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Abstract. One of the recently considered models of robot-based com-
puting makes use of identical, memoryless mobile units placed in nodes of
an anonymous graph. The robots operate in Look-Compute-Move cycles;
in one cycle, a robot takes a snapshot of the current configuration (Look),
takes a decision whether to stay idle or to move to one of the nodes ad-
jacent to its current position (Compute), and in the latter case makes
an instantaneous move to this neighbor (Move). Cycles are performed
asynchronously for each robot.
In such a restricted scenario, we study the influence of symmetries

of the robot configuration on the feasibility of certain computational
tasks. More precisely, we deal with the problem of gathering all robots
at one node of the graph, and propose a solution based on a symmetry-
preserving strategy. When the considered graph is an undirected ring
and the number of robots is sufficiently large (more than 18), such an
approach is proved to solve the problem for all starting situations, as
long as gathering is feasible. In this way we also close the open problem
of characterizing symmetric situations on the ring which admit a gather-
ing [R. Klasing, E. Markou, A. Pelc: Gathering asynchronous oblivious
mobile robots in a ring, Theor. Comp. Sci. 390(1), 27-39, 2008].
The proposed symmetry-preserving approach, which is complemen-

tary to symmetry-breaking techniques found in related work, appears to
be new and may have further applications in robot-based computing.
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1 Introduction

The difficulty of many computational problems involving mobile entities (robots)
is aggravated when robots cannot communicate directly, but have to take de-
cisions about their moves only by observing the environment. One of the most
restrictive scenarios considered in literature is the asynchronous Look-Compute-
Move model for memoryless units which has been studied both for robots on the
plane (the continuous model [13,20]) and for robots located on the nodes of a
graph (the discrete model [10,11,16]). Herein we focus on computations in the
discrete model which is described in more detail below.

1.1 The Discrete Model

Consider an anonymous graph in which neither nodes nor links have any labels.
Initially, some of the nodes of the graph are occupied by robots and there is at most
one robot in each node. Robots operate in Look-Compute-Move cycles. In each cy-
cle, a robot takes a snapshot of the current configuration (Look), then, based on
the perceived configuration, takes a decision to stay idle or to move to one of its
adjacent nodes (Compute), and in the latter case makes an instantaneous move to
this neighbor (Move). Cycles are performed asynchronously for each robot. This
means that the time between Look, Compute, and Move operations is finite but
unbounded, and is decided by the adversary for each robot. The only constraint is
that moves are instantaneous, and hence any robot performing a Look operation
sees all other robots at nodes of the ring and not on edges. However, a robot r
may perform a Look operation at some time t, perceiving robots at some nodes,
then Compute a target neighbor at some time t′ > t, and Move to this neighbor
at some later time t′′ > t′, at which some robots are in different nodes from those
previously perceived by r because in the meantime they performed their Move op-
erations. Hence, robots may move based on significantly outdated perceptions. It
should be stressed that robots are memoryless (oblivious), i.e., they do not have
any memory of past observations. Thus, the target node (which is either the cur-
rent position of the robot or one of its neighbors) is decided by the robot during a
Compute operation solely on the basis of the location of other robots perceived in
the previous Look operation. Robots are anonymous and execute the same deter-
ministic algorithm. They cannot leave any marks at visited nodes, nor send any
messages to other robots.
It is assumed that the robots have the ability to perceive, during the Look

operation, if there is one or more robots located at the given node of the graph.
This capability of robots is important and well-studied in the literature on robot
gathering under the name of multiplicity detection [13,20]. In fact, without this
capability, many computational problems (such as the gathering problem con-
sidered herein) are impossible to solve for all non-trivial starting configurations.
It should be stressed that, during a Look operation, a robot can only tell if at
some node there are no robots, there is one robot, or there is more than one
robot: a robot does not see the difference between a node occupied by a or b
robots, for distinct a, b > 1.
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Problems studied so far in the discrete model include gathering on the ring [16],
exploration of the ring [10], and tree exploration [11].

1.2 Our Results

In this paper, we consider one of the most fundamental problems of self-organiza-
tion of mobile entities, known in the literature as the gathering problem. Robots,
initially situated at different locations, have to gather at the same location (not
determined in advance) and remain in it. Our considerations focus on gathering
robots in the discrete model for the undirected ring; such a scenario poses a
number of problems due to the high number of potential symmetries of the
robot configuration. This problem was initially studied in [16], where certain
configurations were shown to be gatherable by means of symmetry-breaking
techniques, but the question of the general-case solution was posed as an open
problem. Herein we provide procedures for gathering all configurations on the
ring with more than 18 robots for which gathering is feasible, and give a full
characterization of all such configurations (Theorem 6). In fact, we provide a
new technique for dealing with symmetric configurations: our approach is based
on preserving symmetry rather than breaking it.

1.3 Related Work

The problem of gathering mobile robots in one location has been extensively
studied in the literature. Many variations of this task have been considered in dif-
ferent computational models. Robots move either in a graph, cf. e.g. [2,8,9,12,17],
or in the plane [1,3,4,5,6,7,13,19,20,21], they are labeled [8,9,17], or anony-
mous [1,3,4,5,6,7,13,19,20,21], gathering algorithms are probabilistic (cf. [2] and
the literature cited there), or deterministic [1,3,4,5,6,7,8,12,13,17,19,20,21]. De-
terministic algorithms for gathering robots in a ring (which is a task closest to
our current setting) have been studied e.g. in [8,9,12,14,17]. In [8,9,17] symmetry
was broken by assuming that robots have distinct labels, and in [12] it was broken
by using tokens. The very weak assumption of anonymous identical robots was
studied in [1,3,4,5,6,7,13,19,20,21] where robots could move freely in the plane.
The scenario was further refined in various ways. In [4,14] it was assumed that
robots have memory, while in [1,3,5,6,7,13,19,20,21] robots were oblivious, i.e., it
was assumed that they do not have any memory of past observations. Oblivious
robots operate in Look-Compute-Move cycles, similar to those described in our
scenario. The differences are in the amount of synchrony assumed in the execu-
tion of the cycles. In [3,21] cycles were executed synchronously in rounds by all
active robots, and the adversary could only decide which robots are active in
a given cycle. In [4,5,6,7,13,19,20] they were executed asynchronously: the ad-
versary could interleave operations arbitrarily, stop robots during the move, and
schedule Look operations of some robots while others were moving. It was proved
in [13] that gathering is possible in the asynchronous model if robots have the
same orientation of the plane, even with limited visibility. Without orientation,
the gathering problem was positively solved in [5], assuming that robots have the
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capability of multiplicity detection. A complementary negative result concern-
ing the asynchronous model was proved in [20]: without multiplicity detection,
gathering robots that do not have orientation is impossible.

2 Terminology and Preliminaries

We consider an n-node anonymous ring without orientation. Initially, some nodes
of the ring are occupied by robots and there is at most one robot in each node.
During a Look operation, a robot perceives the relative locations on the ring

of multiplicities and single robots. We remind that a multiplicity occurs when
more than one robot occupies the same location. For the purpose of the definition
only, let us call one of the directions on the cycle clockwise, and the other anti-
clockwise. Then, for a fixed robot r, let SC(r) denote the ordered sequence of
distances from r to all single robots when traversing the cycle in the clockwise
direction, and let SA(r) be the ordered sequence of such distances when moving
anti-clockwise. Sets MC(r) and MA(r) are likewise defined for distances from r
to all multiplicities. Then the view V (r) provided to the robot r is defined as
the set of ordered pairs V (r) = {(SC(r), MC(r)), (SA(r), MA(r))}. If there are
no multiplicities, we will drop the second sequence in each case and write the
view simply as the set of two sequences V (r) = {SC(r), SA(r)}.
The current configuration C of the system can be described in terms of the

view of a robot r which is performing the Look operation at the current moment,
but disregarding the location of robot r; formally, C = {{(SC(r) ⊕ i, MC(r) ⊕
i), (SA(r)� i, MA(r)� i)} : i ∈ [1, n]}, where operations ⊕ and � denote modulo
n addition and subtraction, respectively. Note that the configuration is indepen-
dent of the choice of robot r and of the choice of the clockwise direction.
A configuration C is called periodic if it is invariable under rotation, i.e. C =

C ⊕ k for some integer k ∈ [1, n − 1]. A configuration C is called symmetric if the
ring has a geometrical axis of symmetry, which reflects single robots into single
robots, multiplicities into multiplicities, and empty nodes into empty nodes. Note
that a symmetric configuration is not periodic if and only if it has exactly one axis
of symmetry [16]. A symmetric configuration C with an axis of symmetry s has
an edge-edge symmetry if s goes through (the middles of) two antipodal edges; it
has a node-on-axis symmetry if at least one node is on the axis of symmetry.
A pole is an intersection point of a line with the ring (this may either be a

node or in between two nodes). For configurations with a single axis of symmetry,
nodes on the axis of symmetry are natural gathering points. The pole of the axis
of symmetry used by the considered algorithm for gathering is known as the
North pole, the other pole is called the South pole.
The set of nodes of the ring forming a path between two robots, excluding

endpoints, is called an arc. Two robots are called neighbors if at least one of the
two arcs of the ring between them does not contain any robots. When uniquely
defined, the arc of the ring between two neighboring robots u, v with no robots
on it is called the gap u − v. The length of gap u − v is denoted as |u − v|,
obviously |u − v| = |v − u|. Two robots forming a multiplicity are assumed to
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form a gap of length 0. A gap of minimum length in a given configuration is
simply called minimal.
The notation for gaps is extended to allow for chains, u1 − u2 − . . . − uk,

i.e. sequences of robots separated by gaps. If some robots ui − . . . − uj form a
multiplicity M , then the considered chain may be written compactly as u1 −
. . . − ui−1 − M − uj+1 − . . . − uk.
We now introduce the concept of extrapolated length |u → v| of a gap u − v,

useful for breaking ties in the gathering process. Let u − v − v1 − v2 − . . . − vs

be the longest possible chain such that for all i, vi �= u and vi does not belong
to a multiplicity. Then |u → v| = (|u − v|, |u − v1|, |u − v2|, . . . , |u − vs|). Values
of extrapolated gap lengths are compared lexicographically.
A key operation used in the gathering process is known as the contraction of

a gap. Let u− v be an arbitrary gap belonging to some chain t−u− v −w, such
that |u → t| > |v → w|. Then the contraction of u−v is the operation of moving
robot u a single node towards robot v.
Note that if a configuration C′ was formed from a configuration C by con-

traction of some gap u − v (by moving u) in a chain t − u − v − w, then it is
clear that in C′ we have |t − u| > |v − w|. The corresponding de-contraction of
u − v in C′ is uniquely defined as the operation of moving robot u a single node
away from robot v unless some other symmetry has been determined.

3 Gathering Algorithm

Our algorithm describe the Compute part of the cycle of robots’ activities. In or-
der to simplify notation, they are often expressed using configurations (identical
for all robots sharing the same snapshot of the system), and not locally-centered
views. For example, if we require only robots specifying certain geometrical cri-
teria to move, then each robot will be able to recognize whether to perform the
specified action or not.
A gathering algorithm in [16] called RigidGathering provides a solution for all

rigid configurations, i.e. configurations which are not symmetric and not peri-
odic. It uses a sequential approach: in every configuration, exactly one specific
robot is chosen by the algorithm (regardless of the robot running the algorithm),
and this robot is then allowed to perform a move.
In our approach, we define an algorithm able to manage all symmetric and

gatherable configurations, by allowing at any given time exactly two symmetric
robots, u and ū, to make corresponding moves, hence preserving symmetry.
Observe that there are two possible move scenarios leading to different types of
new configurations:

– Both robots, u and ū, make their moves simultaneously. In this case, in the
new configuration the axis of symmetry remains unchanged. For the correct-
ness of the algorithm, it is essential to ensure that no new axes of symmetry
are formed (since otherwise the new configuration cannot be gathered).
– One of the robots, say u, performs its move before the other robot ū. All other
robots must be able to recognize that the current configuration is one move
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away from a symmetry, and robot ū is now the only one allowed to perform
a move. Observe that it is then irrelevant whether robot ū performed its
Look operation before or after robot u was moved; the outcome of its move
is exactly the same.

The algorithm proposed herein detects configurations which have exactly one
axis of symmetry of the node-on-axis type (which we call A-type configurations)
and those which are exactly one step away from such a configuration (B-type
configurations). For all other gatherable non-symmetrical configurations (C-type
configurations), a step of the RigidGathering algorithm from [16] is performed.
It is assumed that the number of robots is larger than 18 (for an explanation of
this value, cf. Remark 1). Thus, for example if the system starts in an A-type
configuration, it remains in A-type configurations possibly alternating with B-
type configurations. If the system starts without an axis of symmetry, it may
either perform a gathering passing through C-type configurations only, or may
at some point switch from a C-type configuration to a B-type configuration,
and then remain confined to B-type an A-type configurations. In consequence,
the eventual convergence of our algorithm to a gathering relies only on the
convergence of the RigidGathering algorithm from [16], and on the convergence
of the rules we introduce for A-type and B-type configurations.
Our algorithm runs in four main phases; these are informally outlined in the

following subsection, and formalized in Subsection 3.2.

3.1 Illustration of Approach

Let us suppose that the system starts in an A-type configuration. (Note that in
view of impossibility results from [16] (see Theorem 5), symmetric configurations
which are not A-type configurations are never gatherable.) We temporarily also
assume here that there are initially no robots on the axis of symmetry.
The four phases of our algorithm can be outlined as follows. In the first phase

of the algorithm, we lead the system to an A-type configuration with exactly two
(symmetrical) multiplicities. In the second phase, all of the other robots (with
the exception of two symmetrically located robots called guards) are gathered
into the multiplicities. In the third phase, the multiplicities are moved to their
final gathering point on the axis of symmetry, away from the guards (remember
that there is a node-on-axis symmetry in our case). Finally, in the fourth phase
the guards join the single remaining multiplicity in the gathering point.
The current phase of the algorithm can be determined by only looking at the

state of the system; this will be discussed in more detail later. The single axis of
symmetry is maintained throughout the process. In the first phase, the locations
of all minimal gaps are used for this purpose. In the second phase the axis is
determined by positions of the multiplicities, while in the third phase by the
positions of the guards. Finally, in the fourth phase the gathering point with the
only multiplicity is known.
Referring to Figures 1 and 2, we now describe in more details the basic intu-

itions of our algorithm. In both figures, configurations a describe two possible
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Fig. 1. An example of a scenario for a symmetric configuration. White nodes represent
empty nodes, shaded nodes are nodes occupied by a single robot, black nodes are nodes
occupied by at least two robots, i.e., multiplicities. The North pole is at the top of the
axis of symmetry. The dashed horizontal line can be understood as a helper line for
recognizing the axis of symmetry.

initial states of the system (A-type configurations). In the first phase, the ob-
jective is to create two symmetric multiplicities such that both arcs of the circle
between them contain at least two robots, neither of which is at a distance of
one from a multiplicity. The normal move (Fig. 1a) consists in the contraction
of two symmetrical minimal gaps. The pair of minimal gaps is selected in such
a way that the contraction does not create two multiplicities which violate the
imposed constraint on robots on the arcs between them; if there exists a mini-
mal gap crossing the axis of symmetry, this is not chosen either. It may happen
that no minimal gap appropriate for contraction exists (Fig. 2a). In that case,
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Fig. 2. An example of a scenario for a symmetric configuration (contraction of equa-
torial gaps) Details of the construction are given in Subsection 3.3

we select for contraction the pair of (not necessarily minimal) gaps which are
central in terms of the number of robots separating them from the poles of the
axis of symmetry (gaps between robots 5–5 in Fig. 2a); if there are two pairs of
candidate gaps, a tie-breaking mechanism is applied.

The performed contractions result in a new symmetrical configuration (con-
figurations c in both figures), possibly preceded by a state of violated symmetry
in a B-type configuration (configurations b). The process of selecting the gap for
contraction allows the robots to recreate configuration a knowing configuration
b only, and to proceed from there to configuration c. Configuration c is in fact an
A-type configuration just as configuration a, and the procedure repeats until the
two sought multiplicities are created (configurations d). At this point, the first
phase of the algorithm is complete. Note that the contraction rules applied in
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Fig. 2 require a sufficiently large number of robots (more than 18, see Remark 1)
to guarantee correctness.
The next phases of the algorithm are shown in Fig. 1 only. In phase 2 it

is necessary to decide on one of the two poles of the axis of symmetry as the
gathering point (the North pole). The poles are chosen so that the northern
arc between multiplicities has more robots than the southern arc; in case of a
tie, the side on which the nearest robots are closer to the multiplicities is the
northern one. The robots are moved in symmetrical pairs towards their respective
multiplicities, starting from the robots on the northern arc (Fig. 1e, f). Note that
the definition of the North and South is consistently preserved throughout the
process. Phase 2 ends when nearly all the robots have been merged into the
multiplicities, and the remaining robots occupy not more than 6 nodes in an
arrangement matching a specific pattern (Fig. 1f). Two robots, separated by
gaps from the multiplicities, always remain on the southern arc and act as the
guards of the axis of symmetry throughout phase 3. The multiplicities are moved
step by step towards the North pole; note that not all the robots in a multiplicity
have to move simultaneously (Fig. 1g). When the pattern shown in Fig. 1h is
achieved, phase 4 starts, and the two remaining robots are moved step by step
until they reach the North pole (Fig. 1i), and the algorithm is complete.

3.2 Formalization of Approach

The distinction among the four phases of the proposed algorithm is in fact pos-
sible knowing only the current configuration C. To do this, we now introduce
some further notation.
A configuration can also be represented in the form of a string of characters as

follows: starting from an arbitrary node and moving around the cycle in a cho-
sen direction, for each node we append a character representing whether the node
is empty, contains a single robot, or a multiplicity. We say that configuration C
matches a chain pattern [P ], C ∈ [P ], if there exists a string representation of C
belonging to the language described by the tokens in [P ]. For some integer values
a and b, token σa:b is understood as between a and b occurrences of single robots
(possibly separated by any number of empty nodes) followed by at least one empty
node. Token μa:b is understood as between a and b occurrences of consecutive non-
empty nodes, at least one of which is a multiplicity, followed by at least one empty
node. Ranges of the form a : a are simply written as a. For example, in Fig. 1 the
pattern [μ1:2, σ1:2, μ2] is matched by configurations f and g.
Herein we restrict ourselves to a presentation of the algorithm for the case of

an initial configuration with exactly one axis of symmetry, having a node-on-axis
type symmetry, without any robots on the axis. The case that allows robots to
reside on the axis of symmetry can be addressed by a minor modification of the
algorithm as outlined at the end of the section.
The proposed algorithm performs the gathering in four basic phases, as defined

in Table 1.
When performing its Compute step, each robot can clearly determine which

phase of the algorithm it is currently running (cases not covered in the table
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Table 1. Division into phases, assuming no robots on the axis of symmetry in the initial
state: m(C) — number of multiplicities in configuration C, p(C) — total number of
different nodes occupied by robots in C

Phase Multiplicities Occupied nodes Additional constraints

1 m(C) < 2 p(C) > 6 none
2 m(C) = 2 p(C) ≥ 6 if p(C) = 6, then C /∈ [μ1:2, σ2, μ1:2]
3 m(C) = 2 4 ≤ p(C) ≤ 6 if p(C) = 6, then C ∈ [μ1:2, σ2, μ1:2]
4 m(C) ≥ 1 p(C) ≤ 3 none

cannot appear in the initial state and do not occur later due to the construction
of the algorithm). The algorithm is defined so as to guarantee that when two
robots are allowed to move simultaneously, their views correspond to the same
phase of the algorithm. Bearing this in mind, we can now consider the four
phases separately in the following subsections.

3.3 Phase 1: Obtaining Two Non-adjacent Multiplicities

The algorithm is defined by the following elements:

– A subroutine defining a move for an A-type configuration which leads to a
new A-type configuration, assuming that both the robots which are chosen
to move perform their action simultaneously.
– A subroutine for detecting the preceding A-type configuration when the
current state of a system is a B-type configuration.

The procedure for A-type configurations is presented as Algorithm 1. A gap
u − v is called equatorial with respect to a line s if the number of robots on the
arc from u to one pole of s and from v to the other pole of s differs by at most
1 (a multiplicity is counted as 2 robots).
For completeness of the procedure, it is necessary to provide some mechanism

of choosing one of several possible candidate gaps. Such ties are easily broken,
since for a given configuration it is possible to define a partial order on the set
of robots in which only symmetrical robots are not comparable [16].
The definition of the procedure always allows a move of exactly two sym-

metrical robots. We now show that the above set of rules is sufficient to gather
an A-type configuration, provided that both symmetrical robots always perform
their Look operations as well as Move operations simultaneously (we will call
this a symmetry-preserving scheduler).

Case of a Symmetry-Preserving Scheduler. Before proceeding with the
proofs, we recall the obvious geometrical fact that if for a configuration on the
ring it is in some way possible to distinguish (select) exactly two arcs, then the
configuration can only have zero, one, or two perpendicular axes of symmetry.
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Algorithm 1. Procedure for A-type configurations (Phase 1)

(i) Choose a pair of minimal gaps u − v and ū − v̄ such that the following conditions
are fulfilled:

• u − v does not intersect the axis of symmetry (u �= v̄),
• the contraction of u − v and ū − v̄ does not create two multiplicities with no
other robots in between them,

• the contraction of u − v and ū − v̄ does not create two multiplicities with
exactly two robots in between, adjacent to these multiplicities,

then perform the contractions of u − v and ū − v̄.
(ii) If no such pair exists, perform the contraction of chosen gaps u − v and ū −

v̄ which are equatorial with respect to the axis of symmetry. If there are two
pairs of equatorial gaps of different lengths, the shorter pair is always chosen for
contraction.

Theorem 1. Under a symmetry-preserving scheduler, the new configuration af-
ter performing rule (i) is also an A-type configuration.

Proof. Indeed, consider the contraction of minimal gap u−v in a chain t−u−v−w
and its complement ū− v̄ in chain t̄ − ū− v̄ − w̄. The obtained configuration has
exactly two minimal gaps, u−v and ū− v̄, and |t−u| �= |v−w| by the properties
of a contraction. Thus, after the move the axis of symmetry remains unchanged
and no new axes are created, since gap u − v must be reflected into ū − v̄. �

For a given configuration C, we will call a gap u − v balanced if for the chain
s−t−u−v−w−xwe have |t−u| = |v−w| or |u−v| ∈ {|s−t|, |t−u|, |v−w|, |w−x|}.

Remark 1. If for a given A-type configuration rule (i) cannot be applied, we can
make the following statements:

– The set of minimal gaps consists of between 1 and 10 gaps formed by at most
12 robots — at most 6 robots surrounding each pole of the axis of symmetry
(3 robots on one side and 3 on the other); otherwise, a minimal gap formed
by any other robots can always be contracted.
– All the minimal gaps are balanced; this can be shown by a simple enumera-
tion of all possibilities.
– Taking into account the assumption that there are more than 18 robots
on the ring, there exist on the cycle exactly two symmetrical maximal arcs
containing more than 18−12

2 = 3 (i.e. at least 4) robots each, such that none
of these robots are part of some minimal gap.

Taking into account the above remark, we proceed to prove the following.

Theorem 2. Under a symmetry-preserving scheduler, the new configuration af-
ter performing rule (ii) is also an A-type configuration.
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Proof. We need to consider two cases:
(1) if the contraction of u − v and ū − v̄ creates no new minimal distances,

then the axis of symmetry and the set of minimal gaps remain unchanged. There
could exist at most one more candidate for an axis of symmetry for the new
configuration, perpendicular to the original axis. Since the number of robots on
both sides of an axis of symmetry is the same, either the new axis crosses the
newly contracted gaps u − v and ū − v̄ or it crosses u and ū. In the first case we
have a contradiction since for the chains t − u − v − w we have |t − u| �= |v − w|.
In the second case, a contradiction arises as well, since the shortest equatorial
gaps have been contracted and hence the shortest gaps cannot be reflected by
the new axis into the longest ones.
(2) if the contraction of u − v and ū − v̄ creates two new minimal distances,

then these are the only two non-balanced minimal distances on the ring. By a
similar argument as before, these two non-balanced minimal distances must be
reflected by the axis into each other, so the axis of symmetry is unique. �

Finally, we make a note on the convergence of the performed process.

Theorem 3. Under a symmetry-preserving scheduler, Phase 1 is completed af-
ter a finite number of steps.

Proof. If rule (i) is performed then the length of the minimal gap decreases in each
step. Otherwise, the length of the equatorial gap decreases, while the length of the
minimal gap remains unchanged (since all minimal gaps are then concentrated
around the poles). The process obviously converges to a minimal gap length of 0,
hence we obtain 2 multiplicities and, by Table 1, Phase 1 is complete. �

Extension to the General Scheduler. We now proceed to define the second
required subroutine, namely, a procedure to show for a B-type configuration a
unique preceding A-type configuration.
Depending on the rule used in the preceding A-type configuration and the

outcome of the move, we have the following cases:

B1. The current configuration was obtained by contracting a minimal gap in an
A-type configuration using rule (i).

B2: The current configuration was obtained by contracting an equatorial gap
in an A-type configuration using rule (ii), but without creating any new
minimal gaps in the process.

B3: The current configuration was obtained by contracting an equatorial gap in
an A-type configuration using rule (ii), but creating a new minimal gap in
the process.

Before proceeding any further, for a configuration we define a compass axis
as any line s fulfilling the following constraints:

– s is an axis of symmetry of the set of balanced minimal gaps,
– the number of robots on both sides of s is equal,
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– all the balanced minimal gaps are contained within a set of 12 robots — 6
robots surrounding each pole of s (3 robots on one side and 3 on the other).

We are now ready to prove the following theorem.

Theorem 4. The sets of A-, B1-, B2-, and B3-type configurations are all pair-
wise disjoint.

Proof. A B1-type configuration has exactly one non-balanced minimal gap. In
consequence, such a configuration obviously cannot have an axis of symmetry.
A B2-type configuration has the same set of minimal gaps as the original

A-type configuration, hence we can make use of Remark 1 also for this configu-
ration. In consequence, a B2-type configuration has between 1 and 10 minimal
gaps, all of which are balanced, and exactly one compass axis identical to the
axis of symmetry of the original A-type configuration. Since the compass axis
of a configuration is the only possible candidate for its axis of symmetry, and a
B2-type configuration is exactly one move apart from an A-type configuration
having this axis as an axis of symmetry, a B2-type configuration has no axes of
symmetry.
A B3-type configuration has the same set of balanced minimal gaps as the

original A-type configuration, and additionally one more non-balanced gap ob-
tained as a result of the contraction (thus between 2 and 11 minimal gaps in
total). As in the previous case, this means that a B3-type configuration has
exactly one compass axis and no axis of symmetry.

Table 2. Telling apart different types of configurations: q(C) — total number of mini-
mal gaps in C, qb(C) — total number of balanced minimal gaps in C, s(C) — number
of axes of symmetry

Type Minimal gaps Balanced minimal gaps Axes of symmetry

A irrelevant irrelevant s(C) = 1
B1 q(C) = 1 qb(C) = 0 s(C) = 0
B2 1 ≤ q(C) ≤ 10 qb(C) = q(C) s(C) = 0
B3 2 ≤ q(C) ≤ 11 qb(C) = q(C) − 1 s(C) = 0

Taking into account the above observations (see Table 2), we obtain that for
a given configuration C we can determine if it is an A-type configuration, or
a candidate for a B1, B2, or B3-type configuration. In the latter cases, there
exists exactly one possibility of recreating the potentially preceding A-type con-
figuration. For a B1-type configuration, it is necessary to de-contract the unique
minimal gap. For a B2 or B3-type configuration, the shortest of the gaps equato-
rial with respect to the compass axis should be de-contracted. If this preceding
configuration is indeed an A-type configuration, then the next move is uniquely
defined by imitating the stated procedure for A-type configurations. Otherwise,
configuration C is some other (type C) configuration which does not require
special treatment and can be solved following [16]. �
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3.4 Phase 2: Partial Gathering with 2 Multiplicities

The first phase ends when two symmetrical multiplicities are created. Through-
out the second phase of the algorithm, the two existing multiplicities M1 and
M2 make no moves. Multiplicities M1 and M2 divide the ring into two parts,
which we will call northern (around the North pole) and southern (around the
South pole). Each of these parts initially contains at least two robots not directly
adjacent to a multiplicity. Throughout the process North and South are defined
in such a way as to fulfill the following conditions:

– the number of nodes in the northern part is odd,
– if both parts have an odd number of nodes, the southern part always contains
not less than one robot, and not less robots than the northern part,
– if both parts have an odd number of nodes and contain the same number of
robots, consider the chain rN − M1 − rS with robot rN in the northern part
and robot rS in the southern part; then |M1 → rS | > |M1 → rN |.

The gathering procedure, presented as Algorithm 2, is defined so as to move
all but at most 4 of the single robots into the two existing multiplicities (without
creating any new multiplicities).

Algorithm 2. Procedure for Phase 2

(i) If the northern part contains at least one robot, move a robot in the northern part,
such that there are no robots between itself and one of the multiplicities, towards
this multiplicity (in case of choice of robots, select the one with a longer way left
to go; if the distance is the same, both robots are allowed to move).

(ii) Otherwise, perform an analogous operation in the southern part but for the two
symmetric nodes closest to the pole (these nodes will play as guards in the next
phase).

It is important to note that the adopted definition of North and South guar-
antees that the same labeling of the poles is maintained throughout the process.
In accordance with Table 1, the phase ends when all but at most four single

robots have been merged with the multiplicities. The last pair of robots in the
southern part has not yet made a move and is separated by at least one empty
field from a multiplicity; these robots will serve as guards in the last phases of
the algorithm.

3.5 Phase 3: Gathering 2 Multiplicities Using Guards

The third phase of the algorithm is performed when C ∈ [μ1:2, σ2, μ1:2]. The two
robots u and v corresponding to the token σ2 define a unique axis of symme-
try, orthogonal to the gap u − v. The remaining robots (and multiplicities) can
move towards the North pole of this axis; for a given configuration, only those
robots which have the longest way to go are allowed to move. In this way the
configuration pattern is maintained throughout the process, until the moving
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robots converge on the three nodes near their destination. The configuration
pattern then changes to C ∈ [μ1:3, σ2], and can be likewise maintained until all
robots except for the guards gather at the required pole in a single multiplicity
(C ∈ [μ1, σ2]).

3.6 Phase 4: Withdrawing Guards to the Gathering Point

In this phase, the unique multiplicity on the North pole determines the gath-
ering point for the remaining guards. The guards can be moved towards the
multiplicity following the rule that if the guards are at a different distance from
the multiplicity, the guard further away should move (in case of a tie, both
guards are allowed to move). The configuration is maintained in the pattern
C ∈ [μ1, σ2]. Only in at most two final moves we have C ∈ [μ1:3] or C ∈ [μ1:2]
(still with exactly one multiplicity). Eventually, C ∈ [μ1] and the gathering is
complete.

3.7 Remarks on the Algorithm

An extended version of the algorithm which is capable of additionally gathering
the case of symmetrical configurations with at least one robot on the unique axis
of symmetry can be designed analogously in four phases:

– Phase 1 of the algorithm remains unaffected. In the definition of the equa-
torial gap, the robot in the pole should be ignored.
– Phases 2, 3 and 4 are slightly modified to allow for a single guard robot on
the South pole (instead of a pair of guard robots in the southern part).

Note that in the case of robots on the axis of symmetry it may also be possible to
design algorithms which break the symmetry by immediately moving the robot
located on the axis, as in the case of an odd number of robots described in [16].
In our approach symmetry is never broken until the robots from the poles are
moved into a multiplicity (in particular, if there is a single guard robot on the
South pole, in Phase 4 it has to be moved to the multiplicity on the North
pole).
For configurations with more than 18 robots, our algorithm is complementary

to the impossibility result shown in [16].

Theorem 5 ([16]). Gathering is not feasible for initial configurations which
are periodic or have an edge-edge symmetry.

In this way, we have obtained the sought characterization of initial configurations
on the ring.

Theorem 6. For more than 18 anonymous and oblivious robots located on dif-
ferent nodes of a ring, gathering is feasible if and only if the initial configuration
is not periodic and does not have an edge-edge symmetry.
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4 Conclusions

We have studied the gathering problem in the discrete model, solving it on a
ring for any number of robots larger than 18. The applied technique relies on
preserving symmetries (as a matter of fact, our algorithm occasionally creates
symmetric configurations from asymmetrical initial configurations).
Theorem 6 implies that, for any number of robots larger than 18, gathering

is feasible if and only if, in the initial configuration the robots can elect a node
(not necessarily occupied by a robot). Although it is conjectured in [16] that
such a claim should also hold in cases with an even number of robots between 4
and 18, this is not always true. For instance, the only possible configuration of 4
robots on a 5-node cycle is not gatherable, although the single empty node can be
initially elected as a candidate for the gathering point. Providing an additional
characterization for the cases of between 4 and 18 robots is an interesting open
problem. Some partial results in this direction have recently been shown in [15].
A natural next step is to consider the gathering problem for other graph

classes with high symmetry (such as toruses), and if possible propose an algo-
rithmic approach which solves the problem in the general case. The gathering
problem could also be considered for variants of the model, such as robots having
limited visibility, although such restrictions often lead to a large number of initial
configurations for which gathering is impossible. It is not clear whether allowing
robots to have small (constant) memory would help address such problems with
achieving a gathering. Finally, it is interesting to ask whether the technique of
preserving symmetries proposed herein can also be applied in other contexts.
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