languages [5] and concurrent
constraint languages [4]. However, due to the presence of multiple heads in CHR, the
traces in [7,11] were more complicated than those used for the other languages, since
they contained also assumptions on the constraints which can appear in the heads of the
rules.

In this paper we extend the work of [7,11] by considering as reference semantics the
theoretical one ωt, defined in [1], rather than the one introduced in [9]. As previously
mentioned, the semantics of [9] admits trivial non termination which is avoided in the
semantics ωt by using a, so called, token store. This allows one to memorize the history
of applied propagation rules and therefore to avoid the same rule being applied more
than once to the same sequence of constraints in a derivation. The need to represent
the information contained in the token store further complicates the semantic model,
since when composing two traces representing two parallel processes (or, in logical
terms, a conjunctions of two atoms) we must ensure that the same propagation rule
is not applied twice to the same constraint. The resulting compositional semantics is
therefore technically involved, even though the underlying idea is simple. The semantics
defined in this paper is proven correct w.r.t. data sufficient answers, an input/ouput
characterization of CHR programs.

The remaining part of this paper is organized as follows. The next section introduces
some preliminaries about CHR. Section 3 contains the definition of the semantics, while
Section 4 presents the compositionality and correctness results. Section 5 concludes
by discussing directions for future works. The proofs of some technical lemmata are
deferred to the Appendix, in order to improve the readability of the paper.

2 Preliminaries

In this section we first introduce some preliminary notions and some notations. Then
we define the CHR syntax and the theoretical operational semantics ωt. Even though
we try to provide a self-contained exposition, some familiarity with constraint logic
languages and first order logic would be useful (see for example [15]). CHR uses two
kinds of constraints: the built-in and the CHR ones, also known as user-defined.

Built-in constraints are defined by

c ::= a | c ∧ c | ∃xc

where a is an atomic built-in constraint1. These constraints are handled by an existing
solver and we assume given a first order theory CT which describes their meaning.
We also assume that built-in constraints contain = which is described, as usual, by the
Clark’s Equality Theory.

A user-defined constraint is a conjunction of atomic user-defined constraints which
are defined by program rules. We use c, d to denote built-in constraints, g, h, k to denote

1 We could consider more generally speaking first order formulas as built-in constraints, as far
as the results presented here are concerned.
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CHR constraints and a, b to denote both built-in and user-defined constraints, which we
will call generically constraints. The capital versions of these notations are used to de-
note sets and multisets of constraints, while the symbol 	 represents the multiset union
and U is the set of user-defined constraints. We also denote by false any inconsistent
constraint and by true the empty built-in constraint multiset.

We will often use “,” rather than ∧ to denote conjunction and we will frequently
consider a conjunction of atomic constraints as a multiset (in particular this is the case
when considering the syntax of CHR). The notation ∃−V φ, where V is a set of variables,
denotes the existential closure of a formula φ with the exception of the variables V
which remain unquantified. Fv(φ) denotes the free variables appearing in φ. [n, m]
with n, m ∈ N represents the set of all the natural numbers between n and m (n and m
are included). We also denote the concatenation of sequences by ·, and the set difference
operator by \.

We can now define the CHR syntax as follows.

Definition 1 (Syntax). [8,9] A CHR simplification rule has the form r@H ⇔ C | B,
a CHR propagation rule has the form r@H ⇒ C | B, a CHR simpagation rule has the
form r@H1 \H2 ⇔ C | B where r is a unique identifier of a rule, H , H1 and H2 are
sequences of user-defined constraints with H and (H1 · H2) different from the empty
sequence, C is a possibly empty multiset of built-in constraints and B is a possibly
empty multiset of (built-in and user-defined) constraints. H (or H1 \H2) is called head,
C is called guard and B is called body of the rule.

In the remainder of the paper, we will omit the guard when it is the true constraint.
Intuitively, a simplification rule rewrites a conjunction of constraints in simpler ones,

while a propagation rule adds redundant constraints that are useful for the computation,
without removing anything. A simpagation rule allows to remove the constraints in H2
and not those in H1. Hence such a rule permits to simulate both a simplification and
propagation rule, depending on the fact that either H1 or H2 is empty, respectively. For
this reason all our semantic definitions will be given by considering only simpagation
rules. A CHR program is a finite set of CHR simplification, propagation and simpaga-
tion rules. A CHR goal is a multiset of both user-defined and built-in constraints. Goals
is the set of all goals.

Example 1. The following CHR program [9] encodes the “less than or equal to” con-
straint:

rfl @ X =< Y ⇔ X = Y |true reflexivity
asx @ X =< Y, Y =< X ⇔ X = Y antisymmetry
trs @ X =< Y, Y =< Z ⇒ X =< Z transitivity
idp @ X =< Y \X =< Y ⇔ true idempotence

We describe now the operational semantics ωt for CHR, introduced in [1], by using
a transition system Txt = (Conft ,−→ωt). Configurations in Conft are tuples of the
form 〈G, S, c, T 〉n with the following meaning: G, the goal, is a multiset of constraints
to be evaluated. The CHR constraint store S is the multiset of identified CHR con-
straints that can be matched with rules in the program P : An identified CHR constraint
g#i is a CHR constraint g associated with some unique integer i which allows to distin-
guish different copies of the same constraint. We will also use the functions chr(g#i)=g
and id(g#i)=i, possibly extended to sets and sequences of identified CHR constraints
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Table 1. The standard transition system Txt for CHR

Solveωt

CT |= c ∧ d ↔ d′ and c is a built-in constraint

〈{c} �G, S, d, T 〉n −→ωt 〈G, S, d′, T 〉n
Introduceωt

h is a user-defined constraint

〈{h} �G, S, c, T 〉n −→ωt 〈G, {h#n} ∪ S, c, T 〉n+1

Applyωt

r@H′
1 \ H′

2 ⇔ C | B ∈ P CT |= c → ∃x((chr(H1, H2) = (H′
1, H′

2)) ∧ C)

〈G, {H1} ∪ {H2} ∪ S, c, T 〉n −→ωt 〈B �G, {H1} ∪ S, (chr(H1, H2) = (H′
1, H′

2)) ∧ c, T ′〉n
where x = Fv(H′

1, H′
2), r@id(H1, H2) ∈ T and T ′ = T ∪ {r@id(H1, H2)}

in the obvious way. The built-in constraint store c contains any built-in constraint that
has been passed to the underlying solver. We model it in terms of conjunction. The set
T is the propagation history, also called token store, and it contains tokens of the form
r@i1, . . . , il, where r is the name of the applied rule and i1, . . . , il is the sequence of
identifiers associated with constraints to which the head of the rule is applied. Such a
propagation history is used to prevent trivial non-termination arising from propagation
rules. In fact, without tokens (as in the naive operational semantics in [9]) the repeated
application of the same propagation rule to the same constraints can generate a (triv-
ial) infinite computation. On the other hand, by using tokens one can ensure that a
propagation rule is used at most once to reduce a goal, thus avoiding trivial infinite
computations. Finally, the counter n represents the next free integer which can be used
to number a CHR constraint.

Given a goal G, the initial configuration has the form 〈G, ∅, true, ∅〉1 and consists
of a goal G, an empty CHR constraint, an empty built-in constraint and an empty set of
tokens. A final configuration has either the form 〈G, S, false, T 〉n when it is failed, i.e.
when it contains an inconsistent built-in constraint store, or it has the form 〈∅, S, c, T 〉n
when it represents a successful computation (terminated because there are no more
applicable rules).

Given a program P , the transition relation−→ωt⊆ Conft×Conft is the least relation
satisfying the rules in Table 1 (for the sake of simplicity, we omit indexing the relation
with the name of the program). The Solveωt transition allows us to update the constraint
store by taking into account a built-in constraint contained in the goal. Without loss of
generality we will assume that Fv(d′) ⊆ Fv(d) ∪ Fv(c). The Introduceωt transition
is used to move a user-defined constraint from the goal to the CHR constraint store,
where it can be handled by applying CHR rules. The Applyωt transition rewrites user-
defined constraints in the CHR store by using the rules of program. It assumes that all
the variables appearing in a program clause are renamed with fresh ones in order to
avoid variable names clashes. The Applyωt transition can fire if the current store (c) is
strong enough to entail the guard of the rule (C), once the parameter passing has been
performed (this is expressed by the equation chr(H1, H2) = (H ′

1, H
′
2)). Note that,

due to the existential quantification over the variables x appearing in H ′
1, H

′
2, in such a
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parameter passing the information flow is from the actual parameters (in H1, H2) to the
formal parameters (in H ′

1, H
′
2), that is, it is required that the constraints H1, H2 which

have to be rewritten are an instance of the head H ′
1, H

′
2. The transition adds the body

B to the current goal, the equation chr(H1, H2) = (H ′
1, H

′
2) to the built-in constraint

store and it removes the constraints H2. Applyωt can fire a propagation rule (H2 empty)
if the token that it would add to T is not yet present in T .

Given a goal G, the operational semantics that we consider observes the final stores
of computations, terminating with an empty goal and an empty user-defined constraint.
Following the terminology of [9] we call these observables data sufficient answers.

Definition 2 (Data sufficient answers). Let P be a program and let G be a goal. The
set SAP (G) of data sufficient answers for the query G in the program P is defined as
follows:

SAP (G) = {∃−Fv(G)d | 〈G, ∅, true, ∅〉1 −→∗
ωt
〈∅, ∅, d, T 〉n}

∪
{false | 〈G, ∅, true, ∅〉1 −→∗

ωt
〈G′, K, d, T 〉n and

CT |= d ↔ false}.
A different notion of answer [9] is obtained by considering computations terminating
with a user-defined constraint which does not need to be empty:

Definition 3 (Qualified answers). Let P be a program and let G be a goal. The set
QAP (G) of qualified answers for the query G in the program P is defined as follows:

QAP (G) = {∃−Fv(G)(chr(K) ∧ d) | 〈G, ∅, true, ∅〉1 −→∗
ωt
〈∅, K, d, T 〉n −→ωt}

∪
{false | 〈G, ∅, true, ∅〉1 −→∗

ωt
〈G′, K, d, T 〉n and

CT |= d↔ false}.
Note that both previous notions of observables characterize an input/output behavior,
since the input constraint is implicitly considered in the goal.

3 A Compositional Trace Semantics

Given a program P , we say that a semantics SP is and-compositional if SP (A, B) =
C(SP (A),SP (B)) for a suitable composition operator C which does not depend on
the program P . Due to the presence of the commit operator and of multiple heads, the
semantics which associates to a CHR program P the data sufficient answers SAP is not
and-compositional. In fact, goals which have the same input/output behavior in terms of
data sufficient answers, can behave differently when composed with other goals. While
the problem with the commit (and the guard mechanism) is common to other concurrent
languages, the case of multiple heads is specific of CHR, hence we illustrate this point
with an example.

Consider the program P consisting of the single rule

r@g, h⇔ true|c
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where c is a built-in constraint. According to Definition 2 we have SAP (g) = SAP (h)
= ∅, while SAP (g, h) = {∃−Fv(g,h)c} = ∅ = SAP (h, h). An analogous example can
be made to show that the semantics QA is not and-compositional.

In order to solve the problem exemplified above, following [7,11] we define our
semantics in terms of sequences (or traces) of tuples, where essentially each tuple de-
scribes the input/output behaviour of a process (goal) at a time instant, that is, each
tuple describes the output produced by the process under the assumption that the ex-
ternal environment (i.e. the other parallel processes, or conjunctive goals) provides a
given input. This assumption on the input is needed both for enabling guards and for
enabling the firing of a rule by providing the “missing” parts of the heads. While the
first type of assumption is common to all concurrent languages which use some guard
mechanism, the assumption of the heads is specific of CHR. For example, when con-
sidering the program P above, we should be able to state that the goal g produces the
constraint c, provided that the external environment (i.e. a conjunctive goal) contains
the user-defined constraint h. When composing (by using a suitable notion of compo-
sition) such a semantics with the one of a goal which contains h, we can verify that the
“assumption” h is satisfied and therefore obtain the correct semantics for g, h. In or-
der to model correctly the interaction of different processes we have to use sequences,
analogously to what happens with other concurrent paradigms.

Our compositional model is obtained in terms of a standard fix-point construction
by using a new transition system Tx = (Conf ,−→P ) that introduces the assumptions
mentioned above and is used to generate the sequences. Configurations in Conf are
triples of the form 〈G̃, c, T 〉n where G̃ is a set of built-in and identified CHR constraints
(the goal), c is a conjunction of built-in constraints (the store), T is a set of tokens and
n is an integer greater or equal to the biggest identifier used either to number a CHR
constraint in G̃ or a token in T . Given a program P , the transition relation −→P⊆
Conf × Conf × ℘(U) is the minimal relation satisfying the rules in Table 2 (where
℘(A) denotes the powerset of A). Note that we modify the notion of configuration used
before by merging the goal store with the CHR store, since we do not need to distinguish
between them. Consequently, the Introduce rule is now useless and we can eliminate
it. On the other hand, we need the information on the new assumptions, which is added
as a label to the transitions.

We need some further notations: given a goal G, we denote by G̃ one of the possible
identified versions of G. Moreover, assuming that G contains m CHR-constraints, we
define a function In+m

n (G) which identifies each CHR constraint in G by associating
to it a unique integer in [n + 1, m + n], according to the lexicographical order. The
identifier association is applied both to the initial goal store, at the beginning of the
derivation and to the body of a rule during the computational steps. If m = 0 we
assume that In

n (G) = G.
Let us now briefly consider the rules in Table 2. Solve’ is essentially the same rule as

the one defined in Table 1, while the Apply’ rule is modified to consider assumptions:
when reducing a goal G by using a rule having head H , the set of assumptions K =
H \ G (with H = K) is used to label the transition. Note that since we apply the
function In+k

n to the assumption K , each atom in K is associated with an identifier in
[n + 1, n + k]. As before, we assume that program rules use fresh variables to avoid
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Table 2. The transition system Tx for the compositional semantics

Solve’
CT |= c ∧ d ↔ d′ and c is a built-in constraint

〈{c} � G̃, d, T 〉n −→∅
P 〈G̃, d′, T 〉n

Apply’
r@H′

1 \ H′
2 ⇔ C | B ∈ P CT |= c → ∃x((chr(H̃1, H̃2) = (H′

1, H′
2)) ∧ C)

〈G̃ ∪ G̃′, c, T 〉n −→K
P 〈In+k+m

n+k (B) ∪ {H̃1} ∪ G̃′, (chr(H̃1, H̃2) = (H′
1, H′

2)) ∧ c, T ′〉n+k+m

where x = Fv(H′
1, H′

2), G = ∅,
k and m are the number of CHR constraints in K and in B respectively,
{G̃} ∪ {In+k

n (K)} = {H̃1} ∪ {H̃2}, r@id(H̃1, H̃2) ∈ T and
if H̃1 = ∅ then T ′ = T else T ′ = T ∪ {r@id(H̃1, H̃2)}

variable name captures. Given a goal G with m CHR-constraints an initial configuration
has the form 〈Im

0 (G), true, ∅〉m, where Im
0 (G) is the identified version of the goal. A

final configuration has either the form 〈G̃, false, T 〉n (if it has failed) or has the form
〈∅, c, T 〉n (if it is successful).

The following example shows a derivation obtained by using the new transition sys-
tem.

Example 2. Given the goal (C = 7, A =< B, C =< A, B =< C, B =< C) and
the program of Example 1, by using the transition system of Table 2 we obtain the
following derivation where the last step is not a final one

〈{C=7, A= < B#1, C= < A#2, B= < C#3, B= < C#4}, true, ∅〉4 →∅ Solve′

〈{A= < B#1, C= < A#2, B= < C#3, B= < C#4}, C=7, ∅〉4 →∅ trs@1, 3
〈{A= < C#5, A= < B#1, C= < A#2, B= < C#3, B= < C#4}, C=7, {trs@1, 3}〉5 →∅ asx@5, 2
〈{A=C, A= < B#1, B= < C#3, B= < C#4}, C=7, {trs@1, 3}〉5 →∅ Solve′

〈{A= < B#1, B= < C#3, B= < C#4}, (A=C ∧ C=7), {trs@1, 3}〉5 →∅ asx@1, 3
〈{B=C, B= < C#4}, (A=C ∧ C=7), {trs@1, 3}〉5 →∅ Solve′

〈{B= < C#4}, (B=C ∧ A=C ∧ C=7), {trs@1, 3}〉5

The semantic domain of our compositional semantics is based on sequences which
represent derivations obtained by the transition system in Table 2. More precisely, we
first consider “concrete” sequences, consisting of tuples of the form

〈G̃, c, T, m, Im+k
m (K), G̃′, d, T ′, m′〉.

Such a tuple represents exactly a derivation step 〈G̃, c, T 〉m −→K
P 〈G̃′, d, T ′〉m′ where

k is the number of CHR atoms in K . The sequences we are about to define are termi-
nated by tuples of the form 〈G̃, c, T, n, ∅, G̃, c, T, n〉 (with either c = false or G̃ is a
set of identified CHR constraints), which represent a terminating step (see the precise
definition below). Since a sequence represents a derivation, we also assume that if

. . . 〈G̃i, ci, Ti, mi, K̃i, G̃
′
i, di, T

′
i , m

′
i〉

〈G̃i+1, ci+1, Ti+1, mi+1, K̃i+1, G̃
′
i+1, di+1, T

′
i+1, m

′
i+1〉 . . .

appears in a sequence, then G̃′
i = G̃i+1, T ′

i = Ti+1 and m′
i ≤ mi+1 hold.
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On the other hand, the input store ci+1 can be different from the output store di

produced by previous steps. In fact, in order to obtain a compositional semantics we
need to perform all the possible assumptions on the constraint ci+1 produced by the
external environment. However, we can assume that CT |= ci+1 → di holds, i.e.
the assumption made on the external environment cannot be weaker than the constraint
store produced by the previous step. This reflects the monotonic nature of computations,
where information can be added to the constraint store but cannot be deleted from it.
Note that a sequence containing a gap between the input store (at step i + 1) ci+1 and
the output store (at step i) di does not correspond to a real computation. In order to
have a real computation in fact such a gap has to be filled by a constraint d (produced
by another process) such that d ∧ di is equivalent to ci+1. This concept will be made
more precise later when we will introduce the notion of connected sequence.

Finally, note that assumptions on user-defined constraints (label K) are made only
for the atoms which are needed to “complete” the current goal in order to apply a clause.
In other words, no assumption can be made in order to apply clauses whose heads do
not share any predicate with the current goal.

Example 3. The following is the representation of the derivation of Example 2 in terms
of concrete sequences:

〈{C = 7, A =< B#1, C =< A#2, B =< C#3, B =< C#4}, true, ∅, 4, ∅
{A =< B#1, C =< A#2, B =< C#3, B =< C#4}, C = 7, ∅, 4〉

〈{A =< B#1, C =< A#2, B =< C#3, B =< C#4}, C = 7, ∅, 4, ∅
{A =< C#5, A =< B#1, C =< A#2, B =< C#3, B =< C#4}, C = 7, {trs@1, 3}, 5〉

〈{A =< C#5, A =< B#1, C =< A#2, B =< C#3, B =< C#4}, C = 7, {trs@1, 3}, 5, ∅
{A = C, A =< B#1, B =< C#3, B =< C#4}, C = 7, {trs@1, 3}, 5〉

〈{A = C, A =< B#1, B =< C#3, B =< C#4}, C = 7, {trs@1, 3}, 5, ∅
{A =< B#1, B =< C#3, B =< C#4}, (A = C, C = 7), {trs@1, 3}, 5〉

〈{A =< B#1, B =< C#3, B =< C#4}, (A = C, C = 7), {trs@1, 3}, 5, ∅
{B = C, B =< C#4}, (A = C, C = 7), {trs@1, 3}, 5〉

〈{B = C, B =< C#4}, (A = C, C = 7), {trs@1, 3}, 5, ∅
{B =< C#4}, (B = C, A = C, C = 7), {trs@1, 3}, 5〉

〈{B =< C#4}, (B = C, A = C, C = 7), {trs@1, 3}, 5, ∅
{B =< C#4}, (B = C, A = C, C = 7), {trs@1, 3}, 5〉

We can then define formally the concrete sequences as follows.

Definition 4 (Concrete sequences). The set Seq containing all the possible (concrete)
sequences is defined as the set

Seq = {〈G̃1, c1, T1, m1, K̃1, G̃2, d1, T
′
1, m

′
1〉〈G̃2, c2, T2, m2, K̃2, G̃3, d2, T

′
2, m

′
2〉 · · ·

〈G̃n, cn, Tn, mn, ∅, G̃n, cn, Tn, mn〉 |
n ≥ 1, for each j, 1 ≤ j ≤ n and for each i, 1 ≤ i ≤ n− 1,

G̃j are identified CHR goals, K̃i are sets of identified CHR constraints,
Tj, T

′
i are sets of tokens, mj , m

′
i are natural numbers and

cj , di are built-in constraints such that
T ′

i ⊇ Ti, Ti+1 ⊇ T ′
i , m′

i ≥ mi, mi+1 ≥ m′
i,

CT |= di → ci, CT |= ci+1 → di and
either cn = false or G̃n is a set of identified CHR constraints}.

From these concrete sequences we extract some more abstract sequences which are the
objects of our semantic domain. If 〈G̃, c, T, m, K̃, G̃′, d, T ′, m′〉 is a tuple, different
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from the last one, appearing in a sequence δ ∈ Seq, we extract from it a tuple of the
form 〈c, K̃, H̃, d〉 where c and d are the input and output store respectively, K̃ are the
assumptions and H̃ the stable atoms (these are the identified constraints in G̃ that will
not be used any more in δ to fire a rule, see the definition below). The output goal G̃′

is no longer considered. Intuitively, H̃ contains those atoms which are available for
satisfying assumptions of other goals, when composing two different sequences (repre-
senting two derivations of different goals). If 〈ci, K̃i, H̃i, di〉〈ci+1, K̃i+1, H̃i+1, di+1〉
is in a sequence we also assume that H̃i ⊆ H̃i+1 holds, since the set of those atoms
which will not be rewritten in the derivation can only increase.

Moreover, if 〈G̃, c, T, m, ∅, G̃, c, T, m〉 is the last tuple in δ, we extract a tuple of the
form 〈c, G̃, T 〉, where we consider the input store c (the output store is equal), the input
goal G̃ and the token store T . We can then define our semantic domain as follows:

Definition 5 (Sequences). The semantic domain D containing all the possible
sequences is defined as the set

D = {〈c1, K̃1, H̃1, d1〉〈c2, K̃2, H̃2, d2〉 . . . 〈cm, H̃m, T 〉 |
m ≥ 1, for each j, 1 ≤ j ≤ m and for each i, 1 ≤ i ≤ m− 1,

H̃j and K̃i are sets of identified CHR constraints,
T is a set of tokens and cj , di are built-in constraints such that
H̃i ⊆ H̃i+1, CT |= di → ci and CT |= ci+1 → di}.

In order to define our semantics we need two more notions: the first one is an abstraction
operator α, which extracts from the concrete sequences in Seq (representing exactly
derivation steps) the sequences used in our semantic domain. To this aim we need the
notion of stable atom.

Definition 6 (Stable atoms and Abstraction). Let

δ = 〈G̃1, c1, T1, n1, K̃1, G̃2, d1, T2, n
′
1〉 . . . 〈G̃m, cm, Tm, nm, ∅, G̃m, cm, Tm, nm〉

∈ Seq.

We say that an identified atom g#l is stable in δ if g#l appears in G̃j and the identifier l
does not appear in Tj \T1, for each 1 ≤ j ≤ m. The abstraction operator α : Seq → D
is then defined inductively as

α(〈G̃, c, T, n, ∅, G̃, c, T, n〉) = 〈c, G̃, T 〉
α(〈G̃1, c1, T1, n1, K̃1, G̃2, d1, T2, n

′
1〉 · δ′) = 〈c1, K̃1, H̃, d1〉 · α(δ′)

where H̃ is the set consisting of all the identified atoms which are stable in
〈G̃1, c1, T1, n1, K̃1, G̃2, d1, T2, n

′
1〉 · δ′.

The following example illustrates the use of the abstraction function α.

Example 4. The application of the function α to the (concrete) sequence in Example 3
gives the following abstract sequence:

〈true, ∅, {B =< C#4}, C = 7〉 〈C = 7, ∅, {B =< C#4}, C = 7〉 〈C = 7, ∅, {B =< C#4}, C = 7〉
〈C = 7, ∅, {B =< C#4}, (A = C ∧ C = 7)〉 〈(A = C ∧ C = 7), ∅, {B =< C#4}, (A = C ∧ C = 7)〉
〈(A = C ∧ C = 7), ∅, {B =< C#4}, (B = C ∧ A = C ∧ C = 7)〉
〈(B = C ∧ A = C ∧ C = 7), {B =< C#4}, {trs@1, 3}〉.
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Before defining the compositional semantics we need a further notion of compatibility.
Given a sequence
δ = 〈G̃1, c1, T1, n1, K̃1, G̃2, d1, T2, n

′
1〉 . . . 〈G̃m, cm, Tm, nm, ∅, G̃m, cm, Tm, nm〉

∈ Seq

and a derivation step t = 〈G̃, c, T, n, K̃, G̃′, d, T ′, n′〉, we define

Vloc(t) = Fv(G′, d) \ Fv(G, c, K) (the local variables of t),
Vass(δ) =

⋃m−1
i=1 Fv(Ki) (the variables in the assumptions of δ) and

Vloc(δ) =
⋃m−1

i=1 Fv(Gi+1, di) \ Fv(Gi, ci, Ki) (the local variables of δ, namely the
variables in the clauses used in the derivation δ).

The following example gives some instances of the previously introduced sets of
variables.

Example 5. Let us consider the concrete derivation introduced in Example 2 which
here we denote by γ. Then Vloc([γ]i) = Vass(γ) = Vloc(γ) = ∅, for 1 ≤ i ≤ 7, where
[γ]i represents the ith tuple of γ. Let us consider a program P composed only by the
following rule

P = {r@X =< Y, Y =< Z, Z =< T ⇔ X! = Y, Z! = T |X < F, F < T}

where the constraint “! =” (is different from) is considered as a built-in and let us apply
P to the goal {X =< Y, Z =< T, X ! = Y, Z! = T }. We obtain the derivation:

〈{X =< Y #1, Z =< T#2, X! = Y, Z! = T}, true, ∅〉2 −→∅ Solve′

〈{X =< Y #1, Z =< T#2, Z! = T}, X! = Y, ∅〉2 −→∅ Solve′

〈{X =< Y #1, Z =< T#2, }, {X! = Y, Z! = T}, ∅〉2 −→Y =<Z r@1, 2, 3
〈{X < F#4, F =< Z#5, }, {X! = Y, Z! = T}, ∅〉5

and therefore the concrete sequence

γ′ = 〈{X =< Y #1, Z =< T#2, X! = Y, Z! = T}, true, ∅, 2, ∅,
{X =< Y #1, Z =< T#2, Z! = T}, X! = Y, ∅, 2〉

〈{X =< Y #1, Z =< T#2, Z! = T}, X! = Y, ∅, 2, ∅,
{X =< Y #1, Z =< T#2, }, {X! = Y, Z! = T}, ∅, 2〉

〈{X =< Y #1, Z =< T#2, }, {X! = Y, Z! = T}, ∅, 2, {Y =< Z},
{X < F#4, F = Z#5, }, {X! = Y, Z! = T}, ∅, 5〉

〈{X < F#4, F =< Z#5, }, {X! = Y, Z! = T}, ∅, 5, ∅,
{X < F#4, F < Z#5, }, {X! = Y, Z! = T}, ∅, 5〉

Then Vloc([γ′]i) = ∅ with i ∈ {1, 2, 4} while Vloc([γ′]3) = {F}. Naturally, Vloc(γ′) =
{F} because it is the union of all the local variable introduced in the single tuples of γ′.
Vass(γ′) = {Y, Z} where both the variables can be seen in the third tuple.

We can now defined the compatibility as follows.

Definition 7 (Compatibility). [7,11] Let t = 〈G̃1, c1, T1, n1, K̃1, G̃2, d1, T2, n
′
1〉 a tu-

ple representing a derivation step for the goal G1 and let

δ = G̃2, c2, T2, n2, K̃2, G̃3, d2, T3, n
′
2〉 . . . 〈G̃m, cm, Tm, nm, ∅, G̃m, cm, Tm, nm〉

∈ Seq

be a sequence of derivation steps for G2. We say that t is compatible with δ if the
following holds:
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1. Vloc(δ) ∩ Fv(t) = ∅,
2. Vloc(t) ∩ Vass(δ) = ∅ and
3. for i ∈ [2, m], Vloc(t) ∩ Fv(ci) ⊆

⋃i−1
j=1 Fv(dj).

The three conditions of Definition 7 reflect the following facts: 1) The clauses in a
derivation are separately renamed; 2) The variables in the assumptions are disjointed
from the variables in the clauses used in a derivation; 3) Each of the local variables
appearing in an input constraint has already appeared in an output constraint. These
conditions ensure that, by using the notation of the definition above, if t is compatible
with δ then t · δ ∈ Seq is a sequence of derivation steps for G1. Moreover, the local
variables in a derivation δ and in the abstraction of δ are the same (Lemma 1). We have
now all the tools for defining the compositional semantics.

Definition 8 (Compositional semantics). Let P be a program and let G be a goal. The
compositional semantics of G in the program P , SP : Goals→ ℘(D), is defined as

SP (G) = α(S′
P (G))

where α is the pointwise extension to sets of the abstraction operator given in Defini-
tion 6 and S′

P : Goals→ ℘(Seq) is inductively defined as follows:

S′
P (G) = {〈G̃1, c1, T1, n1, K̃1, G̃2, d1, T2, n

′
1〉 · δ ∈ Seq |

G̃1 is an identified version of G,
CT |= c1 ↔ false, 〈G̃1, c1, T1〉n1 −→K1

P 〈G̃2, d1, T2〉n′
1

and δ ∈ S′
P (G2) for some δ such that

〈G̃1, c1, T1, n1, K̃1, G̃2, d1, T2, n
′
1〉 is compatible with δ} ∪

{〈G̃, c, T, n, ∅, G̃, c, T, n〉 ∈ Seq}.
It can be observed that S′

P (G) is also the least fix-point of the corresponding operator
Φ ∈ (Goals → ℘(Seq)) → Goals → ℘(Seq) defined by

Φ(I)(G) = {〈G̃1, c1, T1, n1, K̃1, G̃2, d1, T2, n
′
1〉 · δ ∈ Seq |

G̃1 is an identified version of G,
CT |= c1 ↔ false, 〈G̃1, c1, T1〉n1 −→K1

P 〈G̃2, d1, T2〉n′
1

and δ ∈ I(G2) for some δ such that
〈G̃1, c1, T1, n1, K̃1, G̃2, d1, T2, n

′
1〉 is compatible with δ} ∪

{〈G̃, c, T, n, ∅, G̃, c, T, n〉 ∈ Seq}.
where I : Goals → ℘(Seq) stands for a generic interpretation, assigning a set of se-
quences to a goal. The ordering of the set of interpretations Goals → ℘(Seq) is that of
point-wise extended set-inclusion. It is straightforward to check that Φ is continuous on
a CPO, thus, standard results ensure that the fix-point can be calculated by �n≥0φ

n(⊥),
where φ0 is the identity map and for n > 0, φn = φ ◦ φn−1 (see for example [6]).

Before proving the compositionality of the above semantics we give an example
which illustrates derivations and abstract sequences.

Example 6. The goal in Example 2 can be divided in the sub-goals (A =< B, C =<
A) and (C = 7, B =< C, B =< C) (this division will be used in the next section to
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illustrate the composition of sequences). by using the program in Example 1 the goal
(A =< B, C =< A) has the derivation

〈{A =< B#1, C =< A#2}, C = 7, ∅〉4 →{B=<C} trs@1, 5
〈{A =< C#6, B =< C#5, A =< B#1, C =< A#2}, C = 7, {trs@1, 5}〉6 →∅ asx@6, 2
〈{A = C, B =< C#5, A =< B#1}, C = 7, {trs@1, 5}〉6 →∅ Solve′

〈{B =< C#5, A =< B#1}, (A = C ∧ C = 7), {trs@1, 5}〉6 →∅ asx@5, 1
〈{B = C}, (A = C ∧ C = 7), {trs@1, 5}〉6 →∅ Solve′

〈∅, (B = C ∧ A = C ∧ C = 7), {trs@1, 5}〉6

and denoting by δ the (concrete) sequence arising from such a computation we obtain
the abstract sequence α(δ) =

〈C = 7, {B =< C#5}, ∅, C = 7〉 (a)
〈C = 7, ∅, ∅, C = 7〉 (b)
〈C = 7, ∅, ∅, (A = C ∧ C = 7)〉 (c)
〈(A = C ∧ C = 7), ∅, ∅, (A = C ∧ C = 7)〉 (d)
〈(A = C ∧ C = 7), ∅, ∅, (B = C ∧ A = C ∧ C = 7)〉 (e)
〈(B = C ∧ A = C ∧ C = 7), ∅, {trs@1, 5}〉 (f)

Moreover, we have the following derivation step for (C = 7, B =< C, B =< C)

〈{C = 7, B =< C#3, B =< C#4}, true, ∅〉4 →∅ Solve′

〈{B =< C#3, B =< C#4}, C = 7, ∅〉4

and therefore we can say that

γ = 〈 {C = 7, B =< C#3, B =< C#4}, true, ∅, 4, ∅, {B =< C#3, B =< C#4}, C = 7, ∅, 4〉
〈 {B =< C#3, B =< C#4}, (B = C ∧ A = C ∧ C = 7), ∅, 4, ∅,
{B =< C#3, B =< C#4}, (B = C ∧ A = C ∧ C = 7), ∅, 4〉

is a (concrete) sequence for the goal (C = 7, B =< C, B =< C). Then α(γ) is the
following sequence

〈true, ∅, {B =< C#3, B =< C#4}, C = 7〉 (g)
〈(B = C ∧ A = C ∧ C = 7), {B =< C#3, B =< C#4}, ∅〉 (h)

4 Compositionality and Correctness

In this section we prove that the semantics defined above is and-compositional and
correct w.r.t. the observables SAP .

4.1 Compositionality

In order to prove the compositionality result we need to define how to compose two sets
of sequences corresponding to a conjunction (i.e. parallel composition) of two goals.
This is the content of Definition 12, which has the following intuitive explanation: If
S1 and S2 are the sets we want to compose, first of all every sequence σ1 ∈ S1 is
interleaved with every sequence σ2 ∈ S2. Then an η operator (defined in Definition 11)
is applied to the resulting sequences in order to satisfy the assumptions by means of
stable atoms (and suitable substitutions for the identifiers, see Definition 10).

In the following we will then introduce the various definitions needed to obtain the
composition operator for sets of sequences. We first need some more notation. Assum-
ing that

σ = 〈c1, K̃1, H̃1, d1〉〈c2, K̃2, H̃2, d2〉 · · · 〈cm, H̃m, T 〉 ∈ D
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is the abstraction of a sequence for the goal G, we define the overloaded operator
id(σ) = id(

⋃m−1
i=1 K̃i) ∪ id(

⋃m
i=1 H̃i) as the set of identification values of all CHR

constraints in σ. We define the following operators, some of which are analogous to
those already introduced for concrete sequences:

Vass(σ) =
⋃m−1

i=1 Fv(Ki) (the variables in the assumptions of σ),
Vstable(σ) = Fv(Hm) =

⋃m
i=1 Fv(Hi) (the variables in the stable sets of σ),

Vconstr(σ) =
⋃m−1

i=1 Fv(di) \ Fv(ci) (the variables in the output constraints of σ
which are not in the corresponding input constraints),

Vloc(σ) = (Vconstr(σ) ∪ Vstable(σ)) \ (Vass(σ) ∪ Fv(G)) (the local variables of a
sequence σ, which are the local variables of the derivations δ such that α(δ) = σ
(by using Definition 7 and by Lemma 1)).

Then we define the ‖ operator which performs the interleaving of two sequences.

Definition 9 (Composition of sequences). The operator ‖: D×D → ℘(D) is defined
as follows. Let σ1, σ2 ∈ D be sequences for the goals H and G, respectively, such that
id(σ1) ∩ id(σ2) = ∅ and

(Vloc(σ1) ∪ Fv(H)) ∩ (Vloc(σ2) ∪ Fv(G)) = Fv(H) ∩ Fv(G). (1)

Then σ1 ‖ σ2 is defined by cases as follows:

i. If both σ1 and σ2 have length 1 and have the same built-in store, say σ1 = 〈c, H̃, T 〉
and σ2 = 〈c, G̃, T ′〉, then

σ1 ‖ σ2 = {〈c, H̃ ∪ G̃, T ∪ T ′〉 ∈ D}.

ii. If σ2 = 〈e, G̃, T ′〉 has length 1 and σ1 = 〈c1, K̃1, H̃1, d1〉 · σ′
1 has length > 1 then

σ1 ‖ σ2 = {〈c1, K̃1, H̃1 ∪ G̃, d1〉 · σ ∈ D | σ ∈ σ′
1 ‖ σ2}.

iii. If σ1 = 〈c, H̃, T 〉 has length 1 and σ2 = 〈e1, J̃1, Ỹ1, f1〉 · σ′
2 has length > 1 then

σ1 ‖ σ2 = {〈e1, J̃1, H̃ ∪ Ỹ1, f1〉 · σ ∈ D | σ ∈ σ1 ‖ σ′
2}.

iv. If both σ1 = 〈c1, K̃1, H̃1, d1〉 · σ′
1 and σ2 = 〈e1, J̃1, Ỹ1, f1〉 · σ′

2 have length > 1
then

σ1 ‖ σ2 = {〈c1, K̃1, H̃1 ∪ Ỹ1, d1〉 · σ ∈ D | σ ∈ σ′
1 ‖ σ2}

∪
{〈e1, J̃1, H̃1 ∪ Ỹ1, f1〉 · σ ∈ D | σ ∈ σ1 ‖ σ′

2}.
It is worth noting that the condition id(σ1) ∩ id(σ2) = ∅ in the above definition avoids
the capture of identifiers, while the condition (1) ensures that the two sequences σ1 and
σ2 do not share local variables names, thus avoiding variable capture in the composition
of the two sequences. Note also that the condition i requires that both the two sequences
have the same built-in constraint store in the last tuples (otherwise the sequences could
not be the in interleaved components of the same unique derivation, as the last tuple is
different from the others).
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Next we define the η operator which allows to “satisfy” (i.e. eliminate from se-
quences) assumptions by using stable atoms. In general one can satisfy the assumption
g#j by using the stable atom h#i , provided that the identifier j is replaced everywhere
in the sequence by the identifier i and provided that the token set cardinality does not
decrease. This is made precise by the following two definitions, where the first one
defines this substitution operation on identifiers.

Definition 10 (Substitution operators). Let T be a token set, S be a set of identified
atoms, id1, . . . , ido, id′1, . . . , id

′
o be identification values and let g1#id1, . . . , go#ido,

h1#id′1, . . . , ho#id′o be identified atoms.
Moreover, let σ = 〈c1, K̃1, H̃1, d1〉〈c2, K̃2, H̃2, d2〉 · · · 〈cm, H̃m, T 〉 ∈ D.

– T ′ = T [id1/id′1, . . . , ido/id′o] is the token set obtained from T , by substituting each
occurrence of the identifier idl with id′l, for 1 ≤ l ≤ o. The operation is defined
if T and T ′ have the same cardinality (namely, there are no elements in T , which
collapse when we apply the substitution).

– S[g1#id1/h1#id′1, . . . , go#ido/ho#id′o] is the set of identified atoms obtained
from S by substituting each occurrence of the identified atom gl#idl with hl#id′l,
for 1 ≤ l ≤ o.

– σ′ = σ [g1#id1/h1#id′1, . . . , go#ido/ho#id′o] is defined only if
T ′ = T [id1/id′1, . . . , ido/id′o] is defined and in this case

σ′ = 〈c1, K̃
′
1, H̃

′
1, d1〉〈c2, K̃

′
2, H̃

′
2, d2〉 · · · 〈cm, H̃ ′

m, T ′〉 ∈ D,

with 1 ≤ l ≤ m−1, 1 ≤ p ≤ m, K̃ ′
l=K̃l[g1#id1/h1#id′1, . . . , go#ido/ho#id′o]

and H̃ ′
p=H̃p[g1#id1/h1#id′1, . . . , go#ido/ho#id′o].

Definition 11 (η operator). Let W̃ be a set of identified CHR atoms, let σ be a se-
quence in D of the form

〈c1, K̃1, H̃1, d1〉〈c2, K̃2, H̃2, d2〉 . . . 〈cm, H̃m, T 〉.
We denote the sequence

〈c1, K̃1, H̃1 \ W̃ , d1〉〈c2, K̃2, H̃2 \ W̃ , d2〉 . . . 〈cm, H̃m \ W̃ , T 〉,
by σ \ W̃ ∈ D (where the sets’ difference H̃j \ W̃ considers identifications, with
1 ≤ j ≤ m).

The operator η : ℘(D) → ℘(D) is defined as follows. Given S ∈ ℘(D), η(S) is the
minimal set satisfying the following conditions:

– S ⊆ η(S);
– if σ′ · 〈c, K̃, H̃, d〉 · σ′′ ∈ η(S) and there exist two sets of identified atoms K̃ ′ =
{g1#id1, . . . , go#ido} ⊆ K̃ and W̃ = {h1#id′1, . . . , ho#id′o} ⊆ H̃ such that
1. for 1 ≤ l ≤ o, CT |= (c ∧ gl)↔ (c ∧ hl) and
2. σ̄ = ((σ′ ·〈c, K̃ \K̃ ′, H̃, d〉·σ′′)\W̃ ) [g1#id1/h1#id′1, . . . , go#ido/ho#id′o]

is defined,
then σ̄ ∈ η(S).
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Note that previous definition introduces an upper closure operator2 which saturates a set
of sequences S by adding new sequences where redundant assumptions can be removed.
In fact, according to previous definition, an assumption g#i in K̃ can be removed if
h#j appears as a stable atom in H̃ and the built-in store c implies that g is equivalent
to h. This has the intuitive explanations that stable atoms are, by definition, those atoms
which will never be “consumed” in the sequence, hence it is safe to assume that they are
used to fulfil an assumption (on some atoms appearing in a head). Once a stable atom
is consumed for satisfying an assumption it is removed from (the sets of stable atoms
of) all the tuples appearing in the sequence, to avoid multiple uses of the same atom.

We can now define the composition operator ‖ for sets of sequences. To simplify the
notation we denote by ‖ both the operator acting on sequences and the one acting on
sets of sequences.

Definition 12 (Composition of sets of sequences). The composition of sets of se-
quences is the partial fucntion ‖: ℘(D)× ℘(D) → ℘(D) defined by:

S1 ‖ S2 = {σ ∈ D | there exist σ1 ∈ S1 and σ2 ∈ S2 such that
σ = 〈c1, K̃1, H̃1, d1〉 · · · 〈cm, H̃m, T 〉 ∈ η(σ1 ‖ σ2),
(Vloc(σ1) ∪ Vloc(σ2)) ∩ Vass(σ) = ∅ and for i ∈ [1, m]
(Vloc(σ1) ∪ Vloc(σ2)) ∩ Fv(ci) ⊆

⋃i−1
j=1 Fv(dj)}.

The first condition on variables ensures that local variables of σ, that are the ones used
in the derivation of which σ is an abstraction, are different from the ones used by as-
sumptions of σ. The second condition ensures that σ is the abstraction of a derivation
that satisfies condition 3 of Definition 7. The next example illustrate Definition 12.

Example 7. We consider the two abstract sequences of Example 6 and show that their
composition produces the sequence in Example 4. First of all, by using the interleaving
(see Definition 9) we can compose the abstract sequences α(δ) and α(γ) to obtain
(among others) the sequence

〈true, ∅, {B =< C#3, B =< C#4}, C = 7〉 g(a)
〈C = 7, {B =< C#5}, {B =< C#3, B =< C#4}, C = 7〉 a(h)
〈C = 7, ∅, {B =< C#3, B =< C#4}, C = 7〉 b(h)
〈C = 7, ∅, {B =< C#3, B =< C#4}, (A = C, C = 7)〉 c(h)
〈(A = C, C = 7), ∅, {B =< C#3, B =< C#4}, (A = C, C = 7)〉 d(h)
〈(A = C, C = 7), ∅, {B =< C#3, B =< C#4}, (B = C, A = C, C = 7)〉 e(h)
〈(B = C, A = C, C = 7), {B =< C#3, B =< C#4}, {trs@1, 5}〉 f and h

where g(a) means that the tuple g and the stable atoms of tuple (a) are used (analo-
gously for the other steps). Then the application of Definition 11 produces the sequence

〈true, ∅, {B =< C#3, B =< C#4}, C = 7〉 g(a)
〈C = 7, {B =< C#5}, {B =< C#3, B =< C#4}, C = 7〉 a(h)
〈C = 7, ∅, {B =< C#3, B =< C#4}, C = 7〉 b(h)
〈C = 7, ∅, {B =< C#3, B =< C#4}, (A = C, C = 7)〉 c(h)
〈(A = C, C = 7), ∅, {B =< C#3, B =< C#4}, (A = C, C = 7)〉 d(h)
〈(A = C, C = 7), ∅, {B =< C#3, B =< C#4}, (B = C, A = C, C = 7)〉 e(h)
〈(B = C, A = C, C = 7), {B =< C#3, B =< C#4}, {trs@1, � 5 → 3}〉 f and h

2 S ⊆ η(S) holds by definition, and it is easy to see that η(η(S)) = η(S) holds and that S ⊆ S′

implies η(S) ⊆ η(S′).
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where some assumptions are removed since they are satisfied by some stable atoms (this
is represented by crossing both constraints). Note that identifier #5 is substitued by #3
(by using Definition 10) when satisfying the assumption B =< C#5.

Using this notion of composition we can show that the semantics SP is compositional.
Before proving the main result we need some technical lemmas whose proofs are de-
ferred to the Appendix.

The following Lemma states that abstraction operator α on sequences (see Defini-
tion 6) does not affect the variables in the assumptions and the local variables of the
sequence.

Lemma 1. Let G be a goal, δ ∈ S′
P (G) and let σ = α(δ). Then Vr(δ) = Vr(σ) holds,

where r ∈ { ass, loc }.
Since identifiers are used only to distinguish two different occurrences of the same
atom we can freely rename them. We recall that a renaming is a substitution of the form
[j1/i1, . . . , jo/io], where j1, . . . , jo are distinct identification values and i1, . . . , io is a
permutation of j1, . . . , jo. We will use ρ, ρ′, . . . to denote renamings. The following
definition introduces some specific notation for renamings of indexes.

Definition 13. Let σ ∈ D and let ρ = [j1/i1, . . . , jo/io] be a renaming. σρ is defined
as the sequence obtained from σ by substituting each occurrence of the identification
value jl with the corresponding il, for l ∈ [1, o]. Moreover, given σ, σ1, σ2 ∈ D and
S1, S2 ∈ ℘(D), we define:

– σ1  σ2 if there exists a renaming ρ such that σ1 = σ2ρ.
– S1 ! S2 if for each σ1 ∈ S1 there exists σ2 ∈ S2 such that σ1  σ2.
– S1  S2 if S1 ! S2 and S2 ! S1.

From the definition of renaming follows also immediately that if there exists a renaming
ρ = [i1/j1, . . . io/jo] such that σ1 = σ2ρ then there also exists a renaming ρ−1 =
[j1/i1, . . . jo/io] such that σ1ρ

−1 = σ2.
The next lemma states that once a concrete sequence for the goal (H, G) has been

fixed, there exist two concrete sequences for the two goals H and G whose abstrac-
tion can be composed to obtain a sequence that is equal to the abstraction of the fixed
sequence.

Lemma 2. Let P be a program, H and G be two goals and assume that δ ∈ S′
P (H, G).

There then exist δ1 ∈ S′
P (H) and δ2 ∈ S′

P (G), and σ ∈ η(α(δ1) ‖ α(δ2)) such that,
for i = 1, 2, Vloc(δi) ⊆ Vloc(δ) and σ  α(δ).

Under some more assumptions a vice versa of the previous lemma is obtained by the
following:

Lemma 3. Let P be a program, let H and G be two goals and assume that δ1 ∈ S′
P (H)

and δ2 ∈ S′
P (G) are two sequences such that the following holds:

1. α(δ1) ‖ α(δ2) is defined,
2. σ = 〈c1, K̃1, W̃1, d1〉 · · · 〈cm, W̃m, Tm〉 ∈ η(α(δ1) ‖ α(δ2)),
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3. (Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Vass(σ) = ∅,
4. for i ∈ [1, m], (Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆

⋃i−1
j=1 Fv(dj).

There then exists δ ∈ S′
P (H, G) such that α(δ)  σ.

We can eventually prove the main result of this section which states the compositionality
of the semantics.

Theorem 1 (Compositionality). Let P be a program and let H and G be two goals.
Then

SP (H, G)  SP (H) ‖ SP (G).

Proof. We prove the two inclusions separately.

(SP (H, G) ! SP (H) ‖ SP (G)). Let σ ∈ SP (H, G). By definition of SP , there ex-
ists δ ∈ S′

P (H, G) such that σ = α(δ). According to Lemma 2 there exist δ1 ∈
S′

P (H) and δ2 ∈ S′
P (G) such that for i = 1, 2, Vloc(δi) ⊆ Vloc(δ), σ′ ∈ η(α(δ1) ‖

α(δ2)) and σ′  σ. Let

δ = 〈(H̃, G̃), c1, T1, n1, K̃1, B̃2, d1, T2, n
′
1〉 · · ·

· · · 〈B̃m, cm, Tm, nm, ∅, B̃m, cm, Tm, nm〉
and let σ′ = 〈c1, K̃1, W̃1, d1〉 · · · 〈cm, W̃m, Tm〉. First note that if σ  σ′ then
Vass(σ) = Vass(σ′) holds. Hence, since σ  σ′ holds, in order to prove the thesis
we have only to show that

(Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Vass(σ) = ∅ and
for i ∈ [1, m], (Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆

⋃i−1
j=1 Fv(dj),

the two conditions which are missing and thus fail to satisfy all the ones of Def-
inition 12. Firstly, observe that according to Lemma 1 and by hypothesis, we can
conclude respectively that

Vass(σ) = Vass(δ) and for i ∈ {1, 2}, Vloc(α(δi)) = Vloc(δi) ⊆ Vloc(δ). (2)

Then according to the previous results and the properties of the derivations (point 2
of Definition 7 (Compatibility)

(Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Vass(σ) ⊆ Vloc(δ) ∩ Vass(δ) = ∅.
Furthermore, by hypothesis and point 3 of Definition 7 (Compatibility), for i ∈
[1, m],

(Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆ Vloc(δ) ∩ Fv(ci) ⊆
⋃i−1

j=1 Fv(dj)

holds and this completes the proof of the first inclusion.
(SP (H) ‖ SP (G) ! SP (H, G)). Let σ ∈ SP (H) ‖ SP (G). According to definition

of SP and of ‖ there exist δ1 ∈ S′
P (H) and δ2 ∈ S′

P (G), such that σ1 = α(δ1),
σ2 = α(δ2), σ1 ‖ σ2 is defined, σ = 〈c1, K̃1, H̃1, d1〉 · · · 〈cm, H̃m, Tm〉 ∈ η(σ1 ‖
σ2), (Vloc(σ1)∪Vloc(σ2))∩Vass(σ) = ∅ and for i ∈ [1, m], (Vloc(σ1)∪Vloc(σ2))∩
Fv(ci) ⊆

⋃i−1
j=1 Fv(dj). The proof is then straightforward by using Lemma 3. ��
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4.2 Correctness

In order to show the correctness of the semanticsSP w.r.t. the (input/output) observables
SAP we first introduce a different characterization of SAP , obtained by using the new
transition system defined in Table 2.

Definition 14. Let P be a program and let G be a goal and let −→P be (the minimal
relation), defined by the rules in Table 2. We define

SA′
P (G) = {∃−Fv(G)c | 〈G̃, true, ∅〉n1 −→∅

P · · · −→∅
P 〈∅, c, Tm〉nm}

∪
{false | 〈G̃, true, ∅〉n1 −→∅

P · · · −→∅
P 〈G̃′, c, T 〉nm and

CT |= c ↔ false}.

The correspondence of SA′ with the original notion SA is stated by the following
proposition, whose proof is immediate.

Proposition 1. Let P be a program and let G be a goal. Then

SAP (G) = SA′
P (G).

Then to prove the correctness of the compositional semantics w.r.t. SAP it is sufficient
to show that the observables SA′

P can be obtained from SP . To this aim we have first to
identify those sequences in SP which correspond to real computations. These are those
sequences, called connected, which do not perform assumptions neither on CHR con-
straints nor on built-in constraints: The first condition means that the second component
of tuples of the sequence of our compositional semantics (〈c, K̃, H̃, d〉) must be empty,
while the second one means that the assumed constraint at step i must be equal to the
produced constraint of steps i− 1. The following is the precise definition.

Definition 15 (Connected sequences). Let

σ = 〈c1, K̃1, H̃1, d1〉〈c2, K̃2, H̃2, d2〉 . . . 〈cm, H̃m, Tm〉 ∈ D.

We say that σ is connected if for each j, 1 ≤ j ≤ m− 1, K̃j = ∅ and dj = cj+1.

The proof of the next result derives from the definition of connected sequence and an
easy inductive argument. If σ = 〈c1, K̃1, H̃1, d1〉 . . . 〈cm, H̃m, Tm〉 is a sequence, we
denote by instore(σ) and store(σ) the built-in constraint c1 and cm respectively and
by lastg(σ) the goal H̃m.

Proposition 2. Let P be a program and let G be a goal. Then

SA′
P (G) = {∃−Fv(G)c | there exists σ ∈ SP (G) such that instore(σ) = ∅,

σ is connected, lastg(σ) = ∅ and c = store(σ)}
∪
{false | there exists σ ∈ SP (G) such that instore(σ) = ∅,

σ is connected and CT |= store(σ) ↔ false}.
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The following corollary follows immediately from previous two propositions.

Corollary 1 (Correctness). Let P be a program and let G be a goal. Then

SAP (G) = {∃−Fv(G)c | there exists σ ∈ SP (G) such that instore(σ) = ∅,
σ is connected, lastg(σ) = ∅ and c = store(σ)}

∪
{false | there exists σ ∈ SP (G) such that instore(σ) = ∅,

σ is connected and CT |= store(σ) ↔ false}.

5 Conclusions

In this paper we have defined a semantics for CHR which is compositional w.r.t. the
conjunction of goals, which is correct w.r.t data sufficient answers and which takes into
account the token store used in the theoretical operational semantics ωt [1]. in order to
avoid trivial non-termination due to propagation rules.

This paper can be seen as a completion of [7,11], where the approach we follow here
was first defined. These papers however did not treat in a satisfactory way the propa-
gation rules, since they considered the original “naive” operational semantics of CHR,
thus allowing trivial non-termination. The need to model the token store is then the
main technical difference of this work with [7,11]. This need, together with the pres-
ence of multiple heads, leads to a semantic model which is rather involved, even though
the basic idea is simple. However, it is difficult to avoid this complication if one wants
to model precisely and in a compositional way the observables we are interested in. In
fact, any compositional semantics for modeling the I/O behaviour of CHR programs
has to use semantic structures essentially as complicated as the present ones, since in
any case one needs traces (as in the case of any other concurrent asynchronous lan-
guage) and assumptions (which can be expressed in many different ways). Of course,
it would be desirable to introduce in the semantics the minimum amount of informa-
tion needed to obtain compositionality, while preserving correctness. In other words, it
would be desirable to obtain a fully abstract semantics for data sufficient answers. A
similar full abstraction result is left for future work and appears to be not easy (again,
mainly due to the presence of multiple heads). However it is worth noting that obtain-
ing a fully abstract model does not mean to obtain a substantially simpler model: in
fact, full abstraction results are typically obtained by introducing suitable abstraction
(or saturation) operators on a compositional model. A simpler (compositional) model
could be obtained by considering a more abstract, imprecise, semantics which charac-
terizes a superset of observables. Such an abstract semantics could perhaps be useful
for program analysis, along the lines of the abstract interpretation theory.

Another issue which is left for future work is the compositional characterization
of qualified answers, as formalized in Definition 3. The compositional semantics, as
presented in this paper, is not refined enough to model these answers for the following
reason. The acceptance of a non-empty final store in the concrete semantics means that
a non-empty stable atom set remains in the abstract semantics. This can permit the
interleaving with other abstract sequences which possibly present assumptions which
can be satisfied by such a stable atom set, thus introducing a clear difficulty in the
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determination of when an abstract sequence is terminated. An example could clarify this
point. Let P = {r@p, q ⇔ m} be a CHR program. The two sequences of one element
〈∅, p, ∅〉 and 〈∅, p, ∅〉 would be in the semantics modeling the qualified answers of p
and of q, respectively (because p ∈ QAP (p) and q ∈ QAP (q)). However 〈∅, (p, q), ∅〉,
obtained by composing the two one element sequences, should not be in the semantics
of p, q, since p, q is not a qualified answer for the goal p, q (that is, (p, q) ∈ QAP (p, q)).
This problem could probably be solved by introducing a set which contains the names
of rules that can not be applied from a certain point onwards, however this would further
complicate the semantics.

Acknowledgments. We thank Michael Maher for having initially suggested the prob-
lem of compositionality for CHR semantics. We also thank the anonymous reviewers
for their many precise and useful comments.
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Appendix

In this appendix we provide the proofs of Lemmata 1, 2 and 3 that are used in the proof
of Theorem 1. These proofs use some auxiliary lemmata that are introduced below. We
also need some more notation.

In the following, given a sequence γ, where γ ∈ Seq ∪ D, we will denote by
lenght(γ), instore(γ), Ass(γ) and Stable(γ) the length of sequence γ, the first in-
put built-in constraint of γ, the set of non-identified assumptions of γ and the set of
non-identified atoms in the last goal of γ respectively. Moreover, let δ be a sequence of
derivation steps

δ = 〈B̃1, c1, T1, n1, K1, B̃2, d1, T2, n
′
1〉 . . . 〈B̃m, cm, Tm, nm, ∅, B̃m, cm, Tm, nm〉.

We denote by InG(δ), Intok(δ) and Inid(δ) the identified goal B̃1, the token set T1
and the counter n1, respectively. Moreover Inc(δ) denotes the set of all the input built-
in constraints {c1, . . . , cn} of δ.

Finally, we denote by Aloc(δ) the set of the CHR-atoms in the (renamed) clauses
used in the derivation represented by δ.

Now, let W̃ and B̃1 be sets of identified CHR-constraints and let n1 be an integer,
such that for each i ∈ id(W̃ ) and j ∈ id(B̃1), we have that i < n1 and i = j. We
denote by δ ⊕ W̃ the sequence

〈(B̃1, W̃ ), c1, T1, n1, K̃1, (B̃2, W̃ ), d1, T2, n
′
1〉 · · ·

〈(B̃m, W̃ ), cm, Tm, nm, ∅, (B̃m, W̃ ), cm, Tm, nm〉.
The following Lemma states that, when considering a sequence δ in the concrete

semantics, the variables in the assumptions and the local variables in δ are the same as
those in the abstraction of δ.
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Lemma 1. Let G be a goal, δ ∈ S′
P (G) and let σ = α(δ). Then Vr(δ) = Vr(σ) holds,

where r ∈ { ass, loc }.
Proof. Let us consider the following two sequences (where G̃1 is an identified version
of G):

δ = 〈G̃1, c1, T1, n1, K̃1, G̃2, d1, T2, n
′
1〉 . . . 〈G̃m, cm, Tm, nm, ∅, G̃m, cm, Tm, nm〉

and
σ = 〈c1, K̃1, H̃1, d1〉 . . . 〈cm, H̃m, Tm〉,

where H̃m = G̃m. Moreover, let t = 〈G̃1, c1, T1, n1, K̃1, G̃2, d1, T2, n
′
1〉.

By definition we have Vass(δ) =
⋃m−1

i=1 Fv(Ki) = Vass(σ) holds. Let us also recall
the definitions of Vloc:

Vloc(t) = Fv(G2, d1) \ Fv(G1, c1, K1)

Vloc(δ) =
m−1⋃
i=1

Fv(Gi+1, di) \ Fv(Gi, ci, Ki)

Vloc(σ) = (Vconstr(σ) ∪ Vstable(σ)) \ (Vass(σ) ∪ Fv(G))

We prove now that Vloc(δ) = Vloc(σ). The proof is by induction on m = length(δ).

m = 1) In this case δ = 〈G̃, c, T, n, ∅, G̃, c, T, n〉, σ = 〈c, G̃, T 〉, and therefore, by
definition Vloc(δ) = Vloc(σ) = ∅.

m ≥ 1) Let

δ = 〈G̃1, c1, T1, n1, K̃1, G̃2, d1, T2, n
′
1〉〈G̃2, c2, T2, n2, K̃2, G̃3, d2, T3, n

′
2〉 · · ·

〈G̃m, cm, Tm, nm, ∅, G̃m, cm, Tm, nm〉.
By definition of S′

P (G), there exists δ′ ∈ S′
P (G2) such that

t = 〈G̃1, c1, T1, n1, K̃1, G̃2, d1, T2, n
′
1〉

is compatible with δ′ and δ = t · δ′ ∈ Seq.
By inductive hypothesis, we have that Vloc(δ′) = Vloc(σ′), where σ′ = α(δ′).

Moreover, by definition of α, σ = 〈c1, K̃1, H̃1, d1〉 · σ′, where H̃1 is the set con-
sisting of all the identified atoms that are stable in δ.

By definition of Vloc and by inductive hypothesis

Vloc(δ) =
m−1⋃
i=1

Fv(Gi+1, di) \ Fv(Gi, ci, Ki)

= Vloc(δ′) ∪ (Fv(G2, d1) \ Fv(G1, c1, K1))
= Vloc(σ′) ∪ (Fv(G2, d1) \ Fv(G1, c1, K1)). (3)

Moreover, by definition of Vloc(σ) and since Vstable(σ) = Vstable(σ′), we have
that

Vloc(σ′) = (Vconstr(σ′) ∪ Vstable(σ)) \ (Vass(σ′) ∪ Fv(G2)). (4)



A Compositional Semantics for CHR with Propagation Rules 141

Therefore, considering the equations (3) and (4), using the properties of ∪ and
observing that Fv(G2)∩Fv(G1, c1, K1) = Fv(G2)∩Fv(G1, K1) because of the
behavior of Solve′ and Apply′3, we are in position to write:

Vloc(δ) = ((Vconstr(σ′) ∪ Vstable(σ)) \ (Vass(σ′) ∪ Fv(G2)))
∪ (Fv(G2) \ Fv(G1, K1)) ∪ (Fv(d1) \ Fv(G1, c1, K1)). (5)

Now, let x ∈ Fv(K1). By definition x ∈ Fv(t), since t is compatible with δ′

and by point 1 of Definition 7 (Compatibility), that is Vloc(δ′) ∩ Fv(t) = ∅, we
have that x ∈ Vloc(δ′) = Vloc(σ′) and therefore considering (4) we can add x to
Vass(σ′) ∪ Fv(G2). Then by (5) it follows that

Vloc(δ) = ((Vconstr(σ′) ∪ Vstable(σ)) \ (Vass(σ) ∪ Fv(G2)))
∪ (Fv(G2) \ Fv(G1, K1)) ∪ (Fv(d1) \ Fv(G1, c1, K1)). (6)

We will now only consider the first part of the equation (6): by properties of ∪, and
considering that the variables that we can add using Fv(G2)∩Fv(G1, K1) instead
of Fv(G2) are yet added by Fv(G2) \ Fv(G1, K1), we have that

((Vconstr(σ′) ∪ Vstable(σ)) \ (Vass(σ) ∪ Fv(G2))) ∪
(Fv(G2) \ Fv(G1, K1)) =
((Vconstr(σ′) ∪ Vstable(σ)) \ (Vass(σ) ∪ (Fv(G2) ∩ Fv(G1, K1)))) ∪
(Fv(G2) \ Fv(G1, K1)) =
((Vconstr(σ′) ∪ Vstable(σ)) \ (Vass(σ) ∪ (Fv(G2) ∩ Fv(G1)))) ∪
(Fv(G2) \ Fv(G1, K1)), (7)

where the last equality follows by observing that Fv(K1) ⊆ Vass(σ).
Now let x ∈ Fv(G1) \ Fv(G2) and let us assume that x ∈ Vconstr(σ′) ∪

Vstable(σ). Then x ∈ Vloc(δ′) = Vloc(σ′) because x ∈ Fv(t) and by Definition
7 point 1 (Compatibility) Vloc(δ′) ∩ Fv(t) = ∅. Therefore since x ∈ Fv(G2), by
considering the equation (4) we can say that x ∈ Vass(σ′) ⊆ Vass(σ). According
to the previous results, by (6) and (7), we have that

Vloc(δ) = ((Vconstr(σ′) ∪ Vstable(σ)) \ (Vass(σ) ∪ Fv(G1)))
∪ (Fv(G2) \ Fv(G1, K1)) ∪ (Fv(d1) \ Fv(G1, c1, K1)). (8)

Now let x ∈ (Fv(d1) \ Fv(c1)) ∩ Vass(σ′). Since by point 2 of Definition 7
(Compatibility) Vloc(t) ∩ Vass(σ′) = ∅, we have that x ∈ Fv(G1, K1). Then

Fv(d1) \ Fv(G1, c1, K1) = (Fv(d1) \ Fv(c1)) \ Fv(G1, K1)
= (Fv(d1) \ Fv(c1)) \ (Fv(G1, K1) ∪ Vass(σ′))
= (Fv(d1) \ Fv(c1)) \ (Fv(G1) ∪ Vass(σ)).

3 Solve′ : Fv(G2) ∩ Fv(G1, c1, K1) = Fv(G2) ∩ Fv(G1);
Apply′ : fresh variable of the rule can not be in c1.
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Considering the previous result we can further say that

Vloc(δ) = ((Vconstr(σ) ∪ Vstable(σ)) \ (Vass(σ) ∪ Fv(G1))) ∪
(Fv(G2) \ Fv(G1, K1)). (9)

Finally observe that if x ∈ Fv(G2) \ Fv(G1, K1) then an Apply′ step occurred,
x ∈ Vloc(t) and therefore, by point 2 of Definition 7 (Compatibility), x ∈ Vass(σ).
Now, let {a1, . . . , al} ⊆ G2 the set of atoms in G2 such that x ∈ Fv(aj), for each
j ∈ [1, l]. We have two cases:

1. there exists v ∈ [1, l] such that av is a CHR constraint and av ∈ Stable(σ) =
Stable(δ). Then, by definition of derivation, there exists j ∈ [1, n−1] such that
x ∈ Fv(dj). Let h be the least index j ∈ [1, n−1] such that x ∈ Fv(dh). Since
by hypothesis x ∈ Vloc(t), we have that x ∈ Fv(ch), otherwise by point 3 of
Definition 7 (Compatibility) there exists j ∈ [1, h − 1] such that x ∈ Fv(dj)
and this contradicts the hypothesis that h is the least index j ∈ [1, n− 1] such
that x ∈ Fv(dh). Then x ∈ Fv(dh) \ Fv(ch) ⊆ Vconstr(σ) and therefore by
(9), by the previous result and by definition of Vloc,

Vloc(δ) = (Vconstr(σ) ∪ Vstable(σ)) \ (Vass(σ) ∪ Fv(G1)) = Vloc(σ)

and then the thesis holds
2. for each v ∈ [1, l], av is a built-in constraint. Now, we have two further cases:

(a) cn is satisfiable. In this case, by Definition 4 (Concrete sequences) we
have that av is evaluated in δ, for each v ∈ [1, l]. Analogously to the
previous case, by point 3 of Definition 7 (Compatibility), we have that
x ∈ Vconstr(σ).

(b) cn = false. In this case, by definition of the operational semantics, we
can assume without loss of generality that δ evaluates at least a constraint
in {a1, . . . , al}. Therefore, as before, x ∈ Vconstr(σ).

Now the proof is the same of the previous case. ��
We have now three auxiliary lemmas whose proofs are immediate (from the definition
of derivation and of  ) and therefore omitted.

The first one states that we can always obtain two concrete sequences that differ only
in the same fixed subset of token in each tuple.

Lemma 4. Let G be a goal, δ ∈ S′
P (G) such that

δ = 〈G̃, c1, T1, n1, K̃1, G̃2, d1, T2, n
′
1〉〈G̃2, c2, T2, n2, K̃2, G̃3, d2, T3, n

′
2〉

· · · 〈G̃m, cm, Tm, nm, ∅, G̃m, cm, Tm, nm〉,

where G̃ is an identified version of G. Let T ′
1 ⊆ T1. There then exists a derivation

δ′ ∈ S′
P (G)

δ′ = 〈G̃, c1, T
′
1, n1, K̃1, G̃2, d1, T

′
2, n

′
1〉〈G̃2, c2, T

′
2, n2, K̃2, G̃3, d2, T

′
3, n

′
2〉

· · · 〈G̃m, cm, T ′
m, nm, ∅, G̃m, cm, T ′

m, nm〉,
such that Tm \ T ′

m = T1 \ T ′
1.
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The following lemma shows that if a concrete sequence δ is obtained from the goal
(H, G) and the first step is made by an Apply′ rule, then δ, up to the first tuple and an
index renaming, can be obtained from the goal H by assuming in the first step all the
constraints in G that are used in the Apply′ rule.

Lemma 5. Let H, G be goals and let δ ∈ S′
P (H, G) such that

δ = 〈(H̃, G̃), c1, T1, n1, K̃1, R̃2, d1, T2, n
′
1〉〈R̃2, c2, T2, n2, K̃2, R̃3, d2, T3, n

′
2〉

· · · 〈R̃m, cm, Tm, nm, ∅, R̃m, cm, Tm, nm〉
= 〈(H̃, G̃), c1, T1, n1, K̃1, R̃2, d1, T2, n

′
1〉 · δ1

where H̃ = (H̃ ′, H̃ ′′) and G̃ are identified versions of H = (H ′, H ′′) and G, respec-
tively, H ′′ = ∅ and the first tuple of the sequence δ represents a derivation step s, which
uses the Apply’ rule and rewrites only and all the atoms in (H̃ ′′, G̃). There then exists
a derivation δ′ ∈ S′

P (H),

δ′ = 〈H̃, c1, T1, n1, K̃
′
1 ∪ G̃′, R̃′

2, d1, T
′
2, l

′
1〉〈R̃′

2, c2, T
′
2, l2, K̃

′
2, R̃

′
3, d2, T

′
3, l

′
2〉

· · · 〈R̃′
m, cm, T ′

m, lm, ∅, R̃′
m, cm, T ′

m, lm〉,
= 〈H̃, c1, T1, n1, K̃

′
1 ∪ G̃′, R̃′

2, d1, T
′
2, l

′
1〉 · δ′1

and there further exists a renaming ρ such that δ′1 = δ1ρ, K̃ ′
1 = K̃1ρ and G̃′ = G̃ρ.

Finally the third immediate lemma shows that by adding a set of identified constraints
to the goal store we obtain a concrete sequence, provided that the addition is possible
(that is, provided there are enough free indexes).

Lemma 6. Let G be a goal, W̃ be a set of identified atoms and let δ ∈ S′
P (G) such

that δ ⊕ W̃ is defined and Fv(W̃ ) ∩ Vloc(δ) = ∅. Then δ ⊕ W̃ ∈ S′
P (G, chr(W̃ )).

We have now two more lemmas (used in the proof of Lemma 2) whose proofs are not
immediate. The following one states that we can obtain the same concrete semantics
both from a goal and from one part of it, with a resort of identifier.

Lemma 7. Let P be a program and let H and G be two goals such that there exists a
derivation step

s = 〈(H̃, G̃), c1, T1〉n1 −→K1
P 〈(B̃, G̃), d1, T2〉n′

1
,

where H̃ and G̃ are identified versions of H and G respectively and only the atoms in
H̃ are rewritten in s.
Assume that there exists δ ∈ S′

P (H, G) such that δ = t · δ′ ∈ Seq, where

t = 〈(H̃, G̃), c1, T1, n1, K̃1, (B̃, G̃), d1, T2, n
′
1〉,

δ′ ∈ S′
P (B, G) and t is compatible with δ′. Moreover, assume that there exists δ′1 ∈

S′
P (B) and δ′2 ∈ S′

P (G), such that

1. InG(δ′1) = B̃, InG(δ′2) = G̃, Intok(δ′1) = Intok(δ′2) = T2, for i ∈ [1, 2],
Inid(δ′i) ≥ n′

1, Vloc(δ′i) ⊆ Vloc(δ′) and Inc(δ′i) ⊆ Inc(δ′).
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2. Ass(δ′1) ⊆ Ass(δ′) ∪Aloc(δ′2) ∪ InG(δ′2) and Ass(δ′2) ⊆ Ass(δ′),
3. α(δ′1) ‖ α(δ′2) is defined and that there exists σ′ ∈ η(α(δ′1) ‖ α(δ′2)) such that

σ′  α(δ′).

Then δ1 = t′ · δ′1 ∈ S′
P (H), where t′ = 〈H̃, c1, T1, n1, K̃1, B̃, d1, T2, n

′
1〉, α(δ1) ‖

α(δ′2) is defined and there exists σ ∈ η(α(δ1) ‖ α(δ′2)) such that σ  α(δ).

Proof. In the following proof we assume that

δ′1 = 〈B̃1, e1, T2, h1, M̃1, B̃2, f1, T
′
2, h

′
1〉 · · · 〈B̃l, el, T

′
l , hl, ∅, B̃l, el, T

′
l , hl〉

δ′2 = 〈G̃1, r1, S2, j1, Ñ1, G̃2, s1, S
′
2, j

′
1〉 · · · 〈G̃p, rp, S

′
p, jp, ∅, G̃p, rp, S

′
p, jp〉

δ′ = 〈R̃2, c2, T2, n2, K̃2, R̃3, d2, T3, n
′
2〉 · · · 〈R̃m, cm, Tm, nm, ∅, R̃m, cm, Tm, nm〉,

where B1 = B̃, G1 = G̃, R2 = (B̃, G̃) and el = rp = cm (our sequence needs the last
condition to close the composition, see Definition 9). The proof is divided in four parts.

(a) t′ represents the derivation step s′ = 〈H̃, c1, T1〉n1 −→K1
P 〈B̃, d1, T2〉n′

1
. The

proof of this part is straightforward by observing that t represents the derivation
step

s = 〈(H̃, G̃), c1, T1〉n1 −→K1
P 〈(B̃, G̃), d1, T2〉n′

1
,

which uses only atoms in H̃ .
(b) δ1 ∈ S′

P (H). By considering the previous point, by hypothesis and by definition of
S′

P (H), we have to prove that δ1 ∈ Seq and that Definition 7 is satisfied. According
to the hypothesis InG(δ′1) = B̃, Intok(δ′1) = T2, Inid(δ′1) = h1 ≥ n′

1 and
Inc(δ′1) ⊆ Inc(δ′) (and then CT |= instore(δ′1) → instore(δ′)). Moreover,
since δ = t · δ′ ∈ Seq, we have that CT |= instore(δ′) → d1 and therefore
CT |= instore(δ′1) → d1 by transitivity. Then we have only to prove that t′ is
compatible with δ′1 and so that the three conditions of Definition 7 hold.
The following points then hold:

1. According to the hypothesis Vloc(δ′1) ⊆ Vloc(δ′) and the construction Fv(t′) ⊆
Fv(t). Then Vloc(δ′1)∩Fv(t′) ⊆ Vloc(δ′)∩Fv(t) = ∅, where the last equality
follows since t is compatible with δ′.

2. We have that:

Vloc(t′) ∩ Vass(δ′1) ⊆
(since by construction Vloc(t′) = Vloc(t) and
by hypothesis Ass(δ′1) ⊆ Ass(δ′) ∪Aloc(δ′2) ∪ InG(δ′2))

Vloc(t) ∩ (Vass(δ′) ∪ Vloc(δ′2) ∪ Fv(G)) ⊆
(since by hypothesis Vloc(δ′2) ⊆ Vloc(δ′) and
by construction Vloc(t) ∩ Fv(G) = ∅)

Vloc(t) ∩ (Vass(δ′) ∪ Vloc(δ′)) =
(since t is compatible with δ′ and Vloc(t) ⊆ Fv(t))

∅
3. We have to prove that with 1 ≤ i ≤ l,

Vloc(t′) ∩ Fv(ei) ⊆
i−1⋃
j=1

Fv(fj) ∪ Fv(d1).
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First of all, observe that since t is compatible with δ′, by construction x ∈
Vloc(t′) = Vloc(t) and Vloc(δ′2) ⊆ Vloc(δ′) we have that

x ∈ Fv(G) ∪ Vloc(δ′2) ∪ Vass(δ′). (10)

Moreover, since by hypothesis Inc(δ′1) ⊆ Inc(δ′), there exists the least index
h ∈ [2, m] such that ei = ch. Therefore, since, by construction, Vloc(t′) =
Vloc(t) and, by hypothesis, t is compatible with δ′, considering a generic vari-
able x ∈ Vloc(t′) ∩ Fv(ei), we have that

x ∈
h−1⋃
j=1

Fv(dj).

Then, to prove the thesis, we have to prove that if x ∈ ⋃h−1
j=1 Fv(dj) then

x ∈ ⋃i−1
j=1 Fv(fj) ∪ Fv(d1). If x ∈ Fv(d1) then the thesis holds.

Let us assume that x ∈ Fv(d1), x ∈ ⋃h−1
j=2 Fv(dj) and let k be the least

index j ∈ [2, h− 1] such that x ∈ Fv(dj). Now, we have two possibilities:
(a) dk is an output constraint of δ′1, i.e. there exists j ∈ [1, i − 1] such that

dk = fj , then we have the proof.
(b) dk is an output constraint of δ′2, namely there exists w ∈ [1, p] such that

dk = sw. Then, since k is the least index j such that x ∈ Fv(dj),
x ∈ Vloc(t) and, by hypothesis, t is compatible with δ′, we have that
x ∈ Fv(ck) and therefore x ∈ Fv(rw).
Moreover, since by (10) and by point 2 of the hypothesis, x ∈ Fv(G) ∪
Vloc(δ′2) ∪ Vass(δ′2), we have that x ∈ Fv(Gw).
Then by definition of derivation step, we have a contradiction, since x ∈
Fv(sw) \ (Fv(rw) ∪ Fv(Gw) ∪ Vloc(δ′2) ∪ Vass(δ′2)).

(c) α(δ1) ‖ α(δ′2) is defined. Now we consider Definition 9. First of all, observe that
id(δ1)∩id(δ′2) = ∅ since α(δ′1) ‖ α(δ′2) is defined (and therefore id(δ′1)∩id(δ′2) =
∅) and since by hypothesis Inid(δ′2) = j1 ≥ n′

1. Then we only have to prove that

(Vloc(α(δ1)) ∪ Fv(H)) ∩ (Vloc(α(δ′2)) ∪ Fv(G)) = Fv(H) ∩ Fv(G).

By Lemma 1
Vloc(α(δ1)) = Vloc(α(δ′1)) ∪ Vloc(t′). (11)

and since α(δ′1) ‖ α(δ′2) is defined, we can say that

(Vloc(α(δ′1)) ∪ Fv(B)) ∩ (Vloc(α(δ′2)) ∪ Fv(G)) = Fv(B) ∩ Fv(G).

From the above equality, we have that

Vloc(α(δ′1)) ∩ (Vloc(α(δ′2)) ∪ Fv(G)) = ∅. (12)

Now observe that, since t is compatible with δ′, by point 1 of Definition 7, Vloc(δ′)∩
Fv(t) = ∅ holds, by construction Vloc(t′) = Vloc(t) and by Lemma 1, we can
conclude that Vloc(t′)∩Vloc(α(δ′)) = ∅. Furthermore, by hypothesis Vloc(α(δ′2)) ⊆
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Vloc(α(δ′)) and according to the definition of t, we have that Fv(G) ∩ Vloc(t′) =
Fv(G) ∩ Vloc(t) = ∅. Then

Vloc(α(δ1)) ∩ (Vloc(α(δ′2)) ∪ Fv(G)) =
(Vloc(α(δ′1)) ∪ Vloc(t′)) ∩ (Vloc(α(δ′2)) ∪ Fv(G)) = ∅. (13)

Finally, since t is compatible with δ′, by point 1 of Definition 7 Vloc(δ′)∩Fv(t) =
∅), by construction Fv(H) ⊆ Fv(t) and by hypothesis Vloc(α(δ′2)) ⊆ Vloc(α(δ′)).
Then we have that

Fv(H) ∩ Vloc(α(δ′2)) ⊆ Fv(H) ∩ Vloc(α(δ′)) = ∅ (14)

and then the thesis holds by(11), (13), (14) and by properties of set operators.
(d) There exists σ ∈ η(α(δ1) ‖ α(δ′2)) such that σ  α(δ). By inductive hypothesis

α(δ′)  σ′ ∈ η(α(δ′1) ‖ α(δ′2)). By the definition of  , there exists a renaming ρ
such that

α(δ′) = σ′ρ. (15)

Since by hypothesis InG(δ′) = (InG(δ′1), InG(δ′2)) and Intok(δ′1) = Intok(δ′2)
= Intok(δ′), without loss of generality, we can assume that

t′ρ = t′. (16)

Moreover, by definition of ‖ there exists σ1 ∈ α(δ′1) ‖ α(δ′2) such that σ′ ∈
η({σ1}) and

〈c1, K̃1, (J̃1 ∪ Ỹ1), d1〉 · σ1 ∈ α(δ1) ‖ α(δ′2),

where J̃1 is the set of atoms in H̃ which are not rewritten in δ1 and Ỹ1 the set of
atoms in G̃ which are not rewritten in δ′2.

Let us denote
– J̃2 as the set of atoms in B̃ which are not rewritten in δ′1;
– W̃1 as the set of atoms in (H̃, G̃) which are not rewritten in δ;
– W̃2 as the set of atoms in (B̃, G̃) which are not rewritten in δ′.

According to the definition of α,

α(δ) = 〈c1, K̃1, W̃1, d1〉 · α(δ′). (17)

According to the definition of η and since σ′ ∈ η({σ1}),
〈c1, K̃1, (J̃1 ∪ Ỹ1) \ S, d1〉 · σ′ ∈ η(α(δ1) ‖ α(δ′2)), (18)

where the sets difference (J̃1 ∪ Ỹ1) \ S considers identification values and S is
such that (J̃2 ∪ Ỹ1) \ S = W̃2. Since (J̃1 ∪ Ỹ1) ⊆ (J̃2 ∪ Ỹ1), we can assume that
W̃ = (J̃1 ∪ Ỹ1) \S = (J̃1 ∪ Ỹ1)∩ W̃2. Then by definition, W̃ contains all and only
the atoms in (H̃, G̃) which are not rewritten in t and in δ′ and therefore W̃ = W̃1.
Therefore by (18)

〈c1, K̃1, W̃1, d1〉 · σ′ ∈ η(α(δ1) ‖ α(δ′2)).
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Then
(〈c1, K̃1, W̃1, d1〉 · σ′) ρ = (by (16))
〈c1, K̃1, W̃1, d1〉 · (σ′ρ) = (by (15))
〈c1, K̃1, W̃1, d1〉 · α(δ′) = (by (17))

α(δ)

and this completes the proof. ��
Lemma 8. Let P be a program and let H and G be two goals such that there exists a
derivation step

s = 〈(H̃, G̃), c1, T1〉n1 −→K1
P 〈(B̃, G̃), d1, T2〉n′

1
,

where H̃ and G̃ are identified versions of H and G respectively and only the atoms in
G̃ are rewritten in s.

Assume that there exists δ ∈ S′
P (H, G) such that δ = t · δ′ ∈ Seq, where

t = 〈(H̃, G̃), c1, T1, n1, K̃1, (H̃, B̃), d1, T2, n
′
1〉,

δ′ ∈ S′
P (B, G) and t is compatible with δ′. Moreover assume that there exists δ′1 ∈

S′
P (H) and δ′2 ∈ S′

P (B), such that

1. InG(δ′1) = H̃ , InG(δ′2) = B̃, Intok(δ′1) = Intok(δ′2) = T2, for i ∈ [1, 2],
Inid(δ′i) ≥ n′

1, Vloc(δ′i) ⊆ Vloc(δ′) and Inc(δ′i) ⊆ Inc(δ′).
2. Ass(δ′1) ⊆ Ass(δ′) ∪Aloc(δ′2) ∪ InG(δ′2) and Ass(δ′2) ⊆ Ass(δ′),
3. α(δ′1) ‖ α(δ′2) is defined and there exists σ′ ∈ η(α(δ′1) ‖ α(δ′2)) such that σ′  

α(δ′).

Then δ2 = t′·δ′2 ∈ S′
P (G), where t′ = 〈G̃, c1, T1, n1, K̃1, B̃, d1, T2, n

′
1〉, α(δ′1) ‖ α(δ2)

is defined and there exists σ ∈ η(α(δ′1) ‖ α(δ2)) such that σ  α(δ).

Proof. The proof is analogous to that one of Lemma 7 and therefore omitted.

We can now prove the second lemma used in the proof of the compositionality theorem.
This lemma states that the abstraction of a concrete sequence for the goal (H, G) can
be reconstructed (up to the indexes) by the abstract composition of two sequences for
the goals H and G, respectively.

Lemma 2. Let P be a program, H and G be two goals and let δ ∈ S′
P (H, G). Then

there exist δ1 ∈ S′
P (H), δ2 ∈ S′

P (G) and σ ∈ η(α(δ1) ‖ α(δ2)) such that for i = 1, 2,
Vloc(δi) ⊆ Vloc(δ) and σ  α(δ).

Proof. In order to prove this result we construct, by induction on l = length(δ), two
sequences δ ↑(H,G)= (δ1, δ2), where δ1 ∈ S′

P (H), δ2 ∈ S′
P (G) and i ∈ {1, 2} with

the following features:

1. InG(δ) = (InG(δ1), InG(δ2)), Vloc(δi) ⊆ Vloc(δ), Inid(δi) ≥ Inid(δ),
Intok(δi) = Intok(δ) and Inc(δi) ⊆ Inc(δ) (and then CT |= instore(δi) →
instore(δ));

2. Ass(δ1) ⊆ Ass(δ) ∪Aloc(δ2) ∪ InG(δ2) and Ass(δ2) ⊆ Ass(δ);
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3. α(δ1) ‖ α(δ2) is defined and α(δ)  σ ∈ η(α(δ1) ‖ α(δ2)) (where identifiers of
atoms in σ are resorted with respect to the δ ones).

(l=1). In this case δ = 〈(H̃, G̃), c, T, n, ∅, (H̃, G̃), c, T, n〉, so

δ ↑(H,G) = (〈H̃, c, T, n, ∅, H̃, c, T, n〉, 〈G̃, c, T, n, ∅, G̃, c, T, n〉)
= (δ1, δ2)

where δ1 ∈ S′
P (H), δ2 ∈ S′

P (G). Note that, by definition of sequence, id(H̃) ∩
id(G̃) = ∅ and by construction Vloc(δ1) = Vloc(δ2) = ∅, so α(δ1) ‖ α(δ2) is
defined. Then

α(δ1) = 〈c, H̃, T 〉, α(δ2) = 〈c, G̃, T 〉 and
α(δ) = σ = 〈c, (H̃, G̃), T 〉 ∈ α(δ1) ‖ α(δ2).

Moreover the following holds
1. InG(δ) = (H̃, G̃) = (InG(δ1), InG(δ2)), Vloc(δ) = Vloc(δi) = ∅ so

Vloc(δi) ⊆ Vloc(δ) = ∅, Inid(δi) = Inid(δ), Intok(δi) = T = Intok(δ) and
Inc(δi) = Inc(δ);

2. Ass(δ1) = ∅ so Ass(δ1) ⊆ Ass(δ) ∪Aloc(δ2) ∪ InG(δ2) and
Ass(δ2) = ∅ so Ass(δ2) ⊆ Ass(δ);

3. α(δ1) ‖ α(δ2) is defined and α(δ) ∈ η(α(δ1) ‖ α(δ2)): the proof is straight-
forward by definition of ‖.

(l>1). If δ ∈ S′
P (H, G), by definition

δ = 〈(H̃, G̃), c1, T1, n1, K̃1, B̃2, d1, T2, n
′
1〉 · δ′,

where H̃, G̃ and B̃2 are identified versions of the goals H , G and B2, respectively,
id(H̃) ∩ id(G̃) = ∅, δ′ ∈ S′

P (B2) and t = 〈(H̃, G̃), c1, T1, n1, K̃1, B̃2, d1, T2, n
′
1〉

is compatible with δ′. We recall that, by definition, the tuple t represents a derivation
step

s = 〈(H̃, G̃), c1, T1〉n1 −→K1
P 〈B̃2, d1, T2〉n′

1
.

Now we distinguish various cases according to the structure of the derivation step s.

Solve’. If the derivation step s uses a Solve′ rule we can assume, without loss of
generality, that H = (c, H ′) and H̃ = (c, H̃ ′) so:

s = 〈(H̃, G̃), c1, T1〉n1 →∅
P 〈(H̃ ′, G̃), d1, T1〉n1 ,

CT |= c1 ∧ c ↔ d1, t = 〈(H̃, G̃), c1, T1, n1, ∅, (H̃ ′, G̃), d1, T1, n1〉 and δ′ ∈
S′

P (H ′, G). Furthermore, α(δ) = 〈c1, ∅, W̃ , d1〉 · α(δ′) where W̃ is the first
stable identified atoms set of α(δ′), because the application of Solve′ does not
modify the next stable identified atoms set.

By inductive hypothesis there exists δ′1 ∈ S′
P (H ′) and δ2 ∈ S′

P (G) such that
δ′ ↑(H′,G)= (δ′1, δ2) and α(δ′)  σ′ ∈ η(α(δ′1) ‖ α(δ2)). We may now define:

δ ↑(H,G)= (δ1, δ2) where δ1 = 〈H̃, c1, T1, n1, ∅, H̃ ′, d1, T1, n1〉 · δ′1.
By definition, 〈H̃, c1, T1〉n1 →∅

P 〈H̃ ′, d1, T1〉n1 represents a derivation step for
H and so we can write the tuple t′=〈H̃, c1, T1, n1, ∅, H̃ ′, d1, T1, n1〉, Fv(d1) ⊆
Fv(H) ∪ Fv(c1) and therefore Vloc(t′) = ∅. Then the following holds:
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1. By inductive hypothesis InG(δ2) = G̃ and therefore InG(δ) = (H̃, G̃) =
(InG(δ1), InG(δ2)). Now, let i ∈ {1, 2}. Vloc(δi) ⊆ Vloc(δ′) by inductive
hypothesis and by construction; Vloc(δ′) = Vloc(δ) by previous observa-
tion (that is Vloc(t′) = ∅), then Vloc(δi) ⊆ Vloc(δ).

Intok(δi) = T1 = Intok(δ), Inid(δ1) = n1 = Inid(δ) and by induc-
tive hypothesis Inid(δ2) ≥ Inid(δ′) ≥ Inid(δ), where the last inequality
follows from the definition of sequence.

By inductive hypothesis and by construction Inc(δi) ⊆ Inc(δ′) ∪
{c1} = Inc(δ).

2. By construction Ass(δ1) = Ass(δ′1) and Ass(δ) = Ass(δ′) and by induc-
tive hypothesis Ass(δ′1) ⊆ Ass(δ′)∪Aloc(δ2)∪ InG(δ2). Then Ass(δ1)
⊆ Ass(δ) ∪Aloc(δ2) ∪ InG(δ2) and Ass(δ2) ⊆ Ass(δ′) = Ass(δ).

3. The proof follows according to Lemma 7 and by inductive hypothesis.

Apply’ - only atoms of H. In the derivation step s we use the Apply′ rule and we
assume that only atoms deriving from H = (H ′, H ′′) are used: H ′′ = ∅ is
used by Apply′ rule and H̃ = (H̃ ′, H̃ ′′).
In this case we can assume that

s = 〈(H̃, G̃), c1, T1〉n1 →K1
P 〈(H̃ ′, B̃, G̃), d1, T2〉n′

1

so δ′∈S′
P (H ′, B, G) and t=〈(H̃, G̃), c1, T1, n1, K̃1, (H̃ ′, B̃, G̃), d1, T2, n

′
1〉.

By inductive hypothesis there exist δ′1 ∈S′
P (H ′, B) and δ′2 ∈S′

P (G) such that
δ′ ↑((H′,B),G)=(δ′1, δ′2) and α(δ′)  σ′ ∈ η(α(δ′1) ‖ α(δ′2)). By the definition
of ↑, Intok(δ′2) = T2 ⊇ T1.

Thus, according to Lemma 4, there exists a derivation δ2 ∈ S′
P (G) such that

V (δ2) = V (δ′2), for V ∈ {length, Aloc, Ass, Vloc, Stable},
Intok(δ2) = T1 and α(δ′) ∈ η(α(δ′1) ‖ α(δ2)). (19)

We may then define:

δ ↑(H,G)= (δ1, δ2) where δ1 = 〈H̃, c1, T1, n1, K̃1, (H̃ ′, B̃), d1, T2, n
′
1〉 · δ′1

By definition s′ = 〈H̃, c1, T1〉n1 −→K1
P 〈(H̃ ′, B̃), d1, T2〉n′

1
is a derivation

step for H , t′ = 〈H̃, c1, K1, T1, n1, (H̃ ′, B̃), d1, T2, n
′
1〉 represents the deriva-

tion step s′ and Vloc(t′) = Vloc(t). Now the following holds, with i ∈ {1, 2}:
1. By construction InG(δ) = (InG(δ1), InG(δ2)) = (H̃, G̃). By induc-

tive hypothesis, construction, property of union and by (19), Vloc(δi) ⊆
Vloc(δ′) ∪ Vloc(t).

Moreover, by inductive hypothesis, the definition of δ, (19) and by con-
struction Vloc(δ′)∪Vloc(t)=Vloc(δ) and Inc(δi)⊆Inc(δ′)∪{c1}=Inc(δ)
so Vloc(δi)⊆ Vloc(δ) and Inc(δi) ⊆ Inc(δ). Inid(δ1) = n1 = Inid(δ)
and Inid(δ2) ≥ Inid(δ′) ≥ Inid(δ). Finally, by construction and induc-
tive hypothesis Intok(δi) = T1 = Intok(δ).
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2. By inductive hypothesis, (19) and construction,

Ass(δ1) = Ass(δ′1) ∪ {K1}
⊆ Ass(δ′) ∪Aloc(δ2) ∪ InG(δ2) ∪ {K1}
= Ass(δ) ∪Aloc(δ2) ∪ InG(δ2)

and
Ass(δ2) = Ass(δ′2) ⊆ Ass(δ′) ⊆ Ass(δ).

3. The proof follows according to Lemma 7 and inductive hypothesis.

Apply’ - only atoms of G. The proof is the same as that one of the previous case
(by using by Lemma 8 instead of by Lemma 7) hence it is omitted.

Apply’ - atoms of H and G. In the derivation step s we use the Apply′ rule and
let us assume that in s some atoms deriving both from H and G are used. In this
case, we can assume that H = (H ′, H ′′), G = (G′, G′′), H ′′ = ∅, G′′ = ∅,
H̃ = (H̃ ′, H̃ ′′), G̃ = (G̃′, G̃′′) and (H̃ ′′, G̃′′) are the atoms in the goal (H̃, G̃),
which are used in s.

s = 〈(H̃, G̃), c1, T1〉n1 −→K1
P 〈(H̃ ′, G̃′, B̃), d1, T2〉n′

1
,

so δ′∈S′
P (H ′, G′, B) and t=〈(H̃, G̃), c1, T1, n1, K̃1, (H̃ ′, G̃′, B̃), d1, T2, n

′
1〉.

Moreover α(δ) = 〈c1, K̃1, W̃ , d1〉 · α(δ′), where W̃ is the set of stable atoms
of δ′ restricted to the atoms in (H̃ ′, G̃′).

Using the same arguments of the previous point we can show that there exist
δ′1 ∈ S′

P (H, G′′) and δ′2 ∈ S′
P (G′) such that δ ↑((H,G′′),G′)= (δ′1, δ

′
2).

Now, observe that, according to Lemma 5 and the definition of ↑, there exists
δ1 ∈ S′

P (H) such that

InG(δ1) = H̃, Ass(δ1) = Ass(δ′1) ∪ {G′′},
α(δ′1) = 〈c1, K̃1, W̃1, d1〉 · σ1, α(δ1) = 〈c1, K̃

′
1 ∪ G̃2, W̃

′
1, d1〉 · σ′

1,

V (δ1) = V (δ′1) for V ∈ {Intok, Inid, Vloc, Inc, Stable, Aloc} (20)

where σ1  σ′
1, and K̃ ′

1, W̃ ′
1 and G̃2 are an identified version of K1, of W1

and of G′′, respectively.
Moreover, since δ∈S′

P (H, G) and Vloc(δ′2)⊆Vloc(δ), we have that Fv(G′′)
∩ Vloc(δ′2) = ∅ and for each i ∈ id(G̃′′) and j ∈ id(G̃′), we can further
say that i ≤ n1 and i = j. Then according to Lemma 6, we can assume that
δ2 = δ′2 ⊕ G̃′′ ∈ S′

P (G). By construction

InG(δ2) = G̃, Stable(δ2) = Stable(δ′2) ∪ {G′′} and

V (δ2) = V (δ′2) for V ∈ {Intok, Inid, Vloc, Inc, Ass, Aloc}. (21)

Without loss of generality, we can choose δ1 and δ2 in such a way that id(δ1)∩
id(δ2) = ∅.

Then, we define
δ ↑(H,G)= (δ1, δ2).

Now the following holds, with i ∈ {1, 2}:
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1. By construction InG(δ) = (InG(δ1), InG(δ2)). By definition of ↑ and
by previous observation Vloc(δi) = Vloc(δ′i) ⊆ Vloc(δ), Intok(δi) =
Intok(δ′i) = Intok(δ), Inid(δi) = Inid(δ′i) ≥ Inid(δ) and
Inc(δi) = Inc(δ′i) ⊆ Inc(δ).

2. By (20), by definition of ↑ and by (21)

Ass(δ1) = Ass(δ′1) ∪ {G′′}
⊆ Ass(δ) ∪Aloc(δ′2) ∪ InG(δ′2) ∪ {G′′}
= Ass(δ) ∪Aloc(δ2) ∪ InG(δ2).

Moreover by (21) and by definition of ↑, we have that

Ass(δ2) = Ass(δ′2) ⊆ Ass(δ).

3. α(δ1) ‖ α(δ2) is defined and there exists σ ∈ η(α(δ1) ‖ α(δ2)) such that
α(δ)  σ. The proof that α(δ1) ‖ α(δ2) is defined follows by observing
that, by definition of derivation, Vloc(δ′1) ∩ Fv(G′′) = ∅, by construction
for i ∈ {1, 2}, Vloc(δi) = Vloc(δ′i) and by definition of ↑, α(δ′1) ‖ α(δ′2) is
defined.

Now, we prove that α(δ)  σ ∈ η(α(δ1) ‖ α(δ2)). First of all, observe
that by construction, by (20) and by (21) for each σ̄1 ∈ η(α(δ′1) ‖ α(δ′2))
there exists σ̄2 ∈ η(α(δ1) ‖ α(δ2)) such that σ̄1  σ̄2 (namely, η(α(δ′1) ‖
α(δ′2)) ! η(α(δ1) ‖ α(δ2))).

Moreover, by definition of ↑, α(δ)  σ̄ ∈ η(α(δ′1) ‖ α(δ′2)). Then the
proof follows by the transitivity of  and this completes the proof. ��

Now we have three more auxiliary lemmas which are needed in the proof of Lemma
3. In the following, given a derivation

δ = 〈R̃1, c1, T1, n1, K̃1, R̃2, d1, T2, n
′
1〉 · · · 〈R̃m, cm, Tm, nm, ∅, R̃m, cm, Tm, nm〉,

we define id(δ) = id(
⋃m

i=1 R̃i) ∪ id(
⋃m−1

i=1 K̃i).
The following lemma considers a derivation step s and allows to replace the assump-

tions of s by unused constraints in the input goal of s.

Lemma 9. Let P be a program and let R be a goal, such that there exists a derivation
step s = 〈R̃, c, T, n, L̃1, R̃

′, d, T ′, n′〉 for R. We suppose that L̃1 has k CHR con-
straints. Assume that there exist

L̃′ = {h1#id′1, . . . , ho#id′o} ⊆ R̃ and L̃ = {g1#id1, . . . , go#ido} ⊆ L̃1

such that

– the identified atoms in L̃′ are not used by s,
– for each j ∈ [1, o], CT |= c ∧ hj ↔ c ∧ gj and
– T ′[id1/id′1, . . . , ido/id′o] is defined.
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There then exists a derivation step

s′ = 〈R̃, c, T, n, L̃′
1, R̃

′′, d, T ′′, n′′〉,
whereby

– {n + 1, . . . , n + k} = id(L̃1), ρ = [n + 1/j1, . . . , n + k/jk] is a renaming,
– L̃′

1 = (L̃1 \ L̃)ρ,
– R̃′′ = (R̃′ \ L̃′)[g1#id1/h1#id′1, . . . , go#ido/ho#id′o]ρ,
– T ′′ = T ′[id1/id′1, . . . , ido/id′o]ρ, n′′ ≤ n′ and
– Vloc(s) = Vloc(s′).

Proof. Straightforward by definition of derivation step. ��
The following lemma allows to substitute constraints in the input goal (and possibly
also in the output goal) by other constraints having a different label. This lemma is used
in order to propagate the substitution of an assumption with a stable atom in all of the
computational steps of a sequence.

Lemma 10. Let P be a program. R be a goal,

s = 〈R̃1, c, T1, n, L̃1, R̃2, d, T2, n
′〉

be a derivation step for R, where R̃1 is an identified version of R and let L̃′={h1#id′1,
. . . , ho#id′o} and L̃={g1#id1, . . . , go#ido} be two sets of identified atoms such that
for each j ∈ [1, o] the following then holds

– CT |= c ∧ hj ↔ c ∧ gj ,
– id′j ∈ id(R̃1) ∪ id(R̃2) ∪ id(L̃1)
– Either gj#idj ∈ R̃1 or idj ∈ id(R̃1) ∪ id(R̃2) ∪ id(L̃1) and
– T2[id1/id′1, . . . , ido/id′o] is defined.

There then exists a derivation step

s′ = 〈R̃′
1, c, T

′
1, n, L̃1, R̃

′
2, d, T ′

2, n
′〉

where for i ∈ {1, 2}, R̃′
i = R̃i[g1#id1/h1#id′1, . . . , go#ido/ho#id′o],

T ′
i = Ti[id1/id′1, . . . , ido/id′o] and Vloc(s) = Vloc(s′).

Proof. Straightforward by the definition of derivation step. ��
We need the following definition which extend the substitution operator defined in
Definition 10 to concrete sequences.

Definition 16. Assume the notation of definition 10. Let the sequence

δ = 〈R̃1, c1, T1, n1, L̃1, R̃2, d1, T2, n
′
1〉 · · · 〈R̃m, cm, Tm, nm, ∅, R̃m, cm, Tm, nm〉.

then δ′ = δ[g1#id1/h1#id′1, . . . , go#ido/ho#id′o] with for each j ∈ [1, o], idj ≤ n1
and id′j ≤ n1 is:

δ′ = 〈R̃∗
1, c1, T

∗
1 , n1, L̃

∗
1, R̃

∗
2, d1, T

∗
2 , n′

1〉 · · · 〈R̃∗
m, cm, T ∗

m, nm, ∅, R̃∗
m, cm, T ∗

m, nm〉.
where R̃∗

i =R̃i[g1#id1/h1#id′1, . . . , go#ido/ho#id′o], T ∗
i =Ti[id1/id′1, . . . , ido/id′o]

and L̃∗
j=L̃j [g1#id1/h1#id′1, . . . , go#ido/ho#id′o] with 1 ≤ i ≤ m, 1 ≤ j ≤ m− 1.
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The following lemma allows to substitute constraints of a goal by other constraints that
differ only for the identifier used. This will be used to substitute the assumptions by
stable atoms in a sequence.

Lemma 11. Let P be a program and R be a goal,

δ = 〈R̃1, c1, T1, n1, L̃1, R̃2, d1, T2, n
′
1〉 · · · 〈R̃m, cm, Tm, nm, ∅, R̃m, cm, Tm, nm〉

∈ S′
P (R),

where R̃1 is an identified version of R, and let L̃′ = {h1#id′1, . . . , ho#id′o} and let
L̃ = {g1#id1, . . . , go#ido} be two sets of identified atoms such that for each j ∈ [1, o]
the following holds

– idj ≤ n1 and id′j ≤ n1

– CT |= c ∧ hj ↔ c ∧ gj ,
– id′j ∈ id(δ)
– either gj#idj ∈ R̃1 or idj ∈ id(δ) and
– Tm[id1/id′1, . . . , ido/id′o] is defined.

Then δ[g1#id1/h1#id′1, . . . , go#ido/ho#id′o] ∈ S′
P (R′),

where R′ = chr(R̃1[g1#id1/h1#id′1, . . . , go#ido/ho#id′o]).

Proof. Straightforward by Lemma 10 and by induction on the length of δ. ��
Finally we can prove Lemma 3 which shows that fixed two concrete sequences for the
goals H and G, there exists a concrete sequence for (H, G), whose abstraction is equal
to the abstraction of the composition of the two given sequences.

Lemma 3. Let P be a program, let H and G be two goals and assume that δ1 ∈ S′
P (H)

and δ2 ∈ S′
P (G) are two sequences such that the following holds:

1. α(δ1) ‖ α(δ2) is defined,
2. σ = 〈c1, K̃1, W̃1, d1〉 · · · 〈cm, W̃m, Tm〉 ∈ η(α(δ1) ‖ α(δ2)),
3. (Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Vass(σ) = ∅,
4. For i ∈ [1, m], (Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆

⋃i−1
j=1 Fv(dj).

Then there exists δ ∈ S′
P (H, G) such that α(δ)  σ.

Proof. The proof is by induction on length of δ. First we consider two concrete se-
quences (elements of Seq): δ1 ∈ S′

p(H) and δ2 ∈ S′
p(G) and their composition. Then

we will prove that the first concrete tuple whose abstraction provide the first abstract
tuple of the composed abstract sequence, represents a derivation step for (H, G). Af-
terward we will prove that the inductive abstract sequence satisfies the four properties
described in the hypothesis of the lemma. Then the existence of δ ∈ S′

p(H, G) will
follow by compatibility. Finally the existence of a rename ρ such that σ = α(δ)ρ will
be proven.

First of all, observe that since α(δ1) ‖ α(δ2) is defined, we can assume without loss
of generality, that the following holds:
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i. InG(δ1) = H̃ , InG(δ2) = G̃. Intok(δ1) = T ′
1, Intok(δ2) = T ′′

1 and Inid(δ1) =
p1 and Inid(δ2) = q1 such that

ii. for each h ∈ id(H̃) and k ∈ id(G̃), h = k, h ≤ q1, k ≤ p1 and
iii. for each j ∈ [1, l] and r@i1, . . . , il ∈ T ′

1, {i1, . . . , il} ⊆ id(δ2) and ij ≤ q1 and for
each r@i1, . . . , il ∈ T ′′

1 , {i1, . . . , il} ⊆ id(δ1) and ij ≤ p1.

In the remaining part of the proof, given two derivations δ1 ∈ S′
P (H) and δ2 ∈

S′
P (G), which verify the previous conditions, we can construct by induction on the

l = length(σ) a derivation δ ∈ S′
P (H, G) such that the following conditions hold

1. InG(δ)=(H̃, G̃)=(InG(δ1), InG(δ2)), Vloc(δ)⊆Vloc(δ1)∪Vloc(δ2), Intok(δ)
=T ′

1 ∪ T ′′
1 , Inid(δ) = n1, where n1 is the minimum between p1 and q1, Inc(δ) ⊆

Inc(δ1) ∪ Inc(δ2),
2. Ass(δ) ⊆ Ass(δ1) ∪Ass(δ2) and
3. there exists a renaming ρ such that σ = α(δ)ρ (and therefore σ  α(δ)) and

ρ(id) = id for each id ≤ Inid(δ).

(l = 1). In this case δ1 = 〈H̃, c, T ′, p, ∅, H̃, c, T ′, p〉, δ2 = 〈G̃, c, T ′′, q, ∅, G̃, c, T ′′, q〉,
α(δ1) = 〈c, H̃, T ′〉, α(δ2) = 〈c, G̃, T ′′〉, σ = 〈c, (H̃, G̃), T ′ ∪ T ′′〉 and δ =
〈(H̃, G̃), c, T, n, ∅, (H̃, G̃), c, T, n〉, where T = T ′ ∪ T ′′ and (by using assump-
tions ii and iii) n is the minimum between p and q.

(l > 1). Without loss of generality, we can assume that

δ1 = t′ · δ′1, δ2 = 〈G̃, e1, T
′′
1 , q1, J̃1, G̃2, f1, T

′′
2 , q′1〉 · δ′2

where the following holds
– t′ = 〈H̃, c1, T

′
1, p1, L̃1, H̃2, d1, T

′
2, p

′
1〉, δ′1 ∈ S′

P (H2), t′ is compatible with δ′1
and σ1 = α(δ1) = 〈c1, L̃1, Ñ1, d1〉 · α(δ′1) where Ñ1 is the set of stable atoms
for σ1.

– δ′2 ∈ S′
P (G2) ∪ ε and if δ′2 ∈ S′

P (G2) then σ2 = α(δ2) = 〈e1, J̃1, M̃1, f1〉 ·
α(δ′2) and M̃1 is the set of stable atoms for σ2, else σ2 = α(δ2) = 〈e1, M̃1, T

′′
1 〉

and M̃1 = G̃.
– σ ∈ η(〈c1, L̃1, Ñ1 ∪ M̃1, d1〉 · σ′) and σ′ ∈ η(α(δ′1) ‖ σ2).

where we denote by ε the empty sequence.
In this case, without loss of generality, we can assume that p′1 ≤ q1.
By definition of η, there exist the sets of identified atoms L̃′, L̃′′, L̃ such that

L̃ = {g1#id1, . . . , go#ido} ⊆ L̃1 and
L̃′ = {h1#id′1, . . . , ho#id′o} ⊆ ((Ñ1 ∪ M̃1) \ L̃′′),

where
1. L̃′′ is the set of stable atoms of (Ñ1 ∪ M̃1) used in η(α(δ′1) ‖ σ2), in order to

obtain σ′.
2. for 1 ≤ j ≤ o, CT |= (c1 ∧ gj)↔ (c1 ∧ hj) and
3. σ = (〈c1, K̃1, W̃1, d1〉 · (σ′ \ L̃′)) [g1#id1/h1#id′1, . . . , go#ido/ho#id′o] is

defined, where K̃1 = L̃1 \ L̃ and W̃1 = (Ñ1 ∪ M̃1) \ (L̃′ ∪ L̃′′).
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Now observe that the following holds:

– Since t′ = 〈H̃, c1, T
′
1, p1, L̃1, H̃2, d1, T

′
2, p

′
1〉 represents a derivation step for

H and since by hypothesis for each k ∈ id(G̃), k ≤ p1 and for each r@i1, . . . ,
il ∈ T ′′

1 , {i1, . . . , il} ⊆ id(δ1), we can conclude that

t′′ = 〈(H̃, G̃), c1, T
′
1 ∪ T ′′

1 , p1, L̃1, (H̃2, G̃), d1, T
′
2 ∪ T ′′

1 , p′1〉
represents a derivation step for (H, G).

– Since

σ = (〈c1, K̃1, W̃1, d1〉 · (σ′ \ L̃′)) [g1#id1/h1#id′1, . . . , go#ido/ho#id′o]

is defined and by definition of ‖, we have that (T ′
2∪T ′′

1 )[id1/id′1, . . . , ido/id′o]
is defined

– By previous observations and Lemma 9,

t = 〈(H̃, G̃), c1, T
′
1 ∪ T ′′

1 , p1, K̃
′
1, B̃, d1, T

′′, p′′1〉
represents a derivation step for (H, G), where
• {p1 + 1, . . . , p1 + k} = id(L̃1) and ρ1 = [p1 + 1/j1, . . . , p1 + k/jk] is a

renaming,
• K̃ ′

1 = (L̃1 \ L̃)ρ1 = K̃1ρ1,
• B̃ = ((H̃2, G̃) \ L̃′)[g1#id1/h1#id′1, . . . , go#ido/ho#id′o]ρ1,
• T ′′ = (T ′

2∪T ′′
1 )[id1/id′1, . . . , ido/id′o]ρ1, p′′1 ≤ p′1 and Vloc(t) = Vloc(t′).

Moreover, the following holds:
α(δ′1) ‖ α(δ2) is defined. Since α(δ1) ‖ α(δ2) is defined, we can assume that

id(δ1) ∩ id(δ2) = ∅ and so id(δ′1) ∩ id(δ2) = ∅. Then by definition, we have
only to prove that

(Vloc(α(δ′1)) ∪ Fv(H2)) ∩ (Vloc(α(δ2)) ∪ Fv(G)) = Fv(H2) ∩ Fv(G).

First of all, observe that since Vloc(α(δ′1)) ⊆ Vloc(α(δ1)) and α(δ1) ‖ α(δ2) is
defined, we have that Vloc(α(δ′1))∩(Vloc(α(δ2))∪Fv(G)) = ∅ and (Fv(H)∪
Vloc(α(δ1))) ∩ (Vloc(α(δ2))) = ∅.

Now, observe that according to definition of derivation

Fv(H2) ⊆ Fv(H) ∪ Vloc(α(δ1)) ∪ Fv(L1)

and therefore, Fv(H2) ∩ Vloc(α(δ2)) = Fv(L1) ∩ Vloc(α(δ2)). Then by pre-
vious observations

(Vloc(α(δ′1)) ∪ Fv(H2)) ∩ (Vloc(α(δ2)) ∪ Fv(G))
= (Fv(H2) ∩ Fv(G)) ∪ (Fv(L1) ∩ Vloc(α(δ2))).

We now, assume that there exists x ∈ Fv(L1) ∩ Vloc(α(δ2)) and that g ∈ L1
such that x ∈ Fv(g). Since as seen in Point 3. of the hypothesis Vloc(α(δ2)) ∩
Vass(σ) = ∅, we can maintain that g ∈ K1 and therefore there exists g′ ∈ G
such that CT |= c1 ∧ g ↔ c1 ∧ g′. Now, observe that, since g′ ∈ G and
x ∈ Vloc(α(δ2)), we have that x ∈ Fv(g′) and therefore, we can further say
that x ∈ Fv(c1) and CT |= ∃xc1 ↔ c1. Then, since by definition of ‖,
CT |= e1 → c1, either x ∈ Fv(e1) or CT |= e1 ↔ false. In both cases
x ∈ Vloc(α(δ2)) and it then follows that Fv(L1) ∩ Vloc(α(δ2)) = ∅.
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σ′ = 〈c2, K̃2, W̃2∪L̃′, d2〉 · · · 〈cm, W̃m ∪ L̃′, Tm〉∈η(α(δ′1) ‖ α(δ2)). The proof
is straightforward, by definition of ‖.

(Vloc(α(δ′1)) ∪ Vloc(α(δ2))) ∩ Vass(σ′) = ∅. According to the definition, the hy-
pothesis and Lemma 1, we have that

(Vloc(α(δ′1)) ∪ Vloc(α(δ2))) ∩ Vass(σ′) ⊆
(Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Vass(σ) = ∅.

for i ∈ [2, m], (Vloc(α(δ′1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆
⋃i−1

j=2 Fv(dj).
To prove this statement, observe that by hypothesis and Lemma 1, for i ∈
[2, m],

(Vloc(α(δ′1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆
(Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆⋃i−1

j=1 Fv(dj).

Let i ∈ [2, m], such that there exists x ∈ (Vloc(α(δ′1))∪Vloc(α(δ2)))∩Fv(ci)∩
Fv(d1). By the hypothesis x ∈ Fv(c1). Then, since x ∈ Fv(d1) ⊆ Fv(t′) and
t′ is compatible with δ′1, we may conclude that x ∈ Vloc(α(δ′1)) and therefore
x ∈ Vloc(α(δ2)). By Lemma 1 and since α(δ1) ‖ α(δ2) is defined, we have
that x ∈ Fv(H) and therefore, by definition of derivation, we can say that
CT |= ∃xd1 ↔ d1. According to the definition of ‖, CT |= e1 → d1 and
therefore, since x ∈ Fv(d1) and CT |= ∃xd1 ↔ d1, either x ∈ Fv(e1)
or CT |= e1 ↔ false. In both the cases x ∈ Vloc(α(δ2)). As in previous
observations

(Vloc(α(δ′1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆
i−1⋃
j=2

Fv(dj)

and then the thesis holds.
Moreover, by construction the following holds

– Intok(δ′1) = T ′
2 and Inid(δ′1) = p2. Since by definition of derivation p2 ≥

p1 and by hypothesis for each k ∈ id(G̃), k ≤ p1, we have that for each
h ∈ id(H̃2), h = k and k ≤ p2. Moreover, without loss of generality, we can
assume that for each h ∈ id(H̃2), h ≤ q1.

– by definition of derivation, if T ′
2 = T ′

1, T ′
2 = T ′

1 ∪ {r@id1, . . . , idl} such
that {id1, . . . , idl} ⊆ id(δ1). Then since by hypothesis id(δ1) ∩ id(δ2) = ∅
and for each r@i1, . . . , il ∈ T ′

1, {i1, . . . , il} ⊆ id(δ2), we have that for each
r@i1, . . . , il ∈ T ′

2, {i1, . . . , il} ⊆ id(δ2).
By previous results and by inductive hypothesis, we have that there exists δ′ ∈
S′

P (H2, G) such that
1. InG(δ′) = (InG(δ′1), InG(δ2)) = (H̃2, G̃), Vloc(δ′) ⊆ Vloc(δ′1) ∪ Vloc(δ2),

Intok(δ′) = T ′
2 ∪ T ′′

1 , Inid(δ′) = m2, where m2 is the minimum between p2
and q1, Inc(δ′) ⊆ Inc(δ′1) ∪ Inc(δ2),

2. Ass(δ′) ⊆ Ass(δ′1) ∪Ass(δ2) and
3. there exists a renaming ρ′ such that σ′ = α(δ′)ρ′ (and therefore σ′  α(δ′))

and ρ′(id) = id for each id ≤ Inid(δ′).
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Moreover by definition of η, L̃′ ⊆ (H̃, G̃) is a set of atoms which are stable in δ′.
Let δ′′ ∈ S′

P (R′) the derivation obtained form δ′ by deleting from each goal in δ′

the atoms in L̃′, where R̃′ = (H̃2, G̃) \ L̃′ and R′ = chr(R̃′).
By construction and by Lemma 11

δ̄ = δ′′[g1#id1/h1#id′1, . . . , go#ido/ho#id′o]ρ1 ∈ S′
P (R),

where
– InG(δ̄) = R̃ = R̃′[g1#id1/h1#id′1, . . . , go#ido/ho#id′o]ρ1, R = chr(R̃),
– Intok(δ̄) = (T ′

2 ∪ T ′′
1 )[id1/id′1, . . . , ido/id′o]ρ1 and

– Vloc(δ̄) = Vloc(δ′′) = Vloc(δ′).
Let us denote by δ the sequence t · δ̄.

Then, to prove the thesis, we have to prove that t · δ̄ ∈ Seq, t is compatible
with δ̄ (and therefore δ ∈ S′

P (H, G)), Vloc(δ) ⊆ Vloc(δ1) ∪ Vloc(δ2), Inc(δ) ⊆
Inc(δ1) ∪ Inc(δ2), Ass(δ) ⊆ Ass(δ1) ∪Ass(δ2) and σ  α(δ).
(t · δ̄ ∈ Seq). By construction, we have only to prove that CT |= instore(δ̄) →

d1. The proof is straightforward, since by construction either instore(δ̄) =
instore(δ′1) or instore(δ̄) = instore(δ2).

(t is compatible with δ̄). The following holds.
1. Vloc(δ̄) ∩ Fv(t) = ∅. By construction and by inductive hypothesis

Vloc(t) = Vloc(t′), Fv(t) ⊆ Fv(t′) ∪ Fv(G) and

Vloc(δ̄) = Vloc(δ′) ⊆ Vloc(δ′1) ∪ Vloc(δ2). (22)

Since t′ is compatible with δ′1 (Definition 7 point 1) and α(δ′1) ‖ α(δ2) is
defined, we have that

Vloc(δ′1) ∩ (Fv(t′) ∪ Fv(G)) = ∅. (23)

By points 3. and 4. of the hypothesis Fv(K1, c1) ∩ Vloc(δ2) = ∅ and
by definition of derivation Fv(G) ∩ Vloc(δ2) = ∅. Moreover, by point
1. of the hypothesis we have that α(δ1) ‖ α(δ2) is defined and therefore
(Fv(H) ∪ Vloc(t′)) ∩ Vloc(δ2) = ∅. Then by definition and by the first
statement in (22)

Fv(t) ∩ Vloc(δ2) = (Fv(c1, H, G, K1) ∪ Vloc(t′)) ∩ Vloc(δ2) = ∅. (24)

Then

Vloc(δ̄) ∩ Fv(t) ⊆ (by the last statement in (22))
(Vloc(δ′1) ∪ Vloc(δ2)) ∩ Fv(t) ⊆ (by the second statement in (22)

and by (23))
Vloc(δ2) ∩ Fv(t) = (by (24))
∅.

2. Vloc(t)∩Vass(δ̄) = ∅. The proof is immediate by point 3. of the hypothesis.
3. for i ∈ [2, n], Vloc(t) ∩ Fv(ci) ⊆

⋃i−1
j=1 Fv(dj). The proof is immediate

by construction and by point 4. of hypothesis.
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(Vloc(δ) ⊆ Vloc(δ1) ∪ Vloc(δ2)). By construction

Vloc(δ) = (by construction)
Vloc(t) ∪ Vloc(δ̄) = (by construction)
Vloc(t′) ∪ Vloc(δ′) ⊆ (by previous results)
Vloc(t′) ∪ Vloc(δ′1) ∪ Vloc(δ2) = (by construction)
Vloc(δ1) ∪ Vloc(δ2).

(Inc(δ) ⊆ Inc(δ1) ∪ Inc(δ2))

Inc(δ) = (by construction)
{c1} ∪ Inc(δ̄) = (by construction)
{c1} ∪ Inc(δ′) ⊆ (by previous results)
{c1} ∪ Inc(δ′1) ∪ Inc(δ2) = (by construction)
Inc(δ1) ∪ Inc(δ2).

(Ass(δ) ⊆ Ass(δ1) ∪Ass(δ2))

Ass(δ) = (by construction)
Ass(t) ∪Ass(δ̄) = (by definition of Ass(t))
(L̃1 \ L̃) ∪Ass(δ̄) ⊆ (by definition of \)
L̃1 ∪Ass(δ̄) ⊆ (by definition of δ̄)
L̃1 ∪Ass(δ′) ⊆ (by previous results)
L̃1 ∪Ass(δ′1) ∪Ass(δ2) = (by construction)
Ass(δ1) ∪Ass(δ2).

(there exists a renaming ρ such that σ = α(δ)ρ (and therefore σ  α(δ)) and
ρ(id) = id for each id ≤ n1). By inductive hypothesis there exists a renaming
ρ′ such that σ′ = α(δ′)ρ′ and ρ′(id) = id for each id ≤ n2. Since by definition
of derivation, for each j ∈ id(L̃′), j ≤ n2 we have that ρ′(j) = j for each
j ∈ id(L̃′). Then

σ′ \ L̃′ = (since σ′ = α(δ′)ρ′)
α(δ′)ρ′ \ L̃′ = (by previous observation)
(α(δ′) \ L̃′)ρ′ = (by definition of \ and α)
(α(δ′ \ L̃′))ρ′ = (by definition of δ′′)
(α(δ′′))ρ′.

Moreover, since for i ∈ [1, o] and for r ∈ [1, k], idi ≤ n2 id′i ≤ n2, p1+r ≤ n2
and jr ≤ n2, we have that

(α(δ′′))ρ′[g1#id1/h1#id′1, . . . , go#ido/ho#id′o]ρ1 =
(α(δ′′))[g1#id1/h1#id′1, . . . , go#ido/ho#id′o]ρ1ρ

′

and therefore

(σ′ \ L̃′)[g1#id1/h1#id′1, . . . , go#ido/ho#id′o]ρ1 =
(by previous result)

(α(δ′′))ρ′[g1#id1/h1#id′1, . . . , go#ido/ho#id′o]ρ1 =
(by previous observation)
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(α(δ′′))[g1#id1/h1#id′1, . . . , go#ido/ho#id′o]ρ1ρ
′ =

(by definition of δ̄)
(α(δ̄))ρ′.

Then, by definition of renaming

(σ′ \ L̃′)[g1#id1/h1#id′1, . . . , go#ido/ho#id′o] = (α(δ̄))ρ (25)

where ρ = ρ′ρ2 and ρ2 = [j1/p1 + 1, . . . , jk/p1 + k] = ρ−1
1 .

By definition, we have that ρ is a renaming and by construction ρ(j) = j for
each j ≤ n1.

By definition of δ, we have that

α(δ)ρ = (by definition of α and δ)
〈c1, K̃

′
1ρ, W̃ ′

1ρ, d1〉 · α(δ̄)ρ = (by definition of renaming and by (25))

〈c1, K̃
′
1ρ, W̃ ′

1ρ, d1〉 · (σ′ \ L̃′)[g1#id1/h1#id′1, . . . , go#ido/ho#id′o]. (26)

where W̃ ′
1 = B̃1 ∩ B̃2, where B̃1 and B̃2 are the sets of atoms in (H̃, G̃)

which are not rewritten by t and by δ̄, respectively. Now observe that since
K̃ ′

1 = K̃1ρ1 and since ρ′(j) = j for each j ≤ n2, we have that

K̃ ′
1ρ = K̃1ρ1ρ = K̃1ρ1ρ

′ρ2 = K̃1ρ1ρ2 = K̃1. (27)

Moreover, by construction B̃1 = ((Ñ1 ∪ M̃1) \ L̃′) and by (25) B̃2 = (W̃ ′
2 \

L̃′)[g1#id1/h1#id′1, . . . , go#ido/ho#id′o]ρ
−1, where W̃ ′

2 is the first stable
set of σ′. Then

W̃ ′
1 = ((Ñ1 ∪ M̃1) \ L̃′) ∩

(W̃ ′
2 \ L̃′)[g1#id1/h1#id′1, . . . , go#ido/ho#id′o]ρ

−1. (28)

Now, observe that ρ(j) = j for each j ≤ n1 and for each i ∈ id((Ñ1 ∪ M̃1) \
L̃′), we have that i ≤ n1. Then by (28)

W̃ ′
1 = ((Ñ1 ∪ M̃1) \ L̃′) ∩

(W̃ ′
2 \ L̃′)[g1#id1/h1#id′1, . . . , go#ido/ho#id′o]. (29)

By construction for each i ∈ [1, o], we have that idi > n1 and id′i ∈ id(L̃′).
Then by (29)

W̃ ′
1 = ((Ñ1 ∪ M̃1) \ L̃′) ∩ (W̃ ′

2 \ L′).

By construction and by definition of ‖, W ′
2 = ((Ñ2 ∪ M̃1) \ L̃′′), where Ñ2 is

the set of stable atoms of α(δ′1), and therefore, by the previous result

W̃ ′
1 = ((Ñ1 ∪ M̃1) \ L̃′) ∩ ((Ñ2 ∪ M̃1) \ L̃′′). (30)

Moreover, since for each i ∈ [1, o], idi ∈ id(L̃) we have that

W̃1 = W̃1[g1#id1/h1#id′1, . . . , go#ido/ho#id′o] and

K̃1 = K̃1[g1#id1/h1#id′1, . . . , go#ido/ho#id′o] (31)
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Then

W̃ ′
1ρ = (since ρ(i) = i for each i ≤ n1)

W̃ ′
1 = (by (30))

((Ñ1 ∪ M̃1) \ L̃′) ∩ (((Ñ2 ∪ M̃1) \ L̃′′) = (by properties of set operators)
((Ñ1 ∪ M̃1) ∩ (Ñ2 ∪ M̃1)) \ (L̃′ ∪ L̃′′) = (since by definition Ñ1 ⊆ Ñ2)
(Ñ1 ∪ M̃1) \ (L̃′ ∪ L̃′′) = (by construction)
W̃1

and therefore

α(δ)ρ =
(by (26))

〈c1, K̃
′
1ρ, W̃ ′

1ρ, d1〉 · (σ′ \ L′)[g1#id1/h1#id′1, . . . , go#ido/ho#id′o] =
(by (27) and previous result)

〈c1, K̃1, W̃1, d1〉 · (σ′ \ L′)[g1#id1/h1#id′1, . . . , go#ido/ho#id′o] =
(by (31))

(〈c1, K̃1, W̃1, d1〉 · (σ′ \ L′))[g1#id1/h1#id′1, . . . , go#ido/ho#id′o] =
(by definition)

σ

and then the thesis holds. ��
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Abstract. In this paper, we address the different conceptual and tech-
nical difficulties encountered when embedding CHR into an imperative
host language. We argue that a tight, natural integration leads to a
powerful programming language extension, intuitive to both CHR and
imperative programmers. We show how to compile CHR to highly opti-
mized imperative code. To this end, we first review the well-established
CHR compilation scheme, and survey the large body of possible opti-
mizations. We then show that this scheme, when used for compilation
to imperative target languages, leads to stack overflows. We therefore
introduce new optimizations that considerably improve the performance
of recursive CHR programs. Rules written using tail calls are even guar-
anteed to run in constant space. We implemented systems for both Java
and C, following the language design principles and compilation scheme
presented in this paper, and show that our implementations outperform
other state-of-the-art CHR compilers by several orders of magnitude.

1 Introduction

Constraint Handling Rules (CHR) [1, 2, 3] is a high-level programming language
extension based on guarded, multi-headed, committed-choice multiset rewrite
rules. Originally designed for writing user-defined constraint solvers, CHR has
matured as a powerful and elegant general purpose language used in a wide
range of application domains.

CHR is usually embedded in a CLP host language, such as Prolog [4, 5, 6] or
HAL [7, 8]. Real world, industrial software however is mainly written in imper-
ative or object-oriented programming languages. For many problems, however,
declarative approaches are more effective. Applications such as planning and
scheduling often lead to special-purpose constraint solvers. These are mostly
written in the mainstream language itself because a seamless cooperation with
existing components is indispensable. Such ad-hoc constraint solvers are notori-
ously difficult to maintain, modify and extend.

A multiparadigmatic integration of CHR and mainstream programming lan-
guages therefore offers powerful synergetic advantages to the software developer.
A user-friendly and efficient CHR system lightens the design and development
effort required for application-tailored constraint systems considerably. Adhering
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to common CHR semantics further facilitates the reuse of numerous constraint
handlers already written in CHR. A proper embedding of CHR in a mainstream
language conversely enables the use of innumerous existing software libraries and
components in CHR programs.

In the past decade there has been a renewed interest in the integration and
use of the rule-based paradigm, in particular business rules. Business rules are a
technology derived from production rules, and are used extensively in real world
applications. CHR, with its well-studied clean operational semantics and efficient
implementation techniques presents a valid alternative for these tools. Arguably,
for CHR to play a role here, embeddings in mainstream languages are required.

Existing CHR embeddings in imperative languages either lack performance
[9, 10], or are designed to experiment with specific extensions of CHR [11]. Also,
in our opinion, these systems do not provide a sufficiently natural integration of
CHR with the imperative host language. Instead of incorporating the specifics
of the new host into a combined language, these systems port part of the (C)LP
host environment as well. This needlessly enlarges the paradigm shift for the
programmers of the imperative host language. We will show that a tighter inte-
gration of both worlds leads to a useful and powerful language extension, intuitive
to both CHR adepts and imperative programmers.

1.1 Overview and Contributions

Our contributions can be summarized as follows:

– We show how CHR can be integrated effectively with an imperative host
language. In Section 3, we first outline the different language design issues
faced when integrating these two different paradigms. Next, Section 4 out-
lines our solution, aimed at a tight and natural integration of both worlds.
The approaches taken by related systems are discussed in Section 7.

– In Section 5 we present a compilation scheme from CHR to efficient, op-
timized imperative host language code. We survey generic optimizations,
and show how they can be ported to the imperative setting. We also focus
on implementation aspects and optimizations specific to imperative target
languages.

– We developed mature and efficient implementations of the proposed lan-
guage design for both Java and C, available at respectively [12] and [13].
The design of both language extensions is presented in Section 4, and their
implementations are evaluated in Section 6.

The focus of this article is thus on the design and implementation of CHR
systems for imperative host languages. First, we briefly introduce a generic, host
language independent syntax and semantics of CHR. For a gentler introduction
to CHR, we refer the reader to [2, 5, 7, 14].

2 Preliminaries: CHR Syntax and Semantics

CHR is embedded in a host language that provides a number of predefined con-
straints, called built-in constraints, and a number of data types. The traditional
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host language of CHR is Prolog. Its only built-in constraint is equality over
its data types, logical variables and Herbrand terms. Asides from built-in con-
straints, practical implementations mostly allow arbitrary host language proce-
dures to be called as well. Whilst most CHR systems are embedded in Prolog,
efficient implementations also exist for Java, Haskell, and C (see Section 7). In
this section we only consider the generic, host language independent syntax and
semantics of CHR.

2.1 Syntax and Informal Semantics

A CHR program is called a CHR handler. It declares a number of user-defined
CHR constraints and a sequence of CHR rules. The rules determine how the
handler’s CHR constraints are simplified and propagated. A constraint, either
built-in or CHR, is written c(X1, . . . , Xn). Here c is the constraint’s type, and the
Xi’s are the constraint’s arguments. The arguments are elements of a host lan-
guage data type. The number of arguments, n, is called the constraint’s arity,
and c is called an n-ary constraint, commonly denoted c/n. For nullary con-
straints the empty argument list is omitted. Trivial nullary built-in constraints
are true and false. Depending on the system, other symbolic notations can
be used to express constraints. Equality for instance is mostly written using an
infix notation, that is, ‘X = Y’ is used instead of e.g. ‘eq(X, Y)’.

There are three kinds of CHR rules (n, ng, nb ≥ 1 and n ≥ r > 1):

– Simplification rules: h1, . . . , hn ⇔ g1, . . . , gng | b1, . . . , bnb
.

– Propagation rules: h1, . . . , hn ⇒ g1, . . . , gng | b1, . . . , bnb
.

– Simpagation rules: h1, . . . , hr−1 \ hr, . . . , hn ⇔ g1, . . . , gng | b1, . . . , bnb
.

The head of a CHR rule is a sequence, or conjunction, of CHR constraints
‘h1, . . . , hn’. A rule with n head constraints is called an n-headed rule; when n > 1
it is a multi-headed rule. The conjuncts hi of the head are called occurrences.
Both the occurrences in a simplification rule and the occurrences ‘hr, . . . , hn’ in a
simpagation rule are called removed occurrences. All other occurrences are kept
occurrences. The body of a CHR rule is a conjunction of CHR constraints and
built-in constraints ‘b1, . . . , bnb

’. The part of the rule between the arrow and the
body is called the guard. It is a conjunction of built-in constraints. The guard
‘g1, . . . , gng | ’ is optional; if omitted, it is considered to be ‘true | ’. A rule is
optionally preceded by a unique rule identifier, followed by the ‘@’ symbol.

Example 1. The program leq, see Fig. 1, is a classic example CHR handler.
It defines one CHR constraint, a less-than-or-equal constraint, using four CHR
rules. All three kinds of rules are present. The constraint arguments are logical
variables. The handler uses one built-in constraint, namely equality. If the an-
tisymmetry is applied, its body adds a new built-in constraint to the built-in
constraint solver provided by the host environment. The body of the transitivity
rule adds a CHR constraint, which will be handled by the CHR handler itself.
The informal operational semantics of the rules is explained below, in Example 2.
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reflexivity @ leq(X, X) ⇔ true.

antisymmetry @ leq(X, Y), leq(Y, X) ⇔ X = Y.

idempotence @ leq(X, Y) \ leq(X, Y) ⇔ true.

transitivity @ leq(X, Y), leq(Y, Z) ⇒ leq(X, Z).

Fig. 1. The CHR program leq, a handler for the less-than-or-equal constraint

Informal Semantics. An execution starts from an initial query: a sequence of
constraints, given by the user. The multiset of all CHR constraints of a CHR
handler is called its constraint store. The execution proceeds by applying, or
firing, the handler’s rules. A rule is applicable if there are constraints matching
the rule’s occurrences present in the constraint store for which the guard con-
dition holds. When no more rules can be applied, the execution stops; the final
constraint store is called the solution.

Rules modify the constraint store as follows. A simplification rule removes the
constraints that matched its head, and replaces them with those in its body. The
double arrow indicates that the head is logically equivalent to the body, which
justifies the replacement. Often, the body is a simpler, or more canonical form
of the head. In propagation rules, the body is a consequence of the head: given
the head, the body may be added (if the guard holds). As the body is implied
by the head, it is redundant. However, adding redundant constraints may allow
more rewriting later on. Simpagation rules are a hybrid between simplification
and propagation rules: only the constraints matching its removed occurrences,
i.e. those after the backslash, are removed if the rule is applied.

Example 2. The first rule of the leq handler of Fig. 1, reflexivity, replaces a
leq(X,X) constraint by the trivial built-in constraint true. Operationally, this
entails removing this constraint from the constraint store. The antisymmetry
rule states that leq(X,Y) and leq(Y,X) are logically equivalent to X = Y. When
firing this rule, the two constraints matching the left-hand side are removed from
the store, after which the built-in equality constraint solver is told that X and Y
are equal. The third rule, idempotence, removes redundant copies of the same
leq constraint. It is necessary to do this explicitly since CHR has a multiset
semantics : multiple instances of the same constraint can reside in the constraint
store at the same time. The last rule, transitivity, is a propagation rule that
computes the transitive closure of the leq relation.

2.2 The Refined Operational Semantics

The operational semantics introduced informally in the previous section corre-
sponds to the so-called high-level or theoretical operational semantics of CHR
[2, 15]. In this highly non-deterministic semantics, rules are applied in arbitrary
order. Most CHR systems though implement a particular, significantly more de-
terministic instance of this semantics, called the refined operational semantics
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[15]. This semantics is commonly denoted by ωr. In ωr, queries and bodies are
executed left-to-right, treating the execution of each constraint as a procedure
call. When a CHR constraint is executed, this constraint becomes active, and
looks for matching rules in a top-to-bottom order. If a rule fires, the constraints
in its body become active first. Only when these are fully handled, the control
returns to the formerly active constraint.

The compilation scheme presented in Section 5 implements ωr, and its opti-
mizations are often justified by properties of this semantics. A sufficiently de-
tailed introduction to this formalism is therefore warranted. For a more complete
discussion, we refer the reader to [7, 15].

The ωr semantics is formulated as a state transition system. Transition rules
define the relation between subsequent execution states in a CHR execution.
Sets, multisets and sequences (ordered multisets) are defined as usual.

Execution State. Formally, an execution state of ωr is a tuple 〈A, S, B, T〉n.
The first element, the execution stack A, is explained below, in the subsection
on ωr’s transition rules. The CHR constraint store S is a set of identified CHR
constraints that can be matched with the rules. An identified CHR constraint
c#i is a CHR constraint c associated with a unique constraint identifier i. We
introduce the mapping operators chr (c#i) = c and id(c#i) = i, and extend them
to sequences and sets in the obvious manner. The constraint identifier is used to
distinguish otherwise identical constraints. This is why, even though chr (S) is a
multiset of constraints, S is indeed a set. The built-in constraint store B is the
logical conjunction of all built-in constraints passed to the underlying constraint
solvers. The propagation history T is a set of tuples, each recording a sequence
of constraint identifiers of the CHR constraints that fired a rule, together with
that rule’s identifier. Its primary function is to prevent trivial non-termination
for propagation rules. The integer counter n, finally, represents the next free
constraint identifier.

Notation. In the following, we use++ for sequence concatenation and � for dis-
joint set union1. For logical expressions X and Y , vars(X) denotes the set of free
variables, and ∃̄Y (X) ↔ ∃v1, . . . , vn : X with {v1, . . . , vn} = vars(X)\vars(Y ).
A variable substitution θ is defined as usual. The expression ‘Db |= B → ∃̄Bθ(G)’
formally states that modelling the built-in constraint domain Db (see e.g. [5]
for a rigorous definition of constraint domains), the built-in store B entails the
guard G after application of substitution θ. For CHR rules a generic simpaga-
tion notation is used: ‘H1 \H2 ⇔ G |B’. For propagation rules, H1 is the empty
sequence; for simplification rules H2 is empty.

Transition Rules. The transition rules of ωr are listed in Fig. 3. Given an initial
query Q, the initial execution state σ0 is 〈Q, ∅, true, ∅〉1. Execution proceeds by
exhaustively applying transitions to σ0, until the built-in store is unsatisfiable
or no more transitions are applicable.

1 Let X, Y , and Z be sets, then X = Y � Z ↔ X = Y ∪ Z ∧ Y ∩ Z = ∅.



166 P. Van Weert et al.

reflexivity @ leq[1](X, X) ⇔ true.

antisymmetry @ leq[3](X, Y), leq[2](Y, X) ⇔ X = Y.

idempotence @ leq[5](X, Y) \ leq[4](X, Y) ⇔ true.

transitivity @ leq[7](X, Y), leq[6](Y, Z) ⇒ leq(X, Z).

Fig. 2. The leq handler annotated with occurrence numbers

A central concept in this semantics is the active constraint, the top-most ele-
ment on the execution stack A. Each newly added CHR constraint causes an Ac-
tivate transition, which initiates a sequence of searches for partner constraints
to match rule heads. Adding a built-in constraint initiates similar searches for
applicable rules: a built-in constraint is passed to the underlying solver in a
Solve transition, which causes Reactivate transitions for all constraints whose
arguments might be affected. We say these constaints are reactivated. CHR con-
straints whose arguments are fixed are not reactivated, the additional built-in
constraint cannot alter the entailment of guards on these arguments; formally:

Definition 1. A variable v is fixed by a conjunction of built-in constraints B,
denoted v ∈ fixed(B), iff Db |= ∀ρ(∃̄v(B) ∧ ∃̄ρ(v)ρ(B) → v = ρ(v)) for arbitrary
renaming ρ.

The order in which occurrences are traversed is fixed by ωr. Each active con-
straint tries its occurrences in a CHR program in a top-down, right-to-left order.
The constraints on the execution stack can therefore become occurrenced (in Ac-
tivate and Reactivate transitions). An occurrenced identified CHR constraint
c#i : j indicates that only matches with the j’th occurrence of constraint c are
considered when the constraint is active.

Example 3. Fig. 2 shows the leq program, with all occurrences annotated with
their occurrence number. Rules are tried from top-to-bottom. In this example, this
means simplification is tried prior to propagation. Furthermore, occurrences in
the same rule are matched with the active constraint from right-to-left, ensuring
that the active constraint is removed as soon as possible. Both properties can
be essential for an efficient execution.

Each active CHR constraint traverses its different occurrences through a se-
quence of Default transitions, followed by a Drop transition. During this traver-
sal all applicable rules are fired in Propagate and Simplify transitions. As with
a procedure, when a rule fires, other constraints (its body) are executed, and exe-
cution does not return to the original active constraint until after these calls have
finished. The different conjuncts of the body are solved (for built-in constraints)
or activated (for CHR constraints) in a left-to-right order.

The approach taken by ωr thus closely corresponds to the execution of the
stack-based programming languages to which CHR is commonly compiled. This
is why the semantics feels familiar, and why it allows a natural interleaving
with host language code (see Section 4). It is also an important reason why the
semantics can be implemented very efficiently (see Section 5).
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3 Impedance Mismatch

CHR was originally designed to use a (C)LP language as a host. Integrating
it with imperative languages gives rise to particular challenges. Imperative host
languages do not provide certain language features used by many CHR programs,
such as logical variables, search, and pattern matching (Section 3.1). Conversely,
the CHR system must be made compatible with the properties of the imperative
host. Unlike Prolog, many imperative languages are statically typed, and allow
destructive update (Section 3.2).

3.1 (C)LP Language Features

Logical Variables. Imperative languages do not provide logical variables. No
reasoning is possible over imperative variables, unless they have been assigned a
value. Many algorithms written in CHR however use constraints over unbound

1. Solve 〈[b|A], S0 � S1, B, T〉n � 〈S1 ++A, S0 � S1, b∧B, T〉n where b is a built-in
constraint and vars(S0) ⊆ fixed(B), the variables fixed by B. This causes all CHR
constraints affected by the newly added built-in constraint b to be reconsidered.

2. Activate 〈[c|A], S, B, T〉n � 〈[c#n : 1|A], {c#n} � S, B, T〉n+1 where c is a CHR
constraint (which has not yet been active).

3. Reactivate 〈[c#i|A], S, B, T〉n � 〈[c#i : 1|A], S, B, T〉n where c is a CHR con-
straint (re-added to A by a Solve transition but not yet active).

4. Simplify 〈[c#i :j|A], {c#i} � H1 � H2 � H3 � S, B, T〉n �
〈B++A, H1 � S, θ ∧ B, T′〉n where the j-th occurrence of c is d, an occurrence in a
(renamed apart) rule ρ of the form:

ρ @ H ′
1 \ H ′

2, d, H ′
3 ⇔ G | B

and there exists a matching substitution θ such that c = θ(d), chr(Hk) = θ(H ′
k) for

1 ≤ k ≤ 3, and Db |= B → ∃̄Bθ(G). Let t = (ρ, id(H1)++ id(H2)++ [i]++ id(H3)),
then t /∈ T and T

′ = T ∪ {t}.
5. Propagate 〈[c#i :j|A], {c#i} � H1 � H2 � H3 � S, B, T〉n �
〈B++[c#i :j|A], {c#i} � H1 � H2 � S, θ ∧ B, T′〉n where the j-th occurrence of c is
d, an occurrence in a (renamed apart) rule ρ of the form:

ρ @ H ′
1, d, H ′

2 \ H ′
3 ⇔ G | B

and there exists a matching substitution θ such that c = θ(d), chr(Hk) = θ(H ′
k) for

1 ≤ k ≤ 3, and Db |= B → ∃̄Bθ(G). Let t = (ρ, id(H1)++ [i]++ id(H2)++ id(H3)),
then t /∈ T and T

′ = T ∪ {t}.
6. Drop 〈[c#i :j|A], S, B, T〉n � 〈A, S, B, T〉n if there is no j-th occurrence of c.

7. Default 〈[c#i : j|A], S,B, T〉n � 〈[c#i : j + 1|A], S, B, T〉n if the current state
cannot fire any other transition.

Fig. 3. The transition rules of the refined operational semantics ωr
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variables, or require two, possibly unbound variables to be asserted equal. The
latter feature of (C)LP languages is called variable aliasing.

Example 4. The constraints of the leq handler in Fig. 1 range over logical vari-
ables. The body of the antisymmetry rule contains an example of aliasing.

The unavailability of a corresponding feature would limit the usefulness of a
CHR system in imperative languages. A logical data type, together with library
routines to maintain it, therefore has to be implemented in the host language.

Built-in Constraint Solvers. More general than variable aliasing, (C)LP lan-
guages provide built-in constraint solvers for CHR. Prolog provides only one true
built-in constraint, namely equality over Herbrand terms. More powerful CLP
systems such as HAL offer multiple types of constraint solvers (see [16]). Imper-
ative languages on the other hand offer no built-in constraint support. To allow
high level programming with constraints in CHR guards and bodies, underlying
constraint solvers need to be implemented from scratch. We refer to Section 4.2
for more information.

Pattern Matching. CHR uses pattern matching to find applicable rules. In
logical languages, pattern matching is readily available through unification2, even
on elements of compound data structures (Herbrand terms). These matches are
referred to as structural matches. Imperative hosts typically do not provide a
suited language construct to perform pattern matching on its (compound) data
types. Of course, it is possible to implement a library for Herbrand terms and
their unification in the host language. A natural CHR embedding, however, also
allows constraints and pattern matching over native data types of the imperative
host. Section 3.2 discusses some complications that arise in this context.

Search. To solve non-trivial constraint problems constraint simplification and
propagation alone is not always enough. Many constraint solvers also require
search. As pure CHR does not provide search, many CHR systems therefore im-
plement CHR∨ (pronounced “CHR-or”), an extension of CHR with disjunctions
in rule bodies [17, 18]. The built-in support for chronological backtracking typi-
cally offered by Prolog and other (C)LP languages makes the implementation of
these disjunctions trivial. Providing search for a CHR system embedded in an
imperative host, however, requires an explicit implementation of the choice and
backtracking facilities.

We do not address this issue in this article. Earlier work extensively studies the
combination of CHR with search [19, 20] (see Section 7). There remain however
some interesting challenges for future work, as undoing changes made after a
choice-point becomes particularly challenging if arbitrary imperative data types
and operations are allowed. The only practical solution seems to be a limitation
of the host language code used in CHR handlers that need to support search.
2 Although CHR’s pattern matching (sometimes also referred to as one-way unifica-

tion) is different from unification, it is relatively easy to implement matching using
the built-in unification facilities of a typical logical language.
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3.2 Imperative Language Features

Static Typing. Unlike Prolog, many imperative languages are statically typed.
A natural implementation of CHR in a typed host language would also support
typed constraint arguments, and perform the necessary type checking. Calling
arbitrary external host language code is only possible if the CHR argument types
have a close correspondence with those of the host language.

Complex Data Types. The data types provided by imperative languages are
typically much more diverse and complex than those used in logical languages.
An effective embedding of CHR should support host language data types as
constraint arguments as much as possible.

In Section 3.1 we saw that in (C)LP embeddings, CHR handlers use struc-
tural matches to specify the applicability of rules on compound data. Providing
structural pattern matching on arbitrary compound data structures provided by
imperative languages would require specific syntax, and has certain semantical
issues, as discussed in the next three subsections.

Modification Problem. Contrary to logical languages, imperative languages
allow side effects and destructive update. When executing imperative code, arbi-
trary values may therefore change. If these values are referred to by CHR guards,
these modifications may require the reactivation of one or more constraints. Mod-
ifications to a constraint’s arguments could also render inconsistent the index
data structures used by an efficient CHR implementation (see Section 5). In
general it can be very hard or impossible for the CHR handler to know when the
content of values has changed. In the production rule literature this is referred to
as the Modified Problem [21, 22, 23] (we prefer the term modification problem,
as modified problem wrongfully suggests the problem is modified).

Non-monotonicity. The traditional specification of CHR and its first order
logical reading (see e.g. [2]) assumes monotonicity of the built-in constraints,
that is: once a constraint is entailed, it remains entailed. If non-monotonic host-
language statements are used in a guard, the corresponding rule no longer has
a logical reading. This issue is not exclusive to an imperative host language,
but certainly more prominent due to the possibility of destructive updates. A
consequence of using imperative data structures as constraint arguments is in-
deed that, often, these values change non-monotonically. CHR rules that were
applicable before, or even rules that have been applied earlier, can thus become
inapplicable again by executing host language code. This problem is related to
the modification problem, but is more a semantical issue than a practical one.

Behavioral Matches. As structural matches over imperative data types are
often impractical (see above), guards will test for properties of constraint argu-
ments using procedure calls. This is particularly the case for object-oriented host
languages: if constraints range over objects, structural matches are impossible
if encapsulation hides the objects’ internal structure. Guards are then forced to
use public inspector methods instead. Matching of objects using such guards
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has been coined behavioral matches [24]. So, not only can it be difficult to de-
termine when the structure of values changes (the modification problem), it can
be difficult to determine which changes affect which guards.

4 Language Design

A CHR system for an imperative host language should aim for an intuitive and
familiar look and feel for users of both CHR and the imperative language. This
entails a combination of the declarative aspects of CHR — high-level program-
ming in terms of rules and constraints, both built-in and user-defined — with
aspects of the host language. As outlined in Section 3, such a combination leads
to a number of language design challenges. In this section we outline our view on
these issues, and illustrate with two CHR system case studies: one for Java [25]
and one for C [26].

4.1 Embedding CHR in an Imperative Host Language

A natural integration of CHR with a host language should allow CHR rules
to contain arbitrary host language expressions. For the operational semantics,
the refined operational semantics is therefore a good choice (see Section 2.2).
The left-to-right execution of guards and bodies is familiar to imperative pro-
grammers, and eases the interleaving with imperative host language statements.
Moreover, to allow an easy porting of existing CHR solvers, support for the same
familiar semantics is at least as important as a similar syntax.

Because calling imperative code typically requires typed arguments, it follows
that CHR constraints best range over regular host language data types. In our
opinion, this is also the most natural for imperative programmers. Logical vari-
ables and other (C)LP data types, such as finite domain variables or Herbrand
terms, can always be encoded as host language data types. The CHR compiler
could however provide syntactic sugar for (C)LP data types and built-in con-
straints to retain CHR’s high-level, declarative nature of programming.

Our philosophy is contrary to the one adopted by related systems, such as
HCHR, JaCK and DJCHR. As seen in Section 7, these systems limit the data
types used in CHR rules to typed logical variables (JaCK) or Herbrand terms
(HCHR and DJCHR). Host language data then has to be encoded as logical
variables or terms, whereas we propose the opposite: not only is using the host’s
types is more intuitive to an imperative programmer, it also avoids the per-
formance penalty incurred by constantly encoding and decoding of data when
switching between CHR and host language. Partly due to the data type mis-
match, some of the aforementioned systems simply do not allow CHR rules to
call host language code, or only in a very limited manner (see also Section 7).

The limitations imposed by systems such as JaCK and DJCHR, however,
could be motivated by the fact that they need to be able to undo changes made in
CHR bodies. This language design choice is reasonable for constraint solvers that
require either search or adaptation. Practice shows, however, that even Prolog
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CHR systems are for general purpose programming (see e.g. [3] for a recent
survey of CHR applications). These CHR programs do not always use search or
adaptation, and can often be expressed naturally without term encodings.

We therefore focus on providing a tight, natural integration of imperative host
language features with CHR. The goal is to facilitate a seemless cooperation with
software components written in the host language (see also Section 1). We argue
that constraints should therefore range over host language data types, and that
arbitrary host language expressions must be allowed in rule guards and bodies.

As seen in Section 3, allowing arbitrary imperative data types and expressions
in rule guards leads to the modification problem. An important aspect of the in-
teraction between a CHR handler and its host is thus that the CHR handler
has to be notified of any relevant modifications to the constrained data values.
A first, simple solution is for a CHR handler to provide an operation to reacti-
vate all constraints in its store (see Section 5.2). In Section 5.3, we discuss the
performance issues with this solution, and propose several optimizations. Where
possible, these notifications should furthermore occur transparently, relieving
the programmer of the responsibility of notifying after each change.

4.2 Built-in Constraints and Solvers

In the previous section, we argued that arbitrary host language expressions
should be allowed. In this section, we show that it remains worthwhile to consider
constraints separately. An important motivation will be that the modification
problem can be solved effectively for built-in constraints.

The semantics of CHR assumes an arbitrary underlying constraint system (see
Section 2). Imperative languages however offer hardly any built-in constraint
support (Section 3). Typically, only asking whether two data values are equal is
supported natively, or asking disequality over certain ordered data types. Solvers
for more advanced constraints have to be implemented explicitly.

In any case — whether they either built in the host language itself, or realized
as a host language library, or even by another CHR constraint handler (see
below) — we call these solvers built-in constraint solvers, and their constraints
built-in constraints. The interaction between a CHR handler and the underlying
constraint solvers is well defined (after [16]):

– A built-in constraint solver may provide procedures for telling new con-
straints. Using these procedures, new constraints can be added to the solver’s
constraint store in bodies of CHR rules and the initial query.

– For constraints that occur in guards, the constraint solver must provide a
procedure for asking whether the constraint is entailed by its current con-
straint store or not.

– Thirdly, a built-in constraint solver must alert CHR handlers when changes
in their constraint store might cause entailment tests to succeed. The CHR
handler then checks whether more rules can be fired. Constraint solvers
should relieve the user from the responsibility of notifying the CHR han-
dlers, and notify the CHR solver to only reconsider affected constraints. For
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efficiency reasons, this is typically solved by adding observers [27] to the
constrained variables. This is discussed in more detail in Section 5.3.

Example 5. Reconsider the leq handler of Example 1. The handler uses one
built-in constraint, namely equality over logical variables. For an imperative host
language, this constraint will not be natively supported, but implemented as a
library. The antisymmetry rule is the only rule that uses the tell version of this
constraint. All rules though use the ask version of this built-in constraint to check
whether the equality of certain logical variables is entailed (this is more clearly
seen when the rules are rewritten to their Head Normal Form, as introduced in
Section 5.2: see Fig. 8 of Example 9). Also, when new built-in constraints are
told, e.g. by the antisymmetry rule, the entailment of these guards may change,
and the necessary leq/2 constraints must be reactivated.

We do not require all built-in constraints to have both an ask and a tell version.
Constraints natively supported by an imperative host language for instance, such
as built-in equality and disequality checks, typically only have an ask version.
Also, traditionally, built-in constraints implemented by a CHR handler only have
a tell version. For a CHR constraint to be used in a guard, it requires both an
entailment check, and a mechanism to reactivate constraints when the constraint
becomes entailed (as explained above). In [28], an approach to automatic entail-
ment checking is introduced, whilst [29] proposes a programming discipline where
the programmer is responsible for specifying the entailment checks. Currently
though, no system provides ask versions of CHR constraints.

A first reason to distinguish constraints from arbitrary host language code
is thus that the modification problem is solved efficiently, and transparently to
the user. Built-in constraints can therefore safely be used in guards. A second
reason is that a CHR compiler may support specific syntactic sugar to ask and
tell these constraints (as assumed in the leq handler of the previous example).

Cooperating Constraint Systems. Multiple CHR handlers and built-in
solvers may need to cooperate to solve problems. CHR handlers can for in-
stance share variables constrained by the same built-in constraint solvers, or one
CHR handler can be used as a built-in solver for another CHR handler. When
implementing multiple solvers and handlers that have to work together, often
the need for global data structures arises. Examples include the data structures
required for the implementation of search, or an explicit call stack representation
(see Section 5). We therefore group such cooperative constraint components un-
der a single constraint system. Only solvers and handlers in the same constraint
system are allowed to work together.

4.3 CCHR

CCHR [26] is an integration of CHR with the programming language C [30].
CHR code is embedded into C code by means of a cchr block. This block can
not only contain CCHR constraint declarations and rule definitions, but also
additional data-type definitions and imports of host language symbols. Host
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cchr {
logical log_int_t int;

constraint leq(log_int_t,log_int_t);

reflexivity @ leq(X,X) <=> true;

antisymmetry @ leq(X,Y), leq(Y,X) <=> {telleq(X,Y);};
idempotence @ leq(X,Y) \ leq(X,Y) <=> true;

transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z);

}

void test(void) {
cchr_runtime_init();

log_int_t a=log_int_t_create(), b=log_int_t_create(),

c=log_int_t_create();

leq(a,b); leq(b,c); leq(c,a);

int nLeqs=0; cchr_consloop(j,leq_2,{ nLeqs++; });
assert(nLeqs==0);

assert(log_int_t_testeq(a,b));

assert(log_int_t_testeq(b,c));

assert(log_int_t_testeq(c,a));

log_int_t_destruct(a);

log_int_t_destruct(b);

log_int_t_destruct(c);

cchr_runtime_free();

}

Fig. 4. The CHR program leq implemented in CCHR

language integration is achieved by allowing arbitrary C expressions as guards,
and by allowing arbitrary C statements in bodies. Functions to add or reactivate
CHR constraints are made available to the host language environment, so they
can be called from within C.

Constraint arguments are typed, and can be of any C data type except arrays.
Support for logical data types is provided, both in the host language and within
CHR blocks. CCHR does not have a concept of built-in constraints as introduced
in Section 4.2. All ‘ask’ requests are simply host-language expressions, and ‘tell’
constraints are host-language statements, which have to be surrounded by curly
brackets. It is however possible to declare macro’s providing shorter notations
for certain operations, a workaround for C’s lack of polymorphism. When a data
type is declared as logical, such macro’s are generated automatically.

Rules follow the normal Prolog-CHR syntax, yet are delimited by a semicolon
instead of a dot. This latter would cause ambiguities since the dot is a C operator.

Example 6. In Figure 4 an example is given how to implement the leq handler
in CCHR. The first line starts the cchr block. The next line declares log int t
as a logical version of the built-in C data type int. The third line declares a leq
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package examples.leq;

import runtime.Logical;

import runtime.EqualitySolver;

public handler leq<T> {
public solver EqualitySolver<T> builtin;

public constraint leq(Logical<T>, Logical<T>) infix =<;

rules {
reflexivity @ X =< X <=> true;

antisymmetry @ X =< Y, Y =< X <=> X = Y;

idempotence @ X =< Y \ X =< Y <=> true;

transitivity @ X =< Y, Y =< Z ==> X =< Z;

}
}

Fig. 5. The leq handler using K.U.Leuven JCHR syntax

constraint that takes two logical integers as argument. The four rules of the leq
handler look very similar to those of Fig. 1. Equality of logical variables is told
using the generated telleq() macro.

The test() function shows how to interact with the CHR handler from within
C. The first line of the function initializes the CHR runtime. The next line creates
three log int t variables (a, b and c), and is followed by a line that adds the
three leq constraints leq(a,b), leq(b,c) and leq(c,a). The next line counts
the number of leq constraints left in the store. The next four lines assert that
no CHR constraints are left, and that all logical variables are equal (in C, if
the argument of assert evaluates to 0, the program is aborted and a diagnostic
error message is printed). The function ends with the destruction of the logical
variables used, and the release of all memory structures created by the CCHR
runtime.

4.4 The K.U.Leuven JCHR System

This section outlines and illustrates the most important language design choices
made for the K.U.Leuven JCHR System [12, 25]. For a more detailed description
of the language extension we refer to the system’s user’s manual [31].

A handler declaration in K.U.Leuven JCHR is designed to be very similar to
a class declaration in Java. Language features such as package and import dec-
larations, and the access modifiers public, private and protected, are defined
exactly as their Java counterparts [32]. To ease the transition from untyped Pro-
log to strongly typed Java, we further fully support Java’s generic types [32, 33].
To the best of our knowledge the K.U.Leuven JCHR system is the first typed
CHR-system that adequately deals with polymorphic handlers this way.
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A JCHR handler declares one or more constraints. As in CCHR, constraint
arguments are typed. In principle, any valid Java-type, including primitive types
and generic types, can be used. For each handler, and for each of its declared
constraints, a corresponding Java class is generated. A handler class contains
methods to add non-private constraints, and to inspect the constraint store.
The latter methods return standard Java Collection or Iterator objects [34].
The handler class itself also implements the Collection<Constraint> interface.

Example 7. Fig. 5 shows a polymorphic K.U.Leuven JCHR implementation of
the canonical leq example. Note that JCHR allows constraints, both built-in
and CHR constraints, to be written using infix notation. Fig. 6 shows how the
generated classes are used to solve leq constraints over Integer objects.

...

EqualitySolver<Integer> builtin = new EqualitySolverImpl<Integer>();

LeqHandler<Integer> handler = new LeqHandler<Integer>(builtin);

Logical<Integer> A = new Logical<Integer>(),

B = new Logical<Integer>(), C = new Logical<Integer>();

handler.tellLeq(A, B); // A ≤ B

handler.tellLeq(B, C); // B ≤ C

handler.tellLeq(C, A); // C ≤ A

// all CHR constraints are simplified to built-in equalities:

assert handler.getLeqConstraints().size() == 0;

assert builtin.askEqual(A, B);

assert builtin.askEqual(B, C);

assert builtin.askEqual(A, C);

...

Fig. 6. A code snippet illustrating how the JCHR leq handler and equality built-in
solvers are called from Java code

JCHR supports user-defined incremental, built-in constraint solvers. The design
follows the principles outlined in Section 4.2. Using annotations, a regular Java
type is annotated with meta-data that allows the JCHR compiler to derive which
built-in constraints are solved by a solver, and which methods to use for ask-
ing and telling these constraints. A JCHR handler has to declare all built-in
constraint solvers it uses.

Example 8. The K.U.Leuven JCHR System contains an efficient reference im-
plementation for equality over logical variables. Its interface declaration is shown
in Fig. 7. It declares a single eq constraint, that can also be written using infix
notation. This built-in solver is used in the leq example of Fig. 5. The solver
declaration tells the JCHR compiler to use the EqualitySolver<T> interface
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@JCHR Constraint (identifier = "eq", arity = 2, infix = "=")

public interface EqualitySolver<T> {
@JCHR Tells ("eq")

public void tellEqual(Logical<T> X, T val);

@JCHR Tells ("eq")

public void tellEqual(T val, Logical<T> X);

@JCHR Tells ("eq")

public void tellEqual(Logical<T> X, Logical<T> Y);

@JCHR Asks ("eq")

public void askEqual(Logical<T> X, T val);

@JCHR Asks ("eq")

public void askEqual(T val, Logical<T> X);

@JCHR Asks ("eq")

public void askEqual(Logical<T> X, Logical<T> Y);

}

Fig. 7. The declaration of a built-in equality constraint solver interface using annota-
tions

as a built-in solver. Using the annotations, the JCHR compiler knows to use
the askEqual method to check the implicit equality guards, and to use the
tellEqual method in the body of the antisymmetry rule. Fig. 6 shows how a
built-in constraint solver is used to verify that all JCHR constraints are simpli-
fied to built-in equalities after adding three leq constraints to the handler.

Next to high-level constraint programming, the K.U.Leuven JCHR also allows
arbitrary Java objects and methods to be used. An adequate, efficient solution
for the modification problem though, which would allow behavioral matches over
arbitrary Java Bean objects [35], is an important part of future work. Interac-
tion with Java already possible though: the user simply needs to reactivate all
constraints in case of relevant changes explicitly.

5 Optimized Compilation

Considerable research has been devoted to the efficient compilation and execu-
tion of CHR programs, mostly with Prolog as the host language. An early, very
influential implementation was the SICStus implementation described in [4]. Its
operational semantics was the basis for the refined operational semantics ωr (see
Section 2.2), and its compilation scheme has been adopted by state-of-the-art
systems such as HALCHR [7, 8] and K.U.Leuven CHR [5, 6].

We show how this compilation scheme can be ported to the imperative setting.
The structure of this section is similar to that of [5, Chapter 5: The Implemen-
tation of CHR: A Reconstruction]. Section 5.2 presents a simple compilation
scheme for CHR. This naive scheme, whilst obviously correct with respect to ωr,
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is fairly inefficient. In Sections 5.3 and 5.4, we gradually transform it into a very
efficient CHR compilation scheme. Equivalents of most optimizations discussed
in Section 5.3 are also implemented in the Prolog and HAL systems. Section 5.4
however addresses an important technical issue that only arises when adapting
the scheme to imperative host languages.

For the compilation scheme presented below, we use imperative pseudo-code.
It can easily be instantiated for any concrete imperative language. The instance
used by the K.U.Leuven JCHR system to compile CHR to Java is described in
detail in [36].

Before the compilation scheme is introduced, Section 5.1 abstractly describes
the data structures and the operations it uses. The efficient implementation of
these data structures is beyond the scope of this article.

5.1 Basic Data Structures and Operations

The Constraint Store. The main data structure of a CHR handler is the
constraint store. Each stored CHR constraint is represented as a constraint sus-
pension in the constraint store. For each constraint, a constraint suspension data
type is generated containing the following fields:

type. The type of the constraint.
args. A list of fields containing the constraint’s arguments. The type of these

arguments is derived from the constraint’s declaration.
id. Each constraint suspension is uniquely identified by a constraint identifier,

as in the refined operational semantics.
alive. A boolean field indicating whether the constraint is alive or not.
activated. A boolean indicating whether the constraint has been (re)activated.

This field is used for optimizations (see Sections 5.3 and 5.4).
stored. A boolean field set to true if the constraint is stored in the constraint

store. Due to the Late Storage optimization (Section 5.3), suspensions may
represent constraints that are not stored in the constraint store.

hist. A constraint suspension may contain fields related to the propagation
history. More details can be found in Section 5.3.

The constraint suspension may contain further fields, used for instance for con-
stant time removal from the constraint store data structures. These implemen-
tation details are beyond the scope of this article though.

In the pseudo-code used throughout this article, a constraint suspension of
an n-ary constraint is denoted as c(X1, . . . , Xa)#id. We assume the transition
from a constraint identifier id to its corresponding constraint suspension can be
made, and we often make this transition implicitly. In other words, a constraint
identifier is very similar to a pointer to a constraint suspension.

The basic constraint store operations are as follows:

create(c, [args]). Creates a constraint suspension for a constraint with
given type c and argument list args, and returns its constraint identifier.
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Because arity and argument types are constraint specific, concrete imple-
mentations most likely offer specific create c operations for each constraint
type c .

store(id). Adds the referenced constraint suspension (created earlier with the
create operation) to the constraint store.

reactivateAll. Reactivates all constraints in the store, using the reactivate
(id) operation. Optionally, only constraints whose arguments are modifiable
are reactivated (as in ωr’s Solve transition, see Fig. 3).

reactivate(id). Reactivates the constraint with the given identifier.
kill(id). Removes the identified constraint suspension from the constraint

store data structures, and sets its alive field to false.
alive(id). Tests whether the corresponding constraint is alive or not.
lookup(c). Returns an iterator (see below) over all stored constraint suspen-

sions of constraint type c.

To iterate over candidate partner constraints, we use iterators [27]. This common
abstraction can easily be implemented in any imperative language. Even though
probably all CHR implementations rely on some form of iterators, their necessary
requirements have never been fixed explicitly. We require the iterators returned
by lookup operations to have at least the following properties:

robustness. The iterators are robust under constraint store modifications. If
constraints are added or removed whilst a constraint iteration is suspended,
iteration can be resumed from the point where it was suspended.

correctness. The iterators only return constraint suspensions that are alive.
completeness. All constraints that are stored at the moment of the iterator’s

creation are returned at least once in the iteration.
weak termination. A contiguous iteration does not contain duplicate suspen-

sions. Only if constraint store modifications occur whilst an iteration is
suspended, constraints returned prior to this suspension are allowed to be
returned once more.

Iterators are preferred to satisfy a stronger termination property, namely strong
termination, which requires that an iterator returns a constraint suspension at
most once.

Iterators offered by predefined data structures typically do not have all re-
quired properties. Iterators returned by most standard Java data structures [34],
for instance, are not robust under modifications.

The Propagation History. A second important data structure for any CHR
implementation is the propagation history. Abstractly, the propagation history
contains tuples, each containing a rule identifier and a non-empty sequence of
constraint identifiers (denoted ‘[id+]’). We assume the following two operations:

addToHistory(rule,[id+]) Adds a tuple to the propagation history.
notInHistory(rule,[id+]) Tests whether a given tuple is in the propagation

history or not.



CHR for Imperative Host Languages 179

1 procedure occurrence_ci_ji(idi,Xi,1,...,Xi,ai)

2 foreach c1(X1,1, . . . , X1,a1)#id1 in lookup(c1)

3
. . .

4 foreach ci−1(Xi−1,1, . . . , Xi−1,ai−1 )#idi−1 in lookup(ci−1)

5 foreach ci+1(Xi+1,1, . . . , Xi+1,ai+1)#idi+1 in lookup(ci+1)

6
. . .

7 foreach ch(Xh,1, . . . , Xh,ah
)#idh in lookup(ch)

8 if alive(id1) and ... and alive(idh)

9 if id1 �= id2 and ... and id1 �= idh

10
. . .

11 if idh−1 �= idh

12 if g1 and . . . and gng

13 if notInHistory(ρ,id1,...,idh)

14 addToHistory(ρ,id1,...,idh)

15 kill(idr)

16
...

17 kill(idh)

18 b1

19
...

20 bnb

21 end
22 end
23 end

24 . .
.

25 end
26 end
27 end

28 . .
.

29 end
30 end

31 . .
.

32 end
33 end

Listing 1. The compilation scheme for a single occurrence. The active constraint is
ci(Xi,1, . . . , Xi,ai), with constraint identifier idi.

5.2 Basic Compilation Scheme

A CHR rule ρ with h occurrences in its head has the following generic form:

ρ@ c[j1]
1 (X1,1, . . . , X1,a1), . . . , c[jr−1]

r−1 (Xr−1,1, . . . , Xr−1,ar−1) \
c[jr ]

r (Xr,1, . . . , Xr,ar ), . . . , c[jh]
h (Xh,1, . . . , Xh,ah

) ⇔ g1, . . . , gng | b1, . . . , bnb .

The occurrences in a rule are numbered from left to right, with r the index
of the first removed occurrence. For a simplification rule there are no kept oc-
currences (i.e., r = 1), for a propagation rule there are no removed occurrences
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(h = r−1). The occurrence number ji in c[ji]
i denotes that this occurrence is the

ji’th occurrence of constraint ci in the program, when numbered according to the
top-to-bottom, right-to-left order determined by ωr, as defined in Section 2.2.

In this generic form, also called the Head Normal Form (HNF), all arguments
Xα,β in a rule’s head are variables. Moreover, variables never occur more than
once in a rule’s head, that is: all equality guards implicitly present in the head
are written explicitly in the guard.

Example 9. Fig. 8 shows the normalized version of the leq handler, with occur-
rence numbers added for illustration purposes.

reflexivity @ leq[1](X, X1) ⇔ X = X1 | true.

antisymmetry @ leq[3](X, Y), leq[2](Y1, X1) ⇔ X = X1, Y = Y1 | X = Y.

idempotence @ leq[5](X, Y) \ leq[4](X1, Y1) ⇔ X = X1, Y = Y1 | true.

transitivity @ leq[7](X, Y), leq[6](Y1, Z) ⇒ Y = Y1 | leq(X, Z).

Fig. 8. The leq handler in Head Normal Form. Occurrence numbers are added for
illustration purposes (as in Fig. 2).

Listing 1 shows the compilation scheme for an occurrence c[ji]
i in such a rule.

Lines 2–7 constitute a nested iteration over all h − 1 candidate partner con-
straints. A rule is applicable on some combination of constraints if all constraints
are alive (line 8) and mutually distinct (lines 9–11), and if the guard is satisfied
(line 12). After verifying that the rule has not fired before with the same combina-
tion of constraints (line 13), the rule is fired: the propagation history is updated
(line 14), the constraints that matched removed occurrences are removed from
the constraint store (lines 15–17), and the body is executed (lines 18–20).

For each n-ary constraint c a procedure c(X1, . . . , Xn) is then generated by
the compiler as depicted in Listing 2. These procedures are used for executing
CHR constraints in the body of rules, or for calling CHR from the host lan-
guage. Also for each constraint c an instance of the (polymorphic) procedure
activate(c(X1, . . . , Xn)#id) is generated. Called by both c(X1, . . . , Xn) and
reactivate(id), it deals with trying all occurrence procedures in order.

With the basic compilation scheme, it is the responsibility of the built-in con-
straint solvers to call reactivateAll each time a built-in constraint is added.
This operation calls the reactivate(id), also shown in Listing 2, for all con-
straints in the store (see also Section 5.1). As a simple optimization, constraints
without modifyable arguments should not be reactivated, as indicated in the
corresponding Solve transition of ωr.

Correctness. The basic compilation scheme of Listings 1–2 closely follows the
refined operational semantics (see Section 2.2). It is therefore not hard to see
it is correct. Lines 1–2 of Listing 2 correspond with an Activate transition:
the constraint is assigned a constraint identifier and stored in the constraint
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1 procedure c(X1,...,Xn)

2 id = create(c, [X1, . . . , Xn])

3 store(id)

4 activate(id)

5 end
6

7 procedure reactivate(id)

8 activate(id)

9 end
10

11 procedure activate(c(X1 , . . . , Xn)#id)

12 occurrence_c_1(id,X1,...,Xn)

13 ...

14 occurrence_c_m(id,X1,...,Xn)

15 end

Listing 2. Compilation scheme for an n-ary constraint c with m occurrences through-
out the program. For each occurrence, lines 4–6 call the corresponding occurrence
procedure (see Listing 1).

store. The remaining lines constitute a sequence of Default transitions, chaining
together the different occurrence procedures.

Each occurrence procedure, as shown in Listing 1, has to perform all applicable
Propagate or Simplify transitions. The body is executed left-to-right as a
sequence of host language statements, thus mapping the activation stack onto
the host’s implicit call stack.

The only subtlety is showing that in a sequence of Propagate transitions,
all required partner constraint combinations are effectively found by the nested
iterations of lines 2–7. The order in which the partners have to be found is not
determined by ωr. The completeness and correctness properties of the itera-
tors guarantee that an iteration contains at least all constraints that existed at
the creation of the iterator, and that are still alive on the moment the iterator
is advanced. However, constraints that are added to the store after the creation
of an iterator, i.e. by an execution of the body, are not required to appear in the
iteration. These constraints, however, have been active themselves, so any com-
bination involving them has already been tried or applied. As the propagation
history prevents any re-application, not including these constraints in iterations
is correct.

Running Example. The following example will be used as a running example
for illustrating the different optimizations throughout the next section:

Example 10. Consider the following rule from the ram simulator example [37]:

add @ mem(B,Y), prog(L,add,B,A) \
mem(A,X), pc(L) <=> mem(A,X+Y), pc(L+1).
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1 procedure occurrence_pc_1(id4,L)

2 foreach mem(B,Y)#id1 in lookup(mem)

3 foreach prog(L1,$1,B1,A)#id2 in lookup(prog)
4 foreach mem(A1,X)#id3 in lookup(mem)

5 if alive(id1) and alive(id2) and alive(id3) and alive(id4)

6 if id1 �= id2 and id1 �= id3 and id1 �= id4

7 if id2 �= id3 and id2 �= id4

8 if id3 �= id4

9 if A = A1 and B = B1 and L = L1 and $1 = add

10 if notInHistory(add,id1,id2,id3,id4)

11 addToHistory(add,id1,id2,id3,id4)

12 kill(id3)

13 kill(id4)

14 mem(A,X+Y)

15 pc(L+1)

16 end
17 end

18 . .
.

Listing 3. Naive compilation of the pc(L) occurrence of the ram simulator rule

This rule simulates the add instruction of a Random Access Machine. The full
program can be found in Appendix A. The program of the simulated RAM
machine is represented as prog constraints. The current program counter L is
maintained in a pc constraint. If L refers to an add instruction, the above rule
is applicable. It looks up two cells of the RAM machine’s memory, and replaces
one of them with a cell containing the sum of their values, before advancing to
the next instruction by adding an incremented program counter.

After HNF transformation, the add rule becomes:

add @ mem(B,Y), prog(L1,$1,B1,A) \ mem(A1,X), pc(L)
<=> A = A1, B = B1, L = L1, $1 = add | mem(A,X+Y), pc(L+1).

The code for the pc occurrence in this rule, using the basic compilation scheme,
is shown in Listing 3.

5.3 Optimizations

This section describes a number of optimizations for the basic compilation
scheme presented in the previous section. Most of these optimizations are not
new, and have been applied for compiling CHR to (C)LP as well. Our contri-
bution is a first clear survey that places the many optimizations mentioned in
recent literature [5, 7, 8, 38, 39, 40, 41, 42, 43] in one coherent framework. Even
though introduced and illustrated for an imperative host language, the overview
provided in this section is useful for any reader interested in optimized compila-
tion of CHR, or any other forward chaining rule-based language. Implementation
aspects more specific to imperative target languages are discussed in Section 5.4.
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1 procedure occurrence_pc_1(id4,L)

2 foreach mem(B,Y)#id1 in lookup(mem)

3 foreach prog(L1,$1,B1,A)#id2 in lookup(prog)
4 if B = B1 and L = L1 and $1 = add

5 foreach mem(A1,X)#id3 in lookup(mem)

6 if id1 �= id3

7 if A = A1

8 if alive(id1) and alive(id2) ... and alive(id4)

9 if notInHistory(add,id1,id2,id3,id4)

10
...

Listing 4. The compilation of the ram simulator example of Listing 3 after Loop-
Invariant Code Motion

Loop-Invariant Code Motion. The tests on lines 9–12 of Listing 1 should be
performed as early as possible. Otherwise a phenomenon denoted trashing could
occur, where tests depending only on outer loops fail for all iterations of the inner
loops. So guards are scheduled as soon as all required variables are present3, and
the identifiers of new candidate partner constraints are immediately compared
to those of the candidates already found. Only identifiers of constraints of the
same type have to be compared.

The alive tests on line 8 are not yet moved, since the liveness of partner
constraints may change when the rule is committed. Failure to test the liveness
of all partners before the next body execution might result in a rule being applied
with dead constraints. The optimization of the alive tests is addressed later.

Example 11. The optimized compilation of the ram simulator example intro-
duced in the previous section is listed in Listing 4. Scheduling the ‘L = L1’ on
line 4 avoids enumerating all mem(A,X) memory cells before the right program
instruction is found. The search for partner constraints is not yet optimal though.
Further optimizations will address several remaining issues.

Indexing. The efficient, selective lookup of candidate partner constraints is
indispensable. To achieve this, indexes on constraints are used.

Example 12. In Listing 4 of the ram simulator example, line 3 iterates over all
prog constraints, each time immediately testing the ‘L = L1’ guard. There will
however be only one prog constraint with the given instruction label L (see also
the Set Semantics optimization). Using an index to retrieve this single constraint,
reduces the linear time complexity of this part of the partner constraint search
to constant time. A similar reasoning applies to line 5 of Listing 4.
3 Note that we assume all guards to be monotonic (see Section 3.2). If a satisfied

guard might become unsatisfied by executing a body, scheduling this guard early is
not allowed for Propagate transitions.
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1 procedure occurrence_pc_1(id4,L)

2 foreach mem(B,Y)#id1 in lookup(mem)

3 foreach prog(L1,$1,B1,A)#id2 in lookup(prog,{B=B1,L=L1,$1=add})
4 foreach mem(A1,X)#id3 in lookup(mem,{A=A1})
5 if id1 �= id3

6
. . .

Listing 5. Compilation of the ram simulator’s pc(L) occurrence. This version improves
Listing 4 by incorporating the Indexing optimization.

For lookups of partner constraints via known arguments, tree-, hash-, or array-
based indexes are used (see e.g. [5, 7, 8, 44]). Tree-based indexes can be used
not only for equality-based lookups, but also for pruning the partner constraint
search space in case of disequality guards (see [16]). The other two indexing types
are particularly interesting as they offer (amortized) constant time constraint
store operations. Care must be taken that indexes remain consistent after mod-
ifications to the indexed arguments. These techniques are therefore often only
used for unmodifiable constraint arguments.

One indexing technique for unbound logical variables commonly used by CHR
implementations is attributed variables [4, 45]. With this technique, variables
contain references to all constraints in which they occur. This allows constant
time lookups of partner constraints via shared variables.

Imperative host languages naturally allow for direct and efficient implementa-
tions of index data structures [25, 26]. In fact, performance-critical parts of the
hash indexes of the K.U.Leuven CHR system for SWI-Prolog [5, 6] have recently
been reimplemented in C for efficiency.

Indexes are incorporated into the general compilation scheme by extending
the lookup operation. The extended operation accepts an additional set of condi-
tions, allowing the combination of a lookup with one or more subsequent guards.
This operation may make use of existing indexes to obtain all constraints sat-
isfying the requested conditions, or any superset thereof. In the latter case, the
conditions not guaranteed by the index are checked within the iterator. This way,
constraints returned by the iterator are always guaranteed to satisfy the provided
guard conditions. By using index lookups that only return the requested con-
straints, suitable candidate partner constraints are looked up far more efficiently.

Example 13. Listing 5 shows the optimized compilation of our running example.
If the specialized lookup operations on lines 3–4 use array- or hash-based in-
dexing, both partner constraints are found in O(1) time. Without indexing, the
time complexity is O(p ×m), with p the number of lines of the ram program,
and m the number memory cells used by the ram machine.

Join Ordering. The time complexity of executing a CHR program is often
determined by the join ordering — the order in which partner constraints are
looked up in order to find matching rules. So far this order was determined by
the order they occur in the rule.
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1 procedure occurrence_pc_1(id4,L)

2 foreach prog(L1,$1,B1,A)#id2 in lookup(prog,{L=L1,$1=add})
3 foreach mem(A1,X)#id3 in lookup(mem,{A=A1})
4 foreach mem(B,Y)#id1 in lookup(mem,{B=B1})
5 if id1 �= id3

6
. . .

Listing 6. Compilation of the pc(L) occurrence of Listing 5 with optimal Join Order-
ing

The join order determines the earliest position where guards, and thus in-
dexes, may be used. The general principle behind Join Ordering is to maximize
the usage of indexes, in order to minimize the number of partner constraints
tried. The optimal join order may depend on dynamic properties, such as the
number of constraints in the store for which certain guards are entailed. Some-
times functional dependency analysis [7, 8, 39] can determine statically that
certain indexed lookups return at most one constraint (see also the Set Seman-
tics optimization). Without functional dependencies though (or without proper
indexing), a compiler must rely on heuristics to determine the join order. The
most comprehensive treatment of the join ordering problem is [38].

Example 14. Line 2 of Listing 5 iterates over all mem constraints. Lacking any
information on B and L, there is no possibility to use an index using the standard
join order. The join order depicted in Listing 6, on the other hand, first looks
up the prog constraint using the known L. Next both mem partners are looked
up using the known A and B. In all three cases, if proper indexing is used, only
one partner constraint is retrieved (see also Example 15), as the first argument
of both the prog/4 and the mem/2 constraint are unique identifiers. The lat-
ter property may be derived statically from the full ram program as listed in
Appendix A using functional dependency analysis.

Set Semantics. The functional dependency analysis may show at compile time
that a certain lookup will result in at most one constraint [8, 39]. In this case,
more efficient data structures can be used for the constraint store and its indexes,
and specialized lookup routines can be used that return a single suspension
instead of an iterator. Such specialized routines are denoted lookup single.

Example 15. In our running example, all lookups have set semantics after ap-
plying Join Ordering (see Example 14). All loops can thus be turned into simple
conditionals, as shown in Listing 7. As an index on prog’s first argument alone
already yields at most one result, the test on $1 is placed outside the lookup.

Early Drop and Backjumping. As seen in Section 5.1, iterators are guaran-
teed not to return dead constraints. Constraints may be removed though when
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1 procedure occurrence_pc_1(id4,L)

2 prog(L1,$1,B1,A)#id2 = lookup_single(prog,{L=L1})
3 if id2 �= nil
4 if $1 = add

5 mem(A1,X)#id3 = lookup_single(mem,{A=A1})
6 if id3 �= nil
7 mem(B,Y)#id1 = lookup_single(mem,{B=B1})
8 if id1 �= nil and id1 �= id3

9
. . .

Listing 7. The compilation scheme for the ram simulator rule occurrence after apply-
ing Set Semantics to Listing 6

1 procedure activate(c(X1 , . . . , Xn)#id)

2 if occurrence_c_1(id,X1,...,Xn) return

3 ...

4 if occurrence_c_m(id,X1,...,Xn) return

5 end

Listing 8. Compilation scheme for an n-ary constraint c with m occurrences through-
out the program. This is an updated version of the activate procedure of Listing 2,
performing an Early Drop for the active constraint if required.

matching removed occurrences, or indirectly during the execution of the body. In
the naive compilation scheme of Listing 1, this leads to many useless iterations
where the active constraint, or certain partner constraints, are no longer alive.

Once the active constraint is killed, we should stop handling it. We call this
an Early Drop. For this optimization, the activate operation of Listing 2 is
replaced with the version of Listing 8. Occurrence routines are modified to re-
turn a boolean: true if trying further occurrences is no longer necessary; false
otherwise. The alive test for the active constraint is thus removed from line 8
of Listing 1, and replaced with a ‘if not alive(idi) return true’ statement
right after the body. At the end of the occurrence code finally (i.e., after line 32
of Listing 1), a ‘return false’ is added. This is the default case, signifying that
any remaining occurrences must still be tested for the current active constraint.

A similar optimization is possible for the partner constraints. When using the
scheme of Listing 1, a form of trashing similar to the one seen in Loop-Invariant
Code Motion may occur. If, for instance, the first partner constraint dies by
executing the body, all nested loops are still fully iterated. Since the first partner
is already dead, all these lookups and iterations are useless. So, if a constraint
dies, we should instead immediately continue with the next constraint for the
corresponding loop. The alive tests for the partner constraints are therefore
moved after the alive test for the active constraint (i.e., after the body as well).
The constraint of the outermost iterator is tested first. If one of the partner
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constraints tests dead after the execution of the body, a jump is used to resume
the corresponding iteration. This optimization, known as Backjumping, avoids
the form of trashing described above.

All alive tests are now placed after the body instead of before it. This is
allowed because at the start of a body execution, each partner was either just
returned by an iterator (which guarantees liveness), or tested for liveness after
the previous body execution.

In case of a Simplify transition, the active constraint is always killed. The
Early Drop therefore becomes unconditional (‘return true’), and all further
alive become unreachable, and should be omitted. Similarly, removed partner
constraints will always be dead after the body. The alive test of the outermost
removed partner constraint can therefore be omitted, and replaced with an un-
conditional backjump. All following alive tests thus becomes redundant. If static
analysis shows the active constraint or certain partner constraints cannot be
killed during the execution of the body, the corresponding alive tests can be
dropped. One trivial case is when the body is empty.

Example 16. In the ram simulator example, the active pc constraint is removed
by the rule, so all alive tests can be replaced by a single unconditional ‘return
true’ after the rule body. See Listing 9.

Non-Robust Iterators. Due to the highly dynamic nature of the CHR con-
straint store, the robustness property of iterators, as specified in Section 5.2, is
hard to implement and often has a considerable performance penalty. There are
however cases where this property is not required:

1. If after the execution of a rule body an iterator is never resumed due to
an unconditional early drop, or an unconditional backjump over the corre-
sponding loop, introduced by the previous optimization.

2. If static analysis shows the body of a rule is guaranteed not to modify the
CHR constraint store.

Robust and non-robust iterators are sometimes called universal and existen-
tial iterators [5, 8]. We prefer the term non-robust iterator, because they can
also be used to iterate over more than one partner constraint (see case 2 above).
Non-robust iterators are used where possible because they can typically be im-
plemented more efficiently.

Example 17. In case of the ram simulator example, all iterators are already
superseded by the single-constraint lookups since Set Semantics was applied;
otherwise, they could have been replaced by non-robust iterators because of the
unconditional Early Drop in the body.

Late Storage. In the default compilation scheme, see Listing 2, constraints are
stored immediately after they are told, as in ωr. A constraint’s lifetime, however,
is often very short. This is most apparent when the active constraint is removed
shortly after activation. The goal of the late storage optimization is to postpone
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adding the constraint to the constraint store as long as possible. In many cases
the constraint will then be killed before it is stored. This avoids the considerable
overhead of adding and removing the constraint to the constraint store. The
performance gain is particularly significant if indexes are used.

During the execution of a body in a Propagate transition the formerly active
constraint might be required as a partner constraint, or it might have to be reac-
tivated. A straightforward implementation of the optimization therefore stores
the active constraint prior to every non-empty body in Propagate transitions.
To further delay constraint storage the observation analysis [5, 40] can be used.
This static program analysis determines whether a specific body requires a con-
straint to be stored or not. Finally, if not stored earlier, the active constraint is
stored after all occurrence procedures are called (i.e. line 3 is moved after line 4
in Listing 2).

Late Allocation. As constraints are not always stored, constraint suspensions
do not always have to be created either. Late allocation and late storage are
considered separately, because a distributed propagation history maintenance
(cf. next optimization) might require allocation earlier than storage. In the op-
timized compilation schemes of Section 5.4, a constraint suspension may also be
allocated earlier if needed as a continuation.

Propagation History Maintenance. In the basic compilation scheme, tuples
are added to the propagation history, but never removed (line 14 of Listing 1).
However, it is obvious that tuples referring to removed constraints are redundant.
Tuples added for simplification and simpagation rules, immediately become re-
dundant in lines 15–17, so a propagation history is only kept for propagation
rules. The propagation history remains a memory problem nevertheless.

There exist several techniques to overcome this problem. Immediately remov-
ing all propagation history tuples a constraint occurs in once it is removed is a
first possibility. Practice shows however that this is difficult to implement effi-
ciently. CHR implementations therefore commonly use ad-hoc garbage collection
techniques, which in theory could result in excessive memory use, but perform
adequately in practice. A first such technique is to remove tuples referring to
dead constraints during notInHistory checks (see [7]). A second is denoted dis-
tributed propagation history maintenance, for which suspensions contain prop-
agation history tuples they occur in (see [5]). When a constraint suspension is
removed, part of the propagation history is removed as well. These techniques
can easily be combined. Other, more advanced garbage collection techniques
could be applied as well.

Example 18. The add rule of the ram example is a simpagation rule, so main-
taining a propagation history for it is unnecessary. This is reflected in Listing 9.

Propagation History Elimination. Despite the above techniques, the main-
tenance of a propagation history remains expensive, and has a considerable im-
pact on both the space and time performance of a CHR program [43]. For rules
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1 procedure occurrence_pc_1(id4,L)

2 prog(L1,$1,B1,A)#id2 = lookup_single(prog,{L=L1})
3 if id2 �= nil
4 if $1 = add

5 mem(A1,X)#id3 = lookup_single(mem,{A=A1})
6 if id3 �= nil
7 mem(B,Y)#id1 = lookup_single(mem,{B=B1})
8 if id1 �= nil and id1 �= id3

9 kill(id3)

10 kill(id4)

11 mem(A,X+Y)

12 pc(L+1)

13 return true
14 end
15 end
16 end
17 end
18 return false
19 end

Listing 9. The compilation scheme for the pc(L) occurrence after applying Early
Drop to Listing 7. Also, no propagation history is kept since the occurrence is part of
a simpagation rule.

that are never matched by reactivated constraints, however, [43] proves that
the history can either be eliminated, or replaced by very cheap constraint identi-
fier comparisons. The same paper moreover shows that reapplication is generally
more efficient than maintaining a propagation history, and presents a static anal-
ysis that determines when rule reapplication has no observable effect. Together,
these optimizations cover most propagation rules occurring in practice.

Guard Simplification. For each occurrence, guard simplification looks at ear-
lier removed occurrences to infer superfluous conjuncts in the guard. This op-
timization is best described in [41]. The expected performance gain for guard
simplification in itself is limited. Simplifying guards, however, does improve re-
sults of other analyses, such as the detection of passive occurrences described in
the next optimization.

Passive Occurrences. An important goal of several CHR analyses is to detect
passive occurrences. An occurrence is passive if it can be derived that the cor-
responding rule can never fire with the active constraint matching it. Detecting
passive occurrences is important, not only because superfluous searches for part-
ner constraints are avoided, but also because any index structures only required
for these searches do not have to be maintained.

Subsumption Analysis. Where guard simplification tries to replace guards with
true, subsumption analysis uses similar techniques to replace guards with false.
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An occurrence is subsumed by another occurrence if each constraint that matches
the former constraint also matches the latter (taking into account guards and
partner constraints). An occurrence that is subsumed by an earlier removed
occurrence can be made passive. More information can be found in [41].

Example 19. In the leq handler of Fig. 1, the kept occurrence of the idempo-
tence rules is clearly subsumed by the removed one (recall from Section 2.2 that
ωr specifies that removed occurrences are tried first). By symmetry, one of the
occurrences of the antisymmetry rule can be made passive as well (as ωr con-
siders occurrences from right-to-left, the first occurrence will be made passive).

Never Stored Analysis. If one of the partners of an occurrence is known never
to be stored in the constraint store, that occurrence can also be made passive.
The basic analysis [7, 8] determines that a constraint is never stored if:

– The constraint occurs in a single-headed, guardless simplification rule. The
Guard Simplification optimization helps considerably by removing redundant
guards in these rules.

– The Late Storage analysis shows that the constraint is never stored prior to
the execution of a body.

Never stored constraints also do not require any constraint store data structures.

Example 20. Given the complete ram handler program (Appendix A), a CHR
compiler can derive that the pc constraint is never stored. All other occurrences
in the add rule of Example 10 are therefore passive. Because most occurrences
of mem constraints are thus found passive, a compiler can also derive that less
indexes have to be built for looking up prog constraints.

Selective Constraint Reactivation. The naive approach reactivates all sus-
pended constraints (with modifiable arguments) for each modification to a con-
strained value. This corresponds to the unoptimized Solve transition in the
refined operational semantics. Reconsidering always all constraints though is
clearly very inefficient. An obvious optimization is to reactivate only those con-
straints whose arguments are affected. For an efficient interaction with CHR,
constrained data values should therefore maintain references to the CHR con-
straints they occur in. In terms of the well-known observer pattern [27]: CHR
constraints have to observe their arguments.

As explained in Section 4.2, built-in constraint solvers should perform se-
lective reactivation transparently to the user. Changes in a built-in constraint
store can typically be reduced to a limited set of variables. This allows the re-
activation of only those CHR constraints that are affected by a change in the
constraint store. This is analogous to a typical implementation of a constraint
solver: constrained variables contain references to all constraints they occur in
(see e.g. [46]). When extending logic programming languages with constraint
solvers, attributed variables are typically used for this [47].

Several further optimizations are possible to avoid more redundant work on
reactivation:
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– If two unbound (logical) variables are told equal, only the constraints observ-
ing one of these variables have to be reactivated. This is correct because all
rules that become applicable by telling this equality constraint necessarily
contain constraints over both variables.

– So-called wake conditions can be used to reconsider only those occurrences
whose guard might be affected. This becomes particularly interesting for
more complex built-in constraints, such as finite domain constraints. For
more information we refer to [16]. Closely related are the events used in
efficient implementations of constraint propagators [48].

As argued in Sections 3–4, the modification problem should also be addressed
for arbitrary host language values. Asides from the reactivateAll operation,
more selective constraint reactivation needs to be possible. Possible solutions
include a well-defined use of the observer pattern, or reactivate operations with
user-definable filter functions.

Delay Avoidance. By the previous optimization, a constraint is reactivated
each time one of its arguments is modified. If the compiler can prove though that
these modifications cannot affect the outcome of a rule’s guard, there is no need
to reactivate. This is the case if a particular argument does not occur in any
guard, or only in anti-monotonous guards (see [49]). A constraint does not have
to observe one of its arguments if none of its occurrences has to be reconsidered
when it is modified. More details can be found in [49] and [50, Appendix A].

Memory Reuse. The memory reuse optimizations of [42] can also be ported
to the imperative setting. Two classes of optimizations are distinguished:

– Suspension reuse: Memory used by suspensions of removed constraints can
be reused for newly added constraints.

– In-place updates : In-place updates go one step further. If a constraint is
removed and immediately replaced in the rule’s body, it is possible to re-
use the suspension of the former. This is particularly interesting if the new
constraint is of the same constraint type, and only slightly different from the
removed constraint. It could then be that the suspension does not have to
be removed and re-added to certain indices.

There are subtle issues when implementing this optimization. For more details,
we refer to [42].

Example 21. In the ram simulator example, both constraints added in the body
are replacing removed constraints. Using a replace(id, indexes, values)
that assigns new values to the arguments on the specified indices, lines 9–13 of
Listing 9 can safely be replaced by:

...
replace(id3, [2], [X+Y])
replace(id4, [1], [L+1])
...
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We assume the replace operation also activates the updated constraint. In
this case, updating these arguments should not require any constraint store
operations. The only index on the mem constraint for instance is on its first
argument. Updating the X argument of the mem(A,X)#id3 suspension does not
require this index to be adjusted.

Drop After Reactivation. If a rule fires, the refined operational semantics
determines that the active constraint is suspended — i.e., pushed on the activa-
tion stack — until the body is completely executed. During the execution of the
body this constraint may be reactivated. In this case, when the execution contin-
ues with the suspended constraint, all applicable rules matching it have already
been tried or fired by this reactivation. Searching for more partner constraints,
and continuing with further occurrences, is then superfluous.

Traditionally, this optimization is implemented using an integer field incre-
mented each time the constraint is reactivated (see e.g. [5], which also contains
a correctness proof). Here, we propose a slightly more efficient implementation,
which also generalizes better when considering the optimized compilation scheme
presented in Section 5.4. We use a boolean field, activated, in the constraint
suspension, which is set to true after each reactivation. Prior to a Propagate
transition, the active constraint’s activated field is set to false. If after the
execution of the body, it has become true, the constraint must have been reacti-
vated, and the handling of this active constraint can safely be terminated using
an early drop (i.e., by returning true, as in the Early Drop optimization).

This optimization is not applied if static analysis determines that the body
never reactivates the active constraint. Obvious instances include when the body
is empty, or, if all arguments of the active constraint are unmodifiable. In all other
cases, this optimization may save a lot of redundant work.

5.4 Recursion Optimizations

Any non-trivial CHR program contains recursion, i.e., directly or indirectly, there
are rules with an occurrence of c/n in the head that activate a body that add
a constraint of the same type c/n to the store. In such a case, the compilation
schema presented in the previous two sections generates a set of mutually re-
cursive host language procedures. We rely on the host language compiler for
generating the final executable, or on the host language interpreter for the even-
tual execution of our generated code. If the host language does not adequately
deal with recursion, the naive compilation scheme leads to stack overflow issues.

Prolog implementations perform tail call optimization since the early days of
Prolog. This optimization consists in reusing the execution frame of the caller for
the last call in of a clause’s body. Prolog thus executes tail calls in constant stack
space. For a host language like Prolog, recursion is therefore less of a problem:
to solve call stack overflows during the execution of a CHR program it mostly
suffices to rewrite the CHR program to use tail calls for the recursive constraints.
The notion of tail calls in the context of CHR is explained later.
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Even though similar tail call optimizations are possible in imperative host
languages [51], in practice, most compilers for imperative languages do not per-
form them, or only in certain situations. The GCC C compiler [52], for instance,
only optimizes tail calls in specific cases [53]. Most implementations of the Java
Virtual Machine [54], including Sun’s reference implementation HotSpot [55],
do not perform (recursive) tail call optimizations at all4. Indeed, in practice we
have observed that our naive compilation schema to Java overflows the execution
stack very quickly. For C the situation is only slightly better.

Since improving the optimizations in the host language compilers is seldom an
option, we designed novel compilation schemes that avoids execution stack over-
flows. Stack overflow can only occur when calling arbitrary host language code.
Our new schema keeps data structures for the control flow of a CHR program
on the heap. It might seem that the overflow is just shifted from the stack to
the heap. However, in the new schema we guarantee that these data structures
remain constant size for CHR programs that are tail recursive. Moreover, in a
language like Java, the heap is substantially larger than the call stack. So in
any case, even for non-tail recursive CHR programs, the memory limits will be
reached considerably later. This is also experimentally validated in Section 6.

Tail Calls in CHR. In CHR, a tail call occurs when the active constraint
matches a removed occurrence, and the body ends with the addition of a CHR
constraint. If the active constraint is not removed, the last body conjunct is not
considered a tail call, as the search for partner constraints has to be resumed
after the execution for the body, or more occurrences have to be tried for the
previously active constraint.

Example 22. Recall the add rule of Example 10. For an active pc(L) constraint,
the execution of this rule’s body results in a tail call. The leq(Y,Z) constraint
added by the body of the transitivity rule of Fig. 1, however, is not a tail call.

Using the optimized compilation schemes presented below, tail calls no longer
consume space.

Trampoline. Tail calls in CHR can be optimized such that they no longer
consume stack space. A CHR constraint added by a tail call is no longer acti-
vated immediately by calling the corresponding occurrence procedures. Instead,
a constraint suspension is returned that represents this constraint. Control then
always returns to a loop that activates these suspensions as long tail calls occur.
This technique is called trampoline [57, 58].

So tail calls are replaced by a return of the newly created constraint. The
‘return true’ statements introduced for the Early Drop and Drop after Reacti-
vation optimizations (cf. Section 5.3) are replaced by ‘return drop’, the default
‘return false’ statements by ‘return nil’. These are the only changes required
to the occurrence procedures. All optimizations of Section 5.3 remain applicable.

4 Supporting tail call optimization would interfere with Java’s stack walking security
mechanism (though this security folklore has recently been challenged in [56]).
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1
...

2 kill(id3)

3 kill(id4)

4 mem(A,X+Y)

5 return create(pc,[L+1])

6 end

7 . .
.

8 end
9 return nil

10 end

Listing 10. The compilation scheme for the RAM simulator rule occurrence, modifying
Listing 9 for use in the trampoline scheme of Listing 11

Example 23. The ram handler contains many tail calls. The compilation of the
pc(L) occurrence of its add rule (see Example 10) using the trampoline compi-
lation scheme is shown in Listing 10.

Next we modify the c(X1,...,Xn) and reactivate(id) procedures of Listing 2
to loop as long as the occurrence procedure returns a constraint suspension to
activate. The looping is done by a separate procedure trampoline, called from
both c and reactivate. The resulting compilation scheme is shown in Listing 11.
The listing also shows the modified activate procedure. In the default case,
nil, the next occurrence procedure is tried. Otherwise, the control returns to the
trampoline (lines 11–15). The returned value is either a constraint suspension in
case of a tail call, or the special drop value. The latter case corresponds with
a Drop transition of the current active constraint, so the trampoline exits. In
the former case though, the constraint from the tail call is activated. By always
returning to the trampoline this way, tail calls no longer consume stack space.

Explicit Stack. This subsection presents a more general solution. Whilst tram-
poline-style compilation deals with tail calls only, the new compilation scheme
deals with all instances of recursion. Instead of mapping the refined semantics’
activation stack onto the host’s implicit call stack, it maintains an explicit con-
tinuation stack on the heap. The elements on this stack are called continuations,
and represent “the rest of the computation for an active constraint”.

If a conjunction of multiple CHR constraints has to be executed, a continua-
tion is pushed onto this stack, containing all information required to execute all
but the first body conjunct. Next, the first conjunct is executed by returning to
an outer control loop, similar to the trampoline scheme. After this conjunct has
been handled completely, the continuation is popped from the stack, and the
remainder of the body is executed in a similar, conjunct-by-conjunct fashion. If
the remaining body is empty, and the active occurrence is alive, more partner
constraints are searched, or the next occurrence is tried. Similar techniques are
used to solve recursion involving built-in constraints or host language code.
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1 procedure c(X1,...,Xn)

2 id = create(c, [X1, . . . , Xn])

3 trampoline(id)

4 end
5

6 procedure reactivate(id)

7 trampoline(id)

8 end
9

10 procedure trampoline(cont)

11 do
12 cont = activate(cont)

13 while cont �= drop

14 end
15

16 procedure activate(c(X1 , . . . , Xn)#id)

17 ret = occurrence_c_1(id,X1, . . . , Xn)

18 if ret �= nil
19 return ret

20 end

21
...

22 ret = occurrence_c_m(id,X1, . . . , Xn)

23 if ret �= nil
24 return ret

25 end
26 store(id)

27 return drop

28 end

Listing 11. Compilation scheme for an n-ary constraint c with m occurrences through-
out the program, replacing Listing 2. A trampoline loop is added around the call to
activate. The latter procedure is further modified to return either a constraint sus-
pension, in case of a tail call, or the special drop value otherwise.

We treat constraint suspensions as a special case of continuations. If called
(see below), the corresponding constraint is simply activated. The following op-
erations are introduced:

push(〈id, occurrence number, body index, vars 〉). Pushes a new contin-
uation onto the continuation stack. This continuation contains the identifier
of the active constraint, the number of the occurrence that caused the rule
application, the index of the next body conjunct to be executed, and the
variables required to execute the remainder of the body.

push(id). Pushes a constraint suspension on the continuation stack.
pop(). Removes the most recently pushed continuation from the continuation

stack and returns it.
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1 procedure c(X1,...,Xn)

2 push(sentinel)

3 cont = create(c, [X1, . . . , Xn])

4 do
5 cont = call(cont)

6 if cont = drop

7 cont = pop()

8 end
9 while cont �= sentinel

10 end
11

12 procedure reactivate(id)

13 push(id)

14 end

Listing 12. Compilation scheme for telling a CHR constraint using a continuation
stack

call(continuation). An extension of the activate operation of Listing 11.
For constraint suspensions, call is equivalent to activate. Calling another
constraint suspension resumes the handling of a suspended active constraint.
This entails executing any remaining body conjuncts, resuming a search for
partner constraints, or advancing to the next occurrence. The implementa-
tion of this operation is discussed below.

The compilation scheme is listed in Listing 12. Similar to the trampoline
compilation scheme, recursion is solved by always returning to an outer control
loop. The main differences with Listing 11 are the generalization of constraint
suspensions to continuations, and the use of the continuation stack. As before, a
constraint suspension for the newly told constraint is created (line 3), followed by
a loop that repeatedly calls continuations (lines 4–9). Calling a continuation still
returns the next continuation to be executed, which is drop if the handling of
the previously active constraint is finished. In the latter case, a next continuation
is popped from the stack (lines 6–8).

To overcome recursion involving multiple constraint CHR handlers, or inter-
leaving with host language code (see later), all cooperating CHR handlers of
the same constraint system share the same continuation stack (cf. Section 4.2).
In order to know when to return from the procedure of Listing 12, a special
sentinel continuation is pushed on line 2. Popping a sentinel continuation
means the Drop transition for the constraint initially told by the procedure was
reached (line 6), and the procedure must return.

In the remainder of this section, we focus on the compilation scheme for the
piecewise execution of the body. For a more complete discussion of the compila-
tion scheme and the call operation, we refer to [36].
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Recall the generic form of a CHR rule ρ introduced in Section 5.2:

ρ@ c[j1]
1 (X1,1, . . . , X1,a1), . . . , c[jr−1]

r−1 (Xr−1,1, . . . , Xr−1,ar−1) \
c[jr ]

r (Xr,1, . . . , Xr,ar ), . . . , c[jh]
h (Xh,1, . . . , Xh,ah

) ⇔ g1, . . . , gng | b1, . . . , bnb .

Suppose an applicable rule was found with the active constraint matching the
c[ji]
i occurrence. Suppose the body conjuncts that still have to be executed are
bk, . . . , bnb , with k ≤ nb. At the Propagate or Simplify transition itself, k will
be equal to one, but when calling a continuation k can be larger than one. We
distinguish three different cases:

(1) bk is a CHR constraint
Let bk = c(Y1, . . . , Ya), then this case is simply implemented as:

...
push(idi, ji, k + 1, vars〈bk+1, . . . , bnb

〉)
return create(c, [Y1,...,Ya])

. .
.

The constraint suspension of the first conjunct is returned, after pushing a con-
tinuation on the stack. The expression vars〈bk+1, . . . , bnb

〉 returns all variables
required in the remainder of the body. This way, after the returned constraint
is activated and fully handled, the execution continues handling the currently
active constraint. First, the remaining body will be piecewise executed, using
the compilation scheme presented in this section. If the body is completely exe-
cuted, and the active constraint is still alive, more applicable rules are searched,
starting at the occurrence that caused the previous rule application.

Example 24. In Listing 13 the full generated pseudocode for our running example
is given. Only the code for the occurrence of the pc constraint in the add rule is
given. The body of the occurrence first creates a continuation on the stack, and
then returns the mem constraint that needs to be activated next. Eventually, after
this constraint is completely handled, the continuation will be popped from the
stack and executed. The code for this continuation, given in lines 45–47, simply
returns the new pc constraint.

(2) bk is a Built-In Constraint
Calling a built-in constraint from a body may reactivate CHR constraints, which
could cause recursive applications of the same rule. To avoid this, the
reactivate(id) procedure of Listing 12 is simply implemented as push(id).
Reactivations are thus not performed immediately, but instead pushed onto the
continuation stack. A built-in constraint bk in a body is then compiled as:

...
push(idi, ji, k + 1, vars〈bk+1, . . . , bnb

〉)
bk

return pop()
. .

.
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1 procedure pc(L)
2 push(sentinel)
3 cont = create(pc, [L])
4 do
5 cont = call(cont)
6 if cont = drop
7 cont = pop()
8 end
9 while cont �= sentinel

10 end
11

12 procedure call(pc(L)#id)
13 ret = occurrence_pc_1(id,L)
14 if ret �= nil
15 return ret
16 end

17
...

18 ret = occurrence_pc_m(id,L)
19 if ret �= nil
20 return ret
21 end
22 store(id)
23 return drop
24 end
25

26 procedure occurrence_pc_1(id4,L)
27 prog(L1,$1,B1,A)#id2 = lookup_single(prog,{L=L1})
28 if id2 �= nil
29 if $1 = add
30 mem(A1,X)#id3 = lookup_single(mem,{A=A1})
31 if id3 �= nil
32 mem(B,Y)#id1 = lookup_single(mem,{B=B1})
33 if id1 �= nil and id1 �= id3

34 kill(id3)
35 kill(id4)
36 push(〈pc,1,2,[L]〉)
37 return create(mem,[A,X+Y])
38 end
39 end
40 end
41 end
42 return false
43 end
44

45 procedure call(〈pc,1,2,[L]〉)
46 return create(pc,[L+1])
47 end

Listing 13. Full example of generated code for the pc(L) constraint in the RAM
simulator. Included are the pc(L) procedure for adding a constraint to the store from
host language, occurrence code for first occurrence, and a polymorphic call dispatcher
for both pc suspensions and continuations of the first occurrence body.
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The continuation is pushed, the built-in constraint is executed, and the top of
the stack is returned. If the built-in constraint triggered reactivations these are
executed first. If not, the continuation itself is popped and executed. Notice that
compared to the scheme that used the native call stack, this scheme reverses the
order in which constraints are reactivated. This is allowed because the refined
operational semantics does not determine this order.

If built-in constraints only rarely reactivate constraints, the above scheme is
overly expensive. The creation, pushing and popping of the continuation can be
avoided. One possible optimization uses the following two stack operations:

stackSize() Returns the number of continuations currently on the stack.
replace(index, id, occurrence number, body index, vars )

Similar to push, but adds the continuation on a given index rather than on
top of the stack. The operation returns the continuation that was previously
on the given index.

The stack indexes start from zero, so the index of the next continuation to be
pushed is equal to stackSize. In other words, ‘replace(stackSize(), ...)’
is equivalent to ‘push(...)’. The compilation scheme becomes:

...
SS = stackSize()
...
bk

if (stackSize() > SS)
return replace(SS, idi, ji, k + 1, vars〈bk+1, . . . , bnb

〉)
... /* remainder of the body, starting with bk+1 */

This way, a continuation is only created and pushed, if a built-in constraint
causes reactivations. By remembering the old stack size, this continuation is
inserted exactly on the same location as before. The result of the call to replace
will be a reactivation continuation. If no reactivations are pushed though, the
control simply continues with the remainder of the body, or with the search for
partner constraints.

(3) bk is a Host Language Statement
Recursion where CHR code is interleaved with host language code is more dif-
ficult to eliminate. Firstly, host language code may not only reactivate CHR
constraints, it can also add new CHR constraints. The scheme used for built-in
constraints therefore cannot be used, as reversing the activation order of CHR
constraints told from host language code is not allowed by the refined oper-
ational semantics. Secondly, CHR handlers and built-in constraint solvers are
incremental : executing a built-in or CHR constraint has to immediately per-
form all required changes, before returning control. By default, CHR constraint
solvers should remain incremental, as host language code may rely on this prop-
erty. This is also why the sentinel continuation is pushed on line 2 of Listing 12:
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this way multiple activations that have to return control after their activation
can be handled using the same stack.

The implicit call stack can still overflow if a CHR handler and host lan-
guage code recursively call each other. Arguably, this behavior is acceptable.
One possibility to safeguard against these stack overflows though is to abandon
incrementality. A queue can then be used to collect all constraints told whilst
executing a host language statement in a body. Once the control returns to the
CHR handler, the enqueued continuations are pushed, in reverse order, on the
continuation stack. We refer to [36] for more details.

Optimizations. If the active constraint is still alive after the execution of a
body, remaining partner constraints have to be searched. The naive explicit stack
scheme outlined in the previous subsection simply restarts all iterations, relying
on the propagation history to avoid duplicate rule applications. This results in
many redundant lookups, iterations, and history checks. The optimized scheme
includes the constraint iterators into the continuations of the explicit stack, and
uses them to efficiently resume the search for partner constraints.

Explicitly maintaining a stack unavoidably entails constant time overheads
when compared to the traditional, call-based compilation scheme. The host en-
vironment’s call stack is able to use more specialized low level mechanisms. This
is particularly the case for high-level host languages such as Java. Possible opti-
mizations to reduce these overheads include:

– Pushing a continuation can sometimes be avoided,for instance in the case
of a tail call. Also, if there are no more partner constraints to be searched
due to set semantics, the pushing of a continuation at the end of the body
can be improved. These specializations can be done either statically, or by
simple runtime checks.

– If static analysis shows activating a constraint does not result in recur-
sion, the constraint can simply be activated using the compilation scheme of
Sections 5.2–5.3.

– Continuations can sometimes be reused.
– The Drop after Reactivation optimization can be generalized to not only drop

if a constraint is reactivated during an activation, but also if it is reactivated
during an earlier reactivation. As constraint reactivations are not executed
immediately, but instead scheduled on the continuation stack. This can again
lead to the same constraint occurring multiple times on the continuation
stack. In the scheme outlined above, these redundant reactivations can easily
be avoided5.

For a more detailed description of these and other optimizations, we refer to [36].

Example 25. In Listing 13, creating the continuation on line 36 is not necessary.
As the remaining body is a tail call, simply pushing the constraint suspension
representing the pc(L+1) constraint suffices.
5 This optimization is not specific to the compilation scheme with an explicit stack.

The implementation for the scheme presented in Sections 5.2–5.3 however is less
straightforward.
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Furthermore, after application of the Passive Occurrences optimization (see
Section 5.3), most occurrences of the mem constraint are passive in the ram
handler (Appendix A). Static analysis therefore easily derives that adding a mem
never causes recursion. A mem constraint can therefore safely be activated using
the host’s call stack.

When combining these optimizations, Listing 13 essentially reduces to List-
ing 10. For the ram handler the explicit call stack is thus never used.

Conclusion. The implicit call stack of the host environment is replaced by
an explicitly maintained stack on the host’s heap. If the explicit stack is not
used though, the compilation scheme of Listing 12 becomes equivalent to the
trampoline scheme of Listing 11. CHR tail calls therefore do not consume space.
Also, even if tail optimizations are not possible, the heap of imperative hosts
such as Java or C is considerably larger than their stack. We refer to Section 6
for an experimental evaluation.

6 Evaluation

Using the compilation scheme given in Section 5, we implemented a CHR embed-
ding for two imperative host languages, Java and C. These implementations are
briefly discussed in Section 6.1, and their performance is evaluated in Section 6.2.

Table 1. Summary of all listed optimizations and their implementations in K.U.Leuven
CHR for SWI- and YAP Prolog, K.U.Leuven JCHR and CCHR (development versions
of March 1, 2008). Optimizations that are implemented only partially or in an ad-hoc
fashion are indicated with ‘±’.

Optimization Prolog JCHR CCHR

Loop-Invariant Code Motion � � �
Indexing � � �

Join Ordering � � �
Set Semantics �

Early Drop � � �
Backjumping � �

Non-Robust Iterators � � �
Late Storage � � ±

Late Allocation � ±
Distributed Propagation History � � �

History Elimination � �
Guard Simplification �
Passive Occurrences � � ±

Selective Constraint Reactivation � � �
Delay Avoidance � �

Memory Reuse ±
Generations � � �

Recursion optimization � �
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6.1 Implementations

In this section we briefly discuss the implementation of two imperative embed-
dings of CHR, namely the K.U.Leuven JCHR system [25] for Java and CCHR
[26] for C. These implementations are available at respectively [12] and [13].

The most important language design issues taken for both systems are dis-
cussed in Section 4. Our implementations do not provide search. We are con-
vinced though that search can be added effectively to our CHR systems as a
mostly orthogonal component, as shown by related systems [19, 20].

Both systems implement the compilation scheme presented in Section 5. The
implemented optimizations are listed in Table 1. As a reference, the table also
lists the optimizations implemented by the K.U.Leuven CHR system [5, 6] for
SWI-Prolog [59] (in the version of SWI used, the memory reuse optimizations of
[42] were not implemented).

As discussed in Section 5.3, the recursion optimizations are less relevant for a
Prolog implementation, as the Prolog runtime performs tail call optimizations.
Both JCHR and CCHR explicitly maintain an explicit continuation stack when
necessary (see Section 5.3). In CCHR continuations are efficiently implemented
using goto statements. In Java this is not possible. For a detailed discussion of
the compilation scheme used by JCHR, we refer to [36].

6.2 Performance

To verify our implementation’s competitiveness, we benchmarked the perfor-
mance of some typical CHR programs. The following benchmarks were used6:

– Calculating tak(500, 450, 405) with a tabling Takeuchi function evaluator.
– Using Dijkstra’s algorithm to find the shortest path in a sparse graph with

16,384 nodes and 65,536 edges. A Fibonacci heap, also implemented in CHR,
is used to obtain the optimal complexity (see [44] for a description of the
Dijkstra and Fibonacci heap handlers).

– Solving a circular set of 100 less-or-equal-than constraints (see Fig. 1).
– Calculating 25,000 resp. 200,000 Fibonacci numbers using the RAM simu-

lator (see Appendix A), with the addition replaced by a multiplication to
avoid arithmetic operations on large numbers (when using multiplication all
Fibonacci numbers are equal to one).

The results7 can be found in Table 2. We compared our two systems with the
K.U.Leuven CHR system implementation for SWI-Prolog, and its port to YAP
Prolog [60], a more efficient Prolog system. The YAP implementation used an
older version of K.U.Leuven CHR. Execution times for native implementations
in C and Java were added for reference.
6 Benchmarks available at http://www.cs.kuleuven.be/∼petervw/bench/lnai2008/
7 The benchmarks were performed on a IntelR© CoreTM2 Duo 6400 system with 2 GiB

of RAM. SWI-Prolog 5.6.50 and YAP 5.1.2 were used. All C programs were compiled
with GCC 4.1.3 [52]. K.U.Leuven JCHR 1.6.0 was used; the generated Java code was
compiled with Sun’s JDK 1.6.0 and executed with HotSpot JRE 1.6.0.

http://www.cs.kuleuven.be/~petervw/bench/lnai2008/
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Table 2. Benchmark comparing performance in some typical CHR programs in several
systems. The average CPU runtime in milliseconds is given and, between parentheses,
the relative performance with YAP Prolog as the reference system.

Takeuchi Dijkstra leq
RAM

25k 200k

YAP 2,310 (100%)
3,930 (170%)

48 (2.1%)
183 (7.9%)
10 (0.4%)
11 (0.5%)

44,000 (100%)
6,620 (15%)
1,170 (2.7%)

704 (1.6%)
-
-

4,110 (100%)
17,800 (433%)

189 (4.5%)
68 (1.7%)
2 (.05%)
2 (.05%)

1,760 (100%)
1,000 (57%)

416 (24%)
157 (8.9%)
1.3 (.07%)

2 (.11%)

15,700 (100%)
stack overflow
3,540 (23%)
1,714 (11%)
12.7 (.08%)

16 (.10%)

SWI
CCHR
JCHR

C
Java

The imperative systems are significantly faster than both Prolog systems, up
to one or two orders of magnitude, depending on the benchmark. This is partly
due to the fact that the generated Java and C code is (just-in-time) compiled,
whereas the Prolog code is interpreted. In SWI the RAM benchmark consumes
linear stack space as the SWI runtime does not perform the necessary tail call op-
timizations. The RAM benchmark for 200k Fibonacci numbers therefore results
in a stack overflow.

The native C and Java implementations remain two orders of magnitude faster
than their CHR counterparts. The main reason is that these programs use spe-
cialized, low-level data structures, or exploit domain knowledge difficult to derive
from the CHR program. The Dijkstra algorithm was not implemented natively.

To show the necessity for the recursion optimizations of Section 5.4 in Java
and C, we also benchmarked the limits on recursion. A simple program was tested
that recursively adds a single constraint. If this happened using a tail call, JCHR
runs out of stack space after 3,200 steps when using the unoptimized compilation
scheme (i.e., without recursions optimizations). For CCHR, the GCC compiler
was able to perform tail call optimization. Both YAP and SWI performed tail call
optimization as well. For these systems, the test therefore ran in constant stack
space, without limits. Using the optimized compilation scheme of Section 5.4,
the same applies of course for JCHR (and CCHR).

If the recursive call was not a tail call, the different systems showed the fol-
lowing limits. Both SWI’s and Java’s native call stack have static size. In SWI,
the test resulted in a stack overflow after 3.3 million recursive calls, in JCHR,
without recurions optimization, already after 3,200 calls (the same as when a
tail call was used). These numbers clearly show the necessity for the recursion
optimizations when compiling to Java. If using an explicit call stack, JCHR is
only limited by available heap memory, which is substantially larger than the
stack. Using standard heap size, more than 1.8 million calls were possible. As
the Java system used can be configured to use larger heap sizes, JCHR became
essentially only limited by available (virtual) memory. The size of Java’s call
stack could not be configured.

The results for C were similar to those for Java: when using the unoptimized
scheme the C call stack overflowed after around half a million recursive calls,
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whereas with the explicit stack optimization, CCHR permits over 40 million
recursive calls. YAP Prolog’s call stack grows dynamically, so YAP is also only
limited by available (virtual) memory.

7 Related Work

Even though (C)LP remains the most common CHR host language paradigm
(see e.g. [4, 5, 6, 7, 8]), an increasing number of other CHR implementations
have appeared. In this section we discuss several CHR embeddings in functional
and imperative host languages (Sections 7.1 and 7.2 respectively), focussing on
how they deal with the issues raised in Section 3.

Of course, countless other declarative paradigms have been integrated and
compiled to imperative host languages. We only consider production rules (Sec-
tion 7.3), as this formalism is most closely related to CHR.

7.1 CHR in Functional Languages

When embedding CHR in functional languages, many of the same challenges
are met. Typically, functional languages are statically typed, and do not provide
search or built-in constraints. Structural matching on compound data on the
other hand is mostly readily available.

HCHR provides a type-safe embedding of CHR in Haskell, leveraging the
the built-in Haskell type checker to type check HCHR programs [61]. HCHR
constraints only range over typed logical variables and terms, encoded as a poly-
morphic Haskell data type. Unification and matching functions are generated
automatically for each type (this is similar to the approach taken by CCHR, cf.
Section 4.3). Haskell data structures therefore have to be encoded as terms when
used in a HCHR constraint, and reconstructed again when retrieving answers.
No Haskell functions can be called from HCHR rule bodies, probably due to this
data type mismatch.

The Chameleon system [62] is a Haskell-style language that incorporates CHR.
It has been applied successfully to experiment with advanced type system ex-
tensions [63]. Chameleon’s back-end CHR solver is HaskellCHR [64]. To allow
Prolog-style terms with variables, this system includes a WAM implementation
for Haskell, written in C. It is the only Haskell CHR system to provide chrono-
logical backtracking. HaskellCHR is not intended to be used stand-alone, but
simply as a back-end to Chameleon.

With the advent of software transactional memories (STM) in Haskell, two
systems with parallel execution strategies have recently been developed: Concur-
rent CHR [65] and STMCHR[66]. These systems are currently the only known
CHR implementations that exploit the inherent parallelism in CHR programs.

Even though both HCHR and Chameleon provide syntactic preprocessing,
both Haskell implementations are fairly naive interpreters. Their performance
cannot compete with the optimizing CHR compilers for logic and imperative
programming host languages. Similarly, the STM implementations are still early
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prototypes, whose performance is not yet competitive with sequential state-of-
the-art implementations (unless of course when multiple processors are used for
highly parallelizable CHR programs).

7.2 CHR in Imperative Languages

Aside from the systems discussed in this article, there exist at least three other
CHR systems in Java. The oldest is the Java Constraint (JaCK) [9, 17]. The
main issue with JaCK is probably its lacking performance (see e.g. [25]). The
JaCK framework consists of three major components:

JCHR. A CHR dialect intended to be very similar to Java, in order to provide
an intuitive programming language [67]. The semantics of the language are
unspecified, and are known to deviate from other CHR implementations.
CHR constraints only range over typed logical variables. All Java objects
thus have to be wrapped in logical variables. Only static Java methods can
be called from a rule’s body.

VisualCHR. An interactive tool visualizing the execution of JCHR [68]. It can
be used to debug and to improve the performance of constraint solvers.

JASE. The Java Abstract Search Engine, allows for a flexible specification of
tree-based search strategies [19]. JCHR bodies do not contain disjunctions,
as in (C)LP implementations of CHR∨. Instead, JASE is added to JaCK as
an orthogonal component. The JASE library provides a number of utility
classes that help the user to implement a search algorithm in Java. A typical
algorithm consists of the following two operations, executed in a loop: first,
a JCHR handler is run until it reaches a fix-point, after which a new choice
is made. If an inconsistency is found, chronological backtracking is used to
return to the previous choice point. JASE aids in maintaining the search
tree, and can be configured to use either trailing or copying.

The CHORD system (Constraint Handling Object-oriented Rules with Dis-
junctive bodies) [10], developed as part of the ORCAS project [69], is a Java
implementation of CHR∨ [70]. Its implementation seems to build on that of
JaCK, but adds the possibility to include disjunction in rule bodies.

A last CHR system for Java is DJCHR (Dynamic JCHR) [11], which imple-
ments an extension of CHR known as adaptive CHR [71]. Constraint solving in
a dynamic environment often requires immediate adaptation of solutions when
constraints are added or removed. By nature, CHR solvers already support effi-
cient adaptation on constraint addition. Adaptive CHR is an extension of CHR
capable of adapting CHR derivations after constraint deletions as well [71].

Constraints in DJCHR range only over Herbrand terms. Integration of the
host language in the CHR rules is not supported. The system seems mainly
created to experiment with the incremental adaptation algorithm of [71]. Like
JaCK, DJCHR was later extended to support a wide range of search strate-
gies [20]. Search is again implemented orthogonally to the actual CHR handlers.
Interestingly, [20] clearly shows that the use of advanced search strategies can be
more efficient than a low-level, host language implementation of chronological
backtracking (as in Prolog).
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7.3 Production Rules

Production rules, or business rules as they are often called, are a forward chain-
ing rule-based programming language extension, very similar to CHR. Most of
the many commercial and open-source implementations of this paradigm are
based on the classical RETE algorithm [72]. This algorithm eagerly computes
and maintains all possible joins and applicable rules. As the first rule fired with
a fact (the equivalent of a CHR constraint) often already removes this fact (see
also Section 5.3), RETE can be very costly. A lazy algorithm that fires appli-
cable rules as it finds them, is usually more efficient in both time and memory.
Even though this fact has been recognized in the production rule literature [73],
the RETE algorithm remains the most widely used implementation technique.
We believe that the compilation scheme developed for CHR, as presented in
this article, is the first rigorously studied lazy execution mechanism for forward
chaining rules. It would be interesting to compare the performance of CHR with
that of state-of-the-art, RETE based production rule engines.

Modern production rule systems such as Jess [74] and Drools [75] allow ar-
bitrary host language code to be called. To solve the modification problem, a
technique called shadow facts is commonly used. Consistency of the RETE net-
work is maintained by keeping a clone of any modifiable object referred to by
facts in an internal data structure. The user is responsible for notifying the rule
engine of any changes to these objects. This solution however does not work for
arbitrary objects (e.g. only for Java Bean objects [35]), and is fairly inefficient.

8 Conclusions and Future Work

In this work we presented our approach to solve the impedance mismatch be-
tween CHR and imperative languages. We outlined the different language de-
sign issues faced when embedding CHR into an imperative host language. In our
approach, we advocated a tight and natural integration of both paradigms. We
illustrated with two case studies, the K.U.Leuven JCHR system and CCHR, and
showed that our approach leads to a programming language extension intuitive
and useful to adepts of both CHR and the intuitive host language.

We ported the standard CHR compilation scheme to an imperative setting,
and showed how the many existing optimizations can be incorporated. The result
is a first comprehensive survey of the vast, recent literature on optimized CHR
compilation. Many of the presented compilation and optimization techniques are
applicable for any implementation of CHR, or any similar rule-based language.

More specific to imperative target languages, we showed that the standard
call-based compilation scheme of CHR results in call stack overflows when used
to compile to imperative host languages. We proposed a novel, optimized compi-
lation scheme using which CHR programs written using tail calls are guaranteed
to execute in constant space. Where tail call optimization is not possible, an
explicitly maintained stack is used instead of the host’s call stack. By maintain-
ing the stack on the heap, memory limits are reached considerably later for all
recursive CHR programs.
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We created efficient, state-of-the-art implementations for Java and C, and
showed that they outperform other CHR systems up to several orders of mag-
nitude. We also showed the effectiveness of our recursion optimizations.

8.1 Future Work

Certain issues raised in Section 3 are not yet adequately solved by current,
imperative CHR systems. The modification problem is only solved effectively
for built-in constraints. Similarly, the combination of arbitrary host language
code with search requires more investigation. The integration of search in an
efficient compilation scheme is also an interesting topic for future research.

The current compilation scheme considers each occurrence separately. How-
ever, we believe that more efficient code can be generated with a more global
compilation scheme. For instance, the entire ram handler of Appendix A could
be compiled to a single switch statement in a loop. Rather than linearly going
through all possible operations for each program counter, the applicable rule
would be found in constant time using a switch. Sharing partial joins for over-
lapping rules among different occurrences is another example.

Over the past decade there has been an increase in the number of CHR sys-
tems. The support for advanced software development tools, such as debuggers,
refactoring tools, and automated analysis tools, lags behind, and remains an im-
portant challenge, not only for the systems embedding CHR in imperative hosts,
but for the entire CHR community.
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A A ram Simulator Written in CHR

Fig. 9 contains a CHR handler that implements a simulator for a standard RAM
machine. The memory of the simulated RAM machine is represented as mem
constraints, the instructions of the program it is executing as prog constraints.
The current program counter is maintained as a pc constraint. Different CHR

// enforce functional dependencies:

mem(A,_), mem(A,_) <=> fail.

prog(L,_,_,_), prog(L,_,_,_) <=> fail.

pc(_), pc(_) <=> fail.

prog(L,add,B,A), mem(B,Y) \ mem(A,X), pc(L) <=> mem(A,X+Y), pc(L+1).

prog(L,sub,B,A), mem(B,Y) \ mem(A,X), pc(L) <=> mem(A,X-Y), pc(L+1).

prog(L,mult,B,A), mem(B,Y) \ mem(A,X), pc(L) <=> mem(A,X*Y), pc(L+1).

prog(L,div,B,A), mem(B,Y) \ mem(A,X), pc(L) <=> mem(A,X/Y), pc(L+1).

prog(L,move,B,A), mem(B,X) \ mem(A,_), pc(L) <=> mem(A,X), pc(L+1).

prog(L,i_mov,B,A), mem(B,C), mem(C,X) \ mem(A,_), pc(L) <=> mem(A,X), pc(L+1).
prog(L,mov_i,B,A), mem(B,X), mem(A,C) \ mem(C,_), pc(L) <=> mem(C,X), pc(L+1).

prog(L,const,B,A) \ mem(A,_), pc(L) <=> mem(A,B), pc(L+1).

prog(L,init,A,_), mem(A,B) \ pc(L) <=> mem(B,0), pc(L+1).

prog(L,jump,_,A) \ pc(L) <=> pc(A).

prog(L,cjmp,R,A), mem(R,X) \ pc(L) <=> X == 0 | pc(A).

prog(L,cjmp,R,_), mem(R,X) \ pc(L) <=> X != 0 | pc(L+1).

prog(L,halt,_,_) \ pc(L) <=> true.

// Safeguard against invalid program counter:

pc(_) <=> fail.

Fig. 9. A ram machine simulator written in CHR
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rule declares what has to be done for each instruction type. Example 10 in
Section 5.2 discusses the rule for an add instruction in more detail.

Four extra rules are added to the original program, as it first appeared in [37].
The first three rules ensure that illegal combinations of constraints cannot occur;
the last rule safeguards against invalid program counters. These four extra rules
allow static program analysis to defer certain program properties essential for
an efficient compilation of the program, as shown in Section 5.3.
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Abstract. Constraint Handling Rules (CHR) is a high-level program-
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T. Schrijvers and T. Frühwirth (Eds.): Constraint Handling Rules, LNAI 5388, pp. 213–244, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



214 J. Sneyers, T. Schrijvers, and B. Demoen

choices allowed by ωt but at the same time they do not completely specify their
exact deterministic operational semantics since it may change in later versions
or with certain compiler optimizations switched on or off.

Most CHR systems instantiate the refined operational semantics (ωr) [5] of
CHR. In ωr, the concept of an active constraint is introduced: its occurrences
are tried top-to-bottom, removed-before-kept, left-to-right, while rule bodies are
executed depth-first and left-to-right. In a sense, this generalizes the standard
Prolog execution strategy. Recently, other (partial) instantiations of the ωt se-
mantics have been proposed; most notably, the priority semantics ωp [3].

Experienced CHR programmers know the operational semantics specified by
the CHR system they use. They take that knowledge into account to improve
the performance of their program. However, the resulting CHR programs may
well be no longer correct in all ωt execution strategies. The dilemma experienced
CHR programmers face is the following: either they make sure their programs
are valid under ωt semantics, or they write programs that only work correctly
under a more instantiated operational semantics. The former may result in a
performance penalty, while the latter results in a program for which the logical
reading of the rules is no longer clear. CHR rules have a (linear or classical)
logic reading which is local: a rule always has the same reading, whatever its
context. When the specifics of the operational semantics are implicitly assumed,
the locality of the logic reading is lost. For instance, under ωr semantics, CHR
programmers often omit the rule guards that are implicitly entailed by the rule
order. In this work we show how to overcome this problem by using optimizing
compilation.

Automatic code generation and source-to-source transformations are typically
implemented by applying a general scheme. Such approaches often introduce
many redundant guards or redundant rules. Once more, the optimizations intro-
duced in this paper can be used to improve the output code. By allowing the user
to declare background knowledge about the CHR constraints and host-language
predicates that are used, even more redundant code can be avoided.

Our contributions are as follows:

1. We formalize the implicit pre-conditions of a constraint occurrence in the
refined operational semantics (see Section 4). Our formalization not only
considers the rules in the program, but also user-provided declarations for
types, modes and general background knowledge (see also Section 3).

2. We establish the usefulness of these pre-conditions for optimized compila-
tion with two program transformations: guard simplification and occurrence
subsumption (see Sections 3 and 4).

3. We describe our implementation of these optimizations (see Section 6), and
the common component for entailment checking (see Section 5). The imple-
mentation is available in the K.U.Leuven CHR System.

4. Experimental evaluation shows that our optimizations yield compact and
efficient code (see Section 7).

5. We sketch a similar approach for the priority semantics (see Section 8).
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This paper is a revised and extended version of [16] and [15]. In the next
section we briefly introduce CHR and its formal semantics. The body of this
paper is structured as outlined above.

2 Constraint Handling Rules

We use [H |T ] to denote the first (H) and remaining elements (T ) of a sequence,
++ for sequence concatenation, ε for empty sequences, 	 for multiset union, and
� for multiset subset. We shall sometimes omit existential quantors to get a
lighter notation. Constraints are either CHR constraints or built-in constraints
in some constraint domainD. The former are manipulated by the CHR execution
mechanism while the latter are handled by an underlying constraint solver. We
will assume this underlying solver supports at least equality, true and fail. We
consider all three types of CHR rules to be special cases of simpagation rules:

Definition 1 (CHR program). A CHR program P is a sequence of CHR rules
Ri of the form

(rulename @) Hk
i \ Hr

i ⇐⇒ gi | Bi

where Hk
i (kept head constraints) and Hr

i (removed head constraints) are se-
quences of CHR constraints with Hk

i ++ Hr
i = ε, gi (guard) is a conjunction of

built-in constraints, and Bi (body) is a conjunction of constraints. We will write
Hi as a shorthand for Hk

i ++ Hr
i .

If Hk
i is empty, then the rule Ri is a simplification rule. If Hr

i is empty, then Ri

is a propagation rule. Otherwise the rule is a simpagation rule. We assume all
arguments of the CHR constraints in Hi to be unique variables, making any head
matchings explicit in the guard. This head normalization procedure is explained
in [4] and an illustrating example can be found in section 2.1 of [12].

We number the occurrences of each CHR constraint predicate p appearing
in the heads of the rules of some CHR program P following the top-down rule
order and right-to-left constraint order. The latter is aimed at ordering first
the constraints after the backslash (\) and then those before it, since this gives
the refined operational semantics a clearer behavior. We number the rules in the
same top-down way.

2.1 The Theoretical Operational Semantics ωt

The operational semantics ωt of CHR, sometimes also called theoretical or high-
level operational semantics, is highly nondeterministic. It is formulated as a state
transition system.

Definition 2 (Identified constraint). An identified CHR constraint c#i is
a CHR constraint c associated with some unique integer i, the constraint identi-
fier. This number serves to differentiate between copies of the same constraint.
We introduce the functions chr(c#i) = c and id(c#i) = i, and extend them to
sequences and sets of identified CHR constraints in the obvious manner, e.g.
id(S) = {i|c#i ∈ S}.
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1. Solve 〈{c} � G, S,B, T〉n

ωt�P 〈G, S, c ∧ B, T〉n
where c is a built-in constraint and DH |= ∃̄∅B.

2. Introduce 〈{c} � G, S, B,T〉n

ωt�P 〈G, {c#n} ∪ S,B, T〉n+1

where c is a CHR constraint and DH |= ∃̄∅B.

3. Apply 〈G, H1 � H2 � S, B, T〉n ωt�P 〈C � G, H1 � S, θ ∧ B, T ∪ {h}〉n
where P contains a (renamed apart) rule of the form r @ H ′

1 \ H ′
2 ⇐⇒ g | C,

θ is a matching substitution such that chr(H1) = θ(H ′
1) and chr(H2) = θ(H ′

2),
h = (r, id(H1), id(H2)) �∈ T , and DH |= (∃̄∅B) ∧ (B → ∃̄B(θ ∧ g)).

Fig. 1. The transitions of the theoretical operational semantics ωt

Definition 3 (ωt execution state). An ωt execution state σ is a tuple
〈G, S, B, T〉n. The goal G is a multiset of constraints to be rewritten to solved
form. The CHR constraint store S is a set of identified CHR constraints that
can be matched with rules in the program P. Note that chr(S) is a multiset al-
though S is a set. The built-in constraint store B is the conjunction of all built-in
constraints that have been posted to the underlying solver. These constraints are
assumed to be solved (implicitly) by the host language H. The propagation his-
tory T is a set of tuples, each recording the identities of the CHR constraints
that fired a rule, and the name of the rule itself. The propagation history is used
to prevent trivial non-termination for propagation rules: a propagation rule is
allowed to fire on a set of constraints only if the constraints have not been used
to fire the same rule before. Finally, the counter n ∈ N represents the next inte-
ger that can be used to number a CHR constraint. We use σ, σ0, σ1, . . . to denote
execution states.

For a given CHR program P , the transitions are defined by the binary relation
ωt�P shown in Figure 1. Execution proceeds by exhaustively applying the transi-
tion rules, starting from an initial state. Given an initial goal G, the initial state
is: 〈G, ∅, true, ∅〉1.

2.2 The Refined Operational Semantics ωr

Duck et al. [5] introduced the refined operational semantics ωr of CHR. It for-
mally captures the behavior of many CHR implementations.

The refined operational semantics uses a stack of constraints: when a new
constraint arrives in the constraint store it is pushed on the stack. The con-
straint on top of the stack is called the active constraint. The active constraint
is used to find matching rules, in the order in which this constraint occurs in the
program. When all occurrences have been tried, the constraint is popped from
the stack. When a rule fires, its body is executed immediately from left to right,
thereby potentially suspending the active constraint because of newly arriving
constraints. When a constraint becomes topmost again, it resumes its search for
matching clauses.
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1. Solve 〈[c|A], S
′ � S,B, T〉n ωr�P 〈S ++ A, S′ � S, c ∧ B, T〉n

if c is a built-in constraint and B fixes the variables of S
′.

2. Activate 〈[c|A], S,B, T〉n

ωr�P 〈[c#n :1|A], S
′, B, T〉(n+1)

if c is a CHR constraint, where S
′ = {c#n} � S.

3. Reactivate 〈[c#i|A], S, B, T〉n

ωr�P 〈[c#i :1|A], S, B, T〉n

4. Drop 〈[c#i :j|A], S,B, T〉n

ωr�P 〈A, S, B, T〉n
if there is no jth occurrence of c in P .

5. Simplify 〈[c#i :j|A], {c#i} � H1 � H2 � H3 � S,B, T〉n
ωr�P 〈C ++ A, H1 � S, θ ∧ B, T ∪ {h}〉n

if the jth occurrence of the constraint c is dj in a rule r in P of the form
r @ H ′

1 \ H ′
2, dj , H

′
3 ⇐⇒ g | C and ∃θ : c = θ(dj), chr(Hk) = θ(H ′

k) (k = 1, 2, 3),
D |= B → ∃̄B(θ ∧ g), and T �� h = (id(H1), id(H2 ++ c#i ++ H3), r).

6. Propagate 〈[c#i :j|A], {c#i} � H1 � H2 � H3 � S,B, T〉n
ωr�P 〈C ++ [c#i :j|A], {c#i} � H1 � H2 � S, θ ∧ B, T ∪ {h}〉n

if the jth occurrence of the constraint c is dj in a rule r in P of the form
r @ H ′

1, dj , H
′
2 \ H ′

3 ⇐⇒ g | C and ∃θ : c = θ(dj), chr(Hk) = θ(H ′
k) (k = 1, 2, 3),

D |= B → ∃̄B(θ ∧ g), and T �� h = (id(H1 ++ c#i ++ H2), id(H3), r).

7. Default 〈[c#i :j|A], S, B, T〉n

ωr�P 〈[c′|A], S, B,T〉n
if no other transition applies, where c′ = c#i : (j + 1).

Fig. 2. The transitions of the refined operational semantics ωr

Definition 4 (Occurrenced identified constraint). An occurrenced iden-
tified CHR constraint c#i : j is an identified constraint c#i annotated with an
occurrence number j. This annotation indicates that only matches with occur-
rence j of constraint c are considered at this point in the execution.

Definition 5 (ωr execution state). An ωr execution state σ is a tuple
〈A, S, B, T〉n, where S, B, T, and n represent the CHR store, the built-in store,
the propagation history and the next free identity number just like before. The
execution stack A is a sequence of constraints, identified CHR constraints and
occurrenced identified CHR constraints, with a strict.

Execution in ωr proceeds by exhaustively applying transitions from figure 2 to
the initial execution state until the built-in store is unsatisfiable or no transitions
are applicable. Initial states are defined in the same way as in ωt.

3 Guard Reasoning

Consider the following example CHR program, which computes the greatest
common divisor using Euclid’s algorithm.
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Example 1 (gcd).

gcd(N) <=> N =:= 0 | true.
gcd(N) \ gcd(M) <=> N =\= 0, M >= N | gcd(M-N).

A query containing two (or more) gcd/1 constraints with positive integer
arguments, will eventually result in a constraint store containing one gcd(k)
constraint where k is their greatest common divisor. For example, the query
gcd(9),gcd(15) causes the second rule to fire, resulting in gcd(9),gcd(6).
This rule keeps firing until the store contains gcd(3),gcd(0). Now the first rule
fires, removing gcd(0) from the store. The remaining constraint does indeed
contain the greatest common divisor of 9 and 15, namely 3. ��
Taking the refined operational semantics into account, the above CHR program
can also be written as

gcd(N) <=> N =:= 0 | true.
gcd(N) \ gcd(M) <=> M >= N | gcd(M-N).

because if the second rule is tried, the guard of the first rule must have failed –
otherwise the active constraint would have been removed. Hence the condition N
=\= 0 is redundant. Under ωt semantics, this second version of the CHR program
is no longer guaranteed to terminate, since applying the second rule indefinitely
(which is a valid execution strategy under ωt semantics) when the constraint
store contains e.g. gcd(0),gcd(3) results in an infinite loop.

3.1 Guard Simplification

When a simpagation rule or a simplification rule fires, some or all of its head
constraints are removed. As a result, for every rule Ri, we know that when this
rule is tried, any non-propagation rule Rj with j < i, where the set of head
constraints of rule Rj is a (multiset) subset of that of rule Ri, did not fire for
some reason. Either the heads did not match, or the guard failed. Let us illustrate
this general principle with some simple examples.

Example 2 (entailed guard).

pos @ sign(P,S) <=> P > 0 | S = positive.
zero @ sign(Z,S) <=> Z =:= 0 | S = zero.
neg @ sign(N,S) <=> N < 0 | S = negative.

If the third rule, neg, is tried, we know pos and zero did not fire, because
otherwise, the sign/2 constraint would have been removed. Because the first
rule, pos, did not fire, its guard must have failed, so we know that N ≤ 0.
From the failing of the second rule, zero, we can derive N = 0. Now we can
combine these results to get N < 0, which trivially entails the guard of the third
rule. Because this guard always succeeds, we can safely remove it. This results
in slightly more efficient generated code, and — maybe more importantly —
it might also be useful for other analyses. In this example, guard optimization
reveals that all sign/2 constraints are removed after the third rule, allowing the
never-stored analysis [14] to detect that sign/2 is never-stored. ��
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Example 3 (rule that can never fire).

neq @ p(A) \ q(B) <=> A \== B | ...
eq @ q(C) \ p(D) <=> C == D | ...
prop @ p(X), q(Y) ==> ...

In this case, we can detect that the third rule, prop, will never fire. Indeed,
because the first rule, neq, did not fire, we know that X and Y are equal and
because the second rule, eq, did not fire, we know X and Y are not equal. This is
a contradiction, so we know the third rule can never fire. ��
Generalizing from the previous examples, we can summarize guard simplification
as follows: If (part of) a guard is entailed by knowledge given by the negation
of earlier guards, we can replace it by true, thus removing it. However, if the
negation of (part of a) guard is entailed by that knowledge, we know the rule
will never fire and we can remove the entire rule.

In handwritten programs, such never firing rules most often indicate bugs in
the CHR program – there is no reason to write rules that cannot fire – so it seems
appropriate for the CHR compiler to give a warning message when it encounters
such rules. Automatic program generation and source-to-source transformations
often introduce never firing rules and redundant guards, so it certainly makes
sense to apply guard simplification in that context.

3.2 Head Matching Simplification

Matchings in the arguments of head constraints can be seen as an implicit guard
condition that can also be simplified. Consider the following example:

Example 4 (head matching simplification).

p(X,Y) <=> X \== Y | ...
p(X,X) <=> ...

We can rewrite the second rule to p(X,Y) <=> ..., because the (implicit)
condition X == Y is entailed by the negation of the guard of the first rule. In the
refined operational semantics, this does not change the behavior of the program.
However, in a sense the second rule has become simpler: it imposes less conditions
on the head constraint arguments. As a result, p/2 can now easily be seen to be
never-stored, so more efficient code can be generated by the compiler. ��

3.3 Type and Mode Declarations

Head matching simplification can be much more effective if the types of con-
straints arguments are known.

Example 5 (sum).

:- chr_type list(T) ---> [] ; [T | list(T)].
:- constraints sum(+list(int), ?int).

sum([],S) <=> S = 0.
sum([X|Xs],S) <=> sum(Xs,S2), S is X + S2.
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Since we know the first argument of constraint sum/2 is a (ground) list, these
two rules cover all possible cases and thus the constraint is never-stored. ��
Note that the first declaration is a recursive and generic type definition for lists
of some type T, a variable that can be instantiated with built-in types like int,
float, the general type any, or any user-defined type. The constraint declaration
on the second line includes mode and type information. It is read as follows:
sum/2 is a CHR constraint which has two arguments: a ground list of integers
and an integer, which can be ground or a variable.

Using this knowledge, we can rewrite the second rule of the example program
to “sum(A,S) <=> A = [X|Xs], sum(Xs,S2), S is X + S2.”. Again, under
ωr semantics this does not affect any computation, but since sum/2 is now clearly
never-stored, the program can be compiled to more efficient Prolog code.

3.4 Domain Knowledge Declarations

In addition to type and mode information, we have added the possibility to
add domain knowledge declarations. Suppose for instance that a Prolog fact
v/1 is used to indicate the verbosity of the program, which can be “verbose”,
“normal”, or “quiet”. Consider the following program:

foo(X) <=> v(verbose) | writeln(verbose_foo(X)).
foo(X) <=> v(normal) | write(f).
foo(X), bar(X) ==> \+ v(quiet) | writeln(same_foo_bar(X)).

Under the refined operational semantics, the last rule can never fire. The
following declaration allows the guard reasoning system to detect this:

:- chr_declaration v(verbose) ; v(normal) ; v(quiet).

In general such a declaration should be ground and always true. We also allow
slightly more general declarations of the form

:- chr_declaration predicate(X) ---> expression(X).

where all variables occurring on the right hand side should also occur on the left
hand side. The left hand side should be either a CHR constraint predicate or
a Prolog predicate. For example, if the Prolog predicates male/1 and female/1
are used in the guards of rules involving person/1 constraints, the expected
behavior of those predicates could be declared as follows:

:- chr_declaration person(X) ---> male(X) ; female(X).

This declaration ensures that in a program like

person(X) <=> male(X) | person(X,m).
person(X) <=> female(X) | person(X,f).
person(X), person(Y) ==> maybe_marry(X,Y).

the last rule is automatically removed.
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3.5 Occurrence Subsumption

If the head of a rule contains multiple occurrences of the same constraint, we
can test for occurrence subsumption. We know that when a certain occurrence
is tried, all earlier occurrences in constraint removing rules must have failed. If
the rule containing this occurrence is not a propagation rule, this also holds for
earlier occurrences inside that rule.

The K.U.Leuven CHR compiler already had two optimizations that can be
considered to be special cases of occurrence subsumption. Symmetry analysis
checks rules R with a head containing two constraints c1 and c2 that are sym-
metric, in the sense that there is a variable renaming θ such that θ(c1) = c2 and
θ(c2) = c1 and θ(R) = R. In such rules, one of the ci’s is made passive. This
means the occurrence can be skipped. In terms of the ωr semantics: the Default
transition can be immediately applied for that occurrence, since the Simplify or
Propagate transitions are never applicable for that occurrence. The second opti-
mization looks at rules which make a constraint have set semantics, of the form
c1\c2 ⇔ true|B, without head matchings, where c1 and c2 are identical. In this
case, c1 can be made passive (or c2, but it is better to keep the occurrence
which immediately removes the active constraint). A more efficient constraint
store can be used for c if it has set semantics.

In section 4.1 of [8,9], a concept called continuation optimization is introduced.
Fail continuation optimization is essentially the same as occurrence subsump-
tion, while success continuation optimization uses similar reasoning to improve
the generated code for occurrences in propagation rules. The HAL CHR com-
piler, discussed in [9], performs a simple fail continuation optimization, which
only considers rules without guards and does not use information derived from
the failing of earlier guards.

Example 6 (simple case).

c(A,B), c(B,A) <=> p(A),p(B) | true.

Suppose the active constraint is c(X,Y). For brevity, we use the phrase “occur-
rence x fires” as a shortcut for “occurrence x of the active constraint causes rule
application”. If the first occurrence does not fire, this means that either c(Y,X)
is not in the constraint store, or p(X),p(Y) fails. If the second occurrence fires,
then c(Y,X) must be in the constraint store, and the guard p(Y),p(X) must
succeed. So it is impossible for the second occurrence to fire if the first one did
not1. If the first occurrence did fire, it removes the active constraint so the sec-
ond occurrence is not even tried. From the above reasoning it follows that the
second occurrence is redundant, so we could as well change the rule to c(A,B),
c(B,A)#passive <=> p(A),p(B) | true. ��

In the following examples, the general occurrence subsumption analysis is able
to find much more redundant occurrences than the earlier symmetry and set se-
mantics analyses. Underlined occurrences can be made passive so they can be
1 We assume conjunctions in guards to be commutative: if p(X),p(Y) fails, then
p(Y),p(X) must also fail.
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skipped (i.e. the compiler does not need to generate a clause for such an occur-
rence). All these redundant occurrences are detected by the current K.U.Leuven
CHR compiler.

Example 7 (more complicated cases).

1. a(X,Y,Z),a(Y,Z,X),a(Z,X,Y) <=> ...
2. b(X,Y,Z),b(Y,Z,X),b(Z,X,Y) <=> (p(X); p(Y)) | ...
3. c(A,B,C),c(A,C,B),c(B,A,C),c(B,C,A),c(C,A,B),c(C,B,A) <=> ...
4. d(A,B,C),d(A,C,B),d(B,A,C),d(B,C,A),d(C,A,B),d(C,B,A)

<=> p(A),p(B) | ...
5. e(A,B,C),e(A,C,B),e(B,A,C),e(B,C,A),e(C,A,B),e(C,B,A)

<=> p(A) | ...
6. f(A,B), f(B,C) <=> A \== C | ...

f(A,B), f(B,C) <=> ... �

A strong occurrence subsumption analysis takes away the need for CHR pro-
grammers to write passive pragmas to improve efficiency, since the compiler
is able to add them automatically if it can prove that making the occurrence
passive is justified, i.e. does not change the program’s behavior. Because of this,
the CHR source code contains much less of these non-declarative operational
pragmas, improving the compactness and logical readability.

Of course, not every redundant occurrence can be detected by our analysis.
Consider the last rule in this classic CHR version of the Sieve of Eratosthenes:

Example 8 (too complicated case).

candidate(1) <=> true.
candidate(N) <=> prime(N), candidate(N-1).
prime(Y) \ prime(X) <=> 0 =:= X mod Y | true.

In this program, the last occurrence of prime/1 can be declared to be passive,
provided that user queries are of the form candidate(n), with n ≥ 1. Because
prime/1 constraints are added in reverse order, the guard 0 =:= X mod Y will
always fail if prime(X) is the active constraint. Indeed, for all possible partner
constraints prime(Y) we have Y > X > 1 because of the order in which prime/1
constraints are added, so X mod Y = X = 0. Our implementation of occurrence
subsumption lacks the reasoning capability to detect this kind of situations. Not
only does the current implementation lack a mechanism for the CHR program-
mer to indicate which kind of user queries are allowed, it also does not try to
investigate rule bodies to derive the kind of information needed in this example.
Furthermore, it is far from trivial to automatically detect complicated entail-
ments like Y > X > 1→ X mod Y = 0. ��

4 Formalization

In this section we formalize the guard simplification transformation that was
intuitively described above. First we introduce some additional notation for the
functor/arity of constraints:
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Definition 6 (Functor). For every CHR constraint c = p(t1, . . . , tn), we define
functor(c) = p/n. For every multiset C of CHR constraints we define functor(C)
to be the multiset {functor(c)|c ∈ C}.

4.1 Implicit Preconditions

We consider rules that must have been tried (according to the refined operational
semantics) before some rule Ri is tried, calling them earlier subrules of Ri.

Definition 7 (Earlier subrule). The rule Rj is an earlier subrule of rule Ri

(notation: Rj ≺ Ri) iff j < i and functor(Hj) � functor(Hi).

Now we can define a logical expression nesr(Ri) (“no earlier subrule (fired)”)
stating the implications of the fact that all constraint-removing earlier subrules
of rule Ri have been tried unsuccessfully.

Definition 8 (Nesr). For every rule Ri, we define:

nesr(Ri) =
∧{(¬(θj ∧ gj)

) | Rj ≺ Ri ∧Hr
j = ε

}
where θj is a matching substitution mapping the head constraints of Rj to cor-
responding head constraints of Ri.

If mode, type or domain knowledge information is available for head constraints
of Ri, it can be added to the nesr(Ri) conjunction without affecting the following
definitions and proofs, as long as this information is correct at any given point
in any derivation starting from a legal query. This information is encoded as
follows:

modes. Each mode is translated to its corresponding Prolog built-in: the + mode
yields a ground/1 condition, the - mode a var/1 condition, and the ? mode
a true/0 precondition. For instance, for the constraint c(X,Y,Z) the mode
declaration c(+,-,?) results in the precondition ground(X)∧var(Y)∧true.

types. Each type declaration results in a compound precondition, based on the
type definition. Take for instance the type definition for the boolean type:

:- chr_type boolean ---> true ; false.
The precondition for constraint p(X), whose argument is of type boolean, is:
var(X)∨(nonvar(X)∧(X = true∨X = false)). Note that this precondition
explicitly distinguishes between different instantiations of the argument.

Type definitions are recursively unfolded into the formula. Unrestrained
unfolding is problematic for recursive types like list(T): its leads to an
infinite formula. Hence, we stop the unfolding at a fixed depth.

domain knowledge. The unconditional and fully ground domain knowledge is
added as is. For the conditional form Pattern ---> Formula we consider all
predicate occurrences in nesr(Ri) and all the heads of Ri. For each occurrence
that matches Pattern, we add the corresponding instance of Formula.
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4.2 Definition of Guard Simplification

Consider a CHR program P with rules Ri which have guards gi =
∧

k gi,k.
Applying guard simplification to this program means rewriting some parts of the
guards to true, if they are entailed by the “no earlier subrule fired” condition
(and already evaluated parts of the guard). The entire guard is rewritten to fail,
if the negation of some part of it is entailed by that condition. This effectively
removes the rule. Because head matchings are made explicit, head matching
simplification (section 3.2) is an implicit part of guard simplification.

Definition 9 (Guard Simplification). Applying the guard simplification
transformation to a CHR program P (with rules Ri = Hi ⇔

∧
k gi,k|Bi) re-

sults in a new CHR program P ′ = GS(P ) which is identical to P except for the
guards, i.e. its rules R′

i are of the form Hi ⇔ g′i|Bi, where

g′i =
{
fail if ∃k D |= nesr(Ri) ∧

∧
m<k gi,m → ¬gi,k;∧

k g′i,k otherwise.

In the second case, the g′i,k are defined by

g′i,k =
{
true if D |= nesr(Ri) ∧

∧
m<k gi,m → gi,k;

gi,k otherwise.

Note that this definition is slightly stronger compared to the definition given in
[16], because it takes into account the left-to-right evaluation of the guard. As
a result, internally inconsistent guards like X > Y, Y > X can be simplified to
fail, and internally redundant guards can be simplified, e.g. the condition X >=
Y can be removed from X > Y, X >= Y.

Theorem 1 (Guard simplification & transitions). Given a CHR program
P and its guard-simplified version P ′ = GS(P ). Given an execution state s =
〈A, S, B, T 〉n occurring in some derivation for the P program under ωr seman-
tics, exactly the same transitions are possible from s for P and for P ′. In other
words, �P ≡ �P ′ .

See Appendix A for the proof.

4.3 Definition of Occurrence Subsumption

Although occurrence subsumption can be seen as a source to source transforma-
tion (inserting passive pragmas), we use a slightly different approach to define
occurrence subsumption formally because the common formal definitions of CHR
programs and ωr derivations do not include pragmas. Instead of introducing the
concept of passive occurrences in the formal refined operational semantics, we
define occurrence subsumable occurrences and then we show that trying rule ap-
plication on a subsumed occurrence is redundant. First we define this auxiliary
condition:



Guard Reasoning in the Refined Operational Semantics of CHR 225

Definition 10 (Neocc). Given a non-propagation rule Ri containing in its
head multiple occurrences cm, . . . , cn of the same constraint c and other partner
constraints d. We define for every ck (m ≤ k ≤ n):

neocc(Ri, ck) =
∧{¬θl

(
fc(Ri, cl)

) | m ≤ l < k, θl(cl) = ck

}
where fc(Ri, cl) = (gi ∧ d ∧ cm ∧ . . . ∧ cl−1 ∧ cl+1 ∧ . . . ∧ cn).

As the reader can verify, fc(Ri, cl) is the firing condition for rule Ri to fire if
cl is the active constraint. The condition neocc(Ri, ck) (“no earlier occurrence
(fired)”) describes that if the kth occurrence of c is tried, i.e. application of rule
Ri is tried, the earlier occurrences inside rule Ri must have failed (since Ri is
not a propagation rule). Now we can define formally which occurrences can be
made passive.

Definition 11 (Occurrence subsumption). Given a rule Ri as in the previ-
ous definition. We say ck (m < k ≤ n) is occurrence subsumable iff

D |= nesr(Ri) ∧ neocc(Ri, ck) → ¬fc(Ri, ck)

In the next section we present a formal correctness proof of both the guard simpli-
fication transformation from the previous section and occurrence subsumption.

Theorem 2 (Correctness of Occ. Subsumption). Given a CHR program P
and an ωr derivation for P in which an execution state s = 〈[c#i : j|A], S, B, T 〉n
occurs. If cj is occurrence subsumable, Simplify and Propagate transition can-
not (directly) be applied on state s.

See Appendix A for the proof.

5 Entailment Checking

The core component for guard reasoning is a logical entailment checker. In this
section we discuss our implementation, in CHR, of such an entailment checker.
This implementation is used in the guard simplification analysis to test whether
one condition B (e.g. X < Z) is entailed by another condition A (e.g. X <
Y ∧Y < Z), i.e. whether A → B holds. The entailment checker only considers (a
fragment of the) host-language built-ins. In particular, it does not try to discover
implications of user-defined predicates, which would require a complex analysis
of the host-language program.

5.1 Overview

As the entailment checking problem is generally undecidable, our entailment
checker is incomplete. It tries to prove that B is entailed by A; if it succeeds,
A→ B must hold, but if it fails, either A → B holds or A→ B holds but could
not be shown. The core of the entailment checker is written in CHR. When the
entailment A→ B needs to be checked, we call the entailment checker with the
query known(A), test(B). Schematically, it works as follows:
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1. normalize;
e.g. apply De Morgan’s laws, convert ≥, >, < to ≤ and =

2. evaluate ground expressions;
e.g. replace known(5 ≤ 3) by known(fail)

3. propagate entailed information;
e.g. if you find both known(X ≤ Y ) and known(Y ≤ Z), then add
known(X ≤ Z)

4. succeed whenever known(B) is added;
5. succeed if B is entailed;

e.g. test(X = 3) is entailed by known(X ≤ 0)
6. if there is a disjunction known(A1 ∨ A2): check whether A1 → B and also

whether ¬A1 ∧A2 → B, succeed if both tests succeed;
7. otherwise: give up and fail.

We try to postpone the expansion of disjunctions, because (recursively) trying
all combinations of conditions in disjunctions can be rather costly: if A is a
conjunction containing n disjunctions, each containing m conditions, there are
mn cases that have to be checked. This is why we check entailment of B before a
disjunction is expanded. Conjunctions in B are dealt with in the obvious way. If
B is a disjunction B1∨B2, we add known(¬B2) to the store and test B1. We can
stop (and succeed) if B1 is entailed, otherwise we backtrack, add known(¬B1)
to the store and return the result of testing entailment of B2.

5.2 Code Details

The negation of a condition is computed in a straightforward way for host-
language built-ins. For example, the negation of X == Y is X \== Y, \+ Cond
becomes Cond, disjunctions become conjunctions of the negated disjuncts, and
so on. For user-defined predicates p we simply use (\+ p).

Figure 3 shows how the normalization of known/1 and test/1 constraints is
done. Ground conditions are evaluated using rules like the following:

known(X=<Y) <=> number(X), number(Y), X=<Y | true.
known(X=<Y) <=> number(X), number(Y), X>Y | known(fail).
test(X=<Y) <=> number(X), number(Y), X=<Y | true.

In Fig. 4 some examples are given of rules that propagate entailed information.
The idempotence rule and execution under the refined semantics is crucial for
termination of this propagation phase.

A simplified version of the rest of the entailment checker is listed in Fig. 5.
Note that Prolog disjunction in the rule body is used to check disjunctions

in test/1 constraints. To deal with disjunctions in known/1 constraints, a bit
of trickery is needed. We want to avoid branching until it is needed. While the
propagation rules are already applied before the test constraint is activated,
the disjunction rule can only be applied when the test constraint has al-
most reached its last occurrence. Now we use a double Prolog negation to test
both disjuncts. The predicate try(A,X) fails if A → X can be shown, so its
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:- chr_constraint known/1, test/1.

known(G) <=> normal_form(G,N) | known(N).

test(G) <=> normal_form(G,N) | test(N).

normal_form(X>Y, (Y=<X, X=\=Y)).

normal_form(X>=Y, Y=<X).

normal_form(X<Y, (X=<Y, X=\=Y)).

normal_form(X is Y, X=:=Y).

normal_form(\+ G, NotG) :- negation(G,NotG).

negation(X = Y, X \= Y). negation(X \= Y, X = Y).

negation(X < Y, Y =< X). negation(X > Y, X =< Y).

negation(X =< Y, Y < X). negation(X >= Y, X < Y).

negation(X == Y, X \== Y). negation(X \== Y, X == Y).

negation(X =\= Y, X =:= Y). negation(X =:= Y, X =\= Y).

negation(var(X), nonvar(X)). negation(nonvar(X), var(X)).

negation((A;B), (\+ A, \+ B)). negation((A,B), (\+ A; \+ B)).

negation(true,fail). negation(fail,true).

negation(\+ G, G). % double negation

Fig. 3. Conversion to normal form

idempotence @ known(G) \ known(G) <=> true.
inconsistency @ known(X), known(\+ X) <=> known(fail).
conjunction @ known((A,B)) <=> known(A), known(B).

eq_neq_inconsistency @ known(X\==Y), known(X==Y) <=> known(fail).
eq_transitivity @ known(X==Y), known(Y==Z) ==> known(X==Z).
neq_substitution @ known(X==Y), known(Y\==Z) ==> known(X\==Z).
eq_symmetry @ known(X==Y) ==> known(Y==X).
neq_symmetry @ known(X\==Y) ==> known(Y\==X).
neq_inconsistency @ known(X\==X) ==> known(fail).

leq_antisymmetry @ known(X=<Y), known(Y=<X) <=> known(X=:=Y).
leq_transitivity @ known(X=<Y), known(Y=<Z) ==> known(X=<Z).
leq_substitution1 @ known(X=:=Y), known(X =< Z) ==> known(Y =< Z).
leq_substitution2 @ known(X=:=Y), known(Z =< X) ==> known(Z =< Y).
strict_lt_transitivity @ known(X=<Y), known(X=\=Y), known(Y=<Z), known(Y=\=Z)

==> known(X=\=Z).

aneq_inconsistency @ known(X=\=X) <=> known(fail).
aeq_aneq_inconsistency @ known(X=:=Y), known(X=\=Y) <=> known(fail).
aeq_transitivity @ known(X=:=Y), known(Y=:=Z) ==> X \== Z | known(X=:=Z).
aeq_symmetry @ known(X=:=Y) ==> known(Y=:=X).
aneq_symmetry @ known(X=\=Y) ==> known(Y=\=X).

Fig. 4. Propagation of known/1 constraints

negation succeeds if A → X holds. By using a double negation, all propagated
consequences of A are automatically undone.

Disjunctions in the antecedent are the main bottleneck of the entailment
checker: every disjunction potentially doubles the amount of work to be done,
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fail_implies_everything @ known(fail) \ test(X) <=> true.
trivial_entailment @ known(G) \ test(G) <=> true.
eq_implies_leq1 @ known(X=:=Y) \ test(X=<Y) <=> true.
eq_implies_leq2 @ known(X=:=Z) \ test(X=<Y) <=> number(Y), number(Z), Z=<Y | true.
eq_implies_leq3 @ known(X=:=Z) \ test(Y=<X) <=> number(Y), number(Z), Y=<Z | true.
leq_implies_leq1 @ known(X=<Z) \ test(X=<Y) <=> number(Y), number(Z), Z=<Y | true.
leq_implies_leq2 @ known(X=<Y) \ test(Z=<Y) <=> number(X), number(Z), Z=<X | true.
leq_implies_neq1 @ known(X=<Z) \ test(X=\=Y) <=> number(Y), number(Z), Y>Z | true.
leq_implies_neq2 @ known(X=<Y) \ test(Y=\=Z) <=> number(X), number(Z), Z<X | true.
leq_implies_neq2 @ known(X=<Y) \ test(Z=\=Y) <=> number(X), number(Z), Z<X | true.
true_is_true @ test(true) <=> true.

test_conjunction @ test((A,B)) <=> test(A), known(A), test(B).
test_disjunction @ test((A;B)) <=> known(\+ B),test(A) ; known(\+ A),test(B).

disjunction @ test(X), known((A;B))
<=> \+ try(A,X), !, known(\+ A), \+ try(B,X).

give_up @ test(_) <=> fail.

try(A,X) :- known(A), (test(X) -> fail ; true).

Fig. 5. Part of the program to check entailments

so the checking is potentially exponential in the input size. In the case of guard
simplification, the antecedents consist of negations of guards, and guards are
typically conjunctions. As a result, after normalization the antecedent consists
of disjunctions (of negated conjuncts). Hence, for efficiency reasons it is impor-
tant to avoid disjunction branching if possible. In addition to the above strategy
of delaying disjunctions, we have added rules to simplify some common cases of
redundant disjunctions. Examples of such rules are the following:

known((fail; B)) <=> known(B).
known((true ; A)) <=> true.
known(A) \ known((\+ A; B)) <=> known(B).
known(A) \ known((\+ A, C; B)) <=> known(B).

5.3 Flattening

The generic constraints known/1 and test/1 provide a conceptual simplicity
in formulating and maintaining the rules of the entailment checker. However,
this genericity incurs a runtime penalty: the CHR compiler fails to efficiently
index the constraints, and each active constraint has to consider (almost) all
occurrences.

Because the entailment checker is one of the main performance bottlenecks
in the K.U.Leuven CHR compiler, the above inefficiency is unacceptable. For-
tunately, it can be mitigated with little effort by automated rule specializa-
tion. Sarna-Starosta and Schrijvers [11] propose a technique for specializing con-
straints with respect to the different toplevel function symbols in their arguments
that rules try to match. In the current version of the compiler, this specializa-
tion leads to 20 versions of test/1 and 26 versions of known/1, e.g. known ==/2,
test true/0, . . .
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This specialization provides indexing on the toplevel function symbol for free.
The CHR compiler always allocates separate indexing datastructures for distinct
constraint symbols.

Of course, the specialization of constraints leads to the specialization of rules,
and, because many rules only apply to one specialized form, fewer occurrences
for each specialized constraint. For instance, we obtain only two occurrences for
test true/0:

known_fail \ test_true <=> true.
test_true <=> true.

This fully automatic specialization makes the entailment checker roughly twice
as fast.

6 Implementation

We have implemented guard simplification and occurrence subsumption in the
K.U.Leuven CHR compiler [13], which can be found in recent releases of SWI-
Prolog [21]. In this section we give a brief overview of our implementation of
guard simplification and occurrence subsumption, which depends heavily on the
entailment checker discussed in the previous section.

The guard simplification / occurrence subsumption compilation phase rewrites
every rule in the CHR program. In the rewritten rules, the redundant parts of the
guard have been removed, the head matchings (an implicit part of the guard) are
made as general as possible and subsumed occurrences are declared to be passive.
As a result, the generated code is more efficient because redundant checks are
removed, and also the next compilation phases – like storage analysis – are more
effective.

Our implementation works as follows. For every rule Ri, we first compute a
conjunction of inferred information. Then we use this information to transform
the rule to a simpler and more efficient form.

6.1 Inferring Information

First we make the head matchings explicit, inserting fresh variables in the argu-
ments of head constraints as needed. For example, the rule

c([X|Xs],Y,Y) <=> ... | ...

would be rewritten to the equivalent rule in head normal form:

c(A,Y,B) <=> A = [X|Xs], B == Y, ... | ...

Next we iteratively construct a conjunction similar to nesr(Ri) from section 4,
containing the negations of the guards of the earlier subrules Rj ≺ Ri. All pos-
sible substitutions have to be considered. As an example, consider the program:

c(X) <=> p(X) | ...
c(2) <=> q | ...
c(A), c(B) <=> ... | ...
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For the third rule, the following conjunction would be computed:

(A \== 2; \+ q), (B \== 2; \+ q), \+ p(A), \+ p(B)

Finally we add type and mode information by looking up the type and mode
declarations for the head constraints of Ri, unfolding the type definitions to the
nesting depth needed (see Section 4.1). We also add the relevant information
from the domain knowledge declarations.

6.2 Using the Information

Now we can use the derived information to transform the rule. Schematically,
our implementation works as follows:

1. for every part of the guard of Ri (the gi,k’s from section 4): check if it is
entailed by the derived information and remove it if it is (i.e. replace it with
true); if its negation is entailed, replace it with fail;

2. move every entailed head matching to the body if the variables in the right
hand side of the matching do not occur in the guard; if they also do not
occur in the body, remove the head matching;

3. produce a warning message if the guard now entails fail, or if the head
matchings entail fail. This means that rule Ri will never fire, which prob-
ably indicates a bug in the CHR program;

4. for every occurrence ck of a constraint that occurs more than once in Ri,
compute neocc(Ri, ck) and do occurrence subsumption by checking whether
¬fc(Ri, ck) is entailed by nesr(Ri) ∧ neocc(Ri, ck), i.e. check whether occur-
rence ck can be safely set to ‘passive’.

As an example of the second step, consider the rule

c([X|Xs],[],A,A,[B|Bs]) <=> B>0 | d(X,A).

and assume the derived information entails that the first arguments of c/5 is a
non-empty list, the second argument is an empty list and the third and fourth
argument are identical. The rule would be rewritten to

c(Z,_,A,_,[B|_]) <=> B>0 | Z=[X|_], d(X,A).

7 Experimental Results

In order to quantify the efficiency gain obtained by guard simplification and
occurrence subsumption, we have measured the performance of several CHR
benchmarks, both with and without the optimization. All benchmarks were per-
formed in SWI-Prolog [21] Pentium 4 machine running Debian GNU/Linux with
a low load. Before we discuss the benchmarks, we first take a look at the code the
compiler generates for an example CHR program, and how this code is improved
by guard simplification.
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7.1 Generated Code Comparison

Consider this fragment from a prime number generating program from the CHR
web site [19]:

filter([X|In],P,Out) <=> 0 =\= X mod P |
Out = [X|Out1],
filter(In,P,Out1).

filter([X|In],P,Out) <=> 0 =:= X mod P |
filter(In,P,Out).

filter([],P,Out) <=> Out = [].

The CHR compiler (without guard simplification) generates general code for
the filter/3 constraint. Because no information is known about the arguments
of filter/3, the compiled code has to take into account variable triggering and
the possibility that none of the rules apply and the constraint has to be stored.
Following the compilation scheme explained in [10], we get this generated code:

filter(List,P,Out) :- filter(List,P,Out, _ ).

% first occurrence
filter(List,P,Out,C) :-

nonvar(List), List = [X|In],
0 =\= X mod P, !,
... % removecode
Out = [E|Out1], filter(In,P,Out1).

% second occurrence
filter(List,P,Out,C) :-

nonvar(List), List = [X|In],
0 =:= X mod P, !,
... % removecode
filter(In,P,Out).

% third occurrence
filter(List, _ ,Out,C) :-

List == [], !,
... % removecode
Out = [].

% insert into store if no rule applied
filter(List,P,Out,C) :-

... % insertcode

If we enable guard simplification, the guard in the second rule is removed,
but this on itself does not improve efficiency considerably. Much more efficiency
improvements can be obtained by adding type and mode information.
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In this example, the programmer intends to call filter/3 with the first two
arguments ground, while the third one can have any instantiation. The first and
the third argument are lists of integers, while the second argument is an integer.
So we add the following type and mode declaration:

:- constraints filter(+list(int),+int,?list(int)).

Using this type and mode information, guard simplification now detects that
all possibilities are covered by the three rules. The guard in the second rule can
be removed, so the filter/3 constraint with the first argument being a non-
empty list is always removed after the second rule. Thus in order to reach the
third rule, the first argument has to be the empty list – it cannot be a variable
because it is ground and it cannot be anything else because of its type. As a
result, we can drop the head matching in the third rule:

filter([X|In],P,Out) <=> 0 =\= X mod P |
Out = [X|Out1],
filter(In,P,Out1).

filter([_|In],P,Out) <=> filter(In,P,Out).
filter(_,P,Out) <=> Out = [].

This transformed program is compiled to more efficient code, because never-
stored analysis detects filter/3 to be never-stored after the third rule. The
generated code for the guard simplified program is considerably simpler:

filter([X|In],P,Out) :- 0 =\= X mod P, !,
Out = [X|Out1],
filter(In,P,Out1).

filter([_|In],P,Out) :- !, filter(In,P,Out).
filter(_,_,[]).

7.2 Guard Simplification Results

Figure 6 gives an overview of the results of running a set of benchmarks with and
without guard simplification. The first column indicates the benchmark name
and the parameters that were used. These benchmarks are available at [20].
The second and third column indicate whether mode and type declarations were
provided, respectively. The fourth column indicates whether guard simplifica-
tion was enabled. In all these columns, an empty cell means the choice has no
influence on the resulting compiled code (so it can be “yes” or “no”). The fifth
column shows the size of the resulting compiled Prolog code as a pair of the
form (#Clauses ; #Lines), not including auxiliary predicates. The last column
shows the runtime in seconds and a percentage comparing the runtime to that
of the version with mode information but without guard simplification. If a cell
contains an equality sign (“=”), we could not measure any performance differ-
ence compared to the version in the row just above that cell. If a cell contains
an equivalence sign (“≡”), the Prolog code for that row is identical to the one in
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Benchmark Mode Type Guard simplification Program size Runtime (%)

sum no no 4 ; 46 12.23 (243)
(10000,500) yes no 3 ; 10 5.03 (100)

yes yes yes 2 ; 6 4.49 (89)
hand-optimized code 2 ; 5 = =

Takeuchi no no 4 ; 50 136.11 (173)
(1000) yes no 3 ; 17 78.62 (100)

yes 2 ; 12 72.88 (93)
hand-optimized code ≡ ≡ ≡

nrev no no 8 ; 92 47.83 (342)
(30,50000) yes no 6 ; 20 13.97 (100)

yes yes yes 4 ; 11 8.44 (60)
hand-optimized code 4 ; 7 = =

cprimes no no 14 ; 160 196.48 (245)
(100000) no yes 12 ; 120 = =

yes no no 11 ; 42 80.20 (100)
yes no yes 10 ; 35 = =
yes yes yes 8 ; 25 79.25 (99)

hand-optimized code 8 ; 23 = =
dfsearch no no 5 ; 67 149.02 (397)
(16,500) no yes 5 ; 66 141.75 (377)

yes no no 4 ; 16 37.58 (100)
yes no yes 4 ; 15 31.63 (84)
yes yes yes 3 ; 11 29.97 (80)

hand-optimized code 3 ; 8 = =

Fig. 6. Benchmark results for guard simplification

the row just above. For every benchmark, the results for hand-optimized Prolog
code are included, representing the ideal target code.

We have measured similar results [16] in hProlog [18]. The only significant
difference with the results presented here, is the amount of run time improvement
caused by adding mode information. In hProlog, this improvement is typically
20 to 30 percent, while in SWI-Prolog, it can be 50 to 70 percent. The reason
is that the nonvar/1-test and other redundant code – which is removed when
the argument is declared to be ground – is handled much more efficiently by
hProlog.

Discussion. The first benchmark, sum, computes the sum of the elements of a
list of 10000 numbers (all 1), and is repeated 500 times (see example 5 page 219):

sum([],S) <=> S = 0.
sum([A|R],S) <=> sum(R,T), S is A+T.

If type and mode declarations are provided, guard simplification moves the
head matching to the body, enabling never-stored analysis to remove redun-
dant code to add sum/2 to the constraint store. As in the other benchmarks,
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no significant performance difference could be measured between the resulting
compiled program2

sum([],S) :- !, S = 0.
sum([A|R],S) :- sum(R,T), S is A+T.

and the handwritten Prolog code

sum([],S) :- S = 0.
sum([A|R],S) :- sum(R,T), S is A+T.

The second benchmark is an example of how guard simplification can in some
way make mode information redundant. The CHR-program looks like this:

tak(X,Y,Z,A) <=> X =< Y | ...
tak(X,Y,Z,A) <=> X > Y | ...

The first three arguments are supposed to be ground integers. If this mode
information is given, the possibility of variable triggering can be excluded. How-
ever, even without mode information, guard simplification removes the guard in
the second rule. As a result, the constraint is detected as being never-stored, also
excluding the possibility of variable triggering. In this case, the generated code is
identical to the handwritten Prolog code. The guard X > Y is removed because it
is (entailed by) the negation of X =< Y. When X =< Y fails, we know X and Y are
ground terms evaluating to numbers, and X > Y. If in some other host language,
X =< Y would fail if its arguments are invalid – instead of resulting in some fatal
error message or exception – then it would have a different negation, for instance
(X > Y ; \+ number(X) ; \+ number(Y)). In that case, guard simplification
would not remove the guard of the second rule, except when mode and type
information is given.

In the third benchmark, nrev, a list of length 30 is reversed 50000 times using
the classic naive algorithm. Except for some redundant cuts, the generated code:

nrev([],Ans) :- !, Ans = [].
nrev([X|Xs],Ans) :- nrev(Xs,L), app(L,[X],Ans).
app([],L,M) :- !, L = M.
app([X|L1],L2,[X|L3]) :- app(L1,L2,L3).

is essentially identical to the handwritten Prolog program:

nrev([],[]).
nrev([X|Xs],Ans):- nrev(Xs,L), app(L,[X],Ans).
app([],L,L).
app([X|L1],L2,[X|L3]):- app(L1,L2,L3).

2 For readability, variables have been renamed in the generated code shown here. The
results are similar for a tail-recursive version of sum/2.
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Benchmark Occ. subsumption # occurrences Runtime (%)

a no 3 52.8 (100)
(5000) yes 1 17.1 (32)

b no 3 52.1 (100)
(5000) yes 2 34.3 (66)

c no 6 86.5 (100)
(5000) yes 1 17.2 (20)

d no 6 84.7 (100)
(5000) yes 3 50.3 (59)

e no 6 86.4 (100)
(5000) yes 3 49.9 (58)

f no 4 64.4 (100)
(5000) yes 3 47.8 (74)

Fig. 7. Benchmark results for occurrence subsumption

The example in section 7.1 is a fragment from the fourth benchmark, cprimes,
which computes the first 100,000 prime numbers. The last benchmark, dfsearch,
performs a depth-first search on a large tree. In both cases, the generated code for
the guard simplified version with mode and type information is again essentially
identical to the handwritten Prolog code.

Conclusion. Overall, for these benchmarks, the net effect of the guard simpli-
fication transformation – together with never-stored analysis and use of mode
information to remove redundant variable triggering code – is cleaner generated
code which is much closer to what a Prolog programmer would write. As a result,
a major performance improvement is observed in these benchmarks, which are
CHR programs that basically implement a deterministic algorithm.

Naive compilation causes CHR programs to have a relatively low performance
compared to native host-language (Prolog) alternatives. As a result, CHR pro-
grammers usually write auxiliary predicates in Prolog instead of formulating
them directly in CHR. Thanks to guard simplification and other analyses, the
programmer can now simply implement everything as CHR rules, relying on the
compiler to generate efficient code. Mixed-language programs often use inelegant
interface constructs, like rules of the form foo(X) \ getFoo(Y) <=> Y = X, to
read information from the constraint store in the host-language parts when this
information is needed. Host-language interface constraints like getFoo/1 can be
avoided by writing the entire program in CHR. Thanks to (amongst others)
guard simplification, this can be done without performance penalty.

7.3 Occurrence Subsumption Results

Figure 7 shows the results of occurrence subsumption for four benchmarks. Sym-
metry and set semantics analyses were disabled in both cases because they are
special cases of occurrence subsumption. The second column indicates whether
occurrence subsumption was enabled. The third column indicates the number of
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non-passive occurrences. The runtime column is as in Fig. 6. The benchmarks
correspond to the rules in Example 7 (page 222).

Occurrence subsumption seems to result in a substantial performance im-
provement, if there are subsumable occurrences (which is of course true for
these benchmarks). Occurrence subsumption also reduces the size of the gen-
erated code, by eliminating entire clauses. Compared to guard simplification,
this size reduction is more visible, unless of course – as in the case of bench-
marks from the previous section – guard simplification reveals the never-stored
property, which also allows substantial simplification of the generated code.

8 Guard Reasoning under ωp Semantics

Guard reasoning can also be applied in the context of different operational se-
mantics. In this section we consider the priority semantics ωp introduced by
De Koninck et al. [3]. The programmer assigns a priority to every rule. The ωp

semantics is an instantiation of ωt which ensures that of all applicable rules,
the one with the highest priority is applied first. Priorities are strictly positive
integer numbers, where smaller numbers indicate higher priority.

Consider the gcd program of example 1, executed under ωp semantics, and
annotated with the following (dynamic) priorities:

1 :: gcd(N) <=> N =:= 0 | true.
N+2 :: gcd(N) \ gcd(M) <=> N =\= 0, M >= N | gcd(M-N).

In this case, the entire guard of the second rule is redundant. The reasoning is
as follows. The first rule takes priority over the second rule, so we can derive that
if the second rule is applicable, the arguments of both head constraints must be
different from zero. Now suppose we have the constraints gcd(A) and gcd(B)
and the second rule is applicable for some matching θ = {N/A, M/B}, with
priority A+ 2. Suppose that M < N, so B < A. The matching θ′ = {N/B, M/A}
has a lower priority B + 2 < A+ 2, so the second rule cannot be applicable with
matching θ. From this contradiction we can derive that M >= N should always
hold when the priority semantics allows the rule to be applicable. So under
the priority semantics ωp, the following simplified program is equivalent to the
original program:

1 :: gcd(N) <=> N =:= 0 | true.
N+2 :: gcd(N) \ gcd(M) <=> gcd(M-N).

We give two more examples to illustrate how we can reason about guards
under the ωp semantics.

Example 9 (static priorities). Consider the following rules:

1 :: domain(A,L:U) <=> L > U | fail.
2 :: domain(A,L:U), domain(A,U:L) <=> L = U | A = U.
3 :: domain(A,L:U), domain(A,U:V) <=> L < V | A = U.
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The first rule removes domain/2 constraints with an empty domain (lower bound
strictly larger than upper bound). When the second rule is tried, we know the
first rule is not applicable because of the priorities. So for the second rule, we
know that ¬(L > U) and also that ¬(U > L), because otherwise one of the
head constraints would have been removed by the first rule. Now we have ¬(L >
U) ∧ ¬(U > L) ↔ L ≤ U ∧ U ≤ L ↔ L = U , so the guard of the second rule is
redundant. Now for the third rule, we know that L ≤ U and U ≤ V because of
the first rule, and also that L = V because of the second rule. Hence L < V and
the guard of the third rule is also redundant. ��
Example 10 (dynamic priorities). Consider the following rules:

X :: a(X,Y,Z) <=> Y > Z | true.
Y :: a(X,Y,Z) <=> X < Z | true.
Z :: a(X,Y,Z) <=> Z > X | true.

We can derive that the last rule can never fire. The reasoning is as follows. When
we try the last rule for a given a/3 constraint, the first rule was not applied
earlier because it would have removed the constraint. Either the first rule was
not applied because the priorities allow non-application (so Z ≤ X), or it was
not applied because the guard failed (so ¬Y > Z). So from inspecting the first
rule, assuming the last rule can be applied, we can derive that Z ≤ X ∨ Y < Z.
Similarly, from inspection of the second rule, we can derive that Z ≤ Y ∨Z < X .
Now if the last rule is applicable, its guard should hold, so Z > X . It is easy to
see that this is inconsistent with the two derived formulae, so we can conclude
that the last rule is redundant and may be removed. ��
In future work we plan to formalize and implement guard reasoning under ωp

semantics.

9 Conclusion

By reasoning about guards and the operational semantics under which the pro-
gram will be executed, we can automatically identify redundant guards and
redundant rules. As a result, a CHR programmer can write a correct program
under the general ωt semantics, and the compiler will convert it to a more effi-
cient program which is only correct under a particular instance of ωt (for example
ωr or ωp). Type and mode declarations can also be taken into account.

In order to achieve higher efficiency, CHR programmers often write parts of
their program in Prolog if they do not require the additional power of CHR. They
no longer need to write mixed-language programs for efficiency: they can sim-
ply write the entire program in CHR. Non-declarative auxiliary “host-language
interface” constraints like getFoo/1 (see section 7.2) can be avoided.

9.1 Related Work

Guard simplification is somewhat similar to switch detection in Mercury [7].
In Mercury, disjunctions – explicit or implicit (multiple clauses) – are exam-
ined for determinism analysis. In general, disjunctions cause a predicate to have
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multiple solutions. However, if for any given combination of input values, only
one of the disjuncts can succeed, the disjunction does not affect determinism.
Because they superficially resemble switches in the C programming language,
such disjunctions are called switches. Switch detection checks unifications in-
volving variables that are bound on entry to the disjunction and occurring in
the different branches. In a sense, this is a special case of guard simplification,
since guard simplification considers other tests as well, using a more general
entailment checking mechanism. Guard simplification analysis can be used to
remove redundant guard conditions on the source level, because CHR rules are
committed-choice. It is harder to express the switch detection optimization as a
source to source transformation for Mercury programs.

Guard simplification and occurrence subsumption can be combined into one
analysis. In some intermediate representation, there can be a separate copy of
each rule for every constraint occurrence c, where all heads except c are passive.
This representation is closer to the generated Prolog code, where each occurrence
gets a separate clause in which (after matching the partner constraints) the
rule guard and body are duplicated. From this angle, guard simplification is
simplifying the guards of all copies of a certain rule at once, while occurrence
subsumption is simplifying the guard of one specific copy to fail, removing that
copy. A stronger and more general optimization can be obtained by simplifying
the guard of each copy separately. This optimization can no longer be expressed
as a pure source to source transformation. We have elaborated that approach in
[15]. While reasoning on the level of constraint occurrences is stronger, it is also
computationally more expensive and specific to the refined semantics, which has
the concept of active occurrences.

Occurrence subsumption is essentially the same as fail continuation optimiza-
tion [8,9], although our implementation performs much more complex implica-
tion reasoning, resulting in a stronger optimization compared to [8,9]. The re-
lated concept of success continuation optimization [9] was explored in [15]. The
K.U.Leuven CHR system currently implements a weak form of success continu-
ation optimization: head matchings are taken into account to skip non-matching
occurrences in the continuation of propagation rules. This could be generalized
by taking into account all information that can be derived by guard reasoning.

9.2 Future Work

Our current entailment checker can only deal with a limited number of Prolog
built-ins. Using domain knowledge declarations, properties of user-defined Prolog
predicates can be declared to enhance the capabilities of the entailment checker.
The expressivity of such declarations is still fairly limited, and such declarations
have to be added manually by the programmer. We see two ways for substantial
further improvement. Firstly, the entailment checker could statically evaluate a
call to a Prolog predicate to determine its success or failure. Here a conservative
approach is essential as the pitfalls of side effects and non-termination must be
avoided. Secondly, we may derive a solver for the Prolog predicate from its logic
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program definition with the techniques of [2]. We conjecture that the latter leads
to stronger results than meta-interpretation, but at a greater computational cost.

It would be interesting to explore a generalization of guard simplification
that not just removes redundant conjuncts, but also replaces computationally
expensive conditions by cheaper ones. For example, consider this program:

p(X) <=> X >= 0, g(X) | ...
p(X) <=> X < 0, \+ g(X) | ...
p(X) <=> g(X) | ...

If g/1 is a predicate that takes a very long time to evaluate, we could change the
guard of the last rule to X<0, because ¬(X >= 0 ∧ g(X)) ∧ ¬(X < 0 ∧ ¬g(X))
entails g(X)↔ X < 0.

When there are many earlier subrules to consider in the guard simplification
analysis, the performance of our current implementation may become an issue.
Rules with many shared head constraints are an even bigger performance issue,
because of the combinatorial blowup caused by constructing all possible map-
pings from the head of an earlier subrule to the current rule head. For example,
if some constraint c occurs n times in the head of an earlier subrule, and m
(≥ n) times in the current head, there are m!

(m−n)! conditions to be added to the
nesr conjunction. In future work we hope to further improve the scalability of
our implementation.

The information entailed by the failure and success of guards, used here to
eliminate redundant guards and rules, would also be useful in other program
analyses and transformations. Of particular interest is the generation of special-
ized code for individual constraint calls in rule bodies. Taking into account the
success and failure leading up to this call, stronger guard simplification may be
performed than in the general case.

Finally, an interesting area for future work is the formalization and implemen-
tation guard reasoning for the priority semantics, as we mentioned in Section 8.
The relation between guards and rule priorities needs further investigation: per-
haps a sort of reverse reasoning can be used to simplify priorities given the
guards. In this way, it could be possible to replace dynamic priorities by static
priorities or to execute part of a program under the more efficient refined se-
mantics, perhaps by adding some guards.
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10. Holzbaur, C., Frühwirth, T.: Compiling Constraint Handling Rules into Prolog
with attributed variables. In: Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702.
Springer, Heidelberg (1999)

11. Sarna-Starosta, B., Schrijvers, T.: Indexing techniques for CHR based on program
transformation. Technical Report CW 500, K.U.Leuven, Dept. Computer Science
(August 2007)

12. Schrijvers, T., Demoen, B.: Antimonotony-based Delay Avoidance for CHR. Tech-
nical Report CW 385, K.U.Leuven, Department of Computer Science (July 2004)

13. Schrijvers, T., Demoen, B.: The K.U.Leuven CHR system: implementation and
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A Correctness Proofs

Detailed definitions of execution state, transition and derivation can be found in
[5]. The summary from section 2 should suffice to understand the theorems and
proofs below.

First we prove a lemma which will be useful later. Intuitively it says that for
every point in a derivation (under ωr semantics) where a rule can directly be
applied with c being the active constraint, there must be an earlier execution
state in which the first occurrence of c is about to be checked and where all
preconditions for that rule to fire are also fulfilled.

Lemma 1. If in a derivation s0 �∗ sk for P under ωr semantics, the exe-
cution state sk is of the form sk = 〈[c#i : j|Ak], Sk, Bk, Tk〉nk

, and transi-
tions sk �simplify sk+1 or sk �propagate sk+1 are applicable, applying rule
Rx, then the derivation contains an intermediate execution state sl = 〈[c#i :
1|Al], Sl, Bl, Tl〉nl

, such that s0 �∗ sl �∗ sk and for every execution state sm

with l ≤ m ≤ k, the CHR store contains all partner constraints needed for the
application of rule Rx and the built-in store entails the guard of rule Rx.

Proof. Consider the execution state

sl′ = 〈[c#i : 1|Al′ ], Sl′ , Bl′ , Tl′〉nl′ (s0 �∗ sl′ �∗ sk)

just after the last Reactivate transition that put c#i : 1 at the top of the
execution stack; if there was no such transition, consider sl′ to be the execution
state just after the Activate transition that put c#i : 1 at the top of the
execution stack.

Suppose at some point in the derivation sl′ �∗ sk, the built-in store does not
entail the guard gx of Rx. Then the built-in store has to change between that
point and sk, so that after the change it does entail gx. This will possibly trigger
some constraints:

– If c is triggered, then c is reactivated after sl′ , which is a contradiction given
the way we defined sl′ .

– If another constraint d from the head of Rx is triggered, it becomes the active
constraint. Now there are two possibilities:
(a) All constraints from the head of Rx are in the CHR store. This means

eventually, either rule Rx will be tried with d as the active constraint, or
another partner constraint gets triggered (but not c, because of how we
defined sl′), in turn maybe triggering other partner constraints, but any
way Rx will be tried with one of the partner constraints as the active
constraint. Because the built-in store now does entail gx, the rule fires
and a tuple is added to the propagation history. In execution state sk, this
tuple will still be in the propagation history, preventing the application
of rule Rx. This is of course a contradiction.

(b) Not all constraints from the head of Rx are in the CHR store, so some
have to be added before sk is reached, and a similar early-firing happens
at the moment the last partner constraint is added, also leading to a
contradiction.
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– If none of the constraints from the head of Rx are triggered, some of them
are not in the CHR store yet, because if they are all there, at least one of
them should be triggered, otherwise the change in the built-in store would
not affect the entailment of gx. As a result, some of the constraints occurring
in the head of Rx have to be added before sk is reached so we get a similar
early-firing situation as above, again leading to a contradiction.

All these cases lead to a contradiction, so our assumption was wrong. This
shows that during the derivation sl′ �∗ sk, the built-in store always entails the
guard of Rx.

Suppose at some point in the derivation sl′ �∗ sk, the CHR store does not
contain all partner constraints needed for rule Rx. Then somewhere in that
derivation the last of these partner constraints (d) is added to the CHR store, so
all constraints needed for Rx are in the CHR store. However, the only transition
that could have added d to the CHR store is Activate, which also makes d the
active constraint. We get an early-firing situation like above because the guard
of Rx is entailed and every partner constraint (including c) is now in the CHR
store. So we get a contradiction, proving that during the derivation sl′ �∗ sk,
the CHR store always contains all constraints needed for rule Rx.

To conclude our proof: we have found an execution state sl with the required
properties, namely sl = sl′ . ��

Using the previous lemma we now show that the “no earlier subrule fired” for-
mula nesr(Ri) is logically implied by the built-in store at the moment the rule
Ri is applied.

Lemma 2. If for a given CHR program P , the rule containing the jth occur-
rence of the CHR predicate c is Rc,j, and if there is a derivation s0 �∗ sk =
〈[c#i : j|A], S, B, T 〉n for P under ωr semantics, and rule Rc,j can be applied in
execution state sk, then we have D |= B → ∃̄Bnesr(Rc,j).

Proof. From the previous lemma follows the existence of an intermediate execu-
tion state sl (0 ≤ l ≤ k), such that for every execution state sm with l ≤ m ≤ k,
the CHR store contains all partner constraints needed for the application of rule
Rc,j and its guard is entailed by the built-in store.

To prove D |= B → ∃̄Bnesr(Rc,j), we show that

∀Ra ∈ P : (Ra ≺ Rc,j ∧Hr
a = ε)⇒ (D |= B → ∃̄B¬(θa ∧ ga)

)
Suppose this is not the case, so assume there exists a non-propagation rule Ra

such that Ra ≺ Rc,j and D |= B∧θa∧ga. Since Rc,j can be applied in execution
state sk, there exists a matching substitution σ matching c and constraints from
S to corresponding head constraints of the rule Rc,j. Because Ra ≺ Rc,j , there
exists a number oa < j such that the oth

a occurrence of c is in rule Ra. There
exists an execution state sm = 〈[c#i : oa|Am], Sm, Bm, Tm〉nm with l ≤ m < k.
From this state, a Simplify or Propagate transition can fire, applying rule Ra,
because:
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– all partner constraints are present in Sm;
– there exists a matching substitution θ that matches c and partner constraints

from the CHR store to the head constraints of of Ra, namely θ = θa ∧ σ;
– the guard ga is entailed because of our assumption;
– the history does not already contain a tuple for this instance, because Ra

removes some of the constraints in its head.

But this application of Ra removes constraints needed for the rule application
in sk, because every head constraint of Ra also appears in Rc,j. This results in
a contradiction. So our assumption was false, and D |= B → ∃̄Bnesr(Rc,j). ��
Now we are ready for a theorem stating that guard simplification does not affect
the applicability of transitions. Correctness of guard simplification with respect
to operational equivalence [1] is a trivial corollary of this theorem.

Theorem 3 (Guard simplification & transitions). Given a CHR program
P and its guard-simplified version P ′ = GS(P ). Given an execution state s =
〈A, S, B, T 〉n occurring in some derivation for the P program under ωr seman-
tics, exactly the same transitions are possible from s for P and for P ′. In other
words, �P ≡ �P ′ .

Proof. The Solve, Activate and Reactivate transitions do not depend on the
actual CHR program, so obviously their applicability is identical for P and P ′.
The applicability of Drop only depends on the heads of the rules in the program,
so again it is identical for P and P ′.

If a Simplify or Propagation transition is possible for P , this means A =
[c#i : j|A′] and D |= B → ∃̄Bgk, where k is the rule number of the jth occurrence
of c. According to lemma 2, we now know that D |= B → ∃̄Bnesr(Rk). The rule
R′

k is identical to Rk except for its guard g′k, so the same transition is possible for
P ′ unless the guard g′k fails (while gk succeeds). This can only happen if for some
part gk,x of the conjunction gk we have D |= ∃̄Bnesr(Rk) ∧∧

m<x gk,m → ¬gk,x.
Now we can derive a contradiction: D |= B → ∃̄Bnesr(Rk) and D |= B → ∃̄Bgk

combined with the previous statement gives D |= B → ¬∃̄Bgk because of course
∀m |= gk → gk,m.

If a Simplify or Propagation transition is possible for P ′, this means A =
[c#i : j|A′] and D |= B → ∃̄Bnesr(Rk). Again, assume the jth occurrence of c
is in the kth rule. The same transition is also possible for P , unless for some x,
D |= B → ¬∃̄Bgk,x. If there is more than one of such x’s, choose the smallest
one, i.e. let gk,x be the first part of the guard conjunction that fails. Note that
D |= B → ∃̄B

∧
m<x gk,m. Because D |= B → ∃̄Bg′k,x, we know that gk,x = g′k,x,

and because of the definition of guard simplification, this can only be the case
if D |= nesr(Rk) ∧∧

m<x gk,m → gk,x. Again, this results in a contradiction, so
the applicability of Simplify and Propagation is identical for P and P ′.

Since the applicability of Default only depends on the applicability of the
other transitions, it is also identical for P and P ′. We showed that the applicabil-
ity of any of the seven possible transitions is unchanged by guard simplification,
concluding our proof. ��
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Corollary 1 (Correctness of GS). Under the refined operational semantics,
any CHR program P and its guard-simplified version P ′ are operationally
equivalent.

Proof. According to the previous theorem, �P ≡�P ′ , so all states are trivially
P, P ′-joinable. ��
For definitions of operational equivalence and joinable states we refer the reader
to [1]. Now we can show that subsumable occurrences may be skipped (i.e. can
be made passive). More formally:

Theorem 4 (Correctness of Occ. Subsumption). Given a CHR program P
and an ωr derivation for P in which an execution state s = 〈[c#i : j|A], S, B, T 〉n
occurs. If cj is occurrence subsumable, Simplify and Propagate transition can-
not (directly) be applied on state s.

Proof. Suppose the Simplify or Propagate transition can be applied, firing rule
R. Using the notation from definition 10, this means that D |= B → ∃̄Bfc(R, cj)
Also, lemma 2 tells us that D |= B → ∃̄Bnesr(R). Because of lemma 1 we know
that rule R has been tried for the earlier occurrences of c in that rule. These
tries must have failed, because R is a constraint-removing rule (cj is occurrence
subsumable) which cannot be applied twice on the same constraints. So

∀k : m ≤ k < j ⇒ D |= B → ¬∃̄Bθk

(
fc(R, ck)

)
where θk is a renaming such that θk(ck) = cj . This is equivalent to D |=
B → ∃̄Bneocc(R, cj). Because cj is occurrence subsumable, we have D |= B →
¬∃̄Bfc(R, cj), which results in a contradiction. So the Simplify and Propagate
transitions are indeed not applicable in state s. ��
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