Theodore P. Baker
Alain Bui
Sébastien Tixeuil (Eds.)

Principles of
Distributed Systems

12th International Conference, OPODIS 2008
Luxor, Egypt, December 2008
Proceedings

LNCS 5401

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

5401

Theodore P. Baker Alain Bui
Sébastien Tixeuil (Eds.)

Principles of
Distributed Systems

12th International Conference, OPODIS 2008
Luxor, Egypt, December 15-18, 2008
Proceedings

@ Springer

Volume Editors

Theodore P. Baker

Florida State University

Department of Computer Science

207A Love Building, Tallahassee, FL 32306-4530, USA
E-mail: baker@cs.fsu.edu

Alain Bui

Université de Versailles-St-Quentin-en-Y velines
Laboratoire PRiSM

45, avenue des Etats-Unis, 78035 Versailles Cedex, France
E-mail: alain.bui @prism.uvsq.fr

Sébastien Tixeuil

LIP6 & INRIA Grand Large

Université Pierre et Marie Curie - Paris 6

104 avenue du Président Kennedy, 75016 Paris, France
E-mail: Sebastien.Tixeuil @1ip6.fr

Library of Congress Control Number: 2008940868

CR Subject Classification (1998): C.2.4,C.1.4,C.2.1,D.1.3,D.4.2, E.1, H.2.4
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-92220-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-92220-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12582457 06/3180 543210

Preface

This volume contains the 30 regular papers, the 11 short papers and the abstracts
of two invited keynotes that were presented at the 12th International Conference
on Principles of Distributed Systems (OPODIS) held during December 15-18,
2008 in Luxor, Egypt.

OPODIS is a yearly selective international forum for researchers and practi-
tioners in design and development of distributed systems.

This year, we received 102 submissions from 28 countries. Each submission
was carefully reviewed by three to six Program Committee members with the
help of external reviewers, with 30 regular papers and 11 short papers being
selected. The overall quality of submissions was excellent and there were many
papers that had to be rejected because of organization constraints yet deserved
to be published. The two invited keynotes dealt with hot topics in distributed
systems: “The Next 700 BFT Protocols” by Rachid Guerraoui and “On Repli-
cation of Software Transactional Memories” by Luis Rodriguez.

On behalf of the Program Committee, we would like to thank all authors of
submitted papers for their support. We also thank the members of the Steer-
ing Committee for their invaluable advice. We wish to express our apprecia-
tion to the Program Committee members and additional external reviewers for
their tremendous effort and excellent reviews. We gratefully acknowledge the
Organizing Committee members for their generous contribution to the suc-
cess of the symposium. Special thanks go to Thibault Bernard for manag-
ing the conference publicity and technical organization. The paper submission
and selection process was greatly eased by the EasyChair conference system
(http://www.easychair.org). We wish to thank the EasyChair creators and
maintainers for their commitment to the scientific community.

December 2008 Ted Baker
Sébastien Tixeuil
Alain Bui

OPODIS 2008 was organized by PRiSM (Université Versailles Saint-Quentin-en-

Organization

Yvelines) and LIP6 (Université Pierre et Marie Curie).

General Chair

Alain Bui

Program Co-chairs

Theodore P. Baker
Sébastien Tixeuil

Program Committee

Bjorn Andersson
James Anderson

Alan Burns

Andrea Clementi
Liliana Cucu

Shlomi Dolev

Khaled El Fakih
Pascal Felber

Paola Flocchini
Gerhard Fohler

Felix Freiling
Mohamed Gouda
Fabiola Greve
Isabelle Guerin-Lassous
Ted Herman
Anne-Marie Kermarrec
Rastislav Kralovic
Emmanuelle Lebhar
Jane W.S. Liu

Steve Liu

Toshimitsu Masuzawa,
Rolf H. Méhring
Bernard Mans

Maged Michael
Mohamed Mosbah

University of Versailles St-Quentin-en-Yvelines,
France

Florida State University, USA
University of Pierre and Marie Curie, France

Polytechnic Institute of Porto, Portugal
University of North Carolina, USA
University of York, UK

University of Rome, Italy

INPL Nancy, France

Ben-Gurion University, Israel
American University of Sharjah, UAE
University of Neuchatel, Switzerland
University of Ottawa, Canada
University of Kaiserslautern, Germany
University of Mannheim, Germany
University of Texas, USA

UFBA, Brazil

University of Lyon 1, France
University of Towa, USA

INRIA, France

Comenius University, Slovakia
CNRS/University of Paris 7, France
Academia Sinica Taipei, Taiwan
Texas A&M University, USA
University of Osaka, Japan

TU Berlin, Germany

Macquarie University, Australia

IBM, USA

University of Bordeaux 1, France

VIII Organization

Marina Papatriantafilou
Boaz Patt-Shamir

Raj Rajkumar

Sergio Rajsbaum

Andre Schiper

Sam Toueg

Eduardo Tovar

Koichi Wada

Chalmers University of Technology, Sweden
Tel Aviv University, Israel

Carnegie Mellon University, USA

UNAM, Mexico

EPFL, Switzerland

University of Toronto, Canada

Polytechnic Institute of Porto, Portugal
Nogoya Institute of Technology, Japan

Organizing Committee

Thibault Bernard

Celine Butelle

Publicity Chair

Thibault Bernard

Steering Committee

Alain Bui

Marc Bui
Hacene Fouchal
Roberto Gomez
Nicola Santoro
Philippas Tsigas

Referees

H.B. Acharya
Amitanand Aiyer
Mario Alves

James Anderson
Bjorn Andersson
Hagit Attiya

Rida Bazzi

Muli Ben-Yehuda
Alysson Bessani
Gaurav Bhatia
Konstantinos Bletsas
Bjoern Brandenburg

University of Reims Champagne-Ardenne,
France
EPHE, France

University of Reims Champagne-Ardenne,
France

University of Versailles St-Quentin-en-Yvelines,
France

EPHE, France

University of Antilles-Guyane, France

ITESM-CEM, Mexico

Carleton University, Canada

Chalmers University of Technology, Sweden

Alan Burns Pilu Crescenzi

John Calandrino Liliana Cucu

Pierre Castéran Shantanu Das
Daniel Cederman Emiliano De Cristofaro
Keren Censor Gianluca De Marco
Jérémie Chalopin Carole Delporte
Claude Chaudet UmaMaheswari Devi
Yong Hoon Choi Shlomi Dolev
Andrea Clementi Pu Duan

Reuven Cohen Partha Dutta

Alex Cornejo Khaled El-fakih
Roberto Cortinas Yuval Emek

Hugues Fauconnier
Pascal Felber
Paola Flocchini
Gerhard Fohler
Pierre Fraignaud
Felix Freiling
Zhang Fu
Shelby Funk
Emanuele G. Fusco
Giorgos Georgiadis
Seth Gilbert
Emmanuel Godard
Joel Goossens
Mohamed Gouda
Maria Gradinariu
Potop-Butucaru
Vincent Gramoli
Fabiola Greve
Damas Gruska
Isabelle Guerin-Lassous
Phuong Ha Hoai
Ahmed Hadj Kacem
Elyes-Ben Hamida
Danny Hendler
Thomas Herault
Ted Herman
Daniel Hirschkoff
Akira Idoue
Nobuhiro Inuzuka
Taisuke Izumi
Tomoko Izumi
Katia Jaffres-Runser
Prasad Jayanti
Arshad Jhumka
Mohamed Jmaiel
Hirotsugu Kakugawa
Arvind Kandhalu
Yoshiaki Katayama
Branislav Katreniak
Anne-Marie Kermarrec
Ralf Klasing
Boris Koldehofe

Anis Koubaa
Darek Kowalski
Rastislav Kralovic
Evangelos Kranakis
Toannis Krontiris
Petr Kuznetsov
Mikel Larrea
Erwan Le Merrer
Emmanuelle Lebhar
Hennadiy Leontyev
Xu Li

George Lima

Jane Liu

Steve Liu

Hong Lu

Victor Luchangco
Weiqin Ma
Bernard Mans
Soumaya Marzouk
Toshimitsu Masuzawa
Nicole Megow
Maged Michael
Luis Miguel Pinho
Rolf Mohring
Mohamed Mosbah
Heinrich Moser
Achour Mostefaoui
Junya Nakamura
Alfredo Navarra
Gen Nishikawa,
Nicolas Nisse

Luis Nogueira

Koji Okamura
Fukuhito Ooshita
Marina Papatriantafilou
Dana Pardubska
Boaz Patt-Shamir
Andrzej Pelc
David Peleg

Nuno Pereira
Tomas Plachetka
Shashi Prabh

Organization IX

Giuseppe Prencipe
Shi Pu

Raj Rajkumar
Sergio Rajsbaum
Dror Rawitz

Tahiry Razafindralambo
Etienne Riviere
Gianluca Rossi
Anthony Rowe
Nicola Santoro
Gabriel Scalosub
Elad Schiller

Andre Schiper
Nicolas Schiper
Ramon Serna Oliver
Alexander Shvartsman
Riccardo Silvestri
Frangoise Simonot-Lion
Alex Slivkins

Jason Smith
Kannan Srinathan
Sebastian Stiller
David Stotts
Weihua Sun
Hgakan Sundell
Cheng-Chung Tan
Andreas Tielmann
Sam Toueg
Eduardo Tovar
Corentin Travers
Frederic Tronel
Rémi Vannier

Jan Vitek

Roman Vitenberg
Koichi Wada

Timo Warns
Andreas Wiese

Yu Wu

Zhaoyan Xu
Hirozumi Yamaguchi
Yukiko Yamauchi
Keiichi Yasumoto

Table of Contents

Invited Talks

The Next 700 BFT Protocols (Abstract)

Rachid Guerraoui

On Replication of Software Transactional Memories

(Extended Abstract) i i

Luis Rodrigues

Regular Papers

Write Markers for Probabilistic Quorum Systems

Michael G. Merideth and Michael K. Reiter

Byzantine Consensus with Unknown Participants

Eduardo A.P. Alchieri, Alysson Neves Bessani,
Joni da Silva Fraga, and Fabiola Greve

........... 22

With Finite Memory Consensus Is Easier Than Reliable Broadcast 41
Carole Delporte-Gallet, Stéphane Devismes, Hugues Fauconnier,

Franck Petit, and Sam Toueg

Group Renaming i
Yehuda Afek, Iftah Gamzu, Irit Levy, Michael Merritt, and

Gadi Taubenfeld

........... 58

Global Static-Priority Preemptive Multiprocessor Scheduling with

Utilization Bound 38%c i

Bjorn Andersson

Deadline Monotonic Scheduling on Uniform Multiprocessors

Sanjoy Baruah and Joél Goossens

A Comparison of the M-PCP, D-PCP, and FMLP on LITMUSRT

Bjérn B. Brandenburg and James H. Anderson

A Self-stabilizing Marching Algorithm for a Group of Oblivious
Robots ...

Yuichi Asahiro, Satoshi Fujita, Ichiro Suzuki, and
Masafumi Yamashita

Fault-Tolerant Flocking in a k-Bounded Asynchronous System

Samia Souissi, Yan Yang, and Xavier Défago

........... 73

........... 89

XII Table of Contents

Bounds for Deterministic Reliable Geocast in Mobile Ad-Hoc
NetwWorKs ..ot
Antonio Ferndndez Anta and Alessia Milani

Degree 3 Suffices: A Large-Scale Overlay for P2P Networks............
Marcin Bienkowski, André Brinkmann, and Miroslaw Korzeniowski

On the Time-Complexity of Robust and Amnesic Storage
Dan Dobre, Matthias Majuntke, and Neeraj Suri

Graph Augmentation via Metric Embedding...............
Emmanuelle Lebhar and Nicolas Schabanel

A Lock-Based STM Protocol That Satisfies Opacity and
Progressiveness
Damien Imbs and Michel Raynal

The 0 — 1-Exclusion Families of Tasks.
Eli Gafni

Interval Tree Clocks: A Logical Clock for Dynamic Systems
Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte

Ordering-Based Semantics for Software Transactional Memory
Michael F. Spear, Luke Dalessandro, Virendra J. Marathe, and
Michael L. Scott

CQS-Pair: Cyclic Quorum System Pair for Wakeup Scheduling in
Wireless Sensor Networks i
Shouwen Lai, Bo Zhang, Binoy Ravindran, and Hyeonjoong Cho

Impact of Information on the Complexity of Asynchronous Radio
Broadcastingo
Tiziana Calamoneri, Emanuele G. Fusco, and Andrzej Pelc

Distributed Approximation of Cellular Coverage
Boaz Patt-Shamir, Dror Rawitz, and Gabriel Scalosub

Fast Geometric Routing with Concurrent Face Traversal
Thomas Clouser, Mark Miyashita, and Mikhail Nesterenko

Optimal Deterministic Remote Clock Estimation in Real-Time
SYSEEINS . . ottt
Heinrich Moser and Ulrich Schmid

Power-Aware Real-Time Scheduling upon Dual CPU Type
Multiprocessor Platforms i
Joél Goossens, Dragomir Milojevic, and Vincent Nélis

Table of Contents

Revising Distributed UNITY Programs Is NP-Complete
Borzoo Bonakdarpour and Sandeep S. Kulkarni

On the Solvability of Anonymous Partial Grids Exploration by Mobile
ROboOts .o
Roberto Baldoni, Francois Bonnet, Alessia Milani, and
Michel Raynal

Taking Advantage of Symmetries: Gathering of Asynchronous Oblivious
Robotsona Ring
Ralf Klasing, Adrian Kosowski, and Alfredo Navarra

Rendezvous of Mobile Agents When Tokens Fail Anytime
Shantanu Das, Matis Mihaldk, Rastislav Srdmek, Elias Vicari, and
Peter Widmayer

Solving Atomic Multicast When Groups Crash
Nicolas Schiper and Fernando Pedone

A Self-stabilizing Approximation for the Minimum Connected
Dominating Set with Safe Convergence
Sayaka Kamei and Hirotsugu Kakugawa

Leader Election in Extremely Unreliable Rings and Complete
NetWOTKS + vttt
Stefan Dobrev, Rastislav Krdlovié, and Dana Pardubskd

Toward a Theory of Input Acceptance for Transactional Memories
Vincent Gramoli, Derin Harmanci, and Pascal Felber

Geo-registers: An Abstraction for Spatial-Based Distributed
COMPUEING .« . ottt e e
Matthieu Roy, Francgois Bonnet, Leonardo Querzoni, Silvia Bonomi,

Mare-Olivier Killijian, and David Powell

Evaluating a Data Removal Strategy for Grid Environments Using
Colored Petri Nets .. .ov i e e
Nikola Trcka, Wil van der Aalst, Carmen Bratosin, and
Natalia Sidorova

Load-Balanced and Sybil-Resilient File Search in P2P Networks
Hyeong S. Kim, Eunjin (EJ) Jung, and Heon Y. Yeom

Computing and Updating the Process Number in Trees
David Coudert, Florian Huc, and Dorian Mazauric

Redundant Data Placement Strategies for Cluster Storage
Environments
André Brinkmann and Sascha Effert

XIV Table of Contents

An Unreliable Failure Detector for Unknown and Mobile Networks 555
Pierre Sens, Luciana Arantes, Mathieu Bouillaguet,
Véronique Simon, and Fabiola Greve

Efficient Large Almost Wait-Free Single-Writer Multireader Atomic
Registers. 560
Andrew Lutomirski and Victor Luchangco

A Distributed Algorithm for Resource Clustering in Large Scale

Platforms o 564
Olivier Beaumont, Nicolas Bonichon, Philippe Duchon,
Lionel Eyraud-Dubois, and Hubert Larchevéque

Reactive Smart Buffering Scheme for Seamless Handover in PMIPv6 ... 568
Hyon-Young Choi, Kwang-Ryoul Kim, Hyo-Beom Lee, and
Sung-Gi Min

Uniprocessor EDF Scheduling with Mode Change 572

Bjorn Andersson

Author Index 579

The Next 700 BFT Protocols
(Invited Talk)

Rachid Guerraoui

EPFL LPD, Bat INR 310, Station 14, 1015 Lausanne, Switzerland

Byzantine fault-tolerant state machine replication (BFT) has reached a reason-
able level of maturity as an appealing, software-based technique, to building
robust distributed services with commodity hardware. The current tendency
however is to implement a new BFT protocol from scratch for each new ap-
plication and network environment. This is notoriously difficult. Modern BFT
protocols require each more than 20.000 lines of sophisticated C code and prov-
ing their correctness involves an entire PhD. Maintainning and testing each new
protocol seems just impossible.

This talk will present a candidate abstraction, named ABSTRACT (Abortable
State Machine Replication), to remedy this situation. A BFT protocol is viewed
as a, possibly dynamic, composition of instances of ABSTRACT, each instance
developed and analyzed independently. A new effective BFT protocol can be
developped by adding less than 10% of code to an existing one. Correctness proofs
become at human reach and even model checking techniques can be envisaged.
To illustrate the ABSTRACT approach, we describe a new BFT protocol we
name Aliph: the first of a hopefully long series of effective yet modular BFT
protocols. The Aliph protocol has a peak throughput that outperforms those of
all BFT protocols we know of by 300% and a best case latency that is less than
30% of that of state of the art BFT protocols.

This is joint work with Dr V. Quema (CNRS) and Dr M. Vukolic (IBM).

T.P. Baker, A. Bui, and S. Tixeuil (Eds.): OPODIS 2008, LNCS 5401, p. 1, 2008.
© Springer-Verlag Berlin Heidelberg 2008

On Replication of
Software Transactional Memories
(Invited Talk)

Luis Rodrigues

INESC-ID/IST

joint work with:
Paolo Romano and Nuno Carvalho
INESC-ID

Extended Abstract

Software Transactional Memory (STM) systems have garnered considerable in-
terest of late due to the recent architectural trend that has led to the pervasive
adoption of multi-core CPUs. STMs represent an attractive solution to spare
programmers from the pitfalls of conventional explicit lock-based thread syn-
chronization, leveraging on concurrency-control concepts used for decades by
the database community to simplify the mainstream parallel programming [1].

As STM systems are beginning to penetrate into the realms of enterprise sys-
tems [2I3] and to be faced with the high availability and scalability requirements
proper of production environments, it is rather natural to foresee the emergence
of replication solutions specifically tailored to enhance the dependability and the
performance of STM systems. Also, since STM and Database Management Sys-
tems (DBMS) share the key notion of transaction, it might appear that the state
of the art database replication schemes e.g. [4BI6]7] represent natural candidates
to support STM replication as well.

In this talk, we will first contrast, from a replication oriented perspective,
the workload characteristics of two standard benchmarks for STM and DBMS,
namely TPC-W [§] and STBench7 [9]. This will allow us to uncover several
pitfalls related to the adoption of conventional database replication techniques
in the context of STM systems.

At the light of such analysis, we will then discuss promising research direc-
tions we are currently pursuing in order to develop high performance replication
strategies able to fit the unique characteristics of the STM.

In particular, we will present one of our most recent results in this area which
not only tackles some key issues characterizing STM replication, but actually
represents a valuable tool for the replication of generic services: the Weak Mutual
Exclusion (WME) abstraction. Unlike the classical Mutual Exclusion problem
(ME), which regulates the concurrent access to a single and indivisible shared
resource, the WME abstraction ensures mutual exclusion in the access to a
shared resource that appears as single and indivisible only at a logical level,
while instead being physically replicated for both fault-tolerance and scalability
purposes.

T.P. Baker, A. Bui, and S. Tixeuil (Eds.): OPODIS 2008, LNCS 5401, pp. 2 2008.
(© Springer-Verlag Berlin Heidelberg 2008

On Replication of Software Transactional Memories 3

Differently from ME, which is well known to be solvable only in the pres-
ence of very constraining synchrony assumptions [I0] (essentially exclusively in
synchronous systems), we will show that WME is solvable in an asynchronous
system using an eventually perfect failure detector, P, and prove that P is
actually the weakest failure detector for solving the WME problem. These re-
sults imply, unlike ME, WME is solvable in partially synchronous systems, (i.e.
systems in which the bounds on communication latency and relative process
speed either exist but are unknown or are known but are only guaranteed to
hold starting at some unknown time) which are widely recognized as a realistic
model for large scale distributed systems [11I12].

However, this is not the only element contributing to the pragmatical relevance
of the WME abstraction. In fact, the reliance on the WME abstraction, as a mean
for regulating the concurrent access to a replicated resource, also provides the
two following important practical benefits:

Robustness: pessimistic concurrency control is widely used in commercial off
the shelf systems, e.g. DBMSs and operating systems, because of its ro-
bustness and predictability in presence of conflict intensive workloads. The
WME abstraction lays a bridge between these proven contention manage-
ment techniques and replica control schemes. Analogously to centralized lock
based concurrency control, WME reveals particularly useful in the context
of conflict-sensitive applications, such as STMs or interactive systems, where
it may be preferable to bridle concurrency rather than incurring the costs
of application level conflicts, such as transactions abort or re-submission of
user inputs.

Performance: the WME abstraction ensures that users issue operations on
the replicated shared resource in a sequential manner. Interestingly, it has
been shown that, in such a scenario, it is possible to sensibly boost the
performance of lower level abstractions [I3/14], such as consensus or atomic
broadcast, which are typically used as building blocks of modern replica
control schemes and which often represent, like in typical STM workloads,
the performance bottleneck of the whole system.

References

1. Adl-Tabatabai, A.R., Kozyrakis, C., Saha, B.: Unlocking concurrency. ACM
Queue 4, 24-33 (2007)

2. Cachopo, J.: Development of Rich Domain Models with Atomic Actions. PhD
thesis, Instituto Superior Técnico/Universidade Técnica de Lisboa (2007)

3. Carvalho, N.; Cachopo, J., Rodrigues, L., Rito Silva, A.: Versioned transactional
shared memory for the FénixEDU web application. In: Proc. of the Second Work-
shop on Dependable Distributed Data Management (in conjunction with Eurosys
2008), Glasgow, Scotland. ACM, New York (2008)

4. Agrawal, D., Alonso, G., Abbadi, A.E., Stanoi, I.: Exploiting atomic broadcast in
replicated databases (extended abstract). In: Lengauer, C., Griebl, M., Gorlatch,
S. (eds.) Euro-Par 1997. LNCS, vol. 1300, pp. 496-503. Springer, Heidelberg (1997)

4

10.

11.

12.

13.

14.

L. Rodrigues

Cecchet, E., Marguerite, J., Zwaenepole, W.: C-JDBC: flexible database clustering
middleware. In: Proc. of the USENIX Annual Technical Conference, Berkeley, CA,
USA, p. 26. USENIX Association (2004)

Patifio-Martinez, M., Jiménez-Peris, R., Kemme, B., Alonso, G.: Scalable replica-
tion in database clusters. In: Proc. of the 14th International Conference on Dis-
tributed Computing, London, UK, pp. 315-329. Springer, Heidelberg (2000)
Pedone, F., Guerraoui, R., Schiper, A.: The database state machine approach.
Distributed and Parallel Databases 14, 71-98 (2003)

Transaction Processing Performance Council: TPC Benchmark™ W, Standard
Specification, Version 1.8. Transaction Processing Perfomance Council (2002)
Guerraoui, R., Kapalka, M., Vitek, J.: Stmbench7: a benchmark for software trans-
actional memory. SIGOPS Oper. Syst. Rev. 41, 315-324 (2007)

Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kouznetsov, P.: Mutual exclu-
sion in asynchronous systems with failure detectors. J. Parallel Distrib. Comput. 65,
492-505 (2005)

Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35, 288-323 (1988)

Cristian, F., Fetzer, C.: The timed asynchronous distributed system model. IEEE
Transactions on Parallel and Distributed Systems 10, 642-657 (1999)

Brasileiro, F.V., Greve, F., Mostéfaoui, A., Raynal, M.: Consensus in one com-
munication step. In: Proc. of the International Conference on Parallel Computing
Technologies, pp. 42-50 (2001)

Lamport, L.: Fast paxos. Distributed Computing 9, 79-103 (2006)

Write Markers for
Probabilistic Quorum Systems

Michael G. Merideth! and Michael K. Reiter?

! Carnegie Mellon University, Pittsburgh, PA, USA
2 University of North Carolina, Chapel Hill, NC, USA

Abstract. Probabilistic quorum systems can tolerate a larger fraction
of faults than can traditional (strict) quorum systems, while guaranteeing
consistency with an arbitrarily high probability for a system with enough
replicas. However, the masking and opaque types of probabilistic quorum
systems are hampered in that their optimal load—a best-case measure of
the work done by the busiest replica, and an indicator of scalability—is
little better than that of strict quorum systems. In this paper we present a
variant of probabilistic quorum systems that uses write markers in order
to limit the extent to which Byzantine-faulty servers act together. Our
masking and opaque probabilistic quorum systems have asymptotically
better load than the bounds proven for previous masking and opaque
quorum systems. Moreover, the new masking and opaque probabilistic
quorum systems can tolerate an additional 24% and 17% of faulty repli-
cas, respectively, compared with probabilistic quorum systems without
write markers.

1 Introduction

Given a universe U of servers, a quorum system over U is a collection Q =
{Q1,...,Qm} such that each Q; C U and

QNQ'[>0 (1)

for all Q,Q" € Q. Each Q; is called a quorum. The intersection property ()
makes quorums a useful primitive for coordinating actions in a distributed sys-
tem. For example, if clients perform writes at a quorum of servers, then a client
who reads from a quorum will observe the last written value. Because of their util-
ity in such applications, quorums have a long history in distributed computing.

In systems that may suffer Byzantine faults [1], the intersection property () is
typically not adequate as a mechanism to enable consistent data access. Because
(@) requires only that the intersection of quorums be non-empty, it could be that
two quorums intersect only in a single server, for example. In a system in which
up to b > 0 servers might suffer Byzantine faults, this single server might be
faulty and consequently, could fail to convey the last written value to a reader,
for example.

T.P. Baker, A. Bui, and S. Tixeuil (Eds.): OPODIS 2008, LNCS 5401, pp. 5 2008.
© Springer-Verlag Berlin Heidelberg 2008

6 M.G. Merideth and M.K. Reiter

For this reason, Malkhi and Reiter [2] proposed various ways of strengthening
the intersection property () so as to enable quorums to be used in Byzantine
environments. For example, an alternative to () is

[QNQ\ Bl >|Q N B (2)

for all Q, Q" € Q, where B is the (unknown) set of all (up to b) servers that are
faulty. In other words, the intersection of any two quorums contains more non-
faulty servers than the faulty ones in either quorum. As such, the responses from
these non-faulty servers will outnumber those from faulty ones. These quorum
systems are called masking systems.

Opague quorum systems, have an even more stringent requirement as an al-
ternative to (I):

QNQ'\ B> [(Q'NB)U(Q"\ Q) 3)

for all Q, Q' € Q. In other words, the number of correct servers in the intersection
of @ and Q' (i.e., |@ N Q" \ BJ) exceeds the number of faulty servers in Q' (i.e.,
|Q" N BJ) together with the number of servers in Q" but not Q. The rationale
for this property can be seen by considering the servers in @’ but not @ as
“outdated”, in the sense that if Q was used to perform an update to the system,
then those servers in @'\ @ are unaware of the update. As such, if the faulty
servers in ' behave as the outdated ones do, their behavior (i.e., their responses)
will dominate that from the correct servers in the intersection (QNQ’\ B) unless
@) holds.

The increasingly stringent properties of Byzantine quorum systems come with
costs in terms of the smallest system sizes that can be supported while tolerating
a number b of faults [2]. This implies that a system with a fixed number of
servers can tolerate fewer faults when the property is more stringent as seen in
Table [T which refers to the quorums just discussed as strict. Table [Il also shows
the negative impact on the ability of the system to disperse load amongst the
replicas, as discussed next.

Naor and Wool [3] introduced the notion of an access strategy by which clients
select quorums to access. An access strategy p : @ — [0, 1] is simply a proba-
bility distribution on quorums, i.e., ZQEQp(Q) = 1. Intuitively, when a client
accesses the system, it does so at a quorum selected randomly according to the
distribution p.

The formalization of an access strategy is useful as a tool for discussing the
load dispersing properties of quorums. The load [3] of a quorum system, £(Q), is
the probability with which the busiest server is accessed in a client access, under
the best possible access strategy p. As listed in Table [I tight lower bounds
have been proven for the load of each type of strict Byzantine quorum system.
The load for opaque quorum systems is particularly unfortunate—systems that
utilize opaque quorum systems cannot effectively disperse processing load across
more servers (i.e., by increasing n) because the load is at least a constant. Such
Byzantine quorum systems are used by many modern Byzantine-fault-tolerant
protocols, e.g., [ABIGI7IRII] in order to tolerate the arbitrary failure of a subset
of their replicas. As such, circumventing the bounds is an important topic.

Write Markers for Probabilistic Quorum Systems 7

One way to circumvent these bounds is with probabilistic quorum systems.
Probabilistic quorum systems relax the quorum intersection properties, asking
them to hold only with high probability. More specifically, they relax [2)) or (3),
for example, to hold only with probability 1 — e (for €, a small constant), where
probabilities are taken with respect to the selection of quorums according to an
access strategy p [I0/[I1]. This technique yields masking quorum constructions
tolerating b < 2.62/n and opaque quorum constructions tolerating b < 3.15/n
as seen in Table [[l These bounds hold in the sense that for any € > 0 there is
an ng such that for all n > ng, the required intersection property (([2) or (&)
for masking and opaque quorum systems, respectively) holds with probability at
least 1 — e. Unfortunately, probabilistic quorum systems alone do not materially
improve the load of Byzantine quorum systems.

In this paper, we present an additional modification, write markers, that im-
proves on the bounds further. Intuitively, in each update access to a quorum of
servers, a write marker is placed at the accessed servers in order to evidence the
quorum used in that access. This write marker identifies the quorum used; as
such, faulty servers not in this quorum cannot respond to subsequent quorum
accesses as though they were.

As seen in Table[Il by using this method to constrain how faulty servers can
collaborate, we show that probabilistic masking quorum systems with
load O(1/y/n) can be
achieved, allowing the sys-
tems to disperse load in-
dependently of the value
of b. Further, probabilis-

Table 1. Improvements due to write markers (Bold
entries are properties of particular constructions; oth-
ers are lower bounds)

tic opaque quorum systems Non-Byzantine: load faults

with load O(b/n) can be strict 20/yn) Bl <n
achieved, breaking the con-

stant lower bound on load Masking: load faults

for opaque systems. More- strict Q(/b/n) I < n/4.00 [12]

over, the resilience of prob- probabilistic £22(b/n) [10] < n/2.62 [1I]
abilistic masking quorums write markers O(1/4/n) [here] < n/2.00 [here]
can be improved an addi-

tional 24% to b < n/2, and Opaque: load faults
the resilience of probabilistic ~ strict >1/2 [2] < n/5.00 [2
opaque quorum Systems can probabilistic unproven < 1‘1/3.15 [11]

be improved an additional write markers O(b/n) [here] < n/2.62 [here]
17% to b < n/2.62.

The probability of error in probabilistic quorums requires mechanisms to en-
sure that accesses are performed according to the required access strategy p if
the clients cannot be trusted to do so. Therefore, we adapt one such mechanism,
the access-restriction protocol of probabilistic opaque quorum systems [I1], to
accomodate write markers. Thus, as a side benefit, our implementation forces
faulty clients to follow the access strategy. With this, we provide a protocol to
implement write markers that tolerates Byzantine clients.

8 M.G. Merideth and M.K. Reiter

Our primary contributions are (i) the identification and analysis of the benefits
of write markers; and (ii) a proposed implementation of write markers that
handles the complexities of tolerating Byzantine clients. Our analysis yields the
following results:

Masking Quorums: We show that the use of write markers allows probabilistic
masking quorum systems to tolerate up to b < n/2 faults when quorums are of
size £2(y/n). Setting all quorums to size py/n for some constant p, we achieve
a load that is asymptotically optimal for any quorum system, i.e., py/n/n =
O(1/v/n) 3.

This represents an improvement in load and the number of faults that can
be tolerated. Probabilistic masking quorums without write markers can tolerate
up to b < n/2.62 faults [II] and achieve load no better than §2(b/n) [10]. In
addition, the maximum number of faults that can be tolerated is tied to the size
of quorums [10]. Thus, without write markers, achieving optimal load requires
tolerating fewer faults. Strict masking quorum systems can tolerate (only) up to
b < n/4 faults [2] and can achieve load 2(y/b/n) [12].

Opaque Quorums: We show that the use of write markers allows probabilis-
tic opaque quorum systems to tolerate up to b < n/2.62 faults. We present a
construction with load O(b/n) when b = 2(y/n), thereby breaking the constant
lower bound of 1/2 on the load of strict opaque quorum systems [2]. Moreover,
if b = O(y/n), we can set all quorums to size py/n for some constant p, in order
to achieve a load that is asymptotically optimal for any quorum system, i.e.,
pyn/n = O(1/yn) B.

This represents an improvement in load and the number of faults that can
be tolerated. Probabilistic opaque quorum systems without write markers can
tolerate (only) up to b < n/3.15 faults [I]. Strict opaque quorum systems can
tolerate (only) up to b < n/5 faults [2]; these quorum systems can do no better
than constant load even if b =0 [2].

2 Definitions and System Model

We assume a system with a set U of servers, |U| = n, and an arbitrary but
bounded number of clients. Clients and servers can fail arbitrarily (i.e., Byzan-
tine faults [I]). We assume that up to b servers can fail, and denote the set of
faulty servers by B, where B C U. Any number of clients can fail. Failures are
permanent. Clients and servers that do not fail are said to be non-faulty. We
allow that faulty clients and servers may collude, and so we assume that faulty
clients and servers all know the membership of B (although non-faulty clients
and servers do not). However, for our implementation of write markers, as is
typical for many Byzantine-fault-tolerant protocols (c.f., [4J5/6/9]), we assume
that faulty clients and servers are computationally bound such that they cannot
subvert standard cryptographic primitives such as digital signatures.

Write Markers for Probabilistic Quorum Systems 9

Communication. Write markers require no communication assumptions
beyond those of the probabilistic quorums for which they are used. For com-
pleteness, we summarize the model of [11], which is common to prior works in
probabilistic [I0] and signed [I3] quorum systems: we assume that each non-
faulty client can successfully communicate with each non-faulty server with high
probability, and hence with all non-faulty servers with roughly equal probability.
This assumption is in place to ensure that the network does not significantly bias
a non-faulty client’s interactions with servers either toward faulty servers or to-
ward different non-faulty servers than those with which another non-faulty client
can interact. Put another way, we treat a server that can be reliably reached by
none or only some non-faulty clients as a member of B.

Access set; access strategy; operation. We abstractly describe client oper-
ations as either writes that alter the state of the service or reads that do not.
Informally, a non-faulty client performs a write to update the state of the service
such that its value (or a later one) will be observed with high probability by any
subsequent operation; a write thus successfully performed is called “established”
(we define established more precisely below). A non-faulty client performs a read
to obtain the value of the latest established write, where “latest” refers to the
value of the most recent write preceding this read in a linearization [14] of the
execution.

In the introduction, we discussed access strategies as probability distributions
on quorums used for operations. For the remainder of the paper, we follow [I1]
in strictly generalizing the notion of access strategy to apply instead to access
sets from which quorums are chosen. An access set is a set of servers from
which the client selects a quorum. If the client is non-faulty, we assume that this
selection is done uniformly at random. We adopt the access strategy that all
access sets are chosen uniformly at random (even by faulty clients). In Section 4,
we adapt a protocol to support write markers from one in [I1] that approximately
ensures this access strategy. Our analysis allows that access sets may be larger
than quorums, though if access sets and quorums are of the same size, then
our protocol effectively forces even faulty clients to select quorums uniformly at
random as discussed in the introduction. In our analysis, all access sets used for
reads and writes are of constant size a,q and a,,; respectively. All quorums used
for reads and writes are of constant size ¢,q and ¢, respectively.

Candidate; conflicting; error probability; established; participant;
qualified; vote. Each write yields a corresponding candidate at some num-
ber of servers. A candidate is an abstraction used in part to ensure that two
distinct write operations are distinguishable from each other, even if the corre-
sponding data values are the same. A candidate is established once it is accepted
by all of the non-faulty servers in some write quorum of size q,,; within the write
access set of size a,¢. In opaque quorum systems, property ([B]) anticipates that
different non-faulty servers each may hold a different candidate due to concur-
rent writes. A candidate that is characterized by the property that a non-faulty
server would accept either it or a given established candidate, but not both, is

10 M.G. Merideth and M.K. Reiter

called a conflicting candidate. Two candidates may conflict because, e.g., they
both bear the same timestamp. In either masking or opaque quorum systems,
a faulty server may try to forge a conflicting candidate. No non-faulty server
accepts two candidates that conflict with each other.

A server can try to wvote for some candidate (e.g., by responding to a read
operation) if the server is a participant in voting (i.e., if the server is a member
of the client’s read access set). However, a server becomes qualified to vote for
a particular candidate only if the server is a member of the client’s write access
set selected for the write operation for which it votes. Non-faulty clients wait for
responses from a read quorum of size g4 contained in the read access set of size
arq. An error is said to occur in a read operation when a non-faulty client fails
to observe the latest value or a faulty client obtains sufficiently many votes for
a conflicting value[] The error probability is the probability of this occurring.

Behavior of faulty clients. We assume that faulty clients seek to maximize
the error probability by following specific strategies [I1]. This is a conservative
assumption; a client cannot increase—but may decrease—the probability of error
by failing to follow these strategies. At a high level, the strategies are as follows:
a faulty client, which may be completely restricted in its choices: (i) when estab-
lishing a candidate, writes the candidate to as few non-faulty servers as possible
to minimize the probability that it is observed by a non-faulty client; and (ii)
writes a conflicting candidate to as many servers as will accept it (i.e., faulty
servers plus, in the case of an opaque quorum system, any non-faulty server that
has not accepted the established candidate) in order to maximize the probability
that it is observed.

3 Analysis of Write Markers

Intuitively, when a client submits a write, the candidate is associated with a
write marker. We require that the following three properties are guaranteed by
an implementation of write markers:

W1. Every candidate has a write marker that identifies the access set chosen
for the write;

W2. A verifiable write marker implies that the access set was selected uniformly
at random (i.e., according to the access strategy);

W3. Every non-faulty client can verify a write marker.

When considering a candidate, non-faulty clients and servers verify the candi-
date’s write marker. Because of this verification, no non-faulty node will accept
a vote for a candidate unless the issuing server is qualified to vote for the can-
didate. Since each write access set is chosen uniformly at random (W2), the
faulty servers that can vote for a candidate, i.e., the faulty qualified servers, are
therefore a random subset of the faulty servers.

! Faulty clients may be able to affect the system with such votes in some protocols [11].

Write Markers for Probabilistic Quorum Systems 11

Thus, write markers remove the advantage enjoyed by faulty servers in strict
and traditional-probabilistic masking and opaque quorum systems, where any
faulty participant can vote for any candidate—and therefore can collude to have
a conflicting, potentially fabricated candidate chosen instead of an established
candidate. This aspect of write markers is summarized in Table 2] which shows
the impact of write markers in terms of the abilities of faulty and non-faulty
servers to vote for a given candidate.

3.1 Consistency Constraints

Probabilistic quorum systems must satisfy constraints similar to those of strict

quorum systems (e.g.,), (@), but only with probability 1 — e. As with strict

quorum systems, the purpose of these constraints is to guarantee that operations

can be observed consistently in subsequent operations by receiving enough votes.
First, the constraints must ensure

in expectation that a non-faulty client

can observe the latest established can-
didate if such a candidate exists. Let
Qrq represent a read quorum chosen

Table 2. Ability of a server to vote for a
given candidate: e (traditional quorums); %
(write markers)

uniformly at random, i.e., a random

variable, from a read access set itself §ypef0f lsemer fied sartic Vote

chosen uniformly at random. (Think """ ty quatfied participant e
. Faulty qualified participant ® *x

of this quorum as one used by a non- . .

faul i L) Non-faulty non-qualified participant

aulty c¢ 1ent.) et Qwi represent a Faulty non-qualified participant .

write quorum chosen by a potentially

faulty client; Q¢ must be chosen from

Awt, an access set chosen uniformly at random. (Think of Q¢ as a quorum used
for an established candidate.) Then the threshold r number of votes necessary
to observe a value must be less than the expected number of non-faulty qualified
participants, which is

E[|(Qra N Quwe) \ Bl]. (4)

The use of write markers has no impact here on) because (Quqa N Quwt) \ B
contains no faulty servers. However, write markers do enable us to set r smaller,
as the following shows.

Second, the constraints must ensure that a conflicting candidate (which is in
conflict with an established candidate as described in Section []) is, in expecta-
tion, not observed by any client (non-faulty or faulty). In general, it is important
for all clients to observe only established candidates so as to enable higher-level
protocols (e.g., [4]) that employ repair phases that may affect the state of the
system within a read [I1I]. Let A/, and A, represent read and write access sets,
respectively, chosen uniformly at random. (Think of Al , as the access set used by
a faulty client for a conflicting candidate, and of A, as the access set used by a
faulty client for a read operation. How faulty clients can be forced to choose uni-
formly at random is described in Section [dl) We consider the cases for masking
and opaque quorums separately:

12 M.G. Merideth and M.K. Reiter

Probabilistic Masking Quorums. In a masking quorum system, (2)) dictates that
only faulty servers may vote for a conflicting candidate. Using write markers, we
require that the faulty qualified participants alone cannot produce sufficient votes
for a candidate to be observed in expectation. Taking (@) into consideration, we
require:

E[|(Qra N Quwi) \ Bl > E[[(Ala N Ay) N B (®)

Contrast this with (2]) and with the consistency requirement for traditional prob-
abilistic masking quorum systems [10] (adapted to consider access sets), which
requires that the faulty participants (qualified or not) cannot produce sufficient
votes for a candidate to be observed in expectation:

E[|(Qra N Qut) \ Bl > E[|A;q N B]. (6)

Intuitively, the intersection between access sets can be smaller with write markers
because the right-hand side of (B is less than the right-hand side of (@) if
Ayt < M.

Probabilistic Opaque Quorums. With write markers, we have the benefit, de-
scribed above for probabilistic masking quorums, in terms of the number of
faulty participants that can vote for a candidate in expectation. However, as
shown in (@), opaque quorum systems must additionally consider the maximum
number of non-faulty qualified participants that vote for the same conflicting
candidate in expectation. As such, instead of (fl), we have:

E[[(Qra N Qut) \ BII>E[[(Afa N ALy) N BIIHE[| (Alg N AG) \ B) \ Quel] . (7)

Contrast this with the consistency requirement for traditional probabilistic
opaque quorums [I1]:

E{|(Qua N Quwi) \ Bl > E[|Aq N Bl + B[l (Alg N Aw) \ B)\ Quell. (8)

Again, intuitively, the intersection between access sets can be smaller with write
markers because the right-hand side of (7)) is less than the right-hand side of (8]
if aws < n.

3.2 Implied Bounds

In this subsection, we are concerned with quorum systems for which we can
achieve error probability (as defined in Section [2) no greater than a given e for
any n sufficiently large. For such quorum systems, there is an upper bound on b
in terms of n, akin to the bound for strict quorum systems.

Intuitively, the maximum value of b is limited by the relevant constraint (i.e.,
either (Bl) or (@)). Of primary interest are Theorem [I] and its corollaries, which
demonstrate the benefits of write markers for probabilistic masking quorum sys-
tems, and Theorem Pl and its corollaries, which demonstrate the benefits of write

Write Markers for Probabilistic Quorum Systems 13

markers for probabilistic opaque quorum systems. They utilize Lemmas [I] and 2]
which together present basic requirements for the types of quorum systems with
which we are concerned. Due to space constraints, proofs of the lemmas and
theorems appear only in a companion technical report [15].

Define MinCorrect to be a random variable for the number of non-faulty servers
with the established candidate, i.e., MinCorrect = |(Qrqa N Qwt) \ B as indicated
in ().

Lemma 1. Let n — b= 2(n). For all ¢ > 0 there is a constant d > 1 such that
for all gra, qut where qraquwt > dn and qraquw: — n = 2(1), it is the case that
E [MinCorrect] > ¢ for all n sufficiently large.

Let r be the threshold, discussed in Section Bl for the number of votes neces-
sary to observe a candidate. Define MaxConflicting to be a random variable for
the maximum number of servers that vote for a conflicting candidate. For ex-
ample: due to (B), in masking quorums with write markers, MaxConflicting =
[(Aly N AL) N Bl; and due to (), in opaque quorums with write markers,
MaxConflicting = [(ALy NAL) N Bl + | (ALg NAL) \ B) \ Qutl-

Lemma 2. Let the following hold
E [MinCorrect] — E [MaxConflicting] > 0,
E [MinCorrect] — E [MaxConflicting] = w(+/E [MinCorrect]).
Then it is possible to set r such that,
error probability — 0 as E [MinCorrect] — oc.

Here and below, a suitable setting of r is one between E [MinCorrect] and
E [MaxConflicting], inclusive. The remainder of the section is focused on deter-
mining, for each type of probabilistic quorum system, the upper bound on b and
bounds on the load that Lemmas [Il and 2] imply.

Theorem 1. For all € there is a constant d > 1 such that for all qrq, qwt where
GrdGut > dn, Graquwt —n = §2(1), and
qrdquwt™
Qrd@uwt + Qrauwt’

any such probabilistic masking quorum system employing write markers achieves
error probability no greater than € given a suitable setting of r for all n sufficiently
large.

Corollary 1. Let arq = qra and awt = que. For all € there is a constant d > 1
such that for all qra, qut where qraquwe > dn, ¢raquwe —n = 2(1), and

b<n/2,

any such probabilistic masking quorum system employing write markers achieves
error probability no greater than € given a suitable setting of r for all n sufficiently
large.

2 w is the little-oh analog of 12, i.e., f(n) = w(g(n)) if f(n)/g(n) — co as n — oo.

14 M.G. Merideth and M.K. Reiter

In other words, with write markers, the size of quorums does not impact the
maximum fraction of faults that can be tolerated when quorums are selected
uniformly at random (i.e., when a,q = ¢rq and awr = qut)-

Corollary 2. Let arg = @rd, QGwt = qut, and b < n/2. For all € there is a
constant p > 1 such that if grq = quwt = p\/n, any such probabilistic masking
quorum system employing write markers achieves error probability no greater
than € given a suitable setting of r for all n sufficiently large, and has load

pvn/n=O(1/vn).

Theorem 2. For all € there is a constant d > 1 such that for all qrq, qwt where
GrdGuwt > dn, Gragquw: —n = 2(1), and

2
n(ardy; + ardQuwi + qraGui™ — 20,40win)

b <
At (ardawt + QT’dn)

)

any such probabilistic opaque quorum system employing write markers achieves
error probability no greater than € given a suitable setting of r for all n sufficiently
large.

Corollary 3. Let arq = qra and awt = quet. For all € there is a constant d > 1
such that for all qra, qut where qraquwe > dn, ¢raguwe —n = 2(1), and

GuwtT

b < :
Qut + 1

any such probabilistic opaque quorum system employing write markers achieves
error probability no greater than € given a suitable setting of r for all n sufficiently
large.

Comparing Corollary 3] with Corollary [Il we see that in the opaque quorum case
Gwt cannot be set independently of b.

Corollary 4. Let arq = qrd, Gwt = Guwt, and b < (qwen)/(quwt + n). For all €
there is a constant d > 1 such that for all qrq, qu: where qrqquw: > dn and
GrdGuwt —n = $2(1), any such probabilistic opaque quorum system employing write
markers achieves error probability no greater than e given a suitable setting of r
for all n sufficiently large, and has load

Corollary 5. Let b = 2(\/n). For all € there is a constant d > 1 such that
for all arq, awt, Qrd, Gut WHheETe Grg = Gt = ¢rd = Guwt = Lb for a value | such
that ¢ > 1> n/(n —b) for some constant ', (Ib)? > dn and (1b)> —n = 02(1),
any such probabilistic opaque quorum system employing write markers achieves
error probability no greater than € given a suitable setting of r for all n sufficiently
large, and has load

O(b/n).

Write Markers for Probabilistic Quorum Systems 15

Corollary 6. Let arq = grq and awt = Gt = n—>b. For all € there is a constant
d > 1 such that for all g4, qut where qraqut > dn, qragwt —n = 2(1), and

b < n/2.62,

any such probabilistic opaque quorum system employing write markers achieves
error probability no greater than € given a suitable setting of r for all n sufficiently
large.

4 Implementation

Our implementation of write markers provides the behavior assumed in Section[3]
even with Byzantine clients. Specifically, it ensures properties[WIHW3l (Though,
technically, it ensures only approximately in the case of opaque quorum
systems, in which, as we explain below, a faulty server might be able to create
a conflicting candidate using a write marker for a stale, i.e., out-of-date, access
set—but to no advantage.)

Because clients may be faulty, we cannot rely on, e.g., digital signatures is-
sued by them to implement write markers. Instead, we adapt mechanisms of our
access-restriction protocol for probabilistic opaque quorum systems [II]. The
access-restriction protocol is designed to ensure that all clients follow the access
strategy. It already enables non-faulty servers to verify this before accepting a
write. And, since it is the only way of which we are aware for a probabilistic
quorum system to tolerate Byzantine clients when write markers are of bene-
fit (i.e., when the sizes of write access sets are restricted), its mechanisms are
appropriate.

The relevant parts of the preexisting protocol work as follows [IT]. From a pre-
configured number of servers, a client obtains a wverifiable recent value (VRV),
the value of which is unpredictable to clients and b or fewer servers prior to
its creation. This VRV is used to generate a pseudorandom sequence of access
sets. Since a VRV can be verified using only public information, both it and
the sequence of access sets it induces can be verified by clients and servers.
Non-faulty clients simply choose the next unused access set for each operationE
However, a faulty client is motivated to maximize the probability of error. If the
use of the next access set in the sequence does not maximize the probability
of error given the current state of the system (i.e., the candidates accepted by
the servers), such a client may try to skip ahead some number of access sets.
Alternatively, such a client might try to wait to use the next access set until the
state of the system changes. If allowed to follow either strategy, such a client
would circumvent the access strategy because its choice of access set would not
be independent from the state of the system.

Three mechanisms are used together to coerce a faulty client to follow the ac-
cess strategy. First, the client must perform exponentially increasing work in ex-
pectation in order to use later access sets. As such, a client requires exponentially

3 Non-faulty clients should choose a new access set for each operation to ensure inde-
pendence from the decisions of faulty clients [11].

16 M.G. Merideth and M.K. Reiter

increasing time in expectation]

3 Client i i |>8

in order to choose a later access len = o -
o e . - o

set. This is implemented by re- So 3 M //f >=

quiring that the client solve a s @ \

client puzzle [16] of the appro- §

priate difficulty. The solution to S2 :

the puzzle is, in expectation, Ss e \,

difficult to find but easy to ver- é

ify. Second, the VRV and se- Sn

quence of access sets become in-

valid as the non-faulty servers Fig. 1. Read operation with write markers: mes-
accept additional candidates, or = gages and stages of verification of access set
as the system otherwise pro- (Changes in gray)

gresses (e.g., as time passes).

Non-faulty servers verify that an access set is still valid, i.e., not stale, before
accepting it. Thus, system progress forces the client to start its work anew, and,
as such, makes the work solving the puzzle for any unused access set wasted.
Finally, during the time that the client is working, the established candidate
propagates in the background to the non-faulty servers that are non-qualified
(c.f., [I7]). This decreases the window of vulnerability in which a given access
set in the sequence is useful for a conflicting write by making non-qualified servers
aware that (i) there is an established candidate (so that they will not accept a
conflicting candidate) and (ii) that the state of the system has progressed (so
that they will invalidate the current VRV if appropriate).

The impact of these three mechanisms is that a non-faulty server can be
confident that the choice of write access set adheres (at least approximately) to
the access strategy upon having verified that the access set is valid, current, and
is accompanied by an appropriate puzzle solution.

For write markers, we extend the protocol so that, as seen in Figure[I], clients
can also perform verification. This requires that information about the puzzle
solution and access set (including the VRV used to generate it) be returned by
the servers to clients. (As seen in Figure[2and explained below, this information
varies across masking and opaque quorum systems.) In the preexisting access-
restriction protocol, this information is verified and discarded by each server. For
write markers, this information is instead stored by each server in the verification
stage as a write marker. It is sent along with the data value as part of the
candidate to the client during any read operation. If the server is non-faulty—
a fact of which a non-faulty client cannot be certain—the access set used for
the operation was indeed chosen according to the access strategy because the
server performed verification before accepting the candidate. However, because
the server may be faulty, the client performs verification as well; it verifies the
write marker and that the server is a member of the access set. This allows us
to guarantee points WIHW3l As such, faulty non-qualified servers are unable to
vote for the candidates for which qualified servers can vote.

Write Markers for Probabilistic Quorum Systems 17

Masking write Figures [1, 2} Bl and @
A access set B promise |Y certificate |0 status ﬂ;ustt}fate reh.e\;e.mt ple(;es
solution o) e preexisting proto-
data value col and our modifications
Opaque write for write markers in the
a access set b status context of read and write
Zggt",‘;’,'ue operations in probabilistic
Read masking and opaque quo-
i query i data value rum systems. The figures
certificate (masking) highlight that the additions

access set, solution _ (opaque) to the protocol for write

markers involve saving the

Fig. 2. Message types (Write marker emphasized with rite markers and return-

gray) ing them to clients so that

clients can also verify them.

The differences in the structure of the write marker for probabilistic opaque

and masking quorum systems mentioned above results in subtly different guar-
antees. The remainder of the section discusses these details.

4.1 Probabilistic Opaque Quorums

As seen in Figure [2 (message i), a write marker for a probabilistic opaque
quorum system consists of the write-access-set identifier (including the VRV)
and the solution to the puzzle that unlocks the use of this access set. Unlike
a non-faulty server that verifies the access set at the time of use, a non-faulty
client cannot verify that an access set was not already stale when the access set
was accepted by a faulty server. Initially, this may appear problematic because
it is clear that, given sufficient time, a faulty client will eventually be able to
solve the puzzle for its preferred access set to use for a conflicting write—this
access set may contain all of the servers in B. In addition, the faulty client can
delay the use of this access set because non-faulty clients will be unable to verify
whether it was already stale when it was used.

Fortunately, because non-faulty servers will not accept a stale candidate (i.e.,
a candidate accompanied by a stale access set), the fact that a stale access set
may be accepted by a faulty server does not impact the benefit of write markers
for opaque quorum systems. In general, consistency requires (1), i.e.,

E[[(Qra N Quwt) \ Bl > E[[(Ala N AG) N BI+E [(Ara N AG) \ B) \ Quell-

However, only faulty servers will accept a stale candidate. Therefore, if the can-
didate was stale when written to A} ,, no non-faulty server would have accepted

it. Thus, in this case, the consistency constraint is equivalent to,

E[|(Qua N Que) \ BI] > E[[(Ala N Ay) N B

18 M.G. Merideth and M.K. Reiter

However, this is (@), the constraint Client a b
on probabilistic masking quorum - -
systems without write markers. In So ® N - //7
effect, a faulty client must either: St § \ ﬁ

(i) use a recent access set that S E §

is therefore chosen approximately o \ 2
uniformly at random, and be lim- Ss S 2>

ited by (d); or (ii), use a stale ac- S E

cess set and be limited by (@). If So L L

quorums are the sizes of access sets,

both inequalities have the same up- Fig. 3. Write operation in opaque quorum sys-
per bound on b (see [I5]); other- tems: messages and stages of verification of
wise, a faulty client is disadvan- Write marker (Changes in gray)

taged by using a stale access set

because a system that satisfies (B]) can tolerate more faults than one that satis-
fies (), and is therefore less likely to result in error (see [15]). Even if the access

set contains all of the faulty servers, i.e., B C A} ,, then this becomes,

E[|(Qra N Qut) \ Bl > E[|A;q N B].

4.2 Probabilistic Masking Quorums

Protocols for masking quorum systems involve an additional round of communi-
cation (an echo phase, c.f., [§] or broadcast phase, c.f., [I8]) during write oper-
ations in order to tolerate Byzantine or concurrent clients. This round prevents
non-faulty servers from accepting conflicting data values, as assumed by (2.
In order to write a data value, a client must first obtain a write certificate (a
quorum of replies that together attest that the non-faulty servers will accept
no conflicting data value). In contrast to optimistic protocols that use opaque
quorum systems, these protocols are pessimistic.

This additional round allows us to prevent clients from using stale access sets.
Specifically, in the request to authorize a data value (message « in Figure 2l and
Figure @), the client
sends the access set

identifier (including] a B |B Y (]
the VRV), th Client 2%

e , the so- - — 338 -
lution to the puzzle So & M - N8 M .)
enabling use of this S § \ ® 5
access set, and the S ﬁ \ E

S2 < 3 T
data value. We re- Py \ g \ 3
quire that the cer- Ss § > =
tificate come from S 5 8
. - G Sn =
servers in the access L L L

set that is chosen for

the write operation. Fig. 4. Write operation in masking quorum systems: messages
Each server verifies and stages of verification of write marker (Changes in gray)

Write Markers for Probabilistic Quorum Systems 19

the VRV and that the puzzle solution enables use of the indicated access set
before returning authorization (message 8 in Figure 2 and Figure H). The non-
faulty servers that contribute to the certificate all implicitly agree that the access
set is not stale, for otherwise they would not agree to the write. This certificate
(sent to each server in message 7 in Figure 2l and Figure M) is stored along with
the data value as a write marker. Thus, unlike in probabilistic opaque quorum
systems, a verifiable write marker in a probabilistic masking quorum system
implies that a stale access set was not used. The reading client verifies the cer-
tificate (returned in message i¢ in Figure[ll and Figure[Z) before accepting a vote
for a candidate. Because a writing client will be unable to obtain a certificate for
a stale access set, votes for such a candidate will be rejected by reading clients.
Therefore, the analysis in Section [applies without additional complications.

5 Additional Related Work

Probabilistic quorum systems were explored in the context of dynamic systems
with non-uniform access strategies by Abraham and Malkhi [I9]. Recently, prob-
abilistic quorum systems have been used in the context of security for wireless
sensor networks [20] as well as storage for mobile ad hoc networks [21]. Lee and
Welch make use of probabilistic quorum systems in randomized algorithms for
distributed read-write registers [22] and shared queue data structures [23].

Signed quorum systems presented by Yu [I3] also weaken the requirements
of strict quorum systems but use different techniques. However, signed quorum
systems have not been analyzed in the context of Byzantine faults, and so they
are not presently affected by write markers.

Another implementation of write markers was introduced by Alvisi et al. [24]
for purposes different than ours. We achieve the goals of (i) improving the load,
and (ii) increasing the maximum fraction of faults that the system can tolerate by
using write markers to prevent some faulty servers from colluding. In contrast to
this, Alvisi et al. use write markers in order to increase accuracy in estimating the
number of faults present in Byzantine quorum systems, and for identifying faulty
servers that consistently return incorrect results. Because the implementation of
Alvisi et al. does not prevent faulty servers from lying about the write quorums of
which they are members, it cannot be used directly for our purposes. In addition,
our implementation is designed to tolerate Byzantine clients, unlike theirs.

6 Conclusion

We have presented write markers, a way to improve the load of masking and
opaque quorum systems asymptotically. Moreover, our new masking and opaque
probabilistic quorum systems with write markers can tolerate an additional 24%
and 17% of faulty replicas, respectively, compared with the proven bounds of
probabilistic quorum systems without write markers. Write markers achieve this
by limiting the extent to which Byzantine-faulty servers may cooperate to pro-
vide incorrect values to clients. We have presented a proposed implementation

20

M.G. Merideth and M.K. Reiter

of write markers that is designed to be effective even while tolerating Byzantine-
faulty clients and servers.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans-

actions on Programming Languages and Systems 4, 382-401 (1982)

. Malkhi, D., Reiter, M.: Byzantine quorum systems. Distributed Computing 11,

203-213 (1998)

. Naor, M., Wool, A.: The load, capacity, and availability of quorum systems. SIAM

Journal on Computing 27, 423-447 (1998)

. Abd-El-Malek, M., Ganger, G.R., Goodson, G.R., Reiter, M.K., Wylie, J.J.: Fault-

scalable Byzantine fault-tolerant services. In: Symposium on Operating Systems
Principles (2005)

. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: Symposium on

Operating Systems Design and Implementation (1999)

. Goodson, G.R., Wylie, J.J., Ganger, G.R., Reiter, M.K.: Efficient Byzantine-

tolerant erasure-coded storage. In: International Conference on Dependable Sys-
tems and Networks (2004)

. Kong, L., Manohar, D., Subbiah, A., Sun, M., Ahamad, M., Blough, D.: Agile store:

Experience with quorum-based data replication techniques for adaptive Byzantine
fault tolerance. In: IEEE Symposium on Reliable Distributed Systems, pp. 143—-154
(2005)

. Malkhi, D., Reiter, M.K.: An architecture for survivable coordination in large dis-

tributed systems. IEEE Transactions on Knowledge and Data Engineering 12, 187—
202 (2000)

. Martin, J.P., Alvisi, L.: Fast Byzantine consensus. IEEE Transactions on Depend-

able and Secure Computing 3, 202-215 (2006)

Malkhi, D., Reiter, M.K., Wool, A., Wright, R.N.: Probabilistic quorum systems.
Information and Computation 170, 184-206 (2001)

Merideth, M.G., Reiter, M.K.: Probabilistic opaque quorum systems. In: Interna-
tional Symposium on Distributed Computing (2007)

Malkhi, D.,; Reiter, M.K., Wool, A.: The load and availability of Byzantine quorum
systems. STAM Journal of Computing 29, 1889-1906 (2000)

Yu, H.: Signed quorum systems. Distributed Computing 18, 307-323 (2006)
Herlihy, M., Wing, J.: Linearizability: A correctness condition for concurrent ob-
jects. ACM Transactions on Programming Languages and Systems 12, 463-492
(1990)

Merideth, M.G., Reiter, M.K.: Write markers for probabilistic quorum systems.
Technical Report CMU-CS-07-165R, Computer Science Department, Carnegie
Mellon University (2008)

Juels, A., Brainard, J.: Client puzzles: A cryptographic countermeasure against
connection depletion attacks. In: Network and Distributed Systems Security Sym-
posium, pp. 151-165 (1999)

Malkhi, D., Mansour, Y., Reiter, M.K.: Diffusion without false rumors: On prop-
agating updates in a Byzantine environment. Theoretical Computer Science 299,
289-306 (2003)

Martin, J.P.; Alvisi, L., Dahlin, M.: Minimal Byzantine storage. In: International
Symposium on Distributed Computing (2002)

19.

20.

21.

22.

23.

24.

Write Markers for Probabilistic Quorum Systems 21

Abraham, I., Malkhi, D.: Probabilistic quorums for dynamic systems. Distributed
Computing 18, 113-124 (2005)

Du, W., Deng, J., Han, Y.S., Varshney, P.K., Katz, J., Khalili, A.: A pairwise
key predistribution scheme for wireless sensor networks. ACM Transactions on
Information and System Security 8, 228-258 (2005)

Luo, J., Hubaux, J.P., Eugster, P.T.: Pan: providing reliable storage in mobile ad
hoc networks with probabilistic quorum systems. In: International symposium on
mobile ad hoc networking and computing, pp. 1-12 (2003)

Lee, H., Welch, J.L.: Applications of probabilistic quorums to iterative algorithms.
In: International Conference on Distributed Computing Systems, pp. 21-30 (2001)
Lee, H., Welch, J.L.: Randomized shared queues applied to distributed optimization
algorithms. In: International Symposium on Algorithms and Computation (2001)
Alvisi, L., Malkhi, D., Pierce, E., Reiter, M.K.: Fault detection for Byzantine quo-
rum systems. IEEE Transactions on Parallel and Distributed Systems 12, 996-1007
(2001)

Byzantine Consensus with Unknown Participants

Eduardo A. P. Alchieri!, Alysson Neves Bessani?,
Joni da Silva Fragal, and Fabiola Greve>

! Department of Automation and Systems
Federal University of Santa Catarina (UFSC)
Floriandpolis, SC - Brazil
alchieri@das.ufsc.br,fraga@das.ufsc.br
2 Large-Scale Informatics Systems Laboratory
Faculty of Sciences, University of Lisbon
Lisbon, Portugal
bessani@di.fc.ul.pt
3 Department of Computer Science
Federal University of Bahia (UFBA)
Bahia, BA - Brazil
fabiola@dcc.ufba.br

Abstract. Consensus is a fundamental building block used to solve many prac-
tical problems that appear on reliable distributed systems. In spite of the fact
that consensus is being widely studied in the context of classical networks, few
studies have been conducted in order to solve it in the context of dynamic and
self-organizing systems characterized by unknown networks. While in a classi-
cal network the set of participants is static and known, in a scenario of unknown
networks, the set and number of participants are previously unknown. This work
goes one step further and studies the problem of Byzantine Fault-Tolerant Con-
sensus with Unknown Participants, namely BFT-CUP. This new problem aims at
solving consensus in unknown networks with the additional requirement that par-
ticipants in the system can behave maliciously. This paper presents a solution for
BFT-CUP that does not require digital signatures. The algorithms are shown to be
optimal in terms of synchrony and knowledge connectivity among participants in
the system.

Keywords: Consensus, Byzantine fault tolerance, Self-organizing systems.

1 Introduction

The consensus problem [11213[4l5], and more generally the agreement problems, form
the basis of almost all solutions related to the development of reliable distributed sys-
tems. Through these protocols, participants are able to coordinate their actions in order
to maintain state consistency and ensure system progress. This problem has been exten-
sively studied in classical networks, where the set of processes involved in a particular
computation is static and known by all participants in the system. Nonetheless, even in
these environments, the consensus problem has no deterministic solution in presence of
one single process crash, when entities behave asynchronously [2].

T.P. Baker, A. Bui, and S. Tixeuil (Eds.): OPODIS 2008, LNCS 5401, pp. 22{40]2008.
(© Springer-Verlag Berlin Heidelberg 2008

Byzantine Consensus with Unknown Participants 23

In self-organizing systems, such as wireless mobile ad-hoc networks, sensor net-
works and, in a different context, unstructured peer to peer networks (P2P), solving
consensus is even more difficult. In these environments, an initial knowledge about par-
ticipants in the system is a strong assumption to be adopted and the number of partici-
pants and their knowledge cannot be previously determined. These environments define
indeed a new model of distributed systems which has essential differences regarding the
classical one. Thus, it brings new challenges to the specification and resolution of fun-
damental problems. In the case of consensus, the majority of existing protocols are not
suitable for the new dynamic model because their computation model consists of a set
of initially known nodes. The only notably exceptions are the works of Cavin et al. [6l7]
and Greve et al. [8].

Cavin et al. [67] defined a new problem named FT-CUP (fault-tolerant consen-
sus with unknown participants) which keeps the consensus definition but assumes that
nodes are not aware of I1, the set of processes in the system. They identified necessary
and sufficient conditions in order to solve FT-CUP concerning knowledge about the
system composition and synchrony requirements regarding the failure detection. They
concluded that in order to solve FT-CUP in a scenario with the weakest knowledge con-
nectivity, the strongest synchrony conditions are necessary, which are represented by
failures detectors of the class &2 [4]].

Greve and Tixeuil [8]] show that there is in fact a trade-off between knowledge con-
nectivity and synchrony for consensus in fault-prone unknown networks. They provide
an alternative solution for FT-CUP which requires minimal synchrony assumptions;
indeed, the same assumptions already identified to solve consensus in a classical en-
vironment, which are represented by failure detectors of the class .7 [4]. The ap-
proach followed on the design of their FT-CUP protocol is modular: Initially, algorithms
identify a set of participants in the network that share the same view of the system.
Subsequently, any classical consensus — like for example, those initially designed for
traditional networks — can be reused and executed by these participants.

Our work extends these results and study the problem of Byzantine Fault-Tolerant
Consensus with Unknown Participants (BFT-CUP). This new problem aims at solv-
ing CUP in unknown networks with the additional requirement that participants in
the system can behave maliciously [[1]. The main contribution of the paper is then
the identification of necessary and sufficient conditions in order to solve BFT-CUP.
More specifically, an algorithm for solving BFT-CUP is presented for a scenario which
does not require the use of digital signatures (a major source of performance over-
head on Byzantine fault-tolerant protocols [9]). Finally, we show that this algorithm
is optimal in terms of synchrony and knowledge connectivity requirements,
establishing then the necessary and sufficient conditions for BFT-CUP solvability in
this context.

The paper is organized in the following way. Section 2] presents our system model
and the concept of participant detectors, among other preliminary definitions used in
this paper. Section [3| describes a basic dissemination protocol used for process com-
munication. BFT-CUP protocols and respective necessary and sufficient proofs are des-
cribed in Section[4l Section [3] presents some comments about our protocol. Section
presents our final remarks.

24 E.A.P. Alchieri et al.

2 Preliminaries

2.1 System Model

We consider a distributed system composed by a finite set I of n processes (also called
participants or nodes) drawn from a larger universe U. In a known network, Il and n is
known to every participanting process, while in an unknown network, a process i € Il
may only be aware of a subset I'T; C I1.

Processes are subject to Byzantine failures [1]], i.e., they can deviate arbitrarily from
the algorithm they are specified to execute and work in collusion to corrupt the system
behavior. Processes that do not follow their algorithm in some way are said to be faulty.
A process that is not faulty is said to be correct. Despite the fact that a process does
not know all participants of the system, it does know the expected maximum number
of process that may fail, denoted by f. Moreover, we assume that all processes have a
unique id, and that it is infeasible for a faulty process to obtain additional ids to be able
to launch a sybil attack [10] against the system.

Processes communicate by sending and receiving messages through authenticated
and reliable point to point channels established between known processesﬂ. Authentici-
ty of messages disseminated to a not yet known node is verified through message chan-
nel redundancy, as explained in Section[3l A process i may only send a message directly
to another process j if j € I}, i.e., if i knows j. Of course, if i sends a message to j such
that i ¢ IT;, upon receipt of the message, j may add i to I}, i.e., j now knows i and
become able to send messages to it. We assume the existence of an underlying routing
layer resilient to Byzantine failures [[11J12l13], in such a way that if j € Il; and there
is sufficient network connectivity, then i can send a message reliably to j. For example,
[12] presents a secure multipath routing protocol that guarantees a proper communi-
cation between two processes provided that there is at least one path between these
processes that is not compromised, i.e., none of its processes or channels are faulty.

There are no assumptions on the relative speed of processes or on message transfer
delays, i.e., the system is asynchronous. However, the protocol presented in this paper
uses an underlying classical Byzantine consensus that could be implemented over an
eventually synchronous system [[14] (e.g., Byzantine Paxos [9]) or over a completely
asynchronous system (e.g., using a randomized consensus protocol [SI15416]]). Thus,
our protocol requires the same level of synchrony required by the underlying classical
Byzantine consensus protocol.

2.2 Participant Detectors

To solve any nontrivial distributed problem, processes must somehow get a partial
knowledge about the others if some cooperation is expected. The participant detec-
tor oracle, namely PD, was proposed to handle this subset of known processes [6]]. It
can be seen as a distributed oracle that provides hints about the participating processes
in the computation. Let i.PD be defined as the participant detector of a process i. When

! Without authenticated channels it is not possible to tolerate process misbehavior in an asyn-
chronous system since a single faulty process can play the roles of all other processes to some
(victim) process.

Byzantine Consensus with Unknown Participants 25

queried by i, i.PD returns a subset of processes in Il with whom i can collaborate.
Let i.PD(t) be the query of i at time 7. The information provided by i.PD can evolve
between queries, but must satisfy the following two properties:

— Information Inclusion: The information returned by the participant detectors is non-
decreasing over time, i.e., Vi € I1,V¢' >t : i.PD(t) C i.PD(t);

— Information Accuracy: The participant detectors do not make mistakes, i.e., Vi €
vt i.PD(t) C I1.

Participant detectors provide an initial context about participants present in the sys-
tem by which it is possible to expand the knowledge about I1. Thus, the participant de-
tector abstraction enriches the system with a knowledge connectivity graph. This graph
is directed since the knowledge provided by participant detectors is not necessarily bidi-
rectional [6]].

Definition 1. Knowledge Connectivity Graph: Let G; = (V,&) be the directed graph
representing the knowledge relation determined by the PD oracle. Then, V = Il and
(i,j) € Eiff j €i.PD, i.e., i knows j.

Definition 2. Undirected Knowledge Connectivity Graph: Let G = (V, &) be the undi-
rected graph representing the knowlegde relation determined by the PD oracle. Then,
V=IIand(i,j) €& iff j€i.PDoric j.PD,ie., iknows jor j knowsi.

Based on the properties of the knowledge connectivity graph, some classes of parti-
cipant detectors have been proposed to solve CUP [6] and FT-CUP [78]]. Before defi-
ning how a participant detector encapsulates the knowledge of a system, let us define
some graph notations. We say that a component G. of Gy; is k-strongly connected if
for any pair (v;,v;) of nodes in G, v; can reach v; through k node-disjoint paths. A
component G of Gy; is a sink component when there is no path from a node in G; to
other nodes of G;, except nodes in G; itself. In this paper we use the weakest participant
detector defined to solve FT-CUP, which is called k-OSR [8]].

Definition 3. k-One Sink Reducibility (k-OSR) PD: The knowledge connectivity graph
G i, which represents the knowledge induced by PD, satisfies the following conditions:

1. the undirected knowledge connectivity graph G obtained from Gy; is connected;

2. the directed acyclic graph obtained by reducing Gy; to its k-strongly connected
components has exactly one sink;

3. consider any two k-strongly connected components G| and Gy, if there is a path
from Gy to Gy, then there are k node-disjoint paths from Gy to G;.

To better illustrate Definition 3] Figure [I] presents two graphs G,; induced by a k-OSR
participant detector. Figures and show knowledge relations induced by par-
ticipant detectors of the class 2-OSR and 3-OSR, respectively. For example, in Figure
the value returned by 1.PD is the subset {2,3} C I1.

In our algorithms, we assume that for each process i, its participant detector i.PD
is queried exactly once at the beginning of the protocol execution. This can be im-
plemented by caching the result of the first query to i.PD and returning that value in

26 E.A.P. Alchieri et al.

" Component B ..

.~ Component A " _Component B

.. Sink Component __-

(a) 2-OSR (b) 3-OSR
Fig. 1. Knowledge Connectivity Graphs Induced by k-OSR Participant Detectors

subsequent calls. This ensures that the partial view about the initial composition of the
system is consistent for all nodes in the system, what defines a common knowledge
connectivity graph Gg;. Also, in this work we say that some participant p is neighbor
of another participant i iff p € i.PD.

2.3 The Consensus Problem

In a distributed system, the consensus problem consists of ensuring that all correct pro-
cesses eventually decide the same value, previously proposed by some processes in the
system. Thus, each process i proposes a value v; and all correct processes decide on
some unique value v among the proposed values. Formally, consensus is defined by the
following properties [4]:

Validity: if a correct process decides v, then v was proposed by some process;
Agreement: no two correct processes decide differently;

Termination: every correct process eventually decides some value?;

Integrity: every correct process decides at most once.

The Byzantine Fault-Tolerant Consensus with Unknown Participants, namely BFT-
CUP, proposes to solve consensus in unknown networks with the additional requirement
that a bounded number of participants in the system can behave maliciously.

3 Reachable Reliable Broadcast

This section introduces a new primitive, namely reachable reliable broadcast, used by
processes of the system to communicate. It is invoked by two basic operations:

— reachable send(m,p) — through which the participant p sends the message m to all
reachable participants from p. A participant ¢q is reachable from another participant

2 If a randomized protocol such as [3IT3IT7] is used as an underlying Byzantine consensus, the
termination is ensured only with probability 1.

Byzantine Consensus with Unknown Participants 27

p if there is enough connectivity from p to g (see below). In this case, ¢ is a receiver
of messages disseminated by p.

— reachable deliver(m,p) — invoked by the receiver to deliver a message m dissemi-
nated by the participant p.

This primitive should satisfy the following four properties:

— Validity: If a correct participant p disseminates a message m, then m is eventually
delivered by a correct participant reachable from p or there is no correct participant
reachable from p;

— Agreement: If a correct participant delivers some message m, disseminated by a cor-
rect participant p, then all correct participants reachable from p eventually deliver
m;

— Integrity: For any message m, every correct participant p delivers m only if m was
previously disseminated by some participant p’, in this case p is reachable from p'.

Notice that these properties establish a communication primitive with specification
similar to the usual reliable broadcast [4/5/15]. Nonetheless, the proposed primitive
ensures the delivery to all correct processes reachable in the system.

Implementation. The main idea of our implementation is that participants execute a
flood of their messages to all reachable processes, which, in turn, will deliver these
messages as soon as its authenticity has been proved. Assuming a k-OSR PD, a partici-
pant ¢ is reachable from a participant p if there is enough connectivity in the knowlegde
graph, i.e., if there are at least 2 f + 1 node-disjoint paths from p to g (k > 2f+ 1). This
connectivity is necessary to ensure that all reachable processes will be able to receive
and authenticate messages.

In our implementation, formally described in Algorithm[dl a process i disseminates
a message m through the system by executing the procedure reachable send. In this
procedure (line 6), i sends m to its neighbors (i.e., processes in i.PD) and when m is
received at some process p, p forwards m to its neighbors and so on, until that m arrives
at all reachable participants (line 17). Moreover, p stores m together with the route
traversed by m in a buffer (line 11). Also, p delivers m if it has received m through f 41
node-disjoint paths (lines 13-14), i.e., the authenticity of m has been verified. Afterward,
since m has been delivered, p removes it from the buffer of received messages (line
15). The function computeRoutes(m.message,i.received msgs) computes the number
of node-disjoint paths through which m.message has been received at participant i.

An important feature of this dissemination is that each message has the accumulated
route according with the path traversed from the sender to some destination. A partici-
pant will process a received message only if the participant that is sending (or forward-
ing) this message appears at the end of the accumulated route (line 8). This solution is
based on the approach used in [[18] and it enforces that each participant appends itself at
the end of the routing information in order to send or forward a message. Nonetheless,
a malicious participant is able to modify the accumulated route (removing or adding
participants) and modify or block the message being propagated. Notice, however, that
the connectivity of the knowledge graph (k > 2 f 4 1) ensures that messages will be re-
ceived at all reachable participants. Moreover, since a process delivers a message only

28 E.A.P. Alchieri et al.

Algoritm 1. Dissemination algorithm executed at participant i.

constant:
1. f:int // upper bound on the number of failures
variables:
2. i.received msgs : set of (message, route) tuples /1 set of received messages
message:
3. REACHABLE FLOODING: // struct of this message
4. message :value to flood // value to be disseminated
5. route : ordered list of nodes /I path traversed by message

*% Initiator Only **
procedure: reachable send(message,sender) // sender = i
6. Vj € i.PD, send REACHABLE FLOODING(message,sender) to j;

** All Nodes **
INIT:
7. i.received msgs «— &,

upon receipt of REACHABLE FLOODING(m.message, m.route) from j
8. if getLastElement(m.route) = j A i & m.route then
9. append(m.route,i);
10. initiator — getFirstElement(m.route);
11. ireceived msgs — i.received msgs U {(m.message,m.route)};
12. routes «— computeRoutes(m.message,i.received msgs);
13. if routes > f+ 1 then

14. trigger reachable deliver(m.message,initiator);
15. i.received msgs «— i.received msgs\ {(m.message,*)};
16. endif

17. Vz€i.PD\{j}, send REACHABLE FLOODING(m.message,m.route) to z;
18. end if

after it has been received through f 4 1 node disjoint paths, it is able to verify its authen-
ticity. These measures prevent the delivery of forged messages (generated by malicious
participants), because the authenticity of them cannot be verified by correct processes.

An “undesirable” property of the proposed solution is that the same message, sent
by some participant, could be delivered more than once by its receivers. This property
does not affect the use of this protocol in our consensus protocol (Section). Thus, we
do not deal with this limitation of the algorithm. However, it can be easily solved by
using buffers to store delivered messages that must have unique identifiers.

Additionaly, each message’ receiver, disseminated by some participant p, is able
to send back a reply to p using some routing protocol resilient to Byzantine fail-
ures [11112/13]. Our BFT-CUP protocol (Section[d) uses this algorithm to disseminate
messages.

Sketch of Proof. The correctness of this protocol is based on the proof of the properties
defined for the reachable reliable broadcast.

Byzantine Consensus with Unknown Participants 29

Validity: By assumption, the connectivity of the system is k > 2f 4 1. Thus, according
to Definition 3] there are at least 2 + 1 node-disjoint paths from the sender of a mes-
sage m to the receivers (nodes that are reachable from the sender). Moreover, as validity
is established over messages sent by correct participants (correct sender), there are at
least f + 1 node-disjoint paths formed only by correct participants, through which it is
guaranteed that the same message m will reach the correct receivers. In this case, the
predicate of line 8 will be true at least f + 1 times and the authenticity of m can be
verified through redundancy. This is done by the execution of lines 9-12, which are re-
sponsible to maintain information regarding the different routes from which m has been
received. Whenever the message authenticity is proved, i.e., m has been received by at
least /' + 1 different routes (line 13), the delivery of m is authorized by the invocation
of reachable deliver (line 14).

Agreement: As the agreement is established over messages sent by correct participants,
this proof is identical to the validity proof.

Integrity: A message is delivered only after its reception through f + 1 node-disjoint
paths (lines 13-14), what guarantees that this message is authentic, i.e., this message
was really sent by its sender (sender). Thus, a malicious participant j is not able to
forge that message m was sent by a participant i because the autenticity of m will not
be proven. That is, a receiver r will not be able to find f 4 1 node-disjoint paths from
i to r through which m has been received. Even with a collusion of up to f malicious
participants, r will obtain at most f node-disjoint paths through which m was received
“from i~ (each of these f paths could contain one malicious participant). (]

4 BFT-CUP: Byzantine Consensus with Unknown Participants

This section presents our solution for BFT-CUP. Our protocol is based on the dissemi-
nation algorithm presented in Section [l which, together with the underlying routing
layer resilient to Byzantine failures, hides all details related to participants communica-
tion. Thereafter, as in [§]], the consensus protocol with unknown participants is divided
into three phases. In the first phase — called participants discovery (Section[4.1]) — each
participant increases its knowledge about other processes in the system, discovering the
maximum possible number of participants that are present in some computation. The
second phase — called sink component determination (Section[4.2)) — defines which par-
ticipants belong to the sink component of the knowlegde graph induced by a k-OSR
PD. Thus, each participant will be able to determine whether it belongs to the sink
component or not. In the last phase (Section[4.3), members of the sink component ex-
ecute a classical Byzantine fault tolerant consensus and disseminate the decision value
to other participants in the system. The number of participants in the sink component,
namely ng;,, should be enough in order to e xecute a classical Byzantine fault-tolerant
consensus. Usually ng;,r > 3 f + 1, to run, for example, Byzantine Paxos [9l19].

4.1 Participants Discovery

The first step to solve consensus in a system with unknown participants is to provide
processes with the maximum possible knowledge about the system. Notice that, through

30 E.A.P. Alchieri et al.

its local participant detector, a process is able to get an initial knowledge about the
system that is not enough to solve BFT-CUP. Then, a process expands this knowledge
by executing the DISCOVERY protocol, presented in Algorithm 2l The main idea is
that each participant i broadcasts a message requesting information about neighbors of
each reachable participant, making a sort of breadth-first search in the knowledge graph.
At the end of the algorithm, i obtains the maximal set of reachable participants, which
represents the participants known by i (a partial view of the system).
The algorithm uses three sets:

1. i.known — set containing identifiers of all processes known by i;

2. i.msg pend — this set contains identifiers of processes that should send a message
to i, i.e., for each j € i.msg pend, i should receive a message from j;

3. i.nei pend — this set contains identifiers of processes that i knows, but does not
know all of their neighbors (i is still waiting for information about them), i.e., for
each (j, j.neighbor) € i.nei pend, i knows j but does not know all neighbors of ;.

In the initialization phase of the algorithm for participant i, the set i.known is updated
to itself plus its neighbors, returned by i.PD, and the set i.msg pend to its neighbors
(line 7). Moreover, a message requesting information about neighbors is disseminated
to all participants reachable from i (line 8). When a participant p delivers this message,
p sends back to i a reply indicating its neighbors (line 9).

Upon receipt of a reply at participant i, the set of known participants is updated,
along with the set of pending neighborsﬁ and the set of pending messages (lines 10 - 12).
The next step is to verify whether i has acquired knowledge about any new participant
(line 13 - 16). Thus, i gets to know other participant j if at least f + 1 other processes
known by i reported to i that j is their neighbor (line 13). After this verification, the
set of pending neighbors is updated (lines 17 - 21), according to the new participants
discovered.

To determine if there is still some participant to be discovered, i uses the sets
i.msg pend and i.nei pend, which store the pendencies related to the replies received
by i. Then, the algorithm ends when there remain at most f pendencies (lines 22 - 24).
The intuition behind this condition is that if there are at most f pendencies at process i,
then i already has discovered all processes reachable from it because k > 2 f + 1. Thus,
the algorithm ends by returning the set of participants discovered by i (line 23), which
contains all participants (correct or faulty) reachable from it. Algorithm[P]satisfies some
properties that are stated by Lemmal[Il

Lemma 1. Consider Gg; a knowlegde graph induced by a k-OSR PD. Let f < 12‘ <n
be the number of nodes that may fail. Algorithm DISCOVERY executed by each correct
participant p satisfies the following properties:

— Termination: p terminates the execution of the algorithm and returns a set of known
processes;

— Accuracy: the algorithm returns the maximal set of processes reachable from p in
Gyi.

3 If i reaches p, i also reaches all neigbours of p and should receive a reply to its initial dissemi-
nation (line 8) from all of them.

Byzantine Consensus with Unknown Participants 31

Algorithm 2. Algorithm DISCOVERY executed at participant i.

constant:

1. f:int // upper bound on the number of failures
variables:

2. i.known : set of nodes // set of known nodes

3. i.nei pend : set of (node,node.neighbor) tuples
/I i does not know all neighbors of node

4. i.msg pend : set of nodes // nodes that i is waiting for messages (replies)
message:

5. SET NEIGHBOR: /1 struct of the message SET NEIGHBOR

6. neighbor : set of nodes // neighbors of the node that is sending the message

** All Nodes **

INIT:
7. i.known — {i} Ui.PD;i.nei pend — &;i.msg pend — i.PD;
8. reachable send(GET NEIGHBOR,i);

upon execution of reachable deliver(GET NEIGHBOR, sender)
9. send SET NEIGHBOR(i.PD) to sender;

upon receipt of SET NEIGHBOR (m.neighbor) from sender
10. i.known «— i.known U {sender};

11. i.nei pend «— i.nei pend U {(sender,m.neighbor)};

12. i.msg pend «— i.msg pend \ {sender};

13. if (3 : #, (j)yi-nei pend > f) A (j & i.known) then

14. iknown «— i.known U {j};

15. imsg pend — i.msg pend U {j};

16. end if

17. for all {j, j.neighbor) € i.nei pend do

18. if (Vz € j.neighbor : z € i.known) then

19. i.nei pend — i.nei pend \ {(j,j.neighbor)};
20. endif
21. end for

22. if (|i.nei pend| + |i.msg pend|) < f then
23. return i.known;
24. end if

Sketch of Proof. Termination: In the worst case, the algorithm ends when p receives
replies from at least all correct reachable participants (line 22). By dissemination proto-
col properties, even in the presence of f < ’2‘ failures, all messages disseminated by p is
delivered by its correct receivers (processes reachable from p). Thus, each correct parti-
cipant reachable from p receives a request (line 8) and sends back a reply (line 9) that is
received by p (lines 10 - 24). Then, as I1 is finite, it is guaranteed that p receives replies
from at least all correct reachable participants and ends the algorithm by returning a set
of known processes.

Accuracy: The algorithm only ends when there remain at most f pendencies, which
may be divided between processes that supply information about neighbors that do not

32 E.A.P. Alchieri et al.

exist in the system (i.nei pend) and processes from which p is still waiting for their
messages/replies (i.msg pend). Moreover, each participant z (being z reachable from p)
is neighbor of at least 2f + 1 other participants, because f <]5 < n. Now, we have to
consider two cases:

— If z is malicious and does not send back a reply to p (line 9), then p computes
messages (replies) from at least f 4 1 correct neighbors of z, discovering z (lines
13 -16).

— If zis correct, in the worst case, the message from z to p is delayed and f neighbors
of z are malicious and do not inform p that z is in the system. However, as f < ’2‘,
there remain f + 1 correct neighbors of z in the system that inform p about the
presence of z in the system.

As the algorithm only ends when there remain at most f pendencies, in both cases it
is guaranteed that p only ends after discovering z, even if it firstly computes messages
from the f malicious processes. |

4.2 Sink Component Determination

The objective of this phase is to define which participants belong to the sink component
of the knowlegde graph induced by a k-OSR PD. More specifically, through Algorithm
Bl (SINK), each participant is able to determine whether or not it is member of the sink
component. The idea behind this algorithm is that after the execution of the procedure
DISCOVERY, members in the sink component obtain the same partial view of the sys-
tem, whereas in the other components, nodes have strictly more knowledge than in the
sink, i.e., each node knows at least members of the component to which it belongs and
members of the sink (see Definition [3)).

In the initialization phase of the algorithm for participant i, i executes the DISCO-
VERY procedure in order to obtain its partial view of the system (line 8) and sends this
view to all reachable/known participant (line 10). When these messages are delivered
by some participant j, j sends back an ack response to i if it has the same knowledge of
i (i.e., j belongs to the same component of i). Otherwise, j sends back a nack response
(lines 11-15).

Upon receipt of a reply (lines 16-27), i updates the set of processes that have al-
ready answered (line 16). Moreover, if the reply received is a nack, the set of processes
that belong to other components (i.nacked) is updated (line 18) and if the number of
processes that do not belong to the same component of i is greater than f (line 19), i
concludes that it does not belong to the sink component (lines 20-21). This condition
holds because the system has at least 3 f + 1 processes in the sink, known by all partici-
pants, that have strictly less knowledge about IT than processes not in the sink (Lemma
[I). On the other hand, if i has received replies from all known processes, excluding f
possible faulty (line 24), and the number of processes that belong to other components
is not greater than f, i concludes that it belongs to the sink component (lines 25-26).
This condition holds because processes in the sink receive messages only from mem-
bers of this component. Moreover, in both cases, a collusion of f malicious participants
cannot lead a process to decide incorrectly. Lemma[2] states the properties satisfied by
Algorithm[3

Byzantine Consensus with Unknown Participants 33

Algorithm 3. Algorithm SINK executed at participant i.

constant:
1. f:int // upper bound on the number of failures
variables:
2. i.known : set of nodes /I set of known nodes
3. i.responded : set of nodes /1 set of nodes that has sent a reply to i
4. i.nacked : set of nodes /1 set of processes not in the same component of i
5. i.in the sink : boolean // is i in the sink?
message:
6. RESPONSE: /1 struct of the message RESPONSE
7. ack/nack : boolean

*% All Nodes **
INIT:

8. i.known < DISCOVERY();

9. i.responded — {i}; i.nacked — &;
10. reachable send(i.known,i);

upon execution of reachable deliver(sender.known,sender)
11. if i.known = sender.known then

12. send RESPONSE(ack) to sender;

13. else

14. send RESPONSE(nack) to sender;

15. end if

upon receipt of RESPONSE(m) from sender
16. i.responded «— i.responded U {sender}
17. if m.nack then

18. i.nacked — i.nacked U {sender};

19. if |i.nacked| > f+ 1 then

20. i.in the sink «— false;

21. return (i.in the sink,i.known);
22. end if

23. end if

24. if |i.responded| > |i.known| — f then
25. i.in the sink < true;

26. return (i.in the sink,i.known);
27. end if

Lemma 2. Consider a k-OSR PD. Let f <]2“ < n be the number of nodes that may fail.
Algorithm SINK, executed by each correct participant p of the system that has at least
3f + 1 nodes in the sink component, satisfies the following properties:

— Termination: p terminates the execution by deciding whether it belongs (true) or
not (false) to the sink;

— Accuracy: p is in the unique k-strongly connected sink component iff algorithm
SINK returns true.

34 E.A.P. Alchieri et al.

Sketch of Proof. Termination: For each participant p, the algorithm returns in two
cases: (i) when it receives f + 1 replies from processes that belong to other compo-
nents (processes not in the sink — line 19) or (i) when it receives replies from at least
all correct known processes (processes in the sink — line 24). By properties of the dis-
semination protocol, even in the presence of f < ’2‘ failures, all messages disseminated
by p are delivered by its receivers (processes reachable from p). Thus, each correct par-
ticipant known by p (reachable from p) receives the request (line 10) and sends back a
reply (lines 11-15) that is received by p (lines 16-27). Then, it is guaranteed that either
(i) or (ii) always occur.

Accuracy: By Lemmal[I] after execution of the DISCOVERY algorithm, each correct
participant discovers the maximal set of participants reachable from it. Then, by Lemma
[[land by k-OSR PD properties, it is guaranteed that all correct processes that belong to
the same component obtain the same partial view of the system. Thus, as members in the
sink component receive replies only from members of this component, it is guaranteed
that these participants end correctly (line 26). Moreover, as the sink has at least 31+ 1
nodes, members in other components know at least 2f 4 1 correct members in the sink
(Lemma [). Then, before making a wrong decision, these members must compute at
least f + 1 replies from correct members in the sink (that have strictly less knowledge
about IT, due to Lemmal[Il), what makes it possible for correct members not in the sink
to end correctly (line 21). O

4.3 Achieving Consensus

This is the last phase of the protocol for solving BFT-CUP. Here, the main idea is to
make members of the sink component execute a classical Byzantine consensus and send
the decision value to other participants of the system. The optimal resilience of these
algorithms to solve a classical consensus is 3 + 1 [319]. Thus, it is necessary at least
3f+ 1 participants in the sink component.

The Algorithm] (CONSENSUS) presents this protocol. In the initialization, each
participant executes the SINK procedure (line 11) in order to get its partial view of
the system and decide whether or not it belongs to the sink component. Depending on
whether or not the node belongs to the sink, two distinct behaviors are possible:

1. Nodes in the sink execute a classical consensus (line 13) and send the decision value
to other participants (lines 18 and 20-24). By construction, all correct nodes in the
sink component share the same partial view of the system (exactly the members in
the sink — Lemmal[Il). Thus, these nodes know at least 2f + 1 correct members that
belong to the sink component, what makes possible to reach the properties of the
classical Byzantine consensus (Section[2.3));

2. Other nodes (in the remaining components) do not participate to the classical con-
sensus. These nodes ask for the decison value to all known nodes, i.e., all reachable
nodes, what includes all nodes in the sink (line 15). Each node decides for a value
v only after it has received v from at least f+ 1 other participants, ensuring that v is
gathered from at least one correct participant (lines 25-31). Theorem [1 shows that
Algorithm[@] solves the BFT-CUP problem as defined in Section[2.3] with the stated
participant detector and connectivity requirements.

Byzantine Consensus with Unknown Participants 35

Algorithm 4. Algorithm CONSENSUS executed at participant i.

constant:
1. f:int // upper bound on the number of failures
input:
2. i.initial : value /Il proposal value (input)
variables:
3. i.in the sink : boolean // is i in the sink?
4. i.known : set of nodes // partial view of i
5. i.decision : value /I decision value
6. i.asked : set of nodes /I nodes that have required the decision value
7. ivalues : set of (node,value) tuples // reported decisions
message:
8. SET DECISION: /1 struct of the message SET DECISION
9. decision : value /I the decided value

** All Nodes **

INIT: {Main Decision Task}

10. i.decision <1 ; i.values «— @; i.asked — O,

11. (i.in the sink,i.known) «— SINK();

12. if i.in the sink then

13. Consensus.propose(i.initial); // underlying Byzantine consensus with all
p € i.known

14. else

15. reachable send(GET DECISION,i);

16. end if

** Node In Sink **

upon Consensus.decide(v)

17. i.decision < v;

18. Vj € i.asked, send SET DECISION (i.decision) to j;
19. return i.decision;

upon execution of reachable deliver(GET DECISION, sender)
20. if i.decision = 1 then

21. i.asked — i.asked U {sender};

22. else

23. send SET DECISION (i.decision) to sender;

24. end if

** Node Not In Sink **

upon receipt of SET DECISION(m.decision) from sender
25. if i.decision = L then

26. i.values — i.values U {(sender,m.decision)};

27. i # (. mdecision) i-values > f+ 1 then

28. i.decision < m.decision;
29. return i.decision;
30. endif

31. end if

36 E.A.P. Alchieri et al.

Theorem 1. Consider a classical Byzantine consensus protocol. Algorithm CONSEN-
SUS solves BFT-CUP, in spite of [< g < n failures, if k-OSR PD is used and assuming
at least 3f + 1 participants in the sink.

Sketch of Proof. In this proof we have to consider two cases:

Processes in the sink: All correct participants in the sink component determine that they
belong to the sink (Lemmal2)) (line 12) and start the execution of an underlying classical
Byzantine consensus algorithm (line 13). Then, as the sink has at least 2f + 1 correct
nodes, it is guaranteed that all properties of the classical consensus will be met, i.e., va-
lidity, integrity, agreement and termination. Thus, nodes in the sink obtain the decision
value (line 17), send this value to other participants (line 18) and return the decided
value to the application (line 19), ensuring termination. Whenever a process in the sink
receives a request for decision from other processes (lines 20—-24), it will send the value
if it has already decided (line 23); otherwise, it will store the sender’s identity in order
to send the decision value later (line 18) after the consensus has been achieved.

Processes not in the sink: Processes not in the sink request the decision value to all par-
ticipants in the sink (line 15). Notice that if there is enough connectivity (k > 2f + 1),
nodes in the sink are reachable from any node of the system. Moreover, by properties of
the reachable reliable broadcast, all correct participant in the sink will receive requests
sent by correct participants not in the sink, even in the presence of f <]2‘ failures (lines
20-24). Thus, as there are at least 2f + 1 correct participants in the sink able to send
back replies for these requests (lines 18, 23), it is guaranteed that nodes not in the sink
will receive at least f 4 1 messages with the same decision value (lines 25-31) and the
predicate of line 27 will be true, allowing the process to terminate and return the de-
cided value (line 28). Moreover, a collusion of up to f malicious participants cannot
lead a process to decide for incorrect values (line 27), guaranteeing thus agreement. In-
tegrity is ensured through the verification of predicate on line 25, by which each correct
participant decides only once. Notice that validity is ensured through the underlying
classical Byzantine consensus protocol, i.e., the decided value is a value proposed by
nodes in the sink. This proves that k-OSR PD is sufficient to solve BFT-CUP. (]

4.4 Necessity of k-OSR Participant Detector to Solve BFT-CUP

Using a k-OSR PD, our protocol requires a degree of connectivity k > 2f + 1 to solve
BFT-CUP. Theorem[2states that a participant detector of this class and this connectivity
degree are necessary to solve BFT-CUP.

Theorem 2. A participant detector PD € k-OSR is necessary to solve BFT-CUP, in
spite of f <]2‘ < n failures.

Sketch of Proof. This proof is based on the same arguments to prove the necessity of
OSR (One Sink Reducibility) for solving CUP [6]. Assume by contradiction that there
is an algorithm which solves BFT-CUP with a PD ¢ k-OSR. Let G4 be the know-
ledge graph induced by PD, then two scenarios are possible: (i.) there are less than k
node-disjoint paths connecting a participant p in Gy;; or (ii.) the directed acyclic graph

Byzantine Consensus with Unknown Participants 37

obtained by reduction of Gy; to its k-strongly connected components has at least two
sinks. There are two possible scenarios to be considered.

In the first scenario, let at most 2 f node-disjoint paths connect p in Gy;. Then, the
simple crash failure of f neighbors of p makes it impossible for a participant i (being
p reachable from i) to discover p, because only f processes are able to inform i about
the presence of p in the system. In fact, i is not able to determine if p really exists, i.e.,
it is not guaranteed that i has received this information from a correct process. Then,
the partial view obtained by i will be inconsistent, what makes it impossible to solve
BFT-CUP. Thus, we reach a contradiction.

In the second scenario, let G| and G, be two of the sink components and consider
that participants in G| have proposition value v and participants in G, value w, with
v # w. By Termination property of consensus, processes in G| and G, must eventually
decide. Let us assume that the first process in G that decides, say p, does so at time #1,
and the first process in G, that decides, say ¢, does so at time #,. Delay all messages sent
to G and G, such that they are received after max{t;,; }. Since the processes in a sink
component are unaware of the existence of other participants, p decides v and g decides
w, violating the Agreement property of consensus and reaching thus a contradiction. [J

5 Discussion

This section presents some comments about the protocol presented in this paper.

5.1 Digital Signatures

It is worth to notice that the lower bound required to solve BFT-CUP in terms of con-
nectivity and resiliency is k > 2 f + 1, and it holds even if digital signatures are used. By
using digital signatures, it is possible to exchange messages among participants, since
there is at least one path formed only by correct processes (k > f + 1). However, even
with digital signatures, a connectivity of k > 2 f 41 is still required in order to discover
the participants properly (first phase of the protocol). In fact, if k < 2f 4 1, a malicious
participant can lead a correct participant p not to discover every node reachable from it,
what makes it impossible to use this protocol to solve BFT-CUP (the partial view of p
will be inconsistent).

For example, Figure Plpresents a knowledge connectivity graph induced by a 2-OSR
PD (k = 2) in which the system does not support any fault (to support f =1, k > 3).
Now, consider that process 2 is malicious and that process 1 is starting the DISCOVERY
phase. Then, process 2 could inform to process 1 that it only knows process 3. At this
point, process 1 will break the search because it is only waiting for a message from
process 3, i.e., number of pending messages less or equal to f. Thus, process 1 obtains
the wrong partial view {1,2,3} of the system.

5.2 Protocol Limitations

The model used in this study, as well as in all solutions for FT-CUP [7.8]], supports
mobility of nodes, but it is not strong enough to tolerate arbitrary churn (arrivals and

38 E.A.P. Alchieri et al.

@M@
\@
L

Fig. 2. 2-OSR with Process 2 Faulty

departures of processes) during protocol executions. This happens because, after the
relations of knowledge have been established (first phase of the protocol), new partici-
pants will be considered only in future executions of consensus.

In current algorithms, process departures can be considered as failures. Nonethe-
less, this is not the optimal approach, since our protocols tolerate Byzantine faults and
the behaviour of a departing process resembles a simple crash failure. An alternative
approach consists in specifying an additional parameter d to indicate the number of
supported departures, separating departures from malicious faults. In this way, the de-
gree of connectivity in the knowledge graph should be k > 2f +d + 1 to support up
to f malicious faults and up to d departures. Moreover, even with departures, the sink
component should remains with enough participants to execute a classical consensus,
i.e., ignr > 3f +2d + 1, following the same reasoning as [19]].

5.3 Other Participant Detectors

Although k-OSR PD is the weakest participant detector defined to solve FT-CUP, there
are other (stronger) participant detectors able to solve BFT-CUP [618]]:

— FCO (Full Connectivity PD): the knowledge connectivity graph G4 = (V,&) in-
duced by the PD oracle is such that for all p,q € II, we have (p,q) € €.

— k-SCO (k-Strong Connectivity PD): the knowledge connectivity graph G; = (V, &)
induced by the PD oracle is k-strongly connected.

Notice that a characteristic common to all participant detectors able to solve BFT-
CUP (except for the FCO PD that is fully connected) is the degree of connectivity &,
which makes possible the proper work of the protocol even in the presence of failures.
Using these participant detectors (FCO or k-SCO) the partial view obtained by each
process in the system contains exactly all processes in the system (first phase of the pro-
tocol). Thereafter, the consensus problem is trivially solved using a classical Byzantine
consensus protocol, since all processes have the same (complete) view of the system.

6 Final Remarks

Most of the studies about consensus found in the literature consider a static known
set of participants in the system (e.g., [113[4I5I17/19]). Recently, some works which

Byzantine Consensus with Unknown Participants 39

Table 1. Comparing solutions for the consensus with unknown participants problem

Approach failure participant &k participants connectivity synchrony
model detector in the sink between components model
CupP without OSR - 1 OSR asynchronous
6] failures
FT-CUP crash OSR - 1 OSR + safe asynchronous + &
\d} crash pattern
FT-CUP crash k-OSR f+1 2f+1 k node-disjoint asynchronous + .7
18] paths
BFT-CUP Byzantine k-OSR 2f+1 3f+1 k node-disjoint ~ same of the underlying
(this paper) paths consensus protocol

deal with a partial knowledge about the system composition have been proposed. The
works of [6l7U8] are worth noticing. They propose solutions and study conditions in
order to solve consensus whenever the set of participants is unknown and the system is
asynchronous. The work presented herein extends these previous results and presents
an algorithm for solving FT-CUP in a system prone to Byzantine failures. It shows
that to solve Byzantine FT-CUP in an environment with little synchrony requirements,
it is necessary to enrich the system with a greater degree of knowledge connectivity
among its participants. The main result of the work is to show that it is possible to solve
Byzantine FT-CUP with the same class of participant detectors (k-OSR) and the same
synchrony requirements (<».#’) necessary to solve FT-CUP in a system prone to crash
failures [8]]. As a side effect, a Byzantine fault-tolerant dissemination primitive, namely
reachable reliable broadcast, has been defined and implemented and can be used in
other protocols for unknown networks.

Table [Tl summarizes and presents a comparison with the known results regarding the
consensus solvability with unknown participants.

Acknowledgements

Eduardo Alchieri is supported by a CAPES/Brazil grant. Joni Fraga and Fabiola Greve
are supported by CNPq/Brazil grants. This work was partially supported by the EC,
through projects IST-2004-27513 (CRUTIAL), by the FCT, through the Multiannual
(LaSIGE) and the CMU-Portugal Programmes, and by CAPES/GRICES (project TISD).

References

1. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Transactions on
Programing Languages and Systems 4(3), 382-401 (1982)

2. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one
faulty process. Journal of the ACM 32(2), 374-382 (1985)

3. Toueg, S.: Randomized Byzantine Agreements. In: Proceedings of the 3rd Annual ACM
Symposium on Principles of Distributed Computing, pp. 163-178 (1984)

4. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. Journal
of the ACM 43(2), 225-267 (1996)

40

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

E.A.P. Alchieri et al.

Correia, M., Neves, N.F., Verissimo, P.: From consensus to atomic broadcast: Time-free
Byzantine-resistant protocols without signatures. The Computer Journal 49(1) (2006)
Cavin, D., Sasson, Y., Schiper, A.: Consensus with unknown participants or fundamental
self-organization. In: Nikolaidis, I., Barbeau, M., Kranakis, E. (eds.) ADHOC-NOW 2004.
LNCS, vol. 3158, pp. 135-148. Springer, Heidelberg (2004)

. Cavin, D., Sasson, Y., Schiper, A.: Reaching agreement with unknown participants in mobile

self-organized networks in spite of process crashes. Technical Report 1C/2005/026, EPFL -
LSR (2005)

Greve, F.G.P.,, Tixeuil, S.: Knowledge connectivity vs. synchrony requirements for fault-
tolerant agreement in unknown networks. In: Proceedings of the International Conference
on Dependable Systems and Networks - DSN, pp. 82-91 (2007)

Castro, M., Liskov, B.: Practical Byzantine fault-tolerance and proactive recovery. ACM
Transactions on Computer Systems 20(4), 398-461 (2002)

Douceur, J.: The sybil attack. In: Proceedings of the 1st International Workshop on Peer-to-
Peer Systems (2002)

Awerbuch, B., Holmer, D., Nita-Rotaru, C., Rubens, H.: An on-demand secure routing pro-
tocol resilient to byzantine failures. In: Proceedings of the 1st ACM workshop on Wireless
security - WiSE, pp. 21-30. ACM, New York (2002)

Kotzanikolaou, P., Mavropodi, R., Douligeris, C.: Secure multipath routing for mobile ad
hoc networks. In: Wireless On-demand Network Systems and Services - WONS, pp. 89-96
(2005)

Papadimitratos, P., Haas, Z.: Secure routing for mobile ad hoc networks. In: Proceedings of
SCS Communication Networks and Distributed Systems Modeling and Simulation Confer-
ence - CNDS (2002)

Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the presence of partial synchrony.
Journal of ACM 35(2), 288-322 (1988)

Bracha, G.: An asynchronous | (n— 1)/3]-resilient consensus protocol. In: Proceedings of
the 3rd ACM symposium on Principles of Distributed Computing, pp. 154-162 (1984)
Ben-Or, M.: Another advantage of free choice: Completely asynchronous agreement proto-
cols (extended abstract). In: Proceedings of the 2nd Annual ACM Symposium on Principles
of Distributed Computing, pp. 27-30 (1983)

Friedman, R., Mostefaoui, A., Raynal, M.: Simple and efficient oracle-based consensus pro-
tocols for asynchronous Byzantine systems. IEEE Transactions on Dependable and Secure
Computing 2(1), 46-56 (2005)

Dolev, D.: The Byzantine generals strike again. Journal of Algorithms (3), 14-30 (1982)
Martin, J.P., Alvisi, L.: Fast Byzantine consensus. IEEE Transactions on Dependable and
Secure Computing 3(3), 202-215 (2006)

With Finite Memory
Consensus Is Easier Than Reliable Broadcast

Carole Delporte-Gallet!, Stéphane Devismes?, Hugues Fauconnier!,
Franck Petit®*, and Sam Toueg*

L TIAFA, Université D. Diderot, Paris, France
{cd,hf}0@liafa. jussieu.fr
2 VERIMAG, Université Joseph Fourier, Grenoble, France
stephane.devismes@imag.fr
3 INRIA/LIP Laboratory,Univ. of Lyon/ENS Lyon, Lyon, France
franck.petit@ens-lyon.fr
4 Department of Computer Science, University of Toronto, Toronto, Canada
sam@cs.toronto.edu

Abstract. We consider asynchronous distributed systems with message
losses and process crashes. We study the impact of finite process memory
on the solution to consensus, repeated consensus and reliable broadcast.
With finite process memory, we show that in some sense consensus is
easier to solve than reliable broadcast, and that reliable broadcast is as
difficult to solve as repeated consensus: More precisely, with finite mem-
ory, consensus can be solved with failure detector S, and P~ (a variant
of the perfect failure detector which is stronger than S) is necessary and
sufficient to solve reliable broadcast and repeated consensus.

1 Introduction

Designing fault-tolerant protocols for asynchronous systems is highly desirable
but also highly complex. Some classical agreement problems such as consensus
and reliable broadcast are well-known tools for solving more sophisticated tasks
in faulty environments (e.g., [1J2]). Roughly speaking, with consensus processes
must reach a common decision on their inputs, and with reliable broadcast pro-
cesses must deliver the same set of messages.

It is well known that consensus cannot be solved in asynchronous systems
with failures [3], and several mechanisms were introduced to circumvent this
impossibility result: randomization [A], partial synchrony [Bl6] and (unreliable)
failure detectors [T].

Informally, a failure detector is a distributed oracle that gives (possibly in-
correct) hints about the process crashes. Each process can access a local failure
detector module that monitors the processes of the system and maintains a list
of processes that are suspected of having crashed.

* This work was initiated while Franck Petit was with MIS Lab., Université of Picardie,
France. Research partially supported by Région Picardie, Proj. APREDY.

T.P. Baker, A. Bui, and S. Tixeuil (Eds.): OPODIS 2008, LNCS 5401, pp. 41[57] 2008.
© Springer-Verlag Berlin Heidelberg 2008

42 C. Delporte-Gallet et al.

Several classes of failure detectors have been introduced, e.g., P, S, {2, etc.
Failure detectors classes can be compared by reduction algorithms, so for any
given problem P, a natural question is “What is the weakest failure detector
(class) that can solve P ?”. This question has been extensively studied for sev-
eral problems in systems with infinite process memory (e.g., uniform and non-
uniform versions of consensus [8J9IT0], non-blocking atomic commit [IT], uniform
reliable broadcast [I2/13], implementing an atomic register in a message-passing
system [I1], mutual exclusion [I4], boosting obstruction-freedom [I5], set con-
sensus [16/17], etc.). This question, however, has not been as extensively studied
in the context of systems with finite process memory.

In this paper, we consider systems where processes have finite memory, pro-
cesses can _crash and links can lose messages (more precisely, links are fair lossy
and FIF). Such environments can be found in many systems, for example in
sensor networks, sensors are typically equipped with small memories, they can
crash when their batteries run out, and they can experience message losses if
they use wireless communication.

In such systems, we consider (the uniform versions of) reliable broadcast, con-
sensus and repeated consensus. Our contribution is threefold: First, we establish
that the weakest failure detector for reliable broadcast is P~ — a failure detector
that is almost as powerful than the perfect failure detector P. Next, we show
that consensus can be solved using failure detector S. Finally, we prove that P~
is the weakest failure detector for repeated consensus. Since § is strictly weaker
than P~ in some precise sense these results imply that, in the systems that we
consider here, consensus is easier to solve than reliable broadcast, and reliable
broadcast is as difficult to solve as repeated consensus.

The above results are somewhat surprising because, when processes have infi-
nite memory, reliable broadcast is easier to solve than consensusg, and repeated
consensus is not more difficult to solve than consensus.

Roadmap. The rest of the paper is organized as follows: In the next section,
we present the model considered in this paper. In Section @, we show that in
case of process memory limitation and possibility of crashes, P~ is necessary
and sufficient to solve reliable broadcast. In Section [}l we show that consensus
can be solved using a failure detector of type S in our systems. In Section [6]
we show that P~ is necessary and sufficient to solve repeated consensus in this
context.

For space considerations, all the proofs are omitted, see the technical report
for details (|20, http://hal.archives-ouvertes.fr/hal-00325470/fr/).

! The FIFO assumption is necessary because, from the results in [18], if lossy links are
not FIFO, reliable broadcast requires unbounded message headers.

2 With infinite memory and fair lossy links, (uniform) reliable broadcast can be solved
using © [19], and O is strictly weaker than (X, £2) which is necessary to solve con-
sensus.

http://hal.archives-ouvertes.fr/hal-00325470/fr/

With Finite Memory Consensus Is Easier Than Reliable Broadcast 43

2 Model

Distributed System. A system consists of a set IT = {p1, ..., p,} of processes. We
consider asynchronous distributed systems where each process can communicate
with each other through directed links8 By asynchronous, we mean that there
is no bound on message delay, clock drift, or process execution rate.

A process has a local memory, a local sequential and deterministic algorithm,
and input/output capabilities. In this paper we consider systems of processes
having either a finite or an infinite memory. In the sequel, we denote such systems
by 7 and $7, respectively.

We consider links with unbounded capacities. We assume that the messages
sent from p to g are distinguishable, i.e., if necessary, the messages can be num-
bered with a non-negative integer. These numbers are used for notational pur-
pose only, and are unknown to the processes. Every link satisfies the integrity,
i.e., if a message m from p is received by g, m is received by ¢ at most once, and
only if p previously sent m to ¢. Links are also unreliable and fair. Unreliable
means that the messages can be lost. Fairness means that for each message m, if
process p sends infinitely often m to process g and if ¢ tries to receive infinitely
often a message from p, then g receives infinitely often m from p. Each link are
FIFO, i.e., the messages are received in the same order as they were sent.

To simplify the presentation, we assume the existence of a discrete global
clock. This is merely a fictional device: the processes do not have access to it.
We take the range 7 of the clock’s ticks to be the set of natural numbers.

Failures and Failure Patterns. Every process can fail by permanently crashing,
in which case it definitively stops to execute its local algorithm. A failure pattern
F is a function from 7 to 27, where F(t) denotes the set of processes that have
crashed through time ¢. Once crashed, a process never recoves, i.e., Vt : F(t) C
F(t+1). We define crashed(F) = | J,c+ F(t) and correct(F') = II\crashed(F). If
p € crashed(F') we say that p crashes in F' (or simply crashed when it is clear in
the context) and if p € correct(F') we say that p is correct in F' (or simply correct
when it is clear in the context). An environment is a set of failure patterns. We
do not restrict here the number of crash and we consider as environment £ the
set of all failure patterns.

Failure Detectors. A failure detector [7] is a local module that outputs a set
of processes that are currently suspected of having crashed. A failure detector
history H is a function from IT x 7 to 2. H(p,t) is the value of the failure
detector module of process p at time t. If ¢ € H(p,t), we say that p suspects q
at time t in H. We omit references to H when it is obvious from the context.

Formally, failure detector D is a function that maps each failure pattern F' to
a set of failure detector histories D(F).

A failure detector can be defined in terms of two abstract properties: Com-
pleteness and Accuracy [7] . Let us recall one type of completeness and two types
of accuracy.

3 We assume that each process knows the set of processes that are in the system; some
papers related to failure detectors do not make this assumption e.g. [2122]23].

44 C. Delporte-Gallet et al.

Definition 1 (Strong Completeness). Fventually every process that crashes
s permanently suspected by every correct process. Formally, D satisfies strong
completeness if: VF € E,YH € D(F),3t € T,Vp € crashed(F),¥q € correct(F),
V' >t:pe H(gt)

Definition 2 (Strong Accuracy). No process is suspected before it crashes.
Formally, D satisfies strong accuracy if: VF € E,YH € D(F),Vt € T,VYp,q €

IT\F(t):p ¢ H(q,t)

Definition 3 (Weak Accuracy). A correct process is never suspected. For-
mally, D satisfies weak accuracy if: VF € E,NH € D(F),Vte€T ,3p € correct(F),
Vgell:p¢ H(gt)

We introduce a last type of accuracy:

Definition 4 (Almost Strong Accuracy). No correct process is suspected.
Formally, D salisfies almost strong accuracy if: VF € E,YH € D(F),Vt €
T,Vp € correct(F),Yq € Il : p & H(q,t)

This definition was the definition of strong accuracy in [24].

For all these aformentioned properties, we can assume, without loss of gener-
ality, that when a process is suspected it remains suspected forever.

We now recall the definition of the perfect and the strong failure detectors [7]
and we introduce our almost perfect failure detector:

Definition 5 (Perfect). A failure detector is said to be perfect if it satisfies
the strong completeness and the strong accuracy properties. This failure detector
1s denoted by P.

Definition 6 (Almost Perfect). A failure detector is said to be almost perfect
if it satisfies the strong completeness and the almost strong accuracy properties.
This failure detector is denoted by P~ .

Note that P— was given as the definition of the perfect failure detector in the
very first paper on unreliable failure detector in [24]. In fact, failure detector in
P~ can suspect faulty processes before they crash and be unrealistic according
to the definition in [25].

Definition 7 (Strong). A failure detector is said to be strong if it satisfies the
strong completeness and the weak accuracy properties. This failure detector is
denoted by S.

Algorithms, Runs, and Specification. A distributed algorithm is a collection of n
sequential and deterministic algorithms, one for each process in I7. Computations
of distributed algorithm A proceed in atomic steps.

In a step, a process p executes each of the following actions at most once:
p try to receive a message from another process, p queries its failure detector
module, p modifies its (local) state. and p sends a message to another process.

With Finite Memory Consensus Is Easier Than Reliable Broadcast 45

A run of Algorithm A using a failure detector D is a tuple (F,Hp,Yinit,F,T)
where F is a failure pattern, Hp € D(F) is an history of failure detector D
for the failure pattern F', ~;,q is an initial configuration of A, E is an infinite
sequence of steps of A, and T is a list of increasing time values indicating when
each step in E occurred. A run must satisfy certain well-formedness and fairness
properties. In particular:

1. E is applicable to 7;nt-

2. A process cannot take steps after it crashes.

3. When a process takes a step and queries its failure detector module, it gets
the current value output by its local failure detector module.

4. Every correct process takes an infinite number of local steps in E.

5. Any message sent is eventually received or lost.

A problem P is defined by a set of properties that runs must satisfy. An
algorithm A solves a problem P using a failure detector D if and only if all the
runs of A using D satisfy the properties required by P.

A failure detector D is said to be weaker than another failure detector D’
(denote D < D) if there is an algorithm that uses only D’ to emulate the output
of D for every failure pattern. If D is weaker than D’ but D’ is not weaker than
D we say that D is strictly weaker than D’ (denote D < D).

From [7] and our definition of P~, we get:

Proposition 1

S<P <P

The weakest [§] failure detector D to solve a given problem is a failure detector
D that is sufficient to solve the problem and that is also necessary to solve the
problem, i.e. D is weaker than any failure detector that solves the problem.

Notations. In the sequel, v, denotes the value of the variable v at process p.
Finally, a datum in a message can be replaced by “—” when this value has no
impact on the reasonning.

3 Problem Specifications

Reliable Broadcast. The reliable broadcast [26] is defined with two primitives:
BROADCAST(m) and DELIVER(m). Informally, any reliable broadcast algorithm
guarantees that after a process p invokes BROADCAST(m), every correct process
eventually executes DELIVER(m). In the formal definition below, we denote by
sender(m) the process that invokes BROADCAST(m).

Specification 1 (Reliable Broadcast). A run R satisfies the specification
Reliable Broadcast if and only if the following three requirements are satisfied in
R:

— Validity: If a correct process invokes BROADCAST(m), then it eventually exe-
cutes DELIVER(m).

46 C. Delporte-Gallet et al.

— (Uniform) Agreement: If a process executes DELIVER(m), then all other cor-
rect processes eventually execute DELIVER(m).

— Integrity: For every message m, every process executes DELIVER(m) at most
once, and only if sender(m) previously invokes BROADCAST(m).

Consensus. In the consensus problem, all correct processes propose a value and
must reach a unanimous and irrevocable decision on some value that is chosen
between the proposed values. We define the consensus problem in terms of two
primitives, PROPOSE(v) and DECIDE(u). When a process executes PROPOSE(v), we
say that it proposes v; similarly, when a process executes DECIDE(u), we say that
it decides u.

Specification 2 (Consensus). A run R satisfies the specification Consensus
if and only if the following three requirements are satisfied in R:

— (Uniform) Agreement: No two processes decide differently.
— Termination: Every correct process eventually decides some value.
— Validity: If a process decides v, then v was proposed by some process.

Repeated Consensus. We now define repeated consensus. Each correct process
has as input an infinite sequence of proposed values, and outputs an infinite
sequence of decision values such that:

1. Two correct processes have the same output. (The output of a faulty process
is a prefix of this output.)
2. The " value of the output is the i*" value of the input of some process.

We define the repeated consensus in terms of two primitives, R-PROPOSE(v) and
R-DECIDE(u). When a process executes the i*" R-PROPOSE(v), v is the it" value
of its input (we say that it proposes v for the i*" consensus); similarly, when a
process executes the i*" R-DECIDE(u) u is the ' value of its output (we say that
it decides v for the i*" consensus).

Specification 3 (Repeated Consensus). A run R satisfies the specification
Repeated Consensus if and only if the following three requirements are satisfied
n R:

— Agreement: If u and v are the outputs of two processes, then u is a prefix of
v or v is a prefix of u.

— Termination: Every correct process has an infinite output.

— Validity: If the i*" value of the output of a process is v, then v is the i
value of the input of some process.

4 Reliable Broadcast in &7

In this section, we show that P~ is the weakest failure detector to solve the
reliable broadcast in ¢ .

With Finite Memory Consensus Is Easier Than Reliable Broadcast 47

P~ is Necessary. To show that P~ is necessary to solve the reliable broadcast
the following lemma is central to the proof:

Lemma 1. Let A be an algorithm solving Reliable Broadcast in & with a failure
detector D. There exists an integer k such that for every process p and every
correct process q, for every run R of A where process p BROADCASTs and DELIVERs
k messages, at least one message from q has been received by some process.

Assume now that there exists an algorithm A that implements the reliable broad-
cast in &% using the failure detector D. To show our result we have to give an
algorithm that uses only D to emulate the output of P~ for every failure pattern.

Actually, we give an algorithm A,) (Figure [[) where a given process p
monitors a given process g. This algorithm uses one instance of A with D. Note
that all processes except g participate to this algorithm following the code of \A.
In this algorithm Output q is equal to either {q} (g is faulty) or § (g is correct).

The algorithm A, ,y works as follows: p tries to BROADCAST k messages, all
processes execute the code of the algorithm A using D except g that does nothing.
If p DELIVERs k messages, it sets Output g to ¢ and never changes the values of
Output q. By lemmalll if g is correct p can’t DELIVER k messages and so it never
sets Output g to {q}. If ¢ is faulty and p is correct: as A solve reliable broadcast,
p has to deliver DELIVER k messages and so p sets Output ¢ to {q}H

To emulate P~, each process p uses algorithm A, .y for every process q. As
D is a failure detector it can be used for each instance. The output of P~ at p
(variable Output) is then the union of Output ¢ for every process q.

/* CODE FOR PROCESS p */
begin
Output q «— 0
for i =1 to k do
BROADCAST(m) /* using A with D %/
wait for DELIVER(m)
end for
Output q — {q}
end
10: /* CODE FOR PROCESS q */
11: begin
12: end
13: /+ CODE FOR EVERY PROCESS IT — {p, q} */
14: begin
15: execute the code of A with D for these messages
16: end

Fig. 1. A,

Theorem 1. P~ is necessary to solve Reliable Broadcast in &7 .

P~ is Sufficient. In Algorithm B (Figure[2)), every process uses a failure detector
module of type P~ and a finite memory. Theorem [shows that Algorithm 5B
solves the reliable broadcast in @7 and directly implies that P~ is sufficient to
solve the reliable broadcast in & (Corollary [I)).

4 If ¢ is faulty and p is faulty, the property of failure detector is trivially ensured.

48 C. Delporte-Gallet et al.

1: /#* CODE FOR EVERY PROCESS g */

2: variables:

3: Flag[l...n][l...n] € {O,l}"Z; Y(i,4) € II?, Flag[i][j] is initialized to O
4: FD: failure detector of type P~

5: Mes[l...n|: array of data messages; Vi € II, Mes|[i] is initialized to L
6: function:

7 MesToBrd(): returns a message or L

8: begin

9: repeat forever

10: if Mes[p] =L then

11: Mes|[p] < MesToBrd()

12: if Mes[p] #.L then

13: Flag[p][p] — (Flag[p][p] + 1) mod 2

14: end if

15: end if

16: for all i € IT \ FD do

17: for all jeII\(FDU{p,i}) Flag[i][p]#Flag[i][j] do

18: if (receive(i-ACK, F') from j) A (F=Flag[i][p]) then
19: Flag[i][j] < F

20: else

21: send (i-BRD, Mes[i], Flag[i|[p]) to j

22: end if

23: end for

24 if (Mes[i] #1) A (Vg € IT \ FD, Flag[i|[i] = Flag[i][q]) then
25: DELIVER(Mes[i]); Mes[i] «— L

26: end if

27: end for

28: for all : € II \ FD \ {p} do

29: for all j € IT\ (FDU {p}) do

30: if (receive(i-BRD, m, F') from j) then

31: if (Vq € IT \ FD, Flag[i][q] = Flag[i][i]) A (F # Flag[i][p]) then
32: Mes[i] < m; Flag[i][p] «— F

33: end if

34: if ¢ = j then

35: Flag[i|[:] «— F

36: end if

37: if (i # j) V (Vq € IT \ FD, Flag[i][q] = Flag[i][i]) then
38: send (i-ACK, Flag[i][p]) to j

39: end if

40: end if

41: end for

42: end for

43: end repeat

44: end

Fig. 2. Algorithm B

In Algorithm B, each process p executes broadcasts sequentially: p starts a
new broadcast only after the termination of the previous one. To that goal,
any process p initializes Mes[p] to L. Then, p periodically checks if an external
application invokes BROADCAST(—). In this case, MesToBrd() returns the message
to broadcast, say m. When this event occurs, Mes|[p] is set to m and the broadcast
procedure starts. Mes[p] is set to L at the end of the broadcast, p checks again,
and so on.

Algorithm B has to deal with two types of faults: process crashes and message
loss.

- Dealing with process crashes. Every process uses a failure detector of type
P~ to detect the process crashes. Note that, as mentionned in Section [2]

With Finite Memory Consensus Is Easier Than Reliable Broadcast 49

we assume that when a process is suspected by some process it remains
suspected forever.

Assume that a process p broadcasts the message m: p sends a broadcast
message (p-BRD) with the datum m to any process it believes to be correct.

In Algorithm B, p executes DELIVER(m) only after all other processes it
does not suspect receive m. To that goal, we use acknowledgment mecha-
nisms. When p received an acknowledgment for m (p-ACK) from every other
process it does not suspect, p executes DELIVER(m) and the broadcast of m
terminates (i.e., Mes[p] is set to L).

To ensure the agreement property, we must guarantee that if p crashes
but another process ¢ already executes DELIVER(m), then any correct pro-
cess eventually executes DELIVER(m). To that goal, any process can execute
DELIVER(m) only after all other processes it does not suspect except p re-
ceive m. Once again, we use acknowledgment mechanisms to that end: ¢ also
broadcasts m to every other process it does not suspect except p (this induces
that a process can now receive m from a process different of p) until receiv-
ing an acknowledgment for m from all these processes and the broadcast
message from p if ¢ does not suspect it.

To prevent m to be still broadcasted when p broadcasts the next mes-
sage, we synchronize the system as follows: any process acknowledges m to
p only after it received an acknowledgment for m from every other process
it does not suspect except p. By contrast, if a process i receives a message
broadcasted by p (p-BRD) from the process j # p, ¢ directly acknowledges
the message to j.

Dealing with message loss. The broadcast messages have to be periodically
retransmitted until they are acknowledged. To that goal, any process ¢ stores
the last broadcasted message from p into its variable Mesy[p] (initialized
to L). However, some copies of previously received messages can be now
in transit at any time in the network. So, each process must be able to
distinguish if a message it receives is copy of a previously received message
or a new one, say valid. To circumvent this problem, we use the traditional
alternating-bit mechanism [27I28]: a flag value (0 or 1) is stored into any
message and a two-dimentionnal array, noted Flag[l...n][1...n], allows us
to distinguish if the messages are wvalid or not. Initially, any process sets
Flag[i][j] to O for all pairs of processes (4,7). In the code of process p, the
value Flag, [p|[p] is used to mark every p-BRD messages sent by p. In the code
of every process ¢ # p, Flag,[p][q] is equal to the flag value of the last valid
p-BRD message q receives (not necessarily from p). For all ¢’ # q, Flag,[p] 4]
is equal to the flag value of the last valid p-BRD message g receives from ¢'.

At the beginning of any broadcast at p, p increments Flag,[p][p] modulus
2. The broadcast terminates at p when for every other process ¢ that p does
not suspect, Flag,[p|lq] = Flag,[p][p], Flag,[p][q] being set to Flag,[p][p]
only when p received a valid acknowledgement from ¢, i.e., an acknowledg-
ment marked with the value Flag, [p][p].

Upon receiving a p-BRD message marked with the value F', a process q # p
detects that it is a new valid message broadcasted by p (but not necessarily

50 C. Delporte-Gallet et al.

sent by p) if for every non-suspected process j, (Flag,[p|[j] = Flag,[p][p])
and (F' # Flag,[p][q]). In this case, p sets Mesy[p] to m and sets Flag,[p][q]
to F'. From this point on, ¢ periodically sends (p-BRD,Mes,[p|,Flag,[p|[g]) to
any other process it does not suspect except p until receiving a valid ac-
knowledgment (i.e., an acknowledgment marked with the value Flag,[p][q])
from all these processes. For any non-suspected process j different from
p and g, Flag,[p][j] is set to Flag,[p]lg] when ¢ received an acknowledg-
ment marked with the value Flag,[p][g] from j. Finally, Flag, [p][p] is set to
Flag,[p][g] when g received the broadcast message from p (marked with the
value Flag,[p[q]). Hence, ¢ can execute DELIVER(Mes[p]) when (Mes[p] #1)
and (Vj € I \ FD, Flag,[p][j] = Flag,[p][p]) because (1) it receives a valid
broadcast message from p if p was not suspected and it has the guarantee
that any non-suspected process different of p receives m in a valid message.
To ensure that ¢ executes DELIVER(Mes[p]) at most one, ¢ just has to set
Mes[p] to L after.

It is important to note that ¢ acknowledges the valid p-BRD messages
it receives from p only when the predicate (Vj € II \ FD, Flag[p][j] =
Flag,[p|[p]) holds. However, to guarantee the liveness, ¢ acknowledges any
p-BRD message that it receives from any other process. Every p-ACK messages
sent by ¢ is marked with the value Flag,[p][q].

Finally, p stops its current broadcast when the following condition holds:
(Mesp[p] #L1) A (Vg € II \ FD, Flag,[p|[p] = Flag,[pl[q]), i.e., any non-
suspected process has acknowledged Mes,[p]. In this case, p sets Mes[p] to
1.

Theorem 2. Algorithm B is a Reliable Broadcast algorithm in &% with P~ .

Corollary 1. P~ is sufficient for solving Reliable Broadcast in &7 .

5 Consensus in %

In this section, we show that we can solve consensus in system &7 with a fail-
ure detector that is strictly weaker than the failure detector necessary to solve
reliable broadcast and repeated consensus. We solve consensus with the strong
failure detector S. S is not the weakest failure detector to solve consensus what-
ever the number of crash but it is strictly weaker than P~ and so enough to
show our results.

We customize the algorithm of Chandra and Toueg [7] that works in an
asynchronous message-passing system with reliable links and augmented with
a strong failure detector (S), to our model.

In this algorithm, called CS in the following (Figure), the processes execute
n asynchronous rounds. First, processes execute n — 1 asynchronous rounds (r
denotes the current round number) during which they broadcast and relay their
proposed values. Each process p waits until it receives a round r message from
every other non-suspected process (n.b. as mentionned in Section [2] we assume
that when a process is suspected it remains suspected forever) before proceeding

With Finite Memory Consensus Is Easier Than Reliable Broadcast 51

to round r 4 1. Then, processes execute a last asynchronous round during which
they eliminate some proposed values. Again each process p waits until it receives
a round n message from every other process it does not suspected. By the end of
these n rounds, correct processes agree on a vector based on the proposed values
of all processes. The i element of this vector either contains the proposed value
of process ¢ or L. This vector contains the proposed value of at least one process:
a process that is never suspected by all processes. Correct processes decide the
first nontrivial component of this vector.

To customize this algorithm to our model, we have to ensure the progress of
each process: While a process has not ended the asynchronous round r it must
be able to retransmit all the messagesﬁ that it has previously sent in order to
allow others processes to progress despite the link failures. As we used a strong
failure detector and unreliable but fair links, it is possible that one process has
decided and the other ones still wait messages of asynchronous rounds. When
a process has terminated the n asynchronous rounds, it uses a special Decide
message to allow others processes to progress.

In the algorithm, we first use a function consensus. This function takes the
proposed value in parameter and returns the decision value and uses a failure
detector. Then, at processes request, we propagate the Decide message.

Theorem [J] shows that Algorithm CS solves the consensus in ¥ and directly
implies that S is sufficient to solve te consensus problem in ¥ (Corollary).

Theorem 3. Algorithm CS is a Consensus algorithm in & with S.

Corollary 2. S is sufficient for solving Consensus in 7.

6 Repeated Consensus in $7

We show in this section that P~ is the weakest failure detector to solve the
reliable consensus problem in &7 .

P~ is Necessary. The proof is similar to the one in Section @ and here the
following lemma is central to the proof:

Lemma 2. Let A be an algorithm solving Repeated Consensus in & with a
failure detector D. There exists an integer k such that for every process p and
every correct process q for every run R of A where process p R-PROPOSEs and
R-DECIDEs k times, at least one message from q has been received by some process.

Assume that there exists an algorithm A that implements Repeated Consensus in
&7 using the failure detector D. To show our result we have to give an algorithm
that uses only D to emulate the output of P~ for every failure pattern.

In fact we give an algorithm A, (Figure []) where processes monitor a given
process ¢g. This algorithm uses one instance of A with D. Note that all processes
except ¢ participate to this algorithm following the code of A. In this algorithm
Output q is equal to either {q} (g is crashed) or () (¢ is correct).

5 Notice that they are in finite number.

(S
[\

C. Delporte-Gallet et al.

/* CODE FOR PROCESS p */
function consensus(v) with the failure detector f£d
variables:
Flag[l...n] € {true,false}™; Vi € II, Flag[i] is initialized to false
V[1...n]: array of propositions; Vi € I, V[i] is initialized to L
Mes[1...n]: array of arrays of propositions; Vi € IT, Mes[] is initialized to L
r: integer; r is initialized to 1
begin
V[p] < v the proposed values
Mes[1] < V
while (r <n) do
send (R-r, Mes[r]) to every process, except p
for all ¢ € IT \ (fd U {p}), Flag[i] = false do
if (receive(R-r, W) from i) then
Flag[i] < true
if » < n then
if V[i] = L then
V[i] « W[i]; Mes[r + 1][¢] «— W[i]
end if
else
if V[i] # L then
end if
end if
end if
end for
for all i € IT \ {p} do

if (receive(R-z, W) from i), z < r then
send (R-z, Mes[z]) to ¢
end if
end for

if Vg € IT \ (£fd U {p}), Flag[q] = true then
if » < n then

for all ¢ € IT do
Flag[i| < false
end for
end if

if r=n — 1 then
Mes[n] «— V
end if
r—r—4+1
end if
for all ¢ € IT \ {p} do
if (receive(Decide, d) from i) then
return(d)
end if
end for
end while
d « the first component of V different from _L; return(d)
end

. end function

. procedure PROPOSE(v)
variables: u: integer; FD: failure detector of type S
begin
u «—consensus(v) with FD
DECIDE(w)

repeat forever
for all j € IT\ {p},z € {1,...,n} do
if (receive(R-z, W) from j) then
send (Decide, u) to j
end if
end for
end repeat
end

. end procedure

Fig. 3. Algorithm CS, Consensus with &

With Finite Memory Consensus Is Easier Than Reliable Broadcast 53

The algorithm A, works as follows: processes try to R-DECIDE k times, all
processes execute the code of the algorithm A using D except g that does nothing.
If p R-DECIDE k messages, it sets Qutput q to ¢ and never changes the values of
Output q.

By lemma [, if ¢ is correct p cannot decides k times and so it never sets
Output q to q. If q is faulty and p is correctfd: as A solve Repeated Consensus, p
has to R-DECIDE k times and so p sets Qutput g to {q}.

To emulate P~ each process p uses Algorithm A, for every process q. As D
is a failure detector it can be used for each instance. The output of P~ at p
(variable Output) is then the union of Output ¢ for every process g.

/* CODE FOR PROCESS p OF IT \ q */
begin
Output q — 0
for i =1 to k do
R-PROPOSED(v) /* using A with D %/
wait for R-DECIDE(v)
end for
Output q — {q}
end
10: /* CODE FOR PROCESS g */
11: begin
12: end

Fig. 4. A,

Theorem 4. P~ is necessary to solve Repeated Consensus problem in &7 .

P~ is Sufficient. In this section, we show that P~ is sufficient to solve the re-
peated consensus in 7. To that goal, we consider an algorithm called Algorithm
RCP (Figures [{] and [B]). In this algorithm, any process uses a failure detector
module of type P~ (again we assume that since a process is suspected by some
process it is suspected forever) and a finite memory. Theorem [shows that Al-
gorithm RCP solves the repeated consensus in @7 and directly implies that P~
is sufficient to solve the repeated consensus in &7 (Corollary [)).

We assume that each correct processes has an infinite sequence of input and
when it terminates R-PROPOSED(v) where v is the it value of its input, it executes
R-PROPOSED(w) where w is the (i + 1)** value of its input.

When a process executes R-PROPOSED(v), it first executes a consensus in which
it proposes v. The decision of this consensus is then outputted. Then, processes
have to avoid that the messages of two consecutive consensus are mixed up.
We construct a synchronization barrier. Without message loss, and with a per-
fect failure detector, it is sufficient that each process waits a Decide message
from every process trusted by its failure detector module. By FIFO property, no
message (R-z, —) sent before this Decide message can be received in the next
consensus.

5 If ¢ is faulty and p is faulty, the property of failure detector is trivially ensured.

54 C. Delporte-Gallet et al.

1: /+ CODE FOR PROCESS p */

2: function consensus(v) with the failure detector £d

3: variables:

4: Flag[l...n] € {true,false}™; Vi € II, Flag[i] is initialized to false
5: V[1...n]: array of propositions; Vi € I, V[i] is initialized to L
6: Mes[1...n]: array of arrays of propositions; Vi € IT, Mes[] is initialized to L
7 r: integer; r is initialized to 1

8: begin

9: V[p] < v the proposed values; Mes[1] « V

10: while (r < n) do

11: send (R-r, Mes(r]) to every process, except {p} U fd
12: for all ¢ € IT \ (fd U {p}), Flag[i] = false do

13: if (receive(R-r, W) from i) then

14: Flag[i] < true

15: if 7 <n then

16: if V[i] = L then

17: V[i] « Wi]; Mes[r + 1][3] «— W[i]

18: end if

19: else

20: if V[i] # L then

21: V[i] «— Wi

22: end if

23: end if

24: end if

25: end for

26: if Vg € IT\ (fd U {p}), Flag[q] = true then

27: if » < n then

28: for all ¢ € IT do

29: Flag[i| < false

30: end for

31: end if

32: if r=n — 1 then

33: Mes[n] «— V

34: end if

35: r—r7r-+1

36: end if

37: for all ¢ € IT \ (fdU {p}) do

38: if (receive(Decide, d) from i) then

39: return(d)

40: end if

41: end for

42: end while

43: d « the first component of V different from _L; return(d)
44: end

45: end function

Fig.5. Algorithm RCP, Repeated Consensus with P~. Part 1: function consensus().

To deal with message loss, the synchronization barrier is obtained by two
asynchronous rounds: In the first asynchronous rounds, each process sends a
Decide message and waits to receive a Decide message or a Start message from
every other process it does not suspect. In the second one, each process sends
a Decide message and waits to receive a Start message or a (R-x, —) message.
Actually, due to message loss it is possible that a process goes to its second
round despite some process have not received its Decide message, but it cannot
finish the second round before every correct processes have finished the first one.

As a faulty process can be suspected before it crashes (due to the quality of
P~), it is possible that a faulty process will not be waited by other processes
although it is still alive. To avoid that this process disturbs the round, since
a process p suspects a process ¢, p stops to wait messages from ¢ and to send
messages to q.

With Finite Memory Consensus Is Easier Than Reliable Broadcast 55

1: /* CODE FOR PROCESS p */

2: variables:

3: FD: failure detector of type P~

4: procedure R-PROPOSED(v)

5: variables:

6: FlagR[l...n] € {true,false}™; Vi € II, FlagR[¢] is initialized to false
7 stop: boolean; stop is initialized to false

8: u: integer;

9: begin

10: u «—consensus(v) with FD

11: R-DECIDE(u)

12: repeat

13: send (Decide, u) to every process, except {p} UFD
14: for all ¢ € IT \ (FDU {p}), FlagR[i] = false do

15: if (receive(Decide, u) from i) V (receive(Start) from i) then
16: FlagR[i] < true

17: end if

18: end for

19: if Vg € IT \ (FDU {p}), FlagR[q] = true then

20: stop «— true

21: end if

22: until stop

23: for all i € IT do

24: FlagR[i] < false

25: end for

26: stop «— false

27: repeat

28: send(Start) to every process, except {p} UFD
29: for all i € IT \ (FDU {p}), Flagh[i] = false do

30: if (receive(Start) from i) V (receive(R-1, W) from j) then
31: FlagR[i] < true

32: end if

33: end for

34: if Vg € IT \ (FDU {p}), FlagR[q] = true then

35: stop «— true

36: end if

37: until stop

38: end

39: end procedure

Fig. 6. Algorithm RCP, Repeated Consensus with P~ . Part 2.

Note also that if the consensus function is executed with P~, then there is
no need to send (R-z, —) in round r > x again. We have rewritten the consensus
function to take account of these facts, but the behaviour remains the same.

Theorem 5. Algorithm RCP (Figure[d and [@) is a Repeated Consensus algo-
rithm in &% with P~.

Corollary 3. P~ is sufficient for solving Repeated Consensus in &7 .

Contrary to these results in system &7, in system ®*, we have the same weak-
est failure detector to solve the consensus problem and the repeated consensus
problem:

Proposition 2. In system &7, if there is an algorithm A with failure detector
D solving Consensus, then there exists an algorithm solving Repeated Consensus
with D.

56

C. Delporte-Gallet et al.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Guerraoui, R., Schiper, A.: The generic consensus service. IEEE Transactions on
Software Engineering 27(1), 29-41 (2001)

Gafni, E., Lamport, L.: Disk paxos. Distributed Computing 16(1), 1-20 (2003)
Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32(2), 374-382 (1985)

Chor, B., Coan, B.A.: A simple and efficient randomized byzantine agreement
algorithm. IEEE Trans. Software Eng. 11(6), 531-539 (1985)

Dolev, D., Dwork, C., Stockmeyer, L.J.: On the minimal synchronism needed for
distributed consensus. Journal of the ACM 34(1), 77-97 (1987)

Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Consensus in the presence of partial
synchrony. Journal of the ACM 35(2), 288-323 (1988)

Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43(2), 225-267 (1996)

Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. Journal of the ACM 43(4), 685-722 (1996)

Delporte-Gallet, C., Fauconnier, H., Guerraoui, R.: Shared memory vs message
passing. Technical report, LPD-REPORT-2003-001 (2003)

Eisler, J., Hadzilacos, V., Toueg, S.: The weakest failure detector to solve nonuni-
form consensus. Distributed Computing 19(4), 335-359 (2007)

Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Hadzilacos, V., Kouznetsov, P.,
Toueg, S.: The weakest failure detectors to solve certain fundamental problems in
distributed computing. In: Twenty-Third Annual ACM Symposium on Principles
of Distributed Computing (PODC 2004), pp. 338-346 (2004)

Aguilera, M.K., Toueg, S., Deianov, B.: Revisiting the weakest failure detector for
uniform reliable broadcast. In: Jayanti, P. (ed.) DISC 1999. LNCS, vol. 1693, pp.
13-33. Springer, Heidelberg (1999)

Halpern, J.Y., Ricciardi, A.: A knowledge-theoretic analysis of uniform distributed
coordination and failure detectors. In: Eighteenth Annual ACM Symposium on
Principles of Distributed Computing (PODC 1999), pp. 73-82 (1999)
Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kouznetsov, P.: Mutual ex-
clusion in asynchronous systems with failure detectors. Journal of Parallel and
Distributed Computing 65(4), 492-505 (2005)

Guerraoui, R., Kapalka, M., Kouznetsov, P.: The weakest failure detectors to boost
obstruction-freedom. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 399-412.
Springer, Heidelberg (2006)

Raynal, M., Travers, C.: In search of the holy grail: Looking for the weakest failure
detector for wait-free set agreement. In: Shvartsman, M.M.A.A. (ed.) OPODIS
2006. LNCS, vol. 4305, pp. 3-19. Springer, Heidelberg (2006)

Zielinski, P.: Anti-omega: the weakest failure detector for set agreement. Techni-
cal Report UCAM-CL-TR-694, Computer Laboratory, University of Cambridge,
Cambridge, UK (July 2007)

Lynch, N.A., Mansour, Y., Fekete, A.: Data link layer: Two impossibility results.
In: Symposium on Principles of Distributed Computing, pp. 149-170 (1988)
Bazzi, R.A., Neiger, G.: Simulating crash failures with many faulty processors
(extended abstract). In: Segall, A., Zaks, S. (eds.) WDAG 1992. LNCS, vol. 647,
pp. 166-184. Springer, Heidelberg (1992)

Delporte-Gallet, C., Devismes, S., Fauconnier, H., Petit, F., Toueg, S.: With finite
memory consensus is easier than reliable broadcast. Technical Report hal-00325470,
HAL (October 2008)

21.

22.

23.

24.

25.

26.

27.

28.

With Finite Memory Consensus Is Easier Than Reliable Broadcast 57

Cavin, D., Sasson, Y., Schiper, A.: Consensus with unknown participants or fun-
damental self-organization. In: Nikolaidis, 1., Barbeau, M., Kranakis, E. (eds.)
ADHOC-NOW 2004. LNCS, vol. 3158, pp. 135-148. Springer, Heidelberg (2004)
Greve, F., Tixeuil, S.: Knowledge connectivity vs. synchrony requirements for fault-
tolerant agreement in unknown networks. In: DSN, pp. 82-91. IEEE Computer
Society, Los Alamitos (2007)

Ferndndez, A., Jiménez, E., Raynal, M.: Eventual leader election with weak as-
sumptions on initial knowledge, communication reliability, and synchrony. In: DSN,
pp. 166-178. IEEE Computer Society, Los Alamitos (2006)

Chandra, T.D., Toueg, S.: Unreliable failure detectors for asynchronous systems
(preliminary version). In: 10th Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC 1991), pp. 325-340 (1991)

Delporte-Gallet, C., Fauconnier, H., Guerraoui, R.: A realistic look at failure de-
tectors. In: DSN, pp. 345-353. IEEE Computer Society, Los Alamitos (2002)
Hadzilacos, V., Toueg, S.: A modular approach to fault-tolerant broadcasts and
related problems. Technical Report TR 94-1425, Department of Computer Science,
Cornell University (1994)

Bartlett, K.A., Scantlebury, R.A., Wilkinson, P.T.: A note on reliable full-duplex
transmission over halfduplex links. Journal of the ACM 12, 260-261 (1969)
Stenning, V.: A data transfer protocol. Computer Networks 1, 99-110 (1976)

Group Renaming

Yehuda Afek!, Iftah Gamzu®-*, Irit Levy', Michael Merritt?, and Gadi Taubenfeld®

1 School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel
{afek,iftgam, levyirit}@tau.ac.il
2 AT&T Labs, 180 Park Ave., Florham Park, NJ 07932, USA
mischu@research.att.com
3 The Interdisciplinary Center, P.O. Box 167, Herzliya 46150, Israel
tgadi@idc.ac.il

Abstract. We study the group renaming task, which is a natural generalization
of the renaming task. An instance of this task consists of n processors, partitioned
into m groups, each of at most g processors. Each processor knows the name of
its group, which is in {1, ..., M }. The task of each processor is to choose a new
name for its group such that processors from different groups choose different
new names from {1,...,¢}, where £ < M. We consider two variants of the
problem: a tight variant, in which processors of the same group must choose the
same new group name, and a loose variant, in which processors from the same
group may choose different names. Our findings can be briefly summarized as
follows:

1. We present an algorithm that solves the tight variant of the problem with ¢ =
2m — 1 in a system consisting of g-consensus objects and atomic read/write
registers. In addition, we prove that it is impossible to solve this problem
in a system having only (g — 1)-consensus objects and atomic read/write
registers.

2. We devise an algorithm for the loose variant of the problem that only uses
atomic read/write registers, and has £ = 3n — \/n — 1. The algorithm also
guarantees that the number of different new group names chosen by proces-
sors from the same group is at most min{g, 2m, 24/n}. Furthermore, we
consider the special case when the groups are uniform in size and show that
our algorithm is self-adjusting to have £ = m(m + 1)/2, when m < +/n,
and £ = 3n/2 +m — \/n/2 — 1, otherwise.

1 Introduction

1.1 The Group Renaming Problem

We investigate the group renaming task which generalizes the well known renaming
task [3]. In the original renaming task, each processor starts with a unique identi-
fier taken from a large domain, and the goal of each processor is to select a new
unique identifier from a smaller range. Such an identifier can be used, for example,

* Supported by the Binational Science Foundation, by the Israel Science Foundation, and by
the European Commission under the Integrated Project QAP funded by the IST directorate as
Contract Number 015848.

T.P. Baker, A. Bui, and S. Tixeuil (Eds.): OPODIS 2008, LNCS 5401, pp. 58 2008.
(© Springer-Verlag Berlin Heidelberg 2008

Group Renaming 59

to mark a memory slot in which the processor may publish information in its posses-
sion. In the group renaming task, groups of processors may hold some information
which they would like to publish, preferably using a common memory slot for each
group. An additional motivation for studying the group version of the problem is to
further our understanding about the inherent difficulties in solving tasks with respect to
groups [10].

More formally, an instance of the group renaming task consists of n processors parti-
tioned into m groups, each of which consists of at most g processors. Each processor has
a group name taken from some large name space [M] = {1,..., M}, representing the
group that the processor affiliates with. In addition, every processor has a unique iden-
tifier taken from [N]. The objective of each processor is to choose a new group name
from [¢], where £ < M. The collection of new group names selected by the processors
must satisfy the uniqueness property meaning that any two processors from different
groups choose distinct new group names. We consider two variants of the problem:

— atight variant, in which in addition to satisfying the uniqueness property, processors
of the same group must choose the same new group name (this requirement is called
the consistency property), and

— a loose variant, in which processors from the same group may choose different
names, rather than a single one, as long as no two processors from different groups
choose the same new name.

1.2 Summary of Results

We present a wait-free algorithm that solves the tight variant of the problem with ¢ =
2m — 1 in a system equipped with g-consensus objects and atomic read/write registers.
This algorithm extends the upper bound result of Attiya et al. [3] for g = 1. On the
lower bound side, we show that there is no wait-free implementation of tight group
renaming in a system equipped with (g — 1)-consensus objects and atomic read/write
registers. In particular, this result implies that there is no wait-free implementation of
tight group renaming using only atomic read/write registers for g > 2.

We then restrict our attention to shared memory systems which support only atomic
read/write reagisters and study the loose variant. We develop a self-adjusting algorithm,
namely, an algorithm that achieves distinctive performance guarantees conditioned on
the number of groups and processors. On worst case, this algorithm has £ = 3n—/n—1,
while guaranteeing that the number of different new group names chosen by processors
from the same group is at most min{g, 2m, 2\/n}. It seems worthy to note that the
algorithm is built around a filtering technique that overcomes scenarios in which both
the size of the maximal group and the number of groups are large, i.e., g = 2(n) and
m = §2(n). Essentially, such scenario arises when there are 2(n) groups containing
only few members and few groups containing 2(n) members.

We also consider the special case when the groups are uniform in size, and refine
the analysis of our loose group renaming algorithm. Notably, we demonstrate that ¢ =
m(m + 1)/2, when m < y/n, and £ = 3n/2 + m — y/n/2 — 1, otherwise. This last
result settles, to some extent, an open question posed by Gafni [10].

60 Y. Afek et al.

1.3 Related Work

Group solvability was first introduced and investigated in [10]. The renaming problem
was first solved for message-passing systems [3], and then for shared memory systems
using atomic registers [6]. Both these papers present one-shot algorithms (i.e., solu-
tions that can be used only once). In [§]] the first long-lived renaming algorithm was
presented: The ¢-assignment algorithm presented in [§]] can be used as an optimal long-
lived (2n — 1)-renaming algorithm with exponential step complexity. Several of the
many papers on renaming using atomic registers are [[112/4}11/14J15]. Other references
are mentioned later in the paper.

2 Model and Definitions

Our model of computation consists of an asynchronous collection of n processors com-
municating via shared objects. Each object has a type which defines the set of operations
that the object supports. Each object also has sequential specification that specifies how
the object behaves when these operations are applied sequentially. Asynchrony means
that there is no assumptions on the relative speeds of the processors.

Various systems differ in the level of atomicity that is supported. Atomic (or indivisi-
ble) operations are defined as operations whose execution is not interfered with by other
concurrent activities. This definition of atomicity is too restrictive, and it is safe to relax
it by assuming that processors can try to access the object at the same time, however,
although operations of concurrent processors may overlap, each operation should ap-
pear to take effect instantaneously. In particular, operations that do not overlap should
take effect in there “real-time” order. This type of correctness requirement is called
linearizability [13]].

We will always assume that the system supports atomic registers, which are shared
objects that support atomic reads and writes operations. In addition, the system may
also support forms of atomicity which are stronger than atomic reads and writes. One
specific atomic object that will play an important role in our investigation is the con-
sensus object. A consensus object o supports one operation: o.propose(v), satisfying:

1. Agreement. In any run, the o.propose() operation returns the same value, called the
consensus value, to every processor that invokes it.
2. Validity. In any run, if the consensus value is v, then some processor invoked

o.propose(v).

Throughout the paper, we will use the notation g-consensus to denote a consensus object
for g processors.

An object is wait-free if it guarantees that every processor is always able to complete
its pending operation in a finite number of its own steps regardless of the execution
speed of other processors (does not admit starvation). Similarly, an implementation or
an algorithm is wait-free, if every processor makes a decision within a finite number of
its own steps. We will focus only on wait-free objects, implementations or algorithms.
Next, we define two notions for measuring the relative computational power of shared
objects.

Group Renaming 61

— The consensus number of an object of type o, is the largest n for which it is possible
to implement an n-consensus object in a wait-free manner, using any number of
objects of type o and any number of atomic registers. If no largest n exists, the
consensus number of o is infinite.

— The consensus hierarchy (also called the wait-free hierarchy) is an infinite hierarchy
of objects such that the objects at level ¢ of the hierarchy are exactly those objects
with consensus number <.

It has been shown in [[12], that in the consensus hierarchy, for any positive ¢, in a system
with ¢ processors: (1) no object at level less than 7 together with atomic registers can
implement any object at level ¢; and (2) each object at level ¢ together with atomic
registers can implement any object at level ¢ or at a lower level, in a system with ¢
processors. Classifying objects by their consensus numbers is a powerful technique for
understanding the relative power of shared objects.

Finally, for simplicity, when refereing to the group renaming problem, we will as-
sume that m, the number of groups, is greater or equal to 2.

3 Tight Group Renaming

3.1 An Upper Bound

In what follows, we present a wait-free algorithm that solves tight group renaming using
g-consensus objects and atomic registers. Essentially, we prove the following theorem.

Theorem 1. Forany g > 1, there is a wait-free implementation of tight group renaming
with { = 2m — 1 in a system consisting of g-consensus objects and atomic registers.

Corollary 1. The consensus number of tight group renaming is at most g.

Our implementation, i.e., Algorithm[l is inspired by the renaming algorithm of Attiya
et al. [3]], which achieves an optimal new names space size of 2n — 1. In this renaming
algorithm, each processor iteratively picks some name and suggests it as its new name
until an agreement on the collection of new names is reached. The communication
between the processors is done using an atomic snapshot object. Our algorithm deviates
from this scheme by adding an agreement step between processors of the same group,
implemented using g-consensus objects. Intuitively, this agreement step ensures that all
the processors of any group will follow the decisions made by the “fastest” processor
in the group. Consequently, the selection of the new group names can be determined
between the representatives of the groups, i.e., the “fastest” processors. This enables us
to obtain the claimed new names space size of 2m — 1. It is worthy to note that the
“fastest” processor of some group may change over time, and hence our agreement step
implements a “follow the (current) group leader” strategy. We believe that this concept
may be of independent interest. Note that the group name of processor ¢ is designated
by GID;, and the overall number of iterations executed is marked by 1.

We now turn to establish Theorem [l Essentially, this is achieved by demonstrating
that Algorithm [[l maintains the consistency and uniqueness properties (Lemmas 2] and

62 Y. Afek et al.

Algorithm 1. Tight group renaming algorithm: code for processor i € [N].

In shared memory:
SS[1, ..., N] array of swmr registers, initially L.
HIS[L,...,N][1,...,I][1,..., N] array of swmr registers, initially L.
CON[1,..., M][1,...,I] array of g-consensus objects.

1: p—1
2: k1
3: while true do
4: SS[i] < (GIDs, p, k)
5: HIS[4][k][1, ..., N] < Snapshot(SS)
> Agree on w, the winner of group GID; in iteration k, and import its snapshot:
6: w «— CONJ[GID;][k].Compete (%)

7: ((GID1, p1, k1), ..., (GIDw~, pn, kn)) — HIS[w][K][1, ..., N]

> Check if p,, the proposal of w, can be chosen as the new name of group GID;:
8: P = {p; : j € [N] has GID; # GID,, and k; = maxgc[n{k, : GID, = GID,}}
9: if p,, € P then

10: r « the rank of GID,, in {GID; # L : j € [N]}
11: p «— the r-th integer not in P

12: else return p,,

13: end if

14: k—k+1
15: end while

@), that it has ¢ = 2m — 1 (LemmaH)), and that it terminates after a finite number of
steps (Lemma[3)). Let us denote the value of p written to the snapshot array (see line ()
in some iteration as the proposal value of the underlying processor in that iteration.

Lemma 1. The proposal values of processors from the same group is identical in any
iteration.

Proof. Consider some group. One can easily verify that the processors of that group,
and in fact all the processors, have an identical proposal value of 1 in the first iteration.
Thus, let us consider some iteration & > 1 and prove that all these processors have an
identical proposal value. Essentially, this is done by claiming that all the processors up-
date their value of p in the preceding iteration in an identical manner. For this purpose,
notice that all the processors compete for the same g-consensus object in that itera-
tion, and then import the same snapshot of the processor that won this consensus (see
lines[6H7). Consequently, they execute the code in lines[8HI3]in an identical manner. In
particular, this guarantees that the update of p in line[ITlis done exactly alike. a

Lemma 2. All the processors of the same group choose an identical new group name.

Proof. The proof of this lemma follows the same line of argumentation presented in the
proof of Lemmal[ll Again, the key observation is that in each iteration, all the processors
of some group compete for the same g-consensus object, and then import the same
snapshot. Since the decisions made by the processors in lines [8HI3] are solely based on
this snapshot, it follows that they are identical. In particular, this ensures that once a

Group Renaming 63

processor chooses a new group name, all the other processors will follow its lead and
choose the same name. a

Lemma 3. No two processors of different groups choose the same new group name.

Proof. Recall that we know, by Lemma 2] that all the processors of the same group
choose an identical new group name. Hence, it is sufficient that we prove that no two
groups select the same new name. Assume by way of contradiction that this is not the
case, namely, there are two distinct groups G and G’ that select the same new group
name p*. Let k and &k’ be the iteration numbers in which the decisions on the new
names of G and G’ are done, and let w € G and w’ € G’ be the corresponding pro-
cessors that won the g-consensus objects in that iterations. Now, consider the snapshot
((GID1,p1, k1), ..., (GIDN, pN, kn)), taken by w in its k-th iteration. One can easily
validate that p,, = p* since w writes its proposed value before taking a snapshot. Sim-
ilarly, it is clear that p/,, = p* in the snapshot ((GID}, p}, k1), ..., (GIDy, Py, ki),
taken by w’ in its k’-th iteration. By the linearizability property of the atomic snapshot
object and without loss of generality, we may assume that snapshot of w was taken be-
fore the snapshot of w’. Consequently, w’ must have captured the proposal value of w
in its snapshot, i.e., p!, = p*. This implies that p* appeared in the set P of w’. However,
this violates the fact that w’ reached the decision step in line[I2] a contradiction. a

Lemma 4. All the new group names are from the range [{], where £ = 2m — 1.

Proof. In what follows, we prove that the proposal value of any processor in any itera-
tion is in the range [¢]. Clearly, this proves the lemma as the chosen name of any group
is a proposal value of some processor. Consider some processor. It is clear that its first
iteration proposal value is in the range [¢]. Thus, let us consider some iteration k& > 1
and prove that its proposal value is at most 2m — 1. Essentially, this is done by bounding
the value of p calculated in line [[T] of the preceding iteration. For this purpose, we first
claim that the set P consists of at most m — 1 values. Notice that P holds the proposal
values of processors from at most m — 1 groups. Furthermore, observe that for each of
those groups, it holds the proposal values of processors having the same maximal itera-
tion counter. This implies, in conjunction with Lemmal[l] that for each of those groups,
the proposal values of the corresponding processors are identical. Consequently, P con-
sists of at most m — 1 distinct values. Now, one can easily verify that the rank of every
group calculated in line[L0lis at most m. Therefore, the new value of p is no more than
2m — 1. o

Lemma 5. Any processor either takes finite number of steps or chooses a new group
name.

Proof. The proof of this theorem is a natural generalization of the termination proof of
the renaming algorithm (see, e.g., [15, Sec. 16.3]). Thus, we defer it to the final version
of the paper. O
3.2 An Impossibility Result

In Appendix[A.Tl we provide an FLP-style proof of the following theorem.

64 Y. Afek et al.

Theorem 2. For any g > 2, it is impossible to wait-free implement tight group renam-
ing in a system having (g — 1)-consensus objects and atomic registers.

In particular, Theorem[2limplies that there is no wait-free implementation of tight group
renaming, even when g = 2, using only atomic registers.

4 Loose Group Renaming

In this section, we restrict our attention to shared memory systems which support only
atomic registers. By Theorem[2, we know that it is impossible to solve the tight group
renaming problem unless we relax our goal. Accordingly, we consider a variant in which
processors from the same group may choose a different new group name, as long as the
uniqueness property is maintained. The objective in this case is to minimize both the
inner scope size, which is the upper bound on the number of new group names selected
by processors from the same group, and the outer scope size, which is the new group
names range size. We use the notation, («, 3)-group renaming algorithm to designate
an algorithm yielding an inner scope of « and an outer scope of 3.

4.1 The Non-uniform Case

In the following we consider the task when group sizes are not uniform. We present a
group renaming algorithm having a worst case inner scope size of min{g, 2m, 2y/n}
and a worst case outer scope size of 3n — /n — 1. The algorithm is self-adjusting
with respect to the input properties. Namely, it achieves better performance guarantees
conditioned on the number of groups and processors. It seems worthy to emphasize that
the performance guarantees of our algorithm are not only based on g and m, but also
on /n, which is crucial in several cases.

The algorithm is built upon a consolidation of two algorithms, denoted as
Algorithm Pl and Algorithm Bl Both algorithms are adaptations of previously known
renaming methods for groups (see, e.g., [10]). Algorithm 2 which efficiently handles
small-sized groups, is a (g, n + m — 1)-group renaming algorithm, while Algorithm[3]
which efficiently attends to small number of groups, is a (min{m, g}, m(m + 1)/2)-
group renaming algorithm.

Theorem 3. Algorithm[lis a wait-free (g, n + m — 1)-group renaming algorithm.

Proof. The algorithm is very similar to the original renaming algorithm of Attiya et. al.
[3]. While there processors select a new name by computing the rank of their original
large id among the ids of participating processors, here processors consider the rank of
their original group name among the already published (participating) original group
names. One can prove that Algorithm 2l maintains the uniqueness property and termi-
nates after finite number of steps by applying nearly identical arguments to those used
in the analogous proofs of the underlying renaming method (see, e.g., [, Sec. 16.3]).
Therefore, we only focus on analyzing the size of the resulting new name-spaces. The
inner scope size of the algorithm is trivially g since there are at most g processors in
any group. We turn to bound the outer scope size. This is done by demonstrating that

Group Renaming 65

the proposal value p; of any processor ¢ in any iteration is at most n + m — 1. Clearly,
p; satisfies this requirement in the first iteration as its value is 1. Hence, let us consider
some other iteration and bound its proposal value. This is accomplished by bounding
the value of p; calculated in line [7] of the preceding iteration. For this purpose, notice
that the rank of every group calculated in line [6lis at most m. Furthermore, there are at
most n — 1 values proposed by other processors. Thus, the new value of p; is at most
n+m—1. a

Algorithm 2. code for processor i € [N].

In shared memory: SS[1, ..., N] array of swmr registers, initially L.
1: Pi — 1

2: while true do

3: SS[i] « (GIDs, p;)

4 ((GID4, p1),...,(GIDN,pN)) < Snapshot(SS)

5 if p; = p; for some j € [N] having GID; # GID; then

6: r « the rank of GID; in {GIDy # L : k € [N]}

7: p; < the r-th integer not in {px, # L : k € [N]\ {i}}
8 else return p;

9 end if

10: end while

Theorem 4. Algorithm B is a wait-free (min{m, g}, m(m + 1)/2)-group renaming
algorithm.

Proof. In this algorithm each processor records its participation by publishing its id
and its group original name. Each processor then takes a snapshot of the memory and
returns as its new group name the size of the snapshot it had obtained, concatenated
with its group id rank among the group ids recorded in the snapshot. One can prove that
Algorithm [3] supports the uniqueness property by applying nearly identical arguments
to those used in the corresponding proof of the underlying renaming method (see, e.g.,
[Z, Sec. 6]). Moreover, it is clear that the algorithm terminates after finite number of
steps. Thus, we only focus on analyzing the performance properties of the algorithm.
We begin with the inner scope size. Particularly, we prove a bound of m, noting that
a bound of g is trivial since there are at most g processors in any group. Consider
the case that two processors of the same group obtain the same number of observable
groups 1 in line Bl We argue that they also choose the same new group name. For
this purpose, notice that the set of GIDs that reside in SS may only grow during any
execution sequence. Hence, if two processors have an identical m then their snapshot
holds the same set of GIDs. Consequently, if those processors are of the same group
then their group rank calculated in line[lis also the same, and therefore the new names
they select are identical. This implies that the number of new group names selected by
processors from the same group is bound by the maximal value of m, which is clearly
never greater than m. We continue by bounding the outer scope size. As already noted,
m < m, and the rank of every group is at most m. Thus, the maximal group name is no
more than m(m — 1)/2 + m. O

66 Y. Afek et al.

Algorithm 3. code for processor i € [V].

In shared memory: SS[1, ..., N] array of swmr registers, initially L.
1: SS[i] — GID;

(GID4,...,GIDx) < Snapshot(SS)

m < the number of distinct GIDs in {GID; # L : j € [N]}

r « the rank of GID; in {GID; # L : j € [N]}

return m(m — 1)/2 +r

We are now ready to present our self-adjusting loose group renaming algorithm. The
algorithm has its roots in the natural approach that applies the best response with re-
spect to the instance under consideration. For example, it is easy to see that Algorithm[3]
outperforms Algorithm 2] with respect to the inner scope size, for any instance. In ad-
dition, one can verify that when m < /n, Algorithm [3 has an outer scope size of at
most n/2 — \/n/2, whereas Algorithm 2l has an outer scope size of at least n. Hence,
given an instance having m < /n, the best response would be to execute Algorithm[3]
Unfortunately, a straight-forward application of this approach has several difficulties.

One immediate difficulty concerns the implementation since none of the processors
have prior knowledge of the real values of m or g. Our algorithm bypasses this diffi-
culty by maintaining an estimation of these parameters using an atomic snapshot object.
Another difficulty concerns with performance issues. Specifically, both algorithms have
poor inner scope size guarantees for instances which simultaneously satisfy g = £2(n)
and m = £2(n). One concrete example having ¢ = n/2 and m = n/2 + 1 consists
of a single group having n/2 members and n/2 singleton groups. In this case, both
algorithms have an inner scope size guarantee of n/2. We overcome this difficulty by
sensibly combining the algorithms, therefore yielding an inner scope size guarantee of
24/n for these “hard” cases. The key observation utilized in this context is that if there
are many groups then most of them must be small. Consequently, by filtering out the
small-sized groups, we are left with a small number of large groups that we can han-
dle efficiently. Note that Algorithm] employs Algorithm [3] as sub-procedure in two
cases (see lines [6] and [I2). Tt is assumed that the shared memory space used by each
application of the algorithm is distinct.

Theorem 5. Algorithm M is a group renaming algorithm having a worst case inner
scope size of min{ g, 2m, 2/n} and a worst case outer scope size of 3n — \/n — 1.

Proof. We begin by establishing the correctness of the algorithm. For this purpose, we
demonstrate that it maintains the uniqueness property and terminates after finite num-
ber of steps. One can easily validate that the termination property holds since both
Algorithm 2l and Algorithm 3 terminate after finite number of steps. It is also easy to
verify that the uniqueness property is maintained. This follows by recalling that both
Algorithm 2] and Algorithm 3] maintain the uniqueness property, and noticing that each
case of the if statement (see lines BHI4) utilizes a distinct set of new names. To be
precise, one should observe that any processor that executes Algorithm [3]in line [@] is
assigned a new name in the range {1,...,n/2 — \/n/2}, any processor that executes

Group Renaming 67

Algorithmlin linePlis assigned a new name in the range {n/2—/n/2+1,...,5n/2—
v/n/2 — 1}, and any processor that executes Algorithm [3]in line [[2]is assigned a new
name whose value is at least 5n/2 — \/n/2. The first claim results by the outer scope
properties of Algorithm[3] and the fact that processors from less than y/n groups may
execute this algorithm. The second argument follows by the outer scope properties of
Algorithm 2 combined with the observation that m < n, and the fact that the value
of the name returned by the algorithm is increased by n/2 — v/n/2 in line[I0l Finally,
the last claim holds since Algorithm[3lis guaranteed to attain a positive-valued integer
name, and the value of this name is increased by 5n/2 — y/n/2 — 1 in line[I3

Algorithm 4. Adjusting group renaming algorithm: code for processor i € [N].

In shared memory: SS[1, ..., N] array of swmr registers, initially L.

1: SS[i] — GID;

2: (GIDy,...,GIDy) < Snapshot(SS)

3: i « the number of distinct GIDs in {GID; # L : j € [N]}

4: g < the number of processors j € [IN] having GID; = GID;

5. if m < y/n then

6: x < the outcome of Algorithm[3](using shared memory SS1[1, ..., N])
7: return x

8: elseif g < y/n then

9: x < the outcome of Algorithm[2] (using shared memory SSa[1, ..., N])
10: return +n/2 — \/n/2

11: else

12: x «— the outcome of Algorithm[3] (using shared memory SS3[1, ..., N])
13: return x + 5n/2 — /n/2 — 1

14: end if

We now turn to establish the performance properties of the algorithm. We demon-
strate that it is self-adjusting and has the following (inner scope, outer scope) properties:

(min{m, g}, m(m+1)/2) m</n
(g, 3n/24+m—+/n/2—-1) m>/nand g < /n
(min{g,2+/n}, 3n —y/n—1) m > +/nand g > \/n

Case I: m < /n. The estimation value m always satisfy /. < m. Therefore, all the
processors execute Algorithm[3lin line [6l The properties of Algorithm 3] guarantee that
the inner scope size is min{m, g} and the outer scope size is m(m + 1) /2. Take notice
that min{m, g} < min{g,2m,2\/n} andm(m+1)/2 < 3n—/n—1since m < \/n.
Thus, the performance properties of the algorithm in this case support the worst case
analysis.

Case II: m > \/n and g < /n. The estimation values never exceed their real values,
namely, m < m and g < g. Consequently, some processors may execute Algorithm[3lin
line[6land some may execute Algorithm[2lin line[9] depending on the concrete execution
sequence. The inner scope size guarantee is trivially satisfied since there are at most g
processors in each group. Furthermore, one can establish the outer scope size guarantee

68 Y. Afek et al.

by simply summing the size of the name space that may be used by Algorithm[3] which
is n/2 — \/n/2, with the size of the name space that may be used by Algorithm 2]
which is n + m — 1. Notice that ¢ < min{g, 2m,2/n} since g < /n < m, and
3n/2+m—+/n/2—-1<3n—/n—1asm < n.Hence, the performance properties
of the algorithm in this case support the worst case analysis.

Case III: m > /n and g > /n. Every processors may execute any of the algorithms,
depending of the concrete execution sequence. The first observation one should make
is that no more than /n new names may be collectively assigned to processors of the
same group by Algorithm [3in line [6] and Algorithm[2]in line Ol Moreover, one should
notice that any processor that executes Algorithm [3] in line [[2] is part of a group of
size greater than \/n. Consequently, processors from less than /n groups may execute
it. This implies, in conjunction with the properties of Algorithm 3] that no more than
\/n new names may be assigned to each group, and at most n/2 — /n/2 names are
assigned by this algorithm. Putting everything together, we attain that the inner scope
size is min{g,2+/n} and the outer scope size is 3n — /n — 1. It is easy to see that
min{g, 2y/n} < min{g, 2m, 2y/n} since m > /n, and thus the performance proper-
ties of the algorithm in this case also support the worst case analysis. O

4.2 The Uniform Case

In what follows, we study the problem when the groups are guaranteed to be uniform
in size. We refine the analysis of Algorithm [by establishing that it is a loose group
renaming algorithm having a worst case inner scope size of min{m, g}, and an outer
scope size of 3n/2 + m — /n/2 — 1. Note that min{m, g} < y/n in this case. In
particular, we demonstrate that the algorithm is self-adjusting and has the following
(inner scope, outer scope) properties:

(min{m, g}, m(m +1)/2) m < /n
(g,3n/24+m—+/n/2—-1) m>+/n

This result settles, to some extent, an open question posed by Gafni [10], which called
for a self-adjusting group renaming algorithm that requires at most m(m -+ 1)/2 names
on one extreme, and no more than 2n — 1 names on the other.

The key observation required to establish this refinement is that n = m - g when
the groups are uniform in size. Consequently, either m < /n or g < y/n. Since the
estimation values that each processor sees cannot exceed the corresponding real values,
no processor can ever reach the second execution of Algorithm [3in line T2 Now, the
proof of the performance properties follows the same line of argumentation presented
in the proof of Theorem[5

5 Discussion

This paper has considered and investigated the tight and loose variants of the group re-
naming problem. Below we discuss few ways in which our results can be extended. An
immediate open question is whether a g-consensus task can be constructed from group

Group Renaming 69

renaming tasks for groups of size g, in a system with g processes. Another question
is to design an adaptive group renaming algorithm in which a processor is assigned
a new group name, from the range 1 through k where & is a constant multiple of the
contention (i.e., the number of different active groups) that the processor experiences.
We have considered only one-shot tasks (i.e., solutions that can be used only once), it
would be interesting to design long-lived group renaming algorithms. We have focused
in this work mainly on reducing the new name space as much as possible, it would be
interesting to construct algorithms also with low space and time (step) complexities. Fi-
nally, the k-set consensus task, a generalization of the consensus task, enables for each
processor that starts with an input value from some domain, to choose some participat-
ing processor’ input as its output, such that all processors together may choose no more
than k distinct output values. It is interesting to find out what type of group renaming
task, if any, can be implemented using k-set consensus tasks and registers.

References

1. Afek, Y., Attiya, H., Fouren, A., Stupp, G., Touitou, D.: Long-lived renaming made adaptive.
In: Proc. 18th ACM Symp. on Principles of Distributed Computing, pp. 91-103 (May 1999)

2. Afek, Y., Stupp, G., Touitou, D.: Long lived adaptive splitter and applications. Distributed
Computing 30, 67-86 (2002)

3. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asynchronous
environment. J. ACM 37(3), 524-548 (1990)

4. Attiya, H., Fouren, A.: Algorithms adapting to point contention. Journal of the ACM 50(4),
144-468 (2003)

5. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Advanced Top-
ics. John Wiley Interscience, Chichester (2004)

6. Bar-Noy, A., Dolev, D.: Shared memory versus message-passing in an asynchronous. In:
Proc. 8th ACM Symp. on Principles of Distributed Computing, pp. 307-318 (1989)

7. Bar-Noy, A., Dolev, D.: A partial equivalence between shared-memory and message-passing
in an asynchronous fail-stop distributed environment. Mathematical Systems Theory 26(1),
21-39 (1993)

8. Burns, J., Peterson, G.: The ambiguity of choosing. In: Proc. 8th ACM Symp. on Principles
of Distributed Computing, pp. 145-158 (August 1989)

9. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus with one
faulty process. J. ACM 32(2), 374-382 (1985)

10. Gafni, E.: Group-solvability. In: Proceedings 18th International Conference on Distributed
Computing, pp. 3040 (2004)

11. Gafni, E., Merritt, M., Taubenfeld, G.: The concurrency hierarchy, and algorithms for un-
bounded concurrency. In: Proc. 20th ACM Symp. on Principles of Distributed Computing,
pp- 161-169 (August 2001)

12. Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Languages and
Systems 13(1), 124-149 (1991)

13. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems 12(3), 463-492 (1990)

14. Inoue, M., Umetani, S., Masuzawa, T., Fujiwara, H.: Adaptive long-lived O(k?)-renaming
with O(k?) steps. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 123-135. Springer,
Heidelberg (2001)

15. Moir, M., Anderson, J.H.: Wait-free algorithms for fast, long-lived renaming. Science of
Computer Programming 25(1), 1-39 (1995)

70 Y. Afek et al.
A Tight Group Renaming

A.1 An Impossibility Result

In what follows, we establish the proof of Theorem[2l Our impossibility proof follows
the high level FLP-approach employed in the context of the consensus problem (see,
e.g., [1219]). Namely, we assume the existence of a tight group renaming algorithm,
and then derive a contradiction by constructing a sequential execution in which the
algorithm fails, either because it is inconsistent, or since it runs forever. Prior to delving
into technicalities, we introduce some terminology.

The decision value of a processor is the new group name selected by that processor.
Analogously, the decision value of a group is the new group name selected by all pro-
cessors of that group. An algorithm state is multivalent with respect to group G if the
decision value of G is not yet fixed, namely, the current execution can be extended to
yield different decision values of G. Otherwise, it is univalent. In particular, an x-valent
state with respect to G is a univalent state with respect to G yielding a decision value of
x. A decision step with respect to G is an execution step that carries the algorithm from
a multivalent state with respect to G to a univalent state with respect to G. A processor is
active with respect to a algorithm state if its decision value is still not fixed. A algorithm
state is critical with respect to G if it is multivalent with respect to G and any step of
any active processor is a decision step with respect to G.

Lemma 6. Every group renaming algorithm admits an input instance whose initial
algorithm state is multivalent with respect to a maximal size group.

Proof. We begin by establishing that every group renaming algorithm admits an in-
put instance whose initial algorithm state is multivalent with respect to some group.
Consider some group renaming algorithm, and assume by contradiction that the initial
algorithm state is univalent with respect to all groups for every input instance. We argue
that all processors implement some function f : [M] — [¢] for computing their new
group name. For this purpose, consider some processor whose group name is a € [M].
Notice that this processor may be scheduled to execute a “solo run”. Let us assume
that its decision value in this case is « € [{]. Since the initial algorithm state is uni-
valent with respect to the group of that processor, it follows that in any execution this
processor must decide x, regardless of the other groups, their name, and their schedul-
ing. The above-mentioned argument follows by recalling that all processors execute the
same algorithm, and noticing that a could have been any initial group name. Now, recall
that M > ¢. This implies that there are at least two group names a1,az € [M] such
that f(a1) = f(a2). Correspondingly, there are input instances in which two processors
from two different groups decide on the same new group name, violating the uniqueness
property.

We now turn to prove that every group renaming algorithm admits an input instance
whose initial algorithm state is multivalent with respect to a maximal size group. Con-
sider some group renaming algorithm, and suppose its initial algorithm state is multi-
valent with respect to group G. Namely, there are two execution sequences o1, o9 that
lead to different decision values of G. Now, if G is maximal in size then we are done.

Group Renaming 71

Otherwise, consider the input instance obtained by adding processors to G until it be-
comes maximal in size. Notice that the execution sequences o1 and o9 are valid with
respect to the new input instance. In addition, observe that each possessor must decide
on the same value as in the former instance. This follows by the assumption that none
of the processors has prior knowledge about the other processors and groups, and thus
each processor cannot distinguish between the two instances. Hence, the initial algo-
rithm state is also multivalent with respect to G in this new instance. a

Lemma 7. Every group renaming algorithm admits an input instance for which a crit-
ical state with respect to a maximal size group may be reached.

Proof. We prove that every group renaming algorithm which admits an input instance
whose initial algorithm state is multivalent with respect to some group may reach a crit-
ical state with respect to that group. Notice that having this claim proved, the lemma
follows as consequence of Lemma [6l Consider some group renaming algorithm, and
suppose its initial algorithm state is multivalent with respect to group G. Consider the
following sequential execution, starting from this state. Initially, some arbitrary proces-
sor executes until it reaches a state where its next operation leaves the algorithm in a
univalent state with respect to G, or until it terminates and decides on a new group name.
Note that the latter case can only happen if the underlying processor is not affiliated to
G. Also note that the processor must eventually reach one of the above-mentioned states
since the algorithm is wait-free and cannot run forever. Later on, another arbitrary pro-
cessor executes until it reaches a similar state, and so on. This sequential execution
continues until reaching a state in which any step of any active processor is a decision
step with respect to G. Again, since the algorithm cannot run forever, it must eventually
reach such state, which is, by definition, critical. O

We are now ready to prove the impossibility result.

Proof of Theorem[2l Assume that there is a group renaming algorithm implemented
from atomic registers and r-consensus objects, where r < g. We derive a contradiction
by constructing an infinite sequential execution that keeps such algorithm in a multiva-
lent state with respect to some maximal size group. By Lemma[7] we know that there
is an input instance and a corresponding execution of the algorithm that leads to a crit-
ical state s with respect to some group G of size g. Keep in mind that there are at least
g active processors in this critical state since, in particular, all the processors of G are
active. Let p and ¢ be two active processors in the critical state which respectively carry
the algorithm into an z-valent and a y-valent states with respect to G, where x and y
are distinct. We now consider four cases, depending on the nature of the decision steps
taken by the processors:

Case I: One of the processors reads a register. Let us assume without loss of gen-
erality that this processor is p. Let s’ be the algorithm state reached if p’s read step
is immediately followed by ¢’s step, and let s be the algorithm state following ¢’s
step. Notice that s’ and s” differ only in the internal state of p. Hence, any processor
p’ € G, other than p, cannot distinguish between these states. Thus, if it executes a “solo
run”, it must decide on the same value. However, an impossibility follows since s’ is

72 Y. Afek et al.

x-valent with respect to G whereas s’ is y-valent. This case is schematically described
in Figure[(a).

Case II: Both processors write to the same register. Let s’ be the algorithm state
reached if p’s write step is immediately followed by ¢’s write step, and let s” be the al-
gorithm state following ¢’s write step. Observe that in the former scenario g overwrites
the value written by p. Hence, s’ and s differ only in the internal state of p. There-
fore, any processor p’ € G, other than p, cannot distinguish between these states. The
impossibility follows identically to Case I.

Case III: Each processor writes to or competes for a distinct register or consensus
object. In what follows, we prove impossibility for the scenario in which both pro-
cessors write to different registers, noting that impossibility for other scenarios can be
easily established using nearly identical arguments. The algorithm state that results if
p’s write step is immediately followed by ¢’s write step is identical to the state which
results if the write steps occur in the opposite order. This is clearly impossible as one
state is x-valent and the other is y-valent. This case is schematically illustrated in Fig-
ure[lb).

Case IV: All active processors compete for the same consensus object. As men-
tioned above, there are at least g active processors in the critical state. Additionally, we
assumed that the algorithm uses 7-consensus objects, where r < g. This implies that
the underlying consensus object is accessed by more processors then its capacity, which
is illegal.

p read step q step p write step q write step

q step A q write step A write step
y-valent

z-valent
(a) (b)

Fig. 1. The decision steps cases

Global Static-Priority Preemptive
Multiprocessor Scheduling with Utilization
Bound 38%

Bjorn Andersson

IPP Hurray Research Group,
Polytechnic Institute of Porto, Portugal

Abstract. Consider the problem of scheduling real-time tasks on a mul-
tiprocessor with the goal of meeting deadlines. Tasks arrive sporadically
and have implicit deadlines, that is, the deadline of a task is equal
to its minimum inter-arrival time. Consider this problem to be solved
with global static-priority scheduling. We present a priority-assignment
scheme with the property that if at most 38% of the processing capacity
is requested then all deadlines are met.

1 Introduction

Consider the problem of preemptively scheduling n sporadically arriving tasks
on m > 2 identical processors. A task 7; is uniquely indexed in the range 1..n
and a processor likewise in the range 1..m. A task 7; generates a (potentially
infinite) sequence of jobs. The arrival times of these jobs cannot be controlled by
the scheduling algorithm and are a priori unknown. We assume that the arrival
time between two successive jobs by the same task 7; is at least T;. Every job
by 7; requires at most C; time units of execution over the next T; time units
after its arrival. We assume that T; and C; are real numbers and 0 < (C; <
T;. A processor executes at most one job at a time and a job is not permitted
to execute on multiple processors simultaneously. The utilization is defined as
Us = (1/m)- >0, % The utilization bound UBj4 of an algorithm A is the
maximum number such that all tasks meet their deadlines when scheduled by
A, if Us < UBjy.

Static-priority scheduling is a specific class of algorithms where each task is
assigned a priority, a number which remains unchanged during the operation
of the system. At every moment, the highest-priority task is selected for ex-
ecution among tasks that are ready to execute and has remaining execution.
Static-priority scheduling is simple to implement in operating systems and it
can be implemented efficiently. Therefore, it is implemented in virtually all real-
time operating systems and many desktop operating systems support it as well,
accessible through system calls specified according to the POSIX-standard [IJ.
Because of these reasons, a comprehensive toolbox (see [2,[3]) of results (priority-
assignment schemes, schedulability analysis algorithms, etc) has been developed

T.P. Baker, A. Bui, and S. Tixeuil (Eds.): OPODIS 2008, LNCS 5401, pp. 73 2008.
© Springer-Verlag Berlin Heidelberg 2008

74 B. Andersson

for static-priority scheduling on a single processor. The success story of static-
priority scheduling on a single processor started with the development of the
rate-monotonic (RM) priority-assignment scheme [4]. It assigns task 7; a higher
priority than task 7; if 7; < 7;. RM is an optimal priority-assignment scheme,
meaning that for every task set, it holds that if there is an assignment of prior-
ities that causes deadlines to be met then deadlines are met as well when RM
is used. It is also known [4] that UBgy = 0.69 for the case that m = 1. This
result is important because it gives designers an intuitive idea of how much a
processor can be utilized without missing a deadline.

Multiprocessor scheduling algorithms are often categorized as partitioned or
global. Global scheduling stores tasks which have arrived but not finished exe-
cution in one queue, shared by all processors. At any moment, the m highest-
priority tasks among those are selected for execution on the m processors. In
contrast, partitioned scheduling algorithms partition the task set such that all
tasks in a partition are assigned to the same processor. Tasks may not migrate
from one processor to another. The multiprocessor scheduling problem is thus
transformed to many uniprocessor scheduling problems.

Real-time scheduling on a multiprocessor is much less developed than real-
time scheduling on a single processor. And this applies to static-priority schedul-
ing as well. In particular, it is known that it is impossible to design a partitioned
algorithm with UB > 0.5 [5]. It is also known that for global static-priority
scheduling, RM is not optimal. In fact, global RM can miss a deadline although
Us approaches zero [0]. For a long time, the research community dismissed global
static-priority scheduling for this reason. But later, it was realized that other
priority-assignment schemes (not necessarily RM) can be used for global static-
priority scheduling and the research community developed such schemes. Many
priority-assignment schemes and analysis techniques for global static-priority
scheduling are available (see for example [7, [8 @, [I0]) but so far, only two
priority-assignment schemes, RM-US(m/(3m —2)) [II] and RM-US(z) [12] have
known (and non-zero) utilization bounds. These two algorithms categorize a task
as heavy or light. A task is said to be heavy if C% exceeds a certain threshold
number and a task is said to be light otherwise. Heavy tasks are assigned the
highest priority and the light tasks are assigned a lower priority; the relative
priority order among light tasks is given by RM. It was shown that among the
algorithms that separate heavy and light tasks and use RM for light tasks, no
algorithm can achieve a utilization bound greater than 0.374 [12]. And in fact,
the current state-of-art offers no algorithm with utilization bound greater than
0.374.

In this paper, we present a new priority-assignment scheme SM-US(2/(3 +
V/5)). It categorizes tasks as heavy and light and assigns the highest priority to
heavy tasks. The relative priority order of light tasks is given by slack-monotonic
(SM) though, meaning that task 7; is assigned higher priority than task 7; if T}
- Cj < T; - C;. We prove that the utilization bound of SM-US(2/(3 + v/5)) is
2/(3 ++/5), which is approximately 0.382.

Global Static-Priority Preemptive Multiprocessor Scheduling with UB 38% 75

We consider this result to be significant because (i) the new algorithm SM-
US(2/(3 + V/5)) breaks free from the performance limitations of the RM-US
framework, (i) the utilization bound of SM-US(2/(3 + v/5)) is higher than the
utilization bound of the previously-known best algorithm in global static-priority
scheduling and (iii) the utilization bound of SM-US(2/(3 4 v/5)) is reasonably
close to the limit v/2—1 a2 0.41 which is known (from Theorem 8 in [13]) to be an
upper bound on the utilization bound of every global static-priority scheduling
algorithm which assigns a priority to a task 7; as a function only of T; and C;.

Section [2 gives a background on the subject, presenting the main ideas be-
hind algorithms that achieve a utilization bound greater than zero. It also
presents results that we will use, in particular (i) lemmas expressing inequal-
ities, (ii) a lemma from previous research on the amount of execution performed
and (iii) a new schedulability test. Section [presents the new algorithm SM-
US(2/(3++/5)) and proves its utilization bound using the schedulability test in
Section [2l Conclusions are given in Section Ml

2 Background

2.1 Understanding Global Static-Priority Scheduling
The inventor of RM observed [14] that

Few of the results obtained for a single processor generalize directly to
the multiple processor case; bringing in additional processors adds a new
dimension to the scheduling problem. The simple fact that a task can
use only one processor even when several processors are free at the same
time adds a surprising amount of difficulty to the scheduling of multiple
processors.

Example [gives a good illustration of this.

Ezample 1. [From [6]]. Consider a task set with n=m-+1 tasks to be scheduled on
m processors. The tasks are characterized as Vi € {1,2,...,m}: T, =1,C; = 2¢
and Ty41 = 1+ €,Chq1 = 1. If we assign priorities according to RM then 7,11
is given the lowest priority and when all tasks arrive simultaneously then 7,11
misses a deadline. Letting ¢ — 0 and m — oo gives us a task set with U; — 0
and it misses a deadline.

Based on Example[I] one can see that better performance can be achieved by giv-
ing high priority to tasks with high % And in fact this is what the algorithms,
RM-US(m/(3m — 2)) [11] and RM-US(z) [12] do. The algorithm RM-US(z)
[12] computes the value of x and its utilization bound is z. The value of x de-
pends on the number of processors; it is given as (1-y)/(m - (14y))+In(1+y)=(1-
y)/(14+y)=z. Solving it for m — oo gives us that y=0.454 and x=0.375. One
can see that m — oo gives us the least value of x. Hence the utilization bound
of RM-US(0.375) is 0.375. And there is no other choice of « which gives a higher
utilization bound. Example 2 illustrates this.

76 B. Andersson

T

T,

L

T

m+2

Tom

Tarme

T

q*m+2

T

q*m+m

A

>

q*8 1 1 +é *3 time

(Rl e e e T

Fig. 1. An example of a task set where RM-US(0.375) performs poorly. All tasks arrive
at time 0. Tasks 71, 72,..., Tm are assigned the highest priority and execute on the m
processors during [0,6). Then the tasks Tm41, Tm+2,- - -, T2m €xecute on the m processors
during [6,26). The other groups of tasks execute in analogous manner. Task 7, executes
then until time 1. Then the groups of tasks arrive again. The task set meets its deadlines
but an arbitrarily small increase in execution times causes a deadline miss.

Ezample 2. [Partially taken from [12]]. Figure[lillustrates the example. Consider
n = m-q+ 1 tasks to be scheduled on m processors, where q is a positive integer.
The task 7, is characterized by T;, = 14y and C,, = 1 —y. The tasks with index
i € {1,2,...,n — 1} are organized into groups, where each group comprises m
tasks. One group is the tasks with index ¢ € {1,2,...,m}. Another group is
the tasks with index i € {m+1,m+2,...,2---m} and so on. The r:th group
comprises the tasks with index ¢ € {r-m+ 1,7r-m+2,...,r-m+ m}. Al
tasks belonging to the same group have the same T; and C;. Clearly there are
q groups. The tasks in the r:th group have the parameters T; = 1 +r -6 and
C; = 6, where ¢ is selected as y = ¢ - 6. Hence, specifying m and y gives us the
task set. By letting y = 0.454 and m — oo we have a task set that where all
tasks are light. The resulting task set is depicted in Figure[Il Also, all tasks meet
their deadlines but an arbitrarily small increase in execution time of 7,, causes

Global Static-Priority Preemptive Multiprocessor Scheduling with UB 38% 77

it to miss a deadline. That is, RM-US(0.375) misses a deadline at a utilization
just slightly higher than 0.375.

One can see that if the light tasks in Example [2] would have been assigned
priorities such that 7; — C; < T; — C; implies that 7; has higher priority than
7; then deadlines would have been met. In fact, we will use this idea when we
design the new algorithm in Section [3l

2.2 Results We Will Use

Lemma 1-4 state four simple inequalities that we will find useful; their proofs
are available in the Appendix.

Lemma 1. Let m denote a positive integer. Consider u; to be a real number
such that 0 < u; < 3+2\/5 and consider S to denote a set of non-negative real

numbers u; such that
2

(D_ug) +ui < .m (1)
34v3
then it follows that

1

. o) - <
()) <1 e
JeS

Lemma 2. Consider two non-negative real numbers u; and u; such that 0 <
u; <1 and 0 < u; < 1. For those numbers, it holds that:

l—ui l—ui

u; + (1 —u,) uy < (2= ug) - uy (3)

'].—’U,j .].—’U,j

Lemma 3. Consider two non-negative real numbers u; and u; such that 0 <
uj <1 and 0 <u; < 1. And two non-negative real numbers T; and T; such that

Ty (1—u;) <Ti- (1 —uy) (4)
For those numbers, it holds that:
T; T} 1 —wy I —u;
Uj'TZ+(1—uj'TZ)'uj§Uj'1_uj+(1—uj'1_uj) (5)

Lemma 4. Consider two integers T; and C; such that 0 < C; < Tj. For every
t > 0 it holds that:

L;,J'Cj+min(t_Lth‘jﬂj,Cj)SCj—&-(t_C).Cj ©)

T; Ty
Predictable scheduling. Ha and Liu [15] have studied real-time scheduling of
jobs on a multiprocessor; a job is characterized by its arrival time, its deadline,
its minimum execution time and its maximum execution time. The execution
time of a job is unknown but it is no less than its minimum execution time and
no greater than its maximum execution time. A scheduling algorithm A is said
to be predictable if for every set J of jobs it holds that:

78 B. Andersson

Scheduling all jobs by A with execution times equal to their maximum
execution times causes deadlines to be met. = Scheduling all jobs by A
with execution times being at least their minimum execution times and
at most their maximum execution times causes deadlines to be met.

Intuitively, the notion of predictability means that we only need to analyze the
case when all jobs execute according to their maximum execution time. Ha and
Liu also found that global static priority scheduling of jobs on a multiprocessor
is predictable. Our paper deals with tasks that generate jobs with a certain
constraint (given by the minimum inter-arrival time, T;). But since our model
is a special case of the model used by Ha and Liu, it also follows that global
static-priority scheduling with our model is predictable as well.

The notion of active. We let active(t, 7;) be true if at time ¢, there is a
job of 7; which has arrived no later than ¢ and has a deadline no earlier than
t; otherwise active(t, 7;) is false. Observe that a task 7; may release a job and
at time ¢ this job has no remaining execution but its deadline is greater than ¢.
Because of our notion active, this task 7; is active at time ¢t. Note that with our
notion of active, a periodically arriving task is active all the time after its first
arrival. Because we study sporadically arriving tasks, there may be moments
when a task is not active though. The notion of gap measures that.

The notion of gap. We let gap([to,t1), 7;) denote the amount of time during
[to,t1) where active(t, T;) is false.

Optimal algorithm. Consider a task 7; and a time interval of duration e such
that the task 7; is active during the entire time interval. Let OPT denote an
algorithm which executes task 7; for (C;/T;)- € time unit during the time interval
of duration €, where € is arbitrarily small.

‘Work-conserving. We say that a scheduling algorithm is work-conserving if it
holds for every t that: if there are at least k tasks with unfinished execution at
time ¢ then at least k processors are busy at time ¢. In particular, we note that
global static-priority scheduling is work-conversing.

Execution. Let t; denote a time such that no tasks have arrived before ¢j.
Let W(A, 7, [to,t1)) denote the amount of execution performed by tasks in
7 during [to,t1) when scheduled by algorithm A. Philips et al. [16] studied the
amount of execution performed by a work-conserving algorithm. They found
that the amount of execution in a time interval performed by work-conserving
algorithm is at least as much as the amount of execution performed by any other
algorithm assuming that the work-conserving algorithm is given processors that
are (2m — 1)/m times faster. Previous research [11] in real-time computing has
used this result by comparing the amount of execution performed by global
static-priority scheduling against the algorithm OPT but that work considered
only the model of periodically arriving tasks. That result can be extended in a
straightforward manner to the model we use in this paper (the sporadic model)
though, as expressed by Lemma 5.

Global Static-Priority Preemptive Multiprocessor Scheduling with UB 38% 79

Lemma 5. Let G denote an algorithm with global static-priority scheduling. If

. G m
: <
Vi T, ~ 2m—1 (7)
and o
i Mmoo
Z T, ~ 2m—1 m (8)
TjET
then .
WG o t) 2 3 (0~ o = gapllto,)) - 7 ©)

Proof. From Equation [1 and Equation [§ it follows that the task set 7 can be
scheduled to meet deadlines by OPT on a multiprocessor with m processors of
speed m/(2m — 1). The amount of execution during [¢o,t1) is then given by the
right-hand side of Equation[@l And the result by Philips et al gives us that also
algorithm G performs as much execution during [to,t;). Hence Equation[@is true
and it gives us that the lemma is true.

Schedulability analysis. Let t; denote a time such that no tasks arrive before
to. Let us consider a time interval that begins at time to; let [to, ¢2) denote this
time interval. We obtain that the amount of execution performed by the task
set 7 during [to, t2) is at most:

Z (LtQ — 1o —gap([tmtz)ﬂ'j)J -Cj+

T €hp(i) Tj

wmin(ts — to — gap(lto,t2),7) [~ 0 TOPUOERT g) o)

From Lemma 5 we obtain that the amount of execution performed by the task

set 7 during [to, t1) is at least:

> (tr—to — gap(fto, ta], 7)) -

T €hp(i)

Cj
T (11)
Let us consider the case that a deadline was missed. Let us consider the earliest
time when a deadline was missed. Let ¢; denote the arrival time of the job that
missed this deadline and let 7; denote the task that generated this job. Let hp(i)
denote the set of tasks with higher priority than 7;. Let ¢2 denote the deadline
that was missed; that is, to=t1+7;. Applying Equation [8 and Equation @ on
hp(i) gives us that the amount of execution by hp(i) during [t1,t2) is at most:

Z (LtQ_tO_gap([t07t2)7Tj)J Cj+
. T;
Tj€hp(i)
. ts — to — gap([to, t2), 7
min(tz — to — gap([to, t2), 73) — | 2 — to 92?([0,t2) TJ)J 'Tj,Cj))
J
C’,
- Z (tl —to — gap([t07t1]a7—j)) ' TJ

5 €hp(4) J

(12)

80 B. Andersson

Using t; = t1 + T; and rewriting gives us that the amount of execution by
hp(i) during [t1,t2) is at most:

3 (LTi +t1 —to — gap([to, t1), ;) — gap([t1, t2), 7))

T 1-C5+

min(T; + t1 — to — gap([to, t1),7;) — gap([t1,t2),7;) —

T; +t1 — to — gap([to, t1), 75) — gap([t1,t2), 75
I 1 ([T{) 5) (I)])J'Tj,Cj)
J
C’,
— Y (t1—to—gap(fto, 1], 7)) - T
. J
T €hp(4)

(13)

Applying Lemma 4 on Equation [[3] gives us that the amount of execution by
hp(i) during [t1,t2) is at most:

C,
> (Cj + (Ti + t1 — to — gap([to, t1), 75) — gap([t1, t2), 75) — Cj) - TJ)
7;€hp(i) J
Cj

— > (i —to— gap(fto. ta], 7)) - T,

Tj€hp(3)
(14)

Simplifying Equation[T4] gives us that the amount of execution by hp(i) during
[t1,t2) is at most:

> (Cj + (Ti — gap([t1, t2),) — Cj) - Cj) (15)

Tj€hp(3) Tj

Relaxing gives that the amount of execution by tasks in hp(i) during [t1,t2)
is at most:

> (a+m-c)-7) (16)

T €hp(i)

From Equation [I6 it follows that the amount of time during during [t1,t2)

where all processors are busy executing tasks in hp(i) is at most:
1 C;
w2 (Gr@m-on-) (17)

Tj€hp(3)

Lemma 6. Consider global static-priority scheduling. Consider a task 7;. If all
tasks in hp(i) meet their deadlines and

e 7 (18)

CA
Vi € hp(i) :
j € hp(i) 7S om—1

Global Static-Priority Preemptive Multiprocessor Scheduling with UB 38% 81

and .
T: = 2mm— " (19)
and c c
) ; m
(> ?>+T-S2m—1.m 20)
T;€hp(3) J v
and 1 C
(X (Gr@m-cy-J))+c<m (21)
m Tj€hp(i) J

then all deadline of 7; are met.

Proof. Follows from the discussion above.

3 The New Algorithm

Section Bl presents Slack-monotonic (SM) scheduling and analyzes its perfor-
mance for restricted task sets (called light tasks). This restriction is then removed
in Section 3.2 the new algorithm is presented and its utilization bound is proven.

3.1 Light Tasks

We say that a task 7; is light if % < 3+2 5 We let Slack-Monotonic (SM) denote

a priority assignment scheme which assigns priorities such that task 7; is assigned
higher priority than task 7; if T; — C; < T; — C;.

Lemma 7. Consider global static-priority scheduling with SM. Consider a task
i. If all tasks in hp(i) meet their deadlines and

vj € hp(i) (; <ol (22)
and o 5
T = 3+5 (23)
and o, c, 5
(> Tj)+n§3+\/5'm (24)

75 €hp(i)
then all deadline of 7; are met.
Proof. The Inequalities R223] and imply that Inequalities [I8IT9 and are
true. Applying Lemma 1 on Inequalities 24] gives us:

D DI R IERES (25)

82 B. Andersson

Applying Lemma 2 on Inequalities B gives us:

1 c;, 1-% c, 1-9 ¢ C;

: : (1= iy Y P 26

m (Z (T] 1_Cj+(T] 1_CJ) T]) +/TZ— ()
j€hp(i) Tj T

From the fact that SM is used we obtain that
Vj e hp(l) : Tj — Cj <T;-C; (27)
Considering Inequality 26l and Inequality 27 and Lemma 3 gives us:
1 c; T; c; 15, Cj C;
. : 1— . . <1 2
m(Z,(Tj))t (%)
JERP(3)

Multiplying both the left-hand side and the right-hand side of Inequality
by T; and rewriting yields:

1 C.-
m'(> (Cj+(Ti—Cj)-T?)>+Ci<Ti (29)
Jj€hp(i)

Using Inequality and Lemma 6 gives us that all deadline of 7; are met.
This states the lemma.

Lemma 8. Consider global static-priority scheduling with SM. If it holds for
the task set that

C; 2
Vroer: 7 < 30
! T, = 34++/5 (30)
and o 5
I < ‘m 31
21 5y (31

then all deadline of T; are met.

Proof. Follows from Lemma 7.

3.2 Light and Heavy Tasks

We say that a task is heavy if it is not light. We let the algorithm SM-US(2/(3+
V/5)) denote a priority assignment scheme which assigns the highest priority to
heavy tasks and assigns a lower priority to light tasks; the priority order between
light tasks is given by SM.

Theorem 1. Consider global static-priority scheduling with SM-US(2/
(34 +/5)). If it holds for the task set that

V1, €T <1 (32)

N

Global Static-Priority Preemptive Multiprocessor Scheduling with UB 38% 83

and o 5
I < -m 33
;ETTJ 3+V5 (33)

then all deadlines are met.

Proof. The proof is by contradiction. If the lemma was false then it follows that
there is a task set such that Inequality 32 and Inequality B3] are true and when
this task set was scheduled by SM-US(2/(3 + v/5)) a deadline was missed. Let
rfailed failed denote this task set and let m denote the number of processors.
Let k denote the number of heavy tasks. Because of Inequality B3] it follows that
k < m. Also, because of Lemma 8 is follows that k > 1.

Let 7/9%¢42 denote a set which is constructed from 7/%%¢d as follows. For
every light task in 7794 there is a light task in 77%¢42 and their T; and C; are
the same. For every heavy task in 7/%¢¢ there is a heavy task in 7f%%¢42 and
its T; is the same. For the heavy tasks in rlailed2 it holds that C; = T;. From
Inequality B3] it follows that

Cj 2
7 Elight(rfailed) T; = 34++/5

where light(77%¢?) denotes the set of light tasks in 77%¢?, Since the light tasks
are the same in 779%¢? and 7feied2 it clearly follows that

Cj 2
7 Elight(failed2) Tj 3+ \/5

If the task set 7/%%°?2 would meet all deadlines when scheduled by SM-
US(2/(3 + v/5)) then it would follow (from the fact that global static-priority
scheduling is predictable) that all deadlines would have been met when 7/@ied
was scheduled by SM-US(2/(3 4+ v/5)). Hence it follows that at least one dead-
line was missed by 7/%%¢42 And since there are at most k < m — 1 heavy tasks
it follows that no deadline miss occurs for the heavy tasks. Hence it must have
been that a deadline miss occurred from a light task in 7/%%¢42. But the schedul-
ing of the light tasks in 7/%%¢42 ig identical to what is would have been if we
deleted the heavy tasks in 7/9%¢92 and deleted the k processors. That is, we
have that scheduling the light tasks on m — k processor causes a deadline miss.
But Inequality and Lemma 8 gives that no deadline miss occurs. This is a
contradiction. Hence the theorem is correct.

4 Conclusions

We have presented a new priority-assignment scheme, SM-US(2/(3 + v/5)), for
global static-priority multiprocessor scheduling and proven that its utilization
bound is 2/(3 4+ /5, which is approximately, 0.382. We left open the question
whether it is possible to achieve a utilization bound of v/2 — 1 with global static-
priority scheduling.

84

B. Andersson

Acknowledgements

This work was partially funded by the Portuguese Science and Technology Foun-
dation (Fundagao para a Ciéncia e a Tecnologia - FCT) and the ARTIST2 Net-
work of Excellence on Embedded Systems Design.

References

1]

2]

3]

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Gallmeister, B.: POSIX.4 Programmers Guide: Programming for the Real World.
O’Reilly Media, Sebastopol (1995)

Sha, L., Rajkumar, R., Sathaye, S.: Generalized Rate-Monotonic Scheduling The-
ory: A Framework for Developing Real-Time Systems. Proceedings of the IEEE 82,
68-82 (1994)

Tindell, K.W.: An Extensible Approach for Analysing Fixed Priority Hard Real-
Time Tasks. Technical Report, Department of Computer Science, University of
York, UK YCS 189 (1992)

Liu, C.L., Layland, J.W.: Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment. Technical Report, Department of Computer Science, Uni-
versity of York, UK YCS 189., 1992. Journal of the ACM, vol. 20, pp. 46-61 (1973)
Oh, D., Baker, T.P.: Utilization Bounds for N-Processor Rate Monotone Schedul-
ing with Static Processor Assignment. Real-Time Systems 5, 183-192 (1998)
Dhall, S., Liu, C.: On a real-time scheduling problem. Operations Research 6,
127-140 (1978)

Baker, T.P.: An Analysis of Fixed-Priority Schedulability on a Multiprocessor.
Real-Time Systems 32, 49-71 (2006)

Bertogna, M., Cirinei, M.: Response-Time Analysis for Globally Scheduled Sym-
metric Multiprocessor Platforms. In: IEEE Real-Time Systems Symposium, Tuc-
son, Arizona (2007)

Bertogna, M., Cirinei, M., Lipari, G.: New Schedulability Tests for Real-Time Task
Sets Scheduled by Deadline Monotonic on Multiprocessors. In: 9th International
Conference on Principles of Distributed Systems, Pisa, Italy (2005)

Cucu, L.: Optimal priority assignment for periodic tasks on unrelated processors.
In: Euromicro Conference on Real-Time Systems (ECRTS 2008), WIP session,
Prague, Czech Republic (2008)

Andersson, B., Baruah, S., Jonsson, J.: Static-Priority Scheduling on Multipro-
cessors. In: IEEE Real-Time Systems Symposium, London, UK (2001)
Lundberg, L.: Analyzing Fixed-Priority Global Multiprocessor Scheduling. In:
Eighth ITEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS 2002) (2002)

Andersson, B., Jonsson, J.: The utilization bounds of partitioned and pfair static-
priority scheduling on multiprocessors are 50%. In: Euromicro Conference on Real-
Time Systems, Porto, Portugal (2003)

Liu, C.L.: Scheduling algorithms for multiprocessors in a hard real-time environ-
ment. JPL Space Programs Summary 37-60, 28-31 (1969)

Ha, R., Liu, J.W.S.: Validating timing constraints in multiprocessor and dis-
tributed real-time systems. In: Proceedings of the 14th International Conference
on Distributed Computing Systems, Pozman, Poland (1994)

Phillips, C.A., Stein, C., Torng, E., Wein, J.: Optimal time-critical scheduling via
resource augmentation. In: ACM Symposium on Theory of Computing, El Paso,
Texas, United States (1997)

Global Static-Priority Preemptive Multiprocessor Scheduling with UB 38% 85

Appendix

Lemma 1. Let m denote a positive integer. Consider u; to be a real number

such that 0 < u; < 3+2\/5 and consider S to denote a set of non-negative real
numbers u; such that
2
O) +ui < -m (36)
4v5
then it follows that
1
. —) - <
. (2(2 w) - ug) +up < 1 (37)
JES
Proof. Let us define f as:
2
=(2—u)- mAm-u; —m—u; + 38
f=()y +V5 34+v5 (38)
We have: of 5
=— -m+m—-1>0 39
ou,; 3+5 (39)
From Inequality and the constraint u; < 3+2 s e obtain that f is no
greater than f for the value u; = 3+2\/5. And we have f(u;, = 3+2\/5) = 0. This
gives us:
2
<(2—wuy)- -m4+m-u; —m—u; + <0 40
f=) +V5 3+5 (40)
Applying Inequality [0 to Inequality [36] and rewriting yields:
2
2 —u; (U +ui)+m~ui—ui+ <m 41
@-u) (Cu) s (a1)
jeSs
Rearranging terms in Inequality 1] gives us:
1 (2—ui)~ui—ui+ 2
' (2(2 — u;) 'Uj) + u; + V5 < (42)
m m

JjES
Recall that u; < 3+2\/5. Clearly this gives us 2 —u; > 1. And hence the last term
in the left-hand side of Inequality [42] is non-negative. This gives us:

1 -(Z(Z—ui)-uj)+ui§1 (43)

m jes
And this states the lemma. Hence the lemma is correct.

Lemma 2. Consider two non-negative real numbers u; and u; such that 0 <
u; <1 and 0 < u; < 1. For those numbers, it holds that:

l—ui l—ui
Uj'1_uj+(1—Uj'1_uj)'uj§(2—ui)'uj (44)

86 B. Andersson

Proof. The proof is by contradiction. Suppose that the lemma is false. Then we

have: 1 L
— U — U
+ (1 —uy) > (2= ui) - uy

Uv .
J)
1—uy

' 1-— Uj
Let us explore the following cases.

1. u;=0and u; =0
Applying this case on Inequality 45 gives us:

0>0

which is a contradiction. (end of Case 1)
2. ui:Oanduj>O
Applying this case on Inequality [43] gives us:

1

) 1 — ws
1_uj+(U

Uj)'Uj>2'u]‘

'].—’LL]‘

Since u; > 0 we can divide Inequality 7] by u; and this gives us:

1 1
+1- Uj + > 2
1-— U 1- Uj
Rewriting Inequality [48 yields:
1
(1—u)>1
1—u (1 —uy)

which is a contradiction. (end of Case 2)
3. u; >0and u; =0
Applying this case on Inequality 3] gives us:

0>0

which is a contradiction. (end of Case 3)
4. u; > 0and u; >0

Since u; > 0 we can divide Inequality B3l by u; and this gives us:

i_Z; +(1—u- 1_3;) > 2 —
Rewriting Inequality B yields:
1—wuy 1—uy
1—uy B 1—uy >1-w
Further rewriting yields:
1 1

>1

Wi -
. J o
1 —u; 1 —uy

Further rewriting yields:
1>1

which is a contradiction. (end of Case 4)

(45)

(46)

(48)

(49)

(52)

(53)

(54)

Since a contradiction occurs for every case we obtain that the lemma is false.

Global Static-Priority Preemptive Multiprocessor Scheduling with UB 38% 87

Lemma 3. Consider two non-negative real numbers u; and u; such that 0 <
uj <1 and 0 <u; < 1. And two non-negative real numbers T; and T; such that

Tj . (1 — 'LLj) S Ti . (]. - ’U,Z) (55)
For those numbers, it holds that:
T; T; 1—uy 1—wy;
wjc (=g) uy < g (TR (56)

T, e
Proof. Rewriting Inequality [53] yields:

T, 1—uw
Viehp(): <"

P (57)

Let ¢; ; denote the left-hand side of Inequality 571 There are two occurrences
gi,; in the left-hand side of Inequality Also observe that the left-hand side
of Inequality is increasing with increasing g; ;. For this reason, combining
Inequality 57 and the left-hand side of inequality B8l gives us that the lemma is
true.

Lemma 4. Consider two integers T; and C; such that 0 < C; < Tj. For every
t > 0 it holds that:
t . t C;
LTjJ -Cj + min(t — LTjJ T5,C5) < Cj+ (= Cj) - T, (58)
Proof. The proof is by contradiction. Suppose that the lemma is false. Then
there is a ¢ > 0 such that:
t , t C;
I_TAJ'Cj“‘mln(t_LTJ'E,Cj)>Cj+(t_Cj)'TA (59)
J

J J

Let us consider two cases:

1.t —t/T;]-T; < C
Let A be defined as: A =C; — (¢t — LIEJJ -T}). Let us increase t by A. Then
the left-hand side of Inequality increases by A and the right-hand side
increases by (C;/T}) - A. Since C;/T; < 1 it follows that Inequality (3 still
true. That is:

t

Cj
LTj

. t
J-C’j+m1n(t—LTjJﬂ’j,C’j)>Cj—|—(t—C’j)~ T,

(60)
Repeating this argument gives us that t — [t/T;] - T; = C;. Applying it on
Inequality [60 yields:

t—C Cj

Tjj-0j+cj>cj+(t—cj)~Tj (61)
Rewriting Inequality [61] gives us:
(t—Cj) > ([t -Cj) (62)

which is impossible. (end of Case 1)

88

2.

B. Andersson

t=[t/T;] - T; > Cj

Let A be defined as: A = (t — LQEJJ - T;) — Cj. Let us decrease t by A.
Then the left-hand side of Inequality is unchanged and the right-hand
side decreases by (C;/T}) - A. Since 0 < C;/T; it follows that Inequality
still true. That is:

t

LTAJ-Cj+min(t—L;}J.Tj7cj)>cj+(t—cj).0j (63)

T;

Repeating this argument gives us that t — [t/T;] - T; = C;. Applying it on
Inequality [63]and applying similar rewriting as in Inequality [61] and Inequal-
ity 62 yields:

(t—C5) > (t-Cj) (64)

which is impossible. (end of Case 2)

We can see that regardless of which case occurs a contradiction occurs and

hence the lemma is correct.

Deadline Monotonic Scheduling
on Uniform Multiprocessors*

Sanjoy Baruah' and Joél Goossens?

! University of North Carolina at Chapel Hill, NC, USA
baruah@cs.unc.edu
2 Université Libre de Bruxelles, Brussels, Belgium
joel.goossens@ulb.ac.be

Abstract. The scheduling of sporadic task systems upon uniform multi-
processor platforms using global Deadline Monotonic algorithm is stud-
ied. A sufficient schedulability test is presented and proved correct. It
is shown that this test offers non-trivial quantitative guarantees, in the
form of a processor speedup bound.

1 Introduction

A multiprocessor computer platform is comprised of several processors. A plat-
form in which all the processors have the same capabilities is referred to as an
identical multiprocessor, while those in which different processors have different
capabilities are called heterogemeous multiprocessors. Heterogeneous multipro-
cessors may be further classified into uniform and unrelated multiprocessors.
The only difference between the different processors in a uniform multiprocessor
is the rate at which they can execute work: each processor is characterized by a
speed or computing capacity parameter s, and any job executing on the processor
for ¢ time units completes ¢ X s units of execution. In unrelated multiprocessors,
on the other hand, the amount of execution completed by a particular job exe-
cuting on a given processor depends upon the identities of both the job and the
processor.

A real-time system is often modeled as a finite collection of independent recur-
rent tasks, each of which generates a potentially infinite sequence of jobs. Every
job is characterized by an arrival time, an execution requirement, and a deadline,
and it is required that a job completes execution between its arrival time and its
deadline. Different formal models for recurring tasks place different restrictions
on the values of the parameters of jobs generated by each task. One of the more
commonly used formal models is the sporadic task model [1.[2]. Each recurrent
task 7; in this model is characterized by three parameters: 7; = (C;, D;, T;),
with the interpretation that 7; may generate an infinite sequence of jobs with
successive jobs arriving at least T; time units apart, each with an execution

* Supported in part by NSF Grant Nos. CNS-0834270, CNS-0834132, CCF-0541056,
and CCR-0615197, ARO Grant No. W911NF-06-1-0425, and funding from IBM and
the Intel Corporation.

T.P. Baker, A. Bui, and S. Tixeuil (Eds.): OPODIS 2008, LNCS 5401, pp. 89 2008.
© Springer-Verlag Berlin Heidelberg 2008

90 S. Baruah and J. Goossens

requirement at most C; and a deadline D; time units after its arrival time. A
sporadic task system 7 is comprised of a finite collection of such sporadic tasks.
Sporadic task systems in which each task is required to have its relative deadline
and period parameters the same (D; = T; for all i) are called implicit-deadline
task systems, and ones in which each task is required to have its relative deadline
be no larger than its period parameter (D; < T; for all i) are called constrained-
deadline task systems. A task system that is not constrained-deadline is said to
be an arbitrary-deadline task system.

Several results have been obtained over the past decade, concerning the
scheduling of implicit-deadline systems on identical [34L5L6L7,R8.9] and on uni-
form [TOJTTLT2A3TAAET6LI7) multiprocessors, of constrained-deadline systems
on identical multiprocessors [I8|19],20,21],22,2324], and of arbitrary-deadline
systems on identical multiprocessors, [25,[26]. This paper seeks to extend this
body of work, by addressing the scheduling of constrained and arbitrary-deadline
sporadic task systems upon uniform multiprocessors. We assume that the plat-
form is fully preemptive — an executing job may be interrupted at any instant in
time and have its execution resumed later with no cost or penalty. We study the
behavior of the well-known and very widely-used Deadline Monotonic scheduling
algorithm [27] when scheduling systems of sporadic tasks upon such preemptive
platforms. We will refer to Deadline Monotonic scheduling with global inter-
processor migration as global DM (or simply DM).

Contributions. We obtain a new test — to our knowledge, this is the first such
tests — for determining whether a given constrained or arbitrary-deadline spo-
radic task system is guaranteed to meet all deadlines upon a specified uniform
multiprocessor platform, when scheduled using DM. This test is derived by ap-
plying techniques that have previously been used for the schedulability analysis
of constrained-deadline task systems on uniform multiprocessors when scheduled
using EDF [28] and by integrating techniques used for schedulability analysis of
sporadic arbitrary-deadline systems on identical multiprocessors using D™ [25].

Organization. The remainder of this paper is organized as follows. In Sect.
we formally define the sporadic task model and uniform multiprocessor plat-
forms, and provide some additional useful definitions, notation, and terminology
concerning sporadic tasks and uniform multiprocessors. We also provide a spec-
ification of the behavior of global DM is to be implemented upon uniform mul-
tiprocessors. In Sect. [3] we derive, and prove the correctness of, a schedulability
test for determining whether a given sporadic task system is DM-schedulable on a
specified uniform multiprocessor platform. In Sect. [4] we provide a quantitative
characterization of the efficacy of this new schedulability test in terms of the
resource augmentation metric.

2 Task and Platform Model

§1. Sporadic task systems. A sporadic task 7, = (Cy, D;, T;) is characterized by
a worst-case execution requirement C;, a (relative) deadline D;, and a minimum

Deadline Monotonic Scheduling on Uniform Multiprocessors 91

inter-arrival separation parameter T;, also referred to as the period of the task.
Such a sporadic task generates a potentially infinite (legal) sequence of jobs,
with successive job-arrivals separated by at least T; time units. Each job has a
worst-case execution requirement equal to C; and a deadline that occurs D; time
units after its arrival time. We refer to the interval, of size D;, between such a
job’s arrival instant and deadline as its scheduling window. We assume a fully
preemptive execution model: any executing job may be interrupted at any instant
in time, and its execution resumed later with no cost or penalty. A sporadic task
systemn is comprised of a finite number of such sporadic tasks. Let 7 denote a
system of such sporadic tasks: 7 = {11, 7, ...}, with i, = (C;, D;, T;) for all 4,
1 <i < n. Without loss of generality, we assume that tasks are indexed in non-
increasing order of their relative deadline parameters: D; < D; 1 (Vi € [1,n—1]).

We find it convenient to define some properties and parameters for individual
sporadic tasks, and for sporadic task systems.

Utilization: The utilization u; of a task 7; is the ratio C;/T; of its execution
requirement to its period. The total utilization wus,m(7) and the largest uti-
lization umax(7) of a task system 7 are defined as follows:

def def
Uoum (7) =) i3 tmax(7) = max(u;) -
T; €T
Density: The density 6; of a task 7; is the ratio (C;/ min(D;, T;)) of its execution
requirement to the smaller of its relative deadline and its period. The total
density dsum(7) of a task system 7 is defined as follows:

Boum(T) =Y 65

TiET

For each k, 1 < k < n, 6max(k) denotes the largest density from among the

tasks T1,T2y -« s Tkt
def kK
Omax(k) = I?_alx((‘ii))

DBF: For any interval length ¢, the demand bound function DBF(7;,t) of a
sporadic task 7; bounds the maximum cumulative execution requirement by
jobs of 7; that both arrive in, and have deadlines within, any interval of
length t. It has been shown [2] that

DBF(7;,1) = max (O, (V _TZDZJ +1) Ci)

Load: A load parameter, based upon the DBF function, may be defined for any
sporadic task system 7 as follows:

k
de: j— i7 t
LOAD(k) & max (Zl—l DBR(r)>

t>0 t

92 S. Baruah and J. Goossens

Computing DBF (and thereby, LOAD) will turn out to be a critical component
of the schedulability analysis test proposed in this paper; hence, it is important
that DBF be efficiently computable if this schedulability test is to be efficiently
implementable as claimed. Fortunately, computing DBF is a well-studied subject,
and algorithms are known for computing DBF ezactly [2,29], or approzimately
to any arbitrary degree of accuracy [30,[31[32].

The following Lemma relates the density of a task to its DBF:

Lemma 1 ([25]). For all tasks 7; and for all t > 0,
t X 6; > DBF(7;,1) . 0

In constrained task systems — those in which D; < T; Vi — a job becomes eli-
gible to execute upon arrival, and remains eligible until it completes execution(l].
In systems with D; > T; for some tasks 7;, we require that at most one job of
each task be eligible to execute at each time instant. We assume that jobs of
the same task are considered in first-come first-served order; hence, a job only
becomes eligible to execute after both these conditions are satisfied: (i) it has
arrived, and (i) all previous jobs generated by the same task that generated it
have completed execution. This gives rise to the notion of an active task: briefly,
a task is active at some instant if it has some eligible job awaiting execution at
that instant. More formally,

Definition 1 (active task). A task is said to be active in a given schedule at
a time-instant t if some job of the task is eligible to execute at time-instant t.
That is, (i) t > the greater of the job’s arrival time and the completion time of
the previous job of the same task, and (ii) the job has not completed execution
prior to time-instant t. O

§2. Uniform multiprocessors. A uniform multiprocessor m = (s1, S2,...,Sm) is
comprised of m > 1 processors, with the i’th processor characterized by speed or
computing capacity s;. The interpretation is that a job executing on the i’th pro-
cessor for a duration of ¢ units of time completes t x s; units of execution. Without
loss of generality, we assume that the speeds are specified in non-increasing order:
$; > s;41 for all i. We will also use the following notation:

Sl(ﬂ') dZefZSj . (1)

That is, S;(m) denotes the sum of the computing capacities of the i fastest
processors in 7 (and Sy, (7) hence denotes the total computing capacity of).

An additional parameter that turns out to be useful in describing the prop-
erties of a uniform multiprocessor is the “lambda” parameter [I2,[10]:

e XS
A(m) & max 2ejmie1 5 . (2)

=1 Si

1 Or its deadline has elapsed, in which case the system is deemed to have failed.

Deadline Monotonic Scheduling on Uniform Multiprocessors 93

A

deadline miss

A

T > time

Fig. 1. Notation. A job of task 7 arrives at t,. Task 75 is not active immediately prior
to tq, and is continually active over [tq,tq).

This parameter ranges in value between 0 and (m—1) for an m-processor uniform
multiprocessor platform, with a value of (m —1) corresponding to the degenerate
case when all the processors are of the same speed (i.e., the platform is an
identical multiprocessor).

83. Deadline Monotonic scheduling. Priority-driven scheduling algorithms oper-
ate on uniform multiprocessors as follows: at each instant in time they assign
a priority to each job that is awaiting execution, and favor for execution the
jobs with the greatest priorities. Specifically, (i) no processor is idled while there
is an active job awaiting execution; (ii) when there are fewer active jobs than
processors, the jobs execute on the fastest processors and the slowest ones are
idled; and (%) greater-priority jobs execute on the faster processors. The Dead-
line Monotonic (DM) scheduling algorithm [33] is a priority-driven scheduling
algorithm that assigns priority to tasks according to their (relative) deadlines:
the smaller the deadline, the greater the priority.

With respect to a specified platform, a given sporadic task system is said to
be feasible if there exists a schedule meeting all deadlines for every collection of
jobs that may be generated by the task system. A given sporadic task system is
said to be (global) DM schedulable if DM meets all deadlines for every collection
of jobs that may be generated by the task system.

3 A DM Schedulability Test for Sporadic Task Systems

We now derive (Theorem []) a sufficient condition for determining whether a
sporadic task system 7 is DM-schedulable upon a specified uniform multiproces-
sor platform 7. This sufficient schedulability condition is in terms of the load
and maximum density parameters — the LOAD(k)’s and the 8pax(k)’s defined
above — of the task system, and the total computing capacity and the lambda
parameter — Sp,(m) and A(w) defined above — of the platform.

Our strategy for deriving, and proving the correctness of, our sufficient schedu-
lability condition is the following: for any legal sequence of job requests of task
system 7, on which DM misses a deadline we obtain a mecessary condition for
that deadline miss to occur by bounding from above the total amount of execu-
tion that the DM schedule needs (but fails) to execute before the deadline miss.
Negating this condition yields a sufficient condition for global-DM schedulability.

94 S. Baruah and J. Goossens

Consider any legal sequence of job requests of task system 7, on which DM
misses a deadline. Suppose that a job of task 7y is the one to first miss a deadline,
and that this deadline miss occurs at time-instant ¢4 (see Fig.[I]).

Discard from the legal sequence of job requests all jobs of tasks with priority
lower than 75’s, and consider the DM schedule of the remaining (legal) sequence
of job requests. Since lower-priority jobs have no effect on the scheduling of
greater-priority ones under preemptive DM, it follows that a deadline miss of 7%
occurs at time-instant ¢4 (and this is the earliest deadline miss), in this new bm
schedule. We will focus henceforth on this new DM schedule.

Let t, denote the earliest time-instant prior to t4, such that 7 is continuously
active] over the interval [t,,t4]. It must be the case that t, is the arrival time of
some job of 73 since 7y is, by definition, not active just prior to ¢, and becomes
active at t,.

It must also be the case that ¢, < t4 — Dy. This follows from the observation
that the job of 7, that misses its deadline at t; arrives at tg — Dy. If Dy < Ty,
then t, is equal to this arrival time of the job of 7; that misses its deadline at
tq. If Dy > Ty, however, t; may be the arrival-time of an earlier job of 7%. Let
D=ty —t,.

Let C denote the cumulative execution requirement of all jobs of 7 that arrive
> t,, and have deadline < 4. By definition of DBF and Lemma [, we have

C < DBF(Ti,tqg — ta) < b X (tg —ta) - (3)
We introduce some notation now. For any time-instant ¢ < ¢4,

— let W(¢) denote the cumulative execution requirement of all the jobs in
this legal sequence of job requests, minus the total amount of execution
completed by the DM schedule prior to time-instant ¢.

— Let £2(t) denote W (t) normalized by the interval-length: 2(t) = W (t)/(tq —
t).

— let Iy denote the total duration over [t,,tq) for which exactly ¢ processors
are busy in this DM schedule, 0 < ¢ < m. (We note that I, is necessarily
zero, since 7y’s job does not complete by its deadline.)

Observe that the amount of execution that 74’s jobs receive over [tq,tq) is
at least z;n;ll s¢ly, since 71,’s jobs must be executing at any time-instant when
some processor is idle; therefore

m—1
C > Z sely (4)
=1

Since [Sm(w)D—Z;n;ll (S (m)—S¢(m))I¢] denotes the total amount of execution
completed over [t,,tqs) and this is not enough for 74’s jobs to complete the
execution requirement C before t;, we have the following relationship:

2 See Definition [T to recall the definition of an active task.

Deadline Monotonic Scheduling on Uniform Multiprocessors 95

W(ta) > Sp(m)D = Y (S () — Se(m)) 1
/=1

" Sp(m) — Se(m)

= Sm(ﬂ')D — ¢ Sg]g
S¢
/=1
m—1
> Sm(Tr)'D —)\(7‘1’)8@[@
/=1
m—1
= S (m)D — A7) Z sely . (5)
=1

From (&) and (@) above, we conclude that

Let .
HEk = S () — M) bmax (k) (6)

—observe that the value of uj depends upon the parameters of both the task
system 7 being scheduled, and the uniform multiprocessor m = (s1, $2,- .., $m)
upon which it is scheduled.

Let t, denote the smallest value of ¢ < ¢, such that £2(t) > py. Let A t—to
(see Fig.).

By definition, W (t,) denotes the amount of work that the DM schedule needs
(but fails) to execute over [t,,tq). This work in W (¢,) arises from two sources:
those jobs that arrived at or after t,, and those that arrived prior to t, but have
not completed execution in the DM schedule by time-instant ¢,. We will refer to
jobs arriving prior to t, that need execution over [t,,tq) as carry-in jobs.

We wish to obtain an upper bound on the total contribution of all the carry-in
jobs to the W (t,) term. We achieve this in two steps: we first bound the number
of tasks that may have carry-in jobs (Lemma [2]), and then we bound the amount
of work that all the carry-in jobs of any one such task may contribute to W(t,)
(Lemma B]).

Lemma 2. The number of tasks that have carry-in jobs is strictly bounded from
above by

Vg dzﬁfmax{f D Se(m) < pk} o (7)

Proof. Let € denote an arbitrarily small positive number. By definition of the
instant t,, 2(t, — €) < pr while 2(t,) > pg. It must therefore be the case
that strictly less than uy X € work was executed over [t, — €,t,); i.e., the total
computing capacity of all the busy processors over [t, — €, t,) is < px. And since

96 S. Baruah and J. Goossens

" time
t; to

Fig. 2. Example: defining ¢; for a task 7; with D; > T;. Three jobs of 7; are shown.
Task 7; is not active prior to the arrival of the first of these 3 jobs, and the first job
completes execution only after the next job arrives. This second job does not complete
execution prior to t,. Thus, the task is continuously active after the arrival of the first
job shown, and t; is hence set equal to the arrival time of this job.

pr < Sp(m) (as can be seen from (@) above), it follows that some processor was
idled over [t, — €, t,), implying that all jobs active at this time would have been
executing. This allows us to conclude that there are strictly fewer than vy tasks
with carry-in jobs.

Lemma 3. The total remaining execution requirement of all the carry-in jobs
of each task T; (that has carry-in jobs at time-instant t,) is < A X émax (k).

Proof. Let us consider some task 7; (i < k) that has a carry-in job. Let ¢; < t,
denote the earliest time-instant such that 7; is active throughout the interval
[ti, to]. Observe that t; is necessarily the arrival time of some job of 7;. If D; < Tj,
then ¢; is the arrival time of the (sole) carry-in job of ;. If D; > T;, however, ¢;
may be the arrival-time of a job that is not a carry-in job — see Fig. 2

Let ¢; = t, —t; (see Fig.[). All the carry-in jobs of 7; have their arrival-times
and their deadlines within the (¢; + A)-sized interval [¢;,14), and consequently
their cumulative execution requirement is < DBF(7;, ¢; + A); in what follows,
we will quantify how much of this must have been completed prior to ¢, (and
hence cannot contribute to the carry-in). We thus obtain an upper bound on the
total work that all the carry-in jobs of 7; contribute to W (t,), as the difference
between DBF(7;, ¢; + A) and the amount of execution received by 7; over [t;,t,).

By definition of ¢,, it must be the case that 2(¢;) < pr. That is,

W (t:) < pr(A+ i) (®)
On the other hand, £2(¢,) > p, meaning that
W(to) Z /J'kA . (9)

Let C] denote the amount of execution received by 7;’s carry-in jobs over the
duration [t;, t,); the difference DBF(7;, ¢; + A) — C! thus denotes an upper bound
on the amount of carry-in execution. Let J; denote the total duration over [t;,,)
for which exactly £ processors are busy in this DM schedule, 0 < ¢ < m. Observe
that the amount of execution that 7;’s carry-in jobs receive over [t;,t,) is at least

Deadline Monotonic Scheduling on Uniform Multiprocessors 97

—1
> oreq sedy since 7;’s job must be executing on one of the processors during any
instant when some processor is idle; therefore

m—1
Cl> Z sedo . (10)
(=1

Since [Sm (M) — 302" Je(Sm () — Se(m))] denotes the total amount of exe-
cution completed over [t;,t,), the difference (W (t;) — W (t,)) — the amount of
execution completed over [t;,t,) — is given by

m—1
W(t;) = W(to) = Sm(m)gi — D (Sm(m) — Se(m))Ji
/=1
= pup(A+ ¢i) — prd >
m—1
Sm(m)gi = Y (Sm(m) = Se(m))Je
/=1

(By @) and (@)

m—1
= ppdi > Sm(m)di — Sm(ﬂ)sz Se(m) 5oy

o~
I
—

3

= kad)i > Sm(ﬂ')d)i —)\(W)S@Jg
1

~
Il

m—1
= prdi > Sm(m)ps — A() Z sede
—1

= prdi > Sm(m)ei — AX(m)C; .

Substituting for p (Equation B above), we have

(S () — A(T)0max (k))pi > Sm(m)gi —)\(W)C’L{ = Cz{ > Omax(k)gi . (11)

Inequality [I1] is important — it tells us that task 7; must have already com-
pleted a significant amount of its execution before time-instant t,. More specifi-
cally, the remaining work of all carry-in jobs of 7; contribute to W(t,), is given
by

(DBF(Tiv (bi + A) - Cz/) < (¢z + A)éz - ¢i6max(k)
(from Lemma [I])

S (¢z + A)émax(k) - d)i(smax(k)) = Aémax(k)
as claimed in this lemma.

Based upon Lemmas 2l and [§] we obtain our desired result —a sufficient schedu-
lability condition for global DM:

98 S. Baruah and J. Goossens

Theorem 1. Sporadic task system 7 is global-DM schedulable upon a platform
comprised of m uniform processors, provided that for allk, 1 < k <n,

2 - LOAD(k) + vkOmax (k) < pk (12)
where i, and vy, are as defined in (@) and[7 respectively.

Proof. The proof is by contradiction: we obtain necessary conditions for the
scenario above — when 71’s job misses its deadline at t; — to occur. Negating
these conditions yields a sufficient condition for global-DM schedulability.

Let us bound the total amount of execution that contributes to W (t,).

— First, there are the carry-in jobs: by Lemmas [3] and [, there are at most
v, distinct tasks with carry-in jobs, with the total carry-in work for all the
jobs of each task bounded from above by A é,ax (k) units of work. Therefore
their total contribution to W (t,) is bounded from above by vy A dmax (k).

— All other jobs that contribute to W(t,) arrive within the A-sized interval
[to,td), and hence have their deadlines within [¢,,ts + D), since their rel-
ative deadlines are all < Dj. Their total execution requirement is therefore
bounded from above by (A + Dy) x LOAD(k).

We consequently obtain the following bound on W (t,):
W (t,) < (A+ D) x LOAD(k) 4 v Abmax (k) . (13)

Since, by the definition of t,, it is required that {2(t,) be at least as large as py,
we must have

D
<1 + Ak) LOAD(K) + ViOmax (k) > g

as a necessary condition for DM to miss a deadline; equivalently, the negation of
this condition is sufficient to ensure DM-schedulability:

(1 + [X) LOAD (k) + ViSmax (k) < pir

< (since Dy < A)
2 - LOAD(k) + ViOmax (k) < p

which is as claimed in the theorem.

4 A Speedup Bound

In this section, we provide a quantitative evaluation of the effectiveness of the
sufficient schedulability condition of Theorem [Il There are several approaches
to quantifying the “goodness” or the effectiveness of different scheduling algo-
rithms and schedulability tests. One relatively recent novel approach is centered
on processor speedup bounds. A sufficient schedulability test is said to have a
processor speedup bound of ¢ if

Deadline Monotonic Scheduling on Uniform Multiprocessors 99

— Any task system deemed schedulable by the test is guaranteed to actually
be so; and

— For any task system that is not deemed schedulable by the test, it is the case
that the task system is actually not schedulable upon a platform in which
each processor is i times as fast.

Intuitively speaking, a processor speedup bound of ¢ for a sufficient schedulability
test implies that the inexactness of the test penalizes its user by at most a
speedup factor of ¢ when compared to an exact test. The smaller the processor
speedup bound, the better the sufficient schedulability test: a processor speedup
bound of 1 would mean that the test is in fact an exact one.

We introduce some notation now. For any uniform multiprocessor platform
7w = (%1, S2,...,Sm) and any positive real number z, let - 7 denote the uniform
multiprocessor platform comprised of the same number of processors as m, with
the ¢’th processor having a speed of s; - .

The following two lemmas relate DM-schedulability on a uniform multipro-
cessor platform 7, as validated by the test of Theorem [l with feasibility on
platform x - 7.

Lemma 4. Any sporadic task system T that is feasible upon a uniform multi-
processor platform x - m must satisfy

Omax(k) < s12 and LOAD(k) < S, (m)x (14)
forallk, 1 <k <n.

Proof. Suppose that task system 7 is feasible upon x- 7. To prove that dmax(k) <
xs1, consider each task 7; separately:

— In order to be able to meet all deadlines of 7; if 7; generates jobs exactly T;
time units apart, it is necessary that C;/T; < xs;.

— Since any individual job of 7; can receive at most D; X xs1 units of execution
by its deadline, we must have C; < D; x x X s1; i.e., C;/D; < xs1.

Putting both conditions together, we get (C;/ min(T;, D;)) < xs1. Taken over all
the tasks 71, 72, . .., Tk, this observation yields the condition that épyax (k) < xs;.
Since any individual job of 7; can receive at most D; X xs; units of execution
by its deadline, we must have C; < D; x syx; i.e., C;/D; < syz. Taken over all
tasks in 7, this observation yields the first condition.
To prove that LOAD(k) < S,,(m)x, recall the definition of LOAD(k) from
Sect.[Il Let ¢’ denote some value of ¢ which defines LOAD(k):

k
T argmax (Zi_l DBF(Ti7 t)>

t

Suppose that all tasks in {71, 72, ..., 7k} generate a job at time-instant zero, and
each task 7; generates subsequent jobs exactly T; time units apart. The total
amount of execution that is available over the interval [0,¢') on this platform is
equal to Sy, (m)xt’; hence, it is necessary that LOAD(k) < S, (m)z if all deadlines
are to be met.

100 S. Baruah and J. Goossens

Lemma 5. Any sporadic task system that is feasible upon a multiprocessor plat-
form x-m is determined to be global-DM schedulable on 7 by the DM-schedulability
test of Theorem [, provided

x < (2X81)/ [Sm ()81 + 28 () S + As18m — (S5 (m)sT + 452, (7)515m
+ 28, ()83 NSy, + 452 ()82, 4+ 48152, S (1) + N2s3s2, (15)
- 4/\slSm(7r)sm)1/2])
Proof. Suppose that 7 is feasible upon a platform 7 - z. From Lemma [it must
be the case that LOAD(k) < Sp,(m)x and dmax(k) < s1z for all k. For 7 to be

determined to be DM-schedulable upon 7 by the test of Theorem [it is sufficient
that for all k, 1 < k < n:

LOAD(k) < ! (1t — VkOmax(K))

2

< (since ([gk] —1) > v and from Lemma[2)
LOAD(]{}) S ;(H'k - ([g:l] - 1)6max(k))

< (since [a] — 1 < « for all «)
L0AD() <. ik = (1)oma(1)
voan(k) < (1 = ")

= (by (@)
LoAD(k) < ;((Sm(w) A (k) (1 5‘“:;%))

=
Sz < 5 (Sm(m) = Asa)(1 = 7))

T)S1T 821'2

Spn(m)z < ;(sm(w) - Sm(gni T eww As;)

0 <As12% — [Spn () (51 + 28m) + AS18m]T
+ S () S, -
Solving for z using standard techniques for the solution of quadratic inequalities
yields (I3)).

A processor-speedup bound for the DM-schedulability test of Theorem [] imme-
diately follows from Lemma

Deadline Monotonic Scheduling on Uniform Multiprocessors 101

Table 1. Speedup bound for various uniform platforms

heterogeneity m S (w) A Sm S1 speedup
Hy, 4 12 2 4 2 459
Hyp 20 60 14 4 2 484
Hyjo 100 300 74 4 2 489
Hy, 10003000 749 4 2 4.90
Hyyy 4 15 0875 8 1 10.42
Hyy 20 75 8345 8 1 1081
Hyyy 100 375 45.8758 1 10.89
Hyyy 1000 3750 467.758 1 10.91

Theorem 2. The DM-schedulability test of Theorem [l has a processor speedup
bound of the value of the right side of (13). 0

4.1 Analysis of the Speedup Bound

We first observe that the processor speedup bound of Theorem] generalizes
previously-obtained bounds for identical multiprocessors. It may be verified that
by setting A = (m —1),s1 = s9 = -+ = s, = 1, and Sy, (7) = m, Theorem [l re-
duces to the DM-schedulability test for identical multiprocessors, and Theorem
reduced] to the speedup bound for identical multiprocessors, derived in [25]. It
consequently follows that our result here is a generalization of the identical mul-
tiprocessor DM test and speedup bound from [25].

Evaluation by simulation experiments. Equation (IH) expresses the processor
speedup bound as a function of the following platform parameters: A, s1, $;,,, and
Sm(m). In order to get a more intuitive feel for the bounds, we computed the
speedup bound for various uniform multiprocessor platforms. Due to the large
number of parameters we restricted our study to platforms with four distinct
processor speeds: 8,4,2,1 and two kinds of heterogeneity: 25 % of each kind
of processor speed, 50 % of processor speed 4 plus 50 % of processor speed 2
(labeled H; /4 and H, /5 in Table [T respectively).

Table [l gives the speedup bound for the various uniform platforms consid-
ered in this study. As seen from this table, the bound increases with increasing
heterogeneity, and increases with increasing size of the platform (for a given
heterogeneity).

5 Conclusions

Most research on multiprocessor real-time scheduling has focused on the sim-
plest model — systems of implicit-deadline tasks that are scheduled on identical

3 Notice that the discriminant presented in [25] is actually 12m? — 4m + 1.

102 S. Baruah and J. Goossens

multiprocessors. More recent research has attempted to generalize this work in
two different directions, by either generalizing the task model (to constrained-
deadline and arbitrary-deadline sporadic task systems), or by generalizing the
processor model (to uniform and unrelated multiprocessors).

Very recently [28], efforts have been made to generalize along both the task-
model and the processor axes, by considering the scheduling of sporadic task
systems upon uniform multiprocessors. However, the only scheduling algorithm
that was considered in [28] is Earliest Deadline First (EDF). In this work, we
have applied the techniques from [28] to DM scheduling. We have obtained a
new schedulability test for the global DM scheduling of sporadic task systems
upon preemptive uniform multiprocessor platforms. This test characterizes a task
system by its LOAD and 6,,x parameters, and a platform by its total computing
capacity and its A parameter. We have also obtained a characterization of the
effectiveness of this schedulability test in terms of its processor speedup factor.

References

1. Mok, A.K.: Fundamental Design Problems of Distributed Systems for The
Hard-Real-Time Environment. PhD thesis, Laboratory for Computer Sci-
ence, Massachusetts Institute of Technology, Available as Technical Report
No. MIT/LCS/TR~297 (1983)

2. Baruah, S., Mok, A., Rosier, L.: Preemptively scheduling hard-real-time sporadic
tasks on one processor. In: Proceedings of the 11th Real-Time Systems Symposium,
Orlando, Florida, pp. 182-190. IEEE Computer Society Press, Los Alamitos (1990)

3. Baruah, S., Cohen, N., Plaxton, G., Varvel, D.: Proportionate progress: A notion
of fairness in resource allocation. Algorithmica 15(6), 600-625 (1996)

4. Oh, D.I., Baker, T.P.: Utilization bounds for N-processor rate monotone scheduling
with static processor assignment. Real-Time Systems: The International Journal
of Time-Critical Computing 15, 183-192 (1998)

5. Lopez, J.M., Garcia, M., Diaz, J.L., Garcia, D.F.: Worst-case utilization bound for
EDF scheduling in real-time multiprocessor systems. In: Proceedings of the Eu-
roMicro Conference on Real-Time Systems, Stockholm, Sweden, pp. 25-34. IEEE
Computer Society Press, Los Alamitos (2000)

6. Andersson, B., Jonsson, J.: Fixed-priority preemptive multiprocessor scheduling:
To partition or not to partition. In: Proceedings of the International Conference
on Real-Time Computing Systems and Applications, Cheju Island, South Korea,
pp. 337-346. IEEE Computer Society Press, Los Alamitos (2000)

7. Andersson, B., Baruah, S., Jonsson, J.: Static-priority scheduling on multiproces-
sors. In: Proceedings of the IEEE Real-Time Systems Symposium, pp. 193-202.
IEEE Computer Society Press, Los Alamitos (2001)

8. Goossens, J., Funk, S., Baruah, S.: Priority-driven scheduling of periodic task sys-
tems on multiprocessors. Real Time Systems 25(2-3), 187-205 (2003)

9. Lopez, J.M., Diaz, J.L., Garcia, D.F.: Utilization bounds for EDF scheduling on
real-time multiprocessor systems. Real-Time Systems: The International Journal
of Time-Critical Computing 28(1), 39-68 (2004)

10. Funk, S.H.: EDF Scheduling on Heterogeneous Multiprocessors. PhD thesis, De-
partment of Computer Science, The University of North Carolina at Chapel Hill
(2004)

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Deadline Monotonic Scheduling on Uniform Multiprocessors 103

Baruah, S.: Scheduling periodic tasks on uniform processors. In: Proceedings of the
EuroMicro Conference on Real-time Systems, Stockholm, Sweden, pp. 7-14 (June
2000)

Funk, S., Goossens, J., Baruah, S.: On-line scheduling on uniform multiprocessors.
In: Proceedings of the IEEE Real-Time Systems Symposium, pp. 183-192. IEEE
Computer Society Press, Los Alamitos (2001)

Baruah, S., Goossens, J.: Rate-monotonic scheduling on uniform multiprocessors.
IEEE Transactions on Computers 52(7), 966-970 (2003)

Funk, S., Baruah, S.: Task assignment on uniform heterogeneous multiprocessors.
In: Proceedings of the EuroMicro Conference on Real-Time Systems, Palma de
Mallorca, Balearic Islands, Spain, pp. 219-226. IEEE Computer Society Press, Los
Alamitos (2005)

Darera, V.N., Jenkins, L.: Utilization bounds for RM scheduling on uniform multi-
processors. In: RTCSA 2006: Proceedings of the 12th IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications, Wash-
ington, DC, USA, pp. 315-321. IEEE Computer Society, Los Alamitos (2006)
Andersson, B., Tovar, E.: Competitive analysis of partitioned scheduling on uniform
multiprocessors. In: Proceedings of the Workshop on Parallel and Distributed Real-
Time Systems, Long Beach, CA (March 2007)

Andersson, B., Tovar, E.: Competitive analysis of static-priority scheduling on
uniform multiprocessors. In: Proceedings of the IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, Daegu, Korea.
IEEE Computer Society Press, Los Alamitos (2007)

Baker, T.: Multiprocessor EDF and deadline monotonic schedulability analysis.
In: Proceedings of the IEEE Real-Time Systems Symposium, pp. 120-129. IEEE
Computer Society Press, Los Alamitos (2003)

Baker, T.P.: An analysis of EDF schedulability on a multiprocessor. IEEE Trans-
actions on Parallel and Distributed Systems 16(8), 760-768 (2005)

Bertogna, M., Cirinei, M., Lipari, G.: Improved schedulability analysis of EDF on
multiprocessor platforms. In: Proceedings of the EuroMicro Conference on Real-
Time Systems, Palma de Mallorca, Balearic Islands, Spain, pp. 209-218. IEEE
Computer Society Press, Los Alamitos (2005)

Bertogna, M., Cirinei, M., Lipari, G.: New schedulability tests for real-time tasks
sets scheduled by deadline monotonic on multiprocessors. In: Proceedings of the 9th
International Conference on Principles of Distributed Systems, Pisa, Italy. IEEE
Computer Society Press, Los Alamitos (2005)

Cirinei, M., Baker, T.P.: EDZL scheduling analysis. In: Proceedings of the EuroMi-
cro Conference on Real-Time Systems, Pisa, Italy. IEEE Computer Society Press,
Los Alamitos (2007)

Fisher, N.: The Multiprocessor Real-Time Scheduling of General Task Systems.
PhD thesis, Department of Computer Science, The University of North Carolina
at Chapel Hill (2007)

Baruah, S., Baker, T.: Schedulability analysis of global EDF. Real- Time Systems
(to appear, 2008)

Baruah, S., Fisher, N.: Global deadline-monotonic scheduling of arbitrary-deadline
sporadic task systems. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007.
LNCS, vol. 4878, pp. 204-216. Springer, Heidelberg (2007)

Baruah, S., Baker, T.: Global EDF schedulability analysis of arbitrary sporadic
task systems. In: Proceedings of the EuroMicro Conference on Real-Time Systems,
Prague, Czech Republic. IEEE Computer Society Press, Los Alamitos (2008)

104

27.

28.

29.

30.

31.

32.

33.

S. Baruah and J. Goossens

Leung, J., Whitehead, J.: On the complexity of fixed-priority scheduling of periodic,
real-time tasks. Performance Evaluation 2, 237-250 (1982)

Baruah, S., Goossens, J.: The EDF scheduling of sporadic task systems on uniform
multiprocessors. Technical report, University of North Carolina at Chapel Hill
(2008)

Ripoll, I., Crespo, A., Mok, A.K.: Improvement in feasibility testing for real-time
tasks. Real-Time Systems: The International Journal of Time-Critical Comput-
ing 11, 19-39 (1996)

Baker, T.P., Fisher, N., Baruah, S.: Algorithms for determining the load of a spo-
radic task system. Technical Report TR-051201, Department of Computer Science,
Florida State University (2005)

Fisher, N., Baruah, S., Baker, T.: The partitioned scheduling of sporadic tasks
according to static priorities. In: Proceedings of the EuroMicro Conference on Real-
Time Systems, Dresden, Germany. IEEE Computer Society Press, Los Alamitos
(2006)

Fisher, N., Baker, T., Baruah, S.: Algorithms for determining the demand-based
load of a sporadic task system. In: Proceedings of the International Conference on
Real-time Computing Systems and Applications, Sydney, Australia. IEEE Com-
puter Society Press, Los Alamitos (2006)

Liu, C., Layland, J.: Scheduling algorithms for multiprogramming in a hard real-
time environment. Journal of the ACM 20(1), 46-61 (1973)

A Comparison of the
M-PCP, D-PCP, and FMLP on LITMUSRT

Bjorn B. Brandenburg and James H. Anderson

The University of North Carolina at Chapel Hill
Dept. of Computer Science
Chapel Hill, NC 27599-3175 USA

{bbb, anderson}@cs.unc.edu

Abstract. This paper presents a performance comparison of three mul-
tiprocessor real-time locking protocols: the multiprocessor priority ceil-
ing protocol (M-PCP), the distributed priority ceiling protocol (D-PCP),
and the flexible multiprocessor locking protocol (FMLP). In the FMLP,
blocking is implemented via either suspending or spinning, while in the
M-PCP and D-PCP, all blocking is by suspending. The presented com-
parison was conducted using a UNC-produced Linux extension called
LITMUSRT. In this comparison, schedulability experiments were con-
ducted in which runtime overheads as measured on LITMUSRT were
used. In these experiments, the spin-based FMLP variant always exhib-
ited the best performance, and the M-PCP and D-PCP almost always
exhibited poor performance. These results call into question the prac-
tical viability of the M-PCP and D-PCP, which have been the de-facto
standard for real-time multiprocessor locking for the last 20 years.

1 Introduction

With the continued push towards multicore architectures by most (if not all)
major chip manufacturers [19/26], the computing industry is facing a paradigm
shift: in the near future, multiprocessors will be the norm. Current off-the-shelf
systems now routinely contain chips with two, four, and even eight cores, and
chips with up to 80 cores are envisioned within a decade [26]. Not surprisingly,
with multicore platforms becoming so widespread, real-time applications are
already being deployed on them. For example, systems processing time-sensitive
business transactions have been realized by Azul Systems on top of the highly-
parallel Vega2 platform, which consists of up to 768 cores [4].

Motivated by these developments, research on multiprocessor real-time sched-
uling has intensified in recent years (see [I3] for a survey). Thus far, however, few
proposed approaches have actually been implemented in operating systems and
evaluated under real-world conditions. To help bridge the gap between algorith-
mic research and real-world systems, our group recently developed LITMUSRT,
a multiprocessor real-time extension of Linux [8ITTT2]. Our choice of Linux as
a development platform was influenced by recent efforts to introduce real-time-
oriented features in stock Linux (see, for example, [I]). As Linux evolves, it could

T.P. Baker, A. Bui, and S. Tixeuil (Eds.): OPODIS 2008, LNCS 5401, pp. 105 2008.
© Springer-Verlag Berlin Heidelberg 2008

106 B.B. Brandenburg and J.H. Anderson

undoubtedly benefit from recent algorithmic advances in real-time scheduling-
related research.

LITMUSRT has been used in several scheduling-related performance stud-
ies [BI8IT2]. In addition, a study was conducted to compare synchronization
alternatives under global and partitioned earliest-deadline-first (EDF) schedul-
ing [T1]. This study was partially motivated by the relative lack (compared to
scheduling) of research on real-time multiprocessor synchronization. It focused
more broadly on comparing suspension- and spin-based locking on the basis of
schedulability. Spin-based locking was shown to be the better choice.

Focus of this paper. In this paper, we present follow-up work to the latter
study that focuses on systems where partitioned, static-priority (P-SP) sched-
uling is used. This is an important category of systems, as both partitioning
and static priorities tend to be favored by practitioners. Moreover, the earliest
and most influential work on multiprocessor real-time synchronization was di-
rected at such systems. This work resulted in two now-classic locking protocols:
the multiprocessor priority ceiling protocol (M-PCP) and the distributed priority
ceiling protocol (D-PCP) [23]. While these protocols are probably the most widely
known (and taught) locking protocols for multiprocessor real-time applications,
they were developed at a time (over 20 years ago) when such applications were
deemed to be mostly of “academic” interest only. With the advent of multicore
technologies, this is clearly no longer the case. Motivated by this, we take a new
look at these protocols herein with the goal of assessing their practical viability.
We also examine the subject of our prior EDF-based study, the flexible multi-
processor locking protocol (FMLP) [6IOITT]. We seek to assess the effectiveness
of these protocols in managing memory-resident resources on P-SP-scheduled
shared-memory multiprocessors.

Tested protocols. The M-PCP, D-PCP, and FMLP function very differently.
In both the M-PCP