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Preface

This volume contains the 30 regular papers, the 11 short papers and the abstracts
of two invited keynotes that were presented at the 12th International Conference
on Principles of Distributed Systems (OPODIS) held during December 15–18,
2008 in Luxor, Egypt.

OPODIS is a yearly selective international forum for researchers and practi-
tioners in design and development of distributed systems.

This year, we received 102 submissions from 28 countries. Each submission
was carefully reviewed by three to six Program Committee members with the
help of external reviewers, with 30 regular papers and 11 short papers being
selected. The overall quality of submissions was excellent and there were many
papers that had to be rejected because of organization constraints yet deserved
to be published. The two invited keynotes dealt with hot topics in distributed
systems: “The Next 700 BFT Protocols” by Rachid Guerraoui and “On Repli-
cation of Software Transactional Memories” by Luis Rodriguez.

On behalf of the Program Committee, we would like to thank all authors of
submitted papers for their support. We also thank the members of the Steer-
ing Committee for their invaluable advice. We wish to express our apprecia-
tion to the Program Committee members and additional external reviewers for
their tremendous effort and excellent reviews. We gratefully acknowledge the
Organizing Committee members for their generous contribution to the suc-
cess of the symposium. Special thanks go to Thibault Bernard for manag-
ing the conference publicity and technical organization. The paper submission
and selection process was greatly eased by the EasyChair conference system
(http://www.easychair.org). We wish to thank the EasyChair creators and
maintainers for their commitment to the scientific community.

December 2008 Ted Baker
Sébastien Tixeuil

Alain Bui
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The Next 700 BFT Protocols
(Invited Talk)

Rachid Guerraoui

EPFL LPD, Bat INR 310, Station 14, 1015 Lausanne, Switzerland

Byzantine fault-tolerant state machine replication (BFT) has reached a reason-
able level of maturity as an appealing, software-based technique, to building
robust distributed services with commodity hardware. The current tendency
however is to implement a new BFT protocol from scratch for each new ap-
plication and network environment. This is notoriously difficult. Modern BFT
protocols require each more than 20.000 lines of sophisticated C code and prov-
ing their correctness involves an entire PhD. Maintainning and testing each new
protocol seems just impossible.

This talk will present a candidate abstraction, named ABSTRACT (Abortable
State Machine Replication), to remedy this situation. A BFT protocol is viewed
as a, possibly dynamic, composition of instances of ABSTRACT, each instance
developed and analyzed independently. A new effective BFT protocol can be
developped by adding less than 10% of code to an existing one. Correctness proofs
become at human reach and even model checking techniques can be envisaged.
To illustrate the ABSTRACT approach, we describe a new BFT protocol we
name Aliph: the first of a hopefully long series of effective yet modular BFT
protocols. The Aliph protocol has a peak throughput that outperforms those of
all BFT protocols we know of by 300% and a best case latency that is less than
30% of that of state of the art BFT protocols.

This is joint work with Dr V. Quema (CNRS) and Dr M. Vukolic (IBM).

T.P. Baker, A. Bui, and S. Tixeuil (Eds.): OPODIS 2008, LNCS 5401, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



On Replication of
Software Transactional Memories

(Invited Talk)

Luis Rodrigues

INESC-ID/IST

joint work with:
Paolo Romano and Nuno Carvalho

INESC-ID

Extended Abstract

Software Transactional Memory (STM) systems have garnered considerable in-
terest of late due to the recent architectural trend that has led to the pervasive
adoption of multi-core CPUs. STMs represent an attractive solution to spare
programmers from the pitfalls of conventional explicit lock-based thread syn-
chronization, leveraging on concurrency-control concepts used for decades by
the database community to simplify the mainstream parallel programming [1].

As STM systems are beginning to penetrate into the realms of enterprise sys-
tems [2,3] and to be faced with the high availability and scalability requirements
proper of production environments, it is rather natural to foresee the emergence
of replication solutions specifically tailored to enhance the dependability and the
performance of STM systems. Also, since STM and Database Management Sys-
tems (DBMS) share the key notion of transaction, it might appear that the state
of the art database replication schemes e.g. [4,5,6,7] represent natural candidates
to support STM replication as well.

In this talk, we will first contrast, from a replication oriented perspective,
the workload characteristics of two standard benchmarks for STM and DBMS,
namely TPC-W [8] and STBench7 [9]. This will allow us to uncover several
pitfalls related to the adoption of conventional database replication techniques
in the context of STM systems.

At the light of such analysis, we will then discuss promising research direc-
tions we are currently pursuing in order to develop high performance replication
strategies able to fit the unique characteristics of the STM.

In particular, we will present one of our most recent results in this area which
not only tackles some key issues characterizing STM replication, but actually
represents a valuable tool for the replication of generic services: the Weak Mutual
Exclusion (WME) abstraction. Unlike the classical Mutual Exclusion problem
(ME), which regulates the concurrent access to a single and indivisible shared
resource, the WME abstraction ensures mutual exclusion in the access to a
shared resource that appears as single and indivisible only at a logical level,
while instead being physically replicated for both fault-tolerance and scalability
purposes.

T.P. Baker, A. Bui, and S. Tixeuil (Eds.): OPODIS 2008, LNCS 5401, pp. 2–4, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



On Replication of Software Transactional Memories 3

Differently from ME, which is well known to be solvable only in the pres-
ence of very constraining synchrony assumptions [10] (essentially exclusively in
synchronous systems), we will show that WME is solvable in an asynchronous
system using an eventually perfect failure detector, ♦P , and prove that ♦P is
actually the weakest failure detector for solving the WME problem. These re-
sults imply, unlike ME, WME is solvable in partially synchronous systems, (i.e.
systems in which the bounds on communication latency and relative process
speed either exist but are unknown or are known but are only guaranteed to
hold starting at some unknown time) which are widely recognized as a realistic
model for large scale distributed systems [11,12].

However, this is not the only element contributing to the pragmatical relevance
of the WME abstraction. In fact, the reliance on the WME abstraction, as a mean
for regulating the concurrent access to a replicated resource, also provides the
two following important practical benefits:

Robustness: pessimistic concurrency control is widely used in commercial off
the shelf systems, e.g. DBMSs and operating systems, because of its ro-
bustness and predictability in presence of conflict intensive workloads. The
WME abstraction lays a bridge between these proven contention manage-
ment techniques and replica control schemes. Analogously to centralized lock
based concurrency control, WME reveals particularly useful in the context
of conflict-sensitive applications, such as STMs or interactive systems, where
it may be preferable to bridle concurrency rather than incurring the costs
of application level conflicts, such as transactions abort or re-submission of
user inputs.

Performance: the WME abstraction ensures that users issue operations on
the replicated shared resource in a sequential manner. Interestingly, it has
been shown that, in such a scenario, it is possible to sensibly boost the
performance of lower level abstractions [13,14], such as consensus or atomic
broadcast, which are typically used as building blocks of modern replica
control schemes and which often represent, like in typical STM workloads,
the performance bottleneck of the whole system.
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Abstract. Probabilistic quorum systems can tolerate a larger fraction
of faults than can traditional (strict) quorum systems, while guaranteeing
consistency with an arbitrarily high probability for a system with enough
replicas. However, the masking and opaque types of probabilistic quorum
systems are hampered in that their optimal load—a best-case measure of
the work done by the busiest replica, and an indicator of scalability—is
little better than that of strict quorum systems. In this paper we present a
variant of probabilistic quorum systems that uses write markers in order
to limit the extent to which Byzantine-faulty servers act together. Our
masking and opaque probabilistic quorum systems have asymptotically
better load than the bounds proven for previous masking and opaque
quorum systems. Moreover, the new masking and opaque probabilistic
quorum systems can tolerate an additional 24% and 17% of faulty repli-
cas, respectively, compared with probabilistic quorum systems without
write markers.

1 Introduction

Given a universe U of servers, a quorum system over U is a collection Q =
{Q1, . . . , Qm} such that each Qi ⊆ U and

|Q ∩ Q′| > 0 (1)

for all Q, Q′ ∈ Q. Each Qi is called a quorum. The intersection property (1)
makes quorums a useful primitive for coordinating actions in a distributed sys-
tem. For example, if clients perform writes at a quorum of servers, then a client
who reads from a quorum will observe the last written value. Because of their util-
ity in such applications, quorums have a long history in distributed computing.

In systems that may suffer Byzantine faults [1], the intersection property (1) is
typically not adequate as a mechanism to enable consistent data access. Because
(1) requires only that the intersection of quorums be non-empty, it could be that
two quorums intersect only in a single server, for example. In a system in which
up to b > 0 servers might suffer Byzantine faults, this single server might be
faulty and consequently, could fail to convey the last written value to a reader,
for example.

T.P. Baker, A. Bui, and S. Tixeuil (Eds.): OPODIS 2008, LNCS 5401, pp. 5–21, 2008.
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For this reason, Malkhi and Reiter [2] proposed various ways of strengthening
the intersection property (1) so as to enable quorums to be used in Byzantine
environments. For example, an alternative to (1) is

|Q ∩ Q′ \ B| > |Q′ ∩ B| (2)

for all Q, Q′ ∈ Q, where B is the (unknown) set of all (up to b) servers that are
faulty. In other words, the intersection of any two quorums contains more non-
faulty servers than the faulty ones in either quorum. As such, the responses from
these non-faulty servers will outnumber those from faulty ones. These quorum
systems are called masking systems.

Opaque quorum systems, have an even more stringent requirement as an al-
ternative to (1):

|Q ∩ Q′ \ B| > |(Q′ ∩ B) ∪ (Q′ \ Q)| (3)

for all Q, Q′ ∈ Q. In other words, the number of correct servers in the intersection
of Q and Q′ (i.e., |Q ∩ Q′ \ B|) exceeds the number of faulty servers in Q′ (i.e.,
|Q′ ∩ B|) together with the number of servers in Q′ but not Q. The rationale
for this property can be seen by considering the servers in Q′ but not Q as
“outdated”, in the sense that if Q was used to perform an update to the system,
then those servers in Q′ \ Q are unaware of the update. As such, if the faulty
servers in Q′ behave as the outdated ones do, their behavior (i.e., their responses)
will dominate that from the correct servers in the intersection (Q∩Q′ \B) unless
(3) holds.

The increasingly stringent properties of Byzantine quorum systems come with
costs in terms of the smallest system sizes that can be supported while tolerating
a number b of faults [2]. This implies that a system with a fixed number of
servers can tolerate fewer faults when the property is more stringent as seen in
Table 1, which refers to the quorums just discussed as strict. Table 1 also shows
the negative impact on the ability of the system to disperse load amongst the
replicas, as discussed next.

Naor and Wool [3] introduced the notion of an access strategy by which clients
select quorums to access. An access strategy p : Q → [0, 1] is simply a proba-
bility distribution on quorums, i.e.,

∑
Q∈Q p(Q) = 1. Intuitively, when a client

accesses the system, it does so at a quorum selected randomly according to the
distribution p.

The formalization of an access strategy is useful as a tool for discussing the
load dispersing properties of quorums. The load [3] of a quorum system, L(Q), is
the probability with which the busiest server is accessed in a client access, under
the best possible access strategy p. As listed in Table 1, tight lower bounds
have been proven for the load of each type of strict Byzantine quorum system.
The load for opaque quorum systems is particularly unfortunate—systems that
utilize opaque quorum systems cannot effectively disperse processing load across
more servers (i.e., by increasing n) because the load is at least a constant. Such
Byzantine quorum systems are used by many modern Byzantine-fault-tolerant
protocols, e.g., [4,5,6,7,8,9] in order to tolerate the arbitrary failure of a subset
of their replicas. As such, circumventing the bounds is an important topic.
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One way to circumvent these bounds is with probabilistic quorum systems.
Probabilistic quorum systems relax the quorum intersection properties, asking
them to hold only with high probability. More specifically, they relax (2) or (3),
for example, to hold only with probability 1− ε (for ε, a small constant), where
probabilities are taken with respect to the selection of quorums according to an
access strategy p [10,11]. This technique yields masking quorum constructions
tolerating b < 2.62/n and opaque quorum constructions tolerating b < 3.15/n
as seen in Table 1. These bounds hold in the sense that for any ε > 0 there is
an n0 such that for all n > n0, the required intersection property ((2) or (3)
for masking and opaque quorum systems, respectively) holds with probability at
least 1− ε. Unfortunately, probabilistic quorum systems alone do not materially
improve the load of Byzantine quorum systems.

In this paper, we present an additional modification, write markers, that im-
proves on the bounds further. Intuitively, in each update access to a quorum of
servers, a write marker is placed at the accessed servers in order to evidence the
quorum used in that access. This write marker identifies the quorum used; as
such, faulty servers not in this quorum cannot respond to subsequent quorum
accesses as though they were.

As seen in Table 1, by using this method to constrain how faulty servers can
collaborate, we show that probabilistic masking quorum systems with

Table 1. Improvements due to write markers (Bold
entries are properties of particular constructions; oth-
ers are lower bounds)

Non-Byzantine: load faults
strict Ω(1/

√
n) [3] < n

Masking: load faults
strict Ω(

√
b/n) [2] < n/4.00 [12]

probabilistic Ω(b/n) [10] < n/2.62 [11]
write markers O(1/

√
n) [here] < n/2.00 [here]

Opaque: load faults
strict ≥ 1/2 [2] < n/5.00 [2]
probabilistic unproven < n/3.15 [11]
write markers O(b/n) [here] < n/2.62 [here]

load O(1/
√

n) can be
achieved, allowing the sys-
tems to disperse load in-
dependently of the value
of b. Further, probabilis-
tic opaque quorum systems
with load O(b/n) can be
achieved, breaking the con-
stant lower bound on load
for opaque systems. More-
over, the resilience of prob-
abilistic masking quorums
can be improved an addi-
tional 24% to b < n/2, and
the resilience of probabilistic
opaque quorum systems can
be improved an additional
17% to b < n/2.62.

The probability of error in probabilistic quorums requires mechanisms to en-
sure that accesses are performed according to the required access strategy p if
the clients cannot be trusted to do so. Therefore, we adapt one such mechanism,
the access-restriction protocol of probabilistic opaque quorum systems [11], to
accomodate write markers. Thus, as a side benefit, our implementation forces
faulty clients to follow the access strategy. With this, we provide a protocol to
implement write markers that tolerates Byzantine clients.
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Our primary contributions are (i) the identification and analysis of the benefits
of write markers; and (ii) a proposed implementation of write markers that
handles the complexities of tolerating Byzantine clients. Our analysis yields the
following results:

Masking Quorums: We show that the use of write markers allows probabilistic
masking quorum systems to tolerate up to b < n/2 faults when quorums are of
size Ω(

√
n). Setting all quorums to size ρ

√
n for some constant ρ, we achieve

a load that is asymptotically optimal for any quorum system, i.e., ρ
√

n/n =
O(1/

√
n) [3].

This represents an improvement in load and the number of faults that can
be tolerated. Probabilistic masking quorums without write markers can tolerate
up to b < n/2.62 faults [11] and achieve load no better than Ω(b/n) [10]. In
addition, the maximum number of faults that can be tolerated is tied to the size
of quorums [10]. Thus, without write markers, achieving optimal load requires
tolerating fewer faults. Strict masking quorum systems can tolerate (only) up to
b < n/4 faults [2] and can achieve load Ω(

√
b/n) [12].

Opaque Quorums: We show that the use of write markers allows probabilis-
tic opaque quorum systems to tolerate up to b < n/2.62 faults. We present a
construction with load O(b/n) when b = Ω(

√
n), thereby breaking the constant

lower bound of 1/2 on the load of strict opaque quorum systems [2]. Moreover,
if b = O(

√
n), we can set all quorums to size ρ

√
n for some constant ρ, in order

to achieve a load that is asymptotically optimal for any quorum system, i.e.,
ρ
√

n/n = O(1/
√

n) [3].
This represents an improvement in load and the number of faults that can

be tolerated. Probabilistic opaque quorum systems without write markers can
tolerate (only) up to b < n/3.15 faults [11]. Strict opaque quorum systems can
tolerate (only) up to b < n/5 faults [2]; these quorum systems can do no better
than constant load even if b = 0 [2].

2 Definitions and System Model

We assume a system with a set U of servers, |U | = n, and an arbitrary but
bounded number of clients. Clients and servers can fail arbitrarily (i.e., Byzan-
tine faults [1]). We assume that up to b servers can fail, and denote the set of
faulty servers by B, where B ⊆ U . Any number of clients can fail. Failures are
permanent. Clients and servers that do not fail are said to be non-faulty. We
allow that faulty clients and servers may collude, and so we assume that faulty
clients and servers all know the membership of B (although non-faulty clients
and servers do not). However, for our implementation of write markers, as is
typical for many Byzantine-fault-tolerant protocols (c.f., [4,5,6,9]), we assume
that faulty clients and servers are computationally bound such that they cannot
subvert standard cryptographic primitives such as digital signatures.
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Communication. Write markers require no communication assumptions
beyond those of the probabilistic quorums for which they are used. For com-
pleteness, we summarize the model of [11], which is common to prior works in
probabilistic [10] and signed [13] quorum systems: we assume that each non-
faulty client can successfully communicate with each non-faulty server with high
probability, and hence with all non-faulty servers with roughly equal probability.
This assumption is in place to ensure that the network does not significantly bias
a non-faulty client’s interactions with servers either toward faulty servers or to-
ward different non-faulty servers than those with which another non-faulty client
can interact. Put another way, we treat a server that can be reliably reached by
none or only some non-faulty clients as a member of B.

Access set; access strategy; operation. We abstractly describe client oper-
ations as either writes that alter the state of the service or reads that do not.
Informally, a non-faulty client performs a write to update the state of the service
such that its value (or a later one) will be observed with high probability by any
subsequent operation; a write thus successfully performed is called “established”
(we define established more precisely below). A non-faulty client performs a read
to obtain the value of the latest established write, where “latest” refers to the
value of the most recent write preceding this read in a linearization [14] of the
execution.

In the introduction, we discussed access strategies as probability distributions
on quorums used for operations. For the remainder of the paper, we follow [11]
in strictly generalizing the notion of access strategy to apply instead to access
sets from which quorums are chosen. An access set is a set of servers from
which the client selects a quorum. If the client is non-faulty, we assume that this
selection is done uniformly at random. We adopt the access strategy that all
access sets are chosen uniformly at random (even by faulty clients). In Section 4,
we adapt a protocol to support write markers from one in [11] that approximately
ensures this access strategy. Our analysis allows that access sets may be larger
than quorums, though if access sets and quorums are of the same size, then
our protocol effectively forces even faulty clients to select quorums uniformly at
random as discussed in the introduction. In our analysis, all access sets used for
reads and writes are of constant size ard and awt respectively. All quorums used
for reads and writes are of constant size qrd and qwt respectively.

Candidate; conflicting; error probability; established; participant;
qualified; vote. Each write yields a corresponding candidate at some num-
ber of servers. A candidate is an abstraction used in part to ensure that two
distinct write operations are distinguishable from each other, even if the corre-
sponding data values are the same. A candidate is established once it is accepted
by all of the non-faulty servers in some write quorum of size qwt within the write
access set of size awt. In opaque quorum systems, property (3) anticipates that
different non-faulty servers each may hold a different candidate due to concur-
rent writes. A candidate that is characterized by the property that a non-faulty
server would accept either it or a given established candidate, but not both, is
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called a conflicting candidate. Two candidates may conflict because, e.g., they
both bear the same timestamp. In either masking or opaque quorum systems,
a faulty server may try to forge a conflicting candidate. No non-faulty server
accepts two candidates that conflict with each other.

A server can try to vote for some candidate (e.g., by responding to a read
operation) if the server is a participant in voting (i.e., if the server is a member
of the client’s read access set). However, a server becomes qualified to vote for
a particular candidate only if the server is a member of the client’s write access
set selected for the write operation for which it votes. Non-faulty clients wait for
responses from a read quorum of size qrd contained in the read access set of size
ard. An error is said to occur in a read operation when a non-faulty client fails
to observe the latest value or a faulty client obtains sufficiently many votes for
a conflicting value.1 The error probability is the probability of this occurring.

Behavior of faulty clients. We assume that faulty clients seek to maximize
the error probability by following specific strategies [11]. This is a conservative
assumption; a client cannot increase—but may decrease—the probability of error
by failing to follow these strategies. At a high level, the strategies are as follows:
a faulty client, which may be completely restricted in its choices: (i) when estab-
lishing a candidate, writes the candidate to as few non-faulty servers as possible
to minimize the probability that it is observed by a non-faulty client; and (ii)
writes a conflicting candidate to as many servers as will accept it (i.e., faulty
servers plus, in the case of an opaque quorum system, any non-faulty server that
has not accepted the established candidate) in order to maximize the probability
that it is observed.

3 Analysis of Write Markers

Intuitively, when a client submits a write, the candidate is associated with a
write marker. We require that the following three properties are guaranteed by
an implementation of write markers:

W1. Every candidate has a write marker that identifies the access set chosen
for the write;

W2. A verifiable write marker implies that the access set was selected uniformly
at random (i.e., according to the access strategy);

W3. Every non-faulty client can verify a write marker.

When considering a candidate, non-faulty clients and servers verify the candi-
date’s write marker. Because of this verification, no non-faulty node will accept
a vote for a candidate unless the issuing server is qualified to vote for the can-
didate. Since each write access set is chosen uniformly at random (W2), the
faulty servers that can vote for a candidate, i.e., the faulty qualified servers, are
therefore a random subset of the faulty servers.

1 Faulty clients may be able to affect the system with such votes in some protocols [11].
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Thus, write markers remove the advantage enjoyed by faulty servers in strict
and traditional-probabilistic masking and opaque quorum systems, where any
faulty participant can vote for any candidate—and therefore can collude to have
a conflicting, potentially fabricated candidate chosen instead of an established
candidate. This aspect of write markers is summarized in Table 2, which shows
the impact of write markers in terms of the abilities of faulty and non-faulty
servers to vote for a given candidate.

3.1 Consistency Constraints

Probabilistic quorum systems must satisfy constraints similar to those of strict
quorum systems (e.g., (2), (3)), but only with probability 1 − ε. As with strict
quorum systems, the purpose of these constraints is to guarantee that operations
can be observed consistently in subsequent operations by receiving enough votes.

Table 2. Ability of a server to vote for a
given candidate: • (traditional quorums); �
(write markers)

Type of server Vote
Non-faulty qualified participant • �
Faulty qualified participant • �
Non-faulty non-qualified participant
Faulty non-qualified participant •

First, the constraints must ensure
in expectation that a non-faulty client
can observe the latest established can-
didate if such a candidate exists. Let
Qrd represent a read quorum chosen
uniformly at random, i.e., a random
variable, from a read access set itself
chosen uniformly at random. (Think
of this quorum as one used by a non-
faulty client.) Let Qwt represent a
write quorum chosen by a potentially
faulty client; Qwt must be chosen from
Awt, an access set chosen uniformly at random. (Think of Qwt as a quorum used
for an established candidate.) Then the threshold r number of votes necessary
to observe a value must be less than the expected number of non-faulty qualified
participants, which is

E [|(Qrd ∩ Qwt) \ B|] . (4)

The use of write markers has no impact here on (4) because (Qrd ∩ Qwt) \ B
contains no faulty servers. However, write markers do enable us to set r smaller,
as the following shows.

Second, the constraints must ensure that a conflicting candidate (which is in
conflict with an established candidate as described in Section 2) is, in expecta-
tion, not observed by any client (non-faulty or faulty). In general, it is important
for all clients to observe only established candidates so as to enable higher-level
protocols (e.g., [4]) that employ repair phases that may affect the state of the
system within a read [11]. Let A′

rd and A′
wt represent read and write access sets,

respectively, chosen uniformly at random. (Think of A′
wt as the access set used by

a faulty client for a conflicting candidate, and of A′
rd as the access set used by a

faulty client for a read operation. How faulty clients can be forced to choose uni-
formly at random is described in Section 4.) We consider the cases for masking
and opaque quorums separately:
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Probabilistic Masking Quorums. In a masking quorum system, (2) dictates that
only faulty servers may vote for a conflicting candidate. Using write markers, we
require that the faulty qualified participants alone cannot produce sufficient votes
for a candidate to be observed in expectation. Taking (4) into consideration, we
require:

E [|(Qrd ∩ Qwt) \ B|] > E [|(A′
rd ∩ A′

wt) ∩ B|] . (5)

Contrast this with (2) and with the consistency requirement for traditional prob-
abilistic masking quorum systems [10] (adapted to consider access sets), which
requires that the faulty participants (qualified or not) cannot produce sufficient
votes for a candidate to be observed in expectation:

E [|(Qrd ∩ Qwt) \ B|] > E [|A′
rd ∩ B|] . (6)

Intuitively, the intersection between access sets can be smaller with write markers
because the right-hand side of (5) is less than the right-hand side of (6) if
awt < n.

Probabilistic Opaque Quorums. With write markers, we have the benefit, de-
scribed above for probabilistic masking quorums, in terms of the number of
faulty participants that can vote for a candidate in expectation. However, as
shown in (3), opaque quorum systems must additionally consider the maximum
number of non-faulty qualified participants that vote for the same conflicting
candidate in expectation. As such, instead of (5), we have:

E [|(Qrd ∩ Qwt) \ B|]>E [|(A′
rd ∩ A′

wt) ∩ B|]+E [| ((A′
rd ∩ A′

wt) \ B) \ Qwt|] . (7)

Contrast this with the consistency requirement for traditional probabilistic
opaque quorums [11]:

E [|(Qrd ∩ Qwt) \ B|] > E [|A′
rd ∩ B|] + E [| ((A′

rd ∩ A′
wt) \ B) \ Qwt|] . (8)

Again, intuitively, the intersection between access sets can be smaller with write
markers because the right-hand side of (7) is less than the right-hand side of (8)
if awt < n.

3.2 Implied Bounds

In this subsection, we are concerned with quorum systems for which we can
achieve error probability (as defined in Section 2) no greater than a given ε for
any n sufficiently large. For such quorum systems, there is an upper bound on b
in terms of n, akin to the bound for strict quorum systems.

Intuitively, the maximum value of b is limited by the relevant constraint (i.e.,
either (5) or (7)). Of primary interest are Theorem 1 and its corollaries, which
demonstrate the benefits of write markers for probabilistic masking quorum sys-
tems, and Theorem 2 and its corollaries, which demonstrate the benefits of write
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markers for probabilistic opaque quorum systems. They utilize Lemmas 1 and 2,
which together present basic requirements for the types of quorum systems with
which we are concerned. Due to space constraints, proofs of the lemmas and
theorems appear only in a companion technical report [15].

Define MinCorrect to be a random variable for the number of non-faulty servers
with the established candidate, i.e., MinCorrect = |(Qrd ∩Qwt) \ B| as indicated
in (4).

Lemma 1. Let n − b = Ω(n). For all c > 0 there is a constant d > 1 such that
for all qrd, qwt where qrdqwt > dn and qrdqwt − n = Ω(1), it is the case that
E [MinCorrect] > c for all n sufficiently large.

Let r be the threshold, discussed in Section 3.1, for the number of votes neces-
sary to observe a candidate. Define MaxConflicting to be a random variable for
the maximum number of servers that vote for a conflicting candidate. For ex-
ample: due to (5), in masking quorums with write markers, MaxConflicting =
|(A′

rd ∩ A′
wt) ∩ B|; and due to (7), in opaque quorums with write markers,

MaxConflicting = |(A′
rd ∩ A′

wt) ∩ B| + | ((A′
rd ∩ A′

wt) \ B) \ Qwt|.
Lemma 2. Let the following hold,2

E [MinCorrect] − E [MaxConflicting] > 0,

E [MinCorrect] − E [MaxConflicting] = ω(
√

E [MinCorrect]).

Then it is possible to set r such that,

error probability → 0 as E [MinCorrect] → ∞.

Here and below, a suitable setting of r is one between E [MinCorrect] and
E [MaxConflicting], inclusive. The remainder of the section is focused on deter-
mining, for each type of probabilistic quorum system, the upper bound on b and
bounds on the load that Lemmas 1 and 2 imply.

Theorem 1. For all ε there is a constant d > 1 such that for all qrd, qwt where
qrdqwt > dn, qrdqwt − n = Ω(1), and

b <
qrdqwtn

qrdawt + ardawt
,

any such probabilistic masking quorum system employing write markers achieves
error probability no greater than ε given a suitable setting of r for all n sufficiently
large.

Corollary 1. Let ard = qrd and awt = qwt. For all ε there is a constant d > 1
such that for all qrd, qwt where qrdqwt > dn, qrdqwt − n = Ω(1), and

b < n/2,

any such probabilistic masking quorum system employing write markers achieves
error probability no greater than ε given a suitable setting of r for all n sufficiently
large.
2 ω is the little-oh analog of Ω, i.e., f(n) = ω(g(n)) if f(n)/g(n) → ∞ as n → ∞.
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In other words, with write markers, the size of quorums does not impact the
maximum fraction of faults that can be tolerated when quorums are selected
uniformly at random (i.e., when ard = qrd and awt = qwt).

Corollary 2. Let ard = qrd, awt = qwt, and b < n/2. For all ε there is a
constant ρ > 1 such that if qrd = qwt = ρ

√
n, any such probabilistic masking

quorum system employing write markers achieves error probability no greater
than ε given a suitable setting of r for all n sufficiently large, and has load

ρ
√

n/n = O(1/
√

n).

Theorem 2. For all ε there is a constant d > 1 such that for all qrd, qwt where
qrdqwt > dn, qrdqwt − n = Ω(1), and

b <
n(arda

2
wt + ardqwtn + qrdqwtn − 2ardawtn)

awt(ardawt + qrdn)
,

any such probabilistic opaque quorum system employing write markers achieves
error probability no greater than ε given a suitable setting of r for all n sufficiently
large.

Corollary 3. Let ard = qrd and awt = qwt. For all ε there is a constant d > 1
such that for all qrd, qwt where qrdqwt > dn, qrdqwt − n = Ω(1), and

b <
qwtn

qwt + n
,

any such probabilistic opaque quorum system employing write markers achieves
error probability no greater than ε given a suitable setting of r for all n sufficiently
large.

Comparing Corollary 3 with Corollary 1, we see that in the opaque quorum case
qwt cannot be set independently of b.

Corollary 4. Let ard = qrd, awt = qwt, and b < (qwtn)/(qwt + n). For all ε
there is a constant d > 1 such that for all qrd, qwt where qrdqwt > dn and
qrdqwt−n = Ω(1), any such probabilistic opaque quorum system employing write
markers achieves error probability no greater than ε given a suitable setting of r
for all n sufficiently large, and has load

Ω(b/n).

Corollary 5. Let b = Ω(
√

n). For all ε there is a constant d > 1 such that
for all ard, awt, qrd, qwt where ard = awt = qrd = qwt = lb for a value l such
that c′ ≥ l > n/(n − b) for some constant c′, (lb)2 > dn and (lb)2 − n = Ω(1),
any such probabilistic opaque quorum system employing write markers achieves
error probability no greater than ε given a suitable setting of r for all n sufficiently
large, and has load

O(b/n).
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Corollary 6. Let ard = qrd and awt = qwt = n− b. For all ε there is a constant
d > 1 such that for all qrd, qwt where qrdqwt > dn, qrdqwt − n = Ω(1), and

b < n/2.62,

any such probabilistic opaque quorum system employing write markers achieves
error probability no greater than ε given a suitable setting of r for all n sufficiently
large.

4 Implementation

Our implementation of write markers provides the behavior assumed in Section 3,
even with Byzantine clients. Specifically, it ensures properties W1–W3. (Though,
technically, it ensures W2 only approximately in the case of opaque quorum
systems, in which, as we explain below, a faulty server might be able to create
a conflicting candidate using a write marker for a stale, i.e., out-of-date, access
set—but to no advantage.)

Because clients may be faulty, we cannot rely on, e.g., digital signatures is-
sued by them to implement write markers. Instead, we adapt mechanisms of our
access-restriction protocol for probabilistic opaque quorum systems [11]. The
access-restriction protocol is designed to ensure that all clients follow the access
strategy. It already enables non-faulty servers to verify this before accepting a
write. And, since it is the only way of which we are aware for a probabilistic
quorum system to tolerate Byzantine clients when write markers are of bene-
fit (i.e., when the sizes of write access sets are restricted), its mechanisms are
appropriate.

The relevant parts of the preexisting protocol work as follows [11]. From a pre-
configured number of servers, a client obtains a verifiable recent value (VRV),
the value of which is unpredictable to clients and b or fewer servers prior to
its creation. This VRV is used to generate a pseudorandom sequence of access
sets. Since a VRV can be verified using only public information, both it and
the sequence of access sets it induces can be verified by clients and servers.
Non-faulty clients simply choose the next unused access set for each operation.3

However, a faulty client is motivated to maximize the probability of error. If the
use of the next access set in the sequence does not maximize the probability
of error given the current state of the system (i.e., the candidates accepted by
the servers), such a client may try to skip ahead some number of access sets.
Alternatively, such a client might try to wait to use the next access set until the
state of the system changes. If allowed to follow either strategy, such a client
would circumvent the access strategy because its choice of access set would not
be independent from the state of the system.

Three mechanisms are used together to coerce a faulty client to follow the ac-
cess strategy. First, the client must perform exponentially increasing work in ex-
pectation in order to use later access sets. As such, a client requires exponentially
3 Non-faulty clients should choose a new access set for each operation to ensure inde-

pendence from the decisions of faulty clients [11].
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increasing time in expectation
in order to choose a later access
set. This is implemented by re-
quiring that the client solve a
client puzzle [16] of the appro-
priate difficulty. The solution to
the puzzle is, in expectation,
difficult to find but easy to ver-
ify. Second, the VRV and se-
quence of access sets become in-
valid as the non-faulty servers
accept additional candidates, or
as the system otherwise pro-
gresses (e.g., as time passes).
Non-faulty servers verify that an access set is still valid, i.e., not stale, before
accepting it. Thus, system progress forces the client to start its work anew, and,
as such, makes the work solving the puzzle for any unused access set wasted.
Finally, during the time that the client is working, the established candidate
propagates in the background to the non-faulty servers that are non-qualified
(c.f., [17]). This decreases the window of vulnerability in which a given access
set in the sequence is useful for a conflicting write by making non-qualified servers
aware that (i) there is an established candidate (so that they will not accept a
conflicting candidate) and (ii) that the state of the system has progressed (so
that they will invalidate the current VRV if appropriate).

The impact of these three mechanisms is that a non-faulty server can be
confident that the choice of write access set adheres (at least approximately) to
the access strategy upon having verified that the access set is valid, current, and
is accompanied by an appropriate puzzle solution.

For write markers, we extend the protocol so that, as seen in Figure 1, clients
can also perform verification. This requires that information about the puzzle
solution and access set (including the VRV used to generate it) be returned by
the servers to clients. (As seen in Figure 2 and explained below, this information
varies across masking and opaque quorum systems.) In the preexisting access-
restriction protocol, this information is verified and discarded by each server. For
write markers, this information is instead stored by each server in the verification
stage as a write marker. It is sent along with the data value as part of the
candidate to the client during any read operation. If the server is non-faulty—
a fact of which a non-faulty client cannot be certain—the access set used for
the operation was indeed chosen according to the access strategy because the
server performed verification before accepting the candidate. However, because
the server may be faulty, the client performs verification as well; it verifies the
write marker and that the server is a member of the access set. This allows us
to guarantee points W1–W3. As such, faulty non-qualified servers are unable to
vote for the candidates for which qualified servers can vote.
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gray)

Figures 1, 2, 3, and 4
illustrate relevant pieces
of the preexisting proto-
col and our modifications
for write markers in the
context of read and write
operations in probabilistic
masking and opaque quo-
rum systems. The figures
highlight that the additions
to the protocol for write
markers involve saving the
write markers and return-
ing them to clients so that
clients can also verify them.

The differences in the structure of the write marker for probabilistic opaque
and masking quorum systems mentioned above results in subtly different guar-
antees. The remainder of the section discusses these details.

4.1 Probabilistic Opaque Quorums

As seen in Figure 2 (message ii), a write marker for a probabilistic opaque
quorum system consists of the write-access-set identifier (including the VRV)
and the solution to the puzzle that unlocks the use of this access set. Unlike
a non-faulty server that verifies the access set at the time of use, a non-faulty
client cannot verify that an access set was not already stale when the access set
was accepted by a faulty server. Initially, this may appear problematic because
it is clear that, given sufficient time, a faulty client will eventually be able to
solve the puzzle for its preferred access set to use for a conflicting write—this
access set may contain all of the servers in B. In addition, the faulty client can
delay the use of this access set because non-faulty clients will be unable to verify
whether it was already stale when it was used.

Fortunately, because non-faulty servers will not accept a stale candidate (i.e.,
a candidate accompanied by a stale access set), the fact that a stale access set
may be accepted by a faulty server does not impact the benefit of write markers
for opaque quorum systems. In general, consistency requires (7), i.e.,

E [|(Qrd ∩ Qwt) \ B|] > E [|(A′
rd ∩ A′

wt) ∩ B|] + E [| ((A′
rd ∩ A′

wt) \ B) \ Qwt|] .

However, only faulty servers will accept a stale candidate. Therefore, if the can-
didate was stale when written to A′

wt, no non-faulty server would have accepted
it. Thus, in this case, the consistency constraint is equivalent to,

E [|(Qrd ∩ Qwt) \ B|] > E [|(A′
rd ∩ A′

wt) ∩ B|] .
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tems: messages and stages of verification of
write marker (Changes in gray)

However, this is (6), the constraint
on probabilistic masking quorum
systems without write markers. In
effect, a faulty client must either:
(i) use a recent access set that
is therefore chosen approximately
uniformly at random, and be lim-
ited by (7); or (ii), use a stale ac-
cess set and be limited by (6). If
quorums are the sizes of access sets,
both inequalities have the same up-
per bound on b (see [15]); other-
wise, a faulty client is disadvan-
taged by using a stale access set
because a system that satisfies (6) can tolerate more faults than one that satis-
fies (7), and is therefore less likely to result in error (see [15]). Even if the access
set contains all of the faulty servers, i.e., B ⊂ A′

wt, then this becomes,

E [|(Qrd ∩ Qwt) \ B|] > E [|A′
rd ∩ B|] .

4.2 Probabilistic Masking Quorums

Protocols for masking quorum systems involve an additional round of communi-
cation (an echo phase, c.f., [8] or broadcast phase, c.f., [18]) during write oper-
ations in order to tolerate Byzantine or concurrent clients. This round prevents
non-faulty servers from accepting conflicting data values, as assumed by (2).
In order to write a data value, a client must first obtain a write certificate (a
quorum of replies that together attest that the non-faulty servers will accept
no conflicting data value). In contrast to optimistic protocols that use opaque
quorum systems, these protocols are pessimistic.

This additional round allows us to prevent clients from using stale access sets.
Specifically, in the request to authorize a data value (message α in Figure 2 and
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Fig. 4. Write operation in masking quorum systems: messages
and stages of verification of write marker (Changes in gray)

Figure 4), the client
sends the access set
identifier (including
the VRV), the so-
lution to the puzzle
enabling use of this
access set, and the
data value. We re-
quire that the cer-
tificate come from
servers in the access
set that is chosen for
the write operation.
Each server verifies
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the VRV and that the puzzle solution enables use of the indicated access set
before returning authorization (message β in Figure 2 and Figure 4). The non-
faulty servers that contribute to the certificate all implicitly agree that the access
set is not stale, for otherwise they would not agree to the write. This certificate
(sent to each server in message γ in Figure 2 and Figure 4) is stored along with
the data value as a write marker. Thus, unlike in probabilistic opaque quorum
systems, a verifiable write marker in a probabilistic masking quorum system
implies that a stale access set was not used. The reading client verifies the cer-
tificate (returned in message ii in Figure 1 and Figure 2) before accepting a vote
for a candidate. Because a writing client will be unable to obtain a certificate for
a stale access set, votes for such a candidate will be rejected by reading clients.
Therefore, the analysis in Section 3 applies without additional complications.

5 Additional Related Work

Probabilistic quorum systems were explored in the context of dynamic systems
with non-uniform access strategies by Abraham and Malkhi [19]. Recently, prob-
abilistic quorum systems have been used in the context of security for wireless
sensor networks [20] as well as storage for mobile ad hoc networks [21]. Lee and
Welch make use of probabilistic quorum systems in randomized algorithms for
distributed read-write registers [22] and shared queue data structures [23].

Signed quorum systems presented by Yu [13] also weaken the requirements
of strict quorum systems but use different techniques. However, signed quorum
systems have not been analyzed in the context of Byzantine faults, and so they
are not presently affected by write markers.

Another implementation of write markers was introduced by Alvisi et al. [24]
for purposes different than ours. We achieve the goals of (i) improving the load,
and (ii) increasing the maximum fraction of faults that the system can tolerate by
using write markers to prevent some faulty servers from colluding. In contrast to
this, Alvisi et al. use write markers in order to increase accuracy in estimating the
number of faults present in Byzantine quorum systems, and for identifying faulty
servers that consistently return incorrect results. Because the implementation of
Alvisi et al. does not prevent faulty servers from lying about the write quorums of
which they are members, it cannot be used directly for our purposes. In addition,
our implementation is designed to tolerate Byzantine clients, unlike theirs.

6 Conclusion

We have presented write markers, a way to improve the load of masking and
opaque quorum systems asymptotically. Moreover, our new masking and opaque
probabilistic quorum systems with write markers can tolerate an additional 24%
and 17% of faulty replicas, respectively, compared with the proven bounds of
probabilistic quorum systems without write markers. Write markers achieve this
by limiting the extent to which Byzantine-faulty servers may cooperate to pro-
vide incorrect values to clients. We have presented a proposed implementation
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of write markers that is designed to be effective even while tolerating Byzantine-
faulty clients and servers.
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Abstract. Consensus is a fundamental building block used to solve many prac-
tical problems that appear on reliable distributed systems. In spite of the fact
that consensus is being widely studied in the context of classical networks, few
studies have been conducted in order to solve it in the context of dynamic and
self-organizing systems characterized by unknown networks. While in a classi-
cal network the set of participants is static and known, in a scenario of unknown
networks, the set and number of participants are previously unknown. This work
goes one step further and studies the problem of Byzantine Fault-Tolerant Con-
sensus with Unknown Participants, namely BFT-CUP. This new problem aims at
solving consensus in unknown networks with the additional requirement that par-
ticipants in the system can behave maliciously. This paper presents a solution for
BFT-CUP that does not require digital signatures. The algorithms are shown to be
optimal in terms of synchrony and knowledge connectivity among participants in
the system.

Keywords: Consensus, Byzantine fault tolerance, Self-organizing systems.

1 Introduction

The consensus problem [1,2,3,4,5], and more generally the agreement problems, form
the basis of almost all solutions related to the development of reliable distributed sys-
tems. Through these protocols, participants are able to coordinate their actions in order
to maintain state consistency and ensure system progress. This problem has been exten-
sively studied in classical networks, where the set of processes involved in a particular
computation is static and known by all participants in the system. Nonetheless, even in
these environments, the consensus problem has no deterministic solution in presence of
one single process crash, when entities behave asynchronously [2].
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In self-organizing systems, such as wireless mobile ad-hoc networks, sensor net-
works and, in a different context, unstructured peer to peer networks (P2P), solving
consensus is even more difficult. In these environments, an initial knowledge about par-
ticipants in the system is a strong assumption to be adopted and the number of partici-
pants and their knowledge cannot be previously determined. These environments define
indeed a new model of distributed systems which has essential differences regarding the
classical one. Thus, it brings new challenges to the specification and resolution of fun-
damental problems. In the case of consensus, the majority of existing protocols are not
suitable for the new dynamic model because their computation model consists of a set
of initially known nodes. The only notably exceptions are the works of Cavin et al. [6,7]
and Greve et al. [8].

Cavin et al. [6,7] defined a new problem named FT-CUP (fault-tolerant consen-
sus with unknown participants) which keeps the consensus definition but assumes that
nodes are not aware of Π , the set of processes in the system. They identified necessary
and sufficient conditions in order to solve FT-CUP concerning knowledge about the
system composition and synchrony requirements regarding the failure detection. They
concluded that in order to solve FT-CUP in a scenario with the weakest knowledge con-
nectivity, the strongest synchrony conditions are necessary, which are represented by
failures detectors of the class P [4].

Greve and Tixeuil [8] show that there is in fact a trade-off between knowledge con-
nectivity and synchrony for consensus in fault-prone unknown networks. They provide
an alternative solution for FT-CUP which requires minimal synchrony assumptions;
indeed, the same assumptions already identified to solve consensus in a classical en-
vironment, which are represented by failure detectors of the class ♦S [4]. The ap-
proach followed on the design of their FT-CUP protocol is modular: Initially, algorithms
identify a set of participants in the network that share the same view of the system.
Subsequently, any classical consensus – like for example, those initially designed for
traditional networks – can be reused and executed by these participants.

Our work extends these results and study the problem of Byzantine Fault-Tolerant
Consensus with Unknown Participants (BFT-CUP). This new problem aims at solv-
ing CUP in unknown networks with the additional requirement that participants in
the system can behave maliciously [1]. The main contribution of the paper is then
the identification of necessary and sufficient conditions in order to solve BFT-CUP.
More specifically, an algorithm for solving BFT-CUP is presented for a scenario which
does not require the use of digital signatures (a major source of performance over-
head on Byzantine fault-tolerant protocols [9]). Finally, we show that this algorithm
is optimal in terms of synchrony and knowledge connectivity requirements,
establishing then the necessary and sufficient conditions for BFT-CUP solvability in
this context.

The paper is organized in the following way. Section 2 presents our system model
and the concept of participant detectors, among other preliminary definitions used in
this paper. Section 3 describes a basic dissemination protocol used for process com-
munication. BFT-CUP protocols and respective necessary and sufficient proofs are des-
cribed in Section 4. Section 5 presents some comments about our protocol. Section 6
presents our final remarks.
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2 Preliminaries

2.1 System Model

We consider a distributed system composed by a finite set Π of n processes (also called
participants or nodes) drawn from a larger universe U . In a known network, Π and n is
known to every participanting process, while in an unknown network, a process i ∈ Π
may only be aware of a subset Πi ⊆ Π .

Processes are subject to Byzantine failures [1], i.e., they can deviate arbitrarily from
the algorithm they are specified to execute and work in collusion to corrupt the system
behavior. Processes that do not follow their algorithm in some way are said to be faulty.
A process that is not faulty is said to be correct. Despite the fact that a process does
not know all participants of the system, it does know the expected maximum number
of process that may fail, denoted by f . Moreover, we assume that all processes have a
unique id, and that it is infeasible for a faulty process to obtain additional ids to be able
to launch a sybil attack [10] against the system.

Processes communicate by sending and receiving messages through authenticated
and reliable point to point channels established between known processes1. Authentici-
ty of messages disseminated to a not yet known node is verified through message chan-
nel redundancy, as explained in Section 3. A process i may only send a message directly
to another process j if j ∈ Πi, i.e., if i knows j. Of course, if i sends a message to j such
that i �∈ Π j, upon receipt of the message, j may add i to Π j, i.e., j now knows i and
become able to send messages to it. We assume the existence of an underlying routing
layer resilient to Byzantine failures [11,12,13], in such a way that if j ∈ Πi and there
is sufficient network connectivity, then i can send a message reliably to j. For example,
[12] presents a secure multipath routing protocol that guarantees a proper communi-
cation between two processes provided that there is at least one path between these
processes that is not compromised, i.e., none of its processes or channels are faulty.

There are no assumptions on the relative speed of processes or on message transfer
delays, i.e., the system is asynchronous. However, the protocol presented in this paper
uses an underlying classical Byzantine consensus that could be implemented over an
eventually synchronous system [14] (e.g., Byzantine Paxos [9]) or over a completely
asynchronous system (e.g., using a randomized consensus protocol [5,15,16]). Thus,
our protocol requires the same level of synchrony required by the underlying classical
Byzantine consensus protocol.

2.2 Participant Detectors

To solve any nontrivial distributed problem, processes must somehow get a partial
knowledge about the others if some cooperation is expected. The participant detec-
tor oracle, namely PD, was proposed to handle this subset of known processes [6]. It
can be seen as a distributed oracle that provides hints about the participating processes
in the computation. Let i.PD be defined as the participant detector of a process i. When

1 Without authenticated channels it is not possible to tolerate process misbehavior in an asyn-
chronous system since a single faulty process can play the roles of all other processes to some
(victim) process.
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queried by i, i.PD returns a subset of processes in Π with whom i can collaborate.
Let i.PD(t) be the query of i at time t. The information provided by i.PD can evolve
between queries, but must satisfy the following two properties:

– Information Inclusion: The information returned by the participant detectors is non-
decreasing over time, i.e., ∀i ∈ Π ,∀t ′ ≥ t : i.PD(t) ⊆ i.PD(t ′);

– Information Accuracy: The participant detectors do not make mistakes, i.e., ∀i ∈
Π ,∀t : i.PD(t) ⊆ Π .

Participant detectors provide an initial context about participants present in the sys-
tem by which it is possible to expand the knowledge about Π . Thus, the participant de-
tector abstraction enriches the system with a knowledge connectivity graph. This graph
is directed since the knowledge provided by participant detectors is not necessarily bidi-
rectional [6].

Definition 1. Knowledge Connectivity Graph: Let Gdi = (V,ξ ) be the directed graph
representing the knowledge relation determined by the PD oracle. Then, V = Π and
(i, j) ∈ ξ iff j ∈ i.PD, i.e., i knows j.

Definition 2. Undirected Knowledge Connectivity Graph: Let G = (V,ξ ) be the undi-
rected graph representing the knowlegde relation determined by the PD oracle. Then,
V = Π and (i, j) ∈ ξ iff j ∈ i.PD or i ∈ j.PD, i.e., i knows j or j knows i.

Based on the properties of the knowledge connectivity graph, some classes of parti-
cipant detectors have been proposed to solve CUP [6] and FT-CUP [7,8]. Before defi-
ning how a participant detector encapsulates the knowledge of a system, let us define
some graph notations. We say that a component Gc of Gdi is k-strongly connected if
for any pair (vi,v j) of nodes in Gc, vi can reach v j through k node-disjoint paths. A
component Gs of Gdi is a sink component when there is no path from a node in Gs to
other nodes of Gdi, except nodes in Gs itself. In this paper we use the weakest participant
detector defined to solve FT-CUP, which is called k-OSR [8].

Definition 3. k-One Sink Reducibility (k-OSR) PD: The knowledge connectivity graph
Gdi, which represents the knowledge induced by PD, satisfies the following conditions:

1. the undirected knowledge connectivity graph G obtained from Gdi is connected;
2. the directed acyclic graph obtained by reducing Gdi to its k-strongly connected

components has exactly one sink;
3. consider any two k-strongly connected components G1 and G2, if there is a path

from G1 to G2, then there are k node-disjoint paths from G1 to G2.

To better illustrate Definition 3, Figure 1 presents two graphs Gdi induced by a k-OSR
participant detector. Figures 1(a) and 1(b) show knowledge relations induced by par-
ticipant detectors of the class 2-OSR and 3-OSR, respectively. For example, in Figure
1(a), the value returned by 1.PD is the subset {2,3} ⊂ Π .

In our algorithms, we assume that for each process i, its participant detector i.PD
is queried exactly once at the beginning of the protocol execution. This can be im-
plemented by caching the result of the first query to i.PD and returning that value in
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Fig. 1. Knowledge Connectivity Graphs Induced by k-OSR Participant Detectors

subsequent calls. This ensures that the partial view about the initial composition of the
system is consistent for all nodes in the system, what defines a common knowledge
connectivity graph Gdi. Also, in this work we say that some participant p is neighbor
of another participant i iff p ∈ i.PD.

2.3 The Consensus Problem

In a distributed system, the consensus problem consists of ensuring that all correct pro-
cesses eventually decide the same value, previously proposed by some processes in the
system. Thus, each process i proposes a value vi and all correct processes decide on
some unique value v among the proposed values. Formally, consensus is defined by the
following properties [4]:

– Validity: if a correct process decides v, then v was proposed by some process;
– Agreement: no two correct processes decide differently;
– Termination: every correct process eventually decides some value2;
– Integrity: every correct process decides at most once.

The Byzantine Fault-Tolerant Consensus with Unknown Participants, namely BFT-
CUP, proposes to solve consensus in unknown networks with the additional requirement
that a bounded number of participants in the system can behave maliciously.

3 Reachable Reliable Broadcast

This section introduces a new primitive, namely reachable reliable broadcast, used by
processes of the system to communicate. It is invoked by two basic operations:

– reachable send(m,p) – through which the participant p sends the message m to all
reachable participants from p. A participant q is reachable from another participant

2 If a randomized protocol such as [5,15,17] is used as an underlying Byzantine consensus, the
termination is ensured only with probability 1.



Byzantine Consensus with Unknown Participants 27

p if there is enough connectivity from p to q (see below). In this case, q is a receiver
of messages disseminated by p.

– reachable deliver(m,p) – invoked by the receiver to deliver a message m dissemi-
nated by the participant p.

This primitive should satisfy the following four properties:

– Validity: If a correct participant p disseminates a message m, then m is eventually
delivered by a correct participant reachable from p or there is no correct participant
reachable from p;

– Agreement: If a correct participant delivers some message m, disseminated by a cor-
rect participant p, then all correct participants reachable from p eventually deliver
m;

– Integrity: For any message m, every correct participant p delivers m only if m was
previously disseminated by some participant p′, in this case p is reachable from p′.

Notice that these properties establish a communication primitive with specification
similar to the usual reliable broadcast [4,5,15]. Nonetheless, the proposed primitive
ensures the delivery to all correct processes reachable in the system.

Implementation. The main idea of our implementation is that participants execute a
flood of their messages to all reachable processes, which, in turn, will deliver these
messages as soon as its authenticity has been proved. Assuming a k-OSR PD, a partici-
pant q is reachable from a participant p if there is enough connectivity in the knowlegde
graph, i.e., if there are at least 2 f +1 node-disjoint paths from p to q (k ≥ 2 f +1). This
connectivity is necessary to ensure that all reachable processes will be able to receive
and authenticate messages.

In our implementation, formally described in Algorithm 1, a process i disseminates
a message m through the system by executing the procedure reachable send. In this
procedure (line 6), i sends m to its neighbors (i.e., processes in i.PD) and when m is
received at some process p, p forwards m to its neighbors and so on, until that m arrives
at all reachable participants (line 17). Moreover, p stores m together with the route
traversed by m in a buffer (line 11). Also, p delivers m if it has received m through f +1
node-disjoint paths (lines 13-14), i.e., the authenticity of m has been verified. Afterward,
since m has been delivered, p removes it from the buffer of received messages (line
15). The function computeRoutes(m.message, i.received msgs) computes the number
of node-disjoint paths through which m.message has been received at participant i.

An important feature of this dissemination is that each message has the accumulated
route according with the path traversed from the sender to some destination. A partici-
pant will process a received message only if the participant that is sending (or forward-
ing) this message appears at the end of the accumulated route (line 8). This solution is
based on the approach used in [18] and it enforces that each participant appends itself at
the end of the routing information in order to send or forward a message. Nonetheless,
a malicious participant is able to modify the accumulated route (removing or adding
participants) and modify or block the message being propagated. Notice, however, that
the connectivity of the knowledge graph (k ≥ 2 f +1) ensures that messages will be re-
ceived at all reachable participants. Moreover, since a process delivers a message only
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Algoritm 1. Dissemination algorithm executed at participant i.
constant:

1. f : int // upper bound on the number of failures

variables:
2. i.received msgs : set of 〈message,route〉 tuples // set of received messages

message:
3. REACHABLE FLOODING: // struct of this message
4. message :value to flood // value to be disseminated
5. route : ordered list of nodes // path traversed by message

** Initiator Only **
procedure: reachable send(message,sender) // sender = i

6. ∀ j ∈ i.PD, send REACHABLE FLOODING(message,sender) to j;

** All Nodes **
INIT:

7. i.received msgs ← ∅;

upon receipt of REACHABLE FLOODING(m.message,m.route) from j
8. if getLastElement(m.route) = j ∧ i �∈ m.route then
9. append(m.route, i);

10. initiator ← getFirstElement(m.route);
11. i.received msgs ← i.received msgs ∪ {〈m.message,m.route〉};
12. routes ← computeRoutes(m.message, i.received msgs);
13. if routes ≥ f + 1 then
14. trigger reachable deliver(m.message, initiator);
15. i.received msgs ← i.received msgs\ {〈m.message,∗〉};
16. end if
17. ∀z ∈ i.PD\ { j}, send REACHABLE FLOODING(m.message,m.route) to z;
18. end if

after it has been received through f +1 node disjoint paths, it is able to verify its authen-
ticity. These measures prevent the delivery of forged messages (generated by malicious
participants), because the authenticity of them cannot be verified by correct processes.

An “undesirable” property of the proposed solution is that the same message, sent
by some participant, could be delivered more than once by its receivers. This property
does not affect the use of this protocol in our consensus protocol (Section 4). Thus, we
do not deal with this limitation of the algorithm. However, it can be easily solved by
using buffers to store delivered messages that must have unique identifiers.

Additionaly, each message’ receiver, disseminated by some participant p, is able
to send back a reply to p using some routing protocol resilient to Byzantine fail-
ures [11,12,13]. Our BFT-CUP protocol (Section 4) uses this algorithm to disseminate
messages.

Sketch of Proof. The correctness of this protocol is based on the proof of the properties
defined for the reachable reliable broadcast.
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Validity: By assumption, the connectivity of the system is k ≥ 2 f + 1. Thus, according
to Definition 3, there are at least 2 f + 1 node-disjoint paths from the sender of a mes-
sage m to the receivers (nodes that are reachable from the sender). Moreover, as validity
is established over messages sent by correct participants (correct sender), there are at
least f + 1 node-disjoint paths formed only by correct participants, through which it is
guaranteed that the same message m will reach the correct receivers. In this case, the
predicate of line 8 will be true at least f + 1 times and the authenticity of m can be
verified through redundancy. This is done by the execution of lines 9–12, which are re-
sponsible to maintain information regarding the different routes from which m has been
received. Whenever the message authenticity is proved, i.e., m has been received by at
least f + 1 different routes (line 13), the delivery of m is authorized by the invocation
of reachable deliver (line 14).

Agreement: As the agreement is established over messages sent by correct participants,
this proof is identical to the validity proof.

Integrity: A message is delivered only after its reception through f + 1 node-disjoint
paths (lines 13-14), what guarantees that this message is authentic, i.e., this message
was really sent by its sender (sender). Thus, a malicious participant j is not able to
forge that message m was sent by a participant i because the autenticity of m will not
be proven. That is, a receiver r will not be able to find f + 1 node-disjoint paths from
i to r through which m has been received. Even with a collusion of up to f malicious
participants, r will obtain at most f node-disjoint paths through which m was received
“from i” (each of these f paths could contain one malicious participant). �

4 BFT-CUP: Byzantine Consensus with Unknown Participants

This section presents our solution for BFT-CUP. Our protocol is based on the dissemi-
nation algorithm presented in Section 3, which, together with the underlying routing
layer resilient to Byzantine failures, hides all details related to participants communica-
tion. Thereafter, as in [8], the consensus protocol with unknown participants is divided
into three phases. In the first phase – called participants discovery (Section 4.1) – each
participant increases its knowledge about other processes in the system, discovering the
maximum possible number of participants that are present in some computation. The
second phase – called sink component determination (Section 4.2) – defines which par-
ticipants belong to the sink component of the knowlegde graph induced by a k-OSR
PD. Thus, each participant will be able to determine whether it belongs to the sink
component or not. In the last phase (Section 4.3), members of the sink component ex-
ecute a classical Byzantine fault tolerant consensus and disseminate the decision value
to other participants in the system. The number of participants in the sink component,
namely nsink, should be enough in order to e xecute a classical Byzantine fault-tolerant
consensus. Usually nsink ≥ 3 f + 1, to run, for example, Byzantine Paxos [9,19].

4.1 Participants Discovery

The first step to solve consensus in a system with unknown participants is to provide
processes with the maximum possible knowledge about the system. Notice that, through



30 E.A.P. Alchieri et al.

its local participant detector, a process is able to get an initial knowledge about the
system that is not enough to solve BFT-CUP. Then, a process expands this knowledge
by executing the DISCOVERY protocol, presented in Algorithm 2. The main idea is
that each participant i broadcasts a message requesting information about neighbors of
each reachable participant, making a sort of breadth-first search in the knowledge graph.
At the end of the algorithm, i obtains the maximal set of reachable participants, which
represents the participants known by i (a partial view of the system).

The algorithm uses three sets:

1. i.known – set containing identifiers of all processes known by i;
2. i.msg pend – this set contains identifiers of processes that should send a message

to i, i.e., for each j ∈ i.msg pend, i should receive a message from j;
3. i.nei pend – this set contains identifiers of processes that i knows, but does not

know all of their neighbors (i is still waiting for information about them), i.e., for
each 〈 j, j.neighbor〉 ∈ i.nei pend, i knows j but does not know all neighbors of j.

In the initialization phase of the algorithm for participant i, the set i.known is updated
to itself plus its neighbors, returned by i.PD, and the set i.msg pend to its neighbors
(line 7). Moreover, a message requesting information about neighbors is disseminated
to all participants reachable from i (line 8). When a participant p delivers this message,
p sends back to i a reply indicating its neighbors (line 9).

Upon receipt of a reply at participant i, the set of known participants is updated,
along with the set of pending neighbors3 and the set of pending messages (lines 10 - 12).
The next step is to verify whether i has acquired knowledge about any new participant
(line 13 - 16). Thus, i gets to know other participant j if at least f + 1 other processes
known by i reported to i that j is their neighbor (line 13). After this verification, the
set of pending neighbors is updated (lines 17 - 21), according to the new participants
discovered.

To determine if there is still some participant to be discovered, i uses the sets
i.msg pend and i.nei pend, which store the pendencies related to the replies received
by i. Then, the algorithm ends when there remain at most f pendencies (lines 22 - 24).
The intuition behind this condition is that if there are at most f pendencies at process i,
then i already has discovered all processes reachable from it because k ≥ 2 f + 1. Thus,
the algorithm ends by returning the set of participants discovered by i (line 23), which
contains all participants (correct or faulty) reachable from it. Algorithm 2 satisfies some
properties that are stated by Lemma 1.

Lemma 1. Consider Gdi a knowlegde graph induced by a k-OSR PD. Let f < k
2 < n

be the number of nodes that may fail. Algorithm DISCOVERY executed by each correct
participant p satisfies the following properties:

– Termination: p terminates the execution of the algorithm and returns a set of known
processes;

– Accuracy: the algorithm returns the maximal set of processes reachable from p in
Gdi.

3 If i reaches p, i also reaches all neigbours of p and should receive a reply to its initial dissemi-
nation (line 8) from all of them.
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Algorithm 2. Algorithm DISCOVERY executed at participant i.
constant:

1. f : int // upper bound on the number of failures

variables:
2. i.known : set of nodes // set of known nodes
3. i.nei pend : set of 〈node,node.neighbor〉 tuples

// i does not know all neighbors of node
4. i.msg pend : set of nodes // nodes that i is waiting for messages (replies)

message:
5. SET NEIGHBOR: // struct of the message SET NEIGHBOR
6. neighbor : set of nodes // neighbors of the node that is sending the message

** All Nodes **
INIT:

7. i.known ←{i} ∪ i.PD; i.nei pend ← ∅; i.msg pend ← i.PD;
8. reachable send(GET NEIGHBOR, i);

upon execution of reachable deliver(GET NEIGHBOR,sender)
9. send SET NEIGHBOR(i.PD) to sender;

upon receipt of SET NEIGHBOR(m.neighbor) from sender
10. i.known ← i.known ∪ {sender};
11. i.nei pend ← i.nei pend ∪ {〈sender,m.neighbor〉};
12. i.msg pend ← i.msg pend \ {sender};
13. if (∃ j : #〈∗,〈 j〉〉i.nei pend > f ) ∧ ( j �∈ i.known) then
14. i.known ← i.known ∪ { j};
15. i.msg pend ← i.msg pend ∪ { j};
16. end if
17. for all 〈 j, j.neighbor〉 ∈ i.nei pend do
18. if (∀z ∈ j.neighbor : z ∈ i.known) then
19. i.nei pend ← i.nei pend \ {〈 j, j.neighbor〉};
20. end if
21. end for
22. if (|i.nei pend| + |i.msg pend|) ≤ f then
23. return i.known;
24. end if

Sketch of Proof. Termination: In the worst case, the algorithm ends when p receives
replies from at least all correct reachable participants (line 22). By dissemination proto-
col properties, even in the presence of f < k

2 failures, all messages disseminated by p is
delivered by its correct receivers (processes reachable from p). Thus, each correct parti-
cipant reachable from p receives a request (line 8) and sends back a reply (line 9) that is
received by p (lines 10 - 24). Then, as Π is finite, it is guaranteed that p receives replies
from at least all correct reachable participants and ends the algorithm by returning a set
of known processes.

Accuracy: The algorithm only ends when there remain at most f pendencies, which
may be divided between processes that supply information about neighbors that do not
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exist in the system (i.nei pend) and processes from which p is still waiting for their
messages/replies (i.msg pend). Moreover, each participant z (being z reachable from p)
is neighbor of at least 2 f + 1 other participants, because f < k

2 < n. Now, we have to
consider two cases:

– If z is malicious and does not send back a reply to p (line 9), then p computes
messages (replies) from at least f + 1 correct neighbors of z, discovering z (lines
13 - 16).

– If z is correct, in the worst case, the message from z to p is delayed and f neighbors
of z are malicious and do not inform p that z is in the system. However, as f < k

2 ,
there remain f + 1 correct neighbors of z in the system that inform p about the
presence of z in the system.

As the algorithm only ends when there remain at most f pendencies, in both cases it
is guaranteed that p only ends after discovering z, even if it firstly computes messages
from the f malicious processes. �

4.2 Sink Component Determination

The objective of this phase is to define which participants belong to the sink component
of the knowlegde graph induced by a k-OSR PD. More specifically, through Algorithm
3 (SINK), each participant is able to determine whether or not it is member of the sink
component. The idea behind this algorithm is that after the execution of the procedure
DISCOVERY, members in the sink component obtain the same partial view of the sys-
tem, whereas in the other components, nodes have strictly more knowledge than in the
sink, i.e., each node knows at least members of the component to which it belongs and
members of the sink (see Definition 3).

In the initialization phase of the algorithm for participant i, i executes the DISCO-
VERY procedure in order to obtain its partial view of the system (line 8) and sends this
view to all reachable/known participant (line 10). When these messages are delivered
by some participant j, j sends back an ack response to i if it has the same knowledge of
i (i.e., j belongs to the same component of i). Otherwise, j sends back a nack response
(lines 11-15).

Upon receipt of a reply (lines 16-27), i updates the set of processes that have al-
ready answered (line 16). Moreover, if the reply received is a nack, the set of processes
that belong to other components (i.nacked) is updated (line 18) and if the number of
processes that do not belong to the same component of i is greater than f (line 19), i
concludes that it does not belong to the sink component (lines 20-21). This condition
holds because the system has at least 3 f +1 processes in the sink, known by all partici-
pants, that have strictly less knowledge about Π than processes not in the sink (Lemma
1). On the other hand, if i has received replies from all known processes, excluding f
possible faulty (line 24), and the number of processes that belong to other components
is not greater than f , i concludes that it belongs to the sink component (lines 25-26).
This condition holds because processes in the sink receive messages only from mem-
bers of this component. Moreover, in both cases, a collusion of f malicious participants
cannot lead a process to decide incorrectly. Lemma 2 states the properties satisfied by
Algorithm 3.
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Algorithm 3. Algorithm SINK executed at participant i.
constant:

1. f : int // upper bound on the number of failures

variables:
2. i.known : set of nodes // set of known nodes
3. i.responded : set of nodes // set of nodes that has sent a reply to i
4. i.nacked : set of nodes // set of processes not in the same component of i
5. i.in the sink : boolean // is i in the sink?

message:
6. RESPONSE: // struct of the message RESPONSE
7. ack/nack : boolean

** All Nodes **
INIT:

8. i.known ← DISCOVERY();
9. i.responded ← {i}; i.nacked ← ∅;

10. reachable send(i.known, i);

upon execution of reachable deliver(sender.known,sender)
11. if i.known = sender.known then
12. send RESPONSE(ack) to sender;
13. else
14. send RESPONSE(nack) to sender;
15. end if

upon receipt of RESPONSE(m) from sender
16. i.responded ← i.responded ∪ {sender}
17. if m.nack then
18. i.nacked ← i.nacked ∪ {sender};
19. if |i.nacked| ≥ f + 1 then
20. i.in the sink ← f alse;
21. return 〈i.in the sink, i.known〉;
22. end if
23. end if
24. if |i.responded| ≥ |i.known| − f then
25. i.in the sink ← true;
26. return 〈i.in the sink, i.known〉;
27. end if

Lemma 2. Consider a k-OSR PD. Let f < k
2 < n be the number of nodes that may fail.

Algorithm SINK, executed by each correct participant p of the system that has at least
3 f + 1 nodes in the sink component, satisfies the following properties:

– Termination: p terminates the execution by deciding whether it belongs (true) or
not (false) to the sink;

– Accuracy: p is in the unique k-strongly connected sink component iff algorithm
SINK returns true.
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Sketch of Proof. Termination: For each participant p, the algorithm returns in two
cases: (i) when it receives f + 1 replies from processes that belong to other compo-
nents (processes not in the sink – line 19) or (ii) when it receives replies from at least
all correct known processes (processes in the sink – line 24). By properties of the dis-
semination protocol, even in the presence of f < k

2 failures, all messages disseminated
by p are delivered by its receivers (processes reachable from p). Thus, each correct par-
ticipant known by p (reachable from p) receives the request (line 10) and sends back a
reply (lines 11-15) that is received by p (lines 16-27). Then, it is guaranteed that either
(i) or (ii) always occur.

Accuracy: By Lemma 1, after execution of the DISCOVERY algorithm, each correct
participant discovers the maximal set of participants reachable from it. Then, by Lemma
1 and by k-OSR PD properties, it is guaranteed that all correct processes that belong to
the same component obtain the same partial view of the system. Thus, as members in the
sink component receive replies only from members of this component, it is guaranteed
that these participants end correctly (line 26). Moreover, as the sink has at least 3 f + 1
nodes, members in other components know at least 2 f + 1 correct members in the sink
(Lemma 1). Then, before making a wrong decision, these members must compute at
least f + 1 replies from correct members in the sink (that have strictly less knowledge
about Π , due to Lemma 1), what makes it possible for correct members not in the sink
to end correctly (line 21). �

4.3 Achieving Consensus

This is the last phase of the protocol for solving BFT-CUP. Here, the main idea is to
make members of the sink component execute a classical Byzantine consensus and send
the decision value to other participants of the system. The optimal resilience of these
algorithms to solve a classical consensus is 3 f + 1 [3,9]. Thus, it is necessary at least
3 f + 1 participants in the sink component.

The Algorithm 4 (CONSENSUS) presents this protocol. In the initialization, each
participant executes the SINK procedure (line 11) in order to get its partial view of
the system and decide whether or not it belongs to the sink component. Depending on
whether or not the node belongs to the sink, two distinct behaviors are possible:

1. Nodes in the sink execute a classical consensus (line 13) and send the decision value
to other participants (lines 18 and 20-24). By construction, all correct nodes in the
sink component share the same partial view of the system (exactly the members in
the sink – Lemma 1). Thus, these nodes know at least 2 f + 1 correct members that
belong to the sink component, what makes possible to reach the properties of the
classical Byzantine consensus (Section 2.3);

2. Other nodes (in the remaining components) do not participate to the classical con-
sensus. These nodes ask for the decison value to all known nodes, i.e., all reachable
nodes, what includes all nodes in the sink (line 15). Each node decides for a value
v only after it has received v from at least f +1 other participants, ensuring that v is
gathered from at least one correct participant (lines 25-31). Theorem 1 shows that
Algorithm 4 solves the BFT-CUP problem as defined in Section 2.3 with the stated
participant detector and connectivity requirements.
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Algorithm 4. Algorithm CONSENSUS executed at participant i.
constant:

1. f : int // upper bound on the number of failures

input:
2. i.initial : value // proposal value (input)

variables:
3. i.in the sink : boolean // is i in the sink?
4. i.known : set of nodes // partial view of i
5. i.decision : value // decision value
6. i.asked : set of nodes // nodes that have required the decision value
7. i.values : set of 〈node,value〉 tuples // reported decisions

message:
8. SET DECISION: // struct of the message SET DECISION
9. decision : value // the decided value

** All Nodes **
INIT: {Main Decision Task}
10. i.decision ←⊥; i.values ← ∅; i.asked ← ∅;
11. (i.in the sink, i.known) ← SINK();
12. if i.in the sink then
13. Consensus.propose(i.initial); // underlying Byzantine consensus with all

p ∈ i.known
14. else
15. reachable send(GET DECISION, i);
16. end if

** Node In Sink **
upon Consensus.decide(v)
17. i.decision ← v;
18. ∀ j ∈ i.asked, send SET DECISION(i.decision) to j;
19. return i.decision;

upon execution of reachable deliver(GET DECISION,sender)
20. if i.decision = ⊥ then
21. i.asked ← i.asked ∪ {sender};
22. else
23. send SET DECISION(i.decision) to sender;
24. end if

** Node Not In Sink **
upon receipt of SET DECISION(m.decision) from sender
25. if i.decision = ⊥ then
26. i.values ← i.values ∪ {〈sender,m.decision〉};
27. if #〈∗,m.decision〉 i.values ≥ f + 1 then
28. i.decision ← m.decision;
29. return i.decision;
30. end if
31. end if
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Theorem 1. Consider a classical Byzantine consensus protocol. Algorithm CONSEN-
SUS solves BFT-CUP, in spite of f < k

2 < n failures, if k-OSR PD is used and assuming
at least 3 f + 1 participants in the sink.

Sketch of Proof. In this proof we have to consider two cases:
Processes in the sink: All correct participants in the sink component determine that they
belong to the sink (Lemma 2) (line 12) and start the execution of an underlying classical
Byzantine consensus algorithm (line 13). Then, as the sink has at least 2 f + 1 correct
nodes, it is guaranteed that all properties of the classical consensus will be met, i.e., va-
lidity, integrity, agreement and termination. Thus, nodes in the sink obtain the decision
value (line 17), send this value to other participants (line 18) and return the decided
value to the application (line 19), ensuring termination. Whenever a process in the sink
receives a request for decision from other processes (lines 20–24), it will send the value
if it has already decided (line 23); otherwise, it will store the sender’s identity in order
to send the decision value later (line 18) after the consensus has been achieved.

Processes not in the sink: Processes not in the sink request the decision value to all par-
ticipants in the sink (line 15). Notice that if there is enough connectivity (k ≥ 2 f + 1),
nodes in the sink are reachable from any node of the system. Moreover, by properties of
the reachable reliable broadcast, all correct participant in the sink will receive requests
sent by correct participants not in the sink, even in the presence of f < k

2 failures (lines
20–24). Thus, as there are at least 2 f + 1 correct participants in the sink able to send
back replies for these requests (lines 18, 23), it is guaranteed that nodes not in the sink
will receive at least f + 1 messages with the same decision value (lines 25-31) and the
predicate of line 27 will be true, allowing the process to terminate and return the de-
cided value (line 28). Moreover, a collusion of up to f malicious participants cannot
lead a process to decide for incorrect values (line 27), guaranteeing thus agreement. In-
tegrity is ensured through the verification of predicate on line 25, by which each correct
participant decides only once. Notice that validity is ensured through the underlying
classical Byzantine consensus protocol, i.e., the decided value is a value proposed by
nodes in the sink. This proves that k-OSR PD is sufficient to solve BFT-CUP. �

4.4 Necessity of k-OSR Participant Detector to Solve BFT-CUP

Using a k-OSR PD, our protocol requires a degree of connectivity k ≥ 2 f + 1 to solve
BFT-CUP. Theorem 2 states that a participant detector of this class and this connectivity
degree are necessary to solve BFT-CUP.

Theorem 2. A participant detector PD ∈ k-OSR is necessary to solve BFT-CUP, in
spite of f < k

2 < n failures.

Sketch of Proof. This proof is based on the same arguments to prove the necessity of
OSR (One Sink Reducibility) for solving CUP [6]. Assume by contradiction that there
is an algorithm which solves BFT-CUP with a PD �∈ k-OSR. Let Gdi be the know-
ledge graph induced by PD, then two scenarios are possible: (i.) there are less than k
node-disjoint paths connecting a participant p in Gdi; or (ii.) the directed acyclic graph
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obtained by reduction of Gdi to its k-strongly connected components has at least two
sinks. There are two possible scenarios to be considered.

In the first scenario, let at most 2 f node-disjoint paths connect p in Gdi. Then, the
simple crash failure of f neighbors of p makes it impossible for a participant i (being
p reachable from i) to discover p, because only f processes are able to inform i about
the presence of p in the system. In fact, i is not able to determine if p really exists, i.e.,
it is not guaranteed that i has received this information from a correct process. Then,
the partial view obtained by i will be inconsistent, what makes it impossible to solve
BFT-CUP. Thus, we reach a contradiction.

In the second scenario, let G1 and G2 be two of the sink components and consider
that participants in G1 have proposition value v and participants in G2 value w, with
v �= w. By Termination property of consensus, processes in G1 and G2 must eventually
decide. Let us assume that the first process in G1 that decides, say p, does so at time t1,
and the first process in G2 that decides, say q, does so at time t2. Delay all messages sent
to G1 and G2 such that they are received after max{t1,t2}. Since the processes in a sink
component are unaware of the existence of other participants, p decides v and q decides
w, violating the Agreement property of consensus and reaching thus a contradiction. �

5 Discussion

This section presents some comments about the protocol presented in this paper.

5.1 Digital Signatures

It is worth to notice that the lower bound required to solve BFT-CUP in terms of con-
nectivity and resiliency is k ≥ 2 f +1, and it holds even if digital signatures are used. By
using digital signatures, it is possible to exchange messages among participants, since
there is at least one path formed only by correct processes (k ≥ f + 1). However, even
with digital signatures, a connectivity of k ≥ 2 f +1 is still required in order to discover
the participants properly (first phase of the protocol). In fact, if k < 2 f +1, a malicious
participant can lead a correct participant p not to discover every node reachable from it,
what makes it impossible to use this protocol to solve BFT-CUP (the partial view of p
will be inconsistent).

For example, Figure 2 presents a knowledge connectivity graph induced by a 2-OSR
PD (k = 2) in which the system does not support any fault (to support f = 1, k ≥ 3).
Now, consider that process 2 is malicious and that process 1 is starting the DISCOVERY
phase. Then, process 2 could inform to process 1 that it only knows process 3. At this
point, process 1 will break the search because it is only waiting for a message from
process 3, i.e., number of pending messages less or equal to f . Thus, process 1 obtains
the wrong partial view {1,2,3} of the system.

5.2 Protocol Limitations

The model used in this study, as well as in all solutions for FT-CUP [7,8], supports
mobility of nodes, but it is not strong enough to tolerate arbitrary churn (arrivals and
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Fig. 2. 2-OSR with Process 2 Faulty

departures of processes) during protocol executions. This happens because, after the
relations of knowledge have been established (first phase of the protocol), new partici-
pants will be considered only in future executions of consensus.

In current algorithms, process departures can be considered as failures. Nonethe-
less, this is not the optimal approach, since our protocols tolerate Byzantine faults and
the behaviour of a departing process resembles a simple crash failure. An alternative
approach consists in specifying an additional parameter d to indicate the number of
supported departures, separating departures from malicious faults. In this way, the de-
gree of connectivity in the knowledge graph should be k ≥ 2 f + d + 1 to support up
to f malicious faults and up to d departures. Moreover, even with departures, the sink
component should remains with enough participants to execute a classical consensus,
i.e., nsink ≥ 3 f + 2d + 1, following the same reasoning as [19].

5.3 Other Participant Detectors

Although k-OSR PD is the weakest participant detector defined to solve FT-CUP, there
are other (stronger) participant detectors able to solve BFT-CUP [6,8]:

– FCO (Full Connectivity PD): the knowledge connectivity graph Gdi = (V,ξ ) in-
duced by the PD oracle is such that for all p,q ∈ Π , we have (p,q) ∈ ξ .

– k-SCO (k-Strong Connectivity PD): the knowledge connectivity graph Gdi = (V,ξ )
induced by the PD oracle is k-strongly connected.

Notice that a characteristic common to all participant detectors able to solve BFT-
CUP (except for the FCO PD that is fully connected) is the degree of connectivity k,
which makes possible the proper work of the protocol even in the presence of failures.
Using these participant detectors (FCO or k-SCO) the partial view obtained by each
process in the system contains exactly all processes in the system (first phase of the pro-
tocol). Thereafter, the consensus problem is trivially solved using a classical Byzantine
consensus protocol, since all processes have the same (complete) view of the system.

6 Final Remarks

Most of the studies about consensus found in the literature consider a static known
set of participants in the system (e.g., [1,3,4,5,17,19]). Recently, some works which
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Table 1. Comparing solutions for the consensus with unknown participants problem

Approach failure participant k participants connectivity synchrony
model detector in the sink between components model

CUP without OSR – 1 OSR asynchronous
[6] failures

FT-CUP crash OSR – 1 OSR + safe asynchronous + P
[7] crash pattern

FT-CUP crash k-OSR f +1 2 f +1 k node-disjoint asynchronous + ♦S
[8] paths

BFT-CUP Byzantine k-OSR 2 f +1 3 f +1 k node-disjoint same of the underlying
(this paper) paths consensus protocol

deal with a partial knowledge about the system composition have been proposed. The
works of [6,7,8] are worth noticing. They propose solutions and study conditions in
order to solve consensus whenever the set of participants is unknown and the system is
asynchronous. The work presented herein extends these previous results and presents
an algorithm for solving FT-CUP in a system prone to Byzantine failures. It shows
that to solve Byzantine FT-CUP in an environment with little synchrony requirements,
it is necessary to enrich the system with a greater degree of knowledge connectivity
among its participants. The main result of the work is to show that it is possible to solve
Byzantine FT-CUP with the same class of participant detectors (k-OSR) and the same
synchrony requirements (♦S ) necessary to solve FT-CUP in a system prone to crash
failures [8]. As a side effect, a Byzantine fault-tolerant dissemination primitive, namely
reachable reliable broadcast, has been defined and implemented and can be used in
other protocols for unknown networks.

Table 1 summarizes and presents a comparison with the known results regarding the
consensus solvability with unknown participants.
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Abstract. We consider asynchronous distributed systems with message
losses and process crashes. We study the impact of finite process memory
on the solution to consensus, repeated consensus and reliable broadcast.
With finite process memory, we show that in some sense consensus is
easier to solve than reliable broadcast, and that reliable broadcast is as
difficult to solve as repeated consensus: More precisely, with finite mem-
ory, consensus can be solved with failure detector S , and P− (a variant
of the perfect failure detector which is stronger than S) is necessary and
sufficient to solve reliable broadcast and repeated consensus.

1 Introduction

Designing fault-tolerant protocols for asynchronous systems is highly desirable
but also highly complex. Some classical agreement problems such as consensus
and reliable broadcast are well-known tools for solving more sophisticated tasks
in faulty environments (e.g., [1,2]). Roughly speaking, with consensus processes
must reach a common decision on their inputs, and with reliable broadcast pro-
cesses must deliver the same set of messages.

It is well known that consensus cannot be solved in asynchronous systems
with failures [3], and several mechanisms were introduced to circumvent this
impossibility result: randomization [4], partial synchrony [5,6] and (unreliable)
failure detectors [7].

Informally, a failure detector is a distributed oracle that gives (possibly in-
correct) hints about the process crashes. Each process can access a local failure
detector module that monitors the processes of the system and maintains a list
of processes that are suspected of having crashed.
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Several classes of failure detectors have been introduced, e.g., P , S, Ω, etc.
Failure detectors classes can be compared by reduction algorithms, so for any
given problem P , a natural question is “What is the weakest failure detector
(class) that can solve P ?”. This question has been extensively studied for sev-
eral problems in systems with infinite process memory (e.g., uniform and non-
uniform versions of consensus [8,9,10], non-blocking atomic commit [11], uniform
reliable broadcast [12,13], implementing an atomic register in a message-passing
system [11], mutual exclusion [14], boosting obstruction-freedom [15], set con-
sensus [16,17], etc.). This question, however, has not been as extensively studied
in the context of systems with finite process memory.

In this paper, we consider systems where processes have finite memory, pro-
cesses can crash and links can lose messages (more precisely, links are fair lossy
and FIFO1). Such environments can be found in many systems, for example in
sensor networks, sensors are typically equipped with small memories, they can
crash when their batteries run out, and they can experience message losses if
they use wireless communication.

In such systems, we consider (the uniform versions of) reliable broadcast, con-
sensus and repeated consensus. Our contribution is threefold: First, we establish
that the weakest failure detector for reliable broadcast is P− — a failure detector
that is almost as powerful than the perfect failure detector P . Next, we show
that consensus can be solved using failure detector S. Finally, we prove that P−

is the weakest failure detector for repeated consensus. Since S is strictly weaker
than P−, in some precise sense these results imply that, in the systems that we
consider here, consensus is easier to solve than reliable broadcast, and reliable
broadcast is as difficult to solve as repeated consensus.

The above results are somewhat surprising because, when processes have infi-
nite memory, reliable broadcast is easier to solve than consensus2, and repeated
consensus is not more difficult to solve than consensus.

Roadmap. The rest of the paper is organized as follows: In the next section,
we present the model considered in this paper. In Section 4, we show that in
case of process memory limitation and possibility of crashes, P− is necessary
and sufficient to solve reliable broadcast. In Section 5, we show that consensus
can be solved using a failure detector of type S in our systems. In Section 6,
we show that P− is necessary and sufficient to solve repeated consensus in this
context.

For space considerations, all the proofs are omitted, see the technical report
for details ([20], http://hal.archives-ouvertes.fr/hal-00325470/fr/).

1 The FIFO assumption is necessary because, from the results in [18], if lossy links are
not FIFO, reliable broadcast requires unbounded message headers.

2 With infinite memory and fair lossy links, (uniform) reliable broadcast can be solved
using Θ [19], and Θ is strictly weaker than (Σ, Ω) which is necessary to solve con-
sensus.

http://hal.archives-ouvertes.fr/hal-00325470/fr/
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2 Model

Distributed System. A system consists of a set Π = {p1, ..., pn} of processes. We
consider asynchronous distributed systems where each process can communicate
with each other through directed links.3 By asynchronous, we mean that there
is no bound on message delay, clock drift, or process execution rate.

A process has a local memory, a local sequential and deterministic algorithm,
and input/output capabilities. In this paper we consider systems of processes
having either a finite or an infinite memory. In the sequel, we denote such systems
by ΦF and ΦI , respectively.

We consider links with unbounded capacities. We assume that the messages
sent from p to q are distinguishable, i.e., if necessary, the messages can be num-
bered with a non-negative integer. These numbers are used for notational pur-
pose only, and are unknown to the processes. Every link satisfies the integrity,
i.e., if a message m from p is received by q, m is received by q at most once, and
only if p previously sent m to q. Links are also unreliable and fair. Unreliable
means that the messages can be lost. Fairness means that for each message m, if
process p sends infinitely often m to process q and if q tries to receive infinitely
often a message from p, then q receives infinitely often m from p. Each link are
FIFO, i.e., the messages are received in the same order as they were sent.

To simplify the presentation, we assume the existence of a discrete global
clock. This is merely a fictional device: the processes do not have access to it.
We take the range T of the clock’s ticks to be the set of natural numbers.

Failures and Failure Patterns. Every process can fail by permanently crashing,
in which case it definitively stops to execute its local algorithm. A failure pattern
F is a function from T to 2Π , where F (t) denotes the set of processes that have
crashed through time t. Once crashed, a process never recoves, i.e., ∀t : F (t) ⊆
F (t+1). We define crashed(F ) =

⋃
t∈T F (t) and correct(F ) = Π\crashed(F ). If

p ∈ crashed(F ) we say that p crashes in F (or simply crashed when it is clear in
the context) and if p ∈ correct(F ) we say that p is correct in F (or simply correct
when it is clear in the context). An environment is a set of failure patterns. We
do not restrict here the number of crash and we consider as environment E the
set of all failure patterns.

Failure Detectors. A failure detector [7] is a local module that outputs a set
of processes that are currently suspected of having crashed. A failure detector
history H is a function from Π × T to 2Π . H(p,t) is the value of the failure
detector module of process p at time t. If q ∈ H(p,t), we say that p suspects q
at time t in H . We omit references to H when it is obvious from the context.

Formally, failure detector D is a function that maps each failure pattern F to
a set of failure detector histories D(F ).

A failure detector can be defined in terms of two abstract properties : Com-
pleteness and Accuracy [7] . Let us recall one type of completeness and two types
of accuracy.
3 We assume that each process knows the set of processes that are in the system; some

papers related to failure detectors do not make this assumption e.g. [21,22,23].
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Definition 1 (Strong Completeness). Eventually every process that crashes
is permanently suspected by every correct process. Formally, D satisfies strong
completeness if: ∀F ∈ E , ∀H ∈ D(F ), ∃t ∈ T , ∀p ∈ crashed(F ), ∀q ∈ correct(F ),
∀t′ ≥ t : p ∈ H(q, t′)

Definition 2 (Strong Accuracy). No process is suspected before it crashes.
Formally, D satisfies strong accuracy if: ∀F ∈ E , ∀H ∈ D(F ), ∀t ∈ T , ∀p, q ∈
Π \ F (t) : p /∈ H(q, t)

Definition 3 (Weak Accuracy). A correct process is never suspected. For-
mally, D satisfies weak accuracy if: ∀F ∈ E , ∀H ∈ D(F ), ∀t∈T , ∃p ∈ correct(F ),
∀q ∈ Π : p /∈ H(q, t)

We introduce a last type of accuracy:

Definition 4 (Almost Strong Accuracy). No correct process is suspected.
Formally, D satisfies almost strong accuracy if: ∀F ∈ E , ∀H ∈ D(F ), ∀t ∈
T , ∀p ∈ correct(F ), ∀q ∈ Π : p �∈ H(q, t)

This definition was the definition of strong accuracy in [24].
For all these aformentioned properties, we can assume, without loss of gener-

ality, that when a process is suspected it remains suspected forever.
We now recall the definition of the perfect and the strong failure detectors [7]

and we introduce our almost perfect failure detector:

Definition 5 (Perfect). A failure detector is said to be perfect if it satisfies
the strong completeness and the strong accuracy properties. This failure detector
is denoted by P.

Definition 6 (Almost Perfect). A failure detector is said to be almost perfect
if it satisfies the strong completeness and the almost strong accuracy properties.
This failure detector is denoted by P−.

Note that P− was given as the definition of the perfect failure detector in the
very first paper on unreliable failure detector in [24]. In fact, failure detector in
P− can suspect faulty processes before they crash and be unrealistic according
to the definition in [25].

Definition 7 (Strong). A failure detector is said to be strong if it satisfies the
strong completeness and the weak accuracy properties. This failure detector is
denoted by S.

Algorithms, Runs, and Specification. A distributed algorithm is a collection of n
sequential and deterministic algorithms, one for each process in Π . Computations
of distributed algorithm A proceed in atomic steps.

In a step, a process p executes each of the following actions at most once:
p try to receive a message from another process, p queries its failure detector
module, p modifies its (local) state. and p sends a message to another process.
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A run of Algorithm A using a failure detector D is a tuple 〈F ,HD,γinit,E,T 〉
where F is a failure pattern, HD ∈ D(F ) is an history of failure detector D
for the failure pattern F , γinit is an initial configuration of A, E is an infinite
sequence of steps of A, and T is a list of increasing time values indicating when
each step in E occurred. A run must satisfy certain well-formedness and fairness
properties. In particular:

1. E is applicable to γinit.
2. A process cannot take steps after it crashes.
3. When a process takes a step and queries its failure detector module, it gets

the current value output by its local failure detector module.
4. Every correct process takes an infinite number of local steps in E.
5. Any message sent is eventually received or lost.

A problem P is defined by a set of properties that runs must satisfy. An
algorithm A solves a problem P using a failure detector D if and only if all the
runs of A using D satisfy the properties required by P .

A failure detector D is said to be weaker than another failure detector D′

(denote D ≤ D′) if there is an algorithm that uses only D′ to emulate the output
of D for every failure pattern. If D is weaker than D′ but D′ is not weaker than
D we say that D is strictly weaker than D′ (denote D < D′).

From [7] and our definition of P−, we get:

Proposition 1
S < P− < P

The weakest [8] failure detector D to solve a given problem is a failure detector
D that is sufficient to solve the problem and that is also necessary to solve the
problem, i.e. D is weaker than any failure detector that solves the problem.

Notations. In the sequel, vp denotes the value of the variable v at process p.
Finally, a datum in a message can be replaced by “−” when this value has no
impact on the reasonning.

3 Problem Specifications

Reliable Broadcast. The reliable broadcast [26] is defined with two primitives:
BROADCAST(m) and DELIVER(m). Informally, any reliable broadcast algorithm
guarantees that after a process p invokes BROADCAST(m), every correct process
eventually executes DELIVER(m). In the formal definition below, we denote by
sender(m) the process that invokes BROADCAST(m).

Specification 1 (Reliable Broadcast). A run R satisfies the specification
Reliable Broadcast if and only if the following three requirements are satisfied in
R:

– Validity: If a correct process invokes BROADCAST(m), then it eventually exe-
cutes DELIVER(m).
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– (Uniform) Agreement: If a process executes DELIVER(m), then all other cor-
rect processes eventually execute DELIVER(m).

– Integrity: For every message m, every process executes DELIVER(m) at most
once, and only if sender(m) previously invokes BROADCAST(m).

Consensus. In the consensus problem, all correct processes propose a value and
must reach a unanimous and irrevocable decision on some value that is chosen
between the proposed values. We define the consensus problem in terms of two
primitives, PROPOSE(v) and DECIDE(u). When a process executes PROPOSE(v), we
say that it proposes v; similarly, when a process executes DECIDE(u), we say that
it decides u.

Specification 2 (Consensus). A run R satisfies the specification Consensus
if and only if the following three requirements are satisfied in R:

– (Uniform) Agreement: No two processes decide differently.
– Termination: Every correct process eventually decides some value.
– Validity: If a process decides v, then v was proposed by some process.

Repeated Consensus. We now define repeated consensus. Each correct process
has as input an infinite sequence of proposed values, and outputs an infinite
sequence of decision values such that:

1. Two correct processes have the same output. (The output of a faulty process
is a prefix of this output.)

2. The ith value of the output is the ith value of the input of some process.

We define the repeated consensus in terms of two primitives, R-PROPOSE(v) and
R-DECIDE(u). When a process executes the ith R-PROPOSE(v), v is the ith value
of its input (we say that it proposes v for the ith consensus); similarly, when a
process executes the ith R-DECIDE(u) u is the ith value of its output (we say that
it decides v for the ith consensus).

Specification 3 (Repeated Consensus). A run R satisfies the specification
Repeated Consensus if and only if the following three requirements are satisfied
in R:

– Agreement: If u and v are the outputs of two processes, then u is a prefix of
v or v is a prefix of u.

– Termination: Every correct process has an infinite output.
– Validity: If the ith value of the output of a process is v, then v is the ith

value of the input of some process.

4 Reliable Broadcast in ΦF

In this section, we show that P− is the weakest failure detector to solve the
reliable broadcast in ΦF .
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P− is Necessary. To show that P− is necessary to solve the reliable broadcast
the following lemma is central to the proof:

Lemma 1. Let A be an algorithm solving Reliable Broadcast in ΦF with a failure
detector D. There exists an integer k such that for every process p and every
correct process q, for every run R of A where process p BROADCASTs and DELIVERs
k messages, at least one message from q has been received by some process.

Assume now that there exists an algorithm A that implements the reliable broad-
cast in ΦF using the failure detector D. To show our result we have to give an
algorithm that uses only D to emulate the output of P− for every failure pattern.

Actually, we give an algorithm A(p,q) (Figure 1) where a given process p
monitors a given process q. This algorithm uses one instance of A with D. Note
that all processes except q participate to this algorithm following the code of A.
In this algorithm Output q is equal to either {q} (q is faulty) or ∅ (q is correct).

The algorithm A(p,q) works as follows: p tries to BROADCAST k messages, all
processes execute the code of the algorithm A using D except q that does nothing.
If p DELIVERs k messages, it sets Output q to q and never changes the values of
Output q. By lemma 1, if q is correct p can’t DELIVER k messages and so it never
sets Output q to {q}. If q is faulty and p is correct: as A solve reliable broadcast,
p has to deliver DELIVER k messages and so p sets Output q to {q}.4

To emulate P−, each process p uses algorithm A(p,q) for every process q. As
D is a failure detector it can be used for each instance. The output of P− at p
(variable Output) is then the union of Output q for every process q.

1: /∗ Code for process p ∗/
2: begin
3: Output q ← ∅
4: for i = 1 to k do
5: BROADCAST(m) /∗ using A with D ∗/
6: wait for DELIVER(m)
7: end for
8: Output q ← {q}
9: end
10: /∗ Code for process q ∗/
11: begin
12: end
13: /∗ Code for every process Π − {p, q} ∗/
14: begin
15: execute the code of A with D for these messages
16: end

Fig. 1. A(p,q)

Theorem 1. P− is necessary to solve Reliable Broadcast in ΦF .

P− is Sufficient. In Algorithm B (Figure 2), every process uses a failure detector
module of type P− and a finite memory. Theorem 2 shows that Algorithm B
solves the reliable broadcast in ΦF and directly implies that P− is sufficient to
solve the reliable broadcast in ΦF (Corollary 1).
4 If q is faulty and p is faulty, the property of failure detector is trivially ensured.
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1: /∗ Code for every process q ∗/
2: variables:
3: Flag[1 . . . n][1 . . . n] ∈ {0,1}n2

; ∀(i, j) ∈ Π2, Flag[i][j] is initialized to 0
4: FD: failure detector of type P−

5: Mes[1 . . . n]: array of data messages; ∀i ∈ Π, Mes[i] is initialized to ⊥
6: function:
7: MesToBrd(): returns a message or ⊥
8: begin
9: repeat forever
10: if Mes[p] =⊥ then
11: Mes[p] ← MesToBrd()
12: if Mes[p] 	=⊥ then
13: Flag[p][p] ← (Flag[p][p] + 1) mod 2
14: end if
15: end if
16: for all i ∈ Π \ FD do
17: for all j∈Π\(FD∪{p,i}),Flag[i][p] 	=Flag[i][j] do
18: if (receive〈i-ACK, F 〉 from j) ∧ (F=Flag[i][p]) then
19: Flag[i][j] ← F
20: else
21: send〈i-BRD, Mes[i], Flag[i][p]〉 to j
22: end if
23: end for
24: if (Mes[i] 	=⊥) ∧ (∀q ∈ Π \ FD, Flag[i][i] = Flag[i][q]) then
25: DELIVER(Mes[i]); Mes[i] ←⊥
26: end if
27: end for
28: for all i ∈ Π \ FD \ {p} do
29: for all j ∈ Π \ (FD ∪ {p}) do
30: if (receive〈i-BRD, m, F 〉 from j) then
31: if (∀q ∈ Π \ FD, Flag[i][q] = Flag[i][i]) ∧ (F 	= Flag[i][p]) then
32: Mes[i] ← m; Flag[i][p] ← F
33: end if
34: if i = j then
35: Flag[i][i] ← F
36: end if
37: if (i 	= j) ∨ (∀q ∈ Π \ FD, Flag[i][q] = Flag[i][i]) then
38: send〈i-ACK, Flag[i][p]〉 to j
39: end if
40: end if
41: end for
42: end for
43: end repeat
44: end

Fig. 2. Algorithm B

In Algorithm B, each process p executes broadcasts sequentially: p starts a
new broadcast only after the termination of the previous one. To that goal,
any process p initializes Mes[p] to ⊥. Then, p periodically checks if an external
application invokes BROADCAST(−). In this case, MesToBrd() returns the message
to broadcast, say m. When this event occurs, Mes[p] is set to m and the broadcast
procedure starts. Mes[p] is set to ⊥ at the end of the broadcast, p checks again,
and so on.

Algorithm B has to deal with two types of faults: process crashes and message
loss.

- Dealing with process crashes. Every process uses a failure detector of type
P− to detect the process crashes. Note that, as mentionned in Section 2,
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we assume that when a process is suspected by some process it remains
suspected forever.

Assume that a process p broadcasts the message m: p sends a broadcast
message (p-BRD) with the datum m to any process it believes to be correct.

In Algorithm B, p executes DELIVER(m) only after all other processes it
does not suspect receive m. To that goal, we use acknowledgment mecha-
nisms. When p received an acknowledgment for m (p-ACK) from every other
process it does not suspect, p executes DELIVER(m) and the broadcast of m
terminates (i.e., Mes[p] is set to ⊥).

To ensure the agreement property, we must guarantee that if p crashes
but another process q already executes DELIVER(m), then any correct pro-
cess eventually executes DELIVER(m). To that goal, any process can execute
DELIVER(m) only after all other processes it does not suspect except p re-
ceive m. Once again, we use acknowledgment mechanisms to that end: q also
broadcasts m to every other process it does not suspect except p (this induces
that a process can now receive m from a process different of p) until receiv-
ing an acknowledgment for m from all these processes and the broadcast
message from p if q does not suspect it.

To prevent m to be still broadcasted when p broadcasts the next mes-
sage, we synchronize the system as follows: any process acknowledges m to
p only after it received an acknowledgment for m from every other process
it does not suspect except p. By contrast, if a process i receives a message
broadcasted by p (p-BRD) from the process j �= p, i directly acknowledges
the message to j.

- Dealing with message loss. The broadcast messages have to be periodically
retransmitted until they are acknowledged. To that goal, any process q stores
the last broadcasted message from p into its variable Mesq[p] (initialized
to ⊥). However, some copies of previously received messages can be now
in transit at any time in the network. So, each process must be able to
distinguish if a message it receives is copy of a previously received message
or a new one, say valid. To circumvent this problem, we use the traditional
alternating-bit mechanism [27,28]: a flag value (0 or 1) is stored into any
message and a two-dimentionnal array, noted Flag[1 . . . n][1 . . . n], allows us
to distinguish if the messages are valid or not. Initially, any process sets
Flag[i][j] to 0 for all pairs of processes (i,j). In the code of process p, the
value Flagp[p][p] is used to mark every p-BRD messages sent by p. In the code
of every process q �= p, Flagq[p][q] is equal to the flag value of the last valid
p-BRD message q receives (not necessarily from p). For all q′ �= q, Flagq[p][q′]
is equal to the flag value of the last valid p-BRD message q receives from q′.

At the beginning of any broadcast at p, p increments Flagp[p][p] modulus
2. The broadcast terminates at p when for every other process q that p does
not suspect, Flagp[p][q] = Flagp[p][p], Flagp[p][q] being set to Flagp[p][p]
only when p received a valid acknowledgement from q, i.e., an acknowledg-
ment marked with the value Flagp[p][p].

Upon receiving a p-BRD message marked with the value F , a process q �= p
detects that it is a new valid message broadcasted by p (but not necessarily



50 C. Delporte-Gallet et al.

sent by p) if for every non-suspected process j, (Flagq[p][j] = Flagq[p][p])
and (F �= Flagq[p][q]). In this case, p sets Mesq[p] to m and sets Flagq[p][q]
to F . From this point on, q periodically sends 〈p-BRD,Mesq[p],Flagq[p][q]〉 to
any other process it does not suspect except p until receiving a valid ac-
knowledgment (i.e., an acknowledgment marked with the value Flagq[p][q])
from all these processes. For any non-suspected process j different from
p and q, Flagq[p][j] is set to Flagq[p][q] when q received an acknowledg-
ment marked with the value Flagq[p][q] from j. Finally, Flagq[p][p] is set to
Flagq[p][q] when q received the broadcast message from p (marked with the
value Flagq[p][q]). Hence, q can execute DELIVER(Mes[p]) when (Mes[p] �=⊥)
and (∀j ∈ Π \ FD, Flagq[p][j] = Flagq[p][p]) because (1) it receives a valid
broadcast message from p if p was not suspected and it has the guarantee
that any non-suspected process different of p receives m in a valid message.
To ensure that q executes DELIVER(Mes[p]) at most one, q just has to set
Mes[p] to ⊥ after.

It is important to note that q acknowledges the valid p-BRD messages
it receives from p only when the predicate (∀j ∈ Π \ FD, Flagq[p][j] =
Flagq[p][p]) holds. However, to guarantee the liveness, q acknowledges any
p-BRD message that it receives from any other process. Every p-ACK messages
sent by q is marked with the value Flagq[p][q].

Finally, p stops its current broadcast when the following condition holds:
(Mesp[p] �=⊥) ∧ (∀q ∈ Π \ FD, Flagp[p][p] = Flagp[p][q]), i.e., any non-
suspected process has acknowledged Mesp[p]. In this case, p sets Mes[p] to
⊥.

Theorem 2. Algorithm B is a Reliable Broadcast algorithm in ΦF with P−.

Corollary 1. P− is sufficient for solving Reliable Broadcast in ΦF .

5 Consensus in ΦF

In this section, we show that we can solve consensus in system ΦF with a fail-
ure detector that is strictly weaker than the failure detector necessary to solve
reliable broadcast and repeated consensus. We solve consensus with the strong
failure detector S. S is not the weakest failure detector to solve consensus what-
ever the number of crash but it is strictly weaker than P− and so enough to
show our results.

We customize the algorithm of Chandra and Toueg [7] that works in an
asynchronous message-passing system with reliable links and augmented with
a strong failure detector (S), to our model.

In this algorithm, called CS in the following (Figure 3), the processes execute
n asynchronous rounds. First, processes execute n − 1 asynchronous rounds (r
denotes the current round number) during which they broadcast and relay their
proposed values. Each process p waits until it receives a round r message from
every other non-suspected process (n.b. as mentionned in Section 2, we assume
that when a process is suspected it remains suspected forever) before proceeding
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to round r +1. Then, processes execute a last asynchronous round during which
they eliminate some proposed values. Again each process p waits until it receives
a round n message from every other process it does not suspected. By the end of
these n rounds, correct processes agree on a vector based on the proposed values
of all processes. The ith element of this vector either contains the proposed value
of process i or ⊥. This vector contains the proposed value of at least one process:
a process that is never suspected by all processes. Correct processes decide the
first nontrivial component of this vector.

To customize this algorithm to our model, we have to ensure the progress of
each process: While a process has not ended the asynchronous round r it must
be able to retransmit all the messages5 that it has previously sent in order to
allow others processes to progress despite the link failures. As we used a strong
failure detector and unreliable but fair links, it is possible that one process has
decided and the other ones still wait messages of asynchronous rounds. When
a process has terminated the n asynchronous rounds, it uses a special Decide
message to allow others processes to progress.

In the algorithm, we first use a function consensus. This function takes the
proposed value in parameter and returns the decision value and uses a failure
detector. Then, at processes request, we propagate the Decide message.

Theorem 3 shows that Algorithm CS solves the consensus in ΦF and directly
implies that S is sufficient to solve te consensus problem in ΦF (Corollary 2).

Theorem 3. Algorithm CS is a Consensus algorithm in ΦF with S.

Corollary 2. S is sufficient for solving Consensus in ΦF .

6 Repeated Consensus in ΦF

We show in this section that P− is the weakest failure detector to solve the
reliable consensus problem in ΦF .

P− is Necessary. The proof is similar to the one in Section 4, and here the
following lemma is central to the proof:

Lemma 2. Let A be an algorithm solving Repeated Consensus in ΦF with a
failure detector D. There exists an integer k such that for every process p and
every correct process q for every run R of A where process p R-PROPOSEs and
R-DECIDEs k times, at least one message from q has been received by some process.

Assume that there exists an algorithm A that implements Repeated Consensus in
ΦF using the failure detector D. To show our result we have to give an algorithm
that uses only D to emulate the output of P− for every failure pattern.

In fact we give an algorithm Aq (Figure 4) where processes monitor a given
process q. This algorithm uses one instance of A with D. Note that all processes
except q participate to this algorithm following the code of A. In this algorithm
Output q is equal to either {q} (q is crashed) or ∅ (q is correct).
5 Notice that they are in finite number.
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1: /∗ Code for process p ∗/
2: function consensus(v) with the failure detector fd
3: variables:
4: Flag[1 . . . n] ∈ {true,false}n; ∀i ∈ Π, Flag[i] is initialized to false
5: V[1 . . . n]: array of propositions; ∀i ∈ Π, V[i] is initialized to ⊥
6: Mes[1 . . . n]: array of arrays of propositions; ∀i ∈ Π, Mes[i] is initialized to ⊥
7: r: integer; r is initialized to 1
8: begin
9: V[p] ← v the proposed values
10: Mes[1] ← V
11: while (r ≤ n) do
12: send〈R-r, Mes[r]〉 to every process, except p
13: for all i ∈ Π \ (fd ∪ {p}), Flag[i] = false do
14: if (receive〈R-r, W〉 from i) then
15: Flag[i] ← true
16: if r < n then
17: if V[i] = ⊥ then
18: V[i] ← W [i]; Mes[r + 1][i] ← W [i]
19: end if
20: else
21: if V[i] 	= ⊥ then
22: V[i] ← W [i]
23: end if
24: end if
25: end if
26: end for
27: for all i ∈ Π \ {p} do
28: if (receive〈R-x, W〉 from i), x < r then
29: send〈R-x, Mes[x]〉 to i
30: end if
31: end for
32: if ∀q ∈ Π \ (fd ∪ {p}), Flag[q] = true then
33: if r < n then
34: for all i ∈ Π do
35: Flag[i] ← false
36: end for
37: end if
38: if r = n − 1 then
39: Mes[n] ← V
40: end if
41: r ← r + 1
42: end if
43: for all i ∈ Π \ {p} do
44: if (receive〈Decide, d〉 from i) then
45: return(d)
46: end if
47: end for
48: end while
49: d ← the first component of V different from ⊥; return(d)
50: end
51: end function
52: procedure PROPOSE(v)
53: variables: u: integer; FD: failure detector of type S
54: begin
55: u ←consensus(v) with FD
56: DECIDE(u)
57: repeat forever
58: for all j ∈ Π \ {p}, x ∈ {1, ..., n} do
59: if (receive〈R-x, W〉 from j) then
60: send〈Decide, u〉 to j
61: end if
62: end for
63: end repeat
64: end
65: end procedure

Fig. 3. Algorithm CS, Consensus with S
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The algorithm Aq works as follows: processes try to R-DECIDE k times, all
processes execute the code of the algorithm A using D except q that does nothing.
If p R-DECIDE k messages, it sets Output q to q and never changes the values of
Output q.

By lemma 2, if q is correct p cannot decides k times and so it never sets
Output q to q. If q is faulty and p is correct6: as A solve Repeated Consensus, p
has to R-DECIDE k times and so p sets Output q to {q}.

To emulate P−, each process p uses Algorithm Aq for every process q. As D
is a failure detector it can be used for each instance. The output of P− at p
(variable Output) is then the union of Output q for every process q.

1: /∗ Code for process p of Π \ q ∗/
2: begin
3: Output q ← ∅
4: for i = 1 to k do
5: R-PROPOSED(v) /∗ using A with D ∗/
6: wait for R-DECIDE(v)
7: end for
8: Output q ← {q}
9: end
10: /∗ Code for process q ∗/
11: begin
12: end

Fig. 4. Aq

Theorem 4. P− is necessary to solve Repeated Consensus problem in ΦF .

P− is Sufficient. In this section, we show that P− is sufficient to solve the re-
peated consensus in ΦF . To that goal, we consider an algorithm called Algorithm
RCP (Figures 5 and 6). In this algorithm, any process uses a failure detector
module of type P− (again we assume that since a process is suspected by some
process it is suspected forever) and a finite memory. Theorem 5 shows that Al-
gorithm RCP solves the repeated consensus in ΦF and directly implies that P−

is sufficient to solve the repeated consensus in ΦF (Corollary 3).
We assume that each correct processes has an infinite sequence of input and

when it terminates R-PROPOSED(v) where v is the ith value of its input, it executes
R-PROPOSED(w) where w is the (i + 1)th value of its input.

When a process executes R-PROPOSED(v), it first executes a consensus in which
it proposes v. The decision of this consensus is then outputted. Then, processes
have to avoid that the messages of two consecutive consensus are mixed up.
We construct a synchronization barrier. Without message loss, and with a per-
fect failure detector, it is sufficient that each process waits a Decide message
from every process trusted by its failure detector module. By FIFO property, no
message 〈R-x,−〉 sent before this Decide message can be received in the next
consensus.
6 If q is faulty and p is faulty, the property of failure detector is trivially ensured.
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1: /∗ Code for process p ∗/
2: function consensus(v) with the failure detector fd
3: variables:
4: Flag[1 . . . n] ∈ {true,false}n; ∀i ∈ Π, Flag[i] is initialized to false
5: V[1 . . . n]: array of propositions; ∀i ∈ Π, V[i] is initialized to ⊥
6: Mes[1 . . . n]: array of arrays of propositions; ∀i ∈ Π, Mes[i] is initialized to ⊥
7: r: integer; r is initialized to 1
8: begin
9: V[p] ← v the proposed values; Mes[1] ← V
10: while (r ≤ n) do
11: send〈R-r, Mes[r]〉 to every process, except {p} ∪ fd
12: for all i ∈ Π \ (fd ∪ {p}), Flag[i] = false do
13: if (receive〈R-r, W〉 from i) then
14: Flag[i] ← true
15: if r < n then
16: if V[i] = ⊥ then
17: V[i] ← W [i]; Mes[r + 1][i] ← W [i]
18: end if
19: else
20: if V[i] 	= ⊥ then
21: V[i] ← W [i]
22: end if
23: end if
24: end if
25: end for
26: if ∀q ∈ Π \ (fd ∪ {p}), Flag[q] = true then
27: if r < n then
28: for all i ∈ Π do
29: Flag[i] ← false
30: end for
31: end if
32: if r = n − 1 then
33: Mes[n] ← V
34: end if
35: r ← r + 1
36: end if
37: for all i ∈ Π \ (fd ∪ {p}) do
38: if (receive〈Decide, d〉 from i) then
39: return(d)
40: end if
41: end for
42: end while
43: d ← the first component of V different from ⊥; return(d)
44: end
45: end function

Fig. 5. Algorithm RCP, Repeated Consensus with P−. Part 1: function consensus().

To deal with message loss, the synchronization barrier is obtained by two
asynchronous rounds: In the first asynchronous rounds, each process sends a
Decide message and waits to receive a Decide message or a Start message from
every other process it does not suspect. In the second one, each process sends
a Decide message and waits to receive a Start message or a 〈R-x,−〉 message.
Actually, due to message loss it is possible that a process goes to its second
round despite some process have not received its Decide message, but it cannot
finish the second round before every correct processes have finished the first one.

As a faulty process can be suspected before it crashes (due to the quality of
P−), it is possible that a faulty process will not be waited by other processes
although it is still alive. To avoid that this process disturbs the round, since
a process p suspects a process q, p stops to wait messages from q and to send
messages to q.
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1: /∗ Code for process p ∗/
2: variables:
3: FD: failure detector of type P−

4: procedure R-PROPOSED(v)
5: variables:
6: FlagR[1 . . . n] ∈ {true,false}n; ∀i ∈ Π, FlagR[i] is initialized to false
7: stop: boolean; stop is initialized to false
8: u: integer;
9: begin
10: u ←consensus(v) with FD
11: R-DECIDE(u)
12: repeat
13: send〈Decide, u〉 to every process, except {p} ∪ FD
14: for all i ∈ Π \ (FD ∪ {p}), FlagR[i] = false do
15: if (receive〈Decide, u〉 from i) ∨ (receive〈Start〉 from i) then
16: FlagR[i] ← true
17: end if
18: end for
19: if ∀q ∈ Π \ (FD ∪ {p}), FlagR[q] = true then
20: stop ← true
21: end if
22: until stop
23: for all i ∈ Π do
24: FlagR[i] ← false
25: end for
26: stop ← false
27: repeat
28: send〈Start〉 to every process, except {p} ∪ FD
29: for all i ∈ Π \ (FD ∪ {p}), FlagR[i] = false do
30: if (receive〈Start〉 from i) ∨ (receive〈R-1, W〉 from j) then
31: FlagR[i] ← true
32: end if
33: end for
34: if ∀q ∈ Π \ (FD ∪ {p}), FlagR[q] = true then
35: stop ← true
36: end if
37: until stop
38: end
39: end procedure

Fig. 6. Algorithm RCP, Repeated Consensus with P−. Part 2.

Note also that if the consensus function is executed with P−, then there is
no need to send 〈R-x,−〉 in round r > x again. We have rewritten the consensus
function to take account of these facts, but the behaviour remains the same.

Theorem 5. Algorithm RCP (Figure 5 and 6) is a Repeated Consensus algo-
rithm in ΦF with P−.

Corollary 3. P− is sufficient for solving Repeated Consensus in ΦF .

Contrary to these results in system ΦF , in system ΦI , we have the same weak-
est failure detector to solve the consensus problem and the repeated consensus
problem:

Proposition 2. In system ΦI, if there is an algorithm A with failure detector
D solving Consensus, then there exists an algorithm solving Repeated Consensus
with D.
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23. Fernández, A., Jiménez, E., Raynal, M.: Eventual leader election with weak as-
sumptions on initial knowledge, communication reliability, and synchrony. In: DSN,
pp. 166–178. IEEE Computer Society, Los Alamitos (2006)

24. Chandra, T.D., Toueg, S.: Unreliable failure detectors for asynchronous systems
(preliminary version). In: 10th Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC 1991), pp. 325–340 (1991)

25. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R.: A realistic look at failure de-
tectors. In: DSN, pp. 345–353. IEEE Computer Society, Los Alamitos (2002)

26. Hadzilacos, V., Toueg, S.: A modular approach to fault-tolerant broadcasts and
related problems. Technical Report TR 94-1425, Department of Computer Science,
Cornell University (1994)

27. Bartlett, K.A., Scantlebury, R.A., Wilkinson, P.T.: A note on reliable full-duplex
transmission over halfduplex links. Journal of the ACM 12, 260–261 (1969)

28. Stenning, V.: A data transfer protocol. Computer Networks 1, 99–110 (1976)



Group Renaming

Yehuda Afek1, Iftah Gamzu1,�, Irit Levy1, Michael Merritt2, and Gadi Taubenfeld3

1 School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel
{afek,iftgam,levyirit}@tau.ac.il

2 AT&T Labs, 180 Park Ave., Florham Park, NJ 07932, USA
mischu@research.att.com

3 The Interdisciplinary Center, P.O. Box 167, Herzliya 46150, Israel
tgadi@idc.ac.il

Abstract. We study the group renaming task, which is a natural generalization
of the renaming task. An instance of this task consists of n processors, partitioned
into m groups, each of at most g processors. Each processor knows the name of
its group, which is in {1, . . . , M}. The task of each processor is to choose a new
name for its group such that processors from different groups choose different
new names from {1, . . . , �}, where � < M . We consider two variants of the
problem: a tight variant, in which processors of the same group must choose the
same new group name, and a loose variant, in which processors from the same
group may choose different names. Our findings can be briefly summarized as
follows:

1. We present an algorithm that solves the tight variant of the problem with � =
2m − 1 in a system consisting of g-consensus objects and atomic read/write
registers. In addition, we prove that it is impossible to solve this problem
in a system having only (g − 1)-consensus objects and atomic read/write
registers.

2. We devise an algorithm for the loose variant of the problem that only uses
atomic read/write registers, and has � = 3n −

√
n − 1. The algorithm also

guarantees that the number of different new group names chosen by proces-
sors from the same group is at most min{g, 2m, 2

√
n}. Furthermore, we

consider the special case when the groups are uniform in size and show that
our algorithm is self-adjusting to have � = m(m + 1)/2, when m <

√
n,

and � = 3n/2 + m −
√

n/2 − 1, otherwise.

1 Introduction

1.1 The Group Renaming Problem

We investigate the group renaming task which generalizes the well known renaming
task [3]. In the original renaming task, each processor starts with a unique identi-
fier taken from a large domain, and the goal of each processor is to select a new
unique identifier from a smaller range. Such an identifier can be used, for example,
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to mark a memory slot in which the processor may publish information in its posses-
sion. In the group renaming task, groups of processors may hold some information
which they would like to publish, preferably using a common memory slot for each
group. An additional motivation for studying the group version of the problem is to
further our understanding about the inherent difficulties in solving tasks with respect to
groups [10].

More formally, an instance of the group renaming task consists of n processors parti-
tioned into m groups, each of which consists of at most g processors. Each processor has
a group name taken from some large name space [M ] = {1, . . . , M}, representing the
group that the processor affiliates with. In addition, every processor has a unique iden-
tifier taken from [N ]. The objective of each processor is to choose a new group name
from [
], where 
 < M . The collection of new group names selected by the processors
must satisfy the uniqueness property meaning that any two processors from different
groups choose distinct new group names. We consider two variants of the problem:

– a tight variant, in which in addition to satisfying the uniqueness property, processors
of the same group must choose the same new group name (this requirement is called
the consistency property), and

– a loose variant, in which processors from the same group may choose different
names, rather than a single one, as long as no two processors from different groups
choose the same new name.

1.2 Summary of Results

We present a wait-free algorithm that solves the tight variant of the problem with 
 =
2m− 1 in a system equipped with g-consensus objects and atomic read/write registers.
This algorithm extends the upper bound result of Attiya et al. [3] for g = 1. On the
lower bound side, we show that there is no wait-free implementation of tight group
renaming in a system equipped with (g − 1)-consensus objects and atomic read/write
registers. In particular, this result implies that there is no wait-free implementation of
tight group renaming using only atomic read/write registers for g ≥ 2.

We then restrict our attention to shared memory systems which support only atomic
read/write reagisters and study the loose variant. We develop a self-adjusting algorithm,
namely, an algorithm that achieves distinctive performance guarantees conditioned on
the number of groups and processors. On worst case, this algorithm has 
 = 3n−

√
n−1,

while guaranteeing that the number of different new group names chosen by processors
from the same group is at most min{g, 2m, 2

√
n}. It seems worthy to note that the

algorithm is built around a filtering technique that overcomes scenarios in which both
the size of the maximal group and the number of groups are large, i.e., g = Ω(n) and
m = Ω(n). Essentially, such scenario arises when there are Ω(n) groups containing
only few members and few groups containing Ω(n) members.

We also consider the special case when the groups are uniform in size, and refine
the analysis of our loose group renaming algorithm. Notably, we demonstrate that 
 =
m(m + 1)/2, when m <

√
n, and 
 = 3n/2 + m −

√
n/2 − 1, otherwise. This last

result settles, to some extent, an open question posed by Gafni [10].
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1.3 Related Work

Group solvability was first introduced and investigated in [10]. The renaming problem
was first solved for message-passing systems [3], and then for shared memory systems
using atomic registers [6]. Both these papers present one-shot algorithms (i.e., solu-
tions that can be used only once). In [8] the first long-lived renaming algorithm was
presented: The 
-assignment algorithm presented in [8] can be used as an optimal long-
lived (2n − 1)-renaming algorithm with exponential step complexity. Several of the
many papers on renaming using atomic registers are [1,2,4,11,14,15]. Other references
are mentioned later in the paper.

2 Model and Definitions

Our model of computation consists of an asynchronous collection of n processors com-
municating via shared objects. Each object has a type which defines the set of operations
that the object supports. Each object also has sequential specification that specifies how
the object behaves when these operations are applied sequentially. Asynchrony means
that there is no assumptions on the relative speeds of the processors.

Various systems differ in the level of atomicity that is supported. Atomic (or indivisi-
ble) operations are defined as operations whose execution is not interfered with by other
concurrent activities. This definition of atomicity is too restrictive, and it is safe to relax
it by assuming that processors can try to access the object at the same time, however,
although operations of concurrent processors may overlap, each operation should ap-
pear to take effect instantaneously. In particular, operations that do not overlap should
take effect in there “real-time” order. This type of correctness requirement is called
linearizability [13].

We will always assume that the system supports atomic registers, which are shared
objects that support atomic reads and writes operations. In addition, the system may
also support forms of atomicity which are stronger than atomic reads and writes. One
specific atomic object that will play an important role in our investigation is the con-
sensus object. A consensus object o supports one operation: o.propose(v), satisfying:

1. Agreement. In any run, the o.propose() operation returns the same value, called the
consensus value, to every processor that invokes it.

2. Validity. In any run, if the consensus value is v, then some processor invoked
o.propose(v).

Throughout the paper, we will use the notation g-consensus to denote a consensus object
for g processors.

An object is wait-free if it guarantees that every processor is always able to complete
its pending operation in a finite number of its own steps regardless of the execution
speed of other processors (does not admit starvation). Similarly, an implementation or
an algorithm is wait-free, if every processor makes a decision within a finite number of
its own steps. We will focus only on wait-free objects, implementations or algorithms.
Next, we define two notions for measuring the relative computational power of shared
objects.
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– The consensus number of an object of type o, is the largest n for which it is possible
to implement an n-consensus object in a wait-free manner, using any number of
objects of type o and any number of atomic registers. If no largest n exists, the
consensus number of o is infinite.

– The consensus hierarchy (also called the wait-free hierarchy) is an infinite hierarchy
of objects such that the objects at level i of the hierarchy are exactly those objects
with consensus number i.

It has been shown in [12], that in the consensus hierarchy, for any positive i, in a system
with i processors: (1) no object at level less than i together with atomic registers can
implement any object at level i; and (2) each object at level i together with atomic
registers can implement any object at level i or at a lower level, in a system with i
processors. Classifying objects by their consensus numbers is a powerful technique for
understanding the relative power of shared objects.

Finally, for simplicity, when refereing to the group renaming problem, we will as-
sume that m, the number of groups, is greater or equal to 2.

3 Tight Group Renaming

3.1 An Upper Bound

In what follows, we present a wait-free algorithm that solves tight group renaming using
g-consensus objects and atomic registers. Essentially, we prove the following theorem.

Theorem 1. For any g ≥ 1, there is a wait-free implementation of tight group renaming
with 
 = 2m − 1 in a system consisting of g-consensus objects and atomic registers.

Corollary 1. The consensus number of tight group renaming is at most g.

Our implementation, i.e., Algorithm 1, is inspired by the renaming algorithm of Attiya
et al. [3], which achieves an optimal new names space size of 2n − 1. In this renaming
algorithm, each processor iteratively picks some name and suggests it as its new name
until an agreement on the collection of new names is reached. The communication
between the processors is done using an atomic snapshot object. Our algorithm deviates
from this scheme by adding an agreement step between processors of the same group,
implemented using g-consensus objects. Intuitively, this agreement step ensures that all
the processors of any group will follow the decisions made by the “fastest” processor
in the group. Consequently, the selection of the new group names can be determined
between the representatives of the groups, i.e., the “fastest” processors. This enables us
to obtain the claimed new names space size of 2m − 1. It is worthy to note that the
“fastest” processor of some group may change over time, and hence our agreement step
implements a “follow the (current) group leader” strategy. We believe that this concept
may be of independent interest. Note that the group name of processor i is designated
by GIDi, and the overall number of iterations executed is marked by I .

We now turn to establish Theorem 1. Essentially, this is achieved by demonstrating
that Algorithm 1 maintains the consistency and uniqueness properties (Lemmas 2 and
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Algorithm 1. Tight group renaming algorithm: code for processor i ∈ [N ].

In shared memory:
SS[1, . . . , N ] array of swmr registers, initially ⊥.
HIS[1, . . . , N ][1, . . . , I ][1, . . . , N ] array of swmr registers, initially ⊥.
CON[1, . . . , M ][1, . . . , I ] array of g-consensus objects.

1: p ← 1
2: k ← 1
3: while true do
4: SS[i] ← 〈GIDi, p, k〉
5: HIS[i][k][1, . . . , N ] ← Snapshot(SS)

� Agree on w, the winner of group GIDi in iteration k, and import its snapshot:
6: w ← CON[GIDi][k].Compete(i)
7: (〈GID1, p1, k1〉, . . . , 〈GIDN , pN , kN〉) ← HIS[w][k][1, . . . , N ]

� Check if pw, the proposal of w, can be chosen as the new name of group GIDi:
8: P = {pj : j ∈ [N ] has GIDj 
= GIDw and kj = maxq∈[N]{kq : GIDq = GIDj}}
9: if pw ∈ P then

10: r ← the rank of GIDw in {GIDj 
= ⊥ : j ∈ [N ]}
11: p ← the r-th integer not in P
12: else return pw

13: end if
14: k ← k + 1
15: end while

3), that it has 
 = 2m − 1 (Lemma 4), and that it terminates after a finite number of
steps (Lemma 5). Let us denote the value of p written to the snapshot array (see line 4)
in some iteration as the proposal value of the underlying processor in that iteration.

Lemma 1. The proposal values of processors from the same group is identical in any
iteration.

Proof. Consider some group. One can easily verify that the processors of that group,
and in fact all the processors, have an identical proposal value of 1 in the first iteration.
Thus, let us consider some iteration k > 1 and prove that all these processors have an
identical proposal value. Essentially, this is done by claiming that all the processors up-
date their value of p in the preceding iteration in an identical manner. For this purpose,
notice that all the processors compete for the same g-consensus object in that itera-
tion, and then import the same snapshot of the processor that won this consensus (see
lines 6–7). Consequently, they execute the code in lines 8–13 in an identical manner. In
particular, this guarantees that the update of p in line 11 is done exactly alike. ��

Lemma 2. All the processors of the same group choose an identical new group name.

Proof. The proof of this lemma follows the same line of argumentation presented in the
proof of Lemma 1. Again, the key observation is that in each iteration, all the processors
of some group compete for the same g-consensus object, and then import the same
snapshot. Since the decisions made by the processors in lines 8–13 are solely based on
this snapshot, it follows that they are identical. In particular, this ensures that once a



Group Renaming 63

processor chooses a new group name, all the other processors will follow its lead and
choose the same name. ��

Lemma 3. No two processors of different groups choose the same new group name.

Proof. Recall that we know, by Lemma 2, that all the processors of the same group
choose an identical new group name. Hence, it is sufficient that we prove that no two
groups select the same new name. Assume by way of contradiction that this is not the
case, namely, there are two distinct groups G and G′ that select the same new group
name p∗. Let k and k′ be the iteration numbers in which the decisions on the new
names of G and G′ are done, and let w ∈ G and w′ ∈ G′ be the corresponding pro-
cessors that won the g-consensus objects in that iterations. Now, consider the snapshot
(〈GID1, p1, k1〉, . . . , 〈GIDN , pN , kN 〉), taken by w in its k-th iteration. One can easily
validate that pw = p∗ since w writes its proposed value before taking a snapshot. Sim-
ilarly, it is clear that p′w′ = p∗ in the snapshot (〈GID′

1, p
′
1, k

′
1〉, . . . , 〈GID′

N , p′N , k′
N 〉),

taken by w′ in its k′-th iteration. By the linearizability property of the atomic snapshot
object and without loss of generality, we may assume that snapshot of w was taken be-
fore the snapshot of w′. Consequently, w′ must have captured the proposal value of w
in its snapshot, i.e., p′w = p∗. This implies that p∗ appeared in the set P of w′. However,
this violates the fact that w′ reached the decision step in line 12, a contradiction. ��

Lemma 4. All the new group names are from the range [
], where 
 = 2m − 1.

Proof. In what follows, we prove that the proposal value of any processor in any itera-
tion is in the range [
]. Clearly, this proves the lemma as the chosen name of any group
is a proposal value of some processor. Consider some processor. It is clear that its first
iteration proposal value is in the range [
]. Thus, let us consider some iteration k > 1
and prove that its proposal value is at most 2m−1. Essentially, this is done by bounding
the value of p calculated in line 11 of the preceding iteration. For this purpose, we first
claim that the set P consists of at most m − 1 values. Notice that P holds the proposal
values of processors from at most m − 1 groups. Furthermore, observe that for each of
those groups, it holds the proposal values of processors having the same maximal itera-
tion counter. This implies, in conjunction with Lemma 1, that for each of those groups,
the proposal values of the corresponding processors are identical. Consequently, P con-
sists of at most m − 1 distinct values. Now, one can easily verify that the rank of every
group calculated in line 10 is at most m. Therefore, the new value of p is no more than
2m − 1. ��

Lemma 5. Any processor either takes finite number of steps or chooses a new group
name.

Proof. The proof of this theorem is a natural generalization of the termination proof of
the renaming algorithm (see, e.g., [5, Sec. 16.3]). Thus, we defer it to the final version
of the paper. ��

3.2 An Impossibility Result

In Appendix A.1, we provide an FLP-style proof of the following theorem.
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Theorem 2. For any g ≥ 2, it is impossible to wait-free implement tight group renam-
ing in a system having (g − 1)-consensus objects and atomic registers.

In particular, Theorem 2 implies that there is no wait-free implementation of tight group
renaming, even when g = 2, using only atomic registers.

4 Loose Group Renaming

In this section, we restrict our attention to shared memory systems which support only
atomic registers. By Theorem 2, we know that it is impossible to solve the tight group
renaming problem unless we relax our goal. Accordingly, we consider a variant in which
processors from the same group may choose a different new group name, as long as the
uniqueness property is maintained. The objective in this case is to minimize both the
inner scope size, which is the upper bound on the number of new group names selected
by processors from the same group, and the outer scope size, which is the new group
names range size. We use the notation, (α, β)-group renaming algorithm to designate
an algorithm yielding an inner scope of α and an outer scope of β.

4.1 The Non-uniform Case

In the following we consider the task when group sizes are not uniform. We present a
group renaming algorithm having a worst case inner scope size of min{g, 2m, 2

√
n}

and a worst case outer scope size of 3n −
√

n − 1. The algorithm is self-adjusting
with respect to the input properties. Namely, it achieves better performance guarantees
conditioned on the number of groups and processors. It seems worthy to emphasize that
the performance guarantees of our algorithm are not only based on g and m, but also
on

√
n, which is crucial in several cases.

The algorithm is built upon a consolidation of two algorithms, denoted as
Algorithm 2 and Algorithm 3. Both algorithms are adaptations of previously known
renaming methods for groups (see, e.g., [10]). Algorithm 2, which efficiently handles
small-sized groups, is a (g, n + m − 1)-group renaming algorithm, while Algorithm 3,
which efficiently attends to small number of groups, is a (min{m, g}, m(m + 1)/2)-
group renaming algorithm.

Theorem 3. Algorithm 2 is a wait-free (g, n + m − 1)-group renaming algorithm.

Proof. The algorithm is very similar to the original renaming algorithm of Attiya et. al.
[3]. While there processors select a new name by computing the rank of their original
large id among the ids of participating processors, here processors consider the rank of
their original group name among the already published (participating) original group
names. One can prove that Algorithm 2 maintains the uniqueness property and termi-
nates after finite number of steps by applying nearly identical arguments to those used
in the analogous proofs of the underlying renaming method (see, e.g., [5, Sec. 16.3]).
Therefore, we only focus on analyzing the size of the resulting new name-spaces. The
inner scope size of the algorithm is trivially g since there are at most g processors in
any group. We turn to bound the outer scope size. This is done by demonstrating that
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the proposal value pi of any processor i in any iteration is at most n + m − 1. Clearly,
pi satisfies this requirement in the first iteration as its value is 1. Hence, let us consider
some other iteration and bound its proposal value. This is accomplished by bounding
the value of pi calculated in line 7 of the preceding iteration. For this purpose, notice
that the rank of every group calculated in line 6 is at most m. Furthermore, there are at
most n − 1 values proposed by other processors. Thus, the new value of pi is at most
n + m − 1. ��

Algorithm 2. code for processor i ∈ [N ].

In shared memory: SS[1, . . . , N ] array of swmr registers, initially ⊥.

1: pi ← 1
2: while true do
3: SS[i] ← 〈GIDi, pi〉
4: (〈GID1, p1〉, . . . , 〈GIDN , pN 〉) ← Snapshot(SS)
5: if pi = pj for some j ∈ [N ] having GIDj 
= GIDi then
6: r ← the rank of GIDi in {GIDk 
= ⊥ : k ∈ [N ]}
7: pi ← the r-th integer not in {pk 
= ⊥ : k ∈ [N ] \ {i}}
8: else return pi

9: end if
10: end while

Theorem 4. Algorithm 3 is a wait-free (min{m, g}, m(m + 1)/2)-group renaming
algorithm.

Proof. In this algorithm each processor records its participation by publishing its id
and its group original name. Each processor then takes a snapshot of the memory and
returns as its new group name the size of the snapshot it had obtained, concatenated
with its group id rank among the group ids recorded in the snapshot. One can prove that
Algorithm 3 supports the uniqueness property by applying nearly identical arguments
to those used in the corresponding proof of the underlying renaming method (see, e.g.,
[7, Sec. 6]). Moreover, it is clear that the algorithm terminates after finite number of
steps. Thus, we only focus on analyzing the performance properties of the algorithm.
We begin with the inner scope size. Particularly, we prove a bound of m, noting that
a bound of g is trivial since there are at most g processors in any group. Consider
the case that two processors of the same group obtain the same number of observable
groups m̃ in line 3. We argue that they also choose the same new group name. For
this purpose, notice that the set of GIDs that reside in SS may only grow during any
execution sequence. Hence, if two processors have an identical m̃ then their snapshot
holds the same set of GIDs. Consequently, if those processors are of the same group
then their group rank calculated in line 4 is also the same, and therefore the new names
they select are identical. This implies that the number of new group names selected by
processors from the same group is bound by the maximal value of m̃, which is clearly
never greater than m. We continue by bounding the outer scope size. As already noted,
m̃ ≤ m, and the rank of every group is at most m. Thus, the maximal group name is no
more than m(m − 1)/2 + m. ��



66 Y. Afek et al.

Algorithm 3. code for processor i ∈ [N ].

In shared memory: SS[1, . . . , N ] array of swmr registers, initially ⊥.

1: SS[i] ← GIDi

2: (GID1, . . . , GIDN) ← Snapshot(SS)
3: m̃ ← the number of distinct GIDs in {GIDj 
= ⊥ : j ∈ [N ]}
4: r ← the rank of GIDi in {GIDj 
= ⊥ : j ∈ [N ]}
5: return m̃(m̃ − 1)/2 + r

We are now ready to present our self-adjusting loose group renaming algorithm. The
algorithm has its roots in the natural approach that applies the best response with re-
spect to the instance under consideration. For example, it is easy to see that Algorithm 3
outperforms Algorithm 2 with respect to the inner scope size, for any instance. In ad-
dition, one can verify that when m <

√
n, Algorithm 3 has an outer scope size of at

most n/2 −
√

n/2, whereas Algorithm 2 has an outer scope size of at least n. Hence,
given an instance having m <

√
n, the best response would be to execute Algorithm 3.

Unfortunately, a straight-forward application of this approach has several difficulties.
One immediate difficulty concerns the implementation since none of the processors

have prior knowledge of the real values of m or g. Our algorithm bypasses this diffi-
culty by maintaining an estimation of these parameters using an atomic snapshot object.
Another difficulty concerns with performance issues. Specifically, both algorithms have
poor inner scope size guarantees for instances which simultaneously satisfy g = Ω(n)
and m = Ω(n). One concrete example having g = n/2 and m = n/2 + 1 consists
of a single group having n/2 members and n/2 singleton groups. In this case, both
algorithms have an inner scope size guarantee of n/2. We overcome this difficulty by
sensibly combining the algorithms, therefore yielding an inner scope size guarantee of
2
√

n for these “hard” cases. The key observation utilized in this context is that if there
are many groups then most of them must be small. Consequently, by filtering out the
small-sized groups, we are left with a small number of large groups that we can han-
dle efficiently. Note that Algorithm 4 employs Algorithm 3 as sub-procedure in two
cases (see lines 6 and 12). It is assumed that the shared memory space used by each
application of the algorithm is distinct.

Theorem 5. Algorithm 4 is a group renaming algorithm having a worst case inner
scope size of min{g, 2m, 2

√
n} and a worst case outer scope size of 3n −

√
n − 1.

Proof. We begin by establishing the correctness of the algorithm. For this purpose, we
demonstrate that it maintains the uniqueness property and terminates after finite num-
ber of steps. One can easily validate that the termination property holds since both
Algorithm 2 and Algorithm 3 terminate after finite number of steps. It is also easy to
verify that the uniqueness property is maintained. This follows by recalling that both
Algorithm 2 and Algorithm 3 maintain the uniqueness property, and noticing that each
case of the if statement (see lines 5–14) utilizes a distinct set of new names. To be
precise, one should observe that any processor that executes Algorithm 3 in line 6 is
assigned a new name in the range {1, . . . , n/2 −

√
n/2}, any processor that executes
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Algorithm 2 in line 9 is assigned a new name in the range {n/2−√
n/2+1, . . . , 5n/2−√

n/2 − 1}, and any processor that executes Algorithm 3 in line 12 is assigned a new
name whose value is at least 5n/2 −

√
n/2. The first claim results by the outer scope

properties of Algorithm 3 and the fact that processors from less than
√

n groups may
execute this algorithm. The second argument follows by the outer scope properties of
Algorithm 2, combined with the observation that m ≤ n, and the fact that the value
of the name returned by the algorithm is increased by n/2 −

√
n/2 in line 10. Finally,

the last claim holds since Algorithm 3 is guaranteed to attain a positive-valued integer
name, and the value of this name is increased by 5n/2 −√

n/2 − 1 in line 13.

Algorithm 4. Adjusting group renaming algorithm: code for processor i ∈ [N ].

In shared memory: SS[1, . . . , N ] array of swmr registers, initially ⊥.

1: SS[i] ← GIDi

2: (GID1, . . . , GIDN) ← Snapshot(SS)
3: m̃ ← the number of distinct GIDs in {GIDj 
= ⊥ : j ∈ [N ]}
4: g̃ ← the number of processors j ∈ [N ] having GIDj = GIDi

5: if m̃ <
√

n then
6: x ← the outcome of Algorithm 3 (using shared memory SS1[1, . . . , N ])
7: return x
8: else if g̃ ≤

√
n then

9: x ← the outcome of Algorithm 2 (using shared memory SS2[1, . . . , N ])
10: return x + n/2 −

√
n/2

11: else
12: x ← the outcome of Algorithm 3 (using shared memory SS3[1, . . . , N ])
13: return x + 5n/2 −

√
n/2 − 1

14: end if

We now turn to establish the performance properties of the algorithm. We demon-
strate that it is self-adjusting and has the following (inner scope, outer scope) properties:⎧⎪⎨⎪⎩

( min{m, g}, m(m + 1)/2 ) m <
√

n

( g, 3n/2 + m −√
n/2 − 1 ) m ≥ √

n and g ≤ √
n

(min{g, 2
√

n}, 3n −
√

n − 1 ) m ≥
√

n and g >
√

n

Case I: m <
√

n. The estimation value m̃ always satisfy m̃ ≤ m. Therefore, all the
processors execute Algorithm 3 in line 6. The properties of Algorithm 3 guarantee that
the inner scope size is min{m, g} and the outer scope size is m(m + 1)/2. Take notice
that min{m, g} ≤ min{g, 2m, 2

√
n} and m(m+1)/2 ≤ 3n−√

n−1 since m <
√

n.
Thus, the performance properties of the algorithm in this case support the worst case
analysis.

Case II: m ≥
√

n and g ≤
√

n. The estimation values never exceed their real values,
namely, m̃ ≤ m and g̃ ≤ g. Consequently, some processors may execute Algorithm 3 in
line 6 and some may execute Algorithm 2 in line 9, depending on the concrete execution
sequence. The inner scope size guarantee is trivially satisfied since there are at most g
processors in each group. Furthermore, one can establish the outer scope size guarantee
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by simply summing the size of the name space that may be used by Algorithm 3, which
is n/2 −

√
n/2, with the size of the name space that may be used by Algorithm 2,

which is n + m − 1. Notice that g ≤ min{g, 2m, 2
√

n} since g ≤
√

n ≤ m, and
3n/2 + m −√

n/2 − 1 ≤ 3n −√
n − 1 as m ≤ n. Hence, the performance properties

of the algorithm in this case support the worst case analysis.

Case III: m ≥
√

n and g >
√

n. Every processors may execute any of the algorithms,
depending of the concrete execution sequence. The first observation one should make
is that no more than

√
n new names may be collectively assigned to processors of the

same group by Algorithm 3 in line 6 and Algorithm 2 in line 9. Moreover, one should
notice that any processor that executes Algorithm 3 in line 12 is part of a group of
size greater than

√
n. Consequently, processors from less than

√
n groups may execute

it. This implies, in conjunction with the properties of Algorithm 3, that no more than√
n new names may be assigned to each group, and at most n/2 −

√
n/2 names are

assigned by this algorithm. Putting everything together, we attain that the inner scope
size is min{g, 2

√
n} and the outer scope size is 3n −

√
n − 1. It is easy to see that

min{g, 2
√

n} ≤ min{g, 2m, 2
√

n} since m ≥
√

n, and thus the performance proper-
ties of the algorithm in this case also support the worst case analysis. ��

4.2 The Uniform Case

In what follows, we study the problem when the groups are guaranteed to be uniform
in size. We refine the analysis of Algorithm 4 by establishing that it is a loose group
renaming algorithm having a worst case inner scope size of min{m, g}, and an outer
scope size of 3n/2 + m −

√
n/2 − 1. Note that min{m, g} ≤

√
n in this case. In

particular, we demonstrate that the algorithm is self-adjusting and has the following
(inner scope, outer scope) properties:{

( min{m, g}, m(m + 1)/2 ) m <
√

n

( g, 3n/2 + m −
√

n/2 − 1 ) m ≥
√

n

This result settles, to some extent, an open question posed by Gafni [10], which called
for a self-adjusting group renaming algorithm that requires at most m(m + 1)/2 names
on one extreme, and no more than 2n − 1 names on the other.

The key observation required to establish this refinement is that n = m · g when
the groups are uniform in size. Consequently, either m <

√
n or g ≤

√
n. Since the

estimation values that each processor sees cannot exceed the corresponding real values,
no processor can ever reach the second execution of Algorithm 3 in line 12. Now, the
proof of the performance properties follows the same line of argumentation presented
in the proof of Theorem 5.

5 Discussion

This paper has considered and investigated the tight and loose variants of the group re-
naming problem. Below we discuss few ways in which our results can be extended. An
immediate open question is whether a g-consensus task can be constructed from group
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renaming tasks for groups of size g, in a system with g processes. Another question
is to design an adaptive group renaming algorithm in which a processor is assigned
a new group name, from the range 1 through k where k is a constant multiple of the
contention (i.e., the number of different active groups) that the processor experiences.
We have considered only one-shot tasks (i.e., solutions that can be used only once), it
would be interesting to design long-lived group renaming algorithms. We have focused
in this work mainly on reducing the new name space as much as possible, it would be
interesting to construct algorithms also with low space and time (step) complexities. Fi-
nally, the k-set consensus task, a generalization of the consensus task, enables for each
processor that starts with an input value from some domain, to choose some participat-
ing processor’ input as its output, such that all processors together may choose no more
than k distinct output values. It is interesting to find out what type of group renaming
task, if any, can be implemented using k-set consensus tasks and registers.
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A Tight Group Renaming

A.1 An Impossibility Result

In what follows, we establish the proof of Theorem 2. Our impossibility proof follows
the high level FLP-approach employed in the context of the consensus problem (see,
e.g., [12,9]). Namely, we assume the existence of a tight group renaming algorithm,
and then derive a contradiction by constructing a sequential execution in which the
algorithm fails, either because it is inconsistent, or since it runs forever. Prior to delving
into technicalities, we introduce some terminology.

The decision value of a processor is the new group name selected by that processor.
Analogously, the decision value of a group is the new group name selected by all pro-
cessors of that group. An algorithm state is multivalent with respect to group G if the
decision value of G is not yet fixed, namely, the current execution can be extended to
yield different decision values of G. Otherwise, it is univalent. In particular, an x-valent
state with respect to G is a univalent state with respect to G yielding a decision value of
x. A decision step with respect to G is an execution step that carries the algorithm from
a multivalent state with respect to G to a univalent state with respect to G. A processor is
active with respect to a algorithm state if its decision value is still not fixed. A algorithm
state is critical with respect to G if it is multivalent with respect to G and any step of
any active processor is a decision step with respect to G.

Lemma 6. Every group renaming algorithm admits an input instance whose initial
algorithm state is multivalent with respect to a maximal size group.

Proof. We begin by establishing that every group renaming algorithm admits an in-
put instance whose initial algorithm state is multivalent with respect to some group.
Consider some group renaming algorithm, and assume by contradiction that the initial
algorithm state is univalent with respect to all groups for every input instance. We argue
that all processors implement some function f : [M ] → [
] for computing their new
group name. For this purpose, consider some processor whose group name is a ∈ [M ].
Notice that this processor may be scheduled to execute a “solo run”. Let us assume
that its decision value in this case is x ∈ [
]. Since the initial algorithm state is uni-
valent with respect to the group of that processor, it follows that in any execution this
processor must decide x, regardless of the other groups, their name, and their schedul-
ing. The above-mentioned argument follows by recalling that all processors execute the
same algorithm, and noticing that a could have been any initial group name. Now, recall
that M > 
. This implies that there are at least two group names a1, a2 ∈ [M ] such
that f(a1) = f(a2). Correspondingly, there are input instances in which two processors
from two different groups decide on the same new group name, violating the uniqueness
property.

We now turn to prove that every group renaming algorithm admits an input instance
whose initial algorithm state is multivalent with respect to a maximal size group. Con-
sider some group renaming algorithm, and suppose its initial algorithm state is multi-
valent with respect to group G. Namely, there are two execution sequences σ1, σ2 that
lead to different decision values of G. Now, if G is maximal in size then we are done.
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Otherwise, consider the input instance obtained by adding processors to G until it be-
comes maximal in size. Notice that the execution sequences σ1 and σ2 are valid with
respect to the new input instance. In addition, observe that each possessor must decide
on the same value as in the former instance. This follows by the assumption that none
of the processors has prior knowledge about the other processors and groups, and thus
each processor cannot distinguish between the two instances. Hence, the initial algo-
rithm state is also multivalent with respect to G in this new instance. ��

Lemma 7. Every group renaming algorithm admits an input instance for which a crit-
ical state with respect to a maximal size group may be reached.

Proof. We prove that every group renaming algorithm which admits an input instance
whose initial algorithm state is multivalent with respect to some group may reach a crit-
ical state with respect to that group. Notice that having this claim proved, the lemma
follows as consequence of Lemma 6. Consider some group renaming algorithm, and
suppose its initial algorithm state is multivalent with respect to group G. Consider the
following sequential execution, starting from this state. Initially, some arbitrary proces-
sor executes until it reaches a state where its next operation leaves the algorithm in a
univalent state with respect to G, or until it terminates and decides on a new group name.
Note that the latter case can only happen if the underlying processor is not affiliated to
G. Also note that the processor must eventually reach one of the above-mentioned states
since the algorithm is wait-free and cannot run forever. Later on, another arbitrary pro-
cessor executes until it reaches a similar state, and so on. This sequential execution
continues until reaching a state in which any step of any active processor is a decision
step with respect to G. Again, since the algorithm cannot run forever, it must eventually
reach such state, which is, by definition, critical. ��

We are now ready to prove the impossibility result.

Proof of Theorem 2. Assume that there is a group renaming algorithm implemented
from atomic registers and r-consensus objects, where r < g. We derive a contradiction
by constructing an infinite sequential execution that keeps such algorithm in a multiva-
lent state with respect to some maximal size group. By Lemma 7, we know that there
is an input instance and a corresponding execution of the algorithm that leads to a crit-
ical state s with respect to some group G of size g. Keep in mind that there are at least
g active processors in this critical state since, in particular, all the processors of G are
active. Let p and q be two active processors in the critical state which respectively carry
the algorithm into an x-valent and a y-valent states with respect to G, where x and y
are distinct. We now consider four cases, depending on the nature of the decision steps
taken by the processors:

Case I: One of the processors reads a register. Let us assume without loss of gen-
erality that this processor is p. Let s′ be the algorithm state reached if p’s read step
is immediately followed by q’s step, and let s′′ be the algorithm state following q’s
step. Notice that s′ and s′′ differ only in the internal state of p. Hence, any processor
p′ ∈ G, other than p, cannot distinguish between these states. Thus, if it executes a “solo
run”, it must decide on the same value. However, an impossibility follows since s′ is
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x-valent with respect to G whereas s′′ is y-valent. This case is schematically described
in Figure 1(a).

Case II: Both processors write to the same register. Let s′ be the algorithm state
reached if p’s write step is immediately followed by q’s write step, and let s′′ be the al-
gorithm state following q’s write step. Observe that in the former scenario q overwrites
the value written by p. Hence, s′ and s′′ differ only in the internal state of p. There-
fore, any processor p′ ∈ G, other than p, cannot distinguish between these states. The
impossibility follows identically to Case I.

Case III: Each processor writes to or competes for a distinct register or consensus
object. In what follows, we prove impossibility for the scenario in which both pro-
cessors write to different registers, noting that impossibility for other scenarios can be
easily established using nearly identical arguments. The algorithm state that results if
p’s write step is immediately followed by q’s write step is identical to the state which
results if the write steps occur in the opposite order. This is clearly impossible as one
state is x-valent and the other is y-valent. This case is schematically illustrated in Fig-
ure 1(b).

Case IV: All active processors compete for the same consensus object. As men-
tioned above, there are at least g active processors in the critical state. Additionally, we
assumed that the algorithm uses r-consensus objects, where r < g. This implies that
the underlying consensus object is accessed by more processors then its capacity, which
is illegal.

q stepp read step

q step

x-valent

y-valent

s′′

s′

(a)

?

(b)

q write step

q write step

p write step

p write step

Fig. 1. The decision steps cases
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Abstract. Consider the problem of scheduling real-time tasks on a mul-
tiprocessor with the goal of meeting deadlines. Tasks arrive sporadically
and have implicit deadlines, that is, the deadline of a task is equal
to its minimum inter-arrival time. Consider this problem to be solved
with global static-priority scheduling. We present a priority-assignment
scheme with the property that if at most 38% of the processing capacity
is requested then all deadlines are met.

1 Introduction

Consider the problem of preemptively scheduling n sporadically arriving tasks
on m ≥ 2 identical processors. A task τi is uniquely indexed in the range 1..n
and a processor likewise in the range 1..m. A task τi generates a (potentially
infinite) sequence of jobs. The arrival times of these jobs cannot be controlled by
the scheduling algorithm and are a priori unknown. We assume that the arrival
time between two successive jobs by the same task τi is at least Ti. Every job
by τi requires at most Ci time units of execution over the next Ti time units
after its arrival. We assume that Ti and Ci are real numbers and 0 ≤ Ci ≤
Ti. A processor executes at most one job at a time and a job is not permitted
to execute on multiple processors simultaneously. The utilization is defined as
Us = (1/m) ·

∑n
i=1

Ci

Ti
. The utilization bound UBA of an algorithm A is the

maximum number such that all tasks meet their deadlines when scheduled by
A, if Us ≤ UBA.

Static-priority scheduling is a specific class of algorithms where each task is
assigned a priority, a number which remains unchanged during the operation
of the system. At every moment, the highest-priority task is selected for ex-
ecution among tasks that are ready to execute and has remaining execution.
Static-priority scheduling is simple to implement in operating systems and it
can be implemented efficiently. Therefore, it is implemented in virtually all real-
time operating systems and many desktop operating systems support it as well,
accessible through system calls specified according to the POSIX-standard [1].
Because of these reasons, a comprehensive toolbox (see [2, 3]) of results (priority-
assignment schemes, schedulability analysis algorithms, etc) has been developed
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for static-priority scheduling on a single processor. The success story of static-
priority scheduling on a single processor started with the development of the
rate-monotonic (RM) priority-assignment scheme [4]. It assigns task τj a higher
priority than task τi if Tj < Ti. RM is an optimal priority-assignment scheme,
meaning that for every task set, it holds that if there is an assignment of prior-
ities that causes deadlines to be met then deadlines are met as well when RM
is used. It is also known [4] that UBRM = 0.69 for the case that m = 1. This
result is important because it gives designers an intuitive idea of how much a
processor can be utilized without missing a deadline.

Multiprocessor scheduling algorithms are often categorized as partitioned or
global. Global scheduling stores tasks which have arrived but not finished exe-
cution in one queue, shared by all processors. At any moment, the m highest-
priority tasks among those are selected for execution on the m processors. In
contrast, partitioned scheduling algorithms partition the task set such that all
tasks in a partition are assigned to the same processor. Tasks may not migrate
from one processor to another. The multiprocessor scheduling problem is thus
transformed to many uniprocessor scheduling problems.

Real-time scheduling on a multiprocessor is much less developed than real-
time scheduling on a single processor. And this applies to static-priority schedul-
ing as well. In particular, it is known that it is impossible to design a partitioned
algorithm with UB > 0.5 [5]. It is also known that for global static-priority
scheduling, RM is not optimal. In fact, global RM can miss a deadline although
Us approaches zero [6]. For a long time, the research community dismissed global
static-priority scheduling for this reason. But later, it was realized that other
priority-assignment schemes (not necessarily RM) can be used for global static-
priority scheduling and the research community developed such schemes. Many
priority-assignment schemes and analysis techniques for global static-priority
scheduling are available (see for example [7, 8, 9, 10]) but so far, only two
priority-assignment schemes, RM-US(m/(3m−2)) [11] and RM-US(x) [12] have
known (and non-zero) utilization bounds. These two algorithms categorize a task
as heavy or light. A task is said to be heavy if Ci

Ti
exceeds a certain threshold

number and a task is said to be light otherwise. Heavy tasks are assigned the
highest priority and the light tasks are assigned a lower priority; the relative
priority order among light tasks is given by RM. It was shown that among the
algorithms that separate heavy and light tasks and use RM for light tasks, no
algorithm can achieve a utilization bound greater than 0.374 [12]. And in fact,
the current state-of-art offers no algorithm with utilization bound greater than
0.374.

In this paper, we present a new priority-assignment scheme SM-US(2/(3 +√
5)). It categorizes tasks as heavy and light and assigns the highest priority to

heavy tasks. The relative priority order of light tasks is given by slack-monotonic
(SM) though, meaning that task τj is assigned higher priority than task τi if Tj

- Cj < Ti - Ci. We prove that the utilization bound of SM-US(2/(3 +
√

5)) is
2/(3 +

√
5), which is approximately 0.382.
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We consider this result to be significant because (i) the new algorithm SM-
US(2/(3 +

√
5)) breaks free from the performance limitations of the RM-US

framework, (ii) the utilization bound of SM-US(2/(3 +
√

5)) is higher than the
utilization bound of the previously-known best algorithm in global static-priority
scheduling and (iii) the utilization bound of SM-US(2/(3 +

√
5)) is reasonably

close to the limit
√

2−1 ≈ 0.41 which is known (from Theorem 8 in [13]) to be an
upper bound on the utilization bound of every global static-priority scheduling
algorithm which assigns a priority to a task τi as a function only of Ti and Ci.

Section 2 gives a background on the subject, presenting the main ideas be-
hind algorithms that achieve a utilization bound greater than zero. It also
presents results that we will use, in particular (i) lemmas expressing inequal-
ities, (ii) a lemma from previous research on the amount of execution performed
and (iii) a new schedulability test. Section 3 presents the new algorithm SM-
US(2/(3+

√
5)) and proves its utilization bound using the schedulability test in

Section 2. Conclusions are given in Section 4.

2 Background

2.1 Understanding Global Static-Priority Scheduling

The inventor of RM observed [14] that

Few of the results obtained for a single processor generalize directly to
the multiple processor case; bringing in additional processors adds a new
dimension to the scheduling problem. The simple fact that a task can
use only one processor even when several processors are free at the same
time adds a surprising amount of difficulty to the scheduling of multiple
processors.

Example 1 gives a good illustration of this.

Example 1. [From [6]]. Consider a task set with n=m+1 tasks to be scheduled on
m processors. The tasks are characterized as ∀i ∈ {1, 2, . . . , m} : Ti = 1, Ci = 2ε
and Tm+1 = 1 + ε, Cm+1 = 1. If we assign priorities according to RM then τm+1
is given the lowest priority and when all tasks arrive simultaneously then τm+1
misses a deadline. Letting ε → 0 and m → ∞ gives us a task set with Us → 0
and it misses a deadline.

Based on Example 1, one can see that better performance can be achieved by giv-
ing high priority to tasks with high Ci

Ti
. And in fact this is what the algorithms,

RM-US(m/(3m − 2)) [11] and RM-US(x) [12] do. The algorithm RM-US(x)
[12] computes the value of x and its utilization bound is x. The value of x de-
pends on the number of processors; it is given as (1-y)/(m · (1+y))+ln(1+y)=(1-
y)/(1+y)=x. Solving it for m → ∞ gives us that y=0.454 and x=0.375. One
can see that m → ∞ gives us the least value of x. Hence the utilization bound
of RM-US(0.375) is 0.375. And there is no other choice of x which gives a higher
utilization bound. Example 2 illustrates this.
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Fig. 1. An example of a task set where RM-US(0.375) performs poorly. All tasks arrive
at time 0. Tasks τ1, τ2,. . ., τm are assigned the highest priority and execute on the m
processors during [0,δ). Then the tasks τm+1, τm+2,. . ., τ2m execute on the m processors
during [δ,2δ). The other groups of tasks execute in analogous manner. Task τn executes
then until time 1. Then the groups of tasks arrive again. The task set meets its deadlines
but an arbitrarily small increase in execution times causes a deadline miss.

Example 2. [Partially taken from [12]]. Figure 1 illustrates the example. Consider
n = m ·q+1 tasks to be scheduled on m processors, where q is a positive integer.
The task τn is characterized by Tn = 1+y and Cn = 1−y. The tasks with index
i ∈ {1, 2, . . . , n − 1} are organized into groups, where each group comprises m
tasks. One group is the tasks with index i ∈ {1, 2, . . . , m}. Another group is
the tasks with index i ∈ {m + 1, m + 2, . . . , 2 · · ·m} and so on. The r:th group
comprises the tasks with index i ∈ {r · m + 1, r · m + 2, . . . , r · m + m}. All
tasks belonging to the same group have the same Ti and Ci. Clearly there are
q groups. The tasks in the r:th group have the parameters Ti = 1 + r · δ and
Ci = δ, where δ is selected as y = q · δ. Hence, specifying m and y gives us the
task set. By letting y = 0.454 and m → ∞ we have a task set that where all
tasks are light. The resulting task set is depicted in Figure 1. Also, all tasks meet
their deadlines but an arbitrarily small increase in execution time of τn causes
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it to miss a deadline. That is, RM-US(0.375) misses a deadline at a utilization
just slightly higher than 0.375.

One can see that if the light tasks in Example 2 would have been assigned
priorities such that Tj − Cj < Ti − Ci implies that τj has higher priority than
τi then deadlines would have been met. In fact, we will use this idea when we
design the new algorithm in Section 3.

2.2 Results We Will Use

Lemma 1-4 state four simple inequalities that we will find useful; their proofs
are available in the Appendix.

Lemma 1. Let m denote a positive integer. Consider ui to be a real number
such that 0 ≤ ui < 2

3+
√

5
and consider S to denote a set of non-negative real

numbers uj such that

(
∑
j∈S

uj) + ui ≤
2

3 +
√

5
· m (1)

then it follows that
1
m

· (
∑
j∈S

(2 − ui) · uj) + ui ≤ 1 (2)

Lemma 2. Consider two non-negative real numbers uj and ui such that 0 ≤
uj < 1 and 0 ≤ ui < 1. For those numbers, it holds that:

uj · 1 − ui

1 − uj
+ (1 − uj · 1 − ui

1 − uj
) · uj ≤ (2 − ui) · uj (3)

Lemma 3. Consider two non-negative real numbers uj and ui such that 0 ≤
uj < 1 and 0 ≤ ui < 1. And two non-negative real numbers Tj and Ti such that

Tj · (1 − uj) ≤ Ti · (1 − ui) (4)

For those numbers, it holds that:

uj · Tj

Ti
+ (1 − uj · Tj

Ti
) · uj ≤ uj · 1 − ui

1 − uj
+ (1 − uj · 1 − ui

1 − uj
) (5)

Lemma 4. Consider two integers Tj and Cj such that 0 ≤ Cj ≤ Tj. For every
t > 0 it holds that:

� t

Tj
� · Cj + min(t − � t

Tj
� · Tj, Cj) ≤ Cj + (t − Cj) ·

Cj

Tj
(6)

Predictable scheduling. Ha and Liu [15] have studied real-time scheduling of
jobs on a multiprocessor; a job is characterized by its arrival time, its deadline,
its minimum execution time and its maximum execution time. The execution
time of a job is unknown but it is no less than its minimum execution time and
no greater than its maximum execution time. A scheduling algorithm A is said
to be predictable if for every set J of jobs it holds that:
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Scheduling all jobs by A with execution times equal to their maximum
execution times causes deadlines to be met. ⇒ Scheduling all jobs by A
with execution times being at least their minimum execution times and
at most their maximum execution times causes deadlines to be met.

Intuitively, the notion of predictability means that we only need to analyze the
case when all jobs execute according to their maximum execution time. Ha and
Liu also found that global static priority scheduling of jobs on a multiprocessor
is predictable. Our paper deals with tasks that generate jobs with a certain
constraint (given by the minimum inter-arrival time, Ti). But since our model
is a special case of the model used by Ha and Liu, it also follows that global
static-priority scheduling with our model is predictable as well.

The notion of active. We let active( t, τi) be true if at time t, there is a
job of τi which has arrived no later than t and has a deadline no earlier than
t; otherwise active( t, τi) is false. Observe that a task τi may release a job and
at time t this job has no remaining execution but its deadline is greater than t.
Because of our notion active, this task τi is active at time t. Note that with our
notion of active, a periodically arriving task is active all the time after its first
arrival. Because we study sporadically arriving tasks, there may be moments
when a task is not active though. The notion of gap measures that.

The notion of gap. We let gap( [t0,t1), τi) denote the amount of time during
[t0,t1) where active( t, τi) is false.

Optimal algorithm. Consider a task τi and a time interval of duration ε such
that the task τi is active during the entire time interval. Let OPT denote an
algorithm which executes task τi for (Ci/Ti) ·ε time unit during the time interval
of duration ε, where ε is arbitrarily small.

Work-conserving. We say that a scheduling algorithm is work-conserving if it
holds for every t that: if there are at least k tasks with unfinished execution at
time t then at least k processors are busy at time t. In particular, we note that
global static-priority scheduling is work-conversing.

Execution. Let t0 denote a time such that no tasks have arrived before t0.
Let W( A, τ , [t0,t1)) denote the amount of execution performed by tasks in
τ during [t0,t1) when scheduled by algorithm A. Philips et al. [16] studied the
amount of execution performed by a work-conserving algorithm. They found
that the amount of execution in a time interval performed by work-conserving
algorithm is at least as much as the amount of execution performed by any other
algorithm assuming that the work-conserving algorithm is given processors that
are (2m − 1)/m times faster. Previous research [11] in real-time computing has
used this result by comparing the amount of execution performed by global
static-priority scheduling against the algorithm OPT but that work considered
only the model of periodically arriving tasks. That result can be extended in a
straightforward manner to the model we use in this paper (the sporadic model)
though, as expressed by Lemma 5.
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Lemma 5. Let G denote an algorithm with global static-priority scheduling. If

∀j :
Cj

Tj
≤ m

2m − 1
(7)

and ∑
τj∈τ

Cj

Tj
≤ m

2m − 1
· m (8)

then
W (G, τ, [t0, t1)) ≥

∑
τj∈τ

(t1 − t0 − gap([t0, t1], τj)) ·
Cj

Tj
(9)

Proof. From Equation 7 and Equation 8 it follows that the task set τ can be
scheduled to meet deadlines by OPT on a multiprocessor with m processors of
speed m/(2m − 1). The amount of execution during [t0,t1) is then given by the
right-hand side of Equation 9. And the result by Philips et al gives us that also
algorithm G performs as much execution during [t0,t1). Hence Equation 9 is true
and it gives us that the lemma is true.

Schedulability analysis. Let t0 denote a time such that no tasks arrive before
t0. Let us consider a time interval that begins at time t0; let [t0, t2) denote this
time interval. We obtain that the amount of execution performed by the task
set τ during [t0, t2) is at most: ∑

τj∈hp(i)

(
� t2 − t0 − gap([t0, t2), τj)

Tj
� · Cj +

min(t2 − t0 − gap([t0, t2), τj) − � t2 − t0 − gap([t0, t2), τj)
Tj

� · Tj , Cj)
)

(10)

From Lemma 5 we obtain that the amount of execution performed by the task
set τ during [t0, t1) is at least:∑

τj∈hp(i)

(t1 − t0 − gap([t0, t1], τj)) ·
Cj

Tj
(11)

Let us consider the case that a deadline was missed. Let us consider the earliest
time when a deadline was missed. Let t1 denote the arrival time of the job that
missed this deadline and let τi denote the task that generated this job. Let hp(i)
denote the set of tasks with higher priority than τi. Let t2 denote the deadline
that was missed; that is, t2=t1+Ti. Applying Equation 8 and Equation 9 on
hp(i) gives us that the amount of execution by hp(i) during [t1,t2) is at most:∑

τj∈hp(i)

(
� t2 − t0 − gap([t0, t2), τj)

Tj
� · Cj +

min(t2 − t0 − gap([t0, t2), τj) − � t2 − t0 − gap([t0, t2), τj)
Tj

� · Tj , Cj)
)

−
∑

τj∈hp(i)

(t1 − t0 − gap([t0, t1], τj)) ·
Cj

Tj
(12)
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Using t2 = t1 + Ti and rewriting gives us that the amount of execution by
hp(i) during [t1,t2) is at most:∑

τj∈hp(i)

(
�Ti + t1 − t0 − gap([t0, t1), τj) − gap([t1, t2), τj)

Tj
� · Cj +

min(Ti + t1 − t0 − gap([t0, t1), τj) − gap([t1, t2), τj) −

�Ti + t1 − t0 − gap([t0, t1), τj) − gap([t1, t2), τj)
Tj

� · Tj, Cj)
)

−
∑

τj∈hp(i)

(t1 − t0 − gap([t0, t1], τj)) ·
Cj

Tj

(13)

Applying Lemma 4 on Equation 13 gives us that the amount of execution by
hp(i) during [t1,t2) is at most:∑

τj∈hp(i)

(
Cj + (Ti + t1 − t0 − gap([t0, t1), τj) − gap([t1, t2), τj) − Cj) ·

Cj

Tj

)
−
∑

τj∈hp(i)

(t1 − t0 − gap([t0, t1], τj)) ·
Cj

Tj

(14)

Simplifying Equation 14 gives us that the amount of execution by hp(i) during
[t1,t2) is at most:∑

τj∈hp(i)

(
Cj + (Ti − gap([t1, t2), τj) − Cj) ·

Cj

Tj

)
(15)

Relaxing gives that the amount of execution by tasks in hp(i) during [t1,t2)
is at most: ∑

τj∈hp(i)

(
Cj + (Ti − Cj) ·

Cj

Tj

)
(16)

From Equation 16 it follows that the amount of time during during [t1,t2)
where all processors are busy executing tasks in hp(i) is at most:

1
m

·
∑

τj∈hp(i)

(
Cj + (Ti − Cj) ·

Cj

Tj

)
(17)

Lemma 6. Consider global static-priority scheduling. Consider a task τi. If all
tasks in hp(i) meet their deadlines and

∀j ∈ hp(i) :
Cj

Tj
≤ m

2m − 1
(18)
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and
Ci

Ti
≤ m

2m − 1
· m (19)

and ( ∑
τj∈hp(i)

Cj

Tj

)
+

Ci

Ti
≤ m

2m − 1
· m (20)

and
1
m

·
( ∑

τj∈hp(i)

(
Cj + (Ti − Cj) ·

Cj

Tj

))
+ Ci ≤ Ti (21)

then all deadline of τi are met.

Proof. Follows from the discussion above.

3 The New Algorithm

Section 3.1 presents Slack-monotonic (SM) scheduling and analyzes its perfor-
mance for restricted task sets (called light tasks). This restriction is then removed
in Section 3.2; the new algorithm is presented and its utilization bound is proven.

3.1 Light Tasks

We say that a task τi is light if Ci

Ti
≤ 2

3+
√

5
. We let Slack-Monotonic (SM) denote

a priority assignment scheme which assigns priorities such that task τj is assigned
higher priority than task τi if Tj − Cj < Ti − Ci.

Lemma 7. Consider global static-priority scheduling with SM. Consider a task
i. If all tasks in hp(i) meet their deadlines and

∀j ∈ hp(i) :
Cj

Tj
≤ 2

3 +
√

5
(22)

and
Ci

Ti
≤ 2

3 +
√

5
(23)

and
(
∑

τj∈hp(i)

Cj

Tj
) +

Ci

Ti
≤ 2

3 +
√

5
· m (24)

then all deadline of τi are met.

Proof. The Inequalities 22,23 and 24 imply that Inequalities 18,19 and 20 are
true. Applying Lemma 1 on Inequalities 24 gives us:

1
m

· (
∑

j∈hp(i)

(2 − Ci

Ti
) · Cj

Tj
) +

Ci

Ti
≤ 1 (25)
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Applying Lemma 2 on Inequalities 25 gives us:

1
m

·
( ∑

j∈hp(i)

(Cj

Tj
·
1 − Ci

Ti

1 − Cj

Tj

+ (1 − Cj

Tj
·
1 − Ci

Ti

1 − Cj

Tj

) · Cj

Tj

))
+

Ci

Ti
≤ 1 (26)

From the fact that SM is used we obtain that

∀j ∈ hp(i) : Tj − Cj < Ti − Ci (27)

Considering Inequality 26 and Inequality 27 and Lemma 3 gives us:

1
m

·
( ∑

j∈hp(i)

(Cj

Tj
· Tj

Ti
+ (1 − Cj

Tj
· Tj

Ti
) · Cj

Tj

))
+

Ci

Ti
≤ 1 (28)

Multiplying both the left-hand side and the right-hand side of Inequality 28
by Ti and rewriting yields:

1
m

·
( ∑

j∈hp(i)

(
Cj + (Ti − Cj) ·

Cj

Tj

))
+ Ci ≤ Ti (29)

Using Inequality 29 and Lemma 6 gives us that all deadline of τi are met.
This states the lemma.

Lemma 8. Consider global static-priority scheduling with SM. If it holds for
the task set that

∀τj ∈ τ :
Cj

Tj
≤ 2

3 +
√

5
(30)

and ∑
τj∈τ

Cj

Tj
≤ 2

3 +
√

5
· m (31)

then all deadline of τi are met.

Proof. Follows from Lemma 7.

3.2 Light and Heavy Tasks

We say that a task is heavy if it is not light. We let the algorithm SM-US(2/(3+√
5)) denote a priority assignment scheme which assigns the highest priority to

heavy tasks and assigns a lower priority to light tasks; the priority order between
light tasks is given by SM.

Theorem 1. Consider global static-priority scheduling with SM-US(2/
(3 +

√
5)). If it holds for the task set that

∀τj ∈ τ :
Cj

Tj
≤ 1 (32)
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and ∑
τj∈τ

Cj

Tj
≤ 2

3 +
√

5
· m (33)

then all deadlines are met.

Proof. The proof is by contradiction. If the lemma was false then it follows that
there is a task set such that Inequality 32 and Inequality 33 are true and when
this task set was scheduled by SM-US(2/(3 +

√
5)) a deadline was missed. Let

τfailed failed denote this task set and let m denote the number of processors.
Let k denote the number of heavy tasks. Because of Inequality 33 it follows that
k ≤ m. Also, because of Lemma 8 is follows that k ≥ 1.

Let τfailed2 denote a set which is constructed from τfailed as follows. For
every light task in τfailed there is a light task in τfailed2 and their Ti and Ci are
the same. For every heavy task in τfailed there is a heavy task in τfailed2 and
its Ti is the same. For the heavy tasks in τfailed2 it holds that Ci = Ti. From
Inequality 33 it follows that∑

τj∈light(τfailed)

Cj

Tj
≤ 2

3 +
√

5
· (m − k) (34)

where light(τfailed) denotes the set of light tasks in τfailed. Since the light tasks
are the same in τfailed and τfailed2 it clearly follows that∑

τj∈light(τfailed2)

Cj

Tj
≤ 2

3 +
√

5
· (m − k) (35)

If the task set τfailed2 would meet all deadlines when scheduled by SM-
US(2/(3 +

√
5)) then it would follow (from the fact that global static-priority

scheduling is predictable) that all deadlines would have been met when τfailed

was scheduled by SM-US(2/(3 +
√

5)). Hence it follows that at least one dead-
line was missed by τfailed2. And since there are at most k ≤ m − 1 heavy tasks
it follows that no deadline miss occurs for the heavy tasks. Hence it must have
been that a deadline miss occurred from a light task in τfailed2. But the schedul-
ing of the light tasks in τfailed2 is identical to what is would have been if we
deleted the heavy tasks in τfailed2 and deleted the k processors. That is, we
have that scheduling the light tasks on m − k processor causes a deadline miss.
But Inequality 35 and Lemma 8 gives that no deadline miss occurs. This is a
contradiction. Hence the theorem is correct.

4 Conclusions

We have presented a new priority-assignment scheme, SM-US(2/(3 +
√

5)), for
global static-priority multiprocessor scheduling and proven that its utilization
bound is 2/(3 +

√
5, which is approximately, 0.382. We left open the question

whether it is possible to achieve a utilization bound of
√

2−1 with global static-
priority scheduling.
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Appendix

Lemma 1. Let m denote a positive integer. Consider ui to be a real number
such that 0 ≤ ui < 2

3+
√

5
and consider S to denote a set of non-negative real

numbers uj such that

(
∑
j∈S

uj) + ui ≤
2

3 +
√

5
· m (36)

then it follows that
1
m

· (
∑
j∈S

(2 − ui) · uj) + ui ≤ 1 (37)

Proof. Let us define f as:

f = (2 − ui) ·
2

3 +
√

5
· m + m · ui − m − ui +

2
3 +

√
5

(38)

We have:
∂f

∂ui
= − 2

3 +
√

5
· m + m − 1 > 0 (39)

From Inequality 39 and the constraint ui ≤ 2
3+

√
5

we obtain that f is no
greater than f for the value ui = 2

3+
√

5
. And we have f(ui = 2

3+
√

5
) = 0. This

gives us:

f ≤ (2 − ui) ·
2

3 +
√

5
· m + m · ui − m − ui +

2
3 +

√
5

≤ 0 (40)

Applying Inequality 40 to Inequality 36 and rewriting yields:

(2 − ui) ·
(
(
∑
j∈S

uj) + ui

)
+ m · ui − ui +

2
3 +

√
5

≤ m (41)

Rearranging terms in Inequality 41 gives us:

1
m

·
(∑

j∈S

(2 − ui) · uj

)
+ ui +

(2 − ui) · ui − ui + 2
3+

√
5

m
≤ 1 (42)

Recall that ui ≤ 2
3+

√
5
. Clearly this gives us 2−ui ≥ 1. And hence the last term

in the left-hand side of Inequality 42 is non-negative. This gives us:

1
m

·
(∑

j∈S

(2 − ui) · uj

)
+ ui ≤ 1 (43)

And this states the lemma. Hence the lemma is correct.

Lemma 2. Consider two non-negative real numbers uj and ui such that 0 ≤
uj < 1 and 0 ≤ ui < 1. For those numbers, it holds that:

uj · 1 − ui

1 − uj
+ (1 − uj · 1 − ui

1 − uj
) · uj ≤ (2 − ui) · uj (44)
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Proof. The proof is by contradiction. Suppose that the lemma is false. Then we
have:

uj · 1 − ui

1 − uj
+ (1 − uj · 1 − ui

1 − uj
) · uj > (2 − ui) · uj (45)

Let us explore the following cases.

1. ui = 0 and uj = 0
Applying this case on Inequality 45 gives us:

0 > 0 (46)

which is a contradiction. (end of Case 1)
2. ui = 0 and uj > 0

Applying this case on Inequality 45 gives us:

uj · 1
1 − uj

+ (1 − uj · 1
1 − uj

) · uj > 2 · uj (47)

Since uj > 0 we can divide Inequality 47 by uj and this gives us:

1
1 − uj

+ 1 − uj · 1
1 − uj

> 2 (48)

Rewriting Inequality 48 yields:

1
1 − uj

· (1 − uj) > 1 (49)

which is a contradiction. (end of Case 2)
3. ui > 0 and uj = 0

Applying this case on Inequality 45 gives us:

0 > 0 (50)

which is a contradiction. (end of Case 3)
4. ui > 0 and uj > 0

Since uj > 0 we can divide Inequality 45 by uj and this gives us:

1 − ui

1 − uj
+ (1 − uj · 1 − ui

1 − uj
) > 2 − ui (51)

Rewriting Inequality 51 yields:

1 − ui

1 − uj
− uj · 1 − ui

1 − uj
> 1 − ui (52)

Further rewriting yields:

1
1 − uj

− uj · 1
1 − uj

> 1 (53)

Further rewriting yields:
1 > 1 (54)

which is a contradiction. (end of Case 4)

Since a contradiction occurs for every case we obtain that the lemma is false.
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Lemma 3. Consider two non-negative real numbers uj and ui such that 0 ≤
uj < 1 and 0 ≤ ui < 1. And two non-negative real numbers Tj and Ti such that

Tj · (1 − uj) ≤ Ti · (1 − ui) (55)

For those numbers, it holds that:

uj · Tj

Ti
+ (1 − uj · Tj

Ti
) · uj ≤ uj · 1 − ui

1 − uj
+ (1 − uj · 1 − ui

1 − uj
) (56)

Proof. Rewriting Inequality 55 yields:

∀j ∈ hp(i) :
Tj

Ti
≤ 1 − ui

1 − uj
(57)

Let qi,j denote the left-hand side of Inequality 57. There are two occurrences
qi,j in the left-hand side of Inequality 56. Also observe that the left-hand side
of Inequality 56 is increasing with increasing qi,j . For this reason, combining
Inequality 57 and the left-hand side of inequality 56 gives us that the lemma is
true.

Lemma 4. Consider two integers Tj and Cj such that 0 ≤ Cj ≤ Tj. For every
t > 0 it holds that:

� t

Tj
� · Cj + min(t − � t

Tj
� · Tj, Cj) ≤ Cj + (t − Cj) ·

Cj

Tj
(58)

Proof. The proof is by contradiction. Suppose that the lemma is false. Then
there is a t > 0 such that:

� t

Tj
� · Cj + min(t − � t

Tj
� · Tj, Cj) > Cj + (t − Cj) ·

Cj

Tj
(59)

Let us consider two cases:

1. t − �t/Tj� · Tj ≤ Cj

Let ∆ be defined as: ∆ = Ci − (t − � t
Tj

� · Tj). Let us increase t by ∆. Then
the left-hand side of Inequality 59 increases by ∆ and the right-hand side
increases by (Cj/Tj) · ∆. Since Cj/Tj ≤ 1 it follows that Inequality 59 still
true. That is:

� t

Tj
� · Cj + min(t − � t

Tj
� · Tj , Cj) > Cj + (t − Cj) ·

Cj

Tj
(60)

Repeating this argument gives us that t − �t/Tj� · Tj = Cj . Applying it on
Inequality 60 yields:

t − Cj

Tj
· Cj + Cj > Cj + (t − Cj) ·

Cj

Tj
(61)

Rewriting Inequality 61 gives us:

(t − Cj) > (t − Cj) (62)

which is impossible. (end of Case 1)



88 B. Andersson

2. t − �t/Tj� · Tj ≥ Cj

Let ∆ be defined as: ∆ = (t − � t
Tj

� · Tj) − Cj . Let us decrease t by ∆.
Then the left-hand side of Inequality 59 is unchanged and the right-hand
side decreases by (Cj/Tj) · ∆. Since 0 ≤ Cj/Tj it follows that Inequality 59
still true. That is:

� t

Tj
� · Cj + min(t − � t

Tj
� · Tj , Cj) > Cj + (t − Cj) ·

Cj

Tj
(63)

Repeating this argument gives us that t − �t/Tj� · Tj = Cj . Applying it on
Inequality 63 and applying similar rewriting as in Inequality 61 and Inequal-
ity 62 yields:

(t − Cj) > (t − Cj) (64)

which is impossible. (end of Case 2)

We can see that regardless of which case occurs a contradiction occurs and
hence the lemma is correct.
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Abstract. The scheduling of sporadic task systems upon uniform multi-
processor platforms using global Deadline Monotonic algorithm is stud-
ied. A sufficient schedulability test is presented and proved correct. It
is shown that this test offers non-trivial quantitative guarantees, in the
form of a processor speedup bound.

1 Introduction

A multiprocessor computer platform is comprised of several processors. A plat-
form in which all the processors have the same capabilities is referred to as an
identical multiprocessor, while those in which different processors have different
capabilities are called heterogeneous multiprocessors. Heterogeneous multipro-
cessors may be further classified into uniform and unrelated multiprocessors.
The only difference between the different processors in a uniform multiprocessor
is the rate at which they can execute work: each processor is characterized by a
speed or computing capacity parameter s, and any job executing on the processor
for t time units completes t× s units of execution. In unrelated multiprocessors,
on the other hand, the amount of execution completed by a particular job exe-
cuting on a given processor depends upon the identities of both the job and the
processor.

A real-time system is often modeled as a finite collection of independent recur-
rent tasks, each of which generates a potentially infinite sequence of jobs. Every
job is characterized by an arrival time, an execution requirement, and a deadline,
and it is required that a job completes execution between its arrival time and its
deadline. Different formal models for recurring tasks place different restrictions
on the values of the parameters of jobs generated by each task. One of the more
commonly used formal models is the sporadic task model [1, 2]. Each recurrent
task τi in this model is characterized by three parameters: τi = (Ci, Di, Ti),
with the interpretation that τi may generate an infinite sequence of jobs with
successive jobs arriving at least Ti time units apart, each with an execution
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requirement at most Ci and a deadline Di time units after its arrival time. A
sporadic task system τ is comprised of a finite collection of such sporadic tasks.
Sporadic task systems in which each task is required to have its relative deadline
and period parameters the same (Di = Ti for all i) are called implicit-deadline
task systems, and ones in which each task is required to have its relative deadline
be no larger than its period parameter (Di ≤ Ti for all i) are called constrained-
deadline task systems. A task system that is not constrained-deadline is said to
be an arbitrary-deadline task system.

Several results have been obtained over the past decade, concerning the
scheduling of implicit-deadline systems on identical [3,4,5,6,7,8,9] and on uni-
form [10,11,12,13,14,15,16,17] multiprocessors, of constrained-deadline systems
on identical multiprocessors [18, 19, 20, 21, 22, 23, 24], and of arbitrary-deadline
systems on identical multiprocessors, [25, 26]. This paper seeks to extend this
body of work, by addressing the scheduling of constrained and arbitrary-deadline
sporadic task systems upon uniform multiprocessors. We assume that the plat-
form is fully preemptive — an executing job may be interrupted at any instant in
time and have its execution resumed later with no cost or penalty. We study the
behavior of the well-known and very widely-used Deadline Monotonic scheduling
algorithm [27] when scheduling systems of sporadic tasks upon such preemptive
platforms. We will refer to Deadline Monotonic scheduling with global inter-
processor migration as global dm (or simply dm).

Contributions. We obtain a new test – to our knowledge, this is the first such
tests – for determining whether a given constrained or arbitrary-deadline spo-
radic task system is guaranteed to meet all deadlines upon a specified uniform
multiprocessor platform, when scheduled using dm. This test is derived by ap-
plying techniques that have previously been used for the schedulability analysis
of constrained-deadline task systems on uniform multiprocessors when scheduled
using edf [28] and by integrating techniques used for schedulability analysis of
sporadic arbitrary-deadline systems on identical multiprocessors using dm [25].

Organization. The remainder of this paper is organized as follows. In Sect. 2
we formally define the sporadic task model and uniform multiprocessor plat-
forms, and provide some additional useful definitions, notation, and terminology
concerning sporadic tasks and uniform multiprocessors. We also provide a spec-
ification of the behavior of global dm is to be implemented upon uniform mul-
tiprocessors. In Sect. 3 we derive, and prove the correctness of, a schedulability
test for determining whether a given sporadic task system is dm-schedulable on a
specified uniform multiprocessor platform. In Sect. 4 we provide a quantitative
characterization of the efficacy of this new schedulability test in terms of the
resource augmentation metric.

2 Task and Platform Model

§1. Sporadic task systems. A sporadic task τi = (Ci, Di, Ti) is characterized by
a worst-case execution requirement Ci, a (relative) deadline Di, and a minimum
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inter-arrival separation parameter Ti, also referred to as the period of the task.
Such a sporadic task generates a potentially infinite (legal) sequence of jobs,
with successive job-arrivals separated by at least Ti time units. Each job has a
worst-case execution requirement equal to Ci and a deadline that occurs Di time
units after its arrival time. We refer to the interval, of size Di, between such a
job’s arrival instant and deadline as its scheduling window. We assume a fully
preemptive execution model: any executing job may be interrupted at any instant
in time, and its execution resumed later with no cost or penalty. A sporadic task
system is comprised of a finite number of such sporadic tasks. Let τ denote a
system of such sporadic tasks: τ = {τ1, τ2, . . . τn}, with τi = (Ci, Di, Ti) for all i,
1 ≤ i ≤ n. Without loss of generality, we assume that tasks are indexed in non-
increasing order of their relative deadline parameters: Di ≤ Di+1(∀ i ∈ [1, n−1]).

We find it convenient to define some properties and parameters for individual
sporadic tasks, and for sporadic task systems.

Utilization: The utilization ui of a task τi is the ratio Ci/Ti of its execution
requirement to its period. The total utilization usum(τ) and the largest uti-
lization umax(τ) of a task system τ are defined as follows:

usum(τ) def=
∑
τi∈τ

ui; umax(τ) def= max
τi∈τ

(ui) .

Density: The density δi of a task τi is the ratio (Ci/ min(Di, Ti)) of its execution
requirement to the smaller of its relative deadline and its period. The total
density δsum(τ) of a task system τ is defined as follows:

δsum(τ) def=
∑
τi∈τ

δi .

For each k, 1 ≤ k ≤ n, δmax(k) denotes the largest density from among the
tasks τ1, τ2, . . . , τk:

δmax(k) def=
k

max
i=1

(δi) .

DBF: For any interval length t, the demand bound function dbf(τi, t) of a
sporadic task τi bounds the maximum cumulative execution requirement by
jobs of τi that both arrive in, and have deadlines within, any interval of
length t. It has been shown [2] that

dbf(τi, t) = max
(

0, (
⌊

t − Di

Ti

⌋
+ 1)Ci

)
.

Load: A load parameter, based upon the dbf function, may be defined for any
sporadic task system τ as follows:

load(k) def= max
t>0

(∑k
i=1 dbf(τi, t)

t

)
.
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Computing dbf (and thereby, load) will turn out to be a critical component
of the schedulability analysis test proposed in this paper; hence, it is important
that dbf be efficiently computable if this schedulability test is to be efficiently
implementable as claimed. Fortunately, computing dbf is a well-studied subject,
and algorithms are known for computing dbf exactly [2, 29], or approximately
to any arbitrary degree of accuracy [30, 31, 32].

The following Lemma relates the density of a task to its dbf:

Lemma 1 ( [25]). For all tasks τi and for all t ≥ 0,

t× δi ≥ dbf(τi, t) . ��

In constrained task systems — those in which Di ≤ Ti ∀i — a job becomes eli-
gible to execute upon arrival, and remains eligible until it completes execution1.
In systems with Di > Ti for some tasks τi, we require that at most one job of
each task be eligible to execute at each time instant. We assume that jobs of
the same task are considered in first-come first-served order; hence, a job only
becomes eligible to execute after both these conditions are satisfied: (i) it has
arrived, and (ii) all previous jobs generated by the same task that generated it
have completed execution. This gives rise to the notion of an active task: briefly,
a task is active at some instant if it has some eligible job awaiting execution at
that instant. More formally,

Definition 1 (active task). A task is said to be active in a given schedule at
a time-instant t if some job of the task is eligible to execute at time-instant t.
That is, (i) t ≥ the greater of the job’s arrival time and the completion time of
the previous job of the same task, and (ii) the job has not completed execution
prior to time-instant t. ��

§2. Uniform multiprocessors. A uniform multiprocessor π = (s1, s2, . . . , sm) is
comprised of m > 1 processors, with the i’th processor characterized by speed or
computing capacity si. The interpretation is that a job executing on the i’th pro-
cessor for a duration of t units of time completes t×si units of execution. Without
loss of generality, we assume that the speeds are specified in non-increasing order:
si ≥ si+1 for all i. We will also use the following notation:

Si(π) def=
i∑

j=1

sj . (1)

That is, Si(π) denotes the sum of the computing capacities of the i fastest
processors in π (and Sm(π) hence denotes the total computing capacity of π).

An additional parameter that turns out to be useful in describing the prop-
erties of a uniform multiprocessor is the “lambda” parameter [12, 10]:

λ(π) def=
m

max
i=1

∑m
j=i+1 sj

si
. (2)

1 Or its deadline has elapsed, in which case the system is deemed to have failed.
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Fig. 1. Notation. A job of task τk arrives at ta. Task τk is not active immediately prior
to ta, and is continually active over [ta, td).

This parameter ranges in value between 0 and (m−1) for an m-processor uniform
multiprocessor platform, with a value of (m−1) corresponding to the degenerate
case when all the processors are of the same speed (i.e., the platform is an
identical multiprocessor).

§3. Deadline Monotonic scheduling. Priority-driven scheduling algorithms oper-
ate on uniform multiprocessors as follows: at each instant in time they assign
a priority to each job that is awaiting execution, and favor for execution the
jobs with the greatest priorities. Specifically, (i) no processor is idled while there
is an active job awaiting execution; (ii) when there are fewer active jobs than
processors, the jobs execute on the fastest processors and the slowest ones are
idled; and (iii) greater-priority jobs execute on the faster processors. The Dead-
line Monotonic (dm) scheduling algorithm [33] is a priority-driven scheduling
algorithm that assigns priority to tasks according to their (relative) deadlines:
the smaller the deadline, the greater the priority.

With respect to a specified platform, a given sporadic task system is said to
be feasible if there exists a schedule meeting all deadlines for every collection of
jobs that may be generated by the task system. A given sporadic task system is
said to be (global) dm schedulable if dm meets all deadlines for every collection
of jobs that may be generated by the task system.

3 A dm Schedulability Test for Sporadic Task Systems

We now derive (Theorem 1) a sufficient condition for determining whether a
sporadic task system τ is dm-schedulable upon a specified uniform multiproces-
sor platform π. This sufficient schedulability condition is in terms of the load
and maximum density parameters — the load(k)’s and the δmax(k)’s defined
above — of the task system, and the total computing capacity and the lambda
parameter — Sm(π) and λ(π) defined above — of the platform.

Our strategy for deriving, and proving the correctness of, our sufficient schedu-
lability condition is the following: for any legal sequence of job requests of task
system τ , on which dm misses a deadline we obtain a necessary condition for
that deadline miss to occur by bounding from above the total amount of execu-
tion that the dm schedule needs (but fails) to execute before the deadline miss.
Negating this condition yields a sufficient condition for global-dm schedulability.
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Consider any legal sequence of job requests of task system τ , on which dm

misses a deadline. Suppose that a job of task τk is the one to first miss a deadline,
and that this deadline miss occurs at time-instant td (see Fig. 1).

Discard from the legal sequence of job requests all jobs of tasks with priority
lower than τk’s, and consider the dm schedule of the remaining (legal) sequence
of job requests. Since lower-priority jobs have no effect on the scheduling of
greater-priority ones under preemptive dm, it follows that a deadline miss of τk

occurs at time-instant td (and this is the earliest deadline miss), in this new dm

schedule. We will focus henceforth on this new dm schedule.
Let ta denote the earliest time-instant prior to td, such that τk is continuously

active2 over the interval [ta, td]. It must be the case that ta is the arrival time of
some job of τk since τk is, by definition, not active just prior to ta and becomes
active at ta.

It must also be the case that ta ≤ td − Dk. This follows from the observation
that the job of τk that misses its deadline at td arrives at td − Dk. If Dk < Tk,
then ta is equal to this arrival time of the job of τi that misses its deadline at
td. If Dk ≥ Tk, however, tk may be the arrival-time of an earlier job of τk. Let
D def= td − ta.

Let C denote the cumulative execution requirement of all jobs of τk that arrive
≥ ta, and have deadline ≤ td. By definition of dbf and Lemma 1, we have

C ≤ dbf(τk, td − ta) ≤ δk × (td − ta) . (3)

We introduce some notation now. For any time-instant t ≤ td,

– let W (t) denote the cumulative execution requirement of all the jobs in
this legal sequence of job requests, minus the total amount of execution
completed by the dm schedule prior to time-instant t.

– Let Ω(t) denote W (t) normalized by the interval-length: Ω(t) def= W (t)/(td −
t).

– let I� denote the total duration over [ta, td) for which exactly 
 processors
are busy in this dm schedule, 0 ≤ 
 ≤ m. (We note that Io is necessarily
zero, since τk’s job does not complete by its deadline.)

Observe that the amount of execution that τk’s jobs receive over [ta, td) is
at least

∑m−1
�=1 s�I�, since τk’s jobs must be executing at any time-instant when

some processor is idle; therefore

C >

m−1∑
�=1

s�I� , (4)

Since
[
Sm(π)·D−

∑m−1
�=1 (Sm(π)−S�(π))I�

]
denotes the total amount of execution

completed over [ta, td) and this is not enough for τk’s jobs to complete the
execution requirement C before td, we have the following relationship:

2 See Definition 1 to recall the definition of an active task.
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W (ta) > Sm(π)D −
m−1∑
�=1

(Sm(π) − S�(π))I�

= Sm(π)D −
m−1∑
�=1

Sm(π) − S�(π)
s�

s�I�

≥ Sm(π)D −
m−1∑
�=1

λ(π)s�I�

= Sm(π)D − λ(π)
m−1∑
�=1

s�I� . (5)

From (5) and (4) above, we conclude that

W (ta) > Sm(π)D − λ(π)C
≥ Sm(π)D − λ(π)δkD
≡ Ω(ta) > Sm(π) − λ(π)δk

⇒ Ω(ta) > Sm(π) − λ(π)δmax(k) .

Let
µk

def= Sm(π) − λ(π)δmax(k) (6)

—observe that the value of µk depends upon the parameters of both the task
system τ being scheduled, and the uniform multiprocessor π = (s1, s2, . . . , sm)
upon which it is scheduled.

Let to denote the smallest value of t ≤ ta such that Ω(t) ≥ µk. Let ∆
def= td−to

(see Fig. 1).
By definition, W (to) denotes the amount of work that the dm schedule needs

(but fails) to execute over [to, td). This work in W (to) arises from two sources:
those jobs that arrived at or after to, and those that arrived prior to to but have
not completed execution in the dm schedule by time-instant to. We will refer to
jobs arriving prior to to that need execution over [to, td) as carry-in jobs.

We wish to obtain an upper bound on the total contribution of all the carry-in
jobs to the W (to) term. We achieve this in two steps: we first bound the number
of tasks that may have carry-in jobs (Lemma 2), and then we bound the amount
of work that all the carry-in jobs of any one such task may contribute to W (to)
(Lemma 3).

Lemma 2. The number of tasks that have carry-in jobs is strictly bounded from
above by

νk
def= max

{

 : S�(π) < µk

}
. (7)

Proof. Let ε denote an arbitrarily small positive number. By definition of the
instant to, Ω(to − ε) < µk while Ω(to) ≥ µk. It must therefore be the case
that strictly less than µk × ε work was executed over [to − ε, to); i.e., the total
computing capacity of all the busy processors over [to − ε, to) is < µk. And since
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�
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ti to

�
�

�

�

�

�

φi� �

Fig. 2. Example: defining ti for a task τi with Di ≥ Ti. Three jobs of τi are shown.
Task τi is not active prior to the arrival of the first of these 3 jobs, and the first job
completes execution only after the next job arrives. This second job does not complete
execution prior to to. Thus, the task is continuously active after the arrival of the first
job shown, and ti is hence set equal to the arrival time of this job.

µk < Sm(π) (as can be seen from (6) above), it follows that some processor was
idled over [to − ε, to), implying that all jobs active at this time would have been
executing. This allows us to conclude that there are strictly fewer than νk tasks
with carry-in jobs.

Lemma 3. The total remaining execution requirement of all the carry-in jobs
of each task τi (that has carry-in jobs at time-instant to) is < ∆ × δmax(k).

Proof. Let us consider some task τi (i < k) that has a carry-in job. Let ti < to
denote the earliest time-instant such that τi is active throughout the interval
[ti, to]. Observe that ti is necessarily the arrival time of some job of τi. If Di < Ti,
then ti is the arrival time of the (sole) carry-in job of τi. If Di ≥ Ti, however, ti
may be the arrival-time of a job that is not a carry-in job — see Fig. 2.

Let φi
def= to − ti (see Fig. 2). All the carry-in jobs of τi have their arrival-times

and their deadlines within the (φi + ∆)-sized interval [ti, td), and consequently
their cumulative execution requirement is ≤ dbf(τi, φi + ∆); in what follows,
we will quantify how much of this must have been completed prior to to (and
hence cannot contribute to the carry-in). We thus obtain an upper bound on the
total work that all the carry-in jobs of τi contribute to W (to), as the difference
between dbf(τi, φi +∆) and the amount of execution received by τi over [ti, to).

By definition of to, it must be the case that Ω(ti) < µk. That is,

W (ti) < µk(∆ + φi) . (8)

On the other hand, Ω(to) ≥ µk, meaning that

W (to) ≥ µk∆ . (9)

Let C′
i denote the amount of execution received by τi’s carry-in jobs over the

duration [ti, to); the difference dbf(τi, φi +∆)−C′
i thus denotes an upper bound

on the amount of carry-in execution. Let J� denote the total duration over [ti, to)
for which exactly 
 processors are busy in this dm schedule, 0 ≤ 
 ≤ m. Observe
that the amount of execution that τi’s carry-in jobs receive over [ti, to) is at least
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�=1 s�J� since τi’s job must be executing on one of the processors during any

instant when some processor is idle; therefore

C′
i ≥

m−1∑
�=1

s�J� . (10)

Since
[
Sm(π)φi −

∑m−1
�=1 J�(Sm(π) − S�(π))

]
denotes the total amount of exe-

cution completed over [ti, to), the difference
(
W (ti) − W (to)

)
— the amount of

execution completed over [ti, to) — is given by

W (ti) − W (to) = Sm(π)φi −
m−1∑
�=1

(Sm(π) − S�(π))J�

⇒ µk(∆ + φi) − µk∆ >

Sm(π)φi −
m−1∑
�=1

(Sm(π) − S�(π))J�

(By (8) and (9))

≡ µkφi > Sm(π)φi −
m−1∑
�=1

Sm(π) − S�(π)
s�

s�J�

≡ µkφi > Sm(π)φi −
m−1∑
�=1

λ(π)s�J�

≡ µkφi > Sm(π)φi − λ(π)
m−1∑
�=1

s�J�

≡ µkφi > Sm(π)φi − λ(π)C′
i .

Substituting for µk (Equation 6 above), we have

(Sm(π) − λ(π)δmax(k))φi > Sm(π)φi − λ(π)C′
i ≡ C′

i > δmax(k)φi . (11)

Inequality 11 is important – it tells us that task τi must have already com-
pleted a significant amount of its execution before time-instant to. More specifi-
cally, the remaining work of all carry-in jobs of τi contribute to W (to), is given
by

(dbf(τi, φi + ∆) − C′
i) < (φi + ∆)δi − φiδmax(k)

(from Lemma 1)
≤ (φi + ∆)δmax(k) − φiδmax(k)) = ∆δmax(k)

as claimed in this lemma.

Based upon Lemmas 2 and 3 we obtain our desired result —a sufficient schedu-
lability condition for global dm:
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Theorem 1. Sporadic task system τ is global-dm schedulable upon a platform
comprised of m uniform processors, provided that for all k, 1 ≤ k ≤ n,

2 · load(k) + νkδmax(k) ≤ µk , (12)

where µk and νk are as defined in (6) and 7 respectively.

Proof. The proof is by contradiction: we obtain necessary conditions for the
scenario above — when τk’s job misses its deadline at td – to occur. Negating
these conditions yields a sufficient condition for global-dm schedulability.

Let us bound the total amount of execution that contributes to W (to).

– First, there are the carry-in jobs: by Lemmas 3 and 2, there are at most
νk distinct tasks with carry-in jobs, with the total carry-in work for all the
jobs of each task bounded from above by ∆ δmax(k) units of work. Therefore
their total contribution to W (to) is bounded from above by νk∆ δmax(k).

– All other jobs that contribute to W (to) arrive within the ∆-sized interval
[to, td), and hence have their deadlines within [to, td + Dk), since their rel-
ative deadlines are all ≤ Dk. Their total execution requirement is therefore
bounded from above by (∆ + Dk) × load(k).

We consequently obtain the following bound on W (to):

W (to) < (∆ + Dk) × load(k) + νk∆δmax(k) . (13)

Since, by the definition of to, it is required that Ω(to) be at least as large as µk,
we must have (

1 +
Dk

∆

)
load(k) + νkδmax(k) > µk

as a necessary condition for dm to miss a deadline; equivalently, the negation of
this condition is sufficient to ensure dm-schedulability:(

1 +
Dk

∆

)
load(k) + νkδmax(k) ≤ µk

⇐ (since Dk ≤ ∆)

2 · load(k) + νkδmax(k) ≤ µk

which is as claimed in the theorem.

4 A Speedup Bound

In this section, we provide a quantitative evaluation of the effectiveness of the
sufficient schedulability condition of Theorem 1. There are several approaches
to quantifying the “goodness” or the effectiveness of different scheduling algo-
rithms and schedulability tests. One relatively recent novel approach is centered
on processor speedup bounds. A sufficient schedulability test is said to have a
processor speedup bound of c if
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– Any task system deemed schedulable by the test is guaranteed to actually
be so; and

– For any task system that is not deemed schedulable by the test, it is the case
that the task system is actually not schedulable upon a platform in which
each processor is 1

c times as fast.

Intuitively speaking, a processor speedup bound of c for a sufficient schedulability
test implies that the inexactness of the test penalizes its user by at most a
speedup factor of c when compared to an exact test. The smaller the processor
speedup bound, the better the sufficient schedulability test: a processor speedup
bound of 1 would mean that the test is in fact an exact one.

We introduce some notation now. For any uniform multiprocessor platform
π = (s1, s2, . . . , sm) and any positive real number x, let x ·π denote the uniform
multiprocessor platform comprised of the same number of processors as π, with
the i’th processor having a speed of si · x.

The following two lemmas relate dm-schedulability on a uniform multipro-
cessor platform π, as validated by the test of Theorem 1, with feasibility on
platform x · π.

Lemma 4. Any sporadic task system τ that is feasible upon a uniform multi-
processor platform x · π must satisfy

δmax(k) ≤ s1x and load(k) ≤ Sm(π)x (14)

for all k, 1 ≤ k ≤ n.

Proof. Suppose that task system τ is feasible upon x·π. To prove that δmax(k) ≤
xs1, consider each task τi separately:

– In order to be able to meet all deadlines of τi if τi generates jobs exactly Ti

time units apart, it is necessary that Ci/Ti ≤ xs1.
– Since any individual job of τi can receive at most Di×xs1 units of execution

by its deadline, we must have Ci ≤ Di × x × s1; i.e., Ci/Di ≤ xs1.

Putting both conditions together, we get (Ci/ min(Ti, Di)) ≤ xs1. Taken over all
the tasks τ1, τ2, . . . , τk, this observation yields the condition that δmax(k) ≤ xs1.

Since any individual job of τi can receive at most Di × xs1 units of execution
by its deadline, we must have Ci ≤ Di × s1x; i.e., Ci/Di ≤ s1x. Taken over all
tasks in τ , this observation yields the first condition.

To prove that load(k) ≤ Sm(π)x, recall the definition of load(k) from
Sect. 1. Let t′ denote some value of t which defines load(k):

t′
def= argmax

(∑k
i=1 dbf(τi, t)

t

)
.

Suppose that all tasks in {τ1, τ2, . . . , τk} generate a job at time-instant zero, and
each task τi generates subsequent jobs exactly Ti time units apart. The total
amount of execution that is available over the interval [0, t′) on this platform is
equal to Sm(π)xt′; hence, it is necessary that load(k) ≤ Sm(π)x if all deadlines
are to be met.
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Lemma 5. Any sporadic task system that is feasible upon a multiprocessor plat-
form x·π is determined to be global-dm schedulable on π by the dm-schedulability
test of Theorem 1, provided

x ≤ (2λs1)/
[
Sm(π)s1 + 2Sm(π)sm + λs1sm −

(
S2

m(π)s2
1 + 4S2

m(π)s1sm

+ 2Sm(π)s2
1λsm + 4S2

m(π)s2
m + 4λs1s

2
mSm(π) + λ2s2

1s
2
m

− 4λs1Sm(π)sm

)1/2
]

.

(15)

Proof. Suppose that τ is feasible upon a platform π · x. From Lemma 4, it must
be the case that load(k) ≤ Sm(π)x and δmax(k) ≤ s1x for all k. For τ to be
determined to be dm-schedulable upon π by the test of Theorem 1, it is sufficient
that for all k, 1 ≤ k ≤ n:

load(k) ≤ 1
2
(µk − νkδmax(k))

⇐ (since (� µk

sm
 − 1) ≥ νk and from Lemma 2)

load(k) ≤ 1
2
(µk − (� µk

sm
 − 1)δmax(k))

⇐ (since �α − 1 ≤ α for all α)

load(k) ≤ 1
2
(µk − (

µk

sm
)δmax(k))

≡

load(k) ≤ 1
2
(µk(1 − δmax(k)

sm
))

≡ (by (6))

load(k) ≤ 1
2
((Sm(π) − λδmax(k))(1 − δmax(k)

sm
))

⇐

Sm(π)x ≤ 1
2
((Sm(π) − λs1x)(1 − s1x

sm
))

≡

Sm(π)x ≤ 1
2
(Sm(π) − Sm(π)s1x

sm
− λs1x +

λs2
1x

2

sm
)

≡
0 ≤λs1x

2 − [Sm(π)(s1 + 2sm) + λs1sm]x
+ Sm(π)sm .

Solving for x using standard techniques for the solution of quadratic inequalities
yields (15).

A processor-speedup bound for the dm-schedulability test of Theorem 1 imme-
diately follows from Lemma 5:
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Table 1. Speedup bound for various uniform platforms

heterogeneity m Sm(π) λ sm s1 speedup
H1/2 4 12 2 4 2 4.59
H1/2 20 60 14 4 2 4.84
H1/2 100 300 74 4 2 4.89
H1/2 1000 3000 749 4 2 4.90
H1/4 4 15 0.875 8 1 10.42
H1/4 20 75 8.345 8 1 10.81
H1/4 100 375 45.875 8 1 10.89
H1/4 1000 3750 467.75 8 1 10.91

Theorem 2. The dm-schedulability test of Theorem 1 has a processor speedup
bound of the value of the right side of (15). ��

4.1 Analysis of the Speedup Bound

We first observe that the processor speedup bound of Theorem 2 generalizes
previously-obtained bounds for identical multiprocessors. It may be verified that
by setting λ = (m − 1), s1 = s2 = · · · = sm = 1, and Sm(π) = m, Theorem 1 re-
duces to the dm-schedulability test for identical multiprocessors, and Theorem 2
reduces3 to the speedup bound for identical multiprocessors, derived in [25]. It
consequently follows that our result here is a generalization of the identical mul-
tiprocessor dm test and speedup bound from [25].

Evaluation by simulation experiments. Equation (15) expresses the processor
speedup bound as a function of the following platform parameters: λ, s1, sm, and
Sm(π). In order to get a more intuitive feel for the bounds, we computed the
speedup bound for various uniform multiprocessor platforms. Due to the large
number of parameters we restricted our study to platforms with four distinct
processor speeds: 8, 4, 2, 1 and two kinds of heterogeneity: 25 % of each kind
of processor speed, 50 % of processor speed 4 plus 50 % of processor speed 2
(labeled H1/4 and H1/2 in Table 1, respectively).

Table 1 gives the speedup bound for the various uniform platforms consid-
ered in this study. As seen from this table, the bound increases with increasing
heterogeneity, and increases with increasing size of the platform (for a given
heterogeneity).

5 Conclusions

Most research on multiprocessor real-time scheduling has focused on the sim-
plest model — systems of implicit-deadline tasks that are scheduled on identical
3 Notice that the discriminant presented in [25] is actually 12m2 − 4m + 1.
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multiprocessors. More recent research has attempted to generalize this work in
two different directions, by either generalizing the task model (to constrained-
deadline and arbitrary-deadline sporadic task systems), or by generalizing the
processor model (to uniform and unrelated multiprocessors).

Very recently [28], efforts have been made to generalize along both the task-
model and the processor axes, by considering the scheduling of sporadic task
systems upon uniform multiprocessors. However, the only scheduling algorithm
that was considered in [28] is Earliest Deadline First (EDF). In this work, we
have applied the techniques from [28] to dm scheduling. We have obtained a
new schedulability test for the global dm scheduling of sporadic task systems
upon preemptive uniform multiprocessor platforms. This test characterizes a task
system by its load and δmax parameters, and a platform by its total computing
capacity and its λ parameter. We have also obtained a characterization of the
effectiveness of this schedulability test in terms of its processor speedup factor.
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Abstract. This paper presents a performance comparison of three mul-
tiprocessor real-time locking protocols: the multiprocessor priority ceil-
ing protocol (M-PCP), the distributed priority ceiling protocol (D-PCP),
and the flexible multiprocessor locking protocol (FMLP). In the FMLP,
blocking is implemented via either suspending or spinning, while in the
M-PCP and D-PCP, all blocking is by suspending. The presented com-
parison was conducted using a UNC-produced Linux extension called
LITMUSRT. In this comparison, schedulability experiments were con-
ducted in which runtime overheads as measured on LITMUSRT were
used. In these experiments, the spin-based FMLP variant always exhib-
ited the best performance, and the M-PCP and D-PCP almost always
exhibited poor performance. These results call into question the prac-
tical viability of the M-PCP and D-PCP, which have been the de-facto
standard for real-time multiprocessor locking for the last 20 years.

1 Introduction

With the continued push towards multicore architectures by most (if not all)
major chip manufacturers [19,26], the computing industry is facing a paradigm
shift: in the near future, multiprocessors will be the norm. Current off-the-shelf
systems now routinely contain chips with two, four, and even eight cores, and
chips with up to 80 cores are envisioned within a decade [26]. Not surprisingly,
with multicore platforms becoming so widespread, real-time applications are
already being deployed on them. For example, systems processing time-sensitive
business transactions have been realized by Azul Systems on top of the highly-
parallel Vega2 platform, which consists of up to 768 cores [4].

Motivated by these developments, research on multiprocessor real-time sched-
uling has intensified in recent years (see [13] for a survey). Thus far, however, few
proposed approaches have actually been implemented in operating systems and
evaluated under real-world conditions. To help bridge the gap between algorith-
mic research and real-world systems, our group recently developed LITMUSRT,
a multiprocessor real-time extension of Linux [8,11,12]. Our choice of Linux as
a development platform was influenced by recent efforts to introduce real-time-
oriented features in stock Linux (see, for example, [1]). As Linux evolves, it could

T.P. Baker, A. Bui, and S. Tixeuil (Eds.): OPODIS 2008, LNCS 5401, pp. 105–124, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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undoubtedly benefit from recent algorithmic advances in real-time scheduling-
related research.

LITMUSRT has been used in several scheduling-related performance stud-
ies [5,8,12]. In addition, a study was conducted to compare synchronization
alternatives under global and partitioned earliest-deadline-first (EDF) schedul-
ing [11]. This study was partially motivated by the relative lack (compared to
scheduling) of research on real-time multiprocessor synchronization. It focused
more broadly on comparing suspension- and spin-based locking on the basis of
schedulability. Spin-based locking was shown to be the better choice.

Focus of this paper. In this paper, we present follow-up work to the latter
study that focuses on systems where partitioned, static-priority (P-SP) sched-
uling is used. This is an important category of systems, as both partitioning
and static priorities tend to be favored by practitioners. Moreover, the earliest
and most influential work on multiprocessor real-time synchronization was di-
rected at such systems. This work resulted in two now-classic locking protocols:
the multiprocessor priority ceiling protocol (M-PCP) and the distributed priority
ceiling protocol (D-PCP) [23]. While these protocols are probably the most widely
known (and taught) locking protocols for multiprocessor real-time applications,
they were developed at a time (over 20 years ago) when such applications were
deemed to be mostly of “academic” interest only. With the advent of multicore
technologies, this is clearly no longer the case. Motivated by this, we take a new
look at these protocols herein with the goal of assessing their practical viability.
We also examine the subject of our prior EDF-based study, the flexible multi-
processor locking protocol (FMLP) [6,9,11]. We seek to assess the effectiveness
of these protocols in managing memory-resident resources on P-SP-scheduled
shared-memory multiprocessors.

Tested protocols. The M-PCP, D-PCP, and FMLP function very differently.
In both the M-PCP and D-PCP, blocked tasks are suspended, i.e., such a task
relinquishes its assigned processor. The main difference between these two pro-
tocols is that, in the D-PCP, resources are assigned to processors, and in the
M-PCP, such an assignment is not made.1 In the D-PCP, a task accesses a re-
source via an RPC-like invocation of an agent on the resource’s processor that
performs the access. In the M-PCP, a global semaphore protocol is used instead.
In both protocols, requests for global resources (i.e., resources accessed by tasks
on multiple processors) cannot appear in nested request sequences. Invocations
on such resources are ordered by priority and execute at elevated priority lev-
els so that they complete more quickly. In contrast to these two protocols, the
FMLP orders requests on a FIFO basis, allows arbitrary request nesting (with
one slight restriction, described later), and is agnostic regarding whether block-
ing is via spinning (busy-waiting) or suspension. While spinning wastes processor
time, in our prior work on EDF-scheduled systems [11], we found that its use
almost always results in better schedulability than suspending. This is because

1 Because the D-PCP assigns resources to processors, it can potentially be used in
loosely-coupled distributed systems—hence its name.



A Comparison of the M-PCP, D-PCP, and FMLP on LITMUSRT 107

it can be difficult to predict which scheduler events may affect a task while it
is suspended, so needed analysis tends to be pessimistic. (Each of the protocols
considered here is described more fully later.)

Methodology and results. The main contribution of this paper is an assess-
ment of the performance of the three protocols described above in terms of P-SP
schedulability. Our methodology in conducting this assessment is similar to that
used in our earlier work on EDF-scheduled systems [11]. The performance of
any synchronization protocol will depend on runtime overheads, such as pre-
emption costs, scheduling costs, and costs associated with performing various
system calls. We determined these costs by analyzing trace data collected while
running various workloads under LITMUSRT (which, of course, first required im-
plementing each synchronization protocol in LITMUSRT). We then used these
costs in schedulability experiments involving randomly-generated task systems.
In these experiments, a wide range of task-set parameters was considered (though
only a subset of our data is presented herein, due to space limitations). In each
experiment, schedulability was checked for each scheme using a demand-based
schedulability test [15], augmented to account for runtime overheads. In these ex-
periments, we found that the spin-based FMLP variant always exhibited the best
performance (usually, by a wide margin), and the M-PCP and D-PCP almost al-
ways exhibited poor performance. These results reinforce our earlier finding that
spin-based locking is preferable to suspension-based locking under EDF schedul-
ing [11]. They also call into question the practical viability of the M-PCP and
D-PCP.

Organization. In the next two sections, we discuss needed background and the
results of our experiments. In an appendix, we describe how runtime overheads
were obtained.

2 Background

We consider the scheduling of a system of sporadic tasks , denoted T1, . . . , TN ,
on m processors. The jth job (or invocation) of task Ti is denoted T j

i . Such a
job T j

i becomes available for execution at its release time, r(T j
i ). Each task Ti is

specified by its worst-case (per-job) execution cost , e(Ti), and its period , p(Ti).
The job T j

i should complete execution by its absolute deadline, r(T j
i ) + p(Ti).

The spacing between job releases must satisfy r(T j+1
i ) ≥ r(T j

i )+p(Ti). Task Ti’s
utilization reflects the processor share that it requires and is given by e(Ti)/p(Ti).

In this paper, we consider only partitioned static-priority (P-SP) scheduling,
wherein each task is statically assigned to a processor and each processor is
scheduled independently using a static-priority uniprocessor algorithm. A well-
known example of such an algorithm is the rate-monotonic (RM) algorithm,
which gives higher priority to tasks with smaller periods. In general, we as-
sume that tasks are indexed from 1 to n by decreasing priority, i.e., a lower
index implies higher priority. We refer to Ti’s index i as its base priority. A job
is scheduled using its effective priority, which can sometimes exceed its base
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priority under certain resource-sharing policies (e.g., priority inheritance may
raise a job’s effective priority). After its release, a job T j

i is said to be pending
until it completes. While it is pending, T j

i is either runnable or suspended. A
suspended job cannot be scheduled. When a job transitions from suspended
to runnable (runnable to suspended), it is said to resume (suspend). While
runnable, a job is either preemptable or non-preemptable. A newly-released or re-
suming job can preempt a scheduled lower-priority job only if it is
preemptable.

Resources. When a job T j
i requires a resource 
, it issues a request R� for 
.

R� is satisfied as soon as T j
i holds 
, and completes when T j

i releases 
. |R�|
denotes the maximum time that T j

i will hold 
. T j
i becomes blocked on 
 if R�

cannot be satisfied immediately. (A resource can be held by at most one job at
a time.) A resource 
 is local to a processor p if all jobs requesting 
 execute on
p, and global otherwise.

If T j
i issues another request R′ before R is complete, then R′ is nested within

R. In such cases, |R| includes the cost of blocking due to requests nested in R.
Some synchronization protocols disallow nesting. If allowed, nesting is proper,
i.e., R′ must complete no later than R completes. An outermost request is not
nested within any other request. Inset (b) of Fig. 1 illustrates the different phases
of a resource request. In this and later figures, the legend shown in inset (a) of
Fig. 1 is assumed.

Resource sharing introduces a number of problems that can endanger tem-
poral correctness. Priority inversion occurs when a high-priority job T i

h cannot
proceed due to a lower-priority job T j

l either being non-preemptable or holding
a resource requested by T i

h. T i
h is said to be blocked by T j

l . Another source of
delay is remote blocking, which occurs when a global resource requested by a job
is already in use on another processor.

In each of the synchronization protocols considered in this paper, local re-
sources can be managed by using simpler uniprocessor locking protocols, such
as the priority ceiling protocol [25] or stack resource policy [3]. Due to space
constraints, we do not consider such functionality further, but instead focus our
attention on global resources, as they are more difficult to support and have
the greatest impact on performance. We explain below how such resources are
handled by considering each of the D-PCP, M-PCP, and FMLP in turn. It is not
possible to delve into every detail of each protocol given the space available. For
such details, we refer the reader to [6,9,11,21].

The D-PCP and M-PCP. The D-PCP implements global resources by provid-
ing local agents that act on behalf of requesting jobs. A local agent Aq

i , located
on remote processor q where jobs of Ti request resources, carries out requests on
behalf of Ti on processor q. Instead of accessing a global remote resource 
 on pro-
cessor q directly, a job T j

i submits a request R to Aq
i and suspends. T j

i resumes
when Aq

i has completed R. To expedite requests, Aq
i executes with an effective

priority higher than that of any normal task (see [16,21] for details). However,
agents of lower-priority tasks can still be preempted by agents of higher-priority



A Comparison of the M-PCP, D-PCP, and FMLP on LITMUSRT 109

scheduled
(no resource)

X
scheduled
(with resource     )�X

blocked
(resource unavailable)

waiting for response
from agent

job completionjob release

(a)

issued satisfied

R1

|R1|

T j
i

nested
R2

1 1,2 1

complete

time

(b)

Fig. 1. (a) Legend. (b) Phases of a resource request. T j
i issues R1 and blocks since R1

is not immediately satisfied. T j
i holds the resource associated with R1 for |R1| time

units, which includes blocking incurred due to nested requests.

tasks. When accessing global resources residing on Ti’s assigned processor, T j
i

serves as its own agent.
The M-PCP relies on shared memory to support global resources. In contrast

to the D-PCP, global resources are not assigned to any particular processor but
are accessed directly. Local agents are thus not required since jobs execute re-
quests themselves on their assigned processors. Competing requests are satisfied
in order of job priority. When a request is not satisfied immediately, the request-
ing job suspends until its request is satisfied. Under the M-PCP, jobs holding
global resources execute with an effective priority higher than that of any normal
task.

The D-PCP and M-PCP avoid deadlock by prohibiting the nesting of global
resource requests—a global request R cannot be nested within another request
(local or global) and no other request (local or global) may be nested within R.

Example. Fig. 2 depicts global schedules for four jobs (T 1
1 ,. . . ,T 1

4 ) sharing two
resources (
1, 
2) on two processors. Inset (a) shows resource sharing under the
D-PCP. Both resources reside on processor 1. Thus, two agents (A1

2, A1
4) are also

assigned to processor 1 in order to act on behalf of T2 and T4 on processor 2. A1
4

becomes active at time 2 when T 1
4 requests 
1. However, since T 1

3 already holds

1, A1

4 is blocked. Similarly, A1
2 becomes active and blocks at time 4. When T 1

3
releases 
1, A1

2 gains access next because it is the highest-priority active agent
on processor 1. Note that, even though the highest-priority job T 1

1 is released
at time 2, it is not scheduled until time 7 because agents and resource-holding
jobs have an effective priority that exceeds the base priority of T 1

1 . A1
2 becomes

active at time 9 since T 1
2 requests 
2. However, T 1

1 is accessing 
1 at the time,
and thus has an effective priority that exceeds A1

2’s priority. Therefore, A1
2 is not

scheduled until time 10.
Inset (b) shows the same scenario under the M-PCP. In this case, T 1

2 and T 1
4

access global resources directly instead of via agents. T 1
4 suspends at time 2 since

T 1
2 already holds 
1. Similarly, T 1

2 suspends at time 4 until it holds 
1 one time
unit later. Meanwhile, on processor 1, T 1

1 is scheduled at time 5 after T 1
2 returns

to normal priority and also requests 
1 at time 6. Since resource requests are
satisfied in priority order, T 1

1 ’s request has precedence over T 1
4 ’s request, which

was issued much earlier at time 2. Thus, T 1
4 must wait until time 8 to access 
1.
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Fig. 2. Example schedules of four tasks sharing two global resources. (a) D-PCP sched-
ule. (b) M-PCP schedule. (c) FMLP schedule (�1, �2 are long). (d) FMLP schedule (�1,
�2 are short).

Note that T 1
4 preempts T 1

2 when it resumes at time 8 since it is holding a global
resource.

The FMLP. The FMLP is considered to be “flexible” for several reasons: it
can be used under either partitioned or global scheduling, with either static
or dynamic task priorities, and it is agnostic regarding whether blocking is via
spinning or suspension. Regarding the latter, resources are categorized as either
“short” or “long.” Short resources are accessed using queue locks (a type of spin
lock) [2,14,18] and long resources are accessed via a semaphore protocol. Whether
a resource should be considered short or long is user-defined, but requests for
long resources may not be contained within requests for short resources. To date,
we have implemented FMLP variants for both partitioned and global EDF and
P-SP scheduling (the focus of the description given here).

Deadlock avoidance. The FMLP uses a very simple deadlock-avoidance mech-
anism that was motivated by trace data we collected involving the behavior of
actual real-time applications [7]. This data (which is summarized later) suggests
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that nesting, which is required to cause a deadlock, is somewhat rare; thus, com-
plex deadlock-avoidance mechanisms are of questionable utility. In the FMLP,
deadlock is prevented by “grouping” resources and allowing only one job to ac-
cess resources in any given group at any time. Two resources are in the same
group iff they are of the same type (short or long) and requests for one may be
nested within those of the other. A group lock is associated with each resource
group; before a job can access a resource, it must first acquire its corresponding
group lock. All blocking incurred by a job occurs when it attempts to acquire
the group lock associated with a resource request that is outermost with respect
to either short or long resources.2 We let G(
) denote the group that contains
resource 
.

We now explain how resource requests are handled in the FMLP. This process
is illustrated in Fig. 3.

short

issued satisfied complete

blocked, job spins critical section

long

blocked, job suspends critical section

non-preemptive execution

non-preemptive
execution

resumed,
but blocked

priority boosted

time

Fig. 3. Phases of short and long resource requests

Short requests. If R is short and outermost, then T j
i becomes non-preemptable

and attempts to acquire the queue lock protecting G(
). In a queue lock, blocked
processes busy-wait in FIFO order.3 R is satisfied once T j

i holds 
’s group lock.
When R completes, T j

i releases the group lock and leaves its non-preemptive
section.

Long requests. If R is long and outermost, then T j
i attempts to acquire the

semaphore protecting G(
). Under a semaphore lock, blocked jobs are added to
a FIFO queue and suspend. As soon as R is satisfied (i.e., T j

i holds 
’s group
lock), T j

i resumes (if it suspended) and enters a non-preemptive section (which

2 A short resource request nested within a long resource request but no short resource
request is considered outermost.

3 The desirability of FIFO-based real-time multiprocessor locking protocols has been
noted by others [17], but to our knowledge, the FMLP is the first such protocol to
be implemented in a real OS.
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becomes effective as soon as T j
i is scheduled). When R completes, T j

i releases
the group lock and becomes preemptive.

Priority boost. If R is long and outermost, then T j
i ’s priority is boosted when

R is satisfied (i.e., T j
i is scheduled with effective priority 0). This allows it to

preempt jobs executing preemptively at base priority. If two or more priority-
boosted jobs are ready, then they are scheduled in the order in which their
priorities were boosted (FIFO).

Example. Insets (c) and (d) of Fig. 2 depict FMLP schedules for the same
scenario previously considered in the context of the D-PCP and M-PCP. In (c),

1 and 
2 are classified as long resources. As before, T 1

3 requests 
1 first and forces
the jobs on processor 2 to suspend (T 1

4 at time 2 and T 1
2 at time 4). In contrast

to both the D-PCP and M-PCP, contending requests are satisfied in FIFO order.
Thus, when T 1

3 releases 
1 at time 5, T 1
4 ’s request is satisfied before that of T 1

2 .
Similarly, T 1

1 ’s request for 
1 is only satisfied after T 1
2 completes its request at

time 7. Note that, since jobs suspend when blocked on a long resource, T 1
3 can

be scheduled for one time unit at time 6 when T 1
1 blocks on 
1.

Inset (d) depicts the schedule that results when both 
1 and 
2 are short. The
main difference from the schedule depicted in (c) is that jobs busy-wait non-
preemptively when blocked on a short resource. Thus, when T 1

2 is released at
time 3, it cannot be scheduled until time 6 since T 1

4 executes non-preemptively
from time 2 until time 6. Similarly, T 1

4 cannot be scheduled at time 7 when
T 1

2 blocks on 
2 because T 1
2 does not suspend. Note that, due to the waste of

processing time caused by busy-waiting, the last job only finishes at time 15.
Under suspension-based synchronization methods, the last job finishes at either
time 13 (M-PCP and FMLP for long resources) or 14 (D-PCP).

3 Experiments

In our study, we sought to assess the practical viability of the aforementioned
synchronization protocols. To do so, we determined the schedulability of
randomly-generated task sets under each scheme. (A task system is schedula-
ble if it can be verified via some test that no task will ever miss a deadline.)

Task parameters were generated—similar to the approach previously used
in [11]—as follows. Task utilizations were distributed uniformly over [0.001, 0.1].
To cover a wide range of timing constraints, we considered four ranges of peri-
ods: (i) [3ms-33ms], (ii) [10ms-100ms], (iii) [33ms-100ms], and (iv) [100ms-
1000ms]. Task execution costs (excluding resource requests) were calculated
based on utilizations and periods. Periods were defined to be integral, but execu-
tion costs may be non-integral. All time-related values used in our experiments
were defined assuming a target platform like that used in obtaining overhead
values. As explained in the appendix, this system has four 2.7 GHz processors.

Given our focus on partitioned scheduling, task sets were obtained by first
generating tasks for each processor individually, until either a per-processor uti-
lization cap Û was reached or 30 tasks were generated, and then generating
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resource requests. By eliminating the need to partition task sets, we prevent the
effects of bin-packing heuristics from skewing our results. All generated task sets
were determined to be schedulable before blocking was taken into account.

Resource sharing. Each task was configured to issue between 0 and K resource
requests. The access cost of each request (excluding synchronization overheads)
was chosen uniformly from [0.1µs, L]. K ranged from 0 to 9 and L from 0.5µs
to 15.5µs. The latter range was chosen based on locking trends observed in a
prior study of locking patterns in the Linux kernel, two video players, and an
interactive 3D video game (see [7] for details.). Although Linux is not a real-time
system, its locking behavior should be similar to that of many complex systems,
including real-time systems, where great care is taken to make critical sections
short and efficient. The video players and the video game need to ensure that
both visual and audio content are presented to the user in a timely manner,
and thus are representative of the locking behavior of a class of soft real-time
applications. The trace data we collected in analyzing these applications suggests
that, with respect to both semaphores and spin locks, critical sections tend to be
short (usually, just a few microseconds on a modern processor) and nested lock
requests are somewhat rare (typically only 1% to 30% of all requests, depending
on the application, with nesting levels deeper than two being very rare).

The total number of generated tasks N was used to determine the number of
resources according to the formula K·N

α·m , where the sharing degree α was chosen
from {0.5, 1, 2, 4}. Under the D-PCP, resources were assigned to processors in a
round-robin manner to distribute the load evenly. Nested resource requests were
not considered since they are not supported by the M-PCP and D-PCP and also
because allowing nesting has a similar effect on schedulability under the FMLP
as increasing the maximum critical section length.

Finally, task execution costs and request durations were inflated to account
for system overheads (such as context switching costs) and synchronization over-
heads (such as the cost of invoking synchronization-related system calls). The
methodology for doing this is explained in the appendix.

Schedulability. After a task set was generated, the worst-case blocking delay
of each task was determined by using methods described in [20,21] (M-PCP),
[16,21] (D-PCP), and [9] (FMLP). Finally, we determined whether a task set was
schedulable after accounting for overheads and blocking delay with a demand-
based [15] schedulability test.

A note on the “period enforcer.” When a job suspends, it defers part of its
execution to a later instant, which can cause a lower-priority job to experience
deferral blocking. In checking schedulability, this source of blocking must be ac-
counted for. In [21], it is claimed that deferral blocking can be eliminated by
using a technique called period enforcer. In this paper, we do not consider the
use of the period enforcer, for a number of reasons. First, the period enforcer has
not been described in published work (nor is a complete description available
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online). Thus, we were unable to verify its correctness4 and were unable to obtain
sufficient information to enable an implementation in LITMUSRT (which obvi-
ously is a prerequisite for obtaining realistic overhead measurements). Second,
from our understanding, it requires a task to be split into subtasks whenever it
requests a resource. Such subtasks are eligible for execution at different times
based on the resource-usage history of prior (sub-)jobs. We do not consider it
feasible to efficiently maintain a sufficiently complete resource usage history in-
kernel at runtime. (Indeed, to the best of our knowledge, the period enforcer
has never been implemented in any real OS.) Third, all tested, suspension-based
synchronization protocols are affected by deferral blocking to the same extent.
Thus, even if it were possible to avoid deferral blocking altogether, the relative
performance of the algorithms is unlikely to differ significantly from our findings.

3.1 Performance on a Four-Processor System

We conducted schedulability experiments assuming four to 16 processors. In all
cases, we used overhead values obtained from our four-processor test platform.
(This is perhaps one limitation of our study. In reality, overheads on larger
platforms might be higher, e.g., due to greater bus contention or different caching
behavior. We decided to simply use our four-processor overheads in all cases
rather than “guessing” as to what overheads would be appropriate on larger
systems.) In this subsection, we discuss experiments conducted to address three
questions: When (if ever) does either FMLP variant perform worse than either
PCP variant? When (if ever) is blocking by suspending a viable alternative to
blocking by spinning? What parameters affect the performance of the tested
algorithms most? In these experiments, a four-processor system was assumed;
larger systems are considered in the next subsection.

Generated task systems. To answer the questions above, we conducted ex-
tensive experiments covering a large range of possible task systems. We varied
(i) L in 40 steps over its range ([0.5µs, 15.5µs]), (ii) K in steps of one over its
range ([0, 9]), and (iii) Û in 40 steps over its range ([0.1, 0.5]), while keeping
(in each case) all other task-set generation parameters constant so that schedu-
lability could be determined as a function of L, K, and Û . In particular, we
conducted experiments (i)–(iii) for constant assignments from all combinations
of α ∈ {0.5, 1, 2, 4}, Û ∈ {0.15, 0.3, 0.45}, L ∈ {3µs, 9µs, 15µs}, K ∈ {2, 5, 9},
and the four task period ranges defined earlier. For each sampling point, we
generated (and tested for schedulability under each algorithm) 1,000 task sets,
for a total 13,140,000 task sets.

Trends. It is clearly not feasible to present all 432 resulting graphs. However,
the results show clear trends. We begin by making some general observations

4 In fact, we have confirmed that some existing scheduling analysis (e.g., [21]) that
uses the period enforcer is flawed [22]. Interestingly, in her now-standard textbook
on the subject of real-time systems, Liu does not assume the presence of the period
enforcer in her analysis of the D-PCP [16].
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concerning these trends. Below, we consider a few specific graphs that support
these observations.

In all tested scenarios, suspending was never preferable to spinning. In fact, in
the vast majority of the tested scenarios, every generated task set was schedula-
ble under spinning (the short FMLP variant). In contrast, many scenarios could
not be scheduled under any of the suspension-based methods. The only time that
suspending was ever a viable alternative was in scenarios with a small number
of resources (i.e., small K, low Û , high α) and relatively lax timing constraints
(long, homogeneous periods). Since the short FMLP variant is clearly the best
choice (from a schedulability point of view), we mostly focus our attention on
the suspension-based protocols in the discussion that follows.

Overall, the long FMLP variant exhibited the best performance among suspen-
sion-based algorithms, especially in low-sharing-degree scenarios. For α = 0.5,
the long FMLP variant always exhibited better performance than both the M-
PCP and D-PCP. For α = 1, the long FMLP variant performed best in 101 of
108 tested scenarios. In contrast, the M-PCP was never the preferable choice
for any α. Our results show that the D-PCP hits a “sweet spot” (which we
discuss in greater detail below) when K = 2, Û ≤ 0.3, and α ≥ 2; it even
outperformed the long FMLP variant in some of these scenarios (but never the
short variant). However, the D-PCP’s performance quickly diminished outside
this narrow “sweet spot.” Further, even in the cases where the D-PCP exhibited
the best performance among the suspension-based protocols, schedulability was
very low. The M-PCP often outperformed the D-PCP; however, in all such cases,
the long FMLP variant performed better (and sometimes significantly so).

The observed behavior of the D-PCP reveals a significant difference with re-
spect to the M-PCP and FMLP. Whereas the performance of the latter two is
mostly determined by the task count and tightness of timing constraints, the D-
PCP’s performance closely depends on the number of resources—whenever the
number of resources does not exceed the number of processors significantly, the
D-PCP does comparatively well. Since (under our task-set generation method)
the number of resources depends directly on both K and α (and indirectly on
Û , which determines how many tasks are generated), this explains the observed
“sweet spot.” The D-PCP’s insensitivity to total task count can be traced back to
its distributed nature—under the D-PCP, a job can only be delayed by events on
its local processor and on remote processors where it requests resources. In con-
trast, under the M-PCP and FMLP, a job can be delayed transitively by events
on all processors where jobs reside with which the job shares a resource.

Example graphs. Insets (a)-(f) of Fig. 4 and (a)-(c) of Fig. 5 display nine
selected graphs for the four-processor case that illustrate the above trends. These
insets are discussed next.

Fig. 4 (a)-(c). The left column of graphs in Fig. 4 shows schedulability as a
function of L for K = 9. The case depicted in inset (a), where Û = 0.3 and
p(Ti) ∈ [33, 100], shows how both FMLP variants significantly outperform both
the M-PCP and D-PCP in low-sharing-degree scenarios. Note how even the long
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variant achieves almost perfect schedulability. In contrast, the D-PCP fails to
schedule any task set, while schedulability under the M-PCP hovers around 0.75.
Inset (b), where Û = 0.3, p(Ti) ∈ [10, 100], and α = 1, presents a more chal-
lenging situation: the wider range of periods and a higher sharing degree reduce
the schedulablity of the FMLP (long) and the M-PCP significantly. Surprisingly,
the performance of the D-PCP actually improves marginally (since, compared
to inset (a), there are fewer resources). However, it is not a viable alternative
in this scenario. Finally, inset (c) depicts a scenario where all suspension-based
protocols fail due to tight timing constraints. Note that schedulability is largely
independent of L; this is due to the fact that overheads outweigh critical-section
lengths in practice.

Fig. 4 (d)-(f). The right column of graphs in Fig. 4 shows schedulability as a
function of K for L = 9µs, p(Ti) ∈ [10, 100] (insets (d) and (e)) and p(Ti) ∈ [3, 33]
(inset (g)), and Û equal to 0.3 (inset (d)), 0.45 (inset (e)), and 0.15 (inset (f)).
The graphs show that K has a significant influence on schedulability. Inset (d)
illustrates the superiority of both FMLP variants in low-sharing-degree scenarios
(α = 0.5): the long variant exhibits a slight performance drop for K ≥ 6, whereas
the PCP variants are only viable alternatives for K < 6. Inset (e) depicts the
same scenario with Û increased to 0.45. The increase in the number of tasks (and
thus resources too) causes schedulability under all suspension-based protocols
to drop off quickly. However, relative performance remains roughly the same.
Inset (f) presents a scenario that exemplifies the D-PCP’s “sweet spot.” With
Û = 0.15 and α = 2, the number of resources is very limited. Thus, the D-PCP
actually offers somewhat better schedulability than the long FMLP variant for
K = 3 and K = 4. However, the D-PCP’s performance deteriorates quickly, so
that it is actually the worst performing protocol for K ≥ 7.

Fig. 5 (a)-(c). The left column of graphs in Fig. 5 shows schedulability as
a function of Û . Inset (a) demonstrates, once again, the superior performance
of both FMLP variants in low-sharing-degree scenarios (α = 0.5, K = 9, L =
3µs, p(Ti) ∈ [10, 100]). Inset (b) shows one of the few cases where the D-PCP
outperforms the M-PCP at low sharing degrees (α = 1, K = 2, L = 3µs,
p(Ti) ∈ [3, 33]). Note that the D-PCP initially performs as well as the long FMLP
variant, but starting at Û = 0.3, fails more quickly. In the end, its performance
is similar to that of the M-PCP. Finally, inset (c) presents one of the few cases
where even the short FMLP variant fails to schedule all tasks sets. This graph
represents the most taxing scenario in our study as each parameter is set to its
worst-case value: α = 4 and K = 9 (which implies high contention), L = 15µs,
and p(Ti) ∈ [3, 33] (which leaves little slack for blocking terms). None of the
suspension-based protocols can handle this scenario.

To summarize, in the four-processor case, the short FMLP variant was always
the best-performing protocol, usually by a wide margin. Among the suspension-
based protocols, the long FMLP variant was preferable most of the time, while the
D-PCP was sometimes preferable if there were a small number (approximately
four) resources being shared. The M-PCP was never preferable.
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Fig. 4. Schedulability (the fraction of generated task systems deemed schedulable) as
a function of (a)-(c) the maximum critical-section length L and (d)-(f) the per-job
resource request bound K

3.2 Scalability

We now consider how the performance of each protocol scales with the processor
count. To determine this, we varied the processor count from two to 16 for all
possible combinations of α, Û , L, K, and periods (assuming the ranges for each
defined earlier). This resulted in 324 graphs, three of which are shown in the
right column of Fig. 5. The main difference between insets (d) and (e) of the
figure is that task periods are large in (d) (p(Ti) ∈ [100, 1000]) but small in (e)
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Fig. 5. Schedulability as a function of (a)-(c) the per-processor utilization cap Û and
of (d)-(f) processor count

(p(Ti) ∈ [10, 100]). As seen, both FMLP variants scale well in inset (d), but the
performance of the long variant begins to degrade quickly beyond six processors
in inset (e). In both insets, the M-PCP shows a similar but worse trend as the
long FMLP variant. This relationship was apparent in many (but not all) of the
tested scenarios, as the performance of both protocols largely depends on the
total number of tasks. In contrast, the D-PCP quite consistently does not follow
the same trend as the M-PCP and FMLP. This, again, is due to the fact that
the D-PCP depends heavily on the number of resources. Since, in this study,



A Comparison of the M-PCP, D-PCP, and FMLP on LITMUSRT 119

the total number of tasks increases at roughly the same rate as the number of
processors, in each graph, the number of resources does not change significantly
as the processor count increases (since α and K are constant in each graph).
The fact that the D-PCP’s performance does not remain constant indicates that
its performance also depends on the total task count, but to a lesser degree.
Inset (f) depicts the most-taxing scenario considered in this paper, i.e., that
shown earlier in Fig. 5 (c). None of the suspension-based protocols support this
scenario (on any number of processors), and the short FMLP variant does not
scale beyond four to five processors.

Finally, we repeated some of the four-processor experiments discussed in
Sec. 3.1 for 16 processors to explore certain scenarios in more depth Although
we are unable to present the graphs obtained for lack of space, we do note that
blocking-by-suspending did not become more favorable on 16 processors, and the
short FMLP variant still outperformed all other protocols in all tested scenarios.
However, the relative performance of the suspension-based protocols did change,
so that the D-PCP was favorable in more cases than before. This appears to be
due to two reasons. First, as discussed above, among the suspension-based pro-
tocols, the D-PCP is impacted the least by an increasing processor count (given
our task-set generation method). Second, the long FMLP variant appears to be
somewhat less effective at supporting short periods for larger processor counts.
However, schedulability was poor under all suspension-based protocols for tasks
sets with tight timing constrains on a 16-processor system.

3.3 Impact of Overheads

In all experiments presented so far, all suspension-based protocols proved to be
inferior to the short variant of the FMLP in all cases. As seen in Table 1 in the
appendix, in the implementation of these protocols in LITMUSRT that were used
to measure overheads, the suspension-based protocols incur greater overheads
than the short FMLP variant. Thus, the question of how badly suspension-based
approaches are penalized by their overheads naturally arose. Although we believe
that we implemented these protocols efficiently in LITMUSRT, perhaps it is
possible to streamline their implementations further, reducing their overheads.
If that were possible, would they still be inferior to the short FMLP variant?

To answer this question, we reran a significant subset of the experiments con-
sidered in Sec. 3.1, assuming zero overheads for all suspension-based protocols
while charging full overheads for the short FMLP variant. The results obtained
showed three clear trends: (i) given zero overheads, the suspension-based pro-
tocols achieve high schedulability for higher utilization caps before eventually
degrading; (ii) when performance eventually degrades, it occurs less gradually
than before (the slope is much steeper); and (iii) while the suspension-based
protocols become more competitive (as one would expect), they were still bested
by the short FMLP variant in all cases . Additionally, given zero overheads, the
behavior of the M-PCP approached that of the suspension-based FMLP much
more closely in many cases.
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4 Conclusion

From the experimental study just described, two fundamental conclusions
emerge. First, when implementing memory-resident resources (the focus of this
paper), synchronization protocols that implement blocking by suspending are
of questionable practical utility. This applies in particular to the M-PCP and
D-PCP, which have been the de-facto standard for 20 years for supporting locks
in multiprocessor real-time applications. Second, in situations in which the per-
formance of suspension-based locks is not totally unacceptable (e.g., the sharing
degree is low, the processor count is not too high, or few global resources exist),
the long-resource variant of the FMLP is usually the better choice than either
the M-PCP or D-PCP (moreover, the FMLP allows resource nesting).

Although we considered a range of processor counts, overheads were mea-
sured only on a four-processor platform. In future work, we would like to obtain
measurements on various larger platforms to get a more accurate assessment.
On such platforms, overheads would likely be higher, which would more nega-
tively impact suspension-based protocols, as their analysis is more pessimistic.
Such pessimism is a consequence of difficulties associated with predicting which
scheduling-related events may impact a task while it is suspended. In fact, it is
known that suspensions cause intractabilities in scheduling analysis even in the
uniprocessor case [24].
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Appendix

To obtain the overheads required in this paper, we used the same methodology
that we used in the prior study concerning EDF scheduling [11]. For the sake of
completeness, the approach is summarized here.

In real systems, task execution times are affected by the following sources
of overhead. At the beginning of each quantum, tick scheduling overhead is in-
curred, which is the time needed to service a timer interrupt. Whenever a sched-
uling decision is made, a scheduling cost is incurred, which is the time taken to
select the next job to schedule. Whenever a job is preempted, context-switching
overhead and preemption overhead are incurred; the former term includes any
non-cache-related costs associated with the preemption, while the latter accounts
for any costs due to a loss of cache affinity.

When jobs access shared resources, they incur an acquisition cost. Similarly,
when leaving a critical section, they incur a release cost. Further, when a system
call is invoked, a job will incur the cost of switching from user mode to kernel
mode and back. Whenever a task should be preempted while it is executing a
non-preemptive (NP) section, it must notify the kernel when it is leaving its NP-
section, which entails some overhead. Under the D-PCP, in order to communicate
with a remote agent, a job must invoke that agent. Similarly, the agent also incurs
overhead when it receives a request and signals its completion.

Accounting for overheads. Task execution costs can be inflated using stan-
dard techniques to account for overheads in schedulability analysis [16]. Care
must be taken to also properly inflate resource request durations. Acquire and
release costs contribute to the time that a job holds a resource and thus can cause
blocking. Similarly, suspension-based synchronization protocols must properly
account for preemption effects within critical sections. Further, care must be
taken to inflate task execution costs for preemptions and scheduling events due
to suspensions in the case of contention. Whenever it is possible for a lower-
priority job to preempt a higher-priority job and execute a critical section,5 the
event source (i.e., the resource request causing the preemption) must be ac-
counted for in the demand term of all higher-priority tasks. One way this can
be achieved is by modeling such critical sections as special tasks with priorities
higher than that of the highest-priority normal task [16].

Implementation. To obtain realistic overhead values, we implemented the M-
PCP, D-PCP, and FMLP under P-SP scheduling in LITMUSRT. A detailed descrip-
tion of the LITMUSRT kernel and its architecture is beyond the scope of this paper.
Such details can be found in [10]. Additionally, a detailed account of the implemen-
tation issues encountered, and relevant design decisions made, when implementing
the aforementioned synchronization protocols in LITMUSRT can be found in [9].
LITMUSRT is open source software that can be downloaded freely.6

5 This is possible under all three suspension-based protocols considered in this paper:
a blocked lower-priority job might resume due to a priority boost under the FMLP
and M-PCP and might activate an agent under the D-PCP.

6 http://www.cs.unc.edu/∼anderson/litmus-rt.
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Limitations of real-time Linux. There is currently much interest in using
Linux to support real-time workloads, and many real-time-related features have
recently been introduced in the mainline Linux kernel (such as high-resolution
timers, priority inheritance, and shortened non-preemptable sections). However,
to satisfy the strict definition of hard real-time, all worst-case overheads must
be known in advance and accounted for. Unfortunately, this is currently not
possible in Linux, and it is highly unlikely that it ever will be. This is due to
the many sources of unpredictability within Linux (such as interrupt handlers
and priority inversions within the kernel), as well as the lack of determinism on
the hardware platforms on which Linux typically runs. The latter is especially a
concern, regardless of the OS, on multiprocessor platforms. Indeed, research on
timing analysis has not matured to the point of being able to analyze complex
interactions between tasks due to atomic operations, bus locking, and bus and
cache contention. Without the availability of timing-analysis tools, overheads
must be estimated experimentally. Our methodology for doing this is discussed
next.

Measuring overheads. Experimentally estimating overheads is not as easy as
it may seem. In particular, in repeated measurements of some overhead, a small
number of samples may be “outliers.” This may happen due to a variety of
factors, such as warm-up effects in the instrumentation code and the various non-
deterministic aspects of Linux itself noted above. In light of this, we determined
each overhead term by discarding the top 1% of measured values, and then taking
the maximum of the remaining values. Given the inherent limitations associated
with multiprocessor platforms noted above, we believe that this is a reasonable
approach. Moreover, the overhead values that we computed should be more than
sufficient to obtain a valid comparison of the D-PCP, M-PCP, and FMLP under
consideration of real-world overheads, which is the focus of this paper.

The hardware platform used in our experiments is a cache-coherent SMP con-
sisting of four 32-bit Intel Xeon(TM) processors running at 2.7 GHz, with 8K L1
instruction and data caches, and a unified 512K L2 cache per processor, and 2 GB
of main memory. Overheads were measured and recorded using Feather-Trace,
a light-weight tracing toolkit developed at UNC [7]. We calculated overheads by
measuring the system’s behavior for task sets randomly generated as described
in Sec. 3. To better approximate worst-case behavior, longer critical sections
were considered in order to increase contention levels (most of the measured
overheads increase with contention).

We generated a total of 100 task sets and executed each task set for 30
seconds under each of the suspension-based synchronization protocols7 while
recording system overheads. (In fact, this was done several times to ensure
that the determined overheads are stable and reproducible.) Individual mea-
surements were determined by using Feather-Trace to record timestamps at the
beginning and end of the overhead-generating code sections, e.g., we recorded a

7 Overheads for the short FMLP variant were already known from prior work [11] and
did not have to be re-determined.
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Table 1. (a) Worst-case overhead values (in µs), on our four-processor test platform
obtained in prior studies. (b) Newly measured worst-case overhead values, on our four-
processor test platform, in µs. These values are based on 86,368,984 samples recorded
over a total of 150 minutes.

Overhead Worst-Case
Preemption 42.00
Context-switching 9.25
Switching to kernel mode 0.34
Switching to user mode 0.89
Leaving NP-section 4.12
FMLP short acquisition / release 2.00 / 0.87

(a)

Overhead Worst-Case
Scheduling cost 6.39
Tick 8.08
FMLP long acquisition / release 2.74 / 8.67
M-PCP acquisition / release 5.61 / 8.27
D-PCP acquisition / release 4.61 / 2.85
D-PCP invoke / agent 8.36 / 7.15

(b)

timestamp before acquiring a resource and after the resource was acquired (how-
ever, no blocking is included in these overhead terms). Each overhead term was
determined by plotting the measured values obtained to check for anomalies, and
then computing the maximum value (discarding outliers, as discussed above).

Measurement results. In some case, we were able to re-use some overheads
determined in prior work; these are shown in inset (a) of Tab. 1. In other cases,
new measurements were required; these are shown in inset (b) of Tab. 1.

The preemption cost in Table 1 was derived in [12]. In [12], this cost is given
as a function of working set size (WSS). These WSSs are per quantum, thus
reflecting the memory footprint of a particular task during a 1-ms quantum,
rather than over its entire lifetime. WSSs of 4K, 32K, and 64K were considered
in [12], but we only consider the 4K case here, due to space constraints. Note that
larger WSSs tend to decrease the competitiveness of methods that suspend, as
preemption costs are higher in such cases. Thus, we concentrate on the 4K case
to demonstrate that, even in cases where such methods are most competitive,
spinning is still preferable. The other costs shown in inset (a) of Table 1 were
determined in [11].
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Abstract. We propose a self-stabilizing marching algorithm for a group
of oblivious robots in an obstacle-free workplace. To this end, we develop
a distributed algorithm for a group of robots to transport a polygonal
object, where each robot holds the object at a corner, and observe that
each robot can simulate the algorithm, even after we replace the object
by an imaginary one; we thus can use the algorithm as a marching al-
gorithm. Each robot independently computes a velocity vector using the
algorithm, moves to a new position with the velocity for a unit of time,
and repeats this cycle until it reaches the goal position. The algorithm
is oblivious, i.e., the computation depends only on the current robot
configuration, and is constructed from a naive algorithm that generates
only a selfish move, by adding two simple ingredients. For the case of
two robots, we theoretically show that the algorithm is self-stabilizing,
and demonstrate by simulations that the algorithm produces a motion
that is fairly close to the time-optimal motion. For cases of more than
two robots, we show that a natural extension of the algorithm for two
robots also produces smooth and elegant motions by simulations as well.

Keywords: motion coordination, marching, flocking, self-stabilizing al-
gorithm, oblivious algorithm.

1 Introduction

Motion coordination among mobile robots with distributed information is a
common hot research area in automatic control, robotics and computer sci-
ence [6, 19, 22, 26]. Among many challenging problems arising in this area, we
tackle the marching problem for mobile robots, where marching means moving in
formation.
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Self-organized behavior of a school of fish and a flock of geese has attracted
many researchers [8,20,30,41]. The snapshot of a school of fish however changes
time by time, and the flocking problem in general is not interested in rigid rel-
ative positions among mobile agents. The formation problem for mobile robots,
on the other hand, looks for local rules to form a given geometrical pattern from
any initial configuration. The formation problem was first investigated by Sugi-
hara and Suzuki [37, 38], and the formable patterns are characterized using the
terminology of distributed computing by Suzuki and Yamashita [39, 40]. Then
extensive works have carried out in particular in this decade [2, 9, 12, 13, 14, 17,
18, 21, 24, 31, 32, 34, 35]. They all modeled a robot as a dimensionless point and
investigated the problem as a robot motion planning problem, ignoring mechan-
ical constraints [27]. Cao et al. [10] and Debest [15] surveyed early researches in
control and robot societies. Also many research taking into account mechanical
constraints and obstacles then followed (e.g., [7, 23, 43]).

This paper considers the marching problem, which asks for a control algorithm
for a flock of agents to move to a goal position keeping the formation. A typical
survey paper by Cao et al. [10] could cite only a couple of papers on marching
a decade ago. Quite a few research projects have been conducted, but many
of them are classified into either a centralized or a leader-follower approach
[1,20,25,29,36], a distributed approach using some navigation device [16,42], or
an artificial potential approach [28, 33]. In these previous works, the quality of
marching route has not been discussed seriously, which motivates this paper.

In this paper we focus on the quality of route. Let us move two robots keeping
their distance unchanged or carrying a “ladder.” If we ask the robots to rotate
the ladder about 180◦, they are likely to rotate it with one robot being the
center as in Fig. 41. Fig. 1 (left) shows another move, which is definitely more
elegant and smoother. Smoother motions can be more “efficient” than those that
are not. Indeed, the motion shown in Fig. 1 (left) is time optimal2. It is worth
emphasizing that the robots’ moves are by no means straightforward; both of the
robots can never move straight to their final positions in this instance to achieve
the time optimal motion. In general, the robots can have conflicting interests,
and they have to resolve the conflict to achieve good overall performance. Our
goal is to design a marching algorithm that realizes such an elegant, smooth and
time-efficient march, even under the presence of transient sensor and control
errors. Fig. 9 (left) shows how our algorithm rotates the ladder about 180◦.

Specifically, we develop a distributed algorithm called G+ “Greedy Plus”
below for a group of robots to transport a polygonal object, where each robot
holds the object at a corner, and observe that each robot can simulate the
algorithm, even after we replace the object by an imaginary one; we thus can

1 In Fig. 4, the circles and a line segment represent the robots and the ladder they
carry, respectively.

2 Parameters LB, α and β will be explained later. An analytical method for computing
a time-optimal motion of this problem for two robots, under the assumption that
the robots’ speed is either 0 or a given constant at any moment, is reported in [11].
We used this method to calculate this optimal motion.
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Fig. 1. Time-optimal motions for instances I1 (left; LB = 2, α = 1◦, β = 179◦) and I2

(right; LB = 4, α = 30◦, β = 150◦), respectively

use the algorithm as a marching algorithm. Each robot independently computes
a velocity vector using the algorithm, moves to a new position with the velocity
for a unit of time, and repeats this cycle until it reaches the goal position. The
algorithm is oblivious, i.e., the computation depends only on the current robot
configuration, and is constructed from a naive algorithm called G below that
generates only a selfish move, by adding two simple ingredients. We first design
and evaluate the algorithm G+ for two robots and will later apply the idea to
the case of three or more robots.

To design G+, we first examine a straightforward greedy algorithm G, in
which each robot simply tries to move toward its goal location without taking
into account the goal of the other robot. Although G can generate a motion
for successfully transporting a ladder in almost all instances we consider, the
resulting motion tends to lack smoothness and efficiency (Fig. 4 (left) shows
how G rotates the ladder about 180◦); the finish time can be greater by up to
163.5% over that of a time-optimal motion. G+ is based on the following simple
idea; at any moment each robot pursues its individual interest of moving toward
its goal position, while at the same time making minor adjustments to its course
based on the other robot’s current and goal locations and the final orientation of
the object. G+ generates a motion that is smooth and fairly close to the time-
optimal motion (Fig. 9 (left) shows how G+ rotates the ladder about 180◦),
whose finish time is only up to 9.6% greater than the optimal.

In fact, the algorithm G+ is a refinement of the algorithm called ALG1 pro-
posed in [3]; we can show that G+ is correct, while ALG1 is not. Combining it
with the fact that G+ is oblivious, i.e., it determines the next position indepen-
dently of the motions in the past, we can show that G+ is self-stabilizing – the
system works stably even in the presence of transient sensor and control errors.

We next discuss how to apply G+ to three or more robots (up to nine robots),
and demonstrate by computer simulations that G+ seems to work fairly well,
although we do not have data on time-optimal motions against which the simu-
lation results should be compared.

It is worth mentioning that our approach is not a variation of well-known
negative feedback control, in which a robot attempts to reduce the deviation
from an optimal trajectory that has been given a-priori. In our algorithm, the
robots are not provided with any optimal path in advance. Their trajectories are
determined only as a result of their interaction with each other.
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Fig. 2. The setup of the problem. We represent robots A and B by hollow and gray
circles, respectively.

The paper is organized as follows: Section 2 explains the robot model.
Section 3 examines algorithm G. In Sect. 4, we introduce algorithm G+, demon-
strates its performance, and show that it is correct and self-stabilizing. Exten-
sions of G+ for three or more robots are discussed in Sect. 5. We then conclude
the paper by giving some remarks in Sect. 6.

2 Modeling Two Robots

Consider two robots A and B carrying a ladder of length 
 in an obstacle-free
workspace. We represent the robots and the ladder as two disks and a line
segment, respectively, as is shown in Fig. 2. We assume that the robots are
identical; they have the same maximum speed and execute the same algorithm.

Let As, Bs and Ag, Bg be the start and goal positions of the robots, respec-
tively. We let LA = |AsAg| and LB = |BsBg|. α and β denote the angles that
the ladder makes with BsBg at the start and goal positions, respectively. We
can describe instances of the problem using LB, α and β.

Each end of the ladder is assumed to be attached to a force sensor as in [5],
that we model as an ideal spring at the center of each robot. Since the distance
D between the centers of the robots does not always equal 
 during motion, the
force sensor produces an offset vector o of size |(D− 
)/2| from the center of the
robot to the end of the ladder. The offset vectors at both ends are equal in size
and opposite in direction3.

We assume that at any moment, robot A (resp. B) knows As, Ag, Bg, oA

(resp. Bs, Bg, Ag, oB) and 
 (provided that there are no sensor errors). Since A
(resp. B) can computes Bs (resp. As) using oA = −oB, without loss of generality,
we may assume that at any moment, they know As, Ag, Bs, Bg, oA, oB, 
, LA,
LB, α and β. A (distributed) algorithm for robot R with maximum speed V is
any procedure that computes a velocity vector vR with |vR| ≤ V from some of
As, Ag, Bs, Bg, oA, oB, 
, LA, LB, α and β.

We assume that a robot R repeatedly computes vR and moves to a new
position with velocity vR for unit time. For simplicity we use discrete time and

3 Here we ignore the acceleration of the robots and assume that sufficiently long period
of time for spring relaxation is given to the robots before sensing the current size of
the offset vector.
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Fig. 3. The model of a robot

assume that both robots compute their respective velocity vectors and move to
their new positions at time instances 0, 1, · · ·. See Fig. 3.

The finish time is the time tf when both robots arrive at their respective goal
positions. The delay is then defined to be (tf − to)/to × 100(%), where to is the
finish time of a time-optimal motion. We use the size of the offset vector during
a motion to evaluate the “smoothness” of a motion.

3 Naive Algorithm G for Two Robots

In this section we describe and observe a naive greedy algorithm G. We shall
later modify it in Sect. 4 to obtain algorithm G+. In the following description
of G, R denotes either robot A or B, V is the maximum speed of both robots,
and s is a spring constant.

[Algorithm G for robot R]

Step 1: If LR ≤ V then move to Rg and terminate. Otherwise, let tR be a
vector directed from Rs to Rg such that |tR| = V .

Step 2: Scale the offset vector by hR = soR.
Step 3: Set TR = tR + hR.
Step 4: Scale the size of TR to V and move at velocity TR for a unit of time.

Go to Step 1.

Note that TR consists of two components: tR (move toward the goal) and hR

(move to reduce the offset). In Step 4 TR is scaled to V that makes the robot
always move at the maximum speed.

Let us observe the performance of G by conducting computer simulation. For
computer simulation, we use 
 = 1 and V = 0.01. The radius of a robot is 0.1.
We use spring constant s = 0.25, which was found to be large enough to keep
the endpoints of the ladder inside the circles representing robots’ bodies during
the simulation. To reduce the number of instances to examine, we consider only
the cases LB = 2 and 4, 0◦ ≤ α ≤ 90◦, and β = 180◦ − α (see Fig. 2). These
cases include two representative situations:

– The distance to the goal is small, and the robots must rotate the ladder
quickly, as in instance I1 (LB = 2, α = 1◦, β = 179◦), whose time-optimal
motion is shown in Fig. 1 (left).
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Fig. 4. The motions by G for instance I1 (left) and I2 (right), respectively

– The distance to the goal is large, and the robots do not need to rotate the
ladder quickly, as in instance I2 (LB = 4, α = 30◦, β = 150◦), whose time-
optimal motion is shown in Fig. 1 (right).

Note that only the relative positioning of the initial and goal positions of the
ladder is important. That is, by interchanging the initial and goal positions, and
by interchanging endpoints A and B, the above setting covers the following cases
also, hence, need not be discussed separately:

– The case α > 90◦ and β = 180◦ − α (rotating the ladder clockwise).
– The case −90◦ ≤ α < 0, and β = −180◦ − α (this is a symmetric case)

Although this configuration setting does not cover all the possibilities, we con-
sider that it is a reasonable subset of the infinite instances: For example the case
β �= 180◦ − α for 0 < α < 90◦ is not included explicitly in the above setting.
However, the robots fall into such a configuration at some intermediate step dur-
ing the motion, because the angle of the ladder gradually changes and the robots
determine their motion based only on the current and goal positions. Hence if
the algorithm works well for the above configuration setting, we can expect that
it also works for the case β �= 180◦ − α.

The two figures of Fig. 4 show the motions by G for instances I1 (left) and I2
(right), respectively. The finish times are 340 and 439, respectively.

First, let us observe that the trajectories of the robots in these figures look
quite different from the smoother motions shown in Fig. 1. Robot A temporarily
“yields” to generate a smooth motion in Fig. 1 (left), while it does not in Fig. 4
(left). Both translation and rotation take place simultaneously in Fig. 1 (right),
while in Fig. 4 (right), the ladder starts to rotate only toward the end of the
motion. That is, rotation can occur only as a result of the robots’ individual
moves toward their goal positions, and that explains why in Fig. 4 (right) the
ladder first translates without any rotation.

Here we would like to note the effect of the spring constant s: Intuitively
speaking, if s is smaller, the gray robot tends to move (more) straight to the
goal with narrowing the distance from the other robot, which largely breaks the
formation of the robots (The evaluation of the motions based on this criteria is
mentioned below).

The two figures of Figs. 5 show for LB = 2 (left) and LB = 4 (right), respec-
tively, the finish times of the motions generated by G and those of time-optimal
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Fig. 5. Finish times of G, G+ and a time-optimal motion, for LB = 2 (left) and LB = 4
(right) with 0◦ ≤ α ≤ 90◦ (excluding α = 0◦ for G)
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Fig. 6. Offset vector size for instances I1 (left) and I2 (right), by G (Fig. 4, left), G+
(Fig. 9, left), and a time-optimal motion (Fig. 1, left)

motions, for α = 1◦, 5◦, 10◦, · · · , 90◦. (Ignore the plot for G+ for now.) Note
that for LB = 4, the finish time of a time-optimal motion almost always equals
LB/V (= 400), which indicates that the robot B can move straight to the goal
position in an optimal motion.

For both LB = 2 and 4, G generates a motion that is almost time-optimal
if α ≥ 70◦ (and hence, the required amount of rotation is small). However, the
performance drops significantly as α becomes smaller (requiring more rotation).
The worst case (among those we observed) is when LB = 2 and α = 1◦ (Fig. 4,
left), where the finish time of 340 by G is about 163.5% greater than a time-
optimal motion’s 208. (That is, the delay is 63.5%.)

Let us now discuss the smoothness of the motions that G generates. Figs. 6
(left) and 6 (right) show the offset vector size |oA| (= |oB|) during the motion
generated by G and in a time-optimal motion, for instances I1 and I2, respec-
tively. (Again, ignore the plot for G+ for now.) Note that the curves in these
figures end at the finish times of the respective motions. It is worth noting that
the offset vector size remains zero in the time-optimal motion.

The curves for G in these figures suddenly jump to a high peak when the
ladder starts to rotate, and remains relatively high during rotation. This happens
at time zero in Fig. 6 (left), and 229 in Fig. 6 (right). In contrast, the curve
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Fig. 7. Peak offset vector size by G, G+ and a time-optimal motion, for LB = 2 (left)
and LB = 4 (right), respectively

in Fig. 6 (right) stays at zero before time 229 when the ladder is translated
but not rotated. Furthermore, in Fig. 6 (left), the curve stays very high for
a long period around time 20 to 150, indicating continuous severe stress that
might be unacceptable to physical robots. Especially the motions by G produce
oscillating offset vectors, e.g., around time 30 for I1, that might be unacceptable
for practical robots as well. The spring constant s affects this stress of motion.
The above observation is obtained setting s = 0.25 and so we may be able to
choose more suitable (actually larger) value for s in order to keep the size of
offset vector small. However, the larger s causes the longer finish time because
the robots have to detour compared to the motions obtained by s = 0.25. The
difficult point here is that we need to choose a value for s which can achieve
fastness and smoothness at the same time.

Figs. 7 (left) and 7 (right) show the peak offset vector size observed during a
motion generated by G for LB = 2 and LB = 4, respectively, for various values
of α. As observed above, the motion of G is divided into two parts, translation of
the ladder followed by rotation. Since offset vectors become large during rotation,
the distance to the goal does not have much effect here. Therefore the results
for LB = 2 and LB = 4 are very similar. The maximum size of the offset vectors
gradually decreases as α increases and hence smaller rotation is required.

To summarize, we observe that G tends to separate translation and rotation.
This results in a motion that is less smooth because of a sudden transition
between the two phases. We believe that there are two reasons for the separation.

– There is no explicit mechanism to rotate the ladder. Consequently, robot A
never moves away from its goal location in Fig. 4 (left) to assist robot B to
rotate the ladder.

– The robots do not utilize the information on the distances to their respective
goals. Consequently, both robots move at the same speed (and hence, the
ladder is not rotated at all), during translation in Fig. 4 (right), even though
robot B is farther away from its goal than robot A.

It is conceivable that a smoother, faster motion can result if translation and
rotation are merged by resolving these issues.
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4 Algorithm G+ for Two Robots

Based on the observations in the last section, we add two features to G:

– When the distances to the goal positions differ between the robots, the robot
closer to its goal reduces its speed.

– The velocity vector that each robot computes has a third component, called
rotation vector, whose magnitude is proportional to the amount of rotation
needed before the ladder reaches the goal location.

The resulting algorithm G+ is described below for robot R. As before, R is
either A or B, and R′ denotes the other robot, e.g., if R = A then R′ = B.
V is the robots’ maximum speed. Note again that V is the maximum distance
that a robot can move in a unit of time. In G+, we move both robots to their
goal positions, as soon as the ladder reaches a position sufficiently close to the
goal position. More specifically, if max{LR, LR′} ≤ V , then R moves to Rg

and terminates. We assume that V has been chosen to make this move feasible.
Parameters s > 0, t ≥ 0 and u ≥ 0 will be explained shortly.

[Algorithm G+ for robot R]

Step 1: Set Lmax = max{LR, LR′}. If Lmax ≤ V then move to Rg and
terminate. Otherwise, go to Step 2.

Step 2: Let tR be a vector directed from Rs to Rg such that |tR| = V ·( LR

Lmax
)t.

Step 3: Let rR be a rotation vector of length u(β − α)/Lmax. The direction
of rR, which is perpendicular to the ladder, is set to (i) α + π/2 if LR ≤
LR′ , and (ii) α − π/2 otherwise, in an attempt to reduce β − α (favoring a
counterclockwise rotation if β − α = 180◦).

Step 4: Scale the offset vector by hR = soR.
Step 5: TR = tR + rR + hR.
Step 6: Compute TR′ , following Steps 1–5 for R′.
Step 7: Let vR = V · TR

max{|TR|,|TR′ |} . Move at velocity vR for a unit of time.
Go to Step 1.

G+ uses three parameters s, t and u. Parameter s, which is set to 0.25 as
in G, determines the sensitivity of the robot to the offset vector. Larger values
of t slows down further the robot that is closer to the goal, and parameter u
determines the effect of the rotation vector. Note that if t = 0 and u = 0, then
G+ reduces to G. Since the motion of the robots depends on t and u, it may
seem at first that we need to set them to reasonably good values for each given
instance, to obtain a smooth motion that is close to the time-optimal motion.
As we demonstrate next, however, it turns out that a fixed pair of values for t
and u can be used to such a smooth motion for a wide range of instances.

Figs. 8 (left) and 8 (right) show, for instances I1 and I2, respectively, the finish
times of the motions generated by G+ for t, u = 0, 1, · · · , 10. The results in these
figures exemplify what we observed through extensive simulation using a large
number of instances. That is, as is shown in Fig. 8 (left), in those instances in
which the ladder must be rotated quickly, using any value of t ≥ 1 and u = 1



134 Y. Asahiro et al.

 0
 2

 4
 6

 8
 10 0

 2

 4

 6

 8

 10

 220

 240

 260

 280

 300

 320

 340

 360

Finish time

L=2, Alpha=1

t

u

Finish time

 0
 2

 4
 6

 8
 10 0

 2

 4

 6

 8

 10

 400
 405
 410
 415
 420
 425
 430
 435
 440

Finish time

L=4, Alpha=30

t

u

Finish time

Fig. 8. Finish time of the motions by G+ for instance I1 (left) and I2 (right), for
t, u = 0, 1, · · · , 10

Fig. 9. The motions by G+ with t = 1 and u = 1, for instance I1 (left) and I2 (right),
respectively

often gives a good finish time. If the ladder need not be rotated very quickly,
then as shown in Fig. 8 (right) the finish time becomes less dependent on t and
u, and we can expect good performance using any value of t ≥ 1 and u = 0. In
addition to I1 and I2, we tested more configurations, e.g., LB = 3, 4, 5, 6 and
α = 1◦, and also LB = 2 and α = 5◦, 10◦, 15◦, 20◦. We omit the detailed results
here due to the space limitation, however for all the tested configurations the
obtained charts look like those in Fig. 8. Based on the above observation, in the
following we use t = 1 and u = 1 to evaluate G+4.

Figs. 9 (left) and 9 (right) show the motions generated by G+ for instances I1
and I2, respectively. These motions resemble the time-optimal motions in Figs. 1
(left) and 1 (right) more closely than those by G shown in Figs. 4 (left) and 4
(right). Specifically, in Fig. 9 (left), robot A (the hollow circle) temporarily leaves
its position and returns to it in order to rotate the ladder quickly. In Fig. 9,
translation and rotation take place simultaneously, and robot B (that has to
move more than the other robot) can move nearly straight to its destination.

The simulation results indicate that G+ generates a faster and smoother
motion than G. See Fig. 5 and for a comparison of the finish times of G+, G
and a time-optimal motion. For α ≤ 80◦ the finish time of G+ is smaller than
that of G. (For α > 80◦, both G and G+ generate a motion whose finish time
equals that of a time-optimal motion.) The delay of G+ in the motion of Fig. 9

4 Of course, t = 1, u = 1 is not optimal for all instances. For instance, setting t = 2
and u = 1 gives a slightly better finish time in Fig. 8 (right). Also, currently, we have
no method to obtain “theoretically” best values for t and u. In practice, physical
robots should be able to have a database of good t-u pairs for various LB , α and β.
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(left) for instance I1 is only 9.6% (this is the worst case we observed for G+),
as opposed to 63.5% of G in Fig. 4 (left). For instance I2, the delay is 3.5% in
the motion of Fig. 9 (right) by G+, as opposed to 9.8% in the motion of Fig. 4
(right) by G. Figs. 6 (left) and 6 (right), respectively, show that the offset vector
size is considerably smaller in the motions of Figs. 9 (left) and 9 (right) by G+,
compared to that of Figs. 4 (left) and 4 (right) by G. Figs. 7 show that the peak
offset vector size is smaller in G+ than in G.

We next show that G+ is correct, i.e., for arbitrary initial and goal positions
of the ladder, using Algorithm G+, robots A and B can transport the ladder to
its goal position, provided that there are no sensor or control errors.

Theorem 1. Suppose that u > 0. Then Algorithm G+ is correct.

Proof. We give an outline of the proof. If Lmax = max{LA, LB} ≤ V , then G+
terminates after the robots transport the ladder to the goal position in Step 1.
We show that eventually Lmax ≤ V holds. Suppose that α �= β. Since u > 0,
α gets closer to β in each iteration of G+. Once α turns to be equal to β, the
rest of the work for the robots is just moving straight to the goal position; the
rotation vector is no longer needed and so it has size 0 in Step 3. Thus the target
vectors tA and tB of the robots can have opposite directions only in the very
first iterations, and hence in subsequent iterations, tA and tB together have the
effect of moving the center of the ladder closer to its center in the goal position.
The robots’ offset correction vectors hA and hB are opposite in direction and
equal in magnitude, and hence they do not affect the movement of the center of
the ladder. Even if the center of the ladder stays exactly at the center of the goal
positions of the ladder, it does not mean the robots reached the goal positions.
However, after that, the vectors tR and hR help to move the robots to the goal
positions without moving the center of the ladder. ��

Consider the instance shown on the left in Fig. 10, where G+ would drive both
robots straight to their respective goal positions, if there were no control errors.
As illustrated on the right, in any physical experiment the robots will inevitably
deviate from the intended trajectories for a number of reasons, including sensor
and control errors. An advantage of G+ is that its future output depends only on
the current and goal states, and is independent of the past history. An algorithm
is said to be self-stabilizing if it tolerates any finite number of transient faults
like sensor and control errors, i.e., the algorithm is correct, even in the presence
of any finite number of transient faults.

Corollary 1. Algorithm G+ is self-stabilizing.

To confirm the robustness of G+, we conducted a series of simulations by replac-
ing TR in Step 5 of G+ by TR = tR+rR+hR+nR, where nR is a random noise
vector of size 0.1V . Since Corollary 1 guarantees that G+ eventually transports
the ladder to the goal position, our main concern here is the finish time.

Figs. 11 (left) and 11 (right), respectively, show the finish times of the motions
by G+ in the presence of noise (as well as the results for the noise-free case and
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Fig. 10. A simple instance (left), and deviation from the intended path (right)
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Fig. 11. Finish times of G+ with noise for LB = 2 (left) and LB = 4 (right), respec-
tively

time-optimal motions), for LB = 2 and 4. For each value of α, a vertical bar
and a small box show, respectively, the range of finish times and their average
we observed in 100 runs. (Actual trajectories with noise differ very little visibly
from those in the noise-free case, and thus are omitted.)

The delay due to noise, over the noise-free case, can be as large as 4.5% for
both the cases LB = 2 and LB = 4 (when α = 90◦). It is not clear why the delay
due to noise increases slightly as α approaches 90◦. However, we think that the
delay is sufficiently small in all cases and is acceptable in practice. Especially
(as Corollary 1 guarantees) the robots never failed to reach the goal positions in
our simulation even in the presence of noise.

Finally, we observe that each robot can simulate G+ even after we replace the
ladder by an imaginary one, and thus we can use G+ as a marching algorithm.
However, it is obvious from the fact that G+ requires as input the current and
goal positions of the robots.

5 Algorithm G+ for Three and More Robots

In this section we extend Algorithm G+ to more than two robots. First, we
modify the problem formulation defined in Section 2. Consider for example the
case of three robots carrying a regular triangle (equilateral). As in Fig. 2, let
As, Bs, Cs and Ag, Bg, Cg be the start and goal positions of the robots, respec-
tively (see Fig. 12). Then instances are identified with three parameters L, α,
and β, where L is defined as |AsAg| and α and β are the angles that AsBs and
AgBg makes with AsAg, respectively. For simplicity, we restrict our attention to
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Fig. 12. The setup of the problem with three robots

a setting of the problem, in which β = 180◦ − α (0◦ ≤ α ≤ 90◦), and L = 2 and
4 as before.

Algorithm G+ for more than two robots is basically the same as before, except
Step 4. In the case of two robots, we calculated the offset vector oR considering
that the ladder is placed exactly in the middle of the two robots. When the
number of robots is more than two, we use the method given in pp.752–753
of [27] to this end, and then calculate the offset vector: First, the center of mass
of the object is supposed to coincide with the center of mass of the robots’
positions. Then, we consider that the total external force to the object produced
by the robots is defined as sum of force vector produced by the difference between
each robot’s current position and a corresponding corner of the object. Then, we
determine the position of the object such that the total moment of the external
forces is turned to be zero, that is, rotational forces caused by the force vectors
are canceled. For comparison purpose, we also extend G in a straight forward
way to the case with more than two robots.

In the following, let us observe the performance of G+ for more than two
robots (up to nine robots) carrying a regular polygon. First we pick up 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, and 0.9 as the values of the spring constant s, respectively for
three to nine robots which were found to be large enough to keep the endpoints
of the object inside the circles representing robots’ bodies. Then, again we can
choose a reasonable pair of values for the parameters t and u such as t = 1 and
u = 1 by simulation (similar to the simulations in Section 4). Note again that
these values are not always the best for each instance, but they give reasonable
motions: Fig. 13 and Fig. 14 show example motions by G and G+ with three
robots, for the instances I1 and I2. Roughly speaking, like the case of two robots,
the motions by G are divided into two parts, translation and rotation, while
these two are done simultaneously in the motions by G+ that derives smoother
motions.

Because of the space limitation, we only show a limited number of detailed
simulation results of G and G+ with three robots for L = 2 and L = 4 in
Figs. 15 and 16. In addition, for four to nine robots, we only show the figures
of motions by G and G+ for the instances I1 and I2 in Figs. 17 through 25
without charts showing finish times and formation errors. Since there is no pre-
vious research on time-optimal motions with more than two robots, the figures
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Fig. 13. Motions with three robots by G (left) and G+ (right) for instance I1

Fig. 14. Motions with three robots by G (left) and G+ (right) for instance I2

 200

 210

 220

 230

 240

 250

 260

 270

 280

 290

 0  10  20  30  40  50  60  70  80  90

F
in

is
h 

tim
e

Alpha

G
G+

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0  10  20  30  40  50  60  70  80  90

M
ax

im
al

 s
iz

e 
of

fs
et

 v
ec

to
r

Alpha

G
G+

Fig. 15. Finish times (left) and peak offset vector size (right) of G and G+ for L = 2
and 0◦ ≤ α ≤ 90◦ with three robots, respectively
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(i) (ii) (iii) (iv)

Fig. 17. Motions for instance I1 with four robots by (i) G and (ii) G+, and with five
robots by (iii) G and (iv) G+, respectively

(i) (ii) (iii) (iv)

Fig. 18. Motions for instance I1 with six robots by (i) G and (ii) G+, and with seven
robots by (iii) G and (iv) G+, respectively

(i) (ii) (iii) (iv)

Fig. 19. Motions for instance I1 with eight robots by (i) G and (ii)G+, and with nine
robots by (iii) G and (iv) G+, respectively

Fig. 20. Motions with four robots by G (left) and G+ (right) for instance I2
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Fig. 21. Motions with five robots by G (left) and G+ (right) for instance I2

Fig. 22. Motions with six robots by G (left) and G+ (right) for instance I2

Fig. 23. Motions with seven robots by G (left) and G+ (right) for instance I2

Fig. 24. Motions with eight robots by G (left) and G+ (right) for instance I2

do not show the results for optimal motions. Finish times of G and G+ are
almost similar, although G+ is slightly better (Fig. 15, left). We observed the
largest improvement in terms of finish time for the instance I1 with nine robots:
The finish times of G and G+ are 835 and 741, respectively, in which the motion
by G+ is completed 12.2% faster than the motion by G. As for the size of the
peak offset vector, the motions by G+ are always smoother than those by G
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Fig. 25. Motions with nine robots by G (left) and G+ (right) for instance I2

(Fig. 15, right). As an example, for the instance I1 with nine robots, the size
of the peak offset vector by G+ is about 63% of that by G; G+ improves the
smoothness of the motion. In summary, the simulation results indicate that if
the number of robots is greater than two, the advantage of algorithm G+ over G
is in smoother motions rather than smaller finish times. This observation seems
to indicate that maintaining a given formation can be a severe constraint when
obtaining time-optimal motion with many robots.

We would like to note here that, arguing as in the proof of Theorem 1, we
can prove the convergence of Algorithm G+, i.e., the robots’ positions always
converge to their goal positions, for the case of more than two robots in a simple
formation such as a regular polygon we examined.

6 Conclusion

In this paper, we have proposed a self-stabilizing marching algorithm in an
obstacle-free workplace, where marching means that the robots must move while
maintaining a given formation. To this end, for the case of two robots, we have
developed an algorithm G+ for a group of oblivious robots to transport a ladder,
and showed that G+ is correct, and self-stabilizing. As promised, G+ is simple
and constructed from a naive algorithm G that generates only a selfish move,
by adding two simple ingredients. Also, the motions obtained by G+ are fairly
close to the time-optimal motions.

In G+, each robot uses the offset vector to figure out (and adjust) its position
relative to the object it carries. It is not difficult to extend G+ to handle the
case in which more than two robots are involved to transport a given object,
since the offset vector can be easily calculated from the current positions of the
robots. Based on this idea, we have extended G+ and demonstrated by computer
simulation that G+ holds the merits for three or more robots.

We have also observed that G+ is indeed used as a marching algorithm for
the case of two robots. However, the same observation is obviously possible even
for more than two robots, and hence G+ can be used as a marching algorithm
for more than two robots, as well.

The three parameters s, t, and u used in G+ are experimentally determined
in this paper based on the limited number of simulations. As for the further



142 Y. Asahiro et al.

deep studies on the algorithm G+, if we can develop a method to select their
values for every configuration, it must be very useful. The algorithms G and G+
are evaluated by delay (finish time) and formation error, which shows that G+
is better than G, however it is controversial that how much delay or formation
error is accepted for real robots, or whether G+ is a best possible algorithm or
not. In addition to that, the proof of correctness of G+ does not guarantee the
maximum finish time or the maximum formation error. The self-stability of G+
is demonstrated under an assumption that the robot may move to wrong position
because of noise. An alternative interesting situation to be tested is that each
robot sometimes misunderstands the others’ locations because of sensor errors.

Distributed marching algorithms (i) by robots with different maximum speeds
and capabilities, (ii) using many robots, and (iii) in an environment occupied by
obstacles, are suggested for future study. Some results on these issues are found
in [3, 4].
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Abstract. This paper studies the flocking problem, where mobile robots group
to form a desired pattern and move together while maintaining that formation.
Unlike previous studies of the problem, we consider a system of mobile robots
in which a number of them may possibly fail by crashing. Our algorithm ensures
that the crash of faulty robots does not bring the formation to a permanent stop,
and that the correct robots are thus eventually allowed to reorganize and continue
moving together. Furthermore, the algorithm makes no assumption on the relative
speeds at which the robots can move.

The algorithm relies on the assumption that robots’ activations follow a k-
bounded asynchronous scheduler, in the sense that the beginning and end of ac-
tivations are not synchronized across robots (asynchronous), and that while the
slowest robot is activated once, the fastest robot is activated at most k times (k-
bounded).

The proposed algorithm is made of three parts. First, appropriate restrictions
on the movements of the robots make it possible to agree on a common ranking
of the robots. Second, based on the ranking and the k-bounded scheduler, robots
can eventually detect any robot that has crashed, and thus trigger a reorganiza-
tion of the robots. Finally, the third part of the algorithm ensures that the robots
move together while keeping an approximation of a regular polygon, while also
ensuring the necessary restrictions on their movement.

1 Introduction

Be it on earth, in space, or on other planets, robots and other kinds of automatic sys-
tems provide essential support in otherwise adverse and hazardous environments. For
instance, among many other applications, it is becoming increasingly attractive to con-
sider a group of mobile robots as a way to provide support for rescue and relief during
or after a natural catastrophe (e.g., earthquake, tsunami, cyclone, volcano eruption).
As a result, research on mechanisms for coordination and self-organization of mobile
robot systems is beginning to attract considerable attention (e.g, [17,19,20,21]). For
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such operations, relying on a group of simple robots for delicate operations has vari-
ous advantages over considering a single complex robot. For instance, (1) it is usually
more cost-effective to manufacture and deploy a number of cheap robots rather than a
single expensive one, (2) higher number yields better potential for a system resilient to
individual robot failures, (3) smaller robots have obviously better mobility in tight and
confined spaces, and (4) a group can survey a larger area than an individual robot, even
if the latter is equipped with better sensors.

Nevertheless, merely bringing robots together is by no means sufficient, and ade-
quate coordination mechanisms must be designed to ensure coherent group behavior.
Furthermore, since many applications of cooperative robotics consider cheap robots
dwelling in hazardous environments, fault-tolerance is of primary concern.

The problem of reaching agreement among a group of autonomous mobile robots
has attracted considerable attention over the last few years. While much formal work
focuses on the gathering problem (robots must meet at a point, e.g., [7]) as the embodi-
ment of a static notion of agreement, this work studies the problem of flocking (robots
must move together), which embodies a dynamic notion of agreement, as well as co-
ordination and synchronization. The flocking problem has been studied from various
perspectives. Studies can be found in different disciplines, from artificial intelligence
to engineering [1,3,5,6]. However, only few works considered the presence of faulty
robots [2,4].

Fault-tolerant flocking. Briefly, the main problem studied in this paper, namely the
flocking problem, requires that a group of robots move together, staying close to each
other, and keeping some desired formation while moving. Numerous definitions of
flocking can be found in the literature [3,11,12,14], but few of them define the prob-
lem precisely. The rare rigorous definitions of the problem suppose the existence of a
leader robot and require that the other robots, called followers, follow the leader in a
desired fashion [3,6,10], such as by maintaining an approximation of a regular polygon.

The variant of the problem that we consider in this paper requires that the robots
form and move while maintaining an approximation of a regular polygon, in spite of
the possible presence of faulty robots—robots may fail by crashing and a crash is per-
manent. Although we do consider the presence of a leader robot to lead the group, the
role of leader is assigned dynamically and any of the robots can potentially become a
leader. In particular, after the crash of a leader, a new leader must eventually take over
that role.

Model. The system is modelled as a system composed of a group of autonomous mobile
robots, modelled as points evolving on the plane, and all of which execute the same
algorithm independently. Some of the robots may possibly fail by crashing, after which
they do not move forever. Although the robots share no common origin, they do share
one common direction (as given by a compass), a common unit distance, and the same
notion of clockwise direction.

Robots repeatedly go through a succession of activation cycles during which they
observe their environment, compute a destination and move. Robots are asynchronous
in that one robot may begin an activation cycle while another robot finishes one. While
some robots may be activated more often than others, we assume that the scheduler
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is k-bounded in the sense that, in the interval it takes any correct robot to perform a
single activation cycle, no other robot performs more than k activations. The robots can
remember only a limited number of their past activations.

Contribution. The paper presents a fault-tolerant flocking algorithm for a k-bounded
asynchronous robot system. The algorithm is decomposed into three parts. In the first
part, the algorithm relies on the k-bounded scheduler to ensure failure detection. In the
second part, the algorithm establishes a ranking system for the robots and then ensures
that robots agree on the same ranking throughout activations. In the third and last part,
the ranking and the failure detector are combined to realize the flocking of the robots
by maintaining an approximation of a regular polygon while moving.

Related work. Gervasi and Prencipe [3] have proposed a flocking algorithm for robots
based on a leader-followers model, but introduce additional assumptions on the speed
of the robots. In particular, they proposed a flocking algorithm for formations that are
symmetric with respect to the leader’s movement, without agreement on a common
coordinate system (except for the unit distance). However, their algorithm requires that
the leader is distinguished from the robots followers.

Canepa and Potop-Butucaru [6] proposed a flocking algorithm in an asynchronous
system with oblivious robots. First, the robots elect a leader using a probabilistic algo-
rithm. After that, the robots position themselves according to a specific formation. Fi-
nally, the formation moves ahead. Their algorithm only lets the formation move straight
forward. Although the leader is determined dynamically, once elected it can no longer
change. In the absence of faulty robots, this is a reasonable limitation in their model.

To the best of our knowledge, our work is the first to consider flocking of asyn-
chronous (k-bounded) robots in the presence of faulty robots. Also, we want to stress
that the above two algorithms do not work properly in the presence of faulty robots, and
that their adaptation is not straightforward.

Structure. The remainder of this paper is organized as follows. In Section 2, we present
the system model. In Section 3, we define the problem. In Section 4, we propose a
failure detection algorithm based on k−bounded scheduler. In Section 5, we give an
algorithm that provides a ranking mechanism for robots. In Section 6, we propose a
dynamic fault tolerant flocking algorithm that maintains an approximation of a regular
polygon. Finally, in Section 7, we conclude the paper.

2 System Model and Definitions

2.1 The CORDA Model

In this paper, we consider the CORDA model of Prencipe [8] with k-bounded scheduler.
The system consists of a set of autonomous mobile robots R = {r1, · · · , rn}. A robot
is modelled as a unit having computational capabilities, and which can move freely in
the two-dimensional plane. Robots are seen as points on the plane. In addition, they are
equipped with sensor capabilities to observe the positions of the other robots, and form
a local view of the world.
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The local view of each robot includes a unit of length, an origin, and the direc-
tions and orientations of the two x and y coordinate axes. In particular, we assume
that robots have a partial agreement on the local coordinate system. Specifically, they
agree on the orientation and direction of one axis, say y. Also, they agree on the clock-
wise/counterclokwise direction.

The robots are completely autonomous. Moreover, they are anonymous, in the sense
that they are a priori indistinguishable by appearance. Furthermore, there is no direct
means of communication among them.

In the CORDA model, robots are totally asynchronous. The cycle of a robot consists
of a sequence of events: Wait-Look-Compute-Move.

– Wait. A robot is idle. A robot cannot stay permanently idle. At the beginning all
robots are in Wait state.

– Look. Here, a robot observes the world by activating its sensors, which will return
a snapshot of the positions of the robots in the system.

– Compute. In this event, a robot performs a local computation according to its de-
terministic algorithm. The algorithm is the same for all robots, and the result of the
compute state is a destination point.

– Move. The robot moves toward its computed destination. But, the distance it moves
is unmeasured; neither infinite, nor infinitesimally small. Hence, the robot can only
go towards its goal, but the move can end anywhere before the destination.

In the model, there are two limiting assumptions related to the cycle of a robot.

Assumption 1. It is assumed that the distance travelled by a robot r in a move is not
infinite. Furthermore, it is not infinitesimally small: there exists a constant δr > 0, such
that, if the target point is closer than δr, r will reach it; otherwise, r will move toward
it by at least δr.

Assumption 2. The amount of time required by a robot r to complete a cycle (wait-
look-compute-move) is not infinite. Furthermore, it is not infinitesimally small; there
exists a constant τr > 0, such that the cycle will require at least τr time.

2.2 Assumptions

k-bounded-scheduler. In this paper, we assume the CORDA model with k-bounded
scheduler, in order to ensure some fairness of activations among robots. Before we
define the k-bounded-scheduler, we give a definition of full activation cycle for robots.

Definition 1 (full activation cycle). A full activation cycle for any robot ri is defined
as the interval from the event Look (included) to the next instance of the same event
Look (excluded).

Definition 2 (k-bounded-scheduler). With a k-bounded scheduler, between two con-
secutive full activation cycles of the same robot ri, another robot rj can execute at most
k full activation cycles.

This allows us to establish the following lemma:

Lemma 1. If a robot ri is activated k+1 times, then all (correct) robots have completed
at least one full activation cycle during the same interval.
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Faults. In this paper, we address crash failures. That is, we consider initial crash of
robots and also the crash of robots during execution. That is, a robot may fail by crash-
ing, after which it executes no actions (no movement). A crash is permanent in the sense
that a faulty robot never recovers. However, it is still physically present in the system,
and it is seen by the other non-crashed robots. A robot that is not faulty is called a
correct robot.

Before we proceed, we give the following notations that will be used throughout this
paper. We denote by R = {r1, · · · , rn} the set of all the robots in the system. Given
some robot ri, ri(t) is the position of ri at time t. y(ri) denotes the y coordinate of
robot ri at some time t. Let A and B be two points, with AB, we will indicate the
segment starting at A and terminating at B, and dist(A, B) is the length of such a
segment. Given a region X , we denote by |X |, the number of robots in that region at
time t. Finally, let S be a set of robots, then |S| indicates the number of robots in S.

3 Problem Definition

Definition 3 (Formation). A formation F = Formation(P1, P2, ..., Pn) is a config-
uration, with P1 the leader of the formation, and the remaining points, the followers of
the formation. The leader P1 is not distinct physically from the robot followers.

In this paper, we assume that the formation F is a regular polygon. We denote by d the
length of the polygon edge (known to the robots), and by α = (n− 2)180◦/n the angle
of the polygon, where n is the number of robots in F .

Definition 4 (Approximate Formation). We say that robots form an approximation of
the formation F if each robot ri is within εr from its target Pi in F .

Definition 5 (The Flocking Problem). Let r1,...,rn be a group of robots, whose po-
sitions constitute a formation F = Formation(P1, P2, ..., Pn). The robots solve the
Approximate Flocking Problem if, starting from any arbitrary formation at time t0,
∃t1 ≥ t0 such that, ∀t ≥ t1 all robots are at a distance of at most εr from their respec-
tive targets Pi in F , and εr is a small positive value known to all robots.

4 Perfect Failure Detection

In this section, we give a simple perfect failure detection algorithm for robots based
on a k−bounded scheduler in the asynchronous model CORDA. The concept of failure
detectors was first introduced by Chandra and Toueg [16] in asynchronous systems with
crash faults. A perfect failure detector has two properties: strong completeness, and
strong accuracy. Before we proceed to the description of the algorithm, we make the
following assumption, which is necessary for the failure detector mechanism to identify
correct robots and crashed ones.

Assumption 3. We assume that, at each activation of some robot ri (correct), ri com-
putes as destination a position that is different from its current position. Also, a robot
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ri never visits the same location for the last k + 1 activations of ri.1Finally, a robot
ri never visits a location that was visited by any other robot rj during the last k + 1
activations of rj .

Recall that we only consider permanent crash failures of robots, and that crashed robots
remain physically in the system. Besides, robots are anonymous. Therefore, the prob-
lem is how to distinguish faulty robots from correct ones. Algorithm 1 provides a simple
perfect failure detection mechanism for the identification of correct robots. The algo-
rithm is based on the fact that a correct robot must change its current position whenever
it is activated (Assumption 3), and also relies on the definition of the k−bounded sched-
uler for the activations of robots. So, a robot ri considers that some robot rj is faulty
if ri is activated k + 1 times, while robot rj is still in the same position. Algorithm 1
gives as output the set of positions of correct robots Scorrect, and uses the following
variables:

– SPosPrevObser : a global variable representing the set of points of the positions
of robots in the system in the previous activation of some robot ri. These points
include the positions of correct and faulty robots. SPosPrevObser is initialized to
the empty set during the first activation of robot ri.

– SPosCurrObser: the set of points representing the positions of robots (including
faulty ones) in the current activation of some robot ri.

– cj : a global variable recording how many times robot rj did not change its position.

Algorithm 1. Perfect Failure Detection (code executed by robot ri)
Initialization: SPosPrevObser := ∅; cj := 0
1: procedure Failure Detection(SPosPrevObser,SPosCurrObser)
2: Scorrect := SPosCurrObser;
3: for ∀ pj ∈ SPosCurrObser do
4: if (pj ∈ SPosPrevObser) then {robot rj has not moved}
5: cj := cj + 1;
6: else
7: cj := 0;
8: end if
9: if (cj ≥ k) then

10: Scorrect = Scorrect − {pj};
11: end if
12: end for
13: return (Scorrect)
14: end

The proposed failure detection algorithm (Algorithm 1) satisfies the two properties
of a perfect failure detector: strong completeness, and strong accuracy. It also satisfies
the eventual agreement property. These properties are stated respectively in Theorem 1,
Theorem 2, and Theorem 3, and their proofs are straightforward (details are in corre-
sponding research report [18]).

1 That is, ri never revisits a point location that was within its line of movement for its last k + 1
total activations.
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Theorem 1. Strong completeness: eventually every robot that crashes is permanently
suspected by every correct robot.

Theorem 2. Strong accuracy: there is a finite time after which correct robots are not
suspected by any other correct robots.

Theorem 3. Eventual agreement: there is a finite time after which, all correct robots
agree on the same set of correct robots in the system.

5 Agreed Ranking for Robots

In this section, we provide an algorithm that gives a unique ranking (or identification) to
every robot in the system since we assume that robots are anonymous, and do not have
any identifier to allow them to distinguish each other. The algorithm allows correct
robots to compute and agree on the same ranking. In particular, the ranking mechanism
is needed for the election of the leader of the formation. Recall that, a deterministic
leader election is impossible without a shared y-axis [9]. Therefore, we assume that
robots agree on the y-axis.

We first assume that robots are not located initially at the same point. That is, robots
are not in the gathering configuration [7], because it may become impossible to separate
them later.2 The ranking assignment is given in Algorithm 2, which takes as input the set
of positions of correct robots in the system Scorrect, and returns as output an ordered
set of the positions in Scorrect, called RankSequence. The ranking of positions of
robots in Scorrect gives to every robot a unique identification number. The computation
of RankSequence is done as follows: RankSequence = {Scorrect, <}, where the
relation “ < ”is defined by comparing the y coordinates of the points in Scorrect,
and breaking ties from left to right. In other words, the positions of robots in Scorrect

are sorted by decreasing order of y−coordinate, such that the robot with greatest y-
coordinate is the first in RankSequence. When two or more robots share the same
y-coordinate, the clockwise direction is used to determine the sequence; a robot ri that
has a robot rj on its right hand, has a lower rank than rj in RankSequence.

In order for robots to agree on the same RankSequence initially, some restrictions
on their movement are required during their first k activations. The movement restric-
tion is given by procedure Lateral Move Right(), and it is designed in such a way that
all robots compute the same RankSequence during their first k activations. In particu-
lar, a robot ri that does not have robots on Right(ri) can move by at most the distance
εr/(k + 1)(k + 2) along Right(ri) in order to preserve the same y−coordinate. Other-
wise, ri moves by min(εr/(k+1)(k+2), dist(ri, p)/(k+1)(k+2)) along Right(ri),
where p is the position of the nearest robot to ri in Right(ri). 3 From Algorithm 2, we

2 Consider two robots that happen to have the same coordinate system and that are always ac-
tivated together. It is impossible to separate them deterministically. In contrast, it would be
trivial to scatter them at distinct positions using randomization (e.g., [15]), but this is ruled out
in our model.

3 Note that, the bounded distance min(εr/(k + 1)(k + 2), dist(ri, p)/(k + 1)(k + 2)) set on
the movement of robots is conservative, and is sufficient to avoid collisions between robots,
and to satisfy Assumption 3.
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Algorithm 2. Ranking Correct Robots (code executed by robot ri)
1: Input: Scorrect: set of positions of correct robots;
2: Output: RankSequence: Ordered set of positions of correct robots Scorrect;
3: Initialization: counteract := a global variable recording the number of activations of ri;
4: procedure Ranking Correct Robots(Scorrect)
5: When ri is activated
6: counteract := counteract + 1;
7: Left(ri):= is the ray starting at ri and perpendicular to its y−axis in counter-clockwise

direction.
8: Sort the y−coordinates of robots in Scorrect in decreasing order.
9: if (∀rj , rk ∈ Scorrect, y(rj) 
= y(rk)) then

10: RankSequence := the set Scorrect in order of decreasing y−coordinate;
11: else if y(rj) = y(rk) then
12: if (rj is on Left(rk)) then
13: RankSequence := rj < rk;
14: else
15: RankSequence := rk < rj ;
16: end if
17: end if
18: if (counteract ≤ k) then
19: Lateral Move Right();
20: end if
21: Return(RankSequence);
22: end

Algorithm 3. Procedure Lateral Move Right (code executed by robot ri).
1: procedure Lateral Move Right()
2: Right(ri) := the ray starting at ri and perpendicular to its y−axis in clockwise direction;

3: if (If no other robot on Right(ri)) then
4: ri moves by at most εr/(k + 1)(k + 2) to Right(ri);
5: else {some robots are in Right(ri) including faulty robots}
6: p := the position of the nearest robot to ri in Right(ri);
7: ri moves by min(εr/(k + 1)(k + 2), dist(ri, p)/(k + 1)(k + 2)) to Right(ri);
8: end if
9: end

derive the following lemmas. In particular, the algorithm gives a unique ranking to every
robot in the system, and also ensures no collisions between robots.

Lemma 2. Algorithm 2 gives a unique ranking to every correct robot in the system.

Lemma 3. By Algorithm 2, there is a finite time after which, all correct robots agree
on the same initial sequence of ranking, RankSequence.

Lemma 4. Algorithm 2 guarantees no collisions between the robots in the system.

The proofs of the above lemmas are simple (details can be found in corresponding
research report [18]).
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6 Dynamic Fault-Tolerant Flocking

In this section, we propose a dynamic fault tolerant flocking algorithm, where a group of
robots can dynamically generate an approximation of a regular polygon (Definition 4),
and maintain it while moving. Our flocking algorithm relies on the existence of two
devices, namely a perfect failure detector device and a ranking device, which were
represented respectively in Algorithm 1, and Algorithm 2.

6.1 Algorithm Description

The flocking algorithm is depicted in Algorithm 4, and takes as input the length of the
polygon edge d, and the history of robot ri, which includes the following variables:

– SPosPrevObser : the set of positions of robots in the system during the last previous
observation of robot ri.

– HistoryMove: the set of points on the plane visited by robot ri during its last
previous k + 1 activations.

– nbract: a counter recording the last previous k + 1 activations of robot ri.

The overall idea of the algorithm is as follows. First, when robot ri gets activated, it
executes the following steps:

1. Robot ri takes a snapshot of the current positions SPosCurrObser of robots in the
system.

2. Robot ri calls the failure detection module to get the set of correct robots, Scorrect.
3. Robot ri calls the ranking module, and gets a total ordering on the set of correct

robots Scorrect, called RankSequence.
4. Depending on the rank of robot ri in RankSequence, ri executes the procedure de-

scribed in Algorithm 5; Flocking Leader(RankSequence, d, nbract, HistoryMove)
if it has the first rank in RankSequence (i.e., the leader). Otherwise, robot ri

is a follower, and it executes the procedure which is described in Algorithm 6,
Flocking Follower(RankSequence, d, nbract, HistoryMove).

5. Robot ri is a leader. First, ri computes the points of the formation P1, ..., Pn as in
Definition 4, with its location as the first point P1 in the formation. The targets of
the followers are the other points of the formation, and they are assigned to them
based on their order in the RankSequence. After that, the leader will initiate the
movement of the formation, while preserving the same rank sequence, keeping an
approximation of the regular polygon, and also avoiding collisions with followers.
In order to prevent collisions between robots, the algorithm must guarantee that
no two robots ever move to the same location. Therefore, the algorithm defines a
movement zone for each robot, within which the robot must move. The zone of the
leader, referred to as Zone(ri), is defined depending on the position of the next
robot ri+1 in RankSequence. Let us denote by projri+1 , the projection of robot
ri+1 on the y−axis of ri. The movement zone of the leader is defined as follows:

– ri and ri+1 have the same y coordinate: Zone(ri) is the half circle with radius
min(dist(ri, ri+1)/(k+1)(k+2), εr/(k+1)(k+2)), centered at ri and above
ri (refer to Fig. 1(a)).
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Algorithm 4. Dynamic Fault-tolerant Flocking (code executed by robot ri)
1: Input: Memory(ri):SPosPrevObser;HistoryMove;nbract;
2: d := the desired distance of the polygon edge;
3: When ri is activated
4: ri takes a snapshot of the positions SPosCurrObser of robots;
5: Scorrect := Failure Detection(SPosPrevObser, SPosCurrObser);
6: RankSequence := Ranking Correct Robots(Scorrect);
7: leader := first robot in RankSequence;
8: if (ri = leader) then {leader}
9: Flocking Leader(RankSequence,d,nbract, HistoryMove);

10: else {follower}
11: Flocking Follower(RankSequence, d, nbract, HistoryMove);
12: end if

Algorithm 5. Flocking Leader: Code executed by a robot leader ri.
1: procedure Flocking Leader(RankSequence,d,nbract, HistoryMove)
2: n := |RankSequence|;
3: α := (n − 2)180◦/n;
4: P := Formation(P1, P2, ..., Pn) as in Definition 3;
5: P1 := current position of the leader ri;
6: ri+1:= next robot to ri in RankSequence;
7: projri+1 := the projection of ri+1 on y−axis of ri;
8: if (projri+1 = ri) then {ri has same y−coordinate as ri+1}
9: Zone(ri):= half circle with radius min(dist(ri, ri+1)/(k+1)(k+2), εr/(k+1)(k+

2)), centered at ri and above ri (refer to Fig. 1(a));
10: else
11: Zone(ri):= the circle centered at ri, and with radius min(εr/(k + 1)(k +

2), dist(ri, projri+1)/(k + 1)(k + 2)) (refer to Fig. 1(b));
12: end if
13: SCrashInZone := the set of positions of crashed robots in Zone(ri);
14: if (SCrashInZone 
= ∅) then
15: ri moves to a desired point Target(ri) within Zone(ri), excluding the points in

SCrashInZone, and the points in HistoryMove;
16: else
17: ri moves to a desired point Target(ri) within Zone(ri), excluding the points in

HistoryMove;
18: end if
19: CurrMove := the set of points on the segment riTarget(ri);
20: if (nbract ≤ k + 1) then
21: HistoryMove := HistoryMove ∪ CurrMove;
22: else
23: HistoryMove := CurrMove;
24: nbract := 1;
25: end if
26: end
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(a) ri and ri+1 have the same y-coordinate,
and dist(ri, ri+1) < εr: Zone(ri) is the
half circle with radius dist(ri, ri+1)/(k +
1)(k + 2).
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(b) ri and ri+1 do not have the same y-
coordinate, and dist(ri, projri+1) ≥ εr:
Zone(ri) is the circle with radius εr/(k +
1)(k + 2).

Fig. 1. Zone of movement of the leader

– ri and ri+1 do not have the same y coordinate: Zone(ri) is the circle, centered
at ri, and with radius min(dist(ri, projri+1)/(k+1)(k+2), εr/(k+1)(k+2))
(refer to Fig. 1(b)).

After determining its zone of movement Zone(ri), robot ri needs to determine
if there are crashed robots within Zone(ri). If no crashed robots are within its
zone, then robot ri can move to any desired target within Zone(ri), satisfying
Assumption 3. Otherwise, robot ri can move within Zone(ri) by excluding the
positions of crashed robots, and satisfying Assumption 3.

6. Robot ri is a follower. First, ri assigns the points of the formation P1, ..., Pn to the
robots in RankSequence based on their order in RankSequence. Subsequently,
robot ri determines its target Pi based on the current position of the leader (P1),
and the polygon angle α given in the following equation: α = (n − 2)180◦/n,
where n is the number of robots in the formation.

In order to ensure no collisions between robots, the algorithm also defines a
movement zone for each robot follower. The zone of a follower, referred to as
Zone(ri) is defined depending on the position of the previous robot ri−1 and
the next robot ri+1 to ri in RankSequence. Before we proceed, we denote by
projri−1 , the projection of robot ri−1 on the y−axis of robot ri. Similarly, we de-
note by projri+1 , the projection of robot ri+1 on the y−axis of ri. The zone of
movement of a robot follower ri is defined as follows:

– ri, ri−1 and ri+1 have the same y coordinate, then Zone(ri) is the segment
rip, with p as the point at distance min(dist(ri, ri+1)/(k+1)(k+2), εr/(k+
1)(k + 2)) from ri (Fig. 2(a)).

– ri, ri−1 and ri+1 do not have the same y coordinate, then Zone(ri) is the circle
centered at ri, and with radius min(εr/(k+1)(k+2), dist(ri, projri−1 )/(k+
1)(k + 2), dist(ri, projri+1)/(k + 1)(k + 2)) (Fig. 2(b)).

– ri and ri+1 have the same y coordinate, however ri−1 does not, then Zone(ri)
is the half circle above it, centered at ri, and with radius min(εr/(k + 1)(k +
2), dist(ri, projri−1)/(k + 1)(k + 2), dist(ri, ri+1)/(k + 1)(k + 2)).
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ri-1 ri

εr/(k+1)(k+2)

zone(ri)
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ri+1

yyy

p

(a) Aligned.

ri

εr/(k+1)(k+2)
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y

ri+1

>= εr

ri-1

>= εr

(b) Not aligned.

dist(ri,proj(ri+1))/(k+1)(k+2)

y

ri-1

>= εr

ri

ri+1

< εr
zone(ri)

(c) Partly aligned.

Fig. 2. Zone of movement of a follower. There are three cases as follows. The situation (a) in
which ri−1, ri, and ri+1 have the same y coordinate. The situation (b) where ri−1, ri and ri+1

do not have the same y coordinate, and dist(ri, projri−1) ≥ εr , and dist(ri, projri+1) ≥ εr .
The situation (c) where ri−1 and ri have the same y coordinate, however, ri+1 does not. Also,
dist(ri, ri−1) ≥ εr , and dist(ri, projri+1) < εr .

– ri and ri−1 have the same y coordinate, however ri+1 does not, then Zone(ri)
is the half circle below it, centered at ri, and with radius min(εr/(k + 1)(k +
2), dist(ri, ri−1)/(k+1)(k+2), dist(ri, projri+1)/(k+1)(k+2)) (Fig. 2(c)).

As we mentioned before, the bound min(εr/(k+1)(k+2), dist(ri, p)/(k+1)(k+
2)) set on the movement of robots is conservative, and is sufficient to avoid colli-
sions between robots, and to satisfy Assumption 3 (this will be proved later).

For the sake of clarity, we do not describe explicitly in Algorithm 6 the zone
of movement of the last robot in the rank sequence. The computation of its zone
of movement is similar to that of the other robot followers, with the only differ-
ence being that it does not have a next neighbor ri+1. So, if robot ri has the
same y−coordinate as its previous neighbor ri−1, then its zone of movement is
the half circle with radius min(εr/(k + 1)(k + 2), dist(ri, ri−1)/(k + 1)(k + 2)),
centered at ri and below ri. Otherwise, the circle centered at ri, and with radius
min(εr/(k + 1)(k + 2), dist(ri, projri−1)/(k + 1)(k + 2)).

After determining its zone of movement Zone(ri), robot ri needs to determine
if it can progress toward its target Target(ri). Note that, Target(ri) may not nec-
essarily belong to Zone(ri). To do so, robot ri computes the intersection of the
segment riTarget(ri) and Zone(ri), called Intersect. If Intersect is equal to
the position of ri, then ri will move toward its right as given by the procedure
Lateral Move Right(). Otherwise, ri moves along the segment Intersect as much
as possible, while avoiding to reach the location of a crashed robot in Intersect, if
any, and satisfying Assumption 3. In any case, if ri is not able to move to any point
in Intersect, except its current position, it moves to its right as in the procedure
Lateral Move Right().

Note that, by the algorithm robot followers can move in any direction by adaptation
of their target positions with respect to the new position of the leader. When the leader
is idle, robot followers move within the distance εr/(k + 1)(k + 2) or smaller in order
to keep an approximation of the formation with respect to the position of the leader, and
preserve the rank sequence.
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6.2 Correctness of the Algorithm

In this section, we prove the correctness of our flocking algorithm by first showing that
correct robots agree on the same ranking during the execution of Algorithm 4 (Theo-
rem 4). Second, we prove that no two correct robots ever move to the same location, and
that a correct robot never moves to a location occupied by a faulty robot (Theorem 5).
Then, we show that all correct robots dynamically form an approximation of a regular
polygon in finite time, and keep this formation while moving (Theorem 6). Finally, we
prove that our algorithm tolerates permanent failures of robots (Theorem 7).

Lemma 5. Algorithm 4 satisfies Assumption 3.

Proof (Lemma 5). To prove the lemma, we first show that any robot ri in the system
is able to move to a destination that is different from its current location, and robot
ri never visits a point location that was within its line of movement for its last k + 1
activations. Then, we show that a robot ri never visits a location that was visited by
another robot rj during the last k + 1 activations of rj .

First, assume that robot ri is the leader. By Algorithm 4, its zone of movement
Zone(ri) is either a circle or a half circle on the plane, excluding the points in its his-
tory of moves HistoryMove for the last k +1 activations, and the positions of crashed
robots. Since, Zone(ri) is composed of an infinite number of points, the positions of
crashed robots are finite, and HistoryMove is a strict subset of Zone(ri), then robot
ri can always compute and move to a new location that is different from the locations
visited by ri during its last k + 1 activations.

Now, assume that robot ri is a follower, and let ri−1 and ri+1, be respectively the
previous, and next robots to ri in RankSequence. Two cases follow depending on the
zone of movement of ri.

– Consider the case where Zone(ri) is the segment with length min(εr/(k + 1)(k +
2), dist(ri, ri+1)/(k+1)(k+2)), excluding ri. Since, such case occurs only when
ri−1, ri, and ri+1 have the same y coordinate, and robot ri is only allowed to move
to Right(ri). Then, ri can always move to a free position in Right(ri) that does
not belong to HistoryMove, and that excludes the positions of crashed robots
since they are finite and there exists an infinite number of points in Zone(ri).

– Consider the case where Zone(ri) is either a circle or a half circle, centered at ri

and with a radius greater than zero, excluding its history of move HistoryMove
for the last k + 1 activations, and the positions of crashed robots. By similar ar-
guments as above, we have Zone(ri) is composed of an infinite number of points,
HistoryMove is a strict subset of Zone(ri), and the positions of crashed robots
are finite. Thus, robot ri can always compute and move to a new location that is
different from the locations visited by ri during its last k + 1 activations.

We now show that robot ri never visits a location that was visited by another robot
rj during the last previous k + 1 activations of rj . Without loss of generality, we con-
sider robot ri and its next neighbor ri+1. The same proof holds for ri and its previous
neighbor ri−1. Observe that if ri and ri+1 are moving away from each other, then nei-
ther robots move to a location that was occupied by the other one for its last k + 1
activations.
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Algorithm 6. Flocking Follower: Code executed by a robot follower ri.
1: procedure Flocking Follower(RankSequence,d,nbract,HistoryMove)
2: n := |RankSequence|; and α := (n − 2)180◦/n;
3: P := Formation(P1, P2, ..., Pn) as in Definition 3;
4: P1 := current position of the leader;
5: ∀rj ∈ RankSequence, Target(rj) = Pj ∈ Formation(P1, P2, ..., Pn);
6: if (∀rj ∈ RankSequence, rj is within εr of Pj ) then {Formation = True}
7: Lateral Move Right();
8: else {Flocking and formation generation}
9: ri−1:= previous robot to ri in RankSequence;

10: projri−1 := the projection of ri−1 on y−axis of ri;
11: ri+1 := next robot to ri in RankSequence;
12: projri+1 := the projection of ri+1 on y−axis of ri;
13: if (projri−1 = ri ∧ projri+1 = ri) then {same y coordinate as neighbors}
14: Zone(ri) := segment with length min(εr/(k + 1)(k + 2), dist(ri, ri+1)/(k +

1)(k + 2)) starting at ri to Right(ri) (Fig. 2(a));
15: else if (projri−1 
= ri) ∧ (projri+1 
= ri) then
16: Zone(ri) := circle centered at ri, with radius min(εr/(k + 1)(k +

2), dist(ri, projri−1)/(k+1)(k+2),dist(ri, projri+1)/(k+1)(k+2)) (Fig. 2(b));
17: else if (projri−1 
= ri ∧ projri+1 = ri) then
18: Zone(ri) := half circle centered at ri, above it, and with radius min(εr/(k+1)(k+

2), dist(ri, projri−1)/(k + 1)(k + 2), dist(ri, ri+1)/(k + 1)(k + 2));
19: else {ri has different y coordinate from next robot}
20: Zone(ri) := half circle centered at ri, below it, and with radius min(εr/(k+1)(k+

2), dist(ri, ri−1)/(k + 1)(k + 2), dist(ri, projri+1)/(k + 1)(k + 2))(Fig. 2(c));
21: end if
22: Intersect := the intersection of the segment riTarget(ri) with Zone(ri);
23: if (Intersect 
= ri) then {ri is able to progress to its target}
24: SCrashInLine := the set of crashed robots in the segment intersect;
25: if (SCrashInLine = ∅) then
26: ri moves to the last point in Intersect, excluding the points in HistoryMove;
27: else
28: rc := the closest crashed robot to ri in Intersect;
29: ri moves linearly to the last point in the segment rirc, excluding rc, and the points

in HistoryMove;
30: end if
31: else
32: Lateral Move Right();
33: end if
34: end if
35: CurrMove := the set of points on the segment riTarget(ri);
36: if (nbract ≤ k + 1) then
37: HistoryMove := HistoryMove ∪ CurrMove;
38: else
39: HistoryMove := CurrMove; and nbract := 1;
40: end if
41: end



Fault-Tolerant Flocking in a k-Bounded Asynchronous System 159

Now assume that both robots ri and ri+1 are moving to the same direction, then
we will show that ri never reaches the position of ri+1 after k + 1 activations of ri+1.
Assume the worst case where robot ri+1 is activated once during each k activations of
ri. Then, after k + 1 activations of ri+1, ri will move toward ri+1 by a distance of at
most dist(ri, ri+1)(k + 1)2/(k + 1)(k + 2), which is strictly less than dist(ri, ri+1),
hence ri is unable to reach the position of ri+1.

Finally, we assume that both ri and ri+1 are moving toward each other. In this case,
we assume the worst case when both robots are always activated together. After k + 1
activations of either ri or ri+1, each of them will travel toward the other one by at most
the distance dist(ri, ri+1)(k+1)/(k+1)(k+2). Consequently, 2dist(ri, ri+1)/(k+2)
is always strictly less than dist(ri, ri+1) because k ≥ 1. Hence, neither ri or ri+1
moves to a location that was occupied by the other during its last k + 1 activations, and
the lemma holds. ��

Corollary 1. By Algorithm 4, at any time t, there is no overlap between the zones of
movement of any two correct robots in the system.

Agreement on Ranking. In this section, we show that correct robots agree always on
the same sequence of ranking even in the presence of failure of robots.

Lemma 6. By Algorithm 4, correct robots always agree on the same RankSequence
when there is no crash. Moreover, if some robot rj crashes, there is a finite time after
which, all correct robots exclude rj from the ordered set RankSequence, and keep the
same total order in RankSequence.

Proof (Lemma 6). By Lemma 3, all correct robots agree on the same sequence of rank-
ing, RankSequence after the first k activations of any robot in the system. Then, in
the following, we first show that the RankSequence is preserved during the execution
of Algorithm 4 when there is no crash in the system. Second, we show that if some
robot rj has crashed, there is a finite time after which correct robots agree on the new
sequence of ranking, excluding rj .

– There is no crash in the system: we consider three consecutive robots ra, rb and
rc in RankSequence, such that ra < rb < rc. We prove that the movement of rb

does not allow it to swap ranks with ra or rc in the three different cases that follow:
1. ra, rb and rc share the same y coordinate. In this case, rb moves by min(εr/

(k + 1)(k + 2), dist(rb, rc)/(k + 1)(k + 2)) along the segment rbrc. Such a
move does not change the y coordinate of rb, and also it does not change its
rank with respect to ra and rc because it always stays between ra and rc, and
it never reaches either ra nor rb, by the restrictions on the algorithm.

2. ra, rb and rc do not share the same y coordinate. In this case, the movement of
rb is restricted within a circle C, centered at rb, and having a radius that does
not allow rb to reach the same y coordinate as either ra nor rc. In particular, the
radius of C is equal to min(εr/(k + 1)(k + 2), dist(rb, projra)/(k + 1)(k +
2), dist(rb, projrc)/(k + 1)(k + 2)), which is less than dist(rb, projra)/k,
and dist(rb, projrc)/k, where projra and projrc are respectively, the projec-
tions of robot ra and rc on the y−axis of rb. Hence, such a restriction on the
movement of rb does not allow it to swap its rank with either ra or rb.
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3. Two consecutive robots have the same y coordinate, (say ra and rb), however
rc does not. This case is almost similar to the previous one. The movement
of rb is restricted within a half circle, centered at rb, and below it, and with
a radius that does not allow rb to have less than or equal y coordinate as rc.
In particular, that radius is equal to min(εr/(k + 1)(k + 2), dist(ra, rb)/(k +
1)(k + 2), dist(rb, projrc)/(k + 1)(k + 2)), which is less than dist(ra, rb)/k,
and also less than dist(rb, projrc)/k, where projrc is the projection of robot
rc on the y−axis of rb. Hence, the restriction on the movement of rb does not
allow it to swap ranks with either ra or rb.

Since, all robots execute the same algorithm, then the proof holds for any two con-
secutive robots in RankSequence. Note that, the same proof applies for both al-
gorithms executed by the leader and the followers because the restrictions made on
their movements are the same

– Some robot rj crashes: From what we proved above, we deduce that all robots
agree and preserve the same sequence of ranking, RankSequence in the case of
no crash. Assume now that a robot rj crashes. By Theorem 3, we know that there
is a finite time after which all correct robots detect the crash of rj . Hence, there
is a finite time after which correct robots exclude robot rj from the ordered set
RankSequence.

In conclusion, the total order in RankSequence is preserved for correct robots during
the entire execution of Algorithm 4. This terminates the proof. ��

The following Theorem is a direct consequence from Lemma 6.

Theorem 4. By Algorithm 4, all robots agree on the total order of their ranking during
the entire execution of the algorithm.

Collision-Freedom

Lemma 7. Under Algorithm 4, at any time t, no two correct robots ever move to the
same location. Also, no correct robot ever moves to a position occupied by a faulty
robot.

Proof (Lemma 7). To prove that no two correct robots ever move to the same location,
we show that any robot ri always moves to a location within its own zone Zone(ri), and
the rest follows from the fact that the zones of two robots do not intersect (Corollary 1).
By restriction on the algorithm, ri must move to a location Target(ri), which is within
Zone(ri). Since, ri belongs to Zone(ri), Zone(ri) is a convex form or a line segment,
and the movement of ri is linear, so all points between ri and Target(ri) must be in
Zone(ri).

Now we prove that, no correct robot ever moves to a position occupied by a crashed
robot. By Theorem 1, robot ri can compute the positions of crashed robots in finite time.
Moreover, by Lemma 5, robot ri always has free destinations within its zone Zone(ri),
which excludes crashed robots. Finally, Algorithm 4 restricts robots from moving to the
locations that are occupied by crashed robots. Thus, robot ri never moves to a location
that is occupied by a crashed robot. ��
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The following theorem is a direct consequence from Lemma 7.

Theorem 5. Algorithm 4 is collision free.

Fault-tolerant Flocking. Before we proceed, we state the following lemma, which sets
a bound on the number of faulty robots under which a polygon can be formed.

Lemma 8. A polygon is generated if and only if the number of faulty robots f is
bounded by f ≤ n − 3, where n is the number of robots in the system, and n ≥ 3.

Proof (Lemma 8). The proof is trivial. A polygon requires three or more robots to be
formed. Then, the number of robots n in the system should be greater or equal to three.
Also, the number of faulty robots f at any time t in the system should be less than or
equal to n − 3 for the polygon to be formed. This proves the lemma. ��

Lemma 9. Algorithm 4 allows correct robots to form an approximation of a regular
polygon in finite time, and to maintain it in movement.

Proof (Lemma 9). We first show that each robot can be within εr of its target in the
formation F (P1, P2, ..., Pn) in a finite number of steps. Second, we show that correct
robots maintain an approximation of the formation while moving.

Assume that ri is a correct robot in the system. If ri is a leader, then by Algorithm 4,
the target of ri is a point within a circle or half circle, centered at ri, and with radius
less than or equal to εr satisfying Assumption 3, and excluding the positions of crashed
robots. Since, there exists an infinite number of points within Zone(ri), and by As-
sumption 2, the cycle of a robot is finite, then ri can reach its target within Zone(ri) in
a finite number of steps.

Now, consider that ri is a robot follower. We also show that ri can reach within εr of
its target Pi in a finite number of steps. We consider two cases:

– Robot ri can move freely toward its target Pi: every time ri is activated, it can
progress by at most εr/(k + 1)(k + 2). Since, the distance dist(ri, Pi) is finite,
the bound k of the scheduler is also finite, and the cycle of a robot is finite by
Assumption 2, then ri can be within εr of Pi in a finite number of steps.

– Robot ri cannot move freely toward its target Pi: first, assume that ri cannot
progress toward its target because of the restriction on RankSequence. Since,
there exists at least one robot in RankSequence that can move freely toward its
target, and this is can be done in finite time. In addition, the number of robots in
RankSequence is finite, and by Lemma 5, a robot can always move to a new loca-
tion satisfying Assumption 3, then, eventually each robot ri in RankSequence can
progress toward its target Pi, and arrive within εr of it in a finite number of steps.
Now, assume that ri cannot progress toward its target Pi because it is blocked by
some crashed robots. By Lemma 5, a robot can always move to a new location
satisfying Assumption 3. Also, the number of crashed robots is finite, so eventually
robot ri can make progress, and be within εr of its target in a finite number of steps,
by similar arguments.

We now show that correct robots maintain an approximation of the formation
while moving. Since, all robots are restricted to move within one cycle by at most



162 S. Souissi, Y. Yang, and X. Défago

εr/(k + 1)(k + 2), then in every new k activations in the system, each correct robot ri

cannot go farther away than εr from its position during k activations. Consequently, ri

can always be within εr of its target Pi as in Definition 4, and the lemma follows. ��

Theorem 6. Algorithm 4 allows correct robots to dynamically form an approximation
of a regular polygon, while avoiding collisions.

Proof (Theorem 6). First, by Theorem 3, there is a finite time after which all correct
robots agree on the same set of correct robots. Second, by Theorem 4, all correct robots
agree on the total order of their ranking RankSequence. Third, By Theorem 5, there is
no collision between any two robots in the system, including crashed ones. Finally, by
Lemma 9, all correct robots form an approximation of a regular polygon in finite time,
and the theorem holds. ��

Lemma 10. Algorithm 4 tolerates permanent crash failures of robots.

Proof (Lemma 10). By Theorem 1, a crash of a robot is detected in finite time, and by
Algorithm 4, a crashed robot is removed from the list of correct robots, although it ap-
pears physically in the system. Finally, by Theorem 5, correct robots avoid collisions
with crashed robots. Thus, Algorithm 4 tolerates permanent crash failures of robots. ��

From Theorem 6, and Lemma 10, we infer the following theorem:

Theorem 7. Algorithm 4 is a fault tolerant dynamic flocking algorithm that tolerates
permanent crash failures of robots.

7 Conclusion

In this paper, we have proposed a fault-tolerant flocking algorithm that allows a group
of asynchronous robots to self organize dynamically, and form an approximation of a
regular polygon, while maintaining this formation in movement. The algorithm relies
on the assumption that robots’ activations follow a k-bounded asynchronous scheduler,
and that robots have a limited memory of the past.

Our flocking algorithm allows correct robots to move in any direction, while keeping
an approximation of the polygon. Unlike previous works (e.g., [3,6]), our algorithm is
fault-tolerant, and tolerates permanent crash failures of robots. The only drawback of
our algorithm is the fact that it does not permit the rotation of the polygon by the robots,
and this is due to the restrictions made on the algorithm in order to ensure the agreement
on the ranking by robots. The existence of such algorithm is left as an open question
that we will investigate in our future work.

Finally, our work opens new interesting questions, for instance it would be interesting
to investigate how to support flocking in a model in which robots may crash and recover.

Acknowledgments

This work is supported by the JSPS (Japan Society for the Promotion of Science) post-
doctoral fellowship for foreign researchers (ID No.P 08046).



Fault-Tolerant Flocking in a k-Bounded Asynchronous System 163

References

1. Daigle, M.J., Koutsoukos, X.D., Biswas, G.: Distributed diagnosis in formations of mobile
robots. IEEE Transactions on Robotics 23(2), 353–369 (2007)

2. Coble, J., Cook, D.: Fault tolerant coordination of robot teams,
citeseer.ist.psu.edu/coble98fault.html

3. Gervasi, V., Prencipe, G.: Coordination without communication: the Case of the Flocking
Problem. Discrete Applied Mathematics 143(1-3), 203–223 (2004)

4. Hayes, A.T., Dormiani-Tabatabaei, P.: Self-organized flocking with agent failure: Off-line
optimization and demonstration with real robots. In: Proc. IEEE Intl. Conference on Robotics
and Automation, vol. 4, pp. 3900–3905 (2002)

5. Saber, R.O., Murray, R.M.: Flocking with Obstacle Avoidance: Cooperation with Limited
Communication in Mobile Networks. In: Proc. 42nd IEEE Conference on Decision and Con-
trol, pp. 2022–2028 (2003)

6. Canepa, D., Potop-Butucaru, M.G.: Stabilizing flocking via leader election in robot networks.
In: Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838, pp. 52–66. Springer, Hei-
delberg (2007)
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Bounds for Deterministic Reliable Geocast in Mobile
Ad-Hoc Networks�

Antonio Fernández Anta and Alessia Milani
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Abstract. In this paper we study the impact of the speed of movement of nodes
on the solvability of deterministic reliable geocast in mobile ad-hoc networks,
where nodes move in a continuous manner with bounded maximum speed. Nodes
do not know their position, nor the speed or direction of their movements. Nodes
communicate over a radio network, so links may appear and disappear as nodes
move in and out of the transmission range of each other. We assume that it takes a
given time T for a single-hop communication to reliably complete. The mobility
of nodes may be an obstacle for deterministic reliable communication, because
the speed of movements may impact on how quickly the communication topology
changes.

Assuming the two-dimensional mobility model, the paper presents two tight
bounds for the solvability of deterministic geocast. First, we prove that the max-
imum speed vmax < δ

T
is a necessary and sufficient condition to solve the geo-

cast, where δ is a parameter that together with the maximum speed captures the
local stability in the communication topology. We also prove that Ω(nT ) is a time
complexity lower bound for a geocast algorithm to ensure deterministic reliable
delivery, and we provide a distributed solution which is asymptotically optimal
in time.

Finally, assuming the one-dimensional mobility model, i.e. nodes moving on
a line, we provide a lower bound on the speed of movement necessary to solve
the geocast problem, and we give a distributed solution. The algorithm proposed
is more efficient in terms of time and message complexity than the algorithm for
two dimensions.

Keywords: Mobile ad-hoc network, geocast, speed of movement towards solv-
ability, distributed algorithms.

1 Introduction

A mobile ad-hoc network (MANET) is a set of mobile wireless nodes which dynami-
cally build a network, without relying on a stable infrastructure. Direct communication
links are created between pairs of nodes as they come into the transmission range of
each other. If two nodes are too far apart to establish a direct wireless link, other nodes
act as relays to route messages between them. This self-organizing nature of mobile
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ad-hoc networks makes them specially interesting for scenarios where networks have
to be built on the fly, e.g., under emergency situation, in military operations, or in envi-
ronmental data collection and dissemination.

A fundamental communication primitive in certain mobile ad-hoc network is geo-
casting [14]. This is an operation initiated by a node in the system, called the source,
that disseminates some information to all the nodes in a given geographical area, named
the geocast region. In this sense, the geocast primitive is a variant of multicasting, where
nodes are eligible to deliver the information according to their geographical location.
While geocasting in two dimensions is clearly useful, geocasting in one dimension is
also a natural operation in some real situations, like announcing an accident to the
nearby vehicles in a highway. In mobile ad-hoc environments, geocasting is also a ba-
sic building block to provide more complex services. As an example, Dolev et al. [5] use
a deterministic reliable geocast service to implement atomic memory in mobile ad-hoc
networks. A geocast service is deterministic if it ensures deterministic reliable delivery,
i.e. all the nodes eligible to deliver the information will surely deliver it.

Designing a geocast primitive in a mobile ad-hoc network forces to deal with the
uncertainty due to the dynamics of the network. Since communication links appear and
disappear as nodes move in and out of the transmission range of other nodes, there is
a (potential) continuous change of the communication topology. In other words, the
movement of nodes and their speed of movement usually impacts on the lifetime of
radio links. Then, since it takes at least Ω(log n) time to ensure a one-hop successful
transmission in a network with n nodes [6], mobility may be an obstacle for determin-
istic reliable communication.

Our contributions. In this paper we study the impact of the maximum speed of move-
ment of nodes on the solvability of deterministic geocast in mobile ad-hoc networks.
In our model we assume that a node does not know its position (nodes have no GPS or
similar device), and that it knows neither the speed nor the direction of its movement.
Additionally, we assume that it takes a given time T for a single-hop communication to
succeed. As far as we know, [1] is the only theoretical work that deals with the geocast
problem in such a model.

Our results improve and generalize the bounds presented in [1] and, to the best of our
knowledge, present the first deterministic reliable geocast solution for two dimensions,
i.e. where nodes move in a continuous manner in the plane. In particular, we give bounds
on the maximum speed of nodes in order to be able to solve the deterministic reliable
geocast problem in one and two dimensions. While the bounds provided in [1] are for a
special class of algorithms, our bounds apply to all geocasting algorithms and are tighter.

Then, we present a distributed solution for the two-dimensional mobility model, which
is proved to be asymptotically optimal in terms of time complexity. Let n be the number
of nodes in the system, it takes 3nT time for our solution to ensure that the geocast infor-
mation is reliably delivered by all the eligible nodes. Additionally, we prove that Ω(nT )
is a time complexity lower bound for a geocast algorithm to ensure deterministic reliable
delivery. Finally, we provide a distributed geocast algorithm for the one-dimensional case
(i.e. nodes move on a line) and upper bound its message and time complexity. This al-
gorithm is more efficient in terms of message complexity than the algorithms proposed
in [1], and (not surprisingly) than the algorithm for two dimension.
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Related work. Initially introduced by Imielinski and Navas [14] for the Internet, the
geocast problem was then proposed for mobile ad-hoc networks by Ko and Vaidya
[7]. The majority of geocast algorithms presented in the literature for mobile ad-hoc
networks provide probabilistic guarantees, e.g. [8, 12, 9]. See the review of Jinag and
Camp [4] for an overview of the main existing geocast algorithms. As mentioned above,
Baldoni et al. [1] provide a deterministic solution for the case where nodes move on a
line.

Other deterministic solutions for multicast and broadcast in MANETs have been pro-
posed, but their correctness relies on strong synchronization or stability assumptions. In
particular, Mohsin et al. [13] present a deterministic solution to solve broadcast in one-
dimensional mobile ad-hoc networks. They assume that nodes move on a linear grid,
that nodes know their current position on the grid, and that communication happens in
synchronous rounds. Gupta and Srimani [10], and Pagani and Rossi [16] provide two
deterministic multicast solutions for MANET, but they require the network topology to
globally stabilize for long enough periods to ensure delivery. Moreover, they assume a
fixed and finite number of nodes arranged in some logical or physical structure.

Few bounds on deterministic communication in MANETs have been provided [15,
2]. We prove that the lower time complexity bound to complete a geocast in the plane
is Ω(nT ). Interestingly, Prakash et al. [15] provide a lower bound of Ω(n) rounds for
the completion time of broadcast in mobile ad hoc networks, where n is the number of
nodes in the network. As the authors point out, they consider grid-based networks, but
a lower bound proved for this restricted grid mobility model automatically applies to
more general mobility models. This latter result improves the Ω(D log n) bound pro-
vided by Bruschi and Pinto [2], where D is the diameter of the network. These results
unveil the fact that, when nodes may move, the dominating factor in the complexity of
an algorithm is the number of nodes in the network and not its diameter.

Road map. In Section 2 we present the model for mobile ad hoc network we consider
and in Section 3 we revise the problem. Then, in Section 4 we present the results for
two dimensions and in Section 5 the results for one dimension. Finally, our conclusions
are presented in Section 6.

2 A Mobile Ad-Hoc Network Model

We consider a finite set Π of n (mobile) nodes which move in a continuous manner
on a plane (2-dimensional Euclidean space) with bounded maximum speed vmax. The
nodes in Π do not have access to a global clock, but their local clocks run at the same
rate. Additionally, no node in Π fails.

Nodes communicate by exchanging messages over a wireless radio network. All the
nodes have the same transmission radius r. At any time, each node is a neighbor of,
and can communicate with, all the nodes that are within its transmission range at that
time, i.e., the nodes that are completely inside a disk, centered at the node’s position, of
radius r [3]. Formally, let distance(p, q, t) denote the distance between p and q at time
t, we say that p and q are neighbors at time t if distance(p, q, t) < r. Nodes do not
know their position, speed, nor direction of movement.
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Local broadcast primitive. To directly communicate with their neighbors, nodes are
provided with a local reliable broadcast primitive. Communication is not instantaneous,
it takes some time for a broadcast message to be received. To simplify the presentation
we consider as time unit the time slot. This is the time the communication of a message
takes when accessing the underlying wireless network communication channel without
collision. Additionally, we assume that local computation at the nodes takes negligible
time (zero time for the purpose of the analyses). Since collisions are a intrinsic charac-
teristic of MANETs, they have to be considered. We assume that the potential collisions
due to concurrent broadcasts by neighbors are dealt by a lower level communication
layer, and that this layer takes T units of time to (reliably and deterministically) deliver
a message to its destination. The value of T could be related to the size of the system
and depends on the complexity of the lower level communication protocol. As already
stated, [6] shows that it takes at least Ω(log n) time to ensure a one-hop successful
transmission in a network with n nodes.

Then, if a node p invokes broadcast(m) at time t, then all nodes that remain neigh-
bors of p throughout [t, t + T ] receive m by time t + T , for some fixed known integer
T > 0. A node that receives a message m generates a receive(m) event. It is possible
that some node that has been a neighbor of p at some time in [t, t + T ] (but not during
the whole period) also receives m, but there is no such guarantee. However, no node
receives m after time t + T . A node issues a new invocation of the broadcast primitive
only after it has completed the previous one (T time later). Then in each time interval
of length T a node broadcasts at most one message.

Connectivity. Baldoni et al. [1] have proved that traditional connectivity is too weak
to implement a deterministic geocasting primitive in the model described. To overcome
this impossibility result they have introduced the notion of strong connectivity, and as-
sumed it in their model. Like them, we also assume strong connectivity in our model1.
Let us remark that strong connectivity is only a possible way to overcome the above
impossibility. A different approach could be to constrain the mobility pattern of nodes
(e.g. [13]) or to assume the global communication topology to be stable long enough
to ensure reliable delivery (e.g. [10]). On the other hand, strong connectivity is a local
property which helps to formalize the local stability in the communication topology
necessary to solve the problem. In the following, we revise the notions of strong neigh-
borhood and strong connectivity.

Definition 1 (Strong neighborhood). Let δ2 = r and δ1 be fixed positive real numbers
such that δ1 < δ2. Two nodes p and p′ are strong neighbors at some time t if there is
a time t′ ≤ t such that distance(p, p′, t′) ≤ δ1, and distance(p, p′, t′′) < δ2 for all
t′′ ∈ [t′, t].

Assumption 1 (Strong Connectivity). For every pair of nodes p and p′, and every
time t, there is at least one path of strong neighbors connecting p and p′ at t.

When convenient, we may use that a pair of (strong) neighbors have a (strong) connec-
tion, or are (strongly) connected. Observe that once two nodes p and p′ become strong

1 In this paper we do not consider the Delay/Disruption Tolerant Networks model.
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neighbors (i.e., they are at distance δ1 from each other), to get disconnected they must
move away from each other so that their distance is at least δ2. This means that the total
distance to be covered in order for p and p′ to disconnect is δ2 − δ1. We use the notation
δ = δ2−δ1

2 , where δ denotes the minimum distance that any two nodes that just became
strong neighbors have to travel to stop being neighbors when moving in opposite direc-
tions. Thus, for a clearer presentation of our results, we express the maximum speed of
nodes, denoted vmax, as the ratio between δ and the time necessary to travel this space,
denoted T ′. Formally,

Assumption 2 (Movement Speed). It takes at least T ′ > 0 time for a node to travel
distance δ = δ2−δ1

2 , i.e. vmax = δ2−δ1
2T ′ .

Since nodes move, the topology of the network may continuously change. In this sense,
assuming both strong connectivity and an upper bound on the maximum speed of nodes
provides some topological stability in the network. In particular, it ensures that there are
periods in which the neighborhood of a node remains stable. Formally,

Lemma 1. If two nodes become strong neighbors at time t, then they are neighbors
throughout the interval (t − T ′, t + T ′) and remain strong neighbors throughout the
interval [t, t + T ′).

Proof. If p and p′ become strong neighbors at time t, then distance(p, p′, t) = δ1. To
be disconnected, they must move away from each other a distance of at least 2δ, so
that their distance is at least δ2. From Assumption 2, this takes at least T ′ time. Hence,
for τ ∈ (t − T ′, t + T ′), distance(p, q, τ) < δ1 + 2δ = δ2, which combined with
Definition 1 proves the claims.

3 The Geocast Problem

The geocast is a variant of the conventional multicasting problem, where nodes are eli-
gible to deliver the information if they are located within a specified geographic region.
The geocast region we consider is the circular area centered in the location where the
source starts the geocasting and whose radius is some given value d. We assume d to be
provided as input by the user of the geocast primitive.

The geocast problem is solved by a geocast algorithm run on the mobile nodes, which
implements the following geocast primitives: Geocast(I, d) to geocast information I at
distance d, and Deliver (I) to deliver information I (previously geo-casted). The geo-
cast algorithm uses the broadcast(m) and receive(m) primitives to achieve communi-
cation among neighbors. The geocast information I is initially known by exactly one
node, the source. If the source invokes Geocast(I, d) at time t, being at location l, then
there are three properties that must be satisfied by the geocast service.

Property 1. [Reliable Delivery] There is a positive integer C such that, by time t + C,
information I is delivered (with Deliver(I)) at all nodes that are located at most at
distance d away from l throughout [t, t + C].

The following properties rule out solutions which waste resources causing continuous
communication or distribution of the information I to the whole Euclidean space.
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Property 2. [Termination] If no other node issues a call to the geocast service, then
there is a positive integer C′ such that after time t + C′, no node performs any commu-
nication (i.e. a local broadcast) triggered by a geocast.

Property 3. [Integrity] There is a d′ ≥ d such that, if a node has never been within
distance d′ from l, it never delivers I .

Observe that these properties are deterministic. This justifies the use of a deterministic
reliable local broadcast primitive and the fact that we enforce nodes to be in range less
than δ2 during T steps to complete a successful communication.

4 Solving the Geocast Problem in Two Dimensions

In this section we first show that in two dimensions T ′ must be larger than T for the
geocast problem to be solvable. Then, we present an algorithm that solves the prob-
lem if this condition is met, whose time complexity is O(nT ). Finally we prove that
this complexity is optimal, since any algorithm has executions in which Ω(nt) time is
required to complete the geocast.

Theorem 3. No algorithm can solve the geocast problem in two dimension if vmax ≥
δ2−δ1

2T , i.e. if T ′ ≤ T .

Proof. Consider a Geocast(I, d) primitive invoked at some time t by a source s, with
d ≥ δ2. To prove the claim we construct a scenario with 6 nodes, and an execution in
it, such that the geocast region contains several nodes permanently, but only s delivers
I . Since the reliable delivery property is not satisfied, this proves the claim.

In our scenario, there are 6 nodes, the source s, and nodes p, q, x1, x2, and x3. At the
time t of the geocast, we assume that the system is in the state shown in Figure 1.(a).
This state can be reached from an initial situation in which the nodes q, x1, x2, x3, p,
and s are placed (in this order) on a line, at distance δ1 each one from the next, and
move without breaking the strong connectivity, to the state of Figure 1.(a). Observe that
all nodes are strongly connected along the path q, x1, x2, x3, p, s, but that the source is
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not a neighbor of neither x1, x2, nor x3. Additionally, both p and q are in the geocast
region (since d ≥ δ2). They will be in the region during the whole execution and hence
to satisfy reliable delivery they should deliver I .

We consider several possible behaviour of the geocast algorithm. Let us first assume
then that, although it invoked Geocast(I, d), s never makes a call to broadcast(I).
Then, p and q will never receive nor deliver I and reliable delivery is violated. Other-
wise, assume that as a consequence of the Geocast(I, d) invocation, s invokes
broadcast(I ) at times t0, t1, ..., with ti+1 ≥ ti + T . Let us define first the behavior
of the nodes in interval [t0, t1]. At time t0, the source s and node q start moving towards
each other at the maximum speed vmax, while nodes p, x1, x2, and x3 start moving in
the same direction as q. At time t′0 = t0 + T ′ ≤ t1 all nodes have travelled a distance
of δ (by definition of T ′) and the system is in the state depicted in Figure 1.(b). In the
interval [t′0, t1] no node moves.

Observe that strong connectivity has been preserved during the whole period [t0, t′0],
since the distances along the path q, x1, x2, x3, p did not change, and the source is a
strong neighbor of p for all the period [t0, t′0) and at time t′0 it becomes strong neighbor
of q. Note also that neither p nor q have been neighbors of s during the whole period
[t0, t0 + T ], because q is not a neighbor at time t0 and p is not a neighbor at time
t′0 ≤ t0 + T . Hence, in our execution no node delivers I in [t0, t1].

The behavior in interval [t1, t2] is the same as described for [t0, t1], but swapping the
directions of movement and the roles of p and q. The initial state at time t1 is the one
show in Figure 1.(b), and the final state reached at time t′1 = t1 +T ′ is the one shown in
Figure 1.(a). Again, I is not delivered at p nor q because they have not been neighbors
of s in the whole period [t1, t1 + T ]. For any interval [ti, ti+1] the behavior is the same
as in interval [t0, t1], if i is even, and the same as in interval [t1, t2] if i is odd. Then, in
this scenario only s delivers I and the reliable delivery property is not satisfied.

The above theorem gives a lower bound of T ′ > T to be able to solve the geocast
problem. We show now that this bound is tight by presenting an algorithm that always
solves the problem if T ′ > T . The algorithm belongs to the class of algorithms pre-
sented in Figure 2, which has a configuration parameter M , the bound on time that
the algorithm uses to stop the geocast. The algorithm M -Geocast(I, d) works as fol-
lows. When the source node invokes a call Geocast(I, d), it immediately delivers the
information I (Line 8). Then, it broadcasts I and stores in a local variable TLB the time
this first transmission happened (Lines 10-11), in order to retransmit every T units of
time (Lines 13-14). When a node p receives for the first time a message with informa-
tion I , it immediately delivers it and starts rebroadcasting the information periodically
(Lines 2-6). With the information I the algorithm broadcasts a value countI , which
contains an estimate of the time that has passed since the geocast started. This value
combined with the the parameter M is used to terminate the algorithm.

We show now that the algorithm M -Geocast(I, d) solves the geocast problem in two
dimensions for an appropriate value of M . Let us denote by S the set of nodes that have
already delivered the information I , and S(t) the set S at time t. Let us denote by ti the
time at which the set S increases from size i to i+1. Note that t0 is the time the geocast
starts.
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Init
(1) TLBI ← ⊥

upon event 〈receive(I, c)〉
(2) if (TLBI = ⊥) then
(3) trigger 〈Deliver(I)〉;
(4) countI ← c + 1;
(5) trigger 〈broadcast (I, countI)〉
(6) TLBI ← clock
(7) end if

Procedure M -Geocast(I, d)
(8) trigger 〈Deliver(I)〉;
(9) count I ← 0;
(10) trigger 〈broadcast (I, count I)〉;
(11) TLBI ← clock

when (clock = TLBI + T ) and (countI < M )
(12) count I ← countI + T ;
(13) trigger 〈broadcast (I, countI)〉
(14) TLBI ← TLBI + T

Fig. 2. The code of M -Geocast (I, d) algorithm class

Lemma 2. If T ′ > T and countI < M at all nodes during the time interval [t0, tn−1],
then ti+1 − ti ≤ 3T for every i ∈ {0, . . . , n − 2}.

Proof. Since strong connectivity holds, at any time there must be chains of strong
neighbors connecting any two nodes in the system. In particular, at every time t0 <
t < tn−1 (i.e., such that S(t) �= Π) there must exist at least a pair of neighbors q and p
such that q ∈ S(t) and p �∈ S(t). Let C(t) denote the set of all such pairs.

Let us fix an i ∈ {0, . . . , n− 2}, and assume, for contradiction, that ti+1 − ti > 3T .
Consider the case when there is some pair (q, p) ∈ C(ti) that belongs to C(t′) for
all t′ ∈ [ti, ti + 2T ]. In other words, this pair is formed by a node q that has I at ti,
and a node p that does not, neighbors for at least 2T time. By the M -Geocast(I, d)
algorithm and the fact that countI < M during the time interval [t0, tn−1], a node
having the information I will rebroadcast it once every T time. Hence q will rebroadcast
the information I at some time t′ ∈ [ti, ti + T ], and thus p will receive and deliver it by
time t′ + T ≤ ti + 2T .

Otherwise, all the connections in C(ti), i ∈ {0, . . . , n − 2}, have been broken by
some time t′ ∈ (ti, ti + 2T ]. But, for strong connectivity to hold, a strong connection
has to exist between some node q ∈ S(t′) and a node p �∈ S(t′), since otherwise these
subsets are disconnected at time t′. Let t′′, ti < t′′ ≤ t′, be the time at which q and
p become strong neighbors, i.e. they are within distance δ1 from each other. The claim
follows if q �∈ S(ti), since q ∈ S(t′) and ti < t′′ ≤ t′ ≤ ti + 2T . Otherwise, note that
by Lemma 1 and the fact that T ′ > T , q and p are neighbors throughout all the period
[t′′−T, t′′+T ]. Then, since q ∈ S(ti) and ti < t′′, q will broadcast I once in the period
[t′′ − T, t′′], and p will deliver I by time t′′ + T > t′ > ti. Given that t′′ ≤ ti + 2T , p
will deliver the information I by time ti + 3T and the claim holds.

Let us now relate the value of the countI at each node with respect to the time that
has passed since M -Geocast(I, d) was invoked. Let countI(q, t) be the value of the
variable countI of node q at time t. Let us define a propagation sequence as the se-
quence of nodes s = p0, p1, p2, ..., pk = q such that the first message received by pi

with information I was sent by pi−1. Node s = p0 is the source of the geocast.

Lemma 3. Let t0 be the time at which M -Geocast(I, d) is invoked at source s. Given
a node q with propagation sequence s = p0, p1, p2, ..., pk = q and a time t ≥ t0 at
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which q has delivered I , with countI(q, t) ≤ M , then it is satisfied that ((t − t0) −
countI(q, t)) ∈ [0, k(T − 1) + T ].

Proof. We prove by induction on k that at time t ≥ t0 it is satisfied that ((t − t0) −
countI(pk, t)) ∈ [0, k(T − 1) + T ], and that if a message is sent at time t it carries a
counter c(pk, t) such that ((t − t0) − c(pk, t)) ∈ [0, k(T − 1)]. The base case is the
source node s = p0. At time t0 the source sets countI(s, t0) = 0 (Line 9), and then,
as long as countI < M , it increments countI by T every T time (Line 12). Hence, at
time t = t0 + α we have ((t − t0) − countI(s, t)) = 0 if α is a multiple of T , and
((t− t0)− countI(s, t)) > 0 otherwise. Furthermore, the difference (t− t0)− countI

is always smaller than T . Since messages are broadcast at times t = t0 + α with α
a multiple of T , the values c(s, t) carried by the messages sent by the source satisfy
((t − t0) − c(s, t)) = 0.

Let us assume now by induction that, if pi−1 broadcasts a message at time t ≥ t0,
this carries a value c(pi−1, t) such that ((t− t0)−c(pi−1, t)) ∈ [0, (i−1)(T −1)]. If pi

receives I for the first time at t′ and the corresponding message was sent by pi−1 at time
t, pi sets countI(pi, t

′) = c(pi−1, t) + 1 (Line 4). This message took between 1 and T
time units to be received at time t′ = t+α. Hence, α ∈ [1, T ]. Considering one extreme
case, if ((t− t0)− c(pi−1, t)) = 0 and α = 1, then ((t′ − t0)− countI(pi, t

′)) = 0. In
the other extreme, if ((t − t0) − c(pi−1, t)) = (i − 1)(T − 1) and α = T , then ((t′ −
t0)−countI(pi, t

′)) = i(T −1). Therefore, ((t′− t0)−countI(pi, t
′)) ∈ [0, i(T −1)].

Like the source, pi increments countI by T every T time as long as countI < M (Line
12). Hence, at any time t′′ = t′+α we have ((t′′− t0)−countI(pi, t

′′)) ∈ [0, i(T −1)]
if α is a multiple of T . Otherwise, this difference increases in up to T time, and hence
((t′′ − t0)− countI(pi, t

′′)) ∈ [0, i(T − 1)+T ]. Since messages are broadcast by pi at
times t′′ = t′ + α with α a multiple of T , the values c(pi, t

′′) carried by the messages
sent by pi satisfy ((t′′ − t0) − c(pi, t

′′)) ∈ [0, i(T − 1)].

This lemma can be used to prove the following theorem, which shows that the geocast
problem can be solved in two dimensions as long as T ′ > T .

Theorem 4. If T ′ > T , the M -Geocast(I, d) algorithm with M = 3T (n − 1) ensures
(1) the Reliable Delivery Property 1 for C = 3T (n − 1),
(2) the Termination Property 2 for C′ = 3T (n − 1) + (n − 1)(T − 1) + T , and
(3) the Integrity Property 3 for d′ = max(d, 3T (n − 1)vmax + (n − 1)δ2).

Proof. The first part of the claim is a direct consequence of Lemma 2, which proves
that at most 3T (n− 1) ≥ tn−1 − t0 time after Geocast(I, d) is invoked, all nodes have
delivered the information I . The second part of the claim follows from Lemma 3, using
the fact that no propagation sequence has more than n nodes (hence taking k = n − 1),
combined with the first part of the claim. The third claim is also direct consequence of
Lemma 2, since the information can be carried by nodes at most distance 3T (n−1)vmax

in time 3T (n−1) from the initial location of the source, and travels less than (n−1)δ2
in the n − 1 broadcasts that inform new nodes.

Finally we show that the time bound found for the M -Geocast(I, d) algorithm with
M = 3T (n − 1) is in fact asymptotically optimal, since there are cases in which any
geocast algorithm requires Ω(nT ) time to complete.
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Fig. 3. Scenario for the proof of Theorem 5

Theorem 5. Any deterministic Geocast(I, d) algorithm that ensures the Reliable De-
livery Property in two dimensions requires time Ω(nT ) to complete, for each d ≥ 3δ2

2 .

Proof. We present a scenario (shown in Figure 3) in which for any Geocast(I, d) call,
with d ≥ 3δ2

2, all nodes that are in the geocast region require time (n−1)T to deliver I .
Consider the scenario depicted in Figure 3.(a) where Geocast(I, d) is invoked at time
t0 at the source node s while in location l = (xl, yl) and with only one neighbor at
distance δ2 − ε. The rest of nodes except p form a chain in which each node is neighbor
of its predecessor and successor in the chain. The chain forms a snake shape. Node p
is a node that is within distance d of l, at the same level (coordinate y) of the last node
in the chain (r in Figure 3.(b)), and connected with some node in the chain as shown.
Especially, p is located at some position (xp, yp) where xp is equal to xl + 2δ2 − ε
with ε ! δ2 and yp is the same as the coordinate y of node r. Assume that nodes reach
this configuration while previously been at distance δ1 from each other. Thus at time t0
strong connectivity holds. We usually refer to the location of the node only considering
the x coordinate because it is the one of interest.

The number of nodes between any pair of nodes qi and qi+1 as depicted in Figure 3 is
fixed to k = � δ2

Tvmax
�. In this execution, at time t0 all the nodes, except node p, start to

move towards the left at the same speed v = δ2
T (k+1) ≤ vmax. These values are chosen

so that, in the execution we construct, qi is at position xl (see Figure 3.(b)) at time
t0 + iT (k+1). When the last node of the chain is at a distance δ2 − ε at the left of p, the
latter also starts moving to the left at the same speed. In our execution, we assume that
a node that receives the information I immediately rebroadcasts it. In any other case the
execution can be easily adapted by stopping the movement while I is not rebroadcasted.
Then, in the execution, s broadcasts I at time t0. We assume that each node in the chain
receives I from its predecessor in T units of time. Then, qi receives first I at time
t0 + iT (k + 1). Since at that time qi is at xl, no progress has been made to the right.
Then, the geocast problem will be solved when all nodes in the chain have received I ,
and p received I from the last node in the chain. Since this implies n − 1 transmissions
and each takes T time, the total time to provide reliable delivery is (n − 1)T . Finally,
for all nodes except p strong connectivity holds throughout all the execution because
they do not change their neighbourhood. At time t0 strong connectivity holds for node
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p because it is at distance ε from a node a0 on its right. It is easy to see that strong
connectivity holds throughout all the execution, since due to the movement pattern and
speed, p will stop to be strong neighbour of node ai only after it already becomes strong
neighbour of node ai+1 for i ≥ 0 (see Figure 3,(a)). The claim holds because p is at

most at distance
√

[ δ2
Tvmax

(δ2 − ε)]2 + (2δ2 − ε)2 = δ2
2

√
(

1− ε
δ2

Tvmax
)2 + (2δ2−ε)2

δ4
2

< 3δ2
2

from (xl, yl).

The bound of the above theorem depends on n. If n is finite this bound is finite. How-
ever, in a system with potentially infinite nodes, the geocast problem may never be
solved.

Corollary 1. No deterministic Geocast(I, d) algorithm will ensure the reliable deliv-
ery property in a system with infinite nodes, for d ≥ 3δ2

2 .

5 Solving the Geocast Problem in One Dimension

In this section we explore the geocast problem when all nodes move along the same line.
We show first that in order for the problem to be solvable, it is necessary that T ′ > T/2.
Then, we present an algorithm that solves the problem efficiently if T ′ > T . These
two results leave a gap (T/2, T ] of values of T ′, and hence an interval of maximum
movement speed vmax, in which it is not known whether the problem can be solved.

Theorem 6. No algorithm can solve the geocast problem in one dimension if vmax ≥
δ2−δ1

T , i.e. if T ′ ≤ T
2 .

Proof. Consider a Geocast(I, d) primitive invoked at some time t by a source s, with
d ≥ δ2. We prove the claim by presenting an scenario in which, independently of the
algorithm used, no node except the source delivers information I , while there are other
nodes in the geocast region permanently. This violates the reliable delivery property
and hence the geocast problem is not solved.

In our scenario there are three nodes, the source s and nodes p and q, that are perma-
nently in the geocast region. Initially, node s is at a position l, from which it will never
move. Node p is at position l1 = l + δ1 (at distance δ1 from s), and q is at distance
δ1 from p and at distance 2δ1 from s. Then, q moves to reach the state spq depicted
in Figure 4, which has the following properties: all nodes are located on a single line;
the leftmost node is the source s located at position l; a node p is located at position
l1 at distance δ1 from l; and a node q is located at position l2 at distance 2δ from l1.
Observe that from the initial configuration up to state spq strong connectivity holds, and
that nodes p and q are always within distance δ2 ≤ d of l.

If s never broadcasts I then neither p nor q deliver it, and reliable delivery is violated.
Otherwise, assume that as a consequence of the Geocast(I, d) invocation, s invokes
broadcast(I ) at times t0, t1, ..., with ti+1 ≥ ti + T . Let us define first the behavior of
the nodes in interval [t0, t1]. At time t0 nodes p and q start moving at their maximum
speed vmax to exchange their positions. Then, at time t′0 = t0 + 2T ′, p is located at
l2 and q is located at l1 reaching state sqp. They do not move from that state until t1.
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Fig. 4. Scenario for the proof of Theorem 6

Observe that strong connectivity has been preserved during the whole period [t0, t′0]: p
and q never stop being strong neighbors, and the source is strong neighbor of p for all
the period [t0, t′0) and at time t′0 it becomes strong neighbor of q. Note that neither p
nor q have been neighbors of s during the whole period [t0, t0 + T ], because q is not a
neighbor at time t0 and p is not a neighbor at time t′0 ≤ t0 +T . Hence, in our execution
no node delivers I in [t0, t1].

The behavior in interval [t1, t2] is the same as described but exchanging the roles of
p and q: the initial state is sqp, at time t1 they start moving to exchange positions, and
at time t′1 they end up at state spq. Again, I is not delivered at p nor q because they have
not been neighbors of s in the whole period [t1, t1 + T ]. For any interval [ti, ti+1] the
behavior is the same as in interval [t0, t1], if i is even, and the same as in interval [t1, t2]
if i is odd. Then, in this scenario of execution only s delivers I and the reliable delivery
property is not fulfilled.

This result shows that in order to solve the geocast problem it must hold that T ′ > T/2.
In the following we prove that when all nodes move along the same line, the algorithm
presented in Figure 2, for an appropriate value of M , efficiently solves the problem as
long as T ′ > T and δ1 > δ. Let us first introduce some preliminary Observations and
Lemmata which are instrumental for the proof of the main Theorem 13.

Assume that the source s = q0 initiates a call of M -Geocast(I, d) at time t = t0
from location l = l0. Next, we prove that I propagates from l0 towards the right of l0.
(For the left of l0, the proof is symmetrical.) This happens in steps so that within a small
period of time, I moves from a node, qj to another node qj+1 at some large distance
away.

Observation 7. Let p be a node that receives information I at time t, then either p
immediately rebroadcasts I or it exists a time τ ∈ [t, t + T ] such that p broadcasts I
both at time τ − T and at time τ .

Observation 8. If T ′ > T , δT
T ′ < δ is the maximum distance that a node can cover in

time T .
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Observation 9. Let p be a node that receives a message with information I at time t. p
has delivered information I by time t.

Hereafter, we denote ∆ = δ1 + δ.

Lemma 4. Let qj be a node located at location lj at time tj . If T ′ > T then every node
that at time tj + T is within distance ∆ = δ1 + δ from lj has been a neighbour of qj

throughout all the period [tj , tj + T ].

Proof. At time tj , qj is located in lj and it is a neighbor of all nodes at distance smaller
than δ2 from lj . Let p be a node that at time tj + T is located within distance ∆ from
lj . Let v be the maximum speed of nodes. Since T ′ > T , in T time a node can travel
at most a distance vT = δ

T ′ T < δ. Thus at time tj , p was located at lp, within distance
∆ + vT < δ2 from lj .

To break the connection with p after tj , qj has to travel in the opposite direction
of p during [tj , tj + T ]. Without loss of generality, assume lj ≤ lp and consider qj

moving towards the left and p to the right at full speed. At any time t ∈ [tj , tj + T ],
qj will be located at lj − vt and p will be at lp + vt. Let lTp denote the location of
p at time tj + T , lTp = lp + vT . Then, lp = lTp − vT and for all t ∈ [tj , tj + T ]
ltp = lp+vt = lTp −vT+vt = lTp +v(t−T ). So at time t the distance between qj and p is
distance(p, q, t) = ltp−ltq = lTp +v(t−T )−(lj−vt) = lTp −lj+2vt−vT ≤ lTp −lj+vt.
Since lTp ≤ lj + δ1 + δ, distance(p, q, t) ≤ δ1 + δ + vt < δ2 because vt < δ for all
t ∈ [tj , tj + T ].

Lemma 5. Assume that a node q broadcasts information I at time t, being at location
l. If T ′ > T , then every node that at time t + T is within distance ∆ from l will deliver
the information by time t + T .

Proof. By Lemma 4, every node p that at time t + T is within distance ∆ from l is a
neighbor of q throughout all the period [t, t + T ]. Thus if q broadcasts the information
I at time t, p will deliver I by time t + T .

The following Lemma 6 states that if it exists a node that broadcasts information I at
some time t, then by time t + 3T there is another node far away from location l which
broadcasts information I . Thus, these two nodes define a non-zero spatial interval and
a temporal interval between two successive broadcasts events.

Lemma 6. Assume that a node qj broadcasts the information I at time tj , located at
point lj . Let Lr denote the set of nodes that at time tj are located on the right of lj+δ1. If
δ1 ≥ δ, T ′ > T and Lr �= ∅ then, assuming that countI < M for all nodes throughout
[tj , tj+1], either all the nodes in Lr deliver information I by time tj + T , or there is a
node qj+1 which broadcasts I at time tj+1 at location lj+1 such that:

1. tj+1 − tj ≤ 3T ,
2. lj+1 − lj ≥ δ1 − δT

T ′ > 0
3. let t = min (tj , tj+1 − T ), throughout all the interval [t, tj+1], node qj+1 is a

neighbor of another node q located on the left of lj + ∆ and which invoked
broadcast(I) at some time in [tj+1 − T, tj+1]
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Proof. Assume that at time tj , a node qj broadcasts the information I being located at
lj . One of the following two cases holds:

– At time tj + T , there is at least a node p located in the interval [lj + δ1, lj + ∆].
Then, by Lemma 5, p will deliver the information I by time tj +T . By Observation
7, p will broadcast I at some time tj+1 ∈ [tj , tj + T ]. By Observation 8 and its
position at time tj +T , p will rebroadcast I at time tj+1 ≤ tj +T being at location
lj+1 ≥ lj + δ1 − δT

T ′ . The claim holds being qj+1 = p and q = qj .
– At time tj + T , no node is located in the interval [lj + δ1, lj + ∆]. Let L and L′

respectively denote the set of nodes that at time tj + T are located on the left of
lj + δ1 and the ones that at time tj + T are located on the right of lj + ∆.
If L′ = ∅ then all the nodes that at time tj were on the right of lj + δ1 are within
distance ∆ from lj at time tj + T . By Lemma 5, these nodes deliver information I
by time tj + T .

Otherwise, there must exist paths of strong neighbors from nodes in L′ to node
on the left of lj + δ1. In particular, nodes in L′ can be connected with nodes in L at
most within distance δ on the left of lj . These latter have delivered the information
I by time tj + T . One of the following cases has to hold:
1. It exists at least a connection between a node p in L′ and a node q in L which

lasts throughout [tj , tj + 2T ]. Then p will deliver the information I at some
time t ∈ [tj , tj + 2T ]. Note that at time tj + T , p is on the right of lj + ∆
and, since T ′ > T , it is on the right or on lj + ∆ − δT

T ′ > lj + δ1 − δT
T ′

throughout all the period [tj + T, tj + 2T ]. Then by Observation 7, p will
broadcast information I at some time tj+1 ∈ [tj + T, tj + 2T ], being located
at some position lj+1 > lj + δ1 − δT

T ′ . The claim holds being qj+1 = p and by
the fact that p and q are neighbors throughout [τ, tj+1] ⊂ [tj , tj + 2T ], where
τ = min{tj+1 − T, tj}.

2. Each connection between nodes in L′ and nodes in L breaks at some time in
[tj , tj +2T ]. Then, a new strong connection has to be created at some time t ∈
[tj , tj + 2T ] before all such connections break. Otherwise strong connectivity
is violated.

Let p and q be respectively the node in L and the node in L′ that create
the new strong connection at time t, i.e. distance(p, q, t) ≤ δ1. By Lemma
4, p and q have been neighbors throughout [t − T, t + T ]. If t ∈ [tj , tj + T ],
[tj , tj +T ] ⊂ [t−T, t+T ] and all such connections have to break at some point
in [tj + T, tj + 2T ], since otherwise it will exist at least a connection between
a node in L and a node in L′ that lasts throughout all the period [tj , tj + 2T ]
and thus we reach a contradiction.

Then, a new connection between a node p in L and a node q in L′ has to be
created at some time t ∈ [tj +T, tj+2T ]. At time t, distance(p, q, t) ≤ δ1, and
since in 2T time a node can travel at most a distance 2δT

T ′ , at time tj q was on the
right of lj −2δ. Thus q delivers information I by time tj +T , and q broadcasts
I both at time τ and τ ′ = τ +T with τ ∈ [tj , tj +T ]. By Lemma 1, p and q are
neighbors throughout all the period [t − T, t + T ] with t ∈ [tj + T, tj + 2T ].
Either τ or τ ′ is in the interval [t−T, T ], then p delivers information I by time
t + T ≤ tj + 3T . Then, either p immediately broadcasts I or it broadcasted
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I at some time in [t, t + T ]. Either way, p broadcasts information I at time
tj+1 ≤ tj + 3T being at some location lj+1 > lj + δ1 + δ − 2δT

T ′ > lj +
δ1 − δT

T ′ . The claim holds being qj+1 = p and by the fact that throughout
[tj+1 − T, tj+1] ⊂ [t − T, t + T ] p and q are neighbors.

Observation 10. Let q, q′, and p be three nodes that at time t are respectively located
at lq , lq′ , and lp, such that lp < lq and lp < lq′ . Assume that q delivers information I
by time t + T because p invoked a call of broadcast(I) at time t. If q′ is between q and
p throughout [t, t + T ], q′ delivers information I by time t + T .

Definition 2. tj is a time at which a node qj invokes the broadcast(I) being located at
location lj such that tj+1 − tj ≤ 3T and lj+1 − lj ≥ δ1 − δT

T ′ , for j ∈ {0, 1, . . . , i}.

The following Lemmas 7, 8 and 9 are instrumental to prove Lemma 10. This latter
states that any node that traverses any of the spatial intervals defined by two consecutive
broadcast events (the ones defines in Definition 2) during the corresponding broadcast
period, deliver the information by a given time.

Lemma 7. Let t, t′ ∈ [tj , tj+1] with t′ > t. Let p be a node that at time t is on the
left of lj and at time t′ is located inside the interval [lj , lj+1]. If δ1 > δ, p receives a
message with information I by time tj + T .

Proof. By Definition 2, tj+1 − tj ≤ 3T . Let t, t′ ∈ [tj , tj+1] with t′ > t. Let p be a
node that at time t is on the left of lj and at time t′ is located inside the interval [lj , lj+1].
If δ1 > δ, at time tj p is at most within distance 3δ < δ2 on the left of lj . Then, at time
tj , qj and p are neighbors and they will remain neighbor at least up to tj + T . This is
because in the worst case p reaches position lj immediately after tj but then at time
tj + T the distance between p and qj is at most 2δ. Otherwise they move towards each
other getting closer. So p will receive a message with information I by time tj + T .

Lemma 8. Let t, t′ ∈ [tj+1 − T, tj+1] with t′ > t. Let p be a node that at time t is on
the right of location lj+1. If δ1 > δ, p receives a message with information I by time
tj+1 + T .

Proof. Let t, t′ ∈ [tj+1 − T, tj+1] with t′ > t. Let p be a node that at time t is on the
right of location lj+1. If at some time t′ ∈ [tj+1 − T, tj+1] p is on the left of lj+1, p
is neighbor of qj+1 throughout all the period [tj+1, tj+1 + T ]. This is because δ1 > δ
and at time tj+1, p is on the right of lj+1 − δ and in T times the distance between p and
qj+1 increases less than 2δ. Then p will receive a message with information I by time
tj+1 + T .

Lemma 9. Let p be a node that at time t ∈ [tj , tj+1] is on the right of lj+1. If at some
time t′ ∈ [tj , tj+1] with t < t′, p is located at lp ∈ [lj , lj+1] and it does not exist a
time t′′ ∈ [tj , tj+1] with t′′ > t′ such that p is not on the right of lj+1, p delivers the
information I by time tj+1 + 2T .

Proof. Consider a node p that at time t ∈ [tj , tj+1] is located at the right of location
lj+1. Assume that at time t′ ∈ [tj , tj+1], with t′ > t, p is located inside the interval



Bounds for Deterministic Reliable Geocast in Mobile Ad-Hoc Networks 179

[lj , lj+1] and it does not exist t′′ ∈ [tj , tj+1] with t′′ > t′ such that p is on the right of
lj+1 at t′′.

If t′ ∈ [tj+1 − T, tj+1], the claim follows by Lemma 8 and Observation 9. Then,
consider t′ ∈ [tj , tj+1 − T ). [tj , tj+1 − T ) ⊆ [tj , tj + 2T ), then by Observation 8,
at time tj+1 − T , p is on the right of lj+1 − 2δ. At the same time tj+1 − T , qj+1 is
at most within distance δT

T ′ from lj+1, since it has to be located at lj+1 at time tj+1.
Then, since 3δ < δ2, at time tj+1 − T p and qj+1 are neighbors. p and qj+1 remain
neighbors throughout all the period [tj+1 − T, tj+1] because at time tj+1, p is at most
within distance 3δ from lj+1, due to Lemma 6.(1) and Observation 8.

By Lemma 6 third bullet, either qj+1 receives I at time tj+1 because a node q that
received the information directly by qj invoked broadcast(I) at some time τ ∈ [tj+1 −
T, tj+1] or qj+1 invoked broadcast(I) also at time tj+1 −T . In this last case, the claim
holds because p and qj+1 are neighbors throughout all the period [tj+1 − T, tj+1] and
because of Observation 9. Then, consider the case where qj+1 receives I at time tj+1
because a node q invoked broadcast(I) at some time τ ∈ [tj+1 − T, tj+1].

If at time tj+1 + T node p is within distance ∆ from lj+1 then by Lemma 5 p
deliver the message by time tj+1 + T . Otherwise, the location of p at time tj+1 + T
is on the left of lj+1 − ∆. This implies that the location of p at time tj+1 is minor or
equal to lj+1 + ∆ − δT

T ′ . Then, at time tj+1, p and q are neighbors because distance(q,
qj+1,tj+1)< δ2 and distance(p, qj+1,tj+1)≥ ∆ − δT

T ′ .
Note that at time tj , p is on the right of lj . Then, by Observation 10, either p delivers

the information by time tj + T or at some point t ∈ [tj , tj + T ] p is located on the
right of q. Note that q will broadcast the information once in each time interval [tj +
kT, tj + (k + 1)T ] with k ∈ {0, . . . , 3}. So either there is a time in [tj , tj+1] where p
and q are strong neighbors and then p delivers the information by time tj+1 + T , or at
time tj+1 q is on the left of p and this latter is on the left of qj+1. Then, p will deliver
information I by time tj+1 + 2T because of a call of broadcast either at qj+1 or at q.
This is because either p remains neighbors of q or of qj+1 throughout all the interval
[tj+1−T, tj+1+T ] or at time tj+1 p and q are within distance greater than δ1 from each
other and they move towards or in the same direction of q. So they do not disconnect
for at least other 2T .

Lemma 10. Let p be a node that at some time t ∈ [tj , tj+1] is in some location lp ∈
[lj , lj+1]. If it does not exist a time t′ ∈ [tj , tj+1] with t′ > t such that p is not on the
right of lj+1, p delivers the information I by time tj+1 + 2T .

Proof. Let p be a node that at some time t ∈ [tj , tj+1] is located at lp ∈ [lj , lj+1].
Assume that it does not exist a time t′ ∈ [tj , tj+1] with t′ > t such that p is not on the
right of lj+1. Then if at time tj p is either on the left of lj or on the right of lj+1, then
the claim follows respectively by Lemma 7 and Observation 9, or by Lemma 9. Finally,
consider the case where node p is inside the interval [lj , lj+1] throughout all the interval
[tj , tj+1]. We prove that p delivers information I by time tj+1 + T . If at time tj + T
p is within distance ∆ from lj , p delivers the information I by time tj + T , because of
Lemma 11. Then assume that p is located in the interval [lj + ∆, lj+1] at time tj + T .
At that time q is located on the left of location lj + ∆. At time [tj+1 − T, tj+1] q and
qj+1 are neighbors because of the third bullet of Lemma 6. At time tj+1 − T one of
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the following cases will happens: (1) p is in between of q and qj+1, (2) p is on the right
of both these nodes but on the left of lj+1 or (3) p is on the left of both q and qj+1.
But this means that p is a neighbor of q throughout [tj+1, tj+1 + 2T ] or is a neighbor
of qj+1 throughout [tj+1 − T, tj+1]. Since q broadcasts I once in each time interval
[tj + kT, tj + (k + 1)T ] with k ∈ {0, . . . , 3} and qj+1 broadcasts at time tj+1, p
delivers I by time tj+1 + 2T and the claim holds.

Now we prove that if a node stays within distance d from the location where the geocast
has been invoked, throughout all the geocast period, then it is eventually inside one of
the intervals between two consecutive broadcasts at the right time and for long enough
to deliver the information I .

Lemma 11. If a node q stays within distance d from l throughout [t0, ti+1] for i such
that l + d ∈ [li, li+1], then q delivers the information I by time ti+1 + 2T .

Proof. Let t0 be the time when the source node s performs the first broadcast(m)
because of a call of M -Geocast(I, d). If q is located at l0(= l) at time t0 then the
lemma holds. Otherwise, without loss of generality, let q be located on the right of s at
time t0. For every time in [t0, ti+1] q is located either on or on the left of li+1 because
l + d ≤ li+1.

By induction on j, it is easy to see that it exists a j ≤ i such that at time t ∈ [tj , tj+1]
q is in the interval [lj , lj+1] and it does not exist a time t′ ∈ [tj , tj+1] with t′ > t such
that q is on the right of lj+1. Otherwise at time tj+1 q is on the right of lj+1, and for
j = i we have that at time ti+1 q is on the right of li+1. This means that at time ti+1 q
is at distance greater than d from l. By the Lemma 10, q will deliver the information I
by time ti+1 + 2T .

Observation 11. Let countI be the counter associated to the communication gener-
ated by a call of M -Geocast(I, d). countI is set to zero once when the source invokes
the first broadcast(I) at time t0 and it is never reset.

Observation 12. Let p be a node different from the source node. p invokes
broadcast(I) at some time t only if it has generated a receive(I) event at some time
before t.

Lemma 12. Let t be the time when a call of M -Geocast(I, d) is invoked. Every mes-
sage broadcast or received at some time in [t, t + k] has counter at most equal to k.

Proof. The proof is by induction on k. For k = 0, we have to consider the time t. At that
time only the source node invokes a broadcast(I) and the counter of the broadcasted
message has value 0 (Line 9 of Figure 2). Then the claim holds. By inductive hypothesis,
assume that every message broadcast or received at some time in [t, t+k] has counter at
most equal to k. Then, we prove that every message broadcast or received at some time
in [t, t + k + 1] has counter at most equal to k + 1. We know that this cannot happen
by time t+k because of the inductive hypothesis. Then, by contradiction assume that it
exists a message that is received at time t + k + 1 and whose counter has value greater
than k + 1. But since it takes at least 1 time unit to receive a message, this means that
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the message received at time t+k+1 was broadcast at the latest at time t+k. But then
if the message has counter k + 1 we contradict the inductive hypothesis.

Finally, consider the case where at time t + k + 1 a message m is broadcast by a
node p. p increments its counter possibly each time it receives a message or when it
broadcast a message. But by time t + k all the messages received by p have counter
smaller or equal to k, and p may have broadcast at most k messages. So at time t + k
the counter of p is at most k. Then, when at time t + k + 1 it broadcasts a message, this
message has a counter at most k + 1. Then the claim follows.

Finally we define the bound for the time to ensure the reliable delivery property and the
termination property. From the latter, we obtain the bound for the integrity property.

Theorem 13. If T ′ > T , the M -Geocast(I, d) algorithm with M = 3T (i + 1) + 2T
and i = � d

δ1− δT
T ′

� ensures

(1) the Reliable Delivery Property 1 for C = 3T (i + 1) + 2T ,
(2) the Termination Property 2 for C′ = (3T (i + 1) + 2T + 1)T , and
(3) the Integrity Property 3 for d′ = (C′ + T )(δ2 + δ

T ′ ).

Proof. Let us first prove (1). From Lemma 6, we know that any 3T rounds starting
from t0 = t the information reaches some distance δ1 − δT

T ′ farther from l. Formally,
li − l ≥ i(δ1 − δT/T ′). Since we want all the nodes that during the geocast interval
remain within distance d from l deliver the information I , we need to compute the
maximum value that i could take in any execution such that (l + d) ∈ [li, li+1). Then
i ≤ � li−l

δ1− δT
T ′

� and because li − l ≤ d, i ≤ � d
δ1− δT

T ′
�.

From Lemma 11, all the nodes that remain within distance d from l(= l0) throughout
[t0, ti+1] deliver I by time ti+1 + T = t + C. By Lemma 6, ti+1 − t ≤ 3T (i + 1), and
C = ti+1 − t + T ≤ 3T (i + 1) + 2T . Then C ≤ 3T (� d

δ1− δT
T ′

� + 1) + 2T .

We have finally to prove that, during [t, t + C], for any node, countI < M , where
M = C. This follows from Lemma 12.

We prove now (2). Every message received causes rebroadcasting of I in a message
with counter at least incremented by one. This will happen at least once every T times.
Termination happens after any message received has counter larger than 3T (i+1)+2T ,
where i = � d

δ1− δT
T ′

�. This happens within (3T (i+1)+2T +1)T +T time, because all

messages broadcast after time (3T (i + 1) + 2T + 1)T have counters at least equal to
3T (i+ 1)+ 2T + 1 and all such messages are received within at most another T times.
Note that, in the worst case, each broadcast message is received exactly after T times
and then the counter is incremented by one unit, while in reality T steps have passed.
Therefore, C′ = (3T (� d

δ1− δT
T ′

� + 1) + 2T + 1)T .

Finally, we prove (3). A broadcast message will be received at least after one time
unit during which any node can traverse distance at most δ

T ′ . Therefore, if a node broad-
casts a message from location l′ at time t′, then its neighbors receive it the earliest at
time t′ + 1, when at distance less than δ2 + δ

T ′ away from l′. Then, if the source starts
M -Geocast(I, d) at time t from location l, at time t + m, the furthest node that de-
livers I is at distance less than m(δ2 + δ

T ′ ) away from l. By (2), after time t + C′,
no node broadcasts messages with information I . Therefore, no node delivers I after
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time t + C′ + T . But at time t + C′ + T , all nodes that have delivered I are within
distance less than (C′ + T )(δ2 + δ

T ′ ) from l. Therefore, if a node remains further than
d′ = (C′ + T )(δ2 + δ

T ′ ) from l, it will never deliver I .

6 Conclusion

We have studied the geocast problem in mobile ad-hoc networks. We have considered
a set of n mobile nodes which move in a continuous manner with bounded maximum
speed. We have addressed the question of how the speed of movement impacts on pro-
viding a deterministic reliable geocast solution, assuming that it takes some time T to
ensure a successful one-hop radio communication.

Our results improve and generalize the bounds presented in [1]. For the two-dimen-
sional mobility model, we have presented a tight bound on the maximum speed of
movement that keeps the solvability of geocast. We have also proved that Ω(nT ) is a
time complexity lower bound for a geocast algorithm to ensure deterministic reliable
delivery, and we have provided a distributed solution which is proved to be asymptoti-
cally optimal in time. This latter bound confirms the intuition, presented in [15] for the
brodcast problem by Prakash et al., that when nodes may move the number of nodes in
the system is the impact factor on the reliable communication completion time. In fact,
our solution and bounds are also applicable to 3 dimensions, a case that is rarely studied
but may be of growing interest.

Finally, assuming the one-dimensional mobility model, i.e. nodes moving on a line,
we have proved that vmax < 2δ

T is a necessary condition to solve the geocast, where δ

is a system parameter, and presented an efficient algorithm when vmax < δ
T . This still

leaves a gap on the maximum speed to solve the geocast problem in one dimension.
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Abstract. Most peer-to-peer (P2P) networks proposed until now have
either logarithmic degree and logarithmic dilation or constant degree and
logarithmic dilation. In the latter case (which is optimal up to constant
factors), the constant degree is achieved either in expectation or with
high probability. We propose the first overlay network, called SkewCCC,
with a maximum degree of 3 (minimum possible) and logarithmic dila-
tion. Our approach can be viewed as a decentralized and distorted version
of a Cube Connected Cycles network. Additionally, basic network opera-
tions such as join and leave take logarithmic time and are very simple to
implement, which makes our construction viable in fields other than P2P
networks. A very good example is scatternet construction for Bluetooth
devices, in which case it is crucial to keep the degree at most 7.

1 Introduction

Peer-to-peer networks have become an established paradigm of distributed com-
puting and data storage. One of the main issues tackled in this research area is
building an overlay network that provides a sparse set of connections for com-
munication between all node pairs. The aim is to build the network in a way
that an underlying routing scheme is able to quickly reach any node from any
other, without maintaining a complete graph of connections. In this paper, we
investigate such networks suitable not only for peer-to-peer networks but also
for Bluetooth scatternet formation and one-hop radio networks.

An important property of the investigated networks is their scalability. We
introduce a scalable and dynamic network structure which we call SkewCCC.
The maximum in- and out-degree of a node inside the SkewCCC network is 3
and routing and lookup times are logarithmic in the current number of nodes.
Naturally, it is impossible to decrease the degree to 2 while preserving any net-
work topology besides a ring. Our routing scheme is name-driven, i.e. packet
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routes can be calculated based on their destination address without requiring
extensive routing tables [8].

The construction of the SkewCCC network is fully distributed and remains
very simple from the computational and communication perspective. This is
crucial when designing algorithms for weak devices like small embedded systems,
which are often found in sensor networks. To minimize the production costs such
devices have very limited computational power and have to reduce their energy
usage [6].

It is widely known in the area of P2P networks that if we use a ring-based
network such as Chord [12] as a basis for a distributed hash table (DHT), then
the load balance is not even, unless special algorithms are employed in order to
smoothen the load. In particular, if nodes choose random places for themselves,
the expected ratio of the highest loaded to the lowest loaded node is Ω(n log n).
Our design applied as a topology for a DHT is perfectly balanced, i.e. without
applying any additional load balancing schemes each node has an in- and out-
degree independent of the network size.

Besides being used as an overlay sensor network or as a peer-to-peer network,
the proposed SkewCCC architecture can also be applied for underlay networks.
In particular, for the construction of Bluetooth scatternets and one-hop radio
networks, it is not sufficient to ensure that the (expected) network degree is
bounded by some constant, but it is absolutely necessary to keep the degree
smaller than 7.

2 Related Work

The current research in the area of P2P networks concentrates on providing
dynamic overlay networks with good properties (small diameter, small in- and
out-degree). The basic task of peer-to-peer applications, i.e. efficiently locating
the peer that stores a sought data item, is performed by means of consistent
hashing [7]. The main requirement of this technique is the ability to perform
a name-driven routing in the network; the parameters of this routing, like dilation
(max. path length) influences directly the performance of the whole system. In
this section, we compare our solution with existing dynamic networks. By n we
denote the number of nodes currently in the system.

The first proposed distributed hash table (DHT) solutions were ring topolo-
gies: Chord [12] and Chord-like structures: Tapestry [13] and Pastry [11]. By
introducing shortcuts inside the ring, these DHTs achieve good properties: their
dilation is O(log n) and also the runtime of joining and leaving the network is
logarithmic. On the other hand, each node has to keep Θ(log n) pointers to other
nodes and thus the out-degree is large.

SkipNets [5] and Skip-Graphs [1] as well their deterministic versions such as
Hyperrings [2] are based on a hierarchical structure. In this approach the network
is organized into levels, where the first level is just a ring of all nodes and higher
levels are built of independent rings being refinements of rings from previous
levels. The refinement continues until each node itself is a ring. The approach
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yields good properties concerning storage of sorted or unevenly distributed data
but does not improve the degree/distance factor of Chord. In all mentioned
designs, the degree of each node is logarithmic (as there are logarithmic number
of levels and each node has degree two in each level) and logarithmic dilation
(one step has to be done in each ring).

The first overlay network with constant out-degree and logarithmic diameter
was Viceroy [9]. The network is based on the randomized approximation of a
butterfly network [8] that adds a constant number of outgoing links for long
range communications. Furthermore, join or leave operations inside Viceroy re-
quire only a constant number of local updates on expectation and a logarithmic
number with high probability. Nevertheless, the in-degree of at least one node
inside the network becomes with high probability Ω(log n/ log log n) if each node
has only a single choice for its address during the join process. The in-degree
can also be bounded with high probability if each node has Θ(log n) random
choices for its address during the join operation. However this leads to Θ(log2 n)
updates for each join operation.

The approach of using multiple choices is also used inside the Distance Halving
DHT network [10]. The structure is based on a dynamic decomposition of a
continuous space into cells, which are assigned to nodes. The underlying deBruijn
structure ensures a degree of d for each node and leads to a path length of
O(logd n) for key lookups.

Besides providing solutions for general networks, there has been some re-
search on overlay networks which consider the special properties of Bluetooth
networks. The first scalable overlay for Bluetooth (a network of constant degree
and poly-logarithmic diameter) has been presented in [3]. The network is based
on a backbone that enables routing based on virtual labeling of nodes without
large routing tables or complicated path-discovery methods. The scheme is fully
distributed, but still poses high demands on the computational abilities of the
underlying devices.

In [4], we have presented an overlay topology with special support for Blue-
tooth networks which is based on Cube Connected Cycles networks [8]. The re-
sulting network has constant in- and out-degree as well as a dilation of O(log n).
The main drawback of the approach is that the scheme is centralized (in par-
ticular, each node has to know the current number of nodes in the system) and
hence not scalable. Although the scheme we present in this paper is also based
on the CCC network, it is a big step forward as it is completely distributed and
self-balancing.

In Fig. 1, we summarize the parameters of different distributed solutions, most
of them holding with high probability.

3 SkewCCC

As we base our approach on the hypercube and the CCC (Cube Connected
Cycles) networks, we shortly review their construction. These networks were
extensively studied and have good properties concerning maintenance, diameter,
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Network out-degree in-degree dilation join runtime
Chord-like networks Θ(log n) Θ(log n) Θ(log n) Θ(log n)
Viceroy (single choice) O(1) Ω( log n

log log n
) Θ(log n) O(log n)

Viceroy (multiple choice) O(1) O(1) Θ(log n) Ω(log2 n)
Distance Halving (m.c.) O(d) O(d) Θ(logd n) Ω(log n · logd n)
SkewCCC 3 3 Θ(log n) Θ(log n)

Fig. 1. Summary of old and new results

degree of nodes and routing speed. On the other hand, they are meant exclusively
for static networks. For a thorough introduction to these kinds of networks, we
refer the reader to [8].

In this paper, we use the following notation. By a string we always mean a
binary string, whose bits are numbered from 0. For any two strings a and b,
we write a " b to denote that a is a (not necessarily proper) prefix of b. We
denote an empty string by ε and use · to denote a concatenation of two strings;
⊕ denotes the bitwise xor operation. We also identify strings of fixed lengths
with binary numbers they represent.

Definition 1. The d-dimensional hypercube network has n = 2d nodes. Each
node is represented by a number 0 ≤ i < n. Two nodes i and j are connected if
and only if i ⊕ 2k = j for an integer 0 ≤ k < d.

A d-dimensional Cube Connected Cycles (CCC) network is essentially a
d-dimensional hypercube in which each node is replaced with a ring of length d
and each of its d connections is assigned to one of the ring nodes. This way the
degree of the network is reduced from d to 3, whereas almost all of the network
properties (e.g. diameter) are changed only slightly.

Definition 2. The d-dimensional CCC network has d · 2d nodes. Each node is
represented by a pair (i, j), where 0 ≤ i < d and 0 ≤ j < 2d. Each such node is
connected to three neighbors: two cycle ones with indices ((i ± 1) mod d, j) and
a hypercubic one (i, j ⊕ 2i).

Examples of a 3-dimensional hypercube and CCC network are given in Fig. 2.
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110
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Fig. 2. a) 3-dimensional hypercube, b) 3-dimensional CCC
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We present our network in two stages. First, we describe the network and its
properties. Second, we describe algorithms, which assure proper structure when
nodes join and leave the network.

3.1 Network Structure

When we compare the CCC network with the hypercube, we may think that the
d-dimensional hypercube is a skeleton for the d-dimensional CCC. In other words,
if we replace each node of the hypercube (to which we refer as a corner) by a cycle
of nodes, then the resulting network is a CCC. In the following description we
start from a description of such a skeleton for our network, called SkewHypercube,
then we show how to replace each of its corners by a ring of real network nodes,
finally creating a structure, which we call a SkewCCC network.

SkewHypercube. In the following we describe a skeleton network called skew-
Hypercube. Each node of this network will correspond to a group of real nodes.
To avoid ambiguity, we refer to a skeleton node as a corner.

First, we define the set of corners. Each corner i has an identifier, which is
a string si of length di. The number di is called the dimension of the corner.
We require that the set of corner identifiers C = {si} is prefix-free and complete.
Prefix-freeness means that for any two strings si, sj , neither si " sj nor sj " si.
Completeness means that for any infinite string s, there exists an identifier si ∈ C,
s.t. si " s. The description above implies that (i) a single corner with empty
name s = ε constitutes a correct set C and (ii) any correct set of corners C can be
obtained by multiple use of the following operation (starting from the set {ε}):
take a corner i and replace it with two corners j and k with identifiers sj = si ·0
and sk = si · 1.

Second, we define the set of edges in a SkewHypercube.

Definition 3. Two SkewHypercube corners i and j are connected iff

(i) there exists 0 ≤ ki < di, s.t. si ⊕ 2ki " sj or
(ii) there exists 0 ≤ kj < dj, s.t. sj ⊕ 2kj " si.

We note that if all identifiers of corners have the same length d, then our Ske-
wHypercube is just a regular d-dimensional hypercube. On the other hand, the
definition above allows the following situation to occur. It may happen that a
single corner s has identifier 0 (dimension 1) and there are 2k corners with di-
mension k + 1 with identifiers starting with 1. This results in corner s having
the degree of 2k. We will explicitly forbid such situations in the construction
of our network and require that the dimensions of neighboring corners can dif-
fer at most by 1. This ensures that each corner of dimension d has at most 2d
neighbors. An example of a SkewHypercube is presented in Fig. 3.

Identifiers. To specify which nodes are stored in particular corners of the
SkewHypercube, we have to give nodes unique identifiers. These identifiers are
infinite strings, chosen randomly upon joining the network, where each bit is
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Fig. 3. a) SkewHypercube skeleton, b) SkewCCC, only core nodes are depicted

equiprobably 0 or 1. To avoid the burden of handling infinite strings, one may
follow the approach of SkipGraphs [1], i.e. a node chooses for an identifier a string
of a fixed length, and when two nodes with the same identifier meet, they choose
additional random bits until their identifiers differ on at least one bit. More-
over, it will follow from our construction that such an identifier conflict will be
detected right after a node joins the network. In practical applications, it is suf-
ficient to choose identifiers of length 160 bits, as in such case the probability of
a conflict is overwhelmingly low.

The identifier of a node decides where the node should be placed in the network
and constitutes its address. Namely, a node with identifier x is stored in a corner
s, s.t. s " x. It remains to show how nodes are connected within a corner and how
neighbor relations between corners are represented by real edges between nodes.

From Skeleton to SkewCCC. As mentioned previously, a corner identified
by a string si contains a group of nodes whose identifiers have prefix si. Nodes
within a corner are managed in a centralized fashion.

As each skeleton node of degree d can have up to 2d neighbors, we require that
each corner has at least 2d nodes, called core ones. These nodes are connected in
a ring and each of them is responsible for a (potential) connection to a different
corner. For efficiency of routing, we demand that core nodes are sorted in the ring
in the same way as in the original CCC network. It means that a node in corner
s responsible for a connection to s⊕ 2k+1 follows on the ring a node responsible
for a connection to s⊕ 2k, whereas a node responsible for a connection to s⊕ 20

follows the one responsible for a connection to s ⊕ 2d−1.
It might happen that a corner contains not only its core nodes, but also has to

manage additional ones, which are called spare. When they join the corner, we
put them on the ring between core nodes and we balance the path lengths be-
tween two consecutive core nodes. It means that if there are m spare nodes in the
corner of dimension d, then there are between �m/2d� and �m/2d spare nodes
between any two consecutive core nodes. Due to this construction, each node in
the network has degree at most 3. An example of such network is given in Fig. 3.

3.2 Network Maintenance

In this section, we show how to maintain the shape of the network in a distributed
way in a dynamic setting, where nodes may join or leave the system. We start
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with showing a name-driven routing scheme, in which it is sufficient to know
the destination identifier to reach the corresponding node in a greedy manner in
a logarithmic number of steps (in the total number of nodes in the network).

We introduce a constant 
 ≥ 2, which is a parameter of our algorithms. The
runtime of our operations increase linearly with 
, and the probability that the
network is not balanced (the dimensions of corners vary) decreases exponentially
with 
.

Routing and Searching. When we search for a node with name s, we want
to find a corner with a name being prefix of s. Routing is performed using the
bit-fixing algorithm in which we fix bits of s one by one starting from the lowest
bit. When we want to fix the k-th bit of s, and s differs from the current corner
name in this bit, we go to a node in the current corner which has a connection
to a corner differing exactly on this bit and traverse this connection. When we
reach a destination corner (whose name is a prefix of s), we forward the message
through all nodes in the corner. The message either reaches its destination or
reaches some node for the second time. If the latter happens, this node answers
the request with a negative (not found) answer.

Joining. We assume that when a node joins a network, it knows (or can discover
and contact) another node which is already a member of the network. After
choosing an identifier, the joining node asks its contact to find this identifier
in the network. As the identifiers are supposed to be different, the result of
the search will be negative, but a node with the longest prefix matching the
identifier will be returned as a new contact. The new node joins (as a spare
node) the corner to which its new contact belongs. At this point, it is checked if
a split of the corner is necessary.

Splitting. A corner s of dimension d could be allowed to split when there are
enough resources to form two corners of dimension d + 1, i.e. if there are at
least 2(d + 1) nodes with prefix s · 0 and with prefix s · 1. However, for efficiency
in a dynamic system, we split a corner when the number of nodes with both
prefixes exceeds 12 · 
 · (d + 1), where 
 ≥ 2 is a constant parameter described
above. Additionally, such a corner is allowed to split only if it has no neighbors
of dimension d − 1.

After splitting, we create two corners: s · 0 and s · 1 and assign nodes to
them according to their names. A connection is established between the two
new corners: a core node is responsible for this connection in each of them. Each
connection from s is assigned to a proper one of the two new corners. If the
connection has been to a corner of dimension d, both corners connect to the
neighboring corner and the latter has to assign an additional core node to serve
this connection. If the connection has been to two corners of dimension d + 1,
then s · 0 connects to the corner with a 0 on position d and s · 1 to the corner
with a 1 on position d.

Leaving. When a node i wants to leave the network, it searches for a special
spare node j in its corner, tells j to take its place, and leaves. The special spare
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node j is chosen so that after removing i and migrating j into its place, spare
nodes are distributed evenly in the corner. After i leaves and j migrates, a check
is performed if the number of nodes in the corner has decreased sufficiently to
call a merging operation.

Merging. When the number of nodes in a corner s of dimension d drops below
2d, we have to merge s with its neighbor s′ = s⊕2d−1, i.e. with the one differing
from s on the last bit. Actually, we do it already when the number of nodes in
such a corner drops to (6
 + 7) · d. First, we send a message to all neighboring
corners of dimension d+1 (possibly including the neighbors across bit d), telling
them to merge first. They merge recursively and after all neighbors of s are of
dimension d or d − 1, we merge the two corners. Naturally, whenever a corner
receives a message from one of its neighbors (of lower dimension) telling it to
merge, it starts the merge procedure too.

3.3 Analysis

Before we bound the runtime of all operations on the system, we prove that with
high probability the system is balanced, i.e. the dimensions of each corner are
roughly the same.

To formally define this notion, we introduce (just for the analysis) a parameter
du, which would be the current dimension of the network if it would be a CCC.
This means that if n is the current number of nodes in the network, then du·2du ≤
n < (du + 1) · 2du+1. For du > 2, it holds that du/2 ≤ ln n ≤ 2du. Additionally,
we introduce a parameter dl differing from du by a constant: dl := du − log 
−5.
For simplicity of notation, we assume that all nodes’ identifiers are infinite.

Definition 4. A skew CCC network is balanced if all corners’ dimension are
between dl and du.

Now we show that the network is balanced with high probability. We note that
even in case of bad luck (happening with polynomially small probability), the
system still works — it might just work slower.

Lemma 1. If the network is stable, i.e. no nodes are currently joining or leaving
and no split or merge operations are currently being executed or pending, then
with probability 1 − 2 · n−� the network is balanced.

Proof. We prove two claims:

(i) the probability that there exists a corner with dimension du or greater is
at most n−�;

(ii) the probability that there exists a corner with dimension dl or smaller is
at most n−�.

For proving (i), we take a closer look at the set S of all node identifiers. For any
string s, let Ss = {si ∈ S : s " si}, i.e. Ss consists of all identifiers starting with
s. We say that S is well separated if for each du-bit string s, |Ss| ≤ (6
 + 7) · du.
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First, we observe that if S is well separated, then there is no corner of dimen-
sion du or higher. Assume the contrary and choose the corner si with highest
dimension (at least du). Then there are at most (6
 + 7) · du identifiers start-
ing with si, i.e. remaining in this corner. As all the neighbors of corner si have
smaller or equal dimension, this corner should be merged, which contradicts the
assumption that the network is stable.

Second, we show that the probability that S is not well separated is at
most n−�. Fix any string s of length du. For each node i with identifier si let an
indicator random variable Xs

i be equal to 1 if s " si. Since s is a du-bit string,
we have E[Xs

i ] = 2−du. Let Xs =
∑n

i=1 Xs
i ; by the linearity of expectation,

E[Xs] =
∑n

i=1 E[Xs
i ] = n ·2−du ≥ du. Using the Chernoff bound, we obtain that

Pr [Xs ≥ (6
 + 7)du] ≤ Pr [Xs − E[Xs] ≥ (6
 + 6) · E[Xs]]

≤ exp
(
− (6
 + 6) · E[Xs]

3

)
≤ e−(2�+2)·du

≤ n−(�+1) .

There are 2du ≤ n possible du-bit strings, and thus (by the sum argument) the
probability that S is not well separated is at most n · n−(�+1) = n−�.

Proving (ii) is analogous. We say that S is well glued if for each dl-bit string s,
|Ss| ≥ 12
 · dl.

Again, we prove that if S is well glued, then there is no corner of dimension dl

or lower. Assume the contrary and let si be the corner with lowest dimension.
There are at least 12
·dl nodes in corner si. As all the neighbors of corner si have
greater or equal dimension, this corner should be splitted, which contradicts the
assumption that the network is stable.

Again, we show that the probability that S is not well glued is at most n−�.
Let t be any dl-bit string, indicator random variables Xt

i denote if t " si and
Xt =
∑n

i=1 Xt
i . Then E[Xt] = n · 2−(du−5−log �) ≥ 32
 · du. Using the Chernoff

bound, we get that

Pr
[
Xt ≤ 12
 · dl

]
≤ Pr
[
Xt ≤ (1 − 1/2) · E[Xt]

]
≤ e−E[Xt]/8

≤ e−4�·du

≤ n−2� .

There are 2dl ≤ n possible dl-bit strings, and thus the probability that S is not
well glued is at most n · n−2� ≤ n−�. ��
According to Lemma 1, the system is balanced with high probability. Now, we
will show that all basic operations are performed in a time that is logarith-
mic in the current number of nodes. In the following, we assume that the high
probability event of the network being balanced actually happens.

Lemma 2. If the network is balanced, then each search operation is performed
in logarithmic time.
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Proof. Since each corner is of dimension Θ(log n), we have to fix Θ(log n) bits
in order to reach the destination corner. As the number of nodes in each corner
is within a constant factor from its dimension, there are Θ(log n) nodes in each
corner. In particular, there is a constant number of spare nodes between any two
consecutive core nodes. Thus, in order to fix the i-th bit after fixing the (i−1)-st
bit we have to traverse only a constant number of edges. In order to fix the first
bit and to reach the destination node after reaching the destination corner, we
have to travel at most through all the nodes of two corners. Hence, the total
number of traversed edges is O(log n). ��

Before we prove upper bounds for join and leave operations we bound the time
of split and merge.

Lemma 3. If the network is balanced, then each split operation is performed in
logarithmic time.

Proof. When we split a corner s of dimension d into corners s · 0 and s · 1 of
dimension d + 1, then there are more than sufficient nodes for each corner and
we know that each neighboring corner is of dimension d or d + 1.

Since the corner s currently has to split and 
 ≥ 1, there are at least 12(d+1)
nodes of each type in s. Starting in any node, we traverse the ring a constant
number of times and do the following. In the first pass, we make sure that
there are two connections to neighbor corners across every bit. If there are two
connections already, there is nothing to do and if there is only one, we take any
spare node in the corner we are currently splitting and make a connection to
a spare node in the neighboring corner. From now on, these two spare nodes
(one in each corner) are core nodes. Finally, we add two core nodes without an
outside connection to s; they will be responsible for connecting the two corners
into which we split s.

In the second pass, we use all spare nodes to create two additional rings: one
built of nodes with the d-th bit equal to 0 and the other built of nodes with the
d-th bit equal to 1. Since each ring has at most 2(d + 1) core nodes and at least
12(d + 1) nodes in total, each of the newly created rings has at least 10(d + 1)
nodes. In the next pass, we can go along each of the three rings in parallel and
pass the responsibility for a connection to another corner from the old ring to
one of the new ones. This means that the ring with nodes with d-th bit equal
to 0 takes responsibility for the connections to corners (s ⊕ 2k) · 0 (analogously
if the last bit is equal to 1).

In the last traversal of all rings, we delete nodes from the old ring and make
them join one of the new rings as spare nodes. Again, we move nodes with the
d-th bit equal to 0 to the newly created corner s · 0 and nodes with the d-th bit
equal to 1 to the newly created corner s · 1.

As we have used only a constant number of traversals of rings of length
O(log n), the whole split operation needs time O(log n). ��

We note that in case of search and split operations, the system can be balanced
in a weaker sense than we defined, i.e. we just need that the corner dimension
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is O(log n). The merge operation is the only operation which depends on the
property that the difference between dimension of the corners is constant. It is
also the most time and work consuming function, as a single merge operation
might need executing other merge operations before it can start.

Lemma 4. If the network is balanced, then a merge operation is performed in
time O(polylog(n)), including recursive execution of other needed merge opera-
tions, whereas the amortized cost per merge operation is O(log n).

Proof. Since the total number of different dimensions of all corners in the net-
work is bounded by a constant (log 
 + 5), the recursive execution of other pos-
sibly necessary merge operations for neighboring corners of higher dimensions
has only constant depth. As on each level a corner can have d+O(1) = O(log n)
neighbors, the total number of involved corners is logO(1) n. Below we prove that
a single merge operation of corners s ·0 and s ·1 of dimension d+1 into a corner s
of dimension d has cost O(d) = O(log n), if all neighbors have been reduced to
equal or lower dimension.

Similarly to the split operation, we can traverse in parallel both rings s ·0 and
s · 1 which we want to merge. We denote their dimension by d. As no neighbor
of s · 0 and s · 1 is of dimension d + 1, only d connections of 2d core nodes are
actually used in each of them. We first build a ring composed of these used core
nodes of both old rings, whereas we zip them into one ring interleaving the core
nodes of s ·0 and the core nodes of s ·1. When we remove core nodes from the old
rings, we glue the holes so that we get two rings composed of spare nodes. Next,
we remove two core nodes which have been responsible for the connection across
bit d− 1 (they connected s · 0 to s · 1) and move them to one of the old rings as
spare nodes. In the next traversal of the old rings we calculate how many spare
nodes they contain and then, in the last traversal, we evenly distribute the spare
nodes in the newly created corner s.

Notice that there is no need to add any connections to neighboring corners —
all necessary connections already exist. On the other hand, if our new (d − 1)-
dimensional corner is a neighbor to another (d − 1)-dimensional one, we have
a double connection with this corner. We should remove one of the connections,
namely the one which originates from s · 1.

Since the cost of merging s·0 and s·1 into s (not including recursive merging of
neighbors) is Θ(d), and the cost of splitting s into s·0 and s·1 has also been Θ(d),
we can amortize the cost of merging into s against the cost of splitting s. This
shows that the amortized cost of a merge operation together with its symmetric
split operation of a corner of dimension d is Θ(d) = Θ(log nm) = Θ(log ns),
where nm is the number of nodes in the system at the moment when we perform
the merge operation and ns is the number of nodes at the moment when we have
performed the split operation. ��

Lemma 5. The join operation can be performed in logarithmic time.

Proof. Each time a node joins the network, it has to search its position inside the
network and to take its position inside the ring. Based on the previous lemmas,
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the search operation can be performed in logarithmic time and the update of
the ring structure involves the creation of two new edges and the removal of
one existing edge. Furthermore, it might happen that the corner has to split its
dimension, resulting in additional O(log n) operations. ��

Finally, in the following lemma, we analyze the cost of a leave operation.

Lemma 6. The leave operation can be performed in polylogarithmic and amor-
tized logarithmic time.

Proof. A typical leave operation only triggers a few connection updates. If the
node has been a spare node in its corner, the leave operation involves two con-
nection updates, if the node has been a core node, one additional update has to
be performed to re-connect to the neighboring corner.

Besides the connection updates, a node leaving the network might also trigger
a merge operation of the corner. Based on the previous lemmas, each merge
operation costs at most polylogarithmic time (and logarithmic amortized time)
and majorizes the cost of a leave operation. ��

4 Conclusion and Outlook

We have shown a fully distributed but simple scheme which joins a potentially
very large set of computationally weak nodes into an organized network with
minimal possible degree of 3, logarithmic dilation and name-driven routing.

Based on the properties and the structure of the SkewCCC network, it is
possible to further investigate aspects of heterogeneity and locality. The former
means allowing the existence of network nodes which can have a higher degree
and potentially also greater computational power. The latter aspect would in-
corporate distances of the underlying network.
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Abstract. We consider wait-free implementations of a regular read/
write register for unauthenticated data using a collection of 3t + k base
objects, t of which can be subject to Byzantine failures. We focus on am-
nesic algorithms that store only a limited number of values in the base
objects. In contrast, non-amnesic algorithms store an unbounded num-
ber of values, which can eventually lead to problems of space exhaustion.
Lower bounds on the time-complexity of read and write operations are
currently met only by non-amnesic algorithms. In this paper, we show for
the first time that amnesic algorithms can also meet these lower bounds.
We do this by giving two amnesic constructions: for k = 1, we show that
the lower bound of two communication rounds is also sufficient for every
read operation to complete and for k = t + 1 we show that the lower
bound of one round is also sufficient for every operation to complete.

Keywords: distributed storage, Byzantine failures, wait-free algorithms.

1 Introduction

Motivated by recent advances in the Storage-Area Network (SAN) technology,
and also by the availability of cheap commodity disks, distributed storage has
become a popular method to provide increased storage space, high availabil-
ity and disaster tolerance. We address the problem of implementing a reliable
read/write distributed storage service from unreliable storage units (e.g. disks),
a threshold of which might fail in a malicious manner. Fault-tolerant access to
replicated remote data can easily become a performance bottleneck, especially
for data-centric applications usually requiring frequent data access. Therefore,
minimizing the time-complexity of read and write operations is essential. In this
paper, we show how optimal time-complexity can be achieved using algorithms
that are also space-efficient.

An essential building block of a distributed storage system is the abstraction
of a read/write register, which provides two primitives: a write operation, which
writes a value into the register, and a read operation which returns a value pre-
viously written [1]. Much recent work, and this paper as well, focuses on regular
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registers where read operations never return outdated values. A regular register
is deemed to return the last value written before the read was invoked, or one
written concurrently with the read (see [1] for a formal definition). Regular reg-
isters are attractive because even under concurrency, they never return spurious
values as sometimes done by the weaker class of safe registers [1]. Furthermore,
they can be used, for instance, together with a failure detector to implement
consensus [2].

The abstraction of a reliable storage is typically built by replicating the data
over multiple unreliable distributed storage units called base objects. These can
range from simple (low-level) read/write registers to more powerful base objects
like active disks [3] that can perform some more sophisticated operations (e.g. an
atomic read-modify-write). Taken to the extreme, base objects can also be imple-
mented by full-fledged servers that execute more complex protocols and actively
push data [4]. We consider Byzantine-fault tolerant register constructions where
a threshold t < n/3 of the base objects can fail by being non-responsive or by re-
turning arbitrary values, a failure model called NR-arbitrary [5]. Furthermore, we
consider wait-free implementations where concurrent access to the base objects
and client failures must not hamper the liveness of the algorithm. Wait-freedom
is the strongest possible liveness property, stating that each client completes its
operations independent of the progress and activity of other clients [6]. Algo-
rithms that wait-free implement a regular register from Byzantine components
are called robust [7]. An implementation of a reliable register requires the (client)
processes accessing the register via a high-level operation to invoke multiple low-
level operations on the base objects. In a distributed setting, each invocation of a
low-level operation results in one round of communication from the client to the
base object and back. The number of rounds needed to complete the high-level
operation is used as a measure for the time-complexity of the algorithm.

Robust algorithms are particularly difficult to design when the base objects
store only a limited number of written values. Algorithms that satisfy this prop-
erty are called amnesic. With amnesic algorithms, values previously stored are
not permanently kept in storage but are eventually erased by a sequence of values
written after them. Amnesic algorithms eliminate the problem of space exhaus-
tion raised by (existing) non-amnesic algorithms, which take the approach of
storing the entire version history. Therefore, the amnesic property captures an
important aspect of the space requirements of a distributed storage implementa-
tion. The notion of amnesic storage was introduced in [7] and defined in terms of
write-reachable configurations. A configuration captures the state of the correct
base objects. Starting from an initial configuration, any low-level read/write op-
eration (i.e., one changing the state of a base object) leads the system to a new
configuration. A configuration C′ is write-reachable from a configuration C when
there is a sequence consisting only of (high-level) write operations that starting
from C, leads the system to C′. Intuitively, a storage algorithm is amnesic if,
except a finite number of configurations, all configurations reached by the algo-
rithm are eventually erased by a sufficient number of values written after them.
Erasing a configuration C′, which itself was obtained from a configuration C,
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means to reach a configuration C′′ that could have been obtained directly from
C without going through C′. This means that once in C′′, the system cannot
tell whether it has ever been in configuration C′. For instace, an algorithm that
stores the entire history of written values in the base objects is not amnesic.
In contrast, an algorithm that stores in the base objects only the last l written
values is amnesic because after writing the l + 1st value, the algorithm cannot
recall the first written value anymore.

1.1 Previous and Related Work

Despite the importance of amnesic and robust distributed storage, most im-
plementations to date are either not robust or not amnesic. While some relax
wait-freedom and provide weaker termination guarantees instead [2, 8], others
relax consistency and implement only the weaker safe semantics [5,9,2,10]. Gen-
erally, when it comes to robustly accessing (unauthenticated) data, most algo-
rithms store an unlimited number of values in the base objects [11, 10, 12]. Also
in systems where base objects push messages to subscribed clients [4,13,14], the
servers store every update until the corresponding message has been received
by every non-faulty subscriber. Therefore, when the system is asynchronous, the
servers might store an unbounded number of updates. A different approach is to
assume a stronger model where data is self-verifying [9, 15, 16], typically based
on digital signatures. For unauthenticated data, the only existing robust and
amnesic storage algorithms [17, 18] do not achieve the same time-complexity as
non-amnesic ones. Time-complexity lower bounds have shown that protocols us-
ing the optimal number of 3t + 1 base objects [4] require at least two rounds to
implement both read/write operations [10, 2]. So far these bounds are met only
by non-amnesic algorithms [12]. In fact, the only robust and amnesic algorithm
with optimal resilience [17] requires an unbounded number of read rounds in the
worst case. For the 4t + 1 case, the trivial lower bound of one round for both
operations is not reached by the only other existing amnesic implementation [18]
that albeit elegant, requires at least three rounds for reading and two for writing.

1.2 Paper Contributions

Current state of the art protocols leave the following question open: Do amnesic
algorithms inherently have a non-optimal time complexity? This paper addresses
this question and shows, for the first time, that amnesic algorithms can achieve
optimal time complexity in both the 3t + 1 and 4t + 1 cases. Justified by the
impossibility of amnesic and robust register constructions when readers do not
write [7], one of the key principles shared by our algorithms is having the readers
change the base objects’ state. The developed algorithms are based on a novel
concurrency detection mechanism and a helping procedure, by which a writer
detects overlapping reads and helps them to complete. Specifically, the paper
makes the following two main contributions:

– A first algorithm, termed DMS, which uses 4t + 1 base objects, described in
Section 3. With DMS, every (high-level) read and write operation is fast, i.e.,
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it completes after only one round of communication with the base objects.
This is the first robust and amnesic register construction (for unauthenti-
cated data) with optimal time-complexity.

– A second algorithm, termed DMS3, which uses the optimal number of 3t+1
base objects, presented in Section 4. With DMS3, every (high-level) read
operation completes after only two rounds, while write operations complete
after three rounds. This is the first amnesic and robust register construction
(for unauthenticated data) with optimal read complexity. Note also that,
compared to the optimal write complexity, it needs only one additional com-
munication round.

Table 1 summarizes our contributions and compares DMS and DMS3 with recent
distributed storage solutions for unauthenticated data.

Table 1. Distributed storage for unauthenticated data

Worst-Case Time-complexity
Protocol Resilience Read Write Amnesic Robust

Abraham et al. [18] 4t + 1 3 2
√ √

DMS 4t + 1 1 1
√ √

Guerraoui and Vukolić [10] 3t + 1 2 2 × √

Byzantine Disk Paxos [2] 3t + 1 t + 1 2
√ ×

Guerraoui et al. [17] 3t + 1 unbounded 3
√ √

DMS3 3t + 1 2 3
√ √

2 System Model and Preliminaries

2.1 System Model

We consider an asynchronous shared memory system consisting of a collection
of processes interacting with a finite collection of n base objects. Up to t out of
n base objects can suffer NR-arbitrary failures [5] and any number of processes
may fail by crashing. Each object implements one or more registers. A register is
an object type with value domains Val, an initial value v0 and two invocations:
read, whose response is v ∈ Vals and write(v), v ∈ Vals, whose response is ack.
A read/write register is single-reader single-writer (SRSW) if only one process
can read it and only one can write to it; a register is multi-reader single-writer
(MRSW) if multiple processes can read it. Sometimes processes need to perform
two operations on the same base object, a write (of a register) followed by a read
(of a different register). To reduce the number of rounds, we collapse consecu-
tive write/read operations accessing the same base object to a single low-level
operation called write&read. The write&read operation can be implemented in
a single round, for instance using active disks [3] as base objects1.
1 Note that since write&read is not an atomic operation, it can be implemented from

simple read/write registers and thus the model is not strengthened.
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2.2 Preliminaries

In order to distinguish between the target register’s interface and that of the
base registers, throughout the paper we denote the high-level read (resp. write)
operation as read (resp. write). Each of the developed protocols uses an under-
lying layer that invokes operations on different base objects in separate threads
in parallel. We use the notation from [2] and write invoke write(Xi,v) (resp.
invoke x[i] ← read(Xi)) to denote that a write(v) operation on register Xi

(resp. a read of register Xi whose response will be stored in a local variable x[i])
is invoked in a separate thread by the underlying layer. The notation invoke
x[i] ← write&read(〈Yi, v〉, Xi) denotes the invocation of an operation write&read
on base object i, consisting of a write(v) on register Yi followed by a read of reg-
ister Xi (whose response will be stored in x[i]).

As base objects may be non-responsive, high-level operations can return while
there are still pending invocations to the base objects. The underlying layer keeps
track of which invocations are pending to ensure well-formedness, i.e., that a
process does not invoke an operation on a base object while invocations of the
same process and on the same base object are pending. Instead, the operation
is denoted enabled. If an operation is enabled when a pending one responds,
the response is discarded and the enabled operation is invoked. See e.g. [2] for a
detailed implementation of such layers.

We say that an operation op is complete in a run if the run contains a response
step for op. For any two operations op1 and op2, when the response step of op1
precedes the invocation step of op2, we say op1 precedes op2. If neither op1 nor
op2 precedes the other then the two operations are said to be concurrent.

In order to better convey the insight behind the protocols, we simplify the
presentation in two ways. We introduce a shared object termed safe counter and
describe both algorithms in terms of this abstraction. Although easy to follow,
the resulting implementations require more rounds than the optimal number.
Thus, for each of the protocols we explain how with small changes these rather
didactic versions can be “condensed” to achieve the announced time-complexity.
The full details of the optimizations can be found in our publicly available tech-
nical report [19]. Secondly, for presentation simplicity we implement a SRSW
register. Conceptually, a MRSW register for m readers can be constructed using
m copies of this register, one for each reader. In a distributed storage setting,
the writer accesses all m copies in parallel, whereas the reader accesses a single
copy. It is worth noting that this approach is heavy and that in practice, cheaper
solutions are needed to reduce the communication complexity and the amount
of memory needed in the base objects.

We now introduce the safe counter abstraction used in our algorithms. A
safe counter has two wait-free operations inc and get. inc modifies the counter
by incrementing its value (initially 0) and returns the new value. Specifically,
the kth

inc operation denoted inc
k returns k. get returns the current value

of the counter without modifying it. The counter provides the following
guarantees:
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Validity: If get returns k then get does not precede inc
k.

Safety: If inc
k precedes get and for all l > k get precedes inc

l, then get

returns k.

Note that under concurrency, a safe counter might return an outdated value, but
never a forged value. In the absence of concurrency, the newest value is returned.

We now explain the intuition behind our algorithms. Both algorithms use the
safe counter introduced above to arbitrate between writer and reader. During
each read (resp. write) operation, the reader (resp. writer) executes inc to
advance the counter (resp. get to read the counter). The values returned by the
counter’s operations are termed views. By incrementing its current view, a read

announces its intent to read from the base objects. A subsequent invocation
of get by the writer returns the updated view. When the writer detects a
concurrent read, indicated by a view change, it freezes the most recent value
previously written. Freezing a value v means that v may be overwritten only if
the read operation that attempts to read v has completed. We note that the
read operation that caused a value v to be frozen does not violate regularity by
returning v because all newer values were written concurrently with the read.
However, reads must not return old values previously frozen. This is necessary
to ensure regularity and it is done by freezing a value v together with the view
of the read due to which v is frozen. A read whose view is higher than the
one associated with v knows that it must pick a newer value. A read operation
completes when it finds a value v to return such that (a) v is reported by a
correct base object and (b) v is not older than the latest value written before
the read is invoked.

3 A Fast Robust and Amnesic Algorithm

We start by describing an initial version of protocol DMS that uses the safe
counter abstraction. It is worth noting that the algorithm requires more rounds
than the optimum, but it conveys the main idea. Next, we explain the changes
applied to DMS to obtain an algorithm with optimal time-complexity.

3.1 Protocol Description

We present a robust and amnesic SRSW register construction using a safe
counter and 4t + 1 regular base registers, out of which t can incur NR-arbitrary
failures. Figure 1 illustrates a simple construction of the safe counter used. The
description of the counter is omitted for the sake of brevity. The shared objects
used by DMS are detailed in Figure 2 and the algorithm appears in Figure 3.

The write performs in two phases, (1) a write phase where it first writes a
timestamp-value pair to n − t registers and (2) a subsequent read phase, where
it executes get to read the current view. In case a view change occurs between
two successive writes, the value of the first write is frozen. Recall that once
frozen, a value is not erased before the next view change. Similarly, the read
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Predicates:
safe(c) �
|{i : c′ ∈ y[i] ∧ c′ ≥ c}| ≥ t + 1

Local variables:
y[1 . . . n] ∈ Integers
k ∈ Integers, initially 0

get()
for 1 ≤ i ≤ n do y[i] ← ⊥
for 1 ≤ i ≤ n do

invoke y[i] ← read(Yi)
wait for n − t responses
return max{c ∈ Integers : safe(c)}

inc()
k ← k + 1
for 1 ≤ i ≤ n do

invoke write(Yi, k)
wait for n − t responses
return k

Fig. 1. Safe counter from 4t + 1 safe registers Yi ∈ Integers

consists of (1) a write phase, where it first executes inc to increment the current
view and (2) a subsequent read phase, where it reads at least n− t registers. To
ensure that read never returns a corrupted value, the returned value must be
read from t+1 registers, a condition captured by the predicate safe. Moreover, to
ensure regularity, read must not return old values written before the last write

preceding the read. This condition is captured by the predicate highestCand.
We now give a more detailed description of the algorithm. As depicted in

Figure 2, each base register consists of three value fields current, prev and frozen
holding timestamp-value pairs, and an integer field view. The writer holds a
variable x of the same type and uses x to overwrite the base registers. Each
write operation saves the timestamp-value pair previously written in x.prev.
Then, it chooses an increasing timestamp, stores the value together with the
timestamp in x.curr and overwrites n − t registers with x. Subsequently, the
writer executes get. If the view returned by get is higher than the current
view (indicating a concurrent read), then x.view is updated and the most recent
value previously written is frozen, i.e., the content of x.prev is stored in x.frozen
(line 14, Figure 3). Finally, write returns ack and completes. It is important
to note that the algorithm is amnesic because each correct base object stores at
most three values (curr, prev and frozen).

The read first executes inc to increment the current view, and then it reads
at least n−t registers into the array x[1...n], where element i stores the content of
register Xi. If necessary, it waits for additional responses until there is a candidate
for returning, i.e., a read timestamp-value pair that satisfies both predicates safe

Types:
TSVals � Integers × Vals, with selectors ts and val

Shared objects:
- regular registers Xi ∈ TSVals3 × Integers with selectors curr, prev,
frozen and view, initially 〈〈0, v0〉, 〈0, v0〉, 〈0, v0〉, 0〉
- safe counter object Y ∈ Integers, initially Y = 0

Fig. 2. Shared objects used by DMS
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Predicates (reader):
readFrom(c, i) � (c = x[i].curr ∧ x[i].view < view) ∨

(c = x[i].frozen ∧ x[i].view = view)
safe(c) � |{i : c ∈ {x[i].curr, x[i].prev, x[i].frozen}}| ≥ t + 1
highestCand(c) � |{i : readFrom(c′, i) ∧ c′.ts ≤ c.ts}| ≥ 2t + 1

Local variables (reader):
view ∈ Integers, initially 0
x[1 . . . n] ∈ TSVals3 × Integers

read()
for 1 ≤ i ≤ n do x[i] ← ⊥1

view ← inc(Y )2

for 1 ≤ i ≤ n do invoke x[i] ← read(Xi)3

wait until n − t responded ∧ ∃c ∈ TSVals: safe(c) ∧ highestCand(c)4

return c.val5

Local variables (writer):
newView, ts ∈ Integers, initially 0
x ∈ TSVals3 × Integers, initially 〈〈0, v0〉, 〈0, v0〉, 〈0, v0〉, 0〉

write(v)
ts ← ts+16

x.prev ← x.curr7

x.curr ← 〈ts, v〉8

for 1 ≤ i ≤ n do invoke write(Xi, x)9

wait for n − t responses10

newView ← get(Y )11

if newView > x.view then12

x.view ← newView13

x.frozen ← x.prev14

return ack15

Fig. 3. Robust and amnesic storage algorithm DMS (4t + 1)

and highestCand. A timestamp-value pair c is safe when it appears in some field
curr, prev or frozen of t+1 elements of x, ensuring that c was reported by at least
one correct register. Enforcing regularity is more subtle. Simply waiting until
the highest timestamped value read becomes safe might violate liveness because
it may be reported by a faulty register. To solve this problem, we introduce
the predicate highestCand. A value c is highestCand when 2t + 1 base registers
report values that were written not after c, which implies that newer values
are missing from t + 1 correct registers. As any complete write skips at most
t correct registers, all values newer than c were written not before read is
invoked and consequently, they can be discarded from the set of possible return
candidates.

We now explain with help of Figure 4 why reads are wait-free. We consider
the critical situation when multiple writes are concurrent with a read. Specif-
ically, we consider the kth

read (henceforth read
k), whose inc results in k
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Fig. 4. Correctness argument of the read operation in DMS

(henceforth inc
k), and the last write that still reads a view lower than k, i.e.,

the corresponding get returns a view lower than k. Note that by the safety
property of the counter, inc

k does not precede get and thus c is stored in 2t+1
correct registers before any of them is read. A key aspect of the algorithm is
to ensure that no matter how many writes are subsequently invoked, c never
disappears from all fields of those 2t + 1 correct registers, as long as read

k is
still in progress. Essentially this holds because the subsequent write re-writes
c to all registers and it also freezes c to ensure that future writes do the same.
In this process, c migrates from curr to prev and from prev to frozen where it
stays until the next view change. Therefore, c eventually becomes safe. But what
if c is not highestCand? In this situation, at least t + 1 correct registers report
timestamp-value pairs higher than c. We note that if any of them had stored c in
its frozen field, then it would report c. This implies that none of these registers
has stored c in its frozen field and thus, also none of these registers has stored a
timestamp-value pair higher than ch in its curr field. Therefore, ch is reported
by t + 1 correct registers, and hence it is safe. Note that ch is also highestCand
because only faulty registers report values with higher timestamps.

We now explain how the fast algorithm is derived from DMS. The principle
underlying the optimization is to condense one round of write to the base ob-
jects and a subsequent round of read of the base objects into a single round
of write&read. For this purpose we disregard the safe counter abstraction and
directly weave inc and get (Fig. 1) into read and write (Fig. 3) respectively.
As a result, the reader advances the view and reads the base registers in one
round. Likewise, the writer stores a value in the base registers and reads the
view in a single round. The reader code (Fig. 3) is modified as follows: vari-
able view is incremented locally, and line 3 is replaced with the statement for
1 ≤ i ≤ n do invoke x[i] ← write&read(〈Yi, view〉, Xi). Similarly, in the writer
code (Fig. 3), line 9 is replaced with the statement for 1 ≤ i ≤ n do invoke
y[i] ← write&read(〈Xi, x〉, Yi). Additionally in line 11, instead of executing get,
the writer picks the t + 1st highest element of y.
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We now informally argue that the optimization is correctness preserving. As
in the above example, we consider read

k and the last write that reads a view
lower than k. Recall that the write operation stores c in 2t + 1 correct base
objects and each of them responds with the current view it has stored. The
writer then picks the t + 1st highest view reported. We argue that t + 1 correct
base objects have stored c before any of them respond to read

k. This would
imply that c is safe. As the write operation reads a view lower than k, out
of the 2t + 1 correct base objects accessed by it, at most t report k. Thus, the
remaining t+1 objects are accessed by read

k only after c was written to them.
Applying the above arguments, it is not difficult to see that c is never erased from
t + 1 correct registers before read

k completes, and thus it eventually becomes
safe. Regarding regularity, again, arguments similar to above can be used. A
formal proof of the optimized algorithm can be found in the full paper [19]. The
remainder of this section is concerned with the correctness of DMS.

3.2 Protocol Correctness

Lemma 1 (Regularity). Algorithm DMS in Figure 3 implements a regular
register.

Proof. We show that the read operation always returns the value of the latest
write preceding the read, or a newer written value. Suppose that c.val is
the value returned by read

k. We assume by contradiction that there exists
a value ch.val such that ch.ts > c.ts and write(ch.val) precedes read

k. As
write(ch.val) is complete, n − 2t correct registers have stored ch or a higher
timestamp-value pair before any of them is read. The fact that c.val is returned
implies that c is highestCand. Thus, there are at least 2t + 1 registers Xi and
values c′ with timestamp c′.ts ≤ c.ts such that readFrom(c′,i) is true. Note that
one of them is a correct register Xi updated with ch. As values are written with
monotonically increasing timestamps, by definition of readFrom, necessarily c′

is read from x[i].frozen and x[i].view = k. However, because the counter is
valid, the first time a write operation reads view k is only after the write of
ch.val. Thus, in view k only timestamp-value pairs ch or higher are frozen, a
contradiction. �

Lemma 2 (Wait-freedom). Algorithm DMS in Figure 3 implements wait-free
read and write operations.

Proof. The write operation is nonblocking because it never waits for more than
n − t responses. Showing that reads are also live is more subtle. To derive a
contradiction, we assume that read

k blocks at line 4 and show that there exists
a candidate for returning. We consider the time after which all correct base
objects (at least 3t + 1) have responded. We choose c as the 2t + 1st lowest
timestamp-value pair readFrom a correct register. Note that c is highestCand by
construction because values with timestamps ≤ c.ts are readFrom 2t + 1 correct
registers (set L). Also, we note that values with timestamps ≥ c.ts are readFrom
t + 1 correct registers (set R). In the following, we distinguish the cases where
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the write of c.val reads a view equal to k (case 1), or lower than k (case 2).
Note that by the validity of the counter, only views ≤ k are returned. Case 1
implies that (a) only timestamp-value pairs lower than c are frozen, and (b) c
is the highest timestamp-value pair readFrom the curr field of a correct register.
Together (a) and (b) imply that c is the highest timestamp-value pair readFrom
a correct register. Thus, for all registers Xi ∈ R (≥ t+1), readFrom(c′,i) implies
that c′ = c and hence, c is safe. We now consider case 2 where write(c.val)
reads a view lower than k. This implies that c or a higher timestamp-value pair
is frozen in view k. If t + 1 registers in L were updated with c before they
are read, then they would report c either from their curr or their frozen field,
and clearly c would be safe. Therefore, c is missing from t + 1 correct registers.
Thus, write(c.val)’s write phase (lines 9–10) does not precede read

k’s read
phase (lines 3–4). By the transitivity of the precedence relation, inc

k (line 2)
precedes get (line 11). By the safety of the counter, write(c.val) reads view k,
a contradiction. �

Theorem 1 (Robustness). The algorithm in Figure 3 wait-free implements a
regular register.

Proof. Immediately follows from Lemma 1 and 2.

4 A Robust and Amnesic Algorithm with Optimal
READ-Complexity and Resilience

Similar to the previous section, we describe an initial version of DMS3 that uses
a safe counter. The algorithm requires more rounds than the optimum but it
is easier to understand because most of its complexity is hidden in the counter
implementation. Then, we overview the changes necessary to obtain the optimal
algorithm. The full details of the optimized DMS3 such as the pseudocode and
proofs can be found in our technical report [19]. We proceed in a bottom-up
fashion and describe the counter implementation first.

4.1 A Safe Counter with Optimal Resilience

We present a safe counter with operations inc and get using 3t+1 base objects
i ∈ {1 . . . n}, where t base objects can be subject to NR-arbitrary failures. The
types and shared objects used by the counter are depicted in Figure 5 and
the algorithm appears in Figure 6. Each base object i implements two regular
registers: a register Ti holding a timestamp written by get and read by inc, and
a second register Yi consisting of two fields pw and w, modified by inc and read
by get. While the pw field stores only the counter value, the w field stores the
counter value together with a high-resolution timestamp [20]. A high-resolution
timestamp is a timestamp-array with n entries, one for each base object.

The get operation performs in two phases. The first phase reads from the
base objects until n − t registers Yi have responded and all responses are non-
conflicting. This condition is captured by the predicate conflict. When two base
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( )

Additional Types:
TSs � Integers array of size n, Integers[n]
TSsInt � TSs × Integers with selectors hrts (high-resolution timestamp)
and cnt

Shared objects:
- regular registers Yi ∈ Integers × TSsInt with selectors pw and w,
initially Yi = 〈0, 〈[0, . . . , 0], 0〉〉
- regular registers Ti ∈ Integers, initially 0

Fig. 5. Shared objects used by the safe counter (3t + 1)

objects i and j are in conflict, then at least one of them is malicious. In this
situation, the get operation can wait for more than n − t responses without
blocking, effectively filtering out responses from malicious base objects. Next, the
get operation uses the responses to build a candidate set from values appearing
in the w field of Yi. In the second phase, the get operation chooses an increasing
timestamp ts and overwrites n−t registers Ti with ts; at the same time it re-reads
the registers Yi until n − t of them have responded and there exists a candidate
to return. This condition is captured by the predicates safe and highCand. If no
candidate can be returned (because of overlapping inc operations), get returns
the initial counter value 0.

Similarly, the inc operation performs in two phases, a pre-write and a write
phase. The pre-write phase accesses n− t base objects i, overwriting the pw field
of Yi with an increasing counter value and reading the individual timestamps
stored in Ti into a single high-resolution timestamp. Subsequently, in the write
phase, inc stores the counter value together with the high-resolution timestamp
in the w field of n − t registers Yi and returns.

We now show that the algorithm in Figure 6 wait-free implements a safe
counter. We do this by showing that the two following properties are satisfied:

Validity: If get returns k then get does not precede inc
k.

Safety: If inc
k precedes get and for all l > k get precedes inc

l, then get

returns k.

Lemma 3 (Validity). The counter object implemented in Figure 6 is valid.

Proof. If the initial value is returned then we are done. Else only a value c.cnt = k
is returned such that c is safe. This implies that t + 1 base objects report values
k or higher either from their pw or w fields. As not all of them are faulty, there
exists a correct object Yi and a value l ≥ k such that l was indeed written to Yi.
As inc

k precedes inc
l (or it is the same operation) and get does not precede

inc
l, it follows that get does not precede inc

k. �
Lemma 4 (Safety). The counter object implemented in Figure 6 is safe.

Proof. Let inc
k be the last operation preceding the invocation of get. Further-

more, for all l > k, get precedes inc
l. By assumption, c.cnt = k was written to
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Local variables (inc):
y ∈ Integers × TSsInt, initially 〈0, 〈[0, . . . , 0], 0〉〉
cnt ∈ Integers, initially 0 //counter value
hrts[1 . . . n] ∈ Integers, initially [0, . . . , 0] //high-resolution timestamp

inc()
cnt ← cnt + 11

y.pw ← cnt2

for 1 ≤ i ≤ n do invoke hrts[i] ← write&read(〈Yi, y〉, Ti)3

wait for n − t responses4

y.w.hrts ← hrts5

y.w.cnt ← cnt6

for 1 ≤ i ≤ n do invoke write(Yi, y)7

wait for n − t responses8

return ack9

Predicates (get):
conflict(i, j) � y[i].w.hrts[j] ≥ ts
safe(c) � |{i : max{PW [i]} ≥ c.cnt ∨ (∃c′ ∈ W [i] ∧ c′.cnt ≥ c.cnt)}| > t
highCand(c) � c ∈ C ∧ (c.cnt = max{c′.cnt : c′ ∈ C})

Local variables (get):
PW [1 . . . n] ∈ 2Integers, W [1 . . . n] ∈ 2TSsInt, C ∈ 2TSsInt

y[1 . . . n] ∈ Integers × TSsInt ∪ {⊥}
ts ∈ Integers, initially 0

get()
for 1 ≤ i ≤ n do y[i] ← ⊥; PW [i] ← W [i] ← ∅10

C ← ∅11

ts ← ts + 112

for 1 ≤ i ≤ n do invoke y[i] ← read(Yi)13

repeat
check14

until a set S of n − t objects responded ∧ ∀i, j ∈ S : ¬conflict(i, j)15

C ← {y[i].w : |{j : y[j].w 
= y[i].w}| ≤ 2t}16

for 1 ≤ i ≤ n do invoke y[i] ← write&read(〈Ti, ts〉, Yi)17

repeat18

check19

C ← C \ {c ∈ C : |{i : ∃c′ ∈ W [i] ∧ c′ 
= c}| ≥ 2t + 1}20

until n − t responded ∧ ∃c ∈ C: (safe(c) ∧ highCand(c)) ∨ C = ∅21

if C 
= ∅ then return c.cnt else return 022

check

if Yi responded then
PW [i] ← PW [i] ∪ {y[i].pw}
W [i] ← W [i] ∪ {y[i].w}

Fig. 6. Safe counter algorithm (3t + 1)
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the w field of t + 1 correct objects before get is invoked. Therefore, c is added
to the candidate set C (line 16) and because at most 2t objects respond without
c, it is never removed. Furthermore, t + 1 correct objects eventually report c
in the second get round and c becomes safe. As there are no concurrent inc

operations, eventually 2t+1 correct objects report values k or lower from their w
field and hence all ch where ch.cnt > k are removed from C. Thus, c eventually
becomes both safe and highCand and c.cnt = k is returned. �

Lemma 5 (Wait-freedom). The counter object implemented in Figure 6 is
wait-free.

Proof. As the inc operation never waits for more than n− t responses, clearly it
never blocks. In the following we prove that the get operation does not block (1)
at line 15 and (2) at line 21. We assume by contradition that the get operation
blocks. Case (1): as the get operation never updates a correct base object with
ts before the second round, correct base objects are never in conflict with each
other and thus the get operation does not block at line 15. Case (2): The get

operation blocks at line 21. Therefore, there exists c ∈ C and c is not safe. Let
c.cnt = k. If some correct base object has reported c in its w field in the first
round of get, then t+1 correct base objects report k or higher in their pw field
in the second round and thus c is safe. Therefore, we assume that no correct
base object reports c in w in the first round. If no correct object reports c in
w in the second round, then 2t + 1 correct base objects respond with c′ �= c in
their w field and c is removed from C. In the following we assume that some
correct object reports c in w in the second round. Let F (|F | > 0) denote the
set of faulty objects that report c in their w field in the first round. Let X
(|X | ≥ 0) be the set of correct base objects i such that Yi reports to the second
get round a value lower than k in both fields pw and w. This implies that the
pre-write phase of inc at Yi does not precede the second get round reading
Yi (see Fig. 7 (a)). By the semantics of write&read, the second get round has
updated Ti with ts before reading Yi (line 17). Similarly, the first round of inc

has pre-written k to Yi before reading Ti (line 3). By transitivity, the second get

round has completed the update of Ti before the first inc round has read Ti, and
thus Ti reports ts (Fig. 7 (a)). Let X ′ = {j ∈ X : c.hrts[j] = ts}, that is, the
objects in X that have actually responded to the first inc round. Note that for
all i ∈ F and for all j ∈ X ′, conflict(i, j) is true. Hence, the 2t + 1 − |F | objects
that have responded without c in their w field in the first round of get do not
include any object in X ′. Overall, after the second get round, 2t+1−|F |+ |X ′|
base objects have responded without c in their w field. If |F | ≤ |X ′| then c is
removed from the set of candidates C (line 20), a contradiction. Therefore, we
consider the case |F | > |X ′|. Out of the t + 1 correct base objects updated by
the pre-write phase of inc, t+1− |X ′| respond with a timestamp lower than ts.
Consequently, for every such base object i, get has completed updating Ti with
ts not before inc reads Ti (see Figure 7 (b)). By the semantics of write&read
and by the transitivity of the precedence relation, register Yi has stored k in its
pw field before the second get round reads Yi. Hence, at least t + 1− |X ′|+ |F |
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pre-write k to Yi

write ts to Ti

pre-write k to Yi

b)

a)

write ts to Ti read Yi

read Ti

read Ti

read Yi
get (2nd round)

inc (1st round)

get (2nd round)

inc (1st round)

Fig. 7. Safe counter correctness argument

base objects report values k or higher. As |F | > |X ′|, t + 1 base objects report
k or a higher value, and thus c is safe, a contradiction. �

Theorem 2. The Algorithm in Figure 6 wait-free implements a safe counter.

Proof. Follows directly from Lemma 3, 4 and 5. �

4.2 The DMS3 Protocol

Protocol Description

In this section we present a robust and amnesic SRSW register construction from
a safe counter and 3t + 1 regular base registers, out of which t can be subject to
NR-arbitrary failures. We now describe the write and read operations of the
DMS3 algorithm illustrated in Figure 8.

The write operation performs in three phases, (1) a pre-write phase (lines 7–
9) where it stores a timestamp-value pair c in the pw field of n− t registers, (2) a
read phase (line 10), where it calls get to read the current view and (3) a write
phase (lines 14–16), where it overwrites the w field of n − t registers with c. If
the read phase results in a view change, the most recent value previously written
is frozen together with the new view. This is done by updating the view field
and copying the value stored in w to the frozen field (lines 11–13). The reader
performs exactly the same steps as in DMS (see Section 3).

We now explain with help of Figure 9 why reads are wait free. Similar to the
description of DMS in Section 3, we consider read

k and the last write that
reads a view lower than k. Note that inc

k does not precede get and thus, c is
stored in the pw field of t + 1 correct registers before they are read. Also, the
w field of t + 1 correct registers is updated with c. As the subsequent write

encounters a view change, c is written to the frozen field of t+1 correct registers,
where it stays until read

k completes. Hence, c is sampled from t + 1 correct
registers’ pw, w or frozen field and thus it is safe. Note that c is also highestCand
because only faulty registers report newer values.
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Shared objects:
regular registers Xi ∈ TSVals3 × Integers, with selectors pw, w, frozen and
view, initially Xi = 〈〈0, v0〉, 〈0, v0〉, 〈0, v0〉, 0〉

Predicates (reader):
readFrom(c, i) � (c = x[i].w ∧ x[i].view < view) ∨

(c = x[i].frozen ∧ x[i].view = view)
safe(c) � |{i : c ∈ {x[i].pw, x[i].w, x[i].frozen}}| ≥ t + 1
highestCand(c) � |{i : readFrom(c′, i) ∧ c′.ts ≤ c.ts}| ≥ 2t + 1

Local variables (reader):
view ∈ Integers, initially 0
x[1 . . . n] ∈ TSVals3 × Integers ∪ {⊥}

read()
for 1 ≤ i ≤ n do x[i] ← ⊥1

view ← inc(Y )2

for 1 ≤ i ≤ n do invoke x[i] ← read(Xi)3

wait until n − t responded ∧ ∃c ∈ TSVals: safe(c) ∧ highestCand(c)4

return c.val5

Local variables (writer):
ts, newView ∈ Integers, initially 0
x ∈ TSVals3 × Integers, initially 〈〈0, v0〉, 〈0, v0〉, 〈0, v0〉, 0〉

write(v)
ts ← ts+16

x.pw ← 〈ts, v〉7

for 1 ≤ i ≤ n do invoke write(Xi, x)8

wait for n − t responses9

newView ← get(Y )10

if newView > x.view then11

x.view ← newView12

x.frozen ← x.w13

x.w ← 〈ts, v〉14

for 1 ≤ i ≤ n do invoke write(Xi, x)15

wait for n − t responses16

return ack17

Fig. 8. Robust and amnesic storage algorithm DMS3 (3t + 1)

With DMS3, the high-level operations have a non-optimal time-complexity.
We now explain how the optimized version is obtained by collapsing individual
low-level operations. More precisely, a write operation and a consecutive read
operation are merged together to a write&read operation. The safe counter ab-
straction is disregarded and the counter operations inc and get are weaved into
read and write respectively. Recall that the counter operations consist of two
rounds each. In the write implementation, the pre-write phase and the first
round of get are collapsed. Note that the three-phase structure of the write

is preserved in that the writer reads the current view before it moves to the
write phase. Similarly, in the read implementation, the second inc round and
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Fig. 9. Correctness argument of the read operation in DMS3

the read phase are merged together. Overall, this results in a time-complexity
of three rounds for the write and two rounds for the read.

We now informally argue that the optimization is correctness preserving. As
above, we consider read

k and the last write that reads a view lower than k.
We argue that t + 1 correct base registers have stored c in their pw field before
any of them is read. This would imply that c is safe. The fact that the write of
c.val reads a view lower than k implies that k is missing from at least 2t+1 base
objects. We know from the safe counter algorithm in the previous section that
if only 2t base objects respond without k, then k is never removed from the set
of candidates. As the safe counter implementation is wait-free, k is eventually
read, contradicting the initial assumption. Therefore, 2t+1 base objects respond
without k, and thus there are t + 1 correct base objects among them that are
accessed by (the read phase of) read

k only after c was pre-written to them. By
applying similar arguments as above, it is not difficult to see that c does not
disappear from any of the t + 1 correct base objects before read

k completes.
This would imply that c eventually becomes safe. For a formal treatment we
refer the interested reader to our full paper [19]. The remainder of this section
is concerned with the correctness of DMS3.

Protocol Correctness

Lemma 6 (Regularity). Algorithm DMS3 in Figure 8 implements a regular
register.

Proof. Identical to the proof of Lemma 1. �

Lemma 7 (Wait-freedom). Algorithm DMS3 in Figure 8 implements wait-
free read and write operations.

Proof. The write operation is nonblocking because it never waits for more than
n− t responses. To derive a contradiction we assume that read

k blocks at line 4
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and show that there exists a candidate for returning. We consider the time after
which all correct base objects (at least 2t + 1) have responded. We choose c
as the highest timestamp-value pair readFrom a correct register. Note that c is
highestCand by construction because values with timestamps ≤ c.ts are readFrom
2t+1 correct registers. In the following, we distinguish the cases where the view
read by the write of c.val is equal to k (case 1) or it is lower than k (case
2). Note that by the validity of the counter, only views ≤ k are returned. Case
1: Let Xi be a correct register such that readFrom(c, i). Since by assumption
x[i].view = k, c is readFrom the frozen field of Xi. However, in view k only
timestamp-value pairs lower than c are frozen, a contradiction. Now we consider
case 2, where the write(c.val) reads a view lower than k. This implies that
inc

k does not precede get. As the pre-write phase (lines 8–9) precedes get

(line 10), and inc
k (line 2) precedes the read phase (lines 3–4), by transitivity,

the pre-write phase also precedes the read phase (see Figure 9). Thus, t + 1
correct registers have stored c in their pw field before they are read. What is
left to show is that no subsequent write erases c from all fields of those t + 1
correct registers. Note that in view k, only timestamp-value pairs c or higher a
frozen. Thus, if c was stored in the w field of t + 1 correct registers before they
are read, then c would be safe. Hence, c is missing from t+1 correct registers’ w
field. Consequently, write(c.val)’s write phase (lines 15–16) does not precede
read

k’s read phase (lines 3–4). By transitivity, the subsequent write reads
view k and freezes c. Note that c is erased from pw only after c was previously
stored in w (line 14). Furthermore, c is erased from w only after it was stored
in frozen (line 13). As k is the last view, by the validity of the safe counter, c is
never erased from frozen. �

Theorem 3 (Robustness). Algorithm DMS3 in Figure 8 implements a robust
register.

Proof. Immediately follows from Lemma 6 and 7.

5 Concluding Remarks

We have presented amnesic algorithms that robustly implement a shared register
from a collection of n base objects, of which up to t < n/3 can be subject
to NR-arbitrary failures. For n ≥ 3t + 1 we have shown that two rounds of
communication with the base objects are sufficient for every read operation to
complete. This is the first robust and amnesic register construction that matches
the two-round lower bound proved in [10]. For the n ≥ 4t + 1 case, we have
presented the first robust and amnesic register construction that matches the
(trivial) one-round lower bound for every operation. Note that our construction
is tight because with less than 4t+1 base objects, both the read and the write

operations require at least two communication rounds [2, 10].
The main result of this paper, that robust access to amnesic storage is possible

in optimal time is somewhat surprising given the large body of literature on non-
amnesic [11,10,12,4,14,13] and non-robust [8,9,18,5] algorithms. Moreover, our
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result is counter-intuitive because so far, only non-amnesic algorithms match
the time-complexity lower bounds. As a corollary, our result suggests that the
intuition of amnesic algorithms being inherently less efficient than non-amnesic
ones is largely unjustified.

Some of the prior amnesic (but not robust) register implementations assume
that the readers cannot modify the base objects (see e.g. [2]). This assumption
in fact results in implementations that possess several properties that could be
valuable in practice, for instance the ability to tolerate any number of malicious
readers while using only O(1) memory at the base objects. We are not aware of
any robust implementation supporting that as well, and in fact, our algorithms
are not an exception. We leave as an open problem the question whether robust
and amnesic register implementations exist, that would support any number of
readers while using only O(1) memory at the base objects.
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Abstract. Kleinberg [17] proposed in 2000 the first random graph
model achieving to reproduce small world navigability, i.e. the ability
to greedily discover polylogarithmic routes between any pair of nodes in
a graph, with only a partial knowledge of distances. Following this semi-
nal work, a major challenge was to extend this model to larger classes of
graphs than regular meshes, introducing the concept of augmented graphs
navigability. In this paper, we propose an original method of augmenta-
tion, based on metrics embeddings. Precisely, we prove that, for any
ε > 0, any graph G such that its shortest paths metric admits an embed-
ding of distorsion γ into Rd can be augmented by one link per node such
that greedy routing computes paths of expected length O( 1

ε
γd log2+ε n)

between any pair of nodes with the only knowledge of G. Our method
isolates all the structural constraints in the existence of a good quality
embedding and therefore enables to enlarge the characterization of aug-
mentable graphs.

Keywords: Small world, metrics embedding, greedy routing.

1 Introduction

The small world effect, or “six degrees of separation”, is the well known prop-
erty observed in social networks [9,21] that any pair of nodes in these networks
is connected by a very short chain of acquaintances (typically polylogarithmic
in the size of the network), that, moreover, can be discovered locally. In the
literature, a small world graph can either refer to this property or to a graph
with polylogarithmic diameter and high clustering (see e.g. [23]). In this paper, a
small world graph refers to a graph of polylogarithmic diameter and whose short
paths can be discovered locally, i.e. which is navigable. This surprising property
has gained a lot of interest recently since Kleinberg [17] introduced the first an-
alytical graph model for navigability, and because of its potential in the design
of large decentralized networks with efficient routing schemes. The model pro-
posed by Kleinberg in 2000 consists in a d-dimensional mesh augmented by one
extra random link in each node, distributed according to the d-harmonic distri-
bution. The local search is then modeled by greedy routing, which is the simple
algorithm that, at each node, forwards the message to the neighbor that is the

T.P. Baker, A. Bui, and S. Tixeuil (Eds.): OPODIS 2008, LNCS 5401, pp. 217–225, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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closest to the destination in the mesh. Kleinberg demonstrates that greedy rout-
ing computes paths of expected length Θ(log2 n) between any pair of nodes in
his model, with the only knowledge of the distances in the mesh: the augmented
mesh is navigable

Following this seminal work, a major challenge was to extend this model to
larger classes of graphs than regular meshes, i.e. to determine which n-node
graphs G admit an augmentation with one link in each node such that greedy
routing with the only of G computes polylog(n)-length paths between any pair
in the augmented graph. Kleinberg [18] and Duchon et al. [7] showed that this
is possible for all graphs of bounded growth, i.e. where, for any node u and
radius r ≥ 1, the 2r-neighborhood of u is of size at most a constant times
its r-neighborhood. Fraigniaud [10] demonstrates that any bounded treewidth
graph can also be augmented by one link per node to become navigable, and
Abraham and Gavoille [4] showed that, more generally, this is possible for all
graphs excluding a fixed minor. The definition of the problem can directly be
extended to metric spaces by asking which n-points metric spaces1 M = (V, δ)
can be augmented by O(log n) links such that, in the resulting graph, greedy
routing computes polylog(n) routes between any pair with the only knowledge
of M . In this framework, Slivkins [22] showed that any doubling metric can be
augmented to become navigable. A doubling metric is a metric where, for all
r ≥ 1, any ball of radius 2r can be covered by at most C balls of radius r, for
some constant C.

However, it was recently proven by Fraigniaud et al. [13] that such an aug-
mentation is not possible for all graphs: there exist an infinite familiy of n-node
graphs on which any distribution of augmented links will leave the greedy paths
of expected length Ω(n1/

√
log n) for some pairs. The best upper bound valid for

arbitrary graphs up to our knowledge is an expected length Õ(n1/3) between
any pair, due to Fraigniaud et al. [12], with some specific link augmentation.
The remaining gap between these two bounds is today still open and leaves a
question mark on the limiting characteristics of a metric for the navigability
augmentation.

Orthogonally to the navigability question, studies on embeddings of metric
spaces have known huge developments this last decade (cf. Chapter 15 of [20] for a
review), due in particular to their applications in approximation algorithms [15]
and more recently in handling efficiently large decentralized networks [6]. An
embedding σ of a metric M = (V, δ) into a metric M ′ = (V ′, δ′) is an injective
function σ on V into V ′. Its quality is characterized by the distorsion it induces
on the distances. For the sake of simplicity, we consider only non-contracting
embeddings, we then say that σ has distorsion γ if and only iff for any u, v ∈ V ,
δ′(σ(u), σ(v)) ≤ γ · δ(u, v). Crucial networking problems like routing, resource
location or nearest neighbor search are easy to handle on a low dimensional
euclidean space. However, large real networks like the Internet do not present

1 A metric space M = (V, δ) is a set of points V associated with a distance function
δ. Therefore, any weighted graph naturally defines a metric M on its set of nodes V
with the distance function δ being the length of a shortest path between two nodes.
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such a simple structure. The increasing interest for metrics embeddings comes
therefore partially from the fact that, if the embedding is of good quality, it
can provide a way to develop efficient algorithms on complex, or even arbitrary,
metric spaces, by solving them on a simple metric space that approximates them
well (cf. e.g. [14,15]). In addition, many good quality embeddings are computed
with randomized local algorithms that only require a distance oracle, making
them particularly appropriate to the large decentralized networks setting (cf.
e.g. [5] for a seminal example).

In this paper, we propose a new way to tackle the augmented graphs naviga-
bility problem through the metric embedding setting.

1.1 Our Contribution

We introduce a generalized augmentation process. The main feature of our aug-
mentation process is to use an embedding of the input graph shortest paths met-
ric into a metric that is easy to augment into a navigable graph. This distinction
between the augmentation process in itself (handled on the ”easy” metric) and
the structural characteristics of the input (captured by the embedding quality)
provides a new way to characterize the classes of navigable graphs. We consider
embedding into (Rd, 
p) which is the d-dimensional euclidean space associated
to the 
p norm, for d, p ≥ 1: for any u = (u1, . . . , ud) and v = (v1, . . . , vd), we
have ||u − v||p = (

∑d
i=1 |ui − vi|p)1/p. We prove the following theorem:

Theorem 1. Let p, n, γ, d ≥ 1. For any ε > 0, any n-node graph G whose
shortest path metric M = (V, δ) admits an embedding of distorsion γ into (Rd, 
p)
can be augmented with one link per node such that greedy routing in the resulting
graph computes paths of expected length O(1

εγd log2+ε n) between any pair with
the only knowledge of M .

For instance, using the recent embedding result of Abraham et al. [3], we get as
an immediate corollary that, for any 0 < ε ≤ 1 and any n ≥ 1, any n-node graph
G of doubling dimension D (cf. [14]) can be augmented so that the expected
lengths of all greedy paths is O((log(1+ε) n)O(D/ε) log2 n) = O((log n)O(D)) with
the only knowledge of G. This provides a more direct proof to the fact that
bounded doubling dimension graphs are navigable (proved in [22]).

Intuitively, if the metric considered is not too far from a metric M which can
be easily augmented, we use a low distorsion embedding of the metric into M ,
draw the random links in M , and then map back appropriately these links to
the original metric so that they will still be useful shortcuts for greedy routing.

Moreover, the design of the augmented links in our process can be done in a
fully decentralized way and only requires to know the embedding. In the case
where the chosen embedding is itself local (like e.g. the seminal Bourgain em-
bedding [5] if a distance oracle is available), we thus provide an algorithm which
locally adds one address to each routing table in a network and guarantees a
small number of hops decentralized routing between any pair for a large class of
input graphs.
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2 A Universal Augmentation Process via Metric
Embedding

In this section, we present our augmentation process that adds one directed link
per node. This process is universal in the sense that it only requires as an input
the base graph (arbitrary) and an embedding function of this graph into Rd

�p
, for

some p, d ≥ 1. Such a function exists for any graph and therefore the algorithm
is not restricted to a specific graph class. However, as we will see in the next
section, the analysis of greedy routing might give a poor routing time result if the
embedding is not of good quality. There exists lower bound results on arbitrary
metric embedding quality. A typical example is that embedding some n-node
constant degree expander graph into Rd

�p
requires distortion Ω(log n) [20] and

dimension d = Ω(log n) [2]. Nevertheless, expander graphs are always navigable
without any augmentation given their polylogarithmic diameter.

The augmentation algorithm is based on the well known augmentation of d-
dimensional meshes of the Kleinberg model, where the shortcuts are distributed
according to the d-harmonic distribution. The idea is to map back these links
to the original set of nodes. Given that not all the extremities of the shortcuts
added in 
d

p are images of the original nodes, this requires some careful rewiring.

Augmentation Process AP
Input: An n-node graph G = (V, E), an embedding σ of its shortest path
metric M = (V, δ) into 
d

p, and a constant ε > 0;
Output: G augmented with one directed link in each node.
Begin

For each u ∈ V do
Pick a point τu ∈ Rd

�p
with probability density:

1
Z

1(
||σ(u) − τ ||p

)d ln1+ε(||σ(u) − τ ||p + e)
,

over all τ ∈ Rd
�p

.
Add a directed link from u to v ∈ V where v is the node such that σ(v) is

the closest point to τu in σ(V ).
End.

Note: e stands here for exp(1) and is only used to allow distance to be zero
in the formula. Z is the normalizing factor of the probability density described:
Z =
∫∞

t>0
S(t)

td ln1+ε(t+e)dt, where S(t) is the surface of an hypersphere of raius t in
Rd. Figure 1 illustrates the process AP .

3 Navigability of Graphs Augmented with AP

In this section, we demonstrate our main result. The intrinsic dimension [3], or
doubling dimension [1] of a graph G characterizes its geometric property, this is
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Fig. 1. Illustration of the augmented link from vertex 1 to 3 with process AP

the minimum constant α such that any ball in G can be covered by at most 2α

balls of half the radius. We show that, if a graph has low intrinsic dimension,
AP process provides augmented shortcuts that enables navigability. We have
the following theorem:

Theorem 2. Let p, n, γ, d ≥ 1, ε > 0, G an n-node graph and σ an embedding
of distorsion γ of the shortest path metric M of G into (Rd, 
p). Then, greedy
routing in AP(G, σ, ε) computes paths of expected length at most O(1

εγd log2+ε n)
between any pair, with the only information of the distances in M .

Proof. In order to analyze greedy routing performances in AP(G, σ, ε), we begin
by analyzing some technical properties of the probability distribution of the
chosen points τ in (Rd, 
p). For any u ∈ G, we say that τu, as defined in algorithm
AP , is the contact point of u.

Let Z be the normalizing factor of the contact points distribution. We have:

Z =
∫ ∞

t>0

S(t)
td ln1+ε(t + e)

dt,

where S(t) stands for the surface of a sphere of radius t in Rd
�p

. This surface is
at most cp ·

(
2d/(d − 1)!

)
· td−1, where cp > 1 is a constant depending on p. It

follows:

Z ≤ cp · 2d

(d − 1)!

∫ ∞

t>1

dt

t ln1+ε(t + e)
≤ cp · (1 + e)

ε
· 2d

(d − 1)!
.

Let s and t ∈ G be the source and the target of greedy routing in AP(G, σ, ε).
Let M = (V, δ) be the shortest paths metric of G. Let v be the current node of
greedy routing, and let 1 ≤ i ≤ �log δ(s, t) such that δ(v, t) ∈ [2i−1, 2i).
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Since σ has distorsion γ, we have:

δ(v, t) ≤ ||σ(v) − σ(t)||p ≤ γ · δ(v, t).

Let X = ||σ(v) − σ(t)||p, and let E be the event: ”||τv − σ(t)||p ≤ X/(4γ)”. Let
L(v) be the contact of v (i.e. the closest point to τv in σ(V ).

Claim. If E occurs, then δ(L(v), t) ≤ δ(v, t)/2.

Indeed, assume that E occurs. From the triangle inequality, we have:

||σ(L(v)) − σ(t)||p ≤ ||σ(L(v)) − τv||p + ||τv − σ(t)||p.
And since σ(L(v)) = τ is closer to τv than σ(t) by definition of AP , we get:

||σ(L(v)) − σ(t)||p ≤ 2||τv − σ(t)||p ≤ X/(2γ).

Finally:

δ(L(v), t) ≤ ||σ(L(v)) − σ(t)||p ≤ X/(2γ) ≤ δ(v, t)/2. $

Claim. The probability that E occurs is greater than

C
ε

d5dγd

1
ln1+ε(2γδ(v, t) + e)

,

for some constant C > 0.

Proof of the claim. Let P be the probability that E occurs. P is the probability
that τv belongs to the ball of radius X/(4γ) centered at σ(t) in Rd

�p
. Let B be

this ball. We have, by definition of AP:

P =
1
Z

∫
τ∈B

1
(||σ(v) − τ ||p)d ln1+ε(||σ(v) − τ ||p + e)

≥ 1
Z

∫
τ∈B

1(
(1 + 1/(4γ))X

)d ln1+ε((1 + 1/(4γ))X + e)
,

since (1 + 1/(4γ))X is the largest distance from σ(v) to any point in B.
On the other hand, the volume of B is at least c′p · 2d

d! (X/(4γ))d, for some
constant c′p > 0. We get:

P ≥ 1
Z

·
c′p2d(X/4γ)d

d!(1 + 1
4γ )dXd

· 1
ln1+ε((1 + 1

4γ )X + e)

≥
c′p

cp(1 + e)
· ε

d5d
· 1
γd

· 1
ln1+ε((1 + 1

4γ )X + e)

≥ C
ε

d5dγd

1
ln1+ε(2γδ(v, t) + e)

. $

Claim. If the current node v of greedy routing satisfies δ(v, t) ∈ [2i−1, 2i) for
some 1 ≤ i ≤ �log δ(s, t) , then after O(1

εγd(i − 1)1+ε) steps on expectation,
greedy routing is at distance less than 2i−1 from t.
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Proof of the claim. Combining the claims, we get that, with probability
Ω([1εγd ln1+ε(γδ(v, t))]−1) (where the Ω notation hides a linear factor in ε),
the contact L(v) of v is at distance at most 2i−1 to t. If this does not occur,
greedy routing moves to a neighbor v′ at distance strictly less than δ(v, t) to t
and strictly greater than 2i−1 and we can repeat the same argument. Therefore,
after O(1

εγd ln1+ε(γδ(v, t))) = O(1
εγd(i − 1)1+ε) steps, greedy routing is at dis-

tance less than 2i−1 to t with constant probability. $

Finally, from this last claim, the expected number of steps of greedy routing
from s to t is at most:

log(δ(s,t))∑
i=1

O(γd(i − 1)1+ε) = O(
1
ε
γd log2+ε n).

From this theorem, results giving new insights on the navigability problem can
be derived from the very recent advances in metric embeddings theory. In partic-
ular, graphs of bounded doubling dimension, that subsumes graphs of bounded
growth, received an increasing interest recently. They are of particular interest
for scalable and distributed network applications since it is possible to decompose
them greedily into clusters of exponentially decreasing diameter.

Corollary 1. For any ε > 0, any n-node graph G of bounded doubling dimen-
sion α can be augmented with one link per node so that greedy routing compute
paths of expected length O(1

ε log(2+ε+2α) n) between any pair of vertices with the
only knowledge of G.

Indeed, from Theorem 1.1 of [3], it is known that, for every n-point metric space
M of doubling dimension α and every θ ∈ (0, 1], there exists an embedding of M
into Rd

�p
with distorsion O(log1+θ n) and dimension O(α/θ). Taking θ = 1 gives

the corollary. This result was previously proved in [22] by another method of
augmentation, using ”rings of neighbor”. The originality of our method is that
it is not specific to a given graph or metric class, this dependency lying only in
the embedding function. Therefore, it enables to get more direct proofs that a
graph is augmentable into a navigable small world than previous ones.

This new kind of augmentation process via embedding is also promising to de-
rive lower bounds on metrics embedding quality. Indeed, since not all graphs can
be augmented to become navigable, necessarily, if there exists a positive result
on small world augmentation via some embedding, then this embedding cannot
keep the same quality for all graphs. For the particular case of Theorem 2, we
derive that any injective function σ that embeds any arbitrary metric into Rd

�p

with distorsion γ has to satisfy γd = Ω̃(n1/
√

log n). This lower bound is how-
ever subsumed by the bound provided by the Johnson-Lindenstrauss flattening
lemma [16]: γd = O((1 + ε)log n/ε2

) = O(n(1+ε)/ε2
) for any 0 < ε < 1, which is

essentially tight (cf. e.g. [20]).
It is worth to note that Fraigniaud and Gavoille [11] recently tackled the

question of navigating in a graph that has been augmented using the distances
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in a spanner2 of this graph. They remarked that greedy routing usually requires
to know the spanner map of distances in order to achieve an efficient routing. On
the contrary, our augmentation process does not requires greedy routing to be
aware of distances in Rd. This is due to the geography of the spaces considered:
an embedding of a graph in Rd preserves geographical neighboring regions.

4 Discussion

The result presented in this paper gives new perspectives in the understanding
of networks small world augmentations. Indeed, the augmentation process AP
isolates all the dependencies on the graph structure in the embedding function.

On the other hand, such an augmentation process focuses on the geography
of the graph and cannot capture the augmentation processes that are based on
graph separator decomposition. It can be distinguished two main kinds of aug-
mentation processes in the navigable networks literature. One kind of augmenta-
tion relies on the graph density and its similarity with a mesh (like augmentations
in [7,17,18,22]), while the other kind relies on the existence of good separators in
the graph (like augmentations in [4,10]). Augmentation via embedding cannot
be directly extended to augmentations using separators because of the difficulty
to handle the distortion in the analysis of greedy routing. Finally, the extension
of AP to graphs that are close to a tree metric (using embeddings into tree met-
rics) could open the path to the exhaustive characterization of graph classes that
can be augmented to become navigable, as well as provide new lower and upper
bounds on embeddings as side results. More generally, the exhaustive charac-
terization of the graphs that can be augmented to become navigable is still an
important open problem, as well as the design of good quality embeddings into
low dimensional spaces.
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Abstract. The aim of a software transactional memory (STM) system is to facili-
tate the delicate problem of low-level concurrency management, i.e. the design of
programs made up of processes/threads that concurrently access shared objects.
To that end, a STM system allows a programmer to write transactions access-
ing shared objects, without having to take care of the fact that these objects are
concurrently accessed: the programmer is discharged from the delicate problem
of concurrency management. Given a transaction, the STM system commits or
aborts it. Ideally, it has to be efficient (this is measured by the number of transac-
tions committed per time unit), while ensuring that as few transactions as possible
are aborted. From a safety point of view (the one addressed in this paper), a STM
system has to ensure that, whatever its fate (commit or abort), each transaction
always operates on a consistent state.

STM systems have recently received a lot of attention. Among the proposed
solutions, lock-based systems and clock-based systems have been particularly in-
vestigated. Their design is mainly efficiency-oriented, the properties they satisfy
are not always clearly stated, and few of them are formally proved. This paper
presents a lock-based STM system designed from simple basic principles. Its
main features are the following: it (1) uses visible reads, (2) does not require the
shared memory to manage several versions of each object, (3) uses neither times-
tamps, nor version numbers, (4) satisfies the opacity safety property, (5) aborts
a transaction only when it conflicts with some other live transaction (progres-
siveness property), (6) never aborts a write only transaction, (7) employs only
bounded control variables, (8) has no centralized contention point, and (9) is for-
mally proved correct.

Keywords: Atomic operation, Commit/abort, Concurrency control, Consistent
global state, Lock, Opacity, Progressiveness, Shared object, Software transac-
tional memory, Transaction.

1 Introduction

Software transactional memory. Recent advances in technology, and more particularly
in multicore processors, have given rise to a new momentum to practical and theoreti-
cal research in concurrency and synchronization. Software transactional memory (STM)
constitutes one of the most visible domains impacted by these advances. Given that con-
current processes (or threads) that share data structures (base objects) have to synchro-
nize, the transactional memory concept originates from the observation that traditional
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lock-based solutions have inherent drawbacks. On one side, if the set of data whose ac-
cesses are controlled by a single lock is too large (large grain), the parallelism can be
drastically reduced, while, on another side, the solutions where a lock is associated with
each datum (fine grain), are difficult to master, error-prone, and difficult to prove correct.

The software transactional memory (STM) approach has been proposed in [23].
Considering a set of sequential processes that accesses shared objects, it consists in
decomposing each process into (a sequence of) transactions (plus possibly some parts
of code not embedded in transactions). This is the job of the programmer. The job of
the STM system is then to ensure that the transactions are executed as if each was
an atomic operation (it would make little sense to move the complexity of concur-
rent programming from the fine management of locks to intricate decompositions into
transactions). So, basically, the STM approach is a structuring approach. (STM borrows
ideas from database transactions; there are nevertheless fundamental differences with
database transactions that are examined below [10].)

Of course, as in database transactions, the fate of a transaction is to abort or commit.
(According to its aim, it is then up to the issuing process to restart -or not- an aborted
transaction.) The great challenge any STM system has to take up is consequently to be
efficient (the more transactions are executed per time unit, the better), while ensuring
that few transactions are aborted. This is a fundamental issue each STM system has to
address. Moreover, in the case where a transaction is executed alone (no concurrency)
or in the absence of conflicting transactions, it should not be aborted. Two transactions
conflict if they access the same object and one of them modifies that object.

Consistency of a STM. In the past recent years, several STM concepts have been pro-
posed, and numerous STM systems have been designed and analyzed. On the correct-
ness side (safety), an important notion that has been introduced very recently is the
concept of opacity. That concept, introduced and formalized by Guerraoui and Kapałka
[12], is a consistency criterion suited to STM executions. Its aim is to render aborted
transactions harmless.

The classical consistency criterion for database transactions is serializability [19]
(sometimes strengthened in “strict serializability”, as implemented when using the 2-
phase locking mechanism). The serializability consistency criterion involves only the
transactions that are committed. Said differently, a transaction that aborts is not pre-
vented from accessing an inconsistent state before aborting. In a STM system, the code
encapsulated in a transaction can be any piece of code and consequently a transaction
has to always operate on a consistent state. To be more explicit, let us consider the fol-
lowing example where a transaction contains the statement x ← a/(b − c) (where a, b
and c are integer data), and let us assume that b − c is different from 0 in all the consis-
tent states. If the values of b and c read by a transaction come from different states, it is
possible that the transaction obtains values such as b = c (and b = c defines an incon-
sistent state). If this occurs, the transaction raises an exception that has to be handled
by the process that invoked the corresponding transaction1. Such bad behaviors have to
be prevented in STM systems: whatever its fate (commit or abort) a transaction has to

1 Even worse undesirable behaviors can be obtained when reading values from inconsistent
states. This occurs for example when an inconsistent state provides a transaction with values
that generate infinite loops.
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always see a consistent state of the data it accesses. The important point is here that a
transaction can (a priori) be any piece of code (involving shared data), it is not restricted
to predefined patterns. This also motivates the design of STM protocols that reduce the
number of aborts (even if this entails a slightly lower throughput for short transactions).
Roughly speaking, opacity extends serializability to all the transactions (regardless of
whether they are committed or aborted). Of course, a committed transaction is consid-
ered entirely. Differently, only an appropriately defined subset of an aborted transaction
has to be considered.

Opacity (like serializability) states only what is a correct execution, it is a safety
property. It does not state when a transaction has to commit, i.e., it is not a liveness
property. Several types of liveness properties are investigated in [22].

Context of the work. Among the numerous STM systems that have been designed in
the past years, only four of them are considered here, namely, JVSTM [8], TL2 [9],
LSA-RT [21], and RSTM [16]. This choice is motivated by (1) the fact that (differently
from a lot of other STM systems) they all satisfy the opacity property, and (2) additional
properties that can be associated with STM systems.

Before introducing these properties, we first consider underlying mechanisms on
which the design of STM systems is based.

– From an operational point of view, locks and (physical or logical) clocks consti-
tute base synchronization mechanisms used in a lot of STM systems. Locks allow
mutex-based solutions. Clocks allow to benefit from the progress of the (physical
or logical) time in order to facilitate the validation test when the system has to de-
cide the fate (commit or abort) of a transaction. As a clock can always increase,
clock-based systems require appropriate management of the clock values.

An important design principle that differentiates STM systems is the way they im-
plement base objects. More specifically we have the following.

– Two types of implementation of base objects can be distinguished, namely, the
single version implementations, and the multi-version implementations. The aim
of the latter is to allow the commit of more (mainly read only) transactions, but
requires to pay a higher price from the shared memory occupation point of view.

An STM implementation can also be characterized by the fact it satisfies or not
important additional properties. We consider here the progressiveness property.

– The progressiveness notion, introduced in [12], is a safety property from the com-
mit/abort termination point of view: it defines an execution pattern that forces a
transaction not to abort another one.

As already indicated, two transactions conflict if they access the same base
object and one of them updates it. The STM system satisfies the progressiveness
property, if it “forcefully aborts T1 only when there is a time t at which T1 conflicts
with another concurrent transaction (say T2) that is not committed or aborted by
time t” [12]. This means that, in all the other cases, T1 cannot be aborted due to T2.
As an example, let us consider Figure 1 where two patterns are depicted. Both
involve the same conflicting concurrent transactions T1 that reads X , and T2 that
writes X (each transaction execution is encapsulated in a rectangle). On the left
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Fig. 1. The progressiveness property

side, T2 has not yet terminated when T1 reads X . In that case, an STM system
that aborts T 1, due to its its conflict with T2, does not violate the progressiveness
property. Differently, when we consider the right side, T2 has terminated when T1
reads X . In that case, an STM system that guarantees the progressiveness property,
cannot abort T1 due to T2.

Finally, a last criterion to compare STM systems lies in the way they cope with lower
bound results related to the cost of read and write operations.

– Let k be the number of objects shared by a set of transactions. A theorem proved in
[12] states the following. For any STM protocol that (1) ensures the opacity consis-
tency criterion, (2) is based on single version objects, (3) implements invisible read
operations, and (4) ensures the progressiveness property, each read/write operation
issued by a transaction requires Ω(k) computation steps in the worst case. This
theorem shows an inescapable cost associated with the implementation of invisible
read operations as soon as we want single version objects and abort only due to
conflict with a live transaction.

Considering the previous list of items (base mechanisms, number of versions, ad-
ditional properties, lower bound), Table 1 indicates how each of the TL2, LSA-RT,
JVSTM, and RSTM behaves. While traditional comparisons of STM systems are based
on efficiency measurements (usually from benchmark-based simulations), this table
provides a different view to compare STM systems. A read operation issued by a trans-
action is invisible if its implementation does not entail updates of the underlying control
variables (kept in shared memory). Otherwise, the read is visible.

Content of the paper. The Ω(k) lower bound states an inherent cost for the STM sys-
tems that want to ensure invisible read operations and progressiveness while using a
single version per object. When looking at Table 1, we see that, while both TL2 and
JVSTM implement invisible read operations, each circumvents the Ω(k) lower bound
in its own way. JVSTM uses several copies of each object and does not ensure the pro-
gressiveness property. TL2 does not ensure the progressiveness property either (it has
even scenarios in which a transaction is directed to abort despite the fact that it has read
consistent values.)

Progressiveness is a noteworthy safety property. As already indicated, it states cir-
cumstances where transactions must commit2. Considering consequently progressive-
ness as a first class property, this paper presents a new STM system that circumvents
the Ω(k) lower bound and satisfies the progressiveness property. To that end it employs

2 This can be particularly attractive when there are long-lived read-only transactions.
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Table 1. Properties ensured by protocols (that satisfy the opacity property)

System TL2 [9] LSA-RT [20] JVSTM [8] RSTM [16] This paper

Clock-free no no no yes yes
Lock-based yes no yes no yes

Single version yes no no yes yes

Invisible read operations yes yes yes no no
Progressiveness no yes no yes yes

Circumvent the Ω(k) lower bound yes no yes no yes

a single version per object and implements visible read operations. Moreover, differ-
ently from nearly all the STM systems proposed so far, whose designs have been driven
mainly by implementation concerns and efficiency, the paper strives for a protocol with
powerful properties that can be formally proved. Its formal proof gives us a deeper
understanding on how the protocol works and why it works. Combined with existing
protocols, it consequently enriches our understanding of STM systems.

Finally, let us notice that the proposed protocol exhibits an interesting property re-
lated to contention management. The shared control variables associated with each ob-
ject X (it is their very existence that makes the read operations visible) can be used
by an underlying contention manager [11,24]. If the contention manager is called when
a transaction is about to commit, it can benefit from the content of these variables to
decide whether to accept the commit or to abort the transaction in case this abort would
entail more transactions to commit.

Roadmap. The paper is made up of 6 sections. Section 2 describes the computation
model, and the safety property we are interested in (opacity, [12]). The proposed proto-
col is presented incrementally. A base protocol is first presented in Section 3. This STM
protocol (also called STM system in the following) associates a lock and two atomic
control variables (sets) with each object X . It also uses a global control variable (a set
denoted OW ) that is accessed by all the update transactions (when they try to commit).
Section 4 presents a formal proof of the protocol. Then, Section 5 presents the final ver-
sion of the protocol. The resulting STM system has the following noteworthy features.
It (1) does not require the shared memory to manage several versions of each object,
(2) does not use timestamps, (3) satisfies the opacity and progressiveness properties,
(4) never aborts a write only transaction, (5) employs only bounded control variables,
and (6) has no centralized contention point. The design of provable STM protocols is
an important issue for researchers interested in the foundations of STM systems [3].
Finally, Section 6 concludes the paper.

2 Computation Model and Problem Specification

2.1 Computation Model

Base computation model: processes, base objects, locks and atomic registers The base
system (on top of which one has to build a STM system) is made up of n asynchronous
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sequential processes (also called threads) denoted p1, . . . , pn (a process is also some-
times denoted p) that cooperate through base read/write atomic registers and locks. The
shared objects are denoted with upper case letters (e.g., the base object X). A lock, with
its classical mutex semantics, is associated with each base object X .

Each process p has a local memory (a memory that can be accessed only by p).
Variables in local memory are denoted with lower case letters indexed by the process id
(e.g., lrsi is a local variable of pi).

High (user) abstraction level: transactions From a structural point of view, at the user
abstraction level, each process is made up of a sequence of transactions (plus some code
managing these transactions). A transaction is a sequential piece of code (computation
unit) that reads/writes base objects and does local computations. At the abstraction level
at which the transactions are defined, a transaction sees only base objects, it sees neither
the atomic registers nor the locks. (Atomic registers and locks are used by the STM
system to correctly implement transactions on top of the base model).

A transaction can be a read-only transaction (it then only reads base objects), or an
update transaction (it then modifies at least one base object). A write-only transaction
is an update transaction that does not read base objects. A transaction is assumed to be
executed entirely (commit) or not at all (abort). If a transaction is aborted, it is up to
the invoking process to re-issue it (as a new transaction) or not. Each transaction has its
own identifier, and the set of transactions can be infinite.

2.2 Problem Specification

Intuitively, the STM problem consists in designing (on top of the base computation
model) protocols that ensure that, whatever the base objects they access, the transactions
are correctly executed. The following property formulates precisely what “correctly
executed” means in this paper.

Safety property. Given a run of a STM system, let C be the set of transactions that
commit, and A the set of transactions that abort. Let us assume that any transaction T
starts with an invocation event (BT ) and terminates with an end event (ET ).

Given T ∈ A, let T ′ = ρ(T ) be the transaction built from T as follows (ρ stands
for “reduced”). As T has been aborted, there is a read or a write on a base object that
entailed that abortion. Let prefix (T ) be the prefix of T that includes all the read and
write operations on the base objects accessed by T until (but excluding) the read or
write that provoked the abort of T . T ′ = ρ(T ) is obtained from prefix (T ) by replacing
its write operations on base objects and all the subsequent read operations on these
objects, by corresponding write and read operations on a copy in local memory. The
idea here is that only an appropriate prefix of an aborted transaction is considered: its
write operations on base objects (and the subsequent read operations) are made fictitious
in T ′ = ρ(T ). Finally, let A′ = {T ′ | T ′ = ρ(T ) ∧ T ∈ A}.

As announced in the Introduction, the safety property considered in this paper is
opacity (introduced in [12] with a different formalism). It expresses the fact that a trans-
action never sees an inconsistent state of the base objects. With the previous notation, it
can be stated as follows:
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– Opacity. The transactions in C ∪ A′ are linearizable (i.e., can be totally ordered
according to their real-time order [13]).

This means that the transactions in C ∪ A′ appear as if they have been executed one
after the other, each one being executed at a single point of the time line between its
invocation event and its end event.

3 A Lock-Based STM System: Base Version

This section presents a base protocol that builds a STM system on top of the base system
described in Section 2.1. Without ambiguity, the same identifier T is used to denote both
a transaction itself and its unique name.

3.1 The STM System Interface

The STM system provides the transactions with three operations denoted X.readT (),
X.writeT (), and try to commitT (), where T is a transaction, and X a base object.

– X.readT () is invoked by the transaction T to read the base object X . That operation
returns a value of X or the control value abort. If abort is returned, the invoking
transaction is aborted.

– X.writeT (v) is invoked by the transaction T to update X to the new value v. That
operation never forces a transaction to immediately abort.

– If a transaction attains its last statement (as defined by the user) it executes the oper-
ation try to commitT (). That operation decides the fate of T by returning commit
or abort. (Let us notice, a transaction T that invokes try to commitT () has not
been aborted during an invocation of X.readT ().)

3.2 The STM System Variables

To implement the previous STM operations, the STM system uses a lock per base object
X , and the following atomic control variables that are sets (all initialized to ∅).

– A read set RSX is associated with each object X . This set contains the id of the
transactions that have read X since its last update. A transaction adds its id to RSX

to indicate a possibility of conflict.
– A set OW , whose meaning is the following: T ∈ OW means that the transaction

T has read an object Y and, since this reading, Y has been updated (so, there is a
conflict).

– A set FBDX per base object X (FBDX stand for ForBiDden). T ∈ FBDX means
that the transaction T has read an object Y that since then has been overwritten
(hence T ∈ OW ), and the overwriting of Y is such that any future read of X by
T will be invalid (i.e., the value obtained by T from Y and any value it will obtain
from X in the future cannot be mutually consistent): reading X from the shared
memory is forbidden to the transactions in FBDX .
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Fig. 2. Meaning of the set FBDX

An example explaining the meaning of FBDX is described in Figure 2. On the left side,
the execution of three transactions are depicted (as before, each rectangle encapsulates
a transaction execution). T1 starts by reading X , executes local computation, and then
reads Y . The execution of T1 overlaps with two transactions, T2 that is a simple write
of Y , followed by T3 that is a simple write of X . It is easy to see that the execution
of these three transactions can be linearized: first T2, then T1 and finally T3. In this
execution, FBDX does not include T1.

In the execution on the right side, T2 and T3 are combined to form a single transaction
T4. It is easy to see that this concurrent execution of T1 and T4 cannot be linearized.
Due to its access to X , the STM system (as we will see) will force T4 to add T1 to
FBDY , entailing the abort of T1 when T1 will access Y (if T1 would not access Y , it
would not be aborted). Let us observe that the same thing occurs if, instead of T4, we
have (with the same timing) a transaction made up of X.write() followed by another
transaction including Y.write().

The STM system also uses the following local variables (kept in the local memory
of the process that invoked the corresponding transaction). lrsT is a local set where T
keeps the ids of all the objects it reads. Similarly, lwsT is a local set where T keeps the
ids of all the objects it writes. Finally, read onlyT is a boolean variable initialized to
true.

The previous shared sets can be efficiently implemented using Bloom filters (e.g.,
[2,7,17]). In a very interesting way, the small probability of false positive on member-
ship queries does not make the protocol incorrect (it can only affect its efficiency by
entailing non-necessary aborts).

Let us recall that a process is sequential and consequently executes transactions one
after the other. As local control variables are associated with a transaction, the corre-
sponding process has to reset them to their initial values between two transactions. Sim-
ilarly, if a transaction creates a local copy of an object, that copy is destroyed when the
transaction terminates (a given copy of an object is meaningful for one transaction only).

3.3 The Algorithms of the STM System

The three operations that constitute the STM system X.readT (), X.writeT (v), and
try to commitT (), are described in Figure 3.

The operation X.readT (). The algorithm implementing this operation is pretty simple.
If there is a local copy of X , its value is returned (lines 01 and 07). Otherwise, space
for X is allocated in the local memory (line 02), X is added to the set of objects read
by T (line 03), T is added to the read set RSX of X , and the current value of X is read
from the shared memory and saved in the local memory (line 04).
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operation X.readT ():
(01) if (there is no local copy of X) then
(02) allocate local space for a copy;
(03) lrsT ← lrsT ∪ {X};
(04) lock X; local copy of X ← X; RSX ← RSX ∪ {T}; unlock X;
(05) if (T ∈ FBDX ) then return(abort) end if
(06) end if;
(07) return(value of the local copy of X)
=======================================================
operation X.writeT (v):
(08) read onlyT ← false;
(09) if (there is no local copy of X) then allocate local space for a copy end if;
(10) local copy of X ← v;
(11) lwsT ← lwsT ∪ {X}
=======================================================
operation try to commitT ():
(12) if (read onlyT )
(13) then return(commit)
(14) else lock all the objects in lrsT ∪ lwsT ;
(15) if (T ∈ OW ) then release all the locks; return(abort) end if;
(16) for each X ∈ lwsT do X ← local copy of X end for;
(17) OW ← OW ∪

(
∪X∈lwsT RSX

)
;

(18) for each X ∈ lwsT do FBDX ← OW ; RSX ← ∅ end for;
(19) release all the locks;
(20) return(commit)
(21) end if

Fig. 3. A lock-based STM system

Due to asynchrony, it is possible that the value read by T is overwritten before T
uses it. The predicate T ∈ FBDX is used to capture this type of read/write conflict. If
this predicate is true, T is aborted (line 05). Otherwise, the value obtained from X is
returned (line 07). It is easy to see that any object X is read from the shared memory at
most once by a transaction.

The operation X.writeT (). The text of the algorithm implementing X.writeT () is even
simpler than the text of X.readT (). The transaction first sets a flag to record that it is not
a read-only transaction (line 08). If there is no local copy of X , corresponding space is
allocated in the local memory (line 09); let us remark that this does not entail a reading
of X from the shared memory. Finally, T updates the local copy of X (line 10), and
records that it has locally written the copy of X (line 11).

It is important to notice that an invocation of X.writeT () is purely local: it involves
no access to the shared memory, and cannot entail an immediate abort of the corre-
sponding transaction.

The operation try to commitT (). This operation works a follows. If the invoking trans-
action is a read-only transaction, it is committed (lines 12-13). So, a read-only transaction
can abort only during the invocation of a X.readT () operation (line 05 of that operation).
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If the transaction T is an update transaction, try to commitT () first locks all the ob-
jects accessed by T (line 14). (In order to prevent deadlocks, it is assumed that these
objects are locked according to a predefined total order, e.g., their identity order.) Then,
T checks if it belongs to the set OW . If this is the case, there is a read-write conflict:
T has read an object that since then has been overwritten. T consequently aborts (after
having released all the locks, line 15). If the predicate T ∈ OW is false, T will neces-
sarily commit. But, before committing (at line 20), T has to update the control variables
to indicate possible conflicts due to the objects it has written, the ids of which have been
kept by T in the local set lwsT during its execution.

So, after it has updated the shared memory with the new value of each object X ∈
lwsT (line 16), T computes the union of their read sets; this union contains all the
transactions that will have a write/read conflict with T when they will read an object
X ∈ lwsT . This union set is consequently added to OW (line 17), and the set FBDX of
each object X ∈ lwsT is updated to OW (line 18). (It is important to notice that each set
FBDX is updated to OW in order not to miss the transitive conflict dependencies that
have been possibly created by other transactions). Moreover, as now the past read/write
conflicts are memorized in FBDX (line 18), the transaction T resets RSX to ∅ just after
it has set FBDX to OW . Finally, before committing, T releases all its locks (line 19).

On locking. As in TL2 [9], it is possible to adopt the following systematic abort strategy.
When a transaction T tries to lock an object that is currently locked, it immediately
aborts (after releasing the locks it has, if any).

3.4 On the Management of the Sets RSX , FBDX and OW

Let us recall that these sets are kept in atomic variables.

Management of RSX and FBDX . The set RSX is written only at line 04 (readT ()
operation), and reset to ∅ at line 18 (try to commitT () operation), and (due to the lock
associated with X) no two updates of RSX can be concurrent; so, no update of RSX is
missed. Its only read (line 16) is protected by the same lock. So, there is no concurrency
problem for RSX .

The set FBDX is read at line 06 (readT () operation), and its only write (line 18,
try to commitT () operation) is protected by a lock. As it is an atomic variable, there is
no concurrency problem for FBDX .

Management of the set OW . This set is read and written only by try to commitT ()
which reads it at lines 15 and 17, and writes it at line 17 (its read at line 18 can benefit
from a local copy saved at line 17).

Concurrent invocations of try to commitT () can come from transactions accessing
distinct sets of objects. When this occurs, the set OW is not protected by the locks asso-
ciated with the objects and can consequently be concurrently accessed. As OW is kept
in an atomic variable there is no concurrency problem for the reads. Differently, writes
of OW (line 17) can be missed. Actually, when we look at the update of the atomic
set variable OW , namely OW ← OW ∪

(
∪X∈lwsT RSX

)
(line 17), we can observe

that this update is nothing else than a Fetch&Add() statement that has to atomically
add ∪X∈lwsT RSX to OW . If such an operation on a set variable is not provided by
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the hardware, there are several ways to implement it. One consists in using a lock to
execute this operation is mutual exclusion. Another consists in using specialized hard-
ware operations such as Compare&swap() (manipulating a pointer on the set OW ,
or LL/SC (load-linked/store-conditional) [15,18]. Yet, another possible implementation
consists in considering the set OW as a shared array with one entry per process, pi

being the only process that can write OW [i]. Moreover, for efficiency, the current value
of OW [i] can be saved in a local variable owi. A write by pi in OW [i] then becomes
owi ← owi ∪X∈lwsT RSX followed by OW [i] ← owi; while the atomic read of the
set OW is implemented by a snapshot operation on the array OW [1..n] [1] (there are
efficient implementations of the snapshot operation, e.g., [4,5]).

Differently from the pair of sets RSX and FBDX , associated with each object X , the
set OW constitutes a global contention point. This contention point can be suppressed
by replacing OW by independent boolean variables (see Section 5). We have adopted
here an incremental presentation, to make the final protocol easier to understand.

3.5 Early Abort and Contention Manager

When the predicate T ∈ OW is satisfied, the transaction T has read an object that since
then has been overwritten. This fact is not sufficient to abort T if it is a read-only trans-
action. Differently, if T is an update transaction, it cannot be linearized; consequently, it
will be aborted when executing line 15 of try to commitT (). It is possible to abort such
an update transaction T earlier than during the execution of try to commitT (). This can
be simply done by adding the statement “if T ∈ OW then return(abort) end if” just
before the first line of the operation writeT (). Similarly, the statement “if T ∈ FBDX

then return(abort) end if” can be inserted between the first and the second line of the
operation readT ().

Interestingly, it is important to notice that the sets RSX , FBDX , and OW can be
used by an underlying contention manager [11,24] to abort transactions according to
predefined rules (namely, there are configurations where aborting a single transaction
can prevent the abort of other transactions).

4 Proof of the Base Protocol

4.1 Base Formalism and Definitions

Events and history at the shared memory level. An event is associated with the execu-
tion of each operation on the shared memory (base object, lock, set variable). We use
the following notation.

– Let BT denote the event associated with the beginning of the transaction T , and
ET the event associated with its termination. ET can be of two types, namely AT

and CT , where AT is the event “abort of T ” (line 05 or 15), and CT is the event
“commit of T ” (line 20).

– Let rT (X)v denote the event associated with the read of X from the shared memory
issued by the transaction T ; v denotes the value returned by the read. Given an
object X , there is a most one event rT (X)v per transaction T . If any, this read
occurs at line 04 (operation X.readT ()).
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– Let wT (X)v denote the event associated with the write of the value v in X . Given
an object X , there is at most one event wT (X)v per transaction T . If any, it corre-
sponds to a write issued at line 16 in the try to commitT () operation. If the value
v is irrelevant wT (X)v is abbreviated wT (X).
Without loss of generality we assume that no two writes on the same object X write
the same value.
We also assume that all the objects are initially written by a fictitious transaction.

– Let ALT (X, op) denote the event associated with the acquisition of the lock on
the object X issued by the transaction T during an invocation of op where op is
X.readT () or try to commitT ().
Similarly, let RLT (X, op) denote the event associated with the release of the lock
on the object X issued by the transaction T during an invocation of op.

Given an execution, let H be the set of all the events generated by the shared memory
accesses issued by the STM system described in Figure 3. As these shared memory
accesses are atomic, the previous events are totally ordered. Consequently, at the shared
memory level, an execution can be represented by the pair Ĥ = (H, <H) where <H

denotes the total ordering on its events. Ĥ is called a shared memory history.
As <H is a total order, it is possible to consider each event in H as a date of the time

line. This “date” view of a sequential history on events will be used in the proof.

History at the transaction level. Given an execution, let TR be the set of transactions
issued during that execution. Let →TR be the order relation defined on the transactions
of TR as follows: T 1 →TR T 2 if ET1 <H BT2 (T 1 has terminated before T 2 starts).
If T 1 �→TR T 2∧T 2 �→TR T 1, we say that T 1 and T 2 are concurrent (their executions
overlap in time). At the transaction level, that execution is defined by the partial order
T̂R = (TR,→TR), that is called a transaction level history.

The read-from relation between transactions, denoted →rf , is defined as follows:

T 1 X→rf T 2 if T 2 reads the value that T 1 wrote in the object X .
A transaction history ŜT = (ST ,→ST ) is sequential if no two of its transactions

are concurrent. Hence, in a sequential history, T 1 �→ST T 2 ⇔ T 2 →ST T 1, thus →ST

is a total order. A sequential transaction history is legal if each of its read operations
returns the value of the last write on the same object (because the history is sequential
and transactions are executed sequentially, no two operations can overlap).

A sequential transaction history ŜT is equivalent to a transaction history T̂R if (1)
ST = TR (i.e., they are made of the same transactions -same invocations and same
replies- in ŜT and in T̂R), and (2) the total order →ST respects the partial order →TR
(i.e., →TR⊆→ST ).

A transaction history ÂA is linearizable if there exists a history ŜA that is sequential,
legal and equivalent to ÂA.

Let ρ̂(TR) denote the transaction history obtained from the history T̂R as described

in Section 2.2. This means that ρ̂(TR) includes all the transactions of T̂R that commit,
and contains ρ(T ) for each transaction T ∈ T̂R that aborts. As defined in Section
2.2, a transaction history T̂R is opaque if there exists a transaction history ŜT that is

sequential, legal and equivalent to ρ̂(TR).



238 D. Imbs and M. Raynal

4.2 Principle of the Proof of the Opacity Property

According to the algorithms implementing the operations X.readT () and X.writeT (v)
described in Figure 3, we ignore all the read operations on an object that follow an-
other operation on the same object within the same transaction, and all the write opera-
tions that follow another write operation on the same object within the same transaction
(these are operations local to the memory of the process that executes them). Building
ρ(TR) from TR is then a straightforward process.

To prove that the protocol described in Figure 3 satisfies the opacity consistency
criterion, we need to prove that, for any transaction history T̂R produced by this proto-

col, there is a sequential legal history ŜT equivalent to ρ̂(TR). This amounts to prove
the following properties (where Ĥ is the shared memory level history generated by the
transaction history T̂R):

1. →ST is a total order,
2. ∀T ∈ TR :

(
T commits ⇒ T ∈ ST

)
∧
(
T aborts ⇒ ρ(T ) ∈ ST

)
,

3. →ρ(TR)⊆→ST ,

4. T1 X→rf T2 ⇒ �T3 such that
(
T1 →ST T3 →ST T2

)
∧
(
wT3 (X ) ∈ H

)
,

5. T1 X→rf T2 ⇒ T1 →ST T2 .

4.3 Definition of the Linearization Points

ST is produced by ordering the transactions according to their linearization points. The
linearization point of the transaction T is denoted 
T . The linearization points of the
transactions are defined as follows:

– If a transaction T aborts, 
T is the time just before T is added to the set OW (line
17 of the try to commitT() operation that entails its abort).

– If a read only transaction T commits, 
T is placed at the earliest of (1) the occur-
rence time of the test during its last read operation (line 05 of the X.read() opera-
tion) and (2) the time just before it is added to OW (if it ever is). (An example is
depicted in Figure 4.)

– If an update transaction T commits, 
T is placed just after the execution of line 17
by T (update of OW ).

The total order <H (defined on the events generated by T̂R) can be extended with
these linearization points. Transactions whose linearization points happen at the same
time (for example, in multi-core systems) are ordered arbitrarily. An example is given
in Figure 4.

4.4 Safety: Proof of the Opacity Property

Let T̂R = (TR,→TR) be a transaction history. Let ŜT = (ρ(TR),→ST ) a history
whose transactions are the transactions in ρ(TR), and such that →ST is defined accord-
ing to linearization points of each transaction in ρ(TR). If two transactions in ρ(TR)
have the same linearization point, they are ordered arbitrarily. Finally, let us observe that
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�T3;CT3

T1

T2

T3

rT1(X) rT1(Y )

CT2

wT3(Y )

wT2(X)

RSX ← RSX ∪ {T1}

OW ← OW ∪ {T1} OW ← OW ∪ {T1}

RSY ← RSY ∪ {T1}

BT1 ”Event/time line”BT3 CT1
BT2 �T1;�T2;CT2

Fig. 4. An example of linearization points

the linearization points can be trivially added to the sequential history Ĥ = (H,→H)
defined on the events generated by the transaction history T̂R. So, we consider in the
following that the set H includes the linearization points of the transactions.

Lemma 1. →ST is a total order.

Proof. Trivial from the ordering of the linearization points. �

Lemma 2. →ρ(TR)⊆→ST .

Proof. This lemma follows from the fact that, given any transaction T , its linearization
point is placed within its lifetime. Therefore, if T 1 →ρ(TR) T 2 (T 1 ends before T 2
begins), then T 1 →ST T 2. �

Let ow(T, t) be the predicate “at time t, T belongs to OW ”.

Lemma 3. ow(T, t) ⇒ 
T <H t.

Proof. We show that the linearization point of a transaction T cannot be after the time
at which the transaction’s id is added to OW . There are three cases.

– By construction, if T aborts, its linearization 
T is the time just before its id is
added to OW , which proves the lemma.

– If T is read-only and commits, again by construction, its linearization 
T point is
placed at the latest just before the time at which its id is added to OW (if it ever
is), which again proves the lemma.

– If T writes and commits, its linearization point 
T is placed during try to commit
(), while T holds the locks of every object that it has read. If T was in OW before
it acquired all the locks, it would not commit (due to line 15). Let us notice that T
can be added to OW only by an update transaction holding a lock on a base object
previously read by T . As T releases the locks just before committing (line 19), it
follows that 
T occurs before the time at which its id is added to OW (if it ever is),
which proves the last case of the lemma. �

Let rsX (T, t) be the predicate “at time t, T belongs to RSX or OW ”.
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Lemma 4. TW
X→rf TR ⇒ �T ′

W such that
(
TW →ST T ′

W →ST TR

)
∧
(
wT ′

W
(X)∈

H
)
.

Proof. By contradiction, let us assume that there are transactions TW , T ′
W and TR and

an object X such that:

– TW
X→rf TR,

– wT ′
W

(X)v′ ∈ H ,
– TW →ST T ′

W →ST TR.

As both TW and T ′
W write X in shared memory, they have necessarily committed (a

write in shared memory occurs only at line 16 during the execution of try to commit(),
abbreviated ttc in the following). Moreover, their linearization points 
TW and 
T ′

W

occur while they hold the lock on X (before committing), from which we have the
following implications:

TW →ST T ′
W ⇔ �TW <H �T ′

W
,

�TW <H �T ′
W

⇒ RLTW (X, ttc) <H ALT ′
W

(X, ttc),

RLTW (X, ttc) <H ALT ′
W

(X, ttc) ⇒ wTW (X)v <H wT ′
W

(X)v′,(
TW

X→rf TR

)
∧
(
wTW (X)v <H wT ′

W
(X)v′) ⇒ wTW (X)v <H rTR(X)v <H wT ′

W
(X)v′.

A transaction T that reads an object X always adds its id to RSX before releasing
the lock on X . Therefore, the predicate rsX (T ,RLT (X ,X .readT ())) is true (RSX is
set to ∅ only after being added to the set OW ). Using this observation, we have the
following:

rTR(X)v <H wT ′
W

(X)v′ ∧ rsX (TR,RLTR(X ,X .readTR ())) ⇒ rsX (TR,ALT ′
W

(X , ttc)),

(Due to Line 17) rsX (TR,ALT ′
W

(X , ttc)) ∧
(
wT ′

W
(X)v′ ∈ H

)
⇒ ow(TR, �T ′

W
),

(Due to Lemma 3) ow(TR, �T ′
W

) ⇒ �TR <H �T ′
W

,

(and finally) �TR <H �T ′
W

⇔ TR →ST T ′
W ,

which proves that, contrarily to the initial assumption, T ′
W cannot precede TR in the

sequential transaction history ŜT . �

Let fbdX (T, t) be the predicate “at time t, T belongs to FBDX ”.

Lemma 5. TW
X→rf TR ⇒ TW →ST TR.

Proof. The proof is made up of two parts. First it is shown that TW
X→rf TR ⇒

¬ow(TR, 
TW ), and then it is shown that ¬ow(TR, 
TW ) ∧ TW
X→rf TR ⇒ TW →ST

TR.

Proof of TW
X→rf TR ⇒ ¬ow(TR, 
TW ). Let us assume by contradiction that the

predicate ow(TR, 
TW ) is true. Due to line 18 we have

ow(TR, 
TW ) ⇒ fbdX(TR, RLTW (X, ttc)).
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If the read of X from shared memory by TR is before the write by TW , we can-

not have TW
X→rf TR. So, in the following we consider that the read of X from

shared memory by TR is after its write by TW . We have then RLTW (X, ttc) <H

ALTR(X, X.readTR()), and consequently

fbdX(TR, RLTW (X, ttc)) ⇒ fbdX(TR, ALTR(X, X.readTR())).

As TR ∈ FBDX when it locks X , it follows that TR aborts at line 05 and conse-

quently we cannot have TW
X→rf TR. Summarizing the previous reasoning we have

(ow(TR, 
TW ) ⇒ ¬(TW
X→rf TR)), and taking the contrapositive we finally obtain

TW
X→rf TR ⇒ ¬ow(TR, 
TW ).

Proof of ¬ow(TR, 
TW ) ∧ TW
X→rf TR ⇒ TW →ST TR. As defined in Section 4.3,

the linearization point 
TR depends on the fact that TR commits or aborts, and is a read
only or an update transaction. The proof considers the three possible cases.

– If TR is an update transaction that commits, its linearization point 
TR (that is
defined as line 17 when it updates the set OW ) occurs after its invocation of
try to commit(). Due to this observation, the fact that TW releases its locks after

its linearization point, and TW
X→rf TR, we have 
TW <H 
TR , i.e., TW →ST TR.

– If TR is a (read only or update) transaction that aborts, its linearization point 
TR is

the time at which TR is added to OW . Because TW
X→rf TR we have¬ow(TR, 
TW).

Moreover, due to ¬ow(TR, 
TW ) and the fact that TR aborts, we have 
TW <H 
TR ,

i.e., TW →ST TR. It follows that TW
X→rf TR ⇒ TW →ST TR.

– If TR is a read only transaction that commits, its linearization point 
TR is placed
either at the time at which it is added to OW (then the case is the same as a trans-
action that aborts, see before), or at the time of the test during its last read operation
(line 05). In the latter case, we have wTW (X)v <H 
TW <H RLTW (X, ttc) <H

ALTR(X, X.readTR()) <H rTR(X)v <H 
TR , from which we have 
TW <H 
TR ,
i.e., TW →ST TR.

Hence, in all cases, we have TW
X→rf TR ⇒ TW →ST TR. �

Theorem 1. Every transaction history T̂R produced by the protocol described in Fig-
ure 3 satisfies the opacity consistency criterion.

Proof. The proof follows from the construction of the set ρ(TR) (Section 4.1), the
definition of the linearization points (Section 4.3), and the Lemmas 1, 2, 4 and 5. �

4.5 Safety: Proof of the Progressiveness Property

Theorem 2. If a transaction T 1 aborts, then there is a time t at which T 1 conflicts with
another transaction T 2 that is neither committed nor aborted by time t.
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Proof. The abort of a transaction T 1 is due to a X.read() operation (test at line 05)
or a try to commit() operation (test at line 15). In both cases, T 1 has read an object
Y and has been added first to the set OW (line 17), and then to the set FBDX (line
18), during the try to commit() operation of the transaction T 2 that wrote Y . As T 1
belongs to OW , we conclude that there is a read/write conflict on Y between T 1 and
T 2 (where T 1 is the reader and T 2 is the writer). Because T 2 adds T 1 to OW during its
try to commit() operation, the conflict happens during the lifetime of T 2, from which
it follows that T 1 can be aborted only due to a conflict with a transaction T 2 that is still
alive at the time of the conflict (as depicted in Figure 1). �

4.6 Liveness: Termination of Transactions

It is easy to see that each transaction terminates. Concerning the fact that a transaction
terminates successfully (commit) or not (abort), we have the following properties.

– If a transaction T 1 entails the abort of a transaction T 2, then T 1 necessarily com-
mits.
This is because the abort of T 2 occurs at line 05 (test T 2 ∈ FBDX ) or at line 15
(test T 2 ∈ OW ). In both cases the addition of T 2 to the set FBDX or OW is done
by a transaction T 1 while it executes the lines 17 or 18, i.e., just before T 1 commits
at line 20.

– If none of the values it has read is overwritten, an update transaction cannot abort.
Moreover, a write-only transaction never aborts.

– A transaction that reads an object X , is not necessarily aborted, despite the fact that
it has previously read an object Y that is now overwritten, as long as the values of
X and Y it has obtained belong to the same consistent state.

5 A Lock-Based STM System: Final Version

5.1 The Improvements

From transaction ids to process ids. While this is not necessary from a correctness point
of view, it is desirable that the identities of transactions that have terminated (committed
or aborted) be suppressed from the sets RSX , FBDX , and OW . Moreover, the fact that
the domain of these identities is unbounded can become a real drawback. As there a is a
fixed number of processes, and each process issues one transaction at a time, a solution
consists in using the id of the issuing process as the id of the corresponding transaction.
From the point of view of transaction ids, this means that they are now recyclable. This
recycling can be obtained with an appropriate update of the relevant control variables
each time a transaction terminates.

Eliminating the contention point OW . The set OW can actually be replaced by a set of
atomic boolean variables, one per process pi. The boolean associated with pi, denoted
OWi , has the following meaning: OWi = true means that the current transaction is-
sued by pi has read an object whose value is no longer up to date.

The resulting improvement. It follows from the previous improvements that all the
shared control variables do have a bounded domain. They are either boolean variables,
or set variables that contain at most n process ids. Let us remark that there are very
efficient management algorithms for such sets.
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5.2 The Final (Improved) STM System

The three operations X.readi(), X.writei(v) and try to commiti() use the id i of the
invoking process pi instead of the transaction id. They also use an internal operation de-
noted initi() the aim of which is to reset control variables and suppress the id i of the in-
voking process from the sets it belongs to. The local variables lwsi , lrsi and read onlyi

replace their counterparts used in the base algorithms. Once this replacement has been
done, the algorithms for X.readi() and X.writei(v) are verbatim the same as before
(Figure 3). Consequently, they are not reproduced in Figure 5.

The code of the try to commiti() operation appears in Figure 5. It is the same as in
Figure 3 with three modifications. To emphasize the incremental presentation, the lines
that are not modified (but for the use of the process id) have the same number in Figure
3 and Figure 5. Differently, the lines that are modified keep the same number but are
postfixed with a letter.

The first modification concerns line 15: the test T ∈ OW is replaced by the test of
the boolean OWi (line 15.a). The second modification concerns the update of the set
OW (line 17 in Figure 3). This update now consists in setting to true the boolean OWj

associated with each process pj that belongs to the read sets RSX of the objects X writ-
ten by pi. This modified update appears at line 17.a of Figure 5. The last modification
concerns the sets FBDX associated with the objects written by pi (line 18 in Figure 3).
These updates are now based on the booleans OWj instead of the set OW ; they appear
at line 18.b in Figure 5. Finally, the lines A1-A3 describe the internal initi() operation.

Remark. Due to the combined effect of asynchrony, the use of the boolean values OWj ,
and the fact that a transaction uses the id of the issuing process, it is possible that a

operation try to commiti():
(12) if (read onlyi)
(13) then initi(); return(commit)
(14) else lock all the objects in lrsi ∪ lwsi ;
(15.a) if OWi then release all the locks; initi(); return(abort) end if;
(16) for each X ∈ lwsi do X ← local copy of X end for;
(17.a) for each j ∈

(
∪X∈lwsi RSX

)
do OWj ← true end for;

(18.a) for each X ∈ lwsi do
(18.b) for each j such that OWj do FBDX ← FBDX ∪ {j} end for;
(18.c) RSX ← ∅;
(18.d) end for;
(19) release all the locks;
(20.a) initi(); return(commit)
(21) end if
=======================================================
operation initi():
(A1) for each X ∈ lrsi do RSX ← RSX \ {i} end for;
(A2) OWi ← false; lwsi ← ∅; lrsi ← ∅; read onlyi ← true ;
(A3) for each X such that (i ∈ FBDX ) do FBDX ← FBDX \ {i} end for

Fig. 5. The improved STM system (bounded variables and no centralized contention point)
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transaction be aborted while it would not be aborted when using the base algorithm
described in Figure 3. This appears rarely. In these very rare cases, progressiveness is
not guaranteed, while the opacity property is always ensured.

6 Conclusion

The focus of the paper was the design of a provably correct STM protocol that satis-
fies the opacity and progressiveness safety properties. As shown in [12], a price has to
be paid to obtain both these properties (see Table 1). The price paid by the proposed
protocol is read visibility (a read operation issued by a transaction has to write control
information in the shared memory). The proposed protocol enjoys several additional
properties: it uses neither clocks nor timestamps, manages a single version of each base
object, never aborts a write-only transaction, uses only bounded control variables, and
has no centralized control.
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Abstract. Interesting tasks are scarce. Yet, they are essential as an investigation
material, if we are to understand the structure of the tasks world. We propose
a new collection of families of tasks called 0-1 Exclusion tasks, and show that
families in this collection are interesting.

A 0-1 Exclusion task on n processors is specified by a sequence of n − 1 bits
b(1), b(2), ..., b(n−1). For participating set of size k, 0 < k < n, each processor
is to output 0 or 1 but they should not all output b(k). When the participating
set is of size n, then they should all output neither all 0’s nor all 1’s. A family
of tasks, one for each n, is created by considering an infinite sequence of bits
b(k), k = 2, 3, ..., such that the sequence that specifies instant n, is a prefix of
the sequence that specifies the n + 1’st instance.

Only one family in the collection, the one specified by b(1) = b(2) = . . . = 1,
was implicitly considered in the past and shown to be equivalent to Set-
Consensus. In this initial investigation of the whole collection we show that not
all of its members are created equal. We take the family specified by b(1) =
1, b(2) = b(3) = ... = 0, and show that it is read-write unsolvable for all n, but
is strictly weaker than Set-Consensus for n odd.

We show some general results about the whole collection. It is sandwiched
between Set-Consensus from above and Weak-Symmetry-Breaking from below.
Any Black-Box of n ports that solves a 0-1 Exclusion task, can be used to solve
that task for n processors with ids from unbounded domain.

Finally we show an intriguing relation between Strong-Renaming and the 0-1
Exclusion families, and make few conjectures about the implementations rela-
tionships among members of the collection, as well as possibly tasks outside it.

1 Introduction

Recently, in a surprising seminal result, it was shown that the sequence of tasks WSB
= WSB2, WSB3, ... is read-write solvable for certain values of n, and unsolvable for
others [2]. The task WSBn is a task on an infinite number of processors which are
to output 0 or 1. The only requirement the task imposes is that n processors break-
symmetry - i.e. when the participating set is of size n, at least one processor outputs
1 and at least one processor outputs 0. The family of tasks WSB was considered in-
teresting since proving it impossible to solve was challenging. Indeed, it was proved
in [3] that for all odd n > 1, WSBn is weaker than n-processors Set-Consensus. The
latter differ from the former in that rather than a task on infinite number of processors,
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it is a task on processor 1 to n, and for participating set smaller than n it imposes the
constraint that at least one processor outputs 0.

What can one conclude from this erratic behavior of the members of the WSB family,
some read-write solvable some not? To us it indicated that in the first place there was
no precise rationale to consider all size instances of WSB simultaneously. The tasks in
the sequence do not make a cohesive whole. What makes a sequence a cohesive whole,
a family? We have no answer to this general question, but to get there, we first asked
whether we can find a task on n processors which is unsolvable for all n and is strictly
weaker than Set-Consensus.

We started with a set of tasks which is as cohesive as they come: A Uniformly Solv-
able tasks [5]. We took The Uniformly Solvable task specified by an infinite sequence
of bits b(1), b(2), .... in which a processor outputs 0 or 1. When the size of the partic-
ipating set is k > 0 then the only constraint is that processors will not all output b(k).
Obviously this is a Uniformly Solvable task as there is a single algorithm to solve it:
A processor that observes a size of participating set k outputs 1 − b(k). We then asked
what happens to this task if we impose one additional constraint: When the size of the
participating set is some single value n > 1, then processors are not only precluded
from all outputing b(n), but they are also precluded from all outputing 1 − b(n), i.e.
when the size of the participating set is n at least one processor outputs 1 and at least
one outputs 0. Notice that we got the the 0-1 member by removing a single n-tuple from
the Uniform task. For each n we get a different task on n processors p1, ..., pn.

It is known that when we start with the Uniformly Solvable task in which for all k
b(k) = 1, when we fix an n and require that for participating set of size n at least one
processor outputs 1 and one processor outputs 0, then we get a task which is equivalent
to Set-Consensus on n processors [8]. But what about other sequences b(k)?

The main contribution of this paper is the discovery of this novel collection of fam-
ilies of tasks - each family specified by a different b(k) sequence. In the initial in-
vestigation of this collection, to show that families in this collection are interesting,
we concentrate on the family specified by the sequence b(1) = 1 and for all k > 1,
b(k) = 0. We call the resulting sequence of tasks one for each n > 1, SEA (Single-
Exclusion-Alternation). Our reasoning will hold verbatim for n > k and the sequence
b(j) = 1, j = 1, ..., k − 1 and b(j) = 0, j > k − 1.

We show some broad brush results pertaining the whole collection, and some results
for SEA in particular. As for the particular, we first show that the question of the solv-
ability of 0-1 tasks is decidable [11]: I.e. we show how given a 0-1 task we can construct
a combinatorial expression and evaluate it to decide whether the task is solvable or not.
We were able to evaluate the expression for all SEA member and thus show that SEA
is read-write unsolvable for all n, and for n odd is strictly easier than set consensus. As
yet we did not find a 0-1 solvable task.

We speculate that a family has a “monotonicity” property - the n + 1’st instant in a
family is not “less-solvable” than the n’th instant. For instance, if the n + 1’st instant is
say equivalent to Set-Concensus on n + 1 processors then the n’th instant is at least as
hard as Set-Consensus on n processors.

Before we enumerate all our 0-1 Exclusion results pertaining to the whole collection,
we need some simple definitions. Lets Tn be an n-processors 0-1 task. For 0 < k < n
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let bTn(k) be the bit excluded for participating set of size k. We define two associated
tasks, the complement task C(Tn), and the dual task D(Tn), both on n processors.
For C(Tn), bC(Tn)(k) = 1 − bTn(k). I.e it is the same task only replacing 0’s with
1’s and 1’s with 0’s. For D(Tn), bD(Tn)(k) = 1 − bTn(n − k). I.e. if we take the
complement of the dual we get a task whose exclusion sequence is the reverse sequence
of original exclusion sequence. Obviously, the dual of the dual is the original. Finally,
if Tn is a 0-1 Exclusion task, then the task SY M(Tn) is a task on 2n − 1 processors,
that for any participating set of size 0 < k < n + 1 allows the same set of tuples that
Tn allows. The task SY M(Tn) when viewed on n processor of ids 1,...,n essentially
requires that a solution is symmetric, processors can only compare their ids rather have,
say, a priori different programs for processors whose ids is odd and another one for
processors whose ids is even. Thus SY M(Tn) is potentially harder than Tn.

Let Tn be a member of the 0-1 Exclusion family. Here we enumerate the results:

1. The four tasks Tn, C(Tn), D(Tn), and C(D(Tn)), are equivalent.
2. SY M(Tn) is not harder (i.e. it is equivalent) than Tn.
3. SEA is unsolvable for all n.
4. SEA is strictly weaker than Set-Consensus for n odd.
5. Any member of the 0-1 Exclusion family is weaker (not necessarily strictly) than

Set-Consensus.
6. Any member in the family of 0-1 Exclusion solves WSB.

Thus the 0-1 Exclusion family is sandwiched between Set-Consensus on the top and
WSB at the bottom.

We apply the idea of creating an unsolvable task by “thinning” a Uniform Solvable
task, to the task of (n, 2n − 1)-Strong Renaming. This is a task on infinitely many
processors. When the participating set is of size n, each processor has to output an
integer between 1 and 2n − 1 and no two processors output the same integer.

We propose many potentially unsolvable sequences of tasks by choosing a combi-
nation of n integers between 1 and 2n − 1, and eliminating all the output n-tuples that
contain just them. Unlike (n, 2n − 2)-Strong-Renaming which eliminates an “integer,”
2n−1, in the sense that it precludes any processor from outputing it, we eliminate much
less - just a single combination of n integers out of the n choose 2n − 1 available. We
show that each instance created this way solves a member of the family of the 0-1 Exclu-
sion. Furthermore, we show that all these instances are not as strong a Set-Consensus.
We solve Strong-Renaming instance on 3 processors that excludes the combination
(2, 3, 5), by using SEA3 which we prove is strictly weaker than Set-Consensus. Thus
0-1 exclusion has the potential to be the “weakest” among unsolvable tasks that are
created in a way yet to be formalized, from Uniformly Solvable task.

The paper is organized as follows: The next section is the Model Section. “Walking
the talk,” there is very little “topology” in our paper. Most of our argumentation is al-
gorithmic. Nevertheless, in arguing the unsolvability of SEA, we will assume that the
reader is familiar with the definition of subdivided simplex, its faces, etc., notions that
appear in most standard 3rd year Computer-Science Algorithms books. We will just
quote a result concerning invariance over the different subdivision of a subdivided sim-
plex. The “weakness” of SEA viz Set-Consensus follows verbatim from [3], we thus
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do not copy that model section. The “weakness” here is exactly in the same sense that it
is there. It was there and it is here, proved under the Round-by-Round Hypothesis. The
result holds in a Round-by-Round model [12], a model hypothesized to be equivalent
to the general model. Aside from the section on tasks to get the vocabulary settled, the
results we rely on are just out of other papers. We do not develop any new topological
tool in this paper. We nevertheless, in the model section, have gone the path of unifying
terminology in terms of output tuples. Since this is a sideshow of this paper, it may
end up to be a bit terse. We then prove our results viz the 0-1 family, and SEA in par-
ticular. Following that, we discuss the relation between Strong-Renaming and the 0-1
exclusion family. Finally, we conclude with rehashing the numerous open problems and
conjectures left on the table.

2 Model

2.1 Tasks

In Distributed Computing, the analogue of a function that a Turing-Machine com-
putes, is a task. A task is independent of the model of computation it is to be solved
in. A task encompasses the level of coordination it requires. A consensus task requires
the strongest coordination, while a task in which processors output their id requires no
coordination. Thus given a task it will be solved in a model only if this model provides
the level of coordination the task requires. In that sense, if we somehow define the no-
tion of how one task can solve another, then a model is a set of tasks that is closed under
task-solvability.

The only thing we will require from any model of distributed computing is to have
the notion of participating − set, that is a definition that allows us to take an infinite
distributed computation in the model and decide which processors participate in that
computation.

To define a task T on n processors, p1, ..., pn, we consider any subset of the pro-
cessors as participating set. The specification of the task is a map from each partici-
pating set P to a set ∆T (P ) of |P | − tuples where a |P |-tuple is a set of |P | pairs
{(pi, w ∈ O)|pi ∈ P} for some w in an output values set O. We will discard the |P | in
the definition of a tuple as it will be understood from the context.

The interpretation is that if the participating set is P , and all processors in P output,
then the combination results in a tuple in ∆T (P ).

For example, in the k−Set-Consensus task [13] on processor p1, ..., pn, processors
output ids of processors. ∆T (P ) is such that for each pair (pi, w) ∈ tuple, tuple ∈
∆T (P ) implies w ∈ P , and |{w|(pi, w) ∈ tuple}| < k + 1. We will use the shorthand
Set-Consensus when the universe of processors is n processors and k = n − 1.

If we want to model a situation when “pi may start with different inputs,” as tradi-
tionally tasks are defined [6], we just increase the universe of processors and distribute
the inputs among processors as to get each processor to have a single input value. With
a single input value we can ignore the value as the processor’s id incorporates it.

For instance, to define the task binary − consensus [9] we define it on 2n pro-
cessors. The output set is O = {0, 1}. For participating set of size less then n + 1
output values in a tuple have to agree, they are either all 0, or all 1. Furthermore, if
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the participating set is a subset of {p1, ..., pn} then processors are to output 0, if the
participating set is subset of {pn+1, ..., pn} then they are to output 1. If the cardinality
of the participating set is strictly bigger than n then anything goes.

The the nth instance of Weak-Symmetry-Breaking (WSBn) task [3], is a task on
2n− 1 processors. The output set is O = {0, 1}. When the cardinality of the participat-
ing set is n, then each output tuple contains some pairs in which the output value is 0,
and some pairs in which the output value is 1. For other cardinalities, anything goes.

In the (2n−1, q)-Weak-Renaming task [1], the task is defined on 2n−1 processors.
The output set is O = {1, 2, ..., q}. For participating set of size k = n, no two pairs in
the pairs of a tuple agree on the output value. For other cardinalities, anything goes.

The task (n, q)-Strong-Renaming (also called Adaptive-Renaming) on n processors
[1], the output set is O = {1, 2, ..., q}. For participating set of size k, no two pairs in the
pairs of a tuple agree on the output value, moreover, no output value in a pair is larger
then 2k − 1.

Of particular interest is the Immediate-Snapshot task ISn on n processors [10]. We
define it recursively, as IS is a Uniformly Solvable task [5]. Task IS1 on processor p1
has a singleton tuple (p1, {p1}). Task ISn extend ISn−1 in the following way: For
participating set of size k < n that include processor pn, the output set of k-tuples
is isomorphic to the output set for p1, ...pk with any fixed one to one correspondence
between processor’s ids. For participating set of size k = n we take add a new value
to O say o = {p1, ..., pn}, create the n pairs (p1, o), ..., (pn, o). We now create the n-
tuples by taking any k-tuple from any participating set of size k and inserting enough
new pairs to make it syntactically valid n-tuple.

2.2 Tasks Solving Tasks

Let task A and B be defined on the same set of processors. We say that task A solves
task B if there is a function s from pairs in A to pairs in B that preserves the first
entry of the pair, i.e. the processor associated with the pair, such that every tuple in A is
mapped to a tuple in B.

2.3 Sequential-Composition of Tasks

Given two two tasks A and B on the same set of processors we define the task BA
which we call A followed by B. We create the output tuple for participating set P by
taking a tuple {(pi, wa)}pi∈P ∈ ∆A(P ), and a tuple {(pi, wB)}pi∈P ∈ ∆B(P ), and
adding a tuple {(pi, (wA, wB))}pi ∈ P to ∆BA(P ).

A composition may come adjoined with a termination map. A termination map is a
partial function on pairs that return HALT or CONT . Once a pair (pi, ∗) is mapped to
HALT , processor pi is not in the participating set of the next task and the composition
does not add anything further to the (pi, ∗).

Of particular interest is self composition. Consider a self composition of A with itself
infinitely many times. If the composition is adjoined with a termination functions such
that after finite number of composition every pair has HALT ed, then we’ll call the
composition well − composed. A k-stage composition for instance can be modeled by
a termination map that HALT s a pair once it “accumulates” k output values.
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2.4 Well-Composition of ISn

For the purposes of this paper, every well-composition of ISn with itself is called an n−
1 dimensional subdivided simplex. The pairs of a well composed ISn are of the form
(pi, (P1, P2, ..., Pk)) where this pair maps to HALT and no prefix (pi, P1, P2, ..., Pq),
q < k does. Notice that in any tuple all the pairs map to HALT . A a k-tuple is called a
k-simplex.

A carrier of a pair q, denoted carrier(q), is the union of the sets in the sequence in
the output value of q. For a k-tuple, the (k−1)-tuples that are sub-tuple of a k-tuple are
its k − 2-faces. The k − 1-face of the subdivided simplex defined by a set of processors
P such that |P | = k, are all the tuples the carrier of each pair of which is a subset equal
P . All the n − 1-tuples whose carriers are not of cardinality n are the boundary of the
subdivided-simplex.

Consider ISn. An n-tuple is of the form {pi, Pi}. Let the parity of the tuple be odd or
even according to the number of distinct sets in the pairs of the tuple. It is easy to check
that if two n-tuple share n − 2 face (that is made of n − 1 processors), then they have
different parity. We say that a sub-divided simplex is orientable. The parity function
that maps n-tuples to “+” or “-” is the orientation.

We will use the following invariance result. It says that a 0,1 coloring of pairs in
tuples that are on the boundary of a subdivided simplex determines a property below of
the inside pairs for any legal “inside.”

Let S be oriented subdivided simplex. If the pairs on the boundary are colored by
0 or 1, then for any 0,1 coloring of the rest of the pairs, we count in a certain way the
number of n-tuples where all the pairs of the tuple are colored by the same color. This
number is called the content of the subdivided simplex. We call a tuple whose all pairs
are of the same color c, mono-c.

1. If n is odd: Sum the number of n-tuples mono tuple considering the sign it gets by
the orientation.

2. If n is even: Do the above only that if a tuple is a mono-1 add an extra “-,” i.e. a
mono-1 with with positive orientation adds -, while negative orientation adds +1.

The result we will use is that once the boundary and its coloring is fixed the content
is the same no matter what is the “inside” as long as the boundary remains fixed [2].
In particular given a boundary, then it was created by some stages of IS’s, and some
termination rules. In this paper will create a subdivided simplex with the same boundary
by changing the halting rule. On the boundary we main the same rule as before while
we halt a processor after the first stage if it returns the set of all processors. I.e. we take
the boundary, we plant a single “inside” simplex and cone it off with the appropriate
faces.

If a well-composed ISn subdivided simplex An solves a 0-1 Exclusion task Tn, let
c be the binary coloring of vertices of An induced by the solution, then the content of
An is 0. This is a corollary of [6] as it implies that to be a solution the induced coloring
has to have no mono n-tuple.

Let Bn be a well-composed ISn. Eliminate some internal n-tuples (an n-tuple that
has no pair on the boundary) to get Bn(holes). If the task Bn(holes) solves a 0-1
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Exclusion task Tn, then the binary coloring induced on the boundary of Bn is such that
the content of Bn for any coloring of the interior vertices is some a priori fixed number
C(Tn).

This follows from the fact that we can count the content by the particular subdivision
mentioned above of planting a single internal n-tuple and coloring it 0, then the only
possible monos are mono-0’s. According to Corollary 3 to follow, if Bn(holes) solves a
0-1 Exclusion task Tn, then the boundary faces are w.l.o.g. a single IS where the middle
simplex in the boundary is colored by 1 − bTn(k). Thus it is a simple combinatorial
exercise to find C(Tn)

2.5 SWMR-Atomic-SM and Immediate-Snapshots

We will assume the standard asynchronous Atomic SM [7]. In this model processors
alternate between writing in their SM cell and reading all SM cells in a snapshot. Cells
are initialized to ⊥. An execution is a sequence of processors ids where the first appear-
ance of a processor is interpreted as a write and its next appearance in the sequence
as a read etc. A processor participates if it appears in the sequence. We will assume
“full-information” model in which each write appends to its cell what it read in the
preceding read. Following a read a processor holds a view. The view is what would
be the content of its cell in the next write.

A protocol π is a partial function for each processor from its view to an output.
We will say that a protocol π solves Tn wait-free in the model, if for all infinite

executions, all processors that appear infinitely many times have views that map to
outputs. Furthermore, if all processors in an execution with a participating set P output,
then the tuple tuple they created satisfies tuple ∈ ∆Tn(P ).

We will use the following result [12]:

Theorem 1. A task Tn is solvable in SM, iff it is solvable by some well-composed ISn.

2.6 Task Implementation

We say that task A implements task B, if the SM model equipped with A as a proce-
dure, B is solvable.

2.7 The Round-by-Round Hypothesis

The following has not been proved yet, but is believed by all. When we say that SEA
is weaker than Set-Consensus it is modulo this Hypothesis.

The Round-by-Round Hypothesis: A implements B, iff some well composition of
A(ISn) solves B.

3 Properties of 0-1 Exclusion and Family and the SEA Task

3.1 The Four Tasks Tn, C(Tn), D(Tn), and C(D(Tn)), are Equivalent

The only nontrivial part is the follows:
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Theorem 2. The task Tn and D(Tn) are equivalent.

Proof. Since D(D(Tn)) = Tn, it suffice to show that Tn implements D(Tn).
Let each processor register in shared memory and then each take a snapshot to see

the number of registrants. If the number is k, 0 < k < n, then the processor outputs
bTn(n − k), else, if k = n it goes to Tn and output from it.

To see that this solves D(Tn), notice that if the participating set is of size k, 0 <
k < n, then at least one processor will output bTn(n − k). Thus the tuple of all 1 −
bTn(n − k) = bD(Tn)(k), is avoided.

If the participating set is k = n, then consider the case that r, n > r > 0 is the
number of processors that went to obtain output from Tn. Since Tn excluded bTn(r) at
least one of the r processors will output 1 − bTn(r). Of the (n − r) processors that did
not go to Tn, at least one will see n−r initial registrants and output bTn(n− (n−r)) =
bTn(r). This one will be the processor that executed the last read that resulted in that
the number of registrants is less than n. Thus, not all output 0 and not all output 1.

If r = n, then by the specification of Tn not all output 0 and not all output 1.

Corollary 1. If there exits a read-write algorithm for Tn then there exists a algorithm
by which a processor stops after its first write-read step if it observes a participating
set of size k < n. It then outputs 1 − bTn(k).

Proof. Consider the implementation of Tn from D(Tn).

3.2 SY M(Tn) Is Not Harder (i.e. Equivalent) to Tn

Theorem 3. SY M(Tn) is not harder (i.e. equivalent) than Tn.

Proof. Take Tn with ports 1 to n. Processors register in a registered set, and then
observe a toggle bit called a “gate” which has two states, it can be “open” or “closed.”
The gate is initially open. A processor that observes the gate open, Strongly Rename [1]
to obtain an output we call port. If he number of the port obtained is less than n + 1 it
invokes Tn at that port and departs with an output from Tn. If the port it gets is greater
than n or initially it observed the gate closed it registers in a spill−over set, and toggles
the gate to close.

If all processors renamed into Tn we are done. Else, at least one processor must
rename into Tn. If r, 0 < r < q ≤ n rename into Tn then at least one of those will
output the bit 1 − bTn(r). To get the complement bit by at least one processor, let each
pj in the spill−over set, take a snapshot and get spill−overj and registeredj . It then
outputs bTn(|registeredj | − |spill − overj |). Since at least one processor, the last one
to take a snapshot, will obtain |registeredj | = q and |spill − overj | = q − r, then at
least one will output bTn(q−(q−r)) = bTn(r). Thus at least two processors will output
different bits. A crucial observation is that Strong-Renaming will never rename all the
processors invoking it to the spill − over set, hence we are allowed to state r > 0.
The function of the gate is to prevent a processor who arrived after a processor from the
spill − over set departed, to go the Tn. This will follow from the fact the processors
in the spill − over set close the gate, and no processor ever opens it. We do this in
order to maintain that at least one processor from the spill-over set will see the correct



254 E. Gafni

Algorithm 1. SY M(Tn) from Tn

1: Initially: REG[1..n] = SPLOV R[1..n] = FALSE,, GATE = FALSE, PORT [1..n]
RREG[1..n], RSPLOV R[1..n]

2:
3: REG[i] := TRUE;
4: if GATE = TRUE then
5: PORT [i] :=call(Strong-Renaming);
6: if PORT [i] < n + 1 then
7: return(call(Tn at port PORT [i]))
8: end if
9: end if

10: GATE := FALSE;
11: SPLOV R[i] := TRUE;
12: RREG[i] := |{j|REG[j] = TRUE}|;
13: RSPLOV R[i] := |{j|RSPLOV R[j] = TRUE}|;
14: return(bTn(RREG[i] − RSPLOV R[i]))

final cardinality of the registered set, q, and the final cardinality of the spill − over
set (q − r). This follows from he fact that after the last processor to register into the
spill − over set does so, no process will register, period.

The code appears as algorithm 1.

3.3 SEA Is Unsolvable for All n

Recall that SEA is a 0-1-Exclusion task specified by the sequence of bits b(1) =
1, b(2) = . . . = b(n − 1) = 0.

Theorem 4. SEA is unsolvable for all n > 1.

Proof. Let NC be a subdivided simplex that solves SEA. To be a solution, the number
of mono n-tuples should be zero, while the boundary should satisfy the specification of
the task.

It follows from [2], and discussed in the Model Section, that given a boundary of a
chromatic subdivided simplex that is colored by 0 and 1 any other chromatic subdivision
that agrees with it on the boundary will result in the same Content. Thus we can count
the Content using a particularly convenient subdivision. If this subdivision results in a
Content that in absolute value different than 0, then it is a proof that no other subdivision
will get what we need, which is a count of 0. We will do this by taking the boundary of
NC, planting an n − 1 chromatic simplex in it and coning the appropriate faces of the
boundary. We will consider the binary coloring of all the nodes of the middle n-tuple
to be 0.

By the specification of the problem aside from the 0-dim face, no proper face has a
mono-0 tuple. (Alternatively, by the corollary 3 we can assume w.l.o.g that the only 0’s
on the boundary are the nodes that are the 0-dim faces.) Since the nodes internal to the
n − 1 face are all 0 by construction, then the only mono n-tuples are the mono-0. Thus
it is easy to see that the only mono-0 n-tuple are the middle one, and all n combinations
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of choosing n − 1 vertices out of the middle n-tuple and combining it with the 0-dim
face across from it. Thus, we get n + 1 mono-0 simplexes. If the orientation of the
middle simplex is +, then all other simplexes share an n − 1 face with it and therefore
are all of orientation -. Consequently the Content is −(n− 1). Thus, for n > 1 we have
that the content is strictly different than 0.

Corollary 2. For n odd if we use the technique in [2] to eliminate a pair of positive
and negative mono-0’s, and we unify the rest of n − 1 mono-0 simplexes in pairs, we
obtain a pseudo-manifold that solves SEAn.

3.4 SEA Is Strictly Weaker Than Set-Consensus for n Odd

Theorem 5. SEA is strictly weaker than Set-Consensus for n odd.

Proof. The construction in [3] that shows that Renaming is easier than set consensus
happen to be binary colored in a way that satisfies not only the requirements of WSB,
but also satisfies the requirements of the stronger problem SEA, and therefore it also
proves that Set-Consensus is strictly stronger than SEA. (See also Corollary 6.)

3.5 Any Member of the 0-1 Exclusion Family Is Weaker (Not Necessarily
Strictly) Than Set-Consensus

Theorem 6. Anymemberof the0-1 Exclusion family is implementablebySet-Consensus.

Proof. Using (n, n − 1)-Set-Consensus by which n processor output at most n − 1
distinct names of participating processors one can solve (n, 2n − 2)-Strong Renaming
where for participating set of size k < n processors rename between 1 and 2k − 1,
while for k = n, they rename between 1 and 2n − 2 [4].

Consider a member in the 0-1 Exclusion family specified by b(k), k = 1, ..., n − 1.
We color the integers r = 1, ..., 2n − 2 by 0 and 1. Let the color of i be CS(i). We
color as follows:

1. CS(1) = 1 − b(1),
2. If b(k) = b(k − 1), 1 < k < n then CS(2k − 1) = 0, and CS(2k − 2) = 1,
3. If b(k) �= b(k − 1), 1 < k < n then CS(2k − 1) = CS(2k − 2) = b(k − 1),
4. CS(2n−2) is colored by the color that is minority slots in CS(1) up to CS(2n−3).

It is an easy induction to see that this coloring has the invariant that abs(|{0 < i <
2k < 2n− 1|CS(i) = 1}|− |{0 < i < 2k < 2n− 1|CS(i) = 0}|) = 1, and moreover
the majority of colors is 1 − b(k). Also if we consider all the integers, the number that
is colored by 1, equal the number that is colored 0, equals n − 1. Consequently, if a
processor outputs the color of the integer it obtains we satisfy the specification of the
0-1 Exclusion problem.

3.6 Any Member in the Family of 0-1 Exclusion Solves Impossible
Weak-Renaming

Theorem 7. Any member in the family of 0-1 Exclusion solves WSB.

Proof. Follows from the result that Tn is equivalent to SY M(Tn), and the latter is a
restriction of WSB.
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4 Strong-Renaming and the 0-1 Exclusion Family

In the task (n, 2n − 1)-Strong-Renaming if the participating set if of size 1 ≤ k ≤ n
then the k processor each return a unique integer from the range 1 to 2k−1. It is known
that (n, 2n − 2)-Strong-Renaming is equivalent to Set-Consensus [4].

What if we fix some n integers out of the integers 1 to 2n − 1 and we preclude all n
processors to together return these n combination? Call such a ask Strong-Renaming-
Minus. Precluding processors from returning the integer 2n − 1 is much more, it pre-
cludes them from returning any tuple with a pair the contains the integer 2n − 1. Thus,
this is potentially an easier problem. Is there a single n-combination that can be elimi-
nated and the problem can still be read-write solvable.

We only partially answer this question. We show that the elimination of an n-
combination results in a problem that is potentially harder than some member of the
0-1 Exclusion. If it will be proven that all members of the 0-1 Exclusion family are
unsolvable then the elimination of any n-combination results in an unsolvable task.

On the flip side we show that there exists a collection n-combinations the elimination
of any will results in a task which is equivalent to Set-Consensus. Perhaps any single
combination elimination results in a task equivalent to set consensus? We answer on the
negative. We show that for (2, 3, 5)-Strong-Renaming-Minus, if we eliminate the com-
bination 2,3,and 5 then SEA on 3 processors solves the problem. Since for 3 processors
SEA is shown to be strictly easier than Set-Consensus, it shows the result.

4.1 Reducing Strong-Renaming-Minus to 0-1 Exclusion

It is easy to see that if we eliminate the combination (n, n + 1, ..., 2n − 1) then we get
a task which is equivalent to set consensus: Set-Consensus solves (n, 2n − 2)-Strong-
Renaming [4]. The task (n, 2n − 2)-Strong-Renaming is harder than the task at hand.
Thus Set-Consensus solves the task. To see that our task solves Set-Consensus, let pro-
cessors that output between 1 and n − 1 output 0, and above n − 1, output 1. It is easy
to see by the specification of Strong-Renaming that for k < n, at least one processor
must output 0. Once we have a participating set of size n, they cannot all output 0, as
there are only n − 1 positions of outputing 0. On the other hand they cannot all output
1, as the any tuple that will result it is eliminated. Thus, the elimination of that single
combination is equivalent to the elimination of the 2n−1’st integer, i.e. all the tuples the
contain position 2n − 1. To get the same result we do not necessarily have to eliminate
the combination (n, n + 1, ..., 2n − 1). Obviously the above reasoning goes through as
long as for any k < n the number of integers in the n-combination whose value is less
equal 2k − 1 is less than k.

What about eliminating other tuples? Suppose we create the task SRcomb from
(n, 2n − 1)-Strong-Renaming by eliminating the combination comb. We show how
to create a 0-1 Exclusion member Ecomb such that SRcomb solves Ecomb.

Consider all the integers in comb to be colored by 1, and the rest of the integers by
0. Denote the color of integer i by CS(i). Create the 0-1 Exclusion task Ecomb, such
that for participating set 0 < k < n one excludes b(k). The bit b(k) is the minority bit
of the colors of the integers 1,...,2k − 1, i.e. if |{i|CS(i) = 0, i ≤ 2k − 1}| ≤ k − 1
then b(k) = 1, else b(k) = 0.
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If processors in SRcomb return the color of the integer they obtained, then they solved
Ecomb.

4.2 A Strong-Renaming-Minus Task Equivalent to a Weak 0-1 Exclusion
Member

We now show how for 3 processors, E(2,3,5) implements SR(2,3,5): For E(2,3,5) we have
b(1) = 1, b(2) = 0. The implementation follows. For historical reasons and metaphors
we will use the word “slot” as a synonym with integer. Processors obtain an output from
E(2,3,5). If a processor obtained 0 it raises a flag for slot 1, if it obtained 1 it raises a flag
for slot 2. It then checks whether another processors raises a flag for the same slot (it
cannot be that 3 processor will). If not then it return the slot. Else, if it is smaller among
the two and its flag is on slot 2, it returns slot 3. If it is the bigger among the two and its
flag is on slot 2, it raises a flag for slot 1. If it smaller among the two and its flag is on
slot 1 it returns 4, else it returns 5.

This algorithm is a finite state machine and I have checked all possibilities. The idea
though is that processors that return 0, start strong renaming on slots colored 0 and
processors that returned 1 start strong renaming on slots color 1. They nevertheless are
not allowed to go above slot 2k − 1. Thus if they spill-over they start going backward
on the complement colored slots.

5 Conclusions

The trigger to this paper is the recent discovery that WSB is solvable for certain values
of n [2]. This means that different size instance of WSB do not make a cohesive whole.
To make a cohesive collection of solvable tasks we proposed in the past the notion of
Uniform Solvability [5]. The idea behind this paper is to create a cohesive unsolvable
collection by taking a solvable cohesive collection and eliminating output tuples. It
resulted in the discovery of the 0-1 Exclusion family as well as the weaker unsolvable
versions of Strong-Renaming.

The main advance we miss is a formalization of this process of deriving what we
would term a Uniformly Unsolvable task out of Uniformly solvable one.

For instance, why excluded the all 1’s or the all 0’s tuple and not a collection of
tuples of the type, say, one processor output 0 and all the rest 1’s? Why eliminate an
n-combination the case of Strong-Renaming, rather than a single n-tuple. We have no
good rationale for that as yet.

On the technical side the main question left is the impossibility of all the instances
of the 0-1 family for any n, as well as finding the implementation relationships between
members of the family. It is easy to see that unlike WSB given an exclusion task on
n processors the the Content of any solution is the same over all solutions. Thus we
conjecture that given two Exclusion tasks T 1 and T 2 on n processors, one with Content
a1 and the other with a2, then T 1 implements T 2 if and only if a1 divides a2, otherwise,
if none is a divisor of the other, then they are unrelated. Since the Content of Set-
Consensus is 1 it solves the whole family.

We also conjecture that once the notion of Uniform Unsolvability is formalized, then
any Uniformly Unsolvable task solves some instance of the 0-1 Exclusion family. We
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have shown this promise via example by taking Strong-Renaming, creating supposedly
Uniformly Unsolvable task out of it, and show that indeed, every instance implements
some 0-1 Exclusion family member.

For one and half decades Weak-Renaming was the only game in town. When pressed
for a task possibly weaker than Set-Consensus only Renaming came to mind. How did
we miss the 0-1 Exclusion and Excluding a combination from Strong-Renaming rather
than a whole integer? I guess the answer to this does not lie within Distributed Computing
but within Human-Nature. Once our guns turned on Weak-Renaming impossible, back
in 1993 [6], too much focus on it held us back from looking to the sides for an easier prey.
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Abstract. Causality tracking mechanisms, such as vector clocks and version
vectors, rely on mappings from globally unique identifiers to integer counters.
In a system with a well known set of entities these ids can be preconfigured and
given distinct positions in a vector or distinct names in a mapping. Id management
is more problematic in dynamic systems, with large and highly variable number
of entities, being worsened when network partitions occur. Present solutions for
causality tracking are not appropriate to these increasingly common scenarios. In
this paper we introduce Interval Tree Clocks, a novel causality tracking mecha-
nism that can be used in scenarios with a dynamic number of entities, allowing
a completely decentralized creation of processes/replicas without need for global
identifiers or global coordination. The mechanism has a variable size represen-
tation that adapts automatically to the number of existing entities, growing or
shrinking appropriately. The representation is so compact that the mechanism can
even be considered for scenarios with a fixed number of entities, which makes it
a general substitute for vector clocks and version vectors.

Keywords: Causality, logical clock, version vectors, vector clocks, dynamic
systems.

1 Introduction

Ever since causality was introduced in distributed systems [12], it has played an impor-
tant role in the modeling of distributed computations. In the absence of global clocks,
causality remains as a means to reason about the order of distributed events. In order
to be useful, causality is implemented by concrete mechanisms, such as Vector Clocks
[7,16] and Version Vectors [18], where a compressed representation of the sets of events
observed by processes or replicas is kept.

These mechanisms are based on a mapping from a globally unique identifier to an
integer counter, so that each entity (i.e. process or replica) keeps track of how many
events it knows from each other entity. A special and common case is when the number
of entities is known: here ids can be integers, and a vector of counters can be used.

Nowadays, distributed systems are much less static and predictable than those tra-
ditionally considered when the basic causality tracking mechanisms were created. In
dynamic distributed systems [17], the number of active entities varies during the sys-
tem execution and in some settings, such as in peer-to-peer deployments, the level of
change, due to churn, can be extremely high.
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Causality tracking in dynamic settings is not new [8] and several proposals ana-
lyzed the dynamic creation and retirement of entities [21,9,20,13,2]. However, in most
cases localized retirement is not supported: all active entities must agree before an id
can be removed [21,9,20] and a single unreachable entity will stall garbage collection.
Localized retirement is only partially supported in [13], while [2] has full support but
the mechanism itself exhibits an unreasonable structural growth that its practical use is
compromised [3].

This paper addresses causality tracking in dynamic settings and introduces Interval
Tree Clocks (ITC), a novel causality tracking mechanism that generalizes both Version
Vectors and Vector Clocks. It does not require global ids but is able to create, retire
and reuse them autonomously, with no need for global coordination; any entity can
fork a new one and the number of entities can be reduced by joining arbitrary pairs
of entities; stamps tend to grow or shrink, adapting to the dynamic nature of the sys-
tem. Contrary to some previous approaches, ITC is suitable for practical uses, as the
space requirement scales well with the number of entities and grows modestly over
time.

In the next section we review the related work. Section 3 introduces a model based
on fork, event and join operations that factors out a kernel for the description of causal-
ity systems. Section 4 builds on the identified core operations and introduces a general
framework that expresses the properties that must be met by concrete causality tracking
mechanisms. Section 5 introduces the ITC mechanism and correctness argument un-
der the framework. Before conclusions, in Section 7, we present in Section 6 a simple
simulation based assessment of the space requirements of the mechanism.

2 Related Work

After Lamport’s description of causality in distributed system [12], subsequent work
introduced the basic mechanisms and theory [18,7,16,5]. We refer the interested reader
to the survey in [22] and to the historical notes in [4]. After an initial focus on message
passing systems, recent developments have improved causality tracking for replicated
data: they addressed efficient coding for groups of related objects [14]; bounded repre-
sentation of version vectors [1]; and the semantics of reconciliation [10].

Fidge introduces in [8] a model with a variable number of process ids. In this model
process ids are assumed globally unique and are gradually introduced by process spawn-
ing events. No garbage collection of ids is performed when processes terminate.

Garbage collection of terminated ids requires additional meta-data in order to assess
that all active entities already witnessed the termination; otherwise, ids cannot be safely
removed from the vectors. This approach is used in [9,21] together with the assumption
of globally unique ids. In [20] the assumption of global ids is dropped and each en-
tity is able to produce a globally unique id from local information. A typical weakness
in these systems is twofold: terminated ids cannot be reused; and garbage collection is
hampered by even a single unreachable entity. In addition, when garbage collection can-
not terminate, the associated meta-data overhead cannot be freed. Since this overhead
is substantial, when the likelihood of non termination is high, it can be more efficient
not to garbage collect and keep the inactive ids.
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The mechanism described in [13] provides local retirement of ids but only for re-
stricted termination patterns (a process can only be retired by joining a direct ancestor);
moreover, the use of global ids is required.

Our own work in [2] introduced localized creation and retirements of ids and pre-
sented Version Stamps, a dynamic substitute to version vectors. Although still of theo-
retical interest as it does not use counters, and although it inspired the id management
technique used in ITC, the technique was later found out to exhibit very adverse growth
in common scenarios [3]. The id management technique used in version stamps shares
many properties with credit management techniques in termination detection algorithms
[15,11].

In order to control version vector growth, in Dynamo [6] old inactive entries are
garbage collected. Although the authors tune it so that in production systems errors are
unlikely to be introduced, in general this can lead to resurgence of old updates. Mecha-
nisms like ITC may help in avoiding the need for these aggressive pruning solutions.

3 Fork-Event-Join Model

Causality tracking mechanisms can be modeled by a set of core operations: fork, event
and join, that act on stamps (logical clocks) whose structure is a pair (i, e), formed by
an id and an event component that encodes causally known events. Fidge used in [8] a
model that bears some resemblance, although not making explicit the id component.

Causality is characterized by a partial order over the event components, (E,≤). In
version vectors, this order is the pointwise order on the event component: e ≤ e′ iff
∀k. e[k] ≤ e′[k]. In causal histories [22], where event components are sets of event ids,
the order is defined by set inclusion.

Fork. The fork operation allows the cloning of the causal past of a stamp, resulting in
a pair of stamps that have identical copies of the event component and distinct ids;
fork(i, e) = ((i1, e), (i2, e)) such that i2 �= i1. Typically, i = i1 and i2 is a new
id. In some systems i2 is obtained from an external source of unique ids, e.g. MAC
addresses. In contrast, in Bayou [20] i2 is a function of the original stamp f((i, e));
consecutive forks are assigned distinct ids since an event is issued to increment a
counter after each fork.

Peek. A special case of fork when it is enough to obtain an anonymous stamp
(0, e), with “null” identity, than can be used to transmit causal information but
cannot register events, peek((i, e)) = ((i, e), (0, e)). Anonymous stamps are
typically used to create messages or as inactive copies for later debugging of
distributed executions.

Event. An event operation adds a new event to the event component, so that if (i, e′)
results from event((i, e)) the causal ordering is such that e < e′. This action does
a strict advance in the partial order such that e′ is not dominated by any other entity
and does not dominate more events than needed: for any other event component
x in the system, e′ �≤ x and when x < e′ then x ≤ e. In version vectors the
event operation increments a counter associated to the identity in the stamp: ∀k �=
i. e′[k] = e[k] and e′[i] = e[i] + 1.
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Fig. 1. Core operations

Join. This operation merges two stamps, producing a new one. If join((i1, e1), (i2, e2))
= (i3, e3), the resulting event component e3 should be such that e1 ≤ e3 and
e2 ≤ e3. Also, e3 should not dominate more that either e1 and e2 did. This is
obtained by the order theoretical join, e3 = e1�e2, that must be defined for all pairs;
i.e. the order must form a join semilattice. In causal histories the join is defined by
set union, and in version vectors it is obtained by the pointwise maximum of the
two vectors.

The identity should be based on the provided ones, i3 = f(i1, i2) and kept
globally unique (with the exception of anonymous ids). In most systems this is
obtained by keeping only one of the ids, but if ids are to be reused it should depend
upon and incorporate both [2].

When one stamp is anonymous, join can also model message reception, where
join((i, e1), (0, e2)) = (i, e1 � e2). When both ids are defined, the join can be
used to terminate an entity and collect its causal past. Also notice that joins can
be applied when both stamps are anonymous, modeling in-transit aggregation of
messages.

Classic operations can be described as a composition of these core operations:

Send. This operation is the atomic composition of event followed by peek. E.g. in vec-
tor clock systems, message sending is modeled by incrementing the local counter
and then creating a new message.

Receive. A receive is the atomic composition of join followed by event. E.g. in vector
clocks taking the pointwise maximum is followed by an increment of the local
counter.

Sync. A sync is the atomic composition of join followed by fork. E.g. In version vector
systems and in bounded version vectors [1] it models the atomic synchronization
of two replicas.

Figure 2 depicts graphical representations of these composite operations, but other
composite operations could also be easily described using the same set of core opera-
tions. For instance, a message multicast could be modeled as the atomic composition of
an event operation followed by a sequence of peek operations.

Traditional descriptions assume a starting number of entities. This can be simulated
by starting from an initial seed stamp and forking several times until the required num-
ber of entities is reached.
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Fig. 2. Some composite operations

4 Function Space Based Clock Mechanisms

In this section we present a general framework which can be used to explain and in-
stantiate concrete causality tracking mechanisms, such as our own ITC presented in the
next section. Here stamps are described in terms of functions and some invariants are
presented towards ensuring correctness. Actual mechanisms can be seen as finite en-
codings of such functions. Correctness of each mechanism will follow directly from the
correctness of the encoding and from respecting the corresponding semantics and con-
ditions to be met by each operation. In the following we will make use of the standard
pointwise sum, product, scaling, partial ordering and join of functions:

(f + g)(x) .= f(x) + g(x),

(f · g)(x) .= f(x) · g(x),

(n · g)(x) .= n · g(x),

f ≤ g
.= ∀x. f(x) ≤ g(x),

(f � g)(x) .= f(x) � g(x),

and of a function 0 that maps all elements to 0:

0 .= λx. 0.

A stamp will consist of a pair (i, e): the identity and the event components, both
functions from some arbitrary domain to natural numbers. The identity component is a
characteristic function (maps elements to {0, 1}) that defines the set of elements in the
domain available to inflate (“increment”) the event function when an event occurs. We
chose to use the characteristic function instead of the set as it leads to better notation.
The essential point towards ensuring a correct tracking of causality is to be able to
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inflate the mapping of some element which no other entity (process or replica) has
access to1. This means each entity having an identity which maps to 1 some element
which is mapped to 0 in all other entities. This is expressed by the following invariant
over the identity components of all entities:

∀i. (i ·
⊔
i′ 	=i

i′) �= i.

We adopt a less general but more useful invariant, as it can be maintained by local
operations without access to global knowledge. It consists of having disjointness of the
parts of the domain that are mapped to 1 in each entity; i.e. non-overlapping graphs for
any pair of id functions.

∀i1 �= i2. i1 · i2 = 0.

Comparison of stamps is made through the event component:

(i1, e1) ≤ (i2, e2)
.= e1 ≤ e2.

Join takes two stamps, and returns a stamp that causally dominates both (therefore,
the event component is a join of the event components), and has the elements from both
identities available for future event accounting:

join((i1, e1), (i2, e2))
.= (i1 + i2, e1 � e2).

Fork can be any function that takes a stamp and returns two stamps which keep the
same event component, but split between them the available elements in the identity;
i.e. any function:

fork((i, e)) .= ((i1, e), (i2, e)) subject to i1 + i2 = i and i1 · i2 = 0.

Peek is a special case of fork, which results in one anonymous stamp with 0 identity
and another which keeps all the elements in the identity to itself:

peek((i, e)) .= ((i, e), (0, e)).

Event can be any function that takes a stamp and returns another with the same
identity and with an event component inflated on any arbitrary set of elements available
in the identity:

event((i, e)) = (i, e + f · i) for any f such that f · i > 0.

An event cannot be applied to an anonymous stamp as no element in the domain is
available to be inflated.

1 If this property is not met it can still be possible to form an order that is compatible with
causality, but where some concurrent events appear as ordered. This is the case in Lamport
clocks [12] and in plausible clocks [23] where the stated invariant does not hold. A Lamport
clock can be modeled by having the same identity in all entities.
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5 Interval Tree Clocks

We now describe Interval Tree Clocks, a novel clock mechanism that can be used in sce-
narios with a dynamic number of entities, allowing a completely decentralized creation
of processes/replicas without need for global identifiers. The mechanism has a variable
size representation that adapts automatically to the number of existing entities, growing
or shrinking appropriately. There are two essential differences between ITC and classic
clock mechanisms, from the point of view of our function space framework:

– in classic mechanisms each entity uses a fixed, pre-defined function for id; in ITC
the id component of entities is manipulated to adapt to the dynamic number of
entities;

– classic mechanisms are based on functions over a discrete and typically finite do-
main; ITC is based on functions over a continuous infinite domain (R) with em-
phasis on the interval [0, 1); this domain can be split into an arbitrary number of
subintervals as needed.

The idea is that each entity has available, in the id, a set of intervals that it can use to
inflate the event component and to give to the successors when forking; a join operation
joins the sets of intervals. Each interval results from successive partitions of [0, 1) into
equal subintervals; the set of intervals is described by a binary tree structure. Another
binary tree structure is also used for the event component, but this time to describe a
mapping of intervals to integers. To describe the mechanism in terms of functions, it is
useful to define a unit pulse function2:

1 .= λx.

{
1 x ≥ 0 ∧ x < 1,

0 x < 0 ∨ x ≥ 1.

The id component is an id tree with the recursive form (where i, i1, i2 range over id
trees):

i ::= 0 | 1 | (i1, i2).

We define a semantic function for the interpretation of id trees as functions:

�0� = 0

�1� = 1
�(i1, i2)� = λx. �i1�(2x) + �i2�(2x − 1).

These functions can be 1 for some subintervals of [0, 1) and 0 otherwise. For an id
(i1, i2), the functions corresponding to the two subtrees are transformed so as to be non-
zero in two non-overlapping subintervals: i1 in the interval [0, 1/2) and i2 in the interval
[1/2, 1). As an example, (1, (0, 1)) represents the function λx.1(2x) +

2 In this paper we use the lambda calculus notation for defining unary functions: a function is
anonymously defined by a lambda expression which expresses its action on its argument. For
instance, the “increment” function f such that f(x) = x + 1 would be expressed as λx. x + 1
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(λx.1(2x − 1))(2x − 1). We will also use a graphical notation, which is based on
the graph of the function over [0, 1). Examples:

(1, (0, 1)) ∼
((0, (1, 0)), (1, 0)) ∼

The event component is a binary event tree with non-negative integers in nodes; using
e, e1, e2 to range over event trees and n over non-negative integers:

e ::= n | (n, e1, e2).

We define a semantic function for the interpretation of these trees as functions:

�n� = n · 1
�(n, e1, e2)� = n · 1 + λx. �e1�(2x) + �e2�(2x − 1).

This means that the value for an element in some subinterval is the sum of a base value,
common for the whole interval, plus a relative value from the corresponding subtree.
We will also use a graphical notation for the event component; again, it is based on the
graph of the function, obtained by “stacking” the corresponding parts. An example:

(1, 2, (0, (1, 0, 2), 0)) ∼

A stamp in ITC is a pair (i, e), where i is an id tree and e an event tree; we will also use
a graphical notation based on stacking the two components:

(((0, (1, 0)), (1, 0)), (1, 2, (0, (1, 0, 2), 0))) ∼

ITC makes use what we call the seed stamp, (1, 0), from which we can fork as desired
to obtain an initial configuration.

5.1 An Example

We now present an example to illustrate the intuition behind the mechanism, showing a
run with a dynamic number of entities in the fork-event-join model. The run starts by a
single entity, with the seed stamp, which forks into two; one of these suffers one event
and forks; the other suffers two events. At this point there are three entities. Then, one
entity suffers an event while the remaining two synchronize by doing a join followed
by a fork.
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The example shows how ITC adapts to the number of entities and allows simplifi-
cations to occur upon joins or events. While the first two forks had to split a node in
the id tree, the third one makes use of the two available subtrees. The final join leads
to a simplification in the id by merging two subtrees. It can be seen that each event
always inflates the event tree in intervals available in the id. The event after the final
join managed to perform an inflation in a way such that the resulting event function is
represented by a single integer.

5.2 Normal Form

There can be several equivalent representations for a given function. ITC is conceived
so as to keep stamps in a normal form, for the representations of both id and event
functions. This is important not only for having compact representations but also to
allow simple definitions of the operations on stamps (fork, event, join) as shown below.
As an example, for the unit pulse, we have:

1 ∼ 1 ≡ (1, 1) ≡ (1, (1, 1)) ≡ ((1, 1), 1) ≡ . . .

This means that, if after a join the resulting id is (1, (1, 1)), we can simplify it to 1.
Normalization of the id component can be obtained by applying the following function
when building the id tree recursively:

norm((0, 0)) = 0,

norm((1, 1)) = 1,

norm(i) = i.

The event component can be also normalized, preserving its interpretation as a func-
tion. Two examples:

(2, 1, 1) ∼ ≡ ∼ 3,

(2, (2, 1, 0), 3) ∼ ≡ ∼ (4, (0, 1, 0), 1).

To normalize the event component we will make use of the following operators to
“lift” or “sink” a tree:

n↑m = n + m,

(n, e1, e2)↑m = (n + m, e1, e2),
n↓m = n − m,

(n, e1, e2)↓m = (n − m, e1, e2).

Normalization of the event component can be obtained by applying the following
function when building a tree recursively (where m and n range over integers and e1
and e2 over normalized event trees) :

norm(n) = n,

norm((n, m, m)) = n + m,

norm((n, e1, e2)) = (n + m, e1↓m, e2↓m), where m = min(min(e1), min(e2)),
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where min applied to a tree returns the minimum value of the corresponding function
in the range [0, 1):

min(e) = min
x∈[0,1)

�e�(x),

which can be obtained by the recursive function over event trees:

min(n) = n,

min((n, e1, e2)) = n + min(min(e1), min(e2)),

or more simply, assuming the event tree is normalized:

min(n) = n,

min((n, e1, e2)) = n,

which explores the property that in a normalized event tree, one of the subtrees has
minimum equal to 0. We will also make use of the analogous max function over event
trees that returns the maximum value of the corresponding function in the range [0, 1),
and can be obtained by the recursive function:

max(n) = n,

max((n, e1, e2)) = n + max(max(e1), max(e2)).

5.3 Operations over ITC

We now present the operations on ITC for the fork-event-join model. They are defined
so as to respect the operations and invariants from the function space based framework
presented in the previous section. All the functions below take as input and give as result
stamps in the normal form.

Comparison. Comparison of ITC can be derived from the pointwise comparison of
the corresponding functions:

(i1, e1) ≤ (i2, e2)
.= �e1� ≤ �e2�.

It is trivial to see that this can be computed through a recursive function over normalized
event trees; i.e. (i1, e1) ≤ (i2, e2) ⇐⇒ leq(e1, e2), with leq defined as (where l and r
range over the “left” and “right” subtrees):

leq(n1, n2) = n1 ≤ n2,

leq(n1, (n2, l2, r2)) = n1 ≤ n2,

leq((n1, l1, r1), n2) = n1 ≤ n2 ∧ leq(l1↑n1 , n2) ∧ leq(r1↑n1 , n2),
leq((n1, l1, r1), (n2, l2, r2)) = n1 ≤ n2 ∧ leq(l1↑n1 , l2↑n2) ∧ leq(r1↑n1 , r2↑n2).
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Fork. Forking preserves the event component, and must split the id in two parts whose
corresponding functions do not overlap and give the original one when added.

fork(i, e) .= ((i1, e), (i2, e)), where (i1, i2) = split(i),

for a function split such that:

(i1, i2) = split(i) =⇒ �i1� × �i2� = 0 ∧ �i1� + �i2� = �i�.

This is satisfied naturally using the following recursive function over id trees, as the two
subtrees of an id component always represent functions that do not overlap:

split(0) = (0, 0),
split(1) = ((1, 0), (0, 1)),

split((0, i)) = ((0, i1), (0, i2)), where (i1, i2) = split(i),
split((i, 0)) = ((i1, 0), (i2, 0)), where (i1, i2) = split(i),

split((i1, i2)) = ((i1, 0), (0, i2))

Join. Joining two entities is made by summing the corresponding id functions and
making a join of the corresponding event functions:

join((i1, e1), (i2, e2))
.= (sum(i1, i2), join(e1, e2)),

for a sum function over identities and a join function over event trees such that:

�sum(i1, i2)� = �i1� + �i2�,

�join(e1, e2)� = �e1� � �e2�.

The sum function that respects the above condition and also produces a normalized
id is:

sum(0, i) = i,

sum(i, 0) = i,

sum((l1, r1), (l2, r2)) = norm((sum(l1, l2), sum(r1, r2))).

Likewise, the join function over event trees, producing a normalized event tree is:

join(n1, n2) = max(n1, n2),
join(n1, (n2, l2, r2)) = join((n1, 0, 0), (n2, l2, r2)),
join((n1, l1, r1), n2) = join((n1, l1, r1), (n2, 0, 0)),

join((n1, l1, r1), (n2, l2, r2)) = join((n2, l2, r2), (n1, l1, r1)), if n1 > n2,

join((n1, l1, r1), (n2, l2, r2)) = norm((n1, join(l1, l2↑n2−n1), join(r1, r2↑n2−n1))).
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Event. The event operation is substantially more complex than the others. While fork
and join have a simple natural definition, event has a larger freedom of implementation
while respecting the condition:

event((i, e)) = (i, e′), subject to �e′� = �e� + f · �i� for any f such that f · �i� > 0.

Event cannot be applied to anonymous stamps; it has the precondition that the id is non-
null; i.e. i �= 0. We can use any subset of the available id to inflate the event function.
The freedom of which part to inflate is explored in ITC so as to simplify the event tree.
Considering the final event in our larger example:

The event operation was able to fill the missing part in a tree so as to allow its
simplification to a single integer. In general, the event operation can use several parts
of the id, and may simplify several subtrees simultaneously. The operation performs all
simplifications in the event tree that are possible given the id tree. If some simplification
is possible (which means the corresponding function was inflated), the resulting tree is
returned; otherwise another procedure is applied, that “grows” some subtree, preferably
only incrementing an integer if possible. The event operation is defined resorting to
these two functions (fill and grow) defined below:

event(i, e) =

{
(i, fill(i, e)) if fill(i, e) �= e,

(i, e′) otherwise, where (e′, c) = grow(i, e).

Fill either succeeds in doing one or more simplifications, or returns an unmodified
tree; it never increments an integer that would not lead to simplifying the tree:

fill(0, e) = e,

fill(1, e) = max(e),
fill(i, n) = n,

fill((1, ir), (n, el, er)) = norm((n, max(max(el), min(e′r)), e
′
r)),

where e′r = fill(ir, er),
fill((il, 1), (n, el, er)) = norm((n, e′l, max(max(er), min(e′l)))),

where e′l = fill(il, el),
fill((il, ir), (n, el, er)) = norm((n, fill(il, el), fill(ir, er))).

In the following example, fill is unable to perform any simplification and grow is
used. From the two candidate inflations shown in light grey, the one chosen requires a
simple integer increment, while the other would require expanding a node:
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Grow performs a dynamic programming based optimization to choose the inflation
that can be performed, given the available id tree, so as to minimize the cost of the event
tree growth. It is defined recursively, returning the new event tree and cost, so that:

– incrementing an integer is preferable over expanding an integer to a tuple;
– to disambiguate, an operation near the root is preferable to one farther away.

grow(1, n) = (n + 1, 0),
grow(i, n) = (e′, c + N), where (e′, c) = grow(i, (n, 0, 0)),

and N is some large constant,

grow((0, ir), (n, el, er)) = ((n, el, e
′
r), cr + 1), where (e′r, cr) = grow(ir, er),

grow((il, 0), (n, el, er)) = ((n, e′l, er), cl + 1), where (e′l, cl) = grow(il, el),

grow((il, ir), (n, el, er)) =

{
((n, e′l, er), cl + 1) if cl < cr,

((n, el, e
′
r), cr + 1) if cl ≥ cr,

where (e′l, cl) = grow(il, el) and (e′r, cr) = grow(ir, er).

The definition makes use of a constant N that should be greater than the maximum
tree depth that arises. This is a practical choice, to have the cost as a simple integer.
We could avoid it by having the cost as a pair under lexicographic order, but it would
“pollute” the presentation and be a distracting element.

6 Exercising ITCs

In order to have a rough insight of ITC space consumption we exercised its usage for
both dynamic and static scenarios, using a mix of data and process causality. For data
causality in dynamic scenarios, each iteration consists of forking, recording an event
and joining two replicas, each performed on random replicas, leading to constantly
evolving ids. This pattern maintains the number of existing replicas while exercising
id management under churn. For process causality in a static scenario, we operate on
a fixed set of processes doing message exchanges (via peek and join) and recording
internal events; here ids remain unchanged, since messages are anonymous.
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The charts in Figure 3 depict the mean size (using the binary encoding shown in
Appendix A) of an ITC across 100 runs of 25,000 iterations for process causality and
100,000 iterations for data causality and for different numbers of active entities (pre-
created by forking a seed stamp before iterating). It shows that space consumption
basically stabilizes after a number of iterations. These results show that ITCs can in
fact be used as a practical mechanism for data and process causality in dynamic sys-
tems, contrary to Version Stamps [2] that have storage cost growing unreasonably over
time.

In order to put these numbers in perspective, the Microsoft Windows operating sys-
tem [19] uses 128 bits Universally Unique Identifiers (UUIDs) and 32 bit counters. The
storage cost of a version vector for 128 replicas would be 2560 bytes using a mapping
from ids to counters and 512 bytes using a vector. The mean size of an ITC for this
scenario (at the end of the iterations) would be less than 2900 bytes for dynamic scenar-
ios and slightly above 170 bytes for static ones. While vectors can be represented in a
more compact way (e.g. factoring out the smallest number), such optimizations would
be irrelevant for dynamic scenarios, where most of the cost stems from the UUIDs.

7 Conclusions

We have introduced Interval Tree Clocks, a novel logical clock mechanism for dynamic
systems, where processes/replicas can be created or retired in a decentralized fashion. The
mechanism has been presented using a model (fork-event-join) that can serve as a kernel
to describe all classic operations (like message sending, symmetric synchronization and
process creation/retirement), being suitable for both process and data causality scenarios.

We have presented a general framework for clock mechanisms, where stamps can be
seen as finite representations of a pair of functions over a continuous domain; the event
component serves to perform comparison or join (performed pointwise); the identity
component defines a set of intervals where the event component can be inflated (a gen-
eralization of the classic counter increment). ITC is a concrete mechanism that instan-
tiates the framework, using trees to describe functions on sets of intervals. The frame-
work opens the way for research on future alternative mechanisms that use different
representations of functions.

Previous approaches to causality tracking for dynamic systems either require access
to globally unique ids; do not reuse ids of retired entities; require global coordination for
garbage collection of ids; or exhibit an intolerable growth in terms of space consumption
(our previous approach). ITC is the first mechanism for dynamic systems that avoids all
these problems, can be used for both process and data causality, and requires a modest
space consumption, making it a general purpose mechanism, even for static systems.
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A A Binary Encoding for ITC

Here we describe a compact encoding of ITC as strings of bits. It may be relevant
when stamp size is an issue, e.g. when many entities are involved; it is appropriate to
being transmitted or stored persistently as a single blob. We do not attempt to present
an optimal (in some way) encoding, but a sensible one, which was used in the space
consumption analysis.

As an event tree tends to have very few large numbers near the root and many very
small numbers at the leaves; this prompts a variable length representation for integers,
where small integers occupy just a few bits. Also, common cases like trees with only
the left or right subtree, or with 0 for the base value are treated as special cases.

We use a notation (inspired by the bit syntax from the Erlang programming language)
where: !x, y, z* is a string of bits resulting from concatenating x, y and z; and n:b
represents number n encoded in b bits. An example: !2:3, 0:1, 1:2* represents the
string of 6 bits 010001.

enc((i, e)) = !enci(i), ence(e)*.

enci(0) = !0:2, 0:1*,

enci(1) = !0:2, 1:1*,

enci((0, i)) = !1:2, enci(i)*,

enci((i, 0)) = !2:2, enci(i)*,

enci((il, ir)) = !3:2, enci(il), enci(ir)*.

ence((0, 0, er)) = !0:1, 0:2, ence(er)*,

ence((0, el, 0)) = !0:1, 1:2, ence(el)*,

ence((0, el, er)) = !0:1, 2:2, ence(el), ence(er)*,

ence((n, 0, er)) = !0:1, 3:2, 0:1, 0:1, ence(n), ence(er)*,

ence((n, el, 0)) = !0:1, 3:2, 0:1, 1:1, ence(n), ence(el)*,

ence((n, el, er)) = !0:1, 3:2, 1:1, ence(n), ence(el), ence(er)*,

ence(n) = !1:1, encn(n, 2)*.

encn(n, B) =

{
!0:1, n:B* if n < 2B,

!1:1, encn(n − 2B, B + 1)* otherwise.
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Abstract. It has been widely suggested that memory transactions should behave
as if they acquired and released a single global lock. Unfortunately, this behav-
ior can be expensive to achieve, particularly when—as in the natural publica-
tion/privatization idiom—the same data are accessed both transactionally and
nontransactionally. To avoid overhead, we propose selective strict serializability
(SSS) semantics, in which transactions have a global total order, but nontransac-
tional accesses are globally ordered only with respect to explicitly marked trans-
actions. Our definition of SSS formally characterizes the permissible behaviors
of an STM system without recourse to locks. If all transactions are marked, then
SSS, single-lock semantics, and database-style strict serializability are equivalent.

We evaluate several SSS implementations in the context of a TL2-like STM
system. We also evaluate a weaker model, selective flow serializability (SFS),
which is similar in motivation to the asymmetric lock atomicity (ALA) of Menon
et al. We argue that ordering-based semantics are conceptually preferable to lock-
based semantics, and just as efficient.

1 Introduction

With the proliferation of multicore processors, there is widespread recognition that
traditional lock-based synchronization is too complex for “mainstream” parallel pro-
gramming. Transactional memory attempts to address this complexity by borrowing
the highly successful notion of transactions from database systems.

Transactions constrain the ways in which thread histories may legally appear to inter-
leave. If all shared data were accessed only within transactions, the constraints would be
relatively simple. In a break from the database world, however, memory transactions are
generally expected to coexist with nontransactional memory accesses, some of which
may also access shared memory. This coexistence complicates the task of specifying,
for every read in the program, which values may be returned.

Many possible semantics for TM have been proposed, including strong and weak iso-
lation (also known as strong and weak atomicity) [2, 18], single lock atomicity (SLA)
[8], and approaches based on language memory models [5], linearizability [16, 6], and
operational semantics [1, 13]. Of these, SLA has received the most attention. It speci-
fies that transactions behave as if they acquired a single global mutual exclusion lock.
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Unfortunately, as several groups have noted [8, 12, 19], SLA requires behavior that can
be expensive to enforce, particularly when a thread privatizes shared data (rendering it
logically inaccessible to other threads), works on it for a while (ideally without incur-
ring transactional overheads), and then publishes it again [11, 12, 19].

Most software TM (STM) implementations today do not correctly accommodate
privatization and publication, and forcing them to do so—at the boundaries of every
transaction—would impose significant costs. In an attempt to reduce those costs, Menon
et al. [12] have proposed a series of semantics that relax the requirement for serializa-
tion among transactions. These semantics are described in terms of locking protocols
significantly more complex than SLA. While we appreciate the motivation, we argue,
with Luchangco [9], that locks are the wrong way to formalize transactions. We prefer
the more abstract approach of language-level memory models [5,10,3]; like traditional
formalizations of database semantics, these directly specify permissible access order-
ings. We also argue that if one wishes to reduce the cost of SLA, it makes more sense to
relax the ordering between nontransactional and transactional accesses within a single
thread, rather than the ordering between transactions.

We argue that SLA is equivalent to the traditional database ordering condition known
as strict serializability (SS). As a candidate semantics for STM, we suggest transac-
tions with selective strict serializability (SSS), in which nontransactional accesses are
ordered with respect to a subset of their thread’s transactions. Whether this subset is
all, none, or some explicitly or implicitly identified set in between, a single formal
framework suffices to explain program behavior. We also propose a slightly weaker se-
mantics, selective flow serializability (SFS), that orders nontransactional accesses with
respect to subsequent transactions in other threads only in the presence of a forward
dataflow dependence that could constitute publication.

Like Menon et al., we take the position that races between transactional and nontrans-
actional code are program bugs, but that (as in Java) the behavior of buggy programs
should be constrained to avoid “out of thin air” reads. SSS and SFS allow the program-
mer or compiler to eliminate races by labeling a minimal set of transactions, while still
constraining behavior if the labeling is incorrect.

After a more detailed discussion of background in Section 2, we formalize our
ordering-based semantics in Section 3. To the best of our knowledge, this is the first
attempt to formalize privatization and publication safety without recourse to locks. We
discuss implementation options in Section 4, in the context of an STM system patterned
on TL2 [4]. We compare the performance of these implementations experimentally in
Section 5, and conclude in Section 6.

2 Background

Arguably the most intuitive semantics for transactions would build on sequential con-
sistency, providing a global total order, consistent with program order, for both trans-
actions and nontransactional accesses. Unfortunately, most architects already consider
sequential consistency too expensive to implement, even without transactions. Among
other things, it precludes standard compiler optimizations like write reordering. In light
of this expense, sequentially consistent transactions appear to be a non-starter.
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Several researchers have argued instead for what Blundell et al. [2] call strong atom-
icity, otherwise known as strong isolation. This drops the requirement that a thread’s
nontransactional memory accesses be seen by other threads in program order. It still
requires, however, that nontransactional accesses serialize with respect to transactions;
that is, that each nontransactional reference appears to happen between transactions,
and that all threads agree as to which transactions it appears between.

Unfortunately, strong isolation still suffers from several significant costs, which
make it unappealing, at least for software implementation:

Granularity: In a high-level programming language, it is not immediately clear what
constitutes an individual memory access. Is it acceptable, for example, for a trans-
action to intervene between the read and write that underlie x++ on a load-store
machine? How about x = 0x300000003, where x is a long long variable but
hardware does not provide an atomic 64-bit store?

Instrumentation: It is generally agreed that speculative execution of software trans-
actions in the face of concurrent nontransactional accesses will require the latter
to inspect and (in the case of writes) modify transactional metadata. Particularly
in programs that make extensive nontransactional use of data that are temporarily
private, this instrumentation can have a major performance impact.

Optimization obstruction: Nontransactional accesses cannot safely be reordered if
they refer to locations that may also be accessed by transactions. The sequence
x = 1; y = 2 admits the possibility that a concurrent transaction will see x ==
1 && y != 2. If the compiler is unable to prove that no such transaction (or series
of transactions) can exist, it must, (a) treat x and y as volatile variables, access
them in program order, and insert a write-write memory barrier between them; or
(b) arrange for the assignments to execute as a single atomic unit.1

In light of these costs, most STM systems provide some form of weak isolation, in
which nontransactional accesses do not serialize with transactions. As several groups
have noted [5,12,13,19], the exact meaning of weak isolation is open to interpretation.
Perhaps the most popular interpretation is single lock atomicity (SLA) [8, p. 20], which
states that transactions behave as if they held a global mutex lock. Unfortunately, even
these semantics have nontrivial cost, and are unsupported by most TM implementations,
particularly for programs that publish or privatize data.

Publication (Figure 1, left) occurs when a thread initializes or otherwise modifies
a data structure that is logically private, and then modifies shared state to make the
structure accessible to other threads. Privatization (right) is the reverse: a thread’s mod-
ification of shared state makes some structure logically private. The appeal of privati-
zation and publication is the possibility that temporarily private data might be accessed
without transactional overhead.

1 Note that while strong isolation is sometimes equated with making every nontransactional
access execute as if it were an isolated transaction [2], this characterization is problematic:
it would force a global total order not only between these isolated transactions and “real”
programmer-specified transactions, but among the isolated transactions. The end result would
be equivalent to sequential consistency for shared locations.
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// initialize node
atomic {

PQ.insert(node)
}

atomic {
node = PQ.extract_min()

}
// use node privately

Fig. 1. Examples of publication (left) and privatization (right). More obscure examples, involving
antidependences or even empty transactions, are also possible [12].

Traditionally, when a thread releases a mutual exclusion lock, all prior accesses by
the thread are guaranteed to have occurred from the point of view of every other thread.
Similarly, when a thread acquires a lock, all subsequent accesses by the thread are
guaranteed not to have occurred. These facts suggest that the natural implementation of
SLA would be publication- and privatization-safe.

The Privatization Problem. In previous work [19], we identified two dimensions of the
privatization problem. Both arise from the fact that STM systems may perform opera-
tions that logically precede, but physically follow, a transaction’s linearization point. If
nontransactional code is unaware of the behavior of the TM system, transactional and
nontransactional work may overlap.

In the delayed cleanup problem (also described by Larus and Rajwar [8, pp. 22–23]),
transactional writes may appear to occur too late from the point of view of nontrans-
actional code. Specifically, a thread that privatizes shared data may fail to see logically
prior updates by a transaction that has committed but has not yet written its “redo log”
back to main memory.2 In the doomed transaction problem (also described by Wang et
al. [20, pp. 6–7]), private writes may appear to occur too early from a doomed trans-
action’s point of view. The resulting inconsistent view of memory may then allow that
transaction to fall into an infinite loop, suffer an exception, or (in the absence of run-
time sandboxing) perform erroneous actions that cannot be undone.

The Publication Problem. One might not initially expect a publication problem: private
accesses are assumed to occur before publication, and there is no notion of cleanup
for nontransactional code. Menon et al. show, however, that problems can arise if the
programmer or compiler prefetches data before it is actually published (Figure 2).

Relaxing SLA. Under SLA, straightforward solutions to the privatization and publica-
tion problems [19, 12] require transactions to begin and clean up in serialization order.
While heuristic optimizations may relax this requirement in some cases [11], it seems
clear that the general case will remain expensive for STM. To reduce this expense,
Menon et al. propose to relax the ordering among transactions. Of their three candidate
semantics, asymmetric lock atomicity (ALA) seems most likely to reduce transactional
overhead without precluding standard compiler optimizations. ALA transactions be-
have as if (1) there is a separate reader-writer lock for every datum, (2) read locks are
acquired (presciently) at the beginning of the transaction, and (3) write locks are ac-
quired immediately prior to writing. The asymmetry of reads and writes reflects the fact

2 Conversely, in an STM system based on undo logs, a privatizing thread may see erroneous up-
dates made (temporarily) by a transaction that has aborted but not yet cleaned up. As observed
by Menon et al., such reads appear to be fundamentally incompatible with the prohibition
against “out of thin air” reads. We therefore assume a redo log in the remainder of this paper.
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// initially x == 0 and x_is_public == false
T1: T2: T3:

e: j = 0
F: atomic {

t = prefetch(x)
a: x = 1
B: atomic { c: i = 0

x_is_public = true D: atomic {
} if (x_is_public) { if (x_is_public) {

i = x j = t
} }

} }

Fig. 2. Publication (left) in parallel with a safe (middle) or unsafe (right) use of published data.
The programmer has made B a transaction to ensure that it orders, globally, after prior initial-
ization of x. Vertical spacing is meant to suggest a possible interleaving of operations across
threads. Both D and F will serialize after B.

that (a) in most TM systems it is much easier for a reader to detect a conflict with a
previous writer than vice versa, and (b) in most programs publication can be assumed
to require a write in one transaction followed by a read in another.

In our view, ALA and similar proposals suffer from three important problems. First,
they explain transaction behavior in terms of a nontrivial fine-grain locking protocol—
something that transactions were intended to eliminate! Second, they give up one of
the key contributors to the success of database transactions—namely serializability (see
for example Fig. 11 of Menon et al. [12]). Third, they impose significant overheads on
transactions that do serialize, even in the absence of publication and privatization.

3 Ordering-Based TM Semantics

Our proposed alternative to lock-based semantics begins with a programming model
in which, in every execution history H , each thread i has a memory access history
Hi ⊂ H in which certain maximal contiguous strings of accesses are identified as
(outermost) transactions. We use TH to denote the set of all transactions. We do not
consider open nesting here, nor do we permit overlapping but non-nested transactions.
Moreover, from the programmer’s point of view, transactions are simply atomic: there
is no notion of speculation or of committing and aborting. A typical implementation
will need to ensure that abortive attempts to execute a transaction are invisible; among
other things, this will require that such attempts retain a consistent view of memory [6].

The goal of a semantics for TM is to constrain the ways in which thread histories
may legally interleave to create a global history. In keeping with the database literature
and with memory models for programming languages like Java [10] and C++ [3], we
believe that the appropriate way to specify these constraints is not by reduction to locks,
but rather by specification of a partial order on program operations that restricts the set
of writes that may be “seen” by a given read.

3.1 Strict Serializability

The standard database ordering criterion is serializability [14], which requires that the
result of executing a set of transactions be equivalent to (contain the same operations
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and results as) some execution in which the transactions take place one at a time, and
any transactions executed by the same thread take place in program order. Strict seri-
alizability imposes the additional requirement that if transaction A completes before
B starts in the actual execution, then A must occur before B in the equivalent serial
execution. The intent of this definition is that if external (nontransactional) operations
allow one to tell that A precedes B, then A must serialize before B. For transactional
memory, it seems reasonable to equate external operations with nontransactional mem-
ory accesses, and to insist that such accesses occur between the transactions of their
respective threads, in program order.

More formally, we define the following strict (asymmetric, irreflexive) ordering
relations:

Program order, <p, is a union of disjoint total orders, one per thread. We say a <p b
iff a and b are executed by the same thread, and a comes before b in the natural
sequential order of the language in which the program is written. Because transac-
tions do not overlap, if transactions A and B are executed by the same thread, we
necessarily have either ∀a ∈ A, b ∈ B : a <p b or ∀a ∈ A, b ∈ B : b <p a. For
convenience, we will sometimes say A <p B or B <p A. For a �∈ B, we may even
say a <p B or B <p a.

Transaction order, <t, is a total order on all transactions, across all threads. It is con-
sistent with program order. That is, A <p B =⇒ A <t B. For convenience, if
a ∈ A, b ∈ B, and A <t B, we will sometimes say a <t b.

Strict serial order, <ss, is a partial order on memory accesses. It is consistent with
transaction order. It also orders nontransactional accesses with respect to preceding
and following transactions of the same thread. Formally, for all accesses a and c
in an execution history H , we say a <ss c iff at least one of the following holds:
(1) a <t c; (2) ∃ A ∈ TH : (a ∈ A ∧ A <p c); (3) ∃ C ∈ TH : (a <p C ∧ c ∈ C);
(4) ∃ access b ∈ H : a <ss b <ss c. Note that this definition does not relate
accesses performed by a given thread between transactions.

An execution with program order <p is said to be strictly serializable if there exists a
transaction order <t that together with <p induces a strict serial order <ss that permits
all the values returned by reads in the execution, as defined in the following subsection.
A TM implementation is said to be strictly serializable if all of its executions are strictly
serializable.

3.2 Values Read

To avoid the need for special cases, we assume that each thread history Hi begins with
an initial transaction T i

0, that T 0
0 writes values to all statically initialized data, and that

for all i > 0, T 0
0 <t T i

0.
We say a memory access b intervenes between a and c if a <p b <p c or a <ss

b <ss c. Read r is then permitted to return the value written by write w only if r and w
access the same location l and either (1) r and w are incomparable under both program
and strict serial order or (2) w <p r ∨ w <ss r and there is no intervening write of l
between w and r.
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For the sake of generality across languages and machines, we have kept these rules
deliberately parsimonious. In a practical language definition, we would expect them to
be augmented with additional rules to capture such concepts as coherence and causal-
ity [10]. For example, in

initially x == 0
T1: x = 1 || T2: atomic{a = x}; atomic{b = x}

the language memory model will probably insist that if a == 1 when T2 completes,
then b != 0; that is, x is coherent. Likewise, in

initially x == y == 0
T1: x = 1 || T2: if (x == 1) y = 1 || T3: atomic{a = y};

atomic{b = x}

the language memory model will probably insist that if a == 1 when T3 completes,
then b == 1 also; that is, the system is causally consistent. Deciding on a complete
set of such rules is a Herculean and potentially controversial task (witness the memory
models for Java and C++); we do not attempt it here. For any given choice of underlying
model, however, we argue that strict serializability, as defined above, is equivalent to
SLA. If an execution is strictly serializable, then it is equivalent by definition to some
execution in which transactions occur in a serial order (<t) consistent with program
order and with nontransactional operations. This serial order is trivially equivalent to
an execution in which transactions acquire and release a global lock. Conversely, if
transactions acquire and release a global lock, they are guaranteed to execute one at a
time, in an order consistent with program order. Moreover given a common underlying
memory model, SLA and strict serial order will impose identical constraints on the
ordering of nontransactional accesses relative to transactions.

3.3 Selective Strictness

A program that accesses shared data only within transactions can be considered prop-
erly synchronized, and can safely run on any TM system that respects <t. A program P
that sometimes accesses shared data outside transactions, but that is nonetheless data-
race-free with respect to <ss (this is what Abadi et al. term violation-free [1]) can also
be considered properly synchronized, and can safely run on any TM system S that re-
spects <ss. Transactions in P that begin and end, respectively, a region of data-race-free
nontransactional use are referred to as privatization and publication operations, and S
is said to be publication and privatization safe with respect to <ss.

Unfortunately, most existing TM implementations are not publication and privatiza-
tion safe with respect to strict serializability, and modifying them to be so would incur
nontrivial costs. It is not yet clear whether these costs will be considered an acceptable
price to pay for simple semantics. It therefore seems prudent to consider weaker se-
mantics with cheaper implementations. Menon et al. [12] approach this task by defining
more complex locking protocols that relax the serialization of transactions. In contrast,
we propose a weaker ordering, selective strict serializability, that retains the serializa-
tion of transactions, but relaxes the ordering of nontransactional accesses with respect
to transactions. Specifically, we assume a set of acquiring (privatizing) transactions
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AH ⊆ TH and a set of releasing (publishing) transactions RH ⊆ TH . AH and RH are
not required to be disjoint, nor are they necessarily proper subsets of TH . We require
that the initial transaction T i

0 be acquiring for all i; aside from this, it is permissible for
all transactions, or none, to be identified as acquiring and/or releasing.

Selective strict serial order, <sss, is a partial order on memory accesses. Like strict
serial order, it is consistent with transaction order. Unlike strict serial order, it orders
nontransactional accesses only with respect to preceding acquiring transactions and
subsequent releasing transactions of the same thread (and, transitively, transactions
with which those are ordered). Formally, for all accesses a, c ∈ H , we say a <sss c
iff at least one of the following holds: (1) a <t c; (2) ∃ A ∈ AH : (a ∈ A ∧ A <p

c); (3) ∃ C ∈ RH : (a <p C ∧ c ∈ C); (4) ∃ access b ∈ H : a <sss b <sss c.

3.4 Asymmetric Flow

Strict serializability, whether “always on” or selective, shares a problem with the DLA
(disjoint lock atomicity) semantics of Menon et al. [12]: it requires the useless but ex-
pensive guarantee illustrated in Figure 3. Specifically, a <p B <t F =⇒ a <ss F ,
even if B and F are ordered only by antidependence.

// initially x == 0, x_is_public == false, and T3_used_x == false
T1: T2: T3:

e: j = 0
F: atomic {

t = prefetch(x)
a: x = 1
B: atomic { c: i = 0

x_is_public = true D: atomic {
k = T3_used_x if (x_is_public) {

} i = x T3_used_x = true
} j = t

} }

Fig. 3. “Publication” by antidependence (adapted from Menon et al. [12]). If B is a releasing
transaction, selective strict serializability guarantees that the write of x is visible to D (i ==
1, which makes sense). In addition, if k == false, then B must have serialized before F,
and thus j must equal 1 as well. Unfortunately, it is difficult for an STM implementation to
notice a conflict between B and F if the former commits before the latter writes T3 used x,
and undesirable to outlaw the prefetch of x.

We can permit a cheaper implementation if we define a weaker ordering, selective
flow serializability, that requires nontransactional-to-transactional ordering only when
transactions are related by a true (flow) dependence:

Flow order, <f ⊂<t, is a partial order on transactions. We say that A <f C if there
exists a transaction B and a location l such that A <t B, A writes l, B reads l, and
B = C ∨ B <t C.

Selective flow serial order, <sfs ⊂<sss, is a partial order on memory accesses. It is
consistent with transaction order. It does not order nontransactional accesses with
respect to a subsequent releasing transaction B, but rather with respect to trans-
actions that have a flow dependence on B. Formally, ∀ accesses a, c ∈ H , we
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say a <sfs c iff at least one of the following holds: (1) a <t c; (2) ∃ A ∈ A :
(a ∈ A ∧ A <p c); (3) ∃ B ∈ R, C ∈ T : (a <p B <f C ∧ c ∈ C);
(4) ∃ access b ∈ H : a <sfs b <sfs c. It is not difficult to see that <sfs ⊂<sss.

The sets of values that reads are permitted to return under selective strict and flow
serial orders are defined the same as under strict serial order, but with <sss and <sfs,
respectively, substituted for <ss. These induce corresponding definitions of SSS and
SFS executions and TM implementations. In comparison to ALA, SFS is not defined
in terms of locks, and does not force ordering between nontransactional accesses and
unrelated transactions (Figure 4).

// initially x == 0, y == 0, and x_is_public == false
T1: T2: T3:

e: j = 0
F: atomic {

c: i = 0 ...
D: atomic {

t = prefetch(x)
a: x = 1
B: atomic {

x_is_public = true
} if (x_is_public) {

i = y = t
}

} j = y
}

Fig. 4. Unnecessary ordering in ALA. When B commits and D reads x is public, ALA forces
D to abort (as it should, since x is public has to be logically acquired as of the beginning of
D, and that is impossible once B has committed). When D commits and F reads y, ALA will
likewise force F to abort (since it is flow dependent on a committed transaction with a later
start time), though one could, in principle, simply serialize F after D. With SFS, the programmer
would presumably mark B but not D as a releasing transaction, and F would not have to abort.

Like ALA, SFS can lead to apparent temporal loops in racy programs. In Figure 3,
for example, both semantics allow k == false and j == 0, even if B is a releasing
transaction. Naively, this output would seem to suggest that a < B < F < a. ALA
breaks the loop by saying that B and F are not really ordered. SFS breaks the loop by
saying that a and F are not really ordered. Which of these is preferable is perhaps a
matter of taste.

It should be emphasized that private (nontransactional) use of data that are some-
times accessed by other threads is safe only when data-race-free. To be confident that
a program is correct, the programmer must identify the transactions that serve to elimi-
nate races. This may sometimes be a difficult task, but it is the inherent and unavoidable
cost of privatization, even under SLA. Once it has been paid, the extra effort required
to label acquiring and releasing transactions is essentially trivial.

4 Implementing SSS and SFS Systems

Both the doomed transaction problem and the undo log variant of the delayed cleanup
problem (footnote 2) involve abortive attempts to execute transactions. Since these
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attempts play no role in the (user-level) semantics of Section 3, we need to extend
our formalism. For discussion of implementation-level issues, we extend thread his-
tories (as in our previous work [16]) to include begin, commit, and abort operations.
None of these takes an argument. Begin and abort return no value. Commit returns
a Boolean indication of success. Each thread history is assumed to be of the form
((read | write)* begin (read | write)* (commit | abort))* (read | write)* (for simplicity,
we assume that nested transactions are subsumed into their parent). A transaction com-
prises the sequence of operations from begin through the first subsequent commit or
abort in program order. A transaction is said to succeed iff it ends with a commit that
returns true.

With this extended definition, for <g ∈ {<ss, <sss, <sfs}, a read r is permitted to
return the value written by a write w iff they access the same location l and (1) w
does not belong to an unsuccessful transaction, and r and w are incomparable under
both <p and <g; (2) w does not belong to an unsuccessful transaction, w <p r or
w <g r, and there is no intervening write of l between w and r; or (3) w and r belong
to the same transaction, w <p r, and there is no intervening write of l between w and
r. A memory access b intervenes between a and c if a <p b <p c or a <g b <g

c and (a) b and c belong to the same transaction, or (b) neither a nor b belongs to
an unsuccessful transaction. These rules are roughly equivalent to those of Guerraoui
and Kapałka [6], but simplified to merge request and reply events and to assume that
histories are complete (i.e., that every transaction eventually commits or aborts), and
extended to accommodate nontransactional accesses. In particular, we maintain their
requirement that transactions appear to occur in serial order (<t), and that writes in
unsuccessful transactions are never externally visible.

We assume that every correct STM implementation suggests, for every execution,
a (partial or total) natural order <n on transactions that is consistent with some <t

that (together with <p) can explain the execution’s reads. For the implementation to
ensure SSS semantics, it must provide publication and privatization safety only around
selected releasing and acquiring transactions, respectively. To ensure SFS semantics,
it must provide the same privatization safety, but need only provide publication safety
beyond selected flow-ordered transactions.

4.1 Preventing the Doomed Transaction Problem

If transactions D and A conflict, and A commits, STM runtimes typically do not
immediately interrupt D’s execution. Instead, D is responsible for detecting the con-
flict, rolling itself back, and restarting. This may occur as early as D’s next trans-
actional read or write, or as late as D’s commit point. Until the conflict is detected,
D is said to execute in a “doomed” state. If A privatizes a region accessed by D,
subsequent writes to that region may race with concurrent transactional accesses
by D.

The doomed transaction problem occurs when an STM implementation admits an
execution containing a failed transaction D, a nontransactional write w, an acquiring
transaction A <p w, and a natural transaction order <n such that any <t consistent
with <n, when combined with <p, induces a global (SS, SSS, SFS) order <g that
fails to explain a value read in D—specifically, when there are dependences that force
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D <t A, but there exists a read r ∈ D that returns the value written by w, despite the
fact that D <g A <g w.

In managed code, it appears possible to use run-time sandboxing to contain any erro-
neous behavior in doomed transactions [12,7]. For unmanaged code, or as an alternative
for managed environments, we present three mechanisms to avoid the inconsistencies
that give rise to the problem in the first place.

Quiescence. A transactional fence [19] blocks the caller until all active transactions
have committed or aborted and cleaned up. This means that a fence f participates in
the natural order <n on transactions and in program order <p for its thread. Since
D <t A <t f <p w, and f waits for D to clean up, we are guaranteed that the
implementation respects D <g w.

Polling. Polling for the presence of privatizers can tell a transaction when it needs to
check to see if it is doomed. This mechanism requires every privatizing transaction to
atomically increment a global counter (e.g., with a fetch-and-increment [fai] instruc-
tion) that is polled by every transaction, on every read of shared data. When a transaction
reads a new value of the counter, it validates its read set and, if doomed, aborts before
it can see an inconsistency caused by a private write. Pseudocode for this mechanism
appears in Figure 5.

TxBegin(desc)
...
desc->priv_cache = priv_count

Acquire()
fai(&priv_count)

TxRead(&addr, &val, desc)
... // read value consistently
t = priv_count
if (t != desc->priv_cache)

validate()
desc->priv_cache = t

Fig. 5. Polling to detect doomed transactions

Like a transactional fence, the increment c of priv count participates in <n. Sup-
pose D contains a read r that sees (incorrectly) a value written by w, with D <t A <t

c <p w. Since c increments priv count and D reads priv count as part of every
TxRead, D must abort before completing r, a contradiction.

Timestamp Polling. In a timestamp-based STM like TL2 [4], every writer increments a
global timestamp. If all transactions are writers (and hence all update the global times-
tamp), polling this timestamp prevents the doomed transaction problem, using the same
argument as above. When a read-only transaction A may privatize (privatization by
antidependence), it does so by reading a value written by a previous non-privatizing
transaction. Thus it suffices to observe that while A may not increment the global times-
tamp, A is ordered after some other transaction W (W <n A) that committed a write
in order for A’s privatization to succeed. If D is doomed because of the privatization
(and still active), it must read a value written by W . W ’s increment of the global times-
tamp is sufficient to force a polling-based abort in D prior to any use of an inconsistent
value.
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4.2 Preventing the Delayed Cleanup Problem

The delayed cleanup problem occurs when an STM implementation admits an execu-
tion containing a successful transaction D whose cleanup is delayed,3 a nontransac-
tional read r, an acquiring transaction A <p r, and a natural transaction order <n such
that any <t consistent with <n, when combined with <p, induces a global (SS, SSS,
SFS) order <g that fails to explain the value read by r—specifically, when there are
dependences that force D <t A, but r returns the value from some write w despite an
intervening write w′ ∈ D to the same location. We propose two mechanisms to avoid
this problem.

Quiescence. As before, let A be immediately followed by a transactional fence f , and
let D commit before A. Since D <t A <t f <p r, and f waits for D to clean up, we
are guaranteed that the implementation respects D <g r.

Optimized Commit Linearization. Menon et al. [12] describe a commit linearization
mechanism in which all transactions must increment global counters at transaction
begin and while committing. Unfortunately, forcing read-only transactions to modify
shared data has a serious performance cost. To avoid this cost, we propose an alterna-
tive implementation of commit linearization in Figure 6. The implementation is inspired
by the classic ticket lock: writer transactions increment the global timestamp, clean up,
and then increment a second cleanups counter in order. Readers read the timestamp
and then wait for cleanups to catch up.

TxBegin(desc)
...
start = timestamp
while (cleanups < start)

yield()

TxCommit(desc) // not read only
acquire_locks()
my_timestamp = fai(timestamp)
if (validate())

// copy values to shared memory
else

must_restart = true
release_locks()
while (cleanups != (my_timestamp - 1))

yield()
cleanups = my_timestamp

Fig. 6. An implementation of commit linearization in which read-only transactions do not update
shared metadata

We argue that this mechanism is privatization safe with respect to (even non-se-
lective) strict serializability. If writer D precedes writer A in natural order but has
yet to clean up, then D will not yet have updated the cleanups counter, and A’s
TxCommit operation will wait for it. Any subsequent read in A’s thread can be guar-
anteed that D has completed.

Suppose that reader A privatizes by antidependence. If D increments the global
timestamp before A begins, A must wait in TxBegin for D to clean up, avoiding

3 In redo log-based STMs, cleanup entails replaying speculative writes and releasing ownership
of locations. As noted in footnote 2, undo log-based STMs have an analogous problem, which
we ignore here.



Ordering-Based Semantics for Software Transactional Memory 287

the problem. If D is still active when A begins, there must exist some other writer W
(W <n A) that committed a write in order for A’s privatization to succeed. Clearly
D �= W , or else D’s write of the location in the antidependence would have forced A to
abort. Moreover, since the program is data-race-free, D <n W . For D to still be active
when A begins we must have W still active when A begins, a contradiction, since W
writes a location that A reads, and A does not abort.

Commit Fence. Our commit fence mechanism combines the best features of the trans-
actional fence and commit linearization. As in the transactional fence, there is no single
global variable that is accessed by all committing writer transactions. As in commit lin-
earization, only committing transactions can cause a privatizer to delay. Pseudocode for
the mechanism appears in Figure 7.

TxCommit(desc) // not read only
commit_fence[my_slot]++
acquire_locks()
my_timestamp = fai(timestamp)
if (validate())
// copy values to shared memory

else
must_restart = true

release_locks()
commit_fence[my_slot]++

Acquire()
num = commit_fence.size
for (i = 0 .. num)

local[i] = commit_fence[i]
for (i = 0 .. num)

if (local[i].is_odd())
while (commit_fence[i] == local[i])

yield();

Fig. 7. The commit fence

The commit fence ensures that any transaction sets an indicator before acquiring
locks, and unsets the indicator after releasing locks. At its acquire fence, a privatizing
transaction samples all transactions’ indicators, and waits until it observes every indi-
cator in an unset state. This commit fence c provides privatization safety as above: if D
accesses data privatized by A, and if D <t A, then D must update the commit fence
before A completes its commit sequence. Since A <p c, and c observes D’s in-flight
modifications, c will not return until D completes, and thus D <g c.

Unlike the full transactional fence, this mechanism does not prevent the doomed
transaction problem. Like the transactional fence, it can cause an acquirer A to wait
on a committing, nonconflicting transaction B even when A <t B. However, as in
commit linearization, A will block only for committing transactions, never for in-flight
transactions.

4.3 Preventing Publication Errors

Under SSS, publication safety can be expressed as the condition that if w <p R <t T ,
where R ∈ R, then w <sss T , even if T reads the location written by w. We propose
two release implementations that guarantee this condition.

Quiescence. Placing a transactional fence between a nontransactional access and a
subsequent publishing transaction prevents the publication problem. Suppose w <p R,
where w is a nontransactional write of location l and R ∈ R. The publication problem
manifests when some transaction T prefetches l before w writes it, but R <n T . If T
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begins before w, a fence between w and R forces T to complete before R begins, so
R �<n T .

Polling. Polling may also be used, as shown in Figure 8, to prevent the publication
problem. Instead of having a publisher wait for all active transactions to complete, each
active transaction T checks at each read (and at TxCommit) to see whether a release
operation e has occurred since T began execution. If e <p R <n T and T is successful,
we are guaranteed that T was not active at the time e occurred, and T could not have
prefetched any published datum.

TxBegin(desc)
...
desc->pub_cache = pub_count

TxRead(&addr, &val, desc)
... // read value consistently
if (pub_count != desc->pub_cache)

abort()

TxCommit(desc)
... // acquire locks, validate
if (pub_count != desc->pub_cache)

abort()
...

Release()
fai(&pub_count)

Fig. 8. Polling to detect publication

4.4 Preventing Flow Publication Errors

Flow-serializable publication safety requires only that if w <p R <f T , where R ∈
R, then w <sfs T . That is, the existence of R need not cause T to abort unless T
reads something R wrote. Menon et al. use timestamps to achieve ALA semantics.
Their timestamps, however, are not TL2 timestamps, as they are assigned at begin time,
even for read-only transactions. We briefly argue that TL2 timestamps [4] provide SFS
(Figure 9).

TxStart(desc)
...
desc->start = timestamp;

TxCommit(desc)
... // acquire locks
endtime = get_timestamp();
if (validate())

// copy values to shared memory
foreach (lock in writeset)

lock.releaseAtVersion(endtime)
...

...

TxRead(addr* addr, addr* val, desc)
// addr not in write set
orec o = get_orec(addr);
if (o.locked ||

o.timestamp > desc->start)
abort()

... // read value
if (o != get_orec(addr))

abort()
... // log orec, return value

Fig. 9. TL2-style timestamps

Let us assume (due perhaps to compiler reordering) that T races with R to prefetch
l. This indicates that T could not start after R, and thus T.start ≤ R.start.
If it also holds that R <f T , then when R acquires timestamp t at commit time,
t > R.start ≥ T.start. R subsequently writes t into all lock words that it holds. If
R <f T , T must read some location written by R. During T ’s call to TxRead for l, the
test of the timestamp will cause T to abort, restart, and re-read l after R. Alternately, if
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T reads the lock covering l before R commits, then either T <t R, or T will abort at
its next validation. In either case, T cannot be ordered both before w and after R.

We note that TL2 timestamps reduce the scalability of non-publishing, non-priva-
tizing transactions when compared to the extendable timestamps of Riegel et al. [15].
They also enforce more ordering than the timestamps of Menon et al. [12], which do
not abort a transaction T that reads a value written by a publisher who started (but did
not commit) before T began. Finally, TL2-style timestamps preclude partial rollback
for closed nested transactions: If B reads a value that C writes, and B is nested within
A, then the requirement for B to order after C necessitates that A order after C as well.
Even if all accesses prior to B in A do not conflict with C, A must restart to acquire a
start time compatible with ordering after C.

5 Evaluation

In this section, we evaluate the role that selective semantics can play in reducing trans-
action latency without compromising correctness. We use targeted microbenchmarks to
approximate three common idioms for privatization and publication. All experiments
were conducted on an 8-core (32-thread), 1.0 GHz Sun T1000 (Niagara) chip multipro-
cessor running Solaris 10. All benchmarks were written in C++ and compiled with g++
version 4.1.1 using –O3 optimizations. Data points are the average of five trials.

5.1 STM Runtime Configuration

We use a word-based STM with 1 million ownership records, commit-time locking, and
buffered updates. Our STM uses timestamps to avoid validation overhead, and unless
otherwise noted, the timestamps employ a extendable time base scheme [15] to safely
allow nonconflicting transactions to ignore some timestamp-based aborts. From this
STM, we derive 10 runtimes:

– SLA. Uses the start and commit linearization of Menon et al. [12], and polls the
global timestamp on reads to avoid the doomed transaction problem.

– SSS-FF. Uses transactional fences before publishing transactions and after priva-
tizing transactions.

– SSS-FL. Uses our commit linearization for privatization, polls the global timestamp
to avoid the doomed transaction problem, and uses transactional fences before pub-
lishing transactions.

– SSS-PF. Uses polling for publication safety, and transactional fences for privatiza-
tion.

– SSS-PL. Uses polling for publication safety, commit linearization for privatization,
and polling to avoid the doomed transaction problem.

– SSS-PC. Uses polling for publication safety, commit fences for privatization, and
polling to avoid the doomed transaction problem.

– SSS-FC. Uses commit fences for privatization, polls the global timestamp to avoid
the doomed transaction problem, and uses transactional fences before publishing
transactions.
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(a) Nontransactional phase of a phased privati-
zation workload, modeled as a low contention
red-black tree.
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(b) Worklist privatization, using transactional
producers and a single private consumer.

Fig. 10. Privatization microbenchmarks

– ALA. Uses TL2-style timestamps for publication safety, and commit linearization
with polling of the timestamp for privatization.

– SFS-TL. Identical to ALA, but maintains a privatization counter, separate from the
timestamp, to avoid the doomed transaction problem.

– SFS-TF. Uses TL2-style timestamps for publication safety, and transactional fences
for privatization.

5.2 Phased Privatization

In some applications, program structure, such as barriers and thread join points, ensures
that all threads agree that a datum is public or private [17]. Since these phase boundaries
are ordered globally, and with respect to <t, no additional instrumentation is required
for correctness on acquiring and releasing transactions. However, as in applications with
no privatization or publication, ALA or SLA semantics cause ordering latency for all
transactions.

We model the transactional phase of a phased workload with a low-contention red-
black tree (Figure 10(a)). Threads use 20-bit keys and perform 80% lookups, 10% in-
serts, and 10% removes. We ensure steady state by pre-populating the tree to 50% full.

Since SLA serializes all transactions, it consistently underperforms the other runtimes.
Similarly, ALA and other mechanisms that use commit linearization fail to scale as well
as mechanisms that do not impose additional ordering on all writers at commit time. How-
ever, the SSS-FL, SSS-PL, and SFS-TL curves show that our optimized mechanism for
commit linearization, which does not force read-only transactions to increment a global
shared counter, achieves better throughput when writing transactions are rare.4

4 Higher writer ratios show the same separation, with less difference between commit lineariza-
tion and SLA.
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Our test platform clearly matters: the Niagara’s single shared L2 provides low-
latency write misses for the variables used to provide commit linearization, prevent-
ing additional slowdown as the lines holding the commit and cleanup counters bounce
between cores. At the same time, the Niagara’s single-issue cores cannot mask over-
heads due to polling for publication safety. Thus SSS-FF and SFS-TF perform best.
Since commit fences require polling to prevent the doomed transaction problem, SSS-
FC performs worse than SSS-FF.

5.3 Worklist Privatization

The privatization problem was first discovered in worklist-based applications, where
transactions cooperatively create a task and enqueue it into a nontransactional worklist.
When the task is removed from the worklist, the data comprising the task are logically
private. Abstractly, these workloads publish by sharing a reference to previously private
data, and privatize by removing all shared references to a datum. In the absence of value
speculation, these applications admit the privatization problem, but not the publication
problem.

To evaluate selective semantics for worklists, we use a producer/consumer bench-
mark, in which multiple threads cooperatively produce tasks, and then pass the tasks to
a consumer thread. We model tasks as red-black trees holding approximately 32 6-bit
values, and build tasks using an equal mix of insert, remove, and lookup operations on
initially empty trees. Once a tree is found to hold a distinguished value, it is privatized
and sent to a nontransactional consumer thread. For the experiment in Figure 10(b), the
consumer is fast enough that even 32 producers cannot oversaturate it.

Mechanisms that impose excessive ordering (SLA and ALA) or use commit lin-
earization (SSS-FL, SSS-PL, and SFS-TL) perform worst. Furthermore, since trans-
actions are small, and since privatizing a task does not prevent other producers from
constructing a new task, the overhead of a transactional fence (SSS-FF and SSS-PF)
at privatization time is as low as the commit fence (SSS-PC and SSS-FC). TL2-style
timestamps (ALA, SFS-TL, and SFS-TF) decrease scalability. Again, due to the archi-
tecture of the Niagara CPU, polling for publication (SSS-PF, SSS-PL, and SSS-PC) or
doomed transaction safety (SLA, SSS-FL, SSS-PL, SSS-PC, SSS-FC, ALA, and SFS-
TL) increases latency slightly.

5.4 Indirect Publication

When the value of a shared variable determines whether another location is safe for
private access, both the publication and privatization problems can arise. This program-
ming idiom is analogous to locking: the period of private use corresponds to a critical
section. We explore it with extensible hashing.

In Figure 11, transactions perform 8 puts into a set of 256 hash tables, where each table
uses per-bucket sorted linked lists. If transaction T encounters a bucket containing more
than 4 elements, it sets a local flag. After committing, T privatizes and then rehashes
any flagged hash tables, doubling the bucket count (initially 8). In order to maintain a
steady rate of privatization, if a table’s bucket count reaches 213, the table is privatized
and passed to a worker thread W. W replaces the table with an empty 8-bucket table.
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Fig. 11. Indirect publication, modeled as extensible hashing with 256 tables. With time on the y
axis, lower values are better.

Scalability is low, because privatization for rehashing essentially locks the hash ta-
bles. Even with 256 tables, the duration of rehashing is significantly longer than the
duration of several 8-put transactions, and thus even at two threads, when one thread
privatizes a table for rehashing, the other thread is likely to block while attempting to
access that table.

The different mechanisms vary only when there is preemption (at 32 worker threads,
since there is an additional thread for performing table destruction). At this point, all
privatization mechanisms risk waiting for a preempted transaction to resume. The effect
is worst for the transactional fence (SSS-FF, SSS-PF, SFS-TF), since it must wait for all
active transactions. Our commit linearization (SSS-FL, SSS-PL, ALA, SFS-TL) fares
much better, since threads only wait for previously committed writers, who necessarily
are at the very end of their execution. SLA linearization lies somewhere in between.
Unlike transactional fences (which also avoid the doomed transaction problem), its use
of a global timestamp avoids waiting for logically “later” transactions that are still in
progress, but unlike commit linearization, it also must wait on “earlier” transactions
that have not reached their commit point. The commit fence (SSS-PC, SSS-FC) per-
forms slightly worse than SLA, indicating that waiting on “later” transactions is more
expensive than waiting for “earlier” transactions.

The low latency of fence-based publication appears to be an artifact of the indirect
publication idiom. At a fence, the releasing transaction waits for all concurrent trans-
actions to commit or abort and clean up. Since some hash tables are effectively locked,
most concurrent threads will execute “restart” transactions to spin-wait for the tables to
become public. In our lazy STM, such transactions do not hold locks and can rapidly
restart, preventing delays at the publication fence.

6 Conclusions

In this paper we argued that TM semantics should be specified in terms of permissi-
ble memory access orderings, rather than by recourse to locks. In our specification,
traditional strict serializability (SS) takes the place of single lock atomicity (SLA). To
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reduce the cost of publication and privatization, we proposed selective strict serializ-
ability (SSS), which enforces a global order between transactional and nontransactional
accesses of a given thread only when transactions are marked as acquiring or releasing.
We also proposed a weaker selective flow serializability (SFS), that enforces release
ordering only with respect to transactions that read a location written by the releasing
transaction. We described several possible implementations of both SSS and SFS, with
informal correctness arguments.

Preliminary experiments suggest several performance-related conclusions: (1) By
imposing the cost of publication and privatization only when they actually occur, selec-
tive ordering of nontransactional accesses can offer significant performance advantages.
(2) Given selectivity, there seems to be no compelling argument to relax the serial or-
dering of transactions. Moreover we suspect that requiring annotations will ultimately
help the programmer and compiler to generate race-free code. (3) At the same time, the
additional relaxation of SFS (and, similarly, ALA), offers little if any additional benefit.
Since SSS is simpler to explain to novice programmers, permits true closed nesting,
and is orthogonal to the underlying STM, we currently see no reason to support more
relaxed semantics, whether they are defined in terms of prescient lock acquisition or
memory access ordering.
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Abstract. Due to the heterogenous power-saving requirement in wire-
less sensor networks, we propose the Cyclic Quorum System Pair (CQS-
Pair) which can guarantee that two asynchronous nodes adopt different
cyclic quorum systems can hear each other at least once in bounded
time intervals. To quickly assemble a CQS-Pair, we present a fast con-
struction scheme, which is based on the Multiplier Theorem and the
(N, k, M, l)-difference pair defined by us. We show that via the CQS-
Pair, two heterogenous nodes can achieve different power saving ratios
while maintaining connectivity. The performance of a CQS-Pair is ana-
lyzed in terms of average delay and quorum ratio.

1 Introduction

Wireless sensor networks have recently received increased attention for a broad
array of applications such as surveillance, environment monitoring, medical diag-
nostics, and industrial control. As wireless sensor nodes usually rely on portable
power sources such as batteries to provide the necessary power, their power
management has become a crucial issue. It has been observed that idle energy
plays an important role for saving energy in wireless sensor networks [3]. Most
existing radios (i.e., CC2420) used in wireless sensor networks support different
modes, like transmit/receive mode, idle mode, and sleep mode. In idle mode, the
radio is not communicating but the radio circuitry is still turned on, resulting
in energy consumption which is only slightly less than that in the transmitting
or receiving states.

In order to save idle energy, it is necessary to introduce a wakeup mechanism
for sensor nodes in the presence of pending transmission. The major objective of
the wakeup mechanism is to maintain network connectivity while reducing the
idle state energy consumption. Existing wakeup mechanisms fall into three cat-
egories: on-demand wakeup, scheduled rendezvous, and asynchronous wakeup.

In on-demand wakeup mechanisms [7], out-band signaling is used to wake
sleeping nodes in an on-demand manner. For example, with the help of a paging
signal, a node listening on a page channel can be woken up. As page radios
can operate at lower power consumption, this strategy is very energy efficient.
However, it suffers from increased implementation complexity.
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In scheduled rendezvous wakeup mechanisms, low-power sleeping nodes wake
up at the same time periodically to communicate with one another. One example
is the S-MAC [12] protocol.

The third category, asynchronous wakeup [13], is also well studied. Compared
to the scheduled rendezvous wakeup mechanisms, asynchronous wakeup does
not require clock synchronization. Each node follows its own wakeup schedule
in idle state, as long as the wakeup intervals among neighbors overlap. To meet
this requirement, nodes usually have to wakeup more frequently than in the
scheduled rendezvous mechanisms. But the advantage of asynchronous wakeup is
the easiness in implementation. Furthermore, it can ensure network connectivity
even in highly dynamic networks.

The quorum-based wakeup scheduling paradigm, also called quorum-based
power saving (QPS) protocol [4,11], has recently received significant attentions
as an asynchronous wakeup solution. In a QPS protocol, the time axis on each
node is evenly divided into beacon intervals. Given an integer n, a quorum system
defines a cycle pattern, which specifies the awake/sleep scheduling pattern during
n continuous beacon intervals for each node. We call n the cycle length, since
the pattern repeats every n beacon intervals. A node may stay awake or sleep
during each beacon interval. QPS protocols can guarantee that at least one awake
interval overlaps between two adjacent nodes with only O(

√
n) beacon intervals

being awake in each node. Most previous work only consider homogenous quorum
systems for asynchronous wakeup scheduling, which means that quorum systems
for all nodes have the same cycle length.

However, it is often desirable that heterogenous nodes (i.e, clusterheads and
members) have heterogenous quorum-based wakeup schedule (or different cycle
lengths). We denote two quorums from different quorum systems as heterogenous
quorums in this paper. If two adjacent nodes adopt heterogenous quorums as
their wakeup schedules, they have different cycle lengths and different wakeup
patterns. The problem is how to guarantee that the two nodes can discover each
other within bounded delay in the presence of clock drift.

In this paper, we present the Cyclic Quorum System Pair (CQS-Pair) which
contains a pair of quorum systems suitable for heterogenous quorum-based
wakeup schedule. The mechanism of CQS-Pair can guarantee that two adjacent
nodes adopt heterogenous quorums from such a pair as their wakeup schedule,
can hear each other at least once within one super cycle length (i.e., the larger
cycle length in the CQS-Pair). With the help of the CQS-Pair, wireless sensor
networks can achieve better trade-off between energy consumption and average
delay. For example, all cluster-heads and gateway nodes can pick up a quorum
from the quorum system with smaller cycle length as their wake up schedule, to
get smaller discovery delay. In addition, all members in a cluster can choose a
quorum from the system with longer cycle length as their wakeup schedules, in
order to save more idle energy.

Our contribution. We present the Cyclic Quorum system Pair (CQS-Pair)
which can be applied as a solution for the problem of heterogeneous quorum-
based wakeup scheduling (h-QPS, defined in Section 2.4) in wireless sensor
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networks, and propose a fast constructing scheme via the Multiplier Theorem
and (N, k, M, l)-difference pair defined by us. The CQS-Pair is an optimal design
in terms of energy saving ratios given a pair of cycle lengths (n and m, n ≤ m).
The fast constructing scheme can greatly improve the speed of finding an opti-
mal quorum comparing with previous exhaustive methods. We also analyze the
performance of CQS-Pair in aspects of expected delay (n−1

2 < E(delay) < m−1
2 ),

quorum ratio, energy saving ratio, and practical issues on how to support multi-
cast/broadcast. This is the first solution to heterogenous quorum-based wakeup
scheduling as we are not aware of any other existed similar solutions.

Paper Structure. The rest of the paper is organized as follows: In Section 2,
we outline some basic preliminaries for quorum-based power-saving protocols.
The detailed design and construction scheme of Cyclic Quorum System Pair is
discussed in Section 3. We analyze the performance of the CQS-Pair in Section 4.
Related work is presented in Section 5. We conclude in Section 6.

2 Preliminaries

2.1 Network Model and Assumptions

We represent a multi-hop wireless sensor network by a directed graph G(V, E),
where V is the set of network nodes (|V | = N), and E is the set of edges. If
node vj is within the transmission range of node vi, then an edge (vi, vj) is in
E. We assume bidirectional links. The major objective of quorum-based wakeup
scheduling is to maintain network connectivity regardless of clock drift. Here we
use the term “connectivity” loosely, in the sense that a topologically connected
network in our context may not be connected at any time; instead, all the nodes
are reachable from a node within a finite amount of time.

We also make the following assumptions when applying quorum-based system
for asynchronouswakeup mechanism: 1) All time intervals/slots have equal length,
being 1 in this paper for convenient presentation; 2)In the beginning of a beacon
interval, beacon messages will be sent out so that nodes can hear each other; and
3) The overhead of turning on and shutting down radio is negligibly small.

The length of one time interval depends on application-specific requirements.
For a radio compliant with IEEE 802.15.4, the bandwidth is approximately
128kb/s and a typical packet size is 512KB. Given this, the slot length (beacon in-
terval) is ≤ 50ms. The second assumption, also adopted by previous work [13] [4],
is for the convenience of theoretical analysis.

2.2 Quorum-Based Power-Saving Protocols (QPS)

We use the following definitions for quorum system. Given a cycle length n, let
U = {0, · · · , n − 1} be an universal set.

Definition 1. A quorum system Q under U is a collection of non-empty subsets
of U , each called a quorum, which satisfies the intersection property: ∀G, H ∈
Q : G ∩ H �= ∅.
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Fig. 1. Cyclic Quorum System (left) and Grid Quorum System (right)

Definition 2. Given an integer i ≥ 0 and quorum G in a quorum system Q
under U , we define G + i = {(x + i) mod n : x ∈ G}.

Definition 3. A quorum system Q under U is said to have the rotation closure
property if ∀G, H ∈ Q, i ∈ {0, 1, ...n− 1}: G ∩ (H + i) �= ∅.

There are two widely used quorum systems, grid quorum system and cyclic
quorum system, that satisfy the rotation closure property.

Grid-Quorum System [6]. In a grid quorum system shown in Figure 1, el-
ements are arranged as a

√
n × √

n array (square). A quorum can be any set
containing a column and a row of elements in the array. The quorum size in a
square grid quorum system is 2

√
n− 1. An alternative is a “triangle” grid-based

quorum in which all elements are organized in a “triangle” fashion. The quorum
size in “triangle” quorum system is approximately

√
2
√

n.

Cyclic Quorum System [6]. A cyclic quorum system is based on the ideas
of cyclic block design and cyclic difference sets in combinatorial theory [8]. The
solution set can be strictly symmetric for arbitrary n. For example, {1, 2, 4} is a
quorum from the cyclic quorum system with cycle length= 7. Figure 1 illustrates
three quorums from a cyclic quorum system with cycle length 7.

Previous work [4] defined the QPS (quorum-based power-saving) problem as
follows: Given an universal set U = {0, 1, ...n− 1} (n > 2) and a quorum system
Q over U , two nodes picks up any quorum from Q as their wakeup schedule
must have at least one overlap in every n consecutive time slots.

Theorem 1. Q is a solution to the QPS problem if Q is a quorum system
satisfying the rotation closure property.

Theorem 2. Both grid-quorum systems and cyclic quorum systems satisfy the
rotation closure property and can be applied for QPS in wireless sensor networks.

Proofs of Theorems 1 and 2 can be found in [4].

2.3 Neighbor Discovery under Partial Overlap

Since sensor nodes are subject to clock drift, we cannot assume that time slots
are exactly aligned to their boundaries. In most case, two nodes only have par-
tial overlap in a certain time interval. It has been proven that two nodes with
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the quorum-based wakeup schedule can discover each other even under partial
overlap.

Theorem 3. If two quorums ensure a minimum of one overlapping slot, then
with the help of a beacon message at the beginning of each slot, two neighboring
nodes can hear each others’ beacons with at least once.

Theorem 3’s proof is presented in [13]. This theorem ensures that two neighboring
nodes can always discover each other within bounded time if all beacon messages
are transmitted successfully. This property also holds true even in the case that
two originally disconnected subsets of nodes join together as long as they use
the same quorum system.

2.4 Heterogeneous Quorum-Based Power Saving (h-QPS)

We introduce h-QPS (heterogeneous Quorum-Based Power saving) problem in
this section. In sensor networks, it is often desirable that different nodes wakeup
in heterogeneous quorum-based schedules. First, many wireless sensor networks
have heterogeneous entities, like cluster-heads, gateways, relay nodes, dominat-
ing set [1]. They have different requirements regarding average neighbor discov-
ery delay and energy saving ratio. Regarding cyclic quorum systems, generally,
cluster-heads should wakeup based on a quorum system with small cycle length,
and member nodes with longer cycle length. Second, wireless sensor networks
that are used in applications such as environment monitoring typically have
seasonally-varying power saving requirements. For example, a sensor network
for wild fire monitoring may require a larger energy saving ratio during win-
ter seasons. Thus, they often desire variable cycle-length wakeups in different
seasons.

Considering the two heterogeneous quorum systems X over {0, 1, · · · , n − 1}
and Y over {0, 1, · · · , m− 1} (n ≤ m), we define the h-QPS problem as follows:
design a pair (X ,Y) in order to guarantee that:
1. two nodes picking up two quorums G ∈ X and H ∈ Y as their wakeup

schedules respectively can hear each other at least once within every m
consecutive slots; and

2. X and Y are solutions to QPS individually.
A solution to the h-QPS problem is important to keep connectivity when we

want to dynamically change the quorum systems between all nodes. Suppose all
nodes in a network initially wakeup via a larger cycle length. When there is a
need to reduce the cycle length (i.e., to meet a delay requirement or vary with
changing seasons), the sink node can send a request to the whole network grad-
ually through some relay nodes. The connectivity between a relay node and the
remaining nodes will be lost if the relay node first changes its wakeup scheduling
to a new quorum schedule which cannot overlap with original schedules of the
remaining nodes.

Although grid-quorum systems and cyclic-quorum systems can be applied as
a solution for QPS problem, it is not necessary meaning that they can be a
solution to the h-QPS problem. We will show this in Section 3.
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3 Cyclic Quorum System Pair

In this section, we present the CQS-Pair which is based on the cyclic block design
and cyclic difference sets in combinatorial theory [8]. CQS-Pair can be applied
as a solution to the h-QPS problem.

3.1 Heterogeneous Rotation Closure Property

First, we define some concepts to facilitate our presentation. Some definitions
are extended from those in [6]. We will also use definitions from [8] to denote Zn

as an finite field of order n and (Zn, +) as an Abelian Group.

Definition 4. Let A be a set in (Zn, +). For any g ∈ Zn, we define A + g =
{(x + g) mod n : x ∈ A}.

Definition 5. (Cyclic set) Let X be a set in (Zn, +). The set C(X, Zn) is called
a cyclic set (or cyclic group) of X if C(X, Zn) = {X + i|∀i ∈ Zn}.

Definition 6. (p-extension) Given two positive integers n and p, suppose U =
{0, 1, · · · , n−1} and let Up = {0, · · · , p∗n−1}. For a set A = {ai|1 ≤ i ≤ k, ai ∈
U}, A’s p-extension is defined as Ap = {ai+j∗n|1 ≤ i ≤ k, 0 ≤ j ≤ p−1, ai ∈ U}
over Up. For a cyclic quorum system Q={A, A + 1, · · · , A + n − 1} over U , Q’s
p-extension is defined as Qp={Ap, (A + 1)p, · · · , (A + n − 1)p} over Up.

For example, if A = {1, 2, 4} in (Z7, +), A3 = {1, 2, 4, 8, 9, 11, 15, 16, 18} in
(Z21, +). If a quorum system Q = {{1, 2, 4}, {2, 3, 5}, {3, 4, 6}}, we have Q2 =
{{1, 2, 4, 8, 9, 11}, {2, 3, 5, 9, 10, 12}, {3, 4, 6, 10, 11, 13}}.

Definition 7. (Heterogeneous rotation closure property) Given two positive in-
tegers N and M where N ≤ M and p = �M

N  , consider two quorum systems X
over the universal set {0, · · ·N − 1} and Y over the universal set {0, · · ·M − 1}.
Let the quorum system X ’s p-extension be denoted as X p. The pair (X ,Y) is
said to satisfy the heterogeneous rotation closure property if :
1. ∀G ∈ X p, H ∈ Y,i ∈ {0, · · ·M − 1}: G ∩ (H + i) �= ∅, and
2. X and Y satisfy the rotation closure property, respectively.

Consider two sets A = {1, 2, 4} in (Z7, +) and B = {1, 2, 4, 10} in (Z13, +). If
two cyclic quorum systems QA = C(A, Z7) and QB = C(B, Z13), then QA

2 =
C({1, 2, 4, 8, 9, 11}, Z14). We can verify that any two quorums from QA

2 and
QB must have non-empty intersection. Thus, the pair (QA,QB) satisfies the
heterogeneous rotation closure property.

Lemma 1. If two quorum systems X and Y satisfy the heterogeneous rotation
closure property, then the pair (X ,Y) is a solution to the h-QPS problem.

Proof. According to the Definition 7, if two quorum systems X and Y satisfy the
heterogeneous rotation closure property, a quorum G from X and a quorum H
from Y must overlap at once within the larger cycle length of X and Y. So two
nodes can hear each other if they pick up G and H as wakeup schedule based
on the Theorem 3. It indicates that (X ,Y) is a solution to the h-QPS problem.
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Lemma 2. Let Grid Quorum System-Pair be defined as a pair consisting of
two grid quorum systems. Then Grid Quorum System-Pair satisfies the hetero-
geneous rotation closure property and can be a solution to the h-QPS problem.

Proof. It has been proven in [4] that the grid quorum system satisfies the rotation
closure property. Thus, we only need to prove that for two grid quorum systems
X over {0, · · · , n − 1} and Y over {0, · · · , m − 1} (n ≤ m, p = �m

n  ), ∀Gp ∈
X p, H ∈ Y, i ∈ {0, · · ·M − 1}, there is Gp ∩ (H + i) �= ∅ or (G + i)p ∩ H �= ∅.
Consider a quorum G from X which contains all elements on the column c,
namely c,c+

√
n,· · · ,c+

√
n(

√
n−1), where 0 ≤ c <

√
n. Then, a quorum (G+i)p

from the p− extension of X contains elements which has the largest distance of√
n between any two consecutive elements. It must have an intersection with H

since H contains a full row which has
√

m (≥ √
n) consecutive integers. Thus,

Grid Quorum System-Pair satisfies the heterogeneous rotation closure property
and can be a solution to the h-QPS problem.

3.2 (N, k, M, l)-Difference Pair

Definition 8. (N, k, λ)- difference set. A set D : {a1, ..., ak}( mod N), ai ∈
[0, N − 1], is called a (N, k, λ)- difference set if for every d �= 0 , there are
EXACTLY λ ordered pair (ai, aj), ai, aj ∈ D such that ai − aj ≡ d (modN).

Definition 9. Relaxed (N, k)- difference set. A set D : {a1, ..., ak}( mod N),
ai ∈ [0, N − 1], is called a relaxed (N, k)- difference set if for every d �= 0 , there
exists at least one ordered pair (ai, aj), ai, aj ∈ D such that ai−aj ≡ d (modN).

The definition 8 and 9 were originally introduced in [6]. For example, the set
{0, 1, 2, 4, 5, 8, 10} modulo 15 is a (15, 7, 3)-difference set. The set {0, 1, 2, 4}
modulo 8 is a relaxed (8,4)-difference set. In the following, we will introduce
two new definitions related with the CQS-Pair.

Definition 10. (N, k, M, l)-difference pair. Suppose N ≤ M and p = �M
N  .

Consider two sets A : {a1, · · ·ak} in (ZN , +) and B : {b1, · · · bl} in (ZM , +).
The pair (A, B) is called a (N, k, M, l)-difference pair if ∀d ∈ {0, · · · , M − 1},
there exists at least one ordered pair bi ∈ B and ap

j ∈ Ap such that bi − ap
j ≡

d (mod M).

Consider an example where N = 7 and M = 13. Let A = {1, 2, 4} and B =
{1, 3, 6, 7} be two subsets in (Z7, +) and (Z13, +), respectively. Then (A, B) is a
(7, 3, 13, 4)-difference pair, since for A2 and B,

1 ≡ 3 − 2 2 ≡ 6 − 4 3 ≡ 1 − 11 4 ≡ 6 − 2 5 ≡ 6 − 1
6 ≡ 7 − 1 7 ≡ 3 − 9 8 ≡ 6 − 11 9 ≡ 7 − 11 10 ≡ 1 − 4
11 ≡ 6 − 8 12 ≡ 1 − 2 13 ≡ 1 − 1

(mod 13)

Definition 11. (Heterogeneous cyclic coterie pair) Given two groups of
sets X = {A, A + 1, · · · , A + N − 1} over {0, · · · , N − 1} and Y = {B, B +
1, · · · , B + M − 1} over {0, · · · , M − 1}, suppose N ≤ M and p = �M

N  . We call
(X ,Y) heterogeneous cyclic coterie pair if: ∀(A + i)p ⊆ X p and (B + j) ⊆ Y,
(A + i)p ∩ (B + j) �= ∅.
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Theorem 4. Suppose A={a1, · · · , ak} in (ZN , +) and Ai=A+ i; B={b1, · · · , bk}
in (ZM , +) and Bi = B + j, where N ≤ M . Given two groups of sets X = {Ai|0 ≤
i ≤ N − 1} and Y = {Bj|0 ≤ j ≤ M − 1}, the pair (X ,Y) is a heterogeneous
cyclic coterie pair if and only if (A, B) is a (N, k, M, l)-difference pair.

Proof. Sufficient Condition. Without loss of generality, we assume that j > i
regarding two sets Bi and Ap

j , where p = �M
N  . Consider the rth element of Bi

and sth element of Ap
j , denoted by bi,r and ap

j,s, respectively. We will show that
bi,r = ap

j,s. Let the rth element of B be br and sth element of Ap be ap
s .

Then bi,r − ap
j,s = (br − ap

s + i − j) mod M . According to the definition of
(N, k, M, l)-difference pair, there must be some r and s such that br − ap

s ≡
j − i (mod M). Therefore, we can always choose a pair of r and s such that
bi,r − ap

j,s ≡ 0 (mod M). It implies that Bj ∩ AP
i �= ∅.

Necessary Condition. We prove the condition by contradiction. Assume that
Bj ∩ AP

i �= ∅ but (A, B) is not a (N, k, M, l)-difference pair. Then there exists a
number ∈ {0, · · · , M − 1}, say t, in which bi − ap

j �= t (mod M), ∀i, j.
Consider the rth element of Bt and the sth element of Ap. We have bt,r −ap

s ≡
br − ap

s + t (mod M). Since Bt ∩ AP
i �= ∅, bt,r − ap

s = 0 for some r and s. This
implies that br − ap

s ≡ t (mod M) for some r and s, which contradicts with
derivation of bi − ap

j �= t (mod M) ∀i, j from the assumption.

If two groups of sets X and Y can form a heterogeneous cyclic coterie pair, they
have at least one intersection within the larger cycle length. But the pair does
not guarantee that any two sets from the same group, X or Y, also have an
intersection.

3.3 Definition and Verification of Cyclic Quorum System Pair

Definition 12. Cyclic Quorum System Pair (CQS-Pair). Given two quo-
rum sets X = {A, A + 1, · · · , A + N − 1} over {0, · · · , N − 1} and Y = {B, B +
1, · · · , B + M − 1} over {0, · · · , M − 1}, suppose N ≤ M . We call (X ,Y) CQS-
Pair if
1. (X ,Y) is a heterogeneous cyclic coterie pair; and
2. X and Y are cyclic quorum systems, respectively.

Theorem 5. Given two groups of sets X = {A, A + 1, · · · , A + N − 1} and
Y = {B, B + 1, · · · , B + M − 1}, where A = {a1, · · · , ak} in (ZN , +) and B =
{b1, · · · , bl} in (ZM , +) (N ≤ M), the pair (X ,Y) is a CQS-Pair if and only if
1. (A, B) is a (N, k, M, l)-difference pair; and
2. A is a relaxed (N, k)-difference set and B is a relaxed (M, l)-difference set.

Proof. If (A, B) is a (N, k, M, l)-difference pair, we have that (X ,Y) is a het-
erogenous cyclic coterie pair. And if A and B are relaxed difference sets (defined
in section 3.2) respectively, X and Y are cyclic quorum systems respectively.
Similarly, we can prove that the converse is also true.

Corollary 1. Given a cyclic quorum system X , (X ,X ) is a CQS-Pair.
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Theorem 6. Cyclic Quorum System Pair (CQS-Pair) is a solution to the h-
QPS problem.

Proof. According to the definition of CQS-Pair, it satisfies the heterogeneous
rotation closure property. So the CQS-Pair can be a solution to the h-QPS
problem according to Lemma 1.

Consider an example where A = {1, 2, 4} and X = C(A, Z7), B = {7, 9, 14, 15,
18} and Y = C(B, Z21). The pair (X ,Y) is a CQS-Pair. But if A = {3, 5, 6} and
B = {7, 9, 14, 15, 18}, the pair (X ,Y) is NOT a CQS-Pair, although X and Y
are cyclic quorum systems, respectively.

If A = {1, 2, 4} and X = C(A, Z7), B = {1, 2, 4} in (Z14, +) and Y =
C(B, Z14), (A, B) is a (7, 3, 14, 3)-difference pair. But (X ,Y) is NOT a CQS-
Pair since B is not a relaxed difference set in (Z14, +) and Y is not a cyclic
quorum system.

3.4 Constructing Scheme for Cyclic Quorum System Pair

In previous work, exhaustive search has been used to find an optimal solution
for cyclic quorum design [6]. This is not practical when cycle length (n) is large.
In this section, we first present a fast construction scheme for cyclic quorum
systems and then apply it to the design of CQS-Pair. First, we define a few
concepts.

Definition 13. Automorphism. Suppose (X,A) is a design. A transform
function α is an automorphism of (X,A) if

[{α(x) : x ∈ A} : A ∈ A] = A

Definition 14. Disjoint cycle representation: The disjoint cycle represen-
tation on a set X is a group of disjointing cycles in which each cycle has the
form (x α(x) α(α(x)) · · · ) for some x ∈ X.

Suppose the automorphism is x +→ 2x mod 7. The disjoint cycle representation
of Z7 is as follows: (0) (1 2 4) (3 6 5).

Definition 15. Let D be a (v, k, λ)-difference set in (Zv, +). For an integer m,
let mD = {mx : x ∈ D}. Then m is called a multiplier of D if mD = D + g for
some g ∈ Zv. Also, we say that D is fixed by the multiplier m if mD = D.

Theorem 7. (Multiplier Theorem). Suppose there exists a (v, k, λ)-difference
set D. Suppose also that the following four conditions are satisfied:
1. p is prime;
2. gcd(p, v) = 1;
3. k − λ ≡ 0 (mod p); and
4. p > λ.

Then p is a multiplier of D.
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The proof of Theorem 7 is given in [8]. According to the Theorem of Singer
Difference Set, there exists a (q2 + q +1, q+1, 1)-difference set when q is a prime
power. So the Multiplier Theorem does not guarantee the existence of a (v, k, λ)-
difference sets for any integer v. We only consider the (q2 +q+1, q+1, 1)-design,
where q is a prime power, in our construction scheme.

We first give an example to illustrate the application of the Multiplier Theo-
rem for the construction of difference sets.

Example. We use the Multiplier Theorem to find a (21, 5, 1)-difference set.
Observe that p = 2 satisfies the conditions of Theorem 7. Hence 2 is a multiplier
of any such difference set. Therefore, the automorphism is α(x) +→ 2x mod 21.
Thus, we get the disjoint cycle representation of the permutation defined by α(x)
of Z21 as follows:

(0) (1 2 4 8 16 11) (3 6 12) (5 10 20 19 17 13) (7 14) (9 18 15)

The difference set we are looking for must consist of a union of cycles in the list
above. Since the difference set has size five, it must be the union of one cycle of
length two and one cycle of length three. There are two possible ways to do this,
both of which happen to produce the difference set:

(3 6 7 12 14) and (7 9 14 15 18)

With the Multiplier Theorem, we can quickly construct (q2 + q + 1, q + 1, 1)-
difference sets, where q is a prime power. The mechanism can significantly im-
prove the speed of finding the optimal solution relative to the exhaustive method
in [6]. After obtaining the difference sets, we use Theorem 5 to build a CQS-pair.

To check the non-empty intersection property of two heterogeneous difference
sets A = {a1, a2, · · · , ak} in (ZN , +) and B = {b1, b2, · · · , bl} in (ZM , +) where
N ≤ M and p = �M

N  , let’s define a pk × l matrix Ml×pk whose element mi,j

is equal to (bi − a
′

j) mod M where a
′

j ∈ Ap. We can check whether (A, B) is a
(N, k, M, l)-difference pair by checking if Ml×pk contains all elements from 0 to
M − 1. We call Ml×pk a verification matrix.

Since we only consider (q2 + q + 1, q + 1, 1)-design, we describe our algorithm
for constructing a CQS-Pair as follows:

Step 1: Given two input integers n, m(n ≤ m), find out two prime
power q and r which satisfy n = q2 + q + 1 and m = r2 + r + 1. Set
k ← q + 1 and l ← r + 1.

Step 2: Obtain the Multiplier pa for (n, k, 1)-difference set, and pb for
(m, l, 1)-difference set; then set automorphisms αn(x)←pa·x (mod n)
and αm(x) ← pb · x (mod m);

Step 3: Construct the disjoint cycle presentation for Zn with αn(x),
and the disjoint cycle presentation for Zm with αm(x), respectively;

Step 4: Suppose there are u unions of disjoint cycle being (n, k, 1)-
difference set, and v unions of disjoint cycle being (m, l, 1)-difference
set. Construct the verification matrices for all u × v pairs of cyclic
quorum systems (X ,Y).
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Step 5: For all u× v verification matrices, check whether it contains all
elements from 1 to m. If true, (X ,Y) is a CQS-Pair, otherwise, it is
not a CQS-Pair.

By employing our constructing algorithm, for two different integer n and m
satisfying n = q2 + q + 1 and m = r2 + r + 1 (q and r being two prime powers,
n ≤ m), it will take O(n2) and O(m2) time for them to build the disjoint
cycle representation respectively. After that, Step 5 in the algorithm will check
u×v× l×pk ≈ uvm3/2n−1/2 elements since l ≈ √

m and k ≈ √
n, where u and v

are numbers of (n, k, 1)-difference sets and (m, l, 1)-difference sets, respectively.
So the total time complexity is O(uvm3/2n−1/2 + m2) for constructing a CQS-
Pair with input parameters n and m (n ≤ m).

3.5 A Complete Application Example

As an example, consider n = 7, m = 21. By Multiplier Theorem, we can easily
obtain two (7, 3, 1)-difference sets being {1, 2, 4} and {3, 6, 5} in (Z7, +). Simi-
larly, there are two (21, 5, 1)-difference sets, {3, 6, 7, 12, 14} and {7, 9, 14, 15, 18}
in (Z21, +). Let A7 = {1, 2, 4}, B7 = {3, 6, 5}, A21 = {3, 6, 7, 12, 14}, and
B21 = {7, 9, 14, 15, 18}.

Totally, there are four pairs of (7, 3, 1)-difference sets and (21, 5, 1)-difference
sets. First, we check the pair (C(A7, Z7), C(A21, Z21)). The constructed verifica-
tion matrix is as follows. ⎡⎢⎢⎢⎢⎣

2 1 20 16 15 13 9 8 6
5 4 2 19 18 16 12 11 9
6 5 3 20 19 17 13 12 10
11 10 8 4 3 1 18 17 15
13 12 10 6 5 3 20 19 17

⎤⎥⎥⎥⎥⎦
We find that 7 and 14 are not in the matrix. So the pair (C(A7, Z7), C(A21, Z21))
is NOT a CQS-Pair. Similarly, we can check that (C(B7, Z7), C(B21, Z21)) is
NOT a CQS-Pair. But (C(A7, Z7),
C(B21, Z21)) and (C(B7, Z7), C(A21, Z21)) are a CQS-Pair, respectively.

The CQS-Pair can be applied to sensor networks for dynamically changing the
quorum system (i.e., the cycle length) in each node, in order to meet the end-
to-end delay constraint without losing connectivity. Table 1 shows the available
pairs for cycle lengths ≤ 21.

4 Performance Analysis

4.1 Average Delay

We denote the average delay as the time between data arrival and discovery of
the adjacent receiver (two nodes wake-up simultaneously). Note that this metric
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Table 1. CQS-Pair (for n, m ≤ 21)

cycle length

7 13 21
A7 = {1, 2, 4} A13 = {0, 1, 3, 9} A21 = {3, 6, 7, 12, 14}
B7 = {3, 5, 6} B13 = {0, 2, 6, 5} B21 = {7, 9, 14, 15, 18}

C13 = {0, 4, 12, 10}
D13 = {0, 7, 8, 11}

7

(C(A7, Z7), C(A7, Z7)) (C(A7, Z7), C(A13, Z13)) (C(A7, Z7), C(B21, Z21))
(C(B7, Z7), C(B7, Z7)) (C(A7, Z7), C(B13, Z13)) (C(B7, Z7), C(A21, Z21))

(C(B7, Z7), C(C14, Z13))
(C(B7, Z7), C(D14, Z13))

13

(C(A13, Z13), C(A13, Z13)) (C(B13, Z13), C(A21, Z21))
(C(B13, Z13), C(B13, Z13))
(C(C13, Z13), C(C13, Z13))
(C(D13, Z13), C(D13, Z13))

does not include the time for delivering a message. And suppose the length of
one time slot being 1.

Theorem 8. The average delay between two nodes wakeup based on quorums
from the same Cyclic Quorum System adopting the (n, k, 1)-difference set is
E(Delay) = n−1

2 .

Proof. Let the k elements in (n, k, 1)-difference set be denoted as a1, a2, · · · , ak.
If a node has a message arrived during the ith time slot, the expected delay (from
data arrival to two nodes wake-up simultaneously) is 1

k (a1 − i) mod n + 1
k (a2 −

i) mod n + · · · + 1
k (ak − i) mod n. If a message has arrived, the probability of

the message arriving at the ith time slot is 1
n . Thus, the expected delay (average

delay) is:

E(Delay) =
1
n

[
1
k

(a1 − 1) mod n +
1
k

(a2 − 1) mod n + · · · + 1
k
(ak − 1) mod n

+
1
k

(a1 − 2) mod n +
1
k

(a2 − 2) mod n + · · · + 1
k
(ak − 2) mod n

+ · · · · · ·

+
1
k

(a1 − n)mod n+
1
k
(a2 − n)mod n+· · · + 1

k
(ak − n) mod n]

=
1

nk
· (k · 1 + k · 2 + · · · + k · n − 1) =

n − 1
2

Corollary 2. The average delay between two nodes wakeup based on a CQS-
Pair in which two cyclic quorum systems have cycle length n and m (n ≤ m)
respectively, is:

n − 1
2

< E(Delay) <
m − 1

2
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Corollary 2 indicates that the average delay between two nodes adopting CQS-
Pair is bounded. When the average one-hop delay constraint is D, we must meet
m−1

2 ≤ D.

4.2 Quorum Ratio and Energy Conservation

We define quorum ratio (φ) as the proportion of the beacon intervals that is
required to be awake in each cycle. If the wakeup schedule in a node is a cyclic
quorum system which is based on a (n, k, 1)-difference set, its quorum ratio is
k
n . It has been proved that a (q2 + q + 1, q + 1, 1)-difference set exists and is an
optimal design for a given quorum size q + 1 [13]. The optimal quorum ratio is
φ = q+1

q2+q+1 for such a cyclic quorum system.
For a CQS-Pair, the quorum ratios for systems in the pair which are based on

(N, k, M, l)-difference pair are φ1 =
√

4N−3−1
2N and φ2 =

√
4M−3−1

2M respectively,
when we only consider (q2 + q + 1, q + 1, 1)-design in the CQS-Pair constructing
scheme.

Note that a
√

n ×
√

n grid quorum system also satisfies the heterogeneous
rotation closure property and can be applied as a solution to the h-QPS problem.
The quorum ratio is φ = 2

√
n−1
n for a grid quorum system.

The energy conservation ratio is correlated with the quorum ratio. If the
quorum ratio is φ, the energy conservation ratio for a node is 1 − φ.

4.3 Multicast/Broadcast Support

The quorum-based asynchronous wakeup protocols cannot guarantee that more
than one receiver is awake when the transmitter requests to transmit a multi-
cast/broadcast message.

There are multiple ways to support multicast/broadcast. One method is to
adopt relatively prime frequencies among all nodes for wakeup scheduling. This
method does not need synchronization between the transmitter and all receivers.
The transmitter only needs to notify m receivers to wake up via the pairwise
relative primes p1, p2,..., pm, respectively. Then each receiver generates its new
wakeup frequency based on the received frequency. Through Chinese Remainder
Theorem, it can be proven that the m receivers must wakeup simultaneously
at the Ith beacon interval (0 ≤ I ≤ p1 × p2... × pm). The transmitter can then
transmit a multicast/broadcast message at this interval.

Another way to multicast/broadcast is by using synchronization over quorum-
based wakeup schedule. The transmitter can book-keep all neighbors’ schedules,
and synchronize their schedules so that neighboring nodes wake up in the same
set of slots with the use of Lamport’s clock synchronization algorithm [5]. When
all nodes are awake simultaneously, the transmitters then send a message to
multiple neighbors simultaneously.

The first mechanism has the advantage that no synchronization is needed be-
tween transmitter and multiple receivers. But it cannot bound the average delay.
The second approach can bound the average delay but it needs bookkeeping and
synchronization over asynchronous wakeup schedules.
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5 Past and Related Work

As mentioned in the Section 1, there are three categories of wakeup mechanism
for wireless sensor networks. We summarize them and overview past and related
work in asynchronous wakeup scheduling.

On-Demand Wakeup. The implementation of on-demand wakeup schemes typ-
ically requires two different channels: a data channel and a wakeup channel for
awaking nodes when needed. This allows for not deferring the transmission of sig-
nal on the wakeup channel if a packet transmission is in progress on the other chan-
nel, thus reducing the wakeup latency. The drawback is the additional cost for the
second radio. STEM (Sparse Topology and Energy Management) [7] uses two dif-
ferent radios for wakeup signals and data packet transmissions, respectively. The
key idea is that a node remains awake until it has not received any message des-
tined for it for a certain time. STEM uses separate control and data channels, and
hence the contention among control and data messages is alleviated. The energy
efficiency of STEM is dependent on that of the control channel.

Scheduled Rendezvous Schemes. These schemes require that all neighboring
nodes wake up at the same time. Different scheduled rendezvous protocols differ
in the way network nodes sleep and wakeup during their lifetime. The simplest
way is using a Fully Synchronized Pattern, like S-MAC [12]. In this case, all
nodes in the network wakeup at the same time according to a periodic pattern.
A further improvement can be achieved by allowing nodes to switch off their radio
when no activity is detected for at least a timeout value, like that in T-MAC [2].
The disadvantages are the complexity and overhead for synchronization.

Asynchronous wakeup. This was first introduced in [11] with reference to
IEEE 802.11 ad hoc networks. The authors proposed three different
asynchronous sleep/wakeup schemes that require some modifications to the basic
IEEE 802.11 Power Saving Mode (PSM). More recently, Zheng et al. [13] took
a systematic approach to design asynchronous wakeup mechanisms for ad hoc
networks (applicable for wireless sensor networks as well). They formulate the
problem of generating wakeup schedules as a block design problem and derive
theoretical bounds under different communication models. The basic idea is that
each node is associated with a Wakeup Schedule Function (WSF) that is used to
generate a wakeup schedule. For two neighboring nodes to communicate, their
wakeup schedules have to overlap regardless of the difference in their clocks.

For the quorum-based asynchronous wakeup design, Luk and Wong [6] de-
signed a cyclic quorum system using difference sets. But they do exhaustive
search to obtain a solution for each cycle length N , which is impractical when
N is large.

Asymmetric quorum design. In the clustered environment of sensor
networks, it is not always necessary to guarantee all-pair neighbor discovery.
The Asymmetric Cyclic Quorum (ACQ) system [10] was proposed to guarantee
neighbor discovery between each member node and the clusterhead, and between
clusterheads in a network. The authors also presented a construction scheme
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which assembles the ACQ system in O(1) time to avoid exhaustive searching.
ACQ is a generalization of the cyclic quorum system. The scheme is configurable
for different networks to achieve different distribution of energy consumption be-
tween member nodes and the clusterhead.

However, it remains a challenging issue to efficiently design an asymmetric
quorum system given an arbitrary value of n. One previous study [13] shows that
the problem of finding an optimal asymmetric block design can be reduced to the
minimum vertex cover problem, which is NP-complete. However, the ACQ [10]
construction is not optimal in that the quorum ratio for symmetric-quorum is

φ = �n+1
2  and the quorum ratio for asymmetric-quorum is φ

′
= �
√

n+1
2  . The

another drawback is that it cannot be a solution to the h-QPS problem since
the two asymmetric-quorums cannot guarantee the intersection property.

Transport layer approach. Wang et al. [9] applied quorum based wakeup
schedule at the transport layer which can cooperate with any MAC layer pro-
tocol, allowing for the reuse of well-understood MAC protocols. The proposed
technique saves idle energy by relaxing the requirement for end-to-end connec-
tivity during data transmission and allowing the network to be disconnected
intermittently via scheduled sleeping. The limitation of this work is that each
node adopts same grid quorum systems as wakeup scheduling and the quorum
ratio is not optimal comparing with that of cyclic quorum systems.

6 Conclusions

This paper presents a theoretical approach for heterogeneous asynchronous
wakeup scheduling in wireless sensor networks. We defined the h-QPS problem—
i.e., given two cycle lengths n and m (n < m), how to design a pair of het-
erogeneous quorum systems to guarantee that two adjacent nodes picking up
heterogenous quorums from the pair as their wakeup schedule can hear each
other at least once in every m consecutive time slots. We defined the Cyclic
Quorum System Pair (CQS-Pair) which can be applied as a solution to h-QPS
problem. We also presented a fast construction scheme to assemble a CQS-Pair.
In our construction scheme, we first quickly construct (n, k, 1)-difference set and
(m, l, 1)-difference set. Based two difference sets A in (Zn, +) and B in (Zm, +),
we can construct a CQS-Pair (C(A, Zn), C(B, Zm)) when A and B can form a
(n, k, m, l)-difference pair.

The performance of a CQS-Pair was analyzed in terms of average delay, quo-
rum ratio, and issues for supporting multicast/broadcast. We show that the
average delay between two node wakeup via heterogenous quorums from a CQS-
Pair is bounded between n−1

2 and m−1
2 , and the quorum ratios of the two quorum

systems in the pair are optimal respectively given their cycle lengthes n and m.
There are several directions for future work. One direction is to find a scheme

to check the existence of a CQS-Pair for any given n and m. Another example is
to extend the CQS-Pair to CQS m-pair in which m cyclic quorum systems have
the heterogenous rotation closure property with one another.
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Abstract. We consider asynchronous deterministic broadcasting in ra-
dio networks. An execution of a broadcasting protocol is a series of events,
each of which consists of simultaneous transmitting or delivering of mes-
sages. The aim is to transmit the source message to all nodes of the net-
work. If two messages are delivered simultaneously to a node, a collision
occurs and this node does not hear anything. An asynchronous adver-
sary may delay message deliveries, so as to create unwanted collisions
and interfere with message dissemination. The total number of message
transmissions executed by a protocol in the worst case is called the work
of the protocol, and is used as the measure of its complexity. The aim
of this paper is to study how various types of information available to
nodes influence the optimal work of an asynchronous broadcasting pro-
tocol. This information may concern past events possibly affecting the
behavior of nodes (adaptive vs. oblivious protocols), or may concern the
topology of the network or some of its parameters. We show that decreas-
ing the knowledge available to nodes may cause exponential increase of
work of an asynchronous broadcasting protocol, and in some cases may
even make broadcasting impossible.

1 Introduction

1.1 Radio Networks and Asynchronous Adversaries

A radio network consists of stations with transmitting and receiving capabilili-
ties. The network is modeled as a directed graph with a distinguished node called
the source. Each node has a distinct identity (label) which is a positive integer.
If there is a directed edge from u to v, node v is called an out-neighbor of u and
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u is called an in-neighbor of v. At some time t a node may send a message to
all of its out-neighbors. It is assumed that this message is delivered to all the
out-neighbors simultaneously at some time t′ > t decided by an adversary that
models unpredictable asynchronous behavior of the network. The only constraint
(cf. [1,2]) is that the adversary cannot collapse messages coming from the same
node, i.e., two distinct messages sent by the same node have to be delivered at
different times. We consider two types of asynchronous adversaries. The strong
adversary, called the node adversary in [1], may choose an arbitrary delay t′ − t
between sending and delivery, possibly different for every message. The weak
adversary chooses an arbitrary delay for a given node (possibly different delays
for different nodes), but must use this delay for all messages sent by this node
during the protocol execution. The motivation for both adversaries is similar
and follows the one given in [1]. Nodes of a radio network execute a communi-
cation protocol while concurrently performing other computation tasks. When
a message arrives at a node, it is stored (prepared for transmission) and sub-
sequently transmitted by it, the (unknown) delay between these actions being
decided by the adversary; storing for transmission corresponds to sending and
actual transmission corresponds to simultaneous delivery to all out-neighbors (at
short distances between nodes the travel time of the message is negligible). The
delay between storing and transmitting (in our terminology, between sending
and delivery) depends on how busy the node is with other concurrently per-
formed tasks. The strong adversary models the situation when the task load of
nodes may vary during the execution of a broadcast protocol, and thus delay
may vary from message to message even for the same node. The weak adversary
models the assumption of a constant occupation load of each node during the
communication process: some nodes may be more busy than others but the delay
for a given node is constant.

At time t′, a message is heard, i.e., received successfully by a node, if and
only if, a message from exactly one of its in-neighbors is delivered at this time.
If messages from two in-neighbors v and v′ of u are delivered simultaneously at
time t′, we say that a collision occurs at u. Similarly as in most of the literature
concerning algorithmic aspects of radio communication, we assume that in this
case u does not hear anything at time t′, i.e., we assume that a node cannot
distinguish collision from silence.

While in general the network is modeled as an arbitrary directed graph, we
also consider two natural smaller classes of networks. The first is modeled by
symmetric directed graphs, or equivalently by undirected graphs. The second,
still smaller class of networks is modeled by unit disk graphs (UDG) whose nodes
are the stations. These nodes are represented as points in the plane. In the case
of UDG networks, each node knows its Euclidean coordinates in the plane. These
coordinates also play the role of the label (similarly as, e.g., in [3,4], nodes in
UDG networks are not equipped with integer identities). Two nodes are joined
by an (undirected) edge if their Euclidean distance is at most 1. Such nodes are
called neighbors. It is assumed that transmitters of all stations have equal power
which enables them to transmit at Euclidean distance 1, and that communication
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proceeds in a flat terrain without large obstacles. Hence the existence of an edge
between two nodes indicates that transmissions of one of them can reach the
other, i.e., these nodes can communicate directly. By contrast, arbitrary directed
graphs are an appropriate model for radio networks deployed in a terrain with
large obstacles and possibly varying power of transmitting devices.

1.2 Centralized vs. Ad Hoc Broadcasting

We consider broadcasting, which is one of the basic communication primitives.
In the beginning, one distinguished node, called the source, has a message which
has to be transmitted to all other nodes. Remote nodes get the source message
via intermediate nodes, along paths in the network. We assume that only sta-
tions that have already received the source message can send messages, hence
broadcasting is equivalent to a process of waking up the network, when at the
beginning only the source is awake. In order for the broadcasting to be feasible,
we assume that there is a directed path from the source to any other node. For
symmetric networks this is equivalent to connectivity. In this paper we consider
only deterministic broadcasting algorithms.

Two alternative assumptions are made in the literature concerning broadcast-
ing algorithms. It is either assumed that the topology of the underlying graph is
known to all nodes, in which case nodes can simulate the behavior of a central
monitor scheduling transmissions (centralized broadcasting), or it is assumed that
the network topology is unknown to nodes (ad hoc broadcasting). Moreover, in
the latter case, some crucial parameters of the network, such as the number n of
nodes, may be known or unknown to nodes. In the case of UDG radio networks,
an important parameter is the density d of the network, i.e., the smallest Eu-
clidean distance between any two stations. We will see how information about
the topology of the network and knowledge of its parameters influence the effi-
ciency of broadcasting protocols. In particular, for UDG networks, optimal work
of broadcasting protocols may depend on the granularity g of the network defined
as the inverse of its density.

1.3 Adaptive vs. Oblivious Protocols

We consider two kinds of broadcasting protocols: oblivious and adaptive. In an
oblivious protocol every node has to send all its messages as soon as it is woken
up by the source message. More precisely, a node has to commit to a non-negative
integer representing the number of messages it will send during the broadcasting
process, prior to the execution of the protocol. This number may depend only on
the label of the node or on its position in the case of UDG networks. (In [1] only
oblivious protocols were considered.) By contrast, an adaptive protocol is more
powerful, as a node can decide on the number and content of messages it sends,
depending on its history, i.e., depending on the sequence of messages received
so far. Hence, while the total number of messages sent by an oblivious protocol
is the same for each of its executions, for an adaptive protocol this number may
differ depending on the behavior of the adversary.
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We define the work of a broadcasting protocol as the worst-case total number
of messages sent until all nodes are informed. The worst case is taken over all
possible behaviors of an asynchronous adversary under consideration. Work is a
natural measure of complexity of an asynchronous radio broadcast protocol. It
was introduced in [1] for oblivious protocols. We will see that in some cases the
rigidity of oblivious protocols may cause exponential increase of their work as
compared to adaptive ones.

1.4 Our Results

In the first part of the paper (Sections 3-5) we present our results on optimal
work of asynchronous broadcasting against the strong adversary (i.e., the node
adversary from [1]), see Table 1.

For UDG networks with known topology we get a tight result: the optimal work
is Θ(τ), where τ is the number of blocks containing at least one node. (Blocks form
a partition of the plane into disjoint squares of side 1/

√
2 – see Sect.3 for a precise

definition.) The result holds both for adaptive and for oblivious algorithms. Our
upper bound is constructive: we show an oblivious broadcasting algorithm with
work O(τ). For UDG networks with unknown topology the results significantly
change and they depend on whether (a lower bound on) the density d of the net-
work is known or not. If it is known, then optimal work depends on the number τ of
occupied blocks and on the granularity g = 1/d. We show an oblivious broadcast-
ing algorithm with work O(ταg2

), for some constant α > 1. On the other hand,
we show that any broadcasting algorithm, even adaptive, must use work Ω(τβg2

),
for some constant β > 1. If d is unknown, we show that broadcasting against the
strong adversary is impossible in UDG networks.

We now summarize our results for networks modeled by graphs that need not
come from configurations of points in the plane. (For such networks we assume
that all nodes have distinct positive integer labels and each node knows its la-
bel.) Symmetric radio networks with known topology are those in which optimal
work of asynchronous broadcasting significantly depends on the adaptivity of
the algorithm. Indeed, we prove that for adaptive algorithms the optimal work
is Θ(n), where n is the number of nodes in the network. The upper bound is
again constructive: we show an adaptive broadcasting algorithm with work O(n)
working for any n-node symmetric network of known topology. By contrast, us-
ing techniques from [1], it can be proved that any oblivious algorithm uses work
Ω(cn), for some constant c > 1, on some symmetric n-node network, and that
there exists an oblivious algorithm working for any symmetric n-node network of
known topology, using work O(2n). Hence we prove an exponential gap between
optimal work required by adaptive and by oblivious broadcasting in symmetric
networks of known topology. It should be noted that for arbitrary (not neces-
sarily symmetric) networks, broadcasting with linear or even polynomial work
is not always possible, even for adaptive algorithms. Indeed, it follows from [1]
that exponential work (in the number n of nodes) is needed for some networks,
even when the topology is known and the algorithm is adaptive. It is also shown
in [1] that, for radio networks of known topology, work O(2n) is always enough.



Impact of Information on the Complexity 315

Table 1. Optimal work of broadcasting against the strong asynchronous adversary. τ
is the number of non-empty tiles, n is the number of nodes, N is the maximal label
and g is the granularity of the UDG network (g = 1/d); c, α and β are constants.

UDG networks Symmetric Networks Arbitrary Networks
adaptive: Θ(n) adaptive or oblivious [1]:

known adaptive or oblivious: oblivious [1]: O(2n)
topology Θ(τ ) O(2n) Ω(cn), for some c > 1

Ω(cn), for some c > 1
known density d

adaptive or oblivious:
unknown O(ταg2), for some α > 1 adaptive or oblivious:
topology Ω(τβg2

), for some β > 1 known or unknown N :
unknown density d Θ(2N )

adaptive or oblivious:
impossible

For networks of unknown topology we have a tight result on optimal work of
asynchronous broadcasting. This work is Θ(2N ), where N is the maximal label of
a node, and this result does not depend on whether the networks are symmetric
or not, whether the algorithm is adaptive or not, and whether the maximal label
N is known to nodes or not. More precisely, we show a lower bound Ω(2N ) on
the required work, even for symmetric networks with known parameter N , and
even for adaptive algorithms. On the other hand, we observe that an (oblivious)
algorithm described in [1] and working for arbitrary networks without using the
knowledge of N has work O(2N ).

In Sect.6 we present our results on optimal work of asynchronous broadcast-
ing against the weak adversary. Introducing this adversary was motivated by
the following remark in [1]: “It would be interesting to define a weaker, but
still natural, model of asynchrony in radio networks, for which polynomial-work
protocols always exist.” We show that if nodes are equipped with clocks, then
oblivious broadcasting algorithms using work O(n) for n-node networks can al-
ways be provided in the presence of the weak asynchronous adversary. This
is optimal, as witnessed by the example of the line network. Local clocks at
nodes need not be synchronized, we only assume that they tick at the same
rate. In fact, even this assumption can be removed in most cases: our algo-
rithm works even when the ratio of ticking rates between the fastest and the
slowest clock has an upper bound known to all nodes. The exception is the
case of UDG networks of unknown density (for which broadcasting against
the strong adversary was proved impossible). In this special case, our algo-
rithm against the weak adversary assumes the same ticking rate of all clocks
and relies on the availability of an object obtained non-constructively: if this
object is given to nodes, they can perform oblivious broadcasting with
work O(n).
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1.5 Related Work

Algorithmic aspects of radio communication were mostly studied under the as-
sumption that communication is synchronous and using time as a complexity
measure of the algorithms. These results can be partitioned into two subareas.
The first deals with centralized communication, in which nodes have complete
knowledge of the network topology and hence can simulate a central monitor (cf.
[5,6,7,8,9,10,11]). The second subarea assumes only limited (often local) knowl-
edge of the topology, available to nodes of the network, and studies distributed
communication in such networks with incomplete information.

The first paper to study deterministic centralized broadcasting in radio net-
works, assuming complete knowledge of the topology, was [6]. The authors also
defined the graph model of radio network subsequently used in many other pa-
pers. In [7], an O(D log2 n)-time broadcasting algorithm was proposed for all
n-node networks of diameter D. This time complexity was then improved to
O(D + log5 n) in [9], to O(D + log4 n) in [8], to O(D + log3 n) in [10], and finally
to O(D+log2 n) in [11]. The latter complexity is optimal. On the other hand, in
[5] the authors proved the existence of a family of n-node networks of constant
diameter, for which any broadcast requires time Ω(log2 n).

Investigation of deterministic distributed broadcasting in radio networks
whose nodes have only local knowledge of the topology was initiated in [12].
The authors assumed that each node knows only its own label and labels of
its neighbors. Several authors [13,14,15,16,17,18,19] studied deterministic dis-
tributed broadcasting in radio networks under an even weaker assumption that
nodes know only their own label (but not labels of their neighbors). In [14]
the authors gave a broadcasting algorithm working in time O(n) for all n-node
networks, assuming that nodes can transmit spontaneously, before getting the
source message. A matching lower bound Ω(n) on deterministic broadcasting
time was proved in [19] even for the class of networks of constant radius.

In [14,15,16,18] the model of directed graphs was used. The aim of these pa-
pers was to construct broadcasting algorithms working as fast as possible in ar-
bitrary (directed) radio networks without knowing their topology. The currently
fastest deterministic broadcasting algorithms for such networks have running
times O(n log2 D) [18] and O(n log n log log n) [20]. On the other hand, in [17]
an Ω(n log D) lower bound on broadcasting time was proved for directed n-node
networks of radius D.

Randomized broadcasting algorithms in radio networks were studied in
[12,18,21,22]. The authors do not assume that nodes know the topology of the
network or that they have distinct labels. In [12] the authors constructed a ran-
domized broadcasting algorithm running in expected time O(D log n + log2 n).
In [21] it was shown that for any randomized broadcasting algorithm and param-
eters D ≤ n, there exists an n-node network of diameter D requiring expected
time Ω(D log(n/D)) to execute this algorithm. The lower bound Ω(log2 n) from
[5], for some networks of radius 2, holds for randomized algorithms as well. A
randomized algorithm working in expected time O(D log(n/D) + log2 n), and
thus matching the above lower bounds, was presented in [22] (cf. also [18]).
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Another model of radio networks is based on geometry. Stations are repre-
sented as points in the plane and the graph modeling the network is no more
arbitrary. It may be a unit disk graph, or one of its generalizations, where radii
of disks representing areas that can be reached by the transmitter of a node
may differ from node to node [23], or reachability areas may be of shapes dif-
ferent than a disk [24,25]. Broadcasting in such geometric radio networks and
some of their variations was considered, e.g., in [23,24,3,25,26,27]. The first pa-
per to study deterministic broadcasting in arbitrary geometric radio networks
with restricted knowledge of topology was [23]. The authors used several mod-
els, also assuming a positive knowledge radius, i.e., the knowledge available to
a node, concerning other nodes inside some disk. In [3] the authors considered
broadcasting in radio networks modeled by unit disk graphs. They studied two
communication models: one called the spontaneous wake up model that allows
transmissions of nodes that have not yet gotten the source message, and the
other, called the conditional wake up model, in which only nodes that already
obtained the source message can transmit.

Asynchronous radio broadcasting was considered, e.g., in [1,2]. In [1] the au-
thors studied three asynchronous adversaries (one of which is the same as our
strong adversary), and investigated centralized oblivious broadcasting protocols
working in their presence. They concentrated on finding broadcast protocols and
verifying correctness of such protocols, as well as on providing lower bounds on
their work. In [2] attention was focused on anonymous radio networks. In such
networks not all nodes can be reached by a source message. It was proved that
no asynchronous algorithm unaware of network topology can broadcast to all
reachable nodes in all networks.

2 Terminology and Preliminaries

A set S of positive integers is dominated if, for any finite subset T of S, there
exists t ∈ T such that t is larger than the sum of all t′ �= t in T .

Lemma 1. Let S be a finite dominated set and let k be its size. Then there
exists x ∈ S such that x ≥ 2k−1.

Proof. The proof is by induction on the size k of S. If k = 1 then 20 = 1 and
the basis of induction holds.

If a set is dominated, all its subsets are dominated. By the inductive hypothesis
every subset of S of size i < k contains an element x ≥ 2i−1. It follows that
arranging elements in S in increasing order we have xi ≥ 2i−1, for 1 ≤ i ≤ k−1.
Then
∑k−1

i=1 xi ≥
∑k−1

i=1 2i−1 = 2k−1 − 1. As xk is the largest element in S and S

is dominated, we have xk ≥
∑k−1

i=1 xi > 2k−1 − 1, which proves the lemma. ��

Any oblivious broadcasting algorithm is fully determined by the number of mes-
sages sent by each node of the network. This non-negative integer is called the
send number of the node. For any execution of a broadcasting algorithm, a trans-
mitter is a node that sends at least one message in this execution. Hence, for
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an oblivious algorithm, a transmitter is a node with positive send number. The
following lemma is a consequence of Lemma 1 from [1].

Lemma 2. Consider any oblivious broadcasting algorithm A. Let u be a node
in the network. Let T be the set of transmitters in the in-neighborhood of u. If
at least one element in T is informed by A and the set of send numbers of T is
dominated, then u is eventually informed by A.

3 UDG Radio Networks

We recall the tilings of the plane defined in [3] by means of three different grids.
Each of the three grids is composed of atomic squares with generic name boxes.
The first grid is composed of boxes called tiles, of side length d/

√
2, the second

of boxes called blocks, of side length 1/
√

2, and the third one of boxes called
5-blocks, of side length 5/

√
2. All grids are aligned with the coordinate axes,

each box includes its left side without the top endpoint and its bottom side
without the right endpoint. Each grid has a box with the bottom left point with
coordinates (0, 0). Let τ be the number of non-empty blocks (i.e., blocks which
contain at least one node).

Tiles are small enough to ensure that only one node can belong to a tile.
Blocks are squares with diameter 1, i.e., the largest possible squares such that
each pair of nodes in a square are able to communicate. 5-blocks are used to
avoid collisions during communication: messages originating from central blocks
of disjoint 5-blocks cannot cause collisions.

Every 5-block contains 25 blocks, while every block contains Θ
(
g2
)

tiles.
Blocks inside a 5-block and tiles inside a block are numbered with consecutive
integers (starting from 0) left to right, top to bottom. Hence every tile is assigned
a pair of integers (i, j) where i is the block number in the 5-block and j is the
tile number in the block. (Tiles lying in more than one block are assigned more
than one such pair. This is the case when

√
2/n �= d for all n.)

We say that two (distinct) blocks are potentially reachable from each other if
they contain points at distance ≤ 1. Two blocks are reachable from each other
if they contain nodes at distance ≤ 1. There are exactly 20 blocks that are
potentially reachable from any given block.

3.1 Known Topology

The following algorithm is oblivious, as it consists in an assignment of send
numbers to nodes.

Algorithm UDG1
For any pair of blocks (B, B′) that are reachable from each other, Algorithm UDG1
elects a pair of transmitters (b, b′) s.t. b ∈ B, b′ ∈ B′, and b is at distance at most
1 from b′. Any fixed strategy (e.g., taking the smallest such pair in lexicographic
order of positions) is suitable to perform the election. Notice that at most 20
transmitters can be elected in every block.
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Each elected transmitter in a 5-block is assigned a distinct label from the
set L = {0, 1, . . . , 499}. This is done by partitioning the set L into 25 sets Li

of 20 labels each (in an arbitrary but fixed manner). Transmitters in the i-th
block of any 5-block are assigned labels from set Li. Labels in each block are
assigned to transmitters in increasing order according to lexicographic order of
their positions.

Assignment of send numbers is done as follows: each elected transmitter with
label i is assigned send number 2i. If the source has not been elected, it is
assigned send number 1. All other nodes are assigned send number 0. �

Lemma 3. Algorithm UDG1 successfully performs broadcast in any UDG radio
network of known topology, with work in O(τ).

Proof. We first prove the correctness of the algorithm. As the network is con-
nected, either τ = 1 or, for any non-empty block B, there must exist a sequence
of block pairs 〈(S, X1), (X1, X2), . . . , (Xk−1, Xk), (Xk, B)〉 such that S is the
block containing the source and blocks in each pair are reachable from each
other. If τ = 1, all nodes in the unique non-empty block will be informed as
soon as the message transmitted by the source is delivered, and algorithm UDG1
successfully completes broadcasting with work 1. If τ > 1, any non-empty block
has at least one transmitter, and thus any node has a transmitter in its neigh-
borhood. Moreover, every transmitter is connected to a transmitter located in
S by a path containing only transmitters.

Consider an arbitrary node v and its block B, and consider the 5-block that
has B in its center (this 5-block is not necessarily part of the 5-block grid).
All neighbors of v are inside this 5-block. Blocks in this 5-block are assigned
distinct numbers, and thus the set of send numbers assigned to transmitters
in the neighborhood of v is dominated. It follows from Lemma 2 that node
v will eventually receive the source message provided that at least one of the
transmitters in its neighborhood will receive it. Hence it is enough to show that
all transmitters receive the source message. This follows by induction on the
length of a shortest path, in the subgraph induced by transmitters, between a
transmitter in the block S and a transmitter in the neighborhood of v.

In order to estimate the work of the algorithm, notice that only a constant
number of nodes in each block have a positive send number, and each send
number is bounded by a constant. It follows that the total work is linear in the
number τ of non-empty blocks. ��

Lemma 4. The work required to complete broadcast in any UDG radio network
is in Ω(τ).

Proof. The proof follows from the fact that at least one node in every non empty
5-block has to transmit at least once. ��

Lemma 3 and Lemma 4 imply the following theorem.

Theorem 1. The optimal work required to complete broadcast in any UDG radio
network of known topology is Θ (τ).
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3.2 Unknown Topology

When the topology of the network is unknown, elections of transmitters cannot
be performed without message exchanges. Here the scenario is different depending
on whether (a lower bound on) the density d of the network is known or not.

The following algorithm assumes that each node is provided with the value of
d. Similarly as Algorithm UDG1 it is oblivious.

Algorithm UDG2
The algorithm is based on the tilings from [3] defined in the beginning of Sect.3,
and works in a similar manner as Algorithm UDG1. The set L of labels is now
composed of integers from the interval

[
0, . . . , 25 ·

(⌈√
2/d
⌉

+ 1
)2 − 1
]
, and it is

partitioned in 25 sets Li, each of size
(⌈√

2/d
⌉

+ 1
)2

. All nodes in the network
are transmitters, and each node in a 5-block gets a distinct label according to
the numbering of the tile and the block it belongs to. More precisely, a node in
the tile that is assigned the pair of integers (i, j) gets the label that is the jth
element of Li. Recall that there can be tiles which are partially contained in
more than one block. In any case, the only node which can be contained in the
tile belongs to only one block and thus its label is uniquely determined.

The send number of each node with label i is set to 2i. �

Proposition 1. Algorithm UDG2 successfully performs broadcast in any UDG
radio network of unknown topology and known density d with work in O

(
ταg2
)
,

for some constant α > 1.

Proof. The correctness of the algorithm follows from Lemma 2 by induction on
the length of a shortest path from the source to an arbitrary node v.

The work of the algorithm in every block is upper bounded by 2(�
√

2/d +1)2

.
As
⌈√

2/d
⌉
∈ Θ (g), the lemma follows. ��

We now turn attention to the lower bound on the work of a broadcasting
algorithm.

Theorem 2. The work required to complete broadcast in any UDG radio network
of unknown topology and known density d is in Ω

(
τβg2
)
, for some constant β > 1.

Proof. Consider the class N of networks depicted in Fig.1. The source occupies
position (0, 1.2) and the target occupies position (0, 0). Nodes in the central
part of the network are situated in an arbitrary subset of vertices of the largest
regular square grid of side length d, contained in the intersection of the circles
of radius 1 centered in the source and in the target, and of the circle of radius
1/2 centered in (0, 0.6). Notice that there are Θ

(
g2
)

vertices in the grid.
The set Q of nodes situated in the grid forms a clique, and each node in Q is

within distance 1 from the source and from the target. It follows that a network
in N is connected if and only if Q is nonempty.
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distance 1

sourceradius 1/2

distance 1

target

Fig. 1. A network of the class N used in the proof of Theorem 2

All nodes in Q become informed as soon as the first message sent by the
source is delivered. When the first message from an informed node in Q is de-
livered without colliding with any delivery from other nodes in Q, broadcasting
is completed successfully.

It follows that, until the completion of broadcasting, the only events that
are perceived by nodes in Q are determined by deliveries of messages sent by
the source. The source and the target will not receive any message until the
completion of broadcasting.

Consider an arbitrary adaptive algorithm A. A is forced to provide a send
number for the source, and it is not able to modify this number until the end
of the execution (no event is perceived by the source). The adversary delays all
deliveries of nodes in Q until all messages from the source have been delivered,
thus guaranteeing that no node in Q can perceive an event between the first
delivery of one of its messages and the end of broadcasting.

This allows us to treat A as an oblivious algorithm, which is obliged to provide
send numbers to all nodes in the network once and forever. In fact we can assume
that the algorithm assigns send numbers to vertices in the grid (a node occupying
vertex p is assigned the respective send number).

Now consider a vertex p of the grid. If algorithm A assigns send number 0 to
p, then A is unsuccessful in the network N ∈ N where the set Q contains only
the node in vertex p. It follows that all vertices in the grid have to be assigned
positive send numbers.

If the set of send numbers, assigned by A to vertices of the grid, is not dom-
inated, then there exists a set T of vertices for which the largest send number
x, corresponding to vertex p0, is at most equal to the sum of all others. The
adversary can make A unsuccessful on the network N ∈ N in which nodes
in Q occupy exactly vertices from T , by letting all deliveries collide. This can
be done as follows. The deliveries of messages from the node in vertex p0 are
done at times t1 < t2 < . . . < tx. Every other message can be delivered at one
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of those time points, so that at each time point ti at least two messages are
delivered.

This contradiction shows that the set of send numbers, assigned by A to vertices
of the grid must be dominated. As the set of vertices in the grid is of size Θ

(
g2
)

and, by Lemma 1, any dominated set on k elements contains a number ≥ 2k−1, it
follows that any algorithm working correctly on all networks in N requires work
in Ω
(
βg2
)
, for some constant β > 1. By arranging networks of class N in a chain

of length τ , we get a lower bound on work in Ω
(
τβg2
)
. ��

All results of this subsection remain valid if, instead of density d of the network,
only a lower bound d′ on d is known to nodes. In this case, in the formulae for the
upper and lower bounds on the work, the parameter g = 1/d should be replaced
by g′ = 1/d′. If nothing is known about d, however, broadcasting in UDG radio
networks turns out to be impossible, as shown in the following theorem.

Theorem 3. Broadcast in UDG radio networks of unknown topology and un-
known density is impossible.

distance 1

sourceradius 1/2

distance 1

target

S

Fig. 2. A network of the class C used in the proof of Theorem 3

Proof. Consider the class C of networks depicted in Fig.2. Networks in C are
similar to networks in class N , defined in the proof of Theorem 2. In particular,
the source and the target are located in the same positions, while the set Q of
nodes is an arbitrary finite set of points in the plane, contained in the square
S of side 1/2, centered at (0, 0.6). A network C ∈ C is connected if and only if
Q is non empty. By following the reasoning of the proof of Lemma 2, we can
show that any adaptive algorithm A can be treated as an oblivious one when
working on a network in C. Algorithm A can then be identified with a function
f : S +→ N which assigns send numbers to points in the square.
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First assume that the range of f is infinite and suppose that broadcasting
ends with work T . This leads to a contradiction, as we can always choose a
network C ∈ C with 2 nodes in Q located in two points of S that are mapped
to values larger than T . By scheduling the first T deliveries of messages sent by
these two nodes in the same time points, the adversary can delay completion of
broadcasting until the overall work of nodes in C is at least 2T + 1, while we
assumed the total work to be exactly T .

Hence the range of f must be finite. If f(z) = 0, for some point z ∈ S, then
broadcasting is unsuccessful on the network C in which Q contains only one node
located in z. It follows that all points of S have to be mapped by f into positive
integers. Then there must exist two points, x and y, such that f(x) = f(y).
If this is the case, the adversary can make the algorithm unsuccessful on the
network C where Q contains two nodes, one in the point x and the other in
the point y, by delivering messages sent by these two nodes at the same time
points. ��

4 Symmetric Networks of Known Topology

In symmetric networks of known topology we prove an exponential gap between
the work of adaptive and oblivious algorithms. Indeed, while an adaptive algo-
rithm can complete broadcasting on n-node symmetric networks with work in
O(n), an oblivious algorithm requires work in Ω (cn), for some constant c > 1
(cf. [1]).

4.1 Adaptive Broadcast

The following algorithm is adaptive. Each node decides if it sends a message,
after each perceived event.

Algorithm SYM
Knowing the topology of the network, all nodes compute the same spanning tree
T , rooted at the source. Notice that, even assuming that the source is unknown
to other nodes in the network, this information can be appended to the source
message and thus it can be made available to each node when it is woken up by
the first received message.

All internal nodes of the spanning tree T are then explored in a depth first
search manner, using token-based communication in order to avoid collisions. A
message is sent only after the previous message has been delivered. Algorithm
SYM ends when the token is sent back to the source by its last internal child. �

Lemma 5. Algorithm SYM successfully performs broadcast in any n-node sym-
metric radio network of known topology with work in O(n).

Proof. We first prove correctness of Algorithm SYM. Since any message is sent
only after the previous message has been delivered, it follows that no collision can
occur during the execution of broadcasting. As all internal nodes in T transmit
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at least once, and T is a spanning tree of the network, all nodes will eventually
receive the source message.

Since the token traverses every edge of T either 0 or 2 times, the total work
of the algorithm is smaller than 2n ∈ O(n). ��

As the optimal work to perform broadcasting on the n-node line is n − 1, we
have the following theorem.

Theorem 4. The optimal work required to complete broadcasting in any n-node
symmetric radio network of known topology is Θ(n).

4.2 Oblivious Broadcast

An oblivious algorithm, performing broadcasting in any n-node connected ra-
dio network of known topology (not necessarily symmetric) can be obtained by
arranging nodes in increasing order of labels, and assigning send number 2i−1

to the ith node. Such an algorithm can be proved to be correct by induction on
the length of a shortest path connecting the source to an arbitrary node v, using
Lemma 2. The work required to complete broadcasting by this algorithm is in
O(2n).

In [1], the following network class has been introduced in order to prove that
oblivious broadcasting algorithms against a more powerful adversary require
work in Ω (cn), for some constant c > 1.

Networks in the above mentioned class contain
(
k
3

)
+ k + 1 nodes, for integers

k > 0. Nodes are partitioned in three layers: the first layer contains the source,
the central layer contains k nodes, while the third layer contains the remaining(
k
3

)
nodes. Edges in these networks connect the source to all nodes in the second

layer, while each node in the third layer is connected to a distinct subset of 3
nodes choosen among those in the second layer. Even though edges were oriented
away from the source in [1], the same proof remains valid for oblivious algorithms
even if the network is made symmetric, and even against our strong adversary
(which was called the node adversary in [1]).

Since the upper bound O (2n) holds for arbitrary networks and the lower
bound Ω (cn) holds even for symmetric networks, we have the following theorem.

Theorem 5. The optimal work of an oblivious algorithm, which completes
broadcasting in radio networks of known topology, is in O (2n) and in Ω (cn),
for some constant c > 1, both for symmetric and for arbitrary networks.

5 Networks of Unknown Topology

For networks of unknown topology we prove matching upper and lower bounds
on the optimal work of broadcasting algorithms. The upper bound we show is
based on the oblivious algorithm described below, which works correctly on any
network (not necessarily symmetric) containing a directed path from the source
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to every node. The lower bound, on the other hand, holds even on symmetric
networks and for all algorithms, including the adaptive ones.

An oblivious algorithm performing broadcasting in any connected radio net-
work of unknown topology, is obtained by assigning to node with label i send
number 2i−1. The algorithm works in the same manner as the one for known
topology networks introduced in the previous section, but its work, instead of
depending on the number of nodes of the network, depends on the largest label
N appearing in the network. (N need not be known to nodes.) Thus the work of
this algorithm is in O

(
2N
)
. This work is proved to be optimal by the following

lemma.

Lemma 6. The work required to complete broadcasting in any symmetric radio
network of unknown topology is in Ω(2N ), where N is the largest label that
appears in the network.

Proof. To prove the lemma, consider the following class Z of networks. Networks
in the class Z contain a source, a target and a set R of nodes. Each node in R
is connected to the source s and to the target t. The source has label 1. Nodes
in R ∪ {t} are labeled with distinct integers larger than 1, and N is the largest
label appearing in R ∪ {t}. R has to be non-empty, as otherwise the network
would be disconnected.

The rest of the proof is based on the same idea as the proof of Lemma 2.
Labels larger than 1 play the role of vertices in the grid.

As soon as a node in R delivers a message to the target without collisions,
broadcasting in any network Z ∈ Z is completed. Hence, we can treat any
adaptive algorithm A as an oblivious one, when working on networks in Z. It
follows that algorithm A has to assign a send number to any integer larger than
1 (which is a potential label of a node in R).

If there exists a label 
 > 1 such that A assigns send number 0 to 
, then A
is unsuccessful on the network Z ∈ Z where the only node in R is labeled 
. It
follows that A has to assign positive send numbers to all integers larger than 1.
(Even if the maximum label N is known to A, there is no guarantee that any
particular label is assigned to a node in R, as N can be assigned to the target.) If
the set of send numbers is not dominated, the adversary can make the algorithm
A unsuccessful on the network Z ∈ Z where the (finite) set of send numbers
assigned to nodes in R does not contain an element which is larger than the sum
of all others (cf. the proof of Lemma 2).

As R∪{t} can contain up to N−1 nodes, the lemma follows from Lemma 1. ��

6 Broadcasting against the Weak Adversary

In this section we present our results on the work of asynchronous broadcasting
against the weak adversary. Recall that this adversary may delay delivery of
messages sent by various nodes by arbitrary and unknown time intervals that
may vary between nodes, but are equal for all messages sent by a given node. In
this section we assume that nodes are equipped with local clocks. These clocks
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need not be synchronized. In one algorithm, working for UDG networks with
unknown density, we assume that they tick at the same rate, and in the other,
working for UDG networks with known (lower bound on) the density and also
working for arbitrary networks with distinct positive integer labels, we weaken
even this assumption and require only that all nodes know an upper bound on
the ratio of ticking rates between the fastest and the slowest clock.

The idea of broadcasting algorithms working against the weak adversary comes
from the observation that since delivery delay must be the same for all messages
sent by a given node, if a node sends two messages at some time interval t, this
interval may only be shifted by the adversary when delivering messages, but its
length must be kept intact. Thus, using exponential intervals between just two
messages sent by every node (where the exponent depends on the node label),
blocking of messages can be prevented similarly as sending an exponential num-
ber of messages permitted preventing blocking by the strong adversary. (This is
a similar work-for-time trade-off as, e.g., that in the Time-Slicing algorithm for
leader election on the ring.) Due to the above possibility we can restrict the num-
ber of messages sent by every node to just 2, and thus use linear work.

We first describe an oblivious broadcasting algorithm working for networks of
unknown topology whose nodes are labeled with distinct positive integers. In this
algorithm we make a very weak assumption: not only clocks of nodes need not
be synchronized, but they need not tick at the same rate, as long as the upper
bound α on the ratio of ticking rates between the fastest and the slowest clock
is known to all nodes. Without loss of generality we may assume that α ≥ 2.

Algorithm Time-Intervals
The source sends the message once. Upon receiving the source message, any node
with label i, different from the source, sends two messages at time interval 4iα

on its local clock. �

Theorem 6. Algorithm Time-Intervals successfully performs broadcast in an
arbitrary n-node network, with work in O(n).

Proof. Since any node sends at most two messages, the work used is in O(n). It
remains to prove the correctness of the algorithm.

Fix the slowest ticking rate among all local clocks and call it universal. In
the rest of the proof we will use only the universal ticking rate. Since α is the
ratio of ticking rates between the fastest and the slowest clock, the (universal)
time interval used by node with label i is Ti = 4iα

β , where 1 ≤ β ≤ α. Fix a
node u and its in-neighbors v1, . . . , vk that got the source message. Without loss
of generality, assume that nodes vi are ordered in increasing order of interval
lengths Ti. The delivery times of messages sent by nodes vi are xi, xi + Ti, for
i = 1, . . . , k. In order to prove that at least one of these messages will be heard
by node u, it is enough to show that Tk > T1 + · · · + Tk−1. Hence it is enough
to show that

4kα

α
> 4α + 42α + · · · + 4(k−1)α. (1)
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We have α1/α < 3, hence

4k

α1/α
>

4
3
· 4k−1 > 41 + · · · + 4k−1,

hence
4kα

α
> (41 + · · · + 4k−1)α > 4α + 42α + · · · + 4(k−1)α,

which proves (1) and concludes the proof by induction on the length of the
shortest path from the source to a given node. ��

We now turn attention to broadcasting against the weak adversary in UDG
networks. First notice that if the topology of the network is known, then Algo-
rithm UDG1 clearly works correctly against the weak adversary as well, and it
uses the same work O(τ), which is at most O(n) for n-node networks. Thus we
may restrict attention to networks with unknown topology. If a lower bound on
the network density is known to all nodes, then we may use the same tiling as in
Algorithm UDG2 to obtain integer labels of all nodes of the network. Subsequently
we use Algorithm Time-Intervals and the same argument as before proves its
correctness and work complexity.

The only remaining case is that of UDG radio networks in which nothing is
known about the density. Recall that in this case we proved that broadcasting
against the strong adversary is impossible. Somewhat surprisingly, we will show
that if the adversary is weak, then broadcasting in n-node UDG networks with
unknown density can be performed with work in O(n). Our algorithm, however,
is only of theoretical interest: its main goal is to show a situation when broad-
casting is impossible against the strong adversary, but can be done using linear
work against the weak adversary. The impracticality of the algorithm has two
reasons. First, since it works on networks of arbitrarily small density, it requires
infinite precision of the perception of Euclidean coordinates by nodes. Second,
the algorithm is non-constructive: it relies on the availability of a function whose
existence we prove, but which is not constructed. Once this function is given to
nodes, they can perform easy broadcasting with linear work. More precisely, our
algorithm relies on the following set-theoretic lemma.

Lemma 7. There exists a function f : R × R −→ R+ such that any distinct
elements v1, . . . , vk and w1, . . . , wr from R × R satisfy the inequality ±f(v1) ±
· · · ± f(vk) �= ±f(w1) ± · · · ± f(wr).

Proof. Let κ be the cardinal of the continuum. Hence the cardinality of sets
R × R and R+ is κ. Using the axiom of choice (this is the non-constructive
ingredient in the definition of the function f), order the set R×R in ordinal type
κ. Let xγ : γ < κ be this ordering. We now define the function f by transfinite
induction. Suppose that f(xγ) is already defined, for all γ < δ. Consider the
set Z of all reals ±f(xγ1) ± · · · ± f(xγd

), for any finite set {xγ1 , . . . , xγd
} of

elements of R ×R, such that γ1, . . . , γd < δ. The set Z has cardinality equal to
the maximum of the cardinality of δ and of ℵ0 (the latter is the cardinality of
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the set of natural numbers). Hence the cardinality of Z is strictly less than κ,
and consequently there exists a number z ∈ R+ \ Z. We put f(xδ) = z.

Thus the function f is defined by transfinite induction. It remains to verify
that it has the desired property. Suppose by contradiction that some elements
v1, . . . , vk and w1, . . . , wr from R×R satisfy the equality ±f(v1)±· · ·±f(vk) =
±f(w1) ± · · · ± f(wr). Let ξ be the largest index of all these elements in the
ordering xγ : γ < κ. It follows that f(xξ) = ±f(xγ1) ± · · · ± f(xγd

), for some
γ1, . . . , γd < ξ, which contradicts the definition of f(xξ). ��

The broadcasting algorithm for UDG networks with unknown density assumes
that all nodes have clocks ticking at the same rate. Given the function f whose
existence follows from Lemma 7, the algorithm can be formulated as follows.

Algorithm Non-Constructive
The source sends the message once. Upon receiving the source message, any node
with Euclidean coordinates (x, y), different from the source, sends two messages
at time interval f(x, y). �

Theorem 7. Algorithm Non-Constructive performs correct broadcasting in an
arbitrary n-node UDG network, using work O(n).

Proof. As before, the complexity of the algorithm is straightforward. It remains
to prove its correctness. Suppose that there exists a network with a node u that
has in-neighbors v1, . . . , vk that got the source message. Suppose that there exist
delays such that the adversary can shift time segments of lengths f(v1), . . . , f(vk)
between messages sent by these nodes, so that all message deliveries are blocked
by collisions. This implies that, for some nodes w1, . . . ,wr, u1, . . .um∈{v1, . . . , vk}
we must have f(w1) + · · ·+ f(wr) = f(u1) + · · ·+ f(um), which contradicts the
property of the function f established in Lemma 7. This contradiction shows
that all nodes in every UDG network will eventually get the source message. ��

7 Conclusion

We established upper and lower bounds on the optimal work of asynchronous
broadcasting algorithms working against two types of adversaries in several
classes of networks: symmetric and arbitrary directed networks and networks
represented by unit disc graphs. While the complexity of most presented algo-
rithms has been proved optimal by showing matching lower bounds, in two cases
gaps between upper and lower bounds on the optimal work required by asyn-
chronous broadcasting still remain. These gaps concern the strong adversary
(bounds against the weak adversary are tight in all cases). For broadcasting in
UDG radio networks of unknown topology but known density, our upper and
lower bounds on optimal work are O(ταg2

) and Ω(τβg2
), respectively, for some

constants α > β > 1. This gap concerns both adaptive and oblivious algorithms.
On the other hand, for symmetric networks of known topology, the upper and
lower bounds on optimal work of oblivious algorithms are O(2n) and Ω(cn), re-
spectively, for some constant 1 < c < 2. This latter gap is “inherited” from [1],
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where it concerned arbitrary directed networks of known topology. Closing these
gaps is a natural open problem.
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15. Chlebus, B.S., Gasieniec, L., Östlin, A., Robson, J.M.: Deterministic radio broad-
casting. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS,
vol. 1853, pp. 717–728. Springer, Heidelberg (2000)

16. Chrobak, M., Gasieniec, L., Rytter, W.: Fast broadcasting and gossiping in radio
networks. In: FOCS, pp. 575–581 (2000)

17. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes,
and broadcasting on unknown radio networks. In: SODA, pp. 709–718 (2001)

18. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown
topology. J. Algorithms 60(2), 115–143 (2006)

19. Kowalski, D.R., Pelc, A.: Time complexity of radio broadcasting: adaptiveness
vs. obliviousness and randomization vs. determinism. Theor. Comput. Sci. 333(3),
355–371 (2005)

20. De Marco, G.: Distributed broadcast in unknown radio networks. In: SODA, pp.
208–217 (2008)



330 T. Calamoneri, E.G. Fusco, and A. Pelc

21. Kushilevitz, E., Mansour, Y.: An Omega(D log N/D) lower bound for broadcast in
radio networks. SIAM J. Comput. 27(3), 702–712 (1998)

22. Kowalski, D., Pelc, A.: Broadcasting in undirected ad hoc radio networks. Distrib.
Comput. 18(1), 43–57 (2005)

23. Dessmark, A., Pelc, A.: Broadcasting in geometric radio networks. J. of Discrete
Algorithms 5(1), 187–201 (2007)

24. Diks, K., Kranakis, E., Krizanc, D., Pelc, A.: The impact of knowledge on broad-
casting time in linear radio networks. Theoretical Computer Science 287, 449–471
(2002)

25. Kranakis, E., Krizanc, D., Pelc, A.: Fault-tolerant broadcasting in radio networks.
J. Algorithms 39(1), 47–67 (2001)

26. Ravishankar, K., Singh, S.: Broadcasting on [0, l]. Discrete Applied Mathemat-
ics 53, 299–319 (1994)

27. Sen, A., Huson, M.L.: A new model for scheduling packet radio networks. In:
INFOCOM, pp. 1116–1124 (1996)



Distributed Approximation of Cellular Coverage

Boaz Patt-Shamir1,�, Dror Rawitz1, and Gabriel Scalosub2

1 School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
{boaz,rawitz}@eng.tau.ac.il

2 Department of Computer Science, University of Toronto, Toronto, ON, Canada
scalosub@cs.toronto.edu

Abstract. We consider the following model of cellular networks. Each
base station has a given finite capacity, and each client has some demand
and profit. A client can be covered by a specific subset of the base sta-
tions, and its profit is obtained only if its demand is provided in full.
The goal is to assign clients to base stations, so that the overall profit is
maximized subject to base station capacity constraints.

In this work we present a distributed algorithm for the problem, that
runs in polylogarithmic time, and guarantees an approximation ratio
close to the best known ratio achievable by a centralized algorithm.

1 Introduction

In future cellular networks, base stations capacities, as well as clients diversity,
will become a major issue in determining client coverage and service. The main
service provided by current cellular networks is voice traffic, which has relatively
small bandwidth requirement, compared to the capacity available at the base
stations. However, in future 4G cellular networks the services offered by cellular
providers are expected to require higher rates, and client diversity is expected to
increase. Such services include video traffic, and other high-rate data traffic. In
such settings, maximizing the usage of available resources would become a more
challenging task, and as recent evidence has shown, current solutions might end
up being far from optimal.

In this work we address one of the basic optimization problems arising in such
settings, namely, the assignment of clients to base stations, commonly known as
cell selection. We take into account both base stations diversity, encompassed by
(possibly) different capacities for each base station, as well as clients diversity,
encompassed by different clients having different demands, and different profits.
A major obstacle in tackling this problem is due to the fact that, naturally,
different base stations have different coverage areas, and therefore can contribute
to covering only some subset of the set of clients.

The currently used scheme for assigning clients to base stations is the greedy
best-SNR-first approach, where clients and base stations interact locally, and
assignment is made in a greedy and local manner. This approach might provide
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reasonable performance when clients demands are small with respect to the base
stations capacity (as is the case for voice traffic), and all clients are considered
equally profitable. However, as clients’ demands increase, the resource utilization
degrades considerably. This degradation was the main concern of a recent work
by Amzallag et al. [1], who propose several global mechanisms for determining
the assignment of clients to base stations, while providing guarantees as to their
performance. However, these mechanisms are based on a centralized approach:
effectively, it is assumed that information of the entire network is gathered by a
central server, which locally finds an assignment of clients, and then distributed
back to the base stations. This approach suffers from the usual drawbacks of a
centralized approach, such as inability to scale to large numbers.

In this paper we present an efficient distributed algorithm that computes an
assignment. In our algorithm, clients and base stations communicate locally,
and after a polylogarithmic number of rounds of communication agree upon an
assignment, without resorting to a centralized algorithm with global knowledge.
Our algorithm is robust and handles both various base stations capacities, as
well as clients’ heterogeneous demands, and variable profits. We give worst-
case guarantees on the performance of our algorithm (with high probability),
and show its approximation ratio is arbitrarily close to the best known ratio of
centralized solution. To state our results more precisely, let us first formalize the
problem and the computational model.

1.1 Problem Statement and Model

We consider the following model. An instance of the Cellular Coverage problem
(CC) consists of the following components.

– A bipartite graph G = (I, J, E) where I = {1, 2, . . . , m} is a set of base
stations and J = {1, 2, . . . , n} is a set of clients. An edge (i, j) represents the
fact that client j can receive service from base station j.

– A capacity function c that maps each base station i to a non-negative integer
c(i) called the capacity of i.

– A demand function d that maps each client j to a non-negative integer d(j)
called the demand of j.

– A profit function p that maps each client j to a non-negative integer p(j)
called the profit of j.

The output of CC is a partial assignment of clients to base stations, where a
client may be assigned only to one of its neighboring base stations, and such
that the total demand of clients assigned to a base station does not exceed its
capacity. The goal is to maximize the sum of profits of assigned clients.

Given a constant r ≤ 1, an instance of CC is said to be r-restricted if for every
(i, j) ∈ E, we have d(j) ≤ r ·c(i), i.e., no client demands more than an r-fraction
of the capacity of a base station from which it may receive service. The r-CC
problem is the CC problem where all instances are r-restricted.

Let (I, J, E, c, d, p) be an instance of CC. For every base station i we let
N(i) ⊆ J denote the set of clients which can be covered by i, and for every client
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j we let N(j) ⊆ I denote the set of base stations which can potentially cover
j. For any set of clients or base stations A, we let N(A) =

⋃
v∈A N(v). Given

any function f (e.g., the demand, profit, or capacity), we let f(A) =
∑

v∈A f(v).
Given any subset of clients S ⊆ J , we define S = J \ S.

Let x be a mapping that assigns clients to base stations, and let clients(x)
denote the set of clients assigned by x to some base station. For a base station i ∈
I let loadx(i) =

∑
j : x(j)=i d(j), i.e., loadx(i) is the sum of all demands assigned

to i. We further let resx(i) denote the residual capacity of i, i.e., resx(i) =
c(i)− loadx(i). For a client j ∈ J \ clients(x) and a base station i ∈ N(j) we say
that j is eligible for i if resx(i) ≥ d(j).

Model of Computation. We consider the standard synchronous message passing
distributed model of computation (cf. the CONGEST model of [2]). Briefly, the
system is modeled as an undirected graph, where nodes represent processing enti-
ties and edges represent communication links. Execution proceeds in synchronous
rounds, each round consists of three substeps: first, each node may send a message
over each of its incident links; then nodes receive all messages sent to them in that
round; and finally some local computation is carried out. The length of every mes-
sage is restricted to O(log n) bits, where n is the number of nodes in the system.
Nodes may have unique identifiers of O(log n) bits. Note that in our model, the
communication graph is identical to the input graph of CC.

1.2 Our Results

We present a distributed randomized algorithm for the r-CC problem, which,
given any γ ∈ (0, 1], runs in time O(γ−2 log3 n), and guarantees, with high
probability, to produce an assignment with overall profit at least a 1−r

2−r (1 − γ)
fraction of the optimal profit possible.

We note that our running time is affected by the best running time of a
distributed algorithm finding a maximal matching, which we use as a black box.
The best algorithm up to date, due to [3], has expected running time O(log n),
which is reflected by one of the logarithmic factors of our running time. Any
improvement in such an algorithm to time O(T ) would immediately imply a
running time of O(γ−2T log2 n) for our algorithm.

1.3 Previous Work

There has been extensive work done on cell selection, and client assignment to base
stations in the networking community, focusing on aspects of channel allocation,
power control, handoff protocols, and cell site selection (e.g., [4, 5, 6, 7]).

Our proposed model was studied in the offline setting in [1]. They study two
types of setting, where the first allows the coverage of a client by at most one base
station, and the other allows covering a client by more than one base station,
whereas its profit is obtained only if its entire demand is satisfied. They refer to
the former as the cover-by-one paradigm, and to the latter as the cover-by-many
paradigm. They present a local ratio algorithm for the r-CC problem using the
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cover-by-many paradigm which is guaranteed to produce a (1 − r)-approximate
solution. This algorithm is based upon a simpler algorithm using the cover-by-
one paradigm which is guaranteed to produce a 1−r

2−r -approximate solution, and
this is with respect to the best possible cover-by-many solution.

The CC problem using the cover-by-one paradigm is also closely related to
the multiple knapsack problem with assignment constraints, for which a special
case where clients demands equal their profits is considered in [8]. They present
several approximation algorithms for this problem, starting from a randomized
LP-rounding algorithm which produces a 1

2 -approximate solution, through an
algorithm employing a sequential use of the FPTAS for solving a single knap-
sack problem which produces a (1

2−ε)-approximate solution, and finally a greedy
algorithm which is guaranteed to produce a 1

3 -approximate solution. Another re-
lated problem is the general assignment problem considered in the offline settings
in [9, 10, 11] (see also references therein).

Although the offline problem, and its various variants, has received consider-
able amount of attention in recent years, we are not aware of any attempts to
solve any of the above problems in a distributive manner. Some very restricted
cases of the problem, namely, where all the capacities and all the demands are
the same, can be viewed as matching problems, and hence distributed algorithms
for solving them are available (see [12] for an overview of these results). Specifi-
cally, for the subcase where clients profits are arbitrary, the problem reduces to
finding a maximum weight matching in the underlying bipartite graph, whereas
in the subcase where all clients profits are the same, the goal is to find a maxi-
mum cardinality matching. For both these problems the best solutions are due
to [12]. For the former problem they show how to obtain a (1

2 − ε)-approximate
solution, whereas for the latter problem, they guarantee a (1 − ε)-approximate
solution. Another closely related problem is that of finding a maximal match-
ing in an unweighted graph for which there exists a distributed algorithm [3].
All of the above algorithms are randomized, and their expected running time is
logarithmic in the number of nodes.

Paper Organization. In Section 2 we discuss the centralized version of the prob-
lem. In Section 3 we present the details of our distributed algorithm, and analyze
its performance guarantee and running time. In Section 4 we present some ex-
tensions of our results, and finally, in Section 5 we conclude and discuss some
open questions.

2 A Centralized Approach

In this section we explain a centralized algorithm for CC which we later imple-
ment in a distributed model. The idea is to use the local ratio approach [13,14],
which in our case boils down to an extremely simple greedy algorithm: compute,
for each client, its profit-to-demand ratio; scan clients in decreasing order of this
ratio, and for each client in turn, assign it to a base station if possible, or discard
it and continue. However, to facilitate the analysis, we present this algorithm in
recursive form in Algorithm 1.
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To specify the algorithm, we need the following concept. Given an assignment
x, let J ′ ⊆ J be a set of clients such that J ′ ⊇ clients(x). We say that x is an
α-cover w.r.t. J ′ if the following condition holds: if loadx(i) < α · c(i) for a base
station i, then N(i) ∩ J ′ ⊆ clients(x). In other words, a client from J ′ may not
be assigned by an α-cover only if the load of each of its neighbors is at least an
α fraction of its capacity.

The key step in Algorithm 1 below (Step 1) is to extend the assignment
returned by the recursive call of Step 1. The algorithm maintains the invariant
that the returned assignment is an α-cover w.r.t. J . Whenever the recursive call
of Step 1 returns, the assignment is extended using the clients in J ′′ to ensure
that the invariant holds true.

Algorithm 1 — cCC(I, J, c, d, p)
1. if J = ∅ then return empty assignment.
2. J ′ = {j ∈ J | p(j) = 0}
3. if J ′ �= ∅ then
4. return cCC(I, J \ J ′, c, d, p)
5. else
6. δ = minj∈J

{
p(j)
d(j)

}
7. for all j, define p1(j) = δ · d(j)
8. x ← cCC(I, J, c, d, p − p1)
9. J ′′ = {j ∈ J | p(j) = p1(j)}

10. using clients from J ′′, extend x to an α-cover w.r.t. J
11. return x
12. end if

The key to the analysis of the algorithm is the following result (see also [1,8]).

Lemma 1. Assume there exists some δ ∈ R+ such that p(j) = δ · d(j) for
every client j. Consider any assignment x. If x is an α-cover w.r.t. J , then
p(clients(x)) ≥ ( α

1+α ) · p(clients(y)) for any feasible assignment y.

Proof. Let S = clients(x), and let Y = clients(y). Then

p(Y ) = p(Y ∩ S) + p(Y ∩ S)
= δ
[
d(Y ∩ S) + d(Y ∩ S)

]
≤ δ
[
d(S) + c(N(S))

]
≤ δ [d(S) + d(S)/α]

=
α + 1

α
· p(S) ,

where the first inequality follows from the feasibility of y and the definition of
N(S) (see Figure 1), and the second inequality follows from our assumption that
x is an α-cover w.r.t. J . ��
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N(S) S
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J

Fig. 1. Depiction of a solution S that uses an α fraction of the capacity of N(S)

We note that the above lemma actually bounds the profit of an α-cover even
with respect to fractional assignments, where a client may be covered by several
base stations (so long as the profit is obtained only from fully covered clients).

The following theorem shows that Algorithm cCC produces an α
α+1 -

approximation, assuming one can extend a given solution to an α-cover.1

Theorem 1. Algorithm cCC returns an α
α+1 -approximation.

Proof. The proof is by induction on the number of recursive calls. The base case
is trivial. For the inductive step, we need to consider two cases. For the cover
returned in Step 1, by the induction hypothesis it is an α

α+1 -approximation w.r.t.
J \J ′, and since all clients in J ′ have zero profit, it is also an α

α+1 -approximation
w.r.t. J . For the cover returned in Step 1, note that by the induction hypothesis,
the solution returned by the recursive call in Step 1 is an α

α+1 -approximation
w.r.t. profit function p − p1. Since every client j ∈ J ′′ satisfies p(j) − p1(j) = 0,
it follows that any extension of this solution using clients from J ′′ is also an

α
α+1 -approximation w.r.t. to p − p1. Since the algorithm extends this solution
to an α-cover by adding clients from J ′′, and p1 is proportional to the demand,
by Lemma 1 we have that the extended α-cover is an α

α+1 -approximation w.r.t.
p1. By the Local-Ratio Lemma (see, e.g., [14]), it follows that this solution is an

α
α+1 -approximation w.r.t. p, thus completing the proof. ��

A closer examination of the local-ratio framework presented above shows that
what the algorithm essentially does is to traverse the clients in non-decreasing
order of their profit-to-demand ratio, while ensuring that any point, the current
solution is an α-cover w.r.t. clients considered so far.

In what follows, we build upon the above framework, and show that given
any γ ∈ (0, 1], one can emulate distributively the above approach, while losing a
mere (1− γ) factor in the approximation guarantee. Furthermore, we show that
this can be obtained in time O(γ−2 log3 n).

1 In [1] they extend the solution to a maximal solution (w.r.t. set inclusion), which
implies a (1 − r)-cover.



Distributed Approximation of Cellular Coverage 337

3 A Distributed Approach

In this section we present a distributed algorithm for the CC problem. We first
give an overview of our approach, and then turn to provide the details of our
algorithm.

3.1 Overview

Conceptually, the algorithm is derived by a series of transformations that allows
us to represent any instance of CC as a multiple instances of maximal matching,
which can be solved efficiently in a distributed model. Specifically, our general-
ization proceeds as follows.

Unit demand, unit capacity, unit profit. First, consider the case where all
demands, capacities and profits are one unit each. In this case, CC is exactly
equivalent to the problem of maximum matching, which for any ε ∈ (0, 1]) can
be solved in O( log n

ε ) rounds with approximation ratio (1 − ε) [12].
Unit demand, different capacities, unit profit. Next, suppose that all demands

and profits are equal, but capacities may vary. This case is easy to solve as follows:
Each base station i of capacity c can be viewed as c unit-capacity “virtual”
base stations i1, . . . , ic; then maximum matching can be applied to the graph
consisting of the original clients and virtual base stations, where each client j
originally connected to a base station i is now connected to all the induced
virtual base stations i1, . . . , ic. Some care needs to be exercised to show that this
emulation can be carried out using O(log n) bit messages without any increase
in the running time.

Different demands, different capacities, profit equals demand. The next gen-
eralization is to consider the case where base stations have arbitrary capacities,
and clients have arbitrary demands, but the profit from each client is propor-
tional to its demand. To solve this case, we use a scaling-like method: we round
each demand to the nearest power (from above) of 1 + ε, where ε > 0 is a
given parameter. This rounding reduces the number of different demands, and
as we show, only the O(log(1+ε) n) = O( log n

ε ) topmost different demands need
be considered. For each fixed demand, we are back in the previous case. The
penalty of rounding the profits is a (1 + ε) factor degradation in the approx-
imation ratio. Some additional complications due to interference between the
different demands degrade the approximation ratio to 1−r

2−r , where r is the max-
imal demand-to-capacity ratio in the given instance. As mentioned above, the
running time increases by a factor of O( log n

ε ).
Different demands, different capacities, different profit. This last generaliza-

tion is taken care of by applying the local ratio method presented in Section 2,
which means that we need to go over the different profit-to-demand ratios in de-
creasing order. To avoid too many such ratios, we again use the trick of rounding
to the nearest power of (1 + ε), but this time we round the profits, resulting in
an additional degradation of (1 + ε) factor in the approximation ratio, and an
additional factor of O( log n

ε ) in the running time.
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3.2 Partitioning the Clients

Recall that all demands and capacities are integral, and assume that the mini-
mum demand is 1. Let ε ∈ (0, 1].

First Cut: Partition by Cost-Effectiveness. We consider a partition of the
clients into sets J0, J1, . . ., such that a client j is in Jk iff p(j)

d(j)∈[(1 + ε)k
,(1 + ε)k+1).

If these ratios are polynomially bounded, then we have O(log(1+ε) n) = O(1
ε log n)

such sets. Denote the number of these sets by W . For every client j, we let its
(1 + ε)-rounded profit be defined by

p(1+ε)(j) = min
k∈N

{
(1 + ε)k d(j) | (1 + ε)k d(j) ≥ p(j)

}
.

The following lemma relates the value of any solution to an instance of the
r-CC problem, to the value of the same solution when considering the instance
with (1 + ε)-rounded profits.

Lemma 2. Given some input I = (I, J, E, c, d, p) to the r-CC problem, and
some ε > 0, consider the instance I ′ = (I, J, E, c, d, p(1+ε)), and let x be any
assignment of clients. It follows that clients(x) is a feasible solution to I iff it is
a feasible solution to I ′, and p(1+ε)(clients(x)) ≤ (1 + ε) p(clients(x)).

Proof. The first part of the claim follows from the fact that feasibility is not
affected by the change in the profit function, since it relies solely on the underly-
ing topology of G, along with the base stations’ capacities and clients’ demands.
For the second part, by the definition of p(1+ε) it follows that for every client j,
p(1+ε)(j) ≤ (1 + ε) p(j), and therefore by considering sets of clients, the claim
follows. ��

The following corollary is an immediate consequence of Lemma 2.

Corollary 1. For every β ≤ 1, and any instance I = (I, J, E, c, d, p), if a fea-
sible assignment x is a β-approximate solution with respect to profit function
p(1+ε), then it is a β

(1+ε) -approximate solution with respect to profit function p.

Proof. Consider the instance I′ = (G, c, d, p(1+ε)). First note that by Lemma 2,
S is a feasible solution to I. Furthermore, for any optimal solution S∗ to I, S∗

is also a feasible solution to I ′, and since for any j we have p(1+ε)(j) ≥ p(j) it
follows that

OPT(I) ≤ OPT(I ′) ≤ 1
β

· p(1+ε)(S) ≤ 1 + ε

β
· p(S) ,

as required, where the last inequality follows from lemma 2. ��

Corollary 1 ensures that by assuming that in every set Jk, the profits are of the
same proportion as the demands, does not cause us to lose more than a 1

(1+ε)
factor of the original profit obtained from the same solution.
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We henceforth assume that the actual profit of every client j is its (1 + ε)-
rounded profit. It follows that in every Jk all clients have profits which are
proportional to the demand. Note that in such a case, the order implied on the
set of clients by their profit-to-demand ratio is exactly the same as the order in
which cCC considers the clients, also assuming (1 + ε)-rounded profits.

Second Cut: Partition by Demand. For every k, we consider a subpartition
of the set Jk into subsets J0

k , J1
k , . . . such that a client j ∈ Jk is in J�

k if d(j) ∈
[(1 + ε)�

, (1 + ε)�+1). For every k we let rk denote the maximal 
 such that
J�

k �= ∅. We further let J ′
k =
⋃

�≥rk−3 log(1+ε) n J�
k.

3.3 A Distributed Algorithm

We now turn to describe our distributed algorithm, dCC. Let α = 1−r
1+ε . The goal

of our algorithm is to produce an assignment that is an α-cover with respect to
J ′ =
⋃

k J ′
k. Using the results presented in Section 2 this would serve as a

first component in proving our approximation guarantee. We later show that by
restricting our attention to J ′ we lose a marginal factor in the approximation
ratio.

The algorithm, whose formal description in given in Algorithm 2, works as fol-
lows. It traverses the subsets Jk in decreasing order of k. For each k, it computes
an α-cover with respect to J ′

k (this is done by using Algorithm MC which we
discuss in the following section). This enables us to show that dCC also produces
an α-cover with respect to J ′. For clarity we first analyze the performance of
Algorithm dCC assuming that MC indeed produces an α cover with respect to
J ′

k, and then discuss the details of Algorithm MC. The following lemma shows
that this assumption on MC suffices in order for dCC to produce an α-cover
with respect to J ′.

Algorithm 2 — dCC(I, J, c, d, p)
1. R = J {uncovered eligible clients}
2. x ← empty assignment
3. for every i ∈ I, let resx(i) = c(i) {the residual capacity}
4. for k = W downto 0 do
5. (xk, resx) ← MC(k, I, Jk ∩ R, resx, d) {compute an α-cover w.r.t. J ′

k}
6. update x according to xk

7. remove all clients matched in xk from R
8. remove all ineligible clients from R
9. end for

10.
11. return x
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Lemma 3. Assume that for every k, MC produces an α-cover with respect to
J ′

k. For every k, the cover produced by dCC after the end of the kth iteration,
is an α-cover with respect to J ′

≥k =
⋃

t≥k J ′
k.

Proof. The claim follows from the fact that in every iteration, the residual ca-
pacity never increases, which implies that for any k, if we extend an α-cover for
J ′
≥k, and ensure the extension is an α-cover for J ′

k−1, then we obtain an α-cover
for J ′

≥k−1. ��

3.4 Covering Equally Cost-Effective Clients

In order to describe our algorithm, we need the following notion. Consider any
ε ∈ (0, 1), and an instance I = (I, J, E, c, d, p) to the CC problem. Assume there
exist some µ such that for all clients j, d(j) ∈ [ µ

1+ε , µ]. We consider the virtual
base-stations instance VG(I) = (I ′, J, E′, c′, d, p), where every base station i ∈ I
is replaced by �c(i)/µ� base stations in I ′, each with capacity µ. We refer to
these new base stations as copies of i. E′ contains all virtual edges implied by
the above swap, i.e., for every (i, j) ∈ E, we have an edge (i′, j) for every copy i′

of i. Given such an instance VG(I), note that every copy has sufficient capacity
to cover any single client, and at most one such client. We may therefore assume
without loss of generality that all demands are unit demands, and all capacities
(of the copies) are unit capacities. It follows that any matching in VG(I) induces
a feasible assignment of clients to base stations. See Figure 2 for an outline of a
virtual instance corresponding to an original instance.

Given Jk, the goal of algorithm MC, whose formal description appears in
Algorithm 3, is to produce an assignment that is an α-cover with respect to J ′

k.
In what follows, we refer to MM as any distributed algorithm for finding a

maximal matching in an unweighted bipartite graph. As mentioned earlier, the
currently best algorithm for this problem is due to [3], which finds a maximal
matching (with high probability) in expected logarithmic time.

(a) Original instance. (b) Virtual base-stations in-
stance.

Fig. 2. The original graph representing I and its corresponding virtual base-stations
graph representing VG(I). The clients are placed on the right



Distributed Approximation of Cellular Coverage 341

Intuitively, the algorithm works as follows. For every base station i, the base
station traverses 3 log(1+ε) n subsets J�

k in decreasing order of 
, starting from the
maximal 
 for which it has eligible neighbors in. For every such J�

k, the algorithm
considers its corresponding virtual base-stations instance G�

k while taking into
account only eligible clients. It then computes distributively a maximal matching
in the above graph using algorithm MM. Any matched client is assigned to
its matched base station, and each base station updates its residual capacity
accordingly.

We first show that the algorithm computes a (1−r)
1+ε -cover with respect to J ′

k.
In the sequel we show that by considering only the topmost 3 logn subsets we
are able to obtain polylogarithmic running time in exchange for a marginal drop
in the approximation ratio.

Lemma 4. Algorithm MC computes a feasible 1−r
1+ε -cover with respect to J ′

k.

Proof. We first note that the algorithm produces a feasible cover with respect
to J ′

k. To see this, note that any client j is assigned to a base station i only via
the matching produced by MM. Since in the virtual base stations graph used
by MM, we have

⌊
resxk

(i)/di
�

⌋
copies of base station i, each with capacity di

�,
and every one of its neighbors in this round has demand at most di

� (by Step 3),
we are guaranteed that every base station has sufficient capacity to cover its
matched clients in every round (since residual capacities are updated at the end
of every round). We now turn to show the solution is indeed a 1−r

1+ε -cover with
respect to J ′

k.
Consider any uncovered client j ∈ J ′

k, and let 
 ≥ rk − 3 log(1+ε) n be such
that j ∈ J�

k. All we need to show is that for every i ∈ N(j), i has used at least

Algorithm 3 — MC(k, I, Jk, c, d)
1. xk ← empty assignment
2. for every i ∈ I, resxk

(i) = c(i) {the residual capacity}
3. for every i ∈ I, let ri

k = max
{

 | ∃ eligible j ∈ N(i) ∩ J�

k

}
{every base sta-

tion picks its highest relevant level}

4. every base station i does: {we only consider the topmost 3 log(1+ε) n subsets}
5. for 
 = ri

k downto ri
k − 3 log(1+ε) n do

6. i announces to its eligible neighbors in J�
k about the round

7. di
� ← maximal demand of an eligible client in J�

k ∩ N(i)
8. i uses

⌊
resxk

(i)/di
�

⌋
copies of itself in the virtual graph G�

k

9. update xk according to MM(G�
k) {performed in parallel}

10. update resxk
(i) {update the residual capacity according to the demand of

matched clients}
11. end for
12.
13. return (xk, resxk

)
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a 1−r
1+ε -fraction of its capacity. Let i be any base station in N(j). Note first that

by maximality of rk we have ri
k ≤ rk, which implies that 
 ≥ ri

k − 3 log(1+ε) n.
If i did not participate in a round corresponding to 
, this can only be because

at that time, resxk
(i) < di

�.
2 Since di

� ≤ r ·c(i), this implies that resxk
(i) < r ·c(i).

It follows that in this case we are done.
Assume i did participate in a round corresponding to 
, and consider the

copies of i in the virtual base stations graph. By Step 3, there are
⌊
resxk

(i)/di
�

⌋
copies of i in this graph, and they were all matched by MM since otherwise, we
could have matched j, whose demand is at most di

�, contradicting maximality of
the output of MM.

The unused capacity due to rounding down the number of copies of i in the
virtual graph implies the base station left out less than di

� ≤ r · c(i) of its
capacity from being used in this round. It follows that it has dedicated (and
partly used) at least a (1 − r)-fraction of its capacity for covering clients in
all rounds up to (and including) round 
. Every client j covered by i in any
such round 
′ ≤ 
, is matched to a copy of the base station, which represents a
capacity of di

�′ ∈ [d(j), (1 + ε)d(j)). It follows that we effectively use up at least
a 1

1+ε -fraction of the capacity dedicated for covering clients in all rounds up to
(and including) round 
. Combining the above we obtain that base station i has
used at least a 1−r

1+ε of its capacity, as required. ��

Note that algorithm MC performs 3 log(1+ε) n rounds, in each of which it exe-
cutes Algorithm MM.

3.5 Wrapping Up

In this section we show how to combine the results presented in the previous
sections, to obtain the following:

Theorem 2. For every γ ∈ ( 1
n2 , 1], algorithm dCC produces a 1−r

2−r (1 − γ)-
approximate solution to r-CC, with high probability, in time O(γ−2 log3 n).

First we note that by combining Lemma 4 and Lemma 3, the solution produced
by dCC is a 1−r

1+ε -cover w.r.t. J ′ =
⋃

k J ′
k.

Let pM be the maximal profit of any client in J . The following lemma shows
that every j ∈ J \ J ′, has very small profit.

Lemma 5. Every j ∈ Jk \ J ′
k satisfies p(j) ≤ pM

n3 .

Proof. Let 
 < rk − 3 log(1+ε) n be such that j ∈ J�
k. It follows that the demand

of j is at most (1 + ε)rk−3 log(1+ε) n = (1+ε)rk

n3 . It follows that p(j) ≤ p(j′)
n3 , where

j′ ∈ Jrk

k . Note that by the definition of rk, such a client j′ exists. It follows that
p(j) ≤ pM

n3 , as required. ��

We henceforth refer to a client j for which p(j) ≥ pM

n3 as a fat client. Lemma 5
ensures that all fat clients are in J ′. The following lemma shows that by ignoring
non-fat clients, we lose only a negligible fraction of the possible profit.
2 This is also the case when � > ri

k.
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Lemma 6. Let OPT denote a solution to some instance I of r-CC, and let
OPT′ denote a solution to the same instance, restricted solely to fat clients.
Then p(OPT) ≤ (1 + 1

n2 )p(OPT′).

Proof. Let pM denote the maximal profit of any client in J . Since clearly p(OPT) ≥
p(OPT′) ≥ pM , it follows that

p(OPT) = p(OPT∩JB) + p(OPT∩JB)

≤ p(OPT′) + n · pM

n3

= p(OPT′) +
pM

n2

≤ p(OPT′)(1 +
1
n2 ),

as required. ��

The above lemmas ensure that any α-cover w.r.t. J ′ guarantees an approximation
factor of α

1+α ( 1
1+1/n2 ) ≈ α

1+α · (1 − 1
n2 ). Since we assume clients have (1 + ε)-

rounded profits, by Corollary 1 we lose at most an additional 1
1+ε factor in the

approximation factor.
Given any γ ∈ ( 1

n2 , 1], by considering an appropriate constant ε = ε(γ) ∈
(0, 1], we can guarantee that the 1−r

1+ε -cover produced by dCC is a 1−r
2−r (1 − γ)-

approximate solution, thus completing the proof of Theorem 2.
As for the running time of algorithm dCC, we use the randomized

algorithm of [3]. (This is the only place where randomization is used in our
algorithm.) Running that algorithm for c log n rounds results in a maximal
matching with probability at least (1 − 1

nΩ(c) ). Since the total number of times
our algorithm invokes MM is at most n, by the Union Bound it follows that
by choosing a sufficiently large constant c, we can guarantee, with high prob-
ability, that all executions of MM in Algorithm MC produce a maximal
matching.

It follows that if maxj {p(j)/d(j)} is polynomially bounded, then our algo-
rithm runs for O(γ−2 log3 n) rounds, and produces a 1−r

2−r (1 − γ)-approximate
solution with high probability.

A note on very small and very large values of γ. Note that for γ < 1/n, we
can send the entire network information to every base station in time O(γ−2) =
O(n2), in which case every base station may calculate in a centralized manner a
deterministic approximate solution. If we are given γ > 1, we use the algorithm
with γ = 1.

4 Extensions

In this section we present several extensions of our results, whose proofs will
appear in the full version.
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Clients with Different Classes of Service and Location-Dependent Demands. Our
algorithm can be extended to the model where every client j has a specific class
of service qj , and the profit from satisfying a demand d is qjd. Moreover, the
client may have a different demand from each possible base station (this may be
the case when the requested service is location-dependent): namely, the demand
client j has from base station i is d(j, i), and the profit obtained from assigning
client j to base station i is p(j, i) = qj · d(j, i). We can show that even in this
general setting, our algorithm provides the same approximation guarantees (with
high probability), as well as having the same running time. We note that we still
insist that on the condition that a profit is obtained from a client only if its
demand is met in full (by one of its neighboring base stations).

Absence of Global Bounds. Our results extend to the model where base sta-
tions have no a priori knowledge of the maximal density of the instance (cor-
responding to the value W in our analysis), and perform on a merely local
information basis. In this extension every base station takes on a myopic view of
the network, and considers the partition corresponding solely to its neighboring
clients. We can show that even in such an asynchronous environment, a simple
extension of our algorithm provides the same approximation factors and time
complexity.

5 Conclusions and Open Questions

In this work we presented a randomized distributed algorithm for the cellu-
lar coverage problem, such that for every γ ∈ (0, 1] our algorithm guarantees
to produce a 1−r

2−r (1 − γ)-approximate solution with high probability, in time
O(γ−2 log3 n).

There are several interesting questions that arise from our work. First, our
work provides a distributed emulation of a centralized local ratio algorithm. It is
of great interest to see if similar emulations can be obtained to other problems,
where local ratio algorithms provide good approximations. The main elements
that seem to facilitate such an emulation are an ordering (or partitioning) of
the input implied by the profit decomposition, and a notion of maximality that
can be maintained locally. When considering the CC problem, a major goal
is to try and improve the running time of a distributed algorithm for solv-
ing r-CC. There is currently no reason to believe that a good cover cannot be
obtained in logarithmic time. Furthermore, it is interesting to see if there ex-
ists a distributed algorithm which makes use of the cover-by-many paradigm,
which was shown to provide better solutions than the cover-by-one paradigm.
For the more general formulation of the CC problem, it is not evident that
one cannot obtain an approximation guarantee that is independent of r. In this
respect, we conjecture that even for r = 1 the problem admits to constant
approximation.
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Abstract. We present a concurrent face routing CFR algorithm. We formally
prove that the worst case latency of our algorithm is asymptotically optimal. Our
simulation results demonstrate that, on average, CFR significantly outperforms
the best known geometric routing algorithms in the path stretch: the speed of
message delivery. Its performance approaches the shortest possible path. CFR
maintains its advantage over the other algorithms in pure form as well as in com-
bination with greedy routing; on planar as well as on non-planar graphs.

Keywords: Geometric routing, ad hoc wireless routing.

1 Introduction

Geometric routing is an elegant approach to data dissemination in resource-constrained
and large-scale ad hoc networks. Geometric routing is attractive because it does not
require nodes to maintain, or messages to carry, extensive state or routing information.
This lack of routing infrastructure makes such algorithms a popular initialization or
fallback option for other routing schemes. Therefore, geometric routing optimization is
of interest to the broad community of wireless sensor network designers.

In geometric routing, each node knows its own and its neighbors’ coordinates. Using
low-cost GPS receivers or location estimation algorithms [1,2], wireless sensor nodes
can learn their relative location with respect to the other nodes and then use this infor-
mation to make routing decisions. The message source node knows the coordinates of
the destination node. These coordinates may be obtained from a location service [3,4].
The information that the message can carry does not depend on the network size. Each
forwarding node does not maintain any extensive routing data or keep any information
about forwarded messages between message transmissions.

Greedy routing [5] is an elementary approach to geometric routing where the node
selects the neighbor that is the closest to the destination and forwards the message there.
The process repeats until the destination is reached. Greedy routing fails if the node is a
local minimum: it does not have neighbors that are closer to the destination than itself.
Alternatively, in compass routing [6], a node selects the neighbor whose direction has
the smallest angle to the direction of the destination. This kind of compass routing is
prone to livelocks.

One way to circumvent these delivery problems in geometric routing is to flood a
region of the network with messages [5,7,8,9,10]. This is useful for geocasting [11]
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where each node in a certain region of the network needs to receive a message. However,
for point-to-point communication flooding may not be efficient.

The face routing variants of geometric routing are designed to guarantee message
delivery without incurring the message overhead associated with flooding. A source-
destination line intersects a finite number of faces of a planar graph. A message may
reach the destination by sequentially traversing these faces. In the algorithms published
thus far, the faces are traversed sequentially. GFG/GPSR [12,13] combines greedy and
face routing. Greedy routing is used for speed, and face routing helps to recover from
local minima. Datta et al [14] propose a number of optimizations to face traversal.
Kuhn et al [15,16,17] propose a worst case asymptotically optimal geometric routing
algorithm GOAFR+. They compare the performance of multiple geometric routing al-
gorithms and demonstrate that in the average case GOAFR+ also performs the best.
Kim et al [18] discuss challenges of geometric routing. Frey and Stojmenovic [19] ad-
dress some of these challenges and discuss different approaches to geometric routing.
Stojmenovic [20] provides a comprehensive taxonomy of geometric routing algorithms.

One of the shortcomings of traditional geometric routing is the need to planarize
the graph. This can be done effectively only for unit-disk graphs. However, a unit-disk
graph is a poor approximation for most radio networks where radio propagation patterns
are not as regular as assumed in unit-disk graphs. Some researchers [21,22] explore a
more realistic model of quasi unit disk graphs. Nesterenko and Vora [23] propose a
technique of traversing voids in non-planar graphs similar to face traversal. This traver-
sal may be combined with greedy routing similar to GFG. Barrière et al [21], Kim et
al [24], Leong et al [25], and Kuhn et al [22] propose alternative ways of performing
geometric routing over non-planar graphs.

Kuhn et al [15,17] conduct extensive evaluation of geometric routing algorithms’
performance. They compare the ratio of the path selected by a routing algorithm to the
optimal path depending on the graph density. Their findings indicate that at low and
high density the performance of most algorithms, especially if combined with greedy
routing, approaches optimal. In sparse graphs, due to the limited number of available
routes, a geometric routing algorithm is bound to select a route that is close to optimal.
In dense graphs, an algorithm nearly always runs in greedy mode which tends to select
a nearly optimal route as well. Kuhn et al identified a critical density range between
3 and 7 nodes per unit-disk where the paths selected by geometric routing algorithms
may substantially differ from the shortest paths and where performance optimization
has the greatest impact.

Despite their individual differences, the foundation of most geometric routing algo-
rithms is face traversal. In such traversal, a message is routed around a face. However,
the resultant route may vary greatly depending on the choice of traversal direction and
the point at which the message switches between adjacent faces. The imbalance is usu-
ally exacerbated if the message has to traverse the external face of the graph. However,
if the message traverses the faces sequentially, exploring the faces to find a shorter route
may result in lengthening to route itself. Hence, traditional geometric routing algorithms
are inherently limited in the amount of route optimization they can achieve.

In this paper, we present an algorithm that accelerates the message propagation by
sending messages to concurrently traverse faces adjacent to the source-destination line.
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We call this algorithm concurrent face routing (CFR). When one of the messages en-
counters a face that is closer to the destination, the message spawns two messages to
traverse the new face and continues traversing the old face. CFR ensures that all faces
are explored and none of the adjacent edges is traversed more than once. The node
memory and message-size requirements for CFR are the same as for the other geomet-
ric routing algorithms. We show that the latency of CFR is asymptotically optimal in the
worst case. That is, there is no geometric routing algorithm that can deliver a message
faster than CFR. Moreover, our simulation demonstrates that, on average, CFR signif-
icantly outperforms other geometric routing algorithms in the critical density region.
This average case advantage is preserved if CFR is combined with greedy routing or if
it runs on non-planar graphs.

The rest of the paper is organized as follows. We introduce our notation in Sect. 2.
We then describe CFR, formally prove it correct and determine its worst case message
complexity in Sect. 3. In Sect. 4, we discuss how the algorithm can be adapted for
greedy routing and for use in non-planar graphs. We evaluate the performance of our
algorithm and its modifications in Sect. 5 and conclude the paper in Sect. 6.

2 Preliminaries

2.1 Graphs

We model the network as a connected geometric graph G = (V, E). The set of nodes
(vertices) V are embedded in a Euclidean plane and are connected by edges E. The
graph is planar if its edges intersect only at vertices. A void is a region on the plane such
that any two points in this region can be connected by a curve that does not intersect any
of the edges in the graph. Every finite graph has one infinite external void. The other
voids are internal. A void of a planar graph is a face.

2.2 Face Traversal

Each message is a token, as its payload is irrelevant to its routing. Right-hand-rule
face traversal proceeds as follows. If a token arrives to node a from its neighbor b, a
examines its neighborhood to find the node c whose edge (a, c) is the next edge after
(a, b) in a clockwise manner. Node a forwards the token to c. This mechanism results
in the token traversing an internal face in the counter-clockwise direction, or traversing
the external face in the clockwise direction. Left-hand-rule traversal is similar, except
the next-hop neighbor is searched in the opposite direction.

A source node s has a message to transmit to a destination node d. Node s is aware of
the Euclidean coordinates of d. Node s attaches its own coordinates as well as those of
d to the messages. Thus, every node receiving the message learns about the sd-line that
connects the source and the destination. Depending on whether the token is routed using
right- or left-hand-rule, it is denoted as R or L. Each node n knows the coordinates of
its neighbors: the nodes adjacent to n in G. A juncture is a node whose adjacent edge
intersects the sd-line. A node itself lying on the sd-line is also a juncture. Thus, the
source and destination nodes are junctures themselves. Two faces are adjacent if their
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borders share a juncture. A single node may be a juncture to multiple faces if more than
one of its adjacent edges intersect the sd-line.

To simplify the algorithm presentation, we use anthropomorphic terms when refer-
ring to the nodes of the network such as “know”, “learn” or “forget”.

2.3 Performance Metrics

The message cost of an algorithm is the largest number of messages that is sent in a
single computation calculated in terms of the network graph parameters. A latency is the
shortest path the message in the algorithm takes to reach the destination. Equivalently,
latency is the number of hops the message traverses from the source to destination
in accordance with the algorithm. Essentially, message cost captures the expense of
communication while the latency captures its speed. For sequential traversal algorithms,
such as traditional geometric routing algorithms, where there is always a single message
in transit, the two metrics are the same. Note also that the latency of a certain algorithm
selects is not necessarily the optimum or the shortest path between the source and the
destination. A path stretch is the ratio between the latency of the algorithm and the
shortest path in the graph.

2.4 Existing Face Traversal Mechanisms

One of the first known face routing algorithms that guarantees delivery is Compass
Routing II [6]. In this paper we refer to it as COMPASS. In COMPASS, the token finds
the juncture that is closest to the destination. For this, the token traverses the entire face
and returns to the initial point of entry. The token is then routed to the discovered closest
juncture. There, the token changes faces and the process repeats. Refer to Fig. 1a for an
example route selected by COMPASS. The message complexity of COMPASS is 3|E|
which is in O(|E|).

In FACE [12,14], the token changes faces as soon as it finds the first juncture (refer to
Fig. 1b). In degenerate cases, FACE allows the token to traverse the same edge multiple
times. Hence, its worst case message complexity is in O(|V |2). It is worse than that of
COMPASS. However, FACE tends to perform better in practice. Both algorithms may

(a) COMPASS (b) FACE

Fig. 1. Example operation of existing planar face traversal algorithms
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Fig. 2. Traversing non-planar voids

select a route that is far from optimum. The selected route may be particularly long if the
token has to traverse the external phase as in the above examples. OAFR [17] mitigates
long route selection by defining an ellipse around the source-destination pair that the
message should not cross. If the message traverses a face and reaches the boundary of
the ellipse, the message changes the traversal direction. OAFR has the best worst case
efficiency for a sequential face traversal algorithm to date. Its path stretch is in O(ρ2),
where ρ is the length of the optimum path.

Algorithms COMPASS, FACE and OAFR operate only on planar graphs. Obtain-
ing such a graph from a graph induced by a general radio network may be problem-
atic. There are several attempts to allow geometric routing on arbitrary non-planar
graphs [14,24,25,23]. In particular, Nesterenko and Vora [23] propose to traverse non-
planar voids similar to faces. In general the edges that are adjacent to voids do not
intersect at the incident vertices. However, the idea is to have the message follow the
segments of the edges that are adjacent to the void. Refer to Fig. 2 for illustration.

Each pair of nodes u and v adjacent to an edge (u, v) keeps the information about
which edges intersect (u, v) and how to route to the nodes adjacent to these edges.
Suppose node g receives the token that traverses void V1. Node g forwards the token to
c in an edge change message. Recall that in a non-planar graph, edges do not have to
intersect at nodes. Edges (g, a) and (c, f) intersect at point d. The objective of nodes c
and f is to select an edge that intersects (c, f) as close to d as possible. At first c selects
an edge and forwards the token with its selection to f in an edge change message. Node
f consults its own data, selects edge (b, h) and forwards the token to one of the nodes
adjacent to this edge. Thus, the message can completely traverse the void.

Once the void traversal is designed, the various techniques of void-change and ex-
ploration can generate the non-planar equivalents of COMPASS, FACE and OAFR.

2.5 Combining Greedy Routing and Face Traversal

GFG/GPSR [12,13] improves the quality of route selection by combining face routing
with greedy routing. GOAFR+ [15] does the same for OAFR. GOAFR+ achieves re-
markable characteristics. It retains the asymptotic worst case optimality of OAFR and
achieves the best average case path stretch known to date.
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In the combination of greedy routing and face traversal the token has two traversal
modes: greedy and face. The token starts in the greedy mode but switches to face mode
if it encounters a local minimum (a node with no neighbors closer to the destination).
The token continues in the face mode until it finds a node that is closer to the destination
than this local minimum. Then the token switches to greedy mode again until another
local minimum is discovered.

2.6 Execution Model

To present our algorithm, we place several assumptions on the execution model. We
assume that each node can send only one message at a time. The node does not have
control as to when the sent message is actually transmitted. After the node appends the
message to the send queue SQ, the message may be sent at arbitrary time. Each channel
has zero capacity; that is, the sent message leaves SQ of the sender and instantaneously
appears at the receiver. Message transmission is reliable (i.e. there is no message loss).
The node may examine and modify SQ. We assume that SQ manipulation, including its
modification and message transmission, is done atomically. We assume that the execu-
tion of the algorithm is a sequence of atomic actions. The system is asynchronous in the
sense that the difference between algorithm execution speed at each node is arbitrary.

3 CFR Description, Correctness Proof and Performance Bound
Computation

3.1 Description

The pseudocode of CFR is shown in Fig. 3. Refer to the pictures in Fig. 4 for the
illustration of the algorithm’s operation. In the figure, we show three snapshots of a
single computation. Thin solid lines denote particular tokens. The tokens are numbered.
To reduce clutter in the pictures, we only reproduce token numbers. Thus, token t5 is
only shown as 5. Some tokens are destroyed before they leave their originating node.
See for example t5 or t9. We denote such tokens by short arrows. In the picture, the face
names are for illustration only, the global face names are not available to the incident
nodes. The token carries its traversal direction: L or R. When a node receives a token, it
can locally determine which adjacent face the token traverses on the basis of its sender
and its traversal direction. For example, when node a receives L token t1 from node s, a
knows that t1 traverses the adjacent face F . Two tokens at a node match if they traverse
the same face in the opposite directions and at least one of them did not originate in this
node. For example, t6 and t9 at g as well as t3 and t5 at f match. However, t11 and t12
at h do not match because h originated both of these tokens.

A juncture node can locally determine if an adjacent face locally intersects the sd-
line. For example, s knows that F intersects the sd-line while H does not. If a token
arrives at a juncture and the token traverses a face that locally intersects the sd-line the
juncture node injects a pair of tokens into each other neighboring face that intersects
the sd-line. For example, when f receives t2 traversing F that locally intersects the
sd-line, f sends t5 and t6 to traverse H , and t7 and t8 to traverse G. Similarly when h
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node s
/* let F be a face bordering s

and intersecting the sd-line */
add L(s, d, F ) to SQ
add R(s, d, F ) to SQ

node n
if receive L(s, d, F ) then

if R(s, d, F ) ∈ SQ then
/* found matching token */
delete R(s, d, F ) from SQ

else
if n = d then

deliver L(s, d, F )
if n is a juncture and
F locally intersects the sd-line then

foreach F ′ 
= F that locally
intersects the sd-line do

add L(s, d, F ′) to SQ
add R(s, d, F ′) to SQ

add L(s, d, F ) to SQ
if receive R(s, d, F ) then

/* handle similar to L(s, d, F ) */

Fig. 3. Pseudocode of CFR at each node

receives t7, it sends t11 and t12 to traverse H . A juncture node injects the new tokens
only if the token it receives is traversing the face that locally intersects the sd-line.
For example, when juncture node c receives t14 from e, it just forwards the token to b
without injecting tokens into G.

If the destination node receives the token, even though the node delivers it, it pro-
cesses the token further as an ordinary node. That is, node d forwards the token and
injects tokens in adjacent faces if necessary.

3.2 Example Operation

Let us now consider example operation of CFR in the computation in Fig. 4 in detail.
Node s initiates the transmission by sending tokens t1 and t2 to traverse face F . When
t2 reaches juncture node i, i injects t3 and t4 into H and forwards t2 to f . Node f is
also a juncture. Thus, besides forwarding t2 to b, it injects t5 and t6 into H as well as t7
and t8 into G. Token t2 meets a matching token t1 at b and both tokens are destroyed.
This completes the traversal of F . Tokens t7 and t8 traverse G and meet in c, where
they destroy each other. In the process t7 reaches all the remaining juncture nodes: g,
h and c where the tokens are injected in the adjacent faces. Specifically, t7 causes the
injection of t9 and t10 at g, t11 and t12 at h and t13 and t14 at c. All tokens are injected
into the external face H . The tokens traversing H find matching tokens and are quickly
eliminated at f , g, h and c. Tokens t4 and t14 complete the traversal of H . They arrive
at a which destroys them. On its way t14 visits d, which delivers it.
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(a) (b)

(c)

Fig. 4. Example of CFR operation on a planar graph

3.3 Correctness Proof

Lemma 1. For each node n bordering a face F that intersects the sd-line one of the
following happens exactly once: either (1) n receives token T (s, d, F ) where T is either
R or L and forwards it or (2) n has a token, receives a matching token and destroys
them both.

Proof (of lemma). According to the algorithm, a token visits a node and proceeds to the
next node along the face, or two matching tokens meet at a node and disappear. Thus, to
prove the lemma, we have to show that each node bordering face F is reached and that
it is visited only once. A sequence of adjacent nodes of the face is a visited segment if
each node has been visited at least once. A border of a visited segment is a visited node
whose neighbor is not visited. By the design of the algorithm, a border node always
has a token to send to its neighbor that is not visited. As we assume reliable message
transmission, eventually the non-visited neighbor joins the visited segment. Thus, every
node in a face with a visited segment is eventually visited.

The face bordering s has at least one visited segment: the one that contains s itself.
Thus, every node in this face will eventually be visited. As graph G is connected, there
is a sequence of adjacent faces intersecting the sd-line from the face bordering s to the
face bordering d. Adjacent faces share a juncture node. Due to the algorithm design,
when a juncture is visited in one face that intersects the sd-line, the juncture injects a
pair of tokens in every adjacent face. That is, visiting a juncture node creates a visited
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segment in all adjacent faces. By induction, all nodes in the sequence of adjacent faces
are visited, including the destination node.

Let us discuss whether a token may penetrate a visited segment and arrive at an
interior (non-border) node. The computation of CFR starts with a single visited segment
consisting of the source node. Thus, initially, there are no tokens inside any of the visited
segments. Assume there are no internal tokens in this computation up to some step x
within the visited segment. Let us consider the next step. The token may penetrate
the visited segment only through a border node or through an interior junction node.
A token may arrive at a border node b only from the border node of another visited
segment of the same face. Because b is a border node, it already holds the token of
the opposite traversal direction. These two tokens are matching. Thus, b destroys both
tokens and the received token does not propagate to the interior nodes. Let us consider
a juncture node j. Because j is interior to the visited segment, it was visited earlier.
When a juncture node receives a token, it creates a pair of tokens in all adjacent faces.
That is, once a juncture is visited, it becomes visited in all adjacent faces at once. Since
we assumed that there are no internal tokens up to step x, j cannot receive a token. By
induction, a token may not penetrate a visited segment. That is, each node bordering a
face is visited at most once. This completes the proof of the lemma. ��

The below theorem follows from Lemma 1.

Theorem 1. Algorithm CFR guarantees the delivery of a message from s to d.

According to Lemma 1, the total number of messages sent in a computation is equal
to the sum of the incident edges of the faces intersecting the sd-line. An edge can be
incident to at most two faces. That is, the total number of messages sent throughout the
computation is at most 2|E|. Hence, the following corollary.

Corollary 1. The worst case message complexity of CFR is O(|E|).

Theorem 2. The latency of CFR is asymptotically optimal and is within O(ρ2) where
ρ is the number of hops in the shortest path in between the source and destination in
the planar subgraph of G.

Proof (of theorem). The theorem’s proof parallels the optimality proof of GOAFR [15].
Let us consider the upper bound on the latency first. Kuhn et al argue (see [15, Lemma
5.4]) that to derive a bound it is sufficient to consider a bounded degree traversal graph.
If the degree of the graph is unbounded, a bounded degree connected dominating set
subgraph can always be locally constructed. Since it takes just one hop to reach this
subgraph from any point in the graph, the path length over general graph is only 2 hops
more than the length of the path over this subgraph. Let k be the maximum node degree
in the traversal graph.

Since the graph to be traversed is a unit-disk graph, if ρ is the number of hops in the
shortest path between s and d, then the Euclidean distance between the two points is no
more than ρ. Let us consider a disk D(d, ρ) with radius ρ centered in d. Since the short-
est path between s and d is no longer than ρ, this path lies completely inside the disk.
The shortest path intersects sd-line at least twice: at the source and destination node.
Let us consider two consequent points of intersection. Refer to Fig. 5 for illustration.
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Fig. 5. Illustration for the proof of optimality of CFR

Since the graph is planar, the segment of the path between these points, includes the
borders of all faces that intersect the sd-line and lie on the same side of the line as the
shortest path segment. Since CFR traverses these faces, there is a path selected by CFR
whose segment is completely enclosed by sd-line on one side and this shortest path
segment on the other. Examining all such segments of the shortest path, we observe that
there is a path of CFR that is completely enclosed in the disk D(d, ρ).

Let us estimate the length of this path. Kuhn et al argue (see [15, Figure 2]), that the
whole plane can be covered by disks of a diameter of one unit by placing them on a
square grid with sides 1/

√
2. Let us determine how many such squares cover D(d, ρ).

Each square that intersects D(d, ρ) lies completely within D(d, ρ+1). Thus, the number
of such squares is no more than

π(ρ + 1)2

(1/
√

2)2
= 2π(ρ + 1)2

Recall that the graph is unit-disk and all nodes within the unit distance are connected.
The graph is of degree k. Thus, the maximum number of nodes in a single disk of
diameter one, is k. Therefore, the number of nodes inside D(d, ρ) is no more than
2kπ(ρ + 1)2.

There is a path, selected by CFR that lies completely inside D(d, ρ). According to
Lemma 1 a message of CFR can visit the same node at most k times. Thus, the length
of this path of CFR is no more than 2k2π(ρ + 1)2 which is in O(ρ2).

The asymptotic optimality of CFR follows from the lower bound established by
Kuhn et al [16, Theorem 5.1]. ��

4 CFR Application and Extensions

4.1 Combining with Greedy Routing, Using Various Traversal Types

For efficiency, a single direction face traversal may be combined with greedy routing
as in GFG or GOAFR+. Algorithm CFR can be used in a similar combination. We call
the combined algorithm GCFR. The message starts in greedy mode and switches to
CFR once it reaches a local minimum. Because multiple messages traverse the graph
simultaneously, unlike GFG, once the message switches to face traversal in GCFR, it
continues in this mode until the destination is reached.
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4.2 Using Non-planar Graphs

CFR can be adapted to concurrent void traversal [23]. The resultant algorithm is CVR.
CVR can also be combined with greedy routing to form GCVR. Before we describe the
necessary changes let us recall how void traversal operates. Void traversal is performed
over segments of edges adjacent to the void, rather than over complete edges. After
getting the message, two nodes c and f (see Fig. 2 again), adjacent to the edge (c, f)
that contains the segment (d, e), jointly determine the edge whose intersection point
produces the shortest segment in the traversal direction. Then, the token is forwarded
to one of the nodes adjacent to the new edge (b, h). In the example node f forwards the
token to h. In a non-planar graph f and h may be more than one hop apart.

Similar operations happen during the concurrent traversal in CVR. However, care
must be taken to ensure that mates find each other. In particular a mate traversing the
same face might be traveling along the path connecting f and h. Thus, h and f have to
agree on the forwarding path and the tokens have to carry enough information to recog-
nize their mates. Another complication to be resolved is the treatment of junctures. For
CVR, a juncture is the node incident to the edge whose segment intersects the sd-line.
Unlike planar graphs, the segments can intersect at points other than nodes. Thus, the
segment intersection point itself may potentially lie on the sd-line. This case generates
multiple junctures. However, the mates generated by these junctures meet and destroy
each other.

Refer to Fig. 6 for an illustration of CVR operation. To simplify the presentation we
show the traversal of the two adjacent voids V1 and V2 separately in Figures 6a and 6b
respectively. As before, to avoid cluttering the picture, we only show the token numbers.
We explain the traversal of V1 in detail. The traversal starts when s sends two tokens t1
and t2 in the opposite directions around V1. When t1 arrives at e, the nodes incident to
edge (e, b) have to determine the edge that intersects (e, b) closest to the beginning of
the segment. In this case the beginning of the segment is node e itself. Node e sends t1 to
b and the two nodes determine that the appropriate edge is (a, f). Therefore, b forwards
t1 to a which is one of the nodes incident to (a, f). Node a forwards t1 to f . Node f is
a juncture. Hence, f injects a pair of tokens: t5 and t6 into V2. After that, f forwards t2
to k. Node k is also a juncture. Hence, k injects another pair of tokens: t3 and t4 into
V2. Meanwhile, t1 reaches h. To determine the segment of (h, j) that is adjacent to V1,
h forwards t1 to j. The intersecting edge correctly determined, j forwards the message

(a) traversing V1 (b) traversing V2

Fig. 6. Example of CVR operation on a non-planar graph
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to k where it meets its mate — t2. This concludes the traversal of V1. The traversal of
V2 is completed similarly.

5 Performance Evaluation

5.1 Simulation Environment

To evaluate the performance of CFR we recreated the simulation environment used by
Kuhn et al [15,17]. For the simulation, we used the graphs formed by uniformly placing
the nodes at random on a 20 × 20 unit square field. The number of nodes depended on
the selected density. The edges of the graph were selected according to the unit-disk
model: two nodes are connected if and only if they are within the unit-distance of each
other. For each graph, a single source and destination pair was randomly selected. We
used 21 different density levels. To validate our environment we measured the same
preliminary graph parameters as in Kuhn et al [15, Fig. 3],[17, Fig. 3]. For each density
level we carried out 2, 000 measurements. Our results are plotted in Fig. 7. They concur
with the previous studies.

5.2 Evaluation Description

We implemented CFR and compared its performance against the major known geomet-
ric routing algorithms. We took 2, 000 measurements at each graph density level. Refer
to Fig. 8 for an illustration of the resultant graphs and algorithm path selections.

Let us first compare the speed of communication demonstrated by the routing algo-
rithms. In Fig. 9 we plot the path stretch achieved by the algorithms in pure form and
in combination with greedy routing. Figure 9a indicates that pure CFR outperforms all
the other algorithms. In the critical range, the path stretch that the pure CFR provides
is up to five times better than the next best algorithm’s — OAFR. Let us consider the
combination of greedy and face routing. Recall that, unlike the other algorithms, after
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Fig. 8. Latency paths selected by CFR and OAFR (shown in solid lines). The source and desti-
nation nodes are marked by a circle and a square respectively. Graph density is 5 nodes per unit
disk.

switching from greedy to face traversal mode, GCFR does not switch back to greedy
again. Thus, GCFR may miss on an efficient path selected by greedy routing. However,
as the graph density increases, the greedily routed message may not encounter a local
minimum altogether. Therefore, the number of such mode switches decreases and this
potential disadvantage of GCFR is offset. As Fig. 9b indicates, the path stretch produced
by GCFR in the critical region is still over 2.5 times better than the next best algorithm.

Let us now consider the message cost of communication of the algorithms. In Fig. 10
we show the message cost normalized to the shortest path while in Fig. 11 the cost is
normalized to flooding (i.e. every node sends exactly one message). The first presenta-
tion indicates the cost compared to the distance from source to destination, the second
— compared to the whole system participation in the route discovery. The latter metric
gives the perspective of cost of geometric routing compared to flooding-based routing
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Fig. 9. Mean path stretch (ratio of the path selected by the algorithm to the shortest unit-disk
graph path) of geometric routing algorithms on planar graphs depending on the density (nodes
per unit disk) of the unit disk graph.
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Fig. 10. Mean message cost normalized to shortest path of geometric routing algorithms on unit-
disk graphs depending on density (nodes per unit disk) of the unit disk graph
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Fig. 11. Mean message cost normalized to flooding of geometric routing algorithms on planar
graphs depending on density (nodes per unit disk) of the unit disk graph

algorithms [5,7,8,9,10]. Figure 10 shows that CFR and GCFR use more messages than
other geometric routing algorithms. However, Fig. 11 shows that message cost of CFR
and GCFR are comparable to the other algorithms.

To study the effect of graph scale on the performance of geometric algorithms, we
constructed the simulation scenario similar to that of Kuhn et al [17, Fig. 10]. We fixed
the density of the graph near the critical value — at 4.5; and varied the field size. Specif-
ically, we selected 10 different lengths of the side of the square field from 4 to 40 units.
The number of nodes in the field was selected to match the required density of 4.5. We
took 3, 000 measurements for each side length. The results of the simulation are shown
in Fig. 12. Our simulation indicates that the path stretch achieved by CFR and GCFR is
lower than that of the other routing algorithms at any scale. This is true for pure geomet-
ric routing and its combination with greedy routing. Moreover, as graph scale increases,
compared to the other routing algorithms, CFR and GCFR exhibit significantly slower
rate of path stretch increase.

To demonstrate the viability of CFR on non-planar graphs, we implemented CVR
and GCVR and compared their performance against conventional VOID and GVG. For
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Fig. 12. Mean path stretch of routing algorithms on planar subgraphs of unit-disk graphs depend-
ing on graph scale with average graph density of 4.5. The graphs are constructed on square fields
with side lengths from 4 to 40 units.

these experiments we also used a 20×20 units square field randomly filled by the nodes
with randomly selected source and destination pairs. However, the network was mod-
eled as a quasi unit-disk graph [21,22]. Specifically, two vertices of u and v: i) were
definitely adjacent if |u, v| ≤ d = 0.75; ii) were adjacent with probability p = 0.5 if
d < |u, v| ≤ 1; iii) definitely not adjacent if |u, v| > 1. We selected 21 density levels
and carried out 2, 000 trials for each density level. Due to the limitations of double pre-
cision floating point calculations, some of the trials did not succeed: due to computation
errors, the adjacent nodes may not agree on the edge intersection location. To ensure
successful runs, for each graph we globally pre-computed all intersection points. The
results are shown in Fig. 13. Our results indicate that CFR retains its latency advantages
over the other algorithms in non-planar graphs.
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6 Conclusion

The CFR algorithm presented in this paper improves both the bounds and the practi-
cal performance of geometric routing algorithms. Moreover, CFR addresses one of the
major drawbacks of geometric routing: its inconsistency due to selection of disadvanta-
geous routes. The proposed technique is simple to implement. The authors are hopeful
that it will quickly find its way into practical implementations of geometric routing
algorithms.
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Abstract. In an OPODIS’06 paper, we laid down the foundations of a
real-time distributed computing model (RT-Model) with non-zero dura-
tion computing steps, which reconciles correctness proofs and real-time
schedulability analysis of distributed algorithms. By applying the RT-
Model to the well-known drift-free internal clock synchronization prob-
lem, we proved that classic zero step-time analysis sometimes
provides too optimistic results. The present paper provides a first step to-
wards worst-case optimal deterministic clock synchronization with drift-
ing clocks in real-time systems, which is an open problem even in classic
distributed computing. We define and prove correct an optimal remote
clock estimation algorithm, which is a pivotal function in both exter-
nal and internal clock synchronization, and determine a matching lower
bound for the achievable maximum clock reading error in the RT-Model.
Moreover, we show how to combine our optimal clock estimation algo-
rithm with existing clock synchronization algorithms.
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1 Introduction

Clock synchronization [1,2,3] is an important and well-studied problem in dis-
tributed systems, where processors are equipped with imperfect hardware clocks
and connected through a message-passing network. The problem is parameter-
ized by the achievable worst-case synchronization precision and comes in two
flavors: The goal of external clock synchronization is to synchronize all clocks to
the clock of a dedicated source processor, whereas internal clock synchronization
aims at mutually synchronizing all the clocks to each other.

Our research aims at optimal deterministic clock synchronization in
distributed real-time systems. It differs from traditional distributed computing re-
search by not abstracting away queueing phenomenons and scheduling, but rather
quantifying their impact on “classic” results. As a first step towards this goal,
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we revisited the well-known drift- and failure-free internal clock synchronization
problem [4] in [5,6]: Utilizing a novel distributed computing model (RT-Model)
based on non-zero-duration computing steps, which both facilitates real-time
schedulability analysis and retains compatibility with classic distributed comput-
ing analysis techniques and results, we proved that the best precision achievable
in the real-time computing model is the same as in the classic computing model,
namely, (1 − 1

n )ε, where n is the number of processors and ε is the message de-
lay uncertainty. It turned out, however, that any optimal clock synchronization
algorithm has a time complexity of Ω(n) in the real-time computing model. Since
a O(1) algorithm achieving optimal precision is known for the classic computing
model [4], it became apparent that distributed computing results are sometimes
too optimistic in the real-time systems context.

The present paper provides a first step towards deterministic optimal-
precision1 clock synchronization in real-time systems with clocks that have non-
zero drift, i.e., that do not progress exactly as real-time does. More specifically,
we restrict our attention to a (deceptively simple) subproblem of clock synchro-
nization, namely, remote clock estimation, in the real-time computing model.
Informally, a remote clock estimation algorithm allows processor p to estimate
the local clock at processor q at some real-time t, with a known maximum clock
reading error. In fact, it is well-known that any existing clock synchronization
algorithm can be reviewed in terms of a generic structure [11], which consists of
(1) detecting the need for resynchronization, (2) estimating the remote clock val-
ues, (3) computing a (fault-tolerant) clock adjustment value, and (4) adjusting
the local clock accordingly. Our results on (continuous) remote clock estimation
are hence pivotal building blocks for finding and analyzing optimal algorithms
for both external and internal clock synchronization in real-time systems.

Related work: Optimal-precision clock synchronization with drifting clocks is
an open problem even in classic distributed computing: No optimal algorithms,
and only trivial or quite specialized lower bounds are known by now. For ex-
ample, [12] provides a lower bound for the restricted class of function-based
internal clock synchronization algorithms, and [13] provides a lower bound for
the precision achievable in a “single-shot” version of clock synchronization (“tick
synchronization”) in the semi-synchronous model, with inter-step-times ∈ [c, 1]
that can be thought of as being caused by drifting clocks. Optimal results are
only available with respect to given message patterns (“passive” clock synchro-
nization) [14,15]; unfortunately, optimal message patterns and hence optimal
“active” clock synchronization algorithms cannot be inferred from this research.

Remote clock estimation itself is also handled/analyzed sub-optimally or ab-
stracted away entirely in the wealth of existing research on clock synchronization:

1 We restrict our attention to worst-case optimality throughout this paper, i.e., we
only care about minimizing the maximum precision in the worst execution (rather
than in every execution). This is appropriate in the hard real-time systems context,
where only the worst case performance matters. For the same reason, we consider
deterministic algorithms only; probabilistic clock synchronization [7,8], statistically
optimal estimations [9,10] and similar topics are hence out of scope.
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Most papers on clock synchronization employ trivial clock estimation algorithms
only, based on a one-way or round-trip time-transfer via messages [9], and pro-
vide a fairly coarse analysis that (at best) incorporates clock drift [7] and clock
granularity [16]. Alternatively, as in [17,12], remote clock estimation is considered
an implementation issue and just incorporated via the a-priori given maximum
clock reading error. Hence, to the best of our knowledge, optimal deterministic
clock estimation has not been addressed in the existing literature.

Contributions: The present paper aims at optimal deterministic clock estima-
tion and related lower bounds in the real-time systems context, where the issue
of queueing and scheduling is added to the picture: Utilizing an extension of the
real-time computing model (Sect. 2) introduced in [18], which allows to model
executions in real-time systems with drifting clocks, we provide an optimal solu-
tion for the problem of how to continuously estimate a source processor’s clock
(Sect. 3). The algorithm is complemented by a matching lower bound on the
achievable maximum clock reading error (Sect. 4). Our results precisely quantify
the effect of system parameters such as clock drift, message delay uncertainty
and step duration on optimal clock estimation. Finally, we show how to incor-
porate our optimal clock estimation algorithm in existing clock synchronization
algorithms (Sect. 5). Some conclusions (Sect. 6) eventually complete our paper.

2 The Real-Time Computing Model

Our system model is based on an extension of the simple real-time distributed
computing model introduced in [5], which reconciled the distributed computing
and the real-time systems perspective by just replacing instantaneous comput-
ing steps with computing steps of non-zero duration. The extended version of the
real-time model, introduced in [18], is based on a “microscopic view” of execu-
tions termed state-transition traces, which allows to define a total order on the
global states taken on during an execution; this feature is mandatory for properly
modeling drifting clocks. Due to lack of space, we will only restate the most impor-
tant definitions and properties of the extended real-time computing model here;
consult [18] for all the details (including a relation to existing computing models).

2.1 Jobs and Messages

We consider a network of n failure-free processors, which communicate by passing
unique messages. Each processor p is equipped with a CPU, some local memory,
a hardware clock HCp(t), and reliable links to all other processors.

The CPU is running an algorithm, specified as a mapping from processor in-
dices to a set of initial states and a transition function. The transition function
takes the processor index p, one incoming message, the receiver processor’s cur-
rent local state and hardware clock reading as input, and yields a sequence of
states and messages to be sent (termed state transition sequence in the sequel),
e.g. [oldstate, int.st.1, int.st.2, msg. m to q, msg. m′ to q′, int.st.3, newstate], as
output. Note that a message to be sent is specified as a pair consisting of the
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message itself and the destination processor. Since more than one atomic state
transition might be required in response to a message, the example above con-
tains three intermediate states.

Every message reception causes the receiver processor to change its state and
send out all messages according to the state transition sequence provided by the
transition function. Such a computing step will be called a job in the following,
and is executed non-preemptively within a system-wide lower bound µ− ≥ 0 and
upper bound µ+ < ∞. We assume that the hardware clock can only be read at
the beginning of a job. Note that these assumptions are not overly restrictive,
since a job models a (possibly complex) computing step rather than a task in
the real-time computing model.

Jobs can be triggered by ordinary messages, timer messages and input mes-
sages: Ordinary messages are transmitted over the links. The message delay δ is
the difference between the real time of the start of the job sending the message
and the real time of the arrival of the message at the receiver. There is a lower
bound δ− ≥ 0 and an upper bound δ+ < ∞ on the message delay of every or-
dinary message. Since the message delay uncertainty is a frequently used value,
we will abbreviate it with ε := δ+ − δ−.

To capture timing differences between sending a single message versus (single-
hop) multicasting or broadcasting, the interval boundaries δ−, δ+, µ− and µ+

can be either constants (e.g. in the case of hardware broadcast) or non-decreasing
functions {0, . . . , n − 1} → IR+ , representing a mapping from the number of
destination processors to which ordinary messages are sent during a job to the
actual message or processing delay bound. The following example shall clarify
this: If a job sends 
 messages to 
 recipients (with the same or with different
content),2 that job’s duration lies between µ−

(�) and µ+
(�) time units. Each of the


 messages takes between δ−(�) and δ+
(�) time units to arrive at the recipient. The

delays of these messages need not be the same, however.
Sending 
 messages at once must not be more costly than sending those mes-

sages in multiple steps. Formally, ∀i, j ≥ 1 : f(i+j) ≤ f(i) + f(j) (for f = δ−,
δ+, µ− and µ+). In addition, we assume that the message delay uncertainty
ε(�) := δ+

(�) − δ−(�) is also non-decreasing and, therefore, ε(1) is the minimum
uncertainty. This assumption is reasonable, as sending more messages usually
increases the uncertainty rather than lowering it.

Timer messages are used for modeling time(r)-driven executions in our
message-driven setting: A processor setting a timer is modeled as sending a
timer message (to itself), and timer expiration is represented by the reception
of a timer message. Note that timer messages do not need to obey the message
delay bounds, since they are received when the hardware clock reaches (or has
already reached) the time specified in the timer message.

Inputmessages arrive from outside the system. In this paper, input messages are
used solely for booting up the system, i.e., for triggering the first job in an execution.

2 As the message size is not bounded, we can assume that at most one message is sent
to the same processor in a job. Hence, there is a one-to-one correspondence between
messages and destination processors in each job.
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Messages arriving while the processor is busy with some job are queued. When
and in which order messages collected in the queue are processed is specified
by some scheduling policy, which is, in general, independent of the algorithm.
Formally, a scheduling policy is specified as a mapping from the current queue
state (= a sequence of messages), the hardware clock reading, and the current
local processor state onto a single message from that message sequence. The
scheduling policy is used to select a new message from the queue whenever
processing of a job has been completed. We ensure liveness by assuming that
the scheduling policy is non-idling. To make our results as strong as possible, we
will allow the adversary to control the scheduling policy in the algorithm proofs,
but we will assume an algorithm-controlled scheduler in the lower bound proof.

Figure 1 depicts an example of a single job at the sender processor p, which
sends one message m to receiver q currently busy with processing another mes-
sage. It shows the major timing-related parameters in the real-time computing
model, namely, message delay (δ), queuing delay (ω), end-to-end delay (∆ =
δ + ω), and processing delay (µ) for the message m represented by the dotted
arrows. The bounds on the message delay δ and the processing delay µ are part
of the system model, although they need not be known to the algorithm. Bounds
on the queuing delay ω and the end-to-end delay ∆, however, are not parameters
of the system model. Rather, those bounds (if they exist) must be derived from
the system parameters (n, [δ−, δ+], [µ−, µ+]) and the message pattern of the
algorithm, by performing a real-time schedulability analysis, cp. Sect. 3.4.

sending

receiving & enqueuing

processing

0 1 2 3 4 5 6 7 8 9 10 11 12

p

0 1 2 3 4 5 6 7 8 9 10 11 12

q

m

δ ω µ

∆

Fig. 1. Timing parameters for some message m

2.2 Hardware Clocks

The hardware clock of any processor p starts with some arbitrary initial value
HCp(0) and then progresses with a bounded drift rate of ρp, i.e., t real-time
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units correspond to at least (1 − ρp)t and at most (1 + ρp)t clock-time units.
Formally, for all p, t > t′ ≥ 0:

(t − t′)(1 − ρp) ≤ HCp(t) − HCp(t′) ≤ (t − t′)(1 + ρp)

When talking about time units in this paper, we mean real-time units, unless
otherwise noted.

2.3 Real-Time Runs

A real-time run (rt-run) is a sequence of receive events and jobs.
A receive event R for a message arriving at p at real-time t is a triple consisting

of the processor index proc(R) = p, the message msg(R), and the arrival real-
time time(R) = t. Note that t is the receiving/enqueuing time in Fig. 1.

A job J starting at real-time t on p is a 6-tuple, consisting of the proces-
sor index proc(J) = p, the message being processed msg(J), the start time
begin(J) = t, the job processing time duration(J), the hardware clock read-
ing HC(J) = HCp(t) when the job starts, and the state transition sequence
trans(J) = [oldstate, . . . , newstate]. Let end(J) = begin(J) + duration(J).

Figure 1 provides an example of an rt-run, containing three receive events and
three jobs on the second processor q. For example, the dotted job on processor q
consists of (q, m, 7, 5, HCq(7), [oldstate, . . . , newstate]), with m being the mes-
sage received during the receive event (q, m, 4). An rt-run is called admissible, if
all its message delays (measured from the start of the job to the corresponding
receive event) stay within [δ−(�), δ

+
(�)], the duration of all jobs sending 
 messages

is within [µ−
(�), µ

+
(�)], and the ordering of receive events and jobs does not violate

causality (cf. the well-known happens-before relation [19]).
If a timer is set during some job J for some time T < HCproc(J)(end(J)), the

timer message will arrive at time end(J), when J has completed.

2.4 State Transition Traces

The global state of a system is composed of the local state sp of every processor
p and the set of not yet processed messages. Rt-runs do not allow a well-defined
notion of global states, since they do not fix the exact time of state transitions in a
job. This problem is fixed by introducing the “microscopic view” of state-transition
traces (st-traces) [18], which assign real times to all atomic state transitions.

The following example should provide the required background for under-
standing the usage of this method, see Appendix A in [20] for more
information.

Example 1. Let J with trans(J) = [oldstate, msg. m to q, int.st.1, newstate] be
a job in a real-time run ru. If tr is an st-trace of ru, it contains the following
state transition events (st-events) ev′, ev′′ and ev′′′:
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– ev′ = (send : t′, p, m)
– ev′′ = (transition : t′′, p, oldstate, int.st.1)
– ev′′′ = (transition : t′′′, p, int.st.1, newstate)

with begin(J) ≤ t′ ≤ t′′ ≤ t′′′ ≤ end(J). For every time t, there is at least one
global state g in tr. Note carefully that tr may contain more than one g with
time(g) = t. For example, if t′′ = t′′′ in the previous example, three different
global states at time t′′ would be present in the st-trace, with sp(g) representing
p’s state as oldstate, int.st.1 or newstate. Nevertheless, in every st-trace, all
st-events and global states are totally ordered by some relation ≺.

The time t of a send st-event must be such that message causality is not
violated, i.e., t ≤ begin(J), with J being the job processing the message in ru.
Recall, however, that the message delay δ is measured from the start of the
job sending the message to the receive event in ru. This convention allows a
complete schedulability analysis to be done on top of the rt-run, without the
need to consider the actual time of state transitions.

3 Optimal Remote Clock Estimation

In this and the following section, we assume a failure-free two-processor system
with drifting clocks. Note that remote clock reading is trivially unsolvable in
case of just a single crash failure.

3.1 Interval-Based Notation

Often, remote clock estimations are represented by a tuple (value, margin),
with value representing the expected value of the remote clock and margin
the absolute deviation from the remote clock’s real value, i.e., remote clock ∈
[value−margin, value+margin]. With non-drifting clocks, this works well [4,5].
However, consider the two cases in Fig. 2, in which p tries to guess src’s value at
time tr by evaluating a timestamped message with delay ∈ [δ−, δ+] and clocks
with maximum drift ρsrc and ρp.

In the first case, src is a processor with a slow clock and the message is
fast; in the second case, src’s clock is fast but the message is slow. Thus, at
time tr, src’s hardware clock reads HCsrc(ts) + δ−(1 − ρsrc) in the first and
HCsrc(ts) + δ+(1 + ρsrc) in the second case. In the drift-free case (ρsrc = 0), p

can assume that src’s clock progressed by δ−+δ+

2 = δ−+ ε
2 and add this value to

HCsrc(ts), which is contained in the message. This results in a good estimation
of HCsrc(tr): It matches the expected value of HCsrc(tr), provided message
delays are uniformly distributed, with a maximum error margin of ±ε/2.

In the drifting case, the arithmetic mean of δ−(1 − ρsrc) (= the progress of
src in the first case) and δ+(1 + ρsrc) (in the second case) is δ− + ε

2 (1 + ρsrc),
which is larger than δ− + ε

2 . Thus, p can either estimate src’s clock to be

– HCsrc(ts)+δ−+ ε
2 (1+ρsrc), which makes for a nice symmetric error margin

of ±(δ−ρsrc + ε
2 (1 + ρsrc)), or
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p

src

δ−

ts

tr

slow

δ+

ts

tr

fast

Fig. 2. p receiving a timestamped message from src

– HCsrc(ts) + δ− + ε
2 , which is the expected value, but which has asymmetric

error margins [−( ε
2 + δ−ρsrc), +( ε

2 + δ+ρsrc)].

To avoid this problem, we assume that p outputs two values est− and est+,
such that src’s real value is guaranteed to be ∈ [est−, est+]. Since we want
to prove invariants on [est−, est+], although there might not be a computation
event at every time t, we define est−p (g) and est+p (g) at some global state g on
processor p as functions of the current hardware clock reading, HCp(time(g)),
and the current local state sp(g) of p. Hence, the remote clock estimation problem
is formally defined as follows:

Definition 1 (Continuous clock estimation within Γ ). Let src ( source)
and p be processors. Eventually, p must continuously estimate the hardware clock
value of src with a maximum clock reading error Γ . Formally, for all st-traces tr:

∃evstable ∈ tr : ∀g / evstable :

HCsrc(time(g)) ∈ [est−p (g), est+p (g)] ∧ est+p (g) − est−p (g) ≤ Γ

3.2 System Model

The clock estimation algorithm in Sect. 3.3 will continuously send messages from
src to p as fast as possible. The following parameters specify the underlying
system:

– [δ−, δ+]: Bounds on the message delay.
– [µ−

(0), µ
+
(0)]: Bounds on the length of a job processing an incoming message,

without sending any (non-timer) messages. In the algorithm of Sect. 3.3, all
jobs on p fall into this category.

– [µ−
(1), µ

+
(1)]: Bounds on the length of a job processing an incoming message

and sending one message to the other processor. In our algorithm, all jobs
on src fall into this category; any such job is triggered by a timer message
(or an input message, in case of the first job).
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– ρp and ρsrc: Bounds on the drift of p and src, respectively. We assume
0 ≤ ρ < 1, for both ρ = ρp and ρ = ρsrc.

To circumvent pathological cases, we need to assume that

µ−
(1) ≥ µ+

(0) . (1)

Otherwise, the adversary could create an rt-run in which the “receiving” com-
puting steps at p take longer than the “sending” computing steps at src, causing
p’s message queue to grow without bound. Note that (1) can also be interpreted
as a bandwidth requirement: The maximum data rate of src must not exceed
the available processing bandwidth at p (including communication).

3.3 The Algorithm

Consider the algorithm in Fig. 3, which lets src send timestamped messages
to p as fast as possible. Processor p determines an estimate for src’s clock by
using the most recent message from src: While the formula used for the lower
error margin est− is straightforward (est− increases with a factor ≤ 1 due to
p’s drift), the fact that the upper error margin est+ stays constant as soon as
the last message from src is older than (µ+

(0) +µ+
(1))(1−ρp) might seem counter-

intuitive, because it means that, as the last message from src gets older, the
clock reading error est+ − est− of the estimate becomes smaller than it was
immediately after receiving the message.

The explanation for this phenomenon is that, in a system with reliable links, a
lot of information can be gained from not receiving a message. As we will show

Processor src

1 upon booting or upon receiving ‘‘send now’’:
2 var my hc = current hc() /∗ can only be read at the beginning of the job ∗/
3 send my hc to p
4 set ‘‘ send now’’ timer for my hc /∗ will arrive at end(current job) ∗/

Processor p

1 var rcv hc ← −∞ /∗ local time of reception ∗/
2 var send hc ← −∞ /∗ remote time of sending ∗/
3

4 function age = current hc() − rcv hc
5 public function est− = send hc + (1 − ρsrc)

`
δ− + age/(1 + ρp)

´

6 public function est+ = send hc + (1 + ρsrc)
“
δ+ + min{µ+

(0) + µ+
(1), age/(1 − ρp)}

”

7

8 upon receiving a HC value HCsrc from src:
9 var my hc = current hc()

10 if HCsrc > send hc:
11 rcv hc ← my hc; send hc ← HCsrc /∗ one atomic step ∗/

Fig. 3. Remote clock estimation algorithm
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HCsrc

HCp

est−

est+

(a) Naive estimation

HCsrc

HCp
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est+

(b) Considering future mes-
sages

Fig. 4. p’s estimate of src’s hardware clock

in the next section, the end-to-end delay ∆, i.e., the message delay plus the
queuing delay, of every relevant message is ∈ [δ−, δ+] in the model of Sect. 3.2.
If the last message m from src is µ+

(1) + x time units old (for some x > 0, plus
µ+

(0) for processing on the receiver side, plus some drift factor), we know that
this message cannot have had an end-to-end delay ∆m of δ+. Otherwise, the
next message m′ from src should have arrived by now. Actually, we know that
∆m must be within [δ−, δ+ − x], which is much more accurate than our original
assumption of [δ−, δ+]. Clearly, the better p’s estimate for ∆m is, the better p’s
estimate of src’s hardware clock can be.

As can be inferred from Fig. 4, the maximum clock reading error is reached
when the message is (µ+

(0) + µ+
(1))(1 − ρp) hardware clock time units old:

Γ = max{est+ − est−} = (1 + ρsrc)
(
δ+ + (µ+

(0) + µ+
(1))(1 − ρp)/(1 − ρp)

)
− (1 − ρsrc)

(
δ− + (µ+

(0) + µ+
(1))(1 − ρp)/(1 + ρp)

)
Note that (µ+

(0)+µ+
(1))

1−ρp

1+ρp
(1−ρsrc) can be rewritten as (µ+

(0)+µ+
(1))(1−ρsrc−2ρp)

+ ν, with

ν = 2(µ+
(0) + µ+

(1))ρp
ρp + ρsrc

1 + ρp
(2)

denoting a very small term in the order of O(µ+ρ2),3 which is usually negligible.
Thus, we have a maximum clock reading error of

Γ = ε + ρsrc(δ− + δ+) + 2(ρsrc + ρp)(µ+
(0) + µ+

(1)) − ν . (3)

3.4 Schedulability Analysis

Applying the system model restrictions from Sect. 3.2 to the algorithm allows
us to make some general observations:
3 We use µ+ = max{µ+

(0), µ
+
(1)} and ρ = max{ρsrc, ρp} as abbreviations here.
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Observation 1. Every timer set during some job starts processing at the end
of that job. Formally, for all timer messages m: (m ∈ trans(J)) ⇒ ∃J ′ :
(begin(J ′) = end(J) ∧ msg(J ′) = m).

Observation 2. src sends an infinite number of messages to p. The begin times
of the jobs sending these messages are between µ−

(1) and µ+
(1) time units apart.

Given only FIFO links and a FIFO scheduling policy, a simple analysis would
show that the end-to-end delay ∆m, i.e., message (transmission) delay plus queu-
ing delay, is within [δ−, δ+], for all ordinary messages m. However, in the general
setting with non-FIFO links and an arbitrary scheduling policy, it could, for ex-
ample, be the case that a slow (message delay δ+) message is “overtaken” by a
fast message that was sent later but arrives earlier. If this fast message causes the
slow one to be queued, the bound of δ+ is exceeded. We can, however, solve this
problem by filtering (line 10 of the algorithm) “irrelevant” messages, which have
been overtaken by faster messages and, thus, might have had a longer end-to-end
delay than δ+.

Of course, one obvious solution would be to put that “filter” inside the sched-
uler, preventing these irrelevant messages from being enqueued and allowing us
to derive the bound ∆m ∈ [δ−, δ+] by some very simple observations. However,
the remainder of this section will demonstrate that this is not necessary: By
showing that the bound is satisfied even if every message gets queued and fil-
tering is done within the algorithm, we increase the coverage of our result to
systems without low-level admission control.

Let i ≥ 1 denote the i-th non-timer message sent from src (to p). We will
show, by induction on i, that a certain bound holds for all messages. This generic
bound will allow us to derive the upper bound of δ+ for the end-to-end delay of
relevant messages. First, we need a few definitions:

– Ji: The sending job of message i (on processor src).
– J ′

i : The processing job of message i (on processor p).
– Fi := {r : begin(J ′

r) < begin(J ′
i) ∧ r > i}: The set of “fast” messages r > i,

that were processed (on p) before i. Informally speaking, this is the set of
messages that have overtaken message i. Note that these messages are not
necessarily received earlier than i, but processed earlier.

– f(i) := begin(Ji)+ δ+ +
∑

j∈Fi∪{i} µj
(0). This is an upper bound on the “fin-

ishing” real time by which all messages ≤ i have been processed. µj
(0) denotes

the actual processing time ∈ [µ−
(0), µ

+
(0)] of message j (= duration(J ′

j)).

Observe that f(i) ≥ f(i−1), since begin(Ji) increases by at least µ−
(1), whereas

at most one message (whose processing takes at most µ+
(0)) “leaves” the set

Fi ∪ {i}.

Lemma 1. For all i holds: No later than f(i), all J ′
j, 1 ≤ j ≤ i, finished

processing; formally, end(J ′
j) ≤ f(i).
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Proof. By induction. For the induction start i = 0, the statement is void since
there is no job to complete (f(0) can be defined arbitrarily). For the induction
step, we can assume that the condition holds for i − 1 ≥ 0, i.e., that

∀1 ≤ j ≤ i − 1 : end(J ′
j) ≤ f(i − 1) . (4)

Assume by contradiction that the condition does not hold for i, i.e., that there
is some j ≤ i such that end(J ′

j) > f(i). Since f(i) ≥ f(i − 1), choosing some
j < i immediately leads to a contradiction with (4). Thus,

end(J ′
i) > f(i) . (5)

Assume that begin(J ′
i) ≤ begin(J ′

i−1). Since end(J ′
i) ≤ end(J ′

i−1) ≤ f(i−1) ≤
f(i) by (4), this leads to a contradiction with (5). Thus, begin(J ′

i) > begin(J ′
i−1).

Since J ′
i starts later than J ′

i−1, Fi−1 ⊆ Fi (since i /∈ Fi−1, and, thus, all
r ∈ Fi−1, r > i − 1, are also in Fi). Partition Fi into Fold = Fi−1 and Fnew =
Fi \ Fi−1. Note that f(i) ≥ f(i − 1) + µ−

(1) + µi
(0) − µi−1

(0) +
∑

j∈Fnew µj
(0).

Let t = f(i)− µi
(0) −
∑

j∈Fnew µj
(0). Note that t ≥ f(i− 1), which means that

all messages J ′
j , j < i, and all messages ∈ Fold have been processed by that

time, and that t ≥ begin(Ji) + δ+, which means that message i has arrived by
time t. There are two cases, both contradicting (5):

1. There is some idle period in between t and f(i): Since i has arrived by time
t, this means that i has already been processed by time f(i), due to our
non-idling scheduler.

2. There is no idle period in between t and f(i). Thus, we have a busy period of
length f(i)−t = µi

(0)+
∑

j∈Fnew µj
(0), which is only used to process messages

from Fnew and message i (all other messages are done by f(i−1) due to the
induction assumption). This also implies that i gets processed by f(i). ��

We call i a “relevant” message if Fi = ∅. Thus, the following lemma follows
immediately:

Lemma 2. The end-to-end delay ∆ of all relevant messages is ∈ [δ−, δ+].

3.5 Proof of Correctness

Fix some rt-run ru and st-trace tr and let evstable be the transition st-event of
the first relevant message from src to p. It will be shown that after evstable, src’s
hardware clock stays within p’s values of est− and est+.

Fix some global state g / evstable: Let m be the last relevant message from src
to p fully processed before g, i.e., whose transition st-event ≺ g, with tj being
the time that the job processing the message starts and ts being the starting time
of the sending job of that message. Since g / evstable, such a message m must
exist. Observe that line 10 in the algorithm ensures that only relevant messages
cause a state transition in p.
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p
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∆m
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(1)

max. δ+

tj
t
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Fig. 5. Two consecutive messages from src to p

Let t = time(g) and ∆m = tj − ts (cf. Fig. 5). Note that ∆m corresponds to
δm, the message delay, plus any queuing delay m may experience. (For simplicity,
Fig. 5 shows a case without queuing.) Due to Lemma 2, we know that ∆m is
bounded by [δ−, δ+]. In addition, we define the following drift factors:

drp =
HCp(t) − HCp(tj)

t − tj
(6a)

drsrc =
HCsrc(t) − HCsrc(ts)

t − ts
(6b)

Clearly, drsrc ∈ [1− ρsrc, 1+ ρsrc] and drp ∈ [1− ρp, 1+ ρp]. These definitions
allow us to derive the following by applying (6a) and the definition of ∆m:

HCsrc(t) = HCsrc(ts) + (t − ts)drsrc = HCsrc(ts) + ((t − tj) + (tj − ts))drsrc

= HCsrc(ts) +
(

HCp(t) − HCp(tj)
drp

+ ∆m

)
drsrc .

Since HCsrc(t) can never become less than the minimum of this expression,

HCsrc(t) ≥ min
drp

drsrc
∆m

{
HCsrc(ts) +

(
HCp(t) − HCp(tj)

drp
+ ∆m

)
drsrc

}

= HCsrc(ts) +
(

HCp(t) − HCp(tj)
1 + ρp

+ δ−
)

(1 − ρsrc)

= sp(g).send hc +
(
agep(g)/(1 + ρp) + δ−

)
(1 − ρsrc) .

Hence, we have:

Lemma 3. HCsrc(t) ≥ est−p (g).

Doing the same for the maximum of the above expression yields a similar result:

Lemma 4. HCsrc(t) ≤ sp(g).send hc + (agep(g)/(1 − ρp) + δ+) (1 + ρsrc).
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This value is still greater than est+. Thus, we have to use another approach to
prove our upper bound on HCsrc: First, we note that the real time between ts
and t is bounded:

Lemma 5. t − ts ≤ δ+ + µ+
(0) + µ+

(1).

Proof. We will again use the numbering of messages as in Sect. 3.4. Recall Fig. 5
and assume by contradiction that i = m was sent earlier, i.e., that ts < t− δ+ −
µ+

(0) − µ+
(1). Since the (real-time) delay between two consecutive messages sent

from src to p is at most µ+
(1) (cf. Observation 2), t′s < t − δ+ − µ+

(0) holds for t′s,
the begin time of the job sending i + 1. Since i is a relevant message, i + 1 must
be processed later than i.

Consider Fi+1, the set of messages sent after message i + 1 but processed
earlier; Fi+1 might also be ∅, if i + 1 is a relevant message. Let J ′

i+1 be the job
processing message i + 1 and let J = Fi+1 ∪{i + 1}. By Lemma 1 we know that
end(J ′

i+1) ≤ f(i + 1) = t′s + δ+ +
∑

j∈J µj
(0).

Let x be the first message ∈ J that will be processed at p. Clearly, x must be
a relevant message. Otherwise, there would be some y > x ≥ i + 1 such that J ′

y

is processed before J ′
x. However, if begin(J ′

y) < begin(J ′
x) ≤ begin(J ′

i+1), then
y ∈ J , contradicting the assumption that x is the first message ∈ J that will
be processed.

We know that all of J have been processed before end(J ′
i+1) ≤ t′s + δ+ +∑

j∈J µj
(0) and that processing all of J takes at least

∑
j∈J µj

(0) time units.
Thus, at t′s +δ+, at least one of J starts processing, is currently being processed
or has already been processed. Since J ′

x is the first such job, begin(J ′
x) ≤ t′s +δ+.

Recalling t′s < t−δ+−µ+
(0) from the beginning of the proof leads to begin(J ′

x) <

t − µ+
(0). Since x is a relevant message and processing x takes at most µ+

(0) time
units, its transition st-event is no later than at t′ < t. This contradicts our
assumption that m = i is the last relevant message from src fully processed by
p before g. ��

Combining Lemma 5 with (6b) results in

HCsrc(t) − HCsrc(ts)
drsrc

≤ δ+ + µ+
(0) + µ+

(1)

and hence

HCsrc(t) ≤ HCsrc(ts) + (δ+ + µ+
(0) + µ+

(1))drsrc

≤ max
drsrc

{
HCsrc(ts) + (δ+ + µ+

(0) + µ+
(1))drsrc

}
= HCsrc(ts) + (δ+ + µ+

(0) + µ+
(1))(1 + ρsrc)

= sp(g).send hc + (δ+ + µ+
(0) + µ+

(1))(1 + ρsrc)

which, combined with Lemma 4 and the definition of est+, yields the following
result:
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Lemma 6. HCsrc(t) ≤ est+p (g).

Combining Lemma 3 and 6 finally yields Theorem 1, which proves that the
algorithm in Fig. 3 indeed solves the remote clock estimation problem according
to Definition 1.

Theorem 1 (Correctness). For all global states g / evstable, where evstable is
the transition st-event of the first message from src to p, it holds that
HCsrc(time(g)) ∈ [est−p (g), est+p (g)]. The maximum clock reading error Γ =
max{est+ − est−} is

Γ = ε + ρsrc(δ− + δ+) + 2(ρsrc + ρp)(µ+
(0) + µ+

(1)) − ν,

with the usually negligible term ν = O(µ+ρ2) given by (2).

4 Lower Bound

In this section, we will show that the upper bound on Γ determined in Theorem 1
is tight, i.e., that the algorithm in Fig. 3 is optimal w.r.t. the maximum clock
reading error.

4.1 System Model

For the lower bound proof, we require that δ+(1 − ρ) ≥ δ−(1 + ρ) and that
µ+

(�)(1 − ρ) ≥ µ−
(�)(1 + ρ), for 
 ∈ {0, 1} and ρ ∈ {ρsrc, ρp}. These lower bounds

on the message and processing delay uncertainties prevent the processors from
using their communication subsystems or their schedulers to simulate a clock
that has a lower drift rate than their hardware clocks.

To simplify the presentation, we will make three additional assumptions. In
Sect. 4.3, we will briefly discuss the consequences of dropping these.

1. δ− ≥ µ+
(0). This allows the adversary to choose a scenario where no send

and/or transition st-event in a job occurs earlier than µ+
(0)(1 − ρ) hardware

clock time units after the beginning of the job.
2. We assume that the algorithm knows when it has stabilized, i.e., that p

switches a Boolean register stable (initially false) when the algorithm has
stabilized. In the algorithm in Fig. 3, p would set its stable register after
completing the processing of the first relevant message from src.

3. There is at least one message from src arriving at p after p has set its stable
register.

4.2 Proof

Assume by contradiction that there exists some deterministic algorithm A that
allows processor p to continuously estimate processor src’s hardware clock with
a maximum clock reading error max{est+ − est−} < Γ = ε + ρsrc(δ− + δ+) +
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2(ρsrc + ρp)(µ+
(0) + µ+

(1)) − ν. Using an adaption of the well-known shifting and
drift scaling techniques to st-traces, which is technically quite intricate due to
the multiple state transitions involved in a job, we show that there are indistin-
guishable rt-runs of A that cause a clock reading error of at least Γ .

Definition 2. Since our proof uses an indistinguishability argument, we will
use the notation p : tr[evA, evΩ] ≈ tr′[ev′A, ev′Ω] to denote that, for processor p,
st-trace tr from st-event evA to evΩ is indistinguishable from st-trace tr′ from
st-event ev′A to ev′Ω, where evA, evΩ, ev′A and ev′Ω all occur on processor p.
Intuitively, this means that p cannot detect a difference between the two st-trace
segments.

Let (ev1, ev2, . . . , evη) and (ev′1, ev
′
2, . . . , ev

′
η′) be the restrictions of st-traces

tr and tr′ to send and transition st-events occurring on processor p, beginning
with evA = ev1 and ev′A = ev′1, and ending with evΩ = evη and ev′Ω = ev′η′ .
Indistinguishability means that η = η′ and evi = ev′i for all i, 1 ≤ i ≤ η, except
for the real time of the events, i.e., time(evi) = time(ev′i) is not required. In
fact, indistinguishability is even possible if the st-trace segments are of different
real time length, i.e., if time(evΩ)− time(evA) �= time(ev′Ω)− time(ev′A). How-
ever, HCtr

p (time(evi)) = HCtr′

p (time(ev′i)) must of course be satisfied, i.e., the
hardware clock values of all matching st-events must be equal.

The notations tr[tA, evΩ], tr[evA, tΩ] and tr[tA, tΩ] are sometimes used as
short forms for tr[evA, evΩ], with evA being the first st-event with time(evA) ≥ tA
and evΩ being the last st-event with time(evΩ) ≤ tΩ. Parenthesis are used to
denote < instead of ≤, e.g. tr[0, tΩ).

Likewise, global states are sometimes used as boundaries: tr[gA, . . .] and
tr[. . . , gΩ] actually mean the first st-event on p succeeding gA and the last st-
event on p preceding gΩ. Clearly, sp(gΩ) = sp(g′Ω) if p : tr[. . . , gΩ] ≈ tr′[. . . , g′Ω].

Note: Since est−/+ can be a function of the state of p and the current hardware
clock value, it does not suffice to show sp(g1) = sp(g2) in some indistinguishable
st-traces tr1 and tr2. If we want to prove that est−/+ is equal in both st-traces,
we also need to show that HCtr1

p (time(g1)) = HCtr2
p (time(g2)), which is more

difficult in our setting than in a drift-free environment.

Let tr1 be an st-trace of some rt-run ru1 of A where the adversary makes the
following choices:

– Both processors boot (i.e., receive an initial input message, if required) at
time t = 0.

– HCp(0) = 0, HCsrc(0) = 0.
– Every message from src takes δ+ time units.
– Every message to src takes δ− time units.
– Every job sending 
 message takes µ+

(�) time units.
– No transition or send st-event occurs earlier than µ+

(0)(1−ρ) hardware clock
time units after the beginning of the job (ρ = ρp for p and ρ = ρsrc for src).

– src’s clock has a drift factor of 1 + ρsrc

– p’s clock has a drift factor of 1 − ρp.
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Since A is a correct algorithm, the execution will eventually become stable.
Let evsta,1 be the transition st-event at which p switches its stable register in
tr1. Let m be an arbitrary message from src to p, sent by a job starting at time
ts and arriving through a receive event at time tr, with tr > time(evsta,1). By
assumption (cf. Sect. 4.1), such a message exists.

Let tr2 be an st-trace of another rt-run ru2 of A where the adversary behaves
exactly as specified for tr1 (using the same scheduling policy), with the following
differences (cf. Fig. 6):

– src boots at time t = ε (instead of 0).
– HCsrc(ε) = 0 (instead of HCsrc(0) = 0).
– Every message from src takes δ− time units (instead of δ+).
– Every message to src takes δ+ time units (instead of δ−).
– After ts + ε, src’s clock has a drift factor of 1 − ρsrc.
– After tr, p’s clock has a drift factor of 1 + ρp.
– After tr, on p, every job sending 
 messages takes µ+

(�)
1−ρp

1+ρp
time units (instead

of µ+
(�)). Note that µ+

(�)
1−ρp

1+ρp
∈ [µ−

(�), µ
+
(�)] (cf. Sect. 4.1). Likewise, send and

transition st-events occur no earlier than µ+
(0)

1−ρp

1+ρp
time units (and hence

no earlier than µ+
(0)(1 − ρp) hardware clock time units, as in tr1) after the

beginning of their job.4

Lemma 7. p : tr1[0, tr] ≈ tr2[0, tr] and src : tr1[0, ts] ≈ tr2[ε, ts + ε].

Proof. The lemma follows directly from the following observations:

– The initial states are the same in ru1 and ru2.
– All st-events within that time occur at the same hardware clock time and in

the same order (on each processor).

A formal proof can be obtained by induction on the st-events of ru1 or ru2,
using these properties, or by adapting any of the well-known “shifting argument”
proofs. ��

Since time(evsta,1) ≤ tr, this lemma also implies5 the existence of a correspond-
ing st-event evsta,2 in tr2, in which p sets its stable register.

Lemma 8. For all t1, t2 ≥ tr : HCtr1
p (t1) = HCtr2

p (t2) ⇔ t2 = (t1−tr)
1−ρp

1+ρp
+tr.

Proof. The proof follows directly from the drift factors of p in tr1 and tr2, i.e., for
all t1, t2 ≥ tr: HCtr1

p (t1) = t1(1−ρp) and HCtr2
p (t2) = tr(1−ρp)+(t2−tr)(1+ρp).

4 If there is a job J starting before but ending after tr, its duration is weighted pro-
portionally, i.e., duration(J) = (µ+

(�) − x) + x
1−ρp

1+ρp
, with x = end(J) − tr. The same

is done with the minimum offset for send and transition st-events in a job.
5 This could not be inferred that easily if the algorithm did not know when it had

stabilized.
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ru1

p

src
HC = 0

t = 0

HC = 0
evsta,1

ts

tr

m

x1

HCp = T

ru2

p

src
HC = 0

t = ε

HC = 0
evsta,2

ts + ε

fast | slow

tr

slow | fast
x2

HCp = T

Fig. 6. ru1 and ru2 (timer messages not shown); x1 = µ+
(0) + µ+

(1); x2 = x1
1−ρp

1+ρp

Let g1 and g2 be defined as follows:

– g1 is the first global state in tr1 at time tr + µ+
(0) + µ+

(1), i.e., the global state
preceding the first st-event (if any) happening at tr + µ+

(0) + µ+
(1).

– g2 is the first global state in tr2 at time tr + (µ+
(0) + µ+

(1))
1−ρp

1+ρp
.

Clearly, by Lemma 8, p’s hardware clock values at g1 and g2 are equal (denoted
T and represented by the dotted line in Fig. 6).

Lemma 9. p : tr1[0, g1] ≈ tr2[0, g2]

Proof. By Lemma 7, tr1 and tr2 are indistinguishable for src until ts and ts + ε,
respectively. Since src starts a job of duration µ+

(1) in ru1 at time ts, a corre-
sponding job is started in ru2 at time ts + ε. Both jobs send the same message
m to p. Since our system model does not allow preemption, src’s next message
to p can be sent no earlier than ts + µ+

(1) (tr1) and ts + ε + µ+
(1) (tr2). Thus,

by the definition of message (transmission) delays in ru1 and ru2, the earliest
time that p can receive another message from src (after the reception of m) is
tr + µ+

(1) (in both tr1 and tr2, cf. Fig. 6).
Thus, the only jobs occurring at p in ru1 and ru2 after the reception of m (at

time tr) and before tr + µ+
(1) are jobs caused by timer messages, by message m
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or by messages that have been received earlier. These messages, however, cannot
“break” the indistinguishability: Since (a) p’s hardware clock is speeded up and
(b) the processing time of jobs on p are slowed down by the same factor (1−ρp

1+ρp
),

the hardware clock times of all jobs (starting and ending times) as well as all
state transitions are equal in tr1 and tr2, as long as no new external message
reaches p. Since this does not happen before tr + µ+

(1), we can conclude that tr1

and tr2 are indistinguishable until hardware clock time T ′ := HCtr1
p (tr + µ+

(1)),
at which a message might arrive in ru1 that did not yet arrive in ru2 (since,
in ru2, only tr + µ+

(1)
1−ρp

1+ρp
real time units have passed yet at T ′). Thus, p :

tr1[0, tr + µ+
(1)) ≈ tr2[0, tr + µ+

(1)
1−ρp

1+ρp
).

If a job (J1 in tr1, J2 in tr2) is currently running at hardware clock time
T ′, a message reception does not change any (future) state transitions of that
job, due to no-preemption. Thus, the indistinguishability continues until T ′′ :=
HCtr1

p (end(J1)) = HCtr2
p (end(J2)). (If no job was running at hardware clock

time T ′, let T ′′ := T ′, cp. Fig. 6.) At hardware clock time T ′′, the schedulers of
ru1 and ru2 might choose different jobs to be executed next (since the message
from src arrived at different hardware clock times in ru1 and ru2). However,
due to our assumption that the adversary causes all state transitions to occur
no earlier than µ+

(0)(1 − ρp) hardware clock time units after the beginning of
the job, the state of p is still equal in ru1 and ru2 until hardware clock time
T ′′ + µ+

(0)(1 − ρp). As T ′′ ≥ T ′, this corresponds to some real time of at least

tr + µ+
(0) + µ+

(1) in tr1 and at least tr + (µ+
(0) + µ+

(1))
1−ρp

1+ρp
in tr2. Since g1 and g2

are, by definition, the first global states at these real times, no state transition
breaking the indistinguishability can have occurred yet. ��
Lemma 10. HCtr1

src(time(g1))−HCtr2
src(time(g2)) = ε+ρsrc(δ−+δ+)+2(ρsrc +

ρp)(µ+
(0) + µ+

(1)) − ν

Proof.

HCtr1
src(time(g1)) = HCtr1

src(tr + µ+
(0) + µ+

(1)) = HCtr1
src(ts + δ+ + µ+

(0) + µ+
(1))

= (ts + δ+ + µ+
(0) + µ+

(1))(1 + ρsrc)

= ts + δ+ + µ+
(0) + µ+

(1) + ρsrc(ts + δ+ + µ+
(0) + µ+

(1))

HCtr2
src(time(g2)) = HCtr2

src

(
tr + (µ+

(0) + µ+
(1))

1 − ρp

1 + ρp

)
= HCtr2

src

(
ts + ε + δ− + (µ+

(0) + µ+
(1))

1 − ρp

1 + ρp

)
= HCtr2

src(ε) + ts(1+ρsrc)+
(

δ−+(µ+
(0)+µ+

(1))
1 − ρp

1 + ρp

)
(1 − ρsrc)

Again, (µ+
(0) + µ+

(1))
1−ρp

1+ρp
(1− ρsrc) can be rewritten as (µ+

(0) + µ+
(1))(1− ρsrc −

2ρp) + ν, with ν, defined in (2), denoting a small term in the order of O(µ+ρ2).
Thus,
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HCtr2
src(time(g2)) =

ts + δ− + µ+
(0) + µ+

(1) + ρsrc(ts − δ− − µ+
(0) − µ+

(1)) − 2ρp(µ+
(0) + µ+

(1)) + ν . ��

We can now prove our lower bound theorem:

Theorem 2. There is no clock estimation algorithm A that allows processor p
to estimate processor src’s clock with a maximum clock reading error of less than
Γ = ε + ρsrc(δ− + δ+) + 2(ρsrc + ρp)(µ+

(0) + µ+
(1)) − ν.

Proof. Lemmas 8 and 9 have shown that sp(g1) = sp(g2) and HCtr1
src(time(g1)) =

HCtr2
src(time(g2)). Since est−/+ on p is a function of the local state and the

hardware clock time, it holds that est−p (g1) = est−p (g2) and est+p (g1) = est+p (g2).
By the assumption that A is a correct algorithm which allows p to estimate
src’s hardware clock with a maximum clock reading error < Γ , the following
condition must hold: A always maintains two values est− and est+, such that

HCtr1
src(time(g1)) ∈ [est−, est+] and HCtr2

src(time(g2)) ∈ [est−, est+]

with est+ − est− < Γ .
Lemma 10 reveals, however, that HCtr1

src(time(g1)) − HCtr2
src(time(g2)) = Γ ,

which provides the required contradiction. ��

4.3 The System Model Revisited

In Sect. 4.1, three assumptions were introduced, which simplify the lower bound
proof. In this section, we will briefly discuss the consequences of dropping these
assumptions.

1. If we replace the assumption δ− ≥ µ+
(0) by the weaker criterion that no send

or transition st-event occurs before x · (1 − ρ) hardware clock time units,
with 0 ≤ x < µ+

(0) (thereby restricting the adversary’s power in tr1 and tr2),
the precision lower bound is decreased to ε+ρsrc(δ−+δ+)+2(ρsrc +ρp)(x+
µ+

(1)) − ν′, i.e., µ+
(0) gets replaced by x. Analogously, ν′ equals ν with µ+

(0)
replaced by x.

2. If the algorithm need not know when it has stabilized, we must prove that
one can always find two st-traces tr1 and tr2 where p has stabilized before
tr, recall Fig. 6. Informally, this can be guaranteed due to the fact that even
eventual properties are always satisfied within bounded time in a closed
model like the RT-Model (where all delays are bounded), see e.g. [21].

3. There is at least one message from src arriving at p after p has set its stable
register. If this condition is not satisfied, we have two cases:
Case 1: After p has set its stable register, no more messages are exchanged
between p and src. In that case, it is trivial to create an indistinguishable
rt-run in which p has a different drift rate. Since no messages are exchanged,
neither p nor src ever detects a difference between the two rt-runs and we can
choose a global state g arbitrarily far in the future to create an arbitrarily
large discrepancy between p’s estimate and src’s hardware clock.
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Case 2: After p has set its stable register, only messages from p to src are
sent. In that case, the proof is quite similar to the one in Sect. 4.2. Since
only src receives messages here, only src can detect a difference between two
rt-runs with different drift rates. Consider Fig. 6 with the labels p and src
reversed. In complete analogy to Lemma 9, we can argue that src cannot
detect a difference until m′, the second message from p, has arrived. For p
to change its estimate, this information needs to be transmitted back to p.6

Therefore we have an additional δ− for the message transmission plus µ−
(0)

(or x, see Assumption 1) required by p until a state transition in response to
this message can be performed. Thus, detecting a change in this case takes
at least δ− time units longer than in the case analyzed in Sect. 4.2, finally
leading to the same contradiction.

5 Synchronizing Clocks

In this section, we will move from the two-processor clock estimation problem
to its application in external and internal clock synchronization.

Since the problems analyzed in this section involve more than two processors,
a job may send (non-timer) messages to more than one recipient. Thus, we will
also use subscripts (
) on the message delay bounds δ−(�) and δ+

(�) here, which give
the number of recipients to which the sending job sends a message. As detailed in
Sect. 2.1, δ−(�), δ+

(�) as well as ε(�) := δ+
(�) − δ−(�) are assumed to be non-decreasing

w.r.t. 
.

5.1 Admission Control

In the classic zero-step-time computing model usually employed in the analysis
of distributed algorithms, a Byzantine faulty processor can send an arbitrary
number of messages with arbitrary content to all other processors. This “arbi-
trary number”, which is not an issue when assuming zero step times, could cause
problems in the real-time model: It would allow a malicious processor to create
a huge number of jobs at any of its peers. Consequently, we must ensure that
messages from faulty processors do not endanger the liveness of the algorithm
at correct processors.

In the following sections, we assume the presence of an admission control
component in the scheduler or in the network controller, which restricts the set
of messages reaching the message queue.

5.2 External Clock Synchronization

In large-scale distributed systems such as the Internet, hierarchical synchroniza-
tion algorithms like NTP have proven to be very useful. With respect to smaller
6 Since src detected a difference, the rt-runs are no longer indistinguishable. Thus,

messages from src to p are possible in this (shifted) rt-run.
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networks, our results indicate that it pays off to minimize the dominant factor
ε, which is severely increased by multi-hop communication. Thus, direct com-
munication between the source and the “clients” will usually lead to tighter
synchronization.

For this section, let n specify the number of processors in the system, ρsrc

the drift rate of the source processor and ρ∗ the drift rate of all other proces-
sors. The goal is for each processor p �= src to estimate src’s clock as close as
possible. The maximum estimation error is called accuracy α here. Note that
external clock synchronization obviously implies internal clock synchronization
with precision π = 2α.

Consider a variant of the algorithm presented in Sect. 3, where src sends its
hardware clock value not only to p but to all of the other n − 1 processors,
and the receiver uses the midpoint of [est−, est+] as its estimation of src’s clock.
Admission control is performed by only accepting messages from src. An obvious
generalization of the analysis in Sect. 3 shows that, if src is correct, the worst
case accuracy for any correct receiver p is α = Γ/2 with

Γ = ε(�) + ρsrc(δ−(�) + δ+
(�)) + 2(ρsrc + ρ∗)(µ+

(0) + µ̇) − ν ,

(cf. Theorem 1), where 
 depends on the broadcasting method, µ̇ is the trans-
mission period (see below), and ν = O(µ̇ρ2) refers again to a usually negligible
term. The precision achieved by any two correct receivers p, q is hence π = Γ .

In the real-time computing model, the required broadcasting can actually be
implemented in two ways:

(a) src uses a single job with broadcasting to distribute its clock value. In this
case, the duration of each of its jobs is ∈ [µ−

(n−1), µ
+
(n−1)] and the message

delay of each message is ∈ [δ−(n−1), δ
+
(n−1)]. Thus, 
 = n − 1 and µ̇ = µ+

(n−1).
(b) src sends unicast messages to every client, in a sequence of n − 1 separate

jobs that send only one message, i.e., 
 = 1. This reduces the message delay
uncertainty from ε(n−1) to ε(1), but increases the period µ̇ in which every
processor p receives src’s message from µ+

(n−1) to (n − 1) · µ+
(1).

5.3 Fault-Tolerant Internal Clock Synchronization

As outlined in the introduction, remote clock estimation is only a small, albeit
important, part of the internal clock synchronization problem. In [17], Fetzer and
Christian presented an optimal round- and convergence-function-based solution
to this problem. They assume the existence of a generic remote clock reading
method, which returns the clock value of a remote clock within some symmetric
error. Thus, extending their work is a perfect choice for demonstrating the ap-
plicability of our optimal clock estimation result in the context of internal clock
synchronization.

The algorithm of [17] works as follows: Periodically, at the same logical time
at every processor, the current clock values of all other clocks are estimated.
These estimates are passed on to a fault-tolerant convergence function, which
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provides a new local clock value that is immediately applied for adjusting the
clock. Provided that all clocks are sufficiently synchronized initially and the
resynchronization period is chosen sufficiently large, the algorithm maintains
a precision of 4Λ + 4ρrmax + 2ρβ, where rmax denotes the resulting maximum
real-time round duration and β the maximum difference of the resynchronization
times of different processors. Λ is the maximum clock reading error margin, i.e.,
Λ = Γ/2 in our setting.

In Appendix B of [20], we present a detailed analysis of how to combine
our clock estimation method with their convergence function, resulting in an
internal clock synchronization algorithm that tolerates up to f arbitrary faulty
processors, for n > 3f . The analysis includes a pseudo-code implementation
and a correctness proof, which just establishes conditions that guarantee the
preconditions of the proofs in [17]. The result is summarized in the following
theorem:

Theorem 3. For a sufficiently large resynchronization period and sufficiently
close initial synchronization, fault-tolerant internal clock synchronization can be
maintained within π = 2Γ +4ρrmax +2ρβ with Γ = ε(n−1) +ρ(δ−(n−1) +δ+

(n−1))+
4ρµ+

(n−1) − O(µ+ρ2).

6 Conclusions

We presented an algorithm solving the problem of continuous remote clock es-
timation in the real-time computing model, which guarantees a maximum clock
reading error of Γ = ε + ρsrc(δ− + δ+) + 2(ρsrc + ρp)(µ+

(0) + µ+
(1)) − ν. Using an

elaborate shifting and scaling argument, we also established a matching lower
bound for the maximum clock reading error. This result leads to some interest-
ing conclusions, which could aid real-time system designers in fine-tuning their
systems:

– ε, the message delay uncertainty, dominates everything else, since it is the
only parameter that is not scaled down by some clock drift ρ ! 1. This
matches previous results on drift-free clock synchronization [5].

– Both sender and receiver clock drift influence the attainable precision. How-
ever, the drift of the source clock has a bigger impact, since it affects not only
the term involving the processing times µ+

(0) +µ+
(1), but also the (potentially

larger) term involving message delays.
– Since the presented algorithm does not send messages from p to src, we can

conclude that round-trips, which are well-known to improve remote clock
estimation in the average case, do not improve the attainable worst case
error.

– The lower bound implies that optimal precision induces a very high network
load: µ+

(1), the interval, in which messages from src to p are sent, is directly
proportional to the maximum clock reading error.
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Furthermore, we have shown how our optimal clock reading method can be
used to solve the problem of external clock synchronization, and how it can be
plugged into an existing internal clock synchronization algorithm.
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Abstract. Nowadays, most of the energy-aware real-time scheduling al-
gorithms belong to the DVFS (Dynamic Voltage and Frequency Scaling)
framework. These DVFS algorithms are usually efficient but, in addition
to often consider unrealistic assumptions: they do not take into account
the current evolution of the processor energy consumption profiles. In
this paper, we propose an alternative to the DVFS framework which
preserves energy, while considering the emerging technologies. We intro-
duce a dual CPU type multiprocessor platform model (compatible with
any general-purpose processor) and a non-DVFS associated methodol-
ogy which considerably simplifies the energy-aware real-time scheduling
problem, while providing significant energy savings.

1 Introduction

1.1 Context of the Study

Hard real-time systems require both functionality correct executions and results
that are produced on time. Control of the traffic (ground or air), control of
engines, control of chemical and nuclear power plants are just some examples of
such systems. These systems are usually modeled by a set of recurrent tasks, each
one having a computing requirement and a temporal deadline. These deadlines
are due to the critical aspect of the applications and, for some systems, a deadline
miss may produce fatal consequences (e.g., the Anti-lock Braking System ABS in
car). To ensure that all the task deadlines and requirements are satisfied, Real-
Time Operating Systems (RTOS) integrate a specific algorithm (the “scheduler”)
which assigns priorities to the tasks (or to their instances) in order to schedule
them upon the available processor(s).

Among these applications which impose temporal constraints on the task
completion times, some are running on platforms with a limited power reserve
such as battery powered devices. Furthermore, many energy-constrained em-
bedded systems are built upon multiprocessor platforms because of their high-
computational requirements. As pointed out in [1], another advantage is that
multiprocessor systems are more energy efficient than equally powerful unipro-
cessor platforms, because raising the frequency of a single processor results in a
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multiplicative increase of the energy consumption while adding processors leads
to an additive increase. Nowadays, as real-time systems become more complex,
they are often implemented using heterogeneous multiprocessor architectures
(i.e., processors do not necessarily have the same architecture) [2]. Hence, the
energy-aware real-time scheduling problem upon heterogeneous platforms has re-
cently gained in interest in the real-time research domain.

1.2 Related Work

In the scheduling literature, the multiprocessor energy-aware scheduling problem
is usually addressed through Dynamic Voltage and Frequency Scaling (DVFS)
framework, which consists in reducing the system energy consumption by main-
taining both the supply voltage and the operating clock frequency of the pro-
cessor(s) as low as possible, while ensuring that all the task deadlines are met.
The energy-aware scheduling problem upon heterogeneous platforms is usually
divided into two sub-problems [3]: the Task Scheduling and Voltage Scaling prob-
lem (TSVS) and the Task Mapping Improvement problem (TMI).

The TSVS problem assumes that a mapping of the tasks upon the processors
is known beforehand, where each task is assigned to only one processor. For a
given task mapping, this problem consists in determining the schedule/order of
the tasks executions on each CPU and their assignment to the various voltage
levels so as to minimize the total energy consumption. Currently, most of the pa-
pers [4,5,6,7,8,9,10] focus on this TSVS sub-problem, while considering different
task models. In [11], the authors formulate the task mapping and TSVS prob-
lems as a mixed integer linear programming with discrete CPU voltage levels
and propose a relaxation heuristic. There are also few papers [12,13,14] which
assume that the task mapping and task ordering are known and focus only on
the voltage scaling problem.

The TMI problem consists in iteratively improving the task mapping, based on
the system schedulability and the energy consumption of the produced schedule.

The authors of [3] consider the TSVS and TMI problems together in order
to derive a feasible and energy-efficient schedule. Leung et al. [15] formulate the
whole problem of task mapping, task ordering and voltage scaling as a mixed
integer non-linear programming problem with continuous CPU voltage levels.
In [16] Schmitz et al. propose a strategy that also considers task mapping, task
ordering and voltage scaling, where the priorities of the tasks are generated using
a genetic algorithm and voltage scaling of the tasks is done using [14].

1.3 Drawbacks of the DVFS Framework

Usually, the DVFS algorithms are efficient but their authors often consider unre-
alistic assumptions. For instance, it is often assumed that decreasing the CPUs
operating frequency always reduces their energy consumption. But experimen-
tally, this not necessarily true since several operating frequencies may be associ-
ated to the same supply voltage. It is also often assumed that the frequency of a
processor may be set to any non-integer values, or that the time delay involved
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by a modification of the supply voltage is negligible. Moreover, DVFS strategies
obviously require DVFS-capable processors and, although a lot of such processor
architectures have been proposed in past years, only a few of them have been
used in embedded systems. One major reason is that many DVFS processors
involve large mass production cost including test cost, design cost and the cost
of on-chip DC-DC converters [17].

The main drawback of the DVFS algorithms is that most of them do not take
into account the “static part” of the processors energy consumption (due to the
leakage currents and subthreshold currents) and only reduce the “dynamic part”
of their consumption (due to the processor activity). However, this static part has
become more and more significant as feature sizes has become smaller and thresh-
old levels lower [18]. Since the dynamic part of the CPUs consumption becomes
less important as the static part grows, the energy savings provided by the DVFS
algorithms become less and less significant. Nowadays, as technologies scale down
to the UDSM (ultra deep-submicron), the static power dissipation becomes a sig-
nificant component of the total power consumption (see for instance [19,20] or [21]
in Section 1.1.4 pages 18–21), and cannot be neglected anymore.

1.4 This Research

Although this research does not introduce new scheduling algorithms or novel
formal proofs, it aims to address new solutions to the emerging problem of static
power consumption. Nowadays, “leakage power dissipation is becoming a huge
factor challenging a continuous success of CMOS technology in the semiconduc-
tor industry (. . . ) innovations in leakage control and management are urgently
needed” [18]. In this research, we so propose an alternative to the DVFS frame-
work for reducing the energy consumption, while taking into account the static
consumption. Our proposal:

1. is compatible with any general-purpose processor,
2. provides important energy savings by effectively employing the features of

our proposed non-DVFS platform model and the characteristic of the real-
time application,

3. considerably simplifies the energy-aware scheduling problem, in regard with
the existing solutions cited above.

On the contrary to the existing solutions which are typically computational-
intensive and/or provide low energy savings, our methodology is based on some
well-know optimization heuristics and may therefore benefit (depending on the
selected parameters of the heuristics) from a low complexity while providing
significant energy savings.

Paper organization. This paper is structured as follows. Section 2 defines the
computational models used throughout the paper. In Sect. 3, we first introduce
our non-DVFS methodology and we explain how our proposed platform and
methodology reach the three objectives described above. Then, we formalize
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the considered problem, and we address the multiple issues of optimal and ap-
proximated approaches to solve it. Section 4 illustrates the experimental results
provided by all the methods discussed in Sect. 3 and finally, Sect. 5 presents our
conclusions and future work.

2 Model of Computation

2.1 Hardware Model

In this research, we introduce dual CPU type Multiprocessor System-on-Chip
(MPSoC) platform illustrated in Fig. 1 and referred in the following as DMP.
MPSoC systems are widely used in the design of high-performance and low-
power embedded systems as it has been already suggested in the literature [2].
A DMP is composed of two MPSoC platforms denoted Llp and Lhp, contain-
ing Mlp and Mhp processors respectively. Each processor has a small amount of
the local memory (L1 cache memory), allowing the processor to operate inde-
pendently, at least for a certain period of time, before fetching the data from
the possibly L2 cache memory and/or distant (off-chip) central memory. All
processors in the DMP are identical in terms of their architecture, i.e. their
hardware specification are derived from the same Register Transfer Logic (RTL)
description in some Hardware Description Language (HDL), such as VHDL or
Verilog. However, for the physical synthesis of the processors (integrated circuit
manufacturing) that bel ong to the Llp (called the lp-processors), a Low-Power,
Low-Performance technology library is used. The resulting integrated circuit can
be operated with lower power supply voltages and consequently lower operating
clock frequency, resulting in lower dynamic power dissipation. Inversely, pro-
cessors in Lhp (called the hp-processors) are physically synthesized using High-
Power, High-Performance technology library (for the same or different techno-
logical node). Such circuit allows higher operating frequency, but will require
higher supply voltage, resulting in higher dynamic power dissipation than the
lp-processors. In this way, while each MPSoC platform can be seen as homoge-
neous multiprocessor platform, the DMP as a whole appear as a special case of
a heterogeneous multiprocessor system. Notice that prior researches [22,23,24]
demonstrated that, compared to homogeneous ones, heterogeneous architectures
deliver higher performance at lower costs in terms of die area and power con-
sumption. Moreover, there is no restriction here on the processors purposes,
hence achieving the objective 1.

Different processors, within the same MPSoC platform, communicate between
themselves using the Network-on-Chip (NoC) communication paradigm. In re-
cent years, the NoCs have gained many interest in the research community and
are more and more used to replace traditional communication solutions based on
shared buses and their variates [25,26]. When compared to buses, the NoCs profit
from higher bandwidth capacities because of their concurrent operation and much
lower and predictable latencies, allowing efficient processor-to-processor commu-
nication in our case. NoCs are flexible, scalable and even energy efficient [27,28]
for systems containing more than ten nodes (processors and/or memories).
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    CPU
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    CPU
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Fig. 1. Our considered DMP model with 2 × (5 × 5) processors

In DMP, each MPSoC is built using regular, fully connected mesh NoC. That
is: each microprocessor is connected to one router through a Network Interface.
Each router is connected to its 4 direct neighbors (note that the routers at the
edges are connected, so that they form a torus). Of course other NoC topologies
could be explored, for more efficient (lower latency) inter processor communi-
cation, but this is out of the scope of the paper. The two MPSoC systems are
assumed to be independent and they cannot communicate directly. However,
since they share the same central memory, the communication is still possible,
although not in a very efficient way. But this is not critical in this “first-step”
study since we assume in the following that the two MPSoC platforms do not
communicate. A thorough reflection about the many possible communication
technologies between the two platforms Llp and Lhp will be addressed and ex-
ploited in our future work.

An x-processor (where x is either lp or hp) is characterized by two parame-
ters: its estimated energy consumption ex

busy while it is busy and is running at
its maximal clock frequency; and its estimated energy consumption ex

idle while
it is idle. Notice that in our study, all the supplied processors always run at
their maximal operating clock frequency and both their supply voltage and clock
frequency are never modified.

2.2 Application Model

We consider in this paper the scheduling of n sporadic constrained-deadline tasks,
i.e., systems where each task τi = (C lp

i , Chp
i , Di, Ti) is characterized by four

parameters – a worst-case execution time at maximal frequency Clp
i and Chp

i

upon the lp- and hp-processors, respectively, a minimal inter-arrival delay Ti and
a deadline Di ≤ Ti – with the interpretation that the task generates successive
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jobs τi,j (with j = 1, . . . ,∞) arriving at times ei,j such that ei,j ≥ ei,j−1 + Ti

(with ei,1 ≥ 0), each such job has an execution requirement of at most Clp
i or Chp

i

upon Llp or Lhp, respectively, and must be completed at (or before) its deadline
noted Di,j = ei,j + Di. The tasks are assumed to be independent, i.e. there is
no communication, no precedence constraint and no shared resource (except the
processors) between them. We now introduce some preliminary definitions.

Utilization. We define the utilization Ux
i of a task τi upon an x-processor as

the ratio between its worst-case execution time upon an x-processor running at
maximal frequency and its period: Ux

i
def= Cx

i

Ti
. The total utilization Ux

sum(τ) and
the largest utilization Ux

max(τ) of a set of tasks τ allocated to a MPSoC platform
Lx are defined as follows: Ux

sum(τ) def=
∑

τi∈τ Ux
i and Ux

max(τ) def= maxτi∈τ (Ux
i ).

The utilization Ux
i of τi denote the highest proportion of time during which an

x-processor could be used to achieve all the execution requirements of τi.

Density. We define the density δx
i of a task τi upon an x-processor as the ratio

between its worst-case execution time upon an x-processor running at maximal
frequency and its deadline: δx

i
def= Cx

i

Di
. The total density δx

sum(τ) and the largest
density δx

max(τ) of a set of tasks τ allocated to a MPSoC platform Lx are defined
as follows: δx

sum(τ) def=
∑

τi∈τ δx
i and δx

max(τ) def= maxτi∈τ (δx
i ). We assume that

Clp
i ≥ C lp

j iff Chp
i ≥ Chp

j ∀ τi, τj in order to get a total order on the tasks
requirements, and we assume without loss of generality that the tasks are indexed
by decreasing order of their density, i.e. δx

1 ≥ δx
2 ≥ . . . ≥ δx

n, and consequently
δx
max(τ) = δx

1 . Notice that a task τi such that δlp
i > 1 cannot be completed

in time while being executed upon a lp-processor. As a result, such tasks must
mandatorily be assigned to the MPSoC platform Lhp (assuming that δhp

i ≤ 1 ∀τi).

Demand bound function. For any time interval of length t, the demand bound
function dbf

x(τi, t) of a sporadic task τi allocated to a MPSoC platform Lx

bounds the maximum cumulative execution requirements by jobs of τi that both
arrive in, and have deadline within, any interval of length t. It has been shown
in [29] that

dbf
x(τi, t) = max

{
0, (
⌊ t − Di

Ti

⌋
+ 1) · Cx

i

}
.

Load. A load parameter, based upon the dbf function, may be defined for any
set of tasks τ allocated to a MPSoC platform Lx as follows:

load
x(τ) def= max

t>0

{∑
τi∈τ dbf

x(τi, t)
t

}
.

As it is mentioned in [30], the dbf and the load functions can be computed
exactly [29,31], or approximately [32,33,34] to any arbitrary degree of accuracy
in pseudo-polynomial time or polynomial time, respectively.
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2.3 Scheduling Specifications

Both MPSoC platforms Llp and Lhp uses its own global multiprocessor scheduling
algorithm. “Global” scheduling algorithms, on the contrary to partitioned algo-
rithms, allow different tasks and different instances of the same task (called job
in the following) to be executed upon different processors. In our study, each task
is statically assigned to one of the two MPSoC platforms (Llp or Lhp) during the
design of the real-time system. Every job can start its execution on any processor
of its assigned platform Lx and may migrate at run-time to any other processor of
Lx (with no loss or penalty) if it gets meanwhile preempted by an higher-priority
job. However, tasks and jobs are not allowed to migrate between the two platforms
since we consider that there is no communication between them.

We consider in this paper two popular multiprocessor scheduling algorithms:
the preemptive global Deadline Monotonic and the preemptive global Earliest
Deadline First [35]. For sake of simplicity, these algorithms will henceforth be
referred as global-DM and global-EDF in the remainder of this document. Global-
DM assigns a static (i.e., constant) priority to each task during the design of
the system. The Deadline Monotonic (DM) assigns priority to tasks according
to their (relative) deadlines: the smaller the deadline, the greater the priority.
On the other hand, EDF assigns priority to jobs according to their (absolute)
deadlines: the earlier the deadline, the greater the priority. There are other (pop-
ular) global scheduling strategies, e.g., PFAIR strategies [36], Least Laxity First
scheduler [37] or LLREF [38], but they are limited to implicit-deadline tasks
(i.e., Di = Ti ∀i). As a result, they are not considered in this paper.

3 Off-Line Task Mapping

3.1 Our Methodology

In this study, we focus on the energy consumption of a DMP while executing real-
time systems. Since a task consumes a lower amount of energy while executed
upon Llp than upon Lhp, the main idea for minimizing the energy consumption
of a DMP is to maximize the workload onto Llp. During the design of the real-
time system, we thus address the problem of how to partition the set of real-
time tasks upon the two platforms Llp and Lhp for the given workload, so that
the tasks are completed in time with an energy consumption as low as possible.
The mapping of the tasks that we determine assigns each task to one of the
two MPSoC platforms, not to a specific processor. During the execution of the
system, the tasks are scheduled upon their assigned platform using a global
scheduling algorithm (possibly different on each platform). Notice that a DVFS
algorithm considering homogeneous multiprocessor platforms may be used on
both Llp and Lhp to further reduce their energy consumption.

Once the task mapping is established, only a subset of the CPUs are supplied
in both Llp and Lhp, ensuring that all their assigned tasks can be completed
in time (i.e. without missing any deadlines) during the system execution. The
unnecessary processors in both platforms are not supplied in order to switch off
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their leakage (i.e. static) consumption. For a given task mapping, the resulting
hardware configuration of the DMP is therefore energy-optimized for the tar-
geted real-time application system (objective 2). We can assume that for some
kinds of practical applications, these unsupplied CPUs may be turned on later
during the system execution in order to replace a defective supplied processor,
to handle an emergency, etc.

Moreover, our strategy of switching off some processors may also be very useful
to other concerns of the real-time domain, such as the energy-aware scheduling
problem of multi-mode real-time systems (see e.g., [39] for a detailed description
of such systems). The DMP architecture and our task mapping algorithms, en-
able a task mapping for the set of tasks of each mode and then carry out a task
mapping switch when a mode change is requested. Since each task mapping has
its own associated numbers of supplied (and unsupplied) CPUs in the platforms
Llp and Lhp, it may be needed to turn on/off some processors during a task
mapping switch. For such multi-mode real-time systems, the hardware config-
uration of the DMP could therefore be energy-optimized for each mode of the
application. Although this kind of real-time systems is not studied in this paper,
it justifies our hardware architecture and the fact that some CPUs are switched
off. The interested reader may refer to [40] for a description of how a transition
from one mode to another is ensured.

The schedulability of the two task sets τ lp and τhp upon Llp and Lhp (resp.)
is checked thanks to schedulability tests, i.e. conditions associated to a schedul-
ing algorithm which indicates (based on the tasks and platform characteristics)
whether the given set of tasks can be scheduled upon the given platform without
missing any deadline. These conditions must be sufficient or necessary and suf-
ficient. Currently, several schedulability tests have already been established for
the global scheduling algorithms, the task model and the homogeneous MPSoC
platform model considered in this paper. From a practical point of view, the
use of a global scheduling algorithm on each platform Llp and Lhp involves that
both of them may be seen as a single computing element. The task mapping
determination problem may therefore be compared to a 2-bin-packing problem
(objective 3), and we will show in Sect. 4 that even some popular bin-packing
heuristics may provide a relevant power savings.

3.2 Notations

Off-line task mapping is thus the process of determining, during the design of the
real-time application system τ , the partitioning of the tasks set into two subsets
of tasks τ lp and τhp leading to a minimal (or so) consumption. These subsets
are such that τ lp ∪ τhp = τ and τ lp ∩ τhp = φ. The subset τ lp contains the
tasks which will be executed upon the MPSoC platform Llp and symmetrically,
τhp contains the tasks which will be executed upon Lhp. We call such partition
{τ lp, τhp} a task mapping.

We denote by S and S′ the global scheduling algorithms used on Llp and Lhp,
respectively (where S and S′ are either global-DM or global-EDF), and we will use
the notation Y to denote any of these two scheduling algorithms, whatever the
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platform which uses it. We denote by τ any set of sporadic constrained-deadline
tasks. We denote by cpu

Y
x (τ) the function returning a sufficient number of x-

processors so that the set of tasks τ can be scheduled by Y without missing any
deadline. Once a task mapping {τ lp, τhp} is determined for a given real-time
system τ , the sufficient numbers of processors supplied on Llp and Lhp are given
by cpu

S
lp(τ lp) and cpu

S′

hp(τ
hp), respectively. Unfortunately, no necessary and

sufficient schedulability test is known for global-DM and global-EDF in order to
determine the minimal number of required CPUs to schedule a given sporadic
constrained-deadline task system. Fortunately, sufficient tests exist.

3.3 Schedulability Test for Global-DM

For the global-DM algorithm, we use the following sufficient schedulability con-
dition from [35].

Test 1. A set of sporadic constrained-deadline tasks τ is guaranteed to be
schedulable upon an identical multiprocessor platform Lx composed of m pro-
cessors using preemptive global-DM if, for every task τk,∑

τi∈τ |Di<Dk
αx

i,k(τ)

1 − δx
k

≤ m

where αx
i,k(τ ) =

{
Ux

i · (1 + Ti−Cx
i

Dk
) if δx

max(τ ) ≥ Ux
i

Ux
i · (1 + Ti−Cx

i
Dk

) + Cx
i −δx

max(τ)·Ti

Dk
otherwise.

From Test 1, we derive the function cpu
DM
x (τ) returning a sufficient number of

x-processors in order to schedule the set of tasks τ while meeting all the task
deadlines:

cpu
DM
x (τ) def= max

τk∈τ

{⌈∑
τi∈τ |Di<Dk

αx
i,k(τ)

1 − δx
k

⌉}
where αx

i,k(τ) is defined as previously.

3.4 Schedulability Test for Global-EDF

The global-EDF algorithm has been widely studied in the literature and several
(incomparable) sufficient schedulability conditions were already established. In
this paper, we use a combination of the most popular ones (Inequalities (1), (2)
and (3)) that we have gathered in Test 2. Notice that we have expressed these
three inequalities in the number m of required processors.

Test 2. A set of sporadic constrained-deadline tasks τ is global-EDF schedulable
upon an identical multiprocessor platform Lx composed of m processors, provided
GFB condition [41]:

m ≥ δx
sum(τ) − δx

max(τ)
1 − δx

max(τ)
, (1)

or BAK condition [35]:
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m ≥ max
τk∈τ

{∑
τi∈τ min{1, βx

i } − δx
k

1 − δx
k

}
, (2)

where βx
i =

{
Ux

i · (1 + Ti−Di

Dk
) if δx

k ≥ Ux
i

Ux
i · (1 + Ti−Di

Dk
) + Cx

i −δx
k ·Ti

Dk
if δx

k < Ux
i

or BB condition [30]:

m ≥ load
x(τ) − 1

(1 − δx
max(τ))2

+ 1 , (3)

where µx def= m − (m − 1) · δx
max(τ).

The function cpu
EDF
x (τ) returning a sufficient number of x-processors in or-

der to schedule a set of tasks τ is defined as cpu
EDF
x (τ) def= min{GFBx(τ),

BAKx(τ), BBx(τ)} where GFBx(τ), BAKx(τ) and BBx(τ) are respectively de-
fined from the three conditions4 of Test 2:

GFBx(τ) def=
⌈

δx
sum(τ)−δx

max(τ)
1−δx

max(τ)

⌉
BAKx(τ) def= maxτk∈τ

{⌈∑
τi∈τ min{1,βx

i }−δx
k

1−δx
k

⌉}
BBx(τ) def=

⌈
load

x(τ)−1
(1−δx

max(τ))2 + 1
⌉

3.5 Energy Consumption Function

For a given set of tasks τ and a given global scheduling algorithm Y , we formulate
the energy consumption of an homogeneous platform Lx while executing τ by Y
as follows:

EY
x (τ) def= Ux

sum(τ) · ex
busy + (cpu

Y
x (τ) − Ux

sum(τ)) · ex
idle . (4)

Remember that cpu
Y
x (τ) is the number of processors supplied in Lx. Ux

sum(τ)
represents an upper bound on the proportion of time during which the supplied
CPUs of Lx will be busy, considering an infinite interval of time. Consequently,
(cpu

Y
x (τ)−Ux

sum(τ)) represents a lower bound on the proportion of time during
which the cpu

Y
x (τ) supplied processors of Lx will be idle. It results that EY

x (τ) is
an upper bound on the energy consumption of the platform Lx while executing
τ by Y . For a given DMP and a given task mapping {τ lp, τhp}, we define the
energy consumption of the whole system as follows:

ES,S′
(τ lp, τhp) def= ES

lp(τ
lp) + ES′

hp(τhp) (5)

where S and S′ denote the schedulers employed by Llp and Lhp respectively.
4 Notice that, for some infeasible real-time systems, one (or more) of these three func-

tions can get negative. A negative value would distort the result from cpu
EDF
x (τ ) and

hence, every function which get negative are ignored while computing the minimum
value in cpu

EDF
x (τ ) (we can also consider that these functions GFBx(τ ), BAKx(τ )

and BBx(τ ) return ∞ if negative).
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3.6 Problem Formulation

The problem of minimizing the energy consumption of a DMP while executing
a sporadic constrained-deadline task system can be stated as follows.

Formulation of the problem. Let π be a DMP composed of two platforms Llp
and Lhp, composed of Mlp lp-processors and Mhp hp-processors, respectively.
Let S and S′ be the global scheduling algorithms used by Llp and Lhp (resp.),
for which a sufficient schedulability test based on the number of required CPUs is
known. For a given task mapping {τ lp, τhp}, let cpu

S
lp(τ lp) and cpu

S′

hp(τ
hp) be the

functions returning a sufficient number of lp- and hp-processors (resp.) in order
to schedule the task sets τ lp and τhp (resp) by S and S′ (resp.) without missing
any deadline. Let τ be a given sporadic constrained-deadline task system. The
goal of this study is to determine a task mapping {τ lp, τhp} (where τ lp ∪τhp = τ
and τ lp ∩ τhp = φ) such that:

1. cpu
S
lp(τ

lp) ≤ Mlp

2. cpu
S′

hp(τ
hp) ≤ Mhp

3. ES,S′
(τ lp, τhp) is low as possible.

As it was mentioned above, to find a task mapping {τ lp, τhp} may be seen as
a bin-packing problem. The two subsets τ lp and τhp represent two bins. Each
task τi represents an item whose the weight depends on the container (τ lp or
τhp). The functions cpu

S
lp(τ lp) and cpu

S′

hp(τhp) give the capacity of each bin and
Mlp and Mhp are their respective total capacity. We left open, for future work,
the problem of formulating this problem as an Integer Linear Programming.

The optimal task mapping (or one of them) may be found by using an exhaus-
tive search, but the worst-case computing complexity of such a search exponen-
tially grows with the number of tasks in the system. As a result, we address in
the following section, four popular heuristics for solving the problem described
above with an reasonable computing complexity. Notice that all the task map-
ping methods that we propose are applied at design time.

3.7 Approximation Algorithms

A task mapping is denoted in this section as a vector V of n elements, where n
is the number of tasks in the system. The sets τ lp and τhp of the task mapping
V are henceforth defined as the set of tasks τi for which V [i] = lp and V [i] = hp,
respectively. We define an admissible task mapping as a task mapping for which:

1. � ∃i ∈ [1, n] such that δlp
i > 1 and V [i] = lp

2. cpu
S
lp(τ

lp) ≤ Mlp

3. cpu
S′

hp(τ
hp) ≤ Mhp

Random Algorithm (RA). This is the simplest way to get one solution: a
task mapping is randomly generated (with probability 0.5 to choose lp or hp for
each task), with no guarantee to be admissible. If admissible, the task mapping
is returned. Otherwise, the empty task mapping {φ, φ} is returned.
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First-Fit Decreasing Density (FFDD). To approximate (one of) the opti-
mal task mapping(s), we consider the popular First-Fit Decreasing Density bin-
packing heuristic. “Decreasing Density” means that tasks are considered (and
then placed into a bin) by decreasing order of their density. Initially the set τ lp

is empty and the set τhp contains every task τi such that δlp
i > 1. Then, every

remaining task τj is placed in τ lp if cpu
S
lp(τ lp ∪ {τj}) ≤ Mlp or otherwise, in

τhp if cpu
S′

hp(τ
hp ∪ {τj}) ≤ Mhp. If a task cannot be placed in either τ lp or τhp,

FFDD stops and returns the empty task mapping {φ, φ}.
Unfortunately, FFDD and RA are not very efficient (see Sect. 4.3 for details),

especially if the number of tasks is high. Hence, we consider in the following
two more efficient heuristics: a Genetic Algorithm (GA) [42] and a Simulated
Annealing (SA) [43].

Genetic Algorithm (GA). Due to the space limitation, we do not explain in
this paper how a GA works (the reader may consult [42] for details). However,
we describe here how we have implemented the different steps of this heuristic.
Suppose that we have a target DMP noted π, which runs the global schedul-
ing algorithms S and S′ on Llp and Lhp, respectively, and a given sporadic
constrained-deadline task system τ .

Initialization step. During the initialization process, 50000 task mappings of
τ are randomly generated to form an initial population of 50 admissible task
mappings. If the algorithm does not find any admissible task mapping after
50000 tentatives, it returns the empty task mapping {φ, φ}. If it finds less than
50 admissible task mappings, it returns the best one that it found. Otherwise,
if the population size (50) is reached, the algorithm sequentially repeats the
following steps.

Selection step. Every task mapping in the current population is rated by the
function ES,S′

(τ lp, τhp). The lower the task mapping rate is, the higher its prob-
ability to be selected is. The selection method that we used is the popular and
well-studied roulette wheel method [42].

Reproduction step. The goal of this step is to generate a next population of ad-
missible task mappings from the current population. This is achieved through
the crossover operator. This operator takes as argument two task mappings
V1 and V2 (selected in the current population through the roulette wheel selec-
tion method) and produces two new admissible task mappings v1 and v2. The
crossover operator works as follows. A task index k is randomly selected in the
interval [1, n − 1], and it achieves v1[i] = V1[i] and v2[i] = V2[i] ∀i such that
1 ≤ i ≤ k, and v1[i] = V2[i] and v2[i] = V1[i] ∀i such that k < i ≤ n. While
both v1 and v2 are not admissible, a new task index k is randomly selected in
[1, n − 1] and the crossover operation is repeated. If no admissible v1 (resp. v2)
is produced when all the possible task indexes have been considered, it achieves
v1 ← V1 (resp. v2 ← V2). The two resulting admissible task mapping v1 and v2
are inserted in the next population, and this reproduction step is repeated until
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this next population reaches the appropriate size (50). This step ultimately re-
sults in a next population of admissible task mappings which are different from
those in the current population. Generally, the average rate of the task mappings
in the next population is better than those of the current population, since the
best-rated task mappings of the current population are more likely to be selected
for the crossover operation (thanks to the roulette wheel method).

Termination step. The selection and reproduction steps are repeated while the
accumulated rate of all the task mappings in the next population is lower than
those in the current population. In other words, populations are bred while the
population rate decreases. Finally, the task mapping that this heuristic returns
is the best-rated one found during the whole process.

Important Notes. During the whole process, all the generated populations are
composed of only admissible task mappings. However some implementations of
GA also deal with non-admissible solutions, because passing through the non-
admissible solution space sometimes allows to escape from local minima, or to
find “short cuts” to some better-rated admissible solutions. In our study, we
know that the best task mapping Vopt (in regard with the energy consumption)
is V [i] = lp ∀i, which is often not admissible (otherwise, it could be found by
FFDD). By allowing populations to also contain non-admissible task mappings,
we have noted that GA prematurely leaves the admissible solution space, by gen-
erating populations in such a way that their task mappings too quickly converge
toward Vopt. Moreover, since our GA is numerously invoked in our experiments in
Sect. 4, all its parameters (i.e. the population size, etc.) are set to relatively low
values in order to limit the time needed by our simulations. For the same reason,
we did not implement the “mutation” operator which is usually employed by the
genetic algorithms (see [42] for details about this operator). Indeed, since only
admissible task mappings are allowed in the generated populations, the mutation
operator should ensure that the resulting task mapping will be still admissible.
For some populations, it may be necessary to consider numerous task mappings
before finding one which guarantees this property. Implementing this operator
therefore involves a consequent increase of the simulation time, while providing
a negligible impact on the results.

Simulated Annealing (SA). It is out of the scope of this paper to describe
how a simulated annealing works, and we will only present our parameters.
The interested reader may consult [43] for details about this algorithm. In our
study, the considered solutions of our SA are all the possible admissible task
mappings for the given system τ and the function to be minimized is the function
ES,S′

(τ lp, τhp), where S and S′ are the global scheduling algorithms used by Llp
and Lhp, respectively. Here is the list of the SA parameters that we used in our
experiments:

The initial admissible task mapping. During the initialization step, task map-
pings are randomly generated until finding an admissible one. If no admissible
task mapping is found after 1000 tentatives, the algorithm stops and returns the
empty task mapping {φ, φ}.
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The neighborhood of a task mapping V is the set of every admissible task map-
ping V ′ such that ∃j ∈ {1, 2, . . . , n} for which V ′[j] �= V [j] and V ′[i] = V [i]
∀i �= j. In other words, an admissible task mapping V ′ is a neighbor of V if it
differs from V by only one task assignment.

The temperature T is handled as follows: the initial temperature is set to 1
and at each iteration multiple of 100, the temperature is decreased such that
T ← 0.95 × T .

The acceptance probabilistic function Prob(∆E, T ) is defined as follows. ∆E is
the difference between the rate of the current task mapping Vcur and the rate of its
selected neighbor Vneighbor, i.e. ∆E

def= ES,S′
(τ lp

neighbor, τ
hp
neighbor)−ES,S′

(τ lp
cur, τ

hp
cur)

and Prob(∆E, T ) = e
−∆E

T . Notice that the probability of acceptance progres-
sively decreases with the temperature.

The termination condition : the algorithm stops after 1000 iterations or if all
the task mappings in the neighborhood of the current one have been refused.
The algorithm then returns the best-rated task mapping that it found during
the whole process.

Notice that, for the same reasons as for our genetic algorithm, the parame-
ters of our simulated annealing are chosen relatively low, and only admissible
solutions are considered.

4 Simulation Results

4.1 Conditions of the Simulation

Since our methodology does not consider DVFS-capable processors, we do not
compare the consumption of our proposed strategy with the consumption while
using DVFS algorithms. Thereby, the goal of our experiments is to quantify the
average energy savings provided by a DMP in regard with the consumption of an
homogeneous multiprocessors platform Phom composed of only hp-processors. To
justify the use of only hp-processors in Phom, we assume that all the real-time
systems generated in our simulations have at least one task which is too heavy
to be executed upon a lp-processor.

The DMP that we consider in our experiments (noted π) is composed of
10 processors: 5 lp-processors and 5 hp-processors. The lp- and hp-processor
cores are the Diamond 108 Mini and the Diamond 570T, respectively. The 108
Mini is an ultra-low power CPU with minimal gate count for lowest silicon
cost whereas the core 570T is a extremely high-performance, 2- or 3-issue static
superscalar processor [44]. We assume that the lp-processor cores run at 0.6V,
are manufactured with a 130nm technology and are built with ARM’s Artisan
Metro low-power cell libraries. Due to the process technology, the physical cell
libraries, and the synthesis options selected, their clock speed are constrained to
be well below 100MHz [45] and we assume that their clock speed is of 50MHz
in our simulations. On the other hand, we assume that the cores 570T run at
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Table 1. Description of the processor cores

CPU characteristics lp-proc. hp-proc.
Operating clock freq. (MHz) 50 250
Static pow. diss. (mW) 0.21 1.41
Dynamic pow. diss. (mW/MHz) 0.04 0.41
Idle/Busy factor 8 8
Speed (MIPS/MHz) 1.34 1.59

1.2V, are manufactured with a 130nm technology and are built with ARM’s
Artisan SageX cell libraries. These processor cores can typically run at clock
rates in excess of 200MHz [45] and we assume in our experiments that they
run at 250MHz. Table 1 shows the characteristics of these processors from [45].
The idle/busy factor denotes the consumption ratio between a busy processor
and an idle processor. Unfortunately, this factor is not given for the processors
considered in this work, but we assume that the factor is comprised between
4 and 11, based on other hardware [46]. We thus choose to set it to 8 in our
experiments. Notice that Tab. 1 provides the required values for our processor
model: the lp-processors can be modeled as (elp

busy = 0.21 + 50 × 0.04 = 2.21,
elp
idle = elp

busy/8 ≈ 0.28) and the hp-processor as (ehp
busy = 103.91, ehp

idle ≈ 12.99).
The last line of Tab. 1 gives the speed of the processors, depending on their
operating clock frequency. For a given task worst-case execution requirement
expressed in number of instructions, the processors speeds allow to determine
the worst-case execution time of the tasks upon both the lp- and hp-processors
(denoted C lp

i and Chp
i in our task model).

Concerning the scheduling algorithms used by π, our simulations were first
carried out while using Global-DM (see Fig. 2) on both Llp and Lhp and on
Phom. Phom is composed of only hp-processors (the same hp-processors than in
π), but its number of processors is not statically fixed. For each generated real-
time system τ , the number of hp-processors in Phom is set to cpu

DM
hp (τ) before

computing its energy consumption while executing τ . We achieved this in order
to compare our DMP π with an homogeneous platform optimized in its number
of available resources. In our second experiment (see Fig. 3), Global-EDF is used
by Llp, Lhp and Phom, and the number of processors of Phom is therefore set to
cpu

EDF
hp (τ). Other experiments are still possible (e.g. by considering that different

and distinct scheduling algorithms are used by Llp, Lhp and Phom), but we have
focused our study on these two experiments due to the space limitation.

To study the energy savings provided by π over Phom in the real-time context,
we generate a large amount of sporadic constrained-deadline real-time systems.
For each generated system τ , a task mapping {τ lp, τhp} is produced by jointly
using FFDD, GA and SA algorithms. Then, the energy consumption of π while
executing {τ lp, τhp} is compared to the consumption of Phom while executing τ .
The consumption of π is determined thanks to Expression (5) and the consump-
tion of Phom by Expression (4).

In our simulations, we studied how the tasks characteristics (i.e. the tasks den-
sity) affect the energy saved by the use of π over Phom. We distinguish between
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four groups of real-time tasks: the HP tasks (δlp
i > 1 and δhp

i ≤ 1), the Heavy LP
tasks (1 ≥ δlp

i > 0.65), the Middle LP tasks (0.65 ≥ δlp
i ≥ 0.3) and the Light LP

tasks (0.3 > δlp
j > 0). During our simulations, a real-time system τ of 20 tasks is

generated as follows. The first task is always generated in the HP group (in order
to justify the fact that Phom is composed of only hp-processors). Then, the re-
maining task are generated from two different selected groups, where the number
of tasks belonging to both these groups is given. Consequently, we have six differ-
ent mixed set of tasks: HP and HLP, HP and MLP, HP and LLP, HLP and MLP,
HLP and LLP, and MLP and LLP. Hence, we can then study the variation in the
energy savings provided by π when tasks are moved from one group to another,
while limiting the number of possible transfer of tasks between the groups.

4.2 Results of Our Simulation

Figures 2 and 3 show our results when the scheduling algorithms Global-DM
and Global-EDF (respectively) are used on both platforms Llp and Lhp and by
Phom. The X-axis represents all the 6 possible couples of different selected tasks
groups. For each one of the six points in the X-axis, the Y-axis represents the
number of tasks in the two selected groups. For instance, for x = “MLP and
LLP”, y = 14 means that (n − y − 1) = 5 tasks belong to the Middle LP group,
y = 14 tasks belong to the Light LP group and 1 task is an HP task. That is,
5 + 14+ 1 = 20 tasks. The Z-axis represents the energy savings. For each couple
of (x, y) discrete values, 100 real-time systems of n tasks are generated in regard
with these values x and y. The simulator computes the average consumption gain
(and the standard deviation) between the execution of these 100 systems upon
π (while determining an energy-optimized task mapping for each system) and
upon the platform Phom (while determining a sufficient number of hp-processors
for each system). The upper plane is the sum between the average energy savings
and the standard deviation, and the lower plane is the difference between the
average energy savings and the standard deviation.

Notice that in both Figs. 2 and 3, there is no energy savings for the greater
part of real-systems containing many HP tasks. Actually, most of the real-time

Fig. 2. Results for DM Fig. 3. Results for EDF
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systems generated in this space region have a so high workload that the consid-
ered heuristics do not find any admissible task mapping for the 10 processors of
π. Since not enough information is obtained about the energy savings to provide
significant statistics, these systems are not taken into account and we set the
energy savings of the heuristics to zero. On the other hand, we see that the
average energy savings out of this region mainly vary between 20% and 40% for
both global-DM and global-EDF.

4.3 Some Statistical Results

Tables 2 and 3 present some statistical numbers, provided by our simulation.
Table 2 shows the relative number of cases where the corresponding heuristic
is not worst than the others. Notice that the use of a sophisticated heuristic
such that GA or SA is clearly urged by these results. Table 3 shows the relative
number of cases where a schedulability test for EDF provides a lower or equal
number of required processors than the others.

5 Conclusion and Future Work

In this paper, we have addressed the energy-aware scheduling problem upon
a DMP, a dual CPU type multiprocessor architecture composed of two homo-
geneous platforms. We exhibited the multiple advantages of such devices from
software and practical point of views, and we showed that our DMP architec-
ture, in addition to be compatible with any general-purpose processor, consid-
erably simplifies the energy-aware scheduling problem to a 2-bins packing prob-
lem. Moreover on the contrary to the most of the existing DVFS solutions, our
methodology takes into account the static consumption of the processors and is
therefore more appropriate to the emerging processors technologies. Finally, we
showed in our experiments that our methodology, by taking as starting point
some popular optimization heuristics, provides a relevant energy savings upon
a DMP architecture, compared to the energy consumption of an homogeneous
multiprocessor platform.

In our future work, we will allow job migrations between the two homogeneous
platforms Llp and Lhp in order to address a new slack reclaiming scheme (see [47]
for a definition). This on-line mechanism deals with the dynamic workload of
the task instances, while the system is running. It profits from the earlier job
completions of the lp-tasks by filling the slack time with some pending hp-tasks.

Table 2. Heuristics comparison

DM EDF
RA 0.01 % 0.04 %
FFDD 0 % 0 %
GA 91.65 % 89.32%
SA 8.39 % 10.68 %

Table 3. Tests comparison

EDF
GFB 99.98 %
BAK 0.0 %
BB 48.21 %
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It therefore reduces the workload on the platform Lhp, and hence the total energy
consumption.
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de Bruxelles (2006)

22. Annavaram, M., Grochowski, E., Shen, J.: Mitigating Amdahl’s law through EPI
throttling. In: Proceedings of the 32nd Annual International Symposium on Com-
puter Architecture, pp. 298–309 (2005)

23. Kumar, R., Farkas, K.I., Jouppi, N.P., Ranganathan, P., Tullsen, D.M.: Single-ISA
heterogeneous multi-core architectures: The potential for processor power reduc-
tion. In: Proceedings of the 36th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 81–92 (2003)

24. Kumar, R., Tullsen, D.M., Ranganathan, P., Jouppi, N.P., Farkas, K.I.: Single-ISA
heterogeneous multi-core architectures for multithreaded workload performance.
In: Proceedings of the 31st Annual International Symposium on Computer Archi-
tecture, pp. 64–75 (2004)

25. Benini, L., Micheli, G.D.: Networks on Chips: A New SoC Paradigm. Com-
puter 35(1), 70–78 (2002)

26. Towles, B., Dally, W.J.: Route packets, not wires: On-chip interconnection net-
works. Design Automation Conference 0, 684–689 (2001)

27. Wolkotte, P.T., Smit, G.J.M., Kavaldjiev, N., Becker, J.E., Becker, J.: Energy
model of networks-on-chip and a bus. In: 2005 International Symposium on System-
on-Chip, 2005. Proceedings, pp. 82–85 (2005)

28. Bolotin, E., Cidon, I., Ginosar, R., Kolodny, A.: Cost considerations in network on
chip. Integr. VLSI J. 38(1), 19–42 (2004)

29. Baruah, S., Mok, A., Rosier, L.: Preemptively scheduling hard-real-time sporadic
tasks on one processor. In: Proceedings of the 11th real-time systems symposium,
Orlando, Florida, pp. 182–190 (1990)

30. Baruah, S., Baker, T.: Schedulability analysis of global EDF. Real-Time Sys-
tems 38(3), 223–235 (2008)

31. Ripoll, I., Crespo, A., Mok, A.K.: Improvement in feasibility testing for real-time
tasks. Real-Time Systems 11(1), 19–39 (1996)



Power-Aware Real-Time Scheduling 407

32. Baker, T., Fisher, N., Baruah, S.: Algorithms for determining the load of a spo-
radic task system. Technical Report TR-051201, Department of Computer Science,
Florida State University (2005)

33. Fisher, N., Baker, T., Baruah, S.: Algorithms for determining the demand-based
load of a sporadic task system. In: Proceedings of the 12th International Conference
on Embedded and Real-Time Computing, pp. 135–146 (2006)

34. Fisher, N., Baruah, S., Baker, T.P.: The partitioned scheduling of sporadic tasks
according to static-priorities. In: Euromicro Conference on Real-Time Systems,
vol. 0, pp. 118–127 (2006)

35. Baker, T.: Multiprocessor EDF and deadline monotonic schedulability analysis. In:
Proceedings of the 24th IEEE International Real-Time Systems Symposium, pp.
120–129 (2003)

36. Baruah, S., Cohen, N., Plaxton, C., Varvel, D.: Proportionate progress: A notion
of fairness in resource allocation. Algorithmica 15(6), 600–625 (1996)

37. Dertouzos, M., Mok, A.: Multiprocessor on-line scheduling of hard-real-time tasks.
IEEE Transactions on Software Engineering 15(2), 1497–1506 (1989)

38. Cho, H., Ravindran, B., Jensen, E.D.: An Optimal Real-Time Scheduling Algo-
rithm for Multiprocessors. In: Proceedings of the 27th IEEE International Real-
Time Systems Symposium, pp. 101–110 (2006)

39. Real, J., Crespo, A.: Mode change protocols for real-time systems: A survey and a
new proposal. Real-Time Systems 26(2), 161–197 (2004)

40. Nélis, V., Goossens, J.: Mode change protocol for multi-mode real-time systems
upon identical multiprocessors. Technical Report arXiv:0809.5238v1, Cornell Uni-
versity (September 2008)

41. Bertogna, M., Cirinei, M., Lipari, G.: Improved schedulability analysis of EDF on
multiprocessor platforms. In: Proceedings of the 17th Euromicro Conference on
Real-Time Systems, pp. 209–218 (2005)

42. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing, vol. 1. Addison-Wesley Professional, Reading (1989)

43. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

44. D&R Industry Articles: Diamond standard processor core family architecture. Ten-
silica White Paper (July 2007)

45. Halfhill, T.R.: Tensilica’s preconfigured cores: Six embedded-processor cores chal-
lenge ARM, ARC, MIPS, and DSPs. Microprocessor Report (2006)

46. Gavrichenkov, I.: Meet intel wolfdale: Core 2 duo e8500, e8400 and e8200 processors
review (2008)
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Abstract. We focus on automated revision techniques for adding Unity

properties to distributed programs. We show that unlike centralized pro-
grams, where multiple safety properties along with one progress property
can be simultaneously added in polynomial-time, addition of only one
safety or one progress property to distributed programs is NP-complete.
We also propose an efficient symbolic heuristic for adding a leads-to prop-
erty to a distributed program. We demonstrate the application of this
heuristic in automated synthesis of recovery paths in fault-tolerant dis-
tributed programs.

Keywords: UNITY, Distributed programs, Automated revision, Trans-
formation, Repair, Complexity, Formal methods.

1 Introduction

Program correctness is an important aspect and application of formal methods.
There are two ways to achieve correctness when designing programs: correct-
by-verification and correct-by-construction. Applying the former often involves
a cycle of design, verification, and subsequently manual repair if the verification
step does not succeed. The latter, however, achieves correctness in an automated
fashion.

Taking the paradigm of correct-by-construction to extreme leads us to syn-
thesizing programs from their specification. While synthesis from specification
is undoubtedly useful, it suffers from lack of reuse. In program revision, on the
other hand, one can transform an input program into an output program that
meets additional properties. As a matter of fact, such properties are frequently
identified during a system’s life cycle in practice due to reasons such as incom-
plete specification, renovation of specification, and change of environment. As a
concrete example, consider the case where a program is diagnosed with a failed
property by a model checker. In such a case, access to automated transformation
methods that revise the program at hand with respect to the failed property is
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highly advantageous. For such revision to be useful, in addition to satisfaction of
new properties, the output program must inevitably preserve existing properties
of the input program as well.

In our previous work in this context [8], we focused on revising centralized pro-
grams, where processes can read and write all program variables in one atomic
step, with respect to Unity [7] properties. Our interest in Unity properties is due
to the fact that they have been found highly expressive in specifying a large class
of programs. In [8], we showed that adding a conjunction of multiple Unity safety
properties (i.e., unless, stable, and invariant) along with one progress property (i.e.,
leads-to and ensures) can be achieved in polynomial-time. We also showed that
the problem becomes NP-complete if we consider simultaneous addition of two
progress properties. We emphasize that our revision method in [8] ensures satis-
faction of all existing Unity properties of the input program as well.

In this paper,we shift our focus to distributed programs where processes can read
and write only a subset of program variables. We expect the concept of program
revision to play a more crucial role in the context of distributed programs, since
non-determinism and race conditions make it significantly difficult to assert pro-
gram correctness. We find somewhat unexpected results about the complexity of
adding Unity properties to distributed programs. In particular, we find that the
problem of adding only one Unity safety property or one progress property to a
distributed program is NP-complete in the size of the input program’s state space.

The knowledge of these complexity bounds is especially important in build-
ing tools for incremental synthesis. In particular, the NP-completeness results
demonstrate that tools for revising distributed programs must utilize efficient
heuristics to expedite the revision algorithm at the cost of completeness. More-
over, NP-completeness proofs often identify where the exponential complexity
lies in the problem. Thus, thorough analysis of proofs is also crucial in devising
efficient heuristics.

With this motivation, in this paper, we also propose an efficient symbolic
heuristic that adds a leads-to property to a distributed program. We integrate
this heuristic with our tool Sycraft [5] that is designed for adding fault-
tolerance to existing distributed programs. Meeting leads-to properties are of
special interest in fault-tolerant computing where recovery within a finite num-
ber of steps is essential. To this end, one can first augment the program with all
possible recovery transitions that it can use. This augmented program clearly
does not guarantee that it would recover to a set of legitimate states, although
there is a potential to reach the legitimate states from states reached in the pres-
ence of faults. In particular, it may continue to execute on a cycle that is entirely
outside the legitimate states. Thus, we apply our heuristic for adding a leads-to
property to modify the augmented program so that from any state reachable
in the presence of faults, the program is guaranteed recovery to its legitimate
states within a finite number of steps. A by-product of the heuristic for adding
leads-to properties is a cycle resolution algorithm. Our experimental results show
that this algorithm can also be integrated with state-of-the-art model checkers
for assisting in developing programs that are correct-by-construction.
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Organization. The rest of the paper is organized as follows. In Section 2, we
present the preliminary concepts. Then, we formally state the revision problem
in Section 3. Section 4 is dedicated to complexity analysis of addition of Unity

safety properties to distributed programs. In Section 5, we present our results
on the complexity of addition of Unity progress properties. We also present
our symbolic heuristic and experimental results in Section 5. Related work is
discussed in Section 6. Finally, we conclude in Section 7.

2 Preliminary Concepts

In this section, we formally define the notion of distributed programs. We also
reiterate the concept of Unity properties introduced by Chandy and Misra [7].

2.1 Distributed Programs

Intuitively, we define a distributed program in terms of a set of processes. Each
process is in turn specified by a state-transition system and is constrained by
some read/write restrictions over its set of variables.

Let V = {v0, v1 · · · vn} be a finite set of variables with finite domains
D0, D1 · · ·Dn, respectively. A state, say s, is determined by mapping each vari-
able vi in V , 0 ≤ i ≤ n, to a value in Di. We denote the value of a variable v in
state s by v(s). The set of all possible states obtained by variables in V is called
the state space and is denoted by S. A transition is a pair of states of the form
(s0, s1) where s0, s1 ∈ S.

Definition 1 (state predicate). Let S be the state space obtained from vari-
ables in V . A state predicate is a subset of S.

Definition 2 (transition predicate). Let S be the state space obtained from
variables in V . A transition predicate is a subset of S × S.

Definition 3 (process). A process p is specified by the tuple 〈Vp, Tp, Rp, Wp〉
where Vp is a set of variables, Tp is a transition predicate in the state space of p
(denoted Sp), Rp is a set of variables that p can read, and Wp is a set of variables
that p can write such that Wp ⊆ Rp ⊆ Vp (i.e., we assume that p cannot blindly
write a variable).

Write restrictions. Let p = 〈Vp, Tp, Rp, Wp〉 be a process. Clearly, Tp must
be disjoint from the following transition predicate due to inability of p to change
the value of variables that p cannot write:

NW p = {(s0, s1) | v(s0) �= v(s1) where v �∈ Wp}.

Read restrictions. Let p = 〈Vp, Tp, Rp, Wp〉 be a process, v be a variable
in Vp, and (s0, s1) ∈ Tp where s0 �= s1. If v is not in Rp, then p must include
a corresponding transition from all states s′0 where s′0 and s0 differ only in the
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value of v. Let (s′0, s
′
1) be one such transition. Now, it must be the case that

s1 and s′1 are identical except for the value of v, and, the value of v must be
the same in s′0 and s′1. For instance, let Vp = {a, b} and Rp = {a}. Since p
cannot read b, the transition ([a = 0, b = 0], [a = 1, b = 0]) and the transition
([a = 0, b = 1], [a = 1, b = 1]) have the same effect as far as p is concerned. Thus,
each transition (s0, s1) in Tp is associated with the following group predicate:

Groupp(s0, s1) = {(s′0, s′1) |
(∀v �∈ Rp : (v(s0) = v(s1) ∧ v(s′0) = v(s′1))) ∧
(∀v ∈ Rp : (v(s0) = v(s′0) ∧ v(s1) = v(s′1)))}.

Definition 4 (distributed program). A distributed program Π is specified
by the tuple 〈PΠ, IΠ〉 where PΠ is a set of processes and IΠ is a set of initial
states. Without loss of generality, we assume that the state space of all processes
in PΠ is identical (i.e., ∀p, q ∈ PΠ :: (Vp = Vq) ∧ (Dp = Dq)). Thus, the set of
variables (denoted VΠ) and state space of program Π (denoted SΠ) are identical
to the set of variables and state space of processes of Π, respectively. In this
sense, the set IΠ of initial states of Π is a subset of SΠ.

Notation. Let Π = 〈PΠ, IΠ〉 be a distributed program (or simply a program).
The set TΠ denotes the collection of transition predicates of all processes of Π,
i.e., TΠ =

⋃
p∈PΠ

Tp.

Definition 5 (computation). Let Π = 〈PΠ, IΠ〉 be a program. An infinite
sequence of states s = 〈s0, s1 · · · 〉 is a computation of Π iff the following three
conditions are satisfied: (1) s0 ∈ IΠ, (2) ∀i ≥ 0 : (si, si+1) ∈ TΠ, and (3) if s
reaches a terminating state sl where there does not exist s such that s �= sl and
(sl, s) ∈ TΠ, then we extend s to an infinite computation by stuttering at sl

using transition (sl, sl).

Notice that we distinguish between a terminating computation and a deadlocked
computation. Precisely, if a computation s reaches a terminating state sd such
that there exists no process p in PΠ where (sd, s) ∈ Tp for some state s, then sd

is a deadlock state and s is a deadlocked computation. For a distributed program
Π = 〈PΠ, IΠ〉, we say that a sequence of states s = 〈s0, s1 · · · sn〉 is a computation
prefix of Π iff ∀j | 0 ≤ j < n : (sj , sj+1)∈TΠ.

2.2 UNITY Properties

Unity properties are categorized by two classes of safety and progress properties
defined next [7].

Definition 6 (UNITY safety properties). Let P and Q be arbitrary state
predicates.

– (Unless) An infinite sequence of states s = 〈s0, s1 · · · 〉 satisfies ‘P unless Q’
iff ∀i ≥ 0 : (si ∈ (P ∩ ¬Q)) ⇒ (si+1 ∈ (P ∪ Q)). Intuitively, if P holds in a
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state of s, then either (1) Q never holds in s and P is continuously true, or
(2) Q becomes true and P holds at least until Q becomes true.

– (Stable) An infinite sequence of states s = 〈s0, s1 · · · 〉 satisfies ‘stable P ’ iff
s satisfies P unless false . Intuitively, P is stable iff once it becomes true, it
remains true forever.

– (Invariant) An infinite sequence of states s = 〈s0, s1 · · · 〉 satisfies ‘invariant
P ’ iff s0 ∈ P and s satisfies stable P . An invariant property always holds.

Definition 7 (UNITY progress properties). Let P and Q be arbitrary
state predicates.

– (Leads-to) An infinite sequence of states s = 〈s0, s1 · · · 〉 satisfies ‘P leads-to
Q’ iff (∀i ≥ 0 : (si ∈ P ) ⇒ (∃j ≥ i : sj ∈ Q)). In other words, if P holds in
a state si, i ≥ 0, of s, then there exists a state sj in s, i ≤ j, such that Q
holds in sj .

– (Ensures) An infinite sequence of states s = 〈s0, s1 · · · 〉 satisfies ‘P ensures
Q’ iff for all i, i ≥ 0, if P ∩ ¬Q is true in state si, then (1) si+1 ∈ (P ∪ Q),
and (2) ∃j ≥ i : sj ∈ Q. In other words, if P becomes true in si, there exists
a state sj where Q eventually becomes true and P remains true everywhere
in between si and sj .

In our formal framework, unlike standard Unity in which interleaved fairness is
assumed, we assume that all program computations are unfair. This assumption
is necessary when dealing with addition of Unity progress properties to pro-
grams. We also note that the definition of ensures property is slightly different
from that in [7]. Precisely, in Chandy and Misra’s definition, P ensures Q implies
that (1) P leads-to Q, (2) P unless Q, and (3) there is at least one action that
always establishes Q whenever it is executed in a state where P is true and Q
is false. Since, we do not model actions explicitly in our work, we have removed
the third requirement. Finally, as described in Subsection 2.1, in this paper, our
focus is only on programs with finite state space.

We now define what it means for a program to refine a Unity property. Note
that throughout this paper, we assume that a program and its properties have
identical state space.

Definition 8 (refines). Let Π = 〈PΠ, IΠ〉 be a program and L be a Unity

property. We say that Π refines L iff all computations of Π are infinite and
satisfy L.

Definition 9 (specification). A Unity specification Σ is the conjunction∧n
i=1 Li where each Li is a Unity safety or progress property.

One can easily extend the notion of refinement to Unity specifications as follows.
Given a program Π and a specification Σ =

∧n
i=1 Li, we say that Π refines Σ

iff for all i, 1 ≤ i ≤ n, Π refines Li.

Concise representation of safety properties. Observe that the Unity

safety properties can be characterized in terms of a set of bad transitions that
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should never occur in a program computation. For example, stable P requires
that a transition, say (s0, s1), where s0 ∈ P and s1 /∈ P , should never occur in
any computation of a program that refines stable P . Hence, for simplicity, in this
paper, when dealing with safety Unity properties of a program Π = 〈PΠ, IΠ〉,
we assume that they are represented by a transition predicate B ⊆ SΠ × SΠ
whose transitions should never occur in any computation.

3 Problem Statement

Given are a program Π = 〈PΠ, IΠ〉 and a (new) Unity specification Σn. Our goal
is to devise an automated method which revises Π so that the revised program
(denoted Π′ = 〈PΠ′ , IΠ′〉) (1) refines Σn, and (2) continues refining its existing
Unity specification Σe, where Σe is unknown. Thus, during the revision, we
only want to reuse the correctness of Π with respect to Σe in the sense that the
correctness of Π′ with respect to Σe is derived from ‘Π refines Σe’.

Intuitively, in order to ensure that the revised program Π′ continues refin-
ing the existing specification Σe, we constrain the revision problem so that the
set of computations of Π′ is a subset of the set of computations of Π. In this
sense, since Unity properties are not existentially quantified (unlike in Ctl),
we are guaranteed that all computations of Π′ satisfy the Unity properties that
participate in Σe.

Now, we formally identify constraints on SΠ′ , IΠ′ , and TΠ′ . Observe that if
SΠ′ contains states that are not in SΠ, there is no guarantee that the correctness
of Π with respect to Σe can be reused to ensure that Π′ refines Σe. Also, since
SΠ denotes the set of all states (not just reachable states) of Π, removing states
from SΠ is not advantageous. Likewise, IΠ′ should not have any states that were
not there in IΠ. Moreover, since IΠ denotes the set of all initial states of Π, we
should preserve them during the revision. Finally, we require that TΠ′ should
be a subset of TΠ. Note that not all transitions of TΠ may be preserved in TΠ′ .
Hence, we must ensure that Π′ does not deadlock. Based on Definitions 8 and
9, if (i) TΠ′ ⊆ TΠ, (ii) Π′ does not deadlock, and (iii) Π refines Σe, then Π′ also
refines Σe. Thus, the revision problem is formally defined as follows:

Problem Statement 1 Given a program Π = 〈PΠ, IΠ〉 and a Unity specifi-
cation Σn, identify Π′ = 〈PΠ′ , IΠ′〉 such that:

(C1) SΠ′ = SΠ,
(C2) IΠ′ = IΠ,
(C3) TΠ′ ⊆ TΠ, and
(C4) Π′ refines Σn.

Note that the requirement of deadlock freedom is not explicitly specified in the
above problem statement, as it follows from ‘Π′ refines Σn’. Throughout the
paper, we use ‘revision of Π with respect to a specification Σn (or property L)’
and ‘addition of Σn (respectively, L) to Π’ interchangeably.
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4 Adding UNITY Safety Properties to Distributed
Programs

As mentioned in Section 2, Unity safety properties can be characterized by a
transition predicate, say B, whose transitions should occur in no computation
of a program. In a centralized setting where processes have no restrictions on
reading and writing variables, a program Π = 〈PΠ, IΠ〉 can be easily revised
with respect to B by simply (1) removing the transitions in B from TΠ, and (2)
making newly created deadlock states unreachable [8].

To the contrary, the above approach is not adequate for a distributed setting,
as it is sound (i.e., it constructs a correct program), but not complete (i.e., it
may fail to find a solution while there exists one). This is due to the issue of read
restrictions in distributed programs, which associates each transition of a process
with a group predicate. This notion of grouping makes the revision complex, as a
revision algorithm has to examine many combinations to determine which group
of transitions must be removed and, hence, what deadlock states need to be
handled. Indeed, we show that the issue of read restrictions changes the class of
complexity of the revision problem entirely.

Instance. A distributed program Π = 〈PΠ, IΠ〉 and a Unity safety specification
Σn.

Decision problem. Does there exist a program Π′ = 〈PΠ′ , IΠ′〉 such that Π′

meets the constraints of Problem Statement 1 for the above instance?

We now show that the above decision problem is NP-complete by a reduction
from the well-known satisfiability problem. The SAT problem is as follows:

Let x1, x2 · · ·xN be propositional variables. Given a Boolean for-
mula y = yN+1 ∧ yN+2 · · · yM+N , where each clause yj , N + 1 ≤
j ≤ M + N , is a disjunction of three or more literals, does there
exist an assignment of truth values to x1, x2 · · ·xN such that y is
satisfiable?

We note that the unconventional subscripting of clauses in the above definition
of the SAT problem is deliberately chosen to make our proofs simpler.

Theorem 1. The problem of adding a Unity safety property to a distributed
program is NP-complete.

Proof. Since showing membership to NP is straightforward, we only need to
show that the problem is NP-hard. Towards this end, we present a polynomial-
time mapping from an instance of the SAT problem to a corresponding instance
of our revision problem. We construct the instance Π = 〈PΠ, IΠ〉 as follows.

Variables. The set of variables of program Π and, hence, its processes is
V = {v0, v1, v2, v3, v4}. The domain of these variables are respectively as follows:
{−1, 0, 1}, {−1, 0, 1}, {0, 1}, {0, 1}, {−N · · · − 2,−1, 1, 2 · · ·M + N} ∪ {ji | (1 ≤



Revising Distributed UNITY Programs Is NP-Complete 415

i ≤ N) ∧ (N + 1 ≤ j ≤ M + N)}. We note that ji in the last set is not an
exponent, but a denotational symbol.

Reachable states. The set of reachable states in our mapping is as follows:

– For each propositional variable xi, 1 ≤ i ≤ N , in the instance of the SAT
problem, we introduce the following states (see Figure 1): ai, bi, b

′
i, ci, c

′
i, di,

and d′i. We require that states a1 and aN+1 are identical.
– For each clause yj, N + 1 ≤ j ≤ M + N , we introduce state rj .
– For each clause yj , N + 1 ≤ j ≤ M + N , and variable xi in clause yj ,

1 ≤ i ≤ N , we introduce the following states: rji, sji, s
′
ji, tji, and t′ji.

Value assignments. Assignment of values to each variable at reachable states
is shown in Figure 1 (denoted by < v0, v1, v2, v3, v4 >). We emphasize that
assignment of values in our mapping is the most crucial factor in forming group
predicates. For reader’s convenience, Table 1 illustrates the assignment of values
to variables more clearly.

Table 1. Assignment of values to variables in proof of Theorem 1

(a)

State / Variable name v0 v1 v2 v3 v4

ai -1 1 0 1 i

bi 0 0 0 0 −i

b′
i 0 0 0 0 i

ci 1 0 1 1 −i

c′
i 0 1 1 1 i

di 0 1 1 1 −i

d′
i 1 0 1 1 i

(b)

State / Variable name v0 v1 v2 v3 v4

rj 0 0 1 0 j

rji 0 0 0 0 ji

sji 0 1 1 1 ji

s′
ji 1 0 1 1 ji

tji 1 -1 0 1 ji

t′
ji -1 -1 0 1 ji

Processes. ProgramΠ consists of four processes. Formally,PΠ = {p1, p2, p3, p4}.
Transition predicate and read/write restrictions of processes in PΠ are as follows:

– Read/write restrictions. The read/write restrictions of processes p1, p2,
p3, and p4 are as follows:
• Rp1 = {v0, v2, v3} and Wp1 = {v0, v2, v3}.
• Rp2 = {v1, v2, v3} and Wp2 = {v1, v2, v3}.
• Rp3 = {v0, v1, v2, v3, v4} and Wp3 = {v0, v1, v2, v4}.
• Rp4 = {v0, v1, v2, v3, v4} and Wp4 = {v0, v1, v3, v4}.

– Transition predicates. For each propositional variable xi, 1 ≤ i ≤ N , we
include the following transitions in processes p1, p2, p3, and p4 (see Figure 1):
• Tp1 = {(b′i, d′i), (bi, ci) | 1 ≤ i ≤ N}.
• Tp2 = {(b′i, c′i), (bi, di) | 1 ≤ i ≤ N}.
• Tp3 = {(c′i, ai+1), (ci, ai+1), (d′i, ai+1), (di, ai+1) | 1 ≤ i ≤ N}.
• Tp4 = {(ai, bi), (ai, b

′
i) | 1 ≤ i ≤ N}.
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Fig. 1. Mapping SAT to addition of Unity safety properties

Moreover, corresponding to each clause yj , N +1 ≤ j ≤ M +N , and variable
xi, 1 ≤ i ≤ N , in clause yj , we include transition (rj , rji) in Tp3 and the
following:
• If xi is a literal in clause yj , then we include transition (rji, sji) in Tp2 ,

(sji, tji) in Tp3 , and (tji, bi) in Tp4 .
• If ¬xi is a literal in clause yj, then we include transition (rji, s

′
ji) in Tp1 ,

(s′ji, t
′
ji) in Tp3 , and (t′ji, b

′
i) in Tp4 .

Note that only for the sake of illustration, Figure 1 shows all possible transi-
tions. However, in order to construct Π, based on the existence of xi or ¬xi

in yj , we only include a subset of the transitions.

Initial states. The set IΠ of initial states represents clauses of the instance of
the SAT problem, i.e., IΠ = {rj | N + 1 ≤ j ≤ M + N}.
Safety property. Let P be a state predicate that contains all reachable states
in Figure 1 except ci and c′i (i.e., ci, c

′
i ∈ ¬P ). Thus, the properties sta-

ble P and invariant P can be characterized by the transition predicate B =
{(bi, ci), (b′i, c

′
i) | 1 ≤ i ≤ N}. Similarly, let P and Q be two state predicates

that contain all reachable states in Figure 1 except ci and c′i. Thus, the safety
property P unless Q can be characterized by B as well. In our mapping, we let
B represent the safety specification for which Π has to be revised.

Before we present our reduction from the SAT problem using the above map-
ping, we make the following observations regarding the grouping of transitions
in different processes:

1. Due to inability of process p1 to read variable v4, for all i, 1 ≤ i ≤ N ,
transitions (rji, s

′
ji), (b

′
i, d

′
i), and (bi, ci) are grouped in p1.

2. Due to inability of process p2 to read variable v4, for all i, 1 ≤ i ≤ N ,
transitions (rji, sji), (bi, di), and (b′i, c

′
i) are grouped in p2.

3. Transitions grouped with the rest of the transitions in Figure 1 are unreach-
able and, hence, are irrelevant.
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Now, we show that the answer to the SAT problem is affirmative if and only
if there exists a solution to the revision problem. Thus, we distinguish two cases:

– (⇒) First, we show that if the given instance of the SAT formula is satisfi-
able, then there exists a solution that meets the requirements of the revision
decision problem. Since the SAT formula is satisfiable, there exists an as-
signment of truth values to all variables xi, 1 ≤ i ≤ N , such that each yj ,
N +1 ≤ j ≤ M +N , is true. Now, we identify a program Π′, that is obtained
by adding the safety property represented by B to program Π as follows.
• The state space of Π′ consists of all the states of Π, i.e., SΠ = SΠ′ .
• The initial states of Π′ consists of all the initial states of Π, i.e., IΠ = IΠ′ .
• For each variable xi, 1 ≤ i ≤ N , if xi is true, then we include the

following transitions: (ai, bi) in Tp4 , (bi, di) in Tp2 , and (di, ai+1) in Tp3 .
• For each variable xi, 1 ≤ i ≤ N , if xi is false, then we include the

following transitions:(ai, b
′
i) in Tp4 , (b′i, d

′
i) in Tp1 , and (d′i, ai+1) in Tp3 .

• For each clause yj , N + 1 ≤ j ≤ M + N , that contains literal xi, if xi is
true, we include the following transitions: (rj , rji) and (sji, tji) in Tp3 ,
(rji, sji) in Tp2 , and (tji, bi) in Tp4 .

• For each clause yj , N +1 ≤ j ≤ M +N , that contains literal ¬xi, if xi is
false , we include the following transitions: (rj , rji) and (s′ji, t

′
ji) in Tp3 ,

(rji, s
′
ji) in Tp1 , and (t′ji, b

′
i) in Tp4 .

As an illustration, we show the partial structure of Π′, for the formula (x1 ∨
¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x4), where x1 = true, x2 = false , x3 = false , and
x4 = false , in Figure 2. Notice that states whose all outgoing and incoming
transitions are eliminated are not illustrated. Now, we show that Π′ meets
the requirements of the Problem Statement 1:
1. The first three constraints of the decision problem are trivially satisfied

by construction.
2. We now show that constraint C4 holds. First, it is easy to observe that

by construction, there exist no reachable deadlock states in the revised
program. Hence, if Π refines Unity specification Σe, then Π′ refines Σe as
well. Moreover, if a computation of Π′ reaches a state bi for some i, from
an initial state rj (i.e., xi is true in clause yj), then that computation
cannot violate safety since bad transition (bi, ci) is removed. This is
due to the fact that (bi, ci) is grouped with transition (rji, s

′
ji) and this

transition is not included in TΠ′ , as literal xi is true in yj. Likewise, if
a computation of Π′ reaches a state b′i for some i, from initial state rj

(i.e., xi is false in clause yj), then that computation cannot violate safety
since transition (b′i, c

′
i) is removed. This is due to the fact that (b′i, c

′
i) is

grouped with transition (rji, sji) and this transition is not included in
TΠ′ , as xi is false. Thus, Π′ refines Σn.

– (⇐) Next, we show that if there exists a solution to the revision problem
for the instance identified by our mapping from the SAT problem, then the
given SAT formula is satisfiable. Let Π′ be the program that is obtained
by adding the safety property Σn to program Π. Now, in order to obtain a
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Fig. 2. The structure of the revised program for Boolean formula (x1 ∨ ¬x2 ∨ x3) ∧
(x1 ∨ x2 ∨ ¬x4), where x1 = true , x2 = false, x3 = false, and x4 = false

solution for SAT, we proceed as follows. If there exists a computation of Π′

where state bi is reachable, then we assign xi the truth value true. Otherwise,
we assign the truth value false .

We now show that the above truth assignment satisfies all clauses. Let yj

be a clause for some j, N +1 ≤ j ≤ M +N , and let rj be the corresponding
initial state in IΠ′ . Since rj is an initial state and Π′ cannot deadlock, the
transition (rj , rji) must be present in TΠ′ , for some i, 1 ≤ i ≤ N . By the same
argument, there must exist some transition that originates from rji. This
transition terminates in either sji or s′ji. Observe that TΠ′ cannot have both
transitions, as grouping of transitions will include both (bi, ci) and (b′i, c

′
i)

which in turn causes violation of safety by Π′. Now, if the transition from
rji terminates in sji, then clause yj contains literal xi and xi is assigned the
truth value true. Hence, yj evaluates to true. Likewise, if the transition from
rji terminates in s′ji, then clause yj contains literal ¬xi and xi is assigned
the truth value false. Hence, yj evaluates to true. Therefore, the assignment
of values considered above is a satisfying truth assignment for the given SAT
formula.

5 Adding UNITY Progress Properties to Distributed
Programs

This section is organized as follows. In Subsection 5.1, we show that adding a
Unity progress property to a distributed program is NP-complete. Then, in
Subsection 5.2, we present a symbolic heuristic for adding a leads-to property to
a distributed program.
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5.1 Complexity

In a centralized setting, where programs have no restriction on reading and
writing variables, a program, say Π = 〈PΠ, IΠ〉, can be easily revised with respect
to a progress property by simply (1) breaking non-progress cycles that prevent
a program to eventually reach a desirable state predicate, and (2) removing
deadlock states [8]. To the contrary, in a distributed setting, due to the issue of
grouping, it matters which transition (and as a result its corresponding group)
is removed to break a non-progress cycle.

Instance. A distributed program Π = 〈PΠ, IΠ〉 and a Unity progress
property Σn.

Decision problem. Does there exist a program Π′ = 〈PΠ′ , IΠ′〉 such that Π′

meets the constraints of Problem Statement 1 for the above instance?

Theorem 2. The problem of adding a Unity progress property to a distributed
program is NP-complete.

Proof. Since showing membership to NP is straightforward, we only show that
the problem is NP-hard by a reduction from the SAT problem. First, we present
a polynomial-time mapping.

Variables. The set of variables of program Π and, hence, its processes is
V = {v0, v1, v2, v3, v4}. The domain of these variables are respectively as follows:
{0, 1}, {0, 1}, {−N · · · − 2,−1, 1, 2 · · ·M + N} ∪ {ji | (1 ≤ i ≤ N) ∧ (N + 1 ≤
j ≤ M + N)}, {−1, 0, 1}, and {−1, 0, 1}.
Reachable states. The set of reachable states in our mapping is as follows:

– For each propositional variable xi, 1 ≤ i ≤ N , we introduce the following
states (see Figure 3): ai, a′

i, bi, b′i, ci, c′i, di, d′i, Qi, and Q′
i.

– For each clause yj, N + 1 ≤ j ≤ M + N , we introduce state rj .
– For each clause yj , N + 1 ≤ j ≤ M + N , and variable xi, 1 ≤ i ≤ N , in

clause yj , we introduce states rji, sji, and s′ji.

Value assignments. Assignment of values to each variable at reachable states
is shown in Figure 3 (denoted by < v0, v1, v2, v3, v4 >). For reader’s convenience,
Table 2 illustrates the assignment of values to variables more clearly.

Processes. ProgramΠ consists of four processes. Formally,PΠ = {p1, p2, p3, p4}.
Transition predicate and read/write restrictions of processes in PΠ are as follows:

– Read/write restrictions. The read/write restrictions of processes p1, p2,
p3, and p4 are as follows:
• Rp1 = {v0, v1, v3} and Wp1 = {v0, v1, v3}.
• Rp2 = {v0, v1, v4} and Wp2 = {v0, v1, v4}.
• Rp3 = {v0, v1, v2, v3, v4} and Wp3 = {v0, v2, v3, v4}.
• Rp4 = {v0, v1, v2, v3, v4} and Wp4 = {v1, v2, v3, v4}.
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Table 2. Assignment of values to variables in proof of Theorem 2

(a)

State / Variable name v0 v1 v2 v3 v4

ai 1 0 −i -1 -1
a′

i 1 0 i -1 1
bi 0 0 −i 0 0
b′
i 0 0 i 0 0

ci 1 1 −i 0 1
c′
i 1 1 i 1 0

di 0 1 i 1 -1
d′

i 0 1 −i 1 1
Qi 1 1 −i 1 0
Q′

i 1 1 i 0 1

(b)

State / Variable name v0 v1 v2 v3 v4

rj 0 1 j 1 1
rji 0 0 ji 0 0
sji 1 1 ji 0 1
s′

ji 1 1 ji 1 0

– Transition predicates. For each propositional variable xi, 1 ≤ i ≤ N , we
include the following transitions in processes p1, p2, p3, and p4 (see Figure 3):
• Tp1 = {(b′i, c′i), (bi, Qi) | 1 ≤ i ≤ N}.
• Tp2 = {(bi, ci), (b′i, Q

′
i) | 1 ≤ i ≤ N}.

• Tp3 = {(ai, bi), (a′
i, b

′
i), (ci, di), (c′i, d

′
i), (Qi, Qi), (Q′

i, Q
′
i) | 1 ≤ i ≤ N}.

• Tp4 = {(d′i, bi), (di, b
′
i) | 1 ≤ i ≤ N}.

Moreover, corresponding to each clause yj , N +1 ≤ j ≤ M +N , and variable
xi, 1 ≤ i ≤ N , in clause yj , we include transition (rj , rji) in Tp4 and the
following:
• If xi is a literal in clause yj , then we include transition (rji, sji) in Tp2 ,

and (sji, ai) in Tp4 .
• If ¬xi is a literal in clause yj , then we include transition (rji, s

′
ji) in Tp1

and (s′ji, a
′
i) in Tp4 .

Note that for the sake of illustration, Figure 3 shows all possible transitions.
However, in order to construct Π′, based on the existence of xi or ¬xi in yj ,
we only include a subset of transitions.

Initial states. The set IΠ of initial states represents clauses of the Boolean
formula in the instance of the SAT problem, i.e., IΠ = {rj | N +1 ≤ j ≤ M +N}.
Progress property. In our mapping, the desirable progress property is of the
form Σn ≡ (true leads-to Q), where Q = {Qi, Q

′
i | 1 ≤ i ≤ N} (see Figure 3).

Observe that Σn is a leads-to as well as an ensures property. This property in
Linear Temporal Logic (Ltl) is denoted by �♦Q (called always eventually Q).

Before we present our reduction from the SAT problem using the above map-
ping, we make the following observations regarding the grouping of transitions
in different processes:

1. Due to inability of process p1 to read variable v2, for all i, 1 ≤ i ≤ N ,
transitions (rji, s

′
ji), (b′i, c

′
i), and (bi, Qi) are grouped in process p1.
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Fig. 3. Mapping SAT to addition of a progress property

2. Due to inability of process p2 to read variable v2, for all i, 1 ≤ i ≤ N ,
transitions (rji, sji), (bi, ci), and (b′i, Q

′
i) are grouped in process p2.

3. Transitions grouped with the rest of the transitions in Figure 3 are unreach-
able and, hence, are irrelevant.

We distinguish the following two cases for reducing the SAT problem to our
revision problem :

– (⇒) First, we show that if the given instance of the SAT formula is satisfi-
able, then there exists a solution that meets the requirements of the revision
decision problem. Since the SAT formula is satisfiable, there exists an as-
signment of truth values to all variables xi, 1 ≤ i ≤ N , such that each yj ,
N +1 ≤ j ≤ M +N , is true. Now, we identify a program Π′, that is obtained
by adding the progress property �♦Q to program Π as follows.
• The state space of Π′ consists of all the states of Π, i.e., SΠ = SΠ′ .
• The initial states of Π′ consists of all the initial states of Π, i.e., IΠ = IΠ′ .
• For each variable xi, 1 ≤ i ≤ N , if xi is true, then we include the

following transitions: (ai, bi), (ci, di), and (Q′
i, Q

′
i) in Tp3 , (bi, ci) and

(b′i, Q
′
i) in Tp2 , and, (di, b

′
i) in Tp4 .

• For each variable xi, 1 ≤ i ≤ N , if xi is false, then we include the
following transitions: (a′

i, b
′
i), (c′i, d

′
i), and (Qi, Qi) in Tp3 , (b′i, c

′
i) and

(bi, Qi) in Tp1 , and, (d′i, bi) in Tp4 .
• For each clause yj , N + 1 ≤ j ≤ M + N , that contains literal xi, if xi is

true, we include transitions (rj , rji) and (sji, ai) in Tp4 , and, transition
(rji, sji) in Tp2 .

• For each clause yj , N +1 ≤ j ≤ M +N , that contains literal ¬xi, if xi is
false , we include transitions (rj , rji) and (s′ji, a

′
i) in Tp4 , and, transition

(rji, s
′
ji) in Tp1 .

As an illustration, we show the partial structure of Π′, for the formula (x1 ∨
¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x4), where x1 = true, x2 = false , x3 = false , and
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Fig. 4. The structure of the revised program for Boolean formula (x1 ∨ ¬x2 ∨ x3) ∧
(x1 ∨ x2 ∨ ¬x4), where x1 = true , x2 = false, x3 = false, and x4 = false

x4 = false in Figure 4. Notice that states whose all outgoing and incoming
transitions are eliminated are not illustrated. Now, we show that Π′ meets
the requirements of the Problems Statement 1:

1. The first three constraints of the decision problem are trivially satisfied
by construction.

2. We now show that constraint C4 holds. First, it is easy to observe that
by construction, there exist no reachable deadlock states in the revised
program. Hence, if Π refines Unity specification Σe, then Π′ refines Σe

as well. Moreover, by construction, all computations of Π′ eventually
reach either Qi or Q′

i and will stutter there. This is due to the fact that
if literal xi is true in clause yj , then transition (rji, s

′
ji) is not included in

TΠ′ and, hence, its group-mates (b′i, c
′
i) and (bi, Qi) are not in TΠ′ as well.

Consequently, a computation that starts from rj eventually reaches Q′
i

without meeting a cycle. Likewise, if literal ¬xi is false in clause yj, then
transition (rji, sji) is not included in TΠ′ and, hence, its group-mates
(bi, ci) and (b′i, Q

′
i) are not in TΠ′ as well. Consequently, a computation

that starts from rj eventually reaches Qi without meeting a cycle. Hence,
Π′ refines Σn ≡ �♦Q.

– (⇐) Next, we show that if there exists a solution to the revision problem for
the instance identified by our mapping from the SAT problem, then the given
SAT formula is satisfiable. Let Π′ be the program that is obtained by adding
the progress property in Σn ≡ �♦Q to program Π. Now, in order to obtain
a solution for SAT, we proceed as follows. If there exists a computation of Π′

where state ai is reachable, then we assign xi the truth value true. Otherwise,
we assign the truth value false .
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We now show that the above truth assignment satisfies all clauses. Let yj be
a clause for some j, N + 1 ≤ j ≤ M + N , and let rj be the corresponding
initial state in IΠ′ . Since rj is an initial state and Π′ cannot deadlock, the
transition (rj , rji) must be present in TΠ′ , for some i, 1 ≤ i ≤ N . By the
same argument, there must exist some transition that originates from rji.
This transition terminates in either sji or s′ji. Observe that TΠ′ cannot have
both transitions, as grouping of transitions will include transitions (bi, ci)
and (b′i, c

′
i). If this is the case, Π′ does not refine the property �♦Q due to

the existence of cycle bi → ci → di → b′i → c′i → d′i → bi. Thus, there
can be one and only one outgoing transition from rji in TΠ′ . Now, if the
transition from rji terminates in sji, then clause yj contains literal xi and xi

is assigned the truth value true. Hence, yj evaluates to true. Likewise, if the
transition from rji terminates in s′ji, then clause yj contains literal ¬xi and
xi is assigned the truth value false . Hence, yj evaluates to true. Therefore,
the assignment of values considered above is a satisfying truth assignment
for the given SAT formula.

5.2 A Symbolic Heuristic for Adding Leads-To Properties

We now present a polynomial-time (in the size of the state space) symbolic
(BDD1-based) heuristic for adding leads-to properties to distributed programs.
Leads-to properties have interesting applications in automated addition of recov-
ery for synthesizing fault-tolerant distributed programs.

The NP-hardness reduction presented in the proof of Theorem 2 precisely
shows where the complexity of the problem lies in. Indeed, Figure 3 shows that
transition (bi, ci) which can potentially be removed to break the non-progress
cycle bi → ci → di → b′i → c′i → d′i → bi is grouped with the critical transition
(rji, sji) which ensures that state rji and consequently initial state rj are not
deadlocked. The same argument holds for transitions (b′i, c

′
i) and (rji, s

′
ji). Thus,

a heuristic that adds a leads-to property to a distributed program needs to
address this issue.

Our heuristic works as follows (cf. Figure 5). The Algorithm Add LeadsTo
takes a distributed program Π = 〈PΠ, IΠ〉 and a property P leads-to Q as input,
where P and Q are two arbitrary state predicates in the state space of Π. The
algorithm (if successful) returns transition predicate of the derived program Π′ =
〈PΠ′ , IΠ′〉 that refines P leads-to Q as output. In order to transform Π to Π′,
first, the algorithm ranks states that can be reached from P based on the length
of their shortest path to Q (Line 2). Then, it attempts to break non-progress
cycles (Lines 3-13). To this end, it first computes the set of cycles that are
reachable from P (Line 4). This computation can be accomplished using any
BDD-based cycle detection algorithm. We apply the Emerson-Lie method [10].
Then, the algorithm removes transitions from TΠ that participate in a cycle

1 Ordered Binary Decision Diagrams [6] represent Boolean formulae as directed acyclic
graphs making testing of functional properties such as satisfiability and equivalence
straightforward and extremely efficient.
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Algorithm 1 Add LeadsTo
Input: A distributed program Π = 〈PΠ, IΠ〉 and property P leads-to

Q.
Output: If successful, transition predicate TΠ′ of the new program.

1: repeat
2: Let Rank [i] be the state predicate whose length of shortest path

to Q is i, where Rank [0] = Q and Rank [∞] = the state predicate
that is reachable from P , but cannot reach Q;

3: for all i and j do
4: C := ComputeCycles(TΠ, P );
5: if (i ≤ j) ∧ (i 
= 0) ∧ (i 
= ∞) then
6: tmp := Group(〈C ∧ Rank [i]〉 ∧ 〈C ∧ Rank [j]〉′);
7: if removal of tmp from TΠ eliminates a state from Q then
8: Make 〈C ∧ tmp〉 unreachable;
9: else

10: TΠ := TΠ − tmp;
11: end if
12: end if
13: end for
14: until Rank [∞] = {}
15: TΠ′ := EliminateDeadlockStates(P , Q, 〈PΠ, IΠ〉);
16: return TΠ′ ;

Fig. 5. A symbolic heuristic for adding a leads-to property to a distributed program

and whose rank of source state is less than or equal to the rank of destination
state (Lines 6-10). However, since removal of a transition must take place with
its entire group predicate, we do not remove a transition that causes creation
of deadlock states in Q. Instead, we make the corresponding cycle unreachable
(Line 8). This can be done by simply removing transitions that terminate in a
state on the cycle. Thus, if removal of a group of transitions does not create
new deadlock states in Q, the algorithm removes them (Line 10). Finally, since
removal of transitions may create deadlock states outside Q but reachable from
P , we need to eliminate those deadlock states (Line 15). Such elimination can
be accomplished using the BDD-based method proposed in [4].

Given O(n2) complexity of the cycle detection algorithm [10], it is straight-
forward to observe that the complexity of our heuristic is O(n4), where n is the
size of state space of Π. In order to evaluate the performance of our heuristic,
we have implemented the Algorithm Add LeadsTo in our tool Sycraft [5]. This
heuristic can be used for adding recovery in order to synthesize fault-tolerant
distributed programs as follows. Let S be a set of legitimate states (e.g., an
invariant predicate) and T be the fault-span predicate (i.e., the set of states
reachable in the presence of faults). First, we add all possible transitions that
start from T − S and end in T . Then, we apply the Algorithm Add LeadsTo for
property (T − S) leads-to S.

Figure 6 illustrates experimental results of our heuristic for adding such re-
covery. All experiments are run on a PC with a 2.8GHz Intel Xeon processor and
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Space Time(s)
reachable memory cycle pruning total

states (KB) detection transitions

BA5 104 12 0.5 2.5 3
BA10 108 18 5 18 23
BA15 1012 26 47 76 125
BA20 1016 29 522 372 894
BA25 1020 30 3722 1131 4853

TR5 102 6 0.2 0.3 0.5
TR10 105 7 13 2 15
TR15 107 10 470 10 480
TR20 109 33 2743 173 2916
TR25 1011 53 22107 2275 24382

Fig. 6. Experimental results of the symbolic heuristic

1.2GB RAM. The BDD representation of the Boolean formulae has been done
using the Glu/CUDD package2. Our experiments target addition of recovery to
two well-known problems in fault-tolerant distributed computing, namely, the
Byzantine agreement problem [14] (denote BAi) and the token ring problem [2]
(denoted TRi), where i is the number of processes. Figure 6 shows the size of
reachable states in the presence of faults, memory usage, total time spent to
add the desirable leads-to property, time spent for cycle detection (i.e., Line 4
in Figure 5), and time spent for breaking cycles by pruning transitions. Given
the huge size of reachable states and complexity of structure of programs in
our experiments, we find the experimental results quite encouraging. We note
that the reason that TR and BA behave differently as their number of processes
grow is due to their different structures, existing cycles, and number of reachable
states. In particular, the state space of TR is highly reachable and its original
program has a cycle that includes all of its legitimate states. This is not the case
in BA. We also note that in case of TR, the symbolic heuristic presented in this
subsection tend to be slower than the constructive layered approach introduced
in [4]. However, the approach in this paper is more general and has a better
potential of success than the approach in [4].

6 Related Work

The most relevant work to this paper proposes automated transformation tech-
niques for adding Unity properties to centralized programs [8]. The authors show
that addition of multiple Unity safety properties along with a single progress
property to a centralized program can be accomplished is polynomial-time. They
2 Colorado University Decision Diagram Package, available at
http://vlsi.colorado.edu/∼fabio/CUDD/cuddIntro.html.

http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html


426 B. Bonakdarpour and S.S. Kulkarni

also show that the problem of simultaneous addition of two leads-to properties to
a centralized program is NP-complete. Also in this context, Jobstmann et al. [11]
independently show that the problem of repairing a centralized program with re-
spect to two progress properties in NP-complete.

Existing synthesis methods in the literature mostly focus on deriving the syn-
chronization skeleton of a program from its specification (expressed in terms of
temporal logic expressions or finite-state automata) [9,15,16,1,3]. Although such
synthesis methods may have differences with respect to the input specification
language and the program model that they synthesize, the general approach is
based on the satisfiability proof of the specification. This makes it difficult to
provide reuse in the synthesis of programs, i.e., any changes in the specification
require the synthesis to be restarted from scratch.

Algorithms for automatic addition of fault-tolerance to distributed programs
are studied from different perspectives [12, 13, 4]. These (enumerative and sym-
bolic) algorithms add fault-tolerance concerns to existing programs in the pres-
ence of faults, and guarantee not to add new behaviors to the input program in
the absence of faults. Most problems in addition of fault-tolerance to distributed
programs are known to be NP-complete.

7 Conclusion and Future Work

In this paper, we concentrated on automated techniques for revising finite state
distributed programs with respect to Unity properties. We showed that unlike
centralized programs, the revision problem for distributed programs with respect
to only one safety or one progress property is NP-complete. Thus, the results
in this paper is a theoretical evidence to the belief that designing distributed
programs is strictly harder than centralized programs even in the context of finite
state systems. Our NP-completeness results also generalize the results in [12,13]
in the sense that the revision problems remain NP-complete even if the input
program is not subject to faults. We also introduced and implemented a BDD-
based heuristic for adding a leads-to property to distributed programs in our
tool Sycraft [5]. Our experiments show encouraging results paving the path
for applying automated techniques for deriving programs that are correct-by-
construction in practice.

For future work, we plan to generalize the issue of distribution by incorpo-
rating communication channels in addition to read/write restriction. We also
plan to identify sub-problems where one can devise sound and complete algo-
rithms that add Unity properties to distributed programs in polynomial-time.
We also plan to devise heuristics for adding other types of Unity properties
to distributed programs. Another interesting direction is to study the revision
problem where programs are allowed to have a combination of fair and unfair
computations. We conjecture that this generalization makes the revision problem
more complex.
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Abstract. Given an arbitrary partial anonymous grid (a finite grid with possibly
missing vertices or edges), this paper focuses on the exploration of such a grid
by a set of mobile anonymous agents (called robots). Assuming that the robots
can move synchronously, but cannot communicate with each other, the aim is
to design an algorithm executed by each robot that allows, as many robots as
possible (let k be this maximal number), to visit infinitely often all the vertices
of the grid, in such a way that no vertex hosts more than one robot at a time, and
each edge is traversed by at most one robot at a time.

The paper addresses this problem by considering a central parameter, denoted
ρ, that captures the view of each robot. More precisely, it is assumed that each
robot sees the part of the grid (and its current occupation by other robots, if any)
centered at the vertex it currently occupies and delimited by the radius ρ. Based
on such a radius notion, a previous work has investigated the cases ρ = 0 and
ρ = +∞, and shown that, while there is no solution for ρ = 0, k ≤ p − q is a
necessary and sufficient requirement when ρ = +∞, where p is the number of
vertices of the grid, and q a parameter whose value depends on the actual topol-
ogy of the partial grid. This paper completes our previous results by addressing
the more difficult case, namely ρ = 1. It shows that k ≤ p − 1 when q = 0,
and k ≤ p − q otherwise, is a necessary and sufficient requirement for solving
the problem. More generally, the paper shows that this case is the borderline from
which the considered problem can be solved.

Keywords: Anonymity, Grid exploration, Partial grid, Mobile agent, Mutual ex-
clusion, Robot, Synchronous system.

1 Introduction

Graph exploration by robots. The graph exploration problem consists in making one or
several mobile entities visit each vertex of a connected graph. The mobile entities are
sometimes called agents or robots (in the following we use the word “robot”). The explo-
ration is perpetual if the robots have to revisit forever each vertex of the graph. Perpetual
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exploration is required when robots have to move to gather continuously evolving infor-
mation or to look for dynamic resources (resources whose location changes with time).
If nodes and edges have unique labels, the exploration is relatively easy to achieve.

The graph exploration problem becomes more challenging when the graph is anony-
mous (i.e., the vertices, the edges, or both have no label). In such a context, several
bounds have been stated. They concern the total duration needed to complete a visit of
the nodes (e.g. [4,10]), or the size of the memory of the robot necessary to explore a
graph (e.g., it is proved in [6] that a robot needs O(D log d) bits of local memory in or-
der to explore any graph of diameter D and maximum degree d). Impossibility results
for one or more robots with bounded memory (computationally speaking, a robot is
then a finite state automaton) to explore all graphs have been stated in [12]. The major
part of the results on graph exploration consider that the exploration is made by a sin-
gle robot. Only very recently, the exploration of a graph by several robots has received
attention also from a practical side [8]. This is motivated by research for more efficient
graph explorations, fault-tolerance, or the need to overcome impossibilities due to the
limited capabilities of a single robot.

The constrained exploration problem. Considering the case where the graph is an
anonymous partial grid (the grid is connected but has missing vertices/edges), and
where the robots can move synchronously but cannot communicate with each other,
the paper considers the following instance of the graph exploration problem, denoted
the Constrained Perpetual Graph Exploration problem (CPGE). This problem con-
sists in designing an algorithm executed by each robot that (1) allows as many robots
as possible (let k be this maximal number), (2) to visit infinitely often all the vertices
of the grid, in such a way that the following mutual exclusion constraints are always
satisfied: no vertex hosts more than one robot at a time, and each edge is traversed by
at most one robot at a time. These constraints are intended to abstract the problem of
collision that robots may incur when moving within a short distance from each other or
the necessity for the robots to access resources in mutual exclusion (This mutual exclu-
sion constraint has been considered in [9] in a robot movement problem in a grid). The
same algorithm has to work despite the topology of the grid and has to avoid collisions
despite the number of robots located on the grid and their initial position. On the other
hand, complete exploration may not be ensured if robots are too many.

Results exposed in the paper rest on three parameters, denoted p, q and ρ. The first
parameter p is related to the size of the grid, namely, it is the number of vertices of the
partial connected grid. The second parameter q is related to the structure of the partial
grid. This parameter is defined from a mobility tree (a new notion we have introduced
in [2]) that can be associated with each partial grid. So, each pair (p, q) represents a
subset of all possible partial grids with p vertices. Finally, the third parameter ρ is not
related to the grid, but captures the power of the robots when we consider the part of the
grid they can see. More precisely, a robot sees the part of the grid centered at its current
position and covered by a radius ρ. From an operational point of view, the radius notion
allows the robots that are at most ρ apart one from the other to synchronize their moves
without violating the vertex and edge mutual exclusion constraints.

In a previous work, we have investigated the extremal cases ρ = 0 and ρ = +∞.
The associated results are the following ones:
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– Case ρ = +∞ (addressed in [3]). In that case, k ≤ p−q is a necessary and sufficient
requirement for solving the CPGE problem. Let us observe that ρ = +∞ means
that the robots knows the structure of the grid and the current position of the robots
on that grid. (The initial anonymity assumption of the vertices and the robots can
then be overcome.)

– Case ρ = 0 (addressed in [3]). In that case, the CPGE problem cannot be solved
(i.e., we have k = 0) for any grid such that p > 1 (a grid with more than one
vertex). This means that, whatever the grid, if the robots cannot benefit from some
view of the grid, there is no algorithm run by robots that can solve the CPGE
problem.

This paper addresses the case ρ = 1. Assuming a grid with more than one vertex, it
shows that k ≤ p−1 when q = 0, and k ≤ p−q otherwise, is a necessary and sufficient
requirement for solving the CPGE problem. Basically, the “only if” direction follows
from k ≤ p − q bound when ρ = +∞. The difficult part is the “if” direction. To that
end, the paper presents an algorithm that, when the previous requirement is satisfied,
allows each robot to learn the grid, and to synchronize in order each of them navigate it
forever, despite anonymity. As we will see, this is not a trivial task.

Finally, the paper discusses issues related to solvability of the CPGE problem when
1 < ρ < +∞. It is important to notice that the previous investigations show that ρ = 1
is a critical radius value as it defines the fundamental demarcation line for the solvability
of the CPGE problem.

Roadmap. The paper is made up of 6 sections. Section 2 presents related works. Section
3 first presents the computation model, and defines formally the CPGE problem. Then,
Section 4 briefly states the previous results (cases ρ = 0 and ρ = +∞), while Section
5 addresses the case ρ = 1. Finally, Section 6 concludes the paper by piecing together
all the results, and discussing the case 1 < ρ < +∞.

2 Related Work

On the initial assumptions. As already indicated, graph exploration is the process by
which each vertex of a graph is visited by some entity. A great research effort on
graph exploration by robots has been done on the minimal assumptions (in terms of
robots/network requirements) required to explore a graph (e.g., [7]). Some works focus
on robots endowed with a finite persistent storage and direct communication with other
robots (e.g., [1]). Some works assume that each robot has the capability to see where
other robots are currently placed (e.g., [5]). Some other works study how the knowledge
of the map (graph) by the robots reduces the complexity of the exploration (e.g., [11]).

On the type of graph exploration. Graph exploration is mainly divided into perpetual
graph exploration (e.g., [4]) where the robots have to travel the graph infinitely often,
and graph exploration with stop (e.g., [7]) where each robot has to eventually stop after
having explored the graph. Some papers focus on the exploration of the graph by a
single robot (e.g., [1,6]). Cooperative graph exploration by a team of mobile robots
has also received attention (e.g., [5,9]). As an example of multi-robot exploration, it
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is shown in [5] that the minimum number of robots required to solve the exploration
with stop of a ring of size n is O(log n) when the exploration is done by oblivious
anonymous robots that move asynchronously.

Lower bounds have been established for the perpetual graph exploration problem
(e.g., [4]). These bounds concern the period necessary for a robot to complete the visit
of the graph, assuming constraints either on the robots, or on the graph. Differently, the
upper bound introduced in the Section 3.3 concerns the maximum number of robots
that can visit the graph infinitely often without ever colliding.

Constrained graph exploration. The CPGE problem defined in Section 3.2 is the
perpetual graph exploration problem augmented with the mutual exclusion property
on the vertices and the edges of the graph. These mutual exclusion constraints have
been already stated and used [9] where the graphs considered are grids. The problem
addressed in that paper is different from CPGE. More precisely, in [9], each robot has
to visit some target vertices of the grid, and any two distinct robots have different targets.
That paper establishes a lower bound on the time (number of rounds in a synchronous
system) necessary to solve that problem and presents an optimal algorithm.

The problem of robot collision in also addressed in [14], where is proposed a colli-
sion prevention algorithm for robots moving on the plane.

3 Computation Model, Problem Specification and Mobility Tree

3.1 Computation Model

A

B

ρ = 0

ρ = 2

The grid. The underlying grid is made up of a fi-
nite set of vertices, each vertex being connected
to at least one and at most four other vertices ac-
cording to the classical grid pattern. If two ver-
tices are connected, we say there is an edge con-
necting them. The grid is anonymous in the sense
no vertex has an identity. Moreover, there is a
global sense of direction present in the grid: each
vertex is able to distinguish its north, east, south
and west neighbors. The grid is represented as
graph G = (S, E) with |S| = p. An example of
a partial grid (with p = 25 vertices) is depicted
on the left.

The robots. A mobile agent (robot) is an automaton whose computational power is a
Turing machine. The moves of a robot are defined by the algorithm it executes. All the
robots execute the same algorithm. It is assumed that local computation takes no time.

The finite set of robots R is such that |R| ≤ |S|. The robots do not have a name:
they are anonymous. The robots have a common clock, and the time is divided into
synchronous rounds [13]. At each round a robot can move from the vertex where it
currently stays to a neighbor vertex, or stays at the same vertex. A move of a robot from
a vertex to a neighbor vertex is done in one round.
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Notation. Given a robot a and a round r, V (a, r) denotes the (single) vertex where the
robot a is located at the beginning of round r.

Radius. The radius an algorithm is instantiated with is a non-negative integer ρ that
provides each robot with the following information.

Let us first consider the case ρ �= 0. At the beginning of any round r, ∀a ∈ R,
the robot a, that is currently located at the vertex V (a, r), sees the sub-grid centered
at V (a, r), including the vertices whose distance to V (a, r) is at most ρ. It also sees
whether these vertices are currently occupied by robots or not (i.e., for any such vertex
v, whether the predicate ∃ x ∈ R : V (x, r) = v is true or false). An example of radius
ρ = 2 is depicted in the previous figure: the robot located in the vertex denoted B
knows the part of the grid surrounded by the corresponding dotted line (for the vertices
at distance ρ = 2, it knows only their edges within distance ρ = 2).

With a light abuse of the previous notation of radius we consider the following def-
inition for ρ = 0: a robot knows the edges of the vertex it is located in. An example is
depicted in the previous figure: the robot in the vertex denoted A knows that this vertex
has a east edge and a south edge. The fundamental difference with ρ = 1 lies in the
fact that, when ρ = 0, the robot located in A cannot know whether the end vertices
associated with these edges are occupied or not by robots.

More generally, the radius notion captures the possibility for robots to synchronize
their moves when they are apart from each other at a distance ≤ ρ.

3.2 The Constrained Perpetual Grid Exploration Problem

The Constrained Perpetual Grid Exploration Problem (CPGE) can be formally de-
fined by the following three properties.

– Perpetual Exploration.

∀v ∈ S : ∀a ∈ R : {r | V (a, r) = v} is not finite.

(For any vertex v and any robot a, there are infinitely many rounds where a visits
v.)

– Vertex Mutual Exclusion.

∀r ≥ 0 : ∀(a, b) ∈ R × R : (a �= b) ⇒
(
V (a, r) �= V (b, r)

)
.

(At the beginning of any round, no two robots are at the same vertex.)
– Edge Mutual Exclusion.

∀r≥ 0 :∀(a, b)∈R×R : (a 
= b)⇒
[(

V (a, r + 1) = V (b, r)
)
⇒
(
V (b, r + 1) 
= V (a, r)

)]
.

(During a round, no two robots move on the same edge, i.e., they cannot exchange
their positions).

This paper is on solving the CPGE problem for as many robots as possible. More
precisely, we are interested in finding the greatest number of robots and designing an
algorithm A (executed by each robot) that solves the CPGE problem whose precise
definition appears in Section 3.4.
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3.3 Classes of Graphs Defined by the Parameter q

In [2] we prove that arbitrary undirected connected graphs can be classified according to
some common topological aspect, which we formalize by the definition of a parameter
q. This parameter contributes to state an upper bound on the number of robots beyond
which the CPGE problem cannot be solved. As we consider here that the graph on
which the robots move is an incomplete grid, the results exposed in [2] are still valid
when we replace the word “graph” by the word “grid”.

In [2] we introduce the notion of mobility tree which is instrumental to extract from
a grid the parameter q ≥ 0 associated with its structure. Each partial grid is univocally
associated to a corresponding mobility tree, while the same mobility tree may be asso-
ciated to more than one partial grid. For self-containment of the paper, the definitions
of both the mobility tree and of the parameter q are recalled in the following.

Preliminary Definitions. A vertex v is a leaf of a graph G = (S, E) if there is a single
vertex v′ such that (v, v′) ∈ E. The degree d of a vertex v is the integer

∣∣{v′ | (v, v′) ∈
E}
∣∣. A bridge is an edge whose deletion disconnects the graph. A graph without bridge

is a bridgeless graph. A path from a vertex v to a vertex v′ is simple if no vertex appears
on it more than once.

A graph G′ = (S′, E′) is a subgraph of a graph G = (S, E) if S′ ⊆ S and E′ ⊆
E. In that case, we also say that G = (S, E) is a supergraph of G′ = (S′, E′). A
non-singleton subgraph contains at least two vertices. The subgraph G′ = (S′, E′) is
induced by the set of vertices S′, if E′ contains all the edges of E whose end-points
are in S′. As, in the following, all the subgraphs we consider are induced subgraphs we
omit the term “induced” to not overload the presentation.

A subgraph G′ is maximal with respect to a property P if G′ satisfies P , while none
of its supergraphs satisfies P . So, “bridgeless” and “non-singleton” are properties that
a (sub)graph satisfies or does not satisfy.

From a Graph to a Tree: The Reduction Procedure

Definition 1. (Mobility Tree) Let the labeled mobility tree associated with a graph
G = (S, E) be the labeled tree G′ = (S′, E′) derived from G through the following
reduction procedure:

1. Initial labeling. Each vertex v ∈ G is first labeled as follows:
– Label 0: if v does not belong to a bridgeless subgraph of G and its degree is

two;
– Label 1: if v is a leaf of G or belongs to a non-singleton bridgeless subgraph

of G;
– Label 2: otherwise.

2. Compression. Each maximal non-singleton bridgeless subgraph of G is reduced to
a vertex with label 1.

Figure 1 shows an example of the previous reduction procedure. The initial grid
G is the grid depicted in page 3. The result of the initial labeling of its vertices is
described in Figure 1(a). The non-singleton maximal bridgeless subgraphs of G are
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Fig. 1. A graph, its labeled mobility tree, and exclusion paths

surrounded by a circle in that figure. Finally, the resulting labeled mobility tree obtained
from the compression of the non-singleton maximal bridgeless subgraphs is shown in
Figure 1(b). Figure 1(c) depicts three (out of seven) mutual exclusion paths.

The mobility tree of a graph G is intended to point out the noteworthy features of
G as far as the solvability of CPGE is concerned. First, it points out those subgraphs
of G (corresponding to vertices with label 1 in the mobility tree) where CPGE could
be solved in each of such subgraphs in isolation with a number of robots equal to the
number of vertices of the subgraph. These subgraphs are indeed either leafs of G or
non-singleton bridgeless subgraphs of G. Second, the mobility tree shows those paths
of G that have to be traversed by a single robot at a time to move from one of the
previous subgraphs of G to another one in order to extend the solvability of CPGE in
G. Let us therefore introduce the notion of Mutual Exclusion Path.

Definition 2. (Mutual Exclusion Path) Let P be a path (v, v1, v2 . . . vm, v′) of the mo-
bility tree G′ from vertex v to v

′
. P is a mutual exclusion path of G′ iff:

– The labels of v and v
′

are different from 0;
– If the path from v to v′ contains more than one edge (i.e. if there are vertices vh,

1 ≤ h ≤ m), the intermediate vertices (i.e. the vh) are labeled 0.

As an example, Figure 1(c) shows three mutual exclusion paths, P1, P2 and P3, of the
labeled mobility tree shown in Figure 1(b).

Definition 3. (Length of a Mutual Exclusion path) In a labeled mobility tree G′ =
(S′, E′), let the length of a Mutual Exclusion path between any two vertices v, v′ ∈ G′

be the number of edges from v to v′ augmented with j, where j is the number of vertices
with label 2 in that path.

The length of P1 depicted in Figure 1(c) is 2 + j = 3 (as j = 1). The length of P2
is 1 + j = 3 (as j = 2) while the length of P3 is 2 + 0 = 2 (as j = 0). Intuitively,
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the length of a mutual exclusion path represents the minimum number of vertices that
have to be initially empty (i.e., without robot assignment) in order for the robots to be
able to solve the CPGE problem with respect to that path. Therefore computing the
maximal length of the mutual exclusion paths of a mobility tree associated with a graph
G becomes a key factor to compute the upper bound on the number of robots to keep
CPGE solvability in G.

Definition 4. For any p > 0 and q ≥ 0, let G(p, q) be the set of graphs such that
∀ G ∈ G(p, q): (1) G has p vertices, and (2) q is the maximal length of the mutual
exclusion paths of the mobility tree associated with G.

Two graphs belong to the same class G(p, q) if they both have the same number of
vertices p and the same maximal length q of the mutual exclusion path of their respective
mobility trees. The following theorem defines a bound on the number of robots beyond
which CPGE cannot be solved.

Theorem 1. [2] Let G be a graph of the class G(p, q) and k. There exists no algorithm
that solves the CPGE problem for G when there are more than k = p − q robots
located on G.

3.4 f -Solving the CPGE Problem

Let Aρ denote an algorithm instantiated with the radius value ρ, and a grid G of p
vertices. Let y (0 ≤ y ≤ p) denote the number of robots initially placed on the grid
under consideration.

Definition 5. Let f be a function from the set of classes G(p, q) to the set of non-
negative integers, i.e., f(p, q) ∈ {0, 1, . . .}. Given such a function f , an algorithm
Aρ f -solves the CPGE problem if Aρ (1) never violates the vertex and edge mutual
exclusion properties (i.e., whatever the value of y ∈ {0 . . . , p}), and (2) solves the
CPGE problem for any graph in the class G(p, q) and any number y of robots such
that 0 ≤ y ≤ f(p, q).

Let us notice that Theorem 1 states that, whatever the value of ρ there is no Aρ algorithm
that f -solves the CPGE problem when there exists a class G(p, q) such that f(p, q) >
p − q. As we can see, the algorithms we are interested in always preserve the safety
properties (here vertex and edge mutual exclusions) whatever the number y of robots,
i.e., even when y > f(p, q).

4 Previous Results (ρ = 0 and ρ = +∞)

Theorem 2. [3] There is an algorithm A+∞ that f -solves the CPGE problem iff for
all classes G(p, q) f(p, q) ≤ p − q.

Theorem 3. [3] There is an algorithm A0 that f -solves the CPGE problem iff (1)
f(p, q) = 0 when (p, q) �= (1, 0), and (2) f(1, 0) ≤ 1 otherwise.
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5 f -Solvability of the CPGE Problem When ρ = 1

That section considers the case where the (vision) radius of each robot is ρ = 1. The
result of that section is the following main theorem.

Theorem 4. There is an algorithm A1 that f -solves the CPGE problem iff f(1, 0) ≤
1, and ∀p > 1 f(p, 0) ≤ p − 1, and ∀q �= 0 f(p, q) ≤ p − q.

This theorem shows two noteworthy things. First, ρ = 1 is the borderline from which
the CPGE problem has a non-trivial solution. Second, it shows that, except for q = 0,
the maximal number of robots for which it can be f -solved is the same as for ρ = +∞,
namely, p − q.

5.1 Two Simple Lemmas

Lemma 1. When p = 1 (single vertex grid), the CPGE problem can be solved iff there
is at most one robot. (The proof is trivial.).

Lemma 2. There is no algorithm A1 that f -solves the CPGE problem if ∃p > 1,
f(p, 0) > p − 1 or ∃q �= 0, f(p, q) > p − q.

Proof. For the case q �= 0, the proof follows directly from Theorem 1. Let us now
consider the case q = 0 ∧ p > 1. Then, f(p, 0) > p − 1 implies that each vertex
is occupied by a robot. As q = 0, the robots have to move along cycles to f -solve
the CPGE problem. Moreover, as ρ = 1 there is no possibility for a robot, without
moving, to detect a cycle. It follows that there is no possibility of agreement among the
robots to move synchronously along a cycle, which proves the lemma. �

So, Lemma 1 proves Theorem 4 for the trivial grid (only one vertex), while Lemma 2
proves the its “only if” direction for the other cases. It remains to prove its difficult part,
namely, ”if” part for p �= 1.

5.2 An Algorithm That f -Solves the CPGE Problem

This section presents an algorithm that f -solves the CPGE problem when p > 1 ∧
f(p, 0) ≤ p − 1, and when q �= 0 ∧ f(p, q) ≤ p − q. The algorithm is based on the
following two observations.

– First, in order to let the robots move while avoiding collision, a single vertex with-
out robots (hole) is sufficient if, at any round, all the robots that move, move in the
same direction and a robot moves only if its destination vertex is free (this requires
ρ ≥ 1).

– Second, if (1) there is a round where each robot knows the map of the partial grid,
(2) there are at most p − q robots and (3) they know where they are located, then
the robots can globally synchronize their moves to perpetually explore the grid.

Thus, the whole algorithm consists of the following three steps:
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Step 1: Map Building. First, each robot runs an algorithm to (1) know the map and (2)
attain a round in which each robot knows that all the robots know the map (see
Section 5.3).

Step 2: Evaluate if there are at most p − q robots. Once the robots are in the round in
which each robot knows that all the robots know the map, each robot runs an algo-
rithm to learn whether there are more than p − q robots (see Section 5.6).

Step 3: Perpetual Exploration. If the number of robots is ≤ p − q, each robot sup-
poses there are exactly p − q robots in the system, completing the R real robots by
“virtual” robots (R ≤ p − q is unknown). Thanks to the repositioning, each robot
agrees on the current (real or virtual) robots location. Then, each robot can run the
exploration algorithm explore∞() described in [3] with p − q robots to ensure the
perpetual exploration property.

5.3 Every Robot Learns the Map

In this section we present an algorithm that solves the map building (Step 1, Section
5.2).

Lemma 3. Consider a partial grid with p vertices and a number of robots ≤ p − 1,
and radius ρ = 1. There is an algorithm and an integer kmax such that after a finite
number1 of rounds, every robot knows (1) the map (i.e., the structure of the grid), (2)
the value of kmax, and (3) the fact that each other robot knows both the map and kmax.

An algorithm proving the lemma is described in Figure 2. It is based on the following
two intuitions: i) each robot can easily build the map corresponding to the sub-grid it
visits; ii) if all robots execute the same a-priori known sequence of movements, each
robot can deduce additional information on the topology of the grid by looking at the
movements of other robots.

Context-sensitive moves. To support the process of learning by observation, we intro-
duce the notion of context-sensitive move, which makes a robot to move towards a given
direction only if the vertex where it is located has a given neighborhood, that we call its
context. Formally, the context of a vertex v is a subset Cv ⊆ {north, west, south, east}
such that for each direction in Cv , v has a neighbor in that direction. For example, the
cs-move requiring a robot to move east from a vertex with a east and south neighbors,
is different from the cs-move requiring it to move east from a vertex with a east, south
and west neighbors. There are 32 possible cs-moves: 4 from the vertices with one edge,
12 from the vertices with two edges, 12 from the vertices with three edges, and 4 from
the vertex with four edges.

The algorithm get map1(). The algorithm in Figure 2 works as follows: for any 1 ≤
k < kmax, all robots incrementally perform all possible sequences of k cs-moves. After
executing a given sequence L (the same for all robots), the robots return to their initial
position by executing the sequence L (L in the reverse order). kmax is the minimum
value such that for any initial configuration with at most p − 1 robots, every robot
completely knows the grid after trying all the possible sequences of kmax cs-moves.

1 This number is function of kmax, it corresponds to the number of rounds needed for robots to
explore all the sequences of at most kmax cs-moves, namely 2

∑k=kmax
k=1 32k.
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operation get map1 ():
(01) k ← 1; kmax ← +∞;
(02) while (k < kmax)
(03) Execute deterministically all possible sequences composed of k cs-moves while

computing the corresponding visited graph;
(04) if (the graph has been entirely deduced)
(05) then Compute the parameters p and q of the graph; Compute kmax end if;
(06) k ← k + 1
(07) end while

Fig. 2. The algorithm get map1()

5.4 Example of an Execution of the Algorithm get map1()

We explain here the underlying principles of the algorithm by presenting its behavior in
a particular case, the one depicted in Figure 3(a) where 5 robots are located on a grid of
6 vertices. At the initial state, there is a robot A located in a leaf of the grid, and its only
neighbor vertex is free. The goal is to prove that after exhausting all possible sequences
composed of cs-moves, A is able to deduce all the vertices of the grid.

B

DE C

A

(a) Initial state

A

(b) A’s knowledge after
all sequences of 1 cs-
move

(c) Sequence of
cs-moves

A

(d) A’s knowledge after
all sequences of 3 cs-
moves

(e) Sequence of cs-
moves

Fig. 3. A simple example

Sequences composed of a single cs-move. Among these sequences there is one that will
move the robot A to the west. A then discovers the context of the vertex adjacent to its
initial position. It is a vertex where the only missing neighbor is the one at the north.
After this, A comes back to its initial position. Among the sequences of length 1, there
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is also one that will move robot C to its north (and then back) and another that will move
robot B to its east neighbor (and then back). After each of those moves, A sees a robot
located in its west neighbor vertex. From this observation A can deduce the type of the
initial vertex both of robot C and B. This is because all the robots execute the same
algorithm, and thus A knows the cs-moves that respectively forced C and B to move to
its west neighbor. Figure 3(b) summarizes the knowledge of A after all sequences of a
single cs-move.

Sequences composed of two cs-moves. During these sequences, A does not increase its
knowledge of the map.

Sequences composed of three cs-moves. A is able to deduce the context of the vertex
where D is initially located. Indeed, among all the sequences of three cs-moves, there
is the one described in Figure 3(c). The execution of this sequence of cs-moves entails
first a move of C to the north, then (during the next round) a move of D to the east,
and finally (during the third and last round of the sequence) no move. During the last
of those three rounds, only C is located in a vertex that has the context required to
move, but it cannot move to the south because the corresponding vertex is occupied.
This sequence of 3 cs-moves allows A to learn that a robot D has moved to the initial
position of C. Otherwise, C would have moved to the south during the third move.
Hence, A deduces the type of D’s initial vertex. Figure 3(d) summarizes the knowledge
of A after executing the sequences composed of 3 cs-moves.

Sequences composed of four cs-moves. A does not increase its knowledge during these
sequences of cs-moves.

Sequences composed of five cs-moves. A is able to deduce E’s initial vertex when the
algorithm will execute the sequence of cs-moves described in Figure 3(e). Indeed, in
this sequence of cs-moves, C moves south, but is not able to go back north on the fifth
move. This means that the robot E has blocked D which in turn has blocked C. After
the moves composed of five cs-moves, A knows entirely the graph.

After discovering the graph. As soon as A knows the graph, it can simulate the behavior
of all the robots in the system and consequently know their knowledge. More precisely,
(1) A simulates the execution of the algorithm with any initial state of at most p − 1
robots. Then (2), A computes the maximum value kmax needed for any robot in any
configuration to know entirely the graph. (3) After testing all the sequences of moves
composed of kmax cs-moves, A knows that all robots knows (i) the map of the partial
grid, and also that (ii) each robot has computed the same kmax. The robots can then
enter the second step of the algorithm.

5.5 The Correctness of the Algorithm get map1()

We first prove that any robot A learns the map in a finite number of steps. In particular,
Lemma 4 proves that, in a grid with only one free vertex, any robot A discovers in a
finite number of rounds the whole grid.
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Fig. 4. Example for the proof with df = 3

Once a robotAhas the knowledge of the whole grid G, it can compute thekmax needed
for all robots to have the same knowledge. Indeed A is able to simulate the behaviors of
any robot in any location since they all execute the same algorithm and thenAcan simulate
all the possible executions on G with all possible initial configurations. A takes for kmax

the maximum k needed for any robot to discover the grid in any initial configuration.

Lemma 4. Consider a grid G of any class G(p, q) occupied by exactly p − 1 robots.
Let A be a robot initially located on a vertex vA. Let df denote the distance between
vA and the unique free vertex of G. After exhausting all the sequences of cs-moves of
length k + df , the robot A knows the subgrid induced by all the vertices that are within
distance �k+1

2 � from vA.

Proof. Let call S1 a sequence of df − 1 cs-moves that “moves” the free vertex to an
adjacent vertex vf of A and S2 the same sequence with the additional cs-move that
moves A to vf (vA becomes then the free vertex). The lemma can be restated in the
following way: (1) after exhausting all the sequences of cs-moves of length k + df −
1, the robot A knows the subgrid G1 induced by all the vertices belonging to some
path vA, vf , . . . that are within distance �k+3

2 � from vA and (2) after exhausting all the
sequences of cs-moves of length k + df , the robot A knows the subgrid G2 induced by
all the vertices belonging to some path vf , vA, . . . that are within distance �k+3

2 � from
vf (and consequently within distance �k+1

2 � from vA).

The proofs for the two previous cases are the same
considering that before the k cs-moves the sequence S1
or S2 is done. Thus, from this point, the proof considers
only the first case and for the sake of simplicity we sup-
pose that the free vertex is initially adjacent to A; it cor-
responds to the case when A is on a leaf whose adjacent
vertex is free (see Figure on the right).
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X

X

A

vA

X

vf

The proof is by induction on k. For k = 0 (i.e. before any cs-move), the robot A
knows the grid at distance � 0+3

2 � = 1; A knows its own vertex and its adjacent vertex.
We assume the property is true for some k, and prove it for k + 1. If k is odd then it
is trivially true. So, consider k even. By the induction hypothesis, the robot A knows
the subgrid induced by all the vertices that are within distance d = �k+3

2 � from vA. In
the following we prove that with sequences composed of k + 1 moves, A will learn the
subgrid induced by all vertices that are within distance d + 1 (if any).
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Let us consider a vertex v at distance d + 1 of A; p = v, v1, . . . , vd, vA denotes then
a minimal path from v to A, whose length is d + 1 (and where vd = vf ). Let us now
consider the sequence of cs-moves that tries to successively move:

1. the robot located on vd−1 to vd, the robot located on vd−2 to vd−1, . . ., the robot
located on v1 to v2 (all these d − 1 cs-moves succeed because at the beginning of
round r there is no robot located at vertex vd. So at each round the robot expected
to move, moves because the destination vertex is free),

2. the robot located on v to v1 (with success, since v1 become a free vertex thanks to
the previous cs-moves),

3. the robot located on v2 to v1, the robot located on v3 to v2, . . ., the robot located
on vd to vd−1 (all these d − 1 cs-moves fail because their destination vertices are
always occupied).

After this sequence of cs-moves, the robot A sees a robot on the vertex vd. Since A
knows the last k cs-moves executed, it can deduce the existence of vertex v. In par-
ticular, the presence of a robot on the vertex vd implies that the last cs-move was not
successful, which implies that the d − 1 last cs-moves were not successful, which im-
plies that the cs-move described in item 2 succeeded (the robot located on v to v1) and
then A deduces the existence (and the type) of the vertex v. The length of the sequence
of cs-moves that allow A to deduce the existence of v is (d−1)+1+(d−1) = k+1. If
the vertex v is not there, A will not observe a robot on the vertex vd after this particular
sequence. ([3] shows how to generalize the proof for the case where there are more than
one empty vertex in the grid.) �

The clues of the generalization for more free vertices is now given. If there are multiple
free vertices as shown in Figure 5(a), A’s deduction is more complicated. Indeed in
some situation A cannot easily learn the type of some vertices: Contrary to the initial
proof, A is not able to deduce the type of the second free vertex since no robot will block
other robots. However if the system reaches the configuration drawn in Figure 5(b), A
will be able to deduce all vertices of the graph since it is “exactly” as if A were in the
configuration of Figure 5(c).

Thus the number of rounds required for A to know/deduce the grid increases, but it
remains always possible in any configuration.
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X

X

(a) Initial configuration
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X
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X X

(b) First configuration

X

X

X

X X

A

(c) Second configuration

Fig. 5. Example with multiple free vertices

5.6 Evaluating the Predicate P1 ≡ “Are There at Most p − q Robots?”

Once each robot knows that all the robots know the map of the partial grid, they can
compute the value of the parameters p and q. Then, the robots have to evaluate the
predicate P1 ≡”are there at most p − q robots?”.
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To this end, each robot executes the following sequence of operations, where d is the
diameter of the grid and R is the actual number of robots:

operation evaluating P1 ():
(01) Deterministically assign an id to each vertex and define a tree;
(02) Move the robots to vertices whose ids goes from 1 to R (in p × 4d rounds);
(03) Evaluate the predicate P1.
(04) Move the robots to vertices whose ids goes from 1 to R (in p × 4d rounds);

evaluating P1: Line 01. Due to the global sense of direction (as defined in Section
3.1), the robots can agree on a same predetermined vertex of the partial grid (e.g., the
most “north-west” vertex of the grid). Starting from that vertex, each robot can assign
an identifier to each vertex using a Depth First Search (DFS) algorithm where the iden-
tifiers are assigned according to the Post-Ordering rule. (Note that this labeling, from 1
to p, is done locally without any move.)

Due to the fact that the labeling is produced by a post-ordering DFS algorithm, it
satisfies the following properties:

Property 1. If all vertices labeled from 1 to 
 (with 
 < p) are suppressed from the grid,
the remaining grid (made up of the vertices labeled 
 + 1 to p) remains connected. (An
example is depicted in Figure 6.)

Property 2. There is a tree rooted at p such that each vertex has for father his adjacent
vertex with the smallest id among the id greater than itself. (For example, the vertex
labeled 4 with adjacent vertices 3, 5 and 7 has the vertex 5 for father.)

11

10 9 7 4 3

256

8

1

Root

(a) Post Ordering

11

10 9 7 4 3

256

8

1

Root

(b) Corresponding Tree

Fig. 6. Example of labeling from a post-ordering DFS

evaluating P1: Line 02 During this step, the robots move to reach the vertices with the
lowest R ids (here “move” refers to simple moves, not cs-moves). Initially, each robot
moves in order to try to reach the vertex 1. Each robot computes the shortest path from
its current position to vertex 1 and then moves along this path.

In the following, we explain how each robot follows its path without colliding with
the other robots. Each direction is associated with a value in the set {0, 1, 2, 3}. Let s
be the direction where a robot has to move according to the next step of its path. Then
this robot moves to its s neighbor at round r if (i) (r mod 4) = i where i is the value
associated to the direction s and (ii) the s neighbor vertex is free.
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As a result, after at most 4d rounds, there is a robot that occupies vertex 1. Starting
from the 4d + 1 round, the remaining robots try now to reach the vertex 2. This process
can continues until the p-th vertex thanks to the Property 1. Therefore, after p × 4d
rounds, the R robots occupy the vertices of the grid labeled 1, 2, . . . , R. It is important
to notice that, up to now, no robot knows the value of R.

evaluating P1: Line 03 If the graph belongs to a (p, q) class of graphs with q = 0,
the evaluation of the predicate is easy: since all robots know the graph, they know this
value of q = 0 and then they evaluate the predicate to true. The following text concerns
then only cases when q > 0.

The main idea is that at the beginning of this step, there is a set of robots (possibly
empty) that is able to trivially evaluate the predicate P1. Then these robots (if any) coor-
dinate to communicate to the remaining robots the result of the evaluation. Remember
that the only way for robots to communicate is to move and to observe the occupation
of vertices.

At the beginning of this step, the robots occupy the vertices of the grid labeled
1, 2, . . . , R, if there are some robots on the vertices labeled from p − q + 1 to p, they
can trivially compute the predicate to false: indeed since any robot of this set occupies
a vertex whose label is greater than p− q, it can conclude that there are more than p− q
robots in the grid. Thus these robots immediately evaluate the predicate to false.

In (p − q) phases (starting at phase 1) all the other robots in the grid will be able
to evaluate the predicate. Each phase takes 4d synchronization rounds. In particular, in
the i-th phase the only robot which evaluates P1 is the one (if any) located at the vertex
p − q − i + 1 (notice that for the first phase it corresponds to the vertex p − q which is
the highest one that could not compute immediately the predicate). This latter evaluates
the predicate P1 as false if at the end of the i-th phase, it observes that its father vertex
(as defined in Property 2) is occupied by a robot; true otherwise (i.e. its father vertex is
free at that point).

At the beginning of phase i, the robots (if any) that occupy the vertices labeled from
p until p − q − i + 2 knows if the predicate P1 is true or false, because they evaluated
it during previous phases (or initially). So, they coordinate to ensure that at the end of
the i-th phase, the robot located on the p − q − i + 1 vertex evaluates P1 correctly. In
particular, if the predicate is false, by the end of the i-th phase these robots move to let
one of them occupy the father of the vertex p−q−i+1. On the contrary, if the predicate
is true, they move in order to make the father of the vertex p − q − i + 1 empty.

At round 4d of the phase i = (p−q), all the robots agree on the value of the predicate
P1. If the predicate is true, then they can start the last step and run the exploration
algorithm A∞() (defined in Theorem 2) to ensure the perpetual exploration property.

evaluating P1: Line 04. In order to execute (when R ≤ p − q) the algorithm A+∞()
each robot has to know the location of every other robots. (The algorithm A+∞(), de-
fined in Theorem 2 f -solves the CPGE problem when the robots have an infinite radius
ρ and f(p, q) ≤ p − q [3].) This is why line 02 is repeated in order to place robots in
the first R position and then, after p × 4d rounds, every robot knows this positioning.
However this repositioning is not enough since robots do not know the exact number
R of robots, they just know R ≤ p − q. The solution consists for each robot to assume
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there are exactly p − q robots, and then the execution of the algorithm explore∞() is
done with (p − q) − R virtual robots that occupy the vertices labeled from R + 1 to
p − q. (The introduction of virtual robots ensures that each robot starts the execution
with the same configuration.)

6 Conclusion

To conclude, the following table summarizes the results of the paper:

Value of ρ f -solvability of the CPGE problem Ref
ρ = 0 f(1, 0) ≤ 1 and f(p, q) = 0 otherwise [3]
ρ = 1 f(p, 0) ≤ p − 1 when p > 1, and f(p, q) ≤ p − q otherwise [this paper]

1 < ρ < +∞ f(p, 0) ≤ p − 1 when (p > 1 ∧ Qρ), and f(p, q) ≤ p − q otherwise [conjecture]
ρ = +∞ f(p, q) ≤ p − q [3]

It is easy to see that f(p, q) ≤ p − q is an upper bound on the number of robots in
all cases (recall that q = 0 when p = 1). The case ρ = 0 requires that the grid be trivial
(only one vertex), while there is no requirement on the structure of the grid for f -solving
the CPGE problem when 1 ≤ ρ ≤ +∞. It follows that ρ = 1 is a strong demarcation
line delineating the cases from which f -solving the CPGE problem becomes relevant.

The case 1 ≤ ρ ≤ +∞ shows that, the maximal number of robots for which one can
f -solve the CPGE problem, depends on the structure of the grid. This is captured by
the parameter q derived from its structure (thanks to the notion of mobility tree).

When 1 ≤ ρ < +∞ and q �= 0, (p − q)-solving the CPGE problem is always
possible, and is optimal (in the number of robots). When q = 0, there are cases where
the maximal number of robots for which the CPGE problem can be f -solved is smaller
than p − q = p − 0, namely it is p − 1. The paper has identified the corresponding grid
structures when ρ = 1: they are all the non-trivial grids (more than one vertex). As far
as the cases 1 < ρ < +∞ are concerned, we conjecture that f(p, 0) ≤ p − 1 when
(p > 1∧ Qρ) where Qρ is a property that depends on the cycles that can be seen within
the radius ρ. Moreover, we also conjecture that, given a grid, this property is such that
Q1 = true, Q+∞ = false , and ∀ρ : Qρ+1 ⇒ Qρ.
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Rennes 1, France (2008), ftp.irisa.fr/techreports/2008/PI-1892.pdf

4. Dobrev, S., Jansson, J., Sadakane, K., Sung, W.K.: Finding Short Right-Hand-on-the-Wall
Walks in Undirected Graphs. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS,
vol. 3499, pp. 127–139. Springer, Heidelberg (2005)

ftp.irisa.fr/techreports/2008/PI-1892.pdf


On the Solvability of Anonymous Partial Grids Exploration by Mobile Robots 445

5. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing Without Communicating: Ring
Exploration by Asynchronous Oblivious Robots. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.)
OPODIS 2007. LNCS, vol. 4878, pp. 105–118. Springer, Heidelberg (2007)

6. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph Exploration by a Finite
Automaton. Theoretical Computer Science 345(2-3), 331–344 (2005)

7. Fraigniaud, P., Ilcinkas, D., Rajsbaum, S., Tixeuil, S.: Space Lower Bounds for Graph Ex-
ploration via Reduced Automata. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS,
vol. 3499, pp. 140–154. Springer, Heidelberg (2005)

8. Franchi, A., Freda, L., Oriolo, G., Vendittelli, M.: A Randomized Strategy for Cooperative
Robot Exploration. In: Int’l Conference on Robotics and Automation (ICRA 2007), pp. 768–
774. IEEE press, Los Alamitos (2007)

9. Grossi, R., Pietracaprina, A., Pucci, G.: Optimal Deterministic Protocols for Mobile Robots
on a Grid. Information and Computation 173(2), 132–142 (2002)

10. Ilcinkas, D.: Setting Port Numbers for Fast Graph Exploration. In: Flocchini, P., Gasieniec,
L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 59–69. Springer, Heidelberg (2006)

11. Panaite, P., Pelc, A.: Impact of Topographic Information on Graph Exploration Efficiency.
Networks 36(2), 96–103 (2000)

12. Rollik, H.A.: Automaten in Planaren Graphen. Acta Informatica 13, 287–298 (1980)
13. Suzuki, I., Yamashita, M.: Distributed Anonymous Mobile Robots: Formation of Geometric

Patterns. SIAM Journal on Computing 28(4), 1347–1363 (1999)
14. Yared, R., Defago, X., Wiesmann, M.: Collision Prevention Using Group Communication

for Asynchronous Cooperative Mobile Robots. In: Proc. 21st Int’l IEEE Conference on Ad-
vanced Information Networking and Applications (AINA 2007), pp. 244–249. IEEE Com-
puter Press, Los Alamitos (2007)



Taking Advantage of Symmetries:
Gathering of Asynchronous Oblivious Robots

on a Ring�

Ralf Klasing1, Adrian Kosowski1,2, and Alfredo Navarra3
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1 Introduction

The difficulty of many computational problems involving mobile entities (robots)
is aggravated when robots cannot communicate directly, but have to take de-
cisions about their moves only by observing the environment. One of the most
restrictive scenarios considered in literature is the asynchronous Look-Compute-
Move model for memoryless units which has been studied both for robots on the
plane (the continuous model [13,20]) and for robots located on the nodes of a
graph (the discrete model [10,11,16]). Herein we focus on computations in the
discrete model which is described in more detail below.

1.1 The Discrete Model

Consider an anonymous graph in which neither nodes nor links have any labels.
Initially, some of the nodes of the graph are occupied by robots and there is at most
one robot in each node. Robots operate in Look-Compute-Move cycles. In each cy-
cle, a robot takes a snapshot of the current configuration (Look), then, based on
the perceived configuration, takes a decision to stay idle or to move to one of its
adjacent nodes (Compute), and in the latter case makes an instantaneous move to
this neighbor (Move). Cycles are performed asynchronously for each robot. This
means that the time between Look, Compute, and Move operations is finite but
unbounded, and is decided by the adversary for each robot. The only constraint is
that moves are instantaneous, and hence any robot performing a Look operation
sees all other robots at nodes of the ring and not on edges. However, a robot r
may perform a Look operation at some time t, perceiving robots at some nodes,
then Compute a target neighbor at some time t′ > t, and Move to this neighbor
at some later time t′′ > t′, at which some robots are in different nodes from those
previously perceived by r because in the meantime they performed their Move op-
erations. Hence, robots may move based on significantly outdated perceptions. It
should be stressed that robots are memoryless (oblivious), i.e., they do not have
any memory of past observations. Thus, the target node (which is either the cur-
rent position of the robot or one of its neighbors) is decided by the robot during a
Compute operation solely on the basis of the location of other robots perceived in
the previous Look operation. Robots are anonymous and execute the same deter-
ministic algorithm. They cannot leave any marks at visited nodes, nor send any
messages to other robots.
It is assumed that the robots have the ability to perceive, during the Look

operation, if there is one or more robots located at the given node of the graph.
This capability of robots is important and well-studied in the literature on robot
gathering under the name of multiplicity detection [13,20]. In fact, without this
capability, many computational problems (such as the gathering problem con-
sidered herein) are impossible to solve for all non-trivial starting configurations.
It should be stressed that, during a Look operation, a robot can only tell if at
some node there are no robots, there is one robot, or there is more than one
robot: a robot does not see the difference between a node occupied by a or b
robots, for distinct a, b > 1.
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Problems studied so far in the discrete model include gathering on the ring [16],
exploration of the ring [10], and tree exploration [11].

1.2 Our Results

In this paper, we consider one of the most fundamental problems of self-organiza-
tion of mobile entities, known in the literature as the gathering problem. Robots,
initially situated at different locations, have to gather at the same location (not
determined in advance) and remain in it. Our considerations focus on gathering
robots in the discrete model for the undirected ring; such a scenario poses a
number of problems due to the high number of potential symmetries of the
robot configuration. This problem was initially studied in [16], where certain
configurations were shown to be gatherable by means of symmetry-breaking
techniques, but the question of the general-case solution was posed as an open
problem. Herein we provide procedures for gathering all configurations on the
ring with more than 18 robots for which gathering is feasible, and give a full
characterization of all such configurations (Theorem 6). In fact, we provide a
new technique for dealing with symmetric configurations: our approach is based
on preserving symmetry rather than breaking it.

1.3 Related Work

The problem of gathering mobile robots in one location has been extensively
studied in the literature. Many variations of this task have been considered in dif-
ferent computational models. Robots move either in a graph, cf. e.g. [2,8,9,12,17],
or in the plane [1,3,4,5,6,7,13,19,20,21], they are labeled [8,9,17], or anony-
mous [1,3,4,5,6,7,13,19,20,21], gathering algorithms are probabilistic (cf. [2] and
the literature cited there), or deterministic [1,3,4,5,6,7,8,12,13,17,19,20,21]. De-
terministic algorithms for gathering robots in a ring (which is a task closest to
our current setting) have been studied e.g. in [8,9,12,14,17]. In [8,9,17] symmetry
was broken by assuming that robots have distinct labels, and in [12] it was broken
by using tokens. The very weak assumption of anonymous identical robots was
studied in [1,3,4,5,6,7,13,19,20,21] where robots could move freely in the plane.
The scenario was further refined in various ways. In [4,14] it was assumed that
robots have memory, while in [1,3,5,6,7,13,19,20,21] robots were oblivious, i.e., it
was assumed that they do not have any memory of past observations. Oblivious
robots operate in Look-Compute-Move cycles, similar to those described in our
scenario. The differences are in the amount of synchrony assumed in the execu-
tion of the cycles. In [3,21] cycles were executed synchronously in rounds by all
active robots, and the adversary could only decide which robots are active in
a given cycle. In [4,5,6,7,13,19,20] they were executed asynchronously: the ad-
versary could interleave operations arbitrarily, stop robots during the move, and
schedule Look operations of some robots while others were moving. It was proved
in [13] that gathering is possible in the asynchronous model if robots have the
same orientation of the plane, even with limited visibility. Without orientation,
the gathering problem was positively solved in [5], assuming that robots have the
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capability of multiplicity detection. A complementary negative result concern-
ing the asynchronous model was proved in [20]: without multiplicity detection,
gathering robots that do not have orientation is impossible.

2 Terminology and Preliminaries

We consider an n-node anonymous ring without orientation. Initially, some nodes
of the ring are occupied by robots and there is at most one robot in each node.
During a Look operation, a robot perceives the relative locations on the ring

of multiplicities and single robots. We remind that a multiplicity occurs when
more than one robot occupies the same location. For the purpose of the definition
only, let us call one of the directions on the cycle clockwise, and the other anti-
clockwise. Then, for a fixed robot r, let SC(r) denote the ordered sequence of
distances from r to all single robots when traversing the cycle in the clockwise
direction, and let SA(r) be the ordered sequence of such distances when moving
anti-clockwise. Sets MC(r) and MA(r) are likewise defined for distances from r
to all multiplicities. Then the view V (r) provided to the robot r is defined as
the set of ordered pairs V (r) = {(SC(r), MC(r)), (SA(r), MA(r))}. If there are
no multiplicities, we will drop the second sequence in each case and write the
view simply as the set of two sequences V (r) = {SC(r), SA(r)}.
The current configuration C of the system can be described in terms of the

view of a robot r which is performing the Look operation at the current moment,
but disregarding the location of robot r; formally, C = {{(SC(r) ⊕ i, MC(r) ⊕
i), (SA(r)0 i, MA(r)0 i)} : i ∈ [1, n]}, where operations ⊕ and 0 denote modulo
n addition and subtraction, respectively. Note that the configuration is indepen-
dent of the choice of robot r and of the choice of the clockwise direction.
A configuration C is called periodic if it is invariable under rotation, i.e. C =

C ⊕ k for some integer k ∈ [1, n− 1]. A configuration C is called symmetric if the
ring has a geometrical axis of symmetry, which reflects single robots into single
robots, multiplicities into multiplicities, and empty nodes into empty nodes. Note
that a symmetric configuration is not periodic if and only if it has exactly one axis
of symmetry [16]. A symmetric configuration C with an axis of symmetry s has
an edge-edge symmetry if s goes through (the middles of) two antipodal edges; it
has a node-on-axis symmetry if at least one node is on the axis of symmetry.
A pole is an intersection point of a line with the ring (this may either be a

node or in between two nodes). For configurations with a single axis of symmetry,
nodes on the axis of symmetry are natural gathering points. The pole of the axis
of symmetry used by the considered algorithm for gathering is known as the
North pole, the other pole is called the South pole.
The set of nodes of the ring forming a path between two robots, excluding

endpoints, is called an arc. Two robots are called neighbors if at least one of the
two arcs of the ring between them does not contain any robots. When uniquely
defined, the arc of the ring between two neighboring robots u, v with no robots
on it is called the gap u − v. The length of gap u − v is denoted as |u − v|,
obviously |u − v| = |v − u|. Two robots forming a multiplicity are assumed to
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form a gap of length 0. A gap of minimum length in a given configuration is
simply called minimal.
The notation for gaps is extended to allow for chains, u1 − u2 − . . . − uk,

i.e. sequences of robots separated by gaps. If some robots ui − . . . − uj form a
multiplicity M , then the considered chain may be written compactly as u1 −
. . . − ui−1 − M − uj+1 − . . . − uk.
We now introduce the concept of extrapolated length |u → v| of a gap u − v,

useful for breaking ties in the gathering process. Let u − v − v1 − v2 − . . . − vs

be the longest possible chain such that for all i, vi �= u and vi does not belong
to a multiplicity. Then |u → v| = (|u − v|, |u − v1|, |u − v2|, . . . , |u − vs|). Values
of extrapolated gap lengths are compared lexicographically.
A key operation used in the gathering process is known as the contraction of

a gap. Let u− v be an arbitrary gap belonging to some chain t−u− v−w, such
that |u → t| > |v → w|. Then the contraction of u−v is the operation of moving
robot u a single node towards robot v.
Note that if a configuration C′ was formed from a configuration C by con-

traction of some gap u − v (by moving u) in a chain t − u − v − w, then it is
clear that in C′ we have |t − u| > |v − w|. The corresponding de-contraction of
u− v in C′ is uniquely defined as the operation of moving robot u a single node
away from robot v unless some other symmetry has been determined.

3 Gathering Algorithm

Our algorithm describe the Compute part of the cycle of robots’ activities. In or-
der to simplify notation, they are often expressed using configurations (identical
for all robots sharing the same snapshot of the system), and not locally-centered
views. For example, if we require only robots specifying certain geometrical cri-
teria to move, then each robot will be able to recognize whether to perform the
specified action or not.
A gathering algorithm in [16] called RigidGathering provides a solution for all

rigid configurations, i.e. configurations which are not symmetric and not peri-
odic. It uses a sequential approach: in every configuration, exactly one specific
robot is chosen by the algorithm (regardless of the robot running the algorithm),
and this robot is then allowed to perform a move.
In our approach, we define an algorithm able to manage all symmetric and

gatherable configurations, by allowing at any given time exactly two symmetric
robots, u and ū, to make corresponding moves, hence preserving symmetry.
Observe that there are two possible move scenarios leading to different types of
new configurations:

– Both robots, u and ū, make their moves simultaneously. In this case, in the
new configuration the axis of symmetry remains unchanged. For the correct-
ness of the algorithm, it is essential to ensure that no new axes of symmetry
are formed (since otherwise the new configuration cannot be gathered).
– One of the robots, say u, performs its move before the other robot ū. All other
robots must be able to recognize that the current configuration is one move
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away from a symmetry, and robot ū is now the only one allowed to perform
a move. Observe that it is then irrelevant whether robot ū performed its
Look operation before or after robot u was moved; the outcome of its move
is exactly the same.

The algorithm proposed herein detects configurations which have exactly one
axis of symmetry of the node-on-axis type (which we call A-type configurations)
and those which are exactly one step away from such a configuration (B-type
configurations). For all other gatherable non-symmetrical configurations (C-type
configurations), a step of the RigidGathering algorithm from [16] is performed.
It is assumed that the number of robots is larger than 18 (for an explanation of
this value, cf. Remark 1). Thus, for example if the system starts in an A-type
configuration, it remains in A-type configurations possibly alternating with B-
type configurations. If the system starts without an axis of symmetry, it may
either perform a gathering passing through C-type configurations only, or may
at some point switch from a C-type configuration to a B-type configuration,
and then remain confined to B-type an A-type configurations. In consequence,
the eventual convergence of our algorithm to a gathering relies only on the
convergence of the RigidGathering algorithm from [16], and on the convergence
of the rules we introduce for A-type and B-type configurations.
Our algorithm runs in four main phases; these are informally outlined in the

following subsection, and formalized in Subsection 3.2.

3.1 Illustration of Approach

Let us suppose that the system starts in an A-type configuration. (Note that in
view of impossibility results from [16] (see Theorem 5), symmetric configurations
which are not A-type configurations are never gatherable.) We temporarily also
assume here that there are initially no robots on the axis of symmetry.
The four phases of our algorithm can be outlined as follows. In the first phase

of the algorithm, we lead the system to an A-type configuration with exactly two
(symmetrical) multiplicities. In the second phase, all of the other robots (with
the exception of two symmetrically located robots called guards) are gathered
into the multiplicities. In the third phase, the multiplicities are moved to their
final gathering point on the axis of symmetry, away from the guards (remember
that there is a node-on-axis symmetry in our case). Finally, in the fourth phase
the guards join the single remaining multiplicity in the gathering point.
The current phase of the algorithm can be determined by only looking at the

state of the system; this will be discussed in more detail later. The single axis of
symmetry is maintained throughout the process. In the first phase, the locations
of all minimal gaps are used for this purpose. In the second phase the axis is
determined by positions of the multiplicities, while in the third phase by the
positions of the guards. Finally, in the fourth phase the gathering point with the
only multiplicity is known.
Referring to Figures 1 and 2, we now describe in more details the basic intu-

itions of our algorithm. In both figures, configurations a describe two possible
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Fig. 1. An example of a scenario for a symmetric configuration. White nodes represent
empty nodes, shaded nodes are nodes occupied by a single robot, black nodes are nodes
occupied by at least two robots, i.e., multiplicities. The North pole is at the top of the
axis of symmetry. The dashed horizontal line can be understood as a helper line for
recognizing the axis of symmetry.

initial states of the system (A-type configurations). In the first phase, the ob-
jective is to create two symmetric multiplicities such that both arcs of the circle
between them contain at least two robots, neither of which is at a distance of
one from a multiplicity. The normal move (Fig. 1a) consists in the contraction
of two symmetrical minimal gaps. The pair of minimal gaps is selected in such
a way that the contraction does not create two multiplicities which violate the
imposed constraint on robots on the arcs between them; if there exists a mini-
mal gap crossing the axis of symmetry, this is not chosen either. It may happen
that no minimal gap appropriate for contraction exists (Fig. 2a). In that case,
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Fig. 2. An example of a scenario for a symmetric configuration (contraction of equa-
torial gaps) Details of the construction are given in Subsection 3.3

we select for contraction the pair of (not necessarily minimal) gaps which are
central in terms of the number of robots separating them from the poles of the
axis of symmetry (gaps between robots 5–5 in Fig. 2a); if there are two pairs of
candidate gaps, a tie-breaking mechanism is applied.

The performed contractions result in a new symmetrical configuration (con-
figurations c in both figures), possibly preceded by a state of violated symmetry
in a B-type configuration (configurations b). The process of selecting the gap for
contraction allows the robots to recreate configuration a knowing configuration
b only, and to proceed from there to configuration c. Configuration c is in fact an
A-type configuration just as configuration a, and the procedure repeats until the
two sought multiplicities are created (configurations d). At this point, the first
phase of the algorithm is complete. Note that the contraction rules applied in
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Fig. 2 require a sufficiently large number of robots (more than 18, see Remark 1)
to guarantee correctness.
The next phases of the algorithm are shown in Fig. 1 only. In phase 2 it

is necessary to decide on one of the two poles of the axis of symmetry as the
gathering point (the North pole). The poles are chosen so that the northern
arc between multiplicities has more robots than the southern arc; in case of a
tie, the side on which the nearest robots are closer to the multiplicities is the
northern one. The robots are moved in symmetrical pairs towards their respective
multiplicities, starting from the robots on the northern arc (Fig. 1e, f). Note that
the definition of the North and South is consistently preserved throughout the
process. Phase 2 ends when nearly all the robots have been merged into the
multiplicities, and the remaining robots occupy not more than 6 nodes in an
arrangement matching a specific pattern (Fig. 1f). Two robots, separated by
gaps from the multiplicities, always remain on the southern arc and act as the
guards of the axis of symmetry throughout phase 3. The multiplicities are moved
step by step towards the North pole; note that not all the robots in a multiplicity
have to move simultaneously (Fig. 1g). When the pattern shown in Fig. 1h is
achieved, phase 4 starts, and the two remaining robots are moved step by step
until they reach the North pole (Fig. 1i), and the algorithm is complete.

3.2 Formalization of Approach

The distinction among the four phases of the proposed algorithm is in fact pos-
sible knowing only the current configuration C. To do this, we now introduce
some further notation.
A configuration can also be represented in the form of a string of characters as

follows: starting from an arbitrary node and moving around the cycle in a cho-
sen direction, for each node we append a character representing whether the node
is empty, contains a single robot, or a multiplicity. We say that configuration C
matches a chain pattern [P ], C ∈ [P ], if there exists a string representation of C
belonging to the language described by the tokens in [P ]. For some integer values
a and b, token σa:b is understood as between a and b occurrences of single robots
(possibly separated by any number of empty nodes) followed by at least one empty
node. Token µa:b is understood as between a and b occurrences of consecutive non-
empty nodes, at least one of which is a multiplicity, followed by at least one empty
node. Ranges of the form a : a are simply written as a. For example, in Fig. 1 the
pattern [µ1:2, σ1:2, µ2] is matched by configurations f and g.
Herein we restrict ourselves to a presentation of the algorithm for the case of

an initial configuration with exactly one axis of symmetry, having a node-on-axis
type symmetry, without any robots on the axis. The case that allows robots to
reside on the axis of symmetry can be addressed by a minor modification of the
algorithm as outlined at the end of the section.
The proposed algorithm performs the gathering in four basic phases, as defined

in Table 1.
When performing its Compute step, each robot can clearly determine which

phase of the algorithm it is currently running (cases not covered in the table
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Table 1. Division into phases, assuming no robots on the axis of symmetry in the initial
state: m(C) — number of multiplicities in configuration C, p(C) — total number of
different nodes occupied by robots in C

Phase Multiplicities Occupied nodes Additional constraints

1 m(C) < 2 p(C) > 6 none
2 m(C) = 2 p(C) ≥ 6 if p(C) = 6, then C /∈ [µ1:2, σ2, µ1:2]
3 m(C) = 2 4 ≤ p(C) ≤ 6 if p(C) = 6, then C ∈ [µ1:2, σ2, µ1:2]
4 m(C) ≥ 1 p(C) ≤ 3 none

cannot appear in the initial state and do not occur later due to the construction
of the algorithm). The algorithm is defined so as to guarantee that when two
robots are allowed to move simultaneously, their views correspond to the same
phase of the algorithm. Bearing this in mind, we can now consider the four
phases separately in the following subsections.

3.3 Phase 1: Obtaining Two Non-adjacent Multiplicities

The algorithm is defined by the following elements:

– A subroutine defining a move for an A-type configuration which leads to a
new A-type configuration, assuming that both the robots which are chosen
to move perform their action simultaneously.
– A subroutine for detecting the preceding A-type configuration when the
current state of a system is a B-type configuration.

The procedure for A-type configurations is presented as Algorithm 1. A gap
u − v is called equatorial with respect to a line s if the number of robots on the
arc from u to one pole of s and from v to the other pole of s differs by at most
1 (a multiplicity is counted as 2 robots).
For completeness of the procedure, it is necessary to provide some mechanism

of choosing one of several possible candidate gaps. Such ties are easily broken,
since for a given configuration it is possible to define a partial order on the set
of robots in which only symmetrical robots are not comparable [16].
The definition of the procedure always allows a move of exactly two sym-

metrical robots. We now show that the above set of rules is sufficient to gather
an A-type configuration, provided that both symmetrical robots always perform
their Look operations as well as Move operations simultaneously (we will call
this a symmetry-preserving scheduler).

Case of a Symmetry-Preserving Scheduler. Before proceeding with the
proofs, we recall the obvious geometrical fact that if for a configuration on the
ring it is in some way possible to distinguish (select) exactly two arcs, then the
configuration can only have zero, one, or two perpendicular axes of symmetry.
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Algorithm 1. Procedure for A-type configurations (Phase 1)

(i) Choose a pair of minimal gaps u − v and ū − v̄ such that the following conditions
are fulfilled:

• u − v does not intersect the axis of symmetry (u 
= v̄),
• the contraction of u − v and ū − v̄ does not create two multiplicities with no
other robots in between them,

• the contraction of u − v and ū − v̄ does not create two multiplicities with
exactly two robots in between, adjacent to these multiplicities,

then perform the contractions of u − v and ū − v̄.
(ii) If no such pair exists, perform the contraction of chosen gaps u − v and ū −

v̄ which are equatorial with respect to the axis of symmetry. If there are two
pairs of equatorial gaps of different lengths, the shorter pair is always chosen for
contraction.

Theorem 1. Under a symmetry-preserving scheduler, the new configuration af-
ter performing rule (i) is also an A-type configuration.

Proof. Indeed, consider the contraction of minimal gap u−v in a chain t−u−v−w
and its complement ū− v̄ in chain t̄− ū− v̄ − w̄. The obtained configuration has
exactly two minimal gaps, u−v and ū− v̄, and |t−u| �= |v−w| by the properties
of a contraction. Thus, after the move the axis of symmetry remains unchanged
and no new axes are created, since gap u − v must be reflected into ū − v̄. �

For a given configuration C, we will call a gap u − v balanced if for the chain
s−t−u−v−w−xwe have |t−u| = |v−w| or |u−v| ∈ {|s−t|, |t−u|, |v−w|, |w−x|}.

Remark 1. If for a given A-type configuration rule (i) cannot be applied, we can
make the following statements:

– The set of minimal gaps consists of between 1 and 10 gaps formed by at most
12 robots — at most 6 robots surrounding each pole of the axis of symmetry
(3 robots on one side and 3 on the other); otherwise, a minimal gap formed
by any other robots can always be contracted.
– All the minimal gaps are balanced; this can be shown by a simple enumera-
tion of all possibilities.
– Taking into account the assumption that there are more than 18 robots
on the ring, there exist on the cycle exactly two symmetrical maximal arcs
containing more than 18−12

2 = 3 (i.e. at least 4) robots each, such that none
of these robots are part of some minimal gap.

Taking into account the above remark, we proceed to prove the following.

Theorem 2. Under a symmetry-preserving scheduler, the new configuration af-
ter performing rule (ii) is also an A-type configuration.
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Proof. We need to consider two cases:
(1) if the contraction of u − v and ū − v̄ creates no new minimal distances,

then the axis of symmetry and the set of minimal gaps remain unchanged. There
could exist at most one more candidate for an axis of symmetry for the new
configuration, perpendicular to the original axis. Since the number of robots on
both sides of an axis of symmetry is the same, either the new axis crosses the
newly contracted gaps u− v and ū− v̄ or it crosses u and ū. In the first case we
have a contradiction since for the chains t− u− v −w we have |t− u| �= |v −w|.
In the second case, a contradiction arises as well, since the shortest equatorial
gaps have been contracted and hence the shortest gaps cannot be reflected by
the new axis into the longest ones.
(2) if the contraction of u − v and ū − v̄ creates two new minimal distances,

then these are the only two non-balanced minimal distances on the ring. By a
similar argument as before, these two non-balanced minimal distances must be
reflected by the axis into each other, so the axis of symmetry is unique. �

Finally, we make a note on the convergence of the performed process.

Theorem 3. Under a symmetry-preserving scheduler, Phase 1 is completed af-
ter a finite number of steps.

Proof. If rule (i) is performed then the length of the minimal gap decreases in each
step. Otherwise, the length of the equatorial gap decreases, while the length of the
minimal gap remains unchanged (since all minimal gaps are then concentrated
around the poles). The process obviously converges to a minimal gap length of 0,
hence we obtain 2 multiplicities and, by Table 1, Phase 1 is complete. �

Extension to the General Scheduler. We now proceed to define the second
required subroutine, namely, a procedure to show for a B-type configuration a
unique preceding A-type configuration.
Depending on the rule used in the preceding A-type configuration and the

outcome of the move, we have the following cases:

B1. The current configuration was obtained by contracting a minimal gap in an
A-type configuration using rule (i).

B2: The current configuration was obtained by contracting an equatorial gap
in an A-type configuration using rule (ii), but without creating any new
minimal gaps in the process.

B3: The current configuration was obtained by contracting an equatorial gap in
an A-type configuration using rule (ii), but creating a new minimal gap in
the process.

Before proceeding any further, for a configuration we define a compass axis
as any line s fulfilling the following constraints:

– s is an axis of symmetry of the set of balanced minimal gaps,
– the number of robots on both sides of s is equal,
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– all the balanced minimal gaps are contained within a set of 12 robots — 6
robots surrounding each pole of s (3 robots on one side and 3 on the other).

We are now ready to prove the following theorem.

Theorem 4. The sets of A-, B1-, B2-, and B3-type configurations are all pair-
wise disjoint.

Proof. A B1-type configuration has exactly one non-balanced minimal gap. In
consequence, such a configuration obviously cannot have an axis of symmetry.
A B2-type configuration has the same set of minimal gaps as the original

A-type configuration, hence we can make use of Remark 1 also for this configu-
ration. In consequence, a B2-type configuration has between 1 and 10 minimal
gaps, all of which are balanced, and exactly one compass axis identical to the
axis of symmetry of the original A-type configuration. Since the compass axis
of a configuration is the only possible candidate for its axis of symmetry, and a
B2-type configuration is exactly one move apart from an A-type configuration
having this axis as an axis of symmetry, a B2-type configuration has no axes of
symmetry.
A B3-type configuration has the same set of balanced minimal gaps as the

original A-type configuration, and additionally one more non-balanced gap ob-
tained as a result of the contraction (thus between 2 and 11 minimal gaps in
total). As in the previous case, this means that a B3-type configuration has
exactly one compass axis and no axis of symmetry.

Table 2. Telling apart different types of configurations: q(C) — total number of mini-
mal gaps in C, qb(C) — total number of balanced minimal gaps in C, s(C) — number
of axes of symmetry

Type Minimal gaps Balanced minimal gaps Axes of symmetry

A irrelevant irrelevant s(C) = 1
B1 q(C) = 1 qb(C) = 0 s(C) = 0
B2 1 ≤ q(C) ≤ 10 qb(C) = q(C) s(C) = 0
B3 2 ≤ q(C) ≤ 11 qb(C) = q(C) − 1 s(C) = 0

Taking into account the above observations (see Table 2), we obtain that for
a given configuration C we can determine if it is an A-type configuration, or
a candidate for a B1, B2, or B3-type configuration. In the latter cases, there
exists exactly one possibility of recreating the potentially preceding A-type con-
figuration. For a B1-type configuration, it is necessary to de-contract the unique
minimal gap. For a B2 or B3-type configuration, the shortest of the gaps equato-
rial with respect to the compass axis should be de-contracted. If this preceding
configuration is indeed an A-type configuration, then the next move is uniquely
defined by imitating the stated procedure for A-type configurations. Otherwise,
configuration C is some other (type C) configuration which does not require
special treatment and can be solved following [16]. �
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3.4 Phase 2: Partial Gathering with 2 Multiplicities

The first phase ends when two symmetrical multiplicities are created. Through-
out the second phase of the algorithm, the two existing multiplicities M1 and
M2 make no moves. Multiplicities M1 and M2 divide the ring into two parts,
which we will call northern (around the North pole) and southern (around the
South pole). Each of these parts initially contains at least two robots not directly
adjacent to a multiplicity. Throughout the process North and South are defined
in such a way as to fulfill the following conditions:

– the number of nodes in the northern part is odd,
– if both parts have an odd number of nodes, the southern part always contains
not less than one robot, and not less robots than the northern part,
– if both parts have an odd number of nodes and contain the same number of
robots, consider the chain rN −M1 − rS with robot rN in the northern part
and robot rS in the southern part; then |M1 → rS | > |M1 → rN |.

The gathering procedure, presented as Algorithm 2, is defined so as to move
all but at most 4 of the single robots into the two existing multiplicities (without
creating any new multiplicities).

Algorithm 2. Procedure for Phase 2

(i) If the northern part contains at least one robot, move a robot in the northern part,
such that there are no robots between itself and one of the multiplicities, towards
this multiplicity (in case of choice of robots, select the one with a longer way left
to go; if the distance is the same, both robots are allowed to move).

(ii) Otherwise, perform an analogous operation in the southern part but for the two
symmetric nodes closest to the pole (these nodes will play as guards in the next
phase).

It is important to note that the adopted definition of North and South guar-
antees that the same labeling of the poles is maintained throughout the process.
In accordance with Table 1, the phase ends when all but at most four single

robots have been merged with the multiplicities. The last pair of robots in the
southern part has not yet made a move and is separated by at least one empty
field from a multiplicity; these robots will serve as guards in the last phases of
the algorithm.

3.5 Phase 3: Gathering 2 Multiplicities Using Guards

The third phase of the algorithm is performed when C ∈ [µ1:2, σ2, µ1:2]. The two
robots u and v corresponding to the token σ2 define a unique axis of symme-
try, orthogonal to the gap u − v. The remaining robots (and multiplicities) can
move towards the North pole of this axis; for a given configuration, only those
robots which have the longest way to go are allowed to move. In this way the
configuration pattern is maintained throughout the process, until the moving
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robots converge on the three nodes near their destination. The configuration
pattern then changes to C ∈ [µ1:3, σ2], and can be likewise maintained until all
robots except for the guards gather at the required pole in a single multiplicity
(C ∈ [µ1, σ2]).

3.6 Phase 4: Withdrawing Guards to the Gathering Point

In this phase, the unique multiplicity on the North pole determines the gath-
ering point for the remaining guards. The guards can be moved towards the
multiplicity following the rule that if the guards are at a different distance from
the multiplicity, the guard further away should move (in case of a tie, both
guards are allowed to move). The configuration is maintained in the pattern
C ∈ [µ1, σ2]. Only in at most two final moves we have C ∈ [µ1:3] or C ∈ [µ1:2]
(still with exactly one multiplicity). Eventually, C ∈ [µ1] and the gathering is
complete.

3.7 Remarks on the Algorithm

An extended version of the algorithm which is capable of additionally gathering
the case of symmetrical configurations with at least one robot on the unique axis
of symmetry can be designed analogously in four phases:

– Phase 1 of the algorithm remains unaffected. In the definition of the equa-
torial gap, the robot in the pole should be ignored.
– Phases 2, 3 and 4 are slightly modified to allow for a single guard robot on
the South pole (instead of a pair of guard robots in the southern part).

Note that in the case of robots on the axis of symmetry it may also be possible to
design algorithms which break the symmetry by immediately moving the robot
located on the axis, as in the case of an odd number of robots described in [16].
In our approach symmetry is never broken until the robots from the poles are
moved into a multiplicity (in particular, if there is a single guard robot on the
South pole, in Phase 4 it has to be moved to the multiplicity on the North
pole).
For configurations with more than 18 robots, our algorithm is complementary

to the impossibility result shown in [16].

Theorem 5 ([16]). Gathering is not feasible for initial configurations which
are periodic or have an edge-edge symmetry.

In this way, we have obtained the sought characterization of initial configurations
on the ring.

Theorem 6. For more than 18 anonymous and oblivious robots located on dif-
ferent nodes of a ring, gathering is feasible if and only if the initial configuration
is not periodic and does not have an edge-edge symmetry.
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4 Conclusions

We have studied the gathering problem in the discrete model, solving it on a
ring for any number of robots larger than 18. The applied technique relies on
preserving symmetries (as a matter of fact, our algorithm occasionally creates
symmetric configurations from asymmetrical initial configurations).
Theorem 6 implies that, for any number of robots larger than 18, gathering

is feasible if and only if, in the initial configuration the robots can elect a node
(not necessarily occupied by a robot). Although it is conjectured in [16] that
such a claim should also hold in cases with an even number of robots between 4
and 18, this is not always true. For instance, the only possible configuration of 4
robots on a 5-node cycle is not gatherable, although the single empty node can be
initially elected as a candidate for the gathering point. Providing an additional
characterization for the cases of between 4 and 18 robots is an interesting open
problem. Some partial results in this direction have recently been shown in [15].
A natural next step is to consider the gathering problem for other graph

classes with high symmetry (such as toruses), and if possible propose an algo-
rithmic approach which solves the problem in the general case. The gathering
problem could also be considered for variants of the model, such as robots having
limited visibility, although such restrictions often lead to a large number of initial
configurations for which gathering is impossible. It is not clear whether allowing
robots to have small (constant) memory would help address such problems with
achieving a gathering. Finally, it is interesting to ask whether the technique of
preserving symmetries proposed herein can also be applied in other contexts.
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Shantanu Das, Matúš Mihalák, Rastislav Šrámek,
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Abstract. We consider the problem of Rendezvous or gathering of mul-
tiple autonomous entities (called mobile agents) moving in an unlabelled
environment (modelled as a graph). The problem is usually solved using
randomization or assuming distinct identities for the agents, such that
they can execute different protocols. When the agents are all identical
and deterministic, and the environment itself is symmetrical (e.g. a ring)
it is difficult to break the symmetry between them unless, for example,
the agents are provided with a token to mark the nodes. We consider
fault-tolerant protocols for the problem where the tokens used by the
agents may disappear unexpectedly. If all tokens fail, then it becomes
impossible, in general, to solve the problem. However, we show that with
any number of failures (less than a total collapse), we can always solve
the problem if the original instance of the problem was solvable. Unlike
previous solutions, we can tolerate failures occurring at arbitrary times
during the execution of the algorithm. Our solution can be applied to
any arbitrary network even when the topology is unknown.

Keywords: Rendezvous, Mobile Agents, Asynchronous, Anonymous
Networks, Symmetry-breaking, Fault Tolerance, Faulty Token.

1 Introduction

We consider one of the fundamental problems in computing with autonomous
mobile agents—the problem of gathering the agents, called Rendezvous [1]. The
typical setting is when there is a communication network represented by a graph
of n nodes and there are k mobile entities called agents, that are dispersed among
the nodes of the network. The objective of the Rendezvous problem is to make all
the agents gather together in a single node of the network. Solving Rendezvous is
a basic step when performing some collaborative task with multiple distributed
autonomous entities and it is known that many other problems such as network
decontamination, intruder detection and distributed search, are easier to solve if
the agents are able to rendezvous. When the nodes of the network are labelled
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search on Mobile Information and Communication Systems NCCR-MICS, a center
supported by the Swiss NSF under grant number 5005 – 67322.

T.P. Baker, A. Bui, and S. Tixeuil (Eds.): OPODIS 2008, LNCS 5401, pp. 463–480, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



464 S. Das et al.

with distinct labels from a totally ordered set, it is possible to gather at a
predetermined location, for instance, the node having the smallest label. The
problem is however more interesting when such unique labels are not present,
i.e. when the network is anonymous. In this case, the agents have to reach an
agreement among themselves about the node where to meet.

The problem of Rendezvous in an anonymous network has been studied for
both synchronous [10,17,16] and asynchronous systems [9,14,15]; in this paper we
focus on the more difficult case of asynchronous systems. In such systems, there is
no common notion of time for the agents, and the speed of the agents traversing
the network can be arbitrary. In fact, Rendezvous is not always deterministically
solvable in asynchronous systems. However, Rendezvous can be achieved under
certain conditions, by using a simple marking device called a token (also called a
pebble or marker) [4,7,11,12,19]. Under this model, each agent has a token that
it can put on a node to mark it. However, the tokens of all agents are identical
(i.e., an agent cannot distinguish its token from a token of another agent). In
[12], it was shown how to achieve Rendezvous in an anonymous ring network,
when every agent puts its token on its starting location. Often it is assumed
that the environment in which the agents are operating is hostile towards them
i.e. it does not help in the task of achieving Rendezvous. For example, when an
agent leaves a token, it is not guaranteed that the token would remain there until
the agent returns (we consider asynchronous systems where there are no time
bounds on the steps taken by an agent). Flocchini et al. [11] consider the model
where some of the tokens are faulty, i.e. a token may suddenly disappear after
an agent leaves it on a node. The solution given in the above paper depends on
the very strong condition that the values of n and k are such gcd(n, k′) = 1, ∀
k′ ≤ k. This condition was later removed in [7]. However both these solutions
work only in the special case when the tokens fail either immediately on being
placed or they never fail at all. In other words, they do not solve the real problem
of coordination between the agents using tokens that are unreliable.

In this paper, we first show how Rendezvous can be achieved in a ring network
assuming that the tokens may fail at arbitrary times during the execution of the
algorithm. Our protocol solves the problem under the exact conditions that are
necessary for solving Rendezvous in the fault-free scenario. Further if Rendezvous
is impossible in the given instance, the agents are able to detect it and terminate
within a finite time. Thus, we solve the problem of Rendezvous with Detect.
We only require that at least one token always survives (which is a necessary
condition for feasibility of Rendezvous). Our algorithm has the same asymptotic
cost as the previous solutions, in terms of the number of agent moves.

For arbitrary (and unknown) networks, there were no previous solutions for
Rendezvous tolerating token failures. We show that Rendezvous can be solved
in general graphs tolerating up to k − 1 failures, for any instance where the
problem is solvable in absence of failures. Thus, the conditions for solvability of
Rendezvous do not depend on the occurrences of token failures (excluding the
case when all tokens fail). Even for this case, our algorithm can tolerate failures
occurring at arbitrary times during the execution of the algorithm.
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1.1 Our Model

We consider a network consisting of n nodes which is represented by an undi-
rected connected graph G = (V, E) (we shall use the words network and graph
interchangeably). There are k mobile agents initially located in distinct nodes
of the network. The node in which an agent initially resides is called its home-
base. The agents are allowed to move along the edges of the graph. Each such
move may take a finite but arbitrarily long time (i.e. the system is strongly
asynchronous). The nodes of the network are anonymous (i.e. without any iden-
tifiers). At each node v of the graph, the incident edges are locally labelled, so
that an agent arriving at the node v can distinguish among them. Additionally,
the agent can identify the edge through which it arrived at the node1. The edge
labelling of the graph G is given by λ = {λv : v ∈ V }, where for each vertex v of
degree d, λv : {e(v, u) : u ∈ V and e ∈ E} → {1, 2, ..., d} is a bijection specifying
the local labelling at v.

The agents are exactly identical to each other and they follow the same (de-
terministic) algorithm. Each agent has a token which is a simple marking device
that can be released at a node in order to mark it. Any agent visiting a node
would be able to “see” the token left at that node, but would not be able to
identify who left that token (i.e. the tokens are also anonymous like the agents).
Each agent has a finite amount of memory that can be used to carry informa-
tion. Two agents can communicate (exchange information) with each other, only
when they are at the same node. An agent can also detect how many agents are
present at a node. However, if two agents are traversing the same edge (from
the same or opposite direction), they may not communicate or even see each
other. It is also possible that an agent passes another agent on the same edge
(without being aware of it). Each agent knows n, the size of the network, and
k, the number of present agents. The objective is to reach an agreement about
a unique node in the graph where all the agents should meet. The cost of a so-
lution in this model is measured as the total number of moves (edge traversals)
performed by all the agents combined.

In our model some of the tokens may be faulty. A faulty token is one which
disappears at some instant during the execution of the algorithm and never
appears again. We make the important assumption that at most k − 1 tokens
may fail. In other words, at least a token is always present. Otherwise we would
be in the situation as when no tokens were available and Rendezvous is not
deterministically possible.

1.2 Our Results

We show that it is possible to achieve Rendezvous in asynchronous anonymous
environments, even if the tokens that are used to break symmetry may fail.
Unlike previous attempts which solved only very restricted special cases of the

1 This ensures that the agent do not keep moving back and forth on the same edge
forever.
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problem, we present solutions which work in the most general setting, i.e. in
an arbitrary unknown network where tokens may fail independently and at any
time. Our algorithm works for any number of failures 0 ≤ f ≤ k − 1. In partic-
ular, it works also for the case when f = 0, i.e. when no tokens fail. We note
that it is easier to solve Rendezvous for either only the fault-free scenario (i.e.
f = 0) or only the faulty cases (i.e. f ≥ 1) 2. However, it is difficult to con-
struct an algorithm which works for both scenario (or, when the switch from
the fault-free to the faulty case can occur anytime during the execution of the
algorithm). Also note that at best such an algorithm can achieve Rendezvous for
only those instances where Rendezvous is possible in the absence of failures. Not
only do our algorithms achieve this, but the agents can also detect the instances
where Rendezvous is impossible and thus, they can terminate explicitly under
all scenarios. Such an algorithm is said to solve Rendezvous with Detect.

In Section 2.2 we present solutions for the ring network which is the only
case that has been studied before. Our algorithm solves Rendezvous with De-
tect when n and k are known, using at most O(k n) moves. Based on the ideas
of the solution for ring networks, we also present a (more complicated) solu-
tion for the general case, when the network topology is arbitrary and unknown.
For an unknown anonymous network, there are no known sub-exponential cost
algorithms for even traversing the network (i.e. visiting every node). Our algo-
rithm for solving rendezvous in this case requires O(k ∆2n) moves for graphs of
maximum degree ∆.

2 Rendezvous in a Ring Network

For problems involving symmetry-breaking, the ring networks represent a topo-
logically simple but highly symmetrical (and hence difficult to solve) instance of
the problem. As it is easier to visualize the problem in a ring network, we will
first consider the case of ring networks, before proposing a solution for graphs of
general topology. It was shown in [7] that it is not possible to solve Rendezvous
with Detect in an asynchronous anonymous ring in the presence of token failures,
if the value of k is unknown to the agents. In this paper, we assume that the
agents have prior knowledge of the values of both n and k.

2.1 Properties and Conditions

If there are no failures, then the solvability of the Rendezvous problem depends
on the initial locations of the agents. We can represent the initial location of
the agents in a ring of size n by the sequence SA of inter-agent distances, start-
ing from an arbitrary agent A, in any direction (clockwise or counterclockwise),
i.e., by the sequence SA := (d0, d1, · · · , dk−1), where di denotes the distance be-
tween the i-th and (i + 1)-th agent as they appear, in the order starting from
agent A, on the ring (in the clockwise or counterclockwise direction). Observe
2 If at least one failure is guaranteed then the failures can be used to break symmetry

between the agents.
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that for every other agent A′ and every direction (clockwise or counterclock-
wise), the sequence SA′ is just a “rotation” of SA or a “rotation” of the reversed
sequence of SA (where the reversed sequence of SA is (dk−1, dk−2, · · · , d1, d0)).
For any arbitrary sequence S = (d0, d1, . . . , dr−1) of r integers, we define the
following. For any i, 0 ≤ i ≤ r, Sumi(S) is defined as

∑i−1
j=0 dj (i.e. the sum

of the first i elements of S). The reversal of S is defined as the sequence
Rev(S) =(dr−1,dr−2,. . .,d0). For any i, 0 ≤ i < r, the i-th rotation of S is defined
as the sequence Roti(S) =(di,di+1,. . .,dr−1,d0,. . ., di−1). A sequence S is periodic
if ∃i, 0 < i ≤ (r/2), such that Roti(S) = S. A sequence S is called rotation-
reversal free, if for every i, 0 < i < r, Roti(S) �= S and Rev(Roti(S)) �= S.
Observe that if S is rotation-reversal free, then also Roti(S) and Rev(Roti(S))
are rotation-reversal free, for any i, 0 < i < r.

Lemma 1 ([7]). Rendezvous of k agents can be solved in a ring, in absence of
failures, if and only if the sequence S = (d0, d1, . . . , dk−1) of initial inter-agent
distances (starting from any agent) satisfies the following conditions:

(i) S is rotation-reversal free, or
(ii) S is not periodic, and there exists i, 0 < i ≤ k − 1, such that S =

Rev(Roti(S)) and at least one of Sumi(S) and n − Sumi(S) is even.

If S =(d0,d1,d2,. . .,dk−1) is the sequence of inter-agent distances and it satisfies
the conditions of Lemma 1, then we can define a unique node as the Rendezvous
location, denoted by RV-point(S), in the following way3. If condition (i) of the
above lemma holds, then there is a unique i, 0 ≤ i ≤ k − 1, such that either
Roti(S) or Rev(Roti(S)) is the lexicographically smallest sequence obtained by
applying any number of reversions and rotations on S. In this case, we define
RV-point(S) as the location of the i-th agent. Otherwise, if condition (ii) holds,
then there exist unique i and j, 0 ≤ i, j ≤ k − 1, i �= j, such that Roti(S) =
Rev(Rotj(S)) is the lexicographically smallest sequence (obtained by rotations
and reversals on S). In this case, at least one of the segments (of the ring)
between the i-th and the j-th agent is of even size (the even segment). Let u
and v respectively be the homebase of the i-th and the j-th agent, and x be the
node exactly in the middle of the even segment4. If the labelled path (using the
labels of the edges) from x to u is lexicographically smaller than the path from
x to v, then u is defined as RV-point(S), otherwise RV-point(S) is v. Since there
is a local ordering on the edges incident at each node (in particular node x), the
labels along the two paths would not be identical. We point out some important
properties of the RV-point(S):

– RV-point is defined if and only if the instance of the Rendezvous problem is
solvable (i.e. if and only if the conditions of Lemma 1 are met).

– For the sequence S of inter-agent distances of a solvable instance, RV-
point(S) is a unique location in the ring and it is the homebase of some
agent.

3 To be precise, RV-point(S) depends on the edge-labelling of the ring as well.
4 If both segments from u to v are even-sized, we pick the lexicographically smaller

one.
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A simple strategy for solving Rendezvous with Detect in the absence of failures
is the following [12]. Each agent puts its token at the starting location and goes
around the ring once (i.e. moves n steps in the same direction), to compute the
sequences S. The agent now moves to the location defined by RV-point(S), or
detects that the instance is not solvable. Notice that the agents may move in
different directions and the sequences obtained by them would be distinct (but
where one can be transformed into another by using rotation and/or a reversal
operation), they would still gather in the same location. However, this strategy
would fail in the presence of token failures (unless some strong conditions are
imposed on the values of n and k). We note that the (exact) conditions for solving
Rendezvous (in ring networks) in presence of arbitrary token failures were, until
this paper, not known. We show that the conditions of Lemma 1 are sufficient to
solve Rendezvous with Detect in a ring even in the faulty scenario when tokens
may fail at arbitrary times, provided that the agents know the values of n and
k (and at least one token does not fail).

2.2 Solution Protocol

We know that Rendezvous in a ring (with no faults on tokens) is possible only if
the initial sequence of inter-agent distances satisfies the conditions of Lemma 1.
We show that even if some of the tokens disappear, the agents are still able to re-
construct the initial sequence of inter-agent distances and thus to decide whether
the instance is solvable, and to eventually meet at the Rendezvous location.

The main idea behind our solution of reconstructing the sequence of the inter-
agent distances is the following. Agents whose tokens have failed (called Run-

ners) “run” around and inform other agents about their location, while those
agents whose token did not fail (called Owners), wait at the homebase to receive
the “running” agent. The difficulty of this approach is when no token disappears
(as then no agent is “running”, and thus every agent waits in its homebase – a
deadlock). On the other hand, if we know that no token disappeared, and the
instance is solvable, we can elect a leader agent – the agent with its homebase as
the Rendezvous location RV-point(S), who starts “running” and informs others
about the Rendezvous location. Combining both cases in one algorithm is, in
our opinion, the most interesting part of the solution.

More precisely, the agents do the following. In the beginning, each agent puts
its token on its homebase, and walks once around the ring for n steps (thus, it
comes back to its homebase), making notice of inter-agent distances as induced
by the observed tokens during the walk5. We call this walk the initial walk. Com-
paring k with the number of found tokens during the walk (the agent considers
its own token at the end of its walk), the agent knows whether some of the to-
kens disappeared (during the agent’s walk). If this is the case, then the agent (1)
either waits at its homebase, if its token is present (and stays there even if the to-
ken disappears later on – in this case the agent acts as a token and informs other
5 The walk of each agent is determined by the first edge the agent uses when start-

ing from its homebase, which can be e.g. the edge with the smallest label. This also
determines whether the agent runs clockwise or counterclockwise.
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passing-by agents about this), or (2) walks around the ring to the next token (or
to an Owner who acts as a token) – the agent associates itself with the owner of
this token (the agent may need to wait for the Owner which might still be on its
initial walk around the ring), and starts “running” around the ring to inform ev-
ery Owner about the location of the failed token. When a Runner gets back to
the Owner it is associated to, it attempts to reconstruct the original sequence of
inter-agent distances. If this information is complete, it goes around and informs
all Owners about the meeting point (and the total number of Runners). The
informed owners then subsequently inform their associated Runners about this,
and walk “together” to the Rendezvous location.

In the other case, when the initial walk of an agent results in encountering
all k tokens, and thus computing the correct sequence S of inter-agent distances
of k agents, we have to modify the above algorithm. To ensure that even in the
case when no token fails (after the initial walk of every agent), there is a special
agent – a “leader” – which walks once around the ring and informs all other
Owners about the situation. The special agent is the agent whose homebase is
the Rendezvous location RV-point(S). If a token should fail after the election of
a “leader” but before that all agents know about the Rendezvous location, an
agent becomes Runner and the algorithm reverts to the aforementioned case.

Thus, the agents may have one of the following roles in our protocol. In case, the
agent’s own token fails during the initial walk, the agent becomes a Runner. In
case the agent finds all tokens during the initial walk, and its homebase is the Ren-
dezvous location, the agent becomes a special agent called the Leader. Runners

and the Leader move around the ring collecting information and exchanging this
information with Owners, leading into informing all Owners (and thus subse-
quently all Runners) about the (computed) Rendezvous location. An Owner is
an agent that does not identify itself as a Runner or the Leader. The role of
Owners is to help Runners in coordinating with each other.

We now present the complete algorithm for solving the Rendezvous problem
in a ring when tokens may fail anytime (and at least one token does not fail).

Algorithm RVring :

1. Put token at starting location;
Move n steps, and compute inter-token sequence S (we call it the initial
walk);

2. If own token disappeared then become Runner;
Else become Owner;
If k tokens were found

If S satisfies solvability condition,
If own location is RV-point(S) then become Leader;

Else (S does not satisfy solvability conditions)
set Status to FAILURE;

3. A Leader agent executes the following:

(The Leader’s checking walk)
Go around the ring, waiting at each token for the Owner to return;
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If all k − 1 Owners were found,
(The Leader’s gathering walk)
Collect all Owners to RV-point(S) and set Status to SUCCESS;

Else (some token disappeared)
If own token disappeared then become Runner;
Else become Owner;

4. An Owner agent simply waits at its homebase, communicates with passing
agents and follows their instructions. Each Owner stores the information
about its associated Runners. The Owner moves only when the Leader

tells to move, or if the Rendezvous location is known, it has met every
Runner in their teaching walk (the Owner counts the number of Runners

that it met in the teaching walk) and all its associated Runners have been
informed.

5. A Runner agent executes the Runner algorithm (explained below).

Remarks:

– After step 2 of the algorithm RVRing, only Leader can change its role.
Especially, an Owner agent never becomes Runner even if its token dis-
appears later on.

– If a node v contains an Owner agent then it is assumed that there is also a
token at node v. This means that if a token disappears after its Owner has
returned, this has no effect on the execution of the algorithm. The Owner

simulates the presence of the token communicating it to any other agent that
visits v.

Runner’s Algorithm:

(1) A Runner agent associates with exactly one Owner agent.
An agent becomes a Runner only if it finds that the token at its homebase
has disappeared. Such an agent moves to the next node that contains a token
(or contains an Owner) and waits for the owner of that token. In case the
token disappears before the owner of the token comes to the node, then the
Runner moves to the next token (or Owner) and repeats the same. Once
the Runner meets the awaited Owner of the token, it associates with this
Owner. The Runner agent remembers the distance and direction from its
homebase to the homebase of the associated Owner. This information is
communicated to the associated Owner. Owner keeps track of the number
of its associated Runners and of their homebase locations.

(2) A Runner tells the other Owners about its homebase.
After associating with an Owner, the Runner agent goes once around the
ring (we call it the Runner’s teaching walk), stopping at each token, waiting
for the Owner of that token and then communicating the information about
the position of its homebase to that Owner.

(3) When the Runner reaches its associated Owner again, it learns the se-
quence S′ (possibly incomplete) that the Owner has gathered so far. If S′

is the correct sequence and Rendezvous is solvable for this instance, then the
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Runner agent computes the RV-point and communicates it to all Owners.
The Runner agent can check if the sequence is complete, i.e., if |S′| = k.
If the sequence is complete, the agent walks around again (we call it a
Runner’s informing walk), stops at every Owner and informs the Owner

about the complete sequence S′ and about the number of Runners (deter-
mined by k minus the number of Owners). In this walk the Runner does
not wait at unoccupied nodes with a token on it. If S′ satisfies the condi-
tions of Lemma 1 (i.e., the instance of the Rendezvous problem is solvable),
the status of the Owner is set to SUCCESS, otherwise the status is set to
FAILURE.

(4) A Runner agent waits at the homebase of its associated Owner until the
status of this Owner is changed to SUCCESS or FAILURE, upon which
the Runner learns the original sequence of inter-agent distances S. If the
status is SUCCESS, it moves to the Rendezvous location RV-point(S).

2.3 Proof of Correctness

We need to show that every agent learns the correct sequence of the original
inter-agent distances S, and that (in case the instance is solvable) every agent
moves to the Rendezvous location RV-point(S).
We proceed with small (reassuring) observations.

1. Every agent finishes its initial walk. This is a rather trivial observation.
2. If the instance is not solvable and there is no Runner, then every agent

detects this after the initial walk. This is again obvious, as in case there is
no Runner, every agent computes the correct sequence S and thus sets its
status to FAILURE.

3. After the initial walk, every Runner (if there are some) associates with
an Owner. This follows from the assumption that there is at least one
token which does not disappear. Thus, the Runner either finds an Owner

immediately, or it finds a token. The token belongs to an agent in its initial
walk, or to a Leader in its checking walk. In both cases the agent comes
back.

4. Every Runner finishes its teaching walk. The Runner may wait for an
agent to come to its token from its initial walk, but we know that every
agent finishes this phase. If the token disappears before the Owner of the
token returns, the Runner continues. Further, if the Runner waits at a
token of the Leader, the Leader finds out that there is a Runner and
thus the Leader goes back home and becomes Owner.

5. No Owner leaves its homebase before meeting every Runner. If the Owner

moved because the Leader said so, then there is no Runner; Otherwise (see
the algorithm) the Owner waits until it sees all Runners in their teaching
walk. The Owner checks this by keeping track of how many Runners it met
in the teaching walk, and by comparing this count with the total number
of Runners (which it learns from a Runner in an informing walk). The
Runners inform an Owner in which walk they are.
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6. Every Owner meets every Runner in the Runner’s teaching walk. Indeed,
consider any Owner and any Runner. We know that the Owner does
not move if it did not meet every Runner (see previous observation). As
every Runner goes for its teaching walk, it eventually meets the considered
Owner.

We now prove the first lemma which helps us to reach our goal.

Lemma 2. If there is no Leader, or the Leader did not meet k− 1 Owners

in its checking walk, then there is a Runner which is informed of the initial
sequence S of inter-agent distances after its teaching walk.

Proof. It should be obvious that if there is no Leader, then there exist Run-

ners. We now show that at least one Runner obtains the original sequence S
of inter-agent distances. Consider a Runner agent which was the last among
all Runners to finish its teaching walk (let us call it the last Runner

6). Thus,
at this time, every other Runner has already communicated its homebase in-
formation. When the last Runner reaches the Owner which it is associated
to, this Owner possesses all information about the homebases of all Runners

(and knows the position of all Owners from the initial walk). Hence, the original
sequence S can be reconstructed by this Runner.

Lemma 3. Every agent learns the original sequence S of inter-agent distances.

Proof. Let us first consider the situation when all agents became either Owner

or Leader. In this case they all learn the correct S, as they all met all tokens
during the initial walk.

Otherwise, there exists at least one Runner. Thus, by the previous lemma,
there is a Runner R which learns in its teaching walk the original sequence S.
Thus, this Runner R begins its informing walk, in which it informs all Owners

it meets about S. We claim that after the Runner R finishes its informing walk,
every Owner knows S. Indeed, when R arrives during its informing walk at a
homebase of an Owner, the Owner is either present there, and thus learns S
from R, or the Owner is not present there, which means that the Owner left,
which is only possible if the Owner knows S. (We note that this may happen
e.g. if another Runner with complete information about S already finished
its informing walk, and thus left together with its associated Owner to the
Rendezvous-location.)

Lemma 4. If the instance of the Rendezvous problem is not solvable, then all
agents will learn this information, and will stop moving at some time.

Proof. By the previous lemma, every agent will learn the initial sequence S of
inter-agent distances, from which it finds out that the instance of the problem
is not solvable. Notice that every agent stops after walking at most three times
around the ring in case that the instance is not solvable.
6 There could possibly be multiple such agents. For the sake of arguments, we arbi-

trarily choose one of them.
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Lemma 5. If the instance of the Rendezvous problem is solvable, then the agents
meet at the Rendezvous location RV-point(S), where S is the initial sequence of
inter-agent distances.

Proof. Due to Lemma 3 we know that every agent learns S and thus knows
where is the Rendezvous location RV-point(S). We now show that every agent
eventually walks to the Rendezvous location. We consider first the case when
an agent becomes Leader and in its checking walk it meets k − 1 Owners.
Clearly, in this case, after the Leader finishes its gathering walk, all Owners

walk to the Rendezvous location.
Let us now consider the case when there is no Leader, or the Leader does

not meet k − 1 Owners. In this case, there are only Owners and Runners

present (eventually, after the Leader ends its checking walk and becomes Run-

ner or Owner). Let us consider a Runner agent. By Lemma 3 we know that
the Runner learns the initial sequence S and whenever this happens the Run-

ner simply walks to the Rendezvous location RV-point(S). Let us now consider
an Owner. Again by Lemma 3 we know that it learns the initial sequence S.
The Owner walks to the Rendezvous location RV-point(S) only when it knows
that all Runners met the Owner in their teaching walks. As every Run-

ner will eventually finish its teaching walk (see the observations above), the
Owner will have met all Runners and thus walks to the Rendezvous location
RV-point(S).

Theorem 1. The algorithm RVring solves the Rendezvous problem with detect
whenever there are at most k−1 token failures, where k is the number of agents.
The total number of moves made by the agents is O(k n) and the memory re-
quirement for each agent is O(k log n).

Proof. Due to Lemmas 4 and 5, we know that the algorithm always terminates
explicitly. Further, whenever Rendezvous is solvable, the algorithm achieves Ren-
dezvous of k agents and otherwise detects unsolvability. This proves correctness
of the algorithm. To bound the number of total movements of the agent, ob-
serve that in the algorithm RVring each agent (Runner, Leader or Owner)
performs a constant number of traversals of the ring (at most five in case of a
Runner – the initial walk, the association of Runners to Owners, the check-
ing walk, the informing walk, and the walk to the Rendezvous location) where
each traversal takes exactly n moves. The memory required to store the sequence
S′ of inter-token distances is O(g log n) where g ≤ k is the number of Owner

agents.

Our algorithm compares favorably with previous results which solve the Ren-
dezvous problem in fault-free scenario (or the restricted faults scenario) with the
same cost and the same memory requirements. In fact, it is easy to show that
any algorithm for solving Rendezvous with Detect requires Ω(k n) moves in the
worst case.
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Fig. 1. (a) A network with n = 6 and two agents at nodes u and v. (b) The bi-colored
view of node u. (c) The quotient graph of the network.

3 Rendezvous in Arbitrary Networks

3.1 Conditions for Solving Rendezvous

In the general case of arbitrary graphs, the initial location of the agents in the
graph G(V, E) is specified using a placement function p : V → {0, 1}, where
p(v) = 1 if the node v is a homebase of an agent and p(v) = 0 otherwise7. The
function p is a bi-coloring on the set of vertices of G (We say that a vertex v is
black if p(v) = 1 and white if p(v) = 0). An instance of the Rendezvous prob-
lem is defined by the tuple (G, λ, p) where λ is the edge labelling on the graph
G and p defines the initial location of agents in G. The conditions for solving
Rendezvous in arbitrary graphs are related to the conditions for leader election
in the anonymous message-passing network model, which has been studied ex-
tensively [2,5,20]. The concept of a view of a node in a network was introduced
by Yamashita and Kameda [20] with respect to the symmetry-breaking problem
in message passing systems. The view of a node v in the labelled graph (G, λ)
is an infinite edge-labelled rooted tree that contains all (infinite) walks start-
ing at v. For the Mobile Agent model, the concept of view can be extended to
that of a bi-colored view, where the vertices in the view are colored black or
white depending on whether or not they represent the homebase of some agent
(recognizable by the presence or not of a token).

In the network represented by (G, λ, p), the bi-colored view of a node v is an
infinite edge-labelled rooted tree T whose root represents the node v, and for
each neighboring node ui of v in G, there is a vertex xi in T (colored as ui) and

7 Recall that the agents start from distinct nodes, so each node contains at most one
agent initially.
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an edge from the root to xi with the same label as the edge from v to ui in G.
The subtree of T rooted at xi is (recursively) the view of the node ui.
The following result is known for Rendezvous of agents in arbitrary graphs:

Lemma 6 ([2,3,20]). When the agents do not have a-priori knowledge of the
network topology, the Rendezvous problem is solvable in an arbitrary network
(G, λ, p) if and only if each node in G has a distinct bi-colored view.

Notice that the view of a node u ∈ G contains multiple occurrences of each
vertex in G (see Figure 1). In fact the view of a node u truncated to depth
2n − 2 (denoted by T 2n−2

u ) contains the view of any other node up to depth of
at least n − 1. From the results of Norris [18], it is known that the views of two
nodes are identical if and only if their views up to depth n−1 are identical. Thus,
from the view T 2n−2

u of any node u, it is possible to obtain a so-called closed view
where vertices with identical views are merged into a single vertex. The (multi)-
graph H thus obtained (which may contain self-loops and parallel edges), is
called the quotient-graph [20] of the network. In the notion of graph coverings,
one can say the graph G covers the graph H and this covering preserves the
labelling of the edges and the bi-coloring on the vertices. If the view of each
node is distinct, then the quotient graph H is isomorphic to G and we say that
(G, λ, p) is covering minimal [5]. Hence, an alternate (but equivalent) condition
for solving the Rendezvous problem is that the network is covering minimal with
respect to coverings that preserve the edge-labelling and the vertex-coloring. In
this case, we can define a unique rendezvous location in G by ordering the bi-
colored views (according to some fixed total order) and choosing the node whose
bi-colored view is the smallest.

3.2 Rendezvous Algorithm for Unknown Graphs

In the case of an unknown arbitrary graph, we have the following strategy for
solving Rendezvous. Each agent can perform a (blind) depth-first traversal up
to depth 2n − 2 to construct the bi-colored view. (This is the initial walk of the
agent.) It is possible that tokens may disappear during the traversal. So, if a
token at a node v disappears between two consecutive visits to v by the agent,
then the agent would obtain an inconsistent coloring of the view (without being
able to detect this inconsistency by just looking at the view). We say that a
bi-coloring of a view is inconsistent if multiple occurrences of the same vertex
in the view are colored differently. However, it is easy to check for consistency
by simply repeating the view computation one more time and then comparing
the results.8 If the view is inconsistent, then we know there must be at least one
token failure, and in that case the agent does not need to construct the correct bi-
colored view in its initial walk (as explained below). Otherwise, given the view of
the network and any consistent bi-coloring of the view, each agent can compute
the closed view (H, λH , PH), where H is a multi-graph, λH is an edge labelling
8 If there is any inconsistency due to disappearance of tokens, then the bi-colored

views obtained in two consecutive computations would be distinct.
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and PH is a vertex bi-coloring of H . We define k′ = |{v ∈ H : PH(v) = 1}| as
the agent-count of H . Observe the following:

– The labelled graph (G, λ, p) covers the labelled multigraph (H, λH ,PH). Thus
|H | divides |G|.

– The number of tokens detected is k′× (n/|H |). Thus, k′× (n/|H |) ≤ k. If PH

is the correct bi-coloring then k/k′ = n/|H |. Thus, an agent can determine
whether the bi-coloring that it computed is the correct bi-coloring or not.

– If PH is the correct bi-coloring and Rendezvous is solvable in (G, λ, p), then
H is isomorphic to G and k′ = k. This implies that if an agent obtains the
correct bi-coloring, then it can detect whether Rendezvous is solvable or not.
Further, if Rendezvous is solvable, the agent can traverse G using the map H
and it can also determine the unique Rendezvous location as defined earlier.

We now show how to extend the algorithm for rings to obtain a Rendezvous
algorithm for arbitrary graphs, using the above ideas.

Each agent computes the bi-colored view in the first round of the algorithm.
As mentioned before an agent needs to perform the view computation twice to
check for consistency. In case the results of the two computations differ, then the
agent knows that some token must have failed and thus it returns to its home-
base and becomes either Owner or Runner (depending on whether its own to-
ken is present). On the other hand, if no tokens fail, then the computed bi-coloring
would be the correct one and we proceed as in the previous algorithm, by elect-
ing a Leader agent. In case of token failures, there would exist some Runner

agents and each Runner would try to compute the correct bi-colored view. This
done in two rounds as follows. First each Runner traverses the view and com-
municates to each Owner the (labelled) path it traversed to reach this Owner.
In the second round the Runner traverses the view again to obtain information
from each Owner (about the paths leading to other Runners). This information
can be used to obtain the bi-coloring of the view. As before, we can show that at
least one Runner would compute the correct bi-coloring. In the case when Ren-
dezvous is solvable, this agent can build a map of the graph and determine the
unique Rendezvous location; Thus, we can proceed in a manner similar to the pre-
vious algorithm. In the other case, when Rendezvous is not solvable, this agent can
detect this and inform each Owner about the impossibility of Rendezvous. The
new algorithm, called RV-General is described below.

Algorithm RV-general :

1. Put token at starting location ;
Construct bi-colored view up to depth 2n − 2;
Check for consistency of the bi-coloring;

2. If own Token disappeared then become Runner;
Else become Owner;

If the bi-colored view is consistent,
Construct the quotient-graph H
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(let n′ be the size of H and k′ be the number of black nodes);
If n′ = n and k′ = k,

If own location is RV-location(H) then become Leader;
Else if n/n′ = k/k′ declare Failure; (set Status to FAILURE)

3. A Leader agent executes the following:

Traverse H , waiting at each token (for the Owner to return);
If all k − 1 Owners were found,

Collect all Owners to RV-location(H) and set Status to SUCCESS;
Else (some token disappeared)

If own Token disappeared then become Runner;
Else become Owner;

4. An Owner agent simply waits at its homebase, communicates with passing
agents and follows their instructions. Each Owner stores (communicates)
the information about paths to Runners. The Owner moves only when
the Leader tells to move, or if the Rendezvous location is known, it has
met every Runner in their teaching walk (the Owner counts the number
of Runners that it met in their teaching walk and compares this with the
Runner-Number) and all its associated Runners have been informed.

5. A Runner agent executes the Runner algorithm (explained below).

Runner’s Algorithm:

(1) A Runner agent perform a depth-first traversal of the view, and it associates
with the first Owner agent that it meets (as before, the Runner waits at
each token for the Owner to return). During the depth-first traversal, the
Runner agent remembers the labelled path it traversed from its homebase to
the current node and if the current node has a token, the agent communicates
the path information to the Owner of this token. This is the Runner’s
teaching walk.

(2) A Runner agent, after completing its teaching walk, returns to its associated
Owner and collects information from the Owner about paths to other
Runners. Based on this information, it computes a bi-coloring of the view
and builds the quotient graph H . Note that this may not be the correct
quotient-graph of G (due to missing information about some Runners).

(3) Let n′ be the size of H and k′ be the number of black nodes in H . If
n′ = n and k′ = k, then H is identical to G and this represents a solvable
instance of the Rendezvous problem. In this case, the Runner computes
the RV-location and then traverses the graph G, stopping at each Owner

to communicate the RV-location and the Runner-Number (This is simply
a count of the number of vertices in the bi-colored view of this Owner,
which corresponds to some Runner homebase). The Runner also changes
the status of each Owner to SUCCESS.
Otherwise, if H < G, but n/n′ = k/k′, then this represents an unsolvable
instance of the Rendezvous problem. In this case, the Runner traverses a
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spanning tree of H and changes the status of each Owner (that it meets)
to FAILURE.

(4) A Runner agent waits at the homebase of its associated Owner until the
status of this Owner is changed to SUCCESS or FAILURE. If the status
is SUCCESS, it moves to the Rendezvous location RV-point(S).

The correctness of algorithm RV-General can be proved in a similar manner
as for the previous algorithm. We first show that the agents are able to compute
the original bi-coloring and thus construct the minimum-base of the network.

Lemma 7. Every Owner agent is able to obtain the minimum-base of the net-
work. Further if there are some Runners then at least one Runner also obtains
this information.

Proof. We first show that each Owner obtains the correct bi-coloring of the
view. If there are no failures, then the result holds trivially, so we consider only
the case when some tokens failed. Consider an Owner agent A sitting at its
homebase node v. If there is a path p (of length less than 2n − 2) from some
node x to v, and there was a token on node x that failed, then there must be
a Runner agent corresponding to this failed token and this Runner would
traverse all paths (of length at most 2n − 2). In particular, this Runner would
traverse path p and reach node v. Thus, for each path starting at node v, agent
A could determine if the end point of the path is colored black or white. Notice
that an Owner waits at its homebase until it is visited by every Runner during
its teaching walk. Thus, once every Runner has completed its traversal of the
view, every Owner would obtain the correct bi-coloring of the view. Consider
now the last Runner to complete its traversal of the view. When this Runner

returns to its associated Owner, the Owner would at that time have obtained
the complete bi-colored view. Thus, this Runner would be able to construct the
minimum-base of the network.

From the previous discussion and due to Lemma 7, the following result holds.

Theorem 2. Algorithm RV-General solves the Rendezvous in any arbitrary net-
work (G, λ, p) whenever the conditions of Lemma 6 are satisfied. Otherwise, every
agent terminates with FAILURE.

Proof. If there is a Leader and k−1 Owners, then the Leader informs every
Owner about the Rendezvous-location and moves them to the Rendezvous-
location. Thus, the theorem holds. Consider now the situation when there some
Runners (this implies that there is no Leader). Due to the previous lemma,
at least one Runner constructs the minimum-base H of the network. If the
conditions of Lemma 6 are satisfied then H is a map of the network and there is a
unique Rendezvous-location. The Runner traverses the network and changes the
status of every Owner to SUCCESS (and informs them about the Rendezvous-
location). Thus, every Runner learns about the Rendezvous-location from its
associated Owner and moves to the Rendezvous-location. An Owner moves
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to the Rendezvous-location after all its associated Runners have learned the
Rendezvous-location. Thus, all agents meet at the Rendezvous-location. In the
other case when the conditions of Lemma 6 are not satisfied, at least one Runner

learns about this (after computing the minimum-base). This Runner changes
the status of every Owner to FAILURE. Every Runner eventually returns to
its associated Owner and waits until the status is changed. Thus, every agent
terminates with status FAILURE.

Theorem 3. During the algorithm RV-General, the agent performs O(k∆2n)
moves in total, where ∆ is the maximum degree of any node in G.

Proof. Each view computation requires O(∆2n) agent moves. Each agent initially
performs view-computation two times. Every Runner agent performs two more
traversals of the view T . Other than that each agent performs a constant number
of traversals of the quotient graph H which has size at most n.

4 Conclusions

We presented algorithms for solving Rendezvous with unreliable tokens in a
strongly asynchronous environment, when the tokens may fail at any arbitrary
time. As long as at least one token remains, we were able to solve the problem
under the same conditions as required for Rendezvous without failures. Thus, our
results show that the occurrence of f < k faults has no effect on the solvability
of the Rendezvous problem. Our algorithm for the case of ring networks requires
O(k n) agent moves and has therefore the same asymptotic cost as in the absence
of failures. Our solution can also be applied to the more general case of an
unknown graph, albeit with an exponential cost in terms of agent moves. This
cost is same as that of the known solution for the fault-free case [8]. Improving
this cost involves finding a more efficient way of traversing and exploring an
unknown unlabelled graph.
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Solving Atomic Multicast When Groups Crash�
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Abstract. In this paper, we study the atomic multicast problem, a fundamental
abstraction for building fault-tolerant systems. In our model, processes are di-
vided into non-empty and disjoint groups. Multicast messages may be addressed
to any subset of groups, each message possibly being multicast to a different
subset. Several papers previously studied this problem either in local area net-
works [1,2,3] or wide area networks [4,5]. However, none of them considered
atomic multicast when groups may crash. We present two atomic multicast algo-
rithms that tolerate the crash of groups. The first algorithm tolerates an arbitrary
number of failures, is genuine (i.e., to deliver a message m, only addressees of m
are involved in the protocol), and uses the perfect failures detector P . We show
that among realistic failure detectors, i.e., those that do not predict the future, P
is necessary to solve genuine atomic multicast if we do not bound the number of
processes that may fail. Thus, P is the weakest realistic failure detector for solv-
ing genuine atomic multicast when an arbitrary number of processes may crash.
Our second algorithm is non-genuine and less resilient to process failures than
the first algorithm but has several advantages: (i) it requires perfect failure detec-
tion within groups only, and not across the system, (ii) as we show in the paper
it can be modified to rely on unreliable failure detection at the cost of a weaker
liveness guarantee, and (iii) it is fast, messages addressed to multiple groups may
be delivered within two inter-group message delays only.

1 Introduction

Mission-critical distributed applications typically replicate data in different data centers.
These data centers are spread over a large geographical area to provide maximum avail-
ability despite natural disasters. Each data center, or group, may host a large number
of processes connected through a fast local network; a few groups exist, interconnected
through high-latency communication links. Application data is replicated locally, for
high availability despite the crash of processes in a group, and globally, for locality of
access and high availability despite the crash of an entire group.

Atomic multicast is a communication primitive that offers adequate properties,
namely agreement on the set of messages delivered and on their delivery order, to im-
plement partial data replication [6,7]. As opposed to atomic broadcast [8], atomic mul-
ticast allows messages to be addressed to any subset of the groups in the system. For
efficiency purposes, multicast protocols should be genuine [9], i.e., only the addressees
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supported by the Swiss National Science Foundation under grant number 5005-67322.
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of some message m should participate in the protocol to deliver m. This property rules
out the trivial reduction of atomic multicast to atomic broadcast where every message
m is broadcast to all groups in the system and only delivered by the addressees of m.

Previous work on atomic multicast [1,3,2,4,5] all assume that, inside each group,
there exists at least one non-faulty process. We here do not make this assumption and
allow groups to entirely crash. To the best of our knowledge, this is the first paper to
investigate atomic multicast in such a scenario.

The atomic multicast algorithms we present in this paper use oracles that provide
possibly inaccurate information about process failures, i.e., failure detectors [10]. Fail-
ure detectors are defined by the properties they guarantee on the set of trusted (or sus-
pected) processes they output. Ideally, we would like to find the weakest failure detector
Damcast for genuine atomic multicast. Intuitively, Damcast provides just enough infor-
mation about process failures to solve genuine atomic multicast but not more. More
formally, a failure detector D1 is at least as strong as a failure detector D2, denoted as
D1 1 D2, if and only if there exists an algorithm that implements D2 using D1, i.e.,
the algorithm emulates the output of D2 using D1. Damcast is the weakest failure de-
tector for genuine atomic multicast if two conditions are met: we can use Damcast to
solve genuine atomic multicast (sufficiency) and any failure detector D that can be used
to solve genuine atomic multicast is at least as strong as Damcast, i.e., D 1 Damcast

(necessity) [11].
We here consider realistic failure detectors only, i.e., those that cannot predict the

future [12]. Moreover, we do not assume any bound on the number of processes that can
crash. In this context, Delporte et al. showed in [12] that the weakest failure detector
Dcons for consensus may not make any mistakes about the alive status of processes,
i.e., it may not stop trusting a process before it crashes.1 Additionally, Dcons must
eventually stop trusting all crashed processes. In the literature, Dcons is denoted as
the perfect failure detector P . Obviously, atomic multicast allows to solve consensus:
every process atomically multicasts its proposal; the decision of consensus is the first
delivered message. Hence, the weakest realistic failure detector to solve genuine atomic
multicast Damcast when the number of faulty processes is not bounded is at least as
strong as P , i.e., Damcast 1 P . We show that P is in fact the weakest realistic failure
detector for genuine atomic multicast when an arbitrary number of processes may fail
by presenting an algorithm that solves the problem using perfect failure detection.

As implementing P seems hard, if not impossible, in certain settings (e.g., wide
area networks), we revisit the problem from a different angle: we consider non-genuine
atomic multicast algorithms. For this purpose, as noted above, atomic broadcast could
be used. This solution, however, is of little practical interest as delivering messages re-
quires all processes to communicate, even for messages multicast to a single group. The
second algorithm we present does not suffer from this problem: messages multicast to
a single group g may be delivered without communication between processes outside
g. Moreover, our second algorithm offers some advantages when compared to our first
algorithm, based on P : Wide-area communication links are used sparingly, messages
addressed to multiple groups can be delivered within two inter-group message delays,

1 Intuitively, consensus allows each process to propose a value and guarantees that processes
eventually decide on one common value.



Solving Atomic Multicast When Groups Crash 483

and perfect failure detection is only required within groups and not across the system.
Although this assumption is more reasonable than implementing P in a wide area net-
work, it may still be too strong for some systems. Thus, we discuss a modification to
the algorithm that tolerates unreliable failure detection, at the cost of a weaker live-
ness guarantee. The price to pay for the valuable features of this second algorithm is a
lower process failure resiliency: group crashes are still tolerated provided that enough
processes in the whole system are correct.

Contribution. In this paper, we make the following contributions. We present two
atomic multicast algorithms that tolerate group crashes. The first algorithm is genuine,
tolerates an arbitrary number of failures, and requires perfect failure detection. The sec-
ond algorithm is non-genuine but only requires perfect failure detection inside each
group and may deliver messages addressed to multiple groups in two inter-group mes-
sage delays. We present a modification to the algorithm to cope with unreliable failure
detection.

Road map. The rest of the paper is structured as follows. Section 2 reviews the related
work. In Section 3 our system model and definitions are introduced. Sections 4 and 5
present the two atomic multicast algorithms. Finally, Section 6 concludes the paper. The
proof of correctness of the algorithms can be found in [13].

2 Related Work

The literature on atomic broadcast and multicast algorithms is abundant [14]. We briefly
review some of the relevant papers on atomic multicast.

In [9], the authors show the impossibility of solving genuine atomic multicast with
unreliable failure detectors when groups are allowed to intersect. Hence, the algorithms
cited below consider non-intersecting groups. Moreover, they all assume that groups do
not crash, i.e., there exists at least one correct process inside each group.

These algorithms can be viewed as variations of Skeen’s algorithm [1], a multicast
algorithm designed for failure-free systems, where messages are associated with times-
tamps and the message delivery follows the timestamp order. In [3], the addressees of
a message m, i.e., the processes to which m is multicast, exchange the timestamp they
assigned to m, and, once they receive this timestamp from a majority of processes of
each group, they propose the maximum value received to consensus. Because consensus
is run among the addressees of a message and can thus span multiple groups, this algo-
rithm is not well-suited for wide area networks. In [2], consensus is run inside groups
exclusively. Consider a message m that is multicast to groups g1, ..., gk. The first desti-
nation group of m, g1, runs consensus to define the final timestamp of m and hands over
this message to group g2. Every subsequent group proceeds similarly up to gk. To ensure
agreement on the message delivery order, before handling other messages, every group
waits for a final acknowledgment from group gk. In [4], inside each group g, processes
implement a logical clock that is used to generate timestamps, this is g’s clock (consensus
is used among processes in g to maintain g’s clock). Every multicast message m goes
through four stages. In the first stage, in every group g addressed by m, processes define
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a timestamp for m using g’s clock. This is g’s proposal for m’s final timestamp. Groups
then exchange their proposals and set m’s final timestamp to the maximum among all
proposals. In the last two stages, the clock of g is updated to a value bigger than m’s final
timestamp and m is delivered when its timestamp is the smallest among all messages that
are in one of the four stages. In [5], the authors present an optimization of [4] that allows
messages to skip the second and third stages in certain conditions, therefore sparing the
execution of consensus instances. The algorithms of [4,5] can deliver messages in two
inter-group message delays; [5] shows that this is optimal.

To the best of our knowledge, this is the first paper that investigates the solvability
of atomic multicast when groups may entirely crash. Two algorithms are presented:
the first one is genuine but requires system-wide perfect failure detection. The second
algorithms is not genuine but only requires perfect failure detection inside groups.

3 Problem Definition

3.1 System Model

We consider a system Π = {p1, ..., pn} of processes which communicate through mes-
sage passing and do not have access to a shared memory or a global clock. Processes
may however access failure detectors [10]. We assume the benign crash-stop failure
model: processes may fail by crashing, but do not behave maliciously. A process that
never crashes is correct ; otherwise it is faulty . The maximum number of processes that
may crash is denoted by f . The system is asynchronous, i.e., messages may experience
arbitrarily large (but finite) delays and there is no bound on relative process speeds.
Furthermore, the communication links do not corrupt nor duplicate messages, and are
quasi-reliable: if a correct process p sends a message m to a correct process q , then
q eventually receives m. We define Γ = {g1, ..., gm} as the set of process groups in
the system. Groups are disjoint, non-empty and satisfy

⋃
g∈Γ g = Π . For each process

p ∈ Π , group(p) identifies the group p belongs to. A group g that contains at least one
correct process is correct; otherwise g is faulty.

3.2 Atomic Multicast

Atomic multicast allows messages to be A-MCast to any subset of groups in Γ . For ev-
ery message m, m.dst denotes the groups to which m is multicast. Let p be a process.
By abuse of notation, we write p ∈ m.dst instead of ∃g ∈ Γ : g ∈ m.dst ∧ p ∈ g.
Atomic multicast is defined by the primitives A-MCast and A-Deliver and satisfies the
following properties: (i) uniform integrity: For any process p and any message m, p
A-Delivers m at most once, and only if p ∈ m.dst and m was previously A-MCast,
(ii) validity: if a correct process p A-MCasts a message m, then eventually all correct
processes q ∈ m.dst A-Deliver m, (iii) uniform agreement: if a process p A-Delivers
a message m, then all correct processes q ∈ m.dst eventually A-Deliver m, and (iv)
uniform prefix order: for any two messages m and m′ and any two processes p and q
such that {p, q} ∈ m.dst ∩ m′.dst, if p A-Delivers m and q A-Delivers m′, then either
p A-Delivers m′ before m or q A-Delivers m before m′.
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Let A be an algorithm solving atomic multicast. We define R(A) as the set of all ad-
missible runs of A. We require atomic multicast algorithms to be genuine [9]:

– Genuineness: An algorithm A solving atomic multicast is said to be genuine iff for
any run R ∈ R(A) and for any process p, in R, if p sends or receives a message
then some message m is A-MCast and either p is the process that A-MCasts m or
p ∈ m.dst.

4 Solving Atomic Multicast with a Perfect Failure Detector

In this section, we present the first genuine atomic multicast algorithm that tolerates an
arbitrary number of process failures, i.e., f ≤ n. We first define additional abstractions
used in the algorithm, then explain the mechanisms to ensure agreement on the delivery
order, and finally, we present the algorithm itself.

4.1 Additional Definitions and Assumptions

Failure Detector P . We assume that processes have access to the perfect failure detector
P [10]. This failure detector outputs a list of trusted processes and satisfies the following
properties2: (i) strong completeness: eventually no faulty process is ever trusted by any
correct process and (ii) strong accuracy: no process stops being trusted before it crashes.

Causal Multicast. The algorithm we present below uses a causal multicast abstraction.
Causal multicast is defined by primitives C-MCast(m) and C-Deliver(m), and satisfies
the uniform integrity, validity, and uniform agreement properties of atomic multicast
as well as the following uniform causal order property: for any messages m and m′,
if C-MCast(m) → C-MCast(m′), then no process p ∈ m.dst ∩ m′.dst C-Delivers m′

unless it has previously C-Delivered m.3 To the best of our knowledge, no algorithm
implementing this specification of causal multicast exists. We thus present a genuine
causal multicast algorithm that tolerates an arbitrary number of failures in [13].4

Global Data Computation. We also assume the existence of a global data computation
abstraction [16]. The global data computation problem consists in providing each pro-
cess with the same vector V , with one entry per process, such that each entry is filled
with a value provided by the corresponding process. Global data computation is de-
fined by the primitives propose(v) and decide(V ) and satisfies the following properties:
(i) uniform validity: if a process p decides V , then ∀q : V [q] ∈ {vq,⊥}, where vq is q’s
proposal, (ii) termination: if every correct process proposes a value, then every correct

2 Historically, P was defined to output a set of suspected processes. We here define its output as
a set of trusted processes, i.e., in our definition the output corresponds to the complement of
the output in the original definition.

3 The relation → is Lamport’s transitive happened before relation on events [15]. Here, events
can be of two types, C-MCast or C-Deliver. The relation is defined as follows: e1 → e2 ⇔
e1, e2 are two events on the same process and e1 happens before e2 or e1 = C-MCast(m) and
e2 = C-Deliver(m) for some message m.

4 The genuineness of causal multicast is defined in a similar way as for atomic multicast.
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process eventually decides one vector, (iii) uniform agreement: if a process p decides
V , then all correct processes q eventually decide V , and (iv) uniform obligation: if a
process p decides V , then V [p] = vp. An algorithm that solves global data computation
using the perfect failure detector P appears in [16]. This algorithm tolerates an arbitrary
number of failures.

4.2 Agreeing on the Delivery Order

The algorithm associates every multicast message with a timestamp. To guarantee
agreement on the message delivery order, two properties are ensured: (1) processes
agree on the message timestamps and (2) after a process p A-Delivers a message with
timestamp ts, p does not A-Deliver a message with a smaller timestamp than ts. These
properties are implemented as described next.

For simplicity, we initially assume a multicast primitive that guarantees agreement
on the set of messages processes deliver, but not causal order; we then show how this
algorithm may incur into problems, which can be solved using causal multicast. To A-
MCast a message m1, m1 is thus first multicast to the addressees of m1. Upon delivery
of m1, every process p uses a local variable, denoted as TSp, to define its proposal
for m1’s timestamp, m1.tsp. Process p then proposes m1.tsp in m1’s global data com-
putation (gdc) instance. The definitive timestamp of m1, m1.ts

def , is the maximum
value of the decided vector V . Finally, p sets TSp to a bigger value than m1.ts

def and
A-Delivers m1 when all pending messages have a bigger timestamp than m1.ts

def —a
message m is pending if p delivered m but did not A-Deliver m yet.

Although this reasoning ensures that processes agree on the message delivery order,
the delivery sequence of faulty processes may contain holes. For instance, p may A-
Deliver m1 followed by m2, while some faulty process q only A-Delivers m2. To see
why, consider the following scenario. Process p delivers m1 and m2, and proposes
some timestamp tsp for these two messages. As q is faulty, it may only deliver m2
and propose some timestamp tsq bigger than tsp as m2’s timestamp—this is possible
because q may have A-Delivered several messages before m2 that were not addressed
to p and q thus updated its TS variable. Right after deciding in m2’s gdc instance, q A-
Delivers m2 and crashes. Later, p decides in m1 and m2’s gdc instances, and A-Delivers
m1 followed by m2, as m1’s definitive timestamp is smaller than m2’s.

To solve this problem, before A-Delivering a message m, every process p addressed
by m computes m’s potential predecessor set, denoted as m.pps. This set contains all
messages addressed to p that may potentially have a smaller definitive timestamp than
m’s (in the example above, m1 belongs to m2.pps).5 Message m is then A-Delivered
when for all messages m′ in m.pps either (a) m′.tsdef is known and it is bigger than
m.tsdef or (b) m′ has been A-Delivered already.

The potential predecessor set of m is computed using causal multicast: To A-MCast
m, m is first causally multicast. Second, after p decides in m’s instance and updates its
TS variable, p causally multicasts an ack message to the destination processes of m. As

5 Note that the idea of computing a message’s potential predecessor set appears in the atomic
multicast algorithm of [3]. However, this algorithm assumes a majority of correct processes in
every group and thus computes this set differently.
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soon as p receives an ack message from all processes addressed by m that are trusted
by its perfect failure detector module, the potential predecessor set of m is simply the
set of pending messages.

Intuitively, m’s potential predecessor set is correctly constructed for the two fol-
lowing facts: (1) Any message m′, addressed to p and some process q, that q causally
delivers before multicasting m’s ack message will be in m.pps (the definitive times-
tamp of m′ might be smaller than m’s). (2) Any message causally delivered by some
addressee q of m after multicasting m’s ack message will have a bigger definitive
timestamp than m’s. Fact (1) holds from causal order, i.e., if q C-Delivers m′ before
multicasting m’s ack message, then p C-Delivers m′ before C-Delivering m’s ack.
Fact (2) is a consequence of the following. As p’s failure detector module is perfect,
p stops waiting for ack messages as soon as p received an ack from all alive ad-
dressees of m. Hence, since processes update their TS variable after deciding in m’s
global data computation instance but before multicasting the ack message of m, no ad-
dressee of m proposes a timestamp smaller than m.tsdef after multicasting m’s ack
message.

4.3 The Algorithm

Algorithm A1 is composed of four tasks. Each line of the algorithm, task 2, and the
procedure ADeliveryTest are executed atomically. Messages are composed of applica-
tion data plus four fields: dst, id, ts, and stage. For every message m, m.dst indicates
to which groups m is A-MCast, m.id is m’s unique identifier, m.ts denotes m’s current
timestamp, and m.stage defines in which stage m is. We explain Algorithm A1 by de-
scribing the actions a process p takes when a message m is in one of the three possible
stages: s0, s1, or s2.

To A-MCast m, m is first C-MCast to its addressees (line 8). In stage s0, p C-Delivers
m, sets m’s timestamp proposal, and adds m to the set of pending messages Pending
(lines 10-12). In stage s1, p computes m.tsdef (lines 17-19) and ensures that all mes-
sages in m.pps are in p’s pending set (lines 20-23), as explained above. Finally, in stage
s2, m is A-Delivered when for all messages m′ in m.pps that are still in p’s pend-
ing set (if m′ is not in p’s pending set anymore, m′ was A-Delivered before), m′ is in
stage s2 (and thus m′.ts is the definitive timestamp of m′) and m′.ts is bigger than

p1

px

...g1

q1

qy

...g2

r1

rz

...g3

C-MCast(m)

m.ts ← TS

GDC

propose(m.id, m.ts)

decide(m.id, V )

m.ts ← max(V )
TS ← max(TS, m.ts + 1)

C-MCast(ACK, m.id, -)

ADeliveryTest()

Fig. 1. Algorithm A1 in the failure-free case when a message m is A-MCast to groups g1 and g2
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m.ts (lines 4-6). Notice that if m and m′ have the same timestamp, we break ties using
their message identifiers. More precisely, (m.ts, m.id) < (m′.ts, m′.id) holds if either
m.ts < m′.ts or m.ts = m′.ts and m.id < m′.id. Figure 1 illustrates a failure-free
run of the algorithm.

5 Solving Atomic Multicast with Weaker Failure Detectors

In this section, we solve atomic multicast with a non-genuine algorithm. The Algorithm
A2 we present next does not require system-wide perfect failure detection and delivers
messages in fewer communication steps. We first define additional abstractions used by
the algorithm and summarize its assumptions. We then present the algorithm itself and
conclude with a discussion on how to further reduce its delivery latency and weaken its
failure detection requirements.

5.1 Additional Definitions and Assumptions

Failure Detector �P . We assume that processes have access to an eventually perfect
failure detector �P [10]. This failure detector ensures the strong completeness property
of P and the following eventual strong accuracy property: there is a time after which
no process stops being trusted before it crashes.

Reliable Multicast. Reliable multicast is defined by the primitives R-MCast and R-
Deliver and ensures all properties of causal multicast except uniform causal order.

Consensus. In the consensus problem, processes propose values and must reach agree-
ment on the value decided. Consensus is defined by the primitives
propose(v) and decide(v) and satisfies the following properties [8]: (i) uniform validity:
if a process decides v, then v was previously proposed by some process, (ii) termina-
tion: if every correct process proposes a value, then every correct process eventually
decides exactly one value, and (iii) uniform agreement: if a process decides v, then all
correct processes eventually decide v.

Generic Broadcast. Generic broadcast ensures the same properties as atomic multicast
except that all messages are addressed to all groups and only conflicting messages are
totally ordered. More precisely, generic broadcast ensures uniform integrity, validity,
uniform agreement, and the following uniform generalized order property: for any two
conflicting messages m and m′ and any two processes p and q, if p G-Delivers m and
q G-Delivers m′, then either p G-Delivers m′ before m or q G-Delivers m before m′.

Assumptions. To solve generic broadcast, either a simple majority of correct processes
must be correct, i.e., f < n/2, and non-conflicting messages may be delivered in three
message delays [17] or a two-third majority of processes must be correct, i.e., f < n/3,
and non-conflicting message may be delivered in two message delays [18]. Both algo-
rithms require a system-wide leader failure detector Ω [11], and thus the eventual perfect
failure detector �P we assume is sufficient. Moreover, inside each group, we need con-
sensus and reliable multicast abstractions that tolerate an arbitrary number of failures.
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Algorithm A1. Genuine Atomic Multicast using P - Code of process p

1: Initialization
2: TS ← 1, Pending ← ∅

3: procedure ADeliveryTest()
4: while ∃m ∈ Pending : m.stage = s2

∀id ∈ m.pps : ∃m′ ∈ Pending : m′.id = id ⇒
m′.stage = s2 ∧ (m.ts,m.id) < (m′.ts, m′.id) do

5: A-Deliver(m)
6: Pending ← Pending \ {m}

7: To A-MCast message m {Task 1}
8: C-MCast m to m.dst

9: When C-Deliver(m) atomically do {Task 2}
10: m.ts ← TS
11: m.stage ← s0

12: Pending ← Pending ∪ {m}

13: When ∃m ∈ Pending : m.stage = s0 {Task 3}
14: m.stage ← s1

15: fork task ConsensusTask(m)

16: ConsensusTask(m) {Task x}
17: Propose(m.id, m.ts) � GDC among processes in m.dst
18: wait until Decide(m.id, V )
19: m.ts ← max(V )
20: TS ← max(TS, m.ts + 1)
21: C-MCast(ACK, m.id, p) to m.dst
22: wait until ∀q ∈ P ∩ m.dst : C-Deliver(ACK, m.id, q)
23: m.pps ← {m′.id | m′ ∈ Pending ∧ m′ 
= m}
24: m.stage ← s2

25: atomic block
26: ADeliveryTest()

For this purpose, among realistic failure detectors, P is necessary and sufficient for con-
sensus [12] and sufficient for reliable multicast [19].6 Note that in practice, implementing
P within each group is more reasonable than across the system, especially if groups are
inside local area networks. We discuss below how to remove this assumption.

5.2 Algorithm Overview

The algorithm is inspired by the atomic broadcast algorithm of [5]. We first recall its
main ideas and then explain how we cope with group failures—[5] assumes that there is
at least one correct process in every group. We then show how local messages to some
group g, i.e., messages multicast from processes inside g and addressed to g only, may
be delivered with no inter-group communication at all.

6 In [19], the authors present the weakest failure detector to solve reliable broadcast. Extending
the algorithm of [19] to the multicast case using the same failure detector is straightforward.



490 N. Schiper and F. Pedone

To A-MCast a message m, a process p R-MCasts m to p’s group. In parallel, pro-
cesses execute an unbounded sequence of rounds. At the end of each round, processes
A-Deliver a set of messages according to some deterministic order. To ensure agree-
ment on the messages A-Delivered in round r, processes proceed in two steps. In the
first step, inside each group g, processes use consensus to define g’s bundle of mes-
sages. In the second step, groups exchange their message bundles. The set of message
A-Delivered by some process p at the end of round r is the union of all bundles, re-
stricted to messages addressed to p.

In case of group crashes, this solution does not ensure liveness however. Indeed,
if a group g crashes there will be some round r after which no process receives the
message bundles of g. To circumvent this problem we proceed in two steps: (a) we
allow processes to stop waiting for g’s message bundle, and (b) we let processes agree
on the set of message bundles to consider for each round.

To implement (a), processes maintain a common view of the groups that are trusted
to be alive, i.e., groups that contain at least one alive process. Processes then wait for the
message bundles from the groups currently in the view. A group g may be erroneously
removed from the view, if it was mistakenly suspected of having crashed. Therefore, to
ensure that message m multicast by a correct process will be delivered by all correct
addressees of m, we allow members of g to add their group back to the view. To achieve
(b), processes agree on the sequence of views and the set of message bundles between
each view change. For this purpose, we use a generic broadcast abstraction to propagate
message bundles and view change messages, i.e., messages to add or remove groups.
Since message bundles can be delivered in different orders at different processes, pro-
vided that they are delivered between the same two view change messages, we define
the message conflict relation as follows: view change messages conflict with all mes-
sages and message bundles only conflict with view change messages. As view change
messages are not expected to be broadcast often, such a conflict relation definition al-
lows for faster message bundle delivery.

Processes may also A-Deliver local messages to some group g without communicat-
ing with processes outside of g. As these messages are addressed to g only, members of
g may A-Deliver them directly after consensus, and thus before receiving the groups’
message bundles.

We note that maintaining a common view of the alive groups in the system resembles
what is called in the literature group membership [20]. Intuitively, a group membership
serviceprovidesprocesseswith aconsistentviewofaliveprocesses in thesystem, i.e., pro-
cesses“see” thesamesequenceofviews.Moreover,processesagreeon thesetofmessages
delivered between each view change, a property that is required for message bundles.7 In
fact, our algorithm could have been built on top of such an abstraction. However, doing
so would have given us less freedom to optimize the delivery latency of message bundles.

5.3 The Algorithm

Algorithm A2 is composed of five tasks. Each line of the algorithm is executed atomi-
cally. On every process p, six global variables are used:Rnd denotes the current round

7 Some group membership specifications also guarantee total ordering of the messages delivered
between view changes.
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number, Rdelivered and Adelivered are the set of R-Delivered and A-Delivered mes-
sages respectively, Gdelivered is the sequence of G-Delivered messages, MsgBundle
stores the message bundles, and View is the set of groups currently deemed to be alive.

In the algorithm, every G-BCast message m has the following format:
(rnd , g, type,msgs), where rnd denotes the round in which m was G-BCast, g is the
group m refers to, type denotes m’s type and is either msgBundle , add , or remove ,
and msgs is a set of messages; this field is only used if m is a message bundle.

To A-MCast a message m, a process p R-MCasts m to p’s group (line 5). In every
round r, the set of messages that have been R-Delivered but not A-Delivered yet are
proposed to the next consensus instance (line 9), p A-Delivers the set of local messages
decided in this instance (line 12), and global messages, i.e., non local messages, are
G-BCast at line 15 if group(p) belongs to the view. Otherwise, p G-BCasts a message
to add group(p) to the view.

Process p then gathers message bundles of the current round k using variable
MsgBundle: Process p executes the while loop of lines 19-26 until, for every group g,
MsgBundle[g] is neither ⊥, i.e. p is not waiting to receive a message bundle from g, nor
2, a value whose signification is explained below. The first message mk

g of round k re-
lated to g of type msgBundle or remove that p G-Delivers “locks” MsgBundle[g], i.e.,
any subsequent G-Delivered message of round k concerning g is discarded (line 23). If
mk

g is of type msgBundle , p stores g’s message bundle in MsgBundle [g] (line 26). Oth-
erwise, mk

g was G-BCast by some process q that suspected g to have entirely crashed,
i.e., failure detector �P at q did not trust any member of g (lines 33-35), and thus p sets
MsgBundle[g] to ∅ (line 25). Note that q sets MsgBundle[g] to 2 after G-BCasting a
message of the form (k, g, remove , -) to prevent q from G-BCasting multiple “remove
g” messages in the same round.

While p is gathering message bundles for round k, it may also handle some message
of type add concerning g, in which case p adds g to a local variable groupsToAdd
(line 24). Note that this type of message is not tagged with a round number to ensure
that messages A-MCast from correct groups are eventually A-Delivered by their cor-
rect addressees. In fact, tagging add messages with the round number could prevent a
group from being added to the view as we now explain. Consider a correct group g that
is removed from the view in the first round. In every round, members of g G-BCast a
message to add g back to the view. In every round however, processes G-Deliver mes-
sage bundles of groups in the view before G-Delivering these “add g” messages, and
they are thus discarded.

After exiting from the while loop, p A-Delivers global messages (line 28), the view
is recomputed as the groups g such that MsgBundle [g] �= ∅ or g ∈ groupsToAdd
(line 30), and p sets MsgBundle [g] to either ⊥, if g belongs to the new view, or ∅
otherwise (p will not wait for a message bundle from g in the next round). Figures 2
and 3 respectively illustrate a failure-free run of the algorithm and a run where group
g3 entirely crashes.

5.4 Further Improvements

Delivery Latency In Algorithm A2, local messages are delivered directly after con-
sensus. Hence, these messages do not bear the cost of a single inter-group message
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Fig. 2. Algorithm A2 in the failure-free case when a message m is A-MCast to groups g1 and g2
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Fig. 3. Algorithm A2 when group g3 crashes and a message m is A-MCast to groups g1 and g2

delay unless: (a) they are multicast from a group different than their destination group
or (b) they are multicast while the groups’ bundle of messages are being exchanged,
in which case the next consensus instance can only be started when message bundles
of the current round have been received. Obviously, nothing can be done to avoid case
(a). However, we can prevent case (b) from happening by allowing rounds to overlap.
That is, we start the next round before receiving the groups’ bundle of messages for
the current round. Note that to ensure agreement on the relative delivery order of lo-
cal and global messages, processes inside the same group must agree on when global
messages of a given round are delivered, i.e., after which consensus instance. For this
purpose, a mapping between rounds and consensus instances can be defined. To control
the inter-group traffic, we may also specify that message bundles are sent, say every
κ consensus instance. Choosing κ presents a trade-off between inter-group traffic and
delivery latency of global messages.
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Algorithm A2. Non-Genuine Atomic Multicast - Code of process p

1: Initialization
2: Rnd ← 1, Rdelivered ← ∅, Adelivered ← ∅, Gdelivered ← ε
3: View ← Γ , MsgBundle[g] ← ⊥ for each group g ∈ Γ

4: To A-MCast message m {Task 1}
5: R-MCast m to group(p)

6: When R-Deliver(m) {Task 2}
7: Rdelivered ← Rdelivered ∪ {m}

8: Loop {Task 3}
9: Propose(Rnd , Rdelivered \ Adelivered ) � consensus inside group

10: wait until Decide(Rnd , msgs)

11: localMsgs ← {m | m ∈ msgs ∧ m.dst = {group(p)}}
12: A-Deliver messages in localMsgs in some deterministic order
13: Adelivered ← Adelivered ∪ localMsgs

14: if group(p) ∈ View then
15: G-BCast(Rnd , group(p),msgBundle, msgs \ localMsgs)
16: else
17: G-BCast(-, group(p),add , -)
18: groupsToAdd ← ∅

19: while ∃g ∈ Γ : MsgBundle[g] ∈ {⊥, �}
20: if 
 ∃(rnd , g, type ,msgs) ∈ Gdelivered : (rnd = Rnd ∨ type = add) then
21: wait until G-Deliver(rnd , g, type,msgs) ∧ (rnd = Rnd ∨ type = add)
22: (rnd , g′, type ,msgs) ← remove first message in Gdelivered s.t.

(rnd = Rnd ∨ type = add)
23: if MsgBundle [g′] ∈ {⊥, �} then
24: if type = add then groupsToAdd ← groupsToAdd ∪ {g′}
25: else if type = remove then MsgBundle[g′] ← ∅
26: else MsgBundle[g′] ← msgs
27: globalMsgs ← {m | ∃g ∈ Γ : MsgBundle [g] = msgs ∧ m ∈ msgs}
28: A-Deliver messages in globalMsgs addressed to p in some deterministic order
29: Adelivered ← Adelivered ∪ globalMsgs

30: View ← {g | MsgBundle[g] 
= ∅} ∪ groupsToAdd
31: foreach g ∈ Γ : MsgBundle [g] ← ⊥ (if g ∈ View ) or ∅ (otherwise)
32: Rnd ← Rnd + 1

33: When ∃g ∈ View : MsgBundle[g] = ⊥ ∧ ∀q ∈ g : q 
∈ �P {Task 4}
34: G-BCast(Rnd , g, remove , -)
35: MsgBundle [g] ← �

36: When G-Deliver(type , m) {Task 5}
37: Gdelivered ← Gdelivered ⊕ (rnd , g, type ,msgs)

Failure Detection. To weaken the failure detector required inside each group, i.e., P
in Algorithm A2, we may remove a group g from the view as soon as a majority of
processes in g are suspected. This allows to use consensus and reliable multicast algo-
rithms that are safe under an arbitrary number of failures and live only when a majority



494 N. Schiper and F. Pedone

of processes are correct. Hence, the leader failure detector Ω becomes sufficient. Care
should be taken as when to add g to the view again: this should only be done when a
majority of processes in g are trusted to be alive. This solution ensures a weaker live-
ness guarantee however: correct processes in some group g will successfully multicast
and deliver messages only if g is maj-correct, i.e., g contains a majority of correct pro-
cesses. More precisely, the liveness guaranteed by this modified algorithm is as follows
(uniform integrity and uniform prefix order remain unchanged):

– weak uniform agreement: if a process p A-Delivers a message m, then all correct
processes q ∈ m.dst in a maj-correct group eventually A-Deliver m

– weak validity: if a correct process p in a maj-correct group A-MCasts a mes-
sage m, then all correct processes q ∈ m.dst in a maj-correct group eventually
A-Deliver m.

6 Final Remarks

In this paper, we addressed the problem of solving atomic multicast in the case where
groups may entirely crash. We presented two algorithms. The first algorithm is genuine,
tolerates an arbitrary number of process failures, and requires perfect failure detection.
We showed, in Section 1, that if we consider realistic failure detectors only and we
do not bound the number of failures, P is necessary to solve this problem. The sec-
ond algorithm we presented is not genuine but requires perfect failure detection inside
each group only and may deliver messages addressed to multiple groups within two
inter-group message delays. We showed how this latter algorithm can be modified to
cope with unreliable failure detection, at the cost of a weaker liveness guarantee.

Figure 4 provides a comparison of the presented algorithms with the related work.
The best-case message delivery latency is computed by considering a message A-MCast
to k groups (k ≥ 2) in a failure-free scenario when the inter-group message delay is δ

Algorithm genuine? resiliency failure detector(s) best-case latency
[2] yes majority correct group-wide Ω (k + 1)δ

in each group
[3] yes majority correct group-wide Ω 4δ

in each group
[4] yes majority correct group-wide Ω 2δ

in each group
[5] yes majority correct group-wide Ω 2δ

in each group
A1 yes f ≤ n system-wide P 6δ

A2 no f < n/2 group-wide P and 3δ
system-wide �P

f < n/3 (modification of algorithm 2δ
with weaker liveness tolerates
unreliable failure detection)

Fig. 4. Comparison of the presented algorithms and related work



Solving Atomic Multicast When Groups Crash 495

and the intra-group message delay is negligible. Note that we took 2δ as the best-case
latency for causal multicast [13] and global data computation [16].
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Abstract. In wireless ad hoc or sensor networks, a connected dominating set is
useful as the virtual backbone because there is no fixed infrastructure or central-
ized management. Additionally, in such networks, transient faults and topology
changes occur frequently.

A self-stabilizing system tolerates any kind and any finite number of transient
faults, and does not need any initialization. An ordinary self-stabilizing algorithm
has no safety guarantee and requires that the network remains static during con-
verging to the legitimate configuration. Safe converging self-stabilization is one
of the extension of self-stabilization which is suitable for dynamic networks such
that topology changes and transient faults occur frequently. The safe convergence
property guarantees that the system quickly converges to a safe configuration, and
then, it moves to an optimal configuration without breaking safety.

In this paper, we propose a self-stabilizing 7.6-approximation algorithm with
safe convergence for the minimum connected dominating set in the networks
modeled by unit disk graphs.

Keyword: Self-stabilization, Approximation, Minimum connected dominating
set, Mobile ad hoc or sensor networks, Fault-tolerance.

1 Introduction

1.1 Connected Dominating Set

Wireless ad hoc or sensor networks have no fixed physical backbone infrastructure and
no centralized administration. Therefore, a connected dominating set (CDS) formed by
processes is useful as a virtual backbone for the computation of message routing and
other network problems for such networks.

In an undirected connected graph, a CDS D is a subset of nodes such that D is
a dominating set and the induced subgraph by D is connected. The minimum CDS
problem is finding a CDS of the minimum size. Unfortunately, it is known that the
minimum CDS problem is NP-hard [1] in unit disk graphs. The unit disk graph is one
of the models of ad hoc or sensor networks. In a unit disk graph, there is a link between
two nodes if and only if their geographical distance is at most one unit. That is, for the
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sake of simplicity of analysis, it assumes that each process has the same communication
range in ad hoc or sensor networks.

1.2 Self-stabilization with Safe Convergence

Fault-tolerant systems are classified into two categories: masking and non-masking
[2]. If liveness property is guaranteed, but safety property is not guaranteed in the
presence of faults, it called non-masking. Self-stabilization [3] is a theoretical frame-
work of non-masking fault-tolerant distributed algorithms proposed by Dijkstra in 1974.
Self-stabilizing algorithms can start execution from an arbitrary (illegitimate) system
configuration, and eventually reach a legitimate configuration. By this property, they
tolerate any kind and any finite number of transient faults, such as message loss, mem-
ory corruption, and topology change, if the network remains static during converging
to their legitimate configurations [4]. That is, the system autonomously recovers with-
out the cost of human interventions if transient faults and spontaneous reconfigurations
occur.

In mobile ad hoc or sensor networks, message loss and topology change occur fre-
quently. Thus, distributed algorithms for such networks should tolerate such events. Al-
though self-stabilization property works quite well for networks in which the frequency
of transient faults is low (compared to the time for convergence to a legitimate config-
uration), it may not be suitable for dynamic networks, such as mobile ad hoc or sensor
networks, in which transient faults and topology changes frequently occur. Because, if
a transient fault occurs during the convergence, the self-stabilizing algorithms cannot
converge to the legitimate configuration. Additionally, they have not safety guarantee
while it is in converging.

In such networks, during converging period, we want to guarantee a safety property
by extending self-stabilization, called safe convergence [5]. When faults occur, it is bet-
ter to converge to a safe feasible legitimate configuration as soon as possible. If no fault
occurs for enough period of time, it is better to converge to an optimal configuration
to provide the best quality of service. The safe convergence property requires that the
system should not break safety while a system is moving from a feasible configuration
to an optimal configuration.

There are many works on extensions of self-stabilization for quick convergence and
guarantee of safe property, for example, superstabilization [6] and safe stabilization [7].
The concept of superstabilization guarantees the system quickly converges to a config-
uration. It considers only keeping safety in the event of faults or changes of the system
in a legitimate configuration and does not consider the safety in converging configura-
tions. The concept of safe stabilization guarantees any k faults in a safe configuration
does not lead to an unsafe configuration, for some given constant k. Unfortunately, in
both cases, they need very high cost on time and memory performance.

On the other hand, self-stabilization with safe convergence does not require any over-
head, and implementation is much easier, because this framework does not guarantee
safety when faults occur in a legitimate configuration. The related works for safe con-
vergence are [8], [9], and [10].
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1.3 Related Works

Because a CDS can be used for the virtual backbone for routing messages in the ad
hoc network, many algorithms for the CDS have been proposed. The literature [11] is a
good survey for this problem in ad hoc networks.

There exist some distributed approximation algorithms1 with constant approximation
ratio, for example [12], [13], [14], [15], [16], and [17]. However, these algorithms are
not self-stabilizing, and not suitable for dynamic networks.

There are some self-stabilizing algorithms for computing CDSs, for example [18],
[19] and [20]. However, [18] and [19] are not approximation algorithms, i.e., their al-
gorithms do not guarantee qualities of their solutions. Additionally, they assume that
2 or 3-hops information can be maintained at each node, i.e., each node can refer to
and update the local states of nodes in 2 or 3 hops away in a single step. Unfortunately,
an efficient self-stabilizing implementation of such an assumption is not known that is
comparable to our algorithm to be presented in this paper. In [20], we proposed the first
self-stabilizing distributed approximation algorithm for the CDS. Unfortunately, it is
not with safe convergence property. Therefore, it is not suitable for dynamic networks.

1.4 Contribution of This Paper

Self-stabilization with safe convergence is a good property for dynamic networks. We
consider the problem to find an approximation of the minimum CDS with safe conver-
gence. Our algorithm guarantees that the size of the solution is at most 7.6|Dopt| + 1.4
in unit disk graphs. In general (topology) networks, our algorithm finds a CDS though
it cannot guarantee the approximation ratio.

In general, self-stabilizing approximation algorithms (without safe convergence)
need larger time and space complexity to attain better approximation ratio. For exam-
ple, if we compute an optimal CDS, then it might take longer time. Therefore, we may
want to compute a dominating set which is not necessarily optimal in a short time for
virtual backbone, even if we know that the optimal CDS is better. Then, if the algorithm
is with safe convergence property, it attends to such need.

By our algorithm, a configuration quickly moves to a feasible one in which a safety
property is satisfied, i.e., a dominating set is computed. Then, as long as no transient
fault occur, a configuration eventually becomes an optimal one in which an approx-
imation of the minimum CDS is computed. By the safe convergence property, each
configuration from a feasible one to an optimal one in the computation keeps the safety
property, i.e., the set remains a dominating set. To construct the minimum CDS, the
members of the dominating set in the feasible configuration leaves the set. Then, it is
not trivial to keep the safety property during convergence from the feasible configura-
tion to the optimal configuration.

We assume that all processes are executed in parallel in each step for the execution
model. Therefore, a process and its neighbor processes may update their local states
simultaneously. However, for safe convergence, each process can update its local state

1 An approximation algorithm for the minimization problem is an algorithm which guarantees
the approximation ratio |Dalg|/|Dopt|, where |Dalg | is the size of the solution of the approx-
imation algorithm in the worst case and |Dopt| is the size of the optimal solution.
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only when the safety property is not broken. On the other hand, when a configuration is
feasible but not optimal, at least one process must make a move for convergence to the
optimal. Therefore, designing an algorithm with safe convergence is not trivial under
such execution model.

This paper is organized as follows. In section 2, we formally describe the system
model and the distributed minimum CDS problem. In section 3, we present an outline
of a heuristic algorithm of Marathe et al. [21] on which our algorithm is based. In
section 4, we propose a safely converging self-stabilizing approximation algorithm for
the minimum CDS in unit disk graph. In section 5, we show the proof of the correctness
of the proposed algorithm. In section 6, we give a conclusion and discuss future works.

2 Preliminary

2.1 System Model

Let V = (P1, P2, ..., Pn) be a set of n processes and E ⊆ V ×V be a set of bidirectional
communication links in a distributed system. The number of processes is denoted by
n. Then, the topology of the distributed system is represented as an undirected graph
G = (V, E). We assume that G is connected and simple. In this paper, we use “graphs”
and “distributed systems” interchangeably.

We assume that each process has unique process identifier. Let id be a naming func-
tion of processes. By id(Pi), we denote the process identifier of Pi for each process
Pi. In discussing process identifier, with abuse of notation, we use Pi to denote id(Pi)
when it is clear from the context.

By Ni, we denote the set of neighboring processes of Pi. For each Pi, the set Ni

is assumed to be a constant. Let the distance between Pi and Pj be the number of the
edges on the shortest path between them. For any set S ⊂ V and any process Pi �∈ S, let
the distance between Pi and S be the minimum distance between Pi and any Pj ∈ S.

As a communication model, we assume that each process can read the local state
of neighboring processes without delay. This model is called the state reading model.
Although a process can read the local state of neighboring processes, it cannot update
them; it can only update the local state of itself.

A set of local variables defines the local state of a process. By Qi, we denote the local
state of each process Pi ∈ V . A tuple of the local state of each process (Q1, Q2, ..., Qn)
forms a configuration of a distributed system. Let Γ be a set of all configurations.

We define a step as an atomic execution unit. A step consists from the following
three substeps: (1) Read states of all neighbors, (2) Compute the next local state, and
(3) Update its local state. We assume that every process has an identical program in-
cluding some steps, and every process executes the same step in parallel and in a syn-
chronized manner. This assumption seems too strong for the self-stabilization, however,
such execution model can be realized on an asynchronous model by using a phase clock
synchronizer [22]. We define a round as a period from the beginning to the end of an
execution of a loop of the program. We say that Pi is enabled in a configuration γ at the
beginning of a round if and only if Pi executes any steps in the round and changes the
value of at least one variable of itself.
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2.2 Self-stabilization and Safe Convergence

For any configuration γ, let γ ′ be any configuration that follows γ. Then, we denote
this transition relation by γ → γ ′. For any configuration γ0, a computation E starting
from γ0 is a maximal (possibly infinite) sequence of configurations E = γ0, γ1, γ2, ...
such that γt → γt+1 for each t ≥ 0.

Definition 1. (Self-Stabilization) Let Γ be a set of all configurations. A system S is
self-stabilizing with respect to Λ such that Λ ⊆ Γ if and only if it satisfies the following
two conditions:

– Convergence: Starting from an arbitrary configuration, a configuration eventually
becomes one in Λ, and

– Closure: For any configuration λ ∈ Λ, any configuration γ that follows λ is also in
Λ as long as the system does not fail.

Each γ ∈ Λ is called a legitimate configuration. ��

Definition 2. (Safe converging self-stabilization) Let Γ be the set of all configurations,
and let ΛO ⊆ ΛF ⊆ Γ . A self-stabilizing system S is safely converging with respect to
(ΛF , ΛO) if and only if it satisfies the following three conditions:

– S is self-stabilizing with respect to ΛF .
– Safe convergence: For any execution starting from configuration in ΛF , configura-

tion eventually reaches one in ΛO.
– S is self-stabilizing with respect to ΛO.

Each γ ∈ ΛF is called a feasibly legitimate configuration, and each γ ∈ ΛO is called
an optimally legitimate configuration. ��

Definition 3. Let S be a safely converging self-stabilizing system with respect to (ΛF ,
ΛO). The first convergence time is the number of steps to reach a configuration in ΛF

for any starting configuration in Γ . The second convergence time is the number of steps
to reach a configuration in ΛO for any starting configuration in ΛF . ��

2.3 Formal Definition of the Problem

In this section, we give the formal definition of the problem.

Definition 4. A dominating set of a graph G = (V, E) is a subset V ′ ⊆ V such that
there exist v ∈ V ′ and (u, v) ∈ E for any u ∈ V \V ′. ��

Definition 5. An independent set of a graph G = (V, E) is a subset V ′ ⊆ V such that
(u, v) �∈ E for any u, v ∈ V ′. An independent set V ′ of G is maximal if no proper
superset of V ′ is an independent set of G. ��

In [23], the following relationship between dominating sets and independent sets is
shown.
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1 Arbitrarily pick a node vr ∈ V .
2 Construct a BFS tree T of G rooted at vr .
3 Let k be the depth of T .
4 For each 0 ≤ d ≤ k, let Ld denote the set of nodes at distance d from the root in T .
5 Set I0 := {vr}; S0 := ∅.
6 for d = 1 to k do begin
7 Dd := {u ∈ Ld | u is dominated by some node in Id−1}.
8 Pick an MIS Id in G(Ld \ Dd).
9 Sd := {uf | uf is the father in T of some vi ∈ Id}.
10 end
11 output (∪k

d=0Id) ∪ (∪k
d=0Sd) as the CDS.

Fig. 1. Marathe et al.’s algorithm

Theorem 1. [23] An independent set is maximal if and only if it is independent and
dominating. ��

For short, we call maximal independent set MIS.

Definition 6. A connected dominating set of a graph G = (V, E) is a dominating set
V ′ ⊆ V such that an induced subgraph by V ′ is connected. A connected dominating
set V ′ of G is minimum if |V ′| ≤ |V ′′| for any connected dominating set V ′′ of G. ��

We call the members of the CDS dominators, and others dominatees. Each dominatee
is dominated by a dominator.

We consider solving the minimum CDS problem in distributed systems in this paper.
We assume that each process Pi does not know global information of the network,
and they know local information Ni which is a set of neighbors of Pi. We defined the
distributed minimum CDS problem as follows.

Definition 7. Let G = (V, E) be a graph that represents a distributed system, let ci

be a variable that represents whether Pi is in the minimum connected dominating set.
The distributed minimum connected dominating set problem is a problem defined as
follows.

– Each process Pi ∈ V must decide the value of ci ∈ {0, 1} as output of Pi, and
– The set {Pi ∈ V | ci = 1} is the minimum connected dominating set of G. ��

We assume that each process Pi has a local variable ci.

3 Marathe et al.’s Algorithm

Marathe et al. proposed a sequential heuristic algorithm for the minimum CDS in unit
disk graphs [21]. Because our algorithm is based on their algorithm, we present the
outline of their algorithm.

The outline is described more formally in Figure 1. By G(C), we denote an induced
subgraph of G by a subset C of V .
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First, their algorithm selects an arbitrary node vr from G, and constructs a breadth
first spanning (BFS) tree T of G rooted at vr. For any node vi, let dist(vr, vi) denote
the distance from vr to vi. Let k denote the height (i.e., the maximum distance) of T
on G, and let Ld be the set of nodes which have the distance (i.e., the depth) d from the
root (0 ≤ d ≤ k), i.e., Ld = {vi | dist(vr , vi) = d}.

The CDS by the heuristic is the union of two subsets of nodes, i.e., (∪k
d=0Id) ∪

(∪k
d=0Sd).

– The first subset ∪k
d=0Id is an MIS for G. The root vr definitely joins a set I0. Let

Dd be a set of nodes vi ∈ Ld each of which is dominated by some node in Id−1.
For each 1 ≤ d ≤ k, a set Id is an MIS of an induced subgraph of G by Ld \ Dd.
That is to say, the heuristic paves the field dominated by members of I in order of
increasing of dist(vr, vi) from vr.

– The second subset is ∪k
d=0Sd, where Sd is a set of nodes which are fathers of some

Id for each 1 ≤ d ≤ k. Note that, Sd ⊆ Ld−1.

We call the above way of construction of an MIS ∪k
d=0Id “paving on a BFS tree”. For

any set C � V and any node vi �∈ C, let the distance between vi and C be the minimum
distance between vi and any vj ∈ C. On the MIS constructed by paving on a BFS tree,
the set satisfies the following property.

Theorem 2. [15] Let I ′ be the MIS constructed by paving on a BFS tree T . For any vi

in I ′, the distance between vi and I ′ \ {vi} is exactly two hops. ��

By Theorem 2, the connectivity of the CDS is ensured. In the MIS constructed by paving
on T , each member vi ∈ Ld of the MIS has a father on T which is neighbor to at least
one member of the MIS in Ld−1 or Ld−2. Therefore, the union of the MIS and a set of
fathers of members of the MIS is connected. Because the MIS is also a dominating set
by Theorem 1, the union is a CDS.

Definition 8. Let T be a BFS tree on G, and dist(vi) be the distance from the root to a
node vi on T . For any MIS I ′ for G, I ′ is an MIS constructed by paving on T , if each
member vi of I ′ which has dist(vi) = d has the following two nodes:

– a father vj ∈ Ni of vi on T , and
– a neighbor vk ( �= vi) of vj which is a member of I ′ and has dist(vk) = d − 1 or

dist(vk) = d − 2. ��

We define such a CDS as CDS-tree formally as follows:

Definition 9. Let I ′ be any MIS constructed by paving on a BFS tree T for G. Let
S′(�= ∅) be a set of nodes each of which is the father of a member in I ′ on T . A set of
nodes I ′ ∪ S′ is a CDS-tree for G. ��

In [24], Wu et al. prove the following theorem about the relationship between the
minimum CDS and MISs in unit disk graphs.

Theorem 3. [24] For any unit disk graph, the size of an MIS is at most 3.8|Dopt|+1.2,
where Dopt is the minimum CDS. ��
By Theorem 3, we proof the following theorem.
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Theorem 4. Let Dopt be the minimum CDS. Any CDS-tree is an approximation for the
minimum CDS which size is at most 7.6|Dopt| + 1.4 in unit disk graphs.

Proof. We consider a CDS-tree I ′ ∪ S′, where I ′ be an MIS constructed by paving on
a BFS tree and S′ be a set of nodes each of which is the father of a member in I ′ on the
BFS tree.

By Theorem 3, the size of I ′ is at most 3.8|Dopt| + 1.2. Because each member of
I ′ which is not the root of the BFS tree has a father in S′, the size of S′ is at most
|I ′| − 1 = 3.8|Dopt| + 0.2.

Therefore, the size of the CDS-tree is |I ′ ∪ S′| = |I ′| + |S′| ≤ 7.6|Dopt| + 1.4. ��

4 Proposed Algorithm

Our algorithm SC-CDS is safe converging: we assume that the safety property is “a
dominating set is computed”. That is, SC-CDS computes a dominating set in the first
round, and then, it converges to a CDS-tree. During the converging, the set remains a
dominating set in each configuration.

Our algorithm SC-CDS is based on the strategy of Marathe et al.’s algorithm in
[21]. First, SC-CDS computes a BFS tree T rooted at Pr

2 for G, i.e., each process
Pi computes the distance di from Pr. Because an algorithm for computing a BFS tree
has been proposed so far, for example [28], we simply adopt it to our system model.
For purposes of illustration, let k denote the height of T on G, and let Ld be the set
of processes which have di = d (0 ≤ d ≤ k). Next, SC-CDS computes an MIS
constructed by paving on T . For constructing an MIS, there exist many self-stabilizing
algorithms, for example [29]. However, these algorithms do not ensure that a computed
MIS is not the same as the MIS constructed by paving on T . Therefore, we do not use
these algorithms in SC-CDS. In SC-CDS, the members of the MIS are selected greedy
from the root Pr to leaves on T . Last, SC-CDS selects members of a CDS-tree, i.e.,
members of the MIS and their fathers.

To guarantee the safety property, SC-CDS computes a larger dominating set, even
if the BFS tree is broken. After that, while SC-CDS constructs a BFS tree, it decrease
the members carefully to construct a minimum CDS. When a process leaves the set, the
set remains a dominating set. Then, the set gradually becomes a union of an MIS and
the set of fathers of the MIS.

Formal description of proposed algorithm SC-CDS is shown in Figure 2.
We assume, without loss of generality, the output of each process Pi is following five

variables as output.

– di — the distance from the root process Pr to Pi.
– fi — an id of a father of Pi on T .
– mi — mi = 1 (resp. 0) if Pi is in an MIS (resp. not in an MIS).
– m′

i — m′
i = 1 (resp. 0 or 2) if Pi wants to change the value mi to 1 (resp. 0).

– ci — ci = 1 (resp. 0) if Pi is a dominator (resp. dominatee).

2 We assume that Pr is given as a specific process. We can elect it as a leader by leader election
algorithms, for example [25], [26] and [27].
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Constant
Ni: a set of neighboring processes of Pi.

Local Variable
di: the distance from the root process Pr .
fi: an id of a father of Pi in the BFS tree.
mi ∈ {0, 1}: mi = 1 (resp. 0) if Pi is (resp. is not) in the MIS.
m′

i ∈ {0, 1, 2}: m′
i = 1 (resp. 0 or 2) if Pi wants to change the value mi to 1 (resp. 0).

ci ∈ {0, 1}: ci = 1 (resp. 0) if Pi is a dominator (resp. a dominatee).
Macro

MinDisti ≡ min{dj | Pj ∈ Ni ∧ m′
j = 2}

Mutex i ≡ ∀Pj ∈ Ni[m′
j 
= 2] ∨ di < MinDisti∨

{di = MinDisti ∧ Pi < min{Pj ∈ Ni | dj = di ∧ m′
j = 2}}

Algorithm for process Pi 
= Pr:
do forever{
/* Step 1; Count the distance from Pr for the BFS tree, and decide a father. */
1 di := min{dj + 1 | Pj ∈ Ni};
2 fi := min{Pj ∈ Ni | dj < di};
/* Step 2; Declare if Pi wants to join MIS or not. */
3 m′

i := mi;
4 if (mi = 1 ∧ ∃Pj ∈ Ni[dj ≤ di ∧ mj = 1]) m′

i := 2;
5 if (mi = 0 ∧ ∀Pj ∈ Ni[dj > di ∨ mj = 0]) m′

i := 1;
/* Step 3; If Pi wants to leave MIS , then Pi decides its value

by mutually exclusive manner between neighbors. */
6 if (m′

i = 2){
7 if (Mutex i) m′

i := 0;
8 else m′

i := 1;
9 }
/* Step 4; Change the value of mi, i.e., construct MIS . */
10 if (m′

i = 0 ∧ ∀Pj ∈ Ni[m′
j = 0]) mi := 1; /* for safety */

11 else mi := m′
i;

/* Step 5; Change the value of ci, i.e., construct Doms.*/
12 if (mi = 1) ci := 1;
13 else if (∃Pj ∈ Ni[fj = Pi ∧ mj = 1]) ci := 1;
14 else ci := 0;
}

Algorithm for process Pr:
do forever{
1 dr := 0;
2 fr := Pr;
3 m′

r := 1;
4 mr := 1;
5 cr := 1;
}

Fig. 2. SC-CDS: A safe converging self-stabilizing approximation algorithm for the minimum
CDS for each process Pi
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Definition 10. For each configuration γ ∈ Γ , we define MIS (γ) ≡ {Pi ∈ V | mi =
1}, which is called an independent set in γ, and Doms(γ) ≡ {Pi ∈ V | ci = 1}, which
is called a set of dominator processes in γ. ��

There is only one step for the root process Pr in a round of this algorithm.

– Pr sets the value of dr = 0, fr = Pr, mr = m′
r = 1, and cr = 1.

There are five steps for non-root process Pi �= Pr in a round of this algorithm.

– Step 1: Pi computes the distance di from Pr and a father fi on T by lines 1 and 2,
respectively.

– Step 2: Pi declares whether Pi wants to join MIS .
• If each neighbor Pj ∈ Ni with di ≥ dj is not a member of MIS , then Pi

declares participation in MIS (i.e., m′
i = 1) by line 5.

• If there exists a neighbor Pj with di ≥ dj such that Pj is a member of MIS ,
then Pi declares non-participation in MIS . That is, for the time being, Pi sets
m′

i = 2 for the next step by line 4.
– Step 3: Pi with m′

i = 2 decides if Pi actually leaves MIS .
• By mutually exclusive manner between Pi and its neighbors Pj with m′

j = 2,
Pi decides if Pi leaves MIS (i.e., m′

i = 0) by line 7 or Pi stays in MIS (i.e.,
m′

i = 1) by line 8.
– Step 4: Pi decides if Pi joins MIS .

• If Pi has m′
i = 0 and all neighbor Pj has m′

j = 0, then Pi joins MIS for safety
by line 10.

• Otherwise, Pi decides if Pi joins MIS by the value of m′
i by line 11.

– Step 5: Pi decides if Pi joins Doms or not.
• If Pi or at least one child of Pi on T is in MIS , then Pi joins Doms by lines

12 and 13.
• Otherwise, Pi leaves Doms by line 14.

By Γ , we denote a set of all configurations of SC-CDS. A set of legitimate config-
urations is defined as follows.

Definition 11. A configuration γ is in a set of feasibly legitimate configurations ΛF

iff Doms(γ) is a dominating set. A configuration γ is in a set of optimally legitimate
configurations ΛO iff Doms(γ) is a CDS-tree. ��

5 Proof of Correctness

In this section, we show the proof of correctness of SC-CDS. However, we omit the
proof for the limitation of space.

Lemma 1. (One round convergence to ΛF ) Let γ be any configuration in Γ , and γ′ be
a configuration at the end of a round execution starting from γ. Then, we have γ′ ∈ ΛF .
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Proof. For the contrary, we assume that Doms(γ′) is not a dominating set. This means
that there exists a process Pi such that ci = 0 ∧ ∀Pj ∈ Ni[cj = 0] in γ′. It is clear that
Pi �= Pr because cr = 1 by line 5 for Pr in γ′. Then, by the definition of Step 5, each
process Pk with mk = 1 holds ck = 1. Therefore, mi = 0 ∧ ∀Pj ∈ Ni[mj = 0] in γ′.
Because mi = 0 in γ′, m′

i = 0 ∧ ∃Pj ∈ Ni[m′
j �= 0] must hold by lines 10 and 11. Let

Pj ∈ Ni be a process such that m′
j �= 0. By the definition of Step 3, each process must

hold m′ = 0 or m′ = 1 in γ′. That is, m′
j �= 2 in γ′. Therefore, m′

j = 1 holds in γ′. By
the definition of Step 4, then mj = 1 in γ′. By the definition of Step 5, then cj = 1 in
γ′. This is a contradiction. Therefore, Doms(γ′) is a dominating set. ��

Lemma 2. (Closure of ΛF ) Let γ be any configuration in ΛF , and γ′ be any configu-
ration at the end of a round execution starting from γ. Then, we have γ′ ∈ ΛF .

Proof. By the proof of Lemma 1, this lemma trivially holds. ��
Lemma 3. If no process is enabled in configuration γ, MIS (γ) is an MIS constructed
by paving on a BFS tree.

Proof. Let γ be a configuration in which no process is enabled. By each line 1 for Pr

and Pi, it is clear that the value of di, for each Pi, represents the distance from Pr in
γ [28]. This means that a BFS tree T is computed in γ. Assume that MIS (γ) is not an
MIS constructed by paving on T in γ. Then, MIS (γ) is not an independent set, is an
independent set but it is not maximal, or is an MIS but it is not constructed by paving
on T .

– We assume that MIS (γ) is not an independent set, i.e., there exist two processes
Pi and Pj in MIS (γ) such that they are neighbor each other in γ. This means that
mi = 1 ∧ ∃Pj ∈ Ni[mj = 1] (resp. mj = 1 ∧ ∃Pi ∈ Nj[mi = 1]) holds at Pi

(resp. Pj) in γ. If di > dj (resp. dj > di, di = dj ), the condition of line 4 is true at
Pi (resp. Pj , Pi and Pj ). This is a contradiction.

– We assume that MIS (γ) is an independent set but it is not maximal in γ. However,
by the proof of lemma 1, there exists no process such that mi = 0∧∀Pj ∈ Ni[mj =
0] holds, i.e., MIS (γ) is a dominating set. Therefore, MIS (γ) is a dominating set
and an independent set in γ. By Theorem 1, this is a contradiction.

– We assume that MIS (γ) is an MIS but it is not constructed by paving on T in γ.
Then, there exist two processes Pi �= Pr and Pj ∈ Ni such that mi = 1, mj =
0∧dj = di −1, and there exists no neighbor Pk ∈ Nj such that mk = 1∧dk ≤ dj

in γ. Then, ∀Pk ∈ Nj [dk > dj ∨ mk = 0] holds at Pj , and the condition of line 5
is true at Pj . This is a contradiction.

Therefore, MIS (γ) is an MIS constructed by paving on T if no process is enabled. ��
Lemma 4. No process is enabled in configuration γ if and only if γ ∈ ΛO.

Proof. First, we show that if no process is enabled in configuration γ, then γ ∈ ΛO, that
is, Doms(γ)(= {Pi | ci = 1}) is a CDS-tree. By each line 2 for Pr and Pi, it is clear that
the value of fi, for each Pi, represents a father of Pi on a BFS tree T in γ. By Lemma 3,
the set {Pi | mi = 1} is an MIS constructed by paving on T in γ. Therefore, by the
definition of the CDS-tree, Doms(γ) is ({Pi | mi = 1}∪ {Pj | fi = Pj ∧ mi = 1}) in
γ iff γ ∈ ΛO.
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To show the contraposition, we assume that γ �∈ ΛO, i.e., Doms(γ) �= ({Pi | mi =
1} ∪ {Pj | fi = Pj ∧ mi = 1}).

– Assume that {Pi | mi = 1} �⊆ Doms(γ), i.e., there exists a process Pi such that
mi = 1 and ci = 0. If Pi = Pr, then Pi is enabled by line 5 in γ. If Pi �= Pr,
then the condition of line 12 is true in γ. This is a contradiction for the assumption
that no process is enabled in γ. Therefore, we have {Pi | mi = 1} ⊆ Doms(γ).
This means that Doms(γ) is a dominating set, because {Pi | mi = 1} is an MIS
by Lemma 3 and an MIS is also a dominating set by Theorem 1.

– Assume that {Pj | fi = Pj ∧ mi = 1} �⊆ Doms(γ), i.e., there exist two processes
Pi and Pj ∈ Ni such that mi = 1, cj = 0 and fi = Pj . Because {Pi | mi = 1} is a
MIS and Pj is a neighbor of Pi, mj = 0 holds at Pj . Then, in Pj , mj = 0∧ ∃Pi ∈
Nj [fi = Pj ∧ mi = 1] is true, i.e., the condition of line 13 is true in γ. This
is a contradiction for the assumption that no process is enabled in γ. Therefore,
{Pj | fi = Pj ∧ mi = 1} ⊆ Doms(γ). This means that Doms(γ) is a CDS,
because Doms(γ) is a dominating set and members of {Pj | fi = Pj ∧ mi = 1}
connect members of Doms(γ).

– Assume that Doms(γ) is a CDS, but not a CDS-tree. That is Doms(γ) � ({Pi | mi

= 1}∪{Pj | fi = Pj ∧mi = 1}). Then, there exists a process Pi such that ci = 1,
but neither Pi nor its children are members of the MIS. That is, mi = 0 ∧ ∀Pj ∈
Ni[fj �= Pi ∨ mj = 0] holds at Pi. However, by the definition of lines 12-14, Pi

can change the value of ci by line 14. This is a contradiction for the assumption
that no process is enabled in γ.

Therefore, if no process is enabled in configuration γ, γ ∈ ΛO, that is, Doms(γ) is a
CDS-tree.

It is clear that no process is enabled if γ ∈ ΛO . ��

Lemma 5. For any configuration γ0 ∈ ΛF and any computation starting from γ0,
eventually no process is enabled.

Proof. By the definition of the algorithm, the root process Pr changes values of each
variable at most once. Then, Pr decides the value of dr = 0 (resp. fr = Pr, m′

r = 1,
mr = 1, and cr = 1) only in line 1 (resp. 2, 3, 4 and 5) for Pr. These values never
change after that, because they are not changed by other lines. Therefore, we suppose
below that values of them are correct at Pr, and we consider each process Pi �= Pr.

By line 1 for each process Pi �= Pr, Pi changes the value of di only in line 1, and
it is shown that each Pi cannot change the value of di infinitely often [28]. Therefore,
we assume that the value of di is stable and never changes for each Pi in γ0. By line 2,
it is clear that the value of fi is fixed for each Pi after a round execution following the
round in which each value of di becomes correct at each Pi. Therefore, we assume that
the value of fi is stable and never changes for each Pi in γ0.

Suppose that there exists an infinite (non-converging) computation starting from γ0.
Then, there is a process Pi which changes values of mi, m′

i and ci infinitely often.
By the definition of Step 5, to change the value of ci infinitely often, Pi must change
the value of mi infinitely often. By the definition of Step 4, to change the value of mi

infinitely often, Pi must change the value of m′
i infinitely often. Therefore, without loss
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of generality, we assume that there exists a process Pi which changes the value of m′
i

infinitely often.

– Suppose that di = 1. However, because mr = 1 holds at Pr and the value never
change, ∃Pj ∈ Ni[dj ≤ di ∧ mj = 1] is always true at Pi. Therefore, Pi executes
line 4 and sets m′

i = 2 as long as mi = 1. Then, Pi executes Step 3, and decides
m′

i into 0 or 1. Pi eventually executes line 7 at most once. Then, m′
i = 0 holds

at Pi, and it never change. Because m′
r = 1, Pi never executes line 10. That is,

Pi eventually holds mi = 0 by line 11. Therefore, Pi with di = 1 cannot change
values of mi and m′

i infinitely often.
– Suppose that di = d > 1. For induction, we assume that each Ph with dh = d − 1

never change the value of mh and m′
h. Then, by the definition of lines 4 and 5,

Pj ∈ Ni with dj = d must change the value of mj infinitely often.
• If there exists a process Ph ∈ Ni with dh = d − 1 and mh = 1, then Pi

cannot execute line 5 by its condition. Then, Pi cannot change the value of
m′

i infinitely often. This is a contradiction for the assumption. Therefore, there
exist no process Ph ∈ Ni with dh = d − 1 and mh = 1.

• If there exist no process Ph ∈ Ni with dh = d− 1 and mh = 1, Pi can change
the value of m′

i from 0 to 1 by line 5 only when all its neighbors Pj with dj ≤ d
hold mj = 0 by the condition of line 5. After Pi execute line 5, the condition of
line 5 cannot true at all of its neighbors Pj with dj = d. Therefore, Pj cannot
change the value of m′

j infinitely often. This means that Pj cannot change the
value of mj infinitely often by the definition of Step 4. This is a contradiction
for the assumption. Therefore, Pi cannot change values of mi and m′

i infinitely
often.

Therefore, Pi cannot change the value of its variable infinitely often. ��

Theorem 5. SC-CDS is a self-stabilizing approximation algorithm for the minimum
CDS in unit disk graphs, and is safely converging self-stabilizing with respect to (ΛF ,
ΛO). The size of the CDS by SC-CDS is at most 7.6|Dopt| + 1.4 in unit disk graphs,
where Dopt is the minimum CDS. The first convergence time is at most 1 round, and the
second convergence time is O(n) rounds.

Proof. The first half of the following theorem clears from Theorem 4 and Lemmas 1-
5. By Lemmas 1 and 2, SC-CDS is self-stabilizing with respect to ΛF , and the first
convergence time is at most 1 round. By Lemmas 4 and 5, SC-CDS is self-stabilizing
with respect to ΛO , and satisfies the safe convergence property. Therefore, SC-CDS
is safely converging and self-stabilizing with respect to (ΛF , ΛO). By Theorem 4, it is
clear that the size of the CDS by SC-CDS is at most 7.6|Dopt|+1.4 in unit disk graphs,
where Dopt is the minimum CDS.

Let us derive the second convergence time. First, we consider the construction of the
BFS tree by Step 1. In our system model, the root Pr must decide its variable dr = 0
in the first round, and it never change. Each neighboring process Pi of Pr must decide
its variable di = 1 in the second round, and its value never change. Therefore, each
process Pk which is in k hops from Pr must decide its variable dk = k in the k + 1-th
round. Therefore, the time for construction of the BFS tree is at most k + 1 rounds,
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where k is the height of the tree. After that, each process fixes its variable of fi within
a round. Therefore, in the k + 2-th round, values of di and fi are fixed at each Pi.

Next, we consider the construction of the MIS after the construction of the BFS
tree, i.e., the execution of Steps 2-4. Let Ld be the set of processes Pi with di = d
(0 ≤ d ≤ k). Let ld be the size of the set Ld for 0 ≤ d ≤ k, then Σk

d=0ld = n. The
root Pr must decide its variable mr = m′

r = 1 in the first round, and it never change.
From the second round, ∃Pj ∈ Ni[dj ≤ di∧mj = 1] always holds at each neighboring
process Pi of Pr. Then Pi cannot execute line 5. If mi = 1, Pi executes line 4, Step 3
and Step 4 until m′

i and mi become 0 by lines 7 and 11. Therefore, the time until all
processes in L1 stable is at most l1 rounds.

We assume that the processes in a set Q = L0 ∪ L1 ∪ . . . Lh−1 is stable and never
change after the round. In the next round, processes Lh ∪ Lh+1 ∪ · · · ∪ Lk execute
line 4 or 5. If Pi ∈ Lh is neighbor to a process Pj with mj = 1 in Q, then Pi can
execute only line 4, and execute line 7 at most once. Therefore, Pi executes at most lh
rounds by the above discussion. If Pi ∈ Lh is not neighbor to such process Pj ∈ Q,
then Pi can execute lines 4 and 5. By the proof of Lemma 5, in this case, Pi changes
the value of mi at most twice. Therefore, Pi executes line 4 at most lh rounds and
line 5 at most 1 round. Therefore, each process Pi ∈ Lh executes at most lh + 1
rounds.

Because Σk
d=0ld = n, the time for the construction of the MIS is at most Σk

d=0(ld +
1) = n+k rounds. That is, in at most n+2k+2 rounds, values of m′

i and mi are fixed
at each Pi.

After that, each process Pi executes Step 5, and fixes the value of ci within a round.
Therefore, the second convergence time is O(n) rounds.

��

6 Conclusion

In this paper, we proposed a self-stabilizing distributed approximation algorithm for
the minimum CDS with safe convergence in unit disk graphs. As an application of the
proposed algorithm, a minimum CDS is a virtual backbone in mobile ad hoc or sensor
networks. Since our algorithm is self-stabilizing with safe convergence, it is strongly
desirable in such dynamic networks. Our algorithm converges to a safe configuration in
a round, and to an optimal configuration in O(n) rounds. Our algorithm guarantees that
the size of the solution in unit disk graphs is at most 7.6|Dopt| + 1.4. Development of
a safely converging self-stabilizing approximation algorithm with better approximation
ratio or better time complexity is left for future work.
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Abstract. In this paper we investigate deterministic leader election un-
der the simple threshold model of omission dynamic faults: The com-
putation is performed in synchronous steps; if the algorithm sends m
messages in one particular step, then at most max{cG − 1, m − 1} of
them may be lost without any notification to the sender, where cG is the
edge-connectivity of the communication topology. Simple threshold and
related models of dynamic faults have been mainly used in the study of
information dispersal (broadcasting), while fault-tolerant leader election
has been primarily considered in models with static faults.

In this paper we combine these lines of research and present efficient
algorithms for leader election on rings and complete networks in the
simple threshold model. Somewhat surprisingly, obtaining some leader
election is rather straightforward even in this harsh model. However,
getting an efficient solution working in general case (arbitrary wake-up,
unknown n) involves intricate techniques and careful accounting.

1 Introduction and Preliminaries

Fault tolerance has been one of the most intensively studied issues in distributed
computing over many decades. Indeed, since the goal of the design of distributed
systems is to develop highly scalable systems comprising huge amounts of pro-
cessing elements, the fault of a small number of them is very likely even if
extremely reliable devices are used. One of the prominent topics of research in
the area is to study the solvability and complexity of communication problems,
if various assumptions about the occurrence of faults are adopted. Obviously, if
no restrictions are imposed on the occurrence of faults, then no nontrivial results
can be obtained. On the other hand, it seems that finding reasonable restrictions
on the environment that would at the same time allow non-trivial results is not
an easy task.

We consider a point-to-point network of devices communicating via message
passing. The simple threshold model of faults we adopt for this paper was intro-
duced in [4]; it is a deterministic model in the sense that some a-priori restrictions
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on the occurrence of faults are considered, and worst case results are delivered.
This is in contrast with probabilistic models, in which the faults occur with some
probability distribution, and also the results have probabilistic nature. Next, our
model considers only omission faults: a particular message may be lost, but not
altered in any way, nor can the adversary introduce new messages. Also, our
model is synchronous in the sense that the computation of the whole system is
performed in steps synchronized by some global clock. The main feature of the
model is proportionality: the number of messages that can be lost in a particular
step depends on the number of messages that has been sent in that step.

The majority of research in the area of deterministic models of faults (static,
dynamic, linearly bounded, fractional, threshold) has been focused on the broad-
casting problem (e.g. [1,2,6,7,9,12,16] and many others).

Leader election problem is one of the most prominent coordination problems.
All vertices start in the same state (differing only by having distinct identifiers),
and the goal of the algorithm is to have exactly one vertex in a distinguished
state. This problem has been studied on a number of topologies (e.g. [5,11,15,17]
and many others), and also, to some extent in faulty environments, mostly con-
sidering static faults (e.g. [10,13,14,18]).

As the simple threshold model is rather punishing (only one message is guaran-
teed to be delivered, and only if sufficient number of messages has been sent in the
first place), the question “Which problems can be solved at all under this model?”
is rather pressing. In this paper we give a positive answer for the problem of leader
election on bidirectional rings and complete networks. It turns out that while it is
rather straightforward to obtain some results, novel techniques and intricate anal-
ysis were needed in order to obtain efficient algorithms that work under general
assumptions (non synchronized start-up, size of the network is unknown).

In this paper we consider the leader election problem on bidirectional rings
and complete graphs in the simple threshold model. We show upper bounds on
the worst case number of time steps needed using various additional assump-
tions (synchronous start, sense of direction, etc). As a side-effect we improve the
broadcasting time on complete graphs with sense of direction from O(n2) [4] to
O(n log n) thus separating it from the lower bound Ω(n2) on complete graphs
without s.o.d. The results are summarized in Table 1.

The full version with all proofs included can be found online in [3].

1.1 Model

We consider a synchronous network of n processors communicating in a point-
to-point manner in a topology described by a simple undirected graph G. The

Table 1. Summary of the results concerning the leader election problem

rings simultaneous wakeup O(n log n)
arbitrary wakeup O(n2)

complete graphs with s.o.d O(n2 log n)
without s.o.d O(n3)
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synchronization is performed by a global clock generating (non-numbered) ticks.
The computation consists of a series of time steps: at the beginning of a step,
each processor reads the incomming messages (possibly from many neighbors).
Then every processor performs some local computation and sends messages to
(possibly many of) its neighbors (at most one message per neighbor). After this
action is performed by all processors (but before any of the messages is delivered)
there is a set of m messages that are in transit in the whole networks. Some of
these messages may be lost, and the step is conculded by a clock synchronization;
i.e. the remaining messages are delivered at the beginning of the next time step.

The simple threshold model gives a (weak) restriction on the number of mes-
sages that can be lost: if there are m messages in transit after all processors
finished sending during a particular time step then at most max{cG − 1, m− 1}
of them can be lost, where cG is the edge connectivity of the underlying com-
munication topology. In other words, if the algorithm tries to send less than cG

messages (over all processors) during a particular time step, all of them may
be lost. Otherwise there is a guarantee that at least one message is delivered.
Note, however, that the sender does not receive any kind of notification about
which messages have been lost. Also, note that this is only a lower bound on the
delivered messages. It may be the case that more messages are delivered.

For the specific case of ring networks we get that if there is only one message
sent in a particular step, it may be lost. Otherwise (i.e. at least two messages are
sent), at least one of them is delivered. For complete graphs with n vertices, at
least n− 1 messages must be sent to guarantee the delivery of a single message.

2 Rings with Simultaneous Wake-Up

In this section we consider the case when the algorithm is started by k initiators
that start at the same time step. Moreover, all other vertices can be awakened
only by receiving a message. The main result of this section is the following
theorem:

Theorem 1. With simultaneous wake-up of k initiators, leader election on n-
node rings can be solved in O(n log k) steps, even if the ring size is unknown to
the processors.

Proof: Our algorithm, SimultStart, is based on a combination of two ideas: a
leader election algorithm that elects a leader in a ring (in the standard message-
passing model) using O(n log k) messages, and the idea of threads from the broad-
casting algorithm of [4].

We first recall a well-known algorithm due to Franklin[8] that elects a leader in
a ring using O(n log k) messages. However, in order to be able to implement this
algorithm in the simple threshold model, attention must be given to technical
details. Therefore we present a modification of this algorithm in more detail
and argue that the message complexity is asymptotically same as in the original
Franklin’s algorithm. Consider the following election algorithm in asynchronous
rings (refer to Algorithm 1 for the handling at vertex w of messages originated
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from a vertex v): at the beginning, the initiators are candidates. Vertices that are
not candidates are defeated, and they do not participate in the protocol apart
from relying messages. A candidate vertex v has a phase number starting from
zero. In one phase, v tries to capture at least one of its neighbors in the same
phase; if successful, it enters the next phase, otherwise it keeps waiting until
made defeated by some other message.

Obviously, the vertex with the highest [phase, id] pair always wins, so there
is no deadlock. Moreover, a vertex v can increase its phase only if it encounters
some candidate vertex w with the same phase and lower id; this vertex then
becomes defeated. Since a particular candidate w can serve as a victim for at
most two candidates, at most two thirds of candidates in phase j can be promoted
to phase j +1. This means that the number Qj of candidates that reach phase j
is at most k(2/3)j, and p ≤ 1 + log3/2 k phases are sufficient to elect the leader.
Note also that the total number of messages in any single phase is at most 3n:
An edge can be crossed by a normal message of phase j in each direction only
once, plus possibly once more by a victory message of phase j. Therefore, the
overall number of messages is O(n log k). In the rest of the proof we show how
to implement this algorithm in the faulty environment.

Algorithm 1. modified Franklin’s algorithm (messages of vertex v)
1: phase := 0, state := candidate
2: loop
3: send messages to both directions using the protocol below
4: wait for at least one “victory” answer
5: if state = candidate then phase := phase + 1 and continue loop
6: end loop

\\ Messages of vertex v, being processed at vertex w:

1: if two messages from vertex v meet in a vertex w without bouncing then
2: w knows the identity of the leader v, and launches a final phase
3: end if
4: if msg arrives to a vertex with stored higher [phase, id] pair then
5: msg dies
6: else if msg arrives to a candidate vertex w with the same phase and lower id then
7: state of w becomes defeated, v’s [phase, id] pair is stored in w
8: msg bounces back as “victory”
9: else

10: state of w becomes defeated, v’s [phase, id] pair is stored in w
11: msg is relayed
12: end if

To implement the messages of Algorithm 1, we use the idea of threads from
the broadcasting algorithm of [4], which we briefly describe here. Consider a
vertex v that tries to send messages to both directions. At any moment of time,
there are two chains of consecutive informed vertices, those to the left from v
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and those to the right1; we call each such chain a thread. Each informed vertex
in a thread tries to spread the message in the corresponding direction, until it
receives an acknowledgement that the message was successfully delivered. Ver-
tices trying to spread the message are active, vertices that have already received
the acknowledgement are passive (w.r.t. the given thread). The computation is
performed in rounds: the goal of a round is to ensure that at least one active
vertex becomes passive. In [4], the round consists of the following four steps:

1. Each active vertex sends a forward message to its possibly uninformed neigh-
bor.

2. Each active vertex in the right part sends a forward message to its possibly
uninformed neighbor. Each vertex in the left part that received a message
in step 1 replies to this message by sending an ack message.2

3. Same as step 2, but left and right parts are reversed.
4. Each vertex that received a non-reply message in steps 1–3 replies to that

message.

The idea of this protocol is that, if no acknowledgement (an ack message) is
delivered in the first three steps of a round, then there are two different acks
(and no other messages) being sent in step 4 and one of them must be delivered.

The messages in Algorithm 1 have the following structure: a vertex v sends two
messages, to its left and right neighbor, and these messages potentially return
back to v. To implement this, v starts one left and one right thread, and continues
using the protocol above. As the thread spreads, it makes the vertices passive
and marks them with the [phase, id] pair of the initiator as in Algorithm 1.
Once a growing thread reaches a candidate vertex of the same level, and with
smaller identity, it bounces back as “victory”, and continues. This bouncing back
happens of course only in the front of each thread: the condition for bouncing
back is evaluated only when a message arrived to a vertex not yet visited by
this thread (as determined by the stored [phase, id] pair). This way it is ensured
that a delivered massage from an active vertex inside the thread never iniciates
a victory message.

In any time, there may be many active threads; however, since vertices cannot
wake up spontaneously, the rounds are synchronized over all threads. Hence, it
is easy to see using similar arguments as in [4] that if, during a particular round,
the following holds for every time step

1. There is at least one active vertex in a right thread and at least one active
vertex in a left thread

2. There is at most one forward message sent over one edge in one direction
3. If there are two messages sent over one edge in opposite directions, they are

of the same type (left or right)

Then at least one acknowledgement in some thread is delivered in this round.
To see that the first requirement holds, consider the two threads (left and right)
1 The vertices have no common orientation, so left, and right are local to the initiator.
2 Note that passive vertices reply to such message, too.



Leader Election in Extremely Unreliable Rings and Complete Networks 517

1 3

42

Fig. 1. A sample round of the broadcasting algorithm from [4]. The initially active
vertices are squares. In the first step, the only surviving message is delivered to the
white vertex on the left, which then replies in the next step. At the end of the round,
two white vertices are sending acknowledgement, so at least one acknowledgement is
delivered during that round.

with the highest [phase, id] pair. They never die, so each of them has at least one
active vertex. The second requirement is easily implemented: if there are more
messages ready to be sent over an edge, only the one with the highest [phase, id]
pair is sent and all others are discarded. It is easy to see that the corresponding
threads would die anyway. The third condition is always true, since there are
two messages sent over one edge only when a thread bounces.

There is one exception to this, however, when there is a single candidate (the
leader) remaining and its left and right threads meet. In this case, there are one or
two vertices that know the identity of the leader. In the final phase, they both wait
for a number of stepswhich is an upper bound on the running time of the algorithm.
From the subsequent analysis it follows that after this time there is either a unique
vertex knowing the leader’s identity, or two such vertices that in addition know
each other. In both cases, after the requested time elapses, there are no messages
in progress, and the unique vertex (or the one with higher local id) can start a
linear-time broadcast with the leader’s id using the protocol from [4].

It is not possible to elect more than one leader, because all vertices contained
in a thread (apart from the initiator) are defeated, and the leader is elected if two
threads of the same vertex meet without bouncing, i.e. all vertices are contained
in some thread.

Next, we argue the number of steps: each vertex v can get at most O(3p)
acknowledgements3, because a passive vertex can become active only 3 times
per phase: There can be one forward thread from each neighboring candidate,
and possibly one bounced victory thread.

Hence, after O(n log k) acknowledgements are delivered, the algorithm termi-
nates. As at least one acknowledgement is delivered during each 4-step round,
the overall time is O(n log k) as well. �

It is tempting to argue the optimality of this result by a simple argument:
comparison-based leader election in synchronous rings requires Ω(n log n) mes-
sages in the worst case; if there is an adversary delivering only one message
in each step, the algorithm must take Ω(n log n) steps. However, this argu-
ment is wrong, because in our model, vertices can break symmetry not only
by using the identifiers, but also by using the timing information. Indeed, if the

3 where p is the number of phases.
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adversary would let only one message in each step to be delivered, it is sufficient
that all candidates send one message in the first step: one of them is delivered,
so a vertex that receives a message in the second step is elected a leader and
perform a broadcast to inform all other vertices about this. Hence, the number
of messages delivered by the adversary seems to control the level of symmetry –
if all messages are delivered, many symmetries can be forced, but the algorithm
progresses fast; on the other hand, slowing the algorithm down by not delivering
messages implicitly breaks symmetry.

3 Rings with Arbitrary Wake-Up

In this section we consider the scenario in which vertices can wake up at any
time during the execution. The approach from the previous section does not work
any more: The starting times of the candidates may be offset in such a way that
there is no time step in which only acknowledgements are being sent, and hence
no progress can be guaranteed. We show how to adapt the thread technique in
order to overcome this problem, at a cost of increasing the time complexity to
O(n2). We first present the algorithm for the case n known, and then explain
how this assumption can be dropped. In order to maintain readability, we focus
only on the asymptotic analysis, without any attempt to optimize the constant
factors involved.

3.1 N Known

Consider any algorithm based on the thread approach. We can classify each time
step as either green (if only acknowledgements are being sent during it), or red
(at least one node tries to send a forward message).

The first idea is to inflate each round of a thread by appending it with 3n− 3
ack-steps (i.e. the whole round takes 3n + 1 steps). As each candidate tries to
send a forward message only during three steps per round, this ensures that in
each window of 3n + 1 steps there is at least one green step. Analogously as in
the previous section (where the fourth step of each round was the green step) it
follows that during each window of 3n+1 steps at least one acknowledgement is
delivered and the algorithm makes progress. As nothing else changes, the same
arguments as in the previous section can be used to show correctness.

However, the overall complexity has increased to O(n2 log n), since each round
now takes 3n + 1 steps instead of 4.

The second idea is to speed up the rounds as more and more candidates
are eliminated: A candidate in a higher phase knows that it has eliminated
other candidates and can reduce the length of its round, using in essence the
time slots of the candidates it eliminated to speed up transmission of its own
messages. There are technical problems that have to be resolved, though: (1)
A candidate is promoted to the next phase by a victory message coming from
one direction. In the opposite direction there may still remain active threads of
previous phases, potentially using additional time slots. (2) Similarly, when a
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candidate is defeated by an incoming message of a stronger candidate, its active
threads in the opposite direction are not notified and would still consume time
slots (we call those threads dead tails).

We solve the first problem by making all round lengths to be a power of
two; the time slots of obsolete threads of lower phases are then a subset of the
time slots used by highest-phase thread. The second problem is circumvented by
choosing a sufficiently large4 initial round size, so that even assuming the dead
tails never die out there are still enough green steps remaining.

The algorithm N-Known for the case of arbitrary wake-up of initiators with
n known differs from the algorithm SimultStart only by having vertices of
phase j use rounds of length dj = n′/2�j/2�, where n′ is the smallest power of two
larger than 90n5. This means that as long as there is progress and the algorithm
terminates, the correctness of algorithm N-Known follows from correctness of
algorithm SimultStart.

The next two lemmas are crucial for proving the time complexity:

Lemma 1. The number of red time steps during the whole execution of algo-
rithm N-Known is at most tl/2 + 3n, where tl is the last time a progress has
been made (an active vertex has turned passive).

Proof: Consider a fixed execution. Let C denote the set of spontaneously awaken
vertices (i.e. candidates). For each v ∈ C let qv be the highest phase reached by
v and let t0v be the wake-up time of v. Let q denote the highest phase reached by
a vertex (i.e. by the leader). Let Qj be the number of candidates that reached
phase j. Note that Qj ≤ n(2/3)j.

Each candidate v can be viewed as a periodic process that marks the time
steps t0v +kdqv , t0v +1+kdqv and t0v +2+kdqv as red, for k = 0, 1, . . . (i.e. during
the whole execution). This greatly overestimates the time steps that will indeed
become red due to v: In the beginning, v starts with a much longer period d0,
not dqv ; towards the end most candidates are eliminated and do not contribute
at all. Note that by ignoring this elimination, we account for the time slots used
by the dead tails.

Since each vertex can be viewed as a periodic process (marking 3 steps per
period), the total number R of red steps during the whole execution can be
bounded as follows (we use the fact that the number of candidates is at most n):

R =
∑
v∈C

3
⌈

tl
dqv

⌉
≤ 3n +

∑
v∈C

3tl
dqv

= 3n + tl
∑
v∈C

3
dqv

(1)

Let us denote the term
∑

v∈C
3

dqv
as H , and call it density of the red steps.

Hence, we can rewrite (1) as:

R = 3n + tlH (2)

4 It follows from the subsequent analysis that 90n is large enough. We did not attempt
to optimize this constant.

5 See the previous footnote. Note that n′ < 180n.
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The density H can be bounded as follows:

H =
∑
v∈C

3
dqv

=
q∑

j=0

⎛⎝ ∑
v:qv=j

3
dqv

⎞⎠ ≤
q∑

j=0

⎛⎝ ∑
v:qv≥j

3
dqv

⎞⎠ =
q∑

j=0

3Qj

dj

As
∑∞

i=0(
2
3 )i2�

i
2 � = 15, using Qj ≤ n

( 2
3

)j and substituting for dj we get

H ≤
q∑

j=0

3n

(
2
3

)j 2�
j
2 �

n′ ≤
q∑

j=0

3n
( 2

3

)j 2�
j
2 �

90n
≤ 1

30

∞∑
j=0

(
2
3

)j

2�
j
2 �

1
2

Substituting for H in (2) we obtain R ≤ 3n + tl/2. Moreover, it holds that
H ≤ 1/2 which leads to R ≤ 3n + tl/2. �

Lemma 2. Consider an arbitrary execution of the algorithm N-Known. Let ti
for i = 1, 2, . . . , l denote the times when a progress has been made – an active
vertex vi of phase pi has turned passive. Set t′i = ti +dpi and t′′i be the first green
step occurring later then t′i + 2. Then ti+1 ≤ t′′i .

Proof: Assume the contrary, i.e. no progress (a delivered ack message different
from the one that caused i-th progress) has been made by the time t′′i . First,
note that the current round of vi is finished by time t′i at the latest. If no
progress has been made up to that moment, in the next three steps either an
ack message, or two different forward messages (and in different directions) are
delivered (using the same arguments as in the proof of progress of the thread
technique). Therefore, at time t′′i at least two ack messages will be sent and the
adversary must deliver one of them. �

Note that l is bounded from above by the total number of messages of the
underlying modified Franklin’s algorithm and is therefore O(n log n).

ti t′′it′i

dpi

vi

Fig. 2. Illustration of Lemma 2 which assures that progress is made often enough. The
x-axis represents time steps; the strips are different processes. Highlighted are red time
steps generated by a given process. Vertex vi uses rounds of length dpi . If vi makes
progress in step ti, t′

i = ti + dpi , and t′′
i is the frist green step after t′

i + 2, Lemma 2
states that the next time a progress is made is no later that t′′

i .
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Theorem 2. With arbitrary wake-up, and the size n of the ring network known
to all vertices, leader election can be solved in O(n2) steps.

Proof: Recall that tl is the time when all progresses that are possible have al-
ready been done and the leader has been identified, with only the final broadcast
remaining. We are going to estimate tl, as the total execution time is asymptot-
ically the same. Using the notation ti, t′i, t′′i from Lemma 2 let si = min(ti+1 −
ti, t

′
i − ti) and s′i = max(0, ti+1 − t′i). Let S =

∑l−1
i=1 si and S′ =

∑l−1
i=1 s′i. In-

formally, S corresponds to the overall length of time steps during which the ad-
versary can block progress by delivering the same ack message again and again,
while S′ corresponds to the overall length time steps wasted due to the adver-
sary preventing the delivery of a new ack message by delivering only forward
messages.

By definition, ti+1 − ti = si + s′i, therefore tl = tl − t0 =
∑l−1

i=1(ti+1 − ti) =∑l−1
i=1(si + s′i) = S + S′. Note that (by Lemma 2 and the definition of t′′i ) all but

the first three steps of the period corresponding to any s′i are red. Using Lemma
1 we get S′ ≤ 3l + tl/2 + 3n. S can be estimated as follows:

S =
l−1∑
i=1

si ≤
l−1∑
i=1

dpi =
q∑

j=0

⎛⎝∑
pi=j

n′

2�pi/2�

⎞⎠
As the number of progresses in each phase is bounded by 4n and n′ < 180n
(recall that n′ is the smallest power of 2 not smaller than 90n), we get S =
O(n2). Summing together: tl = S + S′ ≤ S + 3l + tl/2 + 3n; separating tl gives
tl ≤ 2S + 6l + 6n, which together with l ∈ O(n log n) yields tl ∈ O(n2). �

3.2 n Unknown

Algorithm N-UnKnown is based on algorithm N-Known, but this time the
vertices need to “guess” a good enough estimate of n. A vertex v, upon wake-
up, starts with a constant estimate n′

0. From the proof of Theorem 2 it follows
that if n ≤ n′

0, the algorithm explicitly terminates in at most c(n′
0)2 steps for

some fixed constant c. Hence, if after c(n′
0)

2 steps the vertex v does not know the
leader, it increases its estimate by a factor of 2 (all messages can carry a time
in which their originator started, so all vertices participating in v’s transmission
can increase the estimate of n, and hence the length of a round, synchronously).
This doubling of estimates is repeated afterwards until the leader is elected.

Once the estimates of all candidates are larger than n′, the algorithm will
terminate within O(nm) steps, where m is the largest estimate (follows from the
proof of Theorem 2). However, few candidates with low estimates are sufficient
to keep the frequency of red steps high and prevent progress, forcing even the
candidates with large estimates to further increase their estimates and hence
slow down the overall progress. A naive argument (there are n candidates and
after wake-up, each of them will reach a correct estimate in O(n2) steps) results
in O(n3) overall time. In the rest, we will show that the algorithm terminates in
time O(n2).
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Consider a vertex v at time t. Let nt
v and pt

v denote the estimate of n′ used
by v and the phase of v at time t, respectively. The round length dt

v vertex v
uses at time t is therefore

dt
v =

nt
v

2

⌊
pt

v
2

⌋
Define the instant density ht

v to be 0 if the vertex has not awaken yet, and
3/dt

v otherwise. Define the overall instant density at time t as Ht =
∑

v∈C ht
v.

Note that Ht reflects the density of red steps, overestimating them as it does
not take into account that the vertices are being eliminated.

Let us classify all time steps t with Ht > 1/2 as dense, and all steps in which ht
v

for some v has increased as special dense. All other steps are sparse. The special
dense steps are introduced for technical reasons to simplify argumentation. As
ht

v increases only when a vertex spontaneously awakes (this can happen at most
n times over all vertices), or when a vertex increases its phase (at most 2n times
overall), the number of special dense steps is insignificant:
Fact 1. The number of special dense steps is at most 3n.
In order to prove the O(n2) time complexity, we show that there are O(n2) green
steps, and they comprise a constant fraction of all steps. First, we show that the
fraction of dense steps is at most 1/2. Next, we show that in a long enough (at
least 12n) segment of sparse steps, the fraction of green steps is at least 1/4.
Finally, we show that the overall length of short segments of sparse steps is short
enough.

Let us now estimate the number of dense steps. The idea is to upper-bound
the instant densities of the vertices by a well-behaved function; the maximal
number of dense steps is then at most twice the area below this function (since
each dense step has Ht > 1/2) plus the number of special dense steps.

Lemma 3. Let t0v be the wake-up time of vertex v and let qv be the maximal
phase reached by vertex v. Define

yt
v = 2�

qv
2 �

√
3c√

t − t0v

for t ≥ t0v + 1, 0 otherwise, where c is a constant such that the algorithm N-

Known terminates within cn2 steps.
Then it holds ∀t : ht

v ≤ yt
v.

Proof: Consider the times tkv when v doubles its estimate of n for the k-th time.
According to the algorithm,

tkv = t0v +
k−1∑
i=0

c(2kn′
0)

2 = t0v + c(n′
0)

2
k−1∑
i=0

4k ≤ 4k

3
c(n′

0)
2 (3)

Let us simplify the notation and use k instead of tkv as the time index for the
rest of the proof. As qv is the maximal phase of v, we have

hk
v =

3
dk

v

≤ 3
2�

qv
2 �

nk
v

≤ 3
2�

qv
2 �

2kn′
0

(4)
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Separating n′
0 from (3), and substituting it into (4) yields the result. �

Summing up over all vertices we obtain:

Corollary 1. ∀t : Ht ≤
∑

v∈C yt
v = Y t

Now we are ready to bound the number of dense steps:

Lemma 4. There is a constant a such that during the first an2 time steps, the
number of dense time steps is at most an2/2.

Proof: Let us compute the total area A below Y t. From Corollary 1, from the
definition of dense steps and from Fact 1 follows that the number of dense steps
is bounded by 2A + 3n.

Let us estimate the area Av below yt
v for a vertex that reached phase qv:

Av =
∫ an2

t0v+1
yt

vdt <

∫ an2−t0v−1

1
y

t+t0v
v dt <

∫ an2

1
y

t+t0v
v dt =

=
[
2�

qv
2 �−1

√
3ct
]an2

1
< 2�

qv
2 �−1

√
3can2 = (2�

qv
2 �−1

√
3ca)n

Note that this bound depends on qv, but does not depend on v itself; let us thus
denote Aj = (2�

j
2 �−1

√
3ca)n. Clearly, for all v such that qv = j it holds Aj ≥ Av.

Let us now bound the total area A:

A =
∑
v∈C

Av =
p∑

j=0

⎛⎝ ∑
v:qv=j

Av

⎞⎠ ≤
p∑

j=0

QjA
j ≤

p∑
j=0

n

(
2
3

)j

(2�
j
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√
3ca)n <

<
n2

√
3ca

2

p∑
j=0

(
2
3

)j

2�
j
2 � <

15
2

n2
√

3ca.

The number of dense steps before the time an2 can thus be bounded by
15

√
3can2 + 3n. By requiring 15

√
3can2 + 3n ≤ an2/2 and separating a we

obtain
√

a ≥ 30
√

3c and therefore a ≥ 2700c. �

The following Lemma is an analogue of Lemma 1:

Lemma 5. Consider a segment T of sparse steps tb, tb + 1, . . . , te. Then the
number of red steps within T is at most (te − tb)/2 + 3n.

Sketch of the proof: First note that since T does not contain special dense steps,
each ht

v is non-increasing on T (and the same applies to Ht as well). The number
of red steps during T can be estimated analogously as in Lemma 1. �

The following counterpart of Lemma 2 holds also for algorithm N-UnKnown;
the proof is essentially the same as the proof of Lemma 2:

Lemma 6. Consider an arbitrary execution of the algorithm N-UnKnown. Let
ti for i = 1, 2, . . . , l denote the times when a progress has been made – an active
vertex vi using a round size dti

v has turned passive. Set t′i = ti + dti
v and t′′i be

the first green step occurring later then t′i + 2. Then ti+1 ≤ t′′i .
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Now we are ready for the main result:

Theorem 3. With arbitrary wake-up, leader election in rings of unknown size
n can be solved in O(n2) steps.

Proof: Let si, s′i, S and S′ be defined as in the proof of Theorem 2, i.e. the total
execution time tl can be expressed as S + S′. We will show that S + S′ ≤ an2,
i.e. that the algorithm terminates before the time an2, where a is the constant
from Lemma 6. Let us estimate S′. We may assume that all but the first three
steps of each period corresponding to a s′i are either dense, or sparse but red.
We include into S′ also the short (of length less then 12n) sparse segments,
as for those Lemma 5 does not guarantee the fraction of red vertices to be
below 3/4. By Lemma 4 the number of dense steps is at most an2/2. Using
Fact 1 the total number of the short sparse segments is at most 3n × 12n =
36n2. Applying Lemma 5 to the remaining sparse segments (of total length
(a − a/2 − 36)n2) yields additional 3

4 (a/2 − 36)n2 red steps. Summing together
we get S′ ≤ 3l + an2/2 + 36n2 + (3a/8 − 27)n2 = 3l + (7a/8 + 9)n2. S can be
estimated similarly as in Theorem 2 to be at most 16

√
an2, using the fact that

for the maximal estimate of n used by the vertices, m, it holds 4c
3 (m)2 < an2,

as there is not enough time for the estimate to grow bigger. Summing together
yields S +S′ < 16

√
an2 +3l+(7a/8+27)n2 = 3l +(16

√
a+7a/8+27)n2 < an2

for sufficiently large n. �

4 Complete Graphs

The broadcasting algorithms from [4] can be adapted (essentially by running n
broadcasts in parallel, and having the strongest one survive) to leader election,
at a cost of additional multiplicative factor of n. This results in O(n4) algorithm
for leader election in unoriented complete graphs, and O(n3) leader election in
complete graphs oriented with chordal sense direction 6.

The insight we gained in Section 3 allows us to improve upon the broadcasting
algorithm from [4]

Theorem 4. With chordal sense of direction, broadcasting can be done in
O(n log n) time.

which implies an improved leader election as well:

Corollary 2. There is an O(n2 log n) leader election algorithm in complete
graphs with chordal sense of direction.

With maximal use of collected information and careful accounting we are able
to improve the case without sense of direction as well:

Theorem 5. There is an O(n3) leader election algorithm in complete graphs
without sense of direction.
6 Select an arbitrary Hamiltonian cycle, both endpoints of each edge are marked by

how far ahead in the cycle is the other endpoint.
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5 Conclusion

We have shown that despite the rather harsh nature of the simple threshold
model, leader election (on bidirectional rings and complete networks) is not only
possible, but can be also quite efficient. Interestingly, unlike the fault-free case,
whether the candidates start simultaneously or not significantly influences the
overall time. While the algorithms are relatively simple, the analysis is rather
involved and for the case of arbitrary wake-up does not yield practical constant
factors. The first question is whether the analysis can be improved (perhaps
also changing the algorithms) to yield practical constant factors for the case of
arbitrary wake-up.

An obvious challenge is to find non-trivial lower bounds. The problem is more
difficult that it might seem on a first glance, as the timing information is poten-
tially there for the algorithm to use. Even the case of Ω(n log n) lower bound for
simultaneous wake-up is still open.

More generally, we view this result as a first step into the exploration of more
complex problems in the threshold model of dynamic faults. While broadcasting
has been investigated before, even such basic problems as leader election in
complete networks or arbitrary graphs are still widely open.

References

1. Chlebus, B., Diks, K., Pelc, A.: Broadcasting in synchronous networks with dy-
namic faults. Networks 27 (1996)

2. Chlebus, B.S., Diks, K., Pelc, A.: Optimal broadcasting in faulty hypercubes. In:
FTCS, pp. 266–273 (1991)

3. Dobrev, S., Kralovic, R., Pardubska, D.: Leader election in extremely unreliable
rings and complete networks. Technical report of Faculty of Mathematics, Physics,
and Informatics, Comenius University, Bratislava, Slovakia, TR-2008-016 (2008),
http://kedrigern.dcs.fmph.uniba.sk/reports/display.php?id=16
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1 Introduction

Transactional memory (TM) systems receive as an input a stream of events
also known as a workload, reschedule it with respect to several constraints, and
output a consistent history. In multicore architectures, the transactional code
executed by a processor is a stream of events whose interruption would waste
processor cycles. In this paper, we formalize the notion of TM workload into
classes of input patterns, whose acceptance helps understanding the performance
of a given TM.

TMs are often evaluated in terms of throughput (number of commits by time
unit). The performance limitation induced by aborted transactions has, however,
been mostly neglected. A TM optimistically executes a transaction and commits
it if no conflict has been detected during its execution. If there exists any risk that
a transaction violates consistency, then this transaction does not commit. Since
stopping a thread until possible conflict resolution would waste core cycles, the
common solution is to choose one of the conflicting transactions and to abort it.

Interestingly, many existing TMs unnecessarily abort transactions that could
commit without violating consistency. For example, consider the input pattern
depicted on the left-hand side of Figure 1, whose events are ordered from top
to bottom. DSTM [1], a well-known Software Transactional Memory (STM),
would detect a conflict and try to resolve it, whatever it costs. Clearly, the
read operation applied to variable x could indifferently return value v1 or the
value overwritten without violating serializability [2], or even opacity [3], thus no
conflict resolution is needed. This paper focuses on the ability of TMs to commit
transactions from given workloads: the input acceptance of TMs.

Contributions. In this paper, we upper-bound the input acceptance of existing
TMs by grouping them into the following designs. (i) Visible write (VWIR);
(ii) Invisible write (IWIR); (iii) Commit-time relaxation (CTR); (iv) Real-time
relaxation (RTR). We propose a Serializable STM, namely SSTM, that imple-
ments the last design in a fully decentralized fashion. Finally, we compare the
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p1 p2
w(x)

r(x)
c

c

input−→ DSTM
output−→

p1 p2
W (x, v1)

R(x)
A

C

Fig. 1. A simple input pattern for which DSTM produces a commit-abort ratio of
τ = 0.5 (e.g., transaction of p2 aborts with contention manager Polite that kills the
transaction detecting the conflict)

four TM designs based on the upper-bound of their input acceptance. We vali-
date our theoretical comparison experimentally under realistic workloads.

Related Work. The question whether a set of input transactions can be accepted
without being rescheduled has already been studied by Yannakakis [4]. In con-
trast here, we especially concentrate on TMs where some operation requests must
be treated immediately for efficiency reasons. Some STMs present desirable fea-
tures that we also target in this paper. All these STMs relax a requirement
common to opacity and linearizability to accept a wider set of workloads. As far
as we know SSTM is, however, the first of these STMs that is fully decentralized
and ensure serializability. CS-STM [5] is decentralized but is not serializable.
Existing serializable STMs require either centralized parameters [6] or a global
reader table [7] to minimize the number of aborting transactions.

2 Model and Definitions

This section formalizes the notions of workload and history as TM input and
TM output, respectively. In this model, we assume that all accesses are executed
inside a transaction, each thread executes one transaction at a time, and when
a transaction aborts it must be retried later—the retried transaction is then
considered as a distinct one.

First, we formalize the workload as the TM input that contains a series of
events in some transaction t. These input events are a start request, st , an
operation call on variable x, π(x)t (either a read r(x )t / rx

t or a write w(x )t
/ wx

t ) or a commit request ct . We refer to an input pattern P of a TM as a
sequence of input events. The sequence order corresponds intuitively to the real-
time order, and for the sake of simplicity we assume that no two distinct events
occur at the same time. An input pattern is well-formed if each event π(x)t of
this pattern is preceded by a unique st and followed by a unique ct . Second, we
define TM output as the classical notion of history. This history is produced by
the TM as a result of a given input. An output event is a complete read or write
operation, a commit, or an abort. We refer to the complete read operation of
transaction t that accesses shared variable x and returns value v0, as R(x)t : v0.
Similarly, we refer to a complete write operation of t writing value v1 on variable
x as W (x, v1)t . We refer to C and A as a commit and abort, respectively.

A history H of a transactional memory is a pair 〈O,≺〉 where O is a set of
output events and ≺ is a total order defined over O. Two operations π1 and π2
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conflict if and only if (i) they are part of different transactions, (ii) they access
the same variable x, and (iii) at least one of them is a write operation.

We use regular expressions to represent the possible input patterns of a class. In
our regular expressions, parentheses, ‘(’ and ‘)’, are used to group a set of events.
The star notation, ‘∗’, indicates the Kleene closure and applies to the preceding set
of events. The complement operator, ‘¬’, indicates any event except the following
set. Finally, the choice notation, ‘|’, denotes the occurrence of either the preceding
or the following set of events. Operators are ordered by priority as ¬, ∗, |.

The commit-abort ratio, denoted by τ , is the ratio of the number of commit-
ting transactions over the total number of complete transactions (committed or
aborted). The commit-abort ratio is an important measure of “achievable con-
currency” for TM performance. In the remainder of the paper, we say that a
TM accepts an input pattern if it commits all of its transactions, i.e., τ = 1.

3 On the Input Acceptance of Existing TMs

This section identifies several TM designs and upper-bounds their input accep-
tance. All the designs considered here use contention manager Polite, i.e., a
transaction resolves a conflict by aborting itself.

VWIR Design. The first design is similar to DSTM [1] and TinySTM [8]. If a read
request is input, the TM records locally the opened read variable, thus, the set of
variables read is visible only to the current thread. Conversely, the write opera-
tions are made visible in that when a write request is input the updating transac-
tion registers itself in x .writer . The limitations of this design are shown by giving
a class of common inputs that it never accepts. For instance, the input pattern
depicted in Figure 1 may arise when concurrent operations (searches, insertions)
are executed on a linked list. All proofs are deferred to the technical report [9].

Theorem 1. There is no TM implementing VWIR that accepts any input pat-
tern of the following class: C1 = π∗(rx

i ¬c∗i wx
j ¬c∗i cj | wx

j ¬c∗j rx
i )π∗.

IWIR Design. Here, we outline a second design that accepts patterns of the
preceding class, i.e., for which the previous impossibility result does not hold.
This design, inspired by WSTM [10] and TL2 [11], uses invisible writes and
invisible reads with a lazy acquire technique that postpones effects until commit-
time, thus it is called IWIR. Even IWIR design does not accept some very
common input patterns. Assume that a transaction t2 writes a variable x and
commits after another transaction t1 reads x but before t1 commits. Because t1
has read the previous value, it fails its validation at commit-time and aborts.
Such a pattern also arises when performing concurrent operations on a linked
list. The following theorem gives a set of input patterns that are not accepted
by STMs of the IWIR design.

Theorem 2. There is no TM implementing IWIR that accepts any input pat-
tern of the following class: C2 = π∗(rx

i ¬c∗i w
x
j | wx

j ¬c∗j r
x
i )¬c∗i cjπ

∗.
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p1 p2 p3
R(x) : v0

W (x, v1)
C

W (y, v2)
C

R(y) : v2
A

TSTM←−

p1 p2 p3
r(x)

w(x)
c

s
w(y)

c
r(y)

c

SSTM−→

p1 p2 p3
R(x) : v0

W (x, v1)
C

W (y, v2)
C

R(y) : v2
C

Fig. 2. An input pattern (in the center) that TSTM does not accept as described on the
left-hand side. The commit-abort ratio obtained for TSTM is τ = 2

3 (transactions of p2
and p3 commit but transaction of p1 aborts with Polite). In contrast, the Serializable
STM presented in Section 4) accepts it (the output of SSTM, on the right-hand side,
shows a commit-abort ratio of 1).

CTR Design. The following design has, at its core, a technique that makes as
if the commit occurred earlier than the time the commit request was received.
In this sense, this design relaxes the commit time and we call it Commit-Time
Relaxation (CTR). To this end, the TM uses scalar clocks that determine the se-
rialization order of transactions. This design is inspired by the recently proposed
TSTM [7] in its single-version mode.

TSTM is claimed to achieve conflict-serializability, however, it does not accept
all possible conflict-serializations. Figure 2 (center and left-hand side) presents
an input pattern that TSTM does not accept since transactions choose their
clock depending on the last committed version of the object they access: in this
example, transactions of p2 and p3 choose the same clock and force transaction
of p1 to abort. This pattern typically happens when a long transaction t runs
concurrently with short transactions that update the variables read by t. The
following theorem generalizes this result by showing that STMs implementing
CTR design does not accept a new input class.

Theorem 3. There is no TM implementing CTR that accepts any input pattern
of the following class:

C3 = (¬wx)∗rx
i ¬c∗i wx

j ¬c∗i cj¬c∗i sk¬(ci |ck | rx
k )∗wy

k¬(ci |ck | rx
k )∗ck¬c∗i ry

i π∗.

Observe that we use the notation sk in this class definition to prevent transac-
tions tj and tk from being concurrent.

4 SSTM, an Implementation of the RTR Design

We propose a new design, the Real-Time Relaxation (RTR) design, that relaxes
the real-time order requirement. The real-time order requires that given two
transactions t1 and t2, if t1 ends before t2 starts, then t1 must be ordered before
t2. The design presented here outputs only serializable histories but does not
preserve real-time order.

SSTM, standing for Serializable STM, implements the RTR design and
presents a high input acceptance. Moreover, SSTM is conflict-serializable but
not opaque (SSTM accepts a history that is not opaque as illustrated on the
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right-hand side of Figure 2) and it avoids cascading abort, since whenever a
transaction t1 reads a value from another transaction t2, t2 has already com-
mitted [12]. Finally, SSTM is also fully decentralized, i.e., it does not use global
parameters as opposed to other serializable STMs [6,7] that may experience
congestion when scaling to large numbers of cores. Figure 1 presents the pseu-
docode of SSTM. For the sake of clarity of the presentation, we assume in the
pseudocode of the algorithm that each function is atomic and we do not specify
how shared variables are updated. We refer to T , X , V , as the sets of transaction
identifiers, variable identifiers, and variable values, respectively.

Algorithm 1. SSTM – Serializable STM

1: State of transaction t:
2: status ∈ {active, inactive}, initially active
3: read-set ⊂ X, initially ∅
4: write-set ⊂ X × V , initially ∅
5: invisible-reads ⊂ X, initially ∅
6: cr ⊂ T , initially ∅ // set of concurrent readers

7: State of variable x:
8: read-fc ⊂ T , initially ∅ // read future conflicts
9: write-fc ⊂ T , initially ∅ // write future con-

flicts
10: active-readers ⊂ T , initially ∅
11: val ∈ V , initially the default value

12: commit()t :
13: for all x ∈ read-set do
14: x .read-fc ← x .read-fc ∪ {t}
15: for all 〈x, t′〉 such that x ∈ read-set ∧ t′ ∈

x .write-fc ∨ 〈x, ∗〉 ∈ write-set ∧ t′ ∈
x .write-fc ∪ x .read-fc do

16: for all r′ ∈ t′.cr do
17: if r ′.status = inactive then
18: t′.cr ← t′.cr \ {r′}
19: if t′.cr = ∅ then
20: x .write-fc ← x .write-fc \ {t′}
21: x .read-fc ← x .read-fc \ {t′}
22: else if r′ = t then abort()
23: else cr ← cr ∪ {r′}
24: status ← inactive
25: for all 〈x, ∗〉 ∈ write-set do
26: for all r ∈ x .active-readers do
27: cr ← cr ∪ {r}
28: x .read-fc ← x .read-fc ∪ {r}
29: x .write-fc ← x .write-fc ∪ {t}
30: for all 〈x, v〉 ∈ write-set do
31: x .val ← v
32: clean()

33: write(x, v)t:
34: write-set ← (write-set \ {〈x, ∗〉})∪ {〈x, v〉}

35: read(x)t:
36: if 〈x, v′〉 ∈ write-set then
37: read-set ← read-set ∪ {x}
38: v ← v′

39: else
40: invisible-reads ← invisible-reads ∪ {x}
41: x .active-readers ← x .active-readers∪{t}
42: for all t′ in x .write-fc do
43: for all r′ ∈ t′.cr ∧r ′.status = active do
44: if r′ = t then abort()
45: else
46: cr ← cr ∪ {r′}
47: x .read-fc ← x .read-fc ∪ {t}
48: v ← x .val
49: return v

50: abort()t:
51: status ← inactive
52: clean()

53: clean()t:
54: for all y ∈ invisible-reads do
55: y.active-readers ← y.active-readers\{t}
56: for all x such that 〈x, ∗〉 ∈ write-set or

x ∈ read-set do
57: for all t′ ∈ x .write-fc ∪ x .read-fc do
58: for all r′ ∈ t′.cr do
59: if r ′.status = inactive then
60: t′.cr ← t′.cr \ {r′}
61: if t′.cr = ∅ then
62: x .write-fc ← x .write-fc \ {t′}
63: x .read-fc ← x .read-fc \ {t′}

During the execution of SSTM, a transaction records the accessed variables
locally and registers itself as a potentially future conflicting transaction in the ac-
cessed variables. These records help SSTM keeping track of all potential conflicts.
More precisely, a transaction t accessing variable x keeps track of all transactions
that may both precede it and follow it. Only transactions that read and that are
concurrent with t (namely, the concurrent readers of t) can both precede and
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follow t. This is due to invisible writes that can only be observed by other trans-
actions after commit. When detected, the preceding transactions are recorded in
t .cr (the concurrent readers of transaction t). Transaction t detects those trans-
actions either because they are in x .active-readers (Line 27) or because they
precede a transaction t′ that is in x .write-fc (the future conflicts caused by a
write access to object x) and they appear in t ′.cr (Line 23).Instead of keeping
track of the following transactions, transaction t makes sure that any transaction
detects it and all its preceding transactions t .cr by recording itself in x .write-fc
(Line 29)or x .read-fc (Lines 47 and 14).

Transaction t may abort for two reasons. First, if a read operation cannot return
a value without violating consistency (Line 44).Second, if there exists a transac-
tion that t precedes (Lines 16, 22) but that also precedes t (Line 15).Finally, the
clean function is dedicated to garbage collect by emptying the records (Lines 54–
63). A transaction t is removed from the write-fc and read-fc sets only when all
its preceding transactions have completed, i.e., their t .cr = ∅ (Lines 19–21).For
the correctness proof, please refer to the full version of this paper [9].

Theorem 4. SSTM is conflict-serializable.

¬C4

¬C2
¬C1

IWIR Design
(e.g. WSTM)

CTR Design
(e.g. TSTM)

RTR Design
(e.g. SSTM)

¬C3

VWIR Design
(e.g. DSTM)

Fig. 3. Comparing the input acceptance of the TM designs. The VWIR design accepts
no input patterns of the presented classes, the IWIR design accepts inputs that are
neither in C1 nor in C2, and the CTR design accepts input patterns only outside
C3. Finally, we have not yet identified single-version patterns not accepted by design
RTR.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20  30  40  50  60  70  80

C
om

m
it-

ab
or

t r
at

io

Update probability (%)

VWIR
IWIR
CTR
RTR

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1  2  3  4  5  6  7  8

C
om

m
it-

ab
or

t r
at

io

Number of threads

VWIR
IWIR
CTR
RTR

Fig. 4. Comparison of average commit-abort ratio of the various designs on a 256
element linked list: (left) with 8 threads as a function of the update probability; (right)
with a 20% update probability as a function of the number of threads. As expected,
the distinct commit-abort ratios follow the input acceptances but, interestingly, RTR
presents a much better commit-abort ratio than other designs. Note that its heavy
mechanism may produce an overhead compared to other designs.
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5 Class Comparison and Experimental Validation

The previous section gives some impossibility results on the input acceptance by
identifying input classes. Here, we use this classification to compare input ac-
ceptance of TM designs. Let C4 be the class of all possible input patterns. Given
the input acceptance upper bound, we are able to draw the input acceptance of
VWIR, IWIR, CTR, and RTR designs restricted to patterns that are in ¬C1,
¬C2, ¬C3, and ¬C4, respectively. The hierarchy shown in Figure 3 compares the
input acceptance of these TM designs.

To validate experimentally the tightness of our bounds on the input accep-
tance of our TM designs, we have implemented and tested all these designs:
VWIR, IWIR, CTR, and RTR on an 8-core Intel Xeon machine using a sorted
linked list benchmark. Results are depicted on Figure 4.

6 Conclusion

We upper-bounded the input acceptance of well-known TM designs and we pro-
posed a new TM design with a higher acceptance. Our conclusion is that ac-
cepting various workloads requires complex TM mechanisms to test the input
and to possibly reschedule it before outputting a consistent history. We expect
this result to encourage further research on the best tradeoff between design
simplicity and high input acceptance.
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Abstract. In this work we present an abstraction that allows a set of
distributed processes, aware of their respective positions in space, to
collectively maintain information associated with an area in the physical
world. This abstraction is a logical object shared between participating
processes that provides two operations, namely read and write.

1 Introduction

Motivation. The advent of massively distributed pervasive systems in which every
user carries a powerful computing device with communication and positioning ca-
pabilities, allows us to envision many new intrinsically decentralized applications
and services that are tightly coupled to the position of entities. Two main issues
arise when trying to deal with such dynamic and location-aware systems:

– new features of such systems are not represented in traditional distributed
models, namely their dynamics and locality, and more specifically the geo-
graphical distribution of entities,

– the evolvable nature of such systems imposes that any mechanism built for
them must be resilient to mobility- and failure-induced changes in the com-
position and/or topology of the system.

Our research efforts are focussed on providing suitable abstractions to reason
about mobile, large-scale and geographically-aware systems. More specifically, in
this paper, we introduce a software abstraction, called a geo-register, that can be
used to associate some values to a geographic location. Unlike traditional failure
mode assumptions, such as process crashes or byzantine behaviors, we solely
consider movement as the only source of uncertainty in the system. The paper
provides the specification for a serial writes and concurrent reads geo-register.
A distributed algorithm implementing this specification is provided.

Related Work. Shared storage objects are very attractive abstractions that can
be used for indirect process communication and that simplify the development
of applications. In mobile environments, a few solutions have been proposed to
� The full version of this work is available as a research report [4]. This work is partially

funded by FP6 NoE ReSIST, contract nr. 026764.
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implement such shared objects. In [1,3], atomic memory implementations for
mobile ad hoc networks are presented. Both approaches differ from the one
presented in this paper because their aim is to build a register maintained by a
set of geographic regions while our aim is to build a register in a given geographic
region. While previous works focus on using geographic dispersion of nodes to
tolerate failures, we are interested in the orthogonal problem of defining a shared
storage in an area, in isolation of the remainder of the system.

2 Architecture and Model

Formal system model. The system is composed of entities (pi)i=1,2,... of an infi-
nite set Π that evolve in a 2-dimensional space, or geographic space. The entities
are correct, i.e., execute correctly and do not crash, and anonymous, i.e., execute
the same algorithm and do not own a unique identifier.

All entities are equipped with a positioning device and wireless network capa-
bilities. The entities are aware of their position at all times with infinite precision.
They can move in the space continuously with a bounded maximal speed Vmax.

An area A is a geographic surface, i.e., a continuous subset of the space. At
every instant t, let activeA(t) be the set of processes in A. Since processes are
correct and move continuously, activeA(.) evolves only by additions or removals
of entities. The area A is valid if ∀t, activeA(t) is a clique w.r.t. communication
capabilities, i.e., any two processes in the set can communicate.

Execution Model. To simplify reasoning, in the following we will refer to the
starting and the ending of a given operation Op using two operators, Begin(Op)
and End(Op). By definition, Begin(Op) corresponds to the time, as perceived
by an external observer, at which the caller pi invokes Op, and End(Op) is
defined by the end of the operation Op from the system’s point of view, i.e.,
the time at which the last action of the Op invocation protocol terminates. Two
operations Op1 and Op2 in an execution are non-concurrent if

(
(End(Op1) <

Begin(Op2)) ∨ (End(Op2) < Begin(Op1)
)
, else Op1 and Op2 are concurrent.

Geo-Reliable Broadcast. To abstract away physical parameters of the system, we
suppose that the system is equipped with a geo-reliable broadcast. A geo-reliable
broadcast is a communication primitive that guarantees that all processes located
in an area A receive messages broadcasted to that area. From an implementa-
tion point of view, this primitive is built on top of wireless communication and
positioning capabilities.

Definition 1 ((δ, A)−geo-reliable broadcast). Let δ be a positive number
and A be an area. A (δ, A)−geo-reliable broadcast enjoys the following properties:
– every process p ∈ A can issue a broadcast(m)
– if m is a message broadcasted at time t by a correct process p that is in the

area A from time t to time t + δ, then all correct processes remaining in A
between t and t + δ deliver m by time t + δ.



536 M. Roy et al.

This definition is relatively weak, since it does not take into account the processes
that may enter or leave the area during the broadcast, and only focuses on
processes that stay in the area for the whole duration of a broadcast.

Definition 2 (Core region). Let A be a valid area equipped with a (δ, A)−geo-
reliable broadcast. A core region A′ associated with A is a subset of A such that
every message m sent at time t by any process p in A′ using (δ, A)−geo-reliable
broadcast will be delivered by every process q that was in A′ at time t.

Notice that this definition abstracts away some physical parameters of the sys-
tem. In particular, the definition implies that a process that is in A′ at time t is
guaranteed to be in A at time t + δ.

3 Non Concurrent Write Geo-registers

A geo-register is the abstraction of a storage mechanism attached to a particular
area, that can be used to collectively store and retrieve pieces of information.

Intuitively, a geo-register implements a temporally-ordered sequence of (tra-
ditional) registers. Every element of the sequence corresponds to a temporal
interval where entities populate the area. As soon as the area becomes empty,
the state of the storage is lost, and when entities reenter the area, a new instance
has to be created.

Inspired by the seminal paper of Lamport [2], we provide a specification of a
non-concurrent regular register. More complex semantics, like multi-writer ones,
are explored in [4].

The semantics of a non concurrent write geo-register1 is defined with respect
to 1) the most recently completed write operation and 2) the write operations
possibly concurrent with a read operation, that can be defined as follows:

Definition 3. Let Op be an operation performed on the register. The most re-
cently completed write operation before Op is by definition WOp such that

End(WOp) = max{End(Wx) : End(Wx) < Begin(Op)}

Definition 4. Let R be a read operation, and WR the most recently completed
write operation before R. Let CW be the set of write operations that are concur-
rent with R, and V the set of values written by operations in CW ∪ {WR}. V is
the set of possible outcomes of the read operation R.

Definition 5 (geo-register). Let A be an area, and A′ an associated core re-
gion. A geo-register for (A, A′) provides read and write operations such that:
– a read operation can be issued at time t by processes in activeA(t)
– a write operation can be issued at time t by processes in activeA′(t)
– Let a read operation R be issued by a process in activeA(Begin(R)). Let WR

be the most recently completed write operation before R and V be the set of
possible outcomes of R. The value returned by R satisfies:

1 Notice that non concurrent write implies that, whenever multiple processes call write
operations, no two write operations occur concurrently.
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Geographically controlled thread:
when p enters A:

Rp ← void;
wait for

� (W (x) is received) : Rp ← x; exit;
� (2δ time delay elapsed)

RB send(REQ)
wait for

� (REP (v) is received) : Rp ← v;
� (W (x) is received) : Rp ← x;
� (2δ time delay elapsed) : Rp ← ⊥;

when p leaves A:
free(Rp);

Communication controlled thread:
upon reception of (REQ) : if (Rp 
= void)

then RB send(REP (Rp))
upon reception of (W (x)) : Rp ← x

Read and Write operations:
When p is in A:
read() : wait until (Rp 
= void)

return(Rp)

When p is in A′:
write(x) : RB send(W (x))

Fig. 1. Implementation

(Partial Amnesia): if, since End(WR), there exists an instant t such that
activeA′(t) = ∅, it returns either a value in V or ⊥.
(Safety) if activeA′ has never been empty from End(WR) to Begin(R), it re-
turns a value in V .

Implementation for 1-hop Communication. We provide an implementation for
the simple one-hop broadcast-based system. In this solution, the parameter δ is
a known period of time fixed by the geo-reliable-broadcast primitive from lower
parameters; it abstracts the implementation details of the primitive that may
include more than one broadcast due to message collisions. The proof is omitted
and can be found in [4].

4 Conclusion

In this paper we provided the specification and a simple implementation of a geo-
localized storage service for mobile systems. Unlike other similar work, we are
interested in providing a local-only abstraction that can be used by applications
that require information to be stored only when entities populate the area. Future
research directions include the introduction of process failures, and the possibility
of providing stronger semantics such as write concurrency.
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Abstract. We use Colored Petri Nets (CPNs) for the modeling and
performance analysis of grid architectures. We define a strategy for the
optimization of grid storage usage, based on the addition of data removal
tasks to grid workflows. We evaluate the strategy by simulating our CPN
model of the grid. Experiments show that the strategy significantly re-
duces the amount of storage space needed to execute a grid application.

1 Introduction

Grid computing has emerged as a powerful platform for executing data and com-
putation intensive applications. Several grid architectures have been proposed to
orchestrate available resources (e.g. [1,5,2]). However, as the complexity of grid
applications continuously increases, there is always a need for new solutions.
These solutions are typically first evaluated on a simulation model. In this paper
we propose Colored Petri Nets (CPNs) [6] for the modeling and simulation of
grid architectures.

Grid simulation has been an active area of research for quite some time, and
several grid simulators have been developed [7,4]. There are, however, several
advantages in using CPNs for this purpose: 1) CPNs are graphical, hierarchical,
modular, and have a formal semantics1. They are executable and thus can model
the dynamics of the grid as well. 2) CPNs are supported by CPN tools [6], a
powerful framework for modeling, verification and performance analysis. 3) Petri
nets have been extensively used for many years to model and analyze concurrent
systems. Simple reuse of ideas makes grid modeling a relatively easy task. 4)
Most grid workflow languages can be easily converted to Petri nets.

The grid architecture we model is reasonably generic, suitable for executing
grid applications that are computationally intensive and manipulate (large) data.
It can be seen as a computational grid in which data also plays an important role.
We believe that our model covers all relevant aspects with enough detail, and that
it can be used to discover trends that remain valid in more complex settings.

Every task in a grid workflow typically specifies the set of its input data
files and the data that it generates. We frequently see cases where some data is
1 The last feature is very relevant and directly used in this work.
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only used at one region of a workflow. This data, although not needed after a
certain point in time, stays on the grid until the complete workflow is finished.
In an environment with reliable resources this is a waste of storage space and an
optimization strategy is needed. In this paper we propose one such strategy, in
form of a method that inserts data clean-up tasks to a workflow, at the points
from which no further tasks access this data. We perform simulations on our CPN
model of the grid, and show that the amount of storage space an application uses
during execution is indeed significantly reduced when our strategy is applied.2

2 Modeling Grid Architectures

Our grid architecture consists of three layers. On the top is the application layer,
a workflow environment in which the users describe their applications. On the
bottom is the fabric layer consisting of grid nodes connected in a network. In
between is the middleware layer, responsible for the allocation of resources and
data handling.

Fig. 1 shows the CPN module of the scheduling system. The module illustrates
the complexity of, and the level of detail covered by, our CPN model. It also
shows the descriptive power of CPNs, as only basic knowledge of Petri nets is
needed to understand how the scheduler works.
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Fig. 1. CPN model of the scheduler

3 Data Removal Strategy

Our optimization strategy is based on the insertion of data clean-up tasks at
the points from which this data is no longer needed. Since data elements can be
(re)used in loops, in parallel or in alternative branches, the main challenge is to
identify these points. However, Petri nets provide ways to achieve this easily. We
present the method on the basis of an example.
2 This short paper presents the main ideas only; full details are given in [8].
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Fig. 2. Data clean-up tasks added to a workflow

Table 1. Percentage of storage space freed

Fig. 2 shows a (sound3) grid workflow (ignore the gray elements for the mo-
ment), where a, b, c, and d are data elements shared among the tasks. Our
method introduces a clean-up task for each element, with one guard place to
ensure that the removal request is issued only once. These additions are illus-
trated in gray color in Fig. 2. The element c is thus deleted when there is a
token in place p5 and a token in place p6. The element d is deleted when there
is a token in p8 or a token in p9. While a can be deleted immediately after
the first task, b can only be deleted at the end, as it can be used in the loop
between p8 and p9.

We evaluate the strategy by means of simulation, using our CPN model. The
testbed consists of nine grid nodes, fully connected in a homogeneous network.
The input workflow is fixed, but investigated for the case-arrival rates ranging
from 1/175 to 1/125. We use periodic Min-Min scheduling with the period varied
from 0 to 100.

The results in Table 1 show the percentage of storage space that becomes
available when the strategy is applied. The improvement is greater for longer
scheduling periods and for higher arrival rates. This is expected, as longer periods
enable more effective prioritization of removal tasks, and more cases result in
longer unnecessary space occupation.

3 Soundness property [3] is a sanity check for workflows. It ensures that the workflow
can always complete, and that it has no dead transitions.
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4 Conclusion

We modeled a grid architecture in terms of Colored Petri Nets. The model is
formal, graphical and executable, offering an unambiguous view of how different
parts of the grid are structured and how they interact. The model is suitable for
performance analysis, it is fully adaptable and extendible.

To solve the problem of data occupying the grid storage space unnecessarily
long, we introduced a method for the addition of data clean-up tasks to grid
workflows. We evaluated this method by conducting a simulation experiment
using our CPN model of the grid. The results showed that the required storage
space could be reduced by as far as 80%.
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Abstract. We present a file search algorithm that is not only Sybil-
resilient, but also load-balanced among users. We evaluate our algorithm
in terms of bandwidth consumption and the likelihood of bad downloads.
In both metrics, our algorithms show balanced overhead among users and
small chances of bad download with low bandwidth consumption.

Keywords: File sharing, peer-to-peer networks, Sybil attack, load
balancing.

1 Introduction

Peer-to-peer (P2P) networks amount to a large portion of the Internet traffic,
and file sharing, the most popular P2P application, accounts for the most traf-
fic in this portion. iPoque reports that 49 to 83% of the Internet traffic in five
world-wide regions in August and September 2007 is P2P, and most of them are
file sharing applications like eDonkey and BitTorrent [1]. Thus it is important for
a P2P file sharing application to be efficient in bandwidth consumption. Band-
width consumption in file downloads is inevitable, but those in file search and
bad downloads, e.g. wrong, corrupted or malicious file downloads, are overheads.
In this paper, we target to reduce these overheads while resisting Sybil attacks
and ensuring balanced loads among users.

There are two common problems in P2P file search. First, it is difficult to
decide which uploader (the user who has the requested file and is willing to share
with other users) is more trustworthy than others. P2P users may share their
experiences and use reputation systems, e.g. EigenTrust [2]. However, reputation
systems often fail under the second problem: Sybil attack [3]. In most distributed
systems, including P2P networks, a malicious user may create a large number of
identities (Sybil nodes) to unfairly influence the reputation system. There have
been efforts to prevent Sybil attacks using social networks, e.g. SybilGuard [4],
but these efforts often put unfairly large loads on high-degree nodes. In P2P
networks, it is unlikely that any user will make such sacrifice to serve other
users.
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In this paper, we present new file search algorithm LBSR which stands for
Load-Balanced and Sybil-Resilient. We evaluate our algorithms in terms of band-
width consumption and inauthentic downloads. In both metrics, the LBSR al-
gorithm shows better balanced load among peers and low chances of inauthentic
download with much less network consumption.

2 LBSR File Search Algorithm

Algorithm 1. LBSR file search algorithm for peer i

1. Ni: a set of peer i’s neighbors, Tfwd: forwarding threshold
2. dij : degree of neighbor j in peer i’s view, where j ∈ Ni

3. if TTL(q) = 0 or requested file found then
4. return { }if the requested file is found, notify the issuer of q
5. else
6. sum:=0, TTL(q):=TTL(q)-1
7. while sum < Tfwd do
8. select a random neighbor j from |Ni| based on the probability pj = 1

dij
α

9. forward q to neighbor j
10. sum = sum + dij

11. end while
12. end if

Our intuition for the LBSR algorithm is straightforward from our goals: load
balancing from distributing the search queries among all the nodes and Sybil-
resilience comes from forwarding search queries over the social network. These
two straightforward intuitions are hard to combine into one algorithm. Social
networks tend to have skewed distribution of degrees, and efficient file search al-
gorithms based on forwarding tend to stress high degree nodes. In result, efficient
search and load balancing are at odds.

We use a combination of probabilistic selection and a weighted sum. Peer i’s
chances of forwarding requests to neighbor j is proportional to the inverse of the
degree of j with discount factor α. When α = 1, LBSR highly favors low-degree
nodes and slows down the search. When α = 0, then the all the neighbors of peer
i will have the same probability, which becomes the random algorithm presented
in Section 3. In Section 3, α = 0.5. Peer i also repeats forwarding until the sum
of the selected neighbors’ degrees reaches Tfwd. This way i may replicate the
query for more times when i happens to forward to low-degree neighbors. In
Section 3, Tfwd = 50.

3 Experimental Results

We implemented the LBSR algorithm in the Query-Cycle Simulator [5] used
in EigenTrust [2]. Our experiment setting followed those in [2]: the network
consists of 62 good peers and 40 malicious peers. Each simulation consists of 150
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cycles. The specific settings for our experiments include the new attack model
where malicious peers respond to every query they receive with a fake file. We
ran each setting for five times and averaged the results.

We have experimented with four other algorithms that operate on social net-
works for comparison. In “proportional” algorithm, the forwarding probability
is proportional to the degree of neighbors. This algorithm finds the target file
fast, but has more load imbalance and less Sybil-resilience. In “random” algo-
rithm, the forwarding probability is based on uniform distribution. The random
algorithm achieves better load balancing but also suffers from higher chances of
inauthentic downloads. EigenTrust [2] is a reputation system wherein each peer
is assigned a unique global trust value that reflects the experiences of all peers in
the network uploaded to or downloaded from this peer. In SybilGuard [4], each
node stores random routes in social networks. The intersecting peer of those
random routes vouch for the social relationships from the intersecting peer to
both peers. In our simulation, peers only download from uploaders with more
intersecting nodes than the threshold.

3.1 Sybil Resilience

Fig. 1(a) depicts the fraction of good downloads with varying malicious peer ratio.
EigenTrust and SybilGuard achieve almost 100% of good downloads, while LBSR
95% in average, 90% even in the presence of 70% malicious peers. This result is
more interesting compared to the bandwidth consumption in Fig. 1(b) where the
LBSR algorithm consumes only 10 to 20% of EigenTrust or SybilGuard.

3.2 Load Balancing in Bandwidth Consumption

We show the load balancing comparison in Fig. 2. With each algorithm, we
collected the network bandwidth for each peer and computed the share of its
load over all the participants. Peers with spikes in other algorithms are high-
degree nodes, while LBSR shows not as high spikes.

(a) Ratio of good downloads for each
requested file

(b) Forwarded bytes compared to broad-
cast

Fig. 1. Sybil resilience in terms of download quality
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Fig. 2. Load balancing in bandwidth (We sampled every 5th node in the increasing
order of degree. The degree of each node is displayed in the inner figure.)

4 Future Work and Conclusion

P2P networks consume a major part of the Internet bandwidth, and most
consumption comes from file sharing applications. Our LBSR algorithm shows
low inauthentic download rates with low and balanced bandwidth consumption
among peers. As future work, we plan to incorporate reputation system into
forwarding probability computation for better inauthentic download rate.
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Abstract. The process number is the minimum number of requests that
have to be simultaneously disturbed during a routing reconfiguration
phase of a connection oriented network. From a graph theory point of
view, it is similar to the node search number, and thus to the path-
width, however they are not always equal. In general determining these
parameters is NP-complete.

We present a distributed algorithm to compute these parameters and
the edge search number, in trees. It can be executed in an asynchronous
environment, requires n steps, an overall computation time of O(n log n),
and n messages of size log3 n + 2. Then, we propose a distributed algo-
rithm to update these parameters on each component of a forest after ad-
dition or deletion of any tree edge. This second algorithm requires O(D)
steps, an overall computation time of O(D log n), and O(D) messages of
size log3 n+3, where D is the diameter of the new connected component.

Keywords: Pathwidth, process number, distributed algorithm.

1 Introduction

Treewidth and pathwidth have been introduced by Robertson and Seymour [1] as
part of the graph minor project. Those parameters are very important since many
problems can be solved in polynomial time for graphs with bounded treewidth or
pathwidth. By definition, the treewidth of a tree is one, but its pathwidth might
be up to log n. A linear time centralized algorithms to compute the pathwidth
of a tree has been proposed in [2,3,4], but so far no distributed algorithm exists.

The algorithmic counter part of the notion of pathwidth (denoted pw) is the
cops and robber game [5,6,7]. It consists in finding an invisible and fast fugitive in
a graph using the smallest set of agents. The minimum number of agents needed
gives the node search number (denoted ns). Other graph invariants closely related
to the notion of pathwidth have been proposed such as the process number [8,9]
(denoted pn) and the edge search number [10] (denoted es). Their determination
is in general NP-complete [5].

In this paper, we describe in Sec. 2 the motivation of the problem from a network
reconfiguration problem point of view. In Sec. 3, we propose a fully distributed
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(a) Initial routing of (1,6),
(1,3) and (5,6)
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(b) Removal of (1,6) and
addition of (1,4)
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(c) Solution with (1,3),
(1,4), (3,6) and (5,6)

Fig. 1. Starting from the routing of Fig. 1(a), the removal of request (1,6) and addition
of request (1,4) gives the routing of Fig. 1(b). Request (3,6) can not be added in
Fig. 1(b), although the routing of Fig. 1(c) is possible.

algorithm to compute the process number of trees, which can be executed in an
asynchronous environment. Furthermore, with a small increase in the amount of
transmitted information, we extend our algorithm to a fully dynamic algorithm
allowing to add and remove edges even if the total size of the tree is unknown.

2 Motivation and Modeling

The process number of a (di)graph has been introduced to model a routing
reconfiguration problem in connection oriented networks such as WDM, MPLS
or wireless backbone networks [8,9]. In such networks, and starting from an
optimal routing of a set requests, the routing of a new connection request can be
done greedily using available resources (e.g. capacity, wavelengths) thus avoiding
to reroute existing connections. Some resources might also be released after
the termination of some requests. In fine, such traffic variations may lead to a
poor usage of resources with eventual rejection of new connections. For example,
in Fig. 1 where the network is a 6 nodes path with two wavelengths, a new
connection request from 3 to 6 would be rejected in Fig. 1(b) although the
routing of Fig. 1(c) is possible. To optimize the number of granted requests, the
routing has to be reconfigured regularly.

In this context, routing reconfiguration problem consists in going from a rout-
ing, R1, to another, R2, by switching requests one by one from the original to
the destination route. This yield to a scheduling problem. Indeed, resources as-
signed to request r in R2 might be used by some request r′ in R1 might, thus
request r′ has to be rerouted before r. We represent these constraints by a di-
graph D = (V, A) in which each node corresponds to a request, and there is an
arc from vertex u to vertex v if v must be rerouted before u. When the digraph
D is acyclic, the scheduling is straightforward, but in general, it contains cycles.
To break them, some requests have to be temporarily interrupted, thus removing
incident arcs in D, and so, the optimization problem is to find a scheduling min-
imizing the number of requests simultaneously interrupted. When the digraph
is symmetric, the problem can be solved on the underlying undirected graph G,
and we will restrict our study to this case in the following.

As for the pathwidth, our problem can be expressed as a cops and robber
game. An interruption is represented by placing an agent on the corresponding
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node in G, a node is said processed when the corresponding request has been
rerouted, and we call a process strategy a series of the three following actions
allowing to reroute all requests with respect to the constraints represented by
the graph.

(1) put an agent on a node (interrupt a connection).
(2) remove an agent from a node if all its neighbors are either processed or

occupied by an agent (release a connection to its final route when destination
resources are available). The node is now processed (connection has been
rerouted).

(3) process a node if all its neighbors are occupied by an agent.

A p-process strategy is a strategy which process the graph using p agents and the
process number, pn(G), is the smallest p such that a p-process strategy exists.
For example, a star has process number 1, a path of more than 4 nodes has
process number 2, a cycle of size 5 or more has process number 3, and a n × n
grid, n ≥ 3, has process number n+1. Moreover, it has been proved in [8,9] that
pw(G) ≤ pn(G) ≤ pw(G) + 1, where pw(G) is the pathwidth of G [1], and that
determining the process number is in general NP-complete.

The node search number [5], ns(G), can be defined similarly except that we
only use rules (1) and (2). It was proved by Ellis et al. [2] that ns(G) = pw(G)+1,
and by Kinnersley [11] that pw(G) = vs(G), where vs(G) is the vertex separa-
tion of G. Those results show that vertex separation, node search number and
pathwidth are equivalent, but so far it is not known when equivalence also holds
with the process number.

3 Distributed Algorithms

We propose an algorithm, algoHD, to compute the process number of a tree
with an overall of O(n log n) operations. The principle of algoHD is to perform
a hierarchical decomposition of the tree. Each node u of degree d(u) collects
a compact view of the subtree rooted at each of its sons (d(u) − 1 neighbors),
computes a compact view of the subtree it forms and sends it to its father
(last neighbor), thus constructing a hierarchical decomposition. The algorithm
is initialized at the leaves, and the node receiving messages from all its neighbors
(the root) concludes on the process number of the tree. Notice that our algorithm
is fully distributed and that it can be executed in an asynchronous environment
assuming that each node knows its neighbors.

The message sent by a node v to its father v0 describes the structure of the
subtree Tv rooted at v, that is the connected component of T minus the edge vv0
containing v. More precisely, the message describes a decomposition of Tv into
a set of smaller disjoint trees, each of them being indexed by its root. See [12]
for more details.

Lemma 1. Given a n-nodes tree T , algoHD computes pn(T) in n steps and
overall O(n log n) operations, sending n messages each of size log3 n + 2.
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We propose a dynamic algorithm that allows to compute the process number of
the tree resulting of the addition of an edge between two trees. It also allows
to delete any edge. To do it efficiently, it uses one of the main advantage of the
hierarchical decomposition: the possibility to change the root of the tree without
additional information.

Lemma 2. Given two trees Ti = (Vi, Ei) rooted at ri ∈ Vi, i = 1, 2, its hierarchi-
cal decompositions, and r′i ∈ Vi, we can compute the hierarchical decomposition
of T = (V1 ∪ V2, E1 ∪E2 ∩ (r′1, r

′
2)), and so compute its process number in O(D)

steps of time complexity O(log n) each, using O(D) messages of size log n + 3
(D is the diameter of T ).

The best and worst cases of the incremental algorithm (IncHD) are:

– Worst case: T consists of two subtrees of size n/3 and process number
log3 n/3 linked via a path of length n/3. Edges are inserted alternatively
in each opposite subtrees. Thus IncHD requires an overall of O(n2 log n) op-
erations.

– Best case: edges are inserted in the order induced by algoHD (inverse order
of a breadth first search). IncHD needs an overall of O(n log n) operations.

4 Conclusion

In this paper we have proposed a distributed algorithm to compute the process
number of a tree, as well as the node and edge search numbers, changing only the
values of the initial cases of our algorithm. Then, we have proposed a dynamic
algorithm to update these invariants after addition or deletion of any tree edge.
Finally we have adapted the algorithm to compute the process number of a tree
if its size is unknown and we have characterized the trees for which the process
number (resp. edge search number) equals the pathwidth [12]. A challenging task
is to characterize other classes of graphs where equality holds or to prove it is
NP-hard to decide it in the general case.
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Abstract. The continued exponential increase in stored data as well
as the high demand for I/O performance is imposing high pressure on
the scalability properties of storage environments. The resulting number
of disk drives in huge environments does not only lead to management,
but also to reliability problems. The foundations of scalable and reliable
storage systems are data distribution algorithms, which are able to scale
performance and capacity based on the number of disk drives and which
are able to efficiently support multi-error correcting codes. In this paper,
we propose data distribution strategies, which are competitive concerning
the number of data movements required to optimally adapt to a changing
number of heterogeneous disk drives under these constraints.

1 Introduction

The ability to scale storage environments from a small number of hard disks up
to hundreds or even thousands of disks requires the ability to adapt the under-
lying data distribution and error-correcting codes to new infrastructures. Not
adapting the data layout would lead to a segmentation of the data. A promis-
ing approach to scale storage environments without sacrificing performance is
the use of pseudo-randomized hash functions, which are able to adapt the data
layout with nearly minimum overhead [4] [2]. In case of pseudo-random hash
functions, the address of each block of a virtual disk has to be mapped to a
physical disk. The mapping to a sector number on that physical disk has to be
performed by a second instance, which can either be integrated into the physical
disk (e.g. in case of object based storage devices) or can be part of a volume
management solution. However, storing just a single copy is not sufficient to en-
sure data reliability. A simple alternative is to use Consistent Hashing to store
multiple copies of each data block or to use it to assign the data to a disk cluster
[3]. The error correcting code can then be mapped on top of this pseudo-random
hash functions. Nevertheless, these simple approaches are not able to efficiently
use the available storage capacity.
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1.1 The Model

The applied model is based on an extension of the standard balls into bins model.
Let {0, . . . , (m− 1)} be the set of all identifiers for the balls and {0, . . . , (n− 1)}
be the set of identifiers for the bins. We will often assume for simplicity that the
balls and bins are numbered in a consecutive way starting with 0. Furthermore,
we will use the terms bins and disks interchangeable inside this paper.

Suppose that bin i with a unique identifier bi can store up to capi (copies of)
balls. In some cases, we will use the name bi of a bin and i interchangeable. We
define the relative capacity of the bin as ci = capi/

∑n−1
j=0 capj . We require that

for every ball k copies have to be stored in the system for some fixed k and that
all copies of a ball have to be stored in different bins. In this case, a trivial upper
bound for the number of balls the system can store while preserving fairness and
redundancy is

∑n
j=1 capj/k, but it can be much less in certain cases [1].

A placement strategy will be called c-competitive concerning the insertion or
removal of a bin, if it induces the (re-)placement of (an expected number of)
at most c times the number of copies an optimal strategy would need for this
operation. The redistribution of balls is necessary to ensure an even distribu-
tion of requests among the bins. To bound the competitiveness of the proposed
algorithm, we will introduce the notion of an (α, β)-restricted environment:

Definition 1. Inside an (α, β)-restricted environment it holds for all bins i with
0 ≤ i ≤ (n − 1) that 1

α·n ≤ ci ≤ β
n for arbitrary α, β ∈ R+ ≥ 1.

The definition of an (α, β)-restricted environment will help us to characterize
the homogeneity of a set of bins and to provide bounds depending on this ho-
mogeneity.

1.2 Related Work

Data reliability is mostly achieved by using RAID encoding schemes, which di-
vide data blocks into specially encoded sub-blocks that are placed on different
disks [6]. RAID encoding schemes are normally implemented by striping data
blocks according to a pre-calculated pattern across all the available storage de-
vices, achieving a nearly optimal performance in small environments.

In the following, we just focus on randomized data placement strategies which
are able to cope with dynamic changes of the capacities or the set of storage
devices (or bins) in the system. Good strategies are known for uniform capacities
without replication. In this case, it only remains to cope with situations in which
bins enter or leave the system [4].

Adaptive data placement schemes that are able to cope with arbitrary het-
erogeneous capacities have been introduced in [2]. First methods with dedi-
cated support for replication are described in [3][7]. The proposed Rush-strategy
maps replicated objects to a scalable collection of storage servers according to
user-specified server weighting. Brinkmann et al. have shown that the known
approaches for data replication are not sufficient to ensure capacity and per-
formance efficiency in heterogeneous storage environments [1]. The proposed
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Redundant Share strategy is the first strategy that is able to support replication
inside dynamic environments for a heterogeneous set of disks without sacrific-
ing storage capacity. The drawback of Redundant Share is a competitiveness for
the insertion or removal of a disk drive that is not independent of the replica-
tion degree k and the number of bins n. A first strategy with a competitiveness
independent of the number of copies k and the number of bins n is Spread [5].

1.3 Contributions of This Paper

Inside this paper, we propose new data distribution strategies for cluster storage
environments. The strategies are based on a combination of Redundant Share
with the Share strategy proposed in [2] that is able to overcome the restrictions
of Redundant Share. The new strategy has a competitiveness of O(1) compared
to an optimal algorithm, if the capacity difference of the disks can be bounded
by an arbitrary constant. If this difference can not be bounded, the strategy
still has a competitiveness of at most O(ln n) for all operations and of O(1) for
many important operations. The main idea of this new strategy is to reduce the
problem of distributing copies over a set of heterogeneous disks with different
capacities to the problem of distributing copies over a set of homogeneous disks,
where each disk has the same capacity. Compared to previous strategies, both
implementation and analysis of the new strategies are much simpler [5].

2 Algorithmic Approach and Analysis Sketch

The algorithmic idea of the proposed redundant data placement strategy for het-
erogeneous bins is to combine one strategy that is able to reduce the problem of
distributing balls over a set of heterogeneous bins to the problem of distributing
them over a set of homogeneous bins and one strategy that is able to efficiently
replicate data over this set of homogeneous bins.

For reducing the problem of heterogeneous bins to homogeneous bins, we have
selected the Share-strategy [2]. For distributing copies of a ball over a homoge-
neous set of bins, we have chosen the Redundant Share-strategy [1]. Redundant
Share in its original form has some drawbacks, e.g. it is not able to adjust the
capacities of some of the bins without an unacceptable overhead concerning the
replacement of data blocks. Redundant Share over Share works very similar to
the original version of Share. The only difference is that Share calls Redundant
Share as sub-function to distribute the k balls instead of calling a uniform data
distribution strategy for a single ball.

Inside this section, we will shortly cover the most important aspects of Redun-
dant Share as well as for Redundant Share over Share. We will start by showing
some matching bounds for Redundant Share for homogeneous bins:

Theorem 1. The lower bound for the competitiveness as well as the expected
competitiveness of Redundant Share for inserting new, homogeneous bins for a
k-replication scheme is 1/2 · (k + 1) and it is ln n-competitive concerning the
insertion or removal of arbitrary bins.
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In any case, Redundant Share keeps the ordering of the copies. This ordering is
important, if each copy of a ball has a different meaning. We will show in the
following theorem that Redundant Share is even 1-competitive concerning the
insertion of a new bin in this setting for homogeneous bins.

Theorem 2. Redundant Share is 1-competitive concerning the insertion of a
new homogeneous bin, if the ordering of copies can be changed.

For the combined strategy of Redundant Share over Share to work correctly, we
require that every point x ∈ [0, 1) is covered by at least k intervals Ii w.h.p.
from different bins. This is the case for a stretch factor s ≥ 5 · k · ln n. In the
next theorem we will show that the combination of Share and Redundant Share
has a constant competitive ratio for arbitrary n.

Theorem 3. Share in combination with Redundant Share is O(1)-competitive
concerning the insertion and deletion of bins for (α, β)-restricted environments.

We will show in the following theorem that Redundant Share over Share is highly
competitive concerning the insertion of a new biggest bin for non-restricted en-
vironments.

Theorem 4. Redundant Share over Share is in the expected case 1+ln n
2

-competitive for the insertion of a biggest bin.
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Abstract. This paper presents an asynchronous implementation of a
failure detector for unknown and mobile networks. Our approach does
not rely on timers. Neither the composition nor the number of nodes in
the system are known. Our algorithm can implement failure detectors
of class ♦S when behavioral properties and connectivity conditions are
satisfied by the underlying system.

1 Introduction

Unreliable failure detector, namely FD, is a fundamental service, able to help in
the development of fault-tolerant distributed systems. FD can informally be seen
as a per process oracle, which periodically provides a list of processes suspected
of having crashed. In this paper, we are interested in the class of FD denoted ♦S
[1]. They ensure that (i) eventually each crashed process is suspected by every
correct process (strong completeness), and (ii) there is a time after which some
correct processes are never suspected (eventual weak accuracy).

We propose a new asynchronous FD algorithm for dynamic systems of mobile
and unknown networks. It does not rely on timers to detect failures and no
knowledge about the system composition nor its cardinality are required. The
basic principle of our FD is the flooding of failure suspicion information over the
network. Initially, each node only knows itself. Then, it periodically exchanges
a query-response [2] pair of messages with its neighbors. Based only on the
reception of these messages and on the partial knowledge about its neighborhood,
a node is able to suspect other processes or revoke a suspicion in the system.
A proof that our implementation provides a FD of class ♦S is available at the
research report [3].

2 Model and Behavioral properties

Model. We consider a dynamic distributed system composed of a finite set Π
of n > 1 mobile nodes, Π = {p1, . . . , pn}. Each process knows its own identity
and it knows only a subset of processes in Π . It does not know n. There is one
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process per node which communicates with its 1-hop neighbors by sending and
receiving messages via a packet radio network. There are no assumptions on
the relative speed of processes or on message transfer delays, thus the system
is asynchronous. A process can fail by crashing. Communications between 1-
hop neighbors are considered to be reliable. Nodes are mobile and they can
keep continuously moving and pausing. A faulty node will eventually crash.
Nonetheless, we assume that there are no network partitions in the system in
spite of node failures and mobility. We also assume that each node has at least
d neighbors and that d is known to every process. Let fi denote the maximum
number of processes that may crash in the neighborhood of any process. We
assume that the local parameter fi is known to every process pi and fi + 1 < d.

Behavioral properties. Let us now define some behavioral properties that the
systemshould satisfy inorder to ensure thatour algorithm implements aFDof class
♦S. In order to implement any type of FDwith an unknown membership, processes
should interact with some others to be known. According to [4], if there is some
process in the system such that the rest of processes have no knowledgewhatsoever
of its identity, there is no algorithm that implements a FD with weak completeness.
Thus, the following membership property, namely MP, should be ensured by all
nodes in the system. This property states that, to be part of the membership of the
system, a process pm (either correct or not) should interact at least once with other
processes in its neighborhood by broadcasting a query message when it joins the
network. Moreover, this query should be received and kept in the state of at least
one correct process in the system, beyond the process pm itself.

Let pm be a mobile node. Notice that a node can keep continuously moving and
pausing, or eventually it crashes. Nonetheless, we consider that, infinitively often,
pm should stay within its target range destination for a sufficient period of time
in order to be able to update its state with recent information regarding failure
suspicions and mistakes. Hence, in order to capture this notion of “sufficient time
of connection within its target range”, the following mobility property, namely
MobiP , has been defined. This property should be satisfied by all mobile nodes.
Thus, MobiP for pm at time t ensures that, after reaching a target destination,
there will be a time t at which process pm should have received query messages
from at least one correct process, beyond itself. Since query messages carry the
state of suspicions and mistakes in the membership, this property ensures that
process pm will update its state with recent informations.

Let us define another important property in order to implement a ♦S FD. It
is the responsiveness property, namely RP , which denotes the ability of a node
to reply to a query among the first nodes. This property should hold for at
least one correct node. The RP(pi) property states that after a finite time u,
the set of responses received by any neighbor of pi to its last query always
includes a response from pi. Moreover, as node can move, the RP(pi) also states
that neighbors of pi eventually stop moving outside pi’s transmission range. RP
property should hold for at least one correct stationary node. It imposes that
eventually there is some “stabilizing” region where the neighborhood of some
correct “fast” node pi does not change.



An Unreliable Failure Detector for Unknown and Mobile Networks 557

Properties MP and RP may seem strong, but in practice they should just
hold during the time the application needs the strong completeness and eventual
weak accuracy properties of FD of class ♦S, as for instance, the time to execute
a consensus algorithm.

3 Implementation of a Failure Detector of Class ♦S

The following algorithm describes our protocol for implementing a FD of class
♦S when the underlying system satisfies MP and MobiP for all participating
nodes and the RP for at least one correct node. We use the following notations:

– suspi: denotes the current set of processes suspected of being faulty by pi.
Each element of this set is a tuple of the form 〈id, ct〉, where id is the identifier
of the suspected node and ct is the tag associated to this information.

– misti: denotes the set of nodes which were previously suspected of being
faulty but such suspicions are currently considered to be a mistake. Similar
to the suspi set, the misti is composed of tuples of the form 〈id, ct〉.

– rec fromi: denotes the set of nodes from which pi has received responses to
its last query message.

– knowni: denotes the current knowledge of pi about its neighborhood. knowni

is then the set of processes from which pi has received a query message.
– Add(set, 〈id, ct〉): is a function that includes 〈id, ct〉 in set. If an 〈id,−〉 al-

ready exists in set, it is replaced by 〈id, ct〉.

The algorithm is composed of two tasks. Task T 1 is made up of an infinite loop.
At each round, a query message is sent to all nodes of pi’s range neighborhood
(line 5). Node pi waits for at least d − fi responses, which includes pi’s own
response (line 6). Then, pi detects new suspicions (lines 7-12). It starts suspecting
each node pj, not previously suspect, which it knows (pj ∈ knowni), but from
which it does not receive a response to its last query. If a previous mistake
information related to this new suspected node exists in the mistake set misti,
it is removed from it (line 10) and the suspicion information is then included
in suspi with a tag which is greater than the previous mistake tag (line 9). If
pj is not in the mist set (i.e., it is the first time pj is suspected), pi suspected
information is tagged with 0 (line 12).

Task T 2 allows a node to handle the reception of a query message. A query

message contains the information about suspected nodes and mistakes kept by
the sending node. However, based on the tag associated to each piece of infor-
mation, the receiving node only takes into account the ones that are more recent
than those it already knows. The two loops of task T 2 respectively handle the
information received about suspected nodes (lines 18–24) and about mistaken
nodes (lines 25–30). Thus, for each node px included in the suspected (respec-
tively, mistake) set of the query message, pi includes the node px in its suspi

(respectively, misti) set only if the following condition is satisfied: pi received a



558 P. Sens et al.

more recent information about px status (failed or mistaken) than the ones it
has in its suspi and misti sets. Furthermore, in the first loop of task T 2, a new
mistake is detected if the receiving node pi is included in the suspected set of
the query message (line 20) with a greater tag. At the end of the task (line 31),
pi sends to the querying node a response message.

When a node pm moves to another destination, pm will start suspecting the
nodes of its old destination since they are in its knownm set.

1 init:
2 suspi ← ∅; misti ← ∅ ; knowni ← ∅
3 Task T1:
4 Repeat forever
5 broadcast query(suspi, misti)
6 wait until response received from at least (d − fi) processes
7 For all pj ∈ knowni \ rec fromi | 〈pj , −〉 
∈ suspi do
8 If 〈pj , ct〉 ∈ misti

9 Add(suspi, 〈pj , ct + 1〉)
10 misti = misti \ {〈pj , −〉}
11 Else
12 Add(suspi, 〈pj , 0〉)
13 End repeat
14

15 Task T2:
16 Upon reception of query (suspj,mistj) from pj do
17 knowni ← knowni ∪ {pj}
18 For all 〈px, ctx〉 ∈ suspj do
19 If 〈px, −〉 
∈ suspi ∪ misti or (〈px, ct〉 ∈ suspi ∪ misti and ct < ctx)
20 If px = pi

21 Add(misti, 〈pi, ctx + 1〉)
22 Else
23 Add(suspi, 〈px, ctx〉)
24 misti = misti \ {〈px, −〉}
25 For all 〈px, ctx〉 ∈ mistj do
26 If 〈px, −〉 
∈ suspi ∪ misti or (〈px, ct〉 ∈ suspi ∪ misti and ct < ctx)
27 Add(misti, 〈px, ctx〉)
28 suspi = suspi \ {〈px, −〉}
29 If (px 
= pj)
30 knowni = knowni \ {px}
31 send response to pj

Lines 29–30 allow the updating of the known sets of both the node pm and
of those nodes that belong to the original destination of pm. For each mistake
〈px, ctx〉 received from a node pj such that node pi keeps an old information
about px, pi verifies whether px is the sending node pj . If they are different, px

should belong to a remote destination. Thus, process px is removed from the
local set knowni.



An Unreliable Failure Detector for Unknown and Mobile Networks 559

References

1. Chandra, T., Toueg, S.: Unreliable failure detectors for reliable distributed systems.
JACM 43(2), 225–267 (1996)

2. Mostefaoui, A., Mourgaya, E., Raynal, M.: Asynchronous implementation of failure
detectors. In: DSN (June 2003)

3. Sens, P., Arantes, L., Bouillaguet, M., Greve, F.: Asynchronous implementation
of failure detectors with partial connectivity and unknown participants. Research
Report 6088, INRIA (January 2007)
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Abstract. We present a nonblocking algorithm for implementing single-
writer multireader atomic registers of arbitrary size given registers only
large enough to hold a single word. The algorithm has several proper-
ties that make it practical: It is simple and has low memory overhead,
readers do not write, write operations are wait-free, and read operations
are almost wait-free. Specifically, to implement a register with w words,
the algorithm uses N(w + O(1)) words, where N is a parameter of the
algorithm. Write operations take amortized O(w) and worst-case O(Nw)
steps, and a read operation completes in O(w(log(k + 2) + Nk · 2−N ))
steps, where k is the number of write operations it overlaps.

1 Introduction

Consider a system in which one process updates data that is read asynchronously
by many processes. For example, the data may represent a value from some
sensor. If the data is larger than can be handled by primitive operations of the
system, some synchronization is necessary to ensure the consistency of data read
by any process, so that, for example, reads do not interleave data from multiple
writes. In such a system, readers should get the latest data available, no process
should cause other processes to wait, and overhead should be minimized.

The abstract specification of this system is an atomic single-writer multireader
register [3], which provides a write operation that only one process may invoke
and a read operation that any process may invoke, such that each operation
can be thought of as happening atomically at some point between its invocation
and response. We present a simple new nonblocking algorithm for implementing
such a register of arbitrary size using only registers large enough to hold a
single word. In this algorithm, readers never write shared data and thus do not
interfere with the writer or with other readers. Write operations always complete
in a bounded number of steps, as do read operations, unless the number of write
operations that they overlap is exponential in a parameter that determines the
space overhead of the algorithm. Specifically, for a positive integer N , a w-word
register uses N(w+O(1)) words. A write operation takes O(Nw) worst-case and
O(w) amortized steps. A read operation takes at most O(w(log(k+2)+Nk·2−N))
steps, where k is the number of write operations it overlaps. Thus, so long as it
overlaps no more than O(2N ) writes, a read operation will complete in O(Nw)
or fewer steps.
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2 Algorithm Description and Analysis

The key idea in our algorithm is a recursive construction of a regular register
(i.e., one in which reads may return the value written by the last write that
completed before the read began or by any overlapping write [3]). Code for this
construction appears in Fig. 1. Although the embedded register is the same size
as the implemented register, it is accessed only by every second write operation
and by read operations that overlap writes, so fewer operations on the embedded
register overlap and conflict. By using this construction repeatedly to implement
the embedded register, we can exponentially reduce the number of operations
that access the innermost register. The depth at which we bound the recursion
is the parameter N of our algorithm.

Fields
data: an array of w words
tag: a natural number, initially 0
next: regular register of size w, initially data[1..w]

Write(d): // d is an array of w words
if tag = 2 mod 4 then

next.Write(d)
tag ← tag + 1
for i = 1..w do

data[i] ← d[i]
tag ← tag + 1

TryRead():
origTag ← tag
if origTag is even then

for i = 1..w do
d[i] ← data[i]

if tag = origTag then
return d

return failed

Read():
value ← TryRead()
if value 
= failed then

return value
return next.Read()

ReadAtomic():
value ← TryRead()
if value 
= failed then

return value
n ← next.Read()
value ← TryRead()
if value 
= failed then

return value
return n

Fig. 1. An implementation of a regular (with Read) or atomic (with ReadAtomic) single-
reader multireader register of size w using a preexisting regular register

In addition to the embedded register, the algorithm maintains an array of
words containing the data and updated by every Write, as well as a “tag.” A
Read that does not overlap a Write can simply read and return the data in the
array. However, if the writer is updating the array then the Read must not return
data from the array, which may include words from both before and after the
write. To achieve this, the writer uses the tag to indicate when the array is being
written, incrementing tag before starting to write the array and again after the
array is written. Thus, a reader that sees the same even tag both before and
after it reads the array is assured that the array was not written in that interval,
so it can safely return the data read. On the other hand, a Read that sees an
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odd tag or sees tag change, must overlap a Write. In this case, it reads the
embedded regular register and returns the value it gets.

To see that the resulting register is regular, note that tag is even whenever
no Write is in progress and that whenever tag is even, the value in data was
written by the most recently completed Write. Thus, a Read that does not read
next returns the value written by the last Write completed before the Read
began, as required. A Read that does read next must overlap with some Write,
and either that Write or the one immediately preceding it wrote its value into
next before the Read began to read next. Therefore, because (by assumption)
next is regular, such a Read returns either the value written by the last Write
that completed before the Read began or by a Write that overlaps the Read, also
as required.

The register is not atomic, however, because a Read, seeing an odd tag due to an
overlapping Write, may return the value being written by a subsequent Write. If the
latter Write has only written next and not yet incremented tag, then a subsequent
Read may return the value of the preceding Write, violating atomicity.

We can avoid this problem and thus guarantee atomicity by rereading tag
and data (if tag is even) after reading next, as in the ReadAtomic function in
Fig. 1. This prevents any Read from returning the value of a Write that has
not incremented tag before the Read returns. It is easy to verify that the value
returned by ReadAtomic was the abstract value of the register at some point
during its operation, where the abstract value is the value in data when tag
is even and the value last written into next when tag is odd. Because next is
written by even-numbered Writes, the abstract value of the register changes when
even-numbered Writes increment tag the first time and when odd-numbered
Writes increment tag the second time.

Finally, we can bound the construction to N levels by simply retrying any
Read that fails on the Nth level. That is, if next0 is the outermost register (for
which we use ReadAtomic rather than Read), and nexti+1 = nexti.next, then
we restart next0.ReadAtomic whenever nextN .Read would be called and ignore
calls to nextN .Write.

Every 2ith Write recurses to a depth of i or more, with a maximum depth of
N for any Write. Thus, Write has O(w) amortized and O(Nw) worst-case step
complexity. A Read that calls nexti.Read must overlap two calls to nexti−2.Write:
the call that causes nexti−2.TryRead to fail and the subsequent call that causes
nexti−1.TryRead to fail; thus, it overlaps at least 2i−2 + 1 calls to next0.Write.
Thus, a Read that overlaps k Writes retries O(k · 2−N ) times and succeeds on its
final try after making O(w log(k +2)) word-sized accesses, for a step complexity
of O(w(log(k + 2) + Nk · 2−N)).

3 Discussion

The efficiency of the algorithm described above can easily be improved. For
example, the nested data structures can be implemented as arrays. Since Read
is tail-recursive, it can easily be made iterative, using only O(w) (rather than
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O(Nw)) local space. Similarly, Write is “head-recursive,” so it can compute how
far to recurse and then iterate over all the writes.

Although we have only presented code for operations that read or write all
w words of the register with step complexity linear in w, we can easily read or
write a subset of those words more efficiently. For Read, we can simply read the
relevant words of data (recursively if necessary). For Write, a small amortized
amount of bookkeeping is needed to propagate partial changes into each next
register as it is written. If a typical operation only access a few words of a large
register, this can greatly reduce the cost of these operations.

To ensure that Reads detect when tag is changed, tag is unbounded. Other-
wise, the value of tag might wrap around and have the same value both time
TryRead reads it, an instance of the ABA problem. However, a tag that wraps
around to 0 whenever it reaches 2K is sufficient to avoid the ABA problem as
long as no Read overlaps K or more Writes. Thus, a 64-bit tag would be sufficient
provided that Reads overlap fewer than 263 > 1018 Writes.

Although we have assumed sequential consistency and atomic access to single
words, our algorithm remains correct even under much weaker guarantees. In
particular, accesses to data can be completely unsynchronized and reordered,
and reads of data that overlap with writes can even return arbitrary values, as
long as the accesses to tag serve as memory barriers. Thus, each operation re-
quires relatively little synchronization, improving performance on large registers,
especially on systems that allow out-of-order execution.

There is a rich literature on register constructions (see [1] for some examples),
but most of these are not practical. In real systems, nonblocking implementations
of large registers typically involve expensive synchronization primitives (e.g., [4]).
In contrast, our algorithm supports an unlimited number of readers, requires few
memory barriers, and can take advantage of hardware-enforced read-only mem-
ory when available to protect against buggy or malicious readers. Kopetz and
Reisinger [2] propose an algorithm similar to ours in that it uses only reads and
writes, is parameterized by a factor N for the space overhead, and provides wait-
free writes. However, in their algorithm, a reader can starve if it is only N times
slower than the writer, whereas in our algorithm, it must be 2N times slower.
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Universit de Bordeaux, INRIA Bordeaux Sud-Ouest, Laboratoire Bordelais de
Recherche en Informatique

Abstract. We consider the resource clustering problem in large scale
distributed platforms, such as BOINC, WCG or Folding@home. In this
context, applications mostly consist in a huge set of independent tasks,
with the additional constraint that each task should be executed on a
single computing resource. We aim at removing this last constraint, by
allowing a task to be executed on a (small) set of resources. Indeed, for
problems involving large data sets, very few resources may be able to
store the data associated to a task, and therefore may be able to partici-
pate to the computations. Our goal is to propose a distributed algorithm
for a large set of resources that enables to build clusters, where each
cluster will be responsible for processing a task and storing associated
data. From an algorithmic point of view, this corresponds to a bin cov-
ering problem with an additional distance constraint. Each resource is
associated to a weight (its capacity) and a position in a metric space
(its location, based on network coordinates such as those obtained with
Vivaldi), and the aim is to build a maximal number of clusters, such
that the aggregated power of each cluster (the sum of the weights of
its resources) is large enough and such that the distance between two
resources belonging to the same cluster is kept small (in order to mini-
mize intra-cluster communication latencies). In this paper, we describe a
generic 2-phases algorithm, based on resource augmentation and whose
approximation ratio is 1/3. We also propose a distributed version of this
algorithm when the metric space is QD (for a small value of D) and the
L∞ norm is used to define distances. This algorithm takes O((4D) log2 n)
rounds and O((4D)n log n) messages both in expectation and with high
probability, where n is the total number of hosts.

Introduction

The past few years have seen the emergence of a new type of high performance
computing platforms. These highly distributed platforms, such as BOINC [1],
Folding@home [2] and WCG [3] are characterized by their high aggregate com-
puting power, their heterogeneity in terms of resource performances and by the
dynamism of their topology, due to node arrivals and departures. Until now, all
the applications running on these platforms (Seti@home [4], Folding@home [2],...)
consist in a huge number of independent tasks, and all data necessary to process
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a task must be stored locally in the processing node. The only data exchanges
take place between the master node and the slaves, what strongly limits the set of
applications that can be performed on these platforms.

Two kind of applications fit in this model. The first one consists in those, such
as Seti@home, where a huge set of data can be arbitrarily split into arbitrarily
small amounts of data that can be processed independently on participating
nodes. The second one corresponds to Monte-Carlo simulations. In this case, all
slaves work on the same data, except a few parameters that drive the simulation.
This is for instance the model corresponding to Folding@home.

In this paper, our aim is to extend this last set of applications. More precisely,
we consider the case where the data set needed to perform a task is possibly too
large to be stored at a single node. This situation is very likely to occur in large
scale platforms based on the aggregation of strongly heterogeneous resources.
In this case, both processing and storage must be distributed on a small set of
nodes that will collaborate to perform the task. The nodes involved in the cluster
should have an aggregate capacity (memory, processing power,...) higher than a
given threshold, and they should be close enough (the latencies between those
nodes should be small) in order to avoid high communication latencies.

In this context, the aim is the following: given a set of weighted items (the
weights are the storage capacity of each node), and a metric (based on latencies),
to create a maximum number of groups so that the maximal latency between
two hosts inside any group is lower than a given threshold, and so that the total
storage capacity of any group is greater than a given storage threshold. This
problem turns out to be difficult, even if one node knows the whole topology (i.e.
the available memory at each node and the latency between each pair of nodes).
Indeed, even without the distance constraint, this problem is equivalent to the
classical NP-complete bin covering problem [5]. Similarly, if the constraint about
storage capacity is removed, but the distance constraint is kept, the problem is
equivalent to the NP-Complete disk cover problem [6].

Results

Due to the lack of space, we refer the interested reader to the companion research
report [7] where all the proofs and algorithms are provided in details.

In this paper, we propose a generic greedy 2-phases algorithm, based on re-
source augmentation and whose approximation ratio is 1

3 . More precisely, we use
resource augmentation in the following way. We compare the number of clusters
(or bins) created by our algorithm with diameter constraint d to the optimal
number of bins that could be created with distance dmax, where d > dmax. This
resource augmentation is both efficient and realistic. Indeed, if the aggregated
memory of the cluster should be larger than a given threshold in order to be able
to process the task, the threshold on the maximal latency between two nodes be-
longing to the same cluster is weaker, and mostly states that nodes belonging to
the same cluster should not be too far from each other. Moreover, this resource
augmentation enables to prove a constant approximation ratio (1

3 ) whereas
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approximation ratio without resource augmentation would be exponential in
the dimension of the metric space .

The basic structure of this 2-phases greedy algorithm is the following:

Phase 1 Greedily create bins of diameter at most dmax
Phase 2 Greedily create bins of diameter at most 3dmax.

Theorem 1. The 2-phases greedy algorithm provides a 1
3 -approximation algo-

rithm of max DCBC problem, using a resource augmentation of factor 2+ d
dmax

on the maximal diameter of a bin.

An extension of the generic 2-phases greedy algorithm with approximation ratio
2
5 with the same resource augmentation is also possible. These results are to
be compared to some classical results for bin covering in centralized environ-
ment without the distance constraint. In this (much easier) context, a PTAAS
(polynomial-time asymptotic approximation scheme) has been proposed for bin
covering [8], i.e. algorithms Aε such that for any ε > 0, Aε can perform, in a
polynomial time, a (1 − ε)-approximation of the optimal when the number of
bins tends towards the infinite. Many other algorithms have been proposed for
bin covering, such as [5], that provides algorithms with approximation ratio of
2
3 or 3

4 , still in a centralized environment.
This paper is a follow-up to [9], where the case of a one-dimensional metric

space is considered. In order to estimate the positions of the nodes involved in the
large scale platform, we rely on mechanisms such as Vivaldi [10,11] that associate
to each node a set of coordinates in a low dimension metric space, so that the
distance between two points approximates the latency between corresponding
hosts. Here, we consider the case where resource locations are given by their
coordinates in a metric space with arbitrary dimension. Moreover, in a large
scale dynamic environment such as BOINC, where nodes connect and disconnect
with a high churn, it is unrealistic to assume that a node knows all platform
characteristics. Therefore, in order to build the clusters, we need to rely on fully
distributed schemes, where a node makes the decision to join a cluster based
on its position, its weight, and the weights and positions of its neighbor nodes.
Therefore, we also propose a distributed version of this algorithm when the
metric space is QD (for a small value of D) and the infinity norm is used to
define distances.

Theorem 2. There exists an algorithm, running in parallel for 4D disjoint in-
tervals, that uses O(4Dn log n) messages and, in a synchronous execution model
where each message takes unit time, O(4D log2 n) rounds, both in expectation
and with high probability, where n is the total number of hosts.

Moreover, we claim that this algorithm can be used in practice, since its im-
plementation only relies on classical distributed data structures, such as skip
graphs [12].

In future works, we plan to adapt the algorithm to the case where several
characteristics must be satisfied simultaneously (for instance, a task may require
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both a large aggregated memory and a large disk storage capacity). Another
interesting work is to compare the performances of the distributed algorithm we
propose with the gossip-based approach. Gossip-based algorithm complexities
are usually very difficult to establish, but these algorithms have been proved very
efficient to exploit locality [13],[14]. At last, we need to adapt the algorithm to the
case where the metric space is not QD. Indeed, if network coordinates systems
based on landmarks [15] used QD (for values of D of order 10) as underlying
metric space, more recent coordinate systems, such as Vivladi [10] rely on much
more sophisticated metric spaces (but based on 3 coordinates only).
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Abstract. PMIPv6 is proposed as a new network-based local mobil-
ity management. Even if PMIPv6 exploits the locality of Mobile Nodes
(MNs) at the mobility management, it still has the packet loss prob-
lem during the handover period like MIPv6. We propose a new reactive
network-based scheme for seamless handover in PMIPv6. The scheme
prevents packet loss during the handover period by buffering packets
which are expected to be lost by MN’s movement. All decisions related
with early packet buffering are made at the access routers without any
MN’s involvement.

1 Introduction

Mobility management protocols are widely researched with the advance of the
wire communication technology. IETF NetLMM working group proposed the
Proxy MIPv6 (PMIPv6) [1] as a network-based local mobility management pro-
tocol. The beauty of PMIPv6 is that mobile nodes do not involve in any mobility
functionality. The mobility of any standard IPv6 device can be achieved without
any user device modification. Many network service providers keep an eye on
the PMIPv6.

However, PMIPv6 has the same problem with MIPv6 [2]: the loss of packet
during the handover period. FMIPv6 [3] provides fast and seamless handover for
MIPv6. The power of FMIPv6 comes from the information given by mobile nodes
(MNs). Because MIPv6 performs the host-based handover, FMIPv6 can notify
the serving access router (AR) with MN’s and target AR’s information about
the impending handover. The main difficulty of applying FMIPv6 to PMIPv6 is
how an AR knows the beginning of MN’s handover and target AR information.

Recently, several fast handover methods based on FMIPv6 for PMIPv6 have
been proposed [4][5]. In [4], ”Layer 2 (L2) HO signaling” is used to detect the
MN’s handover decision. The ”L2 HO signaling” contains the information of
the MN identifier and the new AP identifier. In case of IEEE 802.16e, the
MOB HO IND message may act as ”L2 HO signaling.” However, if L2 layer
does not provide such a message like IEEE 802.11, this procedure will not work.
In [5], the dependency of L2 technology is avoided by using Context Transfer
Protocol. In this protocol, an MN sends a REPORT message which includes MN
� Corresponding author.
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identifier and the new AP identifier to a serving Mobile Access Gateway (MAG).
The role of REPORT message is the same as the FBU message in FMIPv6. The
problem of this approach is that an MN must support Context Transfer Proto-
col. However, using L2 handover signaling or Context Transfer Protocol can be
seen as another form of MN’s involvement in the handover procedure.

2 The Smart Buffering Scheme for PMIPv6

The Smart Buffering scheme predicts an MN’s movement using the network-side
information and starts buffering packets to be expected to lose. The detection of
the attachment of the MN after the MN’s movement is done by the new MAG.
After detecting the attachment, the new MAG notifies the attachment to the
previous MAG. The previous MAG forwards the buffered packets to the new
MAG.

The movement prediction is based on the receiving signal strength indication
(RSSI) of an MN at the serving MAG. If the RSSI crosses the given threshold, the
MAG decides that the MN movement is imminent and it starts packet buffering
as well as forwarding packets to the MN.

To avoid excessive buffering by a premature handover decision, buffered pack-
ets are time-stamped. If the lifetime of a buffered packet is expired, the packet is
discarded. The lifetime of buffered packets is the maximum expected handover
time of the current PMIPv6 domain. To fetch the buffered packets in a previous
MAG, the new MAG after the MN’s attachment must find the previous MAG.
The new MAG multicasts a discovery message (Flush Request) to its neighbor
MAGs. When the previous MAG receives the discovery message , it replies the
acknowledge message (Flush Acknowledgement) to the new MAG and starts
forwarding buffered packets. IP-in-IP tunnel is used between two MAGs.

Fig. 1 shows the sequence diagram of the Smart Buffering when an MN hands
over from MAG1 to MAG2 while communicating with the CN. Except buffering
and Flush Request/Acknowledgement messages, the handover sequence of Smart
Buffering follows the standard PMIPv6 procedure.

MN MAG1 LMA

MN Attached

MAG2 CN

MN Attached Event
(Acquire MN-Id and Profile)

PBUFlushReq
Accept PBU

(Allocate MN-HNP, 
Setup BCE and Tunnel)

DataData

Disconnected

Data(flushed)
Accept PBA

(Setup Tunnel and Routing)

DataData(tunneled)Data

Start Buffering

Start Flushing

PBA

Bi-Dir Tunnel

FlushAck

Data(tunneled)

Data(flushed)

Fig. 1. Sequence diagram of the proposed scheme
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Table 1. The comparison of FMIPv6, FMIPv6-based PMIPv6s, and Smart Buffering

FMIPv6 [4] [5] Smart Buffering
Operation Proactive+Reactive Reactive
Movement FBU L2 signal CXTP RSSI
Detection (Active) (Active [L2]) (Active) (Passive)
Buffering Yes Yes Yes Yes
Handover

MN-based MN-based MN-based Network-basedManage

Table 1 compares FMIPv6, [4], [5], and the Smart Buffering. As mentioned
above, FMIPv6 based proposals depend on the MN-based handover initiation
with different kinds of handover indication, whilst the Smart Buffering does not
depend on any MN’s assistance. This complete independency from MN’s aid
during the handover period comes from that the Smart Buffering is based on the
network-side proactivity, early buffering, rather than the host-side proactivity,
handover indication.

3 Experiments

We performed simulation using ns-2 network simulator with NIST-modified-ns-
2.29 in IEEE 802.11 environment. The simulation network topology is shown by
Figure 2.

The LMA manages two MAGs which support the smart buffering, and the
MN moves from the MAG1 to the MAG2 while communicating with the CN.
The link delay of all wired links is 10 ms and the link capacity is 100 Mbps for
the wired link and 11 Mbps for the wireless link. The CN communicates with
the MN through CBR over UDP with rates, 300 Kbps, 500 Kbps, 1 Mbps, and
2 Mbps. Each scenario ran 100 times.

Table 2 shows the average packet loss at the MN. The results proves that the
Smart Buffering prevents packet loss during the handover period. Fig. 3 shows
the total handover latency for PMIPv6 only and PMIPv6 with Smart Buffering.
We calculate the time between the last packet from old MAG and the first packet
from new MAG as a handover latency. PMIPv6 with Smart Buffering scheme
slightly improves the total handover latency.

Fig. 2. Simulation topology
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Table 2. Lost packets count

Rate PMIPv6 only
PMIPv6 with

Smart Buffering
300 Kbps 16.33 0
500 Kbps 28.53 0
1 Mbps 56.80 0
2 Mbps 114.87 0

300Kbps 500Kbps 1Mbps  2Mbps  
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PMIPv6 only
PMIPv6+SmartBuffering

Fig. 3. Handover latency

4 Conclusion

In this paper, we proposed the Smart Buffering to support seamless handover in
PMIPv6. The scheme buffers packets in a previous MAG without knowing target
MAG and the time of the detachment of the MN. It also prevents over buffering
by introducing lifetime to the buffered packets. All buffering and forwarding
processes between the previous MAG and the new MAG are solely based on
network-side information. So it well confirms the principle of PMIPv6 - the
exclusion of MNs from the handover procedure. Simulation results show that
the Smart Buffering prevents packet loss during the handover period and slightly
improves the total handover latency.
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Uniprocessor EDF Scheduling with Mode
Change

Björn Andersson
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Abstract. Consider the problem of scheduling sporadically-arriving
tasks with implicit deadlines using Earliest-Deadline-First (EDF) on a
single processor. The system may undergo changes in its operational
modes and therefore the characteristics of the task set may change at run-
time. We consider a well-established previously published mode-change
protocol and we show that if every mode utilizes at most 50% of the pro-
cessing capacity then all deadlines are met. We also show that there exists
a task set that misses a deadline although the utilization exceeds 50%
by just an arbitrarily small amount. Finally, we present, for a relevant
special case, an exact schedulability test for EDF with mode change.

1 Introduction

Many real-time systems must reconfigure themselves during operation and
thereby change the characteristics of their tasks. It is therefore crucial to
(i) design a protocol (called a mode-change protocol) that prescribes how tasks
are allowed to arrive during the reconfiguration and (ii) design a method (a
schedulability test) for proving that deadlines are met during the reconfigura-
tion. Unfortunately, no analysis of mode change with EDF scheduling on a single
processor is available.

In this paper, we present a new solution to the mode change problem. We use
the previously known, and well established, mode-change protocol designed by
Sha et al. [1]. But we use EDF and we present a schedulability analysis for EDF
with mode changes. The schedulability analysis is simple; if the utilization of
every mode is at most 50% then all deadlines are met. We also show that there
exists a task set that misses a deadline although the utilization exceeds 50% by
just an arbitrarily small amount. Finally, we present, for a relevant special case,
an exact schedulability test for EDF with mode change.

2 System Model

Consider a task set τ ={τ1, τ2, . . .} and a mode set modes={mode1, mode2, . . .}.
Also, consider a sequence of times of transition requests < tr[1], tr[2], tr[3], . . . >
and corresponding new modes < newmode[1], newmode[2], newmode[3], . . . >
where each of those modes are in the set modes. These two sequences have the
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interpretation that the current mode of the task set τ is requested to become
newmode[j] at time tr[j]. We assume that the request of the transition of the task
set to mode newmode[j] at time tr[j] is unknown to the scheduling algorithm
and mode change protocol before time tr[j].

A task τi generates a (potentially infinite) sequence of jobs. We consider the
sporadic model, that is, the time of the arrival of a job is unknown before the
job arrives and the arrival time of a job cannot be controlled by the scheduling
algorithm. A task τi has a current mode at time t; this mode is one of the modes
in the set modes. A task τi is characterized by the minimum inter-arrival time
of task τi in mode k (denoted T k

i ) and the execution time of task τi in mode k
(denoted Ck

i ). The parameters T k
i and Ck

i have the following interpretation. If
task τi is in mode modek at time t and s denotes the latest time not exceeding
t when task τi has arrived then it holds that the next arrival of task τi occurs
at time s + T k

i or later. If task τi is in mode modek at time t and task τi has
never arrived before time t then it is possible for τi to arrive at time t. Let us
consider a job of task τi that arrives at time s and the job is in mode k at that
time, time s. Then the deadline of the job is s+Dk

i . If the job performs Ck
i time

units of execution by its deadline then we say that the job meets its deadline;
otherwise it misses its deadline. A task τi is said to meet its deadlines if all of its
jobs meet their deadlines; otherwise the task τi is said to miss a deadline. A task
set τ is said to meet its deadlines if all tasks in τ meet their deadlines otherwise
we say that the task set τ misses a deadline. We assume ∀i, k : Dk

i = T k
i and

we assume that preemptive Earliest-Deadline-First (EDF) scheduling is used to
schedule jobs on a single processor

We say that the system is in steady state at time t if it holds that all tasks
are in the same mode at time t. We say that the system is in transient state at
time t if it is not in steady state at time t. We let latest arrival(t, τi) denote the
maximum time such that (i) this time is no greater than t and (ii) task τi arrives
at time t. If task τi has not yet arrived at time t, then latest arrival(t, τi) is
undefined. Let us assume that the system has a variable pending changes, a set
which is initialized to the empty set when the system boots.

If the system is in steady state at time t and all tasks are in mode k and
t is one of the elements in the sequence < tr[1], tr[2], . . . >, say tr[j], then a
mode change protocol will switch the mode of the tasks from mode k to mode
newmode[j]. The tasks do not necessarily switch to the new mode immediately.
The general rule for mode change when the system is in steady state at time t
is as follows. If task τi arrives at time tr[j] then task τi switches from mode k to
newmode[j] immediately on its arrival; otherwise task τi switches from mode k
to newmode[j] at time latest arrival(t, τi) + T k

i .
If the system is in transient state at time t and the task set τ is in mode k

and t is one of the elements in the sequence < tr[1], tr[2], . . . >, say tr[j], then
no mode change is performed when the system is in a transient state; instead
the tuple (tr[j], newmode[j]) becomes member of the set pending changes and
then immediately when the system enters steady state, the run-time system
selects one (the application developer can choose which one) of the tuples in
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pending changes (let us say that (tr[q], newmode[q]) was selected) and then
acts as if it was requested that the system changes to mode newmode[q] at the
time when the system entered steady state. And then the set pending changes
is assigned the empty set.

3 The Utilization Bound of EDF with Mode Change

In proofs, we will find it useful to discuss an algorithm called Processor-Sharing
(PS). It operates as follows. Consider a time interval of duration ε > 0 and
assume that task τi is in the mode k during the entire time interval. Then it
holds that τi executes for (Ck

i /T k
i ) · ε time units during the time interval of

duration ε.

Lemma 1. Let current modes(i, τ) denote the set of modes of tasks in the task
set τ at time t. It holds that ∀t : current modes(i, τ) ≤ 2.

Proof. The lemma follows from the fact we do not (as stated in Section 2) allow
a mode change when the system is in transient state.

Lemma 2. If ∀modesk ∈ modes it holds that:

∑
τj∈τ

Ck
j

T k
j

≤ 1
2

(1)

and PS is used to schedule tasks then all deadlines are met.

Proof. From Lemma 1 and Equation 1 it follows that PS meets all deadlines.

Theorem 1. If ∀modesk ∈ modes it holds that:

∑
τj∈τ

Ck
j

T k
j

≤ 1
2

(2)

and EDF is used to schedule tasks then all deadlines are met.

Proof. Follows from Lemma 2 and the fact that EDF is an optimal scheduling
algorithm for a set of jobs [2]. (A scheduling algorithm is said to be optimal if
it meets deadlines when it is possible to do so.)

The utilization bound expressed by Theorem 1 is tight; it can be seen by con-
sidering two tasks with Ti such that T 1

1 + T 2
1 = T 1

2 + T 2
2 and T 1

1 = T 2
2 and

T 2
1 = T 1

2 .

4 Schedulability Analysis of EDF with Mode Change

In this section, we will study schedulabiltiy analysis for the special case where
(i) |modes|=2 and (ii) T 1

i ,C1
i , T 2

i ,C2
i and tr[1] are integers and arrivals occur only
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at times which are integers and (iii) only one mode change request can occur
during a busy interval. (A busy interval is an interval such that the processor is
busy during this interval and just before the interval, the processor is idle and
just after the interval, the processor is idle as well.) We believe this limitation
is reasonable for systems where reconfiguration is performed not too often but
when reconfiguration is required, the reconfiguration must be completed quickly,
for example reconfiguration after the occurrence of a fault.

Let us define dbf( τ , L) as:

dbf(τ, L) =
∑
τj∈τ

dbf(τj , L) (3)

We need to check whether for every L > 0, it holds that if dbf( τ , L) ≤ L.
Consider a time interval [t0,t1) with t1 − t0 = L. The system is in mode1

at time t0 and at time tr[1], there is a request to change to newmode[1]. Let
transitionj denote the time when task τj switches to mode tr[1]. We have that:

dbf(τ, L) = max
t0≤tr[1]≤t1

dbf(τ, L, tr[1]) (4)

where

dbf(τ, L, tr[1]) =
∑
τj∈τ

(
� transitionj − t0

T 1
j

� · C1
j + � t1 − transitionj

T 2
j

� · C2
j

)
(5)

and
∀j : t0 ≤ transitionj ≤ t1 (6)

and
∀j : tr[1] ≤ transitionj (7)

and
∀j : transitionj < tr[1] + T 1

j (8)

and
t0 ≤ tr[1] ≤ t1 (9)

It is possible to compute dbf(τ, L) for a fixed L by solving the optimization
problem expressed by Inequality 4 - Inequality 9. But recall that we need to
calculate dbf(τ, L) for all positive values of L. For uniprocessor scheduling of
EDF without mode change, it was shown [3] that if the utilization of the task
set is known then one can find an upper bound on L such that values of L above
this bound does not need to be checked. We will now develop a similar approach
for EDF with mode change.

Lemma 3. It holds that:

dbf(τ, L, tr[1]) ≤
(∑

j∈τ

C1
j

)
+ L · max

(∑
j∈τ

C1
j

T 1
j

,
∑
j∈τ

C2
j

T 2
j

)
(10)
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Proof. From Inequality 5,Inequality 7 and Inequality 8 it follows that:

dbf(τ, L, tr[1]) ≤
∑
τj∈τ

(
�
tr[1] + T 1

j − t0

T 1
j

� · C1
j + � t1 − tr[1]

T 2
j

� · C2
j

)
(11)

Using the facts that (i) t1=t0+L and (ii) for every x > 0 it holds that �x� ≤ x
and rewriting gives us:

dbf(τ, L, tr[1]) ≤ (tr[1]− t0) ·
( ∑

τj∈τ

(
C1

j

T 1
j

−
C2

j

T 2
j

)
)

+(
∑
τj∈τ

C1
j )+L · (

∑
τj∈τ

C2
j

T 2
j

) (12)

By observing the two cases where
(∑

τj∈τ (
C1

j

T 1
j

− C2
j

T 2
j
)
)

is non-positive and
positive, we obtain that: Consider the term( ∑

τj∈τ

(
C1

j

T 1
j

−
C2

j

T 2
j

)
)

(13)

If it is negative or zero then Inequality 12 is maximized for tr[1] = t0 and
hence for that case, an upper bound on Inequality 12 is:

(
∑
τj∈τ

C1
j ) + L · (

∑
τj∈τ

C2
j

T 2
j

) (14)

If Inequality 13 is positive then Inequality 12 is maximized for tr[1] = t0 + L
and hence for that case, an upper bound on Inequality 12 is:

L ·
( ∑

τj∈τ

(
C1

j

T 1
j

−
C2

j

T 2
j

)
)

+ (
∑
τj∈τ

C1
j ) + L · (

∑
τj∈τ

C2
j

T 2
j

) (15)

which can be rewritten to:

(
∑
τj∈τ

C1
j ) + L · (

∑
τj∈τ

C1
j

T 1
j

) (16)

Combining these cases gives us that:

dbf(τ, L, tr[1]) ≤
(∑

j∈τ

C1
j

)
+ L · max

(∑
j∈τ

C1
j

T 1
j

,
∑
j∈τ

C2
j

T 2
j

)
(17)

This states the lemma.

Lemma 4. It holds that:

dbf(τ, L) ≤
(∑

j∈τ

C1
j

)
+ L · max

(∑
j∈τ

C1
j

T 1
j

,
∑
j∈τ

C2
j

T 2
j

)
(18)

Proof. Follows from Inequality 4 and Lemma 3.
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Lemma 5. If

max
(∑

j∈τ

C1
j

T 1
j

,
∑
j∈τ

C2
j

T 2
j

)
< 1 (19)

then for all L > 0 such that ∑
j∈τ C1

j

1 − max
(∑

j∈τ

C1
j

T 1
j
,
∑

j∈τ

C2
j

T 2
j

) ≤ L (20)

it holds that:
dbf(τ, L) ≤ L (21)

Proof. Follow the spirit of the proof in [3] but use Lemma 4.

We now know that only values of L that do not exceed the left-hand side of
Inequality 20 must be checked. We can enumerate all values of L from 1 up
to this bound. We can also assume (with no loss of generality) that t0 = 0 and
t1 = L and hence enumerate tr[1] from 0 up to L. For each of these we would like
to compute dbf( τ ,L,tr[1]), using Inequality 5. This can be done by iterating,
for each task τi, through all values of transitionj from tr[1] to tr[1]+T 1

j −1 and
compute the term in the sum of Inequality 5; for convenience this term is stated
below. to tr[1] + T 1

j − 1 and compute the term in the sum of Inequality 5.
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Défago, Xavier 145
Delporte-Gallet, Carole 41
Devismes, Stéphane 41
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Gramoli, Vincent 527
Greve, Fab́ıola 22, 555
Guerraoui, Rachid 1

Harmanci, Derin 527
Huc, Florian 546

Imbs, Damien 226

Jung, Eunjin (EJ) 542

Kakugawa, Hirotsugu 496
Kamei, Sayaka 496
Killijian, Marc-Olivier 534
Kim, Hyeong S. 542
Kim, Kwang-Ryoul 568
Klasing, Ralf 446
Korzeniowski, Miroslaw 184
Kosowski, Adrian 446
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